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Many algorithms are known to work well in practice on a variety of different

problem instances. Reusing existing algorithms for problems besides the one that they

were designed to solve is often quite valuable. This is accomplished by transforming an

instance ofthe new problem into an input for the algorithm and transforming the output

of the algorithm into the correct answer for the new problem. To capitalize on the

efficiency of the algorithm, it is essential that these transformations are efficient. Clearly

not all problems will have efficient transformations to a particular algorithm so there are

limitations on the scope of an algorithm. There is no previous study of which I am aware
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on determining the capability of an algorithm in terms of the complexity of problems that

it can be used to solve.

Two examples of this concept will be presented in proving the exact capability of

the most well known algorithms for solving Satisfiability (SAT) and for solving

Quantified Boolean Formula (QBF). The most well known algorithm for solving SAT is

called DPLL. It has been well studied and is continuously being optimized in an effort to

develop faster SAT solvers. The amount of work being done on optimizing DPLL makes

it a good candidate for solving other problems.

The notion of algorithm capability proved useful in applying DPLL to two areas

of AI: Planning and Nonmonotonic Reasoning. Planning is PSPACE Complete in

general, but NP Complete when restricted to problems that have polynomial length plans.

Trying to optimize the plan length or introducing preferences increases the complexity of

the problem. Despite the fact that these problems are harder than SAT, they are with in

the scope of what DPLL can handle.

Most problems in nonmonotonic reasoning are also harder than SAT. Despite this

fact, DPLL is a candidate solution for nonmonotonic logics. The complexity of

nonmonotonic reasoning in general is beyond the scope of what DPLL can handle. By

knowing the capability of DPLL, one can analyze subsets of nonmonotonic reasoning

that it can be used to solve. For example, DPLL is capable of solving the problem of

model checking in normal default logic. Again, this problem is harder than SAT, but can

still be solved with a single call to a SAT solver. The idea of algorithm capability led to

the fascinating discovery that SAT solvers can solve problems that are harder than SAT.
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CHAPTER I

INTRODUCTION

There are typically many different ways of solving a problem. The best algorithm

for a real world problem is often the one that most capably exploits the natural structure

of the problem and uses the best optimization techniques. It is not uncommon for there to

be strong similarities between the best methods used for exploiting the underlying

structure for two different problems. This is because the type of structure present in one

problem may resemble the type of structure in another regardless of how different the

problems may be in real life. Dissimilar problems may also benefit from using similar

optimization techniques such as good data structures, learning mechanisms, and caching.

Because problems that appear to be very different may benefit from similar methods, an

algorithm that works well in practice for one problem may well be a good candidate for

solving another problem.

Using an algorithm for solving a problem besides the one it was designed to solve

involves transforming each instance of the new problem into an input for the algorithm

and transforming each output of the algorithm into the correct solution for the new

problem. It is important that the transformations be efficient because if the

transformations dominate the runtime then we are unlikely to gain any benefit by using a

good algorithm in between. Clearly not all problems will have efficient transformations

to a particular algorithm so there are limitations on the scope of algorithms. In order to
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capture this notion of algorithm scope, we propose defining the capability of an algorithm

in terms of the complexity of problems that it can solve. We demonstrate how this

concept is useful by proving the capability of two well known algorithms and showing

how this knowledge can be used in applying one of those algorithms to practical

problems.

1.1. Mativatian

One of the primary goals in computer science is to identify the most efficient

algorithms for solving problems. This usually means that one wants to minimize the total

execution time, although it can sometimes also mean that one wants to minimize the

amount of memory required by the computation. The overall execution time of a program

is determined by the number of instructions required and the amount of time per

instruction. Developing better algorithms reduces the number of required instructions,

which in turn plays a fundamental role in lowering the total runtime.

Researchers have spent a lot of time developing better algorithms and refining

existing ones. Some popular algorithms have been well studied and fine tuned through a

variety of different optimization techniques. These techniques include use of good data

structures, caching, learning, book-keeping, parameter tuning, etc. For example, the

Boolean Satisfiability problem (SAT) is to determine for a given Boolean formula

whether or not there is some assignment of the variables that makes the formula evaluate

to true. The algorithm most commonly used for solving this problem, DPLL (Davis and

Putnam 1960, Davis et al. 1962), receives enough attention that there is a regularly
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scheduled competition to see who can develop the fastest SAT solver (SAT

Competitions).

There is a saying that to the man with only a hammer, everything looks like a nail.

While some problems are more specific and require specialized tools, there can be a lot of

value in reusing existing tools to solve new problems. Algorithms that are known to work

well in practice on a variety of different instances are often valuable tools for solving

other problems. Solving a new problem with an existing algorithm is accomplished by

conve11ing from each instance of the problem to an input for algorithm, running the

algorithm on the converted input, and converting the output of the algorithm into the

correct answer for the problem. The algorithm is treated like a black box where only the

input and output are manipulated. Applying popular algorithms to additional problems

enables us to take advantage of the research conducted on optimizing those algorithms.

To capitalize on the efficiency of an algorithm for additional problems, the

transformations to that algorithm must also be efficient. This imposes limitations on the

scope of an algorithm because there are cases where we would like to use an algorithm

for a new problem, but no efficient transformations exist. This may be because the new

problem is significantly harder to solve than the original problem.

We mentioned that one of the primary goals of computer science is to identify the

most efficient algorithms for solving problems. Another is to determine how hard

problems are to solve in terms of the amount of time or memory required by the

computation. Problems are grouped into equivalence classes, called complexity classes,

based on their resource requirements. For example, the class P is the set of problems
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solvable in polynomial time on deterministic Turing Machine (which is equivalent to a

standard computer) (Garey and Johnson 1979).

The primary relationship between algorithms and complexity theory is that

problems are grouped into complexity classes based on the most efficient algorithms for

solving them. We introduce a new relationship between these fields by defining the

capability of an algorithm in terms of the complexity of problems that it can solve. We

show that an algorithm can sometimes be applied to problems of higher complexity than

the problem it was designed for, but it is still limited in the complexity of problems it is

capable of solving.

Informally, if Cj is a complexity class and C2 is a class of functions, we say that

an algorithm is Cj,Crcapable if it can be used to solve all problems in complexity class

C j using Crcomputable transformations of the input and output. We abbreviate Cj,P­

capable to Cj-capable, thus we will assume polynomial transformations of the input and

output unless otherwise specified.

Some algorithms are nondeterministic and may have several execution paths

running in parallel. Computers are inherently deterministic so they simulate

nondeterministic algorithms either in depth-first fashion by running execution paths one

after another or in breadth-first fashion by taking one step along each path until a solution

can be found. When the definition of capability is formalized it will require a

transformation from nondeterministic algorithms to deterministic ones. This

transformation implies that algorithm is capable of solving all problems in complexity

class C on a standard computer.
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By showing that an algorithm is C-capable, we are not suggesting that the

algorithm will be equally well suited for all problems in C or that the algorithm will be

the best method of solving any particular problem. We are just establishing bounds on the

complexity of problems that an algorithm can solve.

There are subtle differences between translating into instances of an algorithm

and translating into instances of the problem that the algorithm is designed to solve. For

instance, DPLL is the most commonly used algorithm for solving SAT. The complement

of SAT, UNSAT, involves determining if a formula is false for all possible assignments

of the variables. DPLL can solve UNSAT using a straightforward transformation of the

output by returning true when DPLL returns false and vice versa. UNSAT is known to be

coNP-complete, hence DPLL can solve problems in NP and in coNP, but this does not

imply that NP =coNP. Furthermore, all known algorithms for NP problems require

exponential time so they may be applicable to problems beyond NP. We will further

explain the differences between capability and complexity in a later chapter.

The notion of algorithm capability is useful for at least three important reasons.

The first is that it gives a method of determining if a given algorithm will work for a

problem without resorting to trial and error. When a new problem arises, we can prove

whether it is solvable with a particular algorithm by knowing the capability of the

algorithm and the complexity of the problem. Or if an algorithm cannot solve a particular

problem, we can characterize what subset of the problem the algorithm can solve.

The second reason this concept is useful is that it gives us insight into the

complexity of problems. If an algorithm A is known to be C capable and the algorithm
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can solve problem B, then problem B is in C. Or if A cannot solve B then B is not in C. It

gives us a new way of looking at the complexity of problems.

The third reason that capability is useful is that it helps to determine if the

algorithm being used is more powerful than necessary for solving a given problem.

Algorithms that can solve every computable problem are unlikely to be ideal candidates

for problems in NP. As techniques are added to make an algorithm run faster, we

typically end up decreasing the capability of the algorithm until the capability is as close

as possible to the complexity of the problem that it is designed to solve. There are some

exceptions to this which will be noted later.

More concrete examples of how this notion is useful will be given, including

showing that DPLL is exactly ~z-capable. DPLL is currently used for an assortment of

different applications because it is known to work well on a variety of different instances.

Having proven the capability, we know exactly what applications it may be used for. In

cases where DPLL cannot solve a problem, we can analyze exactly what subset of the

problem it can solve.

Quantified Boolean Formulae (QBF) is an extension of SAT, and involves

determining whether a given Boolean formula is true where each instance is of the form

\:IXj :3xzf(xj, xz, ... ). QBFbelongs to a complexity class called PSPACE. Modified

versions of DPLL have been used for problems of higher complexity such as QBF

(Cadoli et al. 1998). When the algorithm branches on a variable that is quantified with :3,

one of the branches must return true for the formula to be true. On the other hand, if it
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branches on a variable quantified with \j, both branches need to return true. In the QBF

implementation of the DPLL algorithm, one version of the algorithm handles existential

quantifiers and one handles universal quantifiers. These two versions are called in

alternation to provide an answer to the quantified boolean formula. The version for

handling existential quantifiers is nearly identical to DPLL except for differences in the

unit propagation procedure. The version for handling universal quantifiers is similar to

DPLL except that it checks both branches instead of just one. These algorithms will be

covered in the background section in more detail.

This application of the DPLL algorithm to QBF does not imply that DPLL is

PSPACE-capable since it modifies the original algorithm, not just the input and output.

The definition of capability treats the algorithm as a black box, manipulating the input

and output as necessary. However, we will show later that the QBF algorithm is exactly

PSPACE-capable.

Knowing the capability of DPLL is more interesting if we can demonstrate

practical applications. One particular problem that we would like to use DPLL to solve is

finding optimal solutions to planning problems. There are some problems that have

exponential length plans so determining whether or not there is a plan is PSPACE

complete. It is often useful to consider restrictions on planning problems that bound the

plan length to be a polynomial. In such cases, planning is in NP. We prove the

complexity of finding an optimal plan and conclude that, since it falls within the

capability of DPLL, we can solve optimal planning with DPLL. We will describe current



8

methods of finding optimal plans and how to solve optimal planning more efficiently

with DPLL in more detail in a later chapter.

We will also discuss the capability of DPLL in the context of planning problems

with preferences, which are typically L2-complete when there is a polynomial bound on

the length of the plan. We describe a method for using DPLL in solving planning

problems with preferences. In addition, we will discuss the subset of planning with

preferences that is solvable with DPLL by describing some subsets of planning with

preferences that are in ~2.

Another problem that we would like to use DPLL for is called Nonmonotonic

Reasoning (NMR), which involves being able to retract inferences that are no longer

valid when they contradict new information that is added to the knowledge base. Most of

the interesting problems in NMR are L2-complete, thus, we cannot use the standard

DPLL algorithm for many of the problems in NMR. We can, however, characterize the

subset of nonmonotonic reasoning problems that it can solve by describing the subset of

NMR that is in ~2. We also provide a method of solving specific nonmonotonic reasoning

problems that are in ~2.

1.2. Outline

Chapter two contains the background information necessary for understanding the

ideas presented in this thesis. This includes defining the Boolean satisfiability problem

and the quantified Boolean formula problem and providing details on the most popular

algorithms for solving them. The necessary background material also includes an
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introduction to computational complexity theory. Additionally, we describe two AI

problems that will be used later as applications of the theoretical ideas presented.

Specifically, we will describe planning problems and nonmonotonic reasoning, present

the formal representations, and give an overview on the complexity of these problems.

In chapter three, we give a formal definition of algorithm capability. As

mentioned earlier, the definition of capability requires us to convert from

nondeterministic algorithms to deterministic ones. We will also discuss how translating

into inputs to an algorithm differs from translating into instances of the problem that the

algorithm is designed to solve, and how algorithm capability differs from problem

complexity.

Chapter four provides examples of capability by proving that DPLL is exactly ~2­

capable and that the most commonly used algorithm for solving QBF is exactly

PSPACE-capable. The first result can be shown by demonstrating that the Odd Maximum

Satisfiability (OMS) problem is ~2-complete and that DPLL can be used for OMS. This

shows that DPLL can solve all problems in ~2. We then show that this is also an upper

bound on the capability of DPLL by proving that if a problem can be solved with DPLL

that it must be in ~2'

DPLL has been modified many times to improve its execution time. One example

is using intelligent branch heuristics to select the optimal branching order. While the

basic algorithm is ~2-capable, some of the later additions are not. The most well known

branching heuristics used by modern solvers are not known to be ~2-capable. An analysis

is given in Chapter four of some of the later additions and how they affect the capability
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of DPLL. We also analyze how removing the additions that are not known to be Ll2­

capable affects the runtime.

The final section in chapter four is the proof that the modified version of DPLL

that solves QBF is PSPACE-capable.

Knowing that DPLL is Llz-capable is far more interesting if we can demonstrate

some practical application. In chapter five, we show such practical applications by

describing how to use DPLL to solve certain problems in Artificial Intelligence.

Specifically we look at the problem of finding optimal plans for planning problems. This

problem is beyond NP, but within the scope of what DPLL can solve. We also consider

planning problems with preferences. Though DPLL cannot solve all planning problems

with preferences, we can talk about the types of preferences that it can handle. Knowing

the capability of DPLL is applicable to nonmonotonic reasoning. We show how to use

DPLL for solving nonmonotonic SAT problems. We characterize the subset of NMR that

can be solved with DPLL since most problems in NMR have a higher complexity than

DPLL can solve.

Chapter six presents conclusions and a discussion on possible avenues of future

research.
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CHAPTER II

BACKGROUND

Some background material is necessary to understand the ideas presented in this

dissertation. This chapter is divided into four sections, each one devoted to a specific

topic. In the first section, we familiarize the reader with the Satisfiability problem, the

Quantified Boolean Formula problem, and the most commonly used algorithms for

solving them. This information is helpful because we give examples of algorithm

capability by proving the capability of these algorithms.

In the second section, we will present some of the key concepts in complexity

theory and computability theory. Understanding these concepts is crucial in

understanding both the idea of algorithm capability as well as the specific examples

because capability is defined in terms of the complexity of problems that an algorithm

can solve. Once we have proven the capability of a particular algorithm, we need to know

the complexity of a problem in order to show whether or not the algorithm can solve that

problem.

The last two sections contain descriptions of certain problems in planning and in

nonmonotonic reasoning, including their formal representations and a brief overview of

their computational complexities. In later chapters, we show that knowing the capability

of the algorithm for solving SAT is valuable by demonstrating that the algorithm can

solve these problems.
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2.1. Satisfiability and DPLL

After sorting, Satisfiabi1ity is perhaps the most famous and well-studied problem

in computer science. The problem is to determine if a given Boolean formula in

conjunctive normal form (CNF) is satisfiable, meaning that there is some assignment of

the variables that makes it evaluate to true. A formula is in CNF if it consists of a set of

clauses joined by 1\ (logical and) where each clause is a set of literals joined by V

(logical or). A literal is a variable or its negation. We use the symbol -, to denote

negation. For example, (a V b) 1\ (-,a V c) is a Boolean formula in CNF with two

clauses. The first clause is (a V b) and the second is (-,a V c).

DPLL is a recursive algorithm for solving Satisfiability first introduced by Davis

and Putnam (Davis and Putnam 1960) and later modified by Davis, Logemann, and

Loveland (Davis et al. 1962). Starting with an initially empty partial assignment of

variables, we construct a solution by first performing unit propagation. Unit propagation

involves finding all "unit clauses" which contain one unvalued literal and only other

literals that are set to false. Clearly the unvalued literal must be set to true in order to

satisfy the formula. At this step in the procedure, we set all variables that correspond to

unit clauses. Sometimes setting a variable during unit propagation creates new unit

clauses. The algorithm will continue to process unit clauses until no more are available or

being created.
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Next we return the value of the formula if it has already been determined by the

current partial assignment. Finally we select an unassigned literal, I, and make one

recursive call with I set to true and one with I set to false.

The algorithm returns a satisfying assignment if one is found and returns UNSAT

if a contradiction is reached. Pseudo-code is shown in Figure 2.1.1. Some versions of

DPLL just return SAT or UNSAT instead of returning the satisfying assignment.

1: DPLL (Clauses, Assignment)
2: Assignment +----- UNIT-PROPAGATE (Assignment)
3: if Clauses is empty
4: then return Assignment

5: if c E Clauses and c is empty
6: then return UNSATISFIABLE
7: I+----- GET-NEXT-VARIABLE 0
8: Solution +----- DPLL (Clauses, AssignmentU {I})

9: if Solution *- UNSATISFIABLE
10: then return Solution

11: return DPLL (Clauses, Assignment U { ""l})

There are many implementations of the DPLL algorithm. Some of the more

popular ones include zChaff (Moskewicz et al. 2001), RSAT (Pipatsrisawat and

Darwiche 2007), SATzilla (Nudelman et al. 2004), and Minisat (Een and Sorensson

2004). These solvers have all performed quite well in recent SAT competitions.
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Several modifications have been made to the original algorithm in order to make

it more efficient. These modifications include using intelligent branch heuristics, learning

new clauses, optimizing data structures, parameter tuning, and many others. These

modifications and others will be discussed in more detail in chapter IV.

Another problem similar to the satisfiability problem is determining whether a

given formula is a tautology, in other words whether it is true for all assignments to the

variables. Thus, a satisfiability problem is of the form :3Xl, ... , Xn!(Xl, ... , xn) and a

tautology problem is of the form \if Xl, ... , Xn!(Xl, ... , Xn).

This can be generalized by allowing alternation of quantifiers instead of applying

the same quantifier to all variables. This problem is called Quantified Boolean Formula

(QBF), and a QBF formula is of the form QlXl Q2X2 ... !(Xl, X2 ... ). Each Qi represents a

quantifier and may either be \if or :3.

The most well known algorithm for solving QBF is similar to DPLL. It involves

writing one procedure to handle the existential quantifiers and one to handle the universal

quantifiers. For each quantified variable, the algorithm calls the appropriate version.

Pseudo-code for solving QBF is given in figure 2.1.2. The unit propagation procedure is a

little different from the standard one in DPLL. If an existentially quantified variable

appears in a clause where all other literals are false, then the literal containing that

variable must be set to true. If a universally quantified variable appears in a clause where

all other literals are false, then we can return UNSATISFIABLE or FALSE.



1: SOLVE (Clauses)

2: if outermost variable quantified by :J
3: then return SOLVE-I. (Clauses, {D
4: else return SOLVE-Il (Clauses, {})

1: SOLVE-I. (Clauses, Assignment)
2: Assignment *- UNIT-PROPAGATE (Assignment)
3: if Clauses is empty
4: then return Assignment

5: if c E Clauses and c is empty
6: then return UNSATISFIABLE
7: I*- GET-NEXT-VARIABLE 0
8: Solution *- DPLL (Clauses, AssignmentU {ID

9: if Solution *- UNSATISFIABLE
10: then return Solution

11: return DPLL (Clauses, Assignment U {...,ID

1: SOLVE-Il (Clauses, Assignment)
2: Assignment *- UNIT-PROPAGATE (Assignment)
3: if Clauses is empty
4: then return Assignment

5: if c E Clauses and c is empty
6: then return UNSATISFIABLE
7: I*- GET-NEXT-VARIABLE 0
8: Solution *- DPLL (Clauses, AssignmentU {I})

9: if Solution = UNSATISFIABLE
10: then return UNSATISFIABLE

11: return DPLL (Clauses, Assignment U { ""f})

I Figure 2.1.2 Pseudo-code for QBF algorithm.

15



16

Cadoli, Giovanardi and Schaerf proved several theorems about when a QBF is

trivially true or false (Cadoli et al. 1998). The QBF solver that they use is similar to the

above algorithm, but they also check if the formula is trivially true or false by seeing if it

satisfies the conditions specified in the theorems that they proved. This makes the

algorithm run more efficiently, though the underlying algorithm is essentially the same.

2.2. Computational Complexity and Computability

One branch of computer science, known as computational complexity theory,

studies how hard problems are to solve in terms of the resource requirements (usually the

amount of time or memory) for computing the solution. Problems are grouped into

equivalence classes called complexity classes based on their resource requirements. Most

often a complexity class is defined as a set of problems requiring no more than X amount

of resource Y given a specific model of computation. The most common resources are

time and memory. Often we want to restrict to a polynomial amount or a logarithmic

amount of one of these resources.

We say that a problem is in a complexity class if it can be solved by some

algorithm that satisfies the resource restrictions of that class. Typically, we are most

interested in the lower bound on complexity which is equivalent to the resource

requirements of the best algorithm for solving the problem. The best algorithm for

solving a problem is the most accurate reflection of how hard the problem actually is to

solve.
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In order to develop a formal notion of complexity theory, we are best served by

starting with the formal definitions of problems and algorithms. Generally speaking, a

problem is a question that we wish to answer given some input value. Each possible input

string corresponds to an instance of the problem and there is one output or one set of

possible outputs for each input.

Often in complexity theory, we consider decision problems, where the answer is

either yes or no. Decision problems can be mathematically formulated as languages

which are a set of strings. Under this representation, aproblem is the set of all strings that

represent yes instances. For instance, SAT is the set of all strings that represent satisfiable

Boolean formulae.

It is not much of a hindrance to restrict our attention to decision problems. For

most problems there is a natural decision version of the problem. For example if we want

to find the largest cycle in a graph, the natural decision version is to ask if there is a cycle

of some fixed length k. We can often find the solution to the original problem by asking a

small number of decision problems. In our example if there is a cycle of length k then we

decrease and ask again; if there is not a cycle of length k then we increase and ask again.

We repeat this process until we find the actual value of k that answers the original

problem.

An algorithm is a step by step procedure for solving a problem. We analyze

algorithms in terms of the worst case run time, where the run time is expressed as a

function of the size of the input. When we express the runtime of a problem, it is

common to only write the most significant term and to ignore constants. So if the runtime
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of a problem is T (n) = 3n2 + 4n + 1 then we would write that the runtime is 0 (n\ In

some cases we may analyze algorithms in terms of a different resource such as the

amount of memory required by the computation.

An algorithm can be expressed mathematically as a Turing machine. A Turing

machine (TM) is a model of computation first proposed by Alan Turing in 1936 (Sipser

1997). Each Turing machine consists of a set of states, an infinite tape (which serves as

memory), a tape head or pointer to the current tape square, and an internal transition

function which determines how the machine operates. Initially the tape contains the input

string and is blank on all other squares. The machine can store additional information by

writing to the tape squares. The tape pointer initially points to the beginning of the string

and the machine starts in a special start state. The machine will execute until it enters a

separate accept state or reject state. If it never enters one of these two states then it

continues computing forever.

The internal transition function tells us how to get from one step in the

computation to the next. The transition function has two inputs: the current state of the

machine and the contents of the tape square where the tape head is currently pointing.

There are three outputs of the transition function: the state that the machine transitions

into, the symbol that we write to the tape square replacing the input symbol, and the

direction that the tape head moves (left or right). An example of a simple TM is given in

figure 2.2.1. The transition function is shown using directional arcs that are labeled with

three elements: the symbol being read from the tape (l, 0, B for blank), the symbol being

written to the tape (1,0, or B for blank), and the direction that the tape head pointer
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1,1, R

1,1, R

reject

Figure 2.2.1 Example of a simple Turing Machine. The label "B" is used to represent
blank. As the input value it means that the square is blank. As the output value it
means that we erase the value that is there or leave it blank if it is already blank.

moves (L for left or R for right). For example if we read aI, write a 1 back to the tape

and move right, then the arc is labeled with 1, 1, R. The TM shown in the figure

represents all binary strings that have an even number of ones. An execution path is a

valid sequence of states for a given input that can legally occur according to the transition

function.

The machine is deterministic if the transition function behaves like a true function

in that there is exactly one output triple for every possible input pair. A nondeterministic

machine is one in which the transition "function" is more of a relation. Each input pair

cOlTesponds to a possibly empty set of possible outputs. In other words, from any given

point in the computation, there may be no transitions or there may be multiple possible

transitions leading to potentially different outcomes. This leads to there being multiple

execution paths through the machine. It may be that some of the execution paths end in

an accept state, some end in a reject state, some terminate when there are no possible
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transitions from the current state, and others may not halt. The machine accepts the input

string if there is at least one execution path from the start state to the accept state.

A deterministic TM is capable of computing everything that a standard computer

can. Essentially each deterministic TM represents a computer that solves exactly one

problem. It is a mathematical expression of a particular algorithm for solving the

problem. Algorithms are generally specified by pseudo-code representations that describe

how to implement them, but the TM representation is a more mathematical approach.

Algorithms could equivalently be expressed using lambda calculus notation.

Now that we have defined what we mean by the terms problem and algorithm,

we are ready to delve into computational complexity. We group problems into

equivalence classes based on how hard they are for a computer to solve. Many

complexity classes are defined as the set of problems requiring no more than X amount of

resource Y given a specific model of computation. For example, the two most well

known classes in complexity theory are P and NP. P and NP are defined as the set of

problems solvable in polynomial time on a deterministic or nondeterministic Turing

machines, respectively. The main advantage of nondeterministic Turing machines is that

there may be several execution paths running at the same time, which allows us to test

multiple possibilities at once. Another way of characterizing NP is the set of problems

whose solutions can be verified in polynomial time. In other words, if we are given a

problem and a small proof that the answer is yes, we can check in polynomial time

whether the proof is correct. (By small, we mean polynomial in size). Consider SAT for



21

example. A satisfying assignment would suffice as a proof that an instance is a satisfiable

formula, and is clearly polynomial in the size of the input. Thus SAT is in NP.

Clearly P ~ NP because the set of deterministic Turing machines forms a subset

of the set of nondeterministic Turing machines. Another way of looking at it is that if we

can solve the problem in polynomial time then certainly we could verify a solution in

polynomial time. One of the most important open questions in computer science is

whether this containment is proper. In other words, it is still unknown whether there are

problems that can be solved in polynomial time on a nondeterministic machine that

cannot be solved in polynomial time on a deterministic machine. Most people believe that

P f. NP. We know that SAT is in NP, but it is believed that SAT is not in P. If this belief

is correct then there is no polynomial time deterministic algorithm that will solve SAT.

The complement of a decision problem is the problem that reverses the yes and no

answers. When we consider a problem as a language or set of strings that correspond to

the yes instances, the complement of a problem is the set complement of the language.

For example, determining whether a number is prime is the complement of determining

whether a number is composite. Determining whether a Boolean formula is unsatisfiable

is the complement of SAT.

The set of problems whose complement is in NP is known as coNP. In general,

the set of problems whose complement is in complexity class C is expressed as coCo Note

that coNP is not the complement of NP, but rather a decision problem is in coNP if its

complement is in NP. It is still unknown whether NP =coNP, but P is known to be a

subset of both. Since NP is the set of problems where yes answers can be verified in
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polynomial time, coNP is the set of problems whose no instances can be verified in

polynomial time.

Sometimes, there are other resources that are equally important or more important

than the amount of time required. Another well known class is PSPACE which is the set

of problems solvable with a polynomial amount of memory. P ~ PSPACE because if we

are only given a polynomial amount of time steps, we cannot possible touch more than a

polynomial number of memory squares in our computation.

Nondeterministic polynomial space (NPSPACE) has been shown to be equivalent

to deterministic polynomial space. Thus NP ~ PSPACE since NP ~ NPSPACE for the

same reason P ~ PSPACE. We could also argue that NP ~ PSPACE by the fact that each

execution path requires polynomial time (thus polynomial space), and if we execute the

paths in sequence then we could use the same section of memory for each of the

execution paths. Though NP and coNP are both known to be contained in PSPACE, it is

unknown whether the containment is proper. See figure 2.2.2 for a diagram of how these

classes are related.

SAT is in NP and QBF is in PSPACE. We will later prove that the algorithm we

described earlier for solving QBF is capable of solving problems in PSPACE and no

more.

There are a number of classes that fall in between NP and PSPACE. Some of the

most noteworthy ones can be defined in terms of oracles. An oracle for a problem is an

external device that can determine the answer to the problem in a single time step. For
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PSPACE = NPSPACE

coNP

Figure 2.2.2. Diagram showing the relationship between complexity classes.

instance, if we have an oracle for SAT then it could tell us instantaneously whether a

given formula is satisfiable. Oracles are not real devices (that I know of), but they are of

theoretical value and help us to differentiate the relative complexity of various problems.

In terms of Turing machines, an oracle machine is one in which we have a

separate oracle tape, an oracle state q?, and special states qyes and qno. These components

correspond to an oracle for a specific problem. The oracle tape may be written to at any

point during the computation. When we enter the oracle state, the machine transitions to

qyes if the string on the oracle tape encodes a yes instance of the problem that the oracle

answers and qno if the string encodes a no instance. See figure 2.2.3 for a diagram of an

oracle machine. The figure represents a generic oracle TM and only shows a start state,

accept and reject states, and the oracle. It does not show any additional internal states or

the transition function which are dependent upon the specific problem being considered.

If A and B are complexity classes, AB denotes the set of problems that are in A

given an oracle for a problem in B. For instance pNP is the set of classes that are in P

given an oracle for SAT or some other problem in NP. Stockmeyer (1976) identified
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Br;\VB
Oracle

Figure 2.2.3. Diagram of an oracle machine.

many classes in between NP and PSPACE when he defined the polynomial hierarchy.

First we let L1~ = Lg = IIg = P. Now for i 2: 0 define:

AP _ pLj
L.l. i+1 -

L P
j
=NpLj

,+

II PI =coNp L
,

1+

The p is used to indicate that we are referring to the polynomial hierarchy (as

opposed to the arithmetic hierarchy). However, we will not be using the arithmetic

hierarchy so we have chosen to omit p and write L1i, Li' and IIi.

Each level of the hierarchy is defined as the set of problems that can be solved

with an oracle for a problem in the level below it. In other words, suppose that we have

an oracle for solving a problem in Li. L1i+! is the set of problems in P given access to the

oracle, Li+! is the set of problems in NP given access to the oracle, and II i+! is the set of

problems in coNP given access to the oracle. IIi is equivalent to COLi. See figure 2.2.4 for

a diagram of the relationship between classes in the polynomial hierarchy. Based on the
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Figure 2.2.4. Relationship between classes in the polynomial hierarchy.

definition, Ll] =P, L,] =NP, and II] =coNP. Further note that Ll2 is P with an NP oracle,

L,2 is NP with an NP oracle, and Il2 is coNP with an NP oracle. The polynomial hierarchy

is also expressed as PH =UL,i.

These definitions are relevant to our work in characterizing the capability of an

algorithm in terms of the complexity of problems that it can be used to solve. When we

give more concrete examples of capability, we will show that DPLL is exactly Ll2

capable, whereas some of the problems that we would like to use it for are higher up in

the polynomial hierarchy. Many problems in nonmonotonic reasoning, for instance, fall

into L,2 or Il2. Understanding the polynomial hierarchy is essential for understanding what

variations of nonmonotonic reasoning can be solved with DPLL. Variations on planning

problems also have varying degrees of complexity. Understanding the complexity of

these problems helps us to determine whether they can be solved with DPLL.
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It is an open question whether PH =PSPACE, but if so, then the hierarchy

collapses to some finite level and PH =L; for some i. Similarly if level i and level i+ 1 are

equal, then they are also equal to every level above including PSPACE. This means that

if L; =L;+I or II; =II;+I then the hierarchy collapses to level i. The reason for this is that if

L; =L;+I then a Li oracle is equivalent to a L;+I oracle. Thus L;+I =L;+2. This argument can

be extended to every level above Li. Contrarily, if containment is proper at any level, then

it is proper at every level below it.

Stockmeyer (1976) also showed that a problem is in L; if and only if it can be

expressed as :JXI '\I X2 ... Q; Xi R (XI ... Xi) where R is polynomially computable and i is

the number of quantifier alternations. Analogously, a problem is in II; if and only if it can

be expressed with i quantifier alternations where the first quantifier is '\I. Each level of

the hierarchy can be described in terms of the number of quantifier alternations. QBF is

not in any level of the hierarchy because the number of quantifier alternations is not

bounded by a constant.

A more intuitive understanding can be gained by looking at specific examples.

Primality testing (determining if a number is prime) is in P since it can be solved in

polynomial time (Agrawal et al. 2004). This result is fairly recent and was unknown for a

long time until Agrawal et ai. showed a polynomial algorithm for solving the problem.

We mentioned earlier that SAT is in NP and UNSAT and TAUT are both in coNP.

Another problem in NP is the problem of deciding whether two boolean formula are

equivalent. To look beyond NP, consider the set of boolean formula that have no smaller
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equivalent formula. This problem is called MINIMAL. The complement of this problem

is the set of boolean formula that are not minimal (i.e., formulas that have a smaller

equivalent). NONMINIMAL can be solved in NP with an oracle for the equivalence

problem (which is in NP). Therefore, NONMINIMAL is an example of a problem in L2

which implies that MINIMAL is in TI2 (Meyer and Stockmeyer 1972).

There are also many classes in between the different levels of the polynomial

hierarchy. Recall that the class Lli+! is the class or problems solvable with a polynomial

number of queries to an oracle for a problem in Li. Another interesting set of complexity

classes are those where we are allowed only a logarithmic number of queries to aLi

oracle. This is represented as 8 i+!.

Another way to define the difference between Ll2 and 8 2 is in terms of the types of

queries that are allowed. Queries to an oracle can be either adaptive (also called serial) or

nonadaptive (also called parallel). So far we have only considered adaptive queries where

we are allowed to determine the next query based on the current state of the computation

including answers to prior queries. Nonadaptive queries are ones that must be

predetermined from the start. For example, suppose that I am trying to guess a randomly

generated number. If I have to list all of my guesses in order up front then these would be

nonadaptive queries. If I can ask whether the number is higher than my guess, then I can

base my next guess on the answers to previous queries. These are adaptive queries and it

generally requires fewer of them in order to guess the random number. It has been shown

that having a polynomial number of parallel queries is equivalent to having a logarithmic

number of serial queries. 8 2 is the class of problems solvable with a logarithmic number
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of serial queries to an NP oracle or a polynomial number of parallel queries to an NP

oracle.

These classes are applicable to our research because 8 2 resides in Ll2 but above

NP. Since we show that DPLL is Llrcapable, this means that problems in 8 2 are solvable

with DPLL even though 8 2 is higher than the complexity of SAT. There are interesting

problems in default logic that have been proven 8 2-complete. There are also variations

on planning problems that can be solved in polynomial time with a logarithmic number of

queries to an NP oracle.

Another example of a class between levels of the hierarchy that will be used later

is the class DP
• The class DP contains the decision problems whose yes instances are

characterized by the conjunction of an NP property and an independent coNP property.

We could clearly answer these type of questions in polynomial time with an NP oracle so

DP
~ Ll2. Some of the problems we look at later are exactly DP (Complexity Zoo), which

is a subset of Ll2, so we can solve these problems with DPLL. See figure 2.2.5 for a

diagram that relates NP, Dp, Ll2, and 8 2.

Note that NPUcoNP is the set of problems solvable with a single call to an NP

oracle; 8 2 is the set of problems solvable with a logarithmic number of calls to an NP

oracle; and Ll2 is the set of problems solvable with a polynomial number of calls to an NP

oracle.

When we talk about complexity classes, we are describing a set of problems that

are roughly just as hard to solve as one another. In order to group problems that have
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L12

Figure 2.2.5. Diagram showing the relationship between NP, DP
, 02, and L.l2.

similar requirements, we would like to be able to reduce from one problem to the other to

show that the two problems are equally difficult. It is therefore important to define the

notion of reducibility.

When we represent a problem as a language, it is a set of strings over some finite

alphabet L The set of all possible strings made from the letters in L is denoted L*. A

language A is mapping reducible or many-to-one reducible} to another language B if

there is a computable function! L*~ L* such that wEA iffj(w)EB. This type of

reduction is a reduction between decision problems. This is written A sm B. The function

j is called a reduction from A to B. If the functionj is in P then it is called a polynomial-

time reduction.

Having defined reducibility, we are now prepared to define one of the most

important concepts in complexity theory. Given a complexity class C, a problem is C-

1 There are many other types of reductions, but this is the one that we will be using to describe reductions
between languages. Whenever we use the word reduction in regards to languages, we are referring to a
many-to-one reduction.
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hard if all other problems in C can be reduced to it. If a problem is in C and it is Chard

then it is C-complete. Intuitively, if a problem is C-complete, then C is both an upper and

a lower bound on the complexity (Stockmeyer 1987). Most complexity classes are

defined in terms of polynomial-time reductions, but there are some classes that are

defined by other reductions such as a logarithmic-time reduction or logarithmic-space

reduction. Unless otherwise specified, we are referring to polynomial-time reductions.

We hinted at the notion of completeness earlier in saying that the complexity of

SAT is exactly NP. What we mean by this is that SAT is NP complete. It is solvable by a

nondeterministic machine in polynomial time and all other problems in NP are reducible

to it. Thus if we can develop an algorithm for SAT that proves SAT is in P, then all other

problems in NP must also be in P. This would mean that P =NP.

Note, if we know that A, B E C and A is C-complete, B is proven to be C-

complete if we can show that there is a reduction from A to B. Reductions are transitive;

since all of C reduces to A and A reduces to B, then all of C reduces to B. It is also

important to note that if a complete problem is shown to be polynomial-time solvable

then all other problems in the class must also be polynomial-time solvable.

We know that SAT is NP-complete and that QBF is PSPACE-complete. When we

show that DPLL is ,,12-capable, it implies that it cannot be used to solve QBF because

QBF is PSPACE-hard. It does not suffice to know that QBF is in PSPACE because that

only shows PSPACE is an upper bound on the complexity. Knowing that QBF is

PSPACE-complete means that PSPACE is both an upper and lower bound on the

complexity so it is not in ,,12 unless PSPACE =,,12.
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So far we have discussed classes of languages. Most real world problems are not

decision problems but rather they are of the form where we produce some output for each

possible input. Though these problems are not always functions], we refer to these

problems as functional problems. There are complexity classes that correspond to this

more traditional view of problems. These are called junctional complexity classes even

though the problems are not always functions.

The decision version of SAT is the question of whether or not a Boolean formula

is satisfiable. The functional version of this problem is usually to ask for a satisfying

assignment of a Boolean formula if one exists and UNSAT otherwise. This problem can

still be solved using an NDTM. Instead of either accepting or rejecting the input, the

machine could return the string on the tape when it enters an accepting state and reject the

input otherwise. These machines are calledjunction-computing Turing machines. The

set of problems solvable in polynomial time by function-computing NDTMs is known as

FNP.

There is a direct relationship between a NP and FNP. As we mentioned earlier,

one way of characterizing NP is the set of problems that have a polynomial sized witness

of yes instances. For any language L E NP, we can create a relation R (x, y) between the

yes instances and the witnesses. This relation has the property that for all instances x,

there exists a y such that R (x, y) if and only if x E L. There may be many different

I A function is a mathematical object that returns a specific output for each input. By definition functions
have exactly one output for every input. The problem of finding a satisfying assignment for a boolean
formula, for example, is not a function because there is more than one possible output for some inputs. It
would probably be more appropriate to view these classes as a class of relations or a class of procedures.
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relations for each language since there may be many ways of providing witnesses. Each

of these relations gives rise to one functional problem of the form: Given x, find a string y

such that R (x, y) or return no if no such string exists.

We can also define FpNP (also written F~2) and FpNP[logn] (also written Fe2). F~2

is the class of problems that can be computed in polynomial time by a function­

computing deterministic Turing machine with an NP oracle. Fe2 is the set of function

problems that can be computed in polynomial time with access to an NP oracle where we

are only allowed to make 0 (log n) queries to the oracle.

Krentel defined another functional complexity class as the set of optimization

problems called OptP (Krentel 1988). This is the set of problems that can be solved by a

nondeterministic machine in polynomial time that writes some value on each accepting

path. The machine will return the optimal value out of all of the accepting paths. The

value written on each path must have a polynomial number of bits. Krentel showed a

number of interesting problems to be complete for OptP, such as finding the

lexicographically maximum satisfying assignment. He also demonstrated a relationship

between OptP and ~2 by showing that every problem in ~2 decomposes into two steps

where the first is an OptP problem and the second is a polynomial-time computable

predicate. This is because the number of bits needed to express the value of an OptP

function roughly corresponds to the number of queries to an NP oracle needed to

determine the answer. Furthermore he shows that L E ~2 if and only if L can be written

as {x IR (x, g(x))} where g E OptP and R is a polynomial-time computable predicate.
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The reduction between languages will not work for reducing between problems in

OptP or other functional complexity classes. In order to talk about classes of functions (or

function-like problems), we need a form of reduction that will allow us to reduce these

problems to one another. Though these problems are not necessarily functions, a

reduction between functions will suffice for these problems also. A metric reduction

from f to g is a pair of P-computable predicates T] and T2 such that Vx E L* f(x) =T2 (x,

geT] (x))). T] transforms the input into a valid input for g and T2 transforms the output so

that it correctly corresponds to the output of the function! Note that all of the

reducibilities described are transitive relations. If A is reducible to Band B is reducible to

C then A is reducible to C. A problem is complete for OptP if it is in OptP and all other

problems in OptP are metrically reducible to it.

Krentel used the relationship between OptP and 112 to establish the canonical 112­

complete problem. We use the completeness result in demonstrating that DPLL is exactly

112-capable. Also, since Krentel showed that there are P-computable transformations

between problems in OptP and problems in 112, DPLL is OptP-capable.

Complexity theory is parallel to another topic in the theory of computation called

computability theory. In complexity theory, we attempt to classify how hard problems

are for a computer to solve. However, there are problems that cannot be solved by a

computer regardless of how much time or memory we are allowed (assuming time and

memory are both finite). The study of what can and cannot be computed is known as

computability theory.
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One problem that computers are incapable of solving is called the Halting

problem. When writing programs, sometimes an error in the code causes an infinite loop.

It can often be difficult to detect whether a program is in an infinite loop. The halting

problem is the problem of determining for a given program and input whether the

program halts on the specified input.

One central result in computer science is that the halting problem is not

computable. There is no algorithm that will decide for every program-input pair whether

or not the program halts on the given input. More specifically, the halting problem is

semi-decidable meaning that we are guaranteed to return the correct answer for all yes

instances, but we might run forever if the answer is no. We can write a program that will

eventually return yes for all yes instances of the halting problem by simply running the

specified program on the given input until it finishes. It will run forever whenever the

answer is no. A problem is non semi-decidable if we cannot even correctly compute all

yes instances.

The argument that the halting problem is semi-decidable is simple and

straightforward. It is a bit trickier to prove that the halting problem is not computable,

which involves proving that we cannot write an algorithm that will return the correct

answer for all no instances. Basically we assume that there is some program h that will

solve the halting problem. Now consider the programf(i, x) which returns I if h (i, x) =0

and goes into an infinite loop otherwise. We can write this program because we have

assumed h is computable. It has been proven that we can enumerate all programs, so we

can assign a unique numeric value to each program. Let u be the value of program! Now
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consider what happens when we look at h (u, x). If h (u, x) =1 then it means that the

programfhalts on x. Forfto halt on x it means that h (u, x) =O. Thus h (u, x) =1 implies

h (u, x) =O. Contrarily if h (u, x) =0 thenf(u, x) will halt and return 1, but this would

mean that h (u, x) = 1 sincefhalts on x. Thus h (u, x) =1 implies h (u, x) =O. We have

reached a contradiction so there must not be a program that will compute the halting

problem.

One of the most common methods of showing that a problem is not computable is

to show that it is equivalent to the halting problem or that the halting problem can be

reduced to it.

We have described computability because there are versions of the problems that

we consider that are not decidable. This will be explained in more detail later.

2.3. Planning Problems

Though planning often seems like a simple and direct task, the problem is

computationally intractable. There are planning problems, such as the Towers of Hanoi

(Lucas 1883), whose shortest plan is exponential in length. In general, planning is

PSPACE-complete, but often people consider restrictions on planning that make the

problem slightly more tractable. The most common restriction is to consider problems

where there is some polynomial bound on the length of the plan. Under this restriction,

the question of whether or not there exists a plan is in NP.

There are many variations on planning problems, how they are expressed, and

how people solve them. This section is divided into subsections to discuss the different
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variations and solutions. The first subsection describes STRIPS (Fikes and Nilsson 1971),

the most popular representation for generic planning problems. We then describe a few

approaches to solving problems expressed in STRIPS notation. Following that, we will

define what an optimal solution is and approaches to finding optimal solutions. The final

subsection contains a description of an alternate representation.

2.3.1. STRIPS

One of the most popular ways of representing planning problems is to use

propositional STRIPS (Fikes and Nilsson 1971) notation. In STRIPS notation, a planning

problem consists of four elements. The first is a set of Boolean variables that represent

various conditions about the world. For example, suppose we are developing a plan for

how to get from home to work. This may depend on the weather or if we are running late

so we may choose to include Boolean variables to represent various aspects of the

environment such as raining to indicate whether or not it is raining or late to indicate

whether or not we are running late. The set of variables can also be a set of predicates

which map from some domain to {true,false}.

The second element of a planning problem is a set of actions. An action is

typically represented as preconditions -----? postconditions. The preconditions and

postconditions are both sets of literals (a variable or its negation) where the preconditions

must be true before the action can be executed and the postconditions are true after the

action has been performed. For example, in the case where we are developing a plan to

get to work, we may have an action that says raining -----? drive V takebus.
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The last two elements of a planning problem are the initial state and the goal state.

The initial state is the set of conditions that are true at the beginning of the problem. The

goal state is the set of conditions that we wish to satisfy. A solution to a planning problem

(a plan) is a set of actions that take us from the initial state to the goal state.

For example, suppose we wish to move a set of packages from their original cities

to their destinations by air. One way to represent this problem is to start by introducing a

set of constants that will form the domains for our variables. The constants are planes PI,

... , Pk, packages (or objects) 01, ... Om, and cities CI, ... cn. The variables that we will

need include the predicates inPlane (plane, object) to indicate that the given object is on a

specific plane, atCity (plane, city) to indicate that the given plane is at a particular city,

and locatedAt (object, city) to indicate that the given object is not on a plane but located

at the specified city.

The primary actions that we need for the planning problem are fly, load, and

unload, as well as a no-op action which does nothing. The first action isfly (plane, city1,

city2), meaning that we are flying the specified plane from city1 to city2. In order to

perform this action, the only precondition is that the plane must be located at city1. After

the action, the two postconditions that must hold are that plane must be at city2 and it

must no longer be at city1. So the action can be represented as atCity (plane, city1)---+

atCity (plane, city2) /\ ,atCity (plane, city2). We will need additional actions for loading

and unloading. We won't provide full details here, but the remaining actions are fairly

straightforward to express.
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Finally, the start state encodes the initial location of all packages and planes, and

the goal state contains the final location indicating where each package needs to end up.

2.3.2. Planning as Satisfiability

Originally planning problems were solved using logical deduction. Kautz and

Selman (Kautz and Selman 1992) proposed an alternative approach that involves

representing planning problems as satisfiability problems and using a SAT solver.

In SAT problems, each variable is set to a distinct value and does not change. In

planning problems, the value of each variable may change throughout the duration of the

problem. Thus, we need to mark each of our variables with a timestamp. Unfortunately

this requires an upper bound on the plan length which may not be known in advance. We

can start with some initial upper bound and increase the upper bound if no plan is found.

If there is no solution to a problem, then this procedure will run forever.

Let S represent the set of all initial conditions and let G be the goal conditions.

The initial conditions can be specified by including one clause for each literal in S. We

also need one clause for the negation of each positive literal not in S. The clause variables

used to specify the initial state are all marked with timestamp one. The goal state can be

specified by taking adding one clause for each literal in G. The timestamp on these

variables will be the upper bound on the plan length.

Next, we need to encode the actions. Each action ai is of the form {PI, ... ,PIl} ­

{ql, ... , qm} where PI, ... , PIl are the preconditions and ql, ... , qm are the postconditions.

Let ai(k) mean that action ai is executed at time k. Similarly for each Pi or qt, let PiCk) or
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q,(k) mean that the variable is true at time k. We must ensure that if an action occurs at

time k then its preconditions are true at time k and its postconditions are true at time k+ 1.

For every time step k we introduce the following clauses:

V iJ (-,ai(k) V pj(k))

Vi,l (-,a,(k) V q,(k+l))

While these clauses are all true, they are insufficient to encode a planning

problem. If we only encode the initial state, the goal state, and the actions then we will

admit many anomalous models. Specifically, in some models the world may change even

if no action has occurred. To prevent this, frame axioms are used to encode the implicit

idea that a literal remains unchanged unless it is an effect of the current action. Let A, be

the disjunction of all actions that contain literal I as a postcondition. When we are looking

at a specific time k we use A,(k). For each time step, frame axioms are encoded using the

following clauses:

VI (l(k) V -,I(k+l) V A,(k))

In addition to frame axioms, the authors of this work introduced exclusion axioms

to ensure that only one action occurs at any time step. Modern solvers often allow for

nonconflicting actions to occur simultaneously, but the original planning as satisfiability

approach did not. These axioms are simple and straightforward. For each time step k, the

following clauses are included:
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The planning as satisfiability approach worked well in spite of the fact that this

requires searching an exponentially large search space of models of a SAT formula rather

than the logical deduction method of searching the space of resolution proofs.

2.3.3. Graphplan

Another way of developing a solution to a planning problem is by generating and

analyzing a plan graph (Blum and Langford 1997). A plan graph is a visual

representation of the planning problem that can be constructed as follows: create a set of

nodes to represent the initial conditions with one node for each condition. Next create a

set of nodes to represent all possible actions that may be taken including no-ops. We

connect the preconditions of an action to the node representing that action. Then we

create a set of nodes representing all of the possible postconditions and we connect each

action to its corresponding postconditions. We repeat this process either up to some fixed

length k (to bound the plan length to k) or until two successive sets of conditions are

identical. The layers of a plan graph are the conditions true at time one, the actions

possible at time one, the conditions possible at time two, the actions possible at time two,

etc.

An example of the first four layers of a plan graph is shown in figure 2.3.1. This

example is based on the problem that was described earlier where we have a set of

packages, a set of cities, and a set of planes. The goal is to fly all of the packages from

their current location to their destination. In this particular example we have one package
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Unload (o,p)

Figure 2.3.1. Example of a plan graph. Action nodes are tinted gray and nodes
representing conditions are in white. For simplicity, only positive literals are
shown in the figure, but a real plan graph will also include negative literals.

(0), one plane (P), and two cities (CI and C2). The plane and package are both located at Cl

and the goal is to get the package to C2.

After the plan graph has been constructed, the next step is to identify mutual

exclusion relationships among the nodes at each layer. Graphplan goes through the layers

in order marking nodes as being mutually exclusive using a few simple rules. The rules

do not capture all mutual exclusions, but many of them. Two actions are marked as

exclusive if either 1) one deletes a precondition or postcondition of the other action or 2)

the preconditions of the actions are marked as exclusive in the previous layer. To
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determine if two variables are mutually exclusive, we only look at the actions in the

previous layer. Two variables are marked as exclusive if all of the actions that generate

one are exclusive of the actions that generate the other.

To start with the algorithm only generates the first layer of the plan graph. At each

iteration, the first step is to extend the plan graph by adding all action nodes whose

preconditions are in the previous layer and the preconditions are not marked as mutually

exclusive. It then extends the plan graph one layer further by adding all of the

postconditions of the action nodes that were just added. It marks two nodes in this new

layer as mutually exclusive if all of the ways of generating one are mutually exclusive of

all of the ways of generating the other.

After the plan graph has been extended, the algorithm searches for a valid plan

using a backwards-chaining technique. If the goal conditions do not appear in the last

layer of the plan graph it moves on to the next iteration. Given a set of goals to be

achieved at time k it attempts to find a set of actions at time k-l having the goals as

postconditions. The preconditions of these actions form a set of subgoals to be satisfied at

time k-l. If the set of subgoals at time k-l cannot be satisfied then the algorithm will try

to find another set of actions at time k-l that have the goals as postconditions. It keeps

trying different sets of actions either until it finds a plan or it determines that none can be

found.

When the next layer of the plan graph is generated, if it is identical to the previous

layer, we can stop and say that no plan can be found. This procedure always halts and
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will return a plan if one can be found and return false otherwise. Graphplan performed

very well at the time it was introduced in comparison to other complete methods.

2.3.4. Satplan

One of the more well known methods of solving planning problems today is

called Satplan (Kautz et al. 2006) which combines the idea of representing planning as

SAT with the idea of using a plan graph. The first step is to generate the plan graph up to

length k where k is initially one. Next, Satplan converts the plan graph into a SAT

formula and calls a SAT solver. If the formula is satisfiable then the algorithm returns the

corresponding plan. Otherwise, the system increments k and tries again until k has

reached the maximum limit. Satplan uses the mutual exclusion rules from Graphplan in

order to restrict the search space.

Satplan won first place in the 4th International Planning Competition and tied for

first in the 5th International Planning Competition. Many planners are based on the

Satplan algorithm.

2.3.5. Optimal Planning

A variation of planning problems is to look for an optimal plan. This typically

means a plan of minimum length. This increases the complexity of planning from NP to

Fez. In other words, it is Fez complete to determine the length of the minimum plan or

to find a minimum length plan. We will prove these results later. A consequence of this is

that all of the methods mentioned thus far are actually solving a harder problem than
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straight-forward planning, since they automatically find a plan of minimum length by

checking all possible plan lengths in increasing order.

One of the main problems with solving optimal planning using Satplan is that

incrementing k at each iteration causes slow progress through the search space and results

in a large number of SAT calls. Another problem is that making multiple calls to a SAT

solver discards learned information from the prior iterations. Learning is one technique

that was added to DPLL. Each time that we reach a dead end in searching for a SAT

assignment, we can use resolution to derive a new clause that helps to identify why we

reached that dead end. Adding this new clause to the formula keeps us from

unnecessarily exploring certain regions of the search space.

Learning is one of the major reasons for the improved efficiency of modern SAT

solvers. Real world problems have structure that learning techniques are able to exploit.

Throwing away learned clauses is particularly detrimental in the planning domain

because there is so much similarity between the individual calls that Satplan is making.

The information gained in searching for a plan of length k will also be useful in searching

for a plan of length k+ 1.

There has been prior work done on reducing the number of SAT calls by

increasing k multiplicatively rather than incrementally (Xing et al. 2006). However, once

a plan is found, it is not guaranteed to be optimal so the algorithm needs to search smaller

values of k to find the optimal plan. There has also been prior work done on retaining

learned clauses (Nabeshima et al. 2006). The authors modified the algorithm to analyze
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the learned clauses to detennine which ones were most likely to be useful and keep them

around for the next iteration.

We will later demonstrate a better method of solving optimal planning that arises

from showing that DPLL is 1'12 capable. This method is based on the idea that we can use

a single call to a SAT solver, which automatically eliminates the problem of throwing

away learned information.

2.3.6. Planning with Preferences

Another variation of planning problems is planning with preferences where we

can express preferences for some models over others. Pontelli and Tran (2004) presented

a language for expressing preferences in planning problems. In their work, they define a

plan as a trajectory SOa\s\ ... amSmwhere Sm entails the goal. They define three types of

preferences: basic desires, atomic preferences, and general preferences.

The simplest type of preference is a basic desire. In order to define what these are,

we must first define a few other concepts. A state desire <p means we prefer state s such

that s F= <po A state desire can also be used to express a preference for using a certain

action. This is denoted occ (a) meaning we prefer to use action a. The temporal

connective next (<p) means that <p is entailed by the action aj or the state Sj. They use

always (<p) to mean that <p is entailed by every action and every state. The connective

eventually (<p) means that there is some action or state that entails <po They define until
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(<PI, <Pz) to mean that there is a state or an action that entails <pz and that every state and

action up to that point entails <Pl.

We are now ready for the definition of basic desires. State desires and goal

preferences are both basic desires. If <PI and <pz represent basic desires then a basic desire

can also be of the following forms: <PI 1\ <pz, <PI V <pz, ""<Pl, next (<Pl), until (<Pl, <pz),

always (<pd, and eventually (<Pl). If ex and ~ are trajectories (plans) then ex is preferred

over ~ with respect to preference <P if ex satisfies <P and ~ does not. This is denoted

ex -<<p ~. If ex is indistinguishable from ~ with respect to <P we write ex::::;<p ~.

The next type of preferences, which are a level up from basic desires, are atomic

preferences. If we have a set of basic desires <Pl, <pz, ... , <pn then an atomic preference is

expressed as <Pl <J <pz <J ... <J <pn and indicates an ordering on the basic desires. This

allows us to prefer some basic desires over others. Let ex and ~ be trajectories and '¥ =<PI

<J <pz <J ... <J <Pn be an atomic preference formula. We say that ex is equivalent to ~ with

respect to '¥ (denoted ex ~'P~) if Vi (l ::s: i::s: n) ex::::;<Pi~' In words, this says that the two

trajectories are equivalent with respect to the atomic preference if they are equivalent

with respect to the basic preferences. We say that trajectory ex is preferred over ~

(denoted ex -< 'P ~) if :3 i (l ::s: i ::s: n) such that both of the following conditions hold: 1) Vj

(l ::s: j ::s: i) ex ::::;<Pj ~ and 2) ex -< <Pi ~. In words, ex is preferred over ~ if there is some basic
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preference <p in the formula such that a satisfies <p and ~ does not, and on all preferences

that are more important than <p, a and ~ must be indistinguishable.

The last type of preference that the authors define is general preferences. General

preferences can be defined by the following set of rules:

• An atomic preference is a general preference.

• If 'P] and 'P2 are general preferences then so are 'PI & 'P2, 'P] 1'P2, and !'P].

• Given a collection of general preferences 'P], 'P2 , ... , 'Pn then 'P ='P] <J 'P2 <J

<J 'Pn is a general preference.

The operators &, I, and! essentially represent and, or, and not but there is a subtle

distinction between <p V <p and <p I <p. The first is a single preference or criteria whereas

the second represents two criteria with no preference between them.

Now they define an ordering on trajectories based on general preferences by

considering each type of general preference. Given trajectories a and ~ and a general

preference 'P, a -< 'P ~ if:

• 'P is atomic and a -<'P ~.

• 'P ='P] & 'P2and a -<'PI ~ and a -<'P2 ~.

• 'P = 'P] I 'P2 and one of the following three conditions holds: 1) a -<'Pl ~ and a

~'P2 ~, 2) a -<'P2 ~ and a ~'PI ~, or 3) a -<'PI ~ and a -<'P2 ~. This says that either a

is preferred with respect to both preferences or a is prefelTed on one preference

and they are equivalent on the other.
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• 'II = !'¥] and either ~ -<'PI ex or ex :::::;'PI ~.

• 'II ='II] <J '¥2 <J ... <J '¥n and :3 i "IIj ex -< 'Pi ~ and ex :::::;'Pi ~. This says that there is

some point i such that the two trajectories are equivalent on the first i-I

preferences but that ex is preferred on the i th preference.

This formal representation of preferences will be used later in discussing the

variations of planning with preferences that can be solved with DPLL and those that

cannot. Specifically, we can characterize the type of preferences that DPLL is capable of

solving. We do this by demonstrating various complexity results for planning with

preferences using the notation and types of preferences given by Pontelli and Tran

(2004).

2.4. Nonmonotonic Reasoning

In order to teach a computer to "think" more intelligently, it must have

mathematically precise ways of representing the information that it knows and ways of

reasoning about that information in order to derive new conclusions. Typically a program

will have a knowledge base of information and a set of facts that may be derived from the

knowledge base.

In classical logic, if a statement can be entailed from a set of facts A, then it can

also be entailed from any larger set of facts A U B. The set of inferences that may be

drawn grows monotonically with the size of the knowledge base. In many real-world

applications the addition of new facts may negate previously drawn conclusions, making
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it necessary to retract those conclusions. In what is called nonmonotonic reasoning

(NMR), adding new information to the knowledge base may invalidate some previously

derivable inferences.

Nonmonotonic reasoning is inherently more complex than its classical

counterpart. In first-order logic, entailment is only semi-decidable, which means it is

equivalent to solving the halting problem. In monotonic reasoning, we can systematically

derive inferences from our knowledge base in such a way that given an unlimited amount

of time we will enumerate all possible inferences. If a statement is entailed then we will

eventually halt and say yes, but we may continue running until the end of time if the

answer is no. NMR is not even semi-decidable because determining if a statement can be

inferred involves checking the consistency of the statement with the knowledge base. In

order to check the consistency of a statement we must show that the negation is not

entailed. If the negation can be derived, we can halt and say that the statement is not

consistent, but yes instances of consistency checking may run forever.

In order to make the problem computable, it is typical to restrict the problem to

propositional logic, which only allows a finite number of predicates and finite domains

for predicates. These predicate logic problems, such as satisfiability, are generally NP­

complete. The addition of consistency checking increases the complexity of the problem.

Usually if a problem is in the polynomial hierarchy, adding nonmonotonicity increases

the complexity by one level within the polynomial hierarchy. So if the original problem is

in L,j then adding nonmonotonicity will make the problem in L,2.
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There are many different formalizations of nonmonotonic reasoning. Here, we

will only describe the most popular and well known ones. These include default logic,

circumscription, modal nonmonotonic logic, answer-set programming, and preferred­

model semantics. The remainder of this section is divided into subsections to cover each

of these formal methods.

2.4.1. Default Logic

One of the first types of nonmonotonic reasoning was introduced in a paper by

Raymond Reiter, describing what he called default logic (1980). Reiter modified classical

logic by adding a nonmonotonic construct shown in formula 2.4.1. This is logically

equivalent to "if q., is believed to be true and if ~ is consistent with what we believe is true

then assume that w is true." This formula expresses what is known as a default rule. Mis

an operator that should be interpreted as "it is consistent that."

a:M/3
w (2.4.1)

A theory <D, W> in default logic would consist of a set of default rules 0 and a

set of known sentences W. Default logic dictates that if we can apply a default rule we

must. In other words if a is in the knowledge base and ~ is consistent, then we are

required to add w to the knowledge base. By continuing to add sentences until we cannot



51

apply any more default rules we create an extension of the theory. An extension is a set

of beliefs about the world that is deductively closed.

There will not always be a consistent extension. If we have a default of the form

"if ~ is consistent then conclude ..,~" there will be no extensions. It would be silly to write

a default of this form, but we can imagine more complicated scenarios which lead to the

same result. If W is inconsistent in the default theory <D, W> then we may have an

inconsistent extension. We can also have inconsistent extensions that arise from not

checking the consistency of a statement before it is assumed.

Extensions are not always unique. It is possible to write default rules that conflict

such as "assume a person lives in the same town where they work" and "assume a person

lives in the same town where their spouse lives." In many cases these two defaults will

lead to the same result. However, there are cases where a persons spouse may live in a

different city than where he/she works. There are two different extensions here: one in

which the person lives in the same city as his/her spouse and one in which the person

lives in the same city that he/she works. In instances such as these default theories can

have multiple extensions.

Adding a set of defaults adds nonmonotonicity because there are cases where one

default theory is a subset of another default theory, but their extensions may not coincide.

We may have a default theory <D, W> with extension E, a set of defaults D' and a set of

sentences W' such that <D U D', W U W'> has no extension E' where E ~ E'. For

example, suppose that we have a theory with the following two defaults:
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The first states that if x is a bird and it is possible that x flies then we conclude

flY(x). The second states that if x is a penguin then x does not fly. Consider the world in

which we only know bird(Tweety). Given our set of defaults and our known information

about the world, we conclude that Tweety flies. The only extension of this theory is E =

{fly(Tweety), bird(Tweety)}. Suppose instead we have a world in which we know

{bird(Tweety), penguin(Tweety)}. This original default theory is a proper subset of this

one. However, there is no extension of this theory in which Tweety flies, so there is no

extension E' such that E ~ E'.

Reiter established a method for finding a consistent extension (if one exists) for

what he calls a normal default theory. A default is called a normal default if it is of the

form shown in figure 2.4.1, but with ~ =w. In a normal default theory, all of the default

rules are normal defaults. Reiter showed that a normal default theory always has at least

one consistent extension and he described a method for finding the extensions of a

normal default theory on closed well-formed formulas (wffs). A wff is a symbol or string

of symbols that is generated by the formal grammar of a formal language. The method for

finding an extension operates on a set of wffs, W, and a set of normal defaults, D. The

extension E is initially equal to W. The method then proceeds by selecting some default

in D that can be applied and adding the consequence w to E. When none of the defaults in

D can be applied then the procedure is complete. This method will always terminate and
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produce a valid extension for any normal default theory. While Reiter's work is very

mathematically elegant, other fOffilalisms are more often used in practice.

2.4.2. Stable Models or Answer Set Programming

Gelfond and Lifschitz (1988) proposed another formalism called stable model

semantics which is one of the most popular formalizations today. For additional

information on this method see two later papers written by Lifschitz (2002, 2005). There

are many implementations of it, but the foundation for implementing stable model

semantics is called answer set programming (Marek and Truszczynski 1999, Niemala

1999).

The main idea is to have a set of rules where each rule is of the form shown in

formula 2.4.2.

Ao ~Al, ... ,Am, not Am+l, ... , not An (2.4.2)

The left side of the rule is the head and the right side is the body. We want to find

a stable model or answer set that satisfies a list of rules. The idea is similar to default

logic in that if AI, ... , Am are in the answer set and Am+l' ... , An are not in the answer set

then we must add Ao to the answer set. Each of Ao, ... , An is a single atom. A comma in

the rule represents /\ and a semicolon represents V. As with default logic, there may be

zero, one, or multiple answer sets for any given set of rules.
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To make the fonnulation more compact, Gelfond and Lifschitz also added choice

rules and cardinality constraints. Choice rules are of the fonn p; not p which means that

we can choose whether or not p is in the answer set. Note that an answer set may be only

a partial assignment of variables so the answer set need not contain either p or ""p.

Cardinality constraints state that at least I and at most u of F l , ••• , Fn must be true. These

rules are specified as shown in fonnula 2.4.3.

(2.4.3)

Stable model semantics are similar to default logic in that we have a knowledge

base and a set of rules (or defaults) for deriving new infonnation. The rules in answer set

programming and the defaults in default logic are both of the fonn where we have

conditions for applying them and consequences which result from the application. Also in

both cases we are required to apply a rule or default whenever it is possible to do so.

Though the stable models method bears some resemblance to default logic there

are some very important differences. The most significant is that a stable model is a set of

atoms whereas an extension in default logic is a set of sentences. Similarly, defaults are

made up of sentences whereas rules in a program are made up of atoms. There is nothing

similar to choice rules or cardinality constraints in default logic. Answer set

programming is nonmonotonic for the same reason that default logic is. There may be a

stable model such that if we add new rules to the program or new atoms to the set of
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atoms that are believed then we may have to retract inferences that we were previously

able to make.

2.4.3. A Semantical Approach

Yoav Shoham (1987) proposed an approach to nonmonotonic reasoning that

involves finding a most preferred model of a theory given a partial order on the

interpretations. His approach involves defining a preference order on the interpretations

of a theory so that some models are preferred over others. He uses the notation B C A to

mean that A is preferred over B or equivalently B is less preferred than A.

A different notion of satisfiability comes into play when a partial order on

interpretations is introduced. Shoham defines preferential sati,)fiability as a model M

preferentially satisfies A (written M Fe A) ifMFA, and ~ M' such that M' F A and M

eM'. In other words, M preferentially satisfies A if it satisfies A and it is equal to or

preferred over other models that also satisfy A. The models that preferentially satisfy a

theory are called preferred models. He defines preferential entailment as A preferentially

entails B (written A FeB) if all of the preferred models of A are also models (preferred or

otherwise) of B.

In classical logic if A Fe then AuB F C. The addition of a partial order on

interpretations introduces nonmonotonicity because A Fe C need not imply AUB Fe C.
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2.4.4. Additional Frameworks

There are other formalizations of nonmonotonic reasoning including

circumscription (McCarthy 1980), modal nonmonotonic logic (McDermott and Doyle

1980), and autoepistemic logic (Moore 1985). We will not include further details on these

formalizations here since they will not be talked about later in this thesis, but the

interested reader can read the corresponding papers on these topics for further

information.

The formal methods that we have mentioned are the most well known formalisms

of nonmonotonic reasoning. Others have been developed, but the complexity of

nonmonotonic reasoning has led several people to opt for ad-hoc techniques added on top

of monotonic frameworks wherever nonmonotonic constructs are useful. However,

research is still being done on improving the algorithms for the more formal theories of

nonmonotonic reasoning.

2.4.5. Computational Complexity and Implementations

The complexity of default logic and the complexity of answer set programming

are higher than that of satisfiability. Satisfiability is well known to be NP complete.

(Cook 1971) It is DP to determine whether a given logic program has an answer set (Eiter

et al. 2004). Recall that DP is the set of problems that can be solved in polynomial time

where we are allowed a single call to an NP oracle and a single call to a coNP oracle. It is

L2 complete to determine if a given logic program has an answer set, or to determine if a

set of ground terms belongs to an answer set (brave reasoning) (Eiter et al. 2004). It is Il2
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complete to determine if a ground term belongs to all answer sets (cautious reasoning)

(Eiter et al. 2004). Brave reasoning and testing for extensions of a default theory are L2

complete while cautious reasoning is Il2 complete for default logic (Gottlob 1992).

Despite the increased complexity, many attempts at developing answer set solvers

have used the DPLL algorithm for solving SAT. One such solver is called Smodels

(Simons 2000). The format of the algorithm for solving Smodels is similar to the DPLL

algorithm except that the unit-propagation procedure is modified to find the smallest

deductively closed set of a program given the current set of atoms, and the recursive step

checks to see if there is an answer set both with the chosen literal included and with it not

included in the answer set. GnT (Janhunen and Niemala 2004) is similar to Smodels but

was rewritten to include disjunctions in the rule heads.

Another SAT-based solver for answer-set programming is Cmodels (Giunchiglia

et al. 2004). Cmodels' first step is to produce the programs completion. Next, it uses a

SAT solver to find a model. Finally it checks if the model found is an answer set. If it is,

then the model is returned, otherwise the SAT solver is used to find the next model.

ASSAT (Lin and Zhao 2004) is another solver similar to Cmodels. It checks for

loops in the completion of a logic program, since loops are what prevent models from

being answer sets. When a loop is found, clauses can be added that eliminate the

corresponding models. Unfortunately, there may be an exponential number of loops, so

preprocessing and running a single execution of a SAT solver may require exponential

time and space. Instead they run a SAT solver to find a model. If there are no models then

it returns failure. If a model is returned and it is an answer set then it is returned. If the
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model is not an answer set, then it finds a loop in polynomial time that causes the model

to be invalid, adds the necessary clauses, and restmts the SAT solver.

DLV is another SAT-based solver that generates a model using a SAT solver and

tests if it is an answer set (Leone et al. 2006). If it is then the model is returned, otherwise

it searches for the next model.

These methods rely on multiple calls to a SAT solver. Most of the problems are

beyond the scope of what DPLL can solve, so it is natural to have to make multiple calls.

We will later analyze, based on complexity, what versions of nonmonotonic reasoning

can be solved with DPLL.
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CHAPTER III

ALGORITHM CAPABILITY

One of the main contributions of this thesis is the notion of algorithm capability.

Good algorithms are often capable of solving a wide variety of problems, but there are

limitations on the scope of what an algorithm can solve. To use an algorithm to solve a

new problem we must have some sort of reduction from the new problem to the

algorithm. If we do not place any limitations on the complexity of these reductions then

we can use an algorithm to solve any computable problem by solving the problem and

then hand selecting the algorithm input accordingly. For capability to have any meaning,

we must place some restrictions on the complexity of the reductions. Informally, we say

that an algorithm is capable of solving a problem if the reduction can be done efficiently

(typically in polynomial time). In this chapter we will formally define the capability of an

algorithm in terms of the complexity of problems that it can solve using efficient

transformations of the input and output.

Recall that algorithms can be mathematically expressed as Turing Machines. A

Turing Machine has two possible ways of producing output. One of which is to accept or

reject the string on the tape. The other is to return the string that is left on the work tape

(or on a separate output tape) when the machine enters an accepting state. Both of these

methods are acceptable and will not affect the definition of capability.
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Let A(w) denote the output of executing algorithm A on input w. For example,

DPLL(w) is a satisfying assignment of the boolean formula represented by w if such an

assignment exists, and UNSAT otherwise. To reduce from a problem to an algorithm we

want transformations t] and tz where t] maps all possible strings into an input for A and tz

maps all possible outputs of A into the correct solution for the problem.

We can say informally that an algorithm is C,F-capable where C is a complexity

class and F is a class of functions (eg. polynomial-time or log-space), if it can solve all

problems in C using F-Computable transformations of the input and output. If F is

unspecified, then we assume polynomial-time transformations, so C-capable is shorthand

for C,P-Capable. For deterministic algorithms we can easily formalize this notion as

follows:

Definition 3.1. A deterministic algorithm A is C,F-capable if V LEC, :3 t]: L* - L*, tz:

L* X L* - {O, I} where t] and tz are F-computable such that wEL iff tz(w, A(t](w))) is

true.

The definition that we use for reducing between problems and algorithms is very

similar to the definition for metric reductions. Essentially this definition says that an

algorithm is capable of solving a problem if there are efficient transformations t] and tz

where t] transforms an instance of the problem into an input for the algorithm, and t2

transforms the output of the algorithm into a correct solution for the problem. An
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algorithm is capable of solving all problems in a complexity class if there exist such

transformations for all problems in that class.

It is a bit trickier to define capability for nondeterministic algorithms which may

have several execution paths running in parallel, some of which may not halt. However,

we can definitively answer yes or no for every computable problem. This implies that

every computable problem can be solved by an algorithm that ends in either an accepting

or a rejecting state for all execution paths. Our definition of capability will only apply to

such algorithms. While this does impose some limit on the applicability of our definition,

it is not overly restrictive because it is rare in the real world to want to reuse algorithms

for incomputable problems or to solve computable problems with an algorithm that does

not halt on all inputs. Essentially we are assuming that an algorithm for solving a problem

also solves the complementary problem.

The output of a nondeterministic algorithm is also less clear than in a

deterministic one. Algorithms can return the string on the tape when they enter an

accepting state. A nondeterministic algorithm accepts its input if any path leads to an

accepting state. When a nondeterministic algorithm returns a string, it returns the string

on the tape when any execution path enters an accepting state. There may be multiple

valid outputs because there may be multiple execution paths that end in accepting states.

So A(w) may represent many different values.

Computers are deterministic and have different ways of simulating

nondeterministic algorithms. One of which is by running the execution paths in sequence
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rather than in parallel. We may wish to choose the order in which a computer explores

these execution paths because it may impact which solution is returned.

Without knowing what the execution paths are up front or even knowing how

many there might be, it seems an impossible task to order them. However, we can impose

an order on the execution paths by ordering the nondeterministic branches of the NDTM,

which makes the machine deterministic. Thus, to define capability for nondeterministic

algorithms we can convert the nondeterministic algorithm into a deterministic one and

then use our definition of capability for deterministic algorithms. This way, if an

algorithm is C-capable then it is capable of solving all problems in C on a standard

computer (since computers are deterministic).

In order to convert the algorithm into a deterministic one, we introduce one extra

transformation in addition to tl and t2. The new transformation, t3, will take an algorithm

input and return an ordering on the nondeterministic branches of the algorithm. We will

use another algorithm, that we call det, that takes an algorithm and the branch order

produced by t3 and creates a deterministic version of the algorithm. Next we describe t3

and det in more detail.

Recall that an NDTM is mathematically expressed as a 7-tuple {Q, L, I, 8, qo,

qaccepb qrejecd. The transition relation 8 relates elements of QXl to elements of

QXlx {L, R}. (qi, a) is related to (qj, b, d) if when the machine is in qi and the current

symbol pointed at by the tape head is a, then the machine can legally transition into qj,

write the symbol b in place of a, and move the tape head in the direction indicated by d.

To order the execution paths we want to place a partial order on the elements of this
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relation. For instance, suppose that from our initial state on the symbol 0 we could either

transition into state q2, write a I, and move the tape head to the right or transition into

state qs, write a 0 and move the tape head to the right. We could order them so that ((qo,

0), (q2, I, R» < ((qo, 0), (qs, 0, R». It is important that this order be transitive to make

any sense. The function t3 will take an algorithm input and produce sorted lists of

transitions.

Essentially what the order means is that whenever there is more than one possible

transition, we may have a preference on which one we select. We say that a path satisfies

a preference when it follows the preferred transition and that it breaks the preference

otherwise. We will probably be required to break some preferences in order to find an

accepting path. Given an ordering on the possible transitions we wish to find the output

of the most preferred accepting path.

When two paths break different sets of preferences, the path that breaks an earlier

preference is less preferred than the path that does not. In other words, suppose that we

have two paths PI and P2 that break different preferences. In order to determine which

path is preferred, we look at the time step in which these paths diverge. Since the paths

diverge, they must be taking different transitions. Whichever path takes the more

preferred transition at this step is chosen over the other path. The most preferred path is

an accepting path such that no other accepting path is more preferred.

To compute the output of the most preferred path, we use det to create a

deterministic algorithm AI from our nondeterministic algorithm A and the sorted lists of
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elements in 8. Since A may have multiple valid outputs, the purpose of A I is to compute

one specific output of A.

The algorithm det can most clearly be described in terms of its output, which is

shown in figure 3.1. For the sake of clarity, we describe A' using informal pseudo-code

rather than as a deterministic TM. A' is going to be a recursive algorithm that takes three

inputs: the current state, the contents of the tape, and the tape head position. It either

returns an output or REJECT. The initial input to A' is (qo, w, 0). This process depends on

the partial order on branch decisions that will be created. The ordering will be

represented by sorted lists of transitions for each (state, symbol) pair.

1: A' (qcurrenr, tape, tapehead)
2: sorted_transitions =transitions [qcurrenr, tape[tapehead]]
3: newtape =copy (tape)
4: result = REJECT
5: while result =REJECT && sorted_transitions is not empty do
6: (nervstate, newsym, dir) =pop (sorted_transitions)
7: newtape[tapehead] =newsym
8: if newstate = qaccept then return nervtape
9: if newstate = qreject then result = REJECT
10: else result =A' (newstate, newtape, tapehead+dir)
11: return result

Figure 3.1 Pseudo-code for A'.

The idea is that we first try making a recursive call where we use the most

preferred transition. If this results in REJECT then we try the next most preferred
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transition and so on until we either find an accepting path or run out of transitions. If we

find an accepting path then we return its output.

Now that A' is deterministic we can use the same definition of capability that was

given earlier. So to define capability for nondeterministic algorithms, we just incorporate

the creation of A' into the definition of capability. The definition becomes:

Definition 3.2. A nondeterministic algorithm A is C,F-Capable if 'd LEC,

:I tj: L* -+ L*, t2: L* X L* -+ {a, I}, t3: L* -+ L* which are F-Computable such that

Thus tj and t2 transform the input and output as before, but now we have an

additional transformation t3 which takes the input and creates an order on nodeterministic

branches. We also have a separate function, det, which takes nondeterministic algorithm

and the order on nondeterministic branches and creates a deterministic algorithm A'.

DPLL is trivially NP Capable. What is less intuitive is that NP is not an upper

bound on the capability of DPLL. This is important because it highlights the difference

between capability and complexity.

One difference is that an algorithm for a language can always be used to solve

the complement of that language. In other words, C-capable is equivalent to coC­

capable. The language of unsatisfiable formulae and the language of satisfiable formulae

can be recognized by DPLL even though one is coNP-complete and the other is NP-
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complete. This does not mean that NP =co-NP, but a polynomial transformation from

unsatisfiable formulae to satisfiable ones would.

Another difference is that a transformation to instances of a problem implies a

transformation to inputs of an algorithm solving the problem, but the reverse is not

necessarily true. The algorithm must solve all possible inputs of the problem that it was

designed for, but there may be more algorithm inputs than there are instances of the

original problem.

Note that since DPLL requires exponential time, there is no obvious reason why

it cannot be applied to problems of a much higher complexity. However, the algorithm

only uses polynomial space so we cannot use it for problems beyond PSPACE. It is not

immediately apparent why we cannot use DPLL to solve every problem in PSPACE, but

we show in the next section that DPLL can only be used for problems in Lh

In subsequent chapters we will show how the notion of capability is useful by

showing the capability of two well known algorithms and how this information can be

used to apply one of them to additional problems.
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CHAPTER IV

EXAMPLES OF CAPABILITY

In this chapter we present two practical examples of the idea of algorithm

capability. One is establishing the capability of the well known DPLL algorithm for

solving Boolean satisfiability. In the first section, we prove that DPLL is L12 capable.

Though the original algorithm is the one that most modern solvers are based on, it has

been significantly modified over the years to include a number of optimization

techniques. In section two, we will discuss how these additional techniques affect the

capability of DPLL. In the final section, we give an additional example, showing that the

algorithm most commonly used for solving QBF is PSPACE capable.

4.1. Proving ~rCapability of DPLL

Satisfiability is one of the most important and widely studied problems in

computer science. Many different algorithms have been developed, but DPLL has so far

proven to be the most effective. Section 2.1 gives more details on the satisfiability

problem and the DPLL algorithm for solving it.

Researchers have applied a variety of optimization techniques in order to make

the algorithm more efficient. The optimizations that have been used range from good

coding and data structures to branching heuristics, learning methods, and parameter
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tuning. There are many implementations of the DPLL algorithm. Some of the more

popular ones include zChaff (Moskewicz et al. 2001), RSAT (Pipatsrisawat and

Darwiche 2007), SATzilla (Nudelman et al. 2004), and Minisat (Een and Sorensson

2004).

DPLL is known to work well for an assortment of different applications. Given its

popularity and effectiveness, it is useful to characterize the set of problems that it can be

used to solve. This way, when a new problem arises, we know whether or not we can

apply DPLL based on the complexity of the problem.

In order to show that DPLL is at least d2-capable, it is sufficient to show that it

can be used to solve a drcomplete problem. We can reduce all other problems in d2 to

any d2-complete problem in polynomial time. So if we can reduce from any problem in

d2 to a d2-complete problem and reduce from a d2-complete problem into inputs for

DPLL, then by combining the reductions we can solve every problem in d2 with DPLL.

The first step is to show that some problem is d2-complete.

Many variations of satisfiability exist, some of which are not known to be in NP.

One such problem is determining whether the lexicographically maximum satisfying

assignment is odd. Let \If(x) be a Boolean formula using the variables Xl, ... , Xn . The Odd

Maximum Satisfiability (OMS) problem can be more formally expressed as:

OMS = {\If(x) I Xn =1 in lex max sat assignment of \If}
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Krentel (1988) demonstrated that OMS is complete for L12. Remember from

section 2.2 that L12 is the class of problems that can be solved in polynomial time by a

deterministic oracle Turing machine (TM) that makes a polynomial number of queries to

an NP oracle. Krentel begins by defining optimization Turing machines and a class called

OptP based on them. These are described in chapter II, but basically an optimization TM

is a nondeterministic machine in which we write a value on each accepting computation

and the machine "magically" returns the maximum or minimum of these values. An OptP

problem is one that is solvable in a polynomial amount of time on an optimization TM.

Krentel proved a relationship between OptP and L12 which allows us to characterize

problems of one class in terms of complete problems of the other. Specifically, every

problem in L12 can be expressed in terms of an OptP problem followed by a polynomial

computable predicate.

Krentel's proof is significant for at least two important reasons (besides the

result). One is that he defined the notion of a metric reduction that has been used in

subsequent research and literature. Krentel also was able to establish a relationship

between functional complexity classes and traditional complexity classes of decision

problems. However, it is still valuable to have a more direct proof based on traditional

complexity classes.

The L12-completeness result can be established by using a Cook-style reduction

(Cook 1971) from an oracle Turing machine into an instance of OMS. There are a

number of advantages to using traditional proof techniques along with conventional

complexity classes and models of computation. By using well-known methods and
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elements, the proof is often easier to understand and easier to modify in order to prove

related results and extend the work that has been done. Additionally, extending Cook's

result assists us in better understanding the relationship between NP and 8.2.

Cook (1971) showed that SAT is NP-complete by demonstrating how to construct

a satisfiability instance that simulates the execution of a nondeterministic Turing machine

(NDTM). We will provide an outline of Cook's reduction and refer the reader to other

sources for more complete details.

Every language in NP is solvable by some NDTM that operates in a polynomial

amount of time. Cook created a set of variables Q[i, k] to represent that at time i, the

machine is in state k. He also created a set of variables to represent the contents of the

tape, Sri, j, k] meaning that at time i, the fh tape square contains the symbol k. The last

set of variables that he creates are H[i, j] to represent that the position of the tape head is j

at time i. The execution time of the machine is bounded by some polynomial, pen), thus

the number of tape squares and the number of variables created is also bounded by a

polynomial.

Using these variables, Cook created a set of clauses that ensure each of the

following:

1. M' is in exactly one state
2. The tape head is in exactly one position
3. Each tape square has exactly one symbol at each time
4. At time 0 the machine is in the initial configuration
5. The machine enters the accept state by time pen)
6. Execution follows according to the transition function
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To enforce the first restriction, Cook introduced two sets of clauses. The first are

of the form {Q[i,O], Q[i, 1], ... , Q[i,r]} for every i, meaning that at time i the machine is in

at least one state. Next we need to represent that Q[i,j] :::} -,Q[i,j'] for all combinations of

i, j, and j' such that j i- j'. This ensures that at time i we are in at most one state, because if

we are in state j at time i then we cannot be in state j' for any j' i- j. This is not a clausal

representation since it uses an implication, so the second group of clauses are of the form

{-,Q[i,j], -,Q[i,j']} for all combinations of i, j, and j' such that j i- j'.

The clauses for the second and third restrictions are nearly identical to the first.

Cook encodes that the tape head is in at least one position at each time and at most one

position at a time. He imposes the third restriction by encoding that each tape square

contains at least one symbol and at most one symbol at any given time.

For the fourth restriction, Cook introduces the clauses {Q[O,O]} and {H[O,1]} to

represent that the machine is in the start state with the tape head at the first position on

the tape. He then uses a set of clauses to encode that the contents of the first Iwl tape

squares contain the input string w. Finally he includes clauses to represent that the rest of

the tape squares are initially blank.

The fifth restriction can be expressed using a single clause {Q[p(n), 1]} where the

states have been specially numbered such that state 1 is the accepting state. This clause

states that we are in the accepting state at time pen).

Cook breaks the last restriction into two parts. The first guarantees that if the tape

head is not at position j at time i, then the symbol at position i cannot change from time i

to time i+1. The implication is (-'H[i,j] /\ S[i,j,l]) :::} S[i+1,j,l] meaning that at time i, if
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the tape head is not at j and the symbol at position j is 1, then the symbol at position j

must be 1at time i+ 1. The clause to represent this is {H[i,j], ...,S[i,j,l], S[i+ l,j,l]} for each

possible combination of i, j, and 1. Intuitively if the tape head is at position j at time i then

the symbol in that tape square is allowed to change. Otherwise either the lh tape square

does not contain symbol 1at time i, or it does contain symbol 1at time i+ 1.

The second part of the last restriction is that the change in state and any changes

to the tape follow from the transition function. First we encode that the tape head moves

according to the transition function. At time i, if we are in state k, the tape head is at

position j, and the symbol on the tape at that position is 1, then this determines whether

the transition function will tell us to move left or right (+ 1 or -1 in our encoding). Let L1

represent the output of the transition function. Then (H[i,j] /\ Q[i,k] /\ S[i,j,l]) ~

H[i+1,j+L1]. In clausal representation, this translates to {...,H[i,j], ...,Q[i,k], ...,S[i,j,l],

I-f[i+ 1,j+L1]}.

The final sets of clauses are designed to require that the state change follows from

the transition function and that the symbol written to the tape follows from the transition

function. These are constructed similar to the clauses to encode the requirement that the

tape head behaves as it should. So we write {...,H[i,j], ""Q[i,k], ...,S[i,j,l], Q[i+1,k']} and

{...,H[i,j], ""Q[i,k], ...,S[i,j,l], S[i+1,j,1']} where the state k' and the symbol l' are determined

by the transition function. If the machine is in the accepting state at time i, then k' = k,

L1 = 0, and l' = 1. The set of clauses is satisfiable if and only if there is an accepting

computation on the NDTM. For more complete details on Cook's reduction see his paper

(Cook 1971). A similar reduction can be used to show the following:
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Theorem 4.1.1 OMS is ~2-complete.

Proof: Clearly OMS is in ~2 because to find the lexicographically maximum assignment

we can go through each variable in order asking the SAT oracle if the formula is

satisfiable with that variable set to one. This requires a linear number of queries, after

which we need only check if the last variable is true or false.

We must now show that all languages in ~2 are reducible to OMS. First, let M be

a machine that solves an arbitrary language in ~2. We then construct a machine M' by

replacing the oracle with a machine for SAT. Next, we use a Cook-Style reduction to

convert M' into a SAT formula. M' is not equivalent to M because an NDTM for a

language is not equivalent to an oracle for the same language, but the Boolean formula

that we create will have the property that the lexicographically maximum satisfying

assignment is odd precisely when M would have accepted.

Let L be a language in ~2, thus there is a deterministic oracle TM that solves L.

Without loss of generality we can assume that the oracle is a satisfiability oracle. Let the

machine for L be M ={QM, qO_M, qaccepCM, qrejeccM, LM, OM, q?, qy, qN} where QM is the

set of states, qO_M is the start state, qaccepCM and qrejecCM are the accepting and rejecting

states, LM is the alphabet, and OM is the transition function. M has two tapes: a work tape

and an oracle tape. When the machine enters the oracle state q?, it transitions to qy if the

string on the oracle tape is satisfiable and qN otherwise. A diagram of M is shown in

figure 4.1.1, with a square drawn around the oracle section to highlight it.
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qaccepCM qrejeccM
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Figure 4.1.1 Diagram of a deterministic oracle TM.

Let MSAT be a polynomial-time NDTM that solves SAT and let MSAT =

states, qO_MSAT is the start state, qaccepCMSAT and qrejeccMSAT are the accepting and rejecting

states, LMSAT is the alphabet, and 8MSAT is the transition function.

We now construct another machine M' by replacing the SAT oracle in M with the

machine MSAT. Clearly M' is not equivalent to M because an NDTM for a language is

not as powerful as an oracle for the same language. M' still has two tapes. The work tape

from M contains the input and is still a work tape in M'. The oracle tape from M can still

be written to at any time during execution and is used as a work tape in the MSAT

section of the machine. The final change that we make is to create a new accepting state

with E-transitions (i.e., transition on no input where the tape head does not change) from

the original accept state and reject state. Logically we want M' to always accept and set a

bit that indicates whether M would have accepted or rejected. A diagram of M' is shown

in figure 4.1.2.
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We can assume that there are no transitions back into the start state of MSAT

during the computation of the SAT query. If there were then we could easily create a new

start state with an E-transition into the original start state.

M' is an NDTM so we can use a Cook style reduction to a SAT instance. Though

the reductions are similar, there are some important distinctions between our reduction

and the one that Cook constructed. We begin by relabelling the states qo, ... , qv where v =

qaccepCMSAT, and q6 = qrejeccMSAT. The other states can be assigned to the remaining labels

in any order. This relabeling is shown in figure 4.1.3.

qaccepCMSAT

~MSAV
qrejecCMSAT

MSAT MSAT

Figure 4.1.2. Diagram of machine M'
obtained by modifying oracle TM.

Figure 4.1.3. Diagram of M' with states
relabeled.

Let us also label the elements of the tape alphabet I, as so, ... , Sz where z =ILl -1.

Let So represent the special blank symbol and assign the remaining labels to the rest of the

symbols in any order. As in Cook's reduction, let pen) bound the number of time steps

and assume without loss of generality that pen) ::::: n V n E 7r. During this time we
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cannot use tape squares outside the range -pen) to p(n)+ 1 on either tape. Moreover, we

are guaranteed that we will not enter the oracle state (q4) more than a polynomial number

of times so let q(n) bound the number of oracle queries.

Table 4.1.1 shows the variables used in the construction. Q[i, k] is the same as in

Cook's reduction. Cook used H[i, j] to represent the tape head position and S[i, j, k] to

represent the tape contents. We need two sets of these variables since there are two tapes.

Additional variables are needed to handle the oracle computation. Based on the variable

ranges, there are only a polynomial number of variables used in the construction.

Table 4.1.1. Variables used in satisfiability formula to simulate oracle machine.
Variable Range Meaning

I

Q[i, k] O:Si:Sp(n) At time i M' is in state qk
O:Sk:Sv

HI [i, j] O:Si:Sp(n) At time i work tape head is
-pen) :s j :s p(n)+1 at position j

H2[i, j] O:S i :s pen) At time i oracle tape head is
-p(n):Sj :Sp(n)+l at position j

S1[i,j,k] O:Si:Sp(n) The symbol k is in position
-pen) :Sj :s p(n)+1 j of the work tape at time i

O<k:Sz
S2[i,j, k] O:Si:Sp(n) The symbol k is in position

-pen) :Sj :s p(n)+1 j of the oracle tape at time i
O:Sk:sz

I

N[i, j] O:Si:Sp(n) At time i we have entered q4
O:Sj:Sq(n) exactly j times

O[j] O:Sj :s q(n) The answer to the fn SAT
query

ANSWER 1 Indicates whether or not we
would have accepted the

input on M
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Next we create a set of clauses using the variables in the table that simulate the

execution of the machine. As mentioned earlier, Cook created a set of clauses to represent

the following list of restrictions:

1. M' is in exactly one state
2. The tape head is in exactly one position
3. Each tape square has exactly one symbol at each time
4. At time 0 the machine is in the initial configuration
5. The machine enters the accept state by time p(n)
6. Execution follows according to the transition function

We use the same clauses to represent the above restrictions that Cook used. For

the second and third restrictions we create the appropriate set of clauses for both the work

tape and the oracle tape. We also ensure that the oracle tape is blank in the initial

configuration and that the oracle tape obeys that transition function. We will not write out

the clauses here because the extension from Cook's work is obvious. The clauses to

represent these restrictions are polynomial in size and number.

We also create clauses to impose the following restrictions in addition to those

that Cook uses:

7. N[i,j] correctly represents the number of SAT queries at time i
8. O[j] represents the answer to the jth query
9. ANSWER is 1 if we transition into the original accept state

Table 4.1.2 shows the clauses that are needed to represent the additional

restrictions. We left the equalities in the formulas even though it is not proper CNF

format because it is easier to understand. The expressions could easily be converted to
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Restriction Clauses Range

7 {N[O,O]} O:::;i:::;p(n)

{-,N[O,j]} Vj*O O:::;j:::;q(n)

{Q[i,4] V (N[i,j]=N[i-l,j])} VitO

{-,Q[i,4] V (N[i,j]=N[i-l,j-I])} VitO
8 {O[j] = 3 t], t2 (Q[t], 4] 1\ N[t], j] 1\ Q[t2, 5] 1\ N[t2, j])} O:::;tj, tz:::;p(n)

O:::;j:::;q(n)
9 {ANSWER = 3i Q[i, 2]} O:::;i:::;p(n)

sets of clauses. The clauses for the i h restriction essentially state that either we are in

state q4 and the number of oracle queries is incremented or we are in some other state and

the number of oracle queries does not change. We also encode that the original number of

oracle queries is zero and that any other number of queries at time zero is false. The

number and size of clauses to encode the i h restriction are polynomial when converted to

CNF.

The clauses for the 8th restriction state that am is I precisely when we enter state

q4 at time tj, making it the lh query, and that we enter state q5 at a later time t2 while we

are still on the lh query. In order to show that the clauses representing this restriction are

polynomial, let us represent the second half of the expression as A[tj, tz]' Given the

ranges on tj and tz this introduces p\n) new variables.

We add the clauses {A[tj, tz] = (Q[t], 4] /\ N[tj, j] /\ Q[t2, 5] /\ N[tz, j])} for each

tl, t2. To eliminate the existential quantifier, we write {am = Vtl, tZA[tj, tz]} for eachj.

Given the ranges on tj, t2, and j there are a polynomial number of these equalities, each

one of which has a polynomial conversion to CNF.
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The final restriction encodes that ANSWER is true exactly when we enter the

original accepting state at some time step. This can be rewritten as {ANSWER = Vi Q[i,

2]} which is clearly non-exponential given the range on i. Thus the construction is

polynomial.

This encodes M' as a SAT instance, \jf(M'). As mentioned before, M' is not

equivalent to M because an oracle for a language is likely to be more powerful than an

NDTM for the same language. Specifically the biggest difference is that in an NDTM

there are multiple paths through the machine. If the answer to a query is no, we are

guaranteed that every computational path will end in the rejecting state, but when the

answer to a query is yes, there may also be some paths that end in the rejecting state.

By taking the maximum satisfying assignment we can ensure that we say yes to

the oracle queries whenever it is possible to do so. For this we need to define a

lexicographic ordering on the variables that we created. Let the oracle queries be first and

in order so that O[i] < O[i+1] for all i. The remaining variables can be arranged in any

order as long as ANSWER is last. This way the oracle answers are con-ect and the input

is accepted by M if and only if the last bit is 1. Therefore OMS(\jf (M', w» is equivalent

to the question of whether w ELM.•

Using the above result we can prove the exact capability of the DPLL algorithm.

The following propositions prove the exact capability of the version of DPLL that returns

a satisfying assignment if one exists and returns UNSATISFIABLE otherwise.
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Proposition 4.1.2 DPLL is at most ~rcapable unless there is a collapse in the

polynomial hierarchy.

Proof: We prove this proposition by showing that if DPLL is capable of solving a

language, then the language must be in ~2' Let L be a language such that there exists

polynomial computable functions t], t2, and t3, where t2(W, det(DPLL, t3(t](W))) (t](w)))

is true iff WE 1. If we have access to a SAT oracle, we could solve L in polynomial time

by first using the function t] to transform the instance into an input for DPLL, then

running a procedure similar to DPLL except that we use the oracle to eliminate those

calls that would result in UNSAT, and using the function t2 to convert the output into the

correct answer. Each of these steps runs in polynomial time. We can ignore t3 and det

because we are using an oracle to determine the nondeterministic branches instead of

turning the machine into a deterministic one.

Another way of looking at it is that we first produce an input for DPLL where if

we ran the algorithm, it would generate a search tree. Instead of creating the entire

search tree, we could use the oracle to tell us at each step whether we should branch on

true or false. This turns the search tree into a direct path to a solution. The overall

process requires polynomial time with a satisfiability oracle including the

transformations t] and t2, making L in ~2.•

One of the most important things to note is that we can still use unit propagation,

which returns all consequences of the current partial assignment. Intuitively, if the current
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partial assignment is part of the maximum model, then any logical consequences of that

assignment must still be part of the maximum model. In other words, unit propagation

does not rearrange the search space. It only prunes sections of the search space that do

not contain any models. More formally:

Proposition 4.1.3 If a particular branching order arranges the leaves of the search tree

from maximal to minimal, performing unit propagation will not cause us to incorrectly

return a non-maximal model.

Proof: Unit propagation may rearrange the leaves of the search tree and possibly in such

a way that the order on interpretations is no longer respected, but we argue that the output

is not adversely affected. Suppose that there are two interpretations 1J and h with 1J being

preferred over h If neither interpretation is a model of the theory then these two leaves

can be swapped because neither will be returned. Similarly, if one is a model and the

other is not, then we can interchange them because we will not return the non-model.

The only interesting case occurs when both interpretations are models of the

theory. In order for unit propagation to force us to incorrectly return h both

interpretations must reside in the subtree rooted at some unit propagation. Furthermore, 1J

must be in the left subtree and h in the right because unit propagation does not rearrange

the leaves within either subtree. It simply prunes the right subtree. See figure 4.1.4 for a

diagram. This leads to a contradiction since we assumed that both interpretations are

models of the theory. The leaves in the right subtree will be pruned nodes because they
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Figure 4.1.4. Search tree with interpretations It and h in separate subtrees.

are not models of the theory. Thus, unit propagation does not cause us to incorrectly

return a non-maximal model. _

Now that we have proven an upper bound on the capability of DPLL, we will

prove a lower bound on the capability by showing that it is capable of solving a L12

complete problem. This will give us the exact capability of DPLL.

Proposition 4.1.4 DPLL is at least L12 -capable.

Proof: All problems in L12 can be efficiently reduced to any L12-complete problem. A

reduction to a problem implies that we can use any algorithm that solves the problem.

Thus, demonstrating that DPLL can solve a L1rcomplete problem is sufficient to show

that DPLL is L12-capable. We show that DPLL can be used to solve Odd Maximum

Satisfiability (OMS) which is known to be L12-complete.
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OMS = {'If(X) I Xn =1 in the lexicographic max sat assignment of'lf}.

The first transformation, tI, does not need to do anything because the instances are

already SAT formulas. The only nondeterministic components of DPLL are the

branching order and whether to try setting variables to true or to false first. The

transformation t3 is used to create a fixed branching order on these variables to make

DPLL deterministic. To determine the lexicographic maximum satisfying assignment, we

branch on the variables in order and always attempt to set a variable to true first. We can

create our deterministic DPLL' in polynomial time by making these simple modifications.

Proposition 4.1.3 tells us that we can still apply unit propagation without any negative

consequences even though it reaITanges the branching order.

After running the DPLL algorithm, let the second transformation t2 take the

satisfying assignment produced and return true if Xn =1. The order on the variables

ensures that the satisfying assignment returned is the lexicographically maximum one.

The functions tl, t2 and t3 are all polynomial-time computable, thus DPLL is capable of

solving OMS and all of L12.•

Proposition 4.1.4 can also be shown in another way. Giunchiglia and Maratea

have shown that the basic DPLL algorithm is capable of solving an OptP complete

problem using a fixed branching order. Since it solves an OptP complete problem it can

solve every problem in OptP (Giunchiglia and Maratea 2006). Krentel established a

relationship between L12 and OptP where every problem in L12 can be represented by an
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OptP problem followed by a polynomially computable predicate (Krentel 1988). We

could instead have chosen to use Krentel's work converting ~2 problems into OptP

problems and rely on the results of Giunchiglia and Maratea that DPLL is capable of

solving problems in OptP. However, the proof that we provide demonstrates the result

more directly. Also, the previous work did not specifically mention or show that unit

propagation is still valid and can still be used with the fixed branching order.

The following is a direct consequence of the previous two propositions:

Proposition 4.1.5. DPLL is exactly ~2-capable.•

4.2. How Optimizations Affect the Capability of DPLL

Notice that the proof requires that DPLL return the satisfying assignment if one

exists. The version that just returns SAT or UNSAT may not be ~2-capable. In this

section, we discuss variations of the original DPLL algorithm and which versions may

not be ~2-capable.

Many modifications have been made to the basic DPLL algorithm to make it

more efficient. Some of these modifications can still be used in solving ~2 problems, if

they do not change the order in which models are discovered. Any modification which

reorders the search tree is unusable unless there is another method that can be devised to

ensure that the first model found is maximal. The purpose of this section is to analyze
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which modifications can still be used in solving ~2 problems. For those that cannot be

used, we also analyze how this affects the overall performance.

The first change to DPLL that we consider is the use of branching heuristics.

Many optimizations of DPLL involve using intelligent branching heuristics that select the

next branching variable in an attempt to minimize run time. One of the more popular

branching techniques is VSIDS, which will assign an initial value to each variable based

on the number of clauses that it appears in. When new clauses are learned, the score is

incremented. Periodically all of the scores are divided by a constant so that the score

reflects the number of occurrences, with a higher weight on more recently added clauses.

To show that we cannot use branching heuristics let us consider a simple example.

Suppose that we use a really simple heuristic of branching on the literal that appears in

the most clauses that have not been satisfied by the current partial assignment. If we are

given the formula (""Xl V X2) 1\ (""Xl V X3) then the model that will be returned is {""Xl, X2,

X3}. While this model is a satisfying assignment of the formula, it is not the maximum

satisfying assignment so it does not solve the OMS problem.

The proof that DPLL is ~2-capable requires a specific branching order to solve

OMS. Unless there is another proof that does not require a fixed branching order or we

can add clauses that force the branching heuristic to branch on the variables we want,

then we cannot use the intelligent branching heuristics that were later added to the

algorithm.

In order to see how much this affects performance, we analyze how much a fixed

branching order (or partial order) affects the runtime of two of the most popular SAT
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solvers. For our experiments, we modified the RSAT solver to use random branching up

to a certain depth. It then relies on the branching heuristic used by RSAT for the rest of

the decisions. Our analysis is based on the assumption that a fixed branching order will,

in general, be no worse than a random one. We chose RSAT because it was one of the top

SAT solvers in the last SAT competition.

The modified solver was run on a series of forty problems taken from SATLIB

benchmarks (SATLIB), exactly half of which are satisfiable. These benchmarks include

random instances, graph coloring problems, planning problems, Latin squares, as well as

problems from the DIMACS benchmark set. Each data point represents the average

runtime on the forty problems for a fixed number of random branches. In order to prevent

larger problems from dominating the averages, we normalized the data by dividing the

runtime by the time it takes on the original RSAT implementation.

As we increase the depth of random branching, we expect that the runtimes will

grow no worse than 2n where n is the depth of randomly selected branches. In the worst

case, we are adding a new root to the search tree that does not provide any additional

information. In this case, we are essentially making two copies of the original search tree

as the left and right children of the root node. Thus the runtime should be no worse than

twice the original, and in general should be better. This hypothesis is validated by the

data, as can be seen in figure 4.2.1. Using gnuplot (gnuplot homepage), the closest

exponential curve fitting the data isf(x) =0.82 (1.67X
), which is less than 2x

.
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For good measure we also tested the effect on ZChaff which is not as good as

RSAT, but certainly a competitive SAT solver. The results were very similar and the best

exponential curve fitting the ZChaff data wasf(x) =3.84 (1.76").

In the ZChaff data there was a substantial difference between the mntime for

satisfiable versus unsatisfiable instances. As mentioned, in the worse case we are making

two copies of the original search tree and looking through both. For many satisfiable

instances we do not actually need to search through both copies of the original search tree

and thus we should only see marginal degradation in performance. This difference was

not seen in the RSAT data. It would be interesting to do further exploration into the

reason behind this difference, but it was not investigated in this work.

Using a fixed branching order up to a certain depth should make a much more

significant difference in unsatisfiable instances. This expectation was confirmed as can be

seen in figure 4.2.2. The curve fitting the unsatisfiable instances isf(x) =6.91 (1.77X
)

which is still less than 2x
. The mntime growth for the satisfiable instances does not

appear to be exponential at all.

The next change to DPLL that we consider is the use of watched literals

(Moskewicz et al. 2001). We argued previously that we can still use unit propagation in

DPLL. One of the more efficient implementations of unit propagation involves watched

literals. For each clause, we pick two unvalued literals to watch. If either of those literals

is set to false while the other is unvalued, we select a new literal to watch if possible. If

this is not possible, then either the clause is already tme (in which case we do nothing) or

the clause is a unit clause (in which case we perform unit propagation). If at any point, a
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watched literal is set to false and all other literals are already false, we return

UNSATISFIABLE. The watched literal invariant that must be maintained is that for

every clause either one of the literals is true or both are unvalued. We will now argue that

DPLL with watched literals is still L12-capable.

Proposition 4.2.1. Adding watched literals to DPLL does not affect its capability.

Proof: Watched literals are primarily a book-keeping device enabling the algorithm to

determine more quickly whether or not there are any unit clauses. It might affect the

order in which we find unit clauses, but using watched literals does not alter the branch

order and thus does not alter the order in which the interpretations are searched. Since we

search the interpretations in order, the first model found will still be a maximum model.

We conclude that we can still use this technique for solving problems in L12.•

Although we can still use watched literals, the watched-literal invariant is easier

to maintain when we use nonchronological backtracking, which does rearrange the search

space. So next we consider whether or not we can use this technique.

Nonchronological backtracking is used in coordination with learning new clauses.

When we reach a dead end in searching for a model, we can use resolution to derive a

new clause that represents the reason that we reached a dead end. By adding this new

clause to the formula, we may be able to prune sections of the search space that do not

contain models. When we learn a new clause, we backtrack to the point where the clause
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would have been unit had it been around since the beginning and insert new assignments

into the assignment stack to satisfy this clause, which may rearrange the search space.

Proposition 4.2.2. The addition of learning and nonchronological backtracking do not

affect the capability of DPLL.

Proof: The most important thing to note about learned clauses is that the new formula is

equivalent to the original.

The new search tree that is generated when using learned clauses is clearly not the

same as the original search tree without learned clauses. By adding additional clauses, we

may introduce new unit propagations that would not have occurred in the original search

tree. The new search tree is also not identical to the search tree that would have been

generated if we had started with the new formula. If we learn a new clause halfway

through the computation we may skip over some of the earlier unit propagations because

those unit clauses did not exist at the time.

Earlier we argued that we can still use unit propagation without reordering the

models. It is also the case that we can skip unit propagations without rearranging the

models. The proof that we can still use unit propagation does not require us to use unit

propagation whenever it is possible to do so. The search tree generated with the use of

learned clauses and nonchronological backtracking only differs from the search tree of

the new formula in that we may skip some unit propagations that appear in the search tree

for the new formula. Thus, these two search trees produce the same maximal model. We
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argued above that the search tree for the new formula also produces the same maximal

model as the search tree for the original formula, thus the model that we find when using

learning and nonchronological backtracking is indeed the one that we want.

We conclude that we are still able to use learning and nonchronological

backtracking.•

Another extension to DPLL is called pure literal propagation. If a literal occurs in

a formula and its negation does not, this variable can be set accordingly. We cannot use

this technique to solve the odd max sat problem because the maximum satisfying

assignment may set some pure literals to false. This is not a significant setback because

people tend to agree that pure literal propagation requires more time than it saves. It is

costly to perform searches for pure literals and few instances contain enough pure literals

to achieve a performance advantage (Zhang and Malik 2002). However, if there is a

specific problem that would benefit from pure literal propagation, then it could still be

used after all variables in the preset branching order had been fixed or we could add

trivial clauses to eliminate certain pure literals that adversely affect the branch order.

Another extension to DPLL is called symmetry breaking (Crawford et al. 1996).

Two variables are symmetric if the formula does not change when the two variables are

interchanged. In other words, if there are two models of a theory that are identical except

that one has (x, ...,y) and the other contains (...,x, y) then x and yare symmetric. This

technique is currently not used in the ZChaff implementation or the RSAT

implementation.
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The original version of DPLL ignores symmetries, but exploiting them has the

potential to make the algorithm perform faster. One way to make use of the symmetries is

to add symmetry-breaking predicates to the theory. Symmetry-breaking predicates are

chosen to be true of exactly one element in each equivalence class of assignments

generated by the symmetry. In the example used in the previous paragraph, adding (y, x)

would break the symmetry.

It is possible to detect some symmetries without knowing the models of a

formula. However, if we detect that two variables are symmetric, we do not want to

assume that one is true and the other is false because the maximum satisfying assignment

requires that both be set to true if possible. Symmetry-breaking predicates create a new

formula such that the models of the new formula are a nonempty subset of the models of

the original (assuming that there are models of the original). The new formula is not

equivalent to the original and we may end up cutting the most preferred model of the

theory. Therefore, adding symmetry-breaking may destroy the ~2-capability for DPLL.

In the next chapter, we provide a brief discussion of how the capability of DPLL

is applicable to real problems, but first we will discuss the capability of another well

known algorithm.

4.3. PSPACE-Capability of QBF Algorithn1

Quantified Boolean Formula is the canonical PSPACE-complete problem. The

most commonly used method of solving the problem is an extension of the DPLL
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algorithm. The algorithm essentially has one DPLL-like procedure to handle existential

quantifiers and one to handle universal quantifiers. The two versions are called in

alternation to solve the problem. For further details see section 2.3.

Since the QBF algorithm solves a PSPACE-complete problem it is clearly at least

PSPACE-capable. It only remains for us to show that the algorithm is no more than

PSPACE-capable.

Proposition 4.3.1 The QBF algorithm is no more than PSPACE-capable.

Proof: Suppose that a problem Q can be solved using the QBF algorithm. This means that

there are polynomial-time transformations of the input and output such that we can use

the QBF algorithm as a black box for solving Q. Since the transformations take

polynomial time, they cannot take more than polynomial space. We can write a PSPACE

algorithm for Q which consists of the input transformation, followed by the QBF

algorithm, and ending with the output transformation. Since the individual components

operate in polynomial space, the overall algorithm does also, and Q E PSPACE.•
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CHAPTER V

APPLICATIONS TO PLANNING

PROBLEMS AND NMR

Now that we know that the DPLL algorithm is d2-capable, we can examine

specific problems that it can and cannot solve. For the problems that it cannot solve, we

can analyze whether there are interesting subsets of the problem that can be solved. The

two problem domains that we consider are planning problems and nonmonotonic

reasoning.

5.1. Optimal Planning

Satplan (Kautz et al. 2006) is one of the most efficient solvers for finding

solutions to planning problems. It is based on the Planning as Satisfiability approach

introduced by Kautz and Selman (1992). Satplan took first place the International

Planning Competition in 2004 and tied for first in 2006.

Satplan's first step involves generating a plan graph for a planning problem.

Recall from chapter II that a plan graph is a visual representation of the planning problem

that can be constructed as follows: create a set of nodes to represent the initial conditions,

with one node for each condition. Next create a set of nodes to represent all possible
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actions that may be taken, including no-ops. Then connect the preconditions of an action

to the node representing that action. Following that, create a set of nodes representing all

of the possible postconditions and connect each action to its corresponding

postconditions. Repeat this process either up to some fixed length k (to bound the plan

length to k) or until two successive sets of conditions are identical.

The basic algorithm of Satplan is:

• Generate the plan graph up to length k (initially I)

• If the goals are unreachable in the plan graph increment k and start over

• Convert the plan graph into SAT formula

• Call a satisfiability solver

o If UNSAT increment k and try again

o If SAT return solution

Each time a plan graph is generated and converted to cnf, the satisfiability

instance represents the question, "can we find a plan of length k?" Satplan automatically

finds an optimal solution (a plan of minimum length) because it searches all possible plan

lengths in increasing order.

There are drawbacks to using Satplan for optimal planning. Probably the biggest

concern is that learned information is discarded between successive calls to the SAT

solver. Learning techniques have significantly improved the performance of modern SAT

solvers. Throwing away learned information between individual calls is particularly

detrimental when using satisfiability for planning because of the strong similarities
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between successive SAT instances. Information learned in searching for a plan of length

k is valuable in searching for a plan of length k+ 1.

Prior work has been done on retaining learned clauses between successive calls

(Nabeshima et al. 2006). They use a sequence of calls to a SAT solver, but keep learned

information to avoid redundant work. Their solution outperforms Satplan, demonstrating

that retaining learned clauses is useful.

As an alternative to their approach, we propose an approach that uses a single call

to a SAT solver. Our approach is based on our notion of capability. We have shown that

DPLL is L12-capable and we will prove that Optimal Planning is F02-complete and hence

DPLL is capable of solving Optimal Planning.

To use a single SAT call, we first generate the entire plan graph which involves

continuing to generate layers until a layer is identical to the one before it. We then

determine a partial order on branch decisions that will ensure optimality. Finally we call

the SAT solver, which uses our fixed partial order before relying on its own branching

heuristic. Using a single SAT call automatically eliminates the problem of discarding

learned information, but may also yield additional benefits by relying on the optimization

techniques built in to the SAT solver.

Unfortunately, this approach is not feasible in practice, because generating the

entire plan graph requires too much memory. To handle this issue, we place an upper

bound on the plan length. For instance, we could solve blocks-world problems by moving

all blocks to the table and building up the goal state. The number of steps required to do

this is a naIve upper bound on the optimal plan length. We modified Satplan so that it
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takes an extra argument which represents an upper bound on the plan length and uses

only one SAT call to find an optimal solution. Our experiments indicate that these

changes result in a dramatic runtime improvement.

For problems such as blocks-world it is easy to generate an upper bound on the

length of an optimal solution. For many other problems it can be more difficult.

Furthermore, it is desirable to have a self contained planner that does not rely on

additional input. We modified our first version by automating the process of finding an

upper bound. Again we outperformed Satplan by a significant margin. Now that we have

described our approach in general terms, we will turn the discussion to a more detailed

description and then show the results of our experiments.

As mentioned earlier, one problem that we address with using Satplan for optimal

planning is the loss of learned information between calls to the SAT solver. We could

instead make a single call by generating the entire plan graph up front and using a

predefined branching order to guarantee optimality. When converting to a satisfiability

instance, we would introduce new variables, Gi , indicating that the goal state has been

reached at time i. We add the necessary clauses to the formula to ensure that these

variables have the intended meaning.

When we call the SAT solver, we branch on the variables Gj, Gz, ... in order, so

that the first plan that we find is guaranteed to be optimal. We are effectively doing the

same as Satplan by first searching for a plan of length 1, then of length 2, and so on until

we find one. However, this method automatically retains learned information because we

are pushing the search into one SAT call.
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As pointed out earlier, generating the entire plan graph requires too much memory

so this approach is not practical. If we have a reasonable upper bound on the plan length,

we could solve the problem in a single call by generating the plan graph up to the upper

bound, translating to a SAT problem, and solving. The fixed branch order ensures that we

find an optimal solution regardless of how large the upper bound may be. This approach

compares favorably to Satplan on a set of problems taken from the IPC-5 benchmarks.

Note that Satplan allows us to specify which SAT solver we would like to use.

The SAT solvers are independent from Satplan, not built in to it. For our experiments, we

used both Tinisat (Huang 2007) and RSAT (Pipatsrisawat and Darwiche 2007).

Now that we have described the idea behind our solver, we will outline the actual

modifications that were made to Satplan. The differences are:

• Introduce one new variable for each time step and add clauses that ensure

the variable is true iff all of the goals have been satisfied at that time step.

• Modify Satplan to write one extra line to the cnf file which specifies the

branch order.

• Modify Tinisat and RSAT to accept a partial order on branching and to use

these first before relying on their heuristics for branch decisions.

• Modify Satplan to generate the plan graph up to some fixed upper bound on

the plan length.

This is still not ideal because it assumes that we always have an upper bound on

the plan length and it requires additional input. Rather than input an upper bound on the

plan length, we can automate the process by starting with an initial guess, generating the
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plan graph up to that guess, and converting it to a SAT instance. If no solution is found

then we multiply our previous guess by some constant (larger than one) and repeat. If a

solution is found, it will be optimal because of the partial branching order. We use fixed

parameters for the initial guess on the plan length and the multiplicative constant. These

parameters are independent of the specific domain or problem being considered.

It is not a new idea to try to guess the optimal plan length and adjust accordingly.

However, in previous attempts, if a solution was found from the initial guess, there was

no guarantee that the solution was optimal. The planner still had to try again with a

smaller value of k to see if a smaller plan could be found. Our method is guaranteed to be

optimal because of the partial order on branch decisions. Also, in previous versions k was

incremented or decremented. We are multiplying it by some constant which allows us to

converge on a solution more quickly. Instead of generating the plan graph up to some

fixed upper bound, we make the following additional change:

• Satplan will first generate the plan graph up to some guess k. If a solution is

found it returns it as optimal. If no solution is found, we multiply k by some

constant and try again.

For small values of k, we will not generate the cnf instance because we can

determine from the plan graph that the goals are unreachable. There is a range of values

where k is large enough that the goals can be reached in the plan graph (and hence we

generate a SAT instance), but small enough that there is no plan of length k or less.

There are no calls to a SAT solver before we enter this range, and the final call to a
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satisfiability engine will be when we have increased k beyond this range. Only when we

are within this range do we make additional, unnecessary calls to the SAT solver.

Depending on the size of the range and the multiplicative constant, we may skip over

this range entirely and still end up making only one call. In most other cases, we end up

making only a few calls, because increasing k by some multiple each time quickly puts

us beyond the range of values where we make additional calls. The overall result is that

we make very few calls to a satisfiability engine while still maintaining optimality.

For our experiments, we compared our modified version of Satplan to the

original, unmodified version. Satp1an uses a command line option to specify which SAT

solver is being used. We compared our planner to Satplan using Tinisat for both as well

as using RSAT for both. We used the fully automated version that will start from a fixed

upper bound value of k and multiply k by some constant each time that a plan cannot be

found.

We named out planner "Cricket" because it takes large jumps through the search

space instead of stepping through each possible plan length until finding a plan. We

selected a random set of problems from each of the domains used in the 2006 planning

competition. We also used a set of blocks-world problems. The results are shown in

table 5.1.1, comparing our planner to the original Satplan. We outperformed Satplan on

most of the instances, some by a considerable margin. It is also worth noting that in the

one domain where Satplan does better, Cricket solved additional instances where

Satplan timed out. These instances are not included in the results shown in table 5.1.1.
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Table 5.1.1. Cricket vs. Satplan

Planner
Satplan- Cricket· Satplan- Cricket -

Domain RSAT RSAT Tinisat Tinisat

Blocksworld 3025.31 1417.31 3113.54 1740.06

Pathways 164.38 189.64 354.29 195.36

Pipesworld 845.36 506.91 869.21 637.91

Rovers 458.27 253.08 447.92 256.4

Storage 702.24 473.29 2510.96 282.31

TPP 872.2 718.21 799.41 700.5

Trucks 302.19 140 605.25 279.95

We also want to note that the results on RSAT are incomparable to the results on

Tinisat because we used different sets of randomly selected instances from the domains.

In addition to showing these results numerically in the table, we found it enlightening to

show them in a graph as well. The graphs are shown in figures 5.1.1 and 5.1.2.

We will now describe how these results were borne out of our definition of

algorithm capability. Plan existence is PSPACE complete in general and NP complete

when there is a polynomial bound on plan length. We prove that when there is a

polynomial bound on plan length that optimal planning is Fe2 complete, where 8 2 is the

set of problems solvable in deterministic polynomial time given a logarithmic number of

queries to an NP oracle.
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Planning problems can be arbitrarily complex since some problems require plans

of exponential length, thus planning is EXPTime. While it is beyond PSPACE to find a

plan for an arbitrary problem, determining plan existence is known to be PSPACE

complete (Bylander 1991). There are a number of restrictions, such as a polynomial

bound on plan length, that reduce the complexity of planning from PSPACE to NP. If

we know that the plan length is bounded by a polynomial, then the plan serves as a

polynomial sized witness that the planning problem is solvable. Hence polynomial

bounded planning is in NP.

In Satplan, we can generate satisfiability instances in polynomial time if the plan

length is polynomially bounded. In general, Satplan may generate exponentially sized

SAT instances. The satisfiability instances are only guaranteed to be polynomial when

the planning problem is in NP.

Whenever it is NP-complete to determine whether or not there is a plan, it is also

NP-complete to ask if there is a plan of length k for some fixed k. However, it is harder

than NP to ask for the length of the optimal plan. Similarly the complexity of finding an

optimal plan is higher than the complexity of finding any plan. The following proof

characterizes the complexity of optimal planning:

Proposition 5.1.1 Optimal planning is Fe2-complete when the plan length is

polynomially bounded.
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Proof: It is in NP to ask whether there is a plan of length k for some fixed k. Since the

plan length is bounded by some polynomial p(n), we can use a divide and conquer

technique to recursively divide the search space in half at with each oracle query. We

initially ask if there is a plan of length ~ p(n). The answer to this question eliminates

half of the search space. Thus, the overall number of queries is O(log p(n)) =O(log n).

Next we show that optimal planning is Fe2-hard by reducing from a know Fe2­

complete problem. The decision version of clique asks, for a given graph G and integer

k, whether there is a clique of size k. Determining the size of the largest clique is Fer

complete (Krentel 1988).

In order to reduce the problem of finding the size of the largest clique to optimal

planning, we need to construct a set of variables, a set of actions, a start state, and a goal

state. Informally, the actions that we will use are removing vertices, the start state is the

initial graph, and the goal state is a complete graph on k vertices.

More formally, let the variables be:

• edge(Vi, Vi) meaning there is an edge between Vi and Vi'

• removed(vi) meaning that the vertex Vi has been removed from the graph.

The only action that we use in the construction is remove(vi), which has no

preconditions and whose postconditions are removed(vi) 1\ '\Ij"" edge(vi, vJ The start

state is that removed(vi) is false for all i, and edge(vi, Vi) is true if there is an edge

between Vi and Vi in the initial graph. The goal state is that we are left with a complete
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graph: V i,j removed(va V removed(vj) v edge(vi> Vj). In other words for every pair of

vertices, either one of them has been removed or there is an edge between them. The

plan with the fewest actions removes the fewest vertices resulting in the largest clique.

To obtain the size of the largest clique, we subtract the length of the optimal plan.•

Even though optimal planning is harder than SAT we can still use a single call to

DPLL to solve it because DPLL is capable of solving all problems in ~2 and 8 2 ~ ~2.

Figure 2.2.5 gives a complexity diagram illustrating the relationship between the various

classes and problems.

The complexity of deterministic planning in the general case is beyond ~2. We

can still use our method to solve optimal planning in the general case, but the

transformations are not guaranteed to be polynomial.

5.2. Planning with Preferences

Sometimes in planning it is useful to consider preferences for some plans over

others. In the most general sense, planning with preferences is at least as hard as default

logic because we are essentially adding a set of defaults on top of a satisfiability problem.

It may be harder, because there may be some partial orders on the models that we are

unable to capture with a polynomially sized set of defaults. It is well known that brave

reasoning and testing if there is a model of a default theory are L2-complete, and that

cautious reasoning is Il2-complete (Gottlob 1992). Given that DPLL is only ~2-capable it
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clearly cannot solve all instances of default logic, and thus cannot solve all instances of

planning with preferences unless we exponentially increase the problem size. All partial

orders can be expressed as a set of preferences, but the number of preferences or the

conversion to CNF may be exponential in the original size of the problem. The subset of

SAT planning with preferences that can be solved with DPLL is the subset where the

partial order on models can be expressed as a predetermined branching order, which

implies that this is the subset that is in ~z.

Since planning in general is PSPACE-complete, people often consider restrictions

that place a polynomial bound on the length of a plan. Each action is specified by a set of

preconditions and postconditions. One common way to restrict planning problems is to

place restrictions on the type of preconditions and/or postconditions that are allowed.

Determining whether or not there is a plan for a general planning problem is still

PSPACE complete even if we are restricted to two positive preconditions and two

postconditions. The problem becomes NP complete when there are no restrictions on the

type of preconditions, but that all postconditions must be positive.

Another way to restrict the problem is to define the type of preferences that are

allowed. Earlier we described three types of preferences that were defined by Pontelli and

Tran (Pontelli and Tran 2004): basic preferences, atomic preferences, and general

preferences. Recall that state desires, goal preferences, and action preferences are all

basic desires. Also, if <PI and <pz are basic preferences then so are <Pl 1\ <pz, <Pl V <pz, ""<Pl,
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Proposition 5.2.1. Determining whether there is a plan that satisfies some basic

preference <p is NP-complete.

Proof: Clearly we cannot reduce the complexity by adding preferences. Planning without

preferences is NP-complete and is directly reducible to planning with basic preferences

by using an empty or trivial preference. Thus, planning with basic preferences is NP­

hard.

One way to demonstrate that a problem is in NP is by giving a polynomial

checkable proof of yes instances. A trajectory suffices as a witness because we can check

in polynomial time both whether the trajectory is valid and whether it satisfies the basic

preference. Since planning with basic preferences is in NP and is NP-hard, it is NP-

complete.•

This proof demonstrates only that it is NP-complete to determine whether or not

there is a plan that satisfies the preference. This does not answer the question of how

difficult it is to actually find the best trajectory. With regard to a basic preference, the

most preferred trajectory is any trajectory that satisfies the preference. If there are none,

then all trajectories are equal which also means that all trajectories are "most preferred."

Proposition 5.2.2. Given a basic preference <p, we can determine a most preferred

trajectory using a polynomial number of NP oracle queries.
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Proof: First we ask the oracle if there is a trajectory that satisfies the preference. If not

we ask if there is any trajectory at all. If there is no trajectory then we return false.

Following that, we pick some action a and execute it. This results in some new

state s. If we know that the basic preference can be satisfied, then we ask the oracle if

there is a trajectory from this new state s to the goal state that satisfies the preference. If

we know that the preference cannot be satisfied, we ask whether there is any trajectory

from this new state s to the goal state. If there is no trajectory from s to the goal state, we

try a different action. If there is, we fix this as our first action and move on to trying

possibilities for the second. We repeat the process until we find a valid plan.

It is important to note that before moving on to the next step in the trajectory, we

have fixed all prior actions. We will not need to backtrack because the oracle has verified

that there is a plan with the all prior actions fixed. We use the oracle to avoid testing all

possible combinations of actions.

There are only a polynomial number of possible actions at any given time step.

There are also only a polynomial number of time steps. At worst, we test all possible

actions at each possible time step, which still results in only a polynomial number of

queries.•

Recall that atomic preferences are constructed by placing an ordering on a set of

basic preferences. The most-preferred trajectory is not the one that satisfies more of the

basic preferences, but rather the one that satisfies the higher-ranked preferences. We now
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show that atomic preferences can also be solved with a polynomial number of queries to

an NP oracle.

Proposition 5.2.3. Given an atomic preference <P, we can determine a most preferred

trajectory with a polynomial number of NP oracle queries.

Proof: The atomic preference <P actually represents <P1 <J <p2 <J ... <J <P11 where <PI, ... , <P11

are all basic preferences. We can determine which of the basic preferences will be

satisfied by a most preferred trajectory as follows: we first ask if there is a plan that

satisfies <Pl. If not, we ask if there is a plan that satisfies <P2. If there is a plan satisfying

<PI, we ask if there is a plan that satisfies <PI /\ <P2. The conjunction of two basic

preferences is a basic preference so it is in NP to ask if there is a trajectory that satisfies

<PI /\ <P2. We continue to evaluate each basic preference in order from <PI to <p11' If there

are n preferences, then we need n queries to determine which basic preferences are

satisfied by the optimal trajectory.

Once we know which basic preferences are satisfied, we can create a new basic

preference by taking the conjunction of these preferences. We used a polynomial number

of queries to construct this basic preference. We can then determine a trajectory for our

new basic preference using a polynomial number of queries (proposition 5.2.2). Thus we

only use a polynomial number of queries overall.•
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The final type of preferences that are allowed are called general preferences. An

atomic preference is the most basic type of general preference. If 'PI and 'P2are general

preferences then so are 'PI & 'P2 , 'PI I 'P2 , and !'PI. An ordered set of general preferences

is also a general preference.

The complexity of planning with general preferences is still unknown, thus we

have not yet determined whether we can solve planning with general preferences with

DPLL.

Our results are particularly interesting because prior to our work, it was already

known that an NP algorithm could solve any NP problem. Finding a trajectory for a

planning problem with basic preferences or atomic preferences is a more complex

problem than SAT, but can be solved with a SAT algorithm.

5.3. Nonmonotonic Reasoning

In this section, we will describe how to use DPLL for one version of

nonmonotonic reasoning, and discuss how this helps in analyzing the complexity of that

version. We will then talk about the complexity of other versions of nonmonotonic

reasoning and which can be solved with DPLL.

Recall that Shoham added nonmonotonicity within various logical frameworks by

defining a preference order on the interpretations of a theory so that some are preferred

over others. He uses the notation B C A to mean that A is prefened over B or equivalently

B is less prefelTed than A.
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Adding nonmonotonicity to satisfiability problems increases the complexity for

first order logic from NP to NpNP (Cadoli and Schaerf 1993). For further references on

the complexity, Cadoli and Schaerf also cite a paper by Stillman (1992) and another by

Gottlob and Fermiiller (1971).

DPLL works well for SAT problems so it is a natural candidate for solving

Nonmonotonic SAT (NSAT) problems. Since DPLL is only L1z-capable, whereas NSAT

problems are L2-complete, we will not be able to solve all NSAT problems with DPLL.

We show that certain NMR problems are solvable by DPLL by demonstrating subsets of

NMR that are in L12. Next, we show how to use DPLL for NSAT problems and then we

discuss the subset of nonmonotonic reasoning problems that are solvable with DPLL.

NSAT problems have a partial order on the interpretations so that some models of

a theory are preferred over other models. The first step in developing a solution to NSAT

problems is to represent the partial order on interpretations. In mathematics, partial orders

are generally represented using lattices. The most straightforward way to represent a

lattice as a data structure is to specify which element is preferred for every pair of

elements. If neither element is preferred then that pair may be omitted. However, when

the elements are all possible interpretations of a SAT problem, this is not a reasonable

encoding.

For most real world problems, the partial order on interpretations will have

structure that leads to a more compact representation. By exploiting the structure of

problems, we can avoid using an exponential encoding for many partial orders.

As an alternative, let a partial order be represented as a set of rules of the form
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L =} R. Land R each represent either true, false, or a CNF formula. The implication is

logically equivalent to stating that if L is true then we prefer that R is also true. For rules

of the form true =} R we can abbreviate by simply writing R.

Let each rule be assigned a priority level so that if there is no model satisfying all

of the rules then we prefer to satisfy the most important rules first. The priority level of

each rule is a natural number where a lower number corresponds to a higher priority. For

instance, we could write one partial order using the following set of rules:

O. dead (Tweety) =} :fly (Tweety)

1. bird (Tweety) =} fly (Tweety)

This means we prefer that if Tweety is dead then Tweety does not fly, and that if

Tweety is a bird then Tweety does fly. However, if bird (Tweety) and dead (Tweety), we

cannot satisfy both rules. In this case we would rather satisfy the rule of priority 0 and

conclude that since Tweety is dead, Tweety does not fly.

Given that two models break different sets of rules with mixed priorities, it is not

always obvious which model is preferred. Let Brokeni (A) denote the set of rules A breaks

at priority level i. For two models A and B, let us define that B C A iff:

:Ji BrokendA) CBrokendB) and

\;/ j<i Brokenj(A) =Brokenj(B)
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In other words, we stmt by comparing two models at priority level O. IfA breaks a

subset of the rules that B breaks, then B C A. If they break different sets of rules at

priority 0 then the two models are incomparable. If the two models break the same rules

then we move on to the next priority level and repeat the process.

Based on our definition, if two models are incomparable at priority level 0 then

they are incomparable regardless of which rules they break of lower priority. Note also

that the number of rules that a model breaks is inconsequential. For example, if A breaks

two rules of priority 0 and B breaks a different rule of priority 0 then the two models are

incomparable even though B breaks fewer rules.

A set of rules corresponds to a unique partial order, but there may be multiple sets

of rules that correspond to the same partial order. Since all partial orders can be

represented as a set of CNF formulas, this format may be used to represent any partial

order.

Now that we have a notation for representing partial orders, we are ready to move

on to the next step. The standard DPLL procedure creates a search tree where the leaves

of the tree correspond to a total assignment of variables. The internal nodes are partial

assignments. If the standard procedure were used on NSAT problems, then a model of the

theory would be returned if one exists, but there is no guarantee that it will be a preferred

model.

It requires exponential time to expand the entire search tree to find a preferred

model of the theory. Instead, we would like to rearrange the branch points so that the

leaves are ordered from most preferred to least preferred. That way, the first model we
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find would be guaranteed to be a preferred model. Determining the branch points a priori

from the partial order corresponds to creating a static variable ordering.

One important observation is that if we branch on XI being true, but XI is false in

all preferred models, then we have already made a mistake. The left side of the tree is

expanded first, so we will find a less preferred model before the preferred models can be

expanded. In order for the branch points to correctly order the interpretations, each one

must divide the models into two sets where all of the models in one set are preferred over

or incomparable to all of the models in the second set.

Proposition 5.3.1 For some sets of rules, there is no static variable ordering such that a

preferred model is always chosen.

Proof: Suppose that the partial order consists of the following simple set of rules both of

priority 0:

O. a =? b

O. C =? d

Using the previous observation, we can show that there is no way to make the

branch decisions such that a preferred model is always chosen. We have four choices for

which variable to branch on first. Suppose we branch on b and consider the formula

(.b V c) /\ (.b V .d). Models in which b is true break the second rule, so the models

that satisfy both rules are in the right side of the search tree. Suppose instead that we
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branch on ...,b and consider the formula (a Vb). There are models in which b is false, but

the preferred models are in the right side of the tree. In either case, we find a non-

preferred model before the preferred models can be expanded. A similar argument can be

made for whichever variable we try to branch on first. •

Even for some simple cases, we are unable to create a static ordering of the

variables that will produce a search tree that always finds a preferred model. Now

consider the same partial order used in the proof, but allow the introduction of new

variables. Let Rule} = ""aV b. The rules become:

O. Rule}

O. c => d

We can branch on setting Rule} to true and try to find an assignment that will not

break either rule. See figure 5.3.1 for a partial search tree.

Figure 5.3.1 Partial search tree for
NSAT problem where we branch on
Rule] first.



117

To ensure that the substitution is meaningful, we add Rule] == -'aVb to the theory.

In general, we can introduce new variables where each variable represents either a

conjunction or disjunction of literals. Suppose we introduce a variable w which represents

a disjunction Xl V ... V Xn• The clauses we introduce are: (-,w V Xl V ... V xn) /\

(W V -'Xl) /\ ... /\ (w V -,xn). There is one clause of length n+ I and n clauses of length

two. Suppose instead that we introduce W which represents a conjunction Xl /\ .•• /\ Xn•

The clauses we add are: (-,W V Xl) /\ ... /\ (-,W V Xn ) /\ (w V -'Xl V .. , V -'xn). Thus if

every substitution that we introduce represents either a conjunction or a disjunction of

literals then the expression can easily be converted to CNF with a polynomial-time

transformation.

To process the set of rules such that all substitutions are either a conjunction or a

disjunction of literals, we first introduce one new variable per clause. Since every clause

is a disjunction of literals the substitutions are the required format. Following this step,

each rule is of the form LClause I /\ ... /\ LClausen =? RClause I /\ ... /\ RClausell1 • Next, for

each side of the rule we introduce one substitution, representing a conjunction of literals.

During this step, each rule is transformed into the form Left =? Right. Finally, we reduce

each rule to a single variable by introducing the substitution Rule =-,Left V Right, which

again matches the desired format.

For example, consider the rules:
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O. dead(Tweety) V in_concrete(Tweety) :::} :fly(Tweety)

1. bird(Tweety) :::} fly(Tweety)

For simplicity, we do not need variables to represent clauses that have only one

literal. In the first step the only substitution we need to introduce is

Incapacitated(Tweety) =dead(Tweety) V in_concrete(Tweety). This substitution

represents the conditions that would cause Tweety to be incapable of flying, such as being

dead or cemented in concrete.

We do not need a variable to represent a side that has only one clause so we can

skip the second step. For the final step, we introduce the substitutions Rule I =

...,Incapacitated(Tweety) V :fly(Tweety) and Rule2 = ...,bird(Tweety) V fly(Tweety). Note

that if either rule only had one side we would not have needed a variable to represent it.

The preprocessing step that we propose involves introducing substitutions, adding

the corresponding information to the theory, and converting the information to CNF.

Proposition 5.3.2 If the representation of the partial order is polynomial in size, then the

preprocessing step runs in polynomial time.

Proof: Suppose that the representation of the partial order is polynomial in size. For each

rule we introduce at most one variable per clause, one for each side, and one for the rule

itself. Since the rules are polynomial in number and in length, the substitutions must be

also.
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The expressions we add to the theory are the substitutions that we introduce. Thus

the information added to the theory is polynomial and can be constructed in polynomial

time. Each substitution represents either a disjunction or a conjunction of literals, so we

can efficiently convert each substitution to CNF. Therefore, the preprocessing step only

requires polynomial time.•

In the DPLL procedure, we first want to branch on the variables that we created to

represent the rules in order of priority. Afterwards we can use other well known

heuristics to select the remaining order dynamically. Some of the best heuristics known

can be found in the work on ZChaff (Zhang and Malik 2002).

Note that in creating the variable ordering we have imposed a total order on the

rules used to express the partial order. Since the total order on the rules respects the

original partial order, this will not cause us to return a less preferred model. It may cause

two previously incomparable interpretations to no longer be incomparable, but it will not

alter any current preferences. In other words, it may eliminate some preferred

interpretations, but this is not an issue because the algorithm will still return a preferred

model. If there are multiple rules within a priority level, then there is more than one valid

static variable ordering.

A variable order can be converted to a set of rules by writing one rule per

variable, where some of the variables may represent substitutions. Again, we require that

all substitutions are either conjunctions or disjunctions of literals. If the substitutions in
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the ordering are polynomial in number and in size then we say that the static variable

ordering is polynomial.

Proposition 5.3.3 A polynomial, static variable ordering for a partial order can be

converted to a polynomially sized representation of the partial order in our format.

Proof: We showed in the proof for Proposition 5.3.2 that the information being added to

the theory is polynomial in size for each substitution. So only a polynomial amount of

information is added to the theory for the substitutions. For each variable in the ordering,

we write a rule indicating our preference for the value of that variable. The modified

theory and the set of rules are polynomial in size.•

Proposition 5.3.3 implies that if we can create a polynomial static variable

ordering for an NSAT problem, then our format is a sufficient representation for the

partial order on interpretations.

The only difference between the algorithm for SAT problems and NSAT

problems is the procedure for determining the next branch variable. In SAT solvers, any

branching heuristic may be used. To solve NSAT problems we must branch on the next

rule variable available. If there are no rule variables left then we may use any branching

heuristic to complete the branching order.

This provides insight into the complexity of NSAT problems because although we

know that the general case is L2-complete, there were no previous characterizations of
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any subsets of NSAT problems with lower complexity. Our work demonstrates that any

NSAT problem that can be expressed in the format that we described must be in ~2 since

those problems are solvable with DPLL.

The NMR formalism that was proposed by Shoham and the work that we have

done is quite similar to recent work done on SAT planning problems with preferences

(Giunchiglia and Maratea 2007). Adding preferences introduces nonmonotonicity into

planning problems as it is analogous to adding a set of defaults. Giunchiglia and Maratea

essentially encode a partial order on the models and the goal is to return a maximal

model. Shoham's work was more theoretical and did not mention a way of encoding the

partial order on models. Giunchiglia and Maratea developed a practical approach to

solving problems of this type.

The method that Giunchiglia and Maratea use to solve SAT planning problems

with preferences begins with a list of simple preferences and creates one new variable

v(P) for every preference p. They add the necessary clauses to the theory to enforce that

v(P) =p. In order to indicate that we prefer plans in which the preferences are true, we

branch on the variables v(P) in order of the priority of the preferences. If two preferences

are equally preferred then we can branch on them in either order. The model that is

produced will be optimal in the sense that if it fails to satisfy a preference, then every

other model is either equally preferred or fails to satisfy a different preference of higher

priority. The solver that they developed works quite well and they show addition of

preferences has a relatively small effect on the overall runtime (though in general they are

using a small number of simple preferences). These results match those that we showed
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in chapter IV, that introducing a fixed branching order did not have a substantial impact

on runtime for satisfiable instances. Their method is nearly identical to the one that was

concurrently developed by us, but we have chosen to include both here.

Giunchiglia and Maratea recognized that not all partial orders on models can be

encoded using a set of simple preferences that is polynomial in the original problem size

(Giunchiglia and Maratea 2006). They show how to solve SAT planning problems with

simple preferences. Our work demonstrates why DPLL cannot solve all cases with more

complex preferences and helps us to determine which can be solved with DPLL.

We have shown one use of DPLL for nonmonotonic reasoning. Next we will

discuss the complexity of various problems in NMR and how it relates to the capability

of DPLL. There have been a number of different studies on the computational complexity

of nonmonotonic reasoning. Certain cases are easy to solve while others are not even

computable. Many of the cases that can be computed are beyond NP. Since DPLL is only

L12-capable, it can only solve the subset of NMR that falls in L12. This rest of this section is

a survey of the complexity results known for nonmonotonic logics, indicating which

versions can be solved with DPLL.

There are many complexity results known for nonmonotonic reasoning. Eiter et

al. have written a paper outlining complexity results for answer set programming (2004).

They present some new results as well as a survey of existing results. Brave reasoning in

general is known to be L,2 complete and cautious reasoning is Il2complete. In both cases

the complexity becomes L13 complete when we add weak constraints. A weak constraint

is one that is satisfied if possible, but does not have to be true. This is equivalent to
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preferences. Given the complexities of these problems, DPLL is not capable of solving

the general cases of these problems. It is also beyond the scope of DPLL to solve answer

set programs where disjunction is allowed in the body of a rule. Programs that contain no

atoms of the form "not x" have a lower complexity and can be solved with DPLL.

One particular subset of answer set programming that is known to be exactly Llz

complete is both brave and cautious reasoning in stratified normal logic programs with or

without weak constraints (Eiter et al. 2004). A program is stratified if we can assign a

value s(l) to each literall such that if l is an element of the body and l' is an element of

the head, then s(l) :s s(l') if l is positive and s(l) < s(l') if l is negative. Also if land l' are

both elements of the head then s(l) =s(l'). The logic program is normal in the sense that

the body is disjunction-free. This subset of nonmonotonic reasoning is exactly the type of

problem that we would expect DPLL to perform well on because it is at the outer limits

of the scope of DPLL, but it is not one that is often considered.

Default logic is also generally of a higher complexity than SAT. The problem of

finding an extension of a default theory and the problem of brave reasoning are 1:z-

complete (Gottlob 1992, Stillman 1992). Cautious reasoning is Ilz-complete (Gottlob

1992, Stillman 1992). The results on brave and cautious reasoning hold even when

restricted to normal default theories that are prerequisite free. Recall that a normal default

theory is one in which all defaults are normal and a normal default is one in which the

justification is the same as the consequence. A normal default is of the form:

a:Mw
w



124

Model checking involves deciding whether a propositional interpretation is a

model of any extension of the theory. Model checking for normal default theories was

shown to be 8 2-complete, and is coNP-complete when the defaults are also prerequisite

free (Baumgartner and Gott10b 1999). Since this is within ~2, model checking in normal

default logic can be solved with DPLL.

Many real-world problems in default logic can be expressed using only normal

defaults. Since DPLL is capable of solving normal default logic, it is a good candidate for

solving a number of real-world problems involving default reasoning.

Model checking in normal default logic is within the scope of what DPLL can

handle, so we now describe a method for solving this problem using a single call to

DPLL. In the model checking problem we are given a default theory ~ =<D, W> and an

interpretation M. We want to know if M is a model of any extension of the theory. First

we check if M satisfies Wand return false if not. This can be done easily in polynomial

time. Then let B be the set of defaults whose consequences conflict with M and G be the

remaining defaults. Thus, G is our set of "good" defaults and B is our set of "bad"

defaults. We want to know if there is an extension that only uses defaults in G.

For each default, we add a variable a to represent the prerequisite and a variable w

to represent the consequence (and necessary clauses so that these variables have the

intended meaning). We will also add the variable consistent(w) to indicate whether or not

the variable is consistent. We do not need to add additional clauses for these variables;

the reason for this will be explained later.
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Baumgartner and Gottlob (1999) proved that for a normal default theory there is

at most one extension E such that M 1= E, or equivalently there is at most one subset of G

that forms a valid extension. Roughly speaking, this is because if the defaults in G do not

conflict with M then it is impossible for them to conflict with one another. This makes it

easy to break the problem into two parts: in the first phase find the subset of G such that

it creates a valid extension of <W,G>, and in the second phase we check if we are

required to add any defaults from B to find an extension of <W,D>.

To compute the first phase we are going to start with the SAT formula which

represents the conjunction of all formulas in W converted to CNF notation. Next, we add

(-.ai V -.consistent(wi) V Wi) for each default di E G. This will ensure that if a

prerequisite is true and Wi is consistent then we will apply the default. We do not need to

add extra clauses to ensure that our consistency variables have meaning because if the

prerequisite is true then the consequence must be consistent in order to set it to true. If a

prerequisite must be true and the consequence cannot be true, then we mark the

consequence as inconsistent. If the prerequisite is not inferred then it does not matter

whether we mark the consequence as consistent or inconsistent. The reason that the

consistency variables are necessary is that adding them ensures that we will not

automatically return false when a prerequisite is forced to be true and the consequence is

inconsistent.

The final step in the process is to create the branch order. For each default di E G

we branch on -.ai so that we will not apply that default unless we have to, and then on
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consistent(w;) so that we will apply the default if it is possible to do so. It does not matter

which order we consider the defaults in because the defaults do not conflict with one

another.

For the second phase, we want to subscript our variables with phase2 so that we

do not get unintended interactions between computing the first part and the second part.

For the second phase we want to start with the SAT formula corresponding to W (where

variables are subscripted with phase2) and add the variables for all of the defaults (also

subscripted with phase2). Next we add clauses that correspond to (w; =W;,phase2) so that

any consequences that we added in the first phase have been appropriately added in the

second phase. Similar to the first phase, we add ("'a; V "'consistent(w;) V Wi) for each

default d; E B. Also as before, for each default in B we try branching on "'a; so that we

will not apply that default unless we have to, and then on consistent(w;) so that we will

apply the default if it is possible to do so. If we are able to apply any defaults in B then

we return false.

This algorithm works except for in one special case. During either phase we may

have two defaults such that the prerequisite of one is a and the prerequisite of the other is

..,a. If neither a nor..,a can be inferred from W, then we cannot apply either default.

However, when we branch on ..,a for the first default, we will then conclude that..,a can

be inferred and we will apply the other default. In order to prevent this we can subscript

the variables in Wand for each individual default to ensure that there are no interactions

except for the ones that we want. We enforce the interactions that we do want by creating



127

additional clauses that say that if a consequence was added by a previous default then it

applies in all steps of the procedure. This is fairly straightforward to accomplish by

adding clauses of the form (Wi,) = Wi,k) V i, j, k. The branch order for each phase does not

change (except that now the variables are subscripted).

In order to solve this with DPLL we create a single SAT formula by taking the

conjunction of the formulas from the two phases, use our branch order from the first

phase, followed by all remaining variables from phase one, then our branch order from

the second phase. Phase one is computed first because we branch on those variables first.

We may perform some unit propagations, but unit propagations only prune sections of the

search space that do not contain valid models, and thus will not affect the outcome. If Wi

is true for any default in B we return false and we return true otherwise.

Proposition 5.3.4. The above procedure will correctly determine whether or not there is

an extension that is consistent with the interpretation M.

Proof: There are two claims that must be proven in order to prove this proposition. The

first is that the method generates a valid extension. The second is that M is consistent

with the extension.

An extension is a deductively closed set of beliefs about the world. This means

that everything in W is true and we apply a default whenever it is possible to do so. It

also means that we do not apply defaults unless we are required to do so. If a prerequisite

is true and the consequence is consistent then we are required to set the consequence to



128

true to satisfy the clause (,a V ,consistent (w) V w), because we set our consistency

variables to true initially and only set them to false when we have a reason to believe

otherwise. We also try branching on prerequisites being false, thus we do not use defaults

unless we are required to do so. Therefore we are generating a valid extension.

We checked that the original set of formulas is consistent with the interpretation

before we started. We return false if we use any of the defaults that conflict with M. Thus

if we return true then we were able to find a set of defaults that generate an extension and

do not conflict with the interpretation M.•

Now that we have discussed normal defaults, we will move on to another popular

form of default logic. A default is called semi-normal if it is of the form:

a:MB,w
w

Even though model checking becomes solvable with DPLL when restricted to

normal default theories, it is still L2-complete if all of the defaults are semi-normal

(Gottlob 1992). The complexity of credulous reasoning and brave reasoning is still

beyond .12 even if all of the defaults are normal and prerequisite free (Cadoli and Schaerf

1993). The prerequisites are specified by a so a default that is normal and prerequisite

free simply says "if w is possible, then assume w." These restrictions are all still beyond

what DPLL is capable of solving.
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CHAPTER VI

CONCLUSION

In this thesis, we have defined the notion of algorithm capability and shown the

capability of two well known algorithms. Specifically we showed that DPLL is exactly ~2

capable and that the algorithm most commonly used for solving QBF is exactly PSPACE

capable. In both cases, we proved the results by showing both upper and lower bounds on

the capability. We can show that a complexity class is a lower bound on the capability of

an algorithm by showing that the algorithm can solve a complete problem for that

complexity class. This works because every problem in the class is efficiently reducible

to the complete problem and the complete problem is efficiently reducible to the

algorithm. We can prove the upper bound on the capability of an algorithm by showing

that if a problem can be solved by the algorithm, then it must be in the complexity class.

In order to prove the capability of DPLL it was necessary to know a ~2 complete

problem. Krentel proved indirectly that the Odd Maximum Satisfiability problem is ~2

complete, so we provided a more direct proof involving a Cook-style reduction.

We provided two main applications in Artificial Intelligence to demonstrate how

this notion is useful. Specifically we showed how the capability of DPLL applies to

planning problems and to nonmonotonic reasoning. Our theoretical framework was

useful in developing a faster solution for optimal planning that runs up to an order of



130

magnitude faster than Satplan on a variety of problems taken from the IPC-5 benchmarks.

Satplan makes multiple calls to a SAT solver, discarding learned information with each

iteration. We prove that the complexity of optimal planning is 8 2 so it can be solved with

a single call to a SAT solver. By using a single call we automatically retain learned

information.

Knowing the capability of DPLL is also useful in nonmonotonic reasoning. It

enabled us to characterize several subsets of NMR that are solvable with DPLL with

fixed branching. In addition we showed how to use DPLL in order to solve

nonmonotonic satisfiability problems and propositional model checking in normal default

logic.

There are several possible ways in which this work can be extended. We

discussed several optimizations that were added to DPLL and proved that certain ones do

not affect the capability of the algorithm. For others, we speculated that when they are

added in to DPLL that the resulting algorithm is no longer ~2-Capable, but we have not

yet proven that there is any DPLL-based SAT solver that is not ~2-Capable. The most

likely to be incapable of solving problems in ~2 would be the version of the algorithm

that returns SAT or UNSAT instead of the satisfying assignment, but this has not been

proven.

Another interesting direction would be to implement an answer-set solver for the

subset of ASP that is in ~2 and compare the performance to other popular solvers. It

would also be potentially useful and interesting to develop a program based on DPLL for

determining whether there is an extension of a normal default theory.
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Other ways to extend the ideas presented here would be to investigate more

thoroughly the set of problems that fall into ~2 and can thus be solved with a SAT solver.

It would also be interesting to determine the capability of other useful algorithms and use

the results to test how those algorithms perform on additional problems.



132

BIBLIOGRAPHY

Agrawal, M., N. Kayal, and N. Saxena. 2004. PRIMES is in P. Annals ofMathematics
160:781-93.

Baumgartner, R. and G. Gottlob. 1999. On the Complexity of Mode1 Checking for
Propositional Default Logic: New Results and Tractable Cases. Proceedings of the
Sixteenth International Joint Conference on Artificial Intelligence: 64-9.

Blum, A. and J. Langford. 1997. Fast Planning Through Plan Graph Analysis. Artificial
Intelligence 90:281- 300.

By1ander, T. 1991. Complexity Results for Planning. Proceedings of the International
Joint Conference on Artificial Intelligence 1:274-9.

Cadoli, M., A. Giovanardi, and M. Schaerf. 1998. An Algorithm to Evaluate Quantified
Boolean Formulae. Proceedings of the Fifteenth National Conference on Artificial
Intelligence (AAAI'98): 262-7.

Cadoli, M. and M. Schaerf. 1993. A Survey on Complexity Results for Non-monotonic
Logics. Journal ofLogic Programming: 17: 127-60.

Complexity Zoo. http://www.complexityzoo.com (accessed November 18,2008).

Cook, S. A. 1971. The Complexity of Theorem Proving Procedures. Proceedings of the
Third Annual ACM Symposium on the Theory of Computing: 151-8.

Crawford, 1., M. Ginsberg, E. Luks, and A. Roy. 1996. Symmetry-Breaking Predicates
for Search Problems. Proceedings of the Fifth International Conference on Principles of
Knowledge Representation and Reasoning: 148-59.

Davis, M., G. Logemann, and D. Loveland. 1962. A Machine Program for Theorem
Proving. Communications of the ACM 5,7:394-7.

Davis, M. and H. Putnam. 1960. A Computing Procedure for Quantification Theory.
Journal oftheACM7, 1:201-15.

Dixon, H. 2004. Automating Pseudo-Boolean Inference Within a DPLL Framework. PhD
Dissertation. University of Oregon.



133

Een, N. and N. Sorensson. 2004. An Extensible SAT Solver. Lecture Notes in Computer
Science: 333-6.

Eiter, T., W. Faber, M. Fink, G. Pfeifer, and S. Woltran. 2004 Complexity of Answer Set
Checking and Bounded Predicate Arities for Nonground Answer Set Programming. 9th

International Conference on the Principles ofKnowledge Representation and Reasoning:
377-87.

Eiter, T. and G. Gottlob. 2000. Complexity Results for Some Eigenvector Problems.
International Journal of Computer Mathematics 17(1-2): 59-74.

Eiter, T. and T. Lukasiewicz. 2000. Default Reasoning from Conditional Knowledge
Bases: Complexity and Tractable Cases. Artificial Intelligence 124(2): 169-241. 2000.

Fikes, R. and N. Nilsson. 1971. STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving. Artificial Intelligence 2: 189-208.

Garey, M. and D. Johnson. 1979. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman and Company. New York.

Gelfond, M. and V. Lifschitz. 1988. The Stable Model Semantics for Logic
Programming. Proceedings of the Fifth International Logic Programming Conference
and Symposium: 1070-80.

Ginsberg, M. 1987. Readings in Nonmonotonic Reasoning. California: Morgan
Kaufmann Publishers, Inc.

Giunchiglia, E., Y. Lierler, and M. Maratea. 2004. Cmodels2: SAT-Based Answer Set
Programming. Proceedings of the Nineteenth International Conference on Artificial
Intelligence: 61-6.

Giunchiglia, E. and M. Maratea. 2006. Solving Optimization Problems with DLL.
Proceedings of the lth European Conference on Artificial Intelligence: 377-81.

Giunchiglia, E. and M. Maratea. 2007. Planning as Satisfiability with Preferences.
Proceedings of the Twenty-Second National Conference on Artificial Intelligence (AAAI):
987-92.

Goldszmidt, M. and 1. Pearl. 1996. Qualitative Probabilities for Default Reasoning,
Belief Revision, and Casual Modeling. Artificial Intelligence 84(1-2): 57-112.

Gottlob, G. 1992. Complexity Results for Nonmonotonic Logics. Journal ofLogic and
Computation 2(3):397-425.



--------- - ...

134

Gottlob G. and e.G. Fermliller. 1993. Removing Redundancy from a Clause. Art!ficial
Intelligence Volume 61 Issue 2: 263-89.

Gnuplot homepage. www.gnuplot.info (accessed April 20, 2008).

Grosse, A., J. Rothe, and G. Wechsung. 2001. Relating Partial and Complete Solutions
and the Complexity of Computing Smallest Solutions. Proceedings of the Seventh Italian
Conference on Theoretical Computer Science: 339-56.

Huang, 1. 2007. A Case for Simple SAT Solvers. Proceedings of the Thirteenth
International Conference on Principles and Practice of Constraint Programming: 839­
46.

Janhunen, T. and 1. Niemala. 2004. GnT - A Solver for Disjunctive Logic Programs.
Proceedings ofthe Seventh International Conference on Logic Programming and
Nonmonotonic Reasoning: 331-5.

Kautz, H. and B. Selman. 1992.Planning as Satisfiability. Proceedings of the Tenth
European Conference on Artificial Intelligence: 359-63.

Kautz, H., B. Selman, and J. Hoffman. 2006. Satplan: Planning as Satisfiability.
Abstracts ofthe Fifth International Planning Competition.

Kautz, H., D. McAllester, and B. Selman. 1996. Encoding Plans in Propositional Logic.
Proceedings of the Fifth International Conference on Principles ofKnowledge
Representation and Reasoning: 374-84.

Krentel, M. 1988. The Complexity of Optimization Problems. Journal ofComputer and
System Sciences, 36:490-509.

Krentel, M. 1992. Generalizations of OptP to the Polynomial Hierarchy. Theoretical
Computer Science, 97: 183-98.

Leone, N., G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Pen-i, and F. Scarcello. 2006. The
DLV System for Knowledge Representation and Reasoning. ACM Transactions· on
Computational Logic, 7(3):499-562.

Liberatore, P. and M. Schaerf. 1998. The Complexity of Model Checking for
Propositional Default Logics. Proceedings of the Thirteenth European Conference on
Artificial Intelligence: 18-22.

Lifschitz, V. 2002. Answer Set Programming and Plan Generation. Artificial Intelligence,
138:39-54.



135

Lifschitz, V. Unpublished Draft. Introduction to Answer Set Programming. 2005.

Lin, F. and Y. Zhao. 2004. ASSAT: Computing Answer Sets of a Logic Program by SAT
Solvers. Artificial Intelligence, 157(1-2): 115-37.

Lucas, E. 1883. The Tower ofHano i". Paris: GAUTHER-VILLARS, printer of the
Academie des Sciences and the Ecole Polytechnique Quai des Augustins, 55.

Marek, V. and M. Tmszczynski. 1999. Stable Models and an Alternative Logic
Programming Paradigm. The Logic Programming Paradigm: a 25 Year Perspective: 375­
98.

McCarthy, J. 1980. Circumscription - A Form of Nonmonotonic Reasoning. Artificial
Intelligence, 13:27-39.

McDermott, D and 1. Doyle. 1980. Non-monotonic Logic 1. Artificial Intelligence, 13:41­
72.

Meyer, A. and L. Stockmeyer. 1972. The Equivalence Problem for Regular Expressions
with Squaring Requires Exponential Space. Proceedings of the 13th IEEE Symposium on
Switching and Automata Theory: 125-9.

Moore, R. C. 1985. Semantical Considerations on Nonmonotonic Logic. Artificial
Intelligence 25:75-94.

Moskewicz, M., C. Madigan, Y. Zhao, L. Zhang, and S. Malik. 2001. Chaff: Engineering
an Efficient SAT Solver. Proceedings of the Design Autom.ation Conference: 530-5.

Nabeshima, H., T. Soh, K. Inoue, and K. Iwanuma. 2006. Lemma Reusing for SAT
based Planning and Scheduling. Proceedings of the Sixteenth International Conference
on Automated Planning and Scheduling: 103-13.

Nieme1a,1. 1999. Logic Programs with Stable Model Semantics as a Constraint
Programming Paradigm. Annals ofMathematics and Artificial Intelligence 25 :241-73.

Nudelman, E., A. Devkar, Y. Shoham, K. Leyton-Brown, and H. Hoos. 2004. SATzilla:
An Algorithm Portfolio for SAT. SAT Competition 2004 - Solver Description.

Papadimitriou, C. 1994. Computational Complexity. Boston: Addison Wesley Publishing
Company.

Pipatsrisawat, K. and A. Darwiche. Technical Report D153, Automated Reasoning
Group, Computer Science Department, University of California, Los Angeles. RSat 2.0:
SAT Solver Description. 2007.



136

Pontelli, E.and S. Tran. 2004. Planning with Preferences Using Logic Programming.
Proceedings of the Seventh International Conference on Logic Programming and
Nonmonotonic Reasoning: 247-60.

Reiter, R. 1980. A Logic for Default Reasoning. Artificial Intelligence, 13:81-132.

SAT Competitions. www.satcompetition.org (accessed July 27,2008).

SATUB. http://www.cs.ubc.ca/-hoos/SATLIB/benchm.html (accessed September 10,
2006).

Shoham, Y. 1987. A Semantical Approach to Nonmonotonic Logics. Readings in
Nonmonotonic Reasoning: 227-50.

Simons, P. 2000. Extending and Implementing the Stable Model Semantics. PhD
Dissertation, Helsinki University of Technology Laboratory for Theoretical Computer
Science.

Sipser, M. 1997. Introduction to the Theory of Computation. Massachusetts: PWS
Publishing Company.

Stillman, J. 1992. The Complexity of Propositional Default Logics. Proceedings of the
Tenth National Conference on ArtVicial Intelligence (AAAI'92): 794-9.

Stockmeyer, L. 1976. The polynomial hierarchy. Theoretical Computer Science, 3: 1-22.

Stockmeyer, L. 1987. Classifying the Computational Complexity of Problems. Journal of
Symbolic Logic, 52,1: 1-43.

Xing, Z., Y. Chen, and W. Zhang. 2006. MaxPlan: Optimal Planning by Decomposed
Satisfiability and Backward Reduction. Proceedings of the Sixteenth International
Conference on Automated Planning and Scheduling: 53-6.

Zhang, L. and S. Malik. 2002. The Quest for Efficient Boolean Satisfiability Solvers.
Lecture Notes in Computer Science: 313-31.


