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Neuroanatomical segmentation is a problem of extraction of a description of
particular neuroanatomical structures of interest that reflects the morphometry (shape
measurements) of the subject’s neuroanatomy from any image rendering the
neuroanatomical structures of the subject. This dissertation presents a set of algorithms for
automatic extraction of cerebral white mater (WM) and gray matter (GM) as well as
reconstruction of cortical surfaces from T1-weighted MR images.

Neuroanatomical segmentation presented in this dissertation is performed by an
image analysis pipeline that steps through five major procedures: 1) the original MR
image is processed by a new relative thresholding procedure and a new terrain analysis
procedure such that all voxels are classified into one of the three types: WM, GM, and
background; 2) the topology defects of the WM are eliminated by a new multiscale

morphological topology correction algorithm; 3) cerebral WM is extracted from its



superset with a new procedure called cell-complex-based morphometric analysis; 4)
cerebral GM is extracted based on the prior cerebral WM extraction with a set of
morphological image analysis procedures; and 5) cortical surfaces are finally
reconstructed preserving correct topology with an existing marching cube isosurface
algorithm.

In this dissertation, we evaluated our neuroanatomical segmentation tool both
quantitatively and qualitatively on a set of MR images with groundtruth or manual
segmentation, compared the results of our tool with those of four other tools, and
demonstrated that the performance of our tool is highly accurate, robust, automatic and
computationally efficient.

The advantages of our tool are mainly attributed to extensive exploration of various
structural, geometrical, morphological, and radiological a priori knowledge, which
persists despite of image artifacts and inter-subject anatomical variations. By exploiting a
priroi knowledge, we also demonstrated that performing voxel classification prior to brain
extraction is a promising research direction, contrary to the traditional procedure of brain
extraction followed by voxel classification. Finally, it’s worth noting that the algorithms of
voxel classification and morphological image analysis presented in this dissertation for
neuroanatomical segmentation can be potentially applied in wider areas in computer

vision.
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CHAPTERI

INTRODUCTION

1.1 Problem Statement

Image segmention is the problem of extracting the figure (object of interest) from an
arbitrary image [1]. It can also be defined as the subdivision of an image into its
constituent parts or objects [2]. By neuroanatomical segmentation, we mean the
extraction of a description of particular neuroanatomical structures of interest that refiects
the morphometry (shape measurements) of the subjects’s neuroanatomy [3].
Neuroanatomical segmentation is usually conducted on T1-weighted magnetic resonance
images (MRI) due to their relatively good image quality in tissue contrast and
signal-to-noise ratio. Neuroanatomical structures of interest include cerebral cortex,
cerebral white matter, brainstem, ventrical systems, cerebellum, and so on. The
morphometric description usually takes the form of a surface representation. For example,
we can represent the cerebral cortex by the inner cortical surface (the interface between
the cortex and the white matter), the outer cortical surface (the interface between the
cortex and the cerebrospinal fiuid), or the middle cortical surface running midway through
the cortical thickness. Morphometric analysis of neuroanatomical structures in conjuction
with neuropsychological, neurological, and psychiatric observations, and coupled with
functional neuroimaging, has found broad applications such as precisely locating active
brain regions in functional neuroimaging studies, planning treatments for brain damage,

and various neuropathological studies [3].



Magnetic resonance imaging (MRI) is a non-invasive method for rendering images of
the inside of an object mainly based on the relaxation properties of excited hydrogen
nuclei in water and lipids. Each image element (i.e. voxel in 3D image volumes) has a
brightness, commonly referred to as intensity, that corresponds to a measurement of the
tissue weighted by certain MR parameters averaged over a small 3D region. In
T1-weighted MRI, spin-lattice relaxation time is selected as the image acquisition
parameter. Other MRI techniques include T2-weighted and Proton-density(PD), where
spin-spin relaxation time and no relaxation time is used respectively in image acquisition.

Neuroanatomical segmentation should be precise, robust, efficient and automatic in
order to be pratically applied for morphometric analysis [3]. Most existing
neuroanatomical segmentation methods classify image voxels as belonging to three types:
gray matter, white matter, and cerebrospinal fluid. Precise neurcanatomical segmentation
requires high geometrical accuracy and topology correctness of neuroanatomical
structures. It also requires morphometric description at a finer level. For example, the
precise morphometric description of cerebral cortex requires further segmentation of the
gray matter into the cerebral cortex and the telencephalic nuclei. The cortical surfaces
should be topologically equivalent to a sphere if the opening at the brainstem is artificially
closed. By robust, we mean that the neuroanatomical segmentation should be able to
produce acceptable results for a variety of subjects and for an appropriate range of the
quality of available data. Furthermore, neuroanatomical segmentation should be efficient
and automatic such that the computation can be accomplished in a reasonable amount of
time and requires no or limited user intervention.

Despite vigorous research for many years, precise, robust, efficient and automatic
neuroanatomical segmentation remains as an unsolved problem. There are several

challenges that make the problem difficult.

1. The exact intensity a given location is determined not only by the tissue type at the
location but also by the neighboring tissues. This may produce an effect of blurring

borders of different tissues.

2. Spatial inhomogeneities in the radio frequency (RF) gain in the RF coil [4] lead to

intensity homogeneities (IIH), or bias field, in the single tissue. The presence of ITH



as a shading effect over the image causes significant overlaps between histograms of

different tissues.

3. Mainly due to insufficient resolution, the partial volume effect [4] when the volume
sampled by a single voxel contains more than one kind of tissue type blurs the tissue

border and very thin structures.

4. There are significant variations in the intrinsic tissue parameters. For example,
frontal cortex has been found to have an average T that is 20% longer than that
found in motor and somatosensory cortex [5]. It has been reported that different

regions of white matter also have significantly different T properties [6].

5. There are normal anatomical variations among different subjects [7]. This
inter-subject variation plus the highly convoluted shape of the cerebral cortex brings

further difficulties, particularly to those model and template based methods
6. Noise is inevitable in MRI, as in almost all image acquisition methods.

7. There may be other image artifacts such as motion, blood flow, echo, and so on.

As a summary, the main difficulty in neuroantomical segmentation come from intensity
variations in a single tissue, the complex anatomical structure, and the inter-subject

anatomical variations.

1.2 Overview of the Methodology

There are three key components in the work flow of most existing neuroanatomical
MR image segmentation tools: 1) a brain extraction component that generates a brain
mask for subsequent brain tissue classification, 2) a bias field correction component for
intensity inhomogeneity elimination such that the subsequent tissue classification is
simplified, and 3} a brain tissue classification component that recognizes the tissue type

for each voxel in the brain. Brain tissue classification is commonly performed with



statistical modeling on the image intensities and is sometimes combined with certain a
priori knowledge such as tissue probability maps where each location in a standard brain
space is given a probability for each tissue being present. In different segmentation
methods, these components may be conducted sequentially or in an iterative loop that
alternates running the three components until a conversion point is reached.

The present work on neuroanatomical MR image segmentation differs from the
traditional workflow in several aspects and attempts to overcome the relevant
segmentation problems or limitations. First, bias field correction, no matter if it is
performed prior to or simultaneously with tissue classification, is a procedure that
attempts to explicitly reconstruct the image without bias field. However, there has been no
guarantee for ideal correction under all circumstances [8]. The present method, on the
other hand, performs robust segmentation against ITH without explicit bias field
correction. This is due to a new tissue classification algorithm referred to as relative
thresholding, which regards ITH as transparent in the segmentation.

Second, good brain extraction is a prerequisite for brain tissue classification in most
segmentation work flows. However, brain extraction itself is a difficult problem and poor
brain extraction usually leads to poor brain tissue classification. In the present work,
relative thresholding for brain tissue classification is independent of prior brain extraction.
Brain extraction follows as a procedure that eliminates false positives of the relative
thresholding result. This new perspective of brain extraction based on tissue classification
exploits morphology properties of the brain structures and is inherently more accurate and
more robust than traditional brain extraction approach.

Third, one of the major difficulties in neuroanatomical segmentation involves the
significant amount of intensity variations within a single tissue. Our initial tissue
classification algorithm, relative thresholding, is based on an image modeling that is
formulated as spatial constraints on intensities of different voxels instead of traditional
statistical distributions such that it allows reasonable yet high extent of intensity variations
for a given tissue.

Exploiting various a priori knowledge is the essential methodology in our approach
to the neuroanatomical MR image segmentation problem. We have exploited structural,

geometrical, and morphological a priori knowedge with respect to neurcanatomy as well



as radiological properties with respect to MR imaging. These a priori knowledge are
invariant across different subjects and robust against various MR imaging parameters.
Interestingly, in contrast, the a priori knowledge used in traditional methods such as the
tissue probability maps, may cause an over-regularization problem where the

segmentation may not fully adapt to inter-subject variations.

1.3 Overview of the Dissertation

Neuroanatomical segmentation presented in this dissertation is performed by an

image analysis pipeline that steps through five major procedures as follows.

1. The original MR image is processed by an original relative thresholding procedure
and an original terrain analysis procedure such that all voxels are classified into one

of the three types: white matter (WM), gray matter (GM), and background.

2. The topology defects of the WM are eliminated by an original multiscale

morphological topology correction algorithm.

3. Cerebral WM is extracted from its superset with an original procedure called cel!

complex based morphometric analysis.

4, Cerebral GM is extracted based on the prior cerebral WM extraction with a set of

morphological image analysis procedures.

5. Cortical surfaces are finally reconstructed preserving correct topology with an

existing marching cube isosurface algorithm.

Note that step 2 through 4 can be seen as a series segmentation error correction procedures
after initial brain tissue classification with relative thresholding and terrain analysis. Step
3 and 4 together can be taken as a cerebrum extraction procedure following brain tissue
classification and white matter topology correction.

In this dissertation, we will evaluate our neuroanatomical segmentation tool both’

quantitatively and qualitatively on simulated and real MR images with groundtruth and



manual segmentation respectively, and compare the results of our tool with leading brain
segmentation tools (Freesurfer, SPM5, FSL and BrainVisa) using metrics of accuracy,

automation, robustness, and computational efficiency.

1.4 Contributions of the Dissertation

In this dissertation, we proposed a new work flow for neuroanatomical MR image
segmentation in which brain tissue classification is conducted prior to brain extraction and
is independent of explicit bias field correction, designed and implemented a set of original
algorithms that were applied in different stages in the work flow, and demonstrated by
comparative evaluation that our method is highly accurate, robust, automatic and
computationally efficient.

The major original algorithms presented in this dissertation include a relative
thresholding algorithm for initial brain tissue classification, a multiscale morphological
topology correction algorithm for topology correction of white matter, a cell complex
based morphometric analysis algorithm and a 3D curve skeletonization algorithm.

The relative thresholding algorithm is based on a new structure modeling of
neuroanatomy and a new image modeling of the T1-weighted MR images exploiting
various structural, geometrical and radiological a priori knowledge. Brain tissue
classification with relative thresholding is free from three typical problems that occur in
traditional intensity based segmentation methods. First, it is independent of prior brain
extraction and thus avoids performance instabilities cansed by poor brain extraction in
many traditional methods. Second, relative thresholding is robust against intensity
inhomogeneities without explicit bias field correction. Third, relative thresholding is also
able to adapt to large intensity variations within a given brain tissue and thus tends to
produce more accurate segmentation. On the other hand, relative thresholding can be seen
as a special edge (or intensity difference) based segmentation method that overcomes
several critical disadvantages of edge based segmentation approaches. First, it produces

coherent regions labeled with brain tissue types. Second, it is able to recognize blurred



edges and tissue boundaries where intensities vary smoothly. Third, it is able to suppress
spurious edges between voxels of same tissue types. In these respects, we see relative
thresholding as a fusion of intensity based segmentation and edge based segmentation.
The idea can be effective in other image segmentation problems, particularly where there
are intensity inhomogeneities and blurred edges.

The cell complex based morphometric analysis simplifies a 3D object into a 1D
structure and gives a quantitative measurement on the wideness and connectivity on every
location in the 3D object. This is a significant advancement over the fact that traditionally
only a “thickness” metric (i.e. the distance to the boundary) can be calculated for each
point in the 3D object. This new 3D morphometric instrument will potentially promote
more applications of morphological analysis for various problems in computer vision and
image understanding. By applying this new morphometric analysis on the white matter
generated, we are able to eliminate non-brain tissues and divide the entire white matter at
the brain stem based on the a priori knowledge of sirong connectivity of cerebral white
matter. Cerebrum extraction using cell-complex-based morphometric analysis provides
higher robustness than other brain extraction such as traditional morphological image
analysis, deformable model based methods, and atlas based methods.

The white matter topology correction algorithm is based on the a priori observation
that human white matter, particularly cerebral white matter, is a surface-like object.
Preservation of this morphological property is taken as the major criterion for eliminating
topology defects. In addition, our topology correction algorithm involves WM, GM and
background in the procedure, in contrast to the traditional procedure where only the
foreground and background are involved. Our three-fold procedure exploiting the
surface-likeness morphological a priori knowledge tends to more robustly produce
reasonable solutions to topology defect elimination than other methods.

The 3D curve skeletonization algorithm is performed directly on a 3D object in
contrast to the traditional methods that depend on prior surface skeletonization and tend to
generate skeletons with better “medialness”. A variant of our curve skeletonization is
referred to as “shape and topology preserving erosion” in which the skeletonization
procedure is conducted in certain iterations instead of until conversion. This variant

algorithm is used as an important component in the white matter topology correction



algorithm as well as for generating topology correct gray matter in our neuroanatomical
pipeline. A similar procedure can also used in 3D object smoothing to eliminate noisy
protrusions on the 3D object. This framework of 3D curve skeletonization is based on a
systematic point classification of discrete 3D objects. In this classification approach, we
proposed the central notion of a thick-simple point. This notion enables deeper and wider

topology and geometry characterization of any points in a 3D digital object.

1.5 Organization of the Dissertation

The segmentation pipeline is described step by step in chapter VIII, but the key
algorithms are separately presented in previous chapters. Chapter IIT describes the relative
thresholding algorithm (summarized in section 8.1). Terrain analysis as a complemental
technique to relative thresholding for brain tissue classification is described in section 8.2.
The multiscale morphological topology correction of WM is described in chapter VII
(summarized in section 8.3). Cell complex based morphometric analysis is presented in
chapter 6 and its application for cerebral WM extraction is discussed in section 8.4.
Cerebral GM extraction is described in section 8.5 and cortical surface reconstruction is
presented in section 8.6. The segmentation pipeline also depends on several 3D
skeletonization routines as described in chapter V. Chapter IV is a set of definitions on
characterization of different points in 3D discrete object, which forms the basis for the 3D
skeletonization and the topology correction algorithms. The comparative evaluation of the
segmentation pipeline is presented in chapter IX. Chapter II of the dissertation contains a

survey on the existing neuroanatomical MR image segmentation methods.



CHAPTER II

NEUROANATOMICAL SEGMENTATION IN MRI

In this chapter we give a survey on the existing neuroanatomical segmentation
methods. There are mainly two types of segmentation methods: intensity-based methods
and edge-based methods. Intensity-based methods classify image voxels based on the
voxe! intensities while edge-based methods extract anatomical contours based on a
gradient or edge map of the original image. A variety of widely applied intensity-based
automatic segmentation methods are also often referred to as clustering methods. These
methods, such as k-means clustering and finite mixture resolving assume there is no
intensity inhomogeneities and are supposed to be performed on the brain region extracted
in a prior procedure. Basic clustering methods are often extended with atlas or Markov
random field to improve performance. Intensity inhomogeneity correction has been
reséa:ched by extending the exiting segmentation methods or by proposing a separate
preprocessing procedure. There are mainly two types of edge-based segmentation
methods: those use plain edge detection or fuse edge detection with other segmentation
techniques such as morphological operations and region growing, and those based on
deformable models, in which a surface model is deformed such that it is attached to the
salient edges while maintaining the smoothness of the model.

In the first section of this chapter, we present several basic clustering segmentation
methods. In section 2 and section 3, we describe segmentation methods using Markov
random field and brain atlas respectively that extend the basic intensity-based segmenta-
tion methods. Edge-detection based segmentation methods are reviewed in section 4 and

segmentation based on deformable models is described in section 5. Intensity inhomo-
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geneity correction and brain extraction methods are reviewed in section 6 and section 7

respectively.

2.1 Clustering

Clustering can be loosely defined as the unsupervised classification that groups
similar objects from a collection of unlabeled data, in which each object is associated with
a vector of feature values. The similarity is determined based on the feature vectors,
which could be simply the pixel intensities in image segmentation. There are two basic
clustering methods for image segmentation: partitional clustering and hierarchical
clustering. Partitional clustering generates a flat group structure in that all data groups
form disjoint cluster sets. Hierarchical clustering generates pattern groups in a
hierarchical structure (i.e. dendrogram) which can be cut at a dissimilarity level forming a
partition. In neuroanatomical MR image segmentation, many methods either extend
traditional partitional clustering and use them to generate initial results for further
processing. This section describes some common partitional clustering methods used in

neuroantomical MR image segmentation.

2.1.1 K-Means Clustering and Fuzzy C-Means Clustering

k-means clustering and fuzzy c-means clustering are two widely used clustering
methods. k-means clustering partitions samples with the sum-of-squared-error criterion.
Starting from an initial partition, it iteratively classifies all samples into & clusters
according to nearest mean and then recompute the means in each iteration. The iteration

stops when there is no change in the means.
Fuzzy c-means clustering is an extension of the k-means clustering with fuzzy set

theory. We assume that each sample y; has some graded or “fuzzy” membership in a

cluster. At root, the “membership” y;; is equivalent to the posterior probability P(wily,).
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The fuzzy c-means clustering seeks a minimum of a heuristic global criterion function

¢ N
quz = ZZ(#ij)b"yj - mi“Q’

i=1 j=1

where b is a parameter chosen to adjust the “blending” of different clusters. It can be
shown that when Jy,,. arrives at a minimum,
(1/dy;)"/ -1
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The fuzzy c-means clustering algorithm proceeds iteratively recomputing m; and ;5
according to the above two equations until they reach stable values.

K-means [9] and fuzzy c-means [10, 11, 12] clustering are commonly applied for
image segmentation. The main issue of the two methods is to determine the feature
composition of each pattern. Generally speaking, the measurements/features could be
point multispectral values, point color components and derived color components, or
derived statistics such as mean, standard deviation, and modes, in a certain neighborhood
of the pixel [13].

It has been shown that the k-means algorithm converges to a locally optimal solution.
Generally the fuzzy c-means algorithm is better than the hard k-means algorithm, but it
may still converge to local minima of the squared error criterion [14]. Note that little or no
spatial information is considered in the feature space based clustering methods. Usually
only the spatial coordinates of a pixel are considered as additional features. This tends to
result in poor segmentation, particularly when the desired regions do not form simple

regions with similar coordinates.

2.1.2 Finite Mixture Resolving

This is a parametric clustering method in that the intensity levels of pixels in the
image are assumed to be a mixture of finite number of certain probability distributions,
usually Gaussian, with a parameter vector 8. Formally, let w = {w;,1 < ¢ < N} be the

pixel types and P(y;|w;, f.,,) be the probability of the intensity level y; of pixel j
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conditional on the pixel class w; and the given parameters £,,,. Then the marginal

probability of the intensity level y; over all labels is P(y;|6) = Z P(y;|wi, 0, ) P (w;).

After the parameters are estimated, usually by the Expectation- max1mlzat10n (EM)
method [15], the region type of a pixel is determined by maximization of the posterior
probability P(w;|y;). A commonly used parameter estimation method is to take the labels
as hidden or missing data and to use the expectation-maximization method to maximize
the likelihood P(y,w!6).

The expectation-maximization (EM) algorithm is often used to estimate the
parameters of the probability distribution P(y,w|@) that models some incomplete data,
where y denotes the observed variables and w denotes the missing or hidden variables.
Note that here y is a vector representing all samples (1, ¥a, ..., ¥n)” . Then the
log-likelihood of the observed variables [(8) = log P(y|@) = log Z P(y,w|f). The EM

algorithm attempts to find the values of # such that the likelihood IL‘(’B) is maximized. The
EM algorithm proceeds in rounds starting from an initial guess of the parameters 6. In
each round, let the §* be the current parameter setting, we want to find a new parameter
setting, #*! that increase the log-likelihood. When [(€) converges, we obtained an local
maximum value of the log-likelihood /().

In each round, the EM algorithm finds a lower bound B(8|6*) of {(#) that touches
1(6) at 6 (i.e. V8, B(8|6*) < I(#), and L(#*|6") = 1(6")). Intuitively, when we locally
maximize the bound with respect to # in each iteration, it will guarantee that we obtain an

improved estimate §**1. The bound can be derived by Jensen’s inequality as follows:

1) = logz P(y,w|0) = logz P(wly, 8 ﬁ((gi;iga))

> ZP (wly, 6% logF((—?"—ifl—ﬂ% = B(6]6").

,w|6t Py, w|8
Since P(w|y, §) = > ’(.g (y,l ?9’-) = }(I’y(yl glt)),we can show that

Ply,w)f)
y,w|64)/ P(yl0")

B(#'6") = > P(wly, 6")log B
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log P(y6*) > P(wly,6") = log P(y|6") = I(6").

wr

Note that maximizing B(#|6") with respect to 8 does not involve the nominator of the log

term. Therefore maximizing B(6|6*) is equivalent to maximizing
Q016 = Y Plwly, 0% log P(y, w]6).

An interpretation of ¢} is that it calculates the expectation E,[P(y,w|6}] of the likelihood
of the complete data over the hidden data space (hence the name of the algorithm).

Note that only statistical information are considered in the segmentation with mixture
resolving and this often results in poor segmentation. The finite mixture model can be
extended with the Markov random field model and probability tissue maps to incorporate
spatial information into the segmentation and even bias field correction, as described later

in this chapter.

2.1.3 Clustering With Artificial Neural Networks

Clustering methods based on artificial neural networks have also been applied in
medical image segmentation. Many of these methods attempt to resolve the standard finite
normal mixture model based on competitive learning [16, 17]. Some others incorporate
spatial dependence of labels with statistical neural networks [18, 19]. One of the critical
drawbacks of these methods is that most of them can only be applied to small data sets
because obtaining suitable learning/control parameters for the network is difficult and
their execution times are very high for large data sets [14]. For brain MR image
segmentation, only results for individual slices were shown. The only network that have
been applied to large data set is the Kohonen net and the results are equivalent to the

k-means algorithm [20].
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2.2 Markov Random Field

2.2.1 Markov Random Field Theory

In probability theory, a stochastic process is a random function defined over a time
interval or a region of space. In the former case, the stochastic process is called a time
series; in the latter case, it is called a random field. Mathematically, a stochastic process is
usually defined as an indexed collection of random variables X; with index ¢ running over
an index set S = {1, 2, ..., N} and with the values w; of the variables chosen from range
R. For random fields, S represents a set of sites in space and particularly the coordinates
of pixels for an image. A configuration w = {w; € R, € S} of a random field X is the
set of realization values of the random variables in X. Let 2 be the all possible
configurations so that ¢ = {w = (w, ...,wn)|w; € R,i € S}.

For a random field z defined on the sites 5, define a neighborhood system
N = {M,,i € 5}, where /N, is the set of sites neighboring i, i ¢ A and
i € Nj & j € N,. Arandom field X is said to be a Markov Random Field (MRF) on S
with respect to a neighborhood system A if and only if for Vw € @, P(w) > 0 and
P(wilws~{i}) = P(wi|wy;)- The last condition is referred to as the local characteristic of
MREF. From the local characteristic of MRF, we see that it is a natural facility to model the
spatial dependence of region/tissue types in an image.

A MREF is usually constructed with a Gibbs distribution. Before the definition of the
Gibbs distribution, we remark that the site set S together with the neighborhood system A
define a graph in the usuval way. Let C be all the cliques in the graph represented by
G = {S,N'}. A clique in a graph G is subgraph of G and is a complete graph by itself. A
Gibbs distribution with respect to G = {S, AV} is a probability measure 7 on € with the
form 7(w) = e"V®@V/T /Z where Z and T are constants and the energy function U is of

the form U({w) = V.(w). Each V. is a potential function on £ with the property that
Y property

ceC
Ve(w) depends only on those variables on the sites s € ¢. Z is the normalizing constant:

Z = Z e~V@IT and is called the partition function. The equivalence between MRF and
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Gibbs distribution states that given a site set S and a neighborhood system A/, X is an
MREF with respect to AV if and only if #(w) = P(X = w) is a Gibbs distribution with
respect to N. For image segmentation, a typical form of V/ is as follows. If c is a clique
with two neighboring sites {r, s}, then V_{w) = 8 in the case of w; = wy, or V (w) = -3
in the case of w, # w,, where § is a parameter of the model. If c is a clique with only one
site s, then V,(w) = —a,,, where o, is another tissue dependent parameter. For all the

other cliques in the graph, V_{w) = 0. This model is the well-known Ising model.

2.2.2 Hidden Markov Random Field Model

The hidden Markov random field (HMRF) model for image segmentation is derived
from hidden Markov models(tHMM), in which a stochastic process is generated by a
Markov chain, which can be taken as a 1D Markov random field, with hidden state
sequence. In HMM, each observation is assumed to be a stochastic function of the state
sequence. The underlying Markov chain changes its state according to a ! x [ transition
probability matrix, where [ is the number of states. HMMs have been successfully applied
in applications such as speech recognition and handwritten script recognition.

The hidden Markov random field model consists of a hidden Markov random field
X = {X;,i € S} with its values in a finite state space R with probability
P(X = w) = w(w) and an observable random field Y’ = {¥;,7 € S} with its value in a
finite state space I. For image segmentation, each hidden state represents a region type
and each observable state represent an intensity level. Given any particular configuration
w € Q) of the random field X, every observed state y; follows a certain conditional
probability distribution P(y;}w;). This distribution is called the emission probability
Sfunction and Y is also called the emitted random field. In HMRE, the observations y are
conditionally independent given w: P(y|w) = H P(y;|w;).

Hidden Markov random field model have been applied for both supervised [21] and
unsupervised [22, 23, 24, 25] image segmentation. For supervised segmentation, the
emission probability function can be estimated with nonparametric methods such as the
Parzen-window method given a training set. For unsupervised segmentation, they usually

assume the same functional form f(y;; 6,,, ), where 6, is the involved parameters.
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Gaussian distribution is a typical choice for the emission probability function. We use & to
denote all the parameters involved in all emission probability functions and those involved

in the prior distribution P(w) (the latter are usually assumed known in prior).

2.2.3 Image Segmentation With HMRF Model

With the hidden Markov random field model defined above, supervised image
segmentation can be posed as an optimization problem of finding the optimal estimates of
w* by maximization of the posterior probability P{w|y) o< P(y|w)P(w); for unsupervised
image segmentation, the involved parameters 8* as well as the optimal w* are estimated
concurrently by maximization of the posterior probability P(w, f]y) o< P{y|w, 8)P(w)
given the observed intensity y. However, direct solution of the problem is both
analytically and computationally intractable due to the exponential complexity of € and
the multimodal (i.e. multiple local minima) nature of the posterior distribution. Most
practical solutions are performed by iterations of segmentation steps, each which only
updates the configuration of w at local sites. For unsupervised segmentation, the
segmentation is interrupted by a step of parameter estimation at regular intervals. The
segmentation step finds the optimal solution of w given the current estimation of the
parameters 8, while the parameter estimation step finds the optimal estimation of the
parameters 8 given the current segmentation w.

Simulated annealing (SA) [26] and iterated conditional mode (ICM) [27] are two
commonly used methods in the segmentation step. The SA algorithm scans all sites
(pixels), randomly drawing a tentative region type w, for each site s. If the selection of w,
increases the posterior probability conditional on the labels of s* neighbors wy,,
P(ws|wy,, y) in supervised case or P(w|wy,, y, #) in unsupervised case, then w, is
chosen for site s, otherwise, it is chosen according to a certain probability based on a
temperature parameter 1", which is decreased according to a certain schedule as the
algorithm proceeds. The ICM algorithm is deterministic and can be taken as an extreme
case of the SA algorithm with the temperature parameter always being zero so that in each
site s, ws 15 chosen by local maximization of the conditional posterior probability. The SA

algorithm provides better approximation of the optimal segmentation, but it is very slow.
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The ICA algorithm is fast, but may be trapped into a local minimum. A typical example
application of HMRF model in neuroanatomical segmentation is in FSL [28] in which
HMDF model is used to enforce spatial regularization in order to improve the
segmentation robustness against image noise. It is also demonstrated in FSL that
implementation of HMRF using ICM can be integrated with the finite mixiture resolving
and bias field correction in the iterative Expectation-Maximization method. Other work on
using MRF for brain MR image segmentation are [29, 30, 31, 21, 22, 23].

The commonly used Ising-like model was criticized for that it tends to minimize the
boundary length between tissues [32], which discourages classifications from accurately
following the highly convoluted shape of the complex human cortex [33]. This effect is
particularly amplified in brain images where the presence of large uniform regions of
single tissue types results in high estimates of the transition parameter 3 and strong favor
for smooth boundaries. As a possible solution and research direction, it was suggested
in [33] to use a nonstationary Ising mode! with different parameters in uniform regions of

pure tissue from those used at places where tissues mix.

2.3 Atlas-Based Segmentation

The main idea here is to use a template of the target object to find an ideal match
between the template and the image. The template in the case of neuroimaging is usually
referred to as a brain altlas and the relevant segmentation methods are called atlas-guided
segmentation methods. A brain atlas is a detailed representation of a single subject’s
anatomy (i.e. anatomical atlas) in a standardized three-dimensional coordinate
system [34] or probability tissue maps (i.e. probabilistic atlas) leammed from a training set.
The most commonly used coordinate system is the Talairach reference system [35], in
which the anterior commissure is the origin and the plane containing the line connecting
the anterior commissure and the posterior commissure, perpendicular to the sagittal
midplane, is taken as the horizontal plane. While a probabilistic atlas is usually used

together with traditional clustering methods, an anatomical atlas is matched to a new scan
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in a procedure called brain warping so that any information in the atlas including the
tissue types are transferred into the new scan. Because of the complex structural
variability of brains between individuals, it is generally impossible to obtain an exact
matching with rigid (translation, rotation) or linear (translation, rotation, scaling, shearing)
transformations and research on brain warping has been focusing on deformable atlases,
which can be adapted to the anatomy of new subjects with nonlinear transformation.

There are two brain warping approaches based on deformable atlases: volumetric
warping and nonvolumetric (or model-driven) warping. Model-driven warping is an image
registration method which requires a segmentation preprocessing step to obtain good
performance. Key surfaces in the brain are first extracted with deformable model based
methods and matched to the surfaces in the atlas [36, 37]. Volumetric
warping [38, 39, 40, 41] aims to match the atlas and the target scan according to a
regularized criterion. The most commonly used criterion is the sum of
cross-correlation [38, 39, 40, 41] locally calculated on the intensity or/and the edge maps
between the atlas and the target scan. Other criteria include the sum of squared
differences {40], and mutual information which is more effective for matching images
with different modalities. The brain warping is thus to find the optimal deformation field
such that the criterion is maximized (or minimized), which is an ill-posed problem in that
there are many possible solutions. Usually some constraints are used to regularize the
solution. These constraints range from the simple maximum deformation limit [41] to the
widely-used physically-based elastic model [38, 39] and the viscous model [40] that
enforces topological properties on the deformation. To save time and to obtain better
performance, volumetric warping usually follow a preliminary global linear
transformation and a multi-resolution scheme is used to in the implementation.

In SPM5[42], probability maps for different tissues are used as spatial priors in the
finite mixture model and atlas registration is performed together with finite mixture
resolving and bias field correction in a circular procedure. The atlas registration is
implemented with a linear combination of about a thousand cosine transform bases. In
Freesurfer{43], the atlas includes not only prior probabilities for each tissue class at each
atlas location, but also a Gaussian distribution of the intensities for each class at each atlas

location and a neighborhood function representing the probability that a given point
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belongs to a label given the classification of its neighboring points based on an anisotropic
nonstationary Markov radom field. The atlas is first registered with the image in a linear
affine transformation and then voxels are labeled with the maximum a posteriori (MAP)
method and the segmentation is then sequentially updated using the iterated conditional
mode (ICM) algorithm in which the a posteriori probability of a class at each point is
computed as the probability that the given class appeared at that location in the training set
times the likelihood of getting the subject-specific measured value from that class. The
latter is computed from the PDF for that label as estimated from the training set. The
probability of each class at each point is computed. An initial segmentation is generated
by assigning each point to the class for which the probability is greatest. Given this
segmentation, the neighborhood function is used to recompute the class probabilities in
the second step. The new class probabilities are then used for resegmentation in the next

round.

2.4 Edge Detection Based Segmentation

Edge detection algorithms produce a map of edge points with associate magnitudes
and directions. The edge detection results are in the form of edge segments, which are
usually short and disconnected. The edge-based segmentation algorithms mainly involve
aggregating these short edge segments into extended edges that correspond to object
boundaries, a procedure often referred to as edge linking or edge following. Edge-based
segmentation methods are effective when there are good contrast between regions in the
image. The most commeon problems are due to the presence of edges in locations where
there is no object boundary, as well as the absence of edges where a real boundary exists.
In this section, we describe two well-known edge-based 2D image segmentation methods:
edge relaxation as a local edge linking method and heuristic graph search as a global edge
linking method. Another well-known edge linking method, usually for line segmentation,
is the Hough transform (44, 45, 13], which is not presented here. Note that deformable

model based segmentation methods (see section 2.5) that utilize edge formation are also



20

generally referred to as edge-based segmentation methods. They work for 2D images as
well as 3D images, and provide additional robustness against noise and spurious edges.

This section first gives an overview of edge detection methods followed by two 2D
edge linking methods: edge relaxation and heuristic graph search. Next, a 3D boundary
following method using 2D graph search is described. Cortical surface reconstruction
based on edge detection are then described in the next two subsections followed by
integration of edge detection and region-growing for improved performance. Finally, the
pros and cons of the methods based on edge detection are summarized in the last

subsection.

2.4.1 Edge Detection

In computer vision, edge detection is a process that attempts to capture the
discontinuities in the photometrical, geometrical and physical characteristics of objects
[46]. The basic method of edge detection is to first calculate the gradient at each image
pixel and then threshold the gradient threshold to label edges. Gradient calculation masks,
as shown below for A; and A, are used for this purpose. Well-known gradient

calculation masks are Prewitt’s masks [47] and Sobel’s masks [43],

-1 01 -1 —a -1
Az=|—-a 0 a| and Ay=| 0 0 0
-1 01 1 a 1

where a is a positive real number (1 in the case of Prewitts’ masks and 2 in the case of
Sobel’s masks). The performance of these operators deteriorates when the image is noisy.
Rosenfeld and Thurston [49] proposed a smoothing operation to reduce the noise image
by replacing the value of a pixel by the average computed on a squared window.

Two commonly-used edge detection algorithm are the Canny edge detection
algorithm [50] and the zero-crossing edge detection algorithm [51]. In the zero-crossing
method, the image is convolved with the Laplacian of the Gaussian (LOG) and the
zero-crossings are labeled. For efficient computation, LOG can be approximated by the

Difference of Gaussians (DOG) that subtracts a wide Gaussian from a narrow Gaussian.
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In the Canny’s method, the image is first convolved with the first-order derivatives of the
Gaussian, and then the edges are locaied at the maxima of the gradient modulus taken in
the direction of the gradient. Canny’s scheme of edge detection inspired significant

research in the field. A survey of edge detection methods is given in [46].

2.4.2 Edge Relaxation

Edge relaxation is a procedure performed on the crack edges. If one think of a 2D
image as a city map with each pixel corresponding to a block, then a crack edge is a street
segment between two blocks. The edge detection algorithm provides an initial confidence
for each crack edge with normalized values ranging from 0 to 1. The relaxation procedure
then iteratively updates the confidence of each crack edge considering the edge properties
in the context of their mutual neighbors until the confidence converges to either 0 or 1.
Eventually crack edges with confidence 1 are taken as object boundaries and others are
discarded. Edge relaxation can effectively improve segmentation results when region
contrast is good at boundaries, but may be corrupted by noises.

A typical context of a crack edge consists of six other crack edges with three on each
side of the central edge. A central edge is then classified with a pair of numbers a — b,
where a and b representing the number of edges having greater confidence than a
threshold. More sophisticated classification methods are also possible. The meaning of

the types and the related rules to update the confidence are listed below:

o 0 — 0 isolated edge: negative influence on the edge confidence
e 0 — 2, 0 — 3 dead end: negative influence on the edge confidence

e (0 — 1 uncertain: weak positive, or no influence on edge confidence

1 — 1 continuation: strong positive influence on edge confidence

1 — 2,1 — 3 continuation to boundary intersection: medium positive influence on

edge confidence

e 2 -2 2-3, 3 — 3 bridge between boundaries: not necessary for segmentation, no

influence on edge confidence
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2.4.3 Heuristic Graph Search

In heuristic graph search based methods, a directed (oriented) weighted-graph is first
constructed. In this graph, each vertex corresponds to an edge point in the edge map and
they are linked with directed arcs (the term “arc” is used here to avoid the abuse of the
term “edge”) according to certain heuristics. Commonly used heuristics are based on the
following assumptions: 1) the edge magnitudes along the object boundaries are
approximaiely constant; 2) the object boundaries are smooth; and 3) the edge magnitudes
at object boundaries are high. With such assumptions, two vertices in the graph are linked
with an arc only if their magnitude is greater than a threshold, if their magnitude
difference is smaller than a second threshold, and if their edge direction difference is
smaller than a third threshold.

The problem that the heuristic graph search algorithm addresses is how to determine
the optimal path between two given pixels p4 and pg such that a cost function is
minimized. A typical cost functionis C = —D + aE + GF, where D is the sum of the
magnitudes of edge points along the path, £ is the sum of the difference of magnitude of
adjacent edge points along the path, F' is the sum of the difference of directions of
adjacent edge points along the path, and « and 3 are two weighting parameters. Dynamic
programming is usually used to implement the algorithm to search for the optimal path
based on the observation that the optimal path from p,4 to pg can be split into two optimal
sub-paths: from p4 to p; and from p; to pg. The details of the implementation are omitted

here.

2.4.4 3D Boundary Following

3D boundary following algorithms vse prior edge detection results {52, 53, 54, 55].
Here, we will present a typical algorithm proposed by Cappelletti and Rosenfeld [55].
This algorithm generates a series of 2D boundaries which, when stacked, provided a 3D
boundary of the object of interest. An assumption is that the object has smooth surfaces
and its sections are all connected and approximately circular. A graph search based

method is proposed for following 2D boundaries in each of the cross section.
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The graph search algorithm finds an optimal path with lowest cost in the graph
corresponding to each cross section. The cost function is a combination of the mean
gradient magnitude, the circularity of the 2D boundary and the closeness of the
neighboring 2D boundaries. The three cost function components are weightes with scaling
factors defined as program parameters. In this work, the start node in the path is allowed
to placed slightly off the intended boundary. The path found by the algorithm contains a
closed subpath that consitues the detected boundary.

The inital cross section for 2D boundary following is chosen to pass near the center
of the object. The 3D boundary following consists of a series of 3D passes to generate a
3D boundary in which 2D boundaries in adjacent cross sections are consistent such that
they are “aligned” with one another. In the first 3D pass, a series of 2D boundaries are
extracted independently of one another. The cost function applied in the first pass is based
only on the mean gradient magnitude and boundary circularity. In subsequent passes, the
cost function for 2D boundary detection in a given cross section is extended to include
constraints from 2D boundaries in adjacent cross-sections.

The Cappelletti and Rosenfeld algorithm was tested on some synthetic images for
extraction of object with simple and compact shape. However, cortical surface extraction
with 3D boundary following is challenging for various reasons. First, the shape of the
cortical surface is convoluted such that the circularity and compactness is not satisfied for
many graph search algorithms for 2D edge linking. Second, in each 2D cross section,
cortical surface is not necessarily connected. Third, various image artifacts may degrade
the results of edge detection. For example, we consistently observed blurring edges
between WM and GM in regions such as superior gyri, border between cerebrum and
cerebellum, and border between temporal lobes and flesh. 3D boundary following for
cortical surface reconstruction may also be disturbed by spurious edges within WM due to

noise and undesired edges between tissues such as flood vessel, dura mater, fat, and flesh.

2.4.5 MR Brain Segmentation by Edge Detection

Edge detection algorithms have been used for MR brain segmentation. In [56], a

two-stage edge detection scheme is used to segment brain structures in 2D MR images.
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First, a location within the desired region, say, white matter, is indicated. A differential
intensity map is then created by calculating the absolute value of the difference of the
image intensity at each pixel with respect to that at the reference location. By picking a
differential value, the initial contour between the desired region and the bordering region
is created. This initial contour is improved in the second edge detection step considering
the edge detected by the Sobel operator. For 3D MR brain segmentation, a 2D slice is first
segmented and the contour is projected into adjacent slices as an initial contour to be
improved. The success of this process requires that the image slices be relatively thin and
that the user evaluates the resulting 2D contour and corrects, when necessary, any errors
that occur before they propagate through the data set.

MR brain extraction with edge detection described in [57] uses DOG for edge
detection followed by region binarization into brain and non-brain regions. Region
classification is conducted on four slices at a time a time instead of the whole 3D image in
order to prevent local errors from corrupting the entire data set. The classification assumes
that there is a large brain region in every 4 slices, whose mean intensity together with
those of other regions such as fat and CSF are used to compute thresholds for
classification of smaller regions. Heuristic rules as well as user interaction are applied for
correction of segmentation errors. DOG edge detection followed by morphological
operations is applied in [58] for segmentation of more anatomical contours in the head
such as skin, bone, brain and the ventricular systems, but the labeling of these structures is
done interactively. DOG edge detection together with pixel classification is also used in
[59] for brain tissue classification. Here, significant amount of user interaction is also

required for accurate performance of the segmentation.

2.4.6 Integrating Edge Detection and Region Growing

Region-based segmentation methods directly find coherent regions assuming the
regions have homogeneous intensities [44, 45]. Unlike edge-based segmentation methods,
region-based methods are guaranteed to produce coherent regions without linking edges.
However, decisions about region membership are usually more difficult than applying

edge detectors. A commonly used region-based method, region growing, is described
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below, followed by presentation of techniques integrating region growing and edge
detection for image segmentation.

The basic idea of region growing is to start from a seed point as the initial region and
grow the region by iteratively adding neighboring pixels if some similarity measure
between the region and the neighboring pixel is high enough (i.e. greater than a certain
threshold). So region growing mainly involves the selection of the similarity measure.
Two possible similarity measures compare the candidate pixel with the original seed or its
neighbors in the region. However, the former is sensitive to the selection of the seed pixel
and the latter causes significant drift as the region grows farther away from the original
seed pixel. A compromise is to compare the candidate pixel with certain region statistics,
usually the mean. By initializing the region with multiple seeds, the candidate pixel can
also be compared with the mean with respect to the variance of the region. Another
approach is to use the cumulative difference as one follows a path from the seed to the
candidate pixel. Yet another approach is to provide not only the seeds that should be in the
region but also the seeds that should not be in the region.

Three types of errors may occur in the region boundaries produced by any region
growing process : a) false positive boundaries: a region boundary is not an edge and there
are no edges nearby; b) false negative boundaries: there exit edges with no boundaries
near them; and c) false localization: a region boundary corresponds to an edge but it does
not coincide with it. By boundary we refer to border of regions and by edge we refer to
low-level image feature produced by edge detection. Usually the false negative boundaries
can be significantly reduced by proper selection of parameters in region growing, which
results in an over-segmented image and increase of the false positive boundary errors. A
boundary elimination technique and a boundary modification technique are proposed in
[60] for correction of the false positive boundaries and false boundary localization
integrating edge detection results. Following the method in [60], boundary elimination is
performed considering the contrast along the boundary and the length of the boundary
penalizing for long boundaries with low contrast in [61] for MR brain image segmentation.
Boundary modification is performed using deformable model based methods to bring
boundaries to nearby edges with locally maximum contrast. The integration of region

growing and edge detection may improve the results of plain region growing and plain
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edge detection. The method proposed in [60] and applied in [61] is conducted in 2D

images. In 3D, the criterion for boundary elimination is more difficult to define.

2.4.7 Pros and Cons

The main advantage of edge detection based techniques is that it may generate
accurate results when the contrast between two regions is high. Edge detection is also
more robust against intensity inhomogeneity than intensity based methods and the
computation is usually efficient. The weaknesses of segmentation based on edge detection
are as follows{62]. First, edge gaps often occur due to variation in the gradient strengths
of the tissue characteristics. For example, we consistently observed no local maximum of
gradient strength between WM and GM in regions such as superior gyri, the border
between cerebrum and cerebellum, and the border between temporal lobes and flesh.
Second, variation in edge strength can bring discontinuities in the boundaries. For
example, the strength of edge between GM and WM at many gyri areas are significantly
less than those in some sulci areas. Third, spurious edge may occur due to noise and
texture. Fourth, cortical surface reconstruction by stacking contours in 2D slices is highly
dependent on the accuracy of the segmentation process in the 2D slices and problematic in
both geometry and topology due to the highly convoluted shape of the brain, limited
image resolution, and various image artifacts. In conclusion, these methods based on plain
edge detection are not reliable or robust and require significant amount of user

intervention for acceptable results.

2.5 Deformable Models

Medical image segmentation methods based on deformable models attempt to track
anatomic structures in the image by exploiting (bottom-up) constraints derived from the
image data together with (top-down) a priori knowledge about the location, geometry, and
shape of these structures [63]. This is a vigorously researched area and numerous methods

have been proposed that vary in the representation of the model, the constraints imposed
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on the model, the optimal approximation methods that fit the models to the measured data,
and the degree of freedom of the model. Deformable models are also called active
contours by some researchers. Those models with preferably fewer degrees of freedom
are usually called deformable templates or active shapes (still regarded as deformable

models) will also be discussed briefly in this section.

2.5.1 Snakes

The groundbreaking work on deformable models is the concept of snakes [64]. A
snake is a 2D parametric curve c(s) = (z(s), y(s))T embedded in the image plane
(z,y) € IR?, where z and y are the coordinate functions and s € [0, 1] is the parametric
domain. The curve is usually closed such that 2(0) = (1) and y(0) = y(1). An optimal
snake is the one that is attached to salient image features, typically edges, and maintains
internal smoothness. This is expressed by minimization of the functional
E(c) = S(c) + P(c), where

2

2
+ B(s) gc

ds?

2
Oc ds, and P(c) = /l P{c(s))ds.

In physics terminology, £ is referred to as an energy functional which consists of an
internal energy & of the snake that characterizes its smoothness and an image energy P
which is derived from an exiernal image constraint that pushes the snake toward salient
image features. The first-order term in & makes the snake act like a membrane and the
second-order term makes it act like a thin plate. P(c) denotes a scalar potential function
on the image plane and is typically defined as the scaled magnitude of the gradient of the
Gaussian smoothed image: P(z,y) = —|V[G # I(z,y)]|- The weights a(s) and 5(s)
control the relative importance of the first-order smoothness and the second-order
smoothness. Generally, they can vary both along the length of the snake and over time. In
practice, « is usually a positive constant, and 3 is usually zero. (We'll see later on that the

second-order smoothness is not necessary.)
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According to the calculus of variations, the snake that minimizes the energy
functional £ must satisfy the Euler-Lagrange equation:
a, dc, 8,6 0%

a(aa) + @(ﬁ@) + VP(c)=0.

Taking the snake as a dynamic system in terms of Lagrangian mechanics, the minima of

the energy functional can be computed by solving the Lagrangian equation

2 2
%= 2y~ 2 (s75) - vP().
An intuitive interpretation is that the shape of the snake changes over time driven by the
internal stretching and bending forces (the first two terms in the right side of the above
equation) and external image forces (the third term in the right side}) starting from an
initial shape. The term in the left side is referred to as the damping force and when it
stabilizes (i.e. when it tends to zero), the energy functional goes to a local minimum.
Finite difference methods {64] and finite element methods [65] have been used to
discretize the snake and numerical time integration methods are applied to iteratively
update the coordinates of the snakes over time steps until the difference of the snake
between two successive iterations is sufficiently small. In the same spirit, snakes have
been extended for 3D surfaces. The formulation is omitted here.

The main advantage of image segmentation using snakes is that it provides
robustness to noise and spurious edges since the shapes of the curves or surfaces are
regulated by their smoothness [66]. The limitations of the traditional deformable models
including snakes are: 1) The snake must be initialized close to the structure of interest to
guarantee good performance [63]; 2) The performance of the deformable model is also
sensitive to the weighting parameters « and [; 3) The snakes cannot extrude through any
significant protrusions that a shape may possess without resorting to cumbersome
resampling techniques [67]; 4) The topology of the object to be segmented must be known
beforehand, that is, the snakes cannot adapt to the topology of the objects in the image
without additional machinery; and 5) The a priori knowledge is limited to the smoothness

of the contour. Various methods have been developed to address these disadvantages.
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2.5.2 Level Set Based Deformable Models

Another type of deformable models that saves the parameter resampling and has the
advantage of topology adaptability is the level set based models [68, 67]. Let ¢(x) be a
function from IR to IR. Then the deformable model ¢ in R" is defined as a specific level
set of ¢, typically zero level set ¢(c) = 0. The model is one or more closed curves in IR?
or one or more closed surfaces in IR?. A typical way to define the level set function is
¢(x) = d, where |d| is the shortest distance from x to the zero level set with the sign
chosen depending on if x is outside or inside of the zero level set. The leve! set function
was originally proposed to solve front propagations problems such as flame propagation
and crystal growth in [69], where it was shown that the motion equation of the front (i.e.

the zero level set) == F(c(t)) can be solved by solving instead the evolution equation

at

of the level set function Z—f = —F|V¢|. Here F'(c(t)) is the speed function of the front

and t is the time domain [0, 0o).

The local optimal front can be found by numerically updating ¢ over iterations until
the changes of ¢ in zero level set are sufficiently small. When the level set function is
defined over an 2D or 3D image, it should be updated for each pixel in the image and the
speed function F' has to been extended to have values over all pixels. For a pixel p that is
not in the zero level set, its speed can be set to the speed of the point g in the zero level set
which is of the shortest distance from p. One way to improve the efficiency is to only
update ¢ within a narrow band around the zero level set while keeping all the others
stationary until the zero level set collides with the bounds of the band, when the narrow

band is reconstructed.

For image segmentation, a basic criterion of setting the speed function F is that it
should be closer to zero in regions of high image gradient and closer to unity in regions
with relatively homogeneous intensity. For example, [68, 67] shows that
F(x) = g(|VG * I{x)])(c + k)7, where c is a constant, « is the curvature at point x, 7 is
the unity normal vector at x, and g(|VG = I(x)|)} is a decreasing function of the gradient
of the Gaussian smoothed image such that g(]VG # I{x)|) — 0 as |VG * I(x)| — oo.
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Two examples of a reasonable g are

1

9IVG* 1) = T 9+ 1o

and g(|VG # I(x)]) = e 1VEl,

Here x7 acts as a smoothing force. The greater the curvature at x, the greater the speed at
X; positive curvature of a point p in the zero level set makes it deform inward and negative
curvature make it go outward. The constant term c is referred to as the advection speed
term and acts similarly as the pressure force or the weight force introduced in the
parametric balloon model [70, 65], which is a extension of the traditional snake model.
The pressure force inflates the model and the weight force deflates the model independent
of the object geometry so that the boundary of the object can pass spurious edges when
the initial model is not near the target model. The advection speed also helps form

concave shapes if the model is not initialized properly.

In the geodesic active contours proposed in [71], the selection of the speed function
Fis formulated in terms of minimization of the energy functional £ in the traditional
snakes. It is shown first that the smoothness of the contour can be sufficiently regularized
by the first order term in £. Generalizing the image potential term P(c)} = —|VG * I(x])|
with a decreasing function g(|VG = I(x)|), it is then proved that the minimization of the
rewritten energy functional is equivalent to finding the geodesic contour in the
Riemannian space with the Riemannian metric g;; = g(|VG * I|)?§;;. This can be
intuitively interpreted as the minimization of the length of the contour weighted by the
measure of the edge salience (¢(|VG = I|)) of each point in the contour so that the
Riemannian length of the contour is minimal when it is attached to salient edges. In order
to minimize the Riemannian length of the contour, the gradient descent method (steepest

descent method) is used to evolve the contour according to the equation

0

8_: = grfl — (Vg - Ai)n.

Compared to the speed term in the previous paragraph, here the additional speed term
—(Vg - )7t increases the attraction of the deformation contour toward the boundary. Tt

works like a doublet in that when the contour is approaching the boundary, the speed
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toward the boundary is increased and when the contour is leaving the boundary, the speed
outof the boundary is decreased. The advection term cit can also be added to make the
performance less dependent on the initialization of the contour.

All the discussions on the selection of the speed F' can be extended easily for
surfaces in IR3. The changes mainly involve the computation of the 3D gradients of
Gaussian smoothed image and the curvature speed term can be derived from the mean

surface curvature or the minimum surface curvature.

2.5.3 Image Influences

To address the initialization problem of traditional deformable models, much
research have been done to impose global image influences on the contour in addition to
or replacing the traditional image influence based on local gradients. Deformable models
using global image influences include the balloon model [70, 65] that uses the pressure
force and the weight force as described above, the gradient vector flow medel [72, 73],
and many modelis that incorporate region information [74, 75, 76, 77, 78].

The initialization problem of traditional deformable models with local gradient
influences is mainly due to the fact that in homogeneous regions the gradients are nearly
zero and the contour is mainly driven by the internal smoothness influences. Let f be the
image intensity which may be Gaussian smoothed and V f be its gradient vector field. The
main idea of the gradient vector flow is to construct a new gradient vector field u in the
image domain such that the vectors vary slowly in homogeneous regions and keep nearly

equal values to V f at salient edges. This is achieved by solving diffusion equation

du

o = MVIDViu - p([V)u- V)

starting from the initial field u = V f. The first term on the right side of the equation is
referred to as the smoothing term since it diffuses the gradient field V f. The second term
encourages the vector field u to be close to V f. A and u are two weighting functions that
control the relative importance of these two terms.

When the equilibrium solution is computed, the traditional image potential term V f

is replaced with u in the traditional deformable model. The gradient vector field u has a
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larger capture range than the original gradient field V f and also helps move contours into

boundary concavities.

2.6 Structural and Geometric A Priori Knowledge

A significant characteristic of the brain anatomy is that key anatomic surfaces in the
human head are organized in a layered manner. These surfaces include the skin surface,
the outer cortical surface, the inner cortical surface, and the ventricle surface. In
particular, the thickness of the cortical layer (the shortest distances between points in the
outer cortical surface and points in the inner cortical surface) is nearly constant. This
characteristic has been used as structural and geometric a priori knowledge in both
deformable models and statistical segmentation methods.

In [79], distances of each white matter voxel z; to the skin surface and the ventricle
surface are taken as a vector of two random variables (ds;, dv;). The skin surface and the
ventricle surface are believed to be much easier to segment and their segmentation is
performed before that of the white matter. From segmented images, the joint probability
density of a random distance pair P(ds;, dv;|z; € W M) is estimated with non-parametric
methods such as histogramming or Parzen Windowing. The optimal segmentation is
obtained by maximization of the posterior probability
P(z; € WM|ds;,dv;, I;) oc P(I;|z; € WM)P(ds;, dvi|z; € WM)P(x; € WM), where
I; denotes the intensity of the voxel z;. The first term at the rightside is a Gaussian
intensity model for the white matter voxels and the third term is the prior probability that a
pixel belongs to the white matter. The geometric prior knowledge can be used together
with the MRF spatial prior model or by itself with stationary spatial prior.

In [80], the outer and inner cortical surface are represented as two polyhedral
meshes. The deformation was formulated as a cost function minimization problem. The
cost function is a weighted summation of several types of terms, including the image
terms that push the deforming surface to tissue boundaries, internal stretching and bending

terms that impose surface smoothness, and three additional proximity terms that prevent
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deformation from forming a self-intersecting surface and impose constraint on the
thickness of the cortical layer. The self-proximity term Tse;s—proximity 1S defined for every
pair of polygons in the mesh. If the minimum distance between two polygons P; and P; is
smaller than a threshold d;;, Tserf—prozimity(Pis Pi) = (d(B;, P;) — di;)%. Otherwise,
Tge1f—prozimity 18 Zero. The intersurface proximity term is defined in a similar manner. The
weighting parameters of these two terms are set such that as the distance d( F;, P;)
approaches zero, the weighting parameters approach infinity. In this way, both
self-intersection and intersurface intersection are prevented. The third term governs the
thickness of the cortical layer and is defined for each pair of corresponding vertices in the
two surfaces Tyeriez—vertee = (d(Ti, To) — dg)?, where z; and z, are corresponding
vertices in the inner cortical surface and outer cortical surface respectively and dg is the
preferred distance between the two vertices. The main disadvantage of this method is that
the deformation involves the calculation of a huge number of distances between pairs of
polygons and hence the algorithm is extremely slow.

Another coupled-surface deformation is proposed in [81] within the framework of
level set formulation. Both the inner cortical surface and the outer cortical surface are
embedded as zero-level sets in their level set function ¢;, and ¢,,; respectively. The two

evolution equations are given as

a¢in
ot

Oout
ot

+-Fin|v¢in| = 0 and +Fout|v¢out| =0

respectively. Since the value of the level set function of a front at any point is simply the
distance from this point to the current front, there is a natural way to establish a
correspondence between the points on the two evolving surfaces through distance without
adding much computational expense. For any point on the inner moving surface, the
distance to the outer moving surface is the value ¢,,; at this point and vice versa for the
point on the outer moving surface. The constraint on the thickness of the cortical layer is
imposed by formulating the speeds as Fy, = Fiph(¢ou) and Foy, = Fouih{ei,), where Fi,
and F,,, are the speeds formulated without consideration of the thickness constraint of the
cortical layer and h(z) regularizes the speeds such that when the distance is too small or

too large, the speed is reduced to zero.
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2.7 Intensity Inhomogeneity Correction

There are two general ideas regarding how to overcome the intensity inhomogeneity
problem in MR image segmentation. One is to correct the intensity inhomogeneity prior
to brain tissue segmentation and the other is perform intensity inhomogeneity correction
simultaneously with brain tissue segmentation. There are numerous methods to correct
intensity inhomogeneity as a preprocessing step prior to image segmentation [82, 83, 84].
These methods is generally based on the assumption that intensity inhomogeneity is a
low-frequency spatial variation that can be distinguished from higher-frequency
components representing anatomic information [85]. It is believed by some researchers
that the latter approach has the advantage of being able to use intermediate information
from the segmentation while performing the correction.

There are two prevailing approaches for modeling inhomogeneities in methods that
perform simultaneous segmentation [66]. The first approach assumes that each tissue class
spatially varies independently; the second approach models the inhomogeneities as
multiplicative gain field or additive bias field of the image logarithm. As a typical example
of the first approach, [23] extends the standard mixture mode! resolving method with the
MREF spatial prior model and the mean and variance of each tissue is allowed to vary over
the spatial domain instead of using spatially invariant parameters. The main difference in
the implementation from the standard mixture resolving is that the spatially varying
parameters in each voxel are estimated within a certain neighborhood of the voxel. The

second approach is described in more detail in the following two subsections.

2.7.1 Adaptive Fuzzy C-Means
The standard fuzzy c-means objective function for partitioning an image represented

as an voxle set {y;{1 < 7 < N} into ¢ clusters is

c N
J= Z Z(uij)p"yj —mifl?,

i=1l j=1
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where {m;|1 < ¢ < c} are the prototypes (means) of the clusters, u;; represents the fuzzy
membership of the voxel y; in the i-th cluster, and p is a weighting exponent and
determines the amount of fuzziness of the resulting classification. Here, y; represents the
feature vector of each voxel and may simply contain the intensity of the voxel. The
objective function is minimized when high membership values are assigned to voxels
whose intensities are close to the centroid (means) of its particular class and low
membership values are assigned when the voxel data is far from the centroid.

In [86], the observed intensities of the image {y;|1 < j < N} are assumed to be
multiplications of the anatomy field and the gain field {g;|1 < 7 < N} and the objective

function is modified to allow smooth intensity variation in a tissue:

e N
J= Z Z uf|ly; — mig;||* + MRy + Ao Ry,

i=1 j=1
where R, and R, are two regularization terms that enforce the smoothness of the gain
field and A, and A, are their controlling parameters. Here R; is the sum of the first-order
finite differences at each pixel along rows and columns; R is the sum of the second-order
finite differences.

One of the problems of this method is that it is sensitive to noise in the image.

In [87], the intensities y; are logarithmic converted to z; and the multiplicative gain field is
hence converted to an additive bias field 3;. A spatial regularizer is used to segment

images corrupted by salt-and-pepper noise. The modified objective function is given by

e N
J = Zzu 1z — m=lI+—ZZ (Y llze = B = mill?),

i=1 j=1 =1 zeN;

where N represents the neighbors of y; and Npg is the cardinality of A/; and ez is a
parameter that controls the importance of the regularization and depends on the
signal-to-noise ratio of the image. The key reason why this objective function works is
that the regularization encourages the smoothness of both the membership values and the

bias field at each voxel.
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2.7.2 Adaptive Expectation-Maximization

In [88], intensity data is logarithmically transformed so that the multiplicative gain
artifact is converted to an additive bias field. Observed log-intensity y; at ith voxel is
modeled as a normal distribution, independent of other voxels:

P(yilw; = k, i) = Go2(yi — pux — B:), where G,z () is the normal distribution with
mean gy, and variance o7, w; = k represents the tissue type of the voxel, and ; denotes
the bias field at ith voxel. In terms of the independence of probability beiween voxels, the
probability density for the entire image is P(y|3) = H P(y;|5;)- The bias field 8 is

modeled with a N-dimensional zero mean Gaussian pirior probability density, where N is
the total number of the voxels in the image. The posterior probability of the bias field,
given observed intensity data, is P(8|y) o< P({y|3)P(8). Use the maximum-a-posteriori
principle, the optimal estimate of 3 is determined by maximization of the posterior
probability: § = arg max P(3|y). The equation to calculate the optimal  is derived using
the zero gradient condition and is solved with the EM method in [88]. The model
proposed in [88] is found to be problematic when there are tissues in an image that do not
follow a Gaussian distribution. In [89], these tissues are unified into an outlier class with
uniform distribution. Another extension is to use the MRF to incorporate spatial
dependences of tissue types [21, 79, 90]. In the EM method that considers both bias field
estimation and MRF spatial model, each iteration consists of following main steps: 1)
estimate the bias field by maximization of its posterior probability, given the current
estimation of the tissue types and the likelihood parameters; 2) update the likelihood
distribution with the new estimation of the bias field; 3) estimate the tissue types by
maximization of the posterior probability of the MRF; and 4) estimate the likelihood

parameters by maximization of the expectation of the complete data log likelihcod.

2.8 Brain Extraction

There are mainly four basic type of methods that have been proposed for brain

extraction on MR images: the thresholding-with-morphology method, the watershed
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method, the deformable-model based method, and the atlas registration based method in
which the image is normalized to a standard space. There are also hybrid methods that
combine these basic methods for more accurate and robust results.

The thresholding-with-morphology [91] method essentially is conducted as
following procedures. First, lower and upper thresholds are determined in order to
separate the entire image into three parts: very bright parts such as eyeballs and fats,
bright parts representing brain tissues, and dark parts including air and skull. The bright
part, however, usually contains non-brain tissue and a morphology filtering is used to
remove the non-brain bright part. An erosion operation is first performed on the bright
part so that the “bridges” between brain and non-brain tissue are eliminated, the isolated
component representing brain tissue is then determined, and this is then dilated back by
the same extent as the erosion resulting in the final brain mask. There are some variants of
this method in the thresholding part with more sophisticaied methods for threshold
selection using Gaussian mixture model [92] or histogram scale-space analysis [93].
Carefully tuned morphological filtering was also research in [93], but basically the metric
“thickness” (i.e. the distance to boundary) was used as the measurement on the
connectivity between brain and non-brain tissue.

The watershed method [94] obtained its name as the metaphor to the water flowing
from hills to basins. For brain extraction in MRI, the gray level is first inverted so that
white matter has lower intensity than gray matter and CSF and the intensity at each voxel
is regarded as the “height” in the landscape. Voxels are then connected into “basins” in a
way similar to how a watershed separates two adjacent river systems. This transform often
leads to an “over-segmentation” problem where there are more basins in the result than are
desired. This problem is often alleviated by a procedure called “preflooding” [94] to
merge over-segmented basins. In brain extraction, a macro basin is finally determined as
the result of brain extraction[94] or as intermediate result for further processing to get a
more accurate result [95].

A typical deformable-model based brain extraction method is the one used in BET
[96] (a brain extraction tool in the FSL package). In BET, the intensity histogram is
processed to get a rough brain/non-brain threhsold. Then the center-of-gravity of the head

image is found and the rough size of the head in the image is determined. This information
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is then used to establish an initial triangular tesselation of a sphere’s surface, which is
deformed towards the brain’s edge while maintaining reasonable size and smoothness.

A hybrid brain extraction method for more robust performance is proposed in the
Freesurfer package [95). An initial brain extraction is performed with the same watershed
method presented in [94]. Then a surface model is established on the intermediate result
and deformed to determine the brain’s edge. In the deformation procedure, an atlas-based
term is integrated so that the model is regularized with respect to both the smoothness and

deviation from the atlas.
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CHAPTER III

RELATIVE THRESHOLDING

Relative thresholding (RT) is characterized as differentiating the labels of near voxels
by comparing their intensities with respect to a relative threshold [97]. RT is based on a
structural model on the human brain anatomy and a model of T1-weighted human brain
MR images. The modeling exploit various structural, geometrical and radiological a
priori knowledge and is formulated as constraints in terms of first-order logic. This
chapter starts with the structure modeling and the image modeling, and then presents the

relative thresholding algorithm.

3.1 Structure Modeling

Let § = Vg(oy) be the gradient vector image of g(ov). Throughout this dissertation,
we use g(o) to denote the resultant image of performing Gaussian filtering with standard
deviation o on the input image y. We construct a directed graph G = (V, E) from § such
that each vertex v; € V corresponds to the voxel z; in a region of interest R and each
directed edge e; € £ emanates from v; to v;, where v; is one of v;’s 26-neighbors that is in
the direction of the gradient vector g;. When v; is outside R, e; is forced to be a loop from

v; to itself.
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The structural, geometrical and radiological a priori knowledge that we use in RT is:

e I;: skull, CSF, GM, and WM are organized as a layered structure from outside to
inside;

e K,: The average intensities of skull, CSF, GM, and WM in local regions are in
ascending order in T1-weighted MR images;

e I(3: The cortex thickness is nearly uniform.

Based on this a priori knowledge we use a gradient graph to model the anatomical
structure of the human brain as the following first-order logic. Let T be the maximum
cortex thickness of the subject and p is a value slightly greater than 7, then we can

construct a gradient graph G with a suitable parameter oy such that:

o For each GM voxel v;, there is a path in G of length p from v; to a WM voxel;

For each CSF vozxel v; adjacent to GM, there is a path in & of length p from v; to a
WM voxel;

For each CSF voxel v; adjacent to GM, there is a path in G of length < p from v; to
a GM voxel;

There is no path from a WM voxel to a non-WM voxel in G; and

There is no path from any non-brain voxels to WM in G without passing CSF.

3.2 Image Modeling

A common approach to image segmentation is based on the image modeling in
which image intensities are modeled as statistical distributions. While the intensities of
WM vozxels in the T1-weithed MR image can be safely modeled with common statistical

distributions (e.g. a normal distribution) once the intensity inhomogeneity has been
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corrected, the intensities of GM voxels hardly meet any common statistical distributions in
practice even if intensity inhomogeneity has already been corrected. Based on this
observation, we model images in terms of the spatial relationships between voxels instead
of as statistical distributions on the absolute voxel intensities. The basic intuition is that if
the segmentation task is not beyond the human recognition capability, near voxels of the
same type should possess less difference in intensity than near voxels of different types.
With this type of image modeling, we attempt to avoid the limitation imposed by the form
of statistical distributions and provide a framework for introducing various a priori
knowledge into the segmentation task.

Suppose that there are K voxel types among a total of NV voxels in the space domain
{2, which represents either the whole image or a region of interest in the image. In brain
MR image segmentation, we assume that K equals to 3 and the three tissues of interest are
WM, GM, and background and denoted as with the number3, 2 and 1 respectively. When
the domain 2 contains exactly the brain volume, the background tissue type corresponds
to CSF; otherwise, it refers to anything excluding WM and GM. In this thesis, we set 2 to
be whoe image space and do not depend on any prior skull stripping or brain extraction
procedure. Let the coordinates of voxels be z;, 1 < ¢ < N, and the variable and true label
of each voxel respectively be w; (or w(z;))e [1, K] and@; € [1, K], 1 <i < N.
Incorporating a multiplicative bias field b; and an additive noise p, the image intensity y;
(or y(z;)), 1 < i < N, is modeled as:

K _
0 w:i#k
yi = b E 6Fyk + p, where ¥ = Wi 7 (3.1)

In equation 3.1, 6¥y¥ represents the component given by tissue % in the ideal image
without influence from noise and ITH and we refer their sum S 1 6¥y* as the ideal
image. Here we do not assume any particular statistical form on the noise term. Equation
3.1 is our initial image model and will be gradually transformed to facilitate image

segmentation.
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The term y¥ in equation 3.1 can be seen as an arbitrary function over the space
domain governed by the constraints on the spatial relationship between near voxels.
Generally, we think the constraints should consider a priori knowledge about the structure
and geometry of the objects in the image as well as the inherent image properties related
to the image acquisition process. In brain T1-weighted MR images, we consider a priori
knowledge K, and K and use the following first-order logic to describe a spatial

constraint:

Vz;,x; € QVk € [1, K] 3T* € [0,1)d(z:, ;) <p=
@i=kAwj=k+1=> r(yf,yf““) < TFYA

@ =w;=(k+1)=r(yfu)) 2T,

a/b a<b

where r(a,b) = { y - (3.2)
a a>

In equation 3.2, 7° and T'X are forced to be 0, d{z;, z;) represents the distance
between voxel z; and z;, and p is the distance threshold (a voxel cube is of unit
dimension) and is in the same value as the one used in the structure modeling in section
3.1. Theoretically, any form of distance, including Euclidean distance, can be used.
However, D, D'8 or D% distance is preferable because of the computational efficiency.

Spatial constraints expressed in equation 3.2 can also be described informally as
follows. Let r,,, represent the ratio between a GM voxel z; and a WM voxel z; near z;
(we use a distance threshold to express the nearness between two voxels). Let r;, represent
the ratio between a background voxel z,, and a GM voxel z, near z,,. Let vy, 744 and
T, TESpECtively, represent the ratio between two near WM voxels, two near GM voxel and

two near background voxels. Then we have the following constraints on the four ratios:
Tow > Tww N\ Thg > Ty (3.3)

Note that inequation 3.3 leaves a great deal of freedom for 74 and 7y, so that: 1) the

intensities of two near GM voxels can differ even more than any pair of near voxels of GM
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and WM; and 2) the intensities of two near background voxels can differ even more than
those of any pair of near voxels of CSF and GM. In this way, we allow a greater extent of
variations among GM voxels and permit the background to include various type of tissue

types such as CSF, skull, air and so on.

A reasonable assumption about the bias field is that it varies slowly across the space
with respect to the intensity variation between different tissues in the ideal image. We use
a first-order logic to describe this assumption in equation 3.4 without any constraints on

the variation patterns.

Vz;,z; € Q3e € (0,1)
(1-e<1—max(T, ..., T ) A (d(zi, z;) < p= r(bi,b;) > €) (3.4)

Based on the low frequency property of the bias field, we can safely let y¥ absorb the bias
field term and the latter can thus be dropped from equation 3.1 while validity of the
constraint in equation 3.2 is maintained. Therefore, the image artifact of ITH is made

transparent in our image model.

Next, we apply Gaussian filtering on the original gray level image to counteract the
noise and drop the noise term from equation 3.1. Let z = g{o) be a specific blurred

image. The new image model on z is:

K
=y ok (3.5)
k=1

k

Here, z* corresponds to the contribution of tissue k to the smoothed image. After

Gaussian filtering, we want to maintain the spatial relationships between voxels, as

described below:

Vzi,z; € QVEk € [1, K] 3T € [0, 1)d(zi,7;) < p=
@ =kAwj=k+1=r(zf, 28t <TH) A

(@ =w; =k+1=r(2f, 2) > T*) (3.6)
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In terms of the definition of the function 6¥, we have z¥ = z; when w; = k and hence

the equation 3.6 can be rewritten as:

Vi, z; € QVEk € [1, K] 3T* € [0, 1)d(z;,z;) < p =
(D,- = k/\wj =k+1 ﬂT(Z{,Zj <Tk)/\
(Ei = EJ—J' =k+1= T(Zi, Zj) > Tk+1) {(3.7)

It is well-known that Gaussian filtering blurs both homogeneous regions and edges.
This might lead to main two types of violation to the constraint. First, for a voxel pair
(zi, z;) of different types on the opposite sides of an edge, if they are too close to each
other, r(2;, z;) may be significantly increased such that they may be identified as the same
type. We think this adverse effect can be minimized by increasing the distance between
voxel pairs for comparison in the relative thresholding procedure. This can be
demonstrated in figure 3.1, where the spatial constraint is maintained in the Gaussian
blurred 1D signal with o, = 2, p = 10, and 7! = 0.45. The second type of violation may
occur when the dimension of some parts of the structure of interest is too narrow
compared to the Gaussian filter aperture (c.). We found that for current MRI techiques,
the usual resolution (around 1mm?) is high enough so that this violation brings very little

negative influence.
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FIGURE 3.1: Effect of Gaussian smoothing of a 1D signal. Top: a 1D signal; Middle:
noise added; Bottom: smoothed signal.
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3.3 Applying Relative Thresholds

Suppose we are given the two relative thresholds T, (between GM and WM) and
T}, (between background and GM) that govern the constraints in equation 3.7. We can
combine the structure model and the image model and easily obtain the following rule to
differentiate WM, GM and background:

1. All voxels are initialized as WM.

2. For any voxel pair {(z;, z;) both labeled as WM, if there is a path from z; to z; of
length p in the gradient graph G and their intensity ratio (z;/z; < Tgw, then z; is
relabeled as GM. This rule sets all true GM voxels as GM and will no flip the label
of true WM voxels. In other words, this rule detects borders between WM and GM.

3. For any voxel pair (z;, z;) both labeled as GM, if there is a path from z; to z; of
length < p in G and their intensity ratio z;/2z; < T}, then z; is relabeled as
background. This rule detects borders between background (including CSF) and
GM.

We designed two algorithms, GW-Thresholding and BG-Thresholding, illustrated in
figure 3.2 and figure 3.3 respectively, to implement the above rules for GM/WM
segmentation and background/GM segmentation respectively. The inputs to both include a
comparing image z from which voxels are compared, a relative threshold, and a gradient
graph G constructed on the entire image domain. Both algorithms mainly consist of a
sequence of voxel comparisons. Each comparison involves an objective voxel and a
reference voxel. The objective voxel is the voxel whose tissue type is to be determined at

the present comparison. The reference voxel is determined as follows.

o In algorithm GW-Thresholding, the reference voxel e f,., (v;) for the object voxel v;
is the WM voxel with the maximum intensity in the path of length p that emanates

from v; in G}
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e In algorithm BG-Thresholding, the reference voxel re fi,,(w;) for the object voxel v;
is the GM voxel with the maximum intensity in the path of length p that emanates

fromwv; in G.

In practice, we found that it gave better results to temporarily substitute the intensity
z(refog(vi)) with z(re fou (re fog(vi))) (1 — (1 — Ty ) * 2) for each comparison in algorithm
BG-Thresholding. This is based on our observation that 1 minus the optimal threshold T},
is roughly half of 1 minus the ratio between average GM and WM intensities.

The distance threshold p is a empirical value that we chose based on the average
cortex thickness. In some areas of the brain, such as amygdala and caudate, the gray
matter may be thicker than the average cortex and some gray matter voxels may be
recognized as WM because p is too short. To work around this issue, we add an additional
rule in algorithm GW-Thresholding: if the reference voxel of the object voxel z; is
relabeled as GM, then z; should also be relabeled as GM.

Data: z, G, T,

initialization: Vz; € R, w; «—WM;

foreach voxel z; in the image do

if w(refouw(zi)) = GM then
Wi +— GM,

else if r(z;, z{re fyu(z:))) < T4y then
I_ Wy +— GM;

foreach voxel z; in the image do

if w(refyuw(zi)) = GM then

Wi +— GM;

FIGURE 3.2: Algorithm: GW-Thresholding

Data: z, G, Tp,
foreach voxel x; in the image do

if w; = GM and r(z;, z(re fog(x:)) < Tp, then
| w; « background;

FIGURE 3.3: Algorithm: BG-Thresholding
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3.4 Finding Optimal Thresholds

Optimal thresholds can be found by user intervention in a trial-and-evaluation
scheme. The user can first try different candidate thresholds between GM and WM,
visually evaluate the result at the same time and finally select the threshold that gives the
best result. The same procedure can be performed to select the best threshold between
background and GM. It is under investigation whether the same two optimal thresholds
can be used as a priori knowledge across different MR images acquired with the same or
similar parameters.

Figure 3.4 gives a demonstration on the effects of choosing different relative
thresholds: figure 3.4(b) shows that over-low threshold Tg,, globally makes the white
matter too fat while figure 3.4(c) shows that over-high T}, globally makes it too thin. In
either case, the GM/WM boundary drifts away the correct situation in different directions

while the optimal relative threshold makes the boundary fit at the right location, as shown
in figure 3.4(d).

3.5 Results

Figure 3.5 shows segmentation results of applying relative thresholding on some real
MRI scans. One of the advantages of relative thresholding is that it is robust to intensity
inhomogeneity without additional correction processing. Another advantage is that it can
adapt to high level intensity variations within a given tissue.

Relative thresholding mainly serves as a initial voxel classification processing step.
Since relative thresholding is performed on the entire image, non-brain voxels can be
labeled as brain voxels which may nor may not be connected to the true brain voxels. This
type of false positive will be eliminated with morphometric analysis presented in chapter
VI and chapter VIII. Another typical type of error misses certain fine portions of the WM
structure. This type of false negative is mainly due to limited sampling resolution and the

blurring effect of Gaussian filter. A procedure called terrain analysis will be presented in
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(c) Tgw=0'93' Tcg=0-7 (d) Tgw=0.86, T¢g=0.7

FIGURE 3.4: Analysis of relative thresholding with different relative thresholds applied
on a phantom image. Optimal T}, = 0.86 and optimal T, = 0.7. The relative threshold
T4w in (b) is over-low. The one in (c) is over-high. The one in (d) is optimal.



(a) A slice of a MR image (b} RT result

{c) A slice of another MR image (d) RT result

FIGURE 3.5: Relative thresholding results on real MR scans.
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chapter VIII to largely recover these missing portions of the structure. Topology defects
are yet another type of segmentation error, although little geometrical deviation may be

involved. Topology correction methods will be presented in chapter VII and chapter VIIIL.
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CHAPTER IV

DIGITAL POINT CLASSIFICATION

Like most other pixel classification methods, relative thresholding will inevitably
introduce classification errors in both geometry and topology. To correct classification
errors, we rely on a set of morphological image analysis tools, which are described in the
following chapters. In this chapter, we give a set of definitions on the classification of 3D
digital points, which forms the basis for the morphological image analysis tools. We start

with the introduction of fundamental digital topology theory.

4.1 Digital Topology

A 3D binary image is defined as the quadruple (V, n, 7, F)[98]. V C Z3 is the 3D
cubic grid representing all elements in the image. Each element in the 3D image is a cubic
grid point and called a voxel. F C V represents the set of foreground voxels and F
represents the complement of F. n and 7t respectively represent the adjacency in F and F
defined below.

The topology of a digital image depends on a pair of digital adjacencies, one for the
foreground and one for the background. Three types of adjacency are commonly used in
3D: 6-, 18-, and 26-adjacency. Two voxels are 6-adjacent if they share a face, 18-adjacent
if they share a face or an edge, and 26-adjacent if they share a face, an edge, or a corner. In

the rest of this thesis, we use “voxel” and “point” without distinction if not particularly
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noted. An n-neighbor of a point p is a point that is n-adjacent to p. The set of n-neighbors
of a point p is denoted as A, (p). Note that here A, (p) includes p since a voxel p can be
seen as sharing six faces with itself. We use A(p) to denote AV, (p) \ {p} and N'(p) to
denote Nyg(p). Topologically compatible adjacencies/connectivities of F and F are
(6,26), (6, 18), (18, 6) and (26, 6). For any adjacency n € {6, 18, 26}, we use 7 to denote
its compatible adjacency.

An n-path of [ > 0 from point p to g in X C Z3 represents a sequence of distinct
points p = pg, Py, ..., Pt = q in X such that p; is n-adjacent to p;4,, fori =0,1,...,0 — 1.
An n-path is closed if and only if pg is n-adjacent to p;. Two points p, g € X are
n-connected with respect to &X' if and only if there exists an n-path from p to ¢ in X. The
set A is n-connected if every two points in X’ are n-connected with respect to X', An
n-connected component of X' is a non-empty n-connected subset of X that is not
n-adjacent to any other point in X'. The set of all n-connected components of X is
denoted by C,,(X).

For any set X C V, we use X to denote the complement of X’ in the image. The
point set X’ is also referred to as an object since it corresponds to a binary object in the
image. An object X in n-adjacency has a cavity if and only if there exits a connected
component in X in -adjacency that is 7I-connected to only X

An object X has a handle whenever there is a closed path in X" that cannot be
deformed through connected deformations in X’ to a single point. A solid torus is an
example of an object that has exactly one handle. The number of handles in an object is
the maximum number of cutting along embedded disks without rendering the resultant
object disconnected. A handle in the object A’ is referred to as a funnel in its complement
X. The number of handles in a digital objet is also called the genus of the object.

A central concept in digital topology is the definition of simple point [99], which is

characterized by its geodesic neighborhood and topological numbers.

Definition 4.1.1. Simple points A point in a binary image (V, n, 71, F) is simple if it can
be added to or removed from F without changing the topology of both F and F, i.e.
without changing the number of connected components, cavities and handles of both 7
and F.
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Definition 4.1.2. Geodesic neighborhood The geodesic neighborhood of a point p € V
with respect to X C V of order & is the set N¥(p, X') defined recursively by :

Mip, X)=N(p)nXx
NE(p, X) = U{Na(g) NN N X, q e NEp, X)}

Definition 4.1.3. Topological numbers The topological numbers of the point p relative to

the set /X are:
To(p, X) = #Cs(NE(p, X))

T+ (p, X) = #CG(AI?(ID? X))
Tis(p, X) = #C1s(Ni(p, X))
Tos(p, X) = #Czs(-/\les(PrX)),

where # denotes set cardinality and 6% denotes 6-adjacency whose dual adjacency is 18

while 6 denotes 6-adjacency whose dual adjacency is 26.

It is proven in [99] that a simple point can be characterized by local computation of

its topological numbers within the 3 x 3 x 3 neighborhood of the point:

Theorem 4.1.4. A point p in a 3D binary image (V, n, 7, F) is simple if and only if
To(p, F) = land T(p, F) = L

Given a set A C F, a point p is simple relative to &’ if and only if T,,(p, X) = 1 and
Tﬁ(p: —X_) =1
Another concept critical to our topology correction method presented in chapter VII

is the definition of muitisimple point [100].

Definition 4.1.5. Multisimple points A point p is multisimple relative to the set X if and
only if it can be added to or removed from A" without changing the number of handles and

cavities of A’ while splitting and merging connected components in X are allowed.
Characterization of multisimple points is given as the following theorem [100].

Theorem 4.1.6. Let T (p, F) and T (z, F) respectively denote the number of
Joreground and background components in the V \ p that are adjacent to a point p, then p
is multisimple relative to F iff Tp(p, F) = 1 and T} (p, F) = T,(p, F); p is multisimple
relative to F iff Ty(p, F) = 1 and T (p, F) = Ta(p, F).
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4.2 Point Classification

We can classify all points in the set A’ into border points and interior points.

Definition 4.2.1. Border points A point p € X’ is a border point relative to X if

Tz(p, X) > 0, where n is the adjacency of X.

Definition 4.2.2. Interior points A point p € A is an interior point relative to A’ if

Tx(p, X) = 0, where n is the adjacency of X.

By the definition of simple points and border points, it is obvious that a simple point
relative to A" must be a border point relative to X'. Therefore, the set of all border points B
relative to A& can be classified into the set of simple points and the set of non-simple

points.

Corollary 4.2.3. Let B € X be the set of all border points relative to X and S be the set

of all simple points relative to X, we have S C B.
Simple points can be further classified into thin-simple points and thick-simple points.

Definition 4.2.4. Thick-simple points A point p € X is a thick-simple point relative to X’
if it is simple relative to A" and its removal from X’ does not increase the number of tunnels

and number of connected components in A,(¢)} N X'\ {p}. for all g in M5(p) N X, i.e.:

p is a simple point relative to X, and

Vg € N3(p) N X, Tn(g, X \ {p}) < Tulg, &), and
Vg € N3s(p) N X, Tilq, X U {p}) < Talq, X) V T(g, X) = 0,

where n denotes the adjacency of A'.

Definition 4.2.5. Thin-simple points A point p € X is a thin-simple point relative to X’ if

p is a simple point relative to &, but p is not a thick-simple point relative to X.
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Now, let’s turn to non-simple points and perform further classification on them.

Definition 4.2.6. Thin-surface points A point p € X is a thin-surface point relative to X

if T(p, X) > 1, where n denotes the adjacency of X.

If a point p € A is a thin-surface point relative to /X', it implies that the number of

tunnels in the neighborhood A/ }(p) N X is greater than 0.

Definition 4.2.7. Thin-curve points A point p € X is a thin-curve point relative to X’ if

Tx(p, XY =1and T,,(p, X) > 1.

If a point p € & is a thin-curve point relative to X, it implies that the number of

components in the neighborhood A?(p) N X is greater than 1.

Definition 4.2.8. Isolated points A point p € &X' is an isolated point relative to A’ if

Tx(p, X) = 1and T,,(p, X) = 0.

In terms of the definition of multisimple points, we can further classify thin-curve
points into finger points and handle points, which are involved in our topology correction
method.

Definition 4.2.9. Finger points A point p € X’ is a finger point relative to X if pis a

thin-curve point relative to A" and a multisimple point relative to X',

Definition 4.2.10. Handle points A point p € X is a handle point relative to X if pis a

thincurve point relative to X’ but not a multisimple point relative to X,

Next, we further classify thin-simple points into thick-surface points and thick-curve

points.

Definition 4.2.11. Thick-surface points A point p € X is a thick-surface point relative to
A if p is a simple point relative to X and there exits a point ¢ € Aj;(p) N & such that
Tx(g, X U{p}) > Tx(g, X) and T(g, X) > 0.

If a point p € A&’ is a thick-surface point relative to &' implies that removal of p from
A increases the number of tunnels in the neighborhood A2 (g) N (X' \ {p}).
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Definition 4.2.12. Thick-curve points A point p € X is a thick-curve point relative to X’
if p is a simple point relative to X, is not a thick-surface point relative to X, and there
exits a point g € My (p) N X such that T,,(q, X \ {p}) > Tu(q, X).

If a point p € X is a thick-curve point relative to /', it implies that removal of p from
X increases the number of components in the neighborhood AX(g) N (X \ {p}).
Thick-simple points can also be further classified into several types according to their

geometrical characterization,

Definition 4.2.13. Volume-boundary points A point p € & is a volume-boundary point
relative to A if it is a thick-simple point and is n-adjacent to an interior point relative to

&, where n is the adjacency of X.

Definition 4.2.14. Surface-edge points A point p € X’ is a surface-edge point relative to
A if it is a thick-simple point, is not a volume-boundary point, and is n-adjacent to a

thin-surface point or a thick-surface point relative to X', where n is the adjacency of X.

Definition 4.2.15. Curve-end points A point p € X is a curve-end point relative to X’ if
it is a thick-simple point, is neither a volume-boundary point nor a surface-edge point, and
is n-adjacent to a thin-curve point or thick-curve point relative to X, where n is the

adjacency of X.

Definition 4.2.16. Very-thick-curve points A point p € A’ is a very-thick-curve point
relative to A if it is a thick-simple point, not a volume-boundary point, a surface-edge

point, nor a curve-end point.

In some situations, what form the end of a curve may include more than one point.
We define thick curveend points and thin curveend points to differentiate two types of

curve ends.

Definition 4.2.17. Thick curve-end points A point p € X is a thick curve-end point
relative to X if it is a curve-end point relative to A" and n-adjacent to another curve-end

point relative to X', where n is the adjacency of mathcal X

Definition 4.2.18. Thin curve-end points A point p € X is a thin curve-end point relative

to A& if it is a curve-end point relative to X' but not a thick curve-end point relative to X'.
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We can also differentiate surface-edge points into types: thick surface-edge points
and thin surface-edge points. For simplicity, we define these two types of surface-edge

points only for surface-edge points that are adjacent to thin-surface points.

Definition 4.2.19. Thick surface-edge points of thin surface A point p € A’ is a thick
surface-edge point of thin surface relative to A" if it is a surface-edge point adjacent to at
least one thin-surface point but no thick-surface points and for all thinsurface point

g € N3(p) N X, T(q, X) = Txlq, X U {p}), where n is the adjacency of X.

If a point p € A is a thick surface-edge point of thin surface relative to X, it implies
that its removal from & does not change the number of tunnels in the neighborhood of any

thinsurface point adjacent to p.

Definition 4.2.20. Thin surface-edge points of thin surface A point p € X is a thin
surface-edge point of thin surface relative to & if it is a surface-edge point adjacent to at
least one thin-surface point but no thick-surface points and is not a thick surface-edge

points of thin surface relative to A

Examples of some of the major definitions given above are illustrated in figure 4.1.

The classification of 3D digital points forms a tree structure, as shown in figure 4.2.

Thin—curve & Handle Surface-edge

Thin—surface
Thick—surface Thin—curve & Finger

‘Thin curve—-end

Very—thick—curve
41
L1 / Thick—curve

Thick curve—end
Volume-boundary
Thick-curve Surface—edge

FIGURE 4.1: 3D digital point types. The object is in 26-adjacency.
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— Border—— Simple — Thick—simple—7— Volume-boundary
— Thick—surface [~ Surface-edge
3D Digital Point — )
— Thick-curve — Curve—end
— Non-simple Thin-surfce — Very—thick—curve
— Interior b e
— Isolated

FIGURE 4.2: 3D digital point classification into a tree structure.

4.3 Related Work

In [101], 3D digital points are classifled into the following types: interior point,
isolated point, border point, curve point, curves junctions, surface point, surface-curve(s)
junction, surface junction, and surfaces-curve(s) junction. In [102], 3D digital points in a
surface skeleton are classified into the following types: edge point of surface, inner point
of surface, junction point of surfaces, junction point of surface and curves, curve end
point, inner point of curve, junction point of curves, isolated point. In both works, surface
and curve correspond to the thin surface and thin curve in our work. The point
classification in [101] and [102] assumes the object is either originally a discrete surface
or the surface skeleton of a 3D object. Based on the point classification, the discrete
surface or the surface skeleton can be segmented into meaningful parts.

The major distinction between our work and the research above is that we proposed
the notion of thick-simple point. Based on this notion, we can classify discrete surfaces
into thin surface and thick surfaces, and curves into thin curves and thick curves. Here
thick surface and thick curves refer to surfaces and curves that are at most two-point thick.
The notion of thick-simple point is relevant to the fact that the very central discrete surface

skeleton of a 3D object may be two-point thick at some places. It also helps to identify
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other geometrical features such as volume boundary, surface edges and curve ends. Based
on the notion of thick-simple points, we can conveniently design surface and curve
skeletonization algorithms that not only guarantee homotopy and thinness, but also ensure
medialness and high level of shape preservation. In addition, the notion of thick-simple

point also plays a critical role in our topology correction algorithm.



CHAPTER V

3D SKELETONIZATION

Skeletonization is a process that reduces foreground regions in a binary image to a
skeletal remnant while eliminating significant amount of foreground pixels (voxels). The
skeleton of a 2D binary object is a set of 2D discrete curves. For a 3D binary image,
surface skeletonization results in a discrete surface and curve skeletonization results in
discrete curves. Skeletons have been widely used in computer vision, pattern recognition,
image segmentation, computer graphics and image compression.

Although there is not a standard and precise definition of skeletonization, the

following properties of skeletonization are commonly desired:

e homotopy: the skeleton should be homotopic (i.e. topologically equivalent) to the

original object;

o thinness: the surface skeleton should be one point thick and the curve skeleton

should be one point wide; and
e medialness: the skeleton should be centrally located within the object.

In this chapter, we propose a 3D surface skeletonization algorithm and a 3D curve
skeletonization algorithm. In our neuroanatomical segmentation work, surface
skeletonization results in data that plays a critical role in white matter localization and
extraction. Variants of curve skeletonization are used for topology correction of white

matter and other morphological image analysis tasks. Both surface skeletonization and
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curve skeletonization are based extensively upon the 3D digital point classification
presented in the previous chapter.

There are two steps for surface skeletonization: thick-surface skeletonization and
thin-surface skeletonization. The former results in a discrete surface of at most two voxels
thick and the latter results a final thin surface skeleton of one voxel thick. We will present
skeletonzation algorithm in the order of thick-surface skeletonization, thin-surface

skeletonization, and curve skeletonization.

5.1 Thick-Surface Skeletonization

Thick-surface skeletonization of the set X' is a process that iteratively eliminates
volume-boundary points relative to X until no additional points can be eliminated. In each
iteration, border points are first identified. Then simple points are extracted from border
points and non-simple points are marked to prohibit elimination. Next, simple points are
classified into thick-simple points and thin-simple points. Like non-simple points,
thin-simple points are also prohibited from elimination. Among thick-simple points,
volume-boundary points are recognized and are eliminated if they are still simple relative
to A" at the moment of elimination. Whenever a point is eliminated, new border points in
its neighborhood are identified as candidates for erosion in the next iteration.

Thick-surface skeletonization described above erodes voxels in the order of the
n-distance, where n is the adjacency of the set X'. In n-distance, the distance between any
ni-adjacent voxel is taken as unit distance. A variant of this algorithm,
Chamfer-thick-surface skeletonization, erodes voxels in the order of chamfer distance
which sets distances between adjacent voxels as follows. For any two voxels sharing a
face, their chamfer distance is 3; for any two voxels sharing an edge, their chamfer
distance is 4; and for any two voxels sharing only a point, their chamfer disance is 5.
Chamfer distance provides closer approximation to Euclidean distance. For thick-surface
skeletonization that erodes voxels in Chamfer distance, a map of distance to X is first

calculated for each point in X'. The main distinction of the two algorithms is the definition
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of the border points and interior points. We say a point p € X’ C X is a border point
relative to (rt) X’ with respect to (wrt) /A at distance d if p is a border point rt X and p’s
distance from X is d. If the distance of p € X" from X is greater than d, then p is an
interior point it &’ wrt X at distance d. In short, we say that p is a border point at distance
d or an interior point at distance d. The rest of the algorithm for Chamfer-thick-surface
skeletonization is the same with regular thick-surface skeletonization. These two
algorithms are illustrated in figure 5.1 and figure 5.2 respectively.

Both thick surface skeletonization algorithms remove a point from the object only
when the point is a simple point, therefore the agorithms preserve topology after
skeletonization. Meanwhile, points are removed in the order of either 7i-distance or
Chamfer distance from the complement of the object, therefore the algorithms also
guarantee the medialness of the skeleton. Since the algorithms keep the thick-surface
points and very-thick-curve points, the resultant skeleton may be of two voxels thick at
some places. The resulted surface skeleton is hence referred to as thick-surface skeleton
and can be further thinned into the thin-surface skeletonization algorithm described in the
next section. Figure 5.4(b) shows the thick surface skeleton of a cerebral white matter

object in terms of Chamfer distance.

5.2 Thin-Surface Skeletonization

Thin-surface skeletonization further thins thick-surface skeleton by sequentially
eroding thick-surface points, thick surface-edge points and thick curv-end points. First, it
classifies all points in the thick-surface skeleton set X’ into border points and interior
points. Second, border points are classified into simple points and non-simple points.
Third, simple points are classified into various types of thick-simple points and various
types of thin-simple points. Thick-simple points include volume-boundary points (should
be an empty set), surface-edge points, and very-thick-curve points. Thin-simple points

include thick-surface points and thick-curve points.



Data: A set X0 in n-adjacency

X — X°, /+ X denotes the eroded set in the process
Classify all points in & into border points and interior points;

terminate «— false;

repeat
terminate «— true;

Classify border points into simple points and non-simple points;
Classify simple points into thick-simple points and thin-simple points;
Classify thick-simple points into volume-boundary points and
non-volume-boundary points;

Let I be the set of all volume-boundary points;

continue +— irue;

repeat
continue «— false;

foreach point p in the set V do

if p is simple relative to X then
Remove p from &’;

interior points;
continue «— true;
| terminate — false

until continue = false ;
Reset all non-interior points as border points;
until terminate = true ;

FIGURE 5.1: Algorithm: Thick-surface skeletonization
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*/

Classify interior points in p’s neighbor N (p) into border points and



Data: A set X0 in n-adjacency

X — X0 /+ X denotes the eroded set in the process */
Calculate the Chamfer distance map;
d«— 3

Classify all points in X into border points and interior points at distance d ;
terminate — false;

repeat
terminate +— true;

Classify border points at distance d into simple points and non-simple points;
Classify simple points into thick-simple points and thin-simple points;
Classify thick-simple points into volume-boundary points and
non-volume-boundary points;

Let V be the set of all volume-boundary points;

continue «— true,

repeat

continue «— false;

foreach point p in the set V do

if p is simple relative to X then
Remove p from X;

Classify interior points at distance d in p’s neighbor N (p) into border
points at distance d + 1 and interior points at distance d+1;
continue + true;

terminate — false

-

until continue = false ;

d—d+1;

Reset all non-interior points as border points;
until terminate = true ;

FIGURE 5.2: Algorithm: Chamfer-thick-surface skeletonization
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After the point classification, thick-surface points and very-thick-curve points are
first removed if they are still so at the moment of removal. After a thick-surface point is
removed, points in its neighbor should be reclassified. The order in which thick-surface
points are removed has a significant influence on the resultant shape of the surface
skeleton. Whenever a thick-suface point is removed, we put its neighbors that are still
thick-surface points in the highest priority for removal. Such an breath-first-search order
of removal has a benefit in that it alleviates the jitter effect of the resulted surface skeleton.
After removal of thick-surface points, thick surface-edge points of thin surfaces are
thinned in the similar breath-first-search order. Finally, thick curve-end points are thinned.
Thin-surface skeletonization is presented in figure 5.3. Figure 5.4(c) shows the thin

surface skeleton of a cerebral white matter object.

5.3 Curve Skeletonization

Curve skeletonization of a set &’ iteratively removes thick-simple points except for
curve-end points from X resulting in discrete curves of one voxel wide. In each iteration,
all border points of X are first classified into simple points and non-simple points.
Non-simple points are forbidden to be removed at the current iteration. Simple points are
classified into thick-simple points and thin-simple points (thick-surface points and
thick-curve points). Curve-end points are identified among thick-simple points. Then only
thick-curve points and thick-simple that are not curve-end points are allowed to be
removed at the current iteration. Whenever a point is removed, new border points in its
neighbor are identified for processing in the next iteration. At the end of each itertaion,
any points that have not been removed and are not interior points are reset to be border
points for processing in the next iteration. Curve skeletonization is illustrated in figure 5.5.

Unlike many other curve skeletonization algorithms, our algorithm does not require a
preprocessing step of surface skeletonization. In other words, our curve skeletonization
can be directly performed on the original 3D object. The resultant discrete curve is

topologically equivalent to the original object and highly central within the original object.
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Data: A thick surface skeleton A°
X — X%, /+ X is the eroded skeleton in the process */
/« Point classification * /
Classify all points in X into border points and interior points;
Classify all border points into simple points and non-simple points;
Classify all simple points into volume-boundary points ( should be empty),
thick-surface points, surface-edge points, very-thick-curve points, thick-curve points,
and curve-end points. Let T be the set of thick-surface points and very-thick-curve
points, £ be the set of surface-edge points, and C be the set of the curve-end points;
/+ Thin thick surfaces and very thick curves */
foreach point p in the set T do
Put p in an empty queue Q;
while Q is not empty do

Pop up a point g from the queue;

if q is still a thick-surface point or a very-thick-curve point then

Remove g from X. Reclassify ¢'s neighbors that are in A’ and enqueue
|_ new thick-surface points and very-thic-kcurve points;

/+ Thin thick surface edge points of thin surfaces */
foreach point p in the set £ do
Put p in an empty queue Q;
while Q is not empty do
Pop up a point g from the queue;
if g is now actually a thick surface-edge points of thin surfaces then
| Remove g from X

L
/+ Thin thickcurveend points * [
foreach point p in the set C do

if p is now actually a thick curve-end point then
| Remove p from X}

FIGURE 5.3: Algorithm: Thin-surface skeletonization



(c) Thin surface skeleton

FIGURE 5.4: Surface skeletonization results
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When we limit the number of iterations that the curve skeletonzation algorithm can
perform with a scale s, the partial curve skeletonzation produces output that can be seen as
the erosion of the original object with topology and shape preservation at scale s. We will
see that such a topology-and-shape-preserving erosion (TSPE) plays an important role for
topology correction of white matter. It can also be used for morphological smoothing of
surface-like objects. Let X be 3D object with thin protrusions that we want to eliminate.
We can first apply TSPE at scale s on A’ ending up with X”. Then we can obtain the
smoothed result by dilating X’ such that the voxels in X'\ X’ whose distances from A" are
less than or equal to s are added into A”. The advantage of this smoothing approach over
traditional morphological smoothing is that the shape noise can be removed while thin
surface parts of the original object are preserved. Figure 5.6 and 5.7 respectively
demonstrate the results of curve skeletonization and partial curve skeletonization of a
cerebral WM object.

There are exceptions to the assertion that a thin surface skeleton is one voxel thick
and a curve skeleton is one voxel wide. In these situations, the surface skeleton may be
thicker than one voxel and the curve skeleton may be wide than one voxel. The skeleton
cannot be further thinned, otherwise either the topology of the object will be changed or

the shape of the skeleton will be significantly modied from the original object.

5.4 Related Work

Several other works [103, 104, 105] also apply distance-ordered homotopic thinning
for surface skeletonization of 3D objects. The difference between their work and ours is
that our skeletonization is based on a more systematic point classification in which a new
notion called thick-simple points are introduced. Based on such a framework of point
classification, we perform thinning of thick-surface skeleton in a breath-first-searching
order such that the resultant surface skeleton adheres to the shape of the original object to
a higher extent and jitter effect is largely alleviated. For curve skeletonization, our

algorithm works directly on the original 3D object intead of a two-stage manner of surface
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Data: A set of points X in n-adjacency

X — X0, /* X denotes the eroded set in the process =/
Classify all points in X into border points and interior points;

terminate «— false;

repeat

terminate «— true;

Classify border points into simple points and non-simple points;

Classify simple points into thick-simple points and thin-simple points;
Identify curve-end points among thick-simple points and classify thin-simple
points into thick-surface points and thick-curve points;

Let T be the set of all thick-curve points and thick-simple points except for
curve-end points;

continue — true;

repeat

continue «— false;

foreach point p in the set T do

if p is still simple relative to X' then
Remove p from X;

Classify interior points in p’s neighbor A/ (p) into border points and
interior points;

continue — true;

L terminate — false

until continue = false ;
Reset all non-interior points as border points;
until terminate = true

FIGURE 5.5: Algorithm: Curve skeletonization
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(c)} Curve skeleton at scale 30 (d) Curve skeleton at scale 45

FIGURE 5.6: Curve skeletonization results. For a curve skeleton shown at scale s, all
curve skeleton points at scale less than s is not shown. All curve skeletons are dilated for
visual inspection.

(a) Cerebral WM matter (b} Partial curve skeleton at scale 15. Curve
skeleton points at scale less than 15 is not
shown

FIGURE 5.7: Partial curve skeletonization results.



71

skeletonization followed by curve skeletonization [105, 106]. Based on our systematic
point classification, this one-stage curve skeletonzation results in curve skeletons that are
central within the original object to a higher extent than the two-stage methods. In
addition, partially running the one-stage curve skeletonization algorithm gives rise to
topology-and-shape-preversing erosion that can be applied for other morphological image

analysis tasks such as topology correction and smoothing of surface-like objects.



CHAPTER VI

CELL COMPLEX BASED MORPHOMETRIC ANALYSIS

In this chapter, we present a cell complex based morphometric analysis (CCBMA)
method. Cell complex is a set of interconnected polyhedra, polygons, segments, and
points. CCBMA first transforms a 3D binary object into a cell complex and then
simplifies the complex such that it only consists of segments and points without removing
any points in the complex. Meanwhile, meaningful metrics on each segment can be
calculated that provide various geometrical information on the segment with respect to the
original object. In our work on neuroanatomical segmentation, CCBMA plays a critical
role for white matter localization and extraction. It may also be applied for many other
problem solving in computer vision and image understanding.

This chapter starts with the motivation of CCBMA. Then the algorithm of CCBMA
is presented in the subsequent sections. The input for cell complex analysis can be any 3D
object but we use the thin-surface skeleton of the white matter object as input in our work
for white matter localization and extraction. The application of CCBMA in our

neuroanatomical segmentation will be presented in the next chapter.

6.1 Motivation

Since the 1960’s, skeletonization of 2D object has been widely used for various tasks

in computer vision, pattern recognition, image segmentation, and image compression.
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This is due to the capability of skeletonization to reduce the dimensionality of the original
object while maintaining the information on the extent and connectivity of the object. To
be more specific, after skeletonization on 2D regions, we obtain curve skeletons in which
for each point we have a metric that measures the shortest distance of the point from the
boundary of original regions.

In 3D, however, things become much more complicated. After both surface
skeletonization and curve skeletonization, we can also obtain a metric that measures for
each point in the skeleton the shortest distance of the point from the boundary of the
original 3D object. This metric is very useful when we are working with surface
skeletons. In many cases, however, what we really need is further skeletonization into
curve skeletons, since the metric distance-from-boundary is only marginally useful unless
the original object is a tubular structure. The reason is that the metric provides little
information on the wideness and connectivity of the original object. Cell complex analysis
is hence motivated by pursuit of metrics that provides meaningful information of wideness

and connectivity of the 3D object while reducing the dimensionality of the object.

6.2 Cell Complex

CCBMA is essentially a series of transformation on a space called cell complex. A
cell complex is a topological space composed of points, segments, polygons, polyhedrons
and the generation to any dimension of polygons in two dimensions. The generation of
polygon to any dimension is termed polytope. Here, we are following the definition of cell
complex given in [107]. A more abstract definition is given in [108].

An n-dimensional polytope is bounded by a number of (n — 1)-dimensional faces.
Each pair of (n — 2)-faces meet at an (n — 2)-dimensional face, and so on. A
n-dimensional face is also a n-dimensional polytope. A 3-dimensional face is called a
cell, a 1-dimensional face is called an edge, a 0-dimensional face is called a vertex, and a
2-dimensional face is just called a face. Note that cell can also generally denote a polytope

at any dimension. A precise definition is omitted here for simplicity. In this thesis, we
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only deal with polytopes up to 3-dimension (i.e. we only deal with polyhedrons, polygons,
segments, and points).
Given the definition of polytopes (cells) and faces, we give a formal definition of cell

complex [107].

Definition 6.2.1. Cell complex A cell complex or simply complex in R¥isaset C of
polytopes(called cells) in R4 satisfying two condition: (1) Every face of a cell is a cell in
C, and (2) two cells in C either do not intersect, or their intersection is a cell of smaller

dimension which is their common face of maximal dimension.

One special kind of polytope is a convex polytope, which is the convex hull of a finite
set of points. In the rest of thesis, we mean convex polytope whenever we refer to
polytope. If the maximal dimension of the constituting cells in a cell complex is k then the
complex is called a k-complex. Our cell compiex analysis can be seen as a process of
transforming a 3-complex to a 1-complex. First, we need to construct a 3-complex from a
3D object.

6.3 Cell Complex Construction

In this section, we describe the procedure for constructing a celi complex from a 3D
object X’ in 26-adjacency. Cell complex construction for other adjacencies is a similar
procedure to that for 26-adjacency and the cell complex transformation algorithms are
same for all adjacencyies. We only deal with 26-adjacency in this thesis.

Given a set of voxels X in 26-adjacency, we first create a set of vertices V each
corresponding to a voxel in X', In the following, whenever we say a point, a vertex or a
voxel, we refer to the same thing without distinction. Second, we create an edge
connecting every two vertices if they are 26-adjacent. Third, we create a triangle for every
three distinct edges if they share three distinct vertices. Fourth, we create a tetrahedron for
every four distinct triangles if they share four distinct edges.

By now, we have a set of polytopes up to 3-dimension. Even if the input X' is a

surface skeleton, we may still have 3-dimensional polytope. At this point, the set of



75

polytope is probably not a cell complex yet and what we do next is to perform following
operations on the set to create a cell complex.

In a 3D lattice where each voxel is a grid point, we can identify each cube bounded
by 8 voxels. All tetrahedra that locate within the same cube are contracted to a single
polyhedron. All triangles that are in the same cube and within the same plane are also
contracted into a single polygon. This simple procedure will finally result in a cell

complex.

6.4 Generating 2-complex

Given a 3-complex C, we perform cell complex analysis by first transforming the
3-complex to a 2-complex, as illustrated in figure 6.1. This transformation can be seen as
a “surface skeletonization” procedure in the context of cell complex. The result is a
2-complex that only consists of polygons, segments, and points while all polyhedra are
eliminated. A central rule for polydedron elimination is that only a border polydedron can
be removed at any time. A border polyhedron has one 2-face that is shared by no other
polyhedron. To eliminate a polyhedron, we can simply remove one of its 2-faces that is
incident with only one polyhedron. Note that removal of a 2-face from the complex does
not involve removal of any 1-face or O-face of the complex. In other words, all segments
and points remain in the complex after polyhedra elimination. A 2-face that is incident
with only one polyhedron is cailed simple face because removal of the face and the
incident polyhedron does not change the topology of the complex.

Similar to the distance-ordered thinning for 3D surface skeletonization described in
the previous chapter, we also iteratively eliminate polyhedra and simple faces in an
ascending order of distance from the outside of the complex. This iterative elimination is
implemented utilizing a min-priority queue @ in which each element is a simple face to be
removed with the key being the depth of simple faces from the outside of the complex.
Initially, all 2-faces have their depth reset as 0 and simple faces are inserted into Q. Then

the algorithm iteratively pops up a 2-face f from the queue and performs polyhedron
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Data: A 3-complex C
Initialize the depth of all 2-faces to be 0;
Insert simple faces into an empty min-priority queue (Q;
while @ is not empty do
Pop up a 2-face f from Q;
if f is still a simple face then
Remove f and its associated polyhedron ¢ from the complex;
foreach 2-face f' # f that was bounding c do
depth(f') — depth(f) +d(f, f');
L Insert f’ into @ using depth(f') as the key if it is a simple face;

FIGURE 6.1: Algorithm: 3-complex to 2-complex transformation

elimination if f is still a simple face. Whenever a simple 2-face f and its associated
polyhedron ¢ are removed from the complex, the metric depth of remaining 2-faces
bounding ¢ are updated and new simple faces are inserted into the queue. For any
remaining 2-face f' that was originally bounding c, its depth is updated as

depth(f') = depth(f) + d(f, f'), where depth(f) denotes the depth of f from the outside
of the original complex and d(f, f") denotes the distance between the center of the 2-faces
f and f’. When the queue is empty, all polyhedra have been eliminated and there is no
simple 2-faces anymore in the new complex. At the end of the algorithm, each remaining

2-face f has been assigned with a depth metric.

6.5 Generating 1-complex

Given a 2-complex generated in the above procedure, we further reduce the complex
dimension generating a new 1-complex composed of only segments and points, as
illustrated in figure 6.2. This procedure is similar to the above one except that here we
recognize and remove border polygons and simple edges. A border polygon is a polygon
in the complex that has a 1-face (an edge) that is shared with no other polygons; an edge
incident with only one polygon is called a simple edge. We thereby transform a 2-complex
to a new 1-complex by iteratively removing simple edges and their associated polygons.

Apparently, this procedure also preserves the topology of the original 2-complex.
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Like the procedure for transforming a 3-complex to a 2-complex, a min-priority
queue is also used for ordered elimination of border polygons and simple edges. Here,
each element in the queue ) is a 1-face and has to be a simple edge when it is inserted
into the queue. Whenever a 1-face is popped up from the queue for removal, it has to be
still a simple edge. We propose two elimination order embodied in the definition of the
key of the min-priority queue. We define three metrics for each 1-face in the complex:
radius, wideness, and connectivity. Initially, all 1-faces in the 2-complex have their radius
and connectivity reset to be ). Whenever a simple edge e and its associated border
polygon f are removed, the metric radius and connectivity of remaining 1-faces bounding
f are updated and new simple edges are inserted into the queue. For any remaining 1-face
¢’ that was originally bounding f, the radius and connectivity of ¢’ are updated as
radius(e’) = max(radius(e’), radius(e) + d(e, ¢’)) and
connectivity(e') = connectivity(e’) + connectivity(e) + d(e, e’), where radius(e) and
connectivity(e) denote the radius and connectivity of e respectively and d{e, €’) denotes
the distance between the centers of two 1-faces. We can use the radius or the connectivity
as the key for the min-priority queue and end up with two different orders of simple edge
removal. At the end of the algorithm, all polygons have been removed and there are no
simple edges anymore in the new 1-complex. The algorithm also preserves the topology
of the complex.

Whenever a simple edge e and the associated border polygon f are removed, we also
record a “parent-child” relationship between any remaining 1-face e’ that was bounding f
and the newly removed 1-face e. When the connectivity is used for the key of the
min-priority queue, we need to adjust the radius of 1-faces in the resultant 1-complex as
follows. For any 1-face e in the 1-complex, if e has two or more child 1-faces in the
intermediate 2-complex, then the wideness of e is
wideness(e) = (radius(e1) + d(e, e1) + radius(es) + d(e, €2))/2, where e; and e; are
the two child 1-faces of e that have greatest radii; otherwise wideness(e) = radius(e).

With the above two algorithms, we can transform a 3-complex into a 1-complex that
significantly reduces the complexity of the representation of a 3D object. Meanwhile,
each remaining 1-face (segment) has been assigned three metrics: radius, wideness, and

connectivity. They give information on how wide and how strongly connected the original
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3D object is at the place where e locates. If desired, we can also transmit the depth of a
polygon in the intermediate 2-complex to the bounding segments that still remain in the
final 1-complex. Therefore, we end up with a simple form of representation of the original
3D object while largely preserving structural, geometrical and morphometrical
information of the original object. It is demonstrated in the next chapter that this technique

of cell complex analysis can be applied for robust neuroanatomical segmentation.

Data: A 2-complex C and an option on whether using radius or connectivity as the
key of the min-priority queue
Initialize the radius and connectivity of all I-faces to be 0;
Insert simple edges into an empty min-priority queue ¢);
while Q is not empty do
Pop up a 1-face e from @Q);
if e is still a simple edge then
Remove e and its associated polygon f from the complex;
foreach I-face ¢’ # e that was bounding f do
radius{e'} «— max(radius(e’), radius(e) + d(e, €');
connectivity(e') — connectivity(e') + connectivity(e) + d(e, €');
Set e as the child of €';
if e’ is a simple edge then
if the option is using radius as the key then
Insert ¢’ into Q) using radius(e’) or connectivity(e’) according to
L the algorithm option;

oreach /-face e in the new I-complex do
if e has tnwo or more children then

| Find the two children of e that have the largest radius: e; and es;

|_ wideness(e) +— (radius(e;) + d(e, e;) + radius(es) + d(e, e2)}/2;
else

| wideness(e) « radius(e);

]

FIGURE 6.2: Algorithm: 2-complex to 1-complex transformation
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CHAPTER VII

TOPOLOGY CORRECTION

Although human cortices are highly convoluted and fold in different ways, the
cortical surface should be topologically equivalent to a sphere if the opening at the brain
stem is artificially closed. Topology correctness is an important requirement in the cortical
surface reconstruction process while topology defects or errors, mainly in the form of
handles, may arise in MR image segmentation due to various image artifacts. In this
chapter, we present a volume-based and multiscale morphological approach for topology
correction of white matter [109], based on which topologically correct gray matter can be
produced and the topologically correct cortical surfaces can be generated with the existing
isosurfaces algorithm [110]. Extraction of topologically correct cortex and reconstruction

of cortical surfaces will be presented in the next chapter.

7.1 Topology Correction Preserving Surface-likeness

Our method for topology correction is mainly motivated by the observation about the
surface-likeness of white matter (WM) and gray matter (GM). The surface-likeness of
cerebra WM is apparent by comparing the cerebral WM and its surface skeleton, as shown
in figure 7.1. To preserve the shape of surface-like objects, the cost of handle cut in blue in
figure 7.2 should be greater than that of a cut in red because the object is “wider”, in other

words more like a surface, at the blue part than at the red part, although the object is
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thinner at the blue part. Similarly, we should fill the tunnel (i.e. cut the associate
background handle) in the right object in figure 7.2 instead of cutting the foreground
handle. In this chapter, we describe a morphological topology correction (MTC) filter that

cuts all handles at a specific scale of cost evaluated in terms of the wideness of the object.

{a) Cerebral WM (b) Thin surface skeleton

FIGURE 7.1: Surface-likeness of cerebral white matter

FIGURE 7.2: Topology correction adapted to the surface-likeness of objects



81

7.2 Three-Fold Topology Correction

Traditionally, voelume-based methods of topology correction of the white matter are
two-fold in that there are two basic types of tunnel filling: filling the tunnels of the white
matter or filling the tunnels of the complement of the white matter. Note that the second is
equivalent to cutting the handles of the white matter. Whenever a tunnel of an object (the
white matter or its complement) is filled, the points used to fill the tunnel are always from
the complement of the object.

Brain MRI segmentation, however, is usually able to separate the grey matter from
the rest of the complement of the white matter and there is certain information provided
by the prior segmentation that is not used by the traditional two-fold methods. Let three
sets W, G and BG respectively represent WM, GM, and background(including CSF)
produced by the prior brain tissue segmetnation. When a tunnel of the white matter is
filled in the two-fold method, there are generally three possibilities on the composition of
the points used to fill the tunnel: the points are only from G; the points are only from BG;
or the points are from both & and BG.

Considering the radiological property of T1-weighted brain MRI (the average gray
level of air, cerebrospinal fluid, grey matter, and white matter are in the ascending order)
and the layered organization of WM, GM, and background regions, it is reasonable to
assume that the points from BG have less credibility of actually belonging to the white
matter than points from G. In other words, it is reasonable to prefer to use exclusively the
points from § to fill the tunnels in W. Points in BG are used to fill a tunnel in W only
when necessary (i.e. when the tunnel is passed through by one or more handles in BG).

Based on this rationale, a three-fold topology correction method has been invented
that involves three types of tunnel filling: filling the tunnels of the union of G and BG
using points from W (i.e. cutting the handles in W); filling tunnels of W using points
from G; and filling tunnels of the union of G and W using points from BG. Note that the

third type creates more chances for the second type tunnel filling.
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7.3 Multiscale Topology Correction

Our algorithm gradually eliminates topology handles with increasing scales of cost.
The core algorithm is a morphological topology correction (MTC) filter that fills tunnels
1n an object (i.e, cuts handles in the complement of the object) at the specific scale of cost.
At each of a sequence of increasing scales (e.g., scales s =0, 1, 2, etc.), MTC is
successively applied for correcting topology of WM. MTC associates a larger correction
cost to topology corrections (e.g., cuts) at locations having a larger surface-like property
(i.e. wider regions).

The input to the topology correction algorithm is the pre-segmentation result in three
sets W, G and BG representing WM, GM, and background (including CSF) respectively.
Necessary preprocessing operations are performed to enforce that W forms only one
connected component and contains no cavities and W should not be connected to BG.
Figure 7.3 illustrates the topology correction of the white matter (W) in a multiscale
manner starting from scale s of 0. At the end, W should be homotopic to a ball. An object
is homotopic to a ball if we can keep removing simple points from the object ending up
with a single point. The details of MTC is described in the following section and
illustrated in figure 7.6.

1.4 Morphological Topology Correction (MTC) Filter

A typical application of the MTC filter is to fill the tunnels of object X’ using points
from a set M C X at a specific scale s. Put it in another way, the MTC filter cuts the
handles of the complement of X by moving a subset of points from M to X.

A minimal set of connected points F°' C A used to fill a tunnel (or multiple tunnels
simultaneously) is referred to as a fill of X. It can be also referred to as a cut of X in the
handle-cutting perspective. In other words, a fill of tunnels in X' is a cut of handles in the
complement of A'. A characteristic of a fill F' of A’ is that it contains no multisimple

points relative to X \ F, that is, adding any point in F into X \ F will create at least a new
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Data: presegmentation result in three sets W, G and BG
Result: Topologically corrected white matter set
s+—0;
while true do
Perform MTC at scale s to fill tunnels of G U BG (i.e. the complement of W)
using points from W. The points used to fill the tunnels are moved from W to G.
Put it in other way, this step cuts the handles of W at scale s;
if W is homotopic to a ball then

| Terminate the loop;
Perform MTC at scale s to fill the tunnels of G U W (i.e. the complement of BG)
using points from BG. The points used to fill the tunnel are moved from BG to G.
In other words, this step cuts the handles of BG at scale s;
Perform MTC at scale s to fill the tunnels of W using points from G. The points
used to fill the tunnels are moved from G to W;
Fill cavities (if any) in W. In rare situations new cavities may be created in W
by the above step;

if W is homotopic to a ball then
|_ Terminate the loop;

| s—s+1;

FIGURE 7.3: Algorithm: Topology correction of white matter

handle in X \ F. This implies that a fill must be minimal in that removal of any proper

subset of the fill will lead to filling fewer or no tunnels.

Locating fills at a specific scale depends a morphological operation called iterative
shape-and-topology-preserving geodesic dilation (ISTPGD). Iterative shape-and-topology
preserving dilation (ISTPD) of A at scale s corresponds to iterative shape-and-topology
preserving erosion (ISTPE) of its complement X at the same scale while the latter can be
seen as the partial curve skeletonization in which the outer loop is performed only s/2
iterations (see the algorithm in figure 5.5 in chapter VI). To fill tunnels of /X’ at scale s
using points in M, MTC first performs ISTPGD on X with respect to M at scale s.
ISTPGD behaves as the same way as ISTPD except for an additional condition that any
point added to X (i.e. eroded from X') must be in the set M. Let X! be the dilated set of
X and Y = X7 be the eroded set of X. We then recognize all thin-curve points relative to
Y. Among all thin-curve points, there may be some handle points relative to ). Removal
of any handle point relative to ) breaks one or more handles in . Since )V is

topologically equivalent to X', we can trace a cut of X from each handle point relative to
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Y. Furthermore, the mechanism of ISTPGD determines that X is approximately s-voxels
wide at the place where each handle point locates. Therefore, we can trace a cut of X (ie.
a fill of X') approximately s voxels wide, from each handle point. In the next section, we
describe a procedure of geodesic dilation for extracting all fills of X at scale s starting

from handle points relative to ).

1.5 Geodesic Dilation With Topology Control

After ISTPGD is applied on X’ with respect to M at a specific scale resulting in
eroded object I, where Y C X, the set of all thin-curve points relative to ) are recognized
and denoted as R and referred to as the residual set. Let the body setbe B= Y\ R. In
order to extract fills of tunnels in X at scale s (i.e. cuts of handles in X at scale s), we first
extract cuts of handles in ) at scale s, based on which the final fills at scale s are extracted.

Although removal of one handle point in R from ) breaks one or more handles in
at scale s, simultaneous removal of all handle points in R from ) may be not necessary to
break all handles in Y at scale s, may break Y into several connected components, and
even may create new handles. For example, in the object (in 6-adjacency) in figure 7.4,
points 7 to point 30 are all identified as residual point at first. But removal of the residual
point 7 and 30 simultaneously creates a new tunnel in the object. Our solution to this
exception is that any thin-curve point is taken as a residual point only if Tiz(p, B) = 1. In
this way, it is guaranteed that removal of all residual points will not create new handles.
To find the minimal set of handle points for cutting handles in Y and the final fills of A" at
scale s, we propose a procedure including three stages of geodesic dilations with topology
control. These three stage of dilations together with the prior topology correction steps are
illustrated in figure 7.5.

The following three dilation stages iterate in the same manner. Each dilation stage
involves a seed set S and a condition set C. In each iteration of every stage, any points in C
that are adjacent to S are marked and then are moved from C to S if they satisfy some

additional conditions. The iteration terminates if no more points can be moved.
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FIGURE 7.5: Illustration of all stages of topology correction.
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In stage 1, B is the seed set and R is the condition set. The task of dilation in this
stage is to recognize and recover the finger points from the residual set to the body set. In
each iteration, a marked point p is identified as a finger point and recovered if
Tm(p, R*) < 1, and p is m-adjacent to a body component BB; with degree(l3;) = 1 and is
multisimple relative to B at the moment of recovery. Here degree(13;) denotes the degree
of a body component B; and is defined as degree(B;) = f’:"l Tn(r;, Bi), where 7;
represents a thin-curve point in % and Nz represents the total number of points in .
degree(B;) can be seen as the number of ports at which B; is connected to R. R refers
to the union of R and all body components with degree greater than 1. Whenever a point
is recovered, it is moved out of R to B.

In stage 2, a minimal set of handle points R* € R is identified and R \ R* is
recovered from R to 3. When multiple handle points relative to ) exist whose removal
from ) break the same handle in ), the dilation procedure only choses the handle point in
the middle and recover others. In this stage, the condition set is R and the seed set is . In
each iteration of stage 2, a marked point is recovered if it is multisimple relative to 3 at
the moment of recovery.

In stage 3, the seed set is B3 while the condition set is X'\ B. A marked point is
recovered if it is multisimple relative to B at the moment of recovery. Eventually, the
object X is recovered as the newest body set 1B except for the points in the cuts that cut the
handles of X (i.e. the fills that fill the tunnels of X).

Since a recovered point has to be multisimple relative to 3, the number of handies in
B is not changed. Merging of body components may happen and is desirable. In rare
situations, however, there might be more than one connected component in the resuitant
body set and we only keep the largest component in the case of using points from WM to

fill tunnels of the union of GM and background (i.e. cutting handles in WM).
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Data: Two sets X and M € X in m-adjacency and a specific scale s.

Result: A new set X' with tunnels at scale s eliminated.

/* The task of the algorithm is to f£ill tunnels in X
using points from M at scale s * /

Perform shape-and-topology-preserving geodesic dilation on X" with respect to M.

Let Y be the complement of the dilated set;

Recognize thin-curve points R € ). Let the body set B =Y \ R;

foreach point p in R do

L if Toz(p, B) > 1 (m is the adjacency of ) then

L Move p from R into B;

/* First stage dilation */
terminate — false,
while terminate = false do
termninate — true;
Mark all points in R that are m-adjacent to B;
foreach marked point p do
if p is m-adjacent to a body component B; with degree(B;) = 1, p is
multisimple relative to B, and T,,(p, R*) < 1 then
| Move p from R to B; terminate — false;

/+* Second stage dilation */
terminate — false;,

while terminate = false do
terminate +— true;

Mark all points in R that are m-adjacent to ;
foreach marked point p do

if p is multisimple relative to B then
| Move p from R to B; terminate « false;,

/* Third stage dilation */
terminate «— false;

while terminate = false do
terminate «— true;

Mark all points in C = X \ B that are m-adjacent to B;
foreach marked point p do

if p is multisimple relative to B then
L Move p from C to B; terminate — false;

,«1;<—B;

FIGURE 7.6: Algorithm: Morphological topology correction
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7.6 Related Work

In order to generate topolocially correct cortical surfaces, there have been two basic
approaches proposed in the literature. The first approach imposes topology constraints in
the procedure of segmentation [111, 112], typically in deformable model based methods,
starting with a model of the cortical surface with correct topology. The topology of the
model is preserved in the deformation procedure of the segmentation. These methods
share the disadvantages of the original segmentation methods and may lead to
unpredictable morphometrical states. Retrospective topology correction is the mainstream
approach in the literature for extracting topologically correct cortical surfaces. They take
as input the result of the pre-segmentation and eliminate all topology defects resulting in
cortical surfaces homotopic to a sphere.

Topology correction methods can be classified into two types: surface-based and
volume-based methods. Surface-based methods first extract the cortical surfaces
represented as a triangle mesh and perform topology correction on the surface.
Volume-based methods first perform topology correction on the image volume and then
extract the isosurface of the topologically correct volume.

Surface-based methods include the methods of Guskov [113], Wood [114], and
Jaume [115, 116]. Guskov’s method is based on wavefront propagation. The topology
handle, or equivalently hole, is detected by tracking the splitting and merging of the front.
Wood’s method is based on the extended Reeb graph, a graphical representation of the
topology of the surface. Topology handles are eliminated by removing a loop in the
surface and the cost of the removal is measured in terms of the length of the loop. Each
topology handle has to be detected and corrected separately, which means that the
computation complexity depends on the number of handles in the surface. Jaume followed
Guskov’s and Wood’s method with improved computation efficiency and topology
correction accuracy.

Volume-based methods include the methods of Shattuck [117], Han [118], Segonne
[119, 120], and Kriegeskorte [121]. Shattuck’s method is also based on Reeb graph.

Topology correction is performed in a multiscale manner on the white matter. Starting
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from the smallest scale, the handles whose elimination cost is smaller than the scale are
eliminated at each scale. The volume are then updated and topology correction continues
with increased scale if the task hasn’t been completed. Handle elimination cost is
measured in terms of the number of removed voxels. One of the major limitations of
Shattuck’s method is that the cut of the handle can only be oriented along cartesian axes.
Han also took a multiscale approach and broke the above limitation. Candidate handle
cuts are localized by successive morphological opening. Therefore, the cost of handle
elimination is mainly measured by the distance-to-surface metric. A graph-based method
is then used to determine the final handle cuts attempting to minimize the number of
removed voxels at a specific scale. Segonne and Kriegeskorte’s methods also evaluate the
cost of handle elimination in terms of the distance-to-surface metric and topology
correction is conducted in a region growing form. Using the distance-to-surface metric as
the cost measurement ends up with cutting handles along thin regions of the object. Due
to the surface-likeness of the white matter, these methods may incur significant
modification to the shape of the white matter.

The major novelty of the present method lies in the way the handle elimination cost
is measured. The present method considers the special “surface-like” shape of the white
matter and assigns higher cost to the handle cuts that would lead to more modification to
the “surface-likeness”™ of the white matter. The “surface-likeness” of an object can be
quantitively measured in terms of the similarity between the object and its surface
skeleton.

To our knowledge, all exiting methods correct topology defects by handle
elimination either in the foreground or the background. The present method conducts
handle elimination on three associated objects: the WM object, the GM object, and the
background object. It is reasonable to believe that the pre-segmentation provides credible
information that voxels labeled as “background” have less possibility of actually being
WM than those labeled as GM. Topology defects in the WM volume can be corrected in
three ways: cutting handles in the WM volume, cutting handles in the GM volume, or
cutting handles in the union of the GM and the background. The third way is assigned a
lower priority than the other two. In other words, the topology correction solution without

modification to the background is preferred.



CHAPTER VIII

SEGMENTATION PIPELINE

In this chapter, we present a neuroanatomical segmentation pipeline integrating
various techniques presented in previous chapters for extraction of cerebral white matter
and gray matter as well as reconstruction of cortical surfaces. The segmentation pipeline
starts with relative thresholding to obtain an initial voxel classification. The following
steps can be regarded a series of correction procedures on the classification errors
produced in the initial step. We propose an technique called “terrain analysis” to
recognize thin parts of WM and CSF that are missed by relative thresholding. The entire
set of voxels labeled as WM is then processed by the multiscale morphological topology
correction procedure. The topology correct WM set contains the cerebral white matter,
white matter in other parts of the brain, as well as some positive errors. Cerebral white
matter is then extracied from its superset based on the cell complex analysis while
preserving the correct topology. Cerebral gray matter extraction benefits from the prior
segmentation of cerebral white maiter and exploits the layered structure of GM/WM and
the nearly uniform thickness of cerebral cortex. Finally, we use a topologically consistent
marching cubes isosurface algorithm [110] to generate the triangulated surface

representation of cortical surfaces.



91

8.1 Relative Thresholding

Relative thresholding serves as the initial voxel classification procedure in the entire
segmentation pipeline. It classifies all voxels in the gray level T1-weighted MR image into
three types: WM, GM and background (including CSF). It is essentially a procedure of
intensity comparison between near voxels along the gradient flow with respect to two
relative thresholds. First, a relative threshold between GM and WM is used to classify all
voxels into WM and non-WM. Then, the non-WM voxels are further classified into GM
and background with a relative thresholding between CSF and GM.

Relative thresholding is effective because it is based on a structure and image
modeling approach that exploits various a priori knowledge. First, we know a priori that
CSE, GM and WM form a layered structure. Second, we know a priori that the gray level
of CSF, GM and WM is in ascending order in any local regions in T1-weighted MR
images. Third, the intensity inhomogeneity that complicates image segmentation has a
beneficial property that it can be seen as a signal field with very low frequency. Fourth, the
thickness of cerebral cortex is nearly uniform. The detailed formulation of relative
thresholding exploiting these a priori knowledge is presented in chapter I11.

The major advantage of relative thresholding is that it is robust to intensity
inhomogeneity without needing to treat the image artifact explicitly. In other words,
intensity inhomogeneity is transparent to relative thresholding such that the procedure is
performed as if there was no intensity inhomogeneity in the image at all. Relative
thresholding is also able to adapt to large intensity variations within a given brain tissue
and thus tends to produce more accurate segmentation. It can also be seen as a new edge
detection method that avoids shortcomings of the traditional methods. First, it produces
coherent regions labeled with brain tissue types. Second, it is able to recognize blurred
edges and tissue boundaries where intensities vary smoothly. Third, it is able to suppress

spurious edges between voxels of same tissue types.
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Relative thresholding is a very efficient procedure. The user can select different
relative thresholds and see the result in real-time. When automatic segmentation achieves
a less than acceptable result, user intervention with a few global parameters actually
provides a simple and effective mechanism to steer the segmentation.

For convenience of description in the following section, we denote the set of WM,
GM and background voxels generated by relative thresholding respectively as W9, G°,
and 5°. The initial tissue segmentation result using relative thresholding is illustrated in

figure 8.1.

<=

(a) A slice of MR image (b) Relative thresholding result

FIGURE 8.1: Relative thresholding result

8.2 Terrain Analysis

Due to limited resolution in image acquisition, there are parts of white matter and
CSF blurred by partial volume effect plus smoothing filtering and thereby missed by
relative thresholding. These misclassifications are mainly reflected as positive errors of
gray matter. In this section, we present a technique called rerrain analysis to recover these

missed structures.
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Terrain analysis borrows some notions in terrain classification for further and more
reliable classification of voxels in G° into thin WM, thin background, and GM. Here we
are interested in three terrain types: ridge, valley, and slope. A point in the terrain surface
is intuitively taken as a ridge if the altitudes of its two neighbor points along the pair of
principle directions are both lower than that of the ridge point. By the pair of principle
directions we mean two nearly opposite directions that are steepest and whose projections
onto the sea-level plane form an angle close to 180°. Similarly, a point in in the terrain
surface is a valley point if the altitudes of its two neighbor points along the pair of
principle directions are both higher than that of the valley point, For a slope point, the
altitude of one of its neighbors along the pair of principle directions is higher than that of
the slope point while the altitude of the other is lower.

We can perform terrain analysis in a 2D image taking the gray level as the altitude
and the image plane as the sea-level plane. Terrain analysis can also be generalized in 3D
images with additional computation. Given a T 1-weighted MR image that is
Gaussian-smoothed at a small scale, we can make an informal observation that thin WM
parts correspond to ridges, thin CSF parts correspond to valleys, and GM parts correspond
to slopes. This observation is reasonable in terms of the order of average gray levels of
CSF, GM, and WM in T1-weighted MR images and the layered structure of the three
brain tissues. Figure 8.2 gives an example on how terrain analysis can improve the initial

tissue segmentation using relative thresholding.

(a) Part of a MR image slice {b) Relative thresholding result {(c) Terrain analysis result

FIGURE 8.2: Terrain analysis result. New valley and ridge points are added and shown
with blue and red respectively.
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There are two options in terrain analysis: the scale, and whether it is performed in 2D
or 3D. The scale represents the size of the neighborhood in which terrain analysis is
performed. If terrain analysis is performed in 2D, then the pair of principle directions can
only be in the z, y, or z plane that intersect with the point in question. In 3D, the pair of
principle directions can be in the 3D space. Let s be the scale of terrain analysis. Then the
size of the neighborhood A*(p) at scale s of a point pis (2s + 1) x (25 + 1) in 2D and
(25 +1) x (25 + 1} x (25 4+ 1) in 3D. A constraint on a candidate pair of principle
directions is that the two directions must form an angle a € [135°,180°].

Given a point p and a candidate pair of principle directions {d,, d»), we can determine
the two sets of points D; and D, at scale s. Each point in D; is in the neighborhood N*(p)
and along the direction d;, for ¢ = 1, 2. We then calculate the average gray levels (or
weighted average with weights set according to how the direction pass through the points),
m; and my, for points in D, and D, respectively. Let y,, be the gray level of point p. We
can calculate a metric steepness for p at scale s with respect to the candidate pair of
principle directions (dy, d2) as steepness(p, s, d1, d2) = ymy — y,| + |ma2 — y,|. We can

then determine the terrain type for p at scale s with respect to (d;, d,) as:

terrainType(p, s, dy, d2) «— ridge, if my > i, Ama > yp;
terrainType(p, s,dy, dy) «— valley, if m; < yp Ama < yp;

terrainType(p, s, d1,ds2) «— slope, otherwise.

To perform terrain analysis for point p at scale s, we calculate the steepness and
determine the terrain type for p with respect to each candidate pair of principle directions
at scale &', for s’ = 1,2, ..., s, and select the terrain type with the greatest steepness as the
final result. Note that the gray level image is Gaussian-smoothed at the same scale as that
used in relative thresholding for intensity comparison.

In practice, we first perform terrain analysis at scale 2 for points in G% which is
divided into three sets: the set of ridge points R?, the set of the valley points V2, and the
set of slope points S2. Then we perform terramin analysis at scale 1 for points in V2 U &%,
which is divided into R?, V!, and S*. Eventually we update the set of WM, GM, and
background as W = WO U R? B! = BOU V!, and G! = STURL
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8.3 Topology Correction of White Matter

Topology correct white matter should contain only one handle that is formed by two
cerebral hemispheres and the brainstem, while cerebral white matter should contain no
handle. However, topology defects usually arise in the results generated by relative
thresholding and terrain analysis. We use a multiscale morphological approach to
eliminate the topology defects in the white matter W*. The method is multiscale in that
handles/tunnels of smaller size are eliminated in prior to those of larger size. The cost to
eliminate a handle/tunnel (i.e. the size of the handle/tunnel), is determined by the
wideness of the handle/tunnel so that the topology correction procedure largely preserves
the surface-likeness of the white matter. Unlike two-fold topology correction methods that
involve a foreground object and its complement, our method performs in a three-fold
manner in that it involves three disjoint objects, WM, GM and background, so that more
information provided by the prior voxel classification step is utilized in the topology
correction step. Such a three-fold mechanism and consideration of surface-likeness of the
white matter in the multiscale framework gives rise to robust topology correction that
produces reasonable topology correction solutions.

Topology defects, particularly tunnels in core regions of white matter, may severely
affect the connectivity of the white matter. Therefore, eliminating such topology defects
provides more reliable data for subsequent processing steps that analyze the connectivity
of the white matter for cerebral white matter extraction. Subsequent processing of cerebral
white matter preserves the correct topology and cerebral gray matter processing is
dependent on the topology correct cerebral white matter. In all, topology correction of
white matter is meaningful not only in the sense of the correct topology of the final result
but also in the sense of feeding more reliable intermediate result to subsequent processing
steps.

For the convenience of description, we denote the set of WM voxels after topology
correction as W2, It contains three parts: cerebral white matter, non-cerebral white matter,
and voxels that are mislabeled as white matter. In the next section, we describe how to

extract cerebral white matter from W2,
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Figure 8.3 dermnonstrates the behavior of the method on eliminating handles in the
white matter and the resultant cortical surface after topology correction. The handles in the
white matter are removed by filling the associated tunnels (i.e. the gray matter handles).
After initial tissue classification, there is usually a handle formed by the two cerebral
hemispheres, the corpus callosum and the brainstem. Although the handle is much thicker
at brainstem than at corpus callosum, our method is able to break this handle at the
brainstem where it is more narrow than other places along the handle. This is shown in
figure 8.4. Finally, note that topology correction is performed on the super set of the true

white matter. This is illustrated in figure 8.5, where a handle in the non-brain tissue is cut.

(a) Before tunnel filling (b} After tunnel filling

FIGURE 8.3: Tunnel filling in topology correction

(a) Before tunnel filling (b} After tunnel filling (c) After tunnel filling and cerebral
WM extraction

FIGURE 8.4: Brainstem breaking in topology correction
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{a) Before handle elimination (b) After handle elimination

FIGURE 8.5: Handle elimination in topology correction

8.4 Cerebral White Matter Segmentation

After topology correction of white matter, the set YWW? is composed of the following
subsets: cerebral white matter, brainstem, cerebellar white matter, and voxels
misclassified as white matter, Furthermore, cerebral white matter can be divided into two
cerebral hemispheres and the corpus callosum. Locating and extracting cerebral white
matter is based on the assumption that there are three scales of connectivities between

those subsets in W?:

e the low scale of connectivity is at the brainstem and between components of WM

voxels and those of misclassified WM voxels:

e the medium scale of connectivity is at the corpus callosum between two

hemispheres;
e the high scale of connectivity is within each cerebral hemisphere itself.

We will utilize the high scale of connectivity within cerebral hemispheres to locate the
cerebral white matter and the low scale of connectivity to extract the cerebral white
matter, while the connectivity is measured with the algorithm of cell complex based

morphometric analysis (CCBMA) .
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The entire procedure of cerebral white matter extraction consists of the following

steps:

1.

2.

7.

8.

Thick-surface skeletonization of W? resulting in thick surface skeleton S»;

Thin-surface skeletonization of S, resulting in thin surface skeleton Sy;

. CCBMA of &, ending up with a I-complex C in which each edge is assigned three

metrics: connectivity, radius and wideness;

. Locate the center of each cerebral hemisphere;

. Dilate the center of both cerebral hemispheres to obtain a core cerebral white matter

K;
Dilate K to reconstruct the thin surface skeleton of cerebral white matter S}
Dilate &}° to reconstruct the thick surface skeleton of cerebral white matter Sy,

Dilate S to reconstruct cerebral white matter and restore its topology.

The final result of cerebral white matter is denoted as W3.

We have presented surface skeletonization in chapter V and CCBMA in chapter VI.

In the rest of this section, we will describe step 4 in subsection 8.4.1, step 5 and step 6 in

subsection 8.4.2, step 7 and step 8§ in subsection 8.4.3. Figure 8.6 gives an illustration of

step 5 through step 8. Localization of the cerebral hemisphere centers is demonstrated in

figure 8.7.

8.4.1 Locating Cerebral White Matter

Since W? contains no handles and surface skeletonization and CCBMA are

topology-preserving, we are guaranteed that the 1-complex C contains no loops and can be

seen as a tree 7 consisting of a vertex set V and an edge set £. Letv; € Vand v, € V be

any two distinct vertices in the tree, then there must be a path P¢(v;, vo) = {v§, v5, ..., v5}

in T connecting v, and v,, where v§ = v, and v = v,. The path P¢(v,, v7) is referred to

as the corpus callosum path because it should pass through the corpus callosum if v; and



(a) Cerebral WM core (b) Reconstructed thin surface skeleton of
cerebreal WM

{c) Reconstructed thick surface skeleton of {d) Reconstructed cerebreal WM
cerebreal WM

FIGURE 8.6: Cerebral WM segmentation
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FIGURE 8.7: Maximum hemisphere paths (red) and corpus callosum path (green).

vg are the centers of the two cerebral hemispheres. vf is referred to as the corpus callosum
neighbor of v; in P%(vy, vs) and vf,_, is referred to as the corpus callosum neighbor of vy
in P¢(v1,v2). The following formulation defines a weight for each vertex pair in the tree
so that we can select the pair of vertices with the greatest weight as the centers of the
cerebral hemispheres.

Given a pair of vertices (vy, v2) and its corpus callosum path P*(v;, v2), we define a
hemisphere path of vertex v € {v,, v2} with respect to v’s corpus callosum neighbor v° in
P<(v;,v,) as a path in T" of length less than dy; (empirically 200mm) that passes through v
but not v© and denote it as P*(v, v°).

For a hemisphere path P*(v,v%) = {v}, v}, ..., vf = v,vf, ..., v} of vertex v with
respect to v’s corpus callosum neighbor v in P¢(v,, v3), we define its weight as

m-1
weight(P*(v,v)) = ) _ weight(e(v;, vj41),v),

=0

where weight(e(v;, vj41), v) refers to the weight of edge e(v;, v;41) with respect to vertex
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v. Let P = {vy = vz, 11, ..., 5 = v} be a path in T connecting vertex v, and vy, then we

define the weight of edge e{v,, v,) with respect to v, as

weight(e(vy,v.),v:) = min{connectivity(e(vy, v;)), connectivity(v,, vy),

.., connectivity(v,_1, vn)), connectivity(v,, v;))).

We further define the weight of a vertex v € {v1, v2} with respect to its corpus
callosum neighbor v in P¢(v;, v2) as the greatest weight of the hemisphere paths of v
with respect to P°(vy, v2) and denote it as weight(v, v°). Here, the hemisphere path with
the greatest weight is referred to the maximum hemisphere path of vertex v with respect to
P¢(vy,v2). Finally, we define the weight of a pair of vertex (v;, v2) as the weight of the
one of them with lower weight. The criterion of finding the hemisphere centers is that the
pair of vertices (v}, v3) with the greatest weight is taken as the centers of the cerebral
hemispheres. Exhaustive searching for the center vertices are impractical due to its time
complexity. Next, we will present an efficient and effective searching algorithm, which

depends on an ordering of the strength of the branches connected to each vertex in the tree.

For any vertex v in the tree 7, let A/ (v) be the set of vertices connected to v with a
single edge. Each incident vertex v; € A/ (v) corresponds to a branch of the tree if we take
the current vertex v as the root of the tree. We consider the path
Pb = {vy = v,v, = v;,va, ..., v, } of length less than radius(e(v, v;)) and define the

strength of the path P® as:

n-1

strength(P®) = Zweight(e(ngvj-i-l),v),
=0

where weight(e(v;, vj41), v) refers to the weight of edge e(v;, v;41) with respect to v.

We further define the strength of the directed edge &(v, v;) as the maximum strength
of all paths headed by vv; whose length are less than radius(e(v, v;)). For each vertex v,
we can compute and order the strengths of all directed edges emanated from v. The
directed edge with the greatest strength is referred to as the primary edge of v and the
corresponding neighbor vertex is referred to as the primary neighbor of v and denoted as

N'#(y). Similarly, we can define second and tertiary edge and neighbor of v, if any. The



102

secondary neighbor and tertiary neighbor of v are respectively denoted as N2"¥(y) and
Nsrd(’v).

Having computed the strengths of edges emanated from each vertex in 7, we reduce
the searching space of hemisphere paths of v € {v;, v} with respect to v’s corpus
callosum neighbor v in P¢(vy, vo) by only considering paths

Ph(v) = {vg, v, ..., ¥ = v, i1, ..., U } Such that:

vy = N¥(v) and v;;, = N?%(v) if v° = N¥7%(v)
vi— = N (v) and viy; = N3¢(v) if v° = N¢(v)
vi—) = N?M4(y) and vy, = N¥4(v) if v¢ = N'*(v)
vjo1 = N (v))  if vy # N4 (v)
V-1 = N(u) if vy = N¥(o;)
Ujp1 = let(vj) if Vi) # le:(,uj)

)

forj=i+1,1,...,.m-1
Ui = N¥(v;) if vy = N'Hv;

This is essentially an act of searching for hemisphere paths of v only along strongest
available edges starting from v. It is an effective heuristic and dramatically reduces our
searching space. In this efficient algorithm, the weight of a vertex v € {v;, v2} with
respect to its corpus callosum neighbor v° in P¢(v,, v,) is also determined at the same
time while its maximum hemisphere path is found.

To find the centers of cerebral hemispheres, we start from each vertex v in 7 with
degree greater than 1 and assume it is in the target corpus callosum path. Then we
initialize the corpus callosum path as N'**(v)u N*>"¢() and have two sides to search for
the hemisphere centers respectively. At each side, we further reduce our searching space
by marching along the strongest available edges (a similar procedure to that for finding the
maximum hemisphere path of a vertex). At one side, we can find a vertex v, with greatest
weight with respect to its corpus callosumn neighbor in P¢(v,, v); at the other side, we can
find another such vertex v,,. (v;,v,) form a candidate pair of hemisphere centers with
weight being the minimum of their weights. The pair of vertex with greatest weight is
selected as the target cerebral hemisphere centers. This procedure is illustrated in figure
8.8.
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Sometimes there may be large patches of skull structure in W? which possess large
connectivity as well as large wideness. To differentiate these structures from cerebral
white matter, which possess large connectivity and limited wideness, we modify the

connectivity of each edge in 7 used in locating cerebral hemisphere centers such that:

connectivity(e) «— connectivity(e) ifwideness(e) < 180mm

connectivity(e) — connectivity(e) * 180/wideness(e) ifwideness(e) > 180mm

8.4.2 Reconstruction of Thin-surface Skeleton of Cerebral White Matter

Having identified the cerebral hemisphere centers v} and v}, we then use a
connectivity threshold {. to determine the cerebral white matter core X that is connected
to v} and v; above a certain scale. Formally, KC is a set of vertices and edges defined as

follows:
1. {v},v3} CK;

2. For any vertex v € K, its incident edge e(v,v') € C! is in K if connectivity(e) > t.
and radius(e) > t./3;

3. For any edge e € K, its child edge ¢’ € C? is in K if connectivity(e') > t. and
radius(e’) > t./3 (the "parent-children” relationship between edges is established
in CCBMA);,

4. For any edge e(v;, v3) € K, its incident vertices v and v, are also in K.

Given the kernel set of cerebral white matter, we reconstruct the thin surface skeleton

SY using the following simple rules:
L. KC&Y,

2. For each edge e € KN C?, any edge €’ € C! that has a path of length less than

radius(e) is also in S*;



Data: A tree T = (V, £) spanning the surface skeleton of W?
Result: Cerebral hemisphere center v} and v3

weight* — 0;

foreach vertex v € V such that degree(v) > 1 do

weight, — 0; vy — N (v); v} — v v, — v;

while degree(v;) > 1 do

if weight(vg, v;) > weight, then

vt — vy
L weight, +— weight(v,, v¢);
Vz & Vg,
if v, # N'st(v,) then
L Uy — NlSt(Ux)
else
| v — N?d(y,)

wezghty — 0; v, «— N2(v); v}

y
while degree(v,) > 1 do
if weight(v,, v;) > weight, then

Uy, Uy — U

Uy Uy
weight, — weight(v,, vj);
Uz — Uy
if v, # N¥(v,) then
L vy = N¥(v,)
else
L Uy — N2nd(,uy)
weight(vy, 'v;) — min{weight,, weight,);

if weight(v;,v;) > weight® then
L weight® — weight(v;, vy);

*
’Ul (_'U 'Ur) ‘_'Uy,

FIGURE 8.8: Algorithm: Finding cerebral hemisphere centers
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3. Foreach edge e € 8%, its child edges are also in §%;
4. For any edge e(v;, v2) € S8, its incident vertices v; and v, are also in S¥.

The set S* contain both vertices and edges. We specially use S} to denote the voxels
corresponding to the vertices in $*. Note that S}” is a subset of the thin surface skeleton
81 of W2, ie. Siu C_: 81 g 82 Q Wz.

8.4.3 Reconstruction of Cerebral White Matter

By reconstruction of surface skeleton of cerebral white matter, we have divided the
set Sy into two subsets: S}’ and S = S, \ §7. Now we reconstruct the thick surface
skeleton of cerebral white matter, denoted as S¥. Let S¥ = S, \ S¥. First of all, it is
obvious that S C S¥ and S C SY, therefore, the task is essentially to separate S» \ S
into two parts: those in S¥ and those in S¥. The simple rule that we follow here is that for
each voxel v € 8, \ S, if the geodesic distance of v from S} with respect to Ss is less
then that from S, then v is in S§}'; otherwise, v is in SF. The geodesic distance between v
and S}’ with respect to S; is the length of the shortest path in S» connecting v and S}°.
Having determined the thick surface skeleton of cerebral white matter (535"), we

reconstruct the cerebral white matter, denoted as W3~ such that:
I. 8¢ C Wi

2. For each voxel v € S¥, any voxel v’ € W? whose distance from v is less than or
equal to d(v) is also in W3~, where d(v) is the distance of v from the boundary of
W2,

The procedures described above do not enforce particular topology control and the
result W3~ is not necessarily topologically equivalent to W2, To restore the correct
topology on W3~, we perform a topology-preserving erosion on W? with respect to W3~
It is a process that keeps removing voxels from W? until no more voxels can be removed.

Each voxel v removed from W? must satisfy the following conditions:
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e v is a simple point with respect to W2 at the moment of removal;

e v is not in the set W*~:

Let W3 denote the result of this conditional topology-preserving erosion. It represents our
final set of cerebral white matter voxels. It is a superset of W*~ and topologically

equivalent to W2, i.e. topologically correct.

8.5 Cerebral Gray Matter Segmentation

Segmentation of cerebral gray matter is based on the prior segmentation of cerebral

white matter and utilizes the following a priori knowledge:
e The thickness of cerebral cortex is nearly uniform,;

e Cerebral gray matter wraps around cerebral white matter so that two tissues form a

layered structure;

e The average gray level of cerebral gray matter is lower than that of cerebral white

matter at any local region;

Segmentation of cerebral gray matter takes a series of steps as follows, which are

also illustrated in figure 8.9.

1. Initialization: G2 «— @. where G2 denotes the set of cerebral gray matter voxels;

2. Gradient flow analysis: For each voxel v in G \ W3, if there exists a path
P = {vy = v,v1, ..., vy } Of length less than d¢ along the gradient flow such that
v, € W3, Then we update the set of cerebral gray matter voxels as G2 — G2 U {v};
The threshold d is associated with the average thickness of cerebral cortex.
Considering the segmentation of cerebral white matter may be not ideally accurate,

we set de to be a value greater than the average cortex thickness. In practice, we let

dc = 1omm.
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(e} Geodesic opening result (f) Second closing result. Partial gray matter
is colored in blue

FIGURE 8.9: Cerebral GM segmentation.
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3. Closing: The set G* generated by the prior step will form a gray matter layer
wrapping around the cerebral white matter W3. However, there may be some
narrow and thin regions between G2 and W? that were labeled as white matter in
WP, They may be real cerebral white matter and may be actually cerebral gray
matter. Nevertheless, we take them as cerebral gray matter at this moment. We first
perform morphological closing at a small scale s on G2 U W? and denote the closed
cerebrum mask as M. Then we update G? as G% — G2 U (WP N M\ (G2 UW3)).
Morphological closing at scale s first performs morphological dilation at scale s on
A resulting in X and then performs morphological erosion at scale s on X’

resulting in X'”. We describe morphological erosion and dilation below.

4. Geodesic opening: In this step we use a operation called geodesic opening to
remove certain false positive errors in G2. First, we remove the voxels that were
recognized as valley points in B! from G such that G? — G? \ B'. Ideally, G°
should still form a thin layer wrapping around W3, but in practice, there may be
some thin and narrow protrusions from G? that do not wrap around any cerebral
white matter regions. To eliminate these errors, geodesic opening at scale s first
perform geodesic morphological erosion at scale s on G2 U W* with respect to W3
resulting in F, then perform geodesic dilation at scale s on F with respect to G2
resulting in a mask where those thin protrusions at scale s are eliminated. We then
update G2 such that those false positive voxels are removed. Geodesic erosion and

geodesic are described below.

5. Closing: The prior step removes all valley points from G2, which is necessary for
geodesic opening to be effective. However, a valley point in sulci may be partially a
cerebral gray matter voxel. To recognize such valley points, we perform
morphological closing at a small scale on G2 U W? resulting in a new cerebrum
mask M. Then every valley point in M is taken as a partial cerebral gray matter
point and assigned with a value between O and 1 indicating how much of the voxel
belongs to gray matter. The value is calculated by comparing the intensity of the
valley point to that of a near WM point along the gradient flow emanating from the

valley point. Formally speaking, we update the set of cerebral gray matter as
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G* — G* U ((B*\ B®) N M) and compute a function f : (B! \ BY) N M — [0, 1].
For convenience of the description in the following sections, we denote the valiey

points in the cerebrum mask as G2 = (B \ B®) n M.

Morphological erosion on A’ at scale s can be seen as a procedure of subtracting
voxels from A whose distances from the boundary of A are less than or equal to s.
Morphological dilation on A" at scale s can be seen as a procedure of adding voxels in the
complement of A" to A whose distances to X’ are less than or equal to s. Geodesic erosion
on X with respect to M at scale s can be seen as a procedure of subtracting voxels in
X\ M from X whose distances from the boundary of X’ are less than or equal to s.
Geodesic dilation of A with respect to M at scale s can be seen as a procedure of adding

voxels in M \ X to & whose geodesic distance from A are less than or equal to s.

8.6 _Cortical Surface Extraction

Extraction of inner cortical surface and outer cortical surface requires the set of
topology-correct cerebral white matter voxels and the set of topology-correct cerebral
gray matter voxels. When they are available, we use a topologically consistent marching
cubes isosurface algorithm [110] to generate the triangulated surface representation of the
cortical surfaces. It is demonstrated in [110] that for (26, 6) adjacency, an isovalue less
than 0.25 should be used to avoid topological paradoxes.

Prior processing steps have generated topology-correct cerebral white matter,
denoted as W3, and a mask of cerebral gray matter, denoted as G2. Note that G? is not
guaranteed to possess correct topology. Computation of topology-correct cerebral gray

matter consists of following steps, whose effect is demonstrated in figure 8.10.

1. Initialization: We initialize a new set of background voxels as the complement of
the cerebral white matter set; i.e. B* « WS, Let B2 denote the background voxel
set before topology correction of cerebral gray matter plus the valley points in the

cerebrum mask; i.e. B2 =W3 U G2U G2,
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2. Erosion: We then perform topology-and-shape-preseving geodesic erosion on B3
with respect to B? at scale s, which is a partial curve skeletonization procedure (see
chapter V) with additional condition that any voxels removed from 32 cannot be in
B2. Next, thicksurface points in the eroded background and outside B2 are thinned
in a procedure similar to the thin-surface skeletonization algorithm. Eroded voxels
connected to W? are taken as the cerebral gray matter in the set G°. Since the
erosion preserves topology, the topology of W3 U G? is equivalent to that of W3,
The scale s is associated with the average cortex thickness we know a priori. In

practice we set s to be Gmm.

3. Verification: We verify that the cerebral white matter is wrapped around by the
cerebral gray matte at any places and perform necessary modification to enforce the
constraint. Update B3 with the new set of W3 and G3 as B® — W3 U G3.

4. Smoothing: We finally perform morphological smoothing (see chapter V) on B3 and
update G* accordingly. This step will remove the curve-like protrusions of the

background and has the effect of smoothing the outer cortical surface.
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(a) Cerebral GM segmentation

(b) Outer cortical surface

FIGURE 8.10: Reconstruction of outer cortical surface from cerebral GM segmentation.
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CHAPTER IX

EVALUATION

This chapter evaluates our neuroanatomical segmentation algorithms both
quantitatively and qualitatively on a variety of MRI data sets with respect to the accuracy,
automaticity, robustness and computational efficiency of our tools compared with those of
four four leading segmentation tools: Freesurfer, SPM35, FSL, and BrainVisa. We refer to

our segmentation tool as TAS (Topological Approach to Segmentation) in the following

sections.

0.1 Comparative Packages

Below is a brief description of the four tools used for our comparative performance
evaluation. Their segmentation methods are presented in chapter II. Although these tools
provide various amount of functionality with respect to neuroimage analysis, they all
support automatic T1-weighted human brain MR image segmentation. Our comparative

evaluation is thus focused on this functionality.

9.1.1 Freesurfer

FreeSurfer [122, 43] is a set of tools for reconstruction of cortical surfaces from

structural MRI data and for the overlay of functional data onto the reconstructed surface.

&
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Freesurfer is developed in the Nuclear Magnetic Resonance (NMR) Center, Massachusetts
General Hospital .

The cortical surface reconstruction pipeline in Freesurfer mainly consists of three
steps. First, a brainmask is extracted with alignment of the structure MR image to the
Talairach atlas and the bias field is corrected. Then the brain volume is labeled as various
cortical or subcortical structures in a procedure based on both a subject-independent
probabilistic atlas and subject-specific measured values. Finally, the cortical surfaces are

constructed from the prior segmentation, which involves a topology correction procedure.

9.1.2 SPM5

SPM (Statistical Parametric Mapping) is a statistical technique for testing hypotheses
about functional imaging data [123]. SPM also refers to the software developed by the
Wellcome Department of Imaging Neuroscience , University College London, to carry out
such analysis. SPMS5 is the latest version of SPM. SPMS5 features structural MRI
segmentation as well as a series of functional neuroimage analysis.

Structural MRI segmentation in SPM5 can be characterized as a circular procedure
that involves alternating three processing steps [42]: a bias correction step that corrects the
intensity inhomogeneity, a registration step that normalizes the image to standard tissue
probability maps, and a segmentation step that classifies image voxels into different tissue
types. As the segmentation result, SPMS5 assigns each image voxel three probabilities with
respect to three tissue types: CSF, GM and WM.

9.1.3 FSL

FSL (the FMRIB Software Library) is a collection of functional and structural
neuroimage analysis tools [124]. For structural segmentation, FSL mainly contains the
Brain Extraction Tool (BET) for segmenting brain from non-brain in structural and
functional data, and FAST (FMRIB’s Automated Segmentation Tool} for bias field
correcton and brain segmentation into three tissue types: CSF, GM and WM.

Structural MRI segmentation in FSL consists of two steps: using BET to extract the
brain and using FAST to classify tissue types. BET performs skull stripping with a surface
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model [96]. The underlying method of FAST is based on an Expectation-Maximization
algorithm combined with a hidden Markov random field (MRF) model [28]. Due to the
regularization of the MRF model, FAST is supposed to be more robust to noise than

standard finite mixture model based methods.

9.1.4 BrainVisa

BrainVisa [125, 126] is software developed at Service Hospitalier Frdric Joliot
(SHFI) that embodies an image processing factory and is distributed with a toolbox of
building blocks dedicated to the segmentation of T1-weighted MR image.

Structural MRI segmentation in BrainVisa consists of four main steps. First, the user
prepares the data for segmentation by specifying several key landmark points including
the Anterior Commissure (AC), the Posterior Commisure (PC), an interhemispheric point,
and a left hemisphere point. A brain mask is then extracted including only white matter
and gray matter integrating bias field correction [127] and histogram analysis {93]. This is
followed by a hemisphere partition and removal of cerebellum with morphological image
analysis [128]. Finally, cerebral gray matter and white matter are differentiated with

histogram analysis [93].

9.2 Data Sets

The evaluation is performed on three group of data sets: a set of BrainWeb data with
groundtruth segmentation, a set of IBSR data with manually-guided expert segmentation,

and a set of real scans of subjects with mild cognitive impairment or Alzheimers disease.

9.2.1 BrainWeb Data Sets

This is a group of 8 realistic T1-weighted MR simulated images with grountruth
segmentation provided by BrainWeb, a simulated brain database [129]. All 8 MR images

are simulated on a normal anatomical model. The resolution of the images are 1mm3. In
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the groundtruth image, all voxels in the image are segmented into the following tissue
types: Background, CSF, GM, WM, Fat, Muscle/Skin, Skin, Skull, Glial Matter, and
Connective.

A variety of noise levels and levels of intensity inhomogeneity (i.e. intensity
non-uniformity(INU)) are artificially introduced in the simulated images, as listed in table
9.1. As stated in BrainWeb documentation [130], “The noise in the simulated images has
Rayleigh statistics in the background and Rician statistics in the signal regions. The
“percent noise” number represents the percent ratio of the standard deviation of the white
Gaussian noise versus the signal for a reference tissue.” The noise reference tissue used in
our data set is white matter. The meaning of the intensity inhomogeneity level is as
follows. “For a 20% level, the multiplicative INU field has a range of values of 0.90...1.10
over the brain area. For other INU levels, the field is linearly scaled accordingly (for
example, to a range of 0.80...1.20 for a 40% level).” According to BrainWeb, the INU
fields are realistic in that they are slowly-varying fields of a complex shape and were

estimated from real MRI scans.

TABLE 9.1: Noise levels and ITH levels of the BrainWeb data set
Data set 1 2 3 4 5 6 7 8
Noiselevel | 3% | 3% | 5% | 5% | 7% | 7% | 9% | 9%

ITH level | 20% | 40% | 20% | 40% | 20% | 40% | 20% | 40%

9.2.2 IBSR Data Sets

This is a group of 18 T1-weighted real MR brain data sets and their manually-guided
expert segmentations in the Internet Brain Segmentation Repository (IBSR) supported by
the Center for Morphometric Analysis (CMA) at Massachusetts General Hospital {131]).
The slice resolution of all datasets is 1.5mm and the XY resolution varies from 1mm? at
low end to 0.837mm? at high end. The MR images have been “positionally normalized”
into the Talairach orientation, but all five tools performed on this group of data assumed
that the brain were not normalized. The MR images were also processed by the CMA

biasfield correction routines, but it is not guaranteed that the intensity inhomogeneity is
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completely corrected and all five tools also treated the data sets as if no biasfield
correction had ever been performed on them.

Each MR image was manually segmented into 44 individual structures including 3rd
Ventricle, 4th Ventricle, Brain Stem, and Left and Right: Accumbens area , Amygdala,
Amygdala Anterior, Caudate, Cerebellum Cortex, Cerebellum Exterior, Cerebellum White
Matter, Cerebral Cortex, Cerebral Exterior, Cerebral White Matter, Hippocampus, Inf Lat
Vent, Lateral Ventricle, Pallidum, Putamen, Thalamus Proper, VentralDC, and Vessel.

The 18 MR images are in various levels of quality. For convenience of the following
evaluation, we divided the group into two subgroups: the first 13 MR images with good
quality and 5 more MR image with bad quality. Note that the ordering of the IBSR data
sets is different from the original order. A map of the order we used to the original order is
(1,2,5,6,7,8,9,10, 11, 12, 14, 15, 16, 17, 18, 3, 4, 13). For example, when we refer the
3rd data set, it is actually the 5th in the original order.

9.2.3 Pathological Data Sets

In addition to the BrainWeb and the IBSR data sets, which were used for both
quantitative and qualitative evaluation, we also tested fives tools on an auxiliary group of 8
real MR images scanned from subjects with minor recognitive impairment or Alzheimers
disease for qualitative evaluation only. The resclution of these data sets is
1.139 x 1.211 x 1.211mm?®. The source of these data sets is the Neurobiology Research
Unit {132] in the University Hospital Rigshospitalet in Denark. No groundtruth or manual

segmentation are provided for these data sets.

9.3 Quantitative Evaluation

In this section, we present a quantitative evaluation on the segmentation accuracy,
robustness and computational efficiency of TAS with comparison to other four packages.
We use the widely-used Dice metric [42, 43, 133, 134] as the measurement for

segmentation accuracy and the standard deviation of the Dice metric on a set of data as the



117

measurement for segmentation robustness. Computational efficiency is simply measured

with the running time of each package.

9.3.1 Dice Metric

Let TP refers to the number of true positives, FP to false positives and FN to false

negatives, then the Dice metric is given by

2 % TP
Di ic = 1
Ice metnc = o= TP + FP - EN ©-1)

Note that when the segmentation is given as a probability between 0 and 1 for each image
voxel for each tissue class, such as in the case of SPMS5, TP, FP and FN are calculated as
the sum of the probabilities instead of discrete counting,

For quantitative evaluation using Dice metric, we have to decide the tissue type on
which the metric is measured. Currently TAS, like BrainVisa, only perform cerebrum
segmentation while FSL and SPM5 segment the entire brain into CSF, GM and WM
without extraction of the cerebrum. Freesurfer also performs segmentation on the whole
brain but segments the brain into a greater number of tissue types including cerebral white
matter and cerebral cortex. In our quantitative evaluation, we must calibrate the
segmentation of the five package into a standard behavior so that common tissue types can
be used for quantitative metric measurements.

For the BrainWeb data sets, we calibrated the segmentation of five tocls to the
segmentation of cerebral WM and cerebral GM, and measured the Dice metrics with
respect to these two tissue types. To enable this, we manually partitioned the groundtruth
whole brain (WM plus GM) at the brainstem to extract the cerebral WM and the cerebral
GM. Cerebral WM and cerebral GM also have be extracted for the SPMS5 and FSL
segmentation results. We use a procedure (described in the next paragraph) that almost
“perfectly” partitions the segmentation results based on the groundtruth partition. For
BrainVisa and TAS, no transformation in the calibration is required. For Freesurfer, we
just simply need to relabel all ceberal cortex voxels and all subcortical voxels excluding

cerebral WM as cerebral gray matter.
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Let TP-Cerebrum and TP-Cerebellum respectively denote the set of true positives of
cerebrum and cerebellum in the segmentation of SPM5 and FSL. Let FP-Brain denote the
entire false positives including those in cerebrum and cerebellum. The partition of the
brain segmented by FSL and SPMS5 is essentially the partition of FP-Brain into false
positives in cerebrum and those in cerebellum, which is described as follows. For each
voxel v in FP-Brain, if it has a shorter path in FP-Brain to TP-Cerebrum than any paths in
FP-Brain from v to TP-Cerebellum, then v is taken as a false positive (of WM or GM) in
cerebrum; otherwise it is taken as a false positive (of GM or WM) in cerebellum.

For the [BSR data, we calibrated the segmentation of five tools to the segmentation of
cerebral cortex and cerebral WM, and measured the Dice metrics with respect to these two
tissue types. These quantitative metrics give an evaluation on the accuracy of the cortical
surface reconstruction that depend on segmentation of cerebral cortex and cerebral WM
and are irrelevant to segmentation of subcortical gray matter tissues. Since Freesurfer
explicitly labels cerebral cortex and cerebral white matter, we do not need to do any
transformation in the calibration. The calibration of FSL and SPMS5 first conducts the
brain partition to extract the cerebral WM and cerebral GM. Given the set of cerebral WM
and cerebral GM segmented by FSL, SPMS5, BrainVisa or TAS, we measured the Dice
metrics with respect to cerebral cortex and cerebral WM in the way described below.

In the measurement of the Dice metric with respect to cerebral cortex, the true
positives are the voxels labeled as cerebral cortex in the manual segmentation and cerebral
GM in the automatic segmentation, the false positives are the voxels labeled as cerebral
GM in the automatic segmentation but not cerebral GM (i.e. cerebral cortex or other
subcortical GM) in the manual segmentation, and the false negatives are the voxels labeled
as cerebral cortex in the manual segmentation but not cerebral GM in the automatic
segmentation.

In the measurement of the Dice metric with respect to cerebral WM, the true
positives are the voxels labeled as cerebral WM in both the manual segmentation and the
automatic segmentation, the false positives are the voxels labeled as cerebral WM in the
automatic segmentation but neither cerebral WM nor subcortical GM in the manual
segmentation, and the false negatives are the voxels labeled as cerebral WM in the manual

segmentation but not cerebral WM in the automatic segmentation.



119

9.3.2 Experiments

Freesurfer

We tested Freesurfer on both the BrainWeb and the IBSR data sets in a fully
automatic mode without any user intervention. An issue in collecting Freesurfer
segmentation results is the production of the cerebral cortex mask. There is a so-called
“aseg” image and a “ribbon” image both recording voxels labeled as cerebral cortex. The
“ribbon” data is what Freesurfer suggested to use, but has more false negatives than the
“aseg” data, while the latter is an intermediate result and has more false positives than the
“ribbon” data. We applied a simple morphological closing operation on the union of the
cortex ribbon and the subcortical structures so that certain true cerebral cortex voxels
labeled in “aseg” but missed in “ribbon” are covered. This procedure apparently improved
the performance of the cerebral cortex segmentation, as shown in table 9.2. We used the

“closed” mask of cerebral cortex for our comparative evaluation.

FSL

In our first batch of experiments with FSL, we let FSL automatically extract the brain
and perform brain tissue classification on both the BrainWeb and the IBSR data sets.
However, FSL generated poor results on the brain extraction and brain tissue classification
on 6 IBSR data sets ( data set 5 to data set 10). In our second batch of experiments, we
used different parameters in FSL, obtained better brain masks for these data, and repeated
the brain tissue classification subsequently. Since the brain masks generated in the second
batch of experiemnts are still not good enough, we turned to use the brain masks
generated by Freesurfer for the brain tissue classification in FSL. This gives rise to best
performance on the 6 IBSR data sets. The three batch of experiments on FSL show that
the brain extraction algorithm of FSL is not robust on the IBSR data sets, but the brain
tissue segmentation performed well given good brain masks. The performance of FSL on

the 6 IBSR data set with respect to the three batch of experiments are shown in table 9.3.
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Dice metrics with respect to cerebral cortex
IBSR Data sets {| “ribbon” data “aseg” data “closed” data
1 0.6905 0.7916 0.8039
2 0.7115 0.8061 0.8175
3 0.7390 0.7991 0.8362
4 0.8131 0.7838 0.8641
5 0.7361 0.7343 0.7794
6 0.7688 0.7301 0.8068
7 0.7421 0.7462 0.7888
8 0.7291 0.7327 0.7800
9 0.7780 0.7357 0.8128
10 0.7142 0.7336 0.7729
11 0.7839 0.8672 0.8702
12 0.7515 0.8045 0.8458
13 0.7504 0.8841 0.8647
14 0.6830 0.8316 0.8065
15 0.7272 0.8705 0.8487
16 0.7374 0.8514 0.8413
17 0.6626 0.8652 0.8076
18 0.7170 0.8485 0.8337
| Mean | 0.7353 | 0.8009 0.8212 I

TABLE 9.3: Dice metrics collected for FSL using different brain masks

Brain masks Tissue Dice metrics on 6 IBSR data sets
types 5 6 7 8 9 10
Default FSL | Cerebral | 0.6591 | 0.6806 | 0.7268 | 0.6887 | 0.7713 | 0.6762
brainmask cortex
Cerebral | 0.8845 | 0.8928 | 0.8891 | 0.8335 | 0.9095 | 0.8792
WM
Customized | Cerebral {| 0.7608 | 0.7735 | 0.7772 | 0.7740 | 0.7854 | 0.7859
FSL cortex
brainmask Cerebral | 0.8722 | 0.8747 | 0.8766 | 0.8711 | 0.8953 | 0.8767
WM
Freesurfer Cerebral || 0.7312 | 0.7559 | 0.7898 | 0.7587 { 0.8277 | 0.7471
brainmask cortex
Cerebral | 0.8862 | 0.8953 | 0.8912 | 0.8914 { 0.9146 | 0.9009

WM
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SPM5

In our first batch of experiments with SPM5, we used the default parameters and let
SPM5 automatically perform brain tissue segmentation on the BrainWeb and the IBSR
data sets. In the second batch of experiments, we changed the parameter “Bias
regularization” from the default “Very light regularization” to “Medium regularization™
and reran SPM5 on the IBSR data sets. SPM5 is supposed to be used with greater bias
regularization when it is known a priori that there is less intensity inhomogeneity in the
image. Since the IBSR data sets were processed by bias field correction, the use of
“Medium regularization” rather than the default “Very light regularization” improved the
performance of SPM5 on almost all IBSR data sets, as shown in table 9.4. We use the best

performance for each data set in our comparative evaluation.

TABLE 9.4: SPM5 experiments with different bias regularization

Dice metrics
IBSR Data sets Cerebral cortex Cerebral WM
Very light reg- | Medium regu- || Very light reg- | Medium regu-
ularization larization ularization larization

1 0.7759 0.7705 0.8762 0.8927

2 0.8005 0.8048 0.8777 0.8940

3 0.8043 0.8080 0.8781 0.8936

4 0.8363 0.8356 0.8958 0.9013

5 0.4127 0.4621 0.7088 0.7312

6 0.4162 0.4207 0.7394 0.7422

7 0.7166 0.7065 0.8687 0.8734

8 0.7644 0.7670 0.8914 0.8923 o
9 0.7663 0.7595 0.9036 0.9059

10 0.6504 0.6868 0.8609 0.8744

11 0.8451 0.8396 0.8896 0.8927

12 0.8415 0.8541 0.8882 0.9014

13 0.8523 0.8588 0.8794 0.8955

i4 0.8365 0.8426 0.8491 0.8678

15 0.8512 0.8439 0.8744 0.8880

i6 0.8471 0.8263 0.8736 0.8948

17 0.8284 0.8407 0.8293 0.8551

18 0.8508 0.8539 0.8447 0.8764

| Mean 0.7609 0.7656 || 0.8572 0.8707 J
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BrainVisa

We tested BrainVisa on both the BrainWeb and the IBSR data sets automatically
except for manually specifying landmark points including the AC point, the PC point, an
inter-hemipheric point and a left hemisphere point. BrainVisa produced an empty brain
mask in the 9th IBSR data set and was unable to generate brain masks for the 13th and the

18th data sets. In both cases, we set the Dice metrics to be 0.

TAS

TAS is tested on the BrainWeb and the IBSR data sets automatically except for the
user to select the parameters in relative thresholding. The user only need to determine the
best two relative thresholds (a relative threshold between GM and WM and another one
between background and GM). Since the BrainWeb data sets have various noise level, we
also use different smoothing scales in addition to the two relative thresholds for the
BrainWeb data. Whenever the user changes the parameters for relative thresholding, the
result can be generated in real time, so tuning relative thresholding is an efficient

procedure.

9.3.3 Comparison

Segmentation Accuracy on the IBSR Data Sets

We have collected the Dice metrics with respect to cerebral cortex and cerebral WM
of the five packages on the IBSR data sets and the data is listed in table 9.5 and 9.6. Figure
9.1 through figure 9.8 compare the segmentation accuracy of TAS with SPMS5, Freesurfer,
FSL and BrainVisa respectively. Table 9.5 and 9.6 list the performance of the five
packages on the 18 IBSR data sets and on the 13 good IBSR data sets respectively, which
are also illustrated respectively in Figure 9.9 and figure 9.10.

On average, TAS performed best on cerebral cortex segmentation on all 18 IBSR
data sets, good and bad, and the 13 good data sets exclusively. In particular, TAS’s

cerebral cortex performance is consistently better than four other packages on the 13 good
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data sets except for the 4th data set, where TAS’s performance is almost identical to the
best, and the 12th data set, where TAS’s performance is close to the best. The cerebral
cortex performance of the five packages on the five bad data sets are similar except that

BrainVisa generated empty brain mask for the 18th data set.

On average, FSL performed best on cerebral WM segmentation on both all 18 IBSR
data sets and the 13 good data sets. However, TAS’s performance is very close to FSL in
both cases. The performance of the five packages on the five bad data sets are similar
except that BrainVisa generated empty brain mask for the 18th data set and Freesurfer

gave significantly lower performance for the 14th data set.

TABLE 9.5: Dice metrics of five tools w.r.t. cerebral cortex on the IBSR data sets

IBSR Data Dice metrics with respect to cerebral cortex

sets BrainVisa | SPM5 Freesurfer | FSL TAS

1 0.7461 0.7705 0.8039 0.7803 0.8682
2 0.7953 0.8048 0.8175 0.8121 0.8619
3 0.7674 0.8080 0.8362 0.8361 0.8714
4 0.7233 0.8356 0.8641 0.8028 0.8612
5 0.2875 0.4621 0.7794 0.7312 0.8638
6 0.6610 0.6610 0.8068 0.7559 0.8441
7 0.7108 0.7065 0.7888 0.7898 0.8638
8 0.6982 0.7670 0.7800 0.7587 0.8790
9 0 0.7595 0.8128 0.8277 0.8700
10 0.7707 0.6868 0.7729 0.7471 0.8611
11 0.8688 0.8396 0.8702 0.8833 0.8634
12 0.8596 0.8541 0.8458 0.8582 0.8772
13 0 0.8588 0.8647 0.8554 0.8673
14 0.8406 0.8426 0.8065 0.8429 0.8315
15 0.8441 0.8439 0.8487 0.8381 0.8457
16 0.8260 0.8263 0.8413 0.8426 0.8281
17 0.8445 0.8445 0.8076 0.8275 0.8070
18 0 0.8539 0.8337 0.8278 0.8379
Mean 0.6247 0.7656 0.8212 0.8121 0.8557
Mean on 13 | 0.6068 0.7365 0.8187 0.8030 0.8656
good data

sets
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TABLE 9.6: Dice metrics of five tools w.r.t. cerebral WM on the IBSR data sets

IBSR Data Dice metrics with respect to cerebral WM

sets BrainVisa | SPM5 Freesurfer | FSL “TAS

1 0.8652 0.8927 0.7964 0.8971 0.8789
2 0.8899 0.8940 0.8208 0.9160 0.8926
3 0.8649 0.8936 0.8138 0.9084 0.8874
4 0.8596 0.9013 0.8489 0.9168 0.9070
5 0.4097 0.7312 0.9240 0.8862 0.9101
6 0.7970 0.7422 0.9115 0.8953 0.8954
7 0.8255 0.8734 0.9147 0.8912 0.9001
8 0.8110 0.8923 0.9203 0.8914 0.9170
9 0 0.9059 09179 0.9146 0.9224
10 0.8457 0.8744 0.9069 0.9009 0.8790
11 0.8975 0.8927 0.8711 0.9142 0.8969
12 0.8858 0.9014 0.8099 0.8988 0.9006
13 0 0.8955 0.8647 0.8673 0.8748
14 0.8613 0.8678 0.7824 0.8632 0.8622
15 0.8541 0.8880 0.8746 0.8743 0.8637
16 0.8792 0.8948 0.8479 0.8933 0.8713
17 0.8619 0.8551 0.8592 0.8585 0.8463
18 0 0.8764 0.8124 0.8323 0.8463
Mean 0.6893 0.8707 0.8610 0.8900 0.8862
Mean on 13 | 0.6886 0.8685 0.8708 0.8999 0.8971
good data

sets
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FIGURE 9.1: Cerebral cortex Dice metrics of SPM5 and TAS on the IBSR datasets.
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FIGURE 9.2: Cerebral WM Dice metrics of SPM35 and TAS on the IBSR datasets.
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FIGURE 9.3: Cerebral cortex Dice metrics of Freesurfer and TAS on the IBSR datasets.

Cerebral WM Dice metrics

i 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
IBSR datasets

FIGURE 9.4: Cerebral WM metrics of Freesurfer and TAS on the IBSR datasets.
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FIGURE 9.5: Cerebral cortex Dice metrics of FSL and TAS on the IBSR datasets.
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FIGURE 9.6: Cerebral WM Dice metrics of FSL and TAS on the IBSR datasets.
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FIGURE 9.7: Cerebral cortex Dice metrics of BrainVisa and TAS on the IBSR datasets.
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FIGURE 9.8: Cerebral WM metrics of BrainVisa and TAS on the IBSR datasets.
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FIGURE 9.9: Mean Dice metrics of five tools on the IBSR datasets.

| IR Cerebral cortex I Cerebral WM |

Mean Dice metrics

BrainVisa SPMs Freesurfer FSL TAS

FIGURE 9.10: Mean Dice metrics of five tools on the 13 good IBSR datasets.
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Segmentation Robustness on the IBSR Data Sets

We calculated the standard deviations of the Dice metrics on the IBSR data sets and
use them together with the mean Dice metrics as the measurements of the segmentation
robustness of the five packages on MR images scanned from different subjects. Greater
mean Dice metric and lower standard deviation indicate greater robustness with respect to
segmentation accuracy on a set of data.

Two groups of the standard deviations are calculated on the total 18 IBSR data sets
and on the 13 good IBSR data sets. TAS demonstrated lowest standard deviation with
respect to cerebral cortex on both the total 18 IBSR data sets and the 13 good IBSR data
sets, as shown in table 9.7, and figure 9.11 and 9.12. The lowest mean and standard
deviation of Dice metric with respect to cerebral cortex indicate that TAS possesses the
best accuracy robustness with respect to cerebral cortex on the IBSR data sets. For
cerebral WM, TAS and FSL performed neck and neck with respect to both the mean and
the standard deviation of the Dice metric on both the total 18 IBSR data sets and the 13
good IBSR data sets. TAS and FSL tied for the best accuracy robustness with respect to
cerebral WM on the IBSR data sets. Considering both cerebral cortex and cerebral WM,
we think that TAS performed most robustly on average on the entire IBSR data sets.

TABLE 9.7: Standard deviation of Dice metrics of five tools on the IBSR data sets
Sample groups Standard deviations
data sets | tissue type BrainVisa | SPM5 | Freesurfer | FSL TAS
all IBSR Cerebral cortex | 0.3155 0.1284 | 0.0308 0.0429 | 0.0192
data sets Cerebral WM 0.3351 0.0505 | 0.0473 0.0230 | 0.0225
13 good Cerebral cortex | 0.3047 0.1414 | 0.0345 0.0476 | 0.0087
data sets Cerebral WM 0.3305 0.0593 | 0.0482 0.0143 | 0.0147
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FIGURE 9.11: Std. deviations of Dice metrics of five tools on the IBSR datasets.
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FIGURE 9.12: Std. deviations of Dice metrics of five tools on the 13 good IBSR datasets.
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Segmentation Robustness With Respect to Noise and ITH on the BrainWeb Data Sets

As described in subsection 9.2.1, the BrainWeb data sets vary in noise levels and
intensity inhomogeneity (IIH) levels. The performance in Dice metrics of the five package
with respect to cerebral GM and cerebral WM is listed in table 9.8 and 9.9 and illustrated
in figure 9.13 and figure 9.14.

TABLE 9.8: Dice metrics of five tools w.r.t. cerebral GM on the BrainWeb data sets

BrainWeb Data sets Dice metrics with respect to cerebral GM
Noise level | IIH level | BrainVisa | SPM5 | Freesurfer | FSL TAS
1% 20% 0.9292 0.9173 | 0.8333 0.9242 | 0.9084

40% 0.9247 0.9189 | 0.8342 0.9268 | 0.9086
5% 20% 0.9197 0.8989 | 0.8323 0.9193 | 0.8908
40% 0.9201 0.8998 11.8323 (0.9193 | 0.8858
7% 20% 0.8628 0.8673 | 0.8320 0.9113 | 0.8816
40% 0.8740 0.8713 | 0.8312 0.9127 | 0.8827
9% 20% 0.8166 0.8255 | 0.825% 0.8996 | 0.8658
40% 0.7836 0.8301 | 0.8264 0.9019 | 0.8678

TABLE 9.9: Dice metrics of five tools w.r.t. cerebral WM on the BrainWeb data sets

BrainWeb Data sets Dice metrics with respect to cerebral GM
Noise level | IIH level | BrainVisa | SPM5 | Freesurfer | FSL TAS
3% 20% 0.9550 0.9471 | 0.8849 0.9672 | 0.9588

40% 0.9599 0.9533 | 0.8889 0.9664 | 0.9593
59 20% 0.9552 0.9314 | 0.8824 0.9567 | 0.9494
40% 0.9534 0.9315 | 0.8863 0.9581 | 0.9476
2a, 20% 0.9325 0.8978 | 0.8779 0.9448 | 0.9382
40% 0.9311 0.9008 | 0.8796 0.9467 | 0.9370
9% 20% 0.8926 0.8656 | 0.8757 0.9332 | 0.9296
40% 0.8748 0.8701 | 0.8740 0.9354 | 0.9289

Among the five packages, Freesurfer demonstrated lowest performance variation
over different noise levels; SPM35 and BrainVisa neck and neck have highest performance
variations over different noise levels; and TAS and FSL have medium performance
variations over different noise levels, compared to the other three. Although Freesurfer
performed consistently over different noise levels, it also gave results with lowest

accuracy on average. For each of the four noise levels, we also tested the packages on
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images with two different ITH levels. All five packages gave little variation over different
I[H ievels. The only exception is for BrainVisa to handle with N=9% and 11H=40%. This
is due to a poor brain mask.

It is worth noting that in real MR scans, the intensity inhomogeneity may be in
various and unknown patterns and could occur together with other difficulties that may be
not present in the simulated BrainWeb data sets. Therefore, we remark that our
experiments with the BrainWeb data set do not mean to give a thorough and sufficient

evaluation on the five package with respect to the IIH robustness.
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FIGURE 9.13: Cerebral GM Dice metrices of five tools on the BrainWeb datasets.

Computational Efficiency

The execution times of the fives package tested on the IBSR data sets and the
BrainWeb data sets are listed in table 9.10. The experiments were all run on a single
2.8Ghz Intel Xeon processor. Among the five packages, BrainVisa took least amount of
time but is also associated with the lowest segmentation accuracy and robustness on the
[BSR data sets. Freesurfer took much longer execution time than other four but it should
be acknowledged that the longer time span covers segmentation of more subcortical

structures and reconstruction of cortical surfaces. TAS took much less time than
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FIGURE 9.14: Cerebral WM Dice metrics of five tools on the BrainWeb datasets.

Freesurfer, but required more than BrainVisa, FSL and SPMS5. However, it should be

noted that the most of the TAS time was spent for topology correction, which was not

counted in the execution times of the other three.

TABLE 9.10: Computation times of five tools on the IBSR and the BrainWeb datasets

Data sets Computation times
BrainVisa | SPM5 | Freesurfer | FSL TAS TAS(topology
correction)
IBSR 1.5m 34m 27.2h 5m 17m 14m
BrainWeb | 1.6m 20m 24.5h 9m 2lm 18m
9.4 Qualitative Evaluation

In this section, we give a qualitative evaluation of the five packages based on the

experiments of the packages on the IBSR data sets, Brainweb data sets, and the auxiliary 8

pathological data sets with mild recognitive impairment or Alzheimers disease. We first

summarize and compare the segmentation functionalities of the five packages followed by
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the discussion of their automaticity. Finally, we present various segmentation

abnormalities of each package that we observed in the experiments. The segmentation

abnormalities are presented in two groups: those that occurred in packages other than TAS
(i.e. TAS pros) and those that occurred in TAS (i.e. TAS cons).

9.4.1 Segmentation Functionalities

The folllowing is a summarization and comparison on the main segmentation

features of the five packages.

¢ Bias field correction: Freesurfer, SPM5, FSL, and BrainVisa, all integrate a bias
field correction procedure, either prior to tissue classification or combined with the
classification. TAS, on the other hand, does not need explicit bias field correction

and the relative thresholding is robust to bias field in arbitrary patterns.

Brain extraction: FSL, Freesurfer and BrainVisa provide separate tools for brain
extraction (i.e. skull stripping) prior to brain tissue classification while SPM5
combine brain extraction together with tissue classification. TAS, on the other hand,
performs cerebrum extraction after tissue classification. Note that the brain mask
generated by BrainVisa is supposed to contain only GM and WM while the brain
mask generated by FSL and Freesurfer is supposed to contain CSF as well as GM
and WM.

Tissue classification: FSL and SPMS5 segment the brain volume into three tissue
types: CSF, GM, and WM. BrainVisa and TAS extract cerebral WM and cerebral
GM. BrainVisa also provides cerebral hemisphere partition. Freesurfer segments a
whole brain into 37 individual structure including cerebral cortex, cerebral WM, a

set of subcortical structures, brainstem and cerebellar structures.

Cortical surface reconstruction: BrainVisa, Freesurfer and TAS support cortical
surface reconstruction while FSL and SPMS5 do not. A core mechanism involved in
the surface reconstruction is to make sure that topology of the cortical surfaces is

correct.
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9.4.2 Segmentation Automaticity and User Intervention

All five packages support highly automatic brain segmentation without or with little
user intervention. Freesurfer allows the user to start the cortical surface reconstruction
without any intervention. In case the segmentation is not satisfiable, Freesufer supports
interactive tools for the user to modify the brain mask and add control points to improve
the intensity normalization of WM, a procedure extremely important for the performance
of Freesurfer’s whole brain segmentation. Freesurfer also supports interactive tools for
editing the final results generated by the automatic processing.

FSL also allows the user to start the segmentation without any intervention. In FSL,
brain extraction and tissue classification are performed respectively by BET and FAST.
The BET performance substantially influences that of FAST. If the user is not satisfied
with the brain extraction, FSL allows the user to select different parameters and rerun
BET. However, our experiments with BET on the IBSR data sets and the pathological data
sets show that BET cannot guarantee good brain extraction even with user intervention.
FAST has custom options for the user to select whether to use the k-means segmentation
or a priori probability maps for initial segmentation and to guide the k-means
segmentation with manual intervention.

In SPM35, brain segmentation can also be automatically started with the default
parameters and SPMS often generates good results. An important custom parameter of
SPM35 is the one that control the extent of bias field regularization. When any parameter is
changed, the segmentation procedure has to be started over from scratch.

BrainVisa requires the user to prepare the data by first specifying several landmark
points including the AC point, the PC point, an inter-hemespheric point and a left
hemisphere point. When the data is prepared by the user, BrainVisa automatically
performs segmentation. BrainVisa supports interactive tools for the user to edit the
segmentation results.

TAS recommends the user to first determine the two relative thresholds and
occasionally the smoothing scale for relative thresholding, which can be performed in a
real-time procedure, and starts the subsequent segmentation without any user intervention.
When the user want to process a set of data which are apparently acquired with the same

or similar parameters, the user can determine the relative thresholding parameter for only
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one of the data sets and use them for the rest. In our experiments, for example, we used
the same set of parameters for the 8 pathological data sets.

Compared to the user intervention mechanisms in the other four packages, user
intervention in TAS is in the form of global parameter selection and has the following
advantages. First, it is straightforward and requires little even no expertise to understand
the meaning of the parameters and the criterion for selecting optimal ones. Second, it is
very easy to operate by sliding a value bar. Third, it is very efficient and the user can
obtain the effect of parameter selection in real time. Fourth, the parameters have global
effect for segmentation and the user does not need to repeat similar operations for

different local regions.

0.4.3 Segmentation Abnormalities

TAS Pros

First of all, we are interested in why TAS consistently gives better performance with
respect to cerebral cortex segmentation on the 13 good IBSR data sets. By examining the
segmentation results, we found that there were a “shrinking” effect on the cerebral cortex
segmentation for Freesurfer, FSL, SPM35 and BrainVisa, which gives rise to significant
amount of false negatives, while this problem did not occur or was much milder in TAS.
We think the underlying reason is that TAS uses a new image modeling mechanism that
can adapt to wider variations of GM intensities while the statistical methods used in other
packages were misled by such variations and missed a great deal of GM voxels with lower
intensities. This phenomenon is shown in figure 9.15 with a representative IBSR data set
and the segmentation results of the five packages.

In figure 9.15, pink stands for correct WM, red for false WM negative, light green for
correct GM, very light green for false WM negative and false GM negative, dark green for
false GM positive, and gray false for GM negative. Note that for SPM5, light green
represents correct GM segmentation, darker green represents false GM negative, and gray
level represents false GM positive. The differences between the segmentation of TAS and

other four packages on the same subject are shown in figure 9.16. Note that the green part
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is mainly due to the false positives of TAS, particularly around the lateral ventricles. It can
be seen that all the other four packages have significantly more errors (mainly false
negatives), colored in red, than TAS around the cerebral cortex.

Another common problem in FSL, BrainVisa and SPMS5 is the poor brain extraction.
Some examples are shown in figure 9.17. Poor brain mask is mainly responsible for the
poor performance for SPM5 and BrainVisa on the IBSR data sets indicated as the valley
points in figure 9.1 and 9.2. Since we used the relatively better brain masks generated
from Freesurfer for FSL, there are no deep valleys of performance for FSL in figure 9.5
and 9.6. Freesurfer did not encounter poor skull stripping, but unclean brain mask may
still be generated, as shown in figure 9.17(b) where some non-brain voxels with high
intensities are taken as brain tissues. TAS on the other hand, does not depend on a brain
extraction preprocessing step and robustly generated clean cerebrum masks as the union
of the cerebral white matter and the cerebral gray matter on all tested data sets.

We also found some other interesting abnormalities with Freesurfer, as shown in
figure 9.18. For example, in figure 9.18(c) Freesurfer cut off a significant amount of
cerebral WM and cortex at the top of the brain. In figure 9.18(d) Freesurfer was unable to
correctly recognize the complete lateral ventricle of the subject with Alzheimers disease.
In figure 9.19, Freesurfer generated poor GM/WM segmentation even for a simulated
image with excellent quality (noise level is 3% and IIH level is 20%) while TAS and FSL
generated excellent results. These abnormalities, we believe, are probably because of the

over-regularization of the a priori probability maps used in Freesurfer.

TAS Cons

We found two types of abnormalities in the TAS segmentation results. One is the
consistently existence of a rim of GM around the lateral ventricles, as shown in figure
9.19(d) and 9.15(f). This is associated with our structure modeling of CSF, GM and WM
as a layered structure. This abnormality actually also occurs consistently with SPM5.
Another abnormality is that sometimes a significant amount of voxels in the amigdala area
are missed in the segmentation, as shown in figure 9.20. This is mainly due to the fact that

the gray matter is usually thicker than average cerebral cortex and that the white matter



(a) MR image (b) BrainVisa result

(e} SPMS5 result (f) TAS result

FIGURE 9.15: GM-shrinking phenomenon.
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(c) TAS and SPM5 (d) TAS and BrainVisa

FIGURE 9.16: Segmentation differences between segmentation of TAS and other four
tools. Black: both correct non-GM; gray: both correct GM; green: TAS incorrect while
other correct; red TAS correct while other incorrect; Blue: both incorrect.



{a) BrainVisa brain mask (b) Freesurfer brain mask

(c) FSL brain mask (d) SPM5 GM mask

FIGURE 9.17: Poor brain masks.
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(a) MR image (b) MR image

A o el r

(e) TAS result for MRI in (a) (f) TAS result for MRI in (b}

FIGURE 9.18: Freesurfer abnormalities on the pathological data sets compared to TAS.
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(c) FSL result (d) TAS result

FIGURE 9.19: Freesurfer segmentation on the BrainWeb MRI compared to TAS and FSL.
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surrounded by the gray matter in the amigdala area is sometimes too thin for TAS to

obtain good segmentation.

{(c) Freesurfer result (d) FSL result

FIGURE 9.20: TAS segmentation missing part of amigdala on the BrainWeb MRI com-
pared to Freesurfer and FSL.

Unlike the abnormalities of other packages that often occurred at the cerebral cortex,
the two abnormalities with TAS have little or no adversary influence to cerebral cortex
segmentation and cortical surface reconstruction. These abnormalities have been well
located and we know why they occur. It is part of our future work to eliminate these

abnormalities in TAS.
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CHAPTER X

CONCLUSION

10.1 Summary of the Segmentation Pipeline

In this dissertation, we presented an image analysis pipeline for neuroanatomical MR
image segmentation, which consists of an initial brain tissue classification procedure with
relative thresholding complemented by terrain analysis, a series of segmentation error
correction procedures, and a procedure for cortical surface reconstruction. Segmentation
error correction includes a multiscale morphological topology correction procedure for
white matter and two non-cerebrum tissue elimination procedures for extraction of
cerebral white matter and cerebral gray matter respectively. The topology correction
algorithm and the cerebrum extraction procedure depend on several generic morpholngical
and morphometric analysis algorithms, particularly a 3D curve skeletononzation

algorithm and its variants, and a cell-complex-based morphometric analysis algorithm.

10.2 Segmentation Performance

We have evaluated our segmentation method quantitatively and qualitatively on
various MR images including simulated and real, normal and pathological. We also

compared our segmentation results with those of four leading segmentation tools. The
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comparison demonstrated that our method tends to produce more accurate segmentation
on cerebral gray maiter segmentation and comparable segmentation on cerebral white
matter to the leading packages. In addition, our segmentation method exhibited least
performance fluctuation across different subjects. Quantitative evaluation of our
segmentation method on different noise levels and different intensity inhomogeneity
levels also demonstrated high segmentation robustness of our method. It also produced
least segmentation abnormalities with respect to cerebral cortex segmentation among the
compared tools. Our method took about 20 minutes on average for cortical surface
reconstruction and is computationally efficient compared to other tools. Finally, our
segmentation method is highly automatic in that little or no user intervention is required to

produce accurate and robust segmentation in limited time.

10.3 Contributions

The main contribution of this dissertation can be characterized as the presentation of
a work flow for neurcanatomical MR image segmentation in which brain tissue
classification is conducted prior to brain extraction and is independent of explicit bias field
correction, design and implementation of a set of original algorithms that were applied in
different stages in the work flow, and a comparative evaluation that demonstrated that our
method is highly accurate, robust, automatic and computationally efficient.

The relative thresholding algorithm is based on a new structure modeling of
neuroanatomy and a new image modeling of the T1-weighted MR images exploiting
various structural, geometrical and radiological a priori knowledge. Brain tissue
classification with relative thresholding is free from three typical problems that occur in
traditional intensity based segmentation methods. First, it is independent of prior brain
extraction and thus avoids performance instabilities caused by poor brain extraction in
many traditional methods. Second, relative thresholding is robust against intensity
inhomogeneities without explicit bias field correction. Third, relative thresholding is also

able to adapt to large intensity variations within a given brain tissue and thus tends to
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produce more accurate segmentation. On the other hand, relative thresholding can be seen
as a special edge (or intensity difference) based segmentation method that overcomes
several critical disadvantages of edge based segmentation approaches. First, it produces
coherent regions labeled with brain tissue types. Second, it is able to recognize blurred
edges and tissue boundaries where intensities vary smoothly. Third, it is able to suppress
spurious edges between voxels of same tissue types. In these respects, we see relative
thresholding as a fusion of intensity based segmentation and edge based segmentation.
The idea can be effective in other image segmentation problems, particularly where there
are intensity inhomogeneities and blurred edges.

The cell complex based morphometric analysis simplifies a 3D object into a 1D
structure and gives a quantitative measurement on the wideness and connectivity on every
location in the 3D object. This is a significant advancement over the fact that traditionally
only a “thickness” metric (i.e. the distance to the boundary) can be calculated for each
point in the 3D object. This new 3D morphometric instrument will potentially promote
more applications of morphological analysis for various problems in computer vision and
image understanding. By applying this new morphometric analysis on the white matter
generated, we are able to eliminate non-brain tissues and divide the entire white matter at
the brain stem based on the a priori knowledge of strong connectivity of cerebral white
matter. Cerebrum extraction using cell-complex-based morphometric analysis provides
higher robustness than other brain extraction such as traditional morphological image
analysis, deformable model based methods, and atlas based methods.

The white matter topology correction algorithm is based on the a priori observation
that human white matter, particularly cerebral white matter, is a surface-like object.
Preservation of this morphological property is taken as the major criterion for eliminating
topology defects. In addition, our topology correction algorithm involves WM, GM and
background in the procedure, in contrast to the traditional procedure where only the
foreground and background are involved. Our three-fold procedure exploiting the
surface-likeness morphological a priori knowledge tends to more robustly produce
reasonable solutions to topology defect elimination than other methods.

The 3D curve skeletonization algorithm is performed directly on a 3D object in

contrast to the traditional methods that depend on prior surface skeletonization and tend to
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generate skeletons with better “medialness”. A variant of our curve skeletonization is
referred to as “shape and topology preserving erosion” in which the skeletonization
procedure is conducted in certain iterations instead of until conversion. This variant
algorithm is used as an important component in the white matter topology correction
algorithm as well as for generating topology correct gray matter in our neuroanatomical
pipeline. A similar procedure can also used in 3D object smoothing to eliminate noisy
protrusions on the 3D object. This framework of 3D curve skeletonization is based on a
systematic point classification of discrete 3D objects. In this classification approach, we
proposed the central notion of a thick-simple point. This notion enables deeper and wider
topology and geometry characterization of any points in a 3D digital object.

As a brief summary of our contributions in this dissertation, we essentially opened a
new window on the general methodology for neurcanatomical segmentation in MRI and
proposed new perspectives on particular issues such as brain extraction, bias field
correction, brain tissue classification, image modeling, topology correction, as well as
morphological and morphometric analysis. These new thoughts and the practice in the
specific problem solving for neuroantomical MR image segmentation are also meaningful

in a wider area of computer vision and image understanding.

10.4 Future Work

First, as addressed in our qualitative evaluation (subsection 9.4.3), there is
consistently a rim of gray matter around the lateral ventricles and partial amigdala areas
may be missed in our cerebrum segmentation. Future work will recognize the lateral
ventricles and separate true gray matters from false in the gray matter rim. In addition,
more robust segmentation in the amigdala area or automatic recovery techniques will help
to find the missed amigdala area. Second, future work will extend segmentation of WM
and GM in the cerebrum to segmentation of other anatomical structures in the entire brain,

such as cerebellum and deep subcortical structures.
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Currently typical medical resolution of MRI is about 1mm3, while research models
can have much higher resolutions. An interesting topic for us to study is the performance
scalability with respect to higher MRI resolution, particularly of the relative thresholding
method. It is also worth verifying whether a fixed pair of relative thresholds can be used
for all MR imags scanned on different subjects with same image acquisition parameters.
Automatic relative threshold selection method for data with unknown imaging parameters

is under study.
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