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I am part of a group that is building software for smart homes using a Java framework
called Open Service Gateway Initiative (OSGi). Our concern is with proving certain
properties correct about the framework and any application built on top of it. I have found
it useful to take a model-checking approach to the proof problem. In recognition of the
commonality of OSGi applications, I believe it is possible to build a modeling framework
parallel to the OSGi specification to ease the model construction for OSGi applications.

I have tested the ideas by (a) constructing a modeling framework, and (b) model-
checking several benchmark OSGi applications pulled off the web using that framework.
The good news is that I was able to discover property violations in these applications
through model checking, with relatively small efforts to formalize the applications. The
bad news is that when checking certain applications, it requires customizations scattered
in various places of multiple Java files, even including the modeling framework itself.

To accommodate such crosscutting concerns, I propose to use Aspect-Oriented

Programming (AOP) to add another unit to modularize the needed changes. With AOP



techniques, I pre-process a generic modeling framework with pointcuts, inter-type
definitions and other AOP constructs. The pre-processing step adds the only needed
details to the bare essentials. While these details may be scattered in different parts of the
application, with AOP techniques I am able to specify such variations in an explicit and
modular way. Varying application details then becomes a simpler task to specify and
select the related aspects.

Two problems arise due to the adoption of the AOP techniques: one concerns native
code and the other concerns performance penalties. I have created an abstraction library
to resolve the native code in the Aspect] runtime library as needed, and have come up
with a test suite in JUnit for regression test. The performance penalty is due to the
internal variables used by aspect transformation and subsequent interleaving in a multi-
threaded system. I thus make a distinction between model checking Aspect) applications
in general and using AOP techniques to vary an existing formal model. For the latter
problem, I present several approaches to reduce the search space, and am able to reduce
the state space of an Aspect] program to a comparable size of its counterpart in pure Java
implementation.

I have thus used the above technologies for rapid construction of formal models for
OSGi applications. I am able to uncover several bugs in some benchmark OSGi
applications with comparable search space. On the other hand, the extra interleaving of
Aspect] programs suggests a potential data race. I have uncovered bugs in general Aspect-
Oriented programming mechanisms that have been widely used and cited. To patch such
bugs, I propose a general solution to avoid data races during aspect instantiation for a class
of applications based on the current Aspect] compilers.

This thesis includes both my previously published and my co-authored materials.
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CHAPTER1]

INTRODUCTION

This manuscript is motivated by our experience in building formal models of
domain-specific applications. My thesis is that a formal-model framework can be defined
that allows efficient models to be generated through a tailoring process via Aspect-
Oriented programming (AOP) techniques. To establish my thesis, [ will convince the
readers that | have established AOP as a proper technique to specialize a modeling
framework, in terms of modularity as well as efficiency. I have also identified the Fagade
Pattern to encapsulate application models from varying details, enabled model checking
Aspect] programs in general and proposed useful optimization techniques for the
verifications. These arguments are backed by a case study to construct and use a generic,
aspectized Open Service Gateway initiative (OSGi) framework, and examples to check
Aspect-Oriented design patterns. A formal-model developer may benefit from this
manuscript by learning about the advantages and the required changes to use AOP
techniques to construct and customize a modeling framework, and an Aspect]
programmer may gain insights about the potential traps when using current AQOP
techniques and the approach to go around them. The rest of this section gives an

overview of our work in more detail.
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Our research group has actively participated in the research and design of Smart
Home applications for cognitively impaired people (Chen 2005; Fickas 2006). We have
built a domestic reminder system to allow care providers to enter scheduled events (e.g.
daily meds, clinic appointments). The system will play reminders at the appropriate time.,
We have also built a travel bag to check in their trip items, and provide on-route
navigation and emergency help. Due to the very nature of the user group, we are
committed to reliability and longevity of our systems, e.g. the device must run
continuously without the need to reboot, and acts as it is supposed to in emergency
situations. There is a strong need for us to rigidly assure certain correctness properties of
our software.

We believe it is beneficial to base our systems on existing standard platforms; in
particular, we are interested in the Open Service Gateway Initiative (OSGi) (OSGi 2005).
The OSGi framework offers a standard way to manage the software lifecycle and more
quickly develop applications across platforms. However, we find that the adoption of a
standard platform like OSGi doesn't exempt us from concurrency issues. In particular,
some known problems, e.g. the stale references problem (OSGi 2005), can be caused by
the concurrent access to a service rendered by the OSGi framework, and are difficult to
catch with traditional testing.

We have relied on model checking to uncover software bugs in real systems
(Feather 2001; Chen 2007} and would like to use it to check our Smart Home
applications. However, we have found that the construction of formal models is an

expensive procedure that requires expertise unavailable to typical programmers.
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Furthermore, most projects are under time-constraints; managers cannot wait for lengthy
model-building efforts before commencing implementation and deployment.

The difficulty in constructing formal models motivates us to seek a way to leverage
model-building experience from experts. In particular, since OSGi applications share
much commonality in design and implementation, we are interested in whether such
similarities will carry over to their counterparts at the model level. It seems natural to
build a formal model parallel to the OSGi framework, reuse much of the modeling
framework and specialize the modeling framework to construct a formal model for an
OSGi application. An interested reader can refer to (Chen 2007, 2008) for our existing
work.

This approach is complicated by the very nature of model checking. The specter
that haunts formal modeling is state space explosion, where the interleaving of process
steps leads to an exponential increase of system states that quickly exceeds the capacity
of a typical computer. This restriction requires a formal model to be reduced to its bare
essentials before the verification step. However, since OSGi applications may use
different features of OSGi, it is nearly impossible to come up with a modeling framework
that has just enough details for all OSGi applications. It is thus critical to have the
capability to vary features of a modeling framework in a modular way.

The object-oriented nature of Java has offered some help for extending the
modeling framework to construct a formal model for an OSGi application. One can
specialize the modeling framework with hooks and slots, in a way similar to using a

framework at the application level. However, some of the reduction changes are difficult
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to modularize by hooks and slots. For example, in the OSGi domain, when we are
interested only in the stale references problem, we don't need permission checks in the
framework and may remove all related fields and statements to save the state space, On
the contrary, when we want to assure that no malicious application spoils the OSGi
framework, we have to add back the missing fields and statements to enable permission
checks. Changing the feature of permission checks is a sticky task that breaks the OO
modularity: Modifications involve fields and statements scattered in multiple places in
different methods, classes and Java files. It is even worse when we vary the combination
of features for a particular application. In our experience, such crosscutting concerns
prevent us from effective reuse of formal models and incur much overhead in
comprehension and maintenance.

In this dissertation, I consider Aspect-Oriented Programming (AOP) techniques to
handle crosscutting concerns like those described above. The AOP approach adds another
unit to modularize the needed changes to a modeling framework. With AOP techniques,
we pre-process a generic modeling framework with variations defined in pointcuts, inter-
type definition and other AOP constructs. The pre-processing step adds only the needed
details (e.g. fields and statements) to the bare essential. While the needed details may be
scattered in different parts of the applications, with AOP techniques, we are able to
specify such variations in an explicit and modular way. Varying application details then
becomes a simpler task of selecting and weaving the related aspects.

Two problems arise due to the adoption of AOP techniques, namely, native code

and performance penalties. Java PathFinder (Visser 2003; Mehlitz 2005), the model
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checker we use to check Java bytecode, is an explicit state checker that tracks the
execution of the JVM, but the execution of native code carries information outside the
scope of the JVM. For this matter, we have created a regression test suite in JUnit (JUnit
2007) to discover native code in the bytecode woven by the Aspect] compiler, and have
created an abstraction library to resolve the native code in the Aspect] runtime library as
needed. The second problem is more severe to the adoption of the AOP approach: in our
benchmark testing, we encountered cases that increase the state space several times that
of the pure Java implementation for a single usage of aspects. The performance penalty is
largely due to the internal variables used by aspect instantiation and subsequent
interleaving in a multi-threaded system. We thus make a distinction between model
checking AspectJ applications in general and using AOP techniques to vary an existing
formal model. For the latter problem, we would rather ignore the extra interleaving due to
the Aspect] weaving: we therefore present several approaches to reduce the search space,
namely, creating a specialized Aspect-Benchmark Compiler (Avgustinov 2005; ABC
2007) and implementing various search heuristics plugged into the Java Pathfinder (JPF).
By such optimizations, we are able to reduce the state space of an Aspect] program to a
size comparable with its pure Java counterpart.

We have used the above technologies for rapid construction of formal models for
OSGi applications. We were able to uncover several bugs in a set of benchmark OSGi
applications, with minimal specialization required.

On the other hand, the extra interleaving of Aspect] programs indicates a potential

data race. Using our tool set, we uncovered bugs for general Aspect] programs, including
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common programming techniques and Aspect-Oriented design patterns. Some of these
bugs are due to the unawareness of the lack of synchronization in the bytecode woven by
Aspect] compilers, even though their pure Java counterparts are free from concurrency
errors. It is worth noticing that I am able to reproduce these errors on Aspect) programs
woven by ajc as well as abc. These findings are surprising, as some of these
programming techniques are widely taught as classic Aspect] examples. In this
dissertation, 1 will explain the detailed cause and show my solution to these problems
based on current Aspect] technologies.

This dissertation includes my published, co-authored materials in Chapter III, which
describe a unique case study to show the benefits of framework-based model construction

and lay down the background and motivation for Chapter IV.



CHAPTER I

LITERATURE REVIEW

For the purpose of explanation, I briefly describe the application context, i.e. the
OSGi framework and some sample applications based on it. 1 also give a brief

introduction to the model checker Java Pathfinder, and an overview of Aspectl.

2.1. Application Context

2.1.1. The OSGi Specification

The proliferation of digital home applications brings new challenges for software
engineering. Without a commeon standard, it is difficult to accommodate applications for
different devices and platforms. Therefore, many common functions, like device access,
application management, etc., have to be created anew for each project. The Open
Service Gateway Initiative (OSGi) aims at providing a platform independent
infrastructure that eases the integration of pre-built, pre-tested components (OSGi 2005).

Figure 1 shows the layered structure of OSGi (modified from (OSGi 2005)). At the
bottom level, OSGi runs on top of the Java 2 environment. The Modules layer defines the
class loading policies, which, in addition to standard Java classpath, allows a module to

provide private classes to another module in a static, declarative way. A pre-built module
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is called a bundle in OSGi jargon. The Life Cycle layer relies on the Modules layer for
class loading, but adds the rules and a set of APIs to install, start, stop, update and
uninstall a bundle at runtime. It allows component management that are normally not part
of an application. The Services Registry layer uses a service-oriented architecture to
enable decoupled, dynamic collaboration among bundles. A service is a special Java
object, which is shared by publishing all interfaces it has implemented. A bundle can be
notified of the coming and going of services by subscribing to service events delivered by
the framework. OSGi is a Service-Oriented architecture: a software vendor provides
functionality in terms of services, which can be sold as a pre-built component without the
worry of installation and maintenance; the service provider and the service consumer are
decoupled so that they may be provided by different vendors. Unlike other layers, the
Security layer is entangled with all other layers, assuring that the OSGi framework won’t

be spoiled by a reckless component from a third-party vendor (OSGi 2005).

OSGi appications

Services

Services Registry

Life Cycle

Modules

Standard JVM

0OS Hardware

Figure 1. Layered structure of the OSGi framework (modified from (OSGi 2005))



2.1.2. The Correctness Properties

I set out to check correctness properties of the framework as well as its applications.
For example, an implementation of the OSGi specification ought to provide the newest
driver for a device, check the proper permission for a third-party bundle, catch malicious
behaviors, and deliver service events in synchronous (sequential} mode. An OSGi
application ought to respect certain conventions in implementing a BundleActivator,
e.g. it should not block the whole framework. For the purpose of explanation, I introduce
a common pitfall in OSGi applications, the stale reference problem.

The stale reference problem is due to the indirect reference of a service object for
decoupling components. It happens when a service used by a consumer bundle has
actually been unregistered by the producer bundle. A stale reference to a service object
leads to undefined behaviors, e.g. it may raise runtime exceptions at various execution
points, or quietly proceed without actually carrying out the desired functionality. This
problem is acknowledged in the OSGi specification, and an auxiliary class,
ServiceTracker, has been created to track valid services. However, the specification
acknowledges that one may still suffer from the same problem even when using a
ServiceTracker (i.e. due to concurrent execution, theoretically, there are chances that a
stale service is retrieved from a ServiceTracker object before the service is removed from
ServiceTracker in response to a “service remove™ event), and doesn’t propose any
approach completely immune to the stale reference problem. This has decreased the

confidence in building highly reliable systems on top of the OSGi framework.
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I hypothesize that the modeling framework I built will ease model construction to
uncover violations to these correctness properties, so that we are able to minimize the risk

to the special user group we target.

2.1.3. The Knopflerfish Framework

There exist several reference implementations for the OSGi specification.
Knopflerfish is an open source implementation and has been certified to be OSGi
compliant (Knopflerfish 2007). It comprises a base framework to fulfill the OSGi
specification, mandatory bundles for common core functionalities like input/output and
optional bundles for extended functionalities like logging. Other leading, open source
implementations include Felix from Apache (Felix 2007) and Equinox from Eclipse
(Equinox 2007). An interested reader can refer to (OSGi 2005; Knopflerfish 2007; Felix

2007; Equinox 2007) for a full explanation of OSGi and the Knopflerfish framework.

2.2. Model Checking

2.2.1. Overview

With the increased enhancement of language features for concurrent programming
(e.g. the concurrency support in Java) and the wide availability of reactive systems (e.g.
wireless sensor networks), concurrent programming takes on a larger and larger portion
in software development. However, concurrent programming is notoriously difficult to
write correctly, even after careful requirement engineering, rigid code inspection and

rigorous software testing. There are numerous accidents caused by such complexity, to
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name a few, the lethal overdose accidents of Therac-25 between 1985 and 1987 (Magee
1999), the malfunctioned communication component of NASA’s Pathfinder in 1997
(Holzmann 2003), the automated baggage system problem in Denver International
Airport between 1993 and 1994 (Wayt 94). Concurrency issues cost opportunity, money,
happiness and even lives.

The difficulty of concurrent programming arises due to its very nature: many errors
only occur when processes in the concurrent software proceed in a particular order, while
the total permutations in different orders can be a huge number far beyond human
inspection and/or software testing. Furthermore, some conditions that cause errors are
transient and hard to detect and replay.

To assure the quality of concurrent software, formal methods have been proposed.
Formal methods rigorously reason about the correctness of the computer programs, often
covering each of possible executions. In particular, one of their branches, model checking,
has gained wide acceptance for the merits of mechanical verification, easy replay of
violation traces and natural specification of a large portion of important properties.

Typically, mode checking takes a dual-specification approach: (1) construct a
transitional model as the artifact specified in the software, and (2) succinctly specify the
desired property as a temporal logic formula. Subsequently, a model checker
mechanically checks the transitional model against the temporal formula, and reports a
trace to the violation if there is any. In decades, researchers have devised tens of model
checkers, to name a few, SPIN (Holzmann 1997; Holzmann 2003), LTSA (Magee 1999),

Bogor (Robby 2003), dSPIN (Demartini 1999; Iosif 2001) and Java PathFinder (Visser
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2003). There have been numerous reports on the discovery of concurrency flaws by
model checkers (Feather 2001; Griesmayer 2005; Markosian 2007; Deng 2003;
Holzmann 2003; Magee 1999; Heitmeyer 1998a; Hatcliff 2003; Jackson 2002a).

There are two fundamental problems restricting the practical use of model checkers:
the state space explosion and the limited-participants problems. The first problem arises
since the combination of different orders in a complex system can easily be an
astronomical number well beyond the storage of modem computers. The second problem
arises since a model checker emulates the execution of each process, while some complex
systems have no concrete limitation on the number of simultaneous processes allowed (or
such limitation is too much for model checkers). Therefore, without other proof measures,
e.g. natural deduction, there is no way to assert correctness when no violation is found.

Relevant to the two fundamental problems, usability is a big challenge. In decades,
the primary focus of model checking is verification efficiency, due to the state space
explosion problem. Usability is less studied and actually becomes a major obstacle for the
industrial application of model checking (Barjaktarovic 1998). The following factors
contribute to the difficulty.

- Formal specifications are very different from programs. Most specification
languages have a natural mapping to their underlying mathematic notions, which
typically has very different concepts from modern programming languages like C/C++
and Java. For example, one needs to deal with primitives like non-determinism, liveness,

Never in Promela (Holzmann 2003), which are rarely seen for a Java programmer.
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- Model checkers are very different from each other. There is no “universal” model
checker as there is no general proof procedure, or the problem is undecidable (even first-
order logic is undecidable). Moreover, the more expressive a specification language is,
the less efficient the verification algorithm tends to be. Therefore, a model checker needs
to be a compromise between generality and efficiency, and there is no “universal”
specification technique that fits all domains (Lamsweerde 2000).

- There is no or little support for comparative analysis (Lamsweerde 2000). There
are no precise criteria and measures for assessing formal specifications written in the
same language, not to mention specifications written in different languages. A good
specification or a good choice of model checkers hide somewhere deep in the heads of
experts.

- Abstraction is critical but very hard. Abstraction discards unimportant details and
reduces the reachable states in the verification procedure. Without appropriate
abstractions, even a simple program potentially runs out of memory reasonable for a PC.
However, there is no universal abstraction technique; all practical abstraction techniques,
complete and/or sound, are rather modest compared to the transformations well-trained
people can bring up. Logical abstraction remains the most powerful reduction technique,
but it requires non-trivial expertise to apply reduction techniques correctly and efficiently.

- There is little reuse on specifications. It is generally agreed that problems in the
domain are more likely to be similar than solutions (Lethbridge 2001). Since
specification is somewhere between problems and solutions, therefore, specification

reuse should be more promising than code reuse (Lamsweerde 2000). However, little has
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been done on reuse in model checking. Dwyer et al. proposes temporal formula reuse
based on patterns (Dwyer 1999) and Smith et al. generalizes such reuse by parameterized
templates (Smith 2002), and there are also case studies (Xie 2003) on reuse of verified
components and patterns. However, such work focuses on the reuse of temporal formulas
(which is much more restricted) or software components. Reuse of specifications is much
more complex but not extensively studied.

In view of the difficulty of model construction, researchers have proposed various
techniques and tools for model construction from its implementation counterpart. These
include using program analysis techniques (Nielson 1999) to automatically remove fields
and statements not related to the correctness criteria (Dwyer 2006; Dwyer 2001), limit the
range of variables and the number of participants, and represent values in a more abstract
way (Corbett 2000). These techniques are applied before rendering the model to a model
checker, and are generally orthogonal to the space reduction techniques adopted in model
checkers (e.g. partial order reduction) (Dwyer 2006). However, none of the automation
techniques are strong enough to reduce a complex system to a checkable size in the
general case (Dwyer 2006, 2001). Often, one has to manually enforce atomicity towards
arbitrary code blocks, remove components and/or functionalities, and restrict the scope of
variables and the number of participants in the system. To improve the overall coverage,
several abstractions may be carried in a trial-and-error style in various runs, i.e. one may
apply various combinations of different (possibly lossy) abstractions, and repeat the
verification until an error is found or the coverage has reached some (possibly empirical)

criteria.
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On the other hand, despite the rich literature reporting experience using model
checkers to discover bugs in practical design and implementations, model construction is
an expertise-intensive procedure and there is little literature to address the methodology
of model construction. Taghdiri et. al. reported a case study to build a generic modeling
framework for a class of multicast communication protocols, which can be specialized to
verify a specific multicast protocol (Taghdiri 2003). Garlan et. al. reported a case study to
build a generic modeling framework that can be reused to check event processing based
on the Publish-Subscribe design pattern (Garlan 2003). Chen et. al. reported a case study
to build a modeling framework of OSGi applications, which eases the model construction
by design reuse and code reuse (Chen 2007). However, none of these works addresses the
methodology to customize the abstraction level of the modeling framework, which is the

focus of this manuscript.

2.2.2. Java PathFinder

Part of my goal in this dissertation is to build a formal model of an OSGi
framework, and then check it for concurrency errors. Since the OSGi framework is
written in Java, we would rather use a model checker that directly takes Java as input; we
can then use much of the implementation directly as the model! Java PathFinder (JPF)
(Visser 2003; Mehlitz 2005) is such a model checker. It is an explicit model checker that
directly checks Java bytecode and is extensible with different data and search heuristics.

Figure 2 shows the architecture of JPF (Visser 2003). The core JPF has a
specialized virtual machine (VM), which takes on the role of a model checking engine for

state management (e.g. state cache, query, and restoration). It allows customization of
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search strategies, e.g. adding checkers of different properties, gathering execution
statistics, by an Observer Pattern that lets concrete listeners subscribe to Search/JVM
events exposed by JPF. It also allows plugging a specific Choice Generator to choose and
to order choices at a branching point, which influences thread scheduling and non-
deterministic data acquisition. Furthermore, JPF allows interception of Java method calls
via the Model Java Interface (MJI), which can be used to resolve native methods and
reduce state space. The above extension schemes in JPF allow expert users to experiment
with novel search heuristics and state representations, which may lead to significant
performance improvements in a specific domain.

There are some restrictions on JPF. First, it is not able to check platform-specific
native methods (e.g., System-level service calls, networking APIs, user interaction), since
this execution information is not available to the JVM. Second, due to state space
explosion, it typically deals with small Java programs no more than 10k lines-of-code
(Visser 2003). Therefore, before using JPF to check a real system, one would have to (a)
resolve Java native methods with MJI or replace the native methods with pure Java
implementation, (b) apply various reduction techniques to construct an abstract model for
the actual system so that the verification may complete within a reasonable time and
within a reasonably available main memory. The reduction often includes bounding the
number of participants in a model, and model checking only guarantees the correctness of
the model with these limited participants. Additional methodologies, like deduction, are

required to extend the result to unlimited participants. However, empirical studies show
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that most errors can be discovered with a properly selected small number of participants,

i.e. the small scope hypothesis (Dennis 2006; Andoni 2003).

Library Choice VM listener
abstraction generator
1 1 []
v \/ \/
Virtual Machine ::> Error report
U
Search
strategy
M ]
S
Property .
checker Search listener

Figure 2. The operational model of JPF (modified from (Visser 2003))

The MIJI is the main facility of JPF to help resolve native methods. To resolve a
native method via the MJI, a Java class with native methods has two classes for the
replacement: a model class and a native peer class. The model class is exposed to the core
JPF and thus is state traceable; the native peer class is executed by the host JVM and is
not state traceable. JPF associates the model class and the native peer class using a name
mangling scheme similar to the Java Native Interface (JNI), i.e. using the model class
package name and class name to deduce and match the native peer class name. Although
the host JVM doesn’t directly change the system states in the core JPF, methods in the

native peer are passed a reference to the execution environment of the core JPF and may
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access and alter the JPF object model. The naming convention and the environment
reference passing in JPF are analogous to the Java Native Interface (JNI).

In addition to resolving native methods, the MJ1 is also used to intercept JPF system
level functionality and for system space reduction. The interception is required for
standard library classes in the package java.lang, as they have to affect JPF internal
class and thread model. For example, the MJI is used to intercept thread scheduling,
which is critical to explore all interleaving in model checking. The MJI can also reduce
the state space, since it can hide all changes in the intermediate steps and only cause
traceable state transitions when objects in the environment reference are explicitly

modified.

2.3. AspectJ

In Object-Oriented languages, it is natural to organize programs in units of classes.
However, there are certain design concerns that involve code in multiple execution points
and are difficult to be modularized using Object-Oriented techniques. For example,
feature variations typically involve fields and statements in different methods and classes,
breaking encapsulation units of slots and hooks. It is thus desired to have a mechanism to
vary features in a modular way, e.g. enable or disable a feature by changing a single
variation point.

Aspect-oriented techniques are invented to modularize such variations, and Aspect]
is an aspect-oriented extension to the Java programming language. In the jargon of

Aspect], design concerns that span multiple classes are called crosscutting concerns, and
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the execution of a method call is a join point. An aspect is a unit of management in
Aspect], analogous to a class in Object-Oriented languages, but it has the capacity to
modularize crosscutting concerns that is not available in common OO languages.

An aspect encapsulates several new constructs to modularize crosscutting concerns:
paintcuts, advices and inter-type declarations. A pointcut specifies the pattern to pick out
join points and may be composed of other pointcuts. It typically involves matching of
static method signatures and runtime context. An advice is the code that gets executed
when the associated pointcut is matched. For a particular pointcut, an advice may be
invoked at different stages of method execution, e.g., before, afier and around. An inter-
type declaration may statically change class hierarchy and/or add class members.

An Aspect] compiler compiles and weaves an Aspect] program into normal Java
classes. The two mainstream Aspect] compilers (gjc from eclipse, and AspectBench
Compiler, or abc, from Oxford University and McGill University) both additionally
require a small (~180K) runtime library. A nice feature of Aspect] is that it is designed as
a compatible extension to Java, i.e. all legal Java programs are legal Aspect] programs,
and all byte code generated by legal Aspect] programs run on the standard Java virtual
machine. This is crucial for our hypothesis to introduce Aspect] to formal modeling,
since JPF reads only standard Java byte code. An interested reader can refer to (Colyer

2004; AJC 2007, ABC 2007) for more about Aspect].
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CHAPTER 111

FRAMEWORK-BASED MODEL CONSTRUCTION

In this chapter, we describe a case study that shows the benefits of framework-
based model construction, i.e. design reuse and code reuse. Some materials in this
Chapter are extracted from my previous co-authored work (Chen 2007). We focus on the
modeling framework construction and its strength in this chapter; in the next chapter, we
show the problems that bar the wide usage of framework-based model construction and

present our solution to the problems.

3.1. The Programming Model of the OSGi Framework

For the Knopflerfish framework, we create a formal model parallel to the
application framework at an abstract level, using the following manual approach. We
follow the call-graph reachability to remove unrelated code (e.g. fields, statements and
classes). Based on domain knowledge, we make high-level decisions to remove non-
essential components, e.g. system bundles. We also revise the presentation of the
framework status in a more abstract way, and resolve native code when needed. We
briefly describe the procedure to create such a specification (Chen 2007).

To lay out the discussion, we use the UML diagram in Figure 3 to explain the core

architecture of an OSGi framework. The two slots, start () and stop(}), in the
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interface BundleActivator, are the variation points of a bundle application: they
shall be filled by an OSGi application to implement the desired functionalities. These two
functions are called back while starting and stopping a bundle, respectively. Meanwhile,
they are passed an instance of BundleContext, which carries the context information
in the OSGi framework. From the perspective of the framework, the class Framework
has access to all internal information. For example, it has a reference to Bundles, which
maintains a list of all installed bundles; it has a reference to Listeners, which
maintains a list of listeners interested in various events, using an Observer design pattern;

it also has an instance of Services, which maintains a list of service registration stubs.

The service lists often include collections of [Tservice_name, service_registration/J

tuples and support various query methods to find the proper services. Such indirect access
to services decouples the service consumer from the service object (and the service
provider), improving reusability and allowing them to be separately developed. Each
installed bundle may be serialized to the main memory; a BundleImpl is then
instantiated to describe the bundle, and the BundleActivator defined in the manifest
file is instantiated and started through reflection. An OSGi application may register a
service: during such registration, an instance of ServiceRegistration is created to
describe a service when it is registered, including information like the name of the service

and the registering bundle.
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Figure 3. The UML diagram of the core OSGi infrastructure

It is worthy to point out that the Fagade design pattern is used to encapsulate the

internals of the OSGi framework: the four classes in grey color are those instances

accessible to a regular bundle; other classes in white color are not visible to a regular

bundle. For example, to be immune from a mal-functioning bundle, the OSGi framework

refrains from exposing ServiceRegistrationImpl to a consumer bundle; instead,

the class

ServiceReferenceImpl is

created

a facade for

ServiceRegistrationImpl. The consumer bundle can only access restricted

information and functionalities about a service through the published interfaces. For
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example, the registering bundle can use ServiceRegistration to unregister a
service, but a ServiceReference retrieved by a consumer bundle through query may
not be used to unregister a service. Similarly, BundleContextImpl acts as a fagade
for a regular bundle to carry out a subset of functionalities (e.g. to register a service, to
subscribe to a particular event} in Framework, Bundles, Services and
Listeners. The Facade design pattern enables encapsulation, which benefits us not
only at the application level (e.g. to reduce framework vulnerability and to ease OSGi

applications development) but also at the modeling level, as we shall see later.

3.2. The Construction of the Modeling Framework

We describe our efforts in constructing a modeling framework in this section. Our
target is to build a generic, abstract framework, which can be used by plugging in OSGi
applications and checking them against a wide spectrum of correctness criteria. These
correctness criteria shall catch the core functionalities of an OSGi framework, e.g. bundle
management, service management and listener management. Since our modeling
framework is based on the Knopflerfish implementation, this procedure includes
removing fields and statements from the application framework, resolving native code by
the MJI scheme and/or rewriting in pure Java, rewriting the model in an abstract way, and
creating a closed execution environment for the OSGi applications.

Figure 4 shows the sequence diagram of a user case to install and start a GPS
bundle, register and provide a GPS service, and use the GPS service from a consumer

bundie. It catches the fundamental functionalities in an OSGi framework and the main
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operations that we want to support in the modeling framework. A GPS bundle (i.e. a jar
file) that provides the Global Positioning Service (GPS) service is first installed in the
OSGi framework. During the installation, an instance of BundleImpl is created to
describe the bundle information; after the installation, a bundle event (bundle_installed)
is broadcast to all bundle event subscribers. After a bundle is installed, the bundle can be
started. Starting a bundle includes the following actions: create an instance of
BundleContext to gather the needed environment information for the OSGi
application; broadcast a bundle event (bundle_starting) to all bundle event subscribers;
use class reflection to create an instance of the specific implementation of
BundleActivator (.e. GPSBundleActivator implements
BundleActivator); invoke the start (BundleContext) method of the instance
of BundleActivator, which registers a GPS service in the OSGi framework and
causes a service event (service registered) broadcast to all service event subscribers.
Upon the reception of the service_registered event, a GPS service consumer can query
the GPS service and uses the GPS service. Meanwhile, a bundle event (bundle_started) is
broadcast to all bundle event subscribers. These steps are common in starting and using a
service.

A registered service may be explicitly unregistered by the registering bundle, or
implicitly unregistered when the registering bundle is about to be stopped. Figure 4 also
shows the latter case. When the GPS bundle is about to stop, a bundle event
(bundle_stopping) is broadcast to all bundle event subscribers, then

GPSBundleActivator.stop (BundleContext) is invoked, followed by the
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actions to unregister all active services that have been registered by the GPS bundle. At
this moment, a service_unregistered event is broadcast to all service event subscribers.

Finally, a bundle event (bundl_stopped) is broadcast to all bundle event subscribers.

Eowm| |Gt

installBundle(location} ] <<Croati>> F; I EESE. A “ GPSSeni I :
bundle_installed E :
starBundiegid) | | ? A i
startd <<create BundleContext>>
bundle_starting

3

start{BundieContext)

c<craatas>

service_registered

<<query GPSSenice>>
bundle_started getService ————————s

stopBundle(id)

— ) stop(}

bundle_stopping

stop{BundleContext)

<<removes>]

bundie_stopped

Figure 4. The typical procedure to register and use a service

After modeling the fundamentals of the OSGi frameworks, we show the procedure
to mimic the installation of a bundle at the model level. The pseudo code (after slicing
unrelated code) is shown in Figure 5. It is worth pointing out that the pseudo code in
Figure 5 has causality to the bundle installation thus is not removed by reachability
analysis. However, some of them may be removed by arbitration of the model developer.

For example, the above procedure involves native code to serialize a bundle jar from
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some URL, parse the jar file and instantiate proper entities (e.g. instances of
BundleImpl, BundleActivator and BundleArchive). We may resolve all
native code via MJI and keep the framework APIs unchanged, but it is fairly involved in
the actual development and memory-inefficient in the runtime (e.g. all contents in a jar
file are saved in each state). Instead, we ignore the manifest file and require additionally
passing two parameters for the instantiation: a static unique counter to mimic the Bundle
location (the location is required for bundle storage in the framework), and the class
name for the BundleActivator for class reflection. Other instances can be created
from such information. We use a unique integer counter to abstractly represent system
time; we also ignore security features, since we focus on violations caused by the
concurrent access and such violations won’t be disabled due to the removal of permission
checks. These modifications complete the changes to model the bundle installation.

To check the component management, we also need to mimic the environmental
inputs to drive the system. We show an example to simulate user inputs to manage the
framework bundles. As mentioned, input/output is typically taken through utility
components in the Knopflerfish framework. It includes Desktop bundle, Log bundle,
Console bundle, etc. These components are in the control flow of device/bundle
management and thus won’t be removed by reachability analysis. However, it is fairly
involved to resolve native methods with various input/output streams, and extremely
intricate to model interactions with the user interface. Fortunately, for our purpose, we
are interested in the effects of management (i.e. install, start, stop, etc.), but not how to

manage components. Therefore, we can reasonably identify these components and ignore
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the low level details like reading strings from a buffered input stream, reading objects

from a socket stream, or button events in a graphical user interface.
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. BundleImpl install {location) {

return if the bundle is already installed
check permission

downlcad jar file if needed

read jar file into memory // insertBunldedJar ()
parse jar file

construct and store bundle archive

set static classpath

check execution environment

create bundlelmpl

check bundle admin permission // AdminPerm
set last modified time for the bundle

add bundlelImpl to bundles

broadcast bundle install event

return bundle impl;

Figure 5. The pseudo-code to install a bundle

As mentioned, each bundle runs in a separate environment. To model its

management, we create a thread for each bundle, and non-deterministically choose a

proper management action according to its current state. The following pseudo code

shows the main transition for the thread:

The pseudo code in Figure 6 corresponds to the state diagram of a bundle in the

OSGi specification (OSGi 2005). A bundle is initially installed and changed to

RESOLVED state (line 3). There a user can update a bundle with a new bundle jar to stay

at RESOLVED state (line 5), start a bundle to enter ACTIVE state (which further allows
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a user to stop a bundle to return to RESOLVED state, in line 6), or uninstall a bundle to

return to UNINSTALLED state (line 8). It differs from the state diagram in that it doesn’t

explicitly show the internal transitions automatically carried out by the base framework

(e.g. from INSTALLED to RESOLVED, from STARTING to ACTIVE). These

automatic transitions are hidden in the function calls. By the non-deterministic choices,

we have abstractly specified possible user inputs to manage bundles in the Knopflerfish
framework.

In the rest of this chapter, we show some fragments of the actual Java code, to give

a comparison of the application code and the model code and lay down examples that

will be used throughout our discussion.

. public void run{) {
while {true):
fw.installBundle (location):
while (true): do one of the following non-det.
fw.updateBundle (location);
fw.startBundle (bundlelId}; fw.stopBundle (bundleld):
break;
fw.uninstallBundle (location};

WU W
P

Figure 6. State transition in a thread for each bundle

Figure 7 shows a fragment of BundleImpl. java. Fields and statements that are
removed from the application code are marked in grey. The underlying reasoning to
remove these fields is: secure is removed since we are not checking permissions while

executing management actions; classloader and oldClassLoaders removed
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since JPF supports a single classpath at runtime after all; we ignore version control in the
OSGi framework thus version and v2Manifest are removed; we decide not to
check fragmentation functionality thus we remove the fields fragment and
attachPolicy. Correspondingly, in the method BundleImpl.start(), we
remove statements that check permission for bundle management, that handle fragmented
bundies, that delay the starting of a service according to the start level and that create a
proprietary classpath for the current bundle. At this moment we carry out such removals
manually; an automatic slicing tool like Bandera could surely help in the construction
of the abstract model, but it still requires human judgment, e.g. specify the slicing criteria
and create abstract representation for the bundle serialization.

Similarly, at an abstract level, we mimic the procedure to start, stop, upgrade and
uninstall a bundle, and the procedure to start and stop a framework. Other abstraction and
resolution include the removal of service cache, simplified property representation with
services, emulation for installed BundleArchive, etc. A full explanation of the

construction is beyond the scope of this dissertation. An interested reader can get the

formal model at (Chen 2008).
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class BundlelImpl ({
Framework framework;
ProtectionDomain pd;
long id;
String location;
int state;
BundleArchive archive;
int generation;

sw1tch (the current state) |
case INSTALLED: throw error
case RESOLVED:
state = STARTING
broadcast a bundle starting event

craate an assoc1ated BundleContext

1nstant1ate the BundleActlvator using the name
invoke start{) method of activator instance
state = ACTIVE
broadcast a bundle started event

case ACTIVE: return;

case STARTING, STOPPING, UNINSTALLED:
throw error

Figure 7. Sample code of BundleImpl . java at the model level
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3.3. Using the Modeling Framework

To use the modeling framework to verify an OSGi application, we also need to
specify the correctness criteria. As an example, we focus on verifying the stale reference
problem in this section.

There are two types of the stale references problem, i.e. one is that the reference
achieved has become nul/l, and the other happens when the reference is not null but points
to an obsolete object, which hasn’t been garbage collected due to alias references. The
former throws a NullPointerException, while the latter may or may not throw an
exception and leads to an undefined status. In view of this, we use the following pattern
to detect the second error: add a boolean mark valid to the attributes of a service class;
set valid to true when registering the service object, and reset it to false when
unregistering the service object; assert valid to be true whenever invoking a function of
the service object. In this way, we will be able to catch both types of the stale references
problem via a single criterion of JPF, NoUncaughtExceptionsProperty.

Thereafter, we apply the modeling framework to check real examples and show
violations we have found. To our best knowledge, some of these errors are not reported
elsewhere.

We look at a series of tutorial examples from Oscar (Oscar): a producer bundle
registers a dictionary service, and a consumer bundle leverages the dictionary service to
look up a word (i.e. DictionaryService.checkWord() is called). We are

interested to see whether the consumer bundle will use a stale dictionary service.
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We first check an implementation that has a known bug. The following pseudo code

is the main part of interest, adopted from the actual implementation:

& WMo

o n
P

. producer bundle registers DictionaryService
ServiceReference({)refs=context.getServiceReferences(...);
if (refs != null) {

DictionaryService dictionary =

{DictionaryService) context.getService(refs(0));
if {dictionary.checkWord{word)) {

Figure 8. A naive example of using a service

Without surprise, when we instantiate threads in Figure 6 with the two bundles in

Figure 8, JPF reports a NullPointerException as shown in Figure 9 (in a

simplified format). The exception is due to the interference of the producer bundle: after

the consumer thread gets a non-null ServiceReference, the producer thread unregisters the

dictionary service so that the query to the dictionary service returns nuil.

R W N =
s s s

...producer registers DictionaryService
ServiceReference () refs=context.getServiceReferences(...};
if (refs != null}) {

. producer unregisters DictionaryService
DictionaryService dictionary =

{(DicticnaryService) context.getService(refs(0)):
if (dictionary.checkWord{word)} {
JPF reports NullPointerException

Figure 9. Error trace for the application in Figure 8
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To avoid this problem, the tutorial proposes several scenarios to go around it. One
approach is to subscribe service events by implementing ServiceListener and track
the status of the dictionary service, as shown in Figure 10.

In the revised scenario, two variables are created to hold service information and
are shared between threads: m_ref is designed to hold the service reference to the
dictionary service, and m_dictionary is a cache to the dictionary service object. The
hook ServiceChanged() is called by the base framework when a service event
occurs: it sets m_ref and m_dictionary by looking up the service repository in the
base framework when a service is registered, and refreshesm_ref and m_dictionary
when a service is unregistered (i.e. setm_ref and m_dictionary to null and reassign

the service with the highest rank to them).
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{1} Use dictionary service in the consumer thread:

1. context.addServiceListener{this,...):

2. ServiceReference () refs=context.getServiceReferences{...);
3. if {(refs != null} {

4 m _ref = refs(0);
5.m_dictionary=(DictionaryService)context.getService(m ref);
6. }

7. if (m_dictionary!=null) {

8 if (m_dictionary.checkWord(word)} {

9

{2) Implement ServiceListener.serviceChanged():

10. if (event.getType()==ServiceEvent.REGISTERED) {

11. if (m_ref == null) {

i2. m_ref = event.getServiceReference();

13. m_dictionary=(DictionaryService)

context.getService (m_ref);

14. }

15. } else if {(event.getType()}==
ServiceEvent.UNREGISTERING) {

16. if (event.getServiceReference() == m_ref) {

17. context.ungetService (m_ref};

18. m_ref = null;

19. m_dictionary = null;

20. ServiceReference() refs=
context.getServiceReferences(...);

21. if (refs != null) {

22, m_ref = refs(0);

23. m_dictionary=(DictionaryService)

context.getService (m_ref);

24, 1

25, }

26. }

Figure 10. Subscribing service events to avoid the stale references problem

However, JPF reports an error trace when we check the above application, as shown

in Figure 11.
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...producer thread registers DictionaryService
{(1.3) if (refs != null) {
(1.4) m_ref = refs(0);

..producer thread unregisters DictionaryService
...base framework calls serviceChanged (UNREGISTERING)
{(2.18} m_ref = null;

(2.19) m_dictionary = null;

(1.5) m_dictionary =
(DictionaryService)context.getService(m_ref);

...JPF reports NullPointerException: call getService() on null
pointer..

Figure 11. Error trace for the application in Figure 10

The error is the result of concurrent access to m_ref by the three threads: the
producer/consumer bundle, and the base framework. It happens when a valid service
reference m_ref is about to be used to query a service in the framework, the base
framework resets m_ref and subsequently causes the query to fail (i.e. the service
reference may not be null when looking up a service in the base framework).

The result is somewhat surprising because this scenario has been advertised in a
tutorial to tackle the stale references problem, and is actually used in many real projects.
For example, by the same modeling framework, we have found a similar problem
between Console bundle and Desktop bundle included in the Knopflerfish
distribution. Such examples are evidence of the severity of concurrency errors in practice
and the effectiveness of our modeling framework to tackle a class of these errors.

Interestingly, the stale references problem is known to the OSGi alliance, and a
helper class, org.osgi.util.tracker.ServiceTracker, is included in the

OSGi specification to help track valid services (OSGi 2005). It implements a fairly
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involved service listener to track registered services. However, the specification doesn’t
propose any approach completely immune to the stale references problem. In fact, it
acknowledges that one may still suffer from the same problem even when using a
ServiceTracker. The tutorial in the Knopflerfish framework (Knopflerfish 2007)
gives an example to leverage this helper, as follows (it is slightly modified by adding line

4 to avoid a shallow NullPointerException when there is no dictionary service):

ServiceTracker tracker = new ServiceTracker(...):
. tracker.open{);:
.DictionaryService s=(DictionaryService)tracker.getService():;
if (st!=null) {
s.checkWord (...}

o W
P .

Figure 12. An example to use the ServiceTracker

For the above implementation, JPF reports an assertion exception as in Figure 13
(in an abstract format). This error is caused by the second type of the stale references
problem: the reference to the DictionaryService object is valid till line 4; however,
after the producer bundle unregisters the dictionary service, it actually points to an
obsolete object and behaves in an unpredictable way, e.g. it may throw exceptions due to

using non-existing resources.
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...producer bundle registers DictionaryService

ServiceTracker tracker = new ServiceTracker(...):

. tracker.open{):

.DictionaryService s=(DictionaryService)tracker.getService();
if {(st=null) ¢{

. ..producer bundle unregisters DictiocnaryService

s.checkWord (...};

. JPF reports an assertion error

=W N

oy LN

Figure 13. Error trace for the application in Figure 12

It is worth pointing out that we adapt the models in the above examples from real
OSGi applications: the modifications mainly involve the removal of unrelated statements
and the removal of exception try-catch block to expose exceptions. Since the
programming interface of the regular OSGi applications (i.e. no system bundles, not
touching the framework core infrastructure) are created with a Facade design pattern,
and we keep the these APIs unchanged, developers can create a model for an OSGi
application like developing the OSGi application itself, and thus should have little
difficulty in building new models for OSGi applications or adapting their applications
into models. These modeling efforts are minimal compared with the construction of the

modeling framework.

3.4. Proposed Solutions

In this section, we discuss potential approaches to address the stale references
problem, and use the formal model to explore candidate solutions.
The stale references problem is caused by the very nature of the indirection and

lookup scheme of services in the OSGi specification: there is no assurance that a



38
reference (i.e. a pointer) to a service object can be cached for future usage. To guarantee
no stale references, there ought to be a scheme that guarantees the validity of a service
object throughout all of the period of its invocation, i.e., (1) a service reference is valid (2)
the use of the service object is exclusive (i.e. the service can’t be unregistered during this
period) (3) the use of the service is short (i.e. cause no blocking), to avoid hanging the
whole system.

In the above three conditions, (3) has to be guaranteed by developers who develop
the consumer bundle. We show paradigms to assure (1) and (2).

In Figure 14, we define a class BasicService that is to be extended by any
service class. It requires the collaboration of the framework and the consumer bundle. In
the framework, while unregistering a service, service lock assures the exclusive
access to the service object, and the service validity can be faithfully reported by calling
service.getValid(). We can leverage this infrastructure to correct the three

flawed examples in the previous section.
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1) A service to be extended by all services:

(

1. class BasicService ({

2 public volatile boolean valid = false;
3 public Object service_lock = new Object():;
4. public final void setValid(boolean b) {
S valid = b;

6 }

7 public final boolean getValid() {

8 return valid;

9. 1}

10.}

(2) Collaboration in Framework:
unregister() f{
synchronized (service.service_lock) {
service.setValid{false);
...proceed unregistration like original framework...
}
}

Figure 14. Collaboration between OSGi applications and the framework

Solution 1: For the example in Figure 8, we add synchronization on
service lock and check service validity (i.e. service!=null &&
service.getValid ()) before invoking a service’s function.

We check this modified model with the modeling framework and find no error. The

paradigm to use a service in this example is, always exclusively access a service and get a

fresh copy of a service each time.
Solution 2: For the example in Figure 10, we set the framework’s option to broadcast
an unregister_service event before actually unregistering a service, and add

synchronization on service.service_lock and check service validity before

invoking a service’s function.
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We check this modified model with the modeling framework and find no error. The
paradigm for this example is, with a service listener, always exclusively access a service
and assure the unregister_service event is delivered and processed synchronously
and before actually unregistering in the framework.

Solution 3: For the example in Figure 12, we add synchronization on
service lock and check service validity before using a service achieved from a
ServiceTracker.

We check this modified model with the modeling framework and find no error. The
idea for this example is, with a ServiceTracker, always exclusively retrieve a
service and check its validity at each time of invocation.

There are subtle issues in the above three paradigms. For example, although they
are all free from deadlock in our verification, they need fine-grained arrangement in
synchronization, which may be difficult in a complex application. Also, getting a fresh
copy of a service by looking up in the framework each time carries an overhead in
performance. It goes beyond the scope of this dissertation to propose a generic, fine-

grained concurrency control protocol for the service management.
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CHAPTERIV

TAILORING A MODELING FRAMEWORK WITH AOP
ASSISTANCE

In this section, I point out the inflexibility and crosscutting concerns using only
Object-Oriented techniques when tailoring a modeling framework, with examples from
the OSGi domain. Thereafter, I show that one can modularize these crosscutting concerns

with Aspect-Oriented techniques, thus boosting the usability of a modeling framework.

4.1. Dilemma of Performance and Modularity

In section 3, we have shown that our modeling framework can be applied to OSGi
applications to discover the stale reference problem. However, we arbitrarily decided not
to check the permission before executing a bundle. The question is, what modifications to
the modeling framework do we need to make when we want to add this feature?

On the other hand, the overall model based on the modeling framework is not
necessarily the most efficient that a developer can reasonably come up with. There are
fields and statements that are required for a particular application but totally unrelated to
another application. For example, we have included the module for bundle listener
management and bundle event dispatch in the modeling framework; however, an OSGi

application not subscribing to the bundle events (like the example in Figure 8) doesn’t
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need the bundle listener module presented in the modeling framework. One of such
compromises is shown in Figure 15.

Figure 15 shows some fragments of three Java classes, BundleImpl,
Framework and Listeners. They are part of the core infrastructure of the modeling
framework: BundleImpl.start () describes the internal changes when starting a
bundle, including checking execution permission, invoking
BundleActivator.start () callback and broadcasting bundle starting events;
BundleImpl.stop() describes the internal changes when stopping a bundle,
including checking execution permission, invoking BundleActivator.stop()
callback and broadcasting bundle stopping events; Framework.secure stores the
security policy, and Listeners.bundlelisteners stores a list of mapping
between bundles and their listeners. In particular, the fields and statements in the bold
font are only required when the security feature is desired, and the fields and statements
highlighted with grey color are only required when the bundle event influences the OSGi
application. Since the state space explosion problem is so severe, we would rather
remove these fields and statements unless they are really required. However, as shown in
the above, the relevance of fields and statements vary according to the applications, thus
there is no way to define a modeling framework with just enough details. For the simple
example in Figure 15, we need to make 8 modifications for the security feature and 5
modifications for the bundle listener routines in different classes; for a particular OSGi
application, we will potentially make modifications in 5+8=13 places for each of the 2°=4

possible combinations. When the full modeling framework (core infrastructure only) is
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considered, we have 23 modifications for the security feature, 16 modifications for the
bundle listener feature, and we will have to make 23+16=39 modifications for each of the
4 possible combinations. Even worse, for a framework with rich features like OSGi, it is
a daunting task to make modifications for a particular combination of features: we have
identified other features like the framework listener feature, the service listener feature,
the bundle context validator. Each of these features involve modifications similar to the
above two features; therefore, for a particular application, we have to make about 90
potential modifications for one of the 2°=32 possible combinations of features. And again,
these modifications involve fields in different classes and statements in different methods
and classes, break the encapsulation of an application framework and make the
framework difficult to understand and reuse. In practice, the developer faces a dilemma:
whether to use the modeling framework in a white-box style and have scattered code here
and there, or to use the modeling framework in a black-box style but with more details

than necessary. We set out to study this problem in the rest of this dissertation.
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class BundleImpl {
PermissionOps secure;

synchronized public void start{) {
chaeck permission for bundle management;
switch {(current state} |
case INSTALLED: throw error;
case RESQLVED:
state = STARTING;

broadcast a bundle starting event;
create an assoclated BundleContext;
check permission for starting a bundle;
instantiate the BundleActivator;
invoke start() method of activator;
state = ACTIVE
Broadcast a Bundle started eventg

case ACTIVE: return;

case STARTING, STOPPING, UNINSTALLED:
throw error;

}
synchronized public void stop{) {
check permission for bundle management;
switch {current state) {
case INSTALLED, RESOLVED:
check permission to set persistent;
case ACTIVE:
check permission to stop a bundle;
state = STOPPING;
Broadcast a bundle stopping event;
invoke stop{) method of activator;
state = RESOLVED
proadcast a bundle stopped event;
case STARTING, STOPPING, UNINSTALLED:
throw exception;

1}
class Framework |
PermissionOps secure;

Framework (Object m) |
initialize secure by security policy:;

)
class Listeners {
HashSet bundleldisteners = new HashSet (]

Figure 15. A Dilemma of efficiency and modularity
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4.2. Tailoring the Modeling Framework to the Right Abstraction Level

The addition of fields and statements according to the needed features can be
modularized by Aspect-Oriented techniques. The hypothesis is that we can use inter-fype
definition (ITD) to add the missing fields, pick joinpoints to catch the execution points to
update the system states and use advices to carry out the actual updates. Thereafter, we
follow the general steps in the below to carry out framework-based formal modeling:

1) Define a generic modeling framework with the least details

2} Define each feature of the system in an aspect

3) Choose a particular combination of features by including the corresponding
aspects for weaving.

4) Specialize the modeling framework with slots, hooks and advices.

We now show the procedure of how we apply the above techniques to build formal
models for OSGi applications based on a generic modeling framework. We first aspectize
the example in Figure 15, as shown in Figure 16.

In Figure 16, the aspect BundleListenerAJd (line 1-16) modularizes the
scattered code for the feature of bundle listening. Using ITD, it declares a field
bundlelListener that has been removed from the class Framework in the original
framework, which holds a collection of mappings between bundles and their listeners.
The pointcut Monitor_ BundleStateChange catches all changes to the bundle
states, i.e. a bundle state is represented as the field BundleImpl.state. When a

bundle state is changed, various bundle events are broadcast: if the bundle state is set to
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Bundle.STARTING (line 7), a bundle STARTING event is broadcast by calling the
routine bundleChanged (BundleEvent) (i.e. bundleChanged() is a helper
function that is moved from the original framework into BundleListenerAdJ, which
is omitted in Figure 15); if the bundle state is set to Bundle. ACTIVE, a bundle
STARTED event is broadcast to notify all subscribers that the subject has been started; if
the bundle state is set to Bundle.STOPPING, a bundle STOPPING event is broadcast to
notify subscribers that the subject is being stopped; if the bundle state is set to
Bundle.RESOLVED, a bundle STOPPED event is broadcast to notify subscribers that the
subject has been stopped.

The aspect PermissionAJ (line 17-39) modularizes the changes needed for the
security feature. It inserts the field perm back to the class Framework (line 18), to
represent the security policy. The security policy is initialized in the framework
constructor (line 21). The pointcut Monitor BundleStartStop catches the
joinpoints when a bundle is about to start or stop, and the corresponding advice calls the
security policy’s checkexecutionAdminPerm() method to verify the permission
for execution. The pointcut Monitor BundleStartPersistent() catches the
joinpoints when a bundle is set to persistent, and the corresponding advice calls the
security routines to carry out the actual verification. The pointcut
Monitor_BundleStart0(}/Monitor_BundleStopQ ()} catches the joinpoint
when a bundle is actually started/stopped, and the corresponding advice calls a security to

check the execution permission.
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l.public privileged aspect BundlelistenerAJ ({

2. private HashSet bundlelisteners = new HashSet(}:

3. pointcut Monitor_BundleStateChange (Bundlelmpl b, int nstate):
4, set{int BundleImpl.state) && args{nstate) && target(b):

5. after(Bundle b, int nstate):Monitor_BundleStateChange(b, nstate){
6. BundleEvent be;

7. if (nstate==Bundle.STARTING) {

g. bundleChanged (new BundleEvent (BundleEvent.STARTING, b}};
9. } else if (nstate==Bundle.ACTIVE} ({

10. bundleChanged (new BundleEvent (BundleEvent.STARTED, b))
11. } else if {nstate==Bundle.STOPPING) ({

12. bundleChanged (new BundleEvent (BundleEvent.STOPPING, b));
13. } else if (nstate==Bundle.RESOLVED} ({

14. bundleChanged {new BundleEvent (BundleEvent.STOPPED, b)):
15. }

16. } 1}

17 .public aspect PermissionAJ {

18. PermissionOps perm = null;

19. pointcut FConstructor(Object m):call (Framework.new(Object)} &&
args{m);

20. after{Object m): FConstructor (m}

21. { initialize the secure policy; }

22. pointcut Monitor_BundleStartStop(Bundlelmpl bundle):

23. {call {(void start{)} |l call (void stop{})} && target(bundle);
24. before(BundleImpl bundle): Monitor BundleStartStop{bundle)
25. { perm.checkExecuteAdminPerm{bundle); }

26. pointcut Monitor BundleStartPersistent {(BundleImpl bundle):
27. execution {(veoid startOnlaunch({..}) && this(bundle);

28. before{BundleiImpl bundle): Monitor_BundlePersistent (bundle)
29. { check permission to set persistent; }

30. pointcut Monitor BundleStart0{BundleiImpl bundle):

31. execution (void BunndleImpl+.start0()} && this(bundle);

32. before (BundleImpl bundle): Monitor BundleStart0O(bundle)

33. { check permission to actually start a bundle; }

34. pointcut Monitor_BundleStopO(BundleImpl bundle, beoolean b):
35. execution {(BundleException BundlelImpl+.stop0({boolean))

36. && this(bundle} && args(b):

37. before {Bundle bundle, boclean b):

Monitor BundleStopACTIVE (bundle, b)

38. { check permission to actunally stop a bundle; }

39.}

Figure 16. Modularizing the crosscutting concerns in Figure 15 with aspects

When we need a variation of the modeling framework that supports the security

feature, we simply include the aspect PermissionAdJ in Aspect] weaving, which is as
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trivial as a command-line option. Similarly, we can generate a variation of the modeling
framework that supports the bundle listening feature by including the aspect
BundleListenerAJ in Aspect] weaving. Overall, to enable a feature, we simply add
the corresponding aspect to Aspect] weaving. In this way, a model developer doesn’t
have to know about the internals of the modeling framework, and is able to use the

modeling framework in a black-box style.
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CHAPTER V

MODEL CHECKING ASPECTJ PROGRAMS

Two concerns arise due to the very nature of Aspect] programs when model
checking Aspect] programs, namely, native code and performance overhead. This chapter

explores the causes and solutions to these concerns.

5.1. Native Code

The concerns of native code arise due to two factors: 1) The aspect weaving uses
reflection to gain contextual information and create proper pointcuts designators. 2)
Aspect] programs require a runtime library, which may invoke native methods that are
not directly checkable with JPF. We have to address these concerns before we are able to
check an Aspect] program with JPF.

Some factors mitigate the severity of the concerns. First, the aspect weaving uses
reflection mainly at the weaving time, rather than the runtime. Second, the runtime
library of Aspect] programs is relatively small (~180K bytes) and only a small portion of
it invokes native methods. Therefore, it is possible to create a small abstraction library to
check Aspect] programs. While it seems trivial to resolve such “accidental” invocation of

system-level functions, JPF can’t check Aspect] programs without such step. In this
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section, we briefly show some examples to demonstrate the necessity and the approach to
construct an abstraction for the runtime library.

In Figure 17 it shows an example of the Aspect] runtime library that causes a
runtime exception to JPF. The exception happens when the statement in the grey area is
executed: the reason is that java.lang.ClassLoader. loadClass (String) is
a system-level function invocation and JPF can’t track such information. While
theoretically it can be implemented via MIJI, it is fairly involved and one cannot
reasonably expect a typical programmer to be able to do so. Instead, we can simply
ignore the different classpath and stick to the default system class loader, as shown in
Figure 18. The function java.lang.Class.forName (String) is also a system-
level invocation; however, JPF already provides its peer implementation in MJI form,
which creates an instance of the class and registers the instance in the runtime

environment of JPF’s host VM.

Class makeClass{String s) {
if (s.equals({"*"}) return null;

Class ret = (Class)prims.get(s};
if (ret !'= null) return ret;
try {

ClassLoader loader = getLookupClassLoader();
if (loader == null) {
return Class. forName({s);

} else {

[ return loader.loadClass(s);
}

} catch (ClassNotFoundException e} |
return ClassNotFoundException.class;

}

}

Figure 17. Sample code in Aspect) runtime library that raises an exception
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Class makeClass (String s) |
if (s.equals("*")) return null;

Class ret = (Class)prims.get(s);
if (ret != null) return ret;
try |

return Class.forName(s):
} catch {ClassNotFoundException e) {
return ClassNotFoundException.class;

Figure 18. A reimplementation that uses only the system classpath

In the rest of this section, we show an example that implements a peer method via
MII. Consider the following code from org.aspectbench.runtime.internal
in the gjc runtime library: The function set() in Figure 19 invokes
java.lang.System.getProperty(String, String), which reads the
named property from the operating system. Again, such function invocation breaks the
close environment of JPF and needs to be taken care of. No peer method for
getProperty(String, String) is implemented; therefore, the invocation to the
set () method will cause a runtime exception to JPF (this is accurate as of 03/2007; the
current release of JPF does provide another implementation by pre-fetching all needed
information through configurations).

We can use the MIJI scheme in JPF to create a peer method to be executed in place
of System.getProperty({String, String), as shown in Figure 20. The peer

class follows the naming convention of Java Native Interface (JNI). After the peer class is
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installed, a peer method gets executed when JPF decides that its associated model method
is invoked. In this case, when System.getProperty(String, String) is
called, the host VM will execute JPF_java_lang System.getProperty
Ljava_lang_String 2Ljava_lang String_2_ Ljava_lang_String_2()
correspondingly. In particular, the host JVM gets the environment information (line 8)
and stores the result in a special area (line 10), or stores a default value in the special area
if the fetched information is null (line 11-12). Thereafter, JPF reads the result from this
special area as if it is read from the system environment. After the installation of this peer
class, JPF reports no exception when it invokes System.getProperty(String,

String).

private static boolean set() {
if (System.getProperty(
"org.aspectbench.DontUseCflowThreadLocal”,
"false") .equals("true")}
return false;

Figure 19. The runtime library code that raises a runtime exception

As a result to date, we have created an MJI abstraction library and customized the
Aspect] runtime library, to help resolve native methods directly or indirectly introduced
by Aspect]. This covers the basic Aspect] primitives except cflow, cflowbelow and

percflow constructs. We also leverage the integrated JUnit test utilities in JPF to create
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a regression test set, to verify that all Aspect] primitive constructs (except cflow-related

constructs) are checkable with JPF.

1. public static int getProperty_ Ljava_lang String 2Ljava
_lang_String_2_ Ljava_lang_String_2 (MJIEnv env, int clsObjRef, int
keyRef, int defRef) {

2 int r = MJIEnv.NULL;

3 if {keyRef != MJIEnv.NULL) {

4 String k = env.getStringObject{keyRef);

5. String defaultString = env.getStringObject (defRef);
6. if (k==null)

7 return MJIEnv.NULL;

B String v = System.getProperty(k):

9 if (v != null)

10. r = env.newString{v};

11. else if (defaultString!=null)

12. r = env.newString(defaultString};

13. }

14. return r;

15.}

Figure 20. Peer method for System. getProperty (String,

5.2. Performance Overhead

String)

The performance overhead is a more severe concern when adopting AOP

techniques for model checking. It is reflected as the different search space of between a

Java program and its Aspect] counterpart. In addition to fields and statements inserted as

intended (i.e. the same fields and statements as in their pure Java counterpart), the aspect

weaving introduces instances of aspects and extra statements that have no

correspondence in its Java counterpart. These fields and statements are required for

internal use, such as aspect management and contextual information. These additions
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may increase the number of reachable states and raise the risk to run out of resources
(time and memory) before the verification completes. The performance overhead can be
demonstrated with the following code fragments.

Figure 21 shows a Java program TwoThreadResourceJava.java and a
corresponding Aspect] program TwoThreadAJ.aj that are driven by the skeleton
TwoThread. aj. The intention of the program, as demonstrated by the Java program, is
to keep track of the usage of the shared resource: the counter is increased when entering a
critical section, and decreased when exiting the critical section. The Aspect] version,
TwoThreadResourceAspectdJ, creates a joinpoint designator before and after the
critical section, and advises increasing and decreasing the counter when appropriate (for
simplicity, we assume that there is only one resource and one counter, and use issinglefon
version of aspects).

Model checking the above two programs reveals that the state space is increased
due to AOP techniques. Using the number of new states as the measurement of state
space, from Table 1, we can see that the issinglefon version increases the state space by
19% (i.e. 194 new states vs. 163 new states), while the perthis version nearly triples the

state space (i.e. 465 new states vs. 163 new states).
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class TwoThreadResourceJava implements TwoThreadResourcelnt {

int value=0;

void inc(} | value++; }

void dec{) { wvalue--; }

public void consume({} {

inc();
dec(};
}}
public class TwoThread extends Thread {

TwoThreadResourcelnt resource;

public TwoThread (TwoThreadResourcelnt e} {
resource = @;

}

public void run{) {
resource.consume{);

}

public static void main{String args({)} {
TwoThreadResourcelInt resource;
TwoThread tl = new TwoThread{resource);
TwoThread t2 = new TwoThread({resource):
tl.start{);
t2.start(};

public class TwoThreadResourceAspectd implements
TwoThreadResourcelnt |{
public void consume{} { }
}
public aspect TwoThreadAJ ({
public int TwoThreadResourceAspectJ.value=0;
void TwoThreadResourceAspectJ.inc() { value++; }

void TwoThreadResourceAspectJd.dec({} { value--; 1}
pointcut pc_consume (TwoThreadResourceAspectd resource):
execution (public void consume())} && this{resource):

before (TwoThreadResourceAspectJ resource): pc_consume (resource)
resource.inc();
}
after (TwoThreadResourceAspectJ resource): pc_consume({resource)
resource.dec{};
}
}

{

{

Figure 21. A Java program and the equivalent Aspect] program
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Table 1. A comparison of search space: Java and Aspect] versions

Java version Aspectd (issingleton) AspectJ (perthis)
states: new=163, states: new=194, states: new=465,
visited=178, visited=220, visited=588,
backtracked=340, backtracked=413, backtracked=1052,
end=31 end=33 end=51
instructions: 3830 instructions: 49817 instructions: 13324

The root of increased state space can be speculated by inspecting the woven
bytecode. With -dava option, the abc compiler allows the output in Java source code. A
snapshot of the woven Java source code for the issingleton version is shown in Figure 22.

From Figure 22, we can see that apart from intended code defined in advice, extra
variables, statements and methods are inserted for aspect management. The extra
statements do not increase the state space as long as they don’t access a shared variable,
thanks to the partial order reduction (POR) algorithm used in JPF (i.e. when POR is
enabled, if a bytecode instruction is not scheduling relevant, JPF continues execution
without creating a new state). However, some statements do access a shared variable. For
example, the singleton aspect provides a public static method aspectOf () to allow the
access of the aspect instance via a singleton pattern, which is stored as a public static
variable abc$issingletonInstance. The aspectOf () is invoked from the
consume () method, as a need for aspect management. Furthermore, the consume ()
method is invoked from both threads, as part of the driving skeleton. Therefore,

abcSissingletonInstance is shared among two threads, and the particular
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statements that read/write it will incur additional interleaving. Consequentially, there are

more states in the aspect version than its Java counterpart.

public class TwoThreadAJ |
public static final TwoThreadAJ abc$issingletonInstance;
private static Throwable abc$initFailureCause;
public static TwoThreadAJ aspectOf () throws
org.aspectj.lang.NoAspectBoundException {
TwoThreadAJ theAspect;
theAspect = abc$issingletonInstance;
if (theAspect !'= null) {
return theAspect;
}

throw new NoAspectBoundException({"...", abc$initFailureCause);
P

}
public class TwoThreadResourceAspectJ implements
myabc.perform.auxilary.TwoThreadResourcelInt {
public void consume{) ({
TwoThreadAJ rl;
rl = null;
try {
rl = TwoThreadAJd.aspectOf();
this.myabcSperform$TwoThreadAJ$ine$6();
} ecatch {(Throwable r2) {
if (rl == null) {
TwoThreadAJ.aspectOf () ;
}
this.myabcSperform$TwoThreadAd$decs8 ()
throw r2;
}
this.myabcSperform$TwoThreadhJSdec$B ()
}

Figure 22. The woven output (in Java format) for the issingleton version

The increase of the state space depends on the degree of extra interleaving. For

Aspect] programs with perthis and pertarget, the number of states can be doubled or
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even tripled. Therefore, it is worthy to look at the methodologies to reduce the

performance overhead due to the adoption of AOP techniques.

5.3. Reducing the Performance Overhead

Ideally, while enjoying the modularity provided by AOP techniques, we don’t want
to sacrifice the performance since the state space explosion is already a severe problem.
We have come up with several methodologies to reduce the extra interleaving introduced
by aspect weaving. In this section, we address the methodology we have adopted and
briefly discuss several other possibilities to argue for our approach.

Theoretically, each extra statement added by AOP techniques has the potential to
increase the state space. An intuitive approach to reduce the states is to make each
contiguous, aspect-specific execution as an atomic block. This doesn’t change the
semantics of the Java programs, namely, it should render as many errors as the Java
version. There are several heuristics to decorate the atomicity blocks, for example, using
the line number for a bytecode, or modify the Aspect] compiler to directly specify the
atomicity blocks. These approaches are tied to the implementations of a particular
Aspect] compiler.

Another general approach is based on the observation that under the POR analysis,
an inserted statement won’t increase the state space as long as the corresponding
bytecode instructions are not scheduling relevant. Therefore, as long as we are able to
force aspect-specific bytecode instructions as scheduling irrelevant, there is no increase

of state space. In our observation, a major source of interference is aspect-specific shared
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variables, which may be excluded from the POR analysis in two approaches: directly
exclude them from the POR analysis, or execute the methods that access them atomically.

We will focus on the last methodology in this section, which has been adopted in

our case studies.

5.3.1. Atomicity of Aspect-Specific Methods

For convenience, we call a class field that is irrelevant to application code but used
only internally for aspect management as aspect-specific variables. Similarly, we call a
method that contains no application-specific code but statements that are internally used
by the aspect management aspect-specific methods. As mentioned, aspect-specific
variables are the major source of extra interleaving; our goal is to eliminate the extra
interleaving caused by aspect-specific variables.

Since aspect-specific methods carry no application code, executing them atomically
won’t omit errors caused by the application code. The remaining questions are: 1) Are
aspect-specific variables accessible only through aspect-specific methods? 2) Can we pre-
determine aspect-specific methods before model checking? 3) Can we execute aspect-
specific methods atomically during model checking? The first two conjectures can be
validated by inspecting aspect generation code in the Aspect] compiler and the Aspect]
programs after weaving. We answer these three questions in this section, mainly based on
the abe compiler and verified by the ajc compiler.

To be shared among threads, an aspect-specific variable must be a class field. They

are generated for the aspect management in several situations, as discussed below.
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issingleton An aspect may be defined as issingleton (by default), where an

instance of the specific aspect is created and accessed through a singleton pattern. Figure
23 shows the source code from the abc compiler that generates an issingleton aspect.

From Figure 21 and Figure 22, we can see that for an issingleton aspect, only two
field variables are generated, abcSissingletonInstance and
abc$initFailureCause. The variable abc$initFailureCause is used to
cache an exception thrown during the static aspect class initialization so that it can be re-
thrown thereafter. If we ignore the passing of the exception instance (i.e. this assumption
is reasonable, since it is less common to share the exception instance elsewhere, and it is
often deemed as a bad practice to let exception-handling code change the control flow),
the only source for extra interference is the variable abc$issingletonInstance.

From Figure 21 and Figure 22, we can further see that the only aspect-specific
methods generated to access the aspect instance abc$issingletonInstance are
aspectOf (), hasAspect () and the static aspect initialization method. Since the
static class initialization is always synchronized, we don’t have to worry about its access
to the shared aspect instance; we only need to make sure that the other two methods,
aspectOf () and hasAspect (}, are executed atomically.

Figure 22 also answers the second question, “Can we pre-determine aspect-specific
methods before model checking?”: for an issingleton aspect, the abc compiler always
generates these two aspect-specific methods with the same names. To tell JPF that these
methods are to be executed atomically, we need to identify them in a JPF configuration

file jpf-attribute as:
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<full-class-name> aspectOf true
<full-class-name> hasAspect true

The <full-class-name> is the canonical class name for the woven aspect,
including its package and class name. In general, they can be expressed as a regular
expression that can be recognized by gov.nasa.jpf.jvm.ConfigAttributor
(one has to configure JPF to set vm.attributor.class =
gov.nasa.jpf.jvm.ConfigAttributor instead of the default attributor). This
attributor will be checked when JPF loads a class, so that JPF can set an atomic mark for
each method in the class.

The atomic execution of a method that has been marked as atomic can be
implemented as a VM listener though the JPF extension scheme. The algorithm relies on
JPF’s implementation of the on-the-fly partial order reduction, as shown in Figure 24.

Figure 24 shows the current implementation of the on-the-fly partial order reduction
algorithm in JPF. It uses a global variable, isFirstSteplInsn, to indicate whether the
current bytecode instruction is the first instruction to be executed after the last step. Upon
the execution of a bytecode instruction, if the instruction is the first instruction, it will be
always executed; or, if it is scheduling relevant and not excluded from the POR analysis,
a choice generator is created and JPF breaks the inner loop, marking the end of the
execution step (so that a potentially new state will be reached if not within an atomic
block); otherwise, this instruction is either scheduling irrelevant or has been explicitly
excluded from the POR analysis, so it should be executed without breaking a POR

analysis step.
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public void fillInSingletonAspect (Aspect aspct) {
SooctClass ¢l = aspct.getInstanceClass().getSootClass(};
SootField instance = new SootField("abc$issingletonInstance”, cl
.getType(), Modifier.PUBLIC | Modifier.STATIC | Modifier.FINAL};
cl.addField(instance);
ScotField instance2 = new SootField("abcSinitFailureCause", RefType
.v("java.lang.Throwable"), Modifier.PRIVATE | Modifier.STATIC);
cl.addField{instance2);
generateSingletonAspectOiBody(cl);
generateSingletonHasAspectBody(cl);
generateSingletonClinitBody{cl); }
private void generateSingletonAspectOfBody (SootClass cl) |
if {Modifier.isAbstract(cl.getModifiers(})) return;
SootMethod aspectQf = cl.getMethod("aspectOf", new ArraylList()):
Body b = Jimple.v{).newBody({aspectOrf};
aspectOf.setActiveBody(b);
SootClass nabe = Scene.v().getSootClass(
"org.aspectj.lang.NoAspectBoundException");

StaticFieldRef ref = Jimple.v().newStaticFieldRef (
Scene.v({) .makeFieldRef(cl, "abc$issingletonInstance”,

cl.getType(}), true));

Chain units = b.getUnits();

units.addLast {Jimple.v ()} .newAssignStmt (theAspect, ref});

Stmt newExceptStmt = Jimple.v{}.newAssignStmt (nabException,
Jimple.v () .newNewExpr (nabe.getType(})};

Stmt ifStmt = Jimple.v().newIfStmt (
Jimple.v () .newEgExpr{theAspect, NullConstant.v()),
newExceptStmt) ;

units.addLast {ifStmt);

Stmt returnStmt = Jimple.v().newReturnStmt {theAspect);

units.addLast (returnStmt);

units.addLast {(newExceptStmt);

List typelist = new LinkedList({);

typelist.add (RefType.v("java.lang.String"}):

typelist.add (RefType.v{"java.lang.Throwable"});

SoctMethodRef initthrowmethod = Scene.v () .makeConstructorRef (nabe,
typelist);

StaticFieldRef causefield = Jimple.v().newStaticFieldRef
Scene.v () .makeFieldRef (cl, "abc$initFailureCause”,

RefType.v("java.lang.Throwable"), true)};

Stmt assigntocause = Jimple.v().newAssignStmt(failureCause,

causefield);

units.addLast (assigntocause);

List arglist = new LinkedList({);

arglist.add{StringConstant.v(cl.getName())});

arglist.add{failureCause);

Figure 23. Aspect generation code for issingleton aspect (from (Avgustinov 2005))
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1. do {

Z. if not in atomic block {

3. advance current choice generator

4, context switch if next choice is a thread choice
5. 1}

6. isFirstStepInsn = true;

7. do {

8. fetch next instruction

e notify vm listener to execute next instruction
i0. executelnstruction {JVM};

11. notify vm listener next instruction executed
12. if {a choice generator is created) {

i3. break;

14. } else {

15. isFirstStepInsn = false;

16. }

17. } while (there are more instructions);

18. )} while (atomicLevel > 0);

19.

20, executelInstruction(} {

21. if (isFirstSteplinsn && isSchedulingRelevant{} && field is not
excluded) {

22. set the current choice generator
23. return;

24, 1}

25. actually execute the instruction
26. }

Figure 24. On-the-fly partial order reduction algorithm in JPF
{Summarized from source code in (Visser 2003))

We can simply implement the atomic execution of an “atomic™ method based on
the existing infrastructure of the POR analysis and JPF’s search extension scheme, as

shown in Figure 25.
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1. public class AtomicMethodVMListener implements VMListener (

2. public void executelInstruction{JVM vm} (

3. Instruction insl = vm.getLastInstruction();:

4. MethodInfo method = insl.getMethodInfo(};

5. ThreadInfo thread = vm.getCurrentThread(];

6. if {(method.isBAtomic(}) {

7. if {!method.isClinit{)) {

8. String name = method.getCompleteName(};

o if (name.startsWith("java.")||name.startsWith("javax."} ||
name.startsWith("sun.")} {

10. if (atomic_standard} {

11. thread.isFirstSteplnsn = true;

12. }

13. } else {

14. thread.isFirstStepInsn = true;

15, }o}o}

16. ...

17. }

Figure 25. The actual implementation of atomic execution of a method

JPF is extensible with the Observer design pattern: one can implement the
gov.nasa.jpf.jvm.VMListener interface (e.g. AtomicMethodVMListener
in Figure 25) and adds it as a listener to the host VM of JPF. JPF will instantiate the
customized VMListener and invoke callback functions at certain interesting points, e.g.
before/after the execution of a bytecode instruction, before/after the advancement of a
search. For the class AtomicMethodVMListener in Figure 25, the method
VMListener.executeInstruction (JVM vm) is invoked right before the actual
execution of a bytecode instruction (line 9-10, Figure 24). If a method is marked as
atomic (line 6), we mark each of its bytecode instruction as the first instruction in an
execution step, to force the atomic execution until it reaches a bytecode instruction of a
non-atomic method (line 11, 14). There is some subtleness though: line 7 excludes such

atomicity for static class initialization since it is inherently synchronized, and line 8-12
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allows the flexibility to exclude some Java routines from atomic execution (this is
implementation-specific: JPF, by default, marks all methods in standard Java libraries as
atomic).

With the mark of the atomic methods and the plug-in of the
AtomicMethodVMListener, run JPF to re-check the model in Figure 21, then we get
the following result:

states: new=163, visited=178, backtracked=340, end=3l

instructions: 4747

From this result, we can see that the issingleton version has the same number of

new states and visited states as its Java counterpart!

perthis  An aspect may be decorated as perthis, where an instance of the specific
aspect is created and associated with each object that is the currently executing object at
any of the specific pointcut. Figure 26 shows a re-implementation of the two threads
example in Figure 21, with the perthis modifier.

For the two threads problem, such implementation differs in that an instance of the
aspect is created and associated for each resource, namely, a counter only tracks the

access of the associated resource instead of all resources.
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public aspect TwoThreadPerThisAJd
perthis {pc_consume {TwoThreadPerThisResourceRspectdJ)) [
public int TwoThreadPerThisResourcelfspectd.value=0;
void TwoThreadPerThisResourceAspectJ.inc() |
value++;
}
void TwoThreadPerThisResourceRhspectJ.dec() {
value~--;
}
pointcut pc_consume (TwoThreadPerThisResourceAspectd resource):
execution {public void consume()) && this{resource);
before (TwoThreadPerThisResourceAspectJ resource):
pc_consume (resource) |
resource.inc(};
}
after (TwoThreadPerThisResourceAspectJ resource):
pc_consume (resource) {
resource.dec{};
}
}

Figure 26. Counting access to each individual resource

Figure 27 shows the Java source code after weaving the perthis aspect in Figure 26.
A class field, myabc_perform TwoThreadPerThisAJ$abcSPerThisField,
is added to store the instance of the aspect. This is the shared variable that causes the
extra interleaving and the subsequent increased states shown in Table 1. In the generated
code, this field is only accessed (read and/or write) by five methods: a get method, a set
method, a static aspectOf method, a static hasAspect method and a static bind method.
The get/set method protects the field from direct access like a normal Object-Oriented
program. The static bind method is used to initialize the aspect instance for a specific
object (i.e. a resource in the two threads example). The static aspectOf method returns the
corresponding instance of a particular object. The static hasAspect method checks

whether the particular object has already had an associated instance of the aspect. The
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static bind method creates and associates an instance of the aspect to a specific object.
Furthermore, these five methods are routines for aspect management and carry no
application code, namely, they are aspect-specific methods as defined. Therefore, if we
execute these methods atomically, the Aspect-Oriented implementation should be as
efficient as their Java counterpart.

Inspecting the abc compiler’s source code responsible for perthis aspect generation
confirms our speculation in the above. Furthermore, there are patterns to name the five
methods. As shown in table 2, the aspectOf method, the hasAspect method, and the bind
method have the fixed regular expressions regardless of the aspect’s name, while the

get/set methods are prefixed with the full name of the aspect class (with “.” replaced with

L1
)
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public class TwoThreadPerThisAJ implements
myabc.perform.TwoThreadPerThisAJd$abcsPerThis |
private transient TwoThreadPerThisAJ
myabc_perform_TwoThreadPerThisAJ$abc$SPerThisField;
public static TwoThreadPerThisAJ aspectOf (Object theObject$17)
throws org.aspectj.lang.NoAspectBoundException ({
TwoThreadPerThisAJ perlinstance$21;
if {(theObject$l7 instanceof TwoThreadPerThisAJ$abc$PerThis)
perInstance$2l = {(TwoThreadPerThisAJSabc$PerThis)
theObject$17) .myabc_perform_TwoThreadPerThisAJSabcSPerThisGet () ;
if (perInstance$2l != null} {
return perinstance$2l;
1
}
throw new NoAspectBoundException();
}
public static boolean hasAspect{Object theObject$22) |
if (theObject$322 instanceof TwoThreadPerThisAJ$abc$PerThis &&
{ (TwoThreadPerThisAJ$abc$PerThis)
theObject$22) .myabc_perform_TwoThreadPerThisAJ§abcSPerThisGet () !=
null) {
return true;
}
return false;
]
public TwoThreadPerThisAJ
myabc_perform_TwoThreadPerThisAJSabc$PerThisGet () |
return myabc perform_TwoThreadPerThisAJ$abcSPerThisField;
}
public void
myabc_perform_TwoThreadPerThisAJS$abc$PerThisSet (TwoThreadPerThisAJ
fieldloc$4) |
myabc_perform_TwoThreadPerThisAJ$abc$PerThisField = fieldloc$4;
]
public static void abc$perThisBind(Object theObject$26) |
TwoThreadPerThisAJSabeSPerThis castedRArg$2y;
if (theObject$26 instanceof TwoThreadPerThisAJ$abc$PerThis} {
castedhrg$27 = (TwoThreadPerThisAJSabc$PerThis) theObject$26;
if
(castedArg$27.myabec_perform_TwoThreadPerThisAJSabcSPerThisGet () ==
null} {

castedArgs$27.myabe_perform_TwoThreadPerThisAJSabc$PerThisSet (new
TwoThreadPerThisAJ(});
1
}
1

Figure 27. The woven output (in Java) for the perthis version
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Table 2. Names of the five aspect-specific methods {perthis)

Type Pattern Examples
get <aspect>$abc$PerThisGet myabc_TwoThreadPerThisAJ$abe$PerThisGet
set <aspect>Fabc$PerThisSet myabc_TwoThreadPerThisAJ$abc$PerThisSet
aspectOf aspectOf aspectOf
hasaAspect hasAspect hasAspect
bind abcSperThisBind abcSperThisBind

If we configure JPF to mark these five methods as atomic and use the
AtomicMethodVMListener we created in the previous section, we get the following
result:

states: new=163, visited=178, backtracked=340, end=31
instructions: 8000

Compared with the statistics in Table 1, now we have reduced the search space to

the same size as its Java counterpart, which is about 1/3 of the search space without such

reduction.

pertarget An aspect may also be decorated as perrarget, where an instance of
the specific aspect is created and associated with each object that is the target of the

joinpoint of any pointcut.
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The aspect generation code for pertarget aspect in the abc compiler is almost
identical to the code for perthis aspect: it also inserts a class field to store an instance of
the aspect, and adds the five aspect-specific methods to access the aspect instance (Table
3 shows the patterns for the names of the five aspect-specific methods for pertarget
aspect). Similarly, after we mark these methods as atomic in JPF’s configuration file, we

are able to reduce the state space to its Java counterpart.

Table 3. Names of the five aspect-specific methods (perrarger)

Type Pattern Examples

get <aspect>$abc$PerTargetGet myabc_TwoThreadPerTargetAJ$abc$PexrTa
rgetGet

set <aspect>$abc$PerTargetSet myabe_TwoThreadPerTargetAJ$abc$PerTa
rgetSet

aspectOf aspectOf aspectOf

hasAspect | hasAspect hasAspect

bind abc$perTargetBind abcS$perTargetBind

5.3.2. Other Methodologies of Reduction

We have also tested other methodologies to reduce the performance overhead
caused by AOP techniques. We briefly describe their theory, implementations and cons

here, which serve as a justification of our approach in the previous section.
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“Hiding” the aspect instance In the previous discussion, our goal is to
reduce the extra interleaving caused by the addition of the aspect instance. One may
immediately come up with another approach to reduce the performance overhead:
exclude the added aspect instance from the POR analysis. This can be as simple as a
small modification in JPF’s configuration file: add the aspect instance to the exclude
fields of the POR analysis.

This approach is simple and totally removes the state transitions when accessing the
aspect instance. However, there are certain circumstances where we don’t want to ignore
such interferences. For example, each aspect class has a public, static aspectOf ()
method to retrieve the instance of the associated aspect (i.e. it is the only aspect instance
for issingleton aspect, or the per-object aspect instance for perthis and pertarget aspect).
One may enforce synchronization rules based on the retrieved aspect instance: blindly
excluding the aspect instance from the POR analysis may lead to omission of some
reachable states and potential errors. An interested reader can refer to (Hannemann 2002)
to see such an example when implementing an Aspect-Oriented Observation Pattern.

Executing aspect-specific instructions atomically (1) We have mentioned
the idea to execute contiguous aspect-specific bytecode instructions atomically. The
remaining question is how to identify the contiguous aspect-specific bytecode
instructions.

One way to identify the aspect-specific bytecode instructions is to use the
instructions’ line number information. Theoretically, the aspect-specific bytecode

instructions, such as those for aspect management, have no corresponding Java source



72
code, either in the pure Java program or the Aspect] program. Similar to the
AtomicMethodvMListener, we can implement a VMListener, such that right
before the execution of a bytecode instruction, it checks the instruction’s line number. If
it is negative (i.e. it is not application code), execute the bytecode instruction atomically.
An implementation of such reduction is shown in Figure 28.

Such implementation is straightforward. However, it relies on the “correctness” of
the line number information and is closely tied to the implementation of the Aspect]
compiler. For example, some aspect-specific bytecode instructions are mapped to the line
of aspect declaration and thus have valid line numbers. For such case, the reduction based

on line number information is not as much as the optimal approach.

public void executeInstruction{JVM wvm} |
Instruction insl = vm.getLastInstruction();
int line = insl.getLineNumber();
ThreadInfo thread = vm.getCurrentThread();
if (line<0) {

thread.isFirstStepInsn = true;

}

}

Figure 28. An implementation of NegativeLineVMListener

Executing aspect-specific instructions atomically (2) Another approach to
execute contiguous aspect-specific instructions atomically is to add atomicity boundary
before and after the contiguous aspect-specific instructions. A sample implementation is

shown in Figure 29.
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In Figure 29, line 4 loads the atomicity boundary class,
gov.nasa.jpf.jvm.AtomicBoundary, into the workspace of Soot. Line 5 creates
a reference to the method AtomicBoundary.beginAtomic(), line 6 creates a
invoke statement to this reference, and line 7 adds this statement as the first statement of
a contiguous block of aspect-specific statements. Similarly, line 11 creates the reference
to AtomicBoundary.endAtomic(), line 12 creates the invoke statement and line 13
adds it to the end of the block of aspect-specific statements. Meanwhile, one also needs to

use the MJI scheme to begin the atomic execution and end the atomic execution at JPF’s

runtime.
1. SootClass atomicBoundary = null;
2. Stmt beginS = null, endS = null;
3. if (ifCustomized) {
4, atomicBoundary =
Scene.v().loadClassAndSupport ("gov.nasa.jpf.jvm.AtomicBoundary”};
5. SootMethodRef beginR = Scene.v() .makeMethodRef (atomicBoundary,

"beginAtomic”, new ArraylList ()}, soot.VoidType.v(), true);
6. beginS = Jimple.v{).

newInvokeStmt {Jimple.v () .newStaticInvokeExpr (beginR});
7. units.addFirst (begins):;

8. 1}

9. ...

10. if (ifCustomized) {

11. SootMethodRef endR = Scene.v().makeMethodRef (atomicBoundary,
"endAtomic", new ArraylList(), soot.VoidType.v(), true);

12. endS = Jimple.v{).newInvokeStmt (
Jimple.v().newStaticInvokeExpr{endR});

i3. units.addLast (endS) ;

14. }

Figure 29. Adding atomicity boundary to aspect-specific code



74

However, decorating all blocks of aspect-specific statements with atomicity
boundaries is a tedious task and tied to a specific version of the Aspect] compiler (which
prevents one from using a newer version of Aspect] compiler). We are not using this

approach in our experiments.

5.3.3. Aspect-Specific Methods in ajc

While we carry out the above analysis and experiments based on abc, many of the
results can be equally applied to ajc. For example, the gjc compiler uses a naming
convention similar to the one in the abc compiler. While the ajc compiler doesn’t provide
an option to generate corresponding Java source code like the “-dava” option in the abc
compiler, one can learn about the names of the aspect-specific methods using Byte Code
Engineering Library (BCEL 2006) or the source code of gjc. I also implement a simple
tool that is based on BCEL, which can read field names, method names and line numbers
of bytecode instructions from a Java class file (Chen 2008). As an example, using these
methodologies, I have identified the following regular expressions to catch the names of
the five aspect-specific methods for perthis aspect:

aspectOf
hasAspect
L*?per.*?Get.* true
L*?per.*?5et.* true
.*?per.*?Bind.* true
We can configure JPF with the above regular expressions so that these methods are

marked as “atomic” methods. If we compile the example in Figure 26 with gjc and plug

AtomicMethodVMListener implemented in Figure 25 into JPF, the search space of
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this setup is the same as the search space of its Java counterpart. Similarly, we can also
reduce the search space for aspect variations issingleton and pertarget to their Java

counterparts.
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CHAPTER VI

VERIFYING ASPECT-ORIENTED DESIGN PATTERNS

In the previous sections, we have shown that an Aspect] program has a larger
search space than its pure Java counterpart, if without additional search heuristics. In
addition to worsening the state space explosion problem, such an increase of state space
may well be an indication of added concurrency problems. In this section, we investigate
such concurrency issues in the context of generic design techniques, using JPF extension
we have created insofar. We first point out the lack of synchronization during aspect
instantiation and show a consequent flaw existing in a common Aspect-Oriented
programming paradigm. We then introduce a generic programming model to avoid such a
trap, verified with JPF (together with the abstraction library we have created). We then
examine more Aspect-Oriented reimplementation of design patterns in the literature,

showing the bugs we have found and providing patches as needed.

6.1. Aspect-Oriented Design Patterns

A design pattern names a generic solution to a common problem at an abstract level
and describes its consequence {Gamma 1995). It is one of the definite characters of a
framework and promotes design reuse. Researchers have studied the Aspect-Oriented

design patterns. Hannemann et. al. showed that in the 23 GoF design patterns, there are
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17 cases that have modularity improvements with Aspect Oriented techniques
(Hannemann 2002). The modularity benefits are concluded as better code locality,
reusability, composition transparency and (un)pluggability. Since design patterns have
summarized the generic solutions to common problems, they have a good chance to be
reused and shall be checked strictly to guarantee the correctness.

Meanwhile, there are also other common programming patterns of Aspect], which
are similar to design patterns in the sense that they are abstract solutions to common
problems but additionally require Aspect-Oriented features (we may broadly call them
Aspect-Oriented design patterns). These design techniques are often taught in
programming books and literature to demonstrate the superiority of Aspect-Oriented
techniques. However, these programming schemes might not have been carefully
inspected in multi-threaded environments: Concurrent programming is already difficult
and error-prone in pure Java programs, but it is even harder to reason Aspect] programs
without the knowledge of Aspect] weaving. In fact, we do discover flaws in some well-
accepted programming paradigms, using the model checking facility we have built.
Furthermore, it seems unreasonable to require an Aspect] programmer to have deep
knowledge about aspect weaving to write a correct Aspect] program. For this reason, we
propose a simple, generic programming model that is free from the extra concurrency
problem due to aspect instantiation. We start this section with a well-accepted but

actually flawed programming paradigm.
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6.2. A Classic Example: Using AOP for Concurrency Control

AOP techniques can be used to enforce the pre- and post- condition of a function
invocation in a modular way. One of such use is to assure the proper order to access a
critical section, on top of a possibly non-thread-safe solution. A classic example is to
modularize the “multiple read, single write” policy using Aspect] (Colyer 2004). The true
intention (i.e. the equivalent pure Java implementation) is shown in Figure 30, and the
corresponding AspectJ version (slightly modified from (Colyer 2004)) is shown in Figure
31. Notice that in Colyer’s original example, the implementation of ReadWriteLock is
based on Doug Lea’s concurrency library (Lea 1999); to avoid burying the true cause of
errors with implementation details, I use a simpler yet still popular alternative that is
based on an integer counter. But the problem I reported here can be replicated with both
FIFOReadWriteLock and WriterPreferenceReadWriteLock, the two main
implementations of ReadWriteLock in Lea’s library. It is also worth stressing that this
concurrency problem is independent to Aspect] compilers: It can be reproduced with both
abe and gjc, the two mainstream Aspect] compilers.

In Figure 30, main() is the test harness that creates and starts various
reader/writer threads. The only purpose of the reader thread is to execute the read ()
method of a shared resource (line 30), and the only action of the writer thread is to
execute the write () method of the shared resource (line 40). For this test case, we have
one instance of Resource (line 3), which is shared among the reader threads and the
writer threads. The “multiple read, single write” policy is enforced by acquiring a read (or

write) lock at the entrance of the read () method (or the write () method), and
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releasing a read (or write) lock at the exit of the read () method (or the write ()
method), as shown in line 16-25. Each resource is attached with such a read/write lock.

Figure 31 shows a popular implementation of the read/write lock: It uses an integer
counter to track the current status of the lock. To acquire a read lock, the counter must
initially be non-negative (i.e. the lock is not currently in the write state), as guarded by
line 6-10; to acquire a write lock, the counter must be zero (i.e. the lock is currently in the
idle state, neither read nor write), as guarded by line 28-32. Each time when a read
operation is done and a read lock is released, the counter decreases by one (line 19);
when a write operation completes and a write lock is released, the counter is set to 0 (line
43). Notice that the fields and statements in the grey area are not required for the actual
implementation of the read/write lock; instead, they articulate part of the correctness
property to be checked by JPF: The tracking counter must be in a consistent state, i.e. it
must be no less than -1 at any time, no less than 0 to allow “read” operation, equal to 0 to
allow “write” operation. Of course, JPF can also check whether this program may be
deadlocked.

If we run JPF to check the formal model in Figure 30 and 31 with two read threads
and one write thread, the verification completes without finding any error (i.e. no runtime
exception, no deadlock). Increasing the number of participating reader threads and writer
threads doesn’t lead to any flaw. Therefore, we conclude that the baseline example has no

concurrency flaw.
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1. ...

2. public static void main(String args()) {
3. Resource resource = new Resource():

q. for all reader thread

5. reader_thread = new ReaderThread(resource);
6. for all writer thread

7. writer thread = new ReaderThread(resource);
8. start all readers/writer threads

9. 1}

10. ...

11l.public class Resocurce {

12. ReadWriteLock lock = new ReadWriteLock():
13. private void readCriticalSection({) { ... }
14, private void writeCriticalSection() { ... }
15,

16. public void read() {

17. lock.lockRead({}:

18. readCriticalSectioni{}:

19. lock.unlockRead() ;

20. }

21. public void write() {

22. lock.lockWrite();

23. writeCriticalSection():

24, lock.unlockWrite() ;

25. 1}

26.}

27.class ReaderThread extends Thread {

28. private volatile Resource r;

29. public void run{() {

30. r.read():

31. }

32. public ReaderThread(Resource resource) {
33, r = resource;

34. }

35.}

36.

37.class WriterThread extends Thread {

38. private volatile Rescurce r;

3%. public void run{() {

40. r.write();

41, }

42. public WriterThread{Resource resource) {
43, r = resource;

44. }

45,1}

Figure 30. An example to assure the “multiple read, single write” policy
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l.class ReadWritelock {
2. private volatile int readers = 0;
3. public void lockRead({) |
4. synchronized (this) {
5. // System.out.println(this + " before lockRead: " + readers};
6. while (readers==-1) {
7. try [ wait{); } catch (InterruptedException ex} {
8. System.out.println(this + " Interrupted in lockRead!");
9. }
10. }
TUTTTEE (izeaders>=091)]
2R {throw mew RuntimeException(this+ " readers=" + readers); |
13. readers++;
14. // System.out.println{this + " after lockRead: " + readers);
15. ol
16. public void unlockRead({} {
17. synchronized (this) {
18. // System.out.println(this+" before unlockRead:"+ readers);
18. readers—-;
20. if (readers==0) { notifyRll{); }
Enes J/3if (! (zmeaders>=0} )
ean ~ // | throw new RuntimeException{"readers=" + readers]; |}
23. // System.out.println{this + " after unlockRead: "+readers});
24, bl
25. public void lockWrite() ({
26. synchronized {(this) {
27. // System.out.println{this + " before lockWrite: "+readers);
28. while {(readers!=0) |{
29. try { wait(); } catch {(InterruptedException ex) {
30. System.out.println("Interrupted in lockWrite!");
31. }
32. }
Eles if (!(readers==0)}) . _ _
4. { throw new RuntimeException("readers=" + readers); )
35. readers = -1;
36. // System.out.println(this + " after lockWrite: "+ readers);
37. o}
38. public void unlockWrite() {
39. synchronized {(this) {
40. // System.out.println(this+" before unlockWrite: "+readers);
11, TTif (1 (feaders==~1})
42.. // [ throw new RuntimeException("readers=" + readers}; }
43. readers = 0;
44, notifyAlli{);
45. // System.out.println({this+" after unlockWrite: "+readers};
46. bl
47.1}

Figure 31. An implementation of lock for shared read and exclusive write
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Figure 32 and Figure 33 show an Aspect-Oriented implementation corresponding to
the example in Figure 30, which leverages the same ReadWriteLock class in Figure
31. Figure 32 defines a generic, abstract aspect to enforce the “multiple read, single
write” rule, which can be instantiated to advise the access control of a particular class. An
instantiation of this abstract aspect for a particular Resource class is shown in Figure
33. Notice that the Resource class allows read () and write () operations but has
no concurrency control; therefore, to create a thread-safe resource, one has to additionally
enforce access control rules using externa! lock mechanisms, which often involves
scattered code and breaks the natural class hierarchy. With Aspect], such enforcement is
modularly defined in the abstract aspect MultipleReadersSingleWrite and can
be conveniently reused by aspect inheritance (i.e. code reuse as well as design reuse).
This is a classic example to show the advantages of AOP techniques: they can be used to
enforce concurrency control in a modular way (Colyer 2004).

If we run JPF with the extension we created in the previous section to check the
Aspect] version (with two read threads and one write thread), surprisingly, JPF reports
error traces in this popular programming example, including an error trace that leads to a
deadlock condition and an error trace that leads the counter into an inconsistent state (e.g.
the counter is -2). The emor is more intuitive if we uncomment the
“System.out.print (...)" statements in Figure 31. We show the printout along
the deadlock error trace in Figure 34 and a simplified error trace in Figure 35; an
interested reader can refer to (Chen 2008) to replay the full error traces. We briefly

explain the cause of the error in the below.
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l.public abstract aspect MultipleReadersSingleWriter

2 perthis { readMethod() || writeMethod() )} {

3 private volatile ReadWritelock rw = new ReadWriteLock():;
4. protected abstract pointcut readMethod();

5. protected abstract pointcut writeMethod():

6 before{): readMethod() { rw.lockRead(}); }

7 after(): readMethod() { rw.unlockRead(): }

8 before(): writeMethod() { rw.lockWrite(}; }

9. after(): writeMethod{) { rw.unlockWrite(); }

10.}

Figure 32. A generic aspect to enforce the “multiple read, single write” policy

l.public class Resource {

2 public void read{) {

3 readCriticalSection();

4. '}

5. public void write() {

6 writeCriticalSection{):;

7. )

8. public void readCriticalSection{() {...}
9. public void writeCriticalSection() 1ol
10.public aspect ReadersWriterAspect extends
MultipleReadersSingleWriter

11. perthis( readMethod() || writeMethod({} }{
12. public ReadersWriterAspect() {

13. 1}

14, protected pointcut readMethod():

15. execution{public * Resource+.read{)}:
16. protected pointcut writeMethod{):

17. execution(public * Resource+.write());
18.}

Figure 33. Instantiating MultipleReadersSingle Writer aspect
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Figure 34 shows the printout along the trace to deadlock, which indicates two
instances of ReadWriteLock have been created for the same resource: One has the
hashcode @aaf# and the other has @aa8b. This is not only semantically incorrect (i.e. we
have only one resource, and there should be only one instance of ReadWriteLock for
this resource), but also leads to a deadlock condition. As shown in Figure 35, the first
reader thread enters the read state and sets the counter to 0; thereafter, a new aspect and
the associated resource and lock are created and override the old ones, which causes the
counter to be “reset” to 0; subsequently, the first thread proceeds to unlock the read lock,
decreases the counter by 1 (now the counter is -1) and runs to its end. The second reader
thread and the writer thread proceed but both get stuck when they try to acquire the lock,
since the counter is -1 and no thread can bring it out of this status. The system thus enters

a deadlock condition.

reader threads: 2; writer threads: 1
ReadWritelLock@aaf4 before lockRead: 0
ReadWriteLock@aafd after lockRead: 1
ReadWriteLock@aaB8b before unlockRead: 0
ReadWritelock@aaBb after unlockRead: -1
ReadWriteLock@aa8b before lockRead: -1
ReadWriteLockRaaBb before lockWrite: -1

Figure 34. Printout of the ReadWriteLock before/after a lock/unlock operation
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1.Td0: create the shared resource

2.7dl: pointcut readMethod()

3.7dl: if (no aspect is instantiated for resource)

4.Tdl: new ReadersWriterAspect() for resocurce, Baspectl
5.7dl: new ReadWritelock():

6.Td2: pointcut readMethod()

7.7d2: if (no aspect is instantiated for resource)

8.Td2: new ReadersWriterAspect() for resource, Raspect2
9.Td2: new ReadWriteLock():;

10.7d1: rw = new ReadWriteLock(}:

11.7d1l: readers = 0;

12.Tdl: rw.lockRead{); increase readers to 1

13.7d2: @aspect2 override Qaspectl, now readers is 0
14.7dl: readCriticalSection(};

15.T7dl: rw.unlockRead{); decrease readers from 0 to ~1
16.Tdl: reach to its end

17.7d2: rw.lockRead(); stuck here since readers is -1
18.7d3: rw.lockWrite(}; stuck here since readers is -1

Figure 35. The simplified error trace for the Aspect] program in Figure 33

To explain such phenomenon, we first review the methodology of aspect
instantiation adopted in the Aspect] compiler. Figure 36 shows the aspect instantiation
routines that the abc compiler typically generates (the code is output by abc with —dava
option). The static method abc$perThisBind () is invoked before any perthis-
pointcut match, to assure that an instance of the current aspect has been properly
initialized. The perthis- semantics requires that only one instance of the particular aspect
is created for the subject of the particular pointcut: for this purpose, when the aspect
instance is created, it is associated with the subject of perthis- pointcut by xxxSet ()
method and retrievable by xxxGet ()} method. However, since there is no

synchronization control on the aspect instantiation within abc$perThisBind (), in
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multi-threaded environment, it is likely that two threads calling abc$perThisBind ()
will pass the null test (line 5) before the xxxSet () operation completes (line 6).
Subsequently, there is a possibility that two aspect instances will be created for the same
subject in the matched pointcut and eventually one will override the other. With this in
mind, now we are able to understand the error trace in Figure 35. After the main thread
creates the shared resource (line 1), thread 1 (a read thread) executes the before advice
for the matched pointcut readMethod () (line 2), and invoke abc$perThisBind ()
to assure that the aspect has been properly instantiated (line 3-5). Meanwhile, thread 2
also executes the before advice for the matched pointcut and invoke
abc$perThisBind () to initiate the aspect instance. As discussed in the above, both
threads pass the null test and create their own aspect instances. From line 10 to line 12,
thread 1 completes aspect instantiation and acquires the read lock, correctly prints out the
value of the counter (0, 1, respectively, in Figure 34). In line 13, thread 2 (the second read
thread) finishes aspect instantiation and overrides the aspect value previously written by
thread 1. Now the counter is reset to 0. In line 14-16, thread 1 continues, enters the
critical section, decreases the counter (which is just initialized to 0 by thread 2) by 1 to
unlock the read lock and proceeds to its end. Now the counter is -1. Thereafter, thread 2
proceeds to acquire the read lock and gets stuck in line 7 of Figure 31 since the counter is
always -1. Similarly, thread 3 proceeds to acquire the write lock and gets stuck in line 29

of Figure 31 since the counter is always -1. Now the system enters a deadlock condition.



87

.public static void abc$perThisBind(Object theObject$40) {
. ReadersWriterAspect$abc$PerThis castedArg$4l;
if (theObject$40 instanceof ReadersWriterAspect$abc$PerThis) |
castedArg$4l = (ReadersWriterAspect$abc$PerThis) theCbject$40;
if (castedArg$4l.myabc pattern rw2_aspectj_

eadersWriterAspectSabcSPerThisGet ()==null) {
castedArg$4l.myabc_pattern_rw2_aspectj_
eadersWriterAspect$abc3PerThisSet (new ReadersWriterAspect());

}
}

WO O WN =

-}

Figure 36. Aspect instantiation (perthis)

Similarly, the counter may enter an inconsistent state because of the overriding of
aspect instances: The first reader thread may set the counter to 1; then the writer thread
may create a new aspect and “reset” the counter to -1; thereafter the first read thread may
further decrease the counter to -2 by unlocking the read lock.

It is worth emphasizing that the reported error is caused by the lack of
synchronization during aspect instantiation, and is orthogonal to the implementation of
ReadWriteLock. For example, one may try an alternative implementation by relaxing
the condition “while (readers==-1) {” in line 6 of Figure 31 to “while
(readers<0) " JPF still catches a deadlock condition for such altemative
implementation. Furthermore, as mentioned previously, JPF also finds deadlock
conditions if we replace the counter-based ReadWriteLock  with
FIFOReadWritelock and WriterPreferenceReadWriteLock from Lea’s

concurrency library. Moreover, this error doesn’t seem to be caused by an accidental

mistake in the implementation of Aspect] compilers: JPF discovers the deadlock
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condition for the sample in Figure 32 and 33, no matter it is compiled by abc or agjc (as a
reminder, abc and gjc are the two mainstream Aspect] compilers). The lack of
synchronization during aspect instantiation may be a deliberate design choice to avoid the
synchronization overhead; it is thus the responsibility of Aspect] developers to assure the
correctness on such unsafe infrastructure.

This catch of errors is somewhat surprising, as similar programming schemes are
wide spread and are even taught as examples in programming books (Colyer 2004).
Nevertheless, it is evidence of how difficult it is to eliminate concurrent errors in Aspect-
Oriented, multi-threaded environment, and the effectiveness of our extension to JPF to

battle this problem. We will see some more examples in the following.

6.3. A Generic Model to Avoid the Aspect Instantiation Problem

The source of the above aspect instantiation problem is the lack of synchronization
during the creation of an aspect for a particular subject. Naturally, it can be eliminated by
issingleton aspect (i.e. the default aspect instantiation method in Aspect]) instead of
perthis aspect. Notice that the semantic of perthis is to create an aspect instance for each
subject of a matched pointcut as a syntax sugar, i.e. to establish the association between
the subject of the matched pointcut and the aspect instance (subsequently, it also
associates the subject and the attributes of this aspect instance). Instead of perthis, we can
establish such association by using another aspect feature, Inter-type definition (ITD). In
particular, we can remove attributes of an aspect and declare them as the attributes of the
subject, using /TD. It is worth noticing that the issingleton aspect is exempted from the

concurrency problem. As shown in Figure 37, an issingleton pattern is initialized with an
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eager Singleton Pattern, i.e. the singleton instance is initialized statically, even before an
instance of aspect is created. Since such instantiation is done statically and the static class
instantiation is implicitly treated as synchronized by the Java Virtual Machine, there is no
chance for the two threads to create two instances of the same aspect. Therefore, the

aspect instantiation problem is naturally eliminated with issingleton aspect.

static {
ReadersWriterAspect DavaTemp_abc$perSingletonInstance;
DavaTemp_ abc$perSingletonInstance = null;
try {
DavaTemp_abcSperSingletonlnstance=new
ReadersWriterAspect(}:;
} catch (Throwable catchLocal$4} {
abcSinitFailureCause = catchLocal$d;
}
abc$perSingletonInstance = DavaTemp_abc$perSingletonInstance;
}

Figure 37. Aspect instantiation {(issingleton)

As an example, we show a reimplementation with issingleton aspect that is free
from the above violation. As shown in Figure 38, the reimplementation closely resembles
the original perthis implementation in Figure 32 and 33. The main changes are: In line 1,
the aspect MultipleReadersSingleWriter is declared as issingleton (by
default). In line 4, instead of declaring ReadWriteLock as a field of the aspect, we
declare it as a field of Resource, the subject of the matched pointcut, via inter-type

definition. Thereafter, to invoke ReadWriteLock.lockRead () in an advice, we
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will have to pass a reference of ReadWriteLock, which is indirectly done by passing a
reference of Resource (i.e. remember that Resource has a reference to its

ReadWriteLock via ITD). Such arrangement requires changes to the signature of

pointcuts and their advices, but in a minimal degree.

1.public abstract aspect MultipleReadersSingleWriter ({

2. protected abstract pointcut readMethod(Resource resource);
3. protected abstract pointcut writeMethod(Resource resource);
4, public volatile ReadWriteLock Resource.rw = new
ReadWriteLock(};

5. before(Resource resource): readMethod(resource) {

6. resource.rw.lockRead(}:;

7. }

8. after(Resource resource): readMethod(resource} {
9, resource.rw.unlockRead{();

10. }

11. before(Resource resource)}: writeMethod(resource) {
12. resource.rw.lockWrite():

13. }

14. after(Resource resource): writeMethod(resource) (
15, resource.rw.unlockWrite();

l16. }

17.}

18.public aspect ReadersWriterAspect extends
MultipleReadersSingleWriter {
19. protected pointcut readMethod(Resource resource):

20. execution(public * Resource+.read()) && this(resource):
21. protected pointcut writeMethod (Resource resource):

22. execution (public * Resource+.write()) && this(resource);
23.1}

Figure 38. A reimplementation of Figure 32 (without concurrency violations)

After these changes, we find no violation using JPF. Varying the number of reader
threads and writer threads doesn’t lead to the discovery of errors, either. Moreover, as the

newer version (Figure 38) doesn’t impose any restriction on the Aspect] program (Figure
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32 and Figure 33), it is a generic solution to avoid the perthis- aspect instantiation
problem demonstrated in this section.

It is worth noticing that in our experiments, this assertion holds for pertarget aspect
instantiation as well (actually, perthis aspect instantiation shares most of its code with
pertarget aspect instantiation in the abc compiler). Furthermore, although the above
reasoning is based on the abec compiler, in our experiments, the above conclusion applies

to the gjc compiler as well.

6.4. Model Checking Aspect-Oriented Design Patterns

In addition to the aspect instantiation problem, the intricacy of concurrency issues
due to the application logic still applies. After paving the way for the aspect instantiation
problem, we look at concurrency issues that are potentially raised by the application logic
as well as the aspect instantiation problem. Hannemann et. al. re-implement the 23 GoF
design patterns in Aspect], to study the advantages of AOP techniques. In this section, we
apply model checking to check their implementation (their source code can be found in
(Hannemann 2002)). Notice that we only make minimal changes to their sample
programs: the modifications are limited to fields and statements for the sole purpose of

correctness property specification and driving the system under investigation.

6.4.1. Observer Pattern

Figure 39 shows a sample application that adopts the Aspect-Oriented Observer
Pattern (slightly modified to add the correctness property specification). Compared with

its Object-Oriented counterpart, it improves on locality, reusability, composition
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transparency and pluggability (Hannemann 2002). For the purpose of explanation, we
briefly go over the sample program. The aspect ObsexrverProtocol defines a generic
observer protocol that can be specialized for any type of subjects and observers. To
achieve this, ObserverProtocol maintains the mapping between a subject and the
collection of its listeners via a hashtable perSubjectObservers (line 4). The
function getObservers () returns the collection of observers for a particular subject;
if no observer exists for the subject, an empty collection of observers is created instead of
returning a null pointer (line 9-15). To add an observer (i.e. addObserver ()), it first
fetches the listener collection for the subject, and adds the observer to the particular
collection (line 18). The function countObservers() returns the number of
observers for a particular subject. For a particular publish-subscribe relationship, one can
instantiate the abstract ObserverProtocol by filling the pointcut that matches
subjects’ changes (line 35). The test skeleton (line 45-50) creates two threads, whose sole
purpose is to add observers to a particular subject, i.e. it adds color observers 1 and s2
to the subject p, and position observer s3 and s4 to the subject p. After the addition of
the two observers in two individual threads, it asserts that there must be two observers for
the subject p.

We run JPF to verify the above program. JPF reports a violation trace in some
seconds, as shown in Figure 40 (in a simplified presentation). The error is due to the lack
of synchronization in the access of the observer storage object,
perSubjectObservers; more exactly, it is due to the lack of access control of the

observer storage object for a particular subject. For the error trace in Figure 40, when
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Thread 1 detects that no observer list exists for a particular subject, an observer list is
created for the particular subject (line 12-13); meanwhile, Thread 2 detects that no
observer lists exists for a particular subject and then creates an observer list for the
particular subject, before the observer list created by Thread 1 is successfully stored in
perSubjectObservers. Therefore, for the particular subject, when Thread 2 adds an
observer, it actually overrides the existing observer list with a new observer list (which
contains a new observer), instead of adding the new observer to the observer list.

There are several approaches to eliminate such concurrency error. For example, if
we require that all auxiliary functions that access observer storage perSubjectObservers
(e.g. getObservers (), addObservers () and removeObservers ()) must be

synchronized methods, then JPF doesn’t find any such error.
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1l.public abstract aspect ObserverProtocol {

2 protected interface Subject { }

3 protected interface Observer { }

4, private Hashtable perSubjectObservers;

5. public int countObservers(Subject subject) {
6 return getObservers(subject).size();

7 }

8. public List getObservers{Subject subject) {
El5 if (perSubjectObservers == null) {

10. perSubjectObservers = new Hashtable(}; }

11. List observers = (List)perSubjectObservers.get {subject);
12. if ( observers == null ) {

13. observers = new LinkedList();

14. perSubjectObservers.put (subject, observers); }

15. return observers;

i6. }

17. public void addCbserver (Subject subject, CObserver observer} |
18. getObservers {subject}.add(observer):

19. }

20. public void removeObserver (Subject subject, Observer observer) |
21. getObservers (subject) .remove (observer); }

22. protected abstract pointcut subjectChange(Subject s);
23, after(Subject subject): subjectChange{subject) {

24. Iterator iter = getObservers{subject).iterator();
25. while { iter.hasNext(} ) |

26. updateObserver (subject, ({Observer)iter.next()});
27. }

28. )

29. protected abstract void updateObserver(Subject sub,Observer obs);
30.}

31.public aspect ColorObserver extends ObserverProtocol({

32, declare parents: Point implements Subject;

33. declare parents: Screen implements Observer;

34, protected peintcut subjectChange (Subject subject}:

35. call (void Point.setColor({Color)) && target(subject);

36. protected void updateObserver (Subject subject,Observer observer) {
37. {({Screen)observer).display("screen updated:...");

38. 1}

39.public aspect ScreenObserver extends ObserverProtocol(
40. declare parents: Screen implements Subject;
41. declare parents: Screen implements Observer;

42,

43.}

44. wvoid main(String args()) {

45, Thread threadl = new ObserverThread(p, sl, s3);

46. Thread thread2 = new ObserverThread(p, s2, sd);:

47. threadl.start(}); thread2.start():

48. threadl.jein(}; thread2.join();

49, assert {ColorCbhbserver.aspect0f () .countCbservers (p)==2);
50. A

Figure 39. A sample application using Aspect-Oriented Observer Pattern



95

ThO: start thread 1 and thread 2

Thl: 11. List observers = (List)perSubjectObservers.get{subject);
Thl: 12. if ( observers == null )} {

Thl: 13. observers = new LinkedList();

Th2: 11. List observers = (List)perSubjectObservers.get{subject);
Th2: 12. if { observers == null } {

Th2: 13. observers = new LinkedList({):;

Thl: 14. perSubjectObservers.put (subject, observers); }

Thl: 18. getObservers (subject) .add (observer);

Th2: 14. perSubjectObservers.put (subject, observers}; }

Th2: 18. getObservers (subject) .add (observer};

ThO: 52. assert {ColorObserver.aspectQf ()} .countObservers (p)==2};
Error!

Figure 40. Error trace in the original Aspect-Oriented Observer Pattern

6.4.2. Flyweight Pattern

Figure 41 shows a sample application that adopts the Aspect-Oriented Flyweight
Pattern (slightly modified to add the correctness property specification). Compared with
its Object-Oriented counterpart, it improves on locality, reusability, composition
transparency and pluggability (Hannemann 2002). For the purpose of explanation, we
briefly go over the sample program. The aspect FlyweightProtocol defines a generic
flyweight protocol that enables not only design reuse but also code reuse of the Flyweight
design  pattern. The flyweight object «can be created via the
createFlyweight (Object) method (line 4) and retrieved via the
getFlyweight (Object) method (line 5-13), and the association between an
intrinsic key and a flyweight object is maintained through the hashtable £1yweights

(line 2). Since the exact type of a flyweight object is not known in the generic aspect
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FlyweightProtocol, the flyweight creation method createFlyweight() is
defined as abstract and has to be instantiated in a concrete sub-aspect of
FlyweightProtocol (e.g. the concrete aspect FlyweightImplementation
implements the createFlyweight () method, since only the specific application
knows the type of a flyweight). The fields and statements in the grey area (line 18, line
21-27) are added to the original Flyweight implementation; their sole purpose is to
establish the criteria that only one flyweight object is created for an intrinsic key. The test
harness is defined in line 40-51: the only action of FlyweightThread is to get a
flyweight object for a particular intrinsic key (for our example, it is the character ‘c’).
Two threads will get the flyweight object concurrently; ideally, there should be only one
flyweight object created.

We run JPF to verify the Flyweight sample application. JPF reports a violation trace
in seconds, as shown in Figure 42 (in an abstract presentation). The error is due to the
lack of synchronization in the access of the flyweight storage object, f1yweights. For
the error trace in Figure 42, when Thread 1 detects that the flyweight storage object
flyweights doesn’t have the flyweight for a particular intrinsic key, it continues to
create the flyweight for the key (Thread 1, line 9); meanwhile, Thread 2 also detects that
the flyweight storage object £1yweights doesn’t have the flyweight for the intrinsic
key yet and continues to create the flyweight for the key (Thread 2, line 9). Subsequently,
there are two flyweight objects created for the same intrinsic key (the latter will override

the first one), which may lead to data race in various situations.
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l.public abstract aspect FlyweightProtocol {

2 private Hashtable flyweights = new Hashtable(};

3 protected interface Flyweight{};

4. protected abstract Flyweight createFlyweight (Object key);
5. public Flyweight getFlyweight (Object key) {

6 if (flyweights.containsKey({key}) {

7 return (Flyweight) flyweights.get({key);

8

. } else {
Cl Flyweight flyweight = createFlyweight{key);
10. flyweights.put (key, flyweight);
11. return flyweight;
12. }
13. 1}
14.}

15.public aspect FlyweightImplementation extends FlyweightProtocol {
16. declare parents: CharacterFlyweight implements Flyweight;

17. declare parents: WhitespaceFlyweight implements Flyweight;

gl vedlatdle int counter = 0;

19, protected Flyweight createFlyweight (Object key) |

20. char ¢ = ({(Character) key).charValue();
gl.‘ HqEe=="c"1"{
22 counter ++;
Fdon
4. LE (counter>=2) [
E5ie System.out.printin("counter=" + counten);
26. _throw new RuntimeException ("counter=" # countecr);l
)
%B. Flyweight flyweight = null;
29. if (Character.isWhitespace(c}) {
30. flyweight = new WhitespaceFlyweight {c);
31. } else {
32. flyweight = new CharacterFlyweight{c);
33. }
34. return flyweight;
35. 1}
36. public PrintableFlyweight getPrintableFlyweight {char c} {
37. return (PrintableFlyweight} getFlyweight (new Character{c)};
38. 1}
39.)

40.class FlyweightThread extends Thread ({
41. public void run{} {

42, FlyweightImplementation.aspectOf().getPrintableFlyweight ('c'};
43. } 1}

44, wvoid main{String args(}} {

43. FlyweightThread tl = new FlyweightThread{);

46. FlyweightThread t2 = new FlyweightThread();

47. tl.start(); t2.start();

48. oo}

Figure 41. A sample application that uses Aspect-Oriented Flyweight Pattern
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Th0: start thread 1 and thread 2

Thl: 42. FlyweightImplementation.aspectOf().getPrintableFlyweight
Thl: 37. getFlyweight (new Character(c));

Thl: 6. if {flyweights.containsKey(key)) {

Thl: 9. Flyweight flyweight = createFlyweight (key);

Th2: 42. FlyweightImplementation.aspectOf({).getPrintableFlyweight
Th2: 37. getFlyweight (new Character(c}):

Th2: 6. 1f (flyweights.containsKey(key)) {

Th2: 9. Flyweight flyweight = createFlyweight (key);

Th2: 24. if {counter>=2} { .
Th2: 26. throw new RuntimeException{("counter=" + counter);
Error!

Figure 42. Error trace in the original Aspect-Oriented Flyweight Pattern

There are several approaches to eliminate such a concurrency error. For example, if
we require that all auxiliary functions that access the flyweight storage flyweights
(e.g. createFlyweight (), getFlyweight ()} are synchronized, JPF doesn’t find

any error for this variation.

6.4.3. Singleton Pattern

Figure 43 shows a sample application that adopts the Aspect-Oriented Singleton
Pattern (slightly modified to add the correctness property specification). Compared with
its Object-Oriented counterpart, it improves on locality, reusability, and pluggability
(Hannemann 2002). For the purpose of explanation, we briefly go over the sample
program. The aspect SingletonProtocol defines a generic singleton protocol that
can be specialized for any type of singletons. To achieve this, SingletonProtocol

maintains the mapping between the singleton class (i.e. represented by the Class object
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of the singleton class) and the sole instance of the class. The pointcut call (line 5)
intercepts the creation of objects that are a subclass of the Singleton interface, unless
it is explicitly excluded otherwise. To enforce the singleton policy for a particular class,
the concrete aspect must declare Singleton as the parent of the particular class (line
14), and implement the exclusion aspect as needed. Line 18-45 creates a test harness for
the Singleton pattern. The sole action of SingletonThread is to create a
Printer object and save the newly created object in the array. Each time when the
constructor of the Printer class is called, the static counter objectsSoFar is
increased by one and the created object has the current counter as its unique, immutable
id (line 35). In the sample application, since there shall be only one Printer object
created, we assert that the Printer id must be 1 (line 32).

We run JPF to verify the above program. JPF reports a violation trace in no time, as
shown in Figure 44 (in a simplified presentation). The error is due to the lack of
synchronization in the access of the singleton storage object, singletons. For the
error trace in Figure 44, when Thread 1 detects that no Printer object has been created
(line 7), it proceeds to create the Printer object and attempts to save the newly created
object in the slot identified by the Printer class; meanwhile, Thread 2 also detects that
no Printer object has been created and decides to create another Printer object.
Such interleaving leads to the state that two Printer objects are created, violating the

restriction of Singleton design pattern.
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l.public abstract aspect SingletonProtocol {

2 private volatile Hashtable singletons = new Hashtable({(};
3. public interface Singleton {}

4 protected pointcut protectionExclusions{);

5 Object around{): call{(Singleton+).new(..})

&& !protectionExclusions() {

6. Class singleton =
thisJoinPoint.getSignature().getDeclaringType();

7. if {singletons.get{singleton) == null) {
8. singletons.put (singleton, proceed());
9. }

10. return singletons.get(singleton);

11. 1}

12.}

13.public aspect SingletonInstance extends SingletonProtocol (
14. declare parents: Printer implements Singleton;

15. protected pointcut protectionExclusions(}:

16. call{(PrinterSubclass+).new({..});

17.1}

18.class SingletonThread extends Thread {

19. Printer(} ps;

20, int slot;

21. public SingletonThread(Printer() printers, int index) {

22. ps = printers;

23. slot = index;

24. )}

25, public void run{() {

26. ps{slot) = new Printer();
27. 1}

28.}

29.class Printer ({

30. public Printer{) {

31. id = ++ objectsSoFar;

32. assert (id==1);

33. 1}

34,

35.}

36. ...

37. main(String args()} {

38. Printer{) printers = new Printer (MARX);
39. SingletonThread(} threads = new SingletonThread (MAX);
40. for (int i = 0; i < MAX; i++) |

41. threads (i) = new SingletonThread(printers, 1i};
42, threads (i) .start():

43. 1}

44. .

45. }

Figure 43. A sample application that uses Aspect-Oriented Singleton Pattern
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Tho:
Thi:
Thl:
Th2:
Th2:
Thl:
Thl:
Th2:
Th2:
Th2:
Error!

start thread 1 and thread 2

26.
Tic

26,
7/5

8.
31.
8.
31.
32.

ps{slot) = new Printer(}:
if (singletons.get({singleton) == null)
ps(slot} = new Printer():
if (singletons.get{(singleton) == null)

singletons.put (singleton, proceed{(});
id = ++ objectsSoFar;
singletons.put{singleton, proceed());
id = ++ objectsSoFar;
assert (id==1);

{
{

Figure 44. Error trace in the original Aspect-Oriented Singleton Pattern

There are several approaches to eliminate such a concurrency error. For example, if

we require that all auxiliary functions that access the singleton storage,

SingletonProtocol.singletons, are synchronized (e.g. enclose line 7-9 in

Figure 43 with synchronized(singletons)

for this variation.

{...1}), JPF doesn’t find any error
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CHAPTER VII

THE MODELING FRAMEWORK REVISITED

7.1. Stability of Models for OSGi Applications

In Section 3.1, we have discussed the Facade design pattern used in the OSGi
framework. By this way, the OSGi applications are shielded from the details of a
particular OSGi implementation and have better portability across various
implementations from different vendors. At the modeling level, the OSGi framework also
varies, not because of different vendors but because we need to select different
combinations of features to minimize the search space. As shown in Figure 45, although
we may change the complexity of the modeling framework by choosing a specific
combination of aspects, it may not be needed to vary the OSGi applications: In a typical
OSGi application that implements BundleActivator.start (BundleContext)
and BundleActivator.stop (BundleContext), the runtime environment about
the OSGi platform is only known through the parameter BundleContext, which
exposes a subset of framework functionalities and internal representations. As long as we
keep unchanged the interfaces of those classes that are directly accessible by an OSGi
application, the OSGi application remains the same for a modeling framework with

varying details.



103

To ease model development, we require the same signatures for classes accessible
from a BundleActivator. In this way, often an OSGi application can be directly
used as a formal model, and it requires minimal efforts to adapt an OSGi application into

its modeling counterpart.

Monolithic model of OSGi

JPF * framework and application

JPF + (| OSGi modeling framework | + Model of OSGi application

Aspect-Oriented OSGi
modeling framewark

JPF + ( ( AspectJ selection and weaving Model of OSGi application

Woven bytecode of
reduced OSGi
modelingframework

Figure 45. Models of OSGi applications with the Fagade Pattern

7.2. Aspectizing the OSGi Framework at the Model Level

In Section 4.2, we use a motivating example to show the improvements of
modularity by tailoring the modeling framework with AOP techniques. In Section 5, we
develop the techniques to check Aspect] programs. In Section 7.1, we know that by a

structural paradigm similar to a Fagade pattern, we are able to shield an OSGi application
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from varying details of a modeling framework. In this section, we describe a more
complete aspectized OSGi framework. It is worthy to notice that while it is not new to
aspectize a Java program, and there are many similarities for aspects at the modeling
level and the application level, our aspectizing efforts are motivated for very different
reasons and may be divided into very different categories.

We separate the following optional features from the core OSGi framework:
BundleListener, FrameworkListener, ServiceListener, Permission, and BundleContext
Validator. Each feature is specified by an aspect. In Section 4 we have discussed
(fragments of) the aspects of BundleListener and Permission; now we will discuss the

rest three aspects in the below.

7.2.1. FrameworkListener

Similar to BundleListener described in Section 4.2, the Knopflerfish framework
also uses an Observer Pattern to publish framework events among subscribers. This can
be modularized in an aspect, as FrameworkListenerAdJ shown in Figure 46 and 47.
In line 2, it uses ITD to add a field frameworkListeners to Listeners as the
placeholder for framework event subscribers, which is exactly the same as the original
Java implementation. Functions like addFrameworkListener(},
removeFrameworkListener (), frameworkError(), frameworkInfo()
and frameworkEvent () are helpers that are inserted via ITD to actually manipulate
the subscriber list and broadcast various framework events among subscribers. These

functions reside in Listeners. java in the original modeling framework and may be
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invoked in different contexts. For example, an OSGi application may invoke
BundleContext.addFrameworklListener (), which further invokes
Listeners.addFrameworkListener () to add a framework event subscriber. As
pointed out in Section 7.1, to minimize the changes required in adapting an OSGi
application into a formal model, we shall keep the function interfaces (i.e.
BundleContext .addFrameworkListener{) in this case) that are directly
accessible by an OSGi application unchanged. In this way, we are able to define pointcuts
by these “fixed” signatures. Subsequently, in the generic, least framework,
BundleContextImpl still has the function addFrameworkListener (), but it
doesn’t actually invoke Listeners.addFrameworkListener () unless we
include this aspect in the weaving. Similarly, we also create pointcuts and advices for
removeFrameworkListener () in BundleContextImpl.java so that their
implementations are only present if we include FrameworkListenerAJ in Aspect]
weaving. Moreover, line 56-61 modularizes the management of framework events that
are invoked from ServiceRegistrationImpl.java: if an exception is thrown
when unregistering a service, an error message is broadcast to all framework event
listeners. Finally, line 62-74 modularizes the management of framework events that is
invoked from ServiceReferencelImpl.java: if an exception is thrown when
getting a service (line 62-68) or ungetting a service (line 69-74), a framework error event

needs to be broadcast to all event subscribers.
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1l.public privileged aspect FrameworkListenerAJ {

2. private HashSet Listeners.frameworkListeners = new HashSet();
3. +wvoid Listeners.addFrameworkListener (Bundle bundle,
FrameworkListener listener) |{

4. ListenerEntry le = new ListenerEntry(bundle, listener);
5 synchronized ({(frameworkListeners) {

6. frameworkListeners.add{le};

7 }

8 }

9. void Listeners.removeFrameworkListener (Bundle bundle,
FrameworkListener listener} {

10. synchronized (frameworkListeners) {

11. frameworklListeners.remove {new ListenerEntry(bundle,
listener));

12. }

13. }

14. wvoid Listeners.frameworkError(Bundle b, Throwable t} {
15. frameworkEvent (new FrameworkEvent {FrameworkEvent.ERROR, b,
thi:

16. }

17. void Listeners.frameworkInfo{Bundle b, Throwable t) {

18. frameworkEvent {new FrameworkEvent (FrameworkEvent.INFO, b,
ty)i

19, }

20. public void Listeners.frameworkEvent (final FrameworkEvent evt)
{

21. ListenerEntry{) £l;

22, synchronized (frameworkListeners) {

23. fl = new ListenerEntry(frameworkListeners.size(});
24, frameworkListeners.toBArray(fl);

25. }

26. for (int i = 0; i < fl.length; i++) {

27. final ListenerEntry 1 = fl{i);

28. try |

29. ( (FrameworkListener)l) . frameworkEvent {evt);

30. } catch (Throwable pe) { // Don't report Error events
again, since probably would go into an infinite loop.

31. if (evt.getType(} != FrameworkEvent.ERROR) |{

32. frameworkError(l.bundle, pe):

33. }

34. }

35. }

36. }

37. pointcut Monitor_ addFrameworkListener (BundleContextImpl bc,
FrameworkListener li):

38. execution(void
BundleContextImpl+.addFrameworkListener (FrameworkListener))
33. && target(bc) && args(li);

Figure 46. The aspect to enforce Observer Pattern for framework events 1-39



107

40. after(BundleCeontextImpl bc, FrameworkListener 1i}:

41. Monitor_addFrameworkListener {bc, 1i) |
42, be. framework. listeners.addFrameworkListener (bc.bundle, 1i);
43, }

44. pointcut Monitor_removeFrameworkListener(BundleContextImpl be,
FrameworkListener li):

45, execution{void

BundleContextImpl+.removeFrameworkListener (FrameworkListener))

46. && target({bc) && args(li);

47. after{BundleContextImpl bc, FrameworkListener li}:

48. Monitor_rem0veFrameworkListener(bc, 1i) |

49, be. framework.listeners.removeFrameworkListener (bc.bundle,1i};
50. 1}

51. pointcut removeBundleResources (BundleImpl bi):

52. execution(void removeBundleResources(}}) && this(bi);

53. before(BundleImpl bi): removeBundleResources(bi) {

54. bi.framework.listeners.removehllListeners
(bi.framework.listeners. frameworkListeners, bi};

55. 1}

56. pointcut M_unregisterO{Bundle b, ServiceRegistrationImpl sri):
57. call (* ServiceFactory+.ungetService (Bundle,
ServiceRegistration, Object)}

58. && args(b, sri, ..) && withincode(void

ServiceRegistrationImpl+.unregisterQ0{));
59. after(Bundle b, ServiceRegistrationImpl sri})
throwing (Throwable ue): M_unregister0O(b, sri) f{

0. sri.bundle.framework.listeners. frameworkEvent {new
FrameworkEvent {(FrameworkEvent .ERROR, b, ue});

61. }

62. pointcut Monitor_getService(ServiceReferencelImpl si,Bundle b):
63. call (Object ServiceFactory+.getService (Bundle,
ServiceRegistration})

64. && target(si} && args{b, ..}:

65. after(ServiceReferenceImpl si, Bundle b)throwing{Throwable pe):
66. Monitor_getService(si, b) {

67. si.registration.bundle.framework.listeners.frameworkError
{si.registration.bundle, pe};

68. |}

69. pointcut Monitor STunregister0{Bundlelmpl bl,
ServiceRegistration registration}:

70. call (* ServiceFactory+.ungetService (Bundle,
ServiceRegistration, Object})
1. k& args(bl, registration, ..) && withincode(boolean

ServiceReferenceImpl+.ungetService(..});

72. after(BundleImpl b, ServiceRegistration registration}
throwing {(Throwable e): Monitor_SIunregister0(b, registration) ({
73. b.framework.listeners. frameworkError
{{(ServiceRegistrationImpl)registration}.bundle, e);

74. 1}

Figure 47. The aspect to enforce Observer Pattern for framework events 40-74
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It is worthy to stress the improvements in terms of code locality and composition
transparency by implementing the Observer Pattern with AOP at the modeling level.
Without AOP, when we want to turn on/off the feature of framework event management,
it requires at least 12 modifications scattered in 6 files: Framework java,
ServiceRegistrationImpl.java, BundleContextImpl.java, Bundlelmpl.java, Listeners.java
and ServiceReferencelmpl.java. However, with AOP, turning on/off this feature is as
simple as including this aspect in Aspect] weaving! Again, such modularity and
composition transparency are critical, considering the exponential increase of possible
combinations of features.

It is worth noticing that the Aspect-Oriented framework event management can also
be implemented by instantiating the Aspect-Oriented Observer Protocol from
(Hannemann 2002) (described in Section 6), which allows code reuse as well as design
reuse. However, for the ease of performance comparison with its Java counterpart, we

implement it without using the existing library.

7.2.2. ServiceListener

As introduced in Section 2 and Section 3, the OSGi framework provides an
important feature to allow sharing functionalities through services. To enable this, OSGi
applications need to communicate with each other, which is implemented through the
subscription to service events in an Observer Pattern. The management of service events

can be modularized as an aspect, as shown in Figure 48 and 49.
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l.public privileged aspect ServicelistenerAJ ({
2., private ServicelistenerState Listeners.servicelisteners = new
ServicelListenerState();
3. wvoid Listeners.addServicelistener (Bundle bundle,
Servicelistener listener, String filter) |{
try {
servicelListeners.add(bundle, listener, filter);
} catech {InvalidSyntaxException ex) {
throw new RuntimeException{ex.toString()}:;
}
.
10. void Listeners.removeServicelistener (Bundle bundle,
Servicelistener listener) {

W o -Jm e

11. servicelisteners.remove{bundle, listener);

12. 1}

13. public void Listeners.serviceChanged{final ServiceEvent evt)
14. { // broadcast service events |}

15. pointcut removeBundleResources (BundleImpl bi):

16. execution{void removeBundleResocurces ()} && this({bi);

17. before(BundleiImpl bi): removeBundleResources(bi} {

18. bi.framework.listeners.servicelisteners.removeAll (bi};

18, }

20. private void removeRllListeners(Set s, Bundle b)

2i. { // remove all listeners }

22. static boolean nocacheldap = false;

23. pointcut Monitor_addServicelistener (BundleContextImpl bc,
ServicelListener 1i, String filter):

24, execution{void addServicelistener(..})

25. && this(bc) && args(li, filter);:

26. after(BundleContextImpl bc, ServicelListener 1li, String
filter):

27. Monitor_addServicelistener(bc, 1i, filter) ({

28. be. framework.listeners. addServicelistener (bc.bundle, 1i,
filter);

29. }

30. pointcut Monitor_addServicelListenerZ(BundleContextImpl bc,
ServiceListener 1i):

31. execution(void

BundleContextImpl+.addServicelistener {Servicelistener))

3z. && target{bc) && args(li):

33. after(BundleContextImpl bc, ServicelListener 1li):

34. Monitor_addServicelistener2{bc, 1li} {

35. bc. framework.listeners.addServicelistener (bc.bundle, 1li,
null);

36. )

Figure 48. The aspect to enforce Observer Pattern for service events 1-36
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37. pointcut Monitor_ removeServicelistener (BundleContextImpl bc,
ServiceListener 1i):

38. execution{void

BundleContextImpl+.removeServicelistener (Servicelistener))

39. && target{bc)} && args(li);

40. after(BundleContextImpl bc, Servicelistener 1li):

41. Monitor removeServicelistener(bc, 1li) |

42, bc. framework.listeners.removeServicelistener (bc.bundle, 1i);
43. 1}

44, pointcut Menitor_setProperties(ServiceRegistrationImpl sri):
45. execution (void setProperties(Dictionary))

46, && this(sri);

47. after(ServiceRegistrationImpl sri): Monitor_setProperties(sri) {
48. sri.bundle. framework.listeners.serviceChanged {new
ServiceEvent {ServiceEvent .MODIFIED, sri.reference}});

49. }

50. pointcut

Monitor unregister removeService(ServiceRegistrationImpl sri):

51. call (void

ServiceRegistrationImpl+.unregister_ removeService()} && target(sri);
52. before(ServiceRegistrationImpl sri):

Monitor_unregister removeService(sri) |

53. if (Framework.UNREGISTERSERVICE_VALID_DURING_UNREGISTERING) {
54. sri.bundle. framework.listeners.serviceChanged{new
ServiceEvent (ServiceEvent.UNREGISTERING, sri.reference));

55. }

56. }

57. after{ServiceRegistrationImpl sri):
Monitor_unregister_removeService(sri) {

58. if (!Framework.UNREGISTERSERVICE_VALID_DURING_UNREGISTERING) {
59. sri.bundle. framework.listeners.serviceChanged (new
ServiceEvent (ServiceEvent.UNREGISTERING, sri.reference));

60. }

6. }
62. pointcut Monitor_ServicesRegister (BundleImpl bundle):
63. execution {ServiceRegistration Services+.register (BundlelImpl,

String(), Object, Dictionary)) && args(bundle, ..);

64. after(BundleImpl bundle) returning(ServiceRegistration sr}:
Monitor_ServicesRegister{bundle) |{

65. bundle. framework.listeners.serviceChanged (new
ServiceEvent (ServiceEvent .REGISTERED, sr.getReference(})});

66. }

67.1}
68.class ServicelistenerEntry extends ListenerEntry { ... }
69.class ServicelistenerState { ... }

Figure 49. The aspect to enforce Observer Pattern for service events 37-69
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In Figure 48 and 49, line 2-14 defines the basic assess functions to manage service
event subscription: line 2 adds a placeholder to store all service subscribers; line 3-12
adds routines to add/remove a service listener; line 13-14 adds routines to broadcast a
service event. These definitions reside in Listeners. java in the original modeling
framework. Line 15-21 adds routines to remove all service listeners in different contexts,
which correspond to routines in BundleImpl. java in the original implementation.
Line  23-43  modularizes service event management routines from
BundleContextImpl.java. As explained, to minimize changes needed in OSGi
applications, we keep the function interfaces of BundleContextImpl unchanged; the
actual functionalities of these functions are implemented by the aspect. For example, line
23-36 actually adds a service listener as defined by the function interfaces, and line 37-43
actually removes a service listener as defined by the function interface. Line 44-61
modularizes service event management invoked in ServiceRegistrationImpl:in
line 48, a service_modified event is broadcast after a service property is changed; in line
53-55 and line 58-60, depending on the configuration, a service unregistering event is
broadcast before or after a service is removed. Line 62-66 modularizes service event
management invoked in Services: in line 65, a service_registered event is broadcast
after a service is successfully registered in the OSGi framework.
ServicelistenerEntry and ServicelListenerState are two helper classes
used to manage service events.
Again, it is worth stressing the improvements of modularity and composition

transparency: without AOP, to include the management of service events, one would
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have to make modifications in at least 14 places across 6 files; with AOP, such

modifications is as simple as plugging in the aspect in Aspect] weaving.

7.2.3. BundleContext Validator

The need to check the validity of a BundleContext instance arises at least in the
following situation: a BundleActivator implementation may create a thread and
pass an instance of BundleContext to it. If the thread is still alive when the ancestor
bundle has been uninstalled, the instance of BundleContext becomes a dangling
bundle context; invoking the functionality of a dangling bundle context has undefined
consequences. To assure well-defined behaviors in face of an invalid bundle context, in
the Knopflerfish implementation, it associates the ancestor bundle to the bundle context
as an indicator of context validity.

Such validation of bundle context can be modularized in an aspect, as
BCValidator shown in Figure 50. In line 4-19, it catches 15 joinpoints in
BundleContextImpl, where the validity of the bundle context influences the
outcome of the function invocation, ie. it should throw an
IllegalStateException if the bundle context is invalid. If there is a valid input
stream, it should also close the input stream (line 33-44).

Again, without AOP, we would have to make modifications in 16 places in the
source code of BundleContextImpl.java; using AOP, such modification is as

simple as a configuration whether to include BCValidator. aj in Aspect] weaving.
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1.public privileged aspect BCValidatorAJ ({

2 pointcut p_isBCvalid{BundleContextImpl bc):

3 within(BundleContextImpl) &&

4. execution{String getProperty({String)} |

5. execution(Bundle installBundle{String) throws BundleException)
6 {| execution({Bundle getBundle())

7 execution(void addServicelListener(..})

8 execution{void removeServiceListener(..})

|
l
|

[
I
. | execution{void addBundlelistener(..})

10. || execution({void removeBundleListener(..)})
11. | ] execution{void addFrameworkListener(..)})
12. || execution{void removeFrameworkListener{..)})
13. || execution{void registerService(..))}
14. || execution{* getServiceReferences(..})
15. || execution({* getAllServiceReferences(..))
16. || execution(* getServiceReference{..})
17. || execution(* getService(..)}
i8. || execution(boolean ungetService(..))

19. ) && this(bc):
20. Dbefore(BundleContextImpl bc): p isBCvalid{bc} |
21. isBCvalid(bec);

22, '}

23. private void isBCvalid{BundleContextImpl bc} {

24, if (bec.bundle==null) {

25. throw new IllegalStateException({"This bundle context is no
longer walid");

26, }

27. '}

28. pointcut p_isBCvalidZ (BundleContextImpl be, InputStream inj:
29. execution{Bundle installBundle(String, InputStream} throws
BundleException)

30. && args{String, in)

31. && this{bc};

32. before(BundleContextImpl bg, InputStream inj:

33. p_isBCvalid2(bec, in) {

34. try {

35. isBCvalid(bc};

36. } finally {

37. if (in!=null) {

38. try {

39, in.close{);

40. } catch (IOException ex) {

41.

42. }

43. }

44. }

45. 1}

46.}

Figure 50. The aspect to check the validity of a bundle context
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7.3. Summary of Improvements

I summarize the changes needed to vary a feature of the OSGi modeling framework.
As shown in Table 4, each row presents an optional feature: the first column is the
number of modifications needed to add/remove this feature, and the second column
describes the files to be modified to add/remove this feature. To come up with a
particular combination of features, we would have to make 12+14+16+16+23 = 81
modifications for one of the 2° = 32 possible combinations, which cross the boundary of

methods and classes of more than 9 files.

Table 4. Modifications needed to add/remove a feature

Number of Files to be modified
modifications
Framework 12 Framework.java, BunldeImpl.java,
Listener BundleContextImpl.java, Listeners.java

ServiceRegistrationImpl.java,
ServiceReferencelImpl.java
Service 14 Listeners.java, Services.java,
Listener BundlieContextImpl.java,
ServiceRegistration.java,
ServicelistenerEntry.Jjava

Bundle 16 Framework.java, Listeners.java,
Listener BundleContextImpl.java,
BundleImpl.java, Bundles.java
BundleContext 16 BundleContextImpl.java
Validator
Permission 23 Framework.java, Listeners.java,

Services.java, BundleImpl.java,
BundleContextImpl.java, Bundles.java,
ServiceReferencelmpl.java,
ServiceRegistrationImpl.java

Total 81 BundleImpl.java, Bundles.java,
BundleContextImpl.java, Framework.java,
Listeners.java, Services.java,
ServiceReferenceImpl. java,
ServiceRegistrationImpl.java,
ServicelistenerEntry.java
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It is a daunting task to make so many modifications that scatter across the modular
boundary provided by Object-Oriented technologies. Furthermore, it breaks the
encapsulation of a framework and forces a developer to use a framework in a white-box
approach. On the contrary, as we have shown in Section 4 and 7, each of these optional
features can be modularized as an aspect using Aspect-Oriented techniques, and the
addition/removal of a feature is as simple as a command line option to include/exclude an
aspect in Aspect] weaving. Apparently, the composition transparency of AOP techniques
significantly eases the specialization of a modeling framework to the desired proper
abstraction level: varying the abstraction level of a modeling framework is almost “free™!
In Section 5, I have shown the performance overhead and the optimization
techniques to minimize such overhead when I introduce AOP techniques to model
checking. In the rest of this section, I show the result of applying AOP techniques to
reduce the modeling framework to various abstraction levels. Some of these results are

summarized in Table 5.

Table 5. Comparison of state space of different configurations

No Service Bundle Framework Bundle Max/Min
feature Added Added Added Context
Validator
Added
Example?2 1094 2723 7206 8143 17098 15.63
Example2-2 1856 495§ 12394 14674 24458 13.18
Exampled - 1249 3155 3495 5181 4.15




116

In Table 5, we conducted the performance comparison using three open-source
programs from (Oscar). The first column corresponds to the search space without any
feature (the intersection of the first column and the third row is empty as the Example4
requires at least the Service Listener feature); thereafter, each column has one more
feature in the modeling framework than its proceeding column, i.e. Service Listener,
Bundle Listener, Framework Listener and Bundle Context Validator, respectively. The
last column shows the ratio of search space obtained from full-featured modeling
framework vs. the minimal possible modeling framework. From the table, we can see the
general trend is that when more features are added, JPF needs more space before it finds
the bugs. For the first row (Example2), the search space doubles when a redundant
feature is added; a full-fledged modeling framework may need 15 times of search space
compared with the minimum possible model! The verification demonstrates that we can
effectively reduce the search space by selecting only related features (aspects), instead of
using a fixed, monolithic modeling framework. This assertion is further validated in the
second row: the search space of the base case is about 13 times of the least model, and its
search space increases more than doubled when a redundant feature
(ServiceListener or BundleListener) is added. The search space increases
relatively moderately in the third row (Example4), but the full-fledged version still has a
search space 3 times more than the minimum version. This could have a large impact on

the completeness of the verification result.
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CHAPTER VIII

CONCLUSION AND FUTURE WORK

8.1. Summary

In this dissertation, I have shown that for applications in the OSGi domain, it is
possible to build a modeling framework parallel to the OSGi specification to ease the
model construction of OSGi applications. With such an approach, I am able to discover
property violations in these applications through model checking, with relatively small
efforts to formalize the applications; the modeling framework has the same slots and
hooks for extensions as in the application framework.

Crosscutting concerns arise when [ try to vary the details of a modeling framework to
minimize the state space. Varying features of a modeling framework often requires
modifications that break the Object-Oriented modularity and scatter in multiple functions
and classes. To resolve such crosscutting concems, I propose to use Aspect-Oriented
Programming (AOP) techniques to modularize the needed changes. With AOP
techniques, we pre-process a generic modeling framework with pointcuts, inter-type
definition and other AOP constructs. The pre-processing step adds the only needed

details to the bare essential. In this way, I am able to specify variations in an explicit and
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modular way. Varying application details then becomes a simpler task of specifying and
selecting the proper combination of aspects.

Two problems arise due to the adoption of AOP techniques, i.e. the native code and
the performance penalty. [ have created an abstraction library to resolve the native code
in the Aspect] runtime library as needed, and came up with a test suite in JUnit for
regression testing. The performance penalty is due to the internal variables used by aspect
transformation and subsequent interleaving in a multi-threaded system. We thus made a
distinction between model checking Aspect] programs in general and using AOP
techniques to vary an existing formal model. For the latter problem, we presented several
approaches to reduce the search space to a comparable size of its counterpart in pure Java
implementation.

We have thus used the above technologies for rapid construction of formal models of
OSGi applications. We are able to uncover several bugs in some benchmark OSGi
applications with comparable search space. On the other hand, the extra interleaving of
Aspect] programs suggests a potential data race. We uncovered bugs in the general
Aspect-Oriented programming patterns that have been widely accepted and used. We
showed a general solution to avoid data race during aspect instantiation for a class of

applications under the current implementation of Aspect] compilers.

8.2. Lessons to Learn

Our experience in framework-based model construction with AQP assistance can

benefit the software engineering research community in several ways.
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First, for developers of formal models, our case studies propose a feasible
methodology to build formal models in a domain-specific approach. By using a generic
modeling framework, we are able to leverage modeling efforts from experts and avoid
duplicated efforts in modeling commonalities in the particular domain. A modeling
framework brings us merits of design reuse and code reuse, similar to the application
level. By adopting AOP techniques, we are able to leverage the composition transparency
in aspects weaving, thus solve the crosscutting concerns when varying the modeling
framework. By designing the modeling framework with the Fagade Pattern, we are able
to encapsulate application models from varying details of the modeling framework.

We believe that with proper tool support, one can build a modeling framework that
can be specialized for application logic as well as the abstraction level. In addition,
specialization can be modularized with AOP techniques without unnecessary overheads.
With the increased popularity of Aspect-Oriented techniques, we foresee that formal-
model developers should have a flat learning curve to framework-based model
construction with AOP assistance.

Second, for authors of model checking tools, our case studies may spark the ideas to
build special AOP tools at the model level. We have shown that to use a regular Aspect]
compiler at the model level, one has to customize the Aspect) runtime library to build
some replacement for system-level methods. We also show that the extra fields (e.g.
aspect instances) and statements (e.g. aspect instantiation) inserted by Aspect] weaving
may lead to undesired interleaving and performance overhead, and one has to apply

additional optimization techniques to eliminate such overhead. While the Aspect]
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runtime library and the aspect-specific fields and statements evolve over time with sound
justifications (e.g. clarity, consistency, flexibility and ease of garbage collection for
aspect instantiation, as pointed out in (Colyer 2004)), their benefits may not outweigh the
complexity to eliminate performance overhead at the model level. It is thus important to
make a distinction between using AOP techniques to ease model construction, and model
checking Aspect-Oriented programs in general. For our purpose of using AOP techniques
to vary a modeling framework, we don’t need a full-fledged Aspect] compiler — a
simplified Aspect] compiler with basic AOP functionalities may suffice for our purpose.
For example, the following AOP primitives suffice for our case studies: Intertype
definition (adding class attributes, changing inheritance hierarchy), pointcut (call,
execution, within, withincode, if, this), advice (before, around, after), and issingleton
aspect instantiation. While it is hard to say that such a subset would suffice all needs in
aspectizing formal models, it is critical to balance the benefits and the cost (e.g.
performance overhead, complexity of woven bytecode) when choosing AOP features to
create a special tool at the model level. For example, we may create a special Aspect]
compiler that has no management of aspect instantiation and directly insert the advised
code before and after the designated joinpoint. In this way, the bytecode woven from the
Aspect] version is exactly the same as its pure Java counterpart, which is exactly the
effect we are looking for!

Third, we also have some lessons to share with the authors of AOP tools and AOP
developers. For the consideration of performance, the authors of AOP tools may

deliberately omit the synchronization control of aspect instantiation. This is thoughtful,
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just like the authors of the JDK library to omit the synchronization control for basic
utility classes in the java.util package (for example,
java.util.PriorityQueue is not thread-safe). However, the JDK library evolves
to provide a thread-safe version of queue class (e.g.
java.util.concurrent.BlockingPriorityQueue); analogously, it is
desired to have a different aspect instantiation that is thread-safe. The authors of AOP
tools may take such concerns into consideration and provide AOP primitives that are safe
in a multi-threaded environment. On the other hand, our work also helps programmers to
develop robust Aspect] programs. Many (if not most) Aspect] programmers are not
aware of the lack of synchronization during aspect instantiation (the severity of this
problem can be evidenced by the examples in Section 6), nor do they know the solution
to avoid this trap. We have shown a general pattern to transform perthis and pertarget
aspect instantiation into issingleton style, which is thread-safe as verified by model
checking. Aspect] programmers can follow our examples to develop robust Aspect]
programs that are free from concurrency problems caused by aspect instantiation.

Many of our results also directly benefit users in particular domains. For example, our
aspectized modeling framework of OSGi can be directly reused by formal-model
developers to check OSGi applications. Qur abstraction library for the AspectJ runtime
library can be reused to enable model checking Aspect] programs by JPF. Qur
optimization techniques can be reused when one needs to reduce the search space of

Aspect] programs. Those bugs discovered in our examples (e.g. OSGi applications,
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Aspect-Oriented design patterns) also help developers to build robust applications for

their purpose.

8.3. Future Work

Among the success to uncover bugs in OSGi applications, there remain several open
problems. First, not all Aspect] primitives have been resolved. In particular, to support
the following Aspect] primitives, cflow and percflow, the Aspect] compiler needs to
access the calling context at the bytecode level and use a stack-like structure to keep the
related information. Using the current implementation as it is raises runtime exceptions.
These remain to be done to fully support all Aspect] features. Second, I have used an
aspect to present each feature, and show that we can select a particular combination of
features by choosing a particular combination of aspects. Similar to the application level,
there remain open problems about interleaving among different aspects. For example, the
behavior of a feature (aspect) may be changed when another feature is present. Such
issues of feature confliction remain an open problem to us. Furthermore, researchers have
used program analysis techniques to slice fields and statements unrelated to the
correctness criteria. [ am interested in applying similar analysis techniques to automate

the discovery and construction of aspects at the model level.
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