
MEASURING THE INTERNET AS GRAPH AND ITS EVOLUTION

by

PETER MATTISON BOOTHE

A DISSERTATION

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

September 2009

11

University of Oregon Graduate School

Confirmation of Approval and Acceptance of Dissertation prepared by:

Peter Boothe

Title:

"Measuring the Internet AS Graph and its Evolution"

This dissertation has been accepted and approved in partial fulfillment of the requirements for
the Doctor of Philosophy degree in the Department of Computer & Information Science by:

Andrzej Proskurowski, Chairperson, Computer & Information Science
Arthur Farley, Member, Computer & Information Science
lun Li, Member, Computer & Information Science
Anne van den Nouweland, Outside Member, Economics

and Richard Linton, Vice President for Research and Graduate Studies/Dean of the Graduate
School for the University of Oregon.

September 5, 2009

Original approval signatures are on file with the Graduate School and the University of Oregon
Libraries.

Copyright 2009 Peter Mattison Boothe

III

iv

Peter Mattison Boothe

An Abstract of the Thesis of

for the degree of Doctor of Philosophy

in the Department of Computer and Information Science

to be taken

Title: MEASURING THE INTERNET AS GRAPH AND ITS

EVOLUTION

Approved:

September 2009

Dr. Andrzej Proskurowski, Chair

As the Internet has evolved over time, the interconnection patterns of the

members of this "network of networks" have changed. Can we characterize those

changes? Have those changes been good or bad? What does "good" mean in this

context? Has market power been centralizing or decentralizing? How certain can we

be of our answer? What are the limitations of our data? These are the questions

which motivate this dissertation. In this dissertation, we answer these questions and

more by carefully taking a long-term quantitative study of the evolution of the

topology of the Internet's AS graph. In order to do this study, we spend most of the

dissertation developing methods of data processing and data analysis all informed

by ideas from networking, data mining, graph theory, and statistics. The

contributions are both theoretical and practical. The theoretical contributions

include an in-depth analysis of the complexity of AS graph measurement as well as

of the difficulty of reconstructing the AS graph from available data. The practical

contributions include the design of graph metrics to capture properties of interest,

usable approximation algorithms for several AS graph analysis methods, and an

analysis of the evolution of the AS graph over time.

It is our hope that these methods may prove useful in other domains, and that

the conclusions about the evolution of the Internet topology prove useful for

Internet operators, network researchers, policy makers, and others.

v

CURRICULUM VITAE

NAME OF AUTHOR: Peter Mattison Boothe

PLACE OF BIRTH: Ellsworth, ME, U.S.A.

DATE OF BIRTH: July 6, 1978

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, Oregon
Harvey Mudd College, Claremont, California

DEGREES AWARDED:

Doctor of Philosophy, Computer and Information Science, 2009,
University of Oregon

Bachelor of Science, Joint Major in Computer Science and
Mathematics, 2000, Harvey Mudd College

AREAS OF SPECIAL INTEREST:

Graph theory
Internet measurement
Algorithms
Computer science education

VI

PROFESSIONAL EXPERIENCE:

Software Developer, Gordian
Teaching Assistant, University of Oregon CIS Department
Research Assistant, Beyond BGP Project
Teaching Assistant, University of Oregon CIS Department
Software Developer, University of Oregon Computing Center
Assistant Professor of Computer Science, Manhattan College

PUBLICATIONS:

Peter Boothe, Zdenek Dvorak, Art Farley, and Andrzej Proskurowski.
Graph Covering via Shortest Paths. Congressus Numerantium, 2007

James Hiebert, Peter Boothe, Randy Bush, and Lucy Lynch.
Determining the Cause and Frequency of Routing Instability with
Anycast. Proceedings of the Asian Internet Engineering Conference
(A INTEC) , 2006, pp. 172~185

R. Hadas, J. Hartline, P. Boothe, G. Rae, and J. Swisher. On
multicast algorithms for heterogeneous networks of workstations.
Journal of Parallel and Distributed Computing, 61:1665-1679, 2001

Vll

Vlll

ACKNOWLEDGMENTS

Dissertations take a long time to come into existence, and although only one

person's name gets on the cover, in my case it took a village. Friends, family,

coworkers and bosses all played a role, and the roles are inherently inextricable.

Despite their inextricability, however, some are bigger than others. For example:

Thank you to Tom and Betty Boothe for being my parents! Without you, I would

not exist! For another example: Thank you to Tracy van Cort for supporting me

throughout my graduate career! Without you, I would not have finished!

I entered the University of Oregon Computer Science Department with twelve

others, and four of us are leaving with a PhD. That's a small enough number that I

can just thank Julian Catchen, Kevin Huck, and Jeremy Ludwig right here. Along

the way I was also rendered invaluable assistance by James Hiebert, Dave Hofer,

John Lasseter, Dan Stutzbach, Eric Wills, and many others.

Prior to defending this thesis, I joined the Mathematics and Computer Science

department at Manhattan College. Their forbearance as "the last few months" of

my studies stretched into the last year of my studies has been wonderful, and I

appreciate it very much. Also, while I of course thank my committee, I'd also like to

thank Dr. Timur Friedman, who gave me fantastic feedback and was on my

committee in spirit, but was not able to be officially included due to the twisty

nature of the rules of the graduate school.

Finally, I'd like to thank Cheri Smith, Star Holmberg, and Jan Saunders. If the

person reading this dissertation learns nothing else, then let me pass down some of

the most important advice I ever received from my father (thanks Dad!): Always be

kind to the office staff; they are the ones who actually run the place.

DEDICATION

Dedicated to Tracy van Cort.

Go team.

ix

x

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION. 1

II. BACKGROUND.. 5
2.1 The Internet Versus an Internet 5
2.2 The Layered Internet , 10
2.3 The Autonomous System (AS) Graph 16
2.4 Large Graphs. .. 20
2.5 Analysis Methods for Large, Dynamic Graphs , 23
2.6 What Is Network Neutrality? , 27
2.7 Summary.. 28

III. DATA SOURCES AND PROCESSING.. 30
3.1 DataSources 31
3.2 Parsing Historical Routing Data , 31
3.3 Data Quantity , 37
3.4 The Data Cube... 38
3.5 Preprocessed Route Views Data from CAIDA........ 40
3.6 Summary.. 43

IV. GRAPH COVERING VIA SHORTEST PATHS.. 44
4.1 Mathematical Preliminaries 45
4.2 NP-Completeness of SPC .. 49
4.3 Easy Graph Classes. 53
4.4 Union Covers of 2-Trees. .. 61
4.5 Union Covers of Partial 2-Trees. .. 69
4.6 Shortest Path Trees in the Valley-Free Model. .. 71
4.7 Summary.. 78

V. DEALING WITH DATA INCOMPLETENESS 79
5.1 Determining Edge Directions in the AS Graph. .. 80
5.2 Determining which Edges Might Have Been Missed. 85
5.3 Enumerating X, U, and I .. 91
5.4 The Extremal AS Graphs 95

Chapter

Xl

Page

5.5 Counting the Number of Missing Edges. 99
5.6 Sampling from the Set of Possible AS Graphs 105
5.7 Summary 109

VI. THE EVOLUTION OF THE AS GRAPH 111
6.1 Previous Analyses of the AS Graph 111
6.2 Network Size 112
6.3 Size of the Network Core 113
6.4 Degree Distribution 113
6.5 Clustering Coefficient 121
6.6 Characteristic Path Length. .. 122
6.7 Developing Our Own Metrics 125
6.8 Moving from Policy to Graph Theory. .. 130
6.9 Chapter Summary 152

VII. SUMMARY .. 153
7.1 Future Work 154
7.2 In Conclusion. .. 155

APPENDIX: CODE... 157

BIBLIOGRAPHy 177

LIST OF FIGURES

Figure

Xll

Page

I.
2.
3.
4.
5.
6.
7.
8.
9.
10.
II.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

The output of traceroute .
A representative leading section for textual BGP data .
A representative example of how the text data end .
Some unexpected cases for parsing text data .
The effects of gradually adding more paths to our measured AS graph .
The size of the compressed routing table snapshots .
The AS Graph Data Cuboid .
Our algorithm for extending an existing directed AS graph .
A histogram of the number of edges we found per-path .
Examples of each type of query for a given graph and vertex .
An instance of the Vertex Cover problem and its Intersection Cover .
An instance of the Vertex Cover problem and its Union Cover .
A cactus graph with three cycles, two of which are leaf cycles. . .
A 2-tree and two decompositions of width 2 .
A linear-time algorithm for union-covering 2-trees .
A linear-time algorithm for union-covering partial 2-trees .
The supporting breadth-first search functions for V FUs,t .
A variant of breadth-first search which finds V FUs t .,
An algorithm for finding V F Is,t on a given graph. . .
A simple example network for our direction-inference procedure .
An example of a graph with multiple solutions for reconstruction .
The algorithm to determine all forbidden/impossible intra-path edges .
The algorithm to determine all forbidden/impossible inter-path edges .
Our corrected edge count .
Distribution of the expected missing number of vertices and edges .
The size of the network core over time .
The degree distribution on 13 April 2005 .
The degree distribution on 13 April 2006 .
The degree distribution on 13 April 2007 ., .
The degree distribution on 13 April 2008 ., .
The degree distribution on 13 April 2009 .
The algorithm for calculating the clustering coefficient of a graph .

12
33
33
34
36
37
39
41
42
47
51
52
56
64
68
70
74
75
75
82
83
93
94

102
103
114
116
117
118
119
120
122

Figure

Xlll

Page

33. The clustering coefficient of the AS graph over time 123
34. The characteristic path length of the AS graph over time 124
35. The characteristic valley-free path length of the AS graph over time 126
36. Despite its small size, the gray vertex can control a lot of traffic. 129
37. Two algorithms for assessing market power on a graph 133
38. The greedy approximation algorithm for OLIGOPOLYPOWER 139
39. Topology-free measure of cabal size versus cabal power 141
40. The topology-free oligopoly power of .06% of the AS graph over time 143
41. The topology-free oligopoly power of 18 ASes over time 144
42. The algorithm for finding a lower bound on Oligopoly Power 147
43. An algorithm for finding the vertex that can influence the most traffic 148
44. An approximation of OLIGOPOLyPOWER on 14 April 2008 149
45. An approximation of the OLIGOPOLYPOWER of 18 ASes over time 150
46. The OLIGOPOLYPOWER of 0.06% of ASes over time 151

XIV

LIST OF TABLES

Table Page

1. Shortest paths measured from all points of the network in Figure 20. 82
2. Part of the 2-SAT instance resulting from Figure 20 83
3. The conclusions we may draw from the path 1 -----+ 2 -----+ 3 <-> 4 f- 5 f- 6 87

1

CHAPTER I

INTRODUCTION

In which we introduce the problem and map out the course of this

dissertation

How has the Internet topology changed over time, and have those changes been

good? This is the central question that drives this whole dissertation. To answer it,

we delve into quite a few areas of computer science, including data mining, graph

theory, algorithms, and networking. Along the way, we will use methods from

economics and statistics as needed.

In order to answer this deceptively simple question, we must: pin down exactly

what we mean by "Internet topology", find data from which can reconstruct that

topology, and then analyze the data while taking into account any biases. The

analysis step involves translating the idea of a "good" or 'bad" topology into more

concrete goals of desirable and undesirable properties for a robust Internet topology,

and then translating these properties into the language of graph theory and apply

this new theory to the available data.

We break this dissertation down a similar structure which mirrors these steps.

vVe define our terms, starting witli'tile Internet" , in Chapter II. After suitable

definitions have been discussed and the area is well established, we have two main

2

classes of problem - practical problems such as "Where can Internet topology data

be found and how should it be processed and stored?", and theoretical problems

such as "How complete is this data and how should it be analyzed?" We conduct a

survey of the network topology at each of the network layers and choose the

autonomous system graph as our primary object of study. This chapter serves as a

survey to provide the necessary background for the rest of the dissertation.

Chapter III discusses practical issues of data availability and storage and

eventually frames the problem using the language and terms of data mining. The

solutions to the lower level problems of data acquisition and data parsing have long

been treated as too trivial to write down, which has made approaching them very

difficult for those who are not already deeply involved in both graph theory and

computer networking. We layout explicitly what the data means and how it may

be turned into a usable form. The issue of data completeness has been dealt with

before, but this chapter presents a synthesis of the best known approaches.

We then develop a graph-theoretic model of how these measurements were taken

in Chapter IV. We take the best model for Internet paths, and present the idea of

network measurement as a graph covering problem. We prove that most of the

problems which naturally arise in this context are NP-complete, but there exist

many classes of graphs upon which they are efficiently solvable. We refine our

measurement model to more accurately reflect the challenges of Internet

measurement, and prove that with refinement, the problem remains NP-complete.

We survey other work that has been done in this area, but our formulation of the

basic problem is new, and therefore so are all the results in this chapter.

In Chapters V we discuss methods of dealing with the inherent incompleteness of

our data and assess the relative quality of these methods. It turns out that past

efforts at Internet topology analysis have largely analyzed the available

measurements, and assumed that the measurements were an accurate reflection of

3

the Internet topology. In this chapter, we propose an analysis pipeline that can take

the existing data and analyze almost any property while still being robust to the

fact that some data is missing. The analysis techniques are adapted from statistics,

but have never been applied in this manner before, and are extremely useful when

faced with the inherent problems contained in our data set. To date, no study has

attempted to analyze the graph or family of graphs from which the measurements

may have come. Researchers have been generally content with analyzing the

measurements, and simply acknowledging their incompleteness. Our departure from

this model represents a significant contribution towards ensuring the accuracy of

Internet AS graph analysis.

Finally, in Chapter VI, we put our data reconstruction and analysis techniques

to the test by measuring how a host of graph metrics have changed over time. We

also develop a graph theoretic measurement of the power of an Internet traffic

oligopoly, and then find how that measurement has changed over time. Taking the

measurement turns out to be a difficult computational task, both theoretically and

practically, and we deal with each of the difficulties in turn. We end up with

evidence that traffic flow on the Internet has become increasingly centralized over

time, which has implications for both protocol designers and policy makers. This

chapter can be thought of as an example of what can be done with the solutions

developed in the previous chapters. Many of the studies have been performed before

for a snapshot of the Internet, but no longitudinal study has ever been performed.

That makes the results of this chapter a significant contribution, particularly given

that we perform our analysis using the methods of the previous chapters, which

allow us to not only attempt to analyze historical data, but, for the first time, to

bound the certainty of our results.

It is important to note that many of the developed methods have broader use

than just analyzing properties of the Internet graph. The potential broader impacts

4

of each aspect of the solution are discussed at the end of each chapter. The chapter

on definitions is required background reading for having the rest of the dissertation

make sense, but after that it should be possible to pick and choose which chapters

to read depending on interest.

5

CHAPTER II

BACKGROUND

Where we define the objects we are going to study

In order to have a well defined problem, the terms in the question must

themselves be well-defined. To ask "What is the Internet topology?", we must first

define "the Internet" and then define "the Internet topology". Due to an obvious

dependency, we answer these questions in that order.

2.1 The Internet Versus an Internet

An internet is a collection of interconnected networks, much like an interstate

highway system is a collection of roads between independent states. The Internet is

the largest and most popular public internet in the world, much like the Interstate

Highway System is the largest and most popular interstate road system in the

United States. When discussing problems, we must be careful to state which

problems are universal for all internets, and which problems are specific to the

capital-I Internet. l The Internet is a very specific internet, and the problems it faces

1Like many things whi~h only matter a very little bit, whether or not to capitalize the "I" in
Internet has been the subject of heated debate. The academic community has firmly settled on
capitalization, but others (most notably WIRED magazine and The Economist) have decided that

6

are often unique to it, and, because of the Internet's specific history and the

frameworks within which it grew, conclusions about the Internet do not necessarily

generalize to all internets. Confusion between the general ideas of internets and

inter-networking and the specifics of the existing Internet lie at the root of many

fruitless discussions.

Among Internet users there is a massive confusion about what the Internet is.

When we wish to study the Internet, we must be very careful to state exactly what

aspect of this multi-layered multi-application multi-national network is of interest,

and we must be very careful in our definitions.

The Internet is a network of networks. Using the Internet Protocol (IP), a

member of a local-area-network (LAN) can communicate to members of other

LANs. These LANs are joined together by requiring a common protocol (IP), as

well as through the inclusion of special network hardware named routers, which

send traffic in different directions based on the IP address of the recipient. When

the Internet was first designed, routers were called Internet Message Processors

(IMPs) and the network topology was entered by hand into each router. The

routers acted as gateways between the LAN and the rest of the Internet. The

Internet started out small, which meant that the administrative burden of

maintaining each router by hand was also relatively small. As the Internet grew,

however, the amount of state that each router had to maintain grew as well. In an

effort to manage this increase in complexity, a second layer of abstraction was

required. To design this second layer and the protocols used to communicate along

it, the designers took another look at the networks that made up the Internet at the

time, and then looked at how the network was evolving:

that the capitalization is vestigial and should be eliminated. Here we will capitalize when talking
about the Internet, and use lowercase to indicate a generic internet. Caveat lector, as the usage in
other sources may differ without note.

7

In the future, the internet is expected to evolve into a set of separate
domains or "autonomous systems" , each of which consists of a set of one
or more relatively homogeneous gateways. [...]

Ultimately, however, the internet may consist of a number of co-equal
autonomous systems, any of which may be used (with certain
restrictions which will be discussed later) as a transport medium for
traffic originating in any system and destined for any system. [59]

In this quote, we can see that the original operators of the Internet were

imagining a system much like the one we now have. Our original description that

the Internet is the largest international network of networks was a correct one, but

that statement only tells a tiny bit of the story. Although the Internet's ancestors,

Arpanet, NSFnet, and Milnet, were originally government funded and centrally

managed, the Internet now consists largely of entities freely choosing to associate

and exchange traffic in accordance with contracts and policies that range from

straightforward to truly byzantine. These entities exchanging traffic run the gamut

from educational institutions to telecommunications companies to Internet service

providers to national governments to local cooperatives.

The one attribute these entities have in common is that they each control their

own network, so we call each one an autonomous system (AS). These

autonomous systems then make agreements with each other in an effort to

interconnect and exchange traffic in accordance with each AS's goals. When money

exchanges hands in AS agreements, we call one network a provider and the other a

customer. The provider agrees to provide transit to and through the provider's

network for all traffic from the customer's network. Other times, the two

autonomous systems agree to exchange traffic freely in a practice known as

peering, and two ASes in such a relationship are called peers. Peering differs from

transit, because transit allows for traffic to go "to and through" the provider's

network to any location that provider can reach, while peering only allows the two

peers to reach each other and through to each others' customers, but not through to

8

each others' providers or peers. No matter what, though, it is important to note

that there is no central organizing authority - companies come and go,

telecommunications regulations in various countries come and go, and agreements

get made and broken, and almost none of these activities require the imprimatur of

an authority other than the entities making the deals. While there do exist

organizations which attempt to coordinate network activity (IANA2
, RIPE NCC3

,

LACNIC4
, APNIC5

, etc.), they generally restrict themselves to handing out blocks

of IP addresses and autonomous system numbers to the ASes that require them. As

a general rule, two ASes may form or dissolve a link of any kind without

interference or approval from any third party. The small number of exceptions that

do require a stamp of approval generally involve telephone companies or other

companies historically regulated by the United States Federal Communications

Commission (FCC) or the national equivalent in another country.

There have been some high-profile attempts to layout an explicit Internet

governance policy by both the United States and the United Nations, culminating

in the Working Group on Internet Governance and the World Summit for the

Information Society[69], but the Internet currently remains a self-organizing system

with markedly little outside regulation. The best description available of how the

peering and interconnection process works from the point of view of a network

operator is a constantly-evolving paper by William Norton, co-founder and chief

technical liaison of the ISP Equinix[54].

In a very real sense, it is astounding that this radically hands-off approach could

work at all for something as complex as the international Internet. Autonomous

2The Internet Assigned Numbers Authority

3Reseaux IP Europeens Network Coordination Centre

4The Latin American and Caribbean Internet Addresses Registry

5Asia-Pacific Network Information Centre

9

systems peer and pay for transit until they can reach every other AS that they might

care about, and in the end almost everyone can send packets to almost everyone

else. Although there is no edict from on high for massive inter-network connectivity,

almost every host can communicate with almost every other host[33]. The emergent

behaviors of this system have taken people completely off guard, and predicting

future behavior is very much an open problem[53]. One of the most surprising

things has been the degree to which the Internet has become a powerful economic

force in the world, and helping spread communication and culture across the globe.

Unanswered in this is how has it been growing and changing, and whether the

changes been in the direction that policymakers and the Internet-using public desire.

When the original design documents of the Internet were being written, there

were specific design goals in mind[23]. These design goals were, in order of

decreasing importance: the ability to connect together multiple networks, robustness

to individual network failures, support for multiple communication services, support

for a wide variety of network technologies, distributed management, cost

effectiveness, ease of attachment, and, lastly, accountability. In recent years, after

the commercialization of the Internet, economic concerns have become more and

more important[4] as policy makers want the Internet to be not just cost effective,

but also a level playing field with very few barriers to prevent competition.

Decisions by the FCC have been predicated on the idea that the Internet is a fair

and open market with low barriers to entry, but whether the Internet actually

behaves like an open market has never been put to quantitative study.

More recently, the idea of network neutrality has gotten significant attention in

the press, but there exist multiple competing definitions of the term. Not only that,

but for each definition, the question of whether maintaining the current level of

network neutrality that exists on today's Internet is an economic inevitability or

requires legislative attention is still a subject of active debate. All of these network

10

issues and more are oft-discussed, but there is very little hard data and analysis on

these subjects to guide the debate, and so most discussions end up generating far

more heat than light.

2.2 The Layered Internet

In order to properly understand the Internet topology, we must decide what

layer to look at, because there are different logical topologies at each layer, and

these topologies are quite distinct. The most obvious example of this idea of

different logical topologies for each layer is that there is no a priori reason to think

that a website's links to other sites have anything to do with the underlying wire

connections that make up the physical network infrastructure, yet both graphs have,

at times, been referred to as "the Internet graph" [72]. Thus, in an effort do be

unambiguous, we will eschew the term completely, and explicitly name each graph

at each layer.

According to the OSI 7-layer model of networking, the layers of a network are,

from top to bottom: application, presentation, session, transport, network,

data-link, and physical[79]. We will describe the topology and past work for a few of

these layers. In this dissertation, we primarily wish to analyze the evolution of the

interconnection patterns of the infrastructure itself, primarily at a social level rather

than a technical one.

At the very highest layer, the application layer, people have studied the graph of

hyperlinks on the world wide web - the web graph[9, 10, 16, 22, 43, 56] - as well

as the interconnection patterns of different peer-to-peer networks and social

interconnection websites[48, 50, 57, 58, 64]. Application-level graphs, however, are

usually too high a level for our purposes. We are primarily concerned with the

Internet topology at an economic and infrastructure level, and not in the

11

characteristics of particular applications that use said infrastructure. Applications

which create graphs are usually written in a way that largely ignores the underlying

physical topology, which means that their graphs are largely independent of the

underlying hardware. Some topology-aware applications do exist - but they make

up a small minority of deployed applications.

The presentation, session, and transport layers have little to do with topology,

and much more to do with data reassembly and data structure, so we pass over

them to the next topological layer, the network layer. To communicate across the

Internet, a device must use the Internet Protocol (IP). In IF, computers with an

IP address send small packets of data to each other. The destination of each

packet is carried along with the packet itself, and it is forwarded through the

Internet from point to point via routers. The main job that a router performs is to

choose which adjacent device should receive a given packet, i.e. what the next hop

should be. Thus, a path from one IF address on the Internet to another consists of a

path that begins and ends with either a computer or a router, but consists solely of

routers in the middle. This layer of topology is therefore called the router graph

or sometimes the IP graph, and even, yes, the Internet graph. This path is exactly

what is measured via the traceroute application, which uses varying time-to-live

values on packets in an effort to deduce, from router-originating error messages, the

paths a packet takes from the measurement point to its destination.

For a sample of this program's output, in Figure 1 we show a traceroute from

the University of Oregon to the Royal Institute of Technology in Stockholm taken

on April 16, 2008. In this measurement, we can see that there are 15 hops taken

from the computer on the University of Oregon network in the router graph,

indicating the presence of at least 14 routers between the endpoints in the two

.. universities. This layer, the router graph, is very close to what we might be looking

fOl when we say "the Internet graph", but it is not quite right. In particular, notice

12

traceroute to Ivs-vip-1.sys.kth.se (130.237.32.107), 64 hops max, 40 byte packets
1 vl-60.uonet1-gw.uoregon.edu (128.223.60.2) 1 ms 0 ms 0 ms
2 0.ge-0-1-0.uonet8-gw.uoregon.edu (128.223.3.8) 0 ms 0 ms 0 ms
3 vl-105.ge-2-0-0.coreO-gw.pdx.oregon-gigapop.net (198.32.165.89) 3 ms 3 ms 2 ms
4 vl-101.xe.pdx-losa.oregon-gigapop.net (198.32.165.66) 26 ms 25 ms 24 ms
5 so-0-0-0.0.rtr.hous.net.internet2.edu (64.57.28.45) 57 ms 56 ms 56 ms
6 so-4-0-0.0.rtr.atla.net.internet2.edu (64.57.28.42) 80 ms 80 ms 80 ms
7 ge-0·-1-0.10.nycmng.abilene.ucaid.edu (64.57.28.7) 93 ms 93 ms 93 ms
8 abilene-wash.rt1.fra.de.geant2.net (62.40.125.17) 197 ms 197 ms 197 ms
9 so-6-0-0.rt2.cop.dk.geant2.net (62.40.112.50) 203 ms 203 ms 203 ms

10 nordunet-gw.rt2.cop.dk.geant2.net (62.40.124.46) 203 ms 203 ms 203 ms
11 se-fre.nordu.net (193.10.68.117) 213 ms 213 ms 213 ms
12 c1sth-so-4-1-0.sunet.se (193.10.252.146) 213 ms 213 ms 213 ms
13 a1sth-kth.sunet.se (193.11.0.194) 213 ms 217 ms 213 ms
14 cn6-a1g-p2p.gw.kth.se (130.237.0.2) 213 ms 217 ms 213 ms
15 Ivs-vip-1.sys.kth.se (130.237.32.107) 217 ms 213 ms 217 ms

FIGURE 1. The output of traceroute from a computer on the University of
Oregon network (128.223.60.112) to the Royal Institute of Technology in Stockholm
(www.kth.se) taken on April 16, 2008

that the names of the routers suggest that the conversation traveled through quite a

few autonomous systems. Going by the router names alone (column 2 of the figure)

we find evidence of the following networks: uoregon. edu, oregon-gigapop. net,

internet2. edu, ucaid. edu, geant2. net, nordu. net, sunet. se, and kth. se. If we

investigate further, we find that ucaid. edu and internet2. edu are actually the

same organization, so we will treat these two as a single network. Excitingly, despite

the fact that the University of Oregon has no direct contract to exchange traffic

with the Swedish Royal Institute, our conversation made its way across seven

networks and arrived at its destination, and five of those networks were neither the

message recipient for the message sender. Unfortunately, despite the fact that our

path consisted of just eight domains of control, we can see that the measured path

is fifteen hops long. Thus, if we want to concentrate as much as possible on the

inter-network links, this measurement contains extraneous information regarding

the internal topology of the networks under consideration.

The main priority of the designers of the Internet was inter-networking, and the

router graph contains many intra-network edges. In doing so, the router graph

13

partially exposes how a given network is implemented, and analysis of this graph

may miss the forest for the trees with respect to inter-networking. Too much data

about intra-network connections can easily drown out the essential information

about inter-network connections. Thus, the router graph is very close to what we

would like to analyze, but is not quite right.

Moving further down the stack of networking protocols, we find that things

become even less helpful. A complete data-link layer graph of the Internet makes

very little sense, because a variety of data-link protocols are used to forward traffic,

and the method (and utility) of combining such diverse links into any organized

framework is entirely unknown. The layer beneath the data-link layer is the physical

wires that packets traverse. A single hop on the IP layer might cross a virtual

private network (VPN), ATM network, or any of a number of other technologies

that may logically act as a single link in the network, despite consisting of multiple

distinct physical links. In the router graph these network elements would be

reflected as a single edge, when in actuality it could be an arbitrary number of hops.

The most fundamental graph of the Internet could then be considered the wire

graph ~ every network element capable of splitting, collating, switching, routing,

generating, or receiving traffic would be considered a node, and two nodes are

connected if there is a physical wire from one network element to the other. How

then, does this graph relate to the router graph? What, if anything, can we say

about this graph from available data? Almost no research has been done on the

wire graph, and it is not clear that there exist any good methods of discovery at this

layer, but it is important to note all layers for completeness. The physical layer

initially seems promising, but a complete reckoning of every wire on the Internet is

both a totally impossible request due to reasons of data unavailability, and this

layer also entirely misses the forest for the trees with respect to inter-network

connections. Thus, the router graph remains our best candidate for analysis.

14

Even better, however, is the application-level topology used by IP routers to

perform the necessary path discovery to set up the router graph. This graph is

called the autonomous system graph or AS graph. In the AS graph, each

autonomous system is a single vertex, and connections between vertices indicate one

or more connections between the two ASes along which traffic may flow. By

collapsing all internal connections of a single network into a single vertex, the AS

graph forms a graph minor6 of the router graph, at least in theory. In practice,

there exist a few network deployment technologies and techniques which can create

a false picture of connectivity in the AS graph. Dealing with these special (and

rare) cases is discussed in Chapter III.

The AS graph is set up by the Border Gateway Protocol (BGP), and, in the

AS graph, the inter-AS connection methods are glossed over. If one AS connects to

another in any way, over any link, then they are deemed to be connected in the AS

graph. The AS graph is an expression of network relations, which makes it an

economic and political graph of the Internet. The AS graph was famously studied

by Faloutsos et al. [30], who concluded that the AS graph was a power law graph

and was therefore vulnerable to specific kinds of targeted attack. Their work on the

subject reverberated across the networking community, and was reinforced by a

followup study four years later that reported very similar phenomena[62]. It is

important to note, however, that there is a strong systemic bias to the data that

they used, and later research by Doyle et al. [29] showed that treating the Internet as

just a normal power law graph may be a fundamentally flawed approach. Indeed,

much power-law research is coming under attack from different angles as people are

accused of fitting popular theories to their data instead of looking for the correct

theories[63], and the future of power law research is moving away from raw
--- --------

6 A graph minor takes a graph G = (V, E) and makes a new smaller graph, by either removing
an edge, or by taking two adjacent vertices (u, v) E E and combining them into a single vertex that
is connected to any and all vertices that either v or u was connected to in the original graph.

15

observation, and towards validation of the observations via an underlying model[51].

The relationship between the router graph and the AS graph was briefly touched

upon by Broido et al. in [17] where they note that the AS graph is a graph of

economic relations, and not necessarily a graph of packet paths. The issue of how

we may infer missing links in the router graph from real-time BGP data was tackled

by Andersen et aL[5] and they came to the conclusion that BGP dynamics do reflect

the underlying AS topology, and that hidden relationships in the AS graph may be

deduced from the arrival times of BGP messages - an artifact of IP traffic and

router-graph topology.

Recent work by Achlioptas et al.[l] suggests strong similarities between the

fundamental problems in the AS-graph domain and router-graph domain. A nice

example of these similarities is that our concern for completeness of the AS graph

has been dealt with by Lakhina et al. for the IP graph[45]. Because BGP

shortest-path routing determines, to a large extent, what route an IP packet will

take, the underlying graphs at each layer are related at a very deep level. This

inference process between layers should not be taken too far, however, as Hyun et

al. compared traceroute results with AS path results and found that there were

significant incongruities [40] .

Several other studies have conflated the AS graph and the router graph, and

assumed that each link in the AS graph represented a single link in the router

graph[2] . The best study of the forces that drive the construction of the router

graph is a series of papers by Li, Alderson, Willinger, and Doyle[47, 3] which show

that issues of technology cost and capability have graph theoretic implications for

the degree distribution of the router graph. They validate these conclusions by

studying the router graph of a large ISP. We note, however, that technological

concerns are unlikely to directly affect the AS graph - only the router graph.

16

If we take as our axiom that the key feature that distinguishes the Internet from

other networks is the act of inter-networking, then the layer that represents each

individual network as a vertex and inter-network links as edges seems the most

directly relevant. Thus, our primary object of study in this dissertation will be the

AS graph.

2.3 The Autonomous System (AS) Graph

In the autonomous system graph, every AS is a single vertex, and all

intra-network topology is abstracted away. Instead, the AS graph reflects only the

inter-network topology. Turning back to the example in Figure 1, we can create a

new example where instead of looking at the routers involved, we look at the

domains of control. In that case, we note that the conversation passed through seven

domains of control over the course of 15 hops. In order, they were: the University of

Oregon, Oregon Gigapop, Internet2, Geant2, NORDUnet, SUNET, and finally the

Royal Institute of Technology in Stockholm, Sweden. Any of these autonomous

systems had the capability of altering the data "in flight" or censoring the

traceroute altogether. Therefore, while there were 15 hops from the point of view of

an IP packet, from a policy point of view, the path contained only seven distinct

entities. In the AS graph, this path actually is a path of length 6, just like we want!

In order to meet its design goals[23], the Internet uses the Internet Protocol

(IP), and every publicly-accessible node of the network has its own globally unique

address. In version 4 of IP (IPv4) the address takes the form of four numbers that

can range from 0 through 255, separated by dots. For example, the computer in my

office has the IPv4 address 128.223.6.141. In version 6 of IP (IPv6) this address

takes the form of eight numbers that can range from 0 to 65535, traditionally

written in hexadecimal, and separated by colons. The same computer as mentioned

17

previously has the IPv6 address 2001: 468: d01 : 6: 250: fcff: fe9c: da44. The

Internet was built using IPv4, but the demand for addresses has outstripped the

supply, and so IPv6 was designed and introduced so that the Internet could

continue to grow[12].

When people connect to an internet host, they generally don't use these

addresses explicitly, however. Usually people use a name like www. yahoo. com or

ix. cs .uoregon. edu, which is then translated from a name into an IP address by a

local computer running the domain name service (DNS). Once this translation takes

place, the end host, now armed with an address instead of name, proceeds to use

the address for all communication. Thus, the issue of mapping names to addresses,

while crucial to Internet reliability, is largely orthogonal to topology issues.

When every host has a globally unique address, the whole of a router's job

consists of receiving a packet, and then sending it out in the right direction. In an

effort to allow routers to know what the right direction is, most routers use version

4 of the Border Gateway Protocol (BGP4). In BGP, each router informs all of its

neighbor routers of two things: what contiguous chunks of addresses (netblocks)

the announcing router controls, and all of the best-paths that it knows to all of the

other netblocks it has heard of. It initially seems miraculous that, with just local

incremental communication and no initial knowledge, every router could learn the

best path to take. The crucial insight into understanding the system is that each

router begins not with no information, but with one piece of information - it

knows how to get to itself and to the netblocks that it controls7. It then announces

that (trivial) route to all of its neighbors, and its neighbors do the same to it. In

this process, it then learns all the routes to all the netblocks controlled by its

neighbors. If we view the protocol as proceeding in lockstep, then in the next phase

7This insight was garnered from Radia Perlman at a workshop given by her at NANOG 34

18

each router learns all of the routes that are three hops long, then all the four hop

routes, and so on.

When an AS propagates a path to one of its neighbors, it appends its own

Autonomous System Number (ASN) to the path. In this way, the length of the

path being announced grows as it propagates away from the original announcer.

These announcements then propagate through the system until eventually every

router knows the best available path to every other router's address space.

Or at least, that's the theory, but it is not entirely accurate. BGP is not

designed to settle on the best path to every router, but instead to determine the

best path to every autonomous system, and ASes often have many routers. The

BGP-speaking routers are installed on the internet/intranet border of the AS's

network, and they act as a gateway that allows traffic either into the network, or

immediately passes it along an inter-AS link8 . An AS may have many such routers,

as an AS may have many connections from its internal network to the Internet.

Furthermore, autonomous systems have an incentive to filter the information that

they pass on to their neighbors in an effort to minimize their own expenses. Gao[35]

used these incentives to develop a model of path propagation and traffic flow that

reflects the incentives and likely resulting policies of the autonomous systems doing

the propagating.

The valley-free model of internet routing is the most prominent and successful

attempt to take these incentives into account. The valley-free model was first

introduced by Gao[34], and that paper defined three kinds of relations:

1. sibling-sibling, where two autonomous systems freely exchange all traffic.

This is a relatively rare form of interconnection, and generally implies that the

two autonomous systems are actually operated by the same entity, and just

happen to have different AS numbers for historical or operational reasons.

BHence the name Border Gateway Protocol

19

2. peering, where two autonomous systems freely exchange traffic destined for

each other or their customers.

3. customer-provider, where one autonomous system, the customer, pays the

other autonomous system, the provider, to move the customers traffic to

anywhere that the provider can reach. The provider, however, can only use

the customer's link to reach the customer or one of the customer's customers

or siblings.

In the valley-free model, the only paths that get used or propagated are those

which conform to the following specification: zero or more links from customer to

provider, followed by at most one peering link, followed by zero or more links from

provider to customer. The sibling-sibling links may act as any kind of link and

appear at any point in the path.

This model reflects the incentives of ASes coupled with the obligations that

come from being a provider. In particular, a customer has no motivation to perform

volunteer work for their providers by carrying traffic from one of their providers to

another of their providers.

As an example, the University of Oregon has as its providers both Qwest

Communications and The Oregon Gigapop. Despite the fact that the University of

Oregon could carry traffic from one to the other, the university routers are set up to

avoid forwarding any traffic from Qwest to Oregon Gigapop and vice-versa. If those

two entities want to communicate with each other across University of Oregon

equipment, then at least one of them must pay the University of Oregon or one of

the university's customers. Customers of the University of Oregon, however, have

access to both Oregon Gigapop and Qwest, because a customer-provider contract

obligates the provider to provide service to all reachable networks. Peers of the

20

University of Oregon can access the university and all of the university's customers,

but not Qwest or Oregon Gigapop, as they are the university's providers.

The model is called "valley-free" because, if we consider customer-provider links

to be directional from customer to provider (Le.. they follow the money), then we

note that we start out going strictly up, across at most one peering link, and then

go strictly down. Once a path has leveled-off (gone across a peering link) or started

to go down (gone from provider to customer) it must go strictly down, against the

flow of money.

Once a path has gone down, it can never go up again, and since the only way to

make a valley is to go down then up, valleys are exactly what our model forbids.

Therefore, we say that subject to valley-free constraints, every AS seeks to make its

communication paths as short as possible, and seeks to find a path to every other

AS on the the Internet. When we analyze the AS graph, we build it from available

routing data. Because routers do not store edge type and direction, what we

measure is the undirected incomplete AS graph. The object we would like to

measure is the complete directed AS graph, which is the graph.from which our

measurements come. Techniques for determining edge direction and for assessing

incompleteness are the subject of Chapter V.

With our understanding that the Internet is an international decentralized

network of networks, and armed with a deeper knowledge of how traffic flows, we

can now discuss how we might analyze our large graph of Internet AS-graph

topology measurements.

2.4 Large Graphs

Large graphs which derive from natural processes are, in general, a different type

of object than the graphs typically measured and analyzed by graph theoreticians.

21

In his survey on this subject[49]' Lovasz notes that, if we ask the simple question

"Does the graph have an odd number of vertices?", we may still find ourselves in a

pickle:

This is a very basic property of a graph in the classical setting. For
example, it is one of the first theorems or exercises in a graph theory
course that every graph with an odd number of nodes has a node with
even degree.

But for the internet, this question is clearly nonsense. Not only does the
number of nodes change all the time, with devices going online and
offline, but even if we fix a specific time like 12:00am today, it is not
well-defined: there will be computers just in the process of booting up,
breaking down etc. 9

Lovasz describes three questions that might be asked of a large graph:

1. Does the graph have an odd number of edges?

2. What is the average degree of the graph?

3. Is the graph connected?

The first is, as we have discussed, somewhat ill-defined. The second, however, is

more natural to the situation. The average degree we find may only be accurate to

within a certain measurement error of the underlying graph, but, for a large graph,

the addition of one or two edges to the graph will not significantly change the

average degree. Thus, for a given set of measurements, we can be confident of our

estimation of average degree even if our measurement are slightly inaccurate, as

measurements often are.

9From this and other context in the paper, it seems he is talking about the IP graph of the
Internet as "the internet". Note that his concerns also apply to the AS graph, as new ISPs are
constantly coming online and falling offline. Also, the lack of capitalization is [sic].

-----_._-----------

22

The third question, "Is the graph connected?", is more tricky. This provides us

with a good example of a kind of category error that can emerge when we look at

large graphs. On the AS graph, the answer can be argued to be each of "yes", "no",

and "What are you getting at?" If we were to simply look at our measurements, we

would see that the resulting graph is connected. This, however, is an artifact of our

measurements. The only way we can collect measurements is if the router is

connected to the Internet, and the only way another AS would show up in the

measurements is if they were also connected to the Internet. On the other hand,

because the AS graph is constantly changing and ISPs are constantly replacing

routers and having systems break, we can with confidence state that, at any given

time, the AS graph is almost certainly not a connected graph - the odds are high

that at any given time, at least one ISP is experiencing severe technical difficulties.

This "no" answer is no more useful than the "yes" answer, however. The most

useful response is "What are getting at?"

Because, at any given time, the AS graph is highly likely to be a disconnected

graph, we might view the AS graph as some sort of failure! The goal of the Internet

was, after all, interconnection, and now we see that its connectivity graph is almost

certainly not a connected graph. But when network operators ask whether they are

connected to the Internet, they often consider the network to be working well if, say,

99% of the Internet is reachable at any given time. In this case, the operator would

almost certainly consider their network to be connected, and the Internet as a whole

to be working well. The graph theoretic idea of connectedness does not map to a

useful concept for Internet operators, but network operators do care greatly about

connectivity and related concepts. If we want to investigate this property, therefore,

we must devise a graph theoretic metric that better maps to the idea of

connectedness as it is used in practice. Before we can devise analysis techniques,

however, we will look more deeply at the range of graph analysis techniques.

23

2.5 Analysis Methods for Large, Dynamic Graphs

As we saw earlier, large dynamic graphs that are the result of evolutionary

processes are different in kind from the graphs traditionally analyzed in graph

theory. The fact that there is an ambiguity in something as fundamental as the

number of vertices and edges means that any metric which can radically change

with the introduction or removal of a single edge is almost certainly impossible to

measure with any accuracy.

We will classify analysis techniques by the result of their analysis. The most

general method of graph analysis is to consider a function f which takes as its input

a graph G, and outputs some item. Graph analysis functions have, as their domain,

some subset of the set of all graphs, but the type of objects they may return are

extremely diverse. There are useful graph analysis functions that return numbers

(integer and real), but other functions of active use and interest may return tuples,

vectors, distributions, matrices, functions, graphs, or sets of any of these.

Before we classify analysis methods, we should answer a key question: Why

analyze at all? The alternative to analysis is presentation of the raw datalO . If the

AS graph consisted of 4 ASes with 6 links between them, then analysis of this graph

would be foolish - we should just show the data by drawing and labeling the

graph. In this case, the AS graph would be small enough to "fit in a person's head" .

From this, it follows that analysis need only be performed in situations where the

object of study is too large for a person to grasp the whole of it at once.

Thus, graph analysis should be understood as, at least in part, belonging to the

domain of human computer interaction. The result of the analysis function should,

in all cases, be "simpler" than the input graph, lest our analysis reduce

10Although if we add "tables" and "visualizations" to our output types, then data presentation
arguably falls under our model as well, but we restrict our purview to functions which emit
mathematical objects.

24

understanding rather than increase it. We leave "simpler" in quotes because it is

not clear that this term has a rigorous definition that is usable for us. However, we

should not lose sight of the fact that, even if we cannot quantify exactly how, graph

analysis should explicate and explain some graph which is too large to look at and

understand.

The other thing that graph analysis can do is to guide some other optimization

or allocation process. This is a more traditional area for computer science, and

many examples may be seen in Chapter IV. In these problems, we are given a graph

and some function which we would like to either minimize or maximize. This is a

form of graph analysis in which the goal is already known, e.g. given a graph, find a

vertex cover of minimum size. In this case, what we might think of as the "goal" of

the whole process is not so much an understanding of the graph, but instead an

understanding of how to allocate a particular resource on this graph. We will

consider some of these methods as well, but a full listing of them is beyond the

scope of this work. In particular, we will limit ourselves to discussing only those

optimization and allocation properties which have already been shown to be of

interest on the AS graph. Now, finally, we begin our enumeration of analysis

technique types.

2.5.1 Analysis Techniques which Result in a Single Number

When our analysis function results in a number, then we might consider

ourselves lucky! Numbers can be subjected to statistical analysis and placed in a

chart or table with relative ease. If the aspect of interest of the AS graph may be

expressed as a single number for a given graph, then it is also easy to examine the

evolution of this property over time by creating a chart with time on the x-axis and

the property of interest on the y-axis. This ease of display and understanding means

that when a graph property of interest can be expressed as a single number, it

25

should be expressed as a single number. We will use this principle in the design of

new analysis techniques. If an analysis technique results in a number, then we will

call it a graph metric or graph statistic.

Graph metrics may be extremely simple. Counting the number of vertices or the

number of edges are both graph metrics, for example. Only slightly more

complicated is the calculation of the average degree, calculated by dividing the

number of edges by the number of vertices. There are also much more sophisticated

techniques, such as measurements of maximum flows and cuts in a graph. We

discuss more of these techniques later, but an important insight for now is that,

whenever a good one is available, we prefer a graph statistic over every other

analysis technique.

2.5.2 Analysis Techniques which Result in a Distribution

Other graph analysis techniques result in a distribution as their final output. In

these analysis methods, the result is not a single number, but a distribution over

some domain of numbers. The best example of this is the idea of a degree

distribution. In a degree distribution, the number of vertices with a given degree

(or out-degree or in-degree in a directed graphs) is counted for every degree which

exists in the graph. Graph analyses that result in a distribution are useful because

there are many tools from statistics and other fields which allow us to manipulate

and further analyze distributions of numbers.

Furthermore, many distributions are known to frequently occur and may be

characterized as a known function with constant that are specific to a given

situation. The best example of this is the normal distribution, which is completely

characterized by two numbers: the mean and the variance. In this case, when a

distribution may be regarded as an instance of a distribution with a known

function, we can reduce the whole of the distribution to a just a few numbers, as in

26

the example of the normal distribution. In this way, we can often turn an analysis

method that results in a distribution into a graph statistic.

2.5.3 Analysis Techniques which Result in a Function

Many analysis techniques result in a labeling of vertices and/or edges. We can

then think of the result of our analysis being a mapping, or function, between

elements of the graph and items from the domain of all possible labels. If the labels

are taken from the set of real numbers, then we can also construct a distribution of

labels, and possibly even turn the whole thing into a graph statistic as described

earlier.

A nice example of this is the idea of centrality. There are many methods which

try to formalize the idea of a vertex being central to a structure. Many centrality

measures attempt to discover how important a vertex is to the graph as a whole by

assigning a calculated number to each vertex. This number corresponds to the

centrality of the vertex, with, in general, higher numbers being "more central". If

our goal is to analyze a single vertex, then this can be quite helpful. Impact factors

for journals and conferences are a form of centrality measure, and they help

researchers decide where to submit their work. If our goal is to analyze the graph as

whole, however, then quite often the immediate next step is to look at the

distribution of centrality over the whole graph. In this way, we convert the

centrality function into a centrality distribution. If we are lucky, then we can

subsequently convert the distribution into a graph metric.

2.5.4 Other Analysis Techniques

Other analysis techniques include investigating a graph's adjacency matrix by

analyzing its eigenvalues and eigenvectors, using heuristics to find clusters in the

27

graph, or the creation of another graph which is more easily understood that still

contains the structures and properties of interest. There are an almost infinite

number of these techniques, so when we finally analyze the AS graph, we will not

enumerate all possible analysis techniques. Instead, we will restrict ourselves to

re-performing analyses from extant literature, and to the development of just a few

new metrics in an effort to formalize aspects of the AS graph structure which may

be of interest.

We talk more on this in Chapter VI, where we discuss some old metrics and

develop new ones in an attempt to better match the AS graph properties of interest

for Internet stakeholders. We end this chapter by discussing an example property of

interest for Internet stakeholders: network neutrality and traffic-flow centrality.

2.6 What Is Network Neutrality?

Network neutrality is a tricky concept. Much like the term "Internet", "network

neutrality" means many things to many people. Tim Berners Lee, credited with

inventing the world wide web, defines it like so:

If I pay to connect to the Net with a certain quality of service, and you
pay to connect with that or greater quality of service, then we can
communicate at that level. [8]

Many in the networking community view the term network neutrality as just

another name for undifferentiated services, and there is broad confusion about the

term among advocates on both sides of the issue. Pro-network-neutralityarguments

often bring up older concepts of "common carriage" and complicated metaphors,

coupled with doom-laden scenarios of what "they" might do to the Internet if the

desired legislation is not forthcoming. The other side is rhetorically no better, as

opponents trot out horror scenarios wherein misguided legislation destroys the

Internet or prevents its continued technological evolution.

28

Let us attempt to slice this Gordian knot by, initially, avoiding any definition of

network neutrality at all. Instead, we examine what the effects of non-neutral

behavior might be. In particular, non-neutral behavior benefits the single party

performing the actions, but degrades the Internet experience for others, leading to

an outcome that is overall negative. If the Internet were a truly open, fair, free, and

undistorted market, then we might imagine this as being impossible. If a single

party attempts to degrade everyone else's connections, then that party would simply

be routed around. Thus, we find that the fear of non-neutral behavior translates

exactly to a fear of monopoly or oligopoly control of a shared resource. Instantly,

the folly of attempting to enumerate what sort of behavior might be considered

"bad" becomes apparent: There are many forms of bad behavior, and most of them

are only dangerous if, for some reason, there do not exist alternate communication

paths that an AS might use to avoid the non-neutral AS. We will say more about

this in Chapter VI, but for now it is best to roughly draw an equality sign between

the growing call for network neutrality legislation and a growing worry of

monopolistic behavior by a large or well-placed AS, or a cabal of ASes. In this way,

we can translate the language of one domain into that of another. When speaking of

graph theory, we can refer to centrality measurements; When speaking of

networking, we talk of the ability to manipulate traffic flows; When speaking of the

economics of networking, we use the language of network neutrality and market

power. A key insight is that, to a large degree, these terms from different disciplines

and domains are all referring to the same underlying concepts.

2.7 Summary

The Internet is the biggest internet yet developed. It spans the globe and links

billions of people. Yet there is lots of confusion about what it is. There is a vague

29

notion that it has a topology - certainly there are lots of wires and routers - but

looking for "the Internet graph" turns out to be a snipe hunt. We looked at the

various network layers and came to the conclusion that if we are concerned with

economics and policy, rather than more traditional networking issues of

fault-tolerance and bandwidth, then we should look at not the wire graph or even

the routerlIP graph, but instead the AS graph.

The AS graph is set up by routers exchanging information according to specific

policies that are the results of the local application of the incentives of each AS.

These local incentives result in a characterizable global structure called "valley-free

routing". The AS graph is a large dynamic graph, and such structures pose special

problems for more traditional graph-theoretic analysis. Many traditional graph

theoretic questions become irrelevant in the face of even a small amount of

dynamism, and so we are forced to "go back to the drawing board" and develop

measurements and metrics that are robust to dynamism in various ways.

We bootstrap this development process by attempting to articulate a particular

property of the AS graph that is of interest to many Internet stakeholders:

monopoly and oligopoly control of the Internet. A monopoly control of the routing

system could potentially enrich the monopolist at great cost to the utility of the

system for everyone else, and worries about this happening are one of the root

causes for the ongoing debate over network neutrality.

However, we are a long way from further formalization of the idea of network

neutrality. Before we can analyze the AS graph for network neutrality concerns, we

must find sources of data, process it into a usable form, vet the data, develop

techniques for AS graph reconstruction, and formally define those concerns. In the

next chapter, we discuss data provenance, processing, and quality.

30

CHAPTER III

DATA SOURCES AND PROCESSING

In which we discuss the sources of data, and deal with the problems of

parsing the data into a usable format

We have said that we would like to measure the AS graph, and in this chapter

we discuss where AS graph data may be found so that we can construct it. Before

we go on, however, let us define some new terms. Most historic router data lacks

edge-types, and is incomplete. Therefore, we will call the raw result of our data the

undirected measured AS graph. If we can figure out the edge types, which we

traditionally modeled as directed edges, the we get the directed measured AS

graph. This, let us remind ourselves, is not what we want. We would like the

directed measured complete AS graph, or just the complete AS graph, but

unfortunately, in order to measure that graph, we would need to have every

operator of every router on the Internet donate their data to us - a gross

improbability going forwards, and a total impossibility with respect to past data.

This chapter concerns itself with the problem of taking the available historic data

and constructing the directed measured AS graph. We then spend the subsequent

two chapters investigating the completeness of our measurements.

31

3.1 Data Sources

In 1997, in order to serve the needs of the network operations community, the

Route Views project began publicly archiving a daily snapshot of their router's

routing tables. This proved to be of great utility and, over time, more and more

ASes decided to contribute data in an effort to debug ongoing Internet problems. It

was so successful that other data-gathering efforts appeared on the scene in order to

collect similar data from other sources who, for whatever reason, preferred to share

with these newer repositories instead of Route Views[70]. The largest of these

parallel efforts is run by RIPE NCC (Reseaux IP Europeens Network Coordination

Center) [68]. All of these data archives have been available online for, in some cases,

up to a decade, but no longitudinal study has yet been performed. However, with

an eye towards future analysis, much of the modern Route Views data set has been

preprocessed by The Cooperative Association for Internet Data Analysis

(CAIDA)[66] into a more manageable form. We deal with the implications of this

preprocessing in Section 3.5. They did not preprocess all the data from all sources,

however, so if we would like a more complete picture, then we must be able to parse

the data ourselves.

3.2 Parsing Historical Routing Data

Once we know where the data is, we must parse it to get useful information out

of it. In one of life's little ironies, everybody who knows the format of the data

considers it too obvious to document more than cursorily, although it is often

opaque to an outside observer. In this section we will unpack the three different

styles of data that are available, and map out the "gotchas" of each format. In

doing so, we come up with a convincing argument for structured plaintext for

long-term data storage - it's a little less space-efficient, but it can always be parsed

32

and manipulated with available tools. Unfortunately, in the case of routing data, we

have to choose between poorly-structured text and a binary format parseable using

programs that have not been updated in many years.

Because the oldest data is in text format only, we deal with the text format first.

3.2.1 Parsing Textual Routing Data

The old textual routing data was generated by a script that would collect the

result of telnetting to the Route Views router and typing the command show ip

bgp, which is the command to show all BGP routes for all blocks of IP addresses.

This script was brittle and the routers went down occasionally, but it was the only

source of data for years.

This text data was designed to be read by humans, and the output of the script

also contains extraneous information. Representative samples of the textual output

can be seen in Figure 2 and Figure 31
. These tables indicate what each AS has

chosen as the best path from itself to every other netblock on the Internet. In

Figure 2, for example, we can see that to reach any network address that begins

with a 3, i.e. is in the netblock 3.0.0.0/8, the router with IP 134.55.24.6 has settled

on the path from AS 293 to AS 701 to AS 80 as the best path. Using just this path,

we derive a measured AS topology as in Figure 5(A). This is in contrast to the

router at 192.121.154.25 which is using the path AS 1755 - AS 701 - AS 80, a path

that only differs in the first hop. These two paths taken together imply a network

topology as shown in Figure 5(B). If we take all the paths to 3.0.0.0/8 in Figure 2,

then we get the topology shown in Figure 5(C).

1Both figures corne from http://archive. routeviews . org/oix-route-views/2000. 06/
oix-full-snapshot-2000-06-11-0840. dat. bz2 - a randomly chosen file from the Route Views
collection

##

route-views.oregon-ix.net -- Oregon Exchange BGP Route Viewer

This hardware is part of a grant from Cisco Systems.

This router has several views of the full routing table. including:

33

AboveNet
ANS
[Middle
Zocalo
UlakNet

(MAE-WEST) 207.126.96.1 through AS6461
(Cleveland) 206.157.77.11 through AS1673

of the list elided due to length --PMB]
(Berkeley) 157.22.9.7 through AS715
(Turkey) 193.140.0.1 through AS8517

This service relies on the fact that ISPs provide their views in a
collaborative spirit. to support one another in debugging
operational internet problems. Each view is the property of each
ISP, and any non-operational use must be coordinated through the
providers via the Route Views administrator, For details on this
process, please see http://wWll.antc .uoregon. edu/route-views/aup .html.

Please contact dro.m@antc.uoregon.edu if you have questions or
comments about this service, its use, or if you might be able to
contribute your view.

###

route-views. oregon-ix. net>
route-views.oregon-ix.net>terJn len 0
route-views .oregon-ix. net>show ip bgp
BGP table version is 4502983, local router ID is 198.32.162.100
Status codes: s suppressed, d damped, h history, • valid, > best, i-internal
Origin codes: i - IGP, e - EGP, ? - incomplete

Network
• 3.0.0.0

• 4.0.0.0

Next Hop
134.55.24.6
192.121.154.25
204.42.253.253
193.0.0.56
129.250.0.1
4.0.0.2
205.158.2.126
134.24.127.30
158.43.206.96
129.250.0.3
193.140.0.1
12.127.0.249
157.22.9.7
204.212.44.129
206.220.240.223
202.232.1.8
204.70.4.89
144.228.240.93
134.55.24.6
192.121.154.25
204.42.253.253
193.0.0.56
4.0.0.2

Metric LocPrf Weight Path
o 293 701 80 i
o 1755 701 80 i
o 267 2914 701 80 i
o 3333 1103 6453 701 80 i

6 0 2914 701 80 i
2105 0 1 701 80 i

o 2828 701 80 i
58 0 1740 701 80 i

o 1849 702 701 80 i
o 2914 701 80 i
o 8517 701 80 i
o 7018 701 80 i
o 715 701 80 i
o 234 2914 701 80 i
o 10764 5646 1 701 80 i
o 2497 701 80 i
o 3561 701 80 i

10 0 1239 701 80 i
o 293 1 i
o 1755 1 i
o 267 2914 1 i
o 3333 1103 6453 1 i
o 1 i

FIGURE 2. A representative leading section for textual BOP data

158.43.206.96
129.250.0.3
193.140.0.1
12.127.0.249
157.22.9.7
204.212.44.129
144.228.240.93
204.70.4.89
202.232.1.8

route-views. oregon-ix. net>

10

o 1849 702 701 816 6407 i
o 2914 701 6401 6407 i
o 8517 701 816 6407 i
o 7018 701 6401 6407 i
o 715 701 6401 6407 i
o 234 2914 701 6401 6407 i
o 1239 701 6401 6407 i
o 3561 701 6401 6407
o 2497 701 6401 6407 i

FIGURE 3. A representative example of how the text data ends

* 38.104.1.0/24 147.28.7.2
* 38.104.104.104/30

* 38.105.1.0/24
209.161.175.4

81.209.156.1

20

o
o

o

o
o

34

o 3130 2914 174 11057 i

o 14608 i
o 13237 174 40785 i

(A) A netblock with too many characters to fit in the given space. Note the inserted newline.

* 20.137.0.0/21 62.72.136.2
7 {4237} i

* 24.209.0.0/18 216.218.252.164
10796 {11060 12262} i

o

o

o

o

o 5413 1299 3549 2187

o 6939 1299 6461 7843

(B) AS path aggregation using AS_SETs

FIGURE 4. Some unexpected cases for parsing text data

This data format does not look too difficult to parse, but any implementor must

be wary of several special cases. In particular, note that there are too few text

columns in the "network" column to hold a netblock in which all digits are used. By

example, this means that 3.0.0.0/8 is not a problem, but 111.222.333.444/24 will

not fit in the space provided. In that case, the output continues in the proper

column, but on the next line as Figure 4(A).

Further special cases include dealing with AS-paths which contain { and }.

These paths indicate that the ASes between the braces are members of an AS_SET,

and that they are declining to state what order they appear on the path. An

example of this is in Figure 4(B). In the second line of this example, the AS path

"6939 1299 6461 7843 10796 {11060 12262}" is attesting that the path is either 6939

1299 6461 7843 10796 11060 12262 or it is 6939 1299 6461 7843 10796 12262 11060,

but without further information, we can not determine which it is. However, the

first line of Figure 4(B) in unambiguous, despite the AS_SET in the path "5413

1299 3549 2187 7 {4237}", because the AS_SETs in the path are all of cardinality

one. When dealing with AS_SETs, the implementor has to decide whether bad

35

information is better than no information. For our study, as long as all AS_SETs are

of cardinality one, then we will save the path. Otherwise the path will be discarded.

Our last special case occurs because the data is taken in a real-world operating

environment, and occasionally things were broken. It is not impossible to find data

files that end abruptly, due to a buffer in the collection script filling up, or

sometimes due to the router containing the data going down as the data was being

collected. In this case, we as researchers must make a choice: do we use the

incomplete data, or do we throw out the entire day? In this dissertation, we use the

incomplete data, with the exception of the last line (if it was a data line). No

matter what the choice, however, any parser will need to be able to gracefully

handle the data ending abruptly.

3.2.2 Parsing Binary Data

The middle-aged binary data is generated in Zebra format, and is meant to be

parsed with the Multi-threaded Routing Toolkit (MRT). MRT has not been

maintained in some years and has some warts, but it remains an excellent tool for

turning routing table data into a convenient text format, suitable for subsequent

parsing. It is possible to generate text formats from the middle aged binary blobs,

but the most recent data is in a new format (specified by a draft RFC[67]) that

currently only one tool - libbgpdump - can parse. C code that links against this

library and takes a binary file as input and outputs a (netblock, path) pair can

be found in Appendix A.

Using these parsing tools for both text and binary files, we now have the ability

to extract data in the form of tuples (date, netblock, path) from the Route

Views and RIPE data archives. How much data is available, and what exactly can

we extract from that data?

(A) One path (B) The union of two paths

36

(C) All paths to 3.0.0.0/8

FIGURE 5. The effects of gradually adding more paths to our measured AS graph.

37

Routing table size (conpl"'essed) over tine

++.

,.
.,.

. ·h·
:·i:·

if
+ ".;.. +

14 l1egabytes -

2)1egab!ltes -

~ 4 l1egabytes _. - ...~
'"

12 l1egabytes -

~
0.0 10 l1egabytes ­
c
.~..g
~ 8 l1egabytes ­
e

M
~

% 6 Hegabytes ­
o
u

+;;\,.-'\':+ .•
o Hegabytes t 4: ..." Ii' I' : I'

1/1998 1/1999 1/2800 1/2001 1/2002 112083 1/2004 112005 1/2006 1/2007

Date

FIGURE 6. The size of the compressed routing table snapshots stored in Route
Views

3.3 Data Quantity

Route Views and RIPE have been archiving data for a long time. Route Views

was founded first, in 1997, and has been collecting data for over a decade. The

growth of data in the Route Views repository can be seen in Figure 6, and that is

just for one of several Route Views collection points (albeit the oldest one). In toto,

Route Views has more than four terabytes of compressed data, any and all of which

could be used in a longitudinal study of the AS graph. RIPE, while younger, has

also seen impressive growth, and has a data archive which rivals Route Views in this

regard.

All of these data repositories store unparsed compressed data, often in multiple

formats. Depending on one's internet connection, CPU speed, etc., it can take

weeks just to iterate over the data once. Therefore, locally compiling the available

data into a cleaned-up form is essential if our analysis is going to be done more than

38

once. Since it is the nature of data analysis to lead to further data analysis, a data

warehousing step is clearly necessary. Necessary, but not sufficient - in order to

build a useful warehouse, we must know what aspects of the data to preserve, and

what to throw out as irrelevant. To help analyze this problem, we take a cue from

data mining and examine the data cube for AS graph data.

3.4 The Data Cube

A data cube for an n-tuple is a hypercube in which each vertex is labeled with

the power-set of the tuple. Two vertices are connected whenever the disjunction of

their labels is of size 1. In this way, we can get an overview of all possible

combinations of data, and how we might roll-up or drill down into our data set.

We have upwards of 8 Tb of compressed text data, but not all aspects of the

data are interesting in all combinations. To make our data warehouse we must

break down the available data into its attributes. Everyone of our measurements

has four attributes: the AS path, the point in the network that is reporting the

existence of that AS path, the netblock at the opposite end of the AS path, and the

timestamp of the measurement. This naturally leads to a data cube with the

dimensions: (measurement AS, path, IP block, timestamp), as displayed in

Figure 7. This cube also serves as a good illustration of how little of the potentially

interesting data mining space has been explored in the literature.

In particular, there has been no time-series analysis of this data more complex

than simply counting the number of elements in the dataset - either IF netblocks

over time, or number of measured vertices and edges over time[39]. There have been

more in depth analyses conducted on the AS graph at a specific point in

time[62, 18], but none of these have grappled with the notion of missing data. So we

have longitudinal studies which largely have neglected topology, single-day studies

39

FIGURE 7. The AS Graph Data Cuboid - the three cuboids that have been
discussed in other work are highlighted

which have largely neglected evolution, and an almost complete neglect of the

problem of missing data.

In this dissertation we are concerned with the complete AS graph, and how it

has evolved, so we will ignore all cuboids that ignore the interconnection patterns of

the AS graph. In particular, all cuboids not containing the path we will leave as

future work for others. We expect to be working with many snapshots and not

combining multiple days into a single view, so retrieving a single day's topology

should be fast if our warehouse is to be of use.

To achieve these goals, we make a directory for each day, and then inside the

directory for each day, we put all of the data for a single measurement point in a

single file. Doing this will allow us fast access to a given day's data, but will also

allow us to add and remove sources one at a time. But before we start "adding

sources" to the graph, we need a graph! To facilitate analyses such as this one,

CAIDA has preprocessed much of the Route Views repository and used the

best-known algorithms to assign direction and type to all of the measured edges.

Their technique uses multiple data stores (WHOIS, BGP data, and text

heuristics) as well as an extremely valuable, but unprogrammable operational

40

knowledge. Rather than (poorly) duplicating their effort, we piggyback on their

efforts. Therefore, we primarily concern ourselves with augmenting the derived

graphs to include newfound data.

3.5 Preprocessed Route Views Data from CAIDA

With an eye towards future studies such as this one, CAIDA has developed a

processed data archive of their own, in which all Route Views data for a given day is

combined into a single graph, and the best-known methods for edge-type assignment

are then used on the graph. Even better, they validate their use of these methods

with actual surveying of AS operators[27]. We use their preprocessed dataset, which

has the edge types included, (available online[74]) as a basis for our study.

Their dataset, however, only includes Route Views, so the first order of business

is to extend each day's graph with that day's data from RIPE, as well as to

double-check that all existing Route Views data has been incorporated. If we take

their graph as correct, and also believe their conclusion that peering links made up

a large portion of the missing links, then we should ensure that the augmenting

links we add to the CAIDA AS graph will, as much as possible both be valley-free

and contain a peering link (if possible).

To do this, we develop an algorithm for extending an existing known-correct AS

graph. The pseudocode for the method is in Figure 8. In this method, we combine

several observations. In particular, usually at most one link of a path is new

information. Secondly, most paths are of length 4 or more. Therefore, most paths

already have most of their edges already defined. So, although our heuristic seems

dangerous at first -- we simply add "up" edges until encountering a peering link or

a "down" link, and then, if possible, we make the last new "up" edge a peering link

41

Extend-Directed-AS-Graph ((V, E, S), p)
/ / V is the vertex set
/ / E is the edge set
/ / S is the set of sibling relationships - note that S ~ E
/ / P is the new path

if- 0
/ / Make the path go "up" until we are one before a down edge or a peering edge
while i <length(p) - 2 and (PH2,PHI) rf- E

if (Pi, PHd rf- E
E f- E U {(Pi,PHI)}

if-i+1

/ / Now we've either gone to the end of the path, are one before a down edge, or
/ / one before a peering edge.
if (PH2,Pi+l) E E and (PHI,PH2) rf- E

/ / Make it a peering edge, if possible
if (Pi, PHI) rf- E and (PHI, Pi) rf- E

E f- E U {(Pi,PHI), (PHI,Pi)}
elseif (Pi,PHI) rf- E and (PHI,Pi)

E f- E U {(Pi,PHI)}
i f- i + 1 / / Now all missing edges are "down" edges. while i <length(p) - 1

E f- E U {(Pi+l,Pi)}

FIGURE 8. Our algorithm for extending an existing directed AS graph when a new
(undirected) path is discovered.

- in practice this heuristic is highly likely to be correct, because so much of the

path is already specified.

Before we go too far, however, let us verify our assumption that most paths are

likely to only be missing a few edges. This assertion does mesh well with the

intuition developed by Beerliova et al. who found that most graphs, when measured

via shortest path trees, have most of their edges discovered with just a few trees

rooted at only a few points[7]. It is only the last few edges that get missed that

require lots of extra work to find. If that is so, then as long as the number of sources

1e+08 ("

1e+07 ::-

'"Q)

.g' 1e+06 ::- ..
Q)~

~fri
cr--..

~fiJ 100000::-
roo.
E~

~-o
~~ 10000 ::-
.~~
?:",
"'.r:..r:._
-ro
~~ 1000 ::- ...
_ro
0-
~~
2~
E 100 ::- ...

"Z

.... ... I T ··r· I· T .•

Number of times x new edges were seen on a single path -- _

...................................... .-

. -

42

5

10 ::-.

1 L ...

o
.............................1... .1..

234
Number of new edges on a path

.. '----_--'---__ ...J

6

FIGURE 9. A histogram of the number of edges we found per-path that were not in
CAIDA's graph but were in our more-complete BGP data.

is not too small, then we should expect to have covered a large percentage of edges

already, and so each path shouldn't have too much new information. Or, at least,

that's what we hope is the case. Let us choose a random day from the database, and

keep track of how many new edges we discover, and how many we discover per path.

In Figure 9 we see that, out of 48,052,753 total paths added, almost all of the paths

contained no new information. Of those paths that did contain new information, the

vast -majority were paths containing only a single previously-unknown edge.

43

Under 1,000 edges are even potentially controversial, out of 137,139 edges in the

graph. Using this heuristic is, therefore, unlikely to steer us awry. So, after many

steps, we are finally done with data processing and reconstruction.

3.6 Summary

Parsing routing data is one of those things that seems like it should be easier

than it turns out to be. There are several formats for the data, and the textual

format is surprisingly tricky to parse, because it is not well-documented in a way

that helps out graph reconstruction without a lot of domain knowledge. In this

chapter we hope to have laid out the parsing process of the text files, and also given

a cursory explanation why the standard tools fall down.

Along the way, we discovered that half of the job has already been done for us!

Thanks to CAIDA, we can take advantage of pre-processed AS graphs without

having to worry about the problem of assigning edge directions for most of the AS

graph, thus saving us work later. We established a heuristic for edge direction when

adding new paths to the graph, and justified it by seeing how often the assumptions

of the algorithm may have become problematic.

Armed with a measured, directed, and partially completed AS graph, we take a

brief interlude to consider the problem of AS graph measurement from a more

theoretical angle. In particular, now that we have a graph in hand, we start to

wonder: what might our graph be missing?

44

CHAPTER IV

GRAPH COVERING VIA SHORTEST PATHS

Where we devise graph covering problems using shortest paths, prove

the NP-completeness of all of them, and then attempt to approximate

the answer1

Every AS knows, to a first approximation, a shortest path from itself to every

other autonomous system. If this is the case, then a question leaps to mind: Given a

complete AS graph, what can we know about the set of routers required to

completely measure the graph? We define two related graph covering problems

motivated by network monitoring. Both problems relate to the idea of graph

measurement from a single vertex via shortest paths, and serve as lower and upper

bounds on the amount of information that can be gained by measuring a graph via

shortest paths. We show that the minimization problem for each model is NP-hard,

and we enumerate several classes of graphs for which the minimization problems are

efficiently solvable.

For most of this chapter, we consider the easier-to-formulate problem of shortest

path trees. Our results for valley-free shortest path trees can be found in Section 4.6.

1Early sections of this chapter were previously published as "Graph Covering via Shortest Paths"
by Boothe, Dvorak, Farley, and Proskurowski in Congressus Numerantium[ll]

45

4.1 Mathematical Preliminaries

We model a network by a simple graph G = (V, E), where V is a set of vertices

representing network devices and E is a set of undirected edges representing links.

The edge (u, v) is said to be incident with the two vertices u and v. We will use n

to signify the number of vertices IVI in a graph G. The degree of a vertex v is the

number of edges that contain v, i.e., the number of edges incident with v. A path of

length k > 0 is a set of edges p = {(Vi, Vi+d 10 ::; i ::; k, (Vi, Vi+l) E E}. We say that a

path connects vertex Va and Vk. A graph G is connected if and only if there exists

a path that connects every pair of vertices in G. A connected component of a

graph G is a maximal subgraph of G that is connected; thus, a connected graph has

a single connected component. If the removal of some subset of vertices S C V

renders the resulting graph disconnected, then we say that the set S is a vertex

separator of G. The distance between a pair of vertices u and v, denoted d(u, v),

is equal to the minimum length of a path connecting u and v. A shortest path

between two vertices u and v, is a path connecting u and V having length equal to

d(u, v). Given vertex v, for each distinct vertex u, let Pv,u be the set of shortest

paths that connect v and u. A cycle of length k > 2 in a graph G = (V, E) is a set

of kedges {(Vl, V2), (V2, V3) ... (Vk-l, Vk), (Vk, vd} c E in which all Vi are distinct.

When talking about cycles, unless otherwise specified, we are referring to chord-free

cycles, which are cycles in which (Vi, Vj) tj. E unless j = i + 1 mod k. If G = (V, E)

has E = V x V \ {v x vlv E V}, then we say that G is a complete graph. If G is a

complete graph with n vertices, we denote it as K n , which we also call a clique of

size n.

In an IP network, we assume each site knows one or more shortest paths to

every other site, based upon routing information for disseminating messages in the

network. Given the links on the paths, each site knows about the existence of a

subset of the links in the network. In the network discovery problem, we establish

46

query sites (each query site is a vertex in V) that can probe the network via

shortest paths and we then attempt to determine the exact set of links in a network.

Beerliova et al. [7] discuss online algorithms to determine the minimum number of

query sites required to discover all edges in a network. In the network monitoring,

or covering, problem we want to determine the status of all lines that are known to

be in a network based upon a set of query sites. In the shortest path cover

problem we want to cover every edge of a known graph representing a network by

the shortest paths from a subset of vertices in the graph. We consider two different

models of graph covering via shortest paths, our goal being to minimize the number

of required query sites.

We define two query models that respectively characterize the worst and best

case sets of edges that can be learned from a single query. Consider a query site v

and, for each other vertex u, let Iv,u be the set of edges that are in every shortest

path of Pv,u (Iv,u = npEPv,u p). Let Iv be the union of edges in Iv,u over all other

vertices u in G. For an example, Figure 10(B) highlights the edges in Iv for a given

graph G. This model represents the minimal amount information that is available in

any shortest path query from a single vertex.

Our second model is defined more generously. Let Uv,u be the set of edges that

are on some path of Pv,u (Uv,u = UPEPv,u p). Let Uv be the union of all Uv,u for all

u E V. This model represents that maximal amount of information that is available

from a single vertex. An example Uv is illustrated in Figure 10(C).

Observation 4.1.1. From the definitions, it immediately follows that Iv ~ Uv for

every vertex v E V in G = (V, E)

A set of query sites, a subset of V, is said to be a cover of G = (V, E) if the

union of the edges covered by the vertices in the set is exactly E. Vertex v is said to

intersection-cover the edges in Iv and union-cover the edges in Uv' We have two

types of queries, which leads to two models of shortest path covering. A shortest

· ._- _._._-_._-------------

47

(A) A graph G with
query vertex v colored
gray

(B) Iv of G with v
colored gray

(C) Uv of G with v
colored gray

FIGURE 10. Examples of each type of query for a given graph and vertex.

path intersection cover of graph G, SPCI(G), is a subset of vertices such that

every edge in G is intersection-covered by at least one vertex in S PCI (G). A

shortest path union cover is defined analogically and denoted SPCu(G).

A minimal cover is a cover such that removal of any vertex results in a subset

of vertices that is no longer a cover, and a minimum cover is a minimal cover

having the fewest vertices. The NP-hardness of finding minimum covers is

discussed in the Section 4.2. Minimal covers can be found efficiently through a

hill-climbing strategy2, because it is not difficult to verify that a set covers a graph

with shortest paths.

Let v be a vertex of connected graph G such that the graph obtained by the

removal of v (and the edges incident to v) has k > 1 connected components

G~ ... G~. We say that v is an articulation point that separates G into

subgraphs G 1 ... Gk, where {Gill:::; i:::; k} is obtained from G~ by adding back v

and all the edges from v to any vertex in G~. We have the following result that is

independent of query type.

2The hill-climbing algorithm is as follows: Take the set of all vertices V as our initial set of query
sites. This set definitely covers the graph. Next, loop through the set of query sites and see if it is
possible to remove a vertex from this set while keeping the entire graph covered. Repeat the loop
until it is not possible to remove another vertex. The remaining set forms a minimal cover.

48

Theorem 4.1.2. Given graph G with articulation point v that separates G into

G1 ... GkJ the size of the shortest path cover of G is bounded as follows:

2::7=0 ISPC(Gi)l- k :s; ISPC(G)I :s; 2::7=0 ISPC(Gi)l·

Proof Consider first the case where no minimum cover of the components includes

v for any 1 :s; i :s; k. Then, SPC(G) = 2::7=0 SPC(Gi). Edges covered through v

from one side of the articulation point to the other will therefore not reduce the size

of the covering set in other components.

Now we consider the case where all minimum covers of G i include v for all

1 :s; i :s; k. Because all shortest paths from Gi to G j (i ::/= j) must go through v, the

edges covered by any query site of any vertex in Gi will necessarily include all edges

that query query site v covers in Gj , and vice versa, for all distinct i and j in the

range 1 ... k. Therefore, if !SPC(Gi)1 > 1 and ISPC(Gj)1 > 1 for distinct i and j,

then ISPC(G)I = 2::7=0 ISPC(Gi)l- k.

Finally, we consider the middle case, where some of the minimum covers of some

Gi include v, but others do not. If we assume that j of the covers include v, then

The number of Gi that have a minimum covering containing v is guaranteed to

be between 0 and k (inclusive). Therefore the number of vertices required to cover

G graph may range from SPC(G) = 2::7=0 SPC(Gi) - k (as in the second case) to

2::7=0 SPC(Gi) (as in the first case). D

This insight into the structure of solutions containing articulation points informs

many of our results, and it also paves the way for later results involving 2-trees in

Section 4.4. Prior to going any further, however, we prove that the shortest-path

covering problem is computationally difficult in the general case.

49

4.2 NP-Completeness of SPC

Before we discuss the computational complexity of the problems, it is useful to

first define the corresponding decision problems for union-cover and

intersection-cover. We begin with the intersection-cover decision problem and then

define union-cover symmetrically:

Definition 4.2.1 (INTERSECTIONCOVER).

INSTANCE: Graph G = (V, E) and parameter k.

QUESTION: Is there a subset of vertices in V with cardinality no more than k,

such that every edge in E is intersection-covered by at least one vertex in the set?

Definition 4.2.2 (UNIONCOVER).

INSTANCE: Graph G = (V, E) and parameter k.

QUESTION: Is there a subset of vertices in V with cardinality no more than k,

such that every edge in E is union-covered by at least one vertex in the set?

In both cases, we will prove NP-completeness of the problem by a reduction

from the NP-complete problem of VERTEXCOVER as defined by Garey and

Johnson[36]. In the vertex cover problem, we wish to choose a set S ~ V of vertices

of a graph G = (V, E) such that V(u, v) E E, I{u, v} n SI 2: 1 and lSI::; k.

Definition 4.2.3 (VERTEXCOVER).

INSTANCE: Graph G = (V, E) and parameter k.

QUESTION: Is there a subset S of vertices in V with cardinality no more than

k, such that at least one endpoint of every edge in E is also in S?

The reduction for SPGj is more straightforward, so we begin with that one.

Theorem 4.2.4. Given an arbitrary graph G, the INTERSECTIONCOVER problem

is NP -complete.

Proof. To prove that INTERSECTIONCOVER is NP-complete, we first show that it

is in the class NP, and then we prove completeness. To show membership, we

50

efficiently verify that a proposed solution actually intersection-covers the graph.

Given a subset of vertices 8 such that 181 ::; k, we need to calculate the set of

covered edges for each vertex in the set and then determine that the union of the

edge sets is equal to E. To find the edges shortest-path covered by a single vertex v,

we perform a breadth-first search from v to every other vertex in the graph. Then,

for each other vertex u, if, for every i ::; d(u, v) there is only a single edge (x, y) such

that d(u, x) + 1 + d(y, v) = d(u, v), then that edge is intersection-covered by v. This

can be done in polynomial time, and therefore the problem is in NP.

We show completeness by reduction from VERTEXCOVER. Take graph

G = (V, E) and add two new cycles of length (K3) made up of a total of six new

vertices, and call them TI and T2 . Now, choose one vertex VI from TI and one vertex

V2 from T2 . Now, add an edge from each of VI and V2 to every vertex in V, forming

G' = (V', E') as in Figure 11. An intersection-cover of G' consists of a vertex in T I

that is not VI and a vertex in T2 that is not V2 plus a solution to the vertex cover

problem on G. Note that the Iu in G' for all u E V only includes edges of G that are

neighbors of u in G; and for v E {VI, V2}, Iv in G' consists only of the edges incident

to v. Therefore, if there is an intersection cover of size k + 2 of G', there must exist

a vertex cover of G of size k.

Because INTERSECTIONCOVER is in NP and VERTEXCOVER is reducible to it,

INTERSECTIONCOVER is NP-Complete. 0

The proof for UNIONCOVER uses a similar graph transformation, but is more

involved.

Theorem 4.2.5. Given arbitrary graph G, the UNION COVER problem is

NP-Complete.

-- -----_._---------

51

(A) Graph G input to the problem
VERTEXCOVER

(B) Graph G' input to the problem
INTERSECTIONCOVER

FIGURE 11. An instance of the Vertex Cover problem and its translation into an
Intersection Cover problem.

Proof. If we are given the subset of vertices that are in a proposed union cover of

size k, then verification of this problem is easily accomplished in polynomial time

simply by creating each shortest-path-union tree and verifying that every edge is

present in at least one tree. The shortest-path union tree for a given vertex v

consists of all edges (x, y) such that d(v, x) + 1 = d(v, y). This can be found in

polynomial time via breadth-first search, and therefore the problem is in NP.

Our reduction from the vertex cover problem begins by transforming the input

graph G = (V, E). First, we subdivide every edge in E into a path that is three

edges long. All new vertices that we create in this step, we will call path vertices.

Now, we add to G two new cycles of length three (K3) made up of a total of six new

vertices, and call them T1 and T2 . We choose one vertex from T1 and add an edge

from it to all vertices in V. We then choose one vertex from T2 and add an edge

from it to every path vertex. We call the transformed graph G'. An example G and

G' may be seen in Figure 12. We now prove that there is a vertex cover of G of size

k if and only if there is a union cover of G' of size k + 2.

· _.. --_ .. - .._----------

52

(A) A graph G input to the problem
VERTEXCOVER

(B) A graph G' input to the problem
UNIONCOVER

FIGURE 12. An instance of the Vertex Cover problem and its translation into a
Union Cover problem.

We prove the first direction by noting that the vertices in a vertex cover of G,

together with a degree-2 vertex from each of T1 and T2 , form a union-cover of G'. In

particular, the degree-2 vertex from each of the trees will union-cover two out of the

three edges in the K 3 , as well as all of the edges which join a vertex in V with a

path vertex. All that remains to be covered are the edges which join two path

vertices, which we call the central edge of the path. To cover those, we note that a

union-cover rooted at a particular vertex will cover the central edge of all of the

adjacent paths. Therefore, a vertex-cover of G will exactly cover all of the central

edges of G'. All that remains is to prove that a union-cover of G' can be

transformed into a vertex cover of G.

To show this, we note that if the set of vertices in a union-cover of G' contains

no path vertices, then that cover must consist solely of vertices from T1 and T2 and

vertices from V, and the vertices from V form a vertex cover of G. Therefore, the

only union-covers that are not already vertex covers are those containing one or

more path vertices. To finish our proof, we show that if a union-cover contains a

- ----------------

53

path vertex, then it can be transformed into a union cover that does not contain

that path vertex without increasing its size.

If there is a path vertex in the union-cover, we may replace it with the adjacent

vertex in V, as the edges covered by the replacing vertex are a superset of the edges

covered by the original vertex. By repeating this replacement procedure until there

are no more path vertices in the union-cover, we create a union-cover of C' that is

directly transformable to a vertex cover. The vertex cover of C is exactly the

intersection of V and the vertices in the union-cover of C'.

Thus, UNIONCOVER is in NP,and VERTEXCOVER may be reduced to it.

Therefore, UNIONCOVER is NP-complete. D

Now that we know that INTERSECTIONCOVER and UNIONCOVER are

NP-Complete in the general case, we begin our search for specific subclasses of

graphs upon which these problems are tractable.

4.3 Easy Graph Classes

As defined, the edges that are intersection-covered by a single vertex v (Iv)

necessarily include all edges incident with v, for all v in C, and by Observation 4.1.1,

this is true for union-covers from v (Uv) as well. This implies the following:

Observation 4.3.1. The size of a minimum shortest path cover (of either type) of

a graph C is less than or equal to the size of a minimum vertex cover of C.

54

This upper bound is tight for the complete graph K n , where both vertex cover

and all models of shortest path cover require n - 1 vertices, as all shortest paths are

of length 1. For intersection covers, this tight bound extends to complete bipartite

graphs, Ks,t, which are graphs in which V can be partitioned into two sets 5

(s = 151) and T (t = ITI), such that E = 5 x T. In these graphs, if s, t > 1, every

vertex at distance 2 from a given vertex v has multiple shortest paths. Thus, Iv is

limited to edges incident to v in complete bipartite graphs, and

5PC1(Ks ,t) = min(s, t).

4.3.1 Trees

A tree T = (V, E), being an acyclic, connected graph with n - 1 edges, contains

a unique shortest path between every pair of vertices. Therefore, Iv = E for every

vertex v in T, implying that the size of 5PC1 (T) = 5PCu (T) = 1 for any tree T.

For any tree with diameter greater than 2, a shortest path cover has fewer

vertices than a vertex cover, which shows that our bound in Lemma 4.3.1 is not

always tight. In a graph G, any vertex can only shortest path cover edges in its

connected component of G. These observations are formalized as follows:

Observation 4.3.2. For any graph G, the size of a minimum shortest path cover is

bounded below by the number of connected components of G.

Observation 4.3.3. In any acyclic graph G, the size of a minimum shortest path

cover is equal to the number of connected components of G.

Thus, without loss of generality, we will discuss only connected graphs.

55

4.3.2 U nicyclic Graphs and Cacti

A unicyclic graph is a graph containing exactly one cycle, and a cactus is a

generalization of this class. We begin with unicyclic graphs.

Lemma 4.3.4. If G is unicyclic, a minimum SPC1 (G) consists of two vertices.

Proof If G contains a cycle of odd length (an odd cycle), then there is a unique

shortest path tree to each other vertex for every v E V, but the edge opposite the

query site on the cycle is not on any shortest path. To cover this one remaining

edge, we require one more query site.

If G contains an even cycle, then for each v E V there is a unique path to every

vertex but one. The vertex opposite our query site on the cycle has two shortest

paths of equal length that will reach it: one proceeding clockwise around the cycle,

and the other counterclockwise. Therefore, neither of the edges adjacent to this last

vertex are covered by a query rooted at v. Thus, in order to cover all edges of the

graph, we must use at least two non-adjacent query sites. D

In unicyclic graphs the increased knowledge available from a union-cover

provides an advantage, so the result is slightly different for SPCu .

Lemma 4.3.5. If a unicyclic graph G contains a cycle of odd length (an odd cycle),

a minimum S PCu (G) contains two vertices, but if G contains a cycle of even length

(an even cycle), a minimum SPCu(g) contains only one vertex.

Proof In an odd cycle, then from every vertex there is a unique shortest path to

every other vertex. However, there will always be one edge left out, namely the edge

that is the greatest distance away from our query site. To cover that edge requires a

second query site.

In an even cycle, then the union of all shortest paths rooted at a given vertex

completely covers the graph. D

56

FIGURE 13. A cactus graph with three cycles, two of which are leaf cycles.

A cactus is either a tree, a unicyclic graph, or can be obtained from two cacti

by joining them at a single vertex. An equivalent definition from Brandstadt et al.

states that a cactus is a graph in which no two cycles share an edge [15]. A leaf

cycle of a cactus is a cycle which is connected to all other cycles through a single

articulation point. An example of a cactus with two leaf cycles may be seen in

Figure 13.

Using the tree-like structure of a cactus, with special attention to the leaf cycles

of the cactus, informs our algorithms for SPCr and SPCG . We begin with SPCr.

Lemma 4.3.6. To intersection-cover a cactus that is not unicyclic requires one

query vertex in every leaf cycle, and one query vertex in every even cycle that is not

a leaf cycle and is joined to the other cycles in the graph at only 2 adjacent vertices

in the cycle.

Proof By lemma 4.3.4, we require two query points to intersection cover any cycle.

For the leaf cycles, the articulation point that separates the leaf cycle from the rest

57

of the tree provides one query point for that cycle, but one more is required to cover

the edge, or edges in the cycle that are opposite the articulation point. Thus, with a

query point at each of the leaf cycles, we can cover all leaf cycles.

Now we consider the cycles that are not leaf cycles. These internal cycles are

joined to other cycles by at least two distinct articulation points. By Lemma 4.3.4,

all the odd cycles are covered, because any two query points on an odd cycle will

intersection-cover the cycle. What remains are the internal cycles that are even. If

an even cycle is connected to the rest of the graph by at least two non-adjacent

articulation points, then that cycle will be completely covered by the query point in

leaf cycles. If not, then one edge will not yet be covered. Therefore, we must place

one more query point to completely cover that cycle.

Thus, we must place a query point in every leaf cycle, and in every non-leaf even

cycle that is joined to the graph by just two adjacent articulation points. D

The union-cover problem on cacti retains the emphasis on leaf cycles, but the

criteria are slightly different. By Lemma 4.3.5 even cycles can be union-covered

with a single query point. We leverage this increased power in generating small

union-covers.

To fully describe our algorithm for SPCu on cacti we require several new

lemmata and the concept of a leaf vertex, which is a vertex of degree 1.

Lemma 4.3.7. If a connected graph G = (V, E) may be union-covered with k > 0

query points, then G1
, which is created by adding leaf vertex v to create

QI = (V u v, E U (v, u)), may also be union-covered with k query points.

Proof. To prove this lemma, it suffices to note that every shortest path to leaf

vertex v must contain the edge (v, u), where u is v's sale neighbor. Therefore, every

query point in V will union-cover the edge (v, u). D

58

We extend this construction by considering the addition of not just leaf vertices,

but of cycles as well.

Lemma 4.3.8. Given graph G = (V, E) and even cycle C2n) we create G' by

identifying one vertex in V with one vertex in C2n . If G can be union-covered with

k > 0 query points) then G' may be covered with those same k query points.

Proof. By the second case of the proof of Theorem 4.3.5, C2n may be covered with a

single vertex. Furthermore, since all vertices are isomorphic in a cycle, it may be

covered by any vertex in the cycle. Thus, C2n is covered by v, the articulation point

that joins C2n to G.

Because our articulation point v serves as a minimum cover of C2n , by

Lemma 4.3.5, a minimum cover G' is exactly the same as a minimum cover of G. D

Lemma 4.3.9. Given cactus G with more than one leaf cycle and with no leaf

cycles of even length) a minimum union-cover of G consists of one query point in

every leaf cycle.

Proof. By Lemma 4.3.5 every odd cycle requires at least 2 query points, and the leaf

cycles of G are connected to the graph through a single articulation point.

Therefore, every leaf cycle requires at least one query point placed at a vertex other

than its articulation point. Every cycle that is not a leaf cycle is connected to leaf

cycles through at least two separate points, and the query points placed at each of

the leaf cycles will serve to cover all such non-leaf cycles. Therefore, query points are

required at every leaf cycle, and those query points serve to completely cover G. D

59

With the preliminaries out of the way, we are ready to minimally union-cover a

cactus. The algorithm to generate a minimum union-cover is to take the given

cactus, call it G', and repeatedly remove leaf vertices and even leaf cycles until the

resultant graph G is either a tree, unicyclic, or contains only odd leaf cycles. We

then union-cover G with a single vertex if it is a tree, as in Lemma 4.3.5 if it is

unicyclic, and in all other cases by placing one query point in every odd leaf cycle as

in Lemma 4.3.9.

Theorem 4.3.10. This algorithm generates a minimum union-cover of any cactus

Proof. By Lemma 4.3.7 and Lemma 4.3.8, any union-cover of G will also cover G',

and by Lemma 4.3.9, placing query points in the odd cycles of G' is a minimum

union-cover of G'.

Therefore, our algorithm results in a minimum union-cover of G', which is also a

minimum union-cover of G by Lemma 4.1.2. D

Having moved from trees to unicyclic graphs to cacti, we go in a new direction

and consider the class of grid graphs.

4.3.3 Grid Graphs

In this section, we consider a rectangular grid graph Gm,n consisting of vertices

labeled (i,j), for 1 ::; i ::; m and 1 ::; j ::; n with edges between (i,j) and (i + 1,j)

for 1 ::; i < m (row j) and between (i,j) and (i,j + 1) for 1::; j < n (column i).

Given a vertex (i, j), I(i,j) contains only the edges in row j and column i, as there

are alternative shortest paths to all other vertices.

Lemma 4.3.11. Any vertex of Gm,n will union cover the whole graph.

60

Proof. In a grid graph, the set of shortest paths between v = (iv, jv) and u = (iu, ju)

constitutes the subgraph of Gm,n with edge set

Thus, any vertex suffices, as pv,(O,O) U pv,(n,O) U pv,(O,m) U pv,(n,m) contains all edges

in Gm,n, and a union cover rooted at a vertex v is exactly UUEY Pv,u. D

Lemma 4.3.12. The size of SPC1 (Gm,n) is equal to the maximum of m and n.

Proof. As we noted earlier, I(i,j) only contains the vertices in row i and column j.

Thus, in order to cover every vertex, every row and column must contain at least

one query point. D

Grid graphs provide a nice example of a graph class in which the union cover

and the intersection cover may differ drastically. Only one vertex is required to

union-cover a grid graph, but many more may be required to intersection-cover a

grid graph. In the next section, we provide a class where this difference is taken to

an extreme.

4.3.4 Bipartite Graphs

In this section, we extend the intuition and results from union covers on grid

graphs and even cycles to a larger class of graphs: bipartite graphs. Bipartite

graphs are graphs in which the vertices may be partitioned into two sets, Sand T,

and the edge set of the graph is a subset of S x T. There are many other equivalent

definitions of this class of graphs, but the most useful definition for our purposes is

that bipartite graphs are exactly those graphs containing no odd cycles.

Theorem 4.3.13. The minimum size union-cover of a connected graph G with at

least one edge is 1 if and only if G is bipartite.

61

Proof. Suppose first that G is bipartite, and let v be an arbitrary vertex of G. We

show that v covers all edges of G. For contradiction, suppose that an edge

e = {u,w} is not covered by v, i.e., d(v,u) = d(v,w). In this case, there must be

two paths of equal length from v to each of u and w. Let x be the last vertex that

these two paths have in common. Now we have a cycle of length

d(x, u) + d(x, w) + 1. Because the two distances are equal, this cycle is of length

2k + 1 for some integer k (is an odd cycle). Because bipartite graphs contain no odd

cycles, we have reached a contradiction, and all edges of a bipartite graph must be

union-covered by a single vertex.

On the other hand, suppose that all edges of a graph G are covered by a single

vertex v. Therefore, for each edge e = {u,w} of G, Id(v,u) - d(v,w)1 = 1. Let us

color the vertices an even distance from v by color 1 and the vertices in odd distance

by color 2. This is a proper coloring of G by two colors, hence G is bipartite. 0

This proof does not extend to intersection-covers. In the previous sections, we

enumerated at least three separate classes of bipartite graphs with extremely

different intersection-covers: Trees can be intersection-covered with a single vertex

(Section 4.3.1), grid graphs require a number of query vertices equal to the largest

length in any dimension (Section 4.3.3), and complete bipartite graphs require one

side of the graph to be completely covered (Section 4.3). Intersection-covers are not

as powerful a model as union-covers, and bipartite graphs serve as an excellent

illustration of that fact.

4.4 Union Covers of 2-Trees

Through this chapter, we have been analyzing graphs that have a structure of
.~

which we can take advantage. We now turn our attention to graphs which are a

generalization of trees. A k-tree is a type of graph that has, at its base level, a

62

tree-like structure that we will attempt to exploit. For example, a tree has

treewidth 1, and a clique of size n has treewidth n - 1. Our formal definition of a

k-tree comes from Rose[28] via Kloks[44].

Definition 4.4.1 (k-tree). A graph G is a k-tree iff:

1. G is connected,

2. The maximum clique contained in G is of size k + I,

3. every minimal vertex separator of G induces a clique of size k.

This definition implies a method of k-tree construction. Namely, we note that a

clique of size k + 1 is a k-tree, and to combine two k-trees into a single k-tree, we

take two subgraphs of each k-tree which each form a clique of size k, and join the

two k-trees together by identifying each vertex of one subgraph with a unique vertex

of the other subgraph. We will call the parameter k the treewidth of the graph,

and we formally define it in another way below. This definition and construction

method also leads to a method of deconstruction and analysis called tree

decomposition.

Our definition of a tree decomposition comes from de Fluiter[25].

Definition 4.4.2 (tree decomposition). Let G = (V, E) be a graph. A tree

decomposition of G is a pair (T, X), where T = (1, F) is a tree, and X = {Xiii E I}

is a family of subsets of V, one for each vertex of T, such that:

2. for every edge {v, w} E E, there is an i E I with v E Xi and w E Xi,

3. for all i, j, k E I, if j is on the path from i to k in T, then Xi n X k <;:;; X j .

63

We call each vertex in the tree decomposition a bag, so as not to confuse the

vertices of the given graph G and the vertices of the tree in the tree decomposition.

The width of a tree decomposition ((1, F), {Xiii E I}) is equal to maxiE! IXil - 1,

i.e. one less than the maximum size of any bag in the decomposition, and the

treewidth of a graph is the minimum width over all possible tree decompositions of

that graph. As a historical sidenote, the original definition of a k-tree was that it

was an edge-maximal graph whose tree decomposition of minimum width was of

width k, in which the addition of any edge to the k-tree would increase its

treewidth. The tree decomposition of a k-tree sets each Xi to be the vertices of a

distinct clique of size k + 1 in the k-tree, and two bags i, j E I may be connected

only if IXi n X j I = k. It will be an important fact later that any tree decomposition

((1, F), X) may be transformed into a decomposition of equal width ((h, Fb), X b),

where (1b, H) is a rooted binary tree with O(IVI) bags[25]. An example of a 2-tree,

a minimum width tree decomposition of the 2-tree, and a rooted binary tree

decomposition of minimum width, may all be seen in Figure 14. In this section, we

restrict our attention to union covers of 2-trees and subgraphs of 2-trees, the latter

of which we call partial 2-trees.

4.4.1 Union Covers Across a Clique of Size 2

The key feature of 2-trees that we will exploit is that, in the construction process

of a 2-tree, we join the component 2-trees together by identifying cliques of size 2

(edges) in each graph. In the resulting graph, each edge then forms a separator

through which only a limited amount of information may pass. In our next theorem,

we discuss exactly how much information may travel through each of these

connected 2-cuts of the graph.

Lemma 4.4.3. Let G be a connected graph G = (V, E) and let u and v be two

adjacent vertices ({u, v} E E) such that the removal of u, v, and all incident edges

64

(A) A 2-tree with labeled vertices

(B) A tree decomposition of width 2 (C) A rooted binary tree decomposition of width
2

FIGURE 14. A 2-tree and two decompositions of width 2, as defined III

Definitions 4.4.1 and 4.4.2. Each bag in the decompositions is labeled with its
corresponding vertex set.

65

from G makes G disconnected into distinct components (iii, E1), ... (iii, Ez).

Furthermore, let Gi be the induced subgraph of G consisting of the vertices

Vi U {u, v}. The set of edges of Gi union covered by a non-empty subset 5 of the

vertices of G j (j of i) is completely determined by Gi and the following two integers:

1. The maximum difference in distance between u and v over all w E 5

(maxsEs(d(w, u) - d(w, v)))

2. The minimum difference in distance between u and v over all w E 5

(minsEs(d(w, u) - d(w, v)))

Proof. By way of contradiction, assume that there exist two sets 51 S;;; Vj U {u, v},

and 52 S;;; Vj U {u, v}, in some G i (i of j) that have the exact same properties listed

above, but there exists some edge e = (x, y) in Gi that is union covered by 51 and

not 52'

Therefore, there is a vertex Sl E 51 in which e is an element of a shortest

(81, y)-path, but there is no such 82 E 52 where that is true. Let us assume that a

shortest path containing the edge e goes through the vertex v before it goes through

u, if it goes through vertex u at all. Therefore, d(81' v) :::; d(81' u), and thus

d(81'X) = d(81,V) +d(v,x) and d(81'y) = d(81'V) +d(v,y), which implies that

d(v,x) + 1 = d(v,y).

Because e is not union covered by any 82 E 52, it must be true that

d(82' x) = d(82' y) for all 82 E 52' Since d(v, x) + 1 = d(v, y), v can not be on any

shortest paths from 82 to y for any 82 E 52' Therefore, for all 82 E 52,

d(821 v) + d(v, y) > d(82' u) + d(u, y). Because u and v are connected, we also know

that 0 :::; d(82, v) - d(82' u) :::; 1 and 0 :::; d(v, y) - d(u, y) :::; 1.

66

In this situation, at least one of two conditions holds. Either d(S2' v) > d(S2' u)

for all S2 E 3 2 , or there is at least one S2 E 3 2 in which d(S2'V) = d(S2'U), and

therefore d(v, y) - d(u, y) = 1. We reason by cases to show that either situation

leads to a contradiction.

In the first case, we assume that d(S2' v) > d(S2, u) for all S2 E 3 2 , In particular,

note that there is no vertex S2 E 32 where d(S2, v) < d(S2' u) and therefore

maxWEs2(d(w,u) - d(w,v)) = -1. However, there is such a vertex wE 3 1 where

d(w,u) - d(w,v) 2: 0; the vertex with that property is precisely the vertex that

union covers e. Therefore, maxWESI(d(w,u) - d(w,v)) > -1 and we have our

contradiction.

In the second case, we know that there exists some S2 E 3 2 where

d(S2, v) = d(S2' u) and also we know that d(v, y) - d(u, y) = 1. We can immediately

conclude that maxWEs2(d(w,u) - d(w,v)) = O. If d(v,y) - d(u,y) = 1, then,

recalling that d(v, x) + 1 = d(v, y), we know that d(v, x) + 1 - d(u, y) = 1 and that

d(v,x) = d(u,y). In this case, in order for 3 1 to union cover e, it must be true that

for some S1 E 3 1, d(S1' v) < d(S1' u). Therefore, maxwESI (d(w, u) - d(w, v)) = 1, and

we have reached the contradiction for our second case.

Our argument is entirely symmetric, so if we assume that u, rather than v, is the

first vertex along the shortest path containing e, it immediately implies that the

minimum difference in distance between u and v over all w E 3

(minSEs(d(w, u) - d(w, v))) must also be the same for 3 1 and 3 2 ,

Therefore, if, for two sets of vertices 3 1 and 3 2 from some Gi ,

maxWESI(d(w,u) - d(w,v)) = maxWES2(d(w,u) - d(w,v)) and

minwEsl (d(w, u) - d(w, v)) = minw Es2(d(w, u) - d(w, v)), then the two vertex sets

union cover the exact same set of edges in all Gj (i =I- j). 0

67

We use this hard-fought insight to develop a dynamic program for 2-trees by

noting that the maximum intersection between the elements of a union cover of one

G i with another Gj is exactly the vertices {u, v}.

4.4.2 A Dynamic Program for 2-trees

We define the concept of support that a union cover S of some G i provides

across the vertices of the edge (u, v) to G j to be exactly those two properties in

Lemma 4.4.3. The support that one union cover provides will cover some edges of

Gj . It is quite likely that this support will actually decrease the number of vertices

in Gj that are required to cover Gj .

In this way, we design our dynamic program to match up minimum union covers

some G i that provide a given support to and require a particular support support to

be provided to them. We give a recursive description of the algorithm that is

suitable for memoization.

Our algorithm begins by generating a rooted binary tree decomposition of

minimum width. Such a decomposition may be found in linear time using the

algorithm of Matousek and Thomas[42], although the special case of 2-trees has a

much simpler linear-time algorithm: repeatedly remove degree-2 vertices, making

the removed vertex and its neighbors into a bag, until we arrive at an instance of

K 3 . We next define a recursive algorithm to find all combinations of required and

provided support that will cover the entire graph. The pseudo-code for such an

algorithm is detailed in Figure 15.

The algorithm is linear time (although the constants may be large), because the

state space of possible arguments for a given bag of the tree decomposition is also

constant. Sin and Sout may range from -1 to 1, and Vflag and Uflag are each either

true or false, yielding a constant number of recursive calls at every level of the tree.

Because our solution is amenable to memoization, each recursive call is called at

68

Union-Cover-2-Tree (G, D = ((1, F), {Xiii E 1}), Sin, Sout, Vjlag, Ujlag, bag)
/ / G is a 2-tree
/ / D is a rooted binary tree decomposition of G.
/ / Sin is the provided support coming in to this subtree
/ / Sout is the requested support coming out of this subtree
/ / Vjlag indicates whether the vertex v from the two-cut is already in the cover
/ / Ujlag indicates whether the vertex U from the two-cut is already in the cover
/ / bag is the bag of the 2-tree we are analyzing .

if bag is a leaf of the tree decomposition
/ / Iterate over all subsets of the fixed-size bag
return the size of the minimum union cover of this bag which provides the

requested support and covers the bag with the provided support, and
includes U and v (if those flags are set).

else
s~ze (- 00

for every possible value of Sin, Sout, Vjlag, and Ujlag
size (- min(size,

Union-Cover-2-Tree (G, D, Sin, Sout, Vjlag, Ujlag,left-child(bag))

+
Union-Cover-2-Tree (G, D, Sout, Sin, Vjlag, Ujlag,right-child(bag))

return size

FIGURE 15. A linear-time algorithm for union-covering 2-trees

69

most once, and then becomes a table lookup. The size of the table is O(ITI), where

ITI is the size of the rooted binary tree decomposition, which, as previously

discussed is O(IVI).

We now extend our algorithm to partial 2-trees.

4.5 Union Covers of Partial 2-Trees

A partial k-tree is a subgraph of a k-tree. We induct on the underlying k-tree

structure of the graph in order to build an efficient dynamic program for calculating

the minimum union-cover of a partial 2-tree, and the structure we use is exactly the

minimal separators of the graph, with a little help from Lemma 4.4.3.

Armed with the knowledge that only a very limited amount of information can

propagate across a separator of size 2, which we call a 2-cut, we build a dynamic

program very much like the algorithm for full 2-trees. The main difference is that,

for partial 2-trees, the parameters minsEs(d(w, u) - d(w, v)) and

maxsEs(d(w, u) - d(w, v)), instead of being either -1,0, or 1, can range from -IVI to

lVI, which complicates both our algorithm and its subsequent analysis.

We begin our algorithm by calculating a rooted binary tree decomposition of

width 2 for this partial 2-tree using the algorithm of Matousek and Thomas[42]. We

then recursively process this tree in a way that enables memoization. Pseudocode

for our algorithm may be found in Figure 16.

The key difference of the algorithms in Figures 15 and 16 is somewhat hidden by

the generic way the two algorithms are expressed. The for loop, which needs to

iterate over all possible combinations of Sin, Sout, Vjlag, and Ujlag, has to iterate over

many more possibilities when we are analyzing partial 2-trees. In the former

algorithm the support provided to and from the bag containing U and v was always

at most 1 and at minimum -1, because the vertices were adjacent. In the case of

70

UC-Partial-2-Tree (G, D = ((1, F), {Xiii E I}), Sin, Sout, Vjlag, Ujlag, bag)

/ / G is a 2-tree
/ / D is a rooted binary tree decomposition of G.
/ / Sin is the provided support coming in to this subtree
/ / Sout is the requested support coming out of this subtree
/ / Vjlag indicates whether the vertex v from the two-cut is already in the cover
/ / Ujlag indicates whether the vertex U from the two-cut is already in the cover
/ / bag is the bag of the 2-tree we are analyzing

if bag is a leaf of the tree decomposition
/ / Iterate over all subsets of the fixed-size bag
return the size of the minimum union cover of this bag which provides the

requested support and covers the bag with the provided support, and
includes U and v (if those flags are set).

else
size f- 00

for every possible value of Sin, Sout, Vjlag, and Ujlag

/ / Note that Sin and Sout may be anywhere in the range ±d(u,v)
size f- min(size,

UC-Partial-2-Tree (G, D, Sin, Sout, Vjlag, Uflag,left-child(bag))

+ UC-Partial-2-Tree (G, D, Sout, Sin, Vflag, Uflag,right-child(bag))

return size

FIGURE 16. A linear-time algorithm for union-covering 2-trees

71

partial 2-trees the distance between the two vertices may be quite large, and so the

corresponding support provided or support requested may be similarly large, and so

our algorithm must search a larger space of possibilities at each bag.

The search component of our dynamic program involves determining the

minimum size set from each component required so that the support received is the

support required to cover the component, and the support given is the support

required to cover the other component. The supports provided and requested, Sin

and Sout, may each range from -/VI to /VI, for a total search space at each bag of

size O(/V1 2). So, there are O(IVI) bags, and at each bag, and for each of the O(/V1 2
)

possible input parameters to our covering function at each bag, we want to find the

minimum over a search space of size O(1V12). So we know that we will end up calling

the recursive function O(/V1 5
) times, and each call takes, potentially, O(IEI) time to

verify that all edges are covered. This yields a runtime of of O(/V1 5 *E) overall, or,

if we want it in terms of the order of the vertex set /VI = n, a runtime of O(n7
).

Having taken this cased based analysis of union covers to an extreme, we now

refine our model to be more like the model required for the AS graph.

4.6 Shortest Path Trees in the Valley-Free Model

The Internet AS graph is not measured using shortest paths; it is measured via

shortest valley-free paths. Therefore, we must extend our analysis of shortest paths

to shortest valley-free paths if we would like our analysis to be potentially of use on

the AS graph. Recall that a path on a directed, edge labeled graph is valley-free if it

consists of zero or more hops that follow the directions of the underlying edge (from

customer to provider in the AS graph), followed by at most one hop across a

bidirectional (peering) edge, followed by zero or more hops that go strictly against

the direction of the underlying edge (from provider to customer). We define V F Pu,v

-- ----------------

72

to be the set of valley-free shortest paths between u and v. We then define V FUu,v

to be the union of all edges in V F Pu,v

VFUu,v = U P
pEVFPu,v

and V F Iu,v is defined symmetrically as

VFlu,v = np E VFPu,vp

Following the previous example again, we define

VFlu

UVFUu,v
vEV

UVFlu,v
vEV

For these definitions, we wish to find the size of the minimum set S ~ V such

that E = UVES V FUv or E = UVES V F Iv, respectively. We refer to each of these

problems as valley free union cover (VFUC) and valley free intersection

cover (VFIC). Unfortunately, much like SPCI and SPCu , the decision problem

for each of these problems is NP-complete, albeit via different reductions from

before. For both of these reductions, we will require a variant of breadth-first search

that will find not the shortest path, like breadth-first search normally does, but

rather the shortest valley-free path. We begin by describing the algorithms to find

VFUu,v and VFlu,v'

To find the union of all shortest paths from a vertex u of G = (V, E) to a vertex

v, we perform a breadth-first search rooted at u and then mark every vertex of V

73

with its distance from 11. Then, beginning at vertex v, we perform a second

breadth-first search. This time, we propagate our search only across edges which

link a vertex of distance k from u to a vertex of distance k + 1. Every time we

propagate our search across such an edge, we add that edge to the set of covered

edges. This algorithm works for shortest paths, but valley-free shortest paths have

an additional constraint. Our algorithm for finding V FUu,v on a directed graph

G = (V, E) is an extension of the described algorithm for shortest paths.

In particular, to find the set of edges in V FUu,v, we require a breadth-first

search rooted at u and a breadth-first search rooted at v. We then combine the

results of these two searches and attempt to find the vertices which have the

smallest sum of the distance to u and the distance to v. These vertices may serve as

the "top" of a valley-free shortest path from u to v. Then, from each vertex that

may serve as a top of a path, we perform two more breadth-first searches: one to u,

and another to v. In each of these searches, when we are at a vertex y, we only

propagate across a link (z -----t y) if the distance to our destination from z is strictly

less than the distance from y. When we propagate our search across such a link, we

also add it to our set V FUu,v. The pseudocode for this algorithm may be found in

Figure 18, with supporting pseudocode for breadth-first search and reverse

breadth-first search in Figures I7(A) and 17(B).

The algorithm for V F I is similar, but we must be more careful about how we

extend the edge set we return. In particular, we only extend the edge set if there is

just a single edge between the vertices at distance k and the vertices at distance

k + 1. To do this, we extend the algorithm for finding V FUu,v. The algorithm is

detailed in Figure 19.

Problem 4.6.1 (VALLEYFREEINTERSECTIONCOVER).

INSTANCE: A graph G = (V, E) and a parameter k.

QUESTION: Does there exist a set S C V) lSI = k) such that E = UVES V F lev?

BFS (G = (V, E), s) / / A Breadth-first search of G from s
ds f- [00 ... 00] / / The distances from s
ds[s] f- 0
Q f-CREATE-QUEUE()

ENQUEUE(S)

while NOT-EMPTy(Q)

v f- DEQUEUE(Q)

for u E {u I(v --7 u) E E}
if ds[u] ::J 00

ds[u] = ds[v] + 1
if (u --7 v) ~ E

ENQUEUE(U)

return ds

(A) Breadth-first search of a directed G from vertex s

Reverse-BFS (G = (V, E), s) / / A search of G from s going against the edges
ds f- [00 ... 00J / / The distances from s
ds[sJ f- 0
Q f-CREATE-QUEUE()

ENQUEUE(S)

while NOT-EMPTy(Q)

v f- DEQUEUE(Q)
for u E {ul(v f- u) E E}

ifds[u]::J 00
ds[u] = ds[v] + 1
if (u f- v) ~ E

ENQUEUE(U)

return ds

(B) Reverse breadth-first search of a directed G from vertex s.

FIGURE 17. The supporting breadth-first search functions for VFUs,t.

74

75

Valley-Free-Union-BFS (G = (V, E), s, t)
V FU ~ {} / / The edges on any of the shortest valley-free paths from s to t.
ds ~BFS(G, s)
dt ~BFS(G, t)
d ~ minvEv(dt[v] + ds[v]) / / The valley-free distance from s to t

T ~ {v E Vldt[v] + ds[v] = d} / / Vertices which are the top of a shortest path
for vET

dv ~Reverse-BFS(G, v)
VFU ~ VFUU {(u ~ w) EEl ds[u] + 1 = ds[w] /\ dv[w] + 1 = dv[u]}
V FU ~ V F U U {(u ~ w) EEl dt[u] + 1 = dt [w] /\ dv[w] + 1 = dv[u]}

return VFU

FIGURE 18. A variant of breadth-first search which finds V FUs,t for a given sand
t of a graph.

Valley-Free-Intersection-BFS (G = (V, E), s, t)
ds ~BFS(G, s)
dt ~BFS(G, t)
d ~ minvEv(dt[v] + ds[v]) / / The valley-free distance from s to t
T ~ {v E Vldtlv] + ds[v] = d} / / Vertices which are the top of a shortest path
V F I ~ E / / Edges on the shortest valley-free paths from s to t.
for vET

dv ~Reverse-BFS(G, v)
VFlv ~ {}
for i = 0 ... d - 1

level ~ {(u --+ w) E Elds[u] + 1 = ds[w] /\ dv[w] + 1 = dv[u] /\ ds[u] = k}
if Ilevell = 1

VFlv ~ VFlv U level
level ~ {(u --+ w) E Elddu] + 1 = dt[w] /\ dv[w] + 1 = dv[u] /\ dtlu] = k}
if Ilevell = 1

VFlv ~ VFlv U level
VFI ~ VFI n VFlv

return VFI

FIGURE 19. An algorithm for finding V F Is,t on a given graph.

76

Theorem 4.6.2. VALLEyFREEINTERSECTIONCOVER is NP-Complete.

Proof. We prove that VALLEyFREEINTERSECTIONCOVER is NP-complete by a

reduction from VERTEXCOVER. Consider graph G = (V, E) and parameter k for

which we would like to solve VERTEXCOVER. We transform G = (V, E) into

G' = (V', E') using the following steps. First, we label all edges of E and make

them bidirectional peering edges. Next, we add three vertices to V and use them to

create a new K 3 , and make each of its edges bidirectional. Finally, we choose one

vertex u of the newly created K 3 and for each v E V, we create a new directed edge

from v to u. In the new graph G' = (V', E'), V' is the union of V and the vertices of

the new K 3 , and E' is the union of the now-labeled edges of E with the v ---+ u edges

and the edges of the new K 3 .

We now prove that the existence vertex cover of G of size k directly implies the

existence of a valley-free shortest path cover of G' of size k + 1, and that any

valley-free shortest path cover of G' of size k + 1 can be converted into a vertex

cover of G of size no more than k.

Converting a vertex cover of G into a valley-free shortest path cover of G' is easy

- simply take the vertex cover of G and add to it one of the degree-2 vertices of the

K 3 . This new set of vertices forms a valley-free shortest path cover of G' of size

k + 1. Therefore, the existence of a vertex cover of G of size k implies a valley-free

shortest path cover of size k + 1.

Proving the opposite direction is almost as easy. Given a valley-free shortest

path cover of G' of size k + 1, we note that no vertex in the K 3 can cover any of the

peering links between vertices that were originally in V. Therefore, the peering links

that were originally members of E must be covered by their immediate neighbors,

and so those same vertices will serve as a vertex cover of G. In the cover of G', there

is at least one vertex in the K 3 , so the cover of G is of size at most k.

77

Therefore, we can in linear time transform a vertex cover problem into a

valley-free shortest path cover problem, and a solution of the first implies a solution

to the second, and a solution to the second implies a solution to the first. Noting

that VALLEyFREEINTERSECTIONCOVER is in NP, because a set of vertices can be

verified to be a cover via the breadth-first search variant of Figure 19, completes our

proof that VALLEyFREEINTERSECTIONCOVER is NP-Complete. 0

We define the corresponding VALLEyFREEUNIONCOVER in much the same way.

Problem 4.6.3 (VALLEyFREEUNIONCOVER).

INSTANCE: A graph G = (V, E) and a parameter k.

QUESTION: Does there exist a set S C V, lSI = k, such that

E=UVESVFUCV?

Theorem 4.6.4. VALLEyFREEUNIONCOVER is NP-complete.

Proof. We begin by showing membership in NP, and then we will prove

completeness. If we are given a set S, then we can use the Valley-Free-Union-BFS

algorithm of Figure 18 to calculate V FUCu,v for each v E S. It is then trivial to

check whether UvESVFUCv = E. Our proof is a direct corollary of our

NP-completeness reduction for VALLEyFREEINTERSECTIONCOVER.

In particular, we take the graph G' = (V', E') defined in the previous reduction,

and note that there is exactly one valley-free shortest path between any two vertices

of V'! Therefore, V FICv = V FUCv for all v E V, and all the results for valleY-free

intersection covers still hold for valley-free union-covers. 0

This direct correspondence between the two models of graph covering with

valley-free shortest paths means that the problem which most closely models the

covering of the AS graph via router measurements, namely valley-free shortest-path

tree-covers of the AS graph - is definitely NP-complete.

78

In our given data set we are looking at what might be thought of as the dual of

this problem. In our data, we are given spanning sets of valley-free shortest paths

from multiple roots, and we would like to determine how much of the graph has been

discovered by our methods. This is related to the graph discovery problem discussed

by Beerliova et al. [7] and quickly leads into larger worries of data incompleteness.

4.7 Summary

Our every attempt to formalize the problem of AS graph measurement resulted

in a graph covering problem that is NP-complete. We showed that it is

NP-complete to find an optimal graph covering with intersection covers, tree

covers, union covers, valley-free intersection covers, valley-free tree covers, and

valley-free union covers. We did, however, find graph classes for which these

formalizations were easy to calculate. We found that intersection covers and union

covers differed radically in power.

After enumerating several classes of graphs which admitted polynomial-time

solution algorithms for these problems, we turned our eye towards refinements of

our query model. When we refined our query model to reflect the fact that we

measure the AS graph with valley-free shortest paths, rather than just shortest

paths, we found that the problem was still NP-complete.

Fortunately, for studying the AS graph, we are concerned with a slightly

different problem. Instead of being given a graph, we are given measurements of an

unknown graph. In the next chapter we deal with what might be thought of as the

dual of our problem, and take a look at issues of data incompleteness.

79

CHAPTER V

DEALING WITH DATA

INCOMPLETENESS

Where we figure out what to do when confronted with both the

incompleteness of our measurements and the impossibility of going back

in time and getting better ones

How can we be sure that, when we analyze our data, we our analyzing the

underlying object being measured, and not just analyzing our measurements?

Because we do not have access to historical data feeds from every BGP speaking

router on the Internet, our data set may be missing edges. Also, BGP does not

record the edge type. Therefore, what our measurements give us is the undirected

measured AS graph, as defined in Chapter II. Our data's incompleteness comes in

two major forms: missing edges and missing edge directions. Both are big problems,

and we will address them each in turn. We begin with the problem of missing edge

directions.

80

5.1 Determining Edge Directions in the AS

Graph

In the valley-free shortest path model of routing, a path must consist of zero or

more hops that strictly follow the direction of the money (go from customer to

provider or from sibling to sibling), followed by an optional peering link, followed by

zero or more hops that strictly go against the flow of money (from provider to

customer or from sibling to sibling). Unfortunately, our measurements provide us

with undirected paths. We therefore require the ability to turn our undirected

measurements into directed edges.

This is the Type-of-Relationship problem and it was introduced by Gao[34] in

the same paper that introduced the shortest path model of Internet routing. There

are two main ways of solving it - both techniques begin by translating the problem

into an instance of 2-SAT, but the first then finds an assignment that makes the

maximal number of clauses true using heuristics[6], and the second transforms the

instance of 2-SAT into a semi-definite program[27], a generalization of a linear

program which provides the best-known approximation for MAX 2-SAT[37]. Let

us formally define the problem as follows:

Problem 5.1.1 (The Type-of-Relationship Problem).

INSTANCE: A set of undirected paths P, the union of which is undirected graph

G = (V, E).

QUESTION: Is there a directed graph G' = (V, E'), in which the paths of Pare

valley-free shortest paths? For every undirected edge (u, v) E E, at least one of the

directed edges {(u, v), (v, u)} must be in E'.

In this model of shortest-path routing, we look at only customer-provider links

and peering links. It is assumed (and this has been backed up by ISP surveys, most

notably Dimitroupolos et al. [27]) that sibling-sibling relationships are so rare that

81

they need not be explicitly modeled. When attempts have been made to account for

sibling-sibling edges, the solution used has always been to add sibling-sibling edges

in during post-processing. Thus, to solve the Type-of-Relationship problem, we

restrict ourselves to considering customer-provider links and peer-to-peer links.

Customer-provider links are modeled as directed edges from customer to provider,

and peer-to-peer links are modeled as two directed edges, a situation which we call a

"bidirectional link" .

Recall that a valley-free path p = (VI, V2, ... Vk) consists of zero or more

Vi ---7 Vi+1 links, followed by a single optional bidirectional link, followed by zero or

more Vi +--- Vi+1 links. This makes it different from the traditional view of a path in

a directed graph, because parts of the path go against the direction of the

underlying edges.

The conversion of an instance of the Type-of-Relationship problem into an

instance of 2-SAT hinges on the fact that our measurements are of valley-free paths,

and therefore once a path has started to go against edges or across a peering link (a

bidirectional edge), it can never go with the edges. More explicitly, if we have an

undirected measurement A - B - C - D of a directed valley free path, then we also

know that if C - D is actually C ---7 D, then we must have B ---7 C and A ---7 B.

Otherwise, our path would not be valley free! Also, by the same logic, if B - C were

actually B +--- C, then we must also have C +--- D. We then transform the direction

of an edge into a logical variable in an instance of 2-SAT. We will call this literal

xAB to indicate that it refers to the edge between A and B. If this literal is true,

then A - B is actually A ---7 B, and if the literal is false, then A - B is actually

A +--- B. We can then formalize the statements we previously made about the path

A - B - C - D as XBC ::::;,. XAB, 'XBC::::;" 'XCD, and so on.

82

FIGURE 20. A simple example network for our direction-inference procedure

TABLE 1. All the shortest paths measured from all points of the network in Figure 20.

Measurement point
1
2
3
4
5
6

1-3-4-2
2-4-3-1

3-1
4-3-1
5-3-1

6-4-3-1

Paths Discovered
1-3 1-3-4 1-3-5

2-4-3 2-4 2-4-3-5
3-4-2 3-4 3-5
4-2 4-3 4-3-5

5-3-4-2 5-3 5-3-4
6-4-2 6-4-3 6-4

1-3-4-6
2-4-6
3-4-6
4-6

5-3-4-6
6-4-3-5

Let us try a concrete example. Consider the "bowtie" network in Figure 20. If

we took a measurement from every single vertex in the bowtie, we would see the

paths of Table 1.

These paths represent the sum total of the information which it is possible to

squeeze out of the graph, and with them, we set up an extremely large instance of

2-SAT as described. This instance of 2-SAT contains many, many clauses - on the

order of the sum of the square of the length of each path. Because of this quadratic

explosion, in Table 2 we only show the clauses resulting from the measurements at

vertex 1 with the understanding that all of the other clauses are derived in the same

fashion.

83

TABLE 2. The part of the 2-SAT instance resulting just from paths beginning with
vertex 1 in Figure 20. The Derived Clauses cell for 1-3 is empty because no clauses
may be derived from a path of two vertices.

Path
1-3-4-2

1-3
1-3-4
1-3-5

1-3-4-6

Derived Clauses
(-'X13 ::::} -'X34) 1\ (-'X13 ::::} -'X42) 1\ (-'X34 ::::} -'X42) 1\ (X42 ::::}

X34) 1\ (X42 ::::} X13) 1\ (X34 ::::} X13)

(-'X13::::} -'X34) 1\ (X34::::} X13)

(-'X13::::} -'X35) 1\ (X35 ::::} X13)

(-'X13 ::::} -'X34) 1\ (-'X13 ::::} -'X46) 1\ (-'X34 ::::} -'X46) 1\ (X46 ::::}

X34) 1\ (X46 ::::} X13) 1\ (X34 ::::} X13)

(A) The original graph (B) One possible reconstruction

FIGURE 21. An example of a graph with multiple solutions for reconstruction. Note
that all shortest paths in the reconstruction are still valley-free.

--- -_._---

84

Once this 2-SAT instance is fully written out, we would solve it via traditional

methods. Unfortunately, although this instance of 2-SAT is satisfiable, it is also

under-specified: there are multiple satisfying assignments. In Figure 21 we can see

both the original graph, as well as a satisfying assignment that differs from the

original graph. In this regard, our simple example is a bit misleading. Due to the

variation of contracts on the Internet, it is quite likely that, for the measured AS

graph, the derived 2-SAT instance will be unsatisfiable. If the 2-SAT instance is

unsatisfiable, however, we must try a slightly different approach. In the paper by Di

Battista et al.[6J, the authors prove the problem of maximizing the number of

satisfied paths to be NP-complete. They then advocate turning the problem into

an instance of MAX 2-SAT (itself an NP-Complete problem) and then applying

heuristics as the best choice, while Subramanian et al. provide a heuristic that

avoids 2-SAT altogether[65]. On the other hand, Dimitroupolos et al.[27] advocates

turning the problem into a semi-definite program and then using a semi-definite

program solver to discover the assignment of directions. Note that a semi-definite

program solver should properly be called an optimizer rather than a solver, as its

solutions are not guaranteed to be optimal.

These approaches are all compared in Dimitropoulos et al[27J, where they use a

broad survey of AS operators to discover both what adjacencies of those operators

are missing from Route Views as well as what type of relationship each edge is. As

it turns out, the "ground truth" of Internet connectivity is that there are

operational requirements that, occasionally, require an Internet operator to

hardcode in routes which are either not a shortest path, or are not valley-free[55].

Also, neither of the methods that involve creating an instance of 2-SAT will ever

find an edge that must be a peering edge or must be a sibling edge. The sibling

edges are simply eliminated from their models, and, because peering edges are more

85

restrictive than simply choosing a single direction for a given edge, peering edges

will never arise in a MAX 2-SAT solution unless other heuristics are added.

Dimitropoulos et al. compared all of these solution methods and found,

counterintuitively, that the semi-definite programming approach, while it contained

more unsatisfied clauses in the corresponding 2-SAT instance, was generally more

correct in the answers it found. They then went further and provided several

heuristics, backed up with AS operator survey data for validation, that made the

result of the semi-definite programming approach even more correct, and also added

sibling edges to the graph. Therefore, we will use their methods for determining

edge-type in the AS graph. Even better, a team at CAIDA created a repository of

processed topology data[41] in which all edge types have been assigned by this

best-of-breed method! When this repository is available for a given date, it is this

topology we use as an initial graph.

All of these techniques help determine edge direction - especially the

preprocessed graphs from CAIDA. That is only half the story, however. We may

also be missing entire edges from our sample. In the next section we deal with the

missing-edge problem.

5.2 Determining which Edges Might Have Been

Missed

Our measurements of the AS graph, once the edge directions have been deduced,

are still incomplete. As we saw in Chapter IV, it is quite possible for a set of

shortest-path trees to fail in covering a graph. Thus, we must answer the question:

What graph did our measurements come from? This question is unanswerable,

however, as it requires us to reason beyond the bounds of our data. We instead ask

the following questions: What is the largest graph from which our measurements

86

might have come? What is the smallest? What is the set of graphs from which our

measurements might have come? What is the most likely graph from which our

measurements have come? These questions will allow us to express our confidence in

any conclusions that we draw from AS graph analysis. We may not have direct

access to the complete AS graph, but we can develop methods that attempt to

assess how close our measured AS graph is to the complete AS graph.

In our effort to tackle these problems, our fundamental insight is that each

valley-free shortest path is an assertion of the existence of certain edges, but it is

also an assertion about the nonexistence of other edges. For example, if we measure

the path 1 ---t 2 ---t 3 f-+ 4 +----- 5 +----- 6, then we can be confident that there exists no

edge from 1 to 6, because the existence of such an edge would contradict our path

being a shortest valley-free path. In this particular example, out of a possible

complete graph on 6 vertices (30 possible edges), we can be certain of the existence

of 6 edges (the links on the path) and we can be certain about the nonexistence of

22 more. Thus, with one path of length 6, we learn all about 6 existing edges and 22

nonexisting edges, for a total knowledge of 28 out of 30 possible edges. A full listing

of these edges may be found in Table 3.

Note, however, that while our certainty about the existence of the 6 edges we

measured on the path is 100%, our certainty about the impossible edges is

conditional on the quality of our model. In particular, some of the impossible edges

would make our purported shortest path even shorter, while others would violate

the more subtle requirement that the path be valley-free, or that there be at most

one peering link in a path, and that said peering link be at the very top. Thus,

depending on one's confidence in the model, the interested researcher may relax the

tightness of some assumptions, and place some of the so-called "impossible" edges

back into the domain of possible edges. Moving forward in this study, however, we

87

TABLE 3. The conclusions we may draw from the path 1 -----+ 2 -----+ 3 f--t 4 ~ 5 ~ 6

Existing edges
Each of these edges is the
measured path:
1 -----+ 2, 2 -----+ 3, 4 -----+ 3, 3 -----+ 4,
5 -----+ 4,6 -----+ 5

6 edges

Possible edges
The existence of
these edges remains
undetermined:
3 -----+ 1, 4 -----+ 6

2 Edges

Impossible Edges
The existence of any of these
edges would make the path
shorter:

. 1 -----+ 3, 1 -----+ 4, 1 -----+ 5, 1 -----+ 6,
2 -----+ 4, 2 -----+ 5, 2 -----+ 6, 3 -----+ 5,
3 -----+ 6, 4 -----+ 1, 4 -----+ 2, 5 -----+ 1,
5 -----+ 2, 5 -----+ 3, 6 -----+ 1, 6 -----+ 2,
6 -----+ 3,6 -----+ 4
The existence of any of these
edges would put multiple
peering links on the path:
2 -----+ 1, 3 -----+ 2, 4 -----+ 5, 5 -----+ 6
22 Edges

assume (as does most of the literature) that, in practice, our model is a

good-enough match for the AS graph.

We formalize the idea of provable nonexistence in the following observations:

Observation 5.2.1. If we have a valley-free shortest path p containing u followed

by v) then) if there is at least one vertex between u and v in p) one or both of the

following must be true: u -f+ v or u i- v.

Observation 5.2.2. If we have a valley-free shortest path p that contains a

bidirectional (peering) edge a f--t b) then for all adjacent u -----+ v in p such that

{a, b} i- {u, v}) v -f+ u.

Observation 5.2.3. Given a valley-free shortest path p without a measured

bidirectional edge) then one of the following must be true:

88

• There exist sequential edges u -----+ v ~ w, and the only possible bidirectional

edge in the path is one of u ~ v and v ~ w.

• The path consists entirely of -----+ links and the only possible bidirectional link is

the last edge in the path.

• The path consists entirely of ~ edges and the only possible bidirectional edge is

the first edge in the path.

All of these observations are direct consequences of p being a valley-free shortest

path. If Observation 5.2.1 were violated, then there would be a shorter valley-free

path than p, and if Observations 5.2.2 or 5.2.3 were violated, then p would not be a

valley-free path. Observation 5.2.3 is the first rule of impossible edges that implies

that all non-impossible edges may not be simultaneously present.

We can even do better than these three rules, as there is a dependence between

AS paths that allows us to infer the nonexistence of edges between ASes that are

not on the same path. In particular, consider two paths, both with the same root:

1 -----+ 2 -----+ 3 ~ 4 +- 5 +- 6, and 1 -----+ 7 -----+ 8 ~ 9 +- 10 ~ 11. In this case, there are

110 possible directed edges in a graph of 11 vertices, and we have discovered that 12

of these edges definitely exist. The same logic that we previously used to rule out

certain intra-path edges applies to each path, just like in Table 3. However, we can

actually draw conclusions about the impossibility of some inter-path edges as well.

Theorem 5.2.4. If vertex v is k hops from the measurement point p and vertex u is

k + i hops away from the measurement point, where i 2: 2, then one of the following

is true:

89

1. The path containing v is of the form p -----+ ••. -----+ v ...) the path containing u is

of the form p -----+ ••• -----+ u . ..) and v -It u.

2. The path containing v is of the form p . .. +- v . ..) the path containing u is of

the form p .. . +- u ...) and u -It v.

3. The path containing v is of the form p -----+ ••• -----+ v ...) the path containing u is

of the form p . .. +- u . ..) and both v f- u and v -It u hold.

4. The path containing v is of the form p . .. +- v . ..) the path containing u is of

the form p -----+ ••• -----+ u ...) and no conclusion can be drawn about the

nonexistence of any edges between u and v.

Proof. Our proof has four cases. In our first case, the path from p containing v is of

the form p -----+ ••. -----+ v ... and the path from p containing u is of the form

p -----+ ••• -----+ u . .. , i.e. both vertices are "on the upslope" of the valley-free path. In

this case, the existence of the edge v -----+ u would make a path from p to u of k + 1

hops, and reduce the overall length of the path with u in it by at least 1. Therefore,

if both vertices are "on the upslope" of their respective paths, we can conclude that

v -It u.

Symmetrically, if the path from p containing v is of the form p ... +- v ... and

the path from p containing u is of the form p ... +- u . .. , (both vertices are "on the

downslope") we can conclude that v f- u.

In our third case, if the path containing v has v on the upslope and the path

containing u has u on the downslope, the we can conclude that u i-+ v, because the

existence of any edge between u and v would create a shorter valley-free path from p

through u to the endpoint of the measured path.

90

Our final case is the one in which we are stymied. If the path containing v has v

on the downslope and the path containing u has u on the upslope, then we cannot

conclude anything about the nonexistence of a relationship between u and v. No

relationship between u and v in either direction would contradict any of our

d~a. D

The final case of the theorem is perhaps surprising! It is intuitive to think that if

the path containing v is of the form p ... +---- v ... , the path containing u is of the

form p -----+ ••. -----+ u ... , and the distance from the measurement point to v is at least

two less than the distance from the measurement point to u, then we might conclude

that it must be true that v 1- u. Unfortunately for our purposes, a sub-path of a

shortest valley-free path is not guaranteed to itself be a shortest valley-free path.

We demonstrate this fact by considering the paths 1 -----+ 2 +---- v+----4 +---- 5 +---- 6 and

1 -----+ 7 -----+ 8 -----+ 9 -----+ u -----+ 11 -----+ 12. If we were to find an edge v -----+ u, we would not be

able to use it to construct a shorter valley-free path from 1 to 12, because the path

1 -----+ 2 +---- v -----+ u -----+ 11 -----+ 12 is not valley-free. Similarly, we cannot use the edge

v +---- u to create a contradiction because the path 1 -----+ 2 +---- v +---- u -----+ 11 -----+ 12 is also

not valley-free. Therefore, an edge between v and u is not forbidden by our data.

The key insight in this is that, while there may exist a shorter valley-free path to u,

there is no shorter way to get to vertex u through an uphill-only path, which is

what is required if we are to use the latter part of the shortest valley-free path from

1 to 12. The counter-intuitive properties of valley-free shortest paths led to a paper

by Curtis et al. [24] where they showed that it is possible to design topologies in

which valley-free shortest paths require traffic to take tortuous paths which, when

taken together, waste bandwidth in surprising ways as compared to ignoring edge

type and direction and simply taking the shortest path.

Our eventual goal is to take the undirected measured AS graph, discover the

directions of its edges to create the directed measured AS graph (G = (V, E)), and

91

then use all of the known paths to classify all edges into one of three categories:

existing (X), impossible (1), and possible-but-unknown (U). We make two quick

observations about these sets:

Observation 5.2.5. None of the sets have any elements in common.

xnI=XnU=InU=0

Observation 5.2.6. Each edge falls into one of the three categories, the union of

all sets is the set of all edges.

X U I U U = V x V \ {(v, v)lv E V}

We would obviously like /UI to be as small as possible, because that is exactly

the set of things which we do not know. In an ideal situation, as we added more and

more measurements, IXI and III would grow and IU\ would shrink. Eventually (and

ideally after a small amount of time), U would be the empty set, and we would

know the entire graph.

Given a set of measurements, as well as the direction of the edges, or first step

towards reconstructing the graph from which these measurements have come is to

enumerate the sets X and U.

5.3 Enumerating X, U, and I

Enumerating the set of existing edges X from data is trivial. The edges

contained in the data is exactly the set of measured edges X, and so one pass over

92

the data suffices to find the set X. If we know X, then thanks to Observation 5.2.6

we can find the remaining two sets by finding one of the sets and then subtracting

the newly found set and X from the set of all possible edges. Let us attempt to

therefore find the set of impossible edges J.

In the previous section we established a criteria for ruling certain intra-path

edges impossible in Observations 5.2.1 and 5.2.2. The algorithm for finding all of

these links is to exactly go through all the paths in our set of measurements and

enumerate all the edges on each path which should be included in J. This algorithm

is written out explicitly in Figure 22.

On each path p, the algorithm must perform a O(lpI2) process, including O(lpI2)

lookups into the set of edges X. Therefore, the total time to find all impossible

intra-path edges is proportional to the sum of the squares of all the path lengths.

To find all impossible inter-path edges, we can use the algorithm in Figure 23.

Finding impossible inter-path edges is actually somewhat of a challenge! If we

na"ively apply Theorem 5.2.4, we end up with an algorithm that runs in time

proportional to, among other factors, the square of the number of measured paths.

While the class P of polynomial-time algorithms is often used to represent the class

of problems which are efficiently solvable, this is one instance where a quadratic

algorithm is not efficient enough in practice" A given day can have 50 million

different paths, and any computation that requires us to perform operations on

more than 3 quadrillion pairs of paths will not allow us to analyze our data in a

reasonable amount of time. 1

1 (5 * 107)2 = 2.5 * 1015 equals approximately 3 quadrillion pairs of paths. On a fast processor in
2009, a quadrillion operations will take many hours, but our analysis will require much more than
one operation per path pair, and so the total expected running time of the naIve algorithm on a
modern computer would be measured in weeks. That means that it would take weeks to process a
single day's worth of data! Our rate of data analysis would be much slower than the rate of data
generation.

93

Find-:Missing-Intrapath-Edges (p, X) / / path p and set of measured edges X
I ~ {}
/ / This loop comes from Observation 5.2.1
for i ~ O... length(p) - 1

for j ~ i + 2 ... length(p) - 1
if (p[i], p[i + 1]) E X and (p[j - 1], prj]) EX

Add the edge (p[i], prj]) to I / / An "up" edge and an "up" edge
elseif (p[i],p[i + 1]) E X and (p[j - l],p[j]) tj X

/ / An "up" edge and a "down" edge
Add the edge (p[i], prJ]) to I
Add the edge (p[j], p[i]) to I

elseif (p[i],p[i + 1]) tj X and (p[j - :l],p[j]) tj X
/ / A "down" edge to a "down" edge
Add the edge (p[j], p[i]) to I

if there is a bidirectional link in the path p

/ / Find all edges that would put two bidirectional edges in p (Obs. 5.2.2)
for i ~ 0 ... length(p) - 1

if (pl:i], p[i + 1]) E X and (p[i + 1], p[i]) tj X
Add the edge (p[i + 1], p[i]) to I

if (pl:i],p[i + 1]) tj X and (p[i + l],p[i]) EX
Add the edge (pl:i], p[i + 1]) to I

else / /N0 bidirectional link
/ / Find all edges that would put a link at an illegal location (Obs. 5.2.3)
if P consists only of up edges

for i ~ O... length(path) - 2
Add the edge (p[i + l],p[i]) to I

elseif p consists only of down edges
for i ~ 1 ... length(path) - 1

Add the edge (pl:i],p[i + 1]) to I
else / / the path has both up and down edges

i ~ 1
while (p[i -l],p[i]) E X and (p[i],p[i + 1]) EX

Add the edge (p[i],p[i - 1]) to I
i ~ i + 1

i ~ i+ 1
while i < length(p)

Add the edge (pl:i], p[i + 1]) to I
i ~ i+ 1

return I

FIGURE 22. The algorithm to determine all forbidden/impossible intra-path edges
on a shortest valley-free path

94

Find-l\1issing-Interpath-Edges (P, X, I, V, paths)
for each path in the list of paths

for each vertex on the path
add to a list at that vertex the vertex's distance from the start, and
whether all edges have been customer----tprovider

for each vertex u E V
for each vertex v E V

for i f- O... Ilist[u] I

(d1, h) f- list[u][i]
(d2 , h) f- list[v][i]
/ / Now we use Theorem 5.2.4
if h /\ 12 /\ abs(d 1 - d2) ~ 2

I f- I U {(u, v)}
elseif h /\ -'12 /\ (d2 - dd ~ 2

I f- I U {(u, v), (v, un
elseif -'h /\ -'12 /\ abs(d2 - d1) ~ 2

If-IU{(v,un

FIGURE 23. The algorithm to determine all forbidden/impossible inter-path edges
among a set of shortest valley-free paths.

.- .._-_._-----------

95

We exploit the fact that, for our data, the number of data sources, s, will always

be much less than the number of vertices in the graph IVI (s ~ IVI). Using this as

an insight, we can create an algorithm that runs in O(s * 1V1 2
) after a single pass

over the input data. This is of great help, because Ipl is 50,000,000, but IVI is

between 10,000 and 30,000, and s is less than 300. To do this, we set up a list of

length s for each vertex in the graph. Then, for each data source, we add to the list

each vertex's distance from that data source and whether the path to that vertex

consisted only of customer to provider links. We can then tell whether two vertices

may be connected only by comparing their respective lists! If there does not exist a

measurement point for which those two vertices fall afoul of Theorem 5.2.4, and the

proposed edge is not already in I, then the edge should be in U.

5.4 The Extremal AS Graphs

Because the AS graph must necessarily contain all edges that exist in the

measured AS graph (X), the graph of minimum size from which our measurements

may have come is exactly the graph consisting of only those edges which our

measurements measured, and no other edges. Thus, the measured directed AS

graph (V, E) is the smallest graph from which our measurements might have come.

In the other direction, we note that, if we remove our condition that a path can only

contain one bidirectional (peering) link, then the graph of maximum size from which

our measurements might have come is exactly the directed AS graph with all

possible edges included (V, X U U).

Unfortunately, we cannot remove that requirement willy-nilly. With the

requirement that each path can only contain a single bidirectional link, we find that

the problem of discovering the maximum AS graph, which we call MAxASGRAPH,

is NP-Complete.

96

Problem 5.4.1 (MAxASGRAPH).

INSTANCE: A directed graph G = (V, E), a number k, and P, a set of directed

valley-free shortest paths of G.

QUESTION: Does there exist a graph G' = (V, E'), with E c E' and

IE' \ EI = k, in which every path in P is a valley-free shortest path in G'?

Theorem 5.4.2. MAxASGRAPH is NP-Complete

Proof To prove NP-Completeness, we must first show the problem is in NP. This

is easily done, because any graph can be verified, in polynomial time, to consist only

of vertices from paths in P, to have more than k edges, and, via the algorithms in

Figures 22 and 23 to not contradict any of the evidence from any of the paths in P.

Next, we show completeness by reducing from 3-SAT. An instance of 3-SAT

consists of a set of 3-element logical or-clauses C and a set of boolean variables

X SAT , and we ask the question of whether there is an assignment of true and false

to each of the variables in X SAT that makes all the clauses of C true. Without loss

of generality, we will restrict ourselves to instances of 3-SAT where no single clause

contains both x and ,x, as those clauses are trivially true. We transform an

instance of 3-SAT into an instance of MAxASGRAPH in the following way:

We begin with a single vertex u. Then, for each boolean variable x E X SAT in

the 3-SAT instance, we create two vertices (vx and v~x) and a path Px, consisting of

Vx -t U f---- V~x' Note that vertex u is universal and is the same u for all V x ' Then,

for each of the three-variable clauses c = (x V y V z) E C, we create three vertices

and six paths.

The three vertices we create, we call vc,x, Vc,y, and vc,z' We then create three

paths to ensure that, for the whole clause c, there is only one possible missing link.

These paths are vc,x -t U f---- Vc,y, vc,x -t U .-- vc,z, and vc,z -t U f---- Vc,y. Note that if

there is also an edge vc,x f---- u, then none of Vc,y f-- u and Vc,z ~--- u may exist due to

97

Observation 5.2.2. Our logic is symmetric, and holds no matter which edge we

consider adding along these paths.

We also create three paths to link each of our variables with the clause c

containing it. If x is a literal in clause c then we create the path v,x ---+ 1t f- Vc,x,

and if -,x is a literal in clause c, then we create the path V x ---+ 1t <-- vc"x' If we

again keep Observation 5.2.2 in mind and take the two paths Vx ---+ 1t f- V,x and

v,x ---+ 1t f- vc,x, we see that if the edge v,x f- 1t exists, then neither of V x f- 1t and

1t ---+ Vc,x may exist. We call this set of paths PSAT . The vertices along these paths

will serve as the vertex set VSAT for our MAXASGRAPH instance.

The set of edges E' is the union of all edges contained on all paths in PSAT

(which we call ESAT) with all possible edges whose existence is not conditional on

the nonexistence of another edge. To find the set of possible edges, we calculate X,

I, and U using the algorithms from Figures 22 and 23. 'E' is then equal to

ESAT U {(w,v) E UI(v,w) tj. ESAT }. We have now constructed, in polynomial time,

a set of paths PSAT , and a graph G' = (VSAT , E') in which some edges may be

missing, but the only edges missing are edges are of the form 1t ---+ v with

v ---+ 1t E ESAT ' As a shorthand, we say that if both 1t ---+ v and v ---+ 1t exist in a

graph, then 1t and v are connected by a bidirectional link.

As input to our putative MAXASGRAPH solver, we use our constructed PSAT ,

G' = (VSAT , E'), and k equal to the number of clauses plus the number of variables

(k = ICI + IXSATI)· Now we prove that there exists a satisfying 3-SAT assignment

if and only if there may be at least k edges added to E', with all paths in PSAT

remaining shortest valley-free paths.

A satisfying assignment to 3-SAT implies the existence of k = IXsATI + lei
edges by direct construction. We know by our construction method that the only

edges which may be missing are those edges which may make a link to 1t into a

bidirectional link. We assign bidirectionality from the satisfying assignment in the

98

following way: If x E X SAT is set to true, then add the edge V x f- U to the set of

possible edges. If x E X is set to false, then add the edge v,x f- u to the set of

possible edges. We know that each clause c has at least one variable x (or -,x) which

evaluates to make the clause true. Arbitrarily choose one of them and add the edge

u -----+ vc,x (or u -----+ vc"x) to our set of possible edges. At the end of this, we have

added one edge per clause, and one edge per variable. Furthermore, we know that,

thanks to our construction method, we have not added more than one bidirectional

edge to any path. Thus, we have exactly discovered ICI + /XsATI edges which may

all exist simultaneously in our graph without contradicting any of the paths in PSAT .

The possibility of adding k = ICI + IXsATI edges to E' implies a satisfying

assignment to 3-SAT by much the same logic. First we note that, by construction,

only the paths in PSAT may be missing any edges. Therefore, the newfound edges

must come solely from paths in PSAT' Furthermore, we note that the path in PSAT

for each variable x E X SAT may contain only one missing edge, so there can be no

more than IXsATI edges on paths corresponding to variables. Next we note that the

three paths containing only {vc,x Ix E c} for each clause c E C may, by construction,

only be missing one bidirectional link among the three of them. Therefore, there is

at most one missing edge for each clause c, for a maximal total contribution of edges

from these paths of ICI. Finally, we note that, again by construction, it is

impossible for both v,x f- u and vc,x f- u to be simultaneously present. Which

implies that our clause's truth values (a clause is true if it contains a bidirectional

link) and our variable assignments (x is true if V x f- U exists and false if v,x f- u

exists) be consistent. Therefore, if there are ICI + IXsATI missing edges, then

IXsATI of them come solely from paths belonging to only variables and ICI of them

come from paths corresponding only to clauses, and the satisfying assignment is

derived from the set of ICI + IXsATI noncontradictory edges in the following

manner: For all x EX, if v,x f- u is in the set then assign false to x, otherwise

99

V x +- U must be in the set and we should assign true to x. In this manner, we

guarantee that every clause can be satisfied.

Now we know that MAxASGRAPH is in NP, and 3-SAT is reducible to it in

polynomial time, and therefore MAxASGRAPH is NP-complete. D

The eventual consequence of this is that when adding peering links, we must be

careful to not create inconsistencies. Thus, our set of unknown edges U is actually

two disjoint sets U = N U C, where N is the set of links that do not conflict with

anything else, while C is the set of links that may conflict with other edges. The

size of the maximum AS graph is therefore somewhere between IXI + INI and

IXI + INI + ICI = IXI + lUI·
These extremal graphs are not necessarily very informative, however, as it is

quite unlikely that our measurements contain all edges (the minimum AS graph),

and it is also highly unlikely that all the edges that have not yet been ruled

impossible actually exist (the maximum AS graph).

5.5 Counting the Number of Missing Edges

We can count the number of missing edges in two ways. In each way we use

statistical estimation techniques, but our assumptions are subtly different. In the

first, we note that one of the things which we are not unsure about is the degree of

the vertices from which our measurements are taken. Therefore, if we assume that

the degree of our measurement points well represents the degree distribution of the

complete AS graph, we then find their average degree, multiply that by the number

of vertices in the graph, and divide by two to find the total number of edges we

should expect to see. The difference between the total expected and the total we do

see is then the number of edges from the set P of possible edges that we should add

to the graph. In this case, on 14 April 2008 we find that the average degree of our

100

229 measurement points is 220.432, and therefore the total number of edges on our

28,150 measured vertices is estimated to be 3,102,580. This, together with the

68,567 measured edges, implies that we are missing an astonishing 98% of the AS

graph in our measurements. This estimate of the amount of missing edges is out of

line with every other estimate found in the literature[60, 55], and so we are forced to

conclude that either every other researcher who has studied this problem is very

wrong, or that the degree distribution of our measurement points is not

representative of the AS graph as a whole. The second hypothesis is actually rather

likely, because Route Views has actively and successfully sought out participation

from large, central ISPs. Large ISPs tend to have more customers, which would also

increase their degree. If large ISPs were over-represented in our sample, it would

lead to exactly the phenomenon we see. This is an example of a phenomenon

studied by Lee et al. who note that different sampling methods on the same graph

can lead to extremely different conclusions about the graph's structure[46].

Our second method of estimating the number of missing edges is more refined.

Population biologists measure the size of an unknown population by capturing some

subpopulation, tagging and releasing them, and then analyzing the recapture rate.

The recaptured percentage, divided by the total captured number, yields the total

expected population. This method is called capture/recapture, and we can do

something quite like it with our data. This approach is advocated by Flaxman and

Vera, where they first used it to good effect on the AS graph in an attempt to

estimate the degree distribution of the complete AS graph[32].

Flaxman and Vera construct an estimator for graph degree distributions when

the graph data is collected via the measurement of shortest paths. An estimator is a

function which takes in the measured data and attempts to reconstruct the object

from which the data has come. They investigate several estimators over several

families of graphs, and use experimental techniques to discover the best estimator in

101

all cases. They neglect the valley-free aspect of the underlying graph, but their work

is the most apposite available, and therefore it is the base upon which we will do

our work.

To perform a naIve capture/recapture on the AS graph, we take one half of the

measurement points, and note what edges can be seen from those points (Econtrol).

We then take the other half of the measurement points, find what edges can be seen

from them (Etest), and find the intersection between the two observed edge sets.

Using this, we can infer the total number of edges we expect to see in the graph

with the equation:

t · t IEcontroll *I E test Ies Ima e = -',-----'-------'--------,'-
IEcontrol n Etestl

The capture/recapture method both puts us on a slightly firmer statistical ground

than our first method, and can also provide confirmation of the validity of the first

method.

Doing this process, we see that our measurements of the AS graph are, as

expected, not complete. According to Figure 24, we seem to be consistently missing

between 2% and 5% of the edges of the AS graph. This stands in stark contrast

with the 98% estimate from the first method, and, in turn, provides evidence that

the measurement points of RIPE and Route Views are not uniformly random.

Next we investigate the distribution of our answers. In Figure 25, we can see the

results of running dozens of capture/recapture trials to count both the number of

edges and the number of vertices. In particular, note the axes. The X-axis is the

number of vertices a given trial tells us exist, and the Y-axis is the number of edges.

As can be seen from the graph, we are extremely confident of the number of vertices

- the X range is less than 1 vertex. Unfortunately, our conclusion about the

number of edges can vary by over 500, or 1% of the total, indicating that perhaps

we need a new, better method of estimating how many edges may be missing from a

given sample. The measured AS graph from RIPE and Route Views was

102

The growth of the AS graph over time (raw & corrected)

100000 I' 'I'" I ' , , I' I'" I ' , , I ' , , I ' , , I
Edge count (corrected) +

Edge count (raw) x ~

90000 - Vertex count *

80000 -

70000 -

60000 _ ...

50000 -

:I<

...............X.~.....
1<'f..

....................~/.

#-
......................... ;1'. ...

~1t....................................... *.*' .
#-

40000 -

30000 -

20000 -

............*jji*

oJ?
.................. ········lni(~

)i(lIli(
iil~··················-

o I ,

2000

I J

2001

I! ,!, ,I

2002 2003 2004

, I

2005

I I ,I, ,I ,

2006 2007 2008
" ,J

2009 2010

FIGURE 24. Our corrected edge count

103

Edge count estimates using capter/recapture on 13 April 2008

Scafltlrplol 01 possible complete AS graph sizes from April 13, 2008

83'00

B3000

62700

82a~2·':c-71.--=''=827::-:'.'--=28=271--=.'-=28'':-:71.--=''=827::-:'.'--=28='71--=.'-=282':-:71.-:-''=82~71.1--=28=27C-CU-=28='7I-=-.' :-::'282·71.2
NUmber of expected Yerlices

g
a

§
a

~
~ :;;

82600 82700 82800 82900 83000 83100 83200

Number of edges (esllmatedj

FIGURE 25. Scatter plot and distribution of the expected missing number of vertices
and edges as proposed by naive capture/recapture.

determined, via direct survey and through modeling and simulation, to be missing

between 10% and 20% of the edges of the complete AS graph[27, 55, 60], so that is

what we will be trying to achieve with our estimation techniques.

The process we must use to not be misled by measurement error is not as simple

as our naive method, as it is exactly the network structure which determines

whether an edge will be sighted, and so our measurements of network structure are

not independent- edges do not randomly mix with the population of edges, but

remain where they are in the structure of the graph. Armed with the insight that

capture/recapture may be of use, but that we must use it very carefully, we take

another look at the results of Flaxman and Vera.

We now sketch out the estimation algorithm developed by Flaxman and Vera.

We call the underlying graph from which measurements are taken G, and let Gs be

the subgraph of G measured via shortest paths from vertex s. We use Ns(u) to

denote the set of neighbors of a vertex u in Gs , and analogically define Gt and Nt(u)

for vertex t i- s. We now define our estimate, with respect to sand t, of node degree

104

for a vertex u of G to be

otherwise

If we take the set of possible (s, t) pairs to be all distinct pairs of monitors

{(Sl' t1), ... (Sk, tk)}, then we create the following as our overall degree estimator for

v E V:

J;g(u) = median({J;gsi,ti(u) =I oo})

This estimator was measured to work over a wide range of models, including models

of the undirected AS graph, so we will be using this predictor in a domain where it

has been measured to perform well. The only wrinkle is that a close examination of

the predictor reveals that it only makes predictions on vertices with a degree greater

than two - if an AS only has one or two neighbors, then this method ignores it.

For comparison, our naIve algorithm and came to the conclusion that there were

82,881 ± 87 edges in the complete AS graph on 13 April 2008. We compare it to this

newer, more refined method, which comes to the conclusion that there are 88,601

edges on that same day (no confidence interval is provided with the second method).

The measured AS graph on that day consisted of 28, 272 vertices and 81,554 edges.

So our overall strategy is: we take AS graphs that already have their edge types

annotated and extend them by the number of edges that were surveyed to be

missing. We randomly choose edges from the sets Nand C with the caveat that we

attempt to minimize the conflicting edges we take from the set C. In doing so, we

can generate a candidate complete AS graph that is not just possible, but also

plausible. This predictor gives us even more information, however. Using the

predictor, we not only have an estimate for the overall number of edges, we actually

have an estimate of the expected degree in the undirected AS graph. Therefore, our

105

method is to generate random edges from Nand C in an effort to ensure that each

vertex has its predicted degree.

5.6 Sampling from the Set of Possible AS Graphs

Once we give up on worst-case analysis, we turn towards average-case analysis,

using the mathematics of expectation. In this section we describe three approaches

to solving our problem, which we broadly classify as lucky, frequentist, and bayesian.

We begin with the lucky method. In this method, when we analyze members of

the family of possible AS graphs, we find that they are all so alike in result that no

further statistical analysis of our output is required - all trends are immediately

clear and unambiguous. Note that we have little reason to expect that this method

will work, but its extreme ease of use dictates that we at least try it when

performing analyses to ensure that any further refinement is actually necessary and

of use. In the next chapter, we find that, surprisingly, the lucky method actually

does work in practice for the problems we care about. Therefore, the following

suggestions are largely of theoretical use, in case later analyses need greater

precision.

For the frequentist method, our goal is to discover the most likely graph from

which our data might have come, and to treat it as the graph under consideration.

Of course, given the size of our search space in which we hope to discover the most

probable graph, and given that we do not know of any broad strategy for searching

that could enable a binary-search strategy, finding the most probable AS graph lies

firmly in the domain of heuristic search.

To perform a heuristic search, we first require a heuristic. In the design of our

heuristic, we will be guided by the insight that, while our graph may be missing

some edges, no edges are missing between our measurement points and their

106

neighbors. Therefore, we have a known-and-correct degree distribution for our

measurement points. If we assume that our measurement points are chosen

independently (an assumption we will revisit later), then we can use statistical tests

to measure the likelihood that our (presumably independent) sample came from the

given graph. Using this measurement of likelihood, we use simulated annealing or

some other high-dimensional search algorithm to discover a graph of high likelihood.

Then, once we find the graph with the highest likelihood, we analyze that one graph.

The next approach, the bayesian method, seeks not the graph of highest

likelihood, but instead of set of independently gathered graphs, each with an

associated likelihood. We then perform any and all tests on each of the entire set of

graphs. In this manner, we can discover both an expected value, as well as find a

standard deviation away from that expected value.

Having loosely defined the landscape of methods, we now delve more deeply into

the frequentist and bayesian methods - the two methods which actually require us

to do something.

5.6.1 Frequentist

In the frequentist approach, we search for the most likely graph out of the set of

possible graphs, and then we analyze just that one graph. In doing this, we treat a

single graph as a stand-in for the set of possible graphs. To use this method, we

need some way of finding possible graphs (Section 5.3), we need a high-dimensional

search algorithm, and we need some way determining which graphs are more likely.

Both the frequentist and bayesian method depend on the idea that, while we

may not have knowledge of the entire graph, we do have some global knowledge

from our measurements. One example global property is that we know the degree of

each of the measurement points - because each measurement point reports all of

its shortest paths, we can be sure that the data contains all of the links between a

107

measurement point and its neighbors. Then, if we assume that the degree

distribution of the sampled points is representative of the degree distribution as a

whole, we can compare the two distributions using a statistical test. We may not

want to use degree distribution, however, as we are constructing our candidate graph

using a predictor for exactly that. As another example, we may be certain of the

distribution of path shortest valley-free paths from each of our measurement points.

We could then compare that distribution with the distribution of shortest valley-free

path lengths in the candidate graph. This method generalizes to any global property

that may be unambiguously deduced from these measurement points, but we always

need to assume that our set of measurements is representative in some way.

We now have an example of why it is better to be lucky than good - both the

frequentist and the bayesian methods will, when put in place, have an extra

assumption, that we will not need if we are lucky. To determine which graphs might

be more likely, we turn to the Kolmogorov-Smirnov test (K-S test), which is a

non-parametric statistical test (meaning it does not assume an underlying normal

distribution) designed to assess the likelihood that a given sample came from a

given distribution. The K-S test simply calculates max ID1 - D 2 1, where D 1 and D 2

are two distributions with the same domain. This test was used by Haddadi et al.

to compare different AS topology generators [38] , which means that is well-applies to

this domain. We use the test to check the likelihood of the degree distribution of the

measurement vertices (where the full degree is known) having come from the degree

distribution of the full graph.

Our full method for finding the most likely graph is:

1. Generate an initial graph by estimating the number of missing edges and

adding in that many edges from P.

108

2. Refine that graph to be more likely through repeated rounds of heuristic

search (removing edges originally from P and/or adding in new edges from P)

and the K-S test.

Note that this method does not have a well-defined end condition! This is

intentional. Choosing when to stop an on-line heuristic search is an art, not a

science. In our case, we choose to bound the number of rounds, but another equally

valid choice might be to stop once little extra improvement is seen, or to stop after a

certain amount of wall-clock time has passed.

Nonetheless, once our method has terminated is complete, we should have in

hand one of the most likely AS graphs from which our data might have come, and

then we pass this graph of for later input into our analysis routine.

5.6.2 Bayesian

Our bayesian method is easier to implement than our frequentist method, but it

requires us to do more work farther down the road. In particular, the bayesian

interpretation of the concept of expected value has to do with strength of belief.

The frequentist worldview rejects as nonsensical the weatherman who proclaims a

40% chance of rain on a given day, as there can never be multiple independent trials

of a given day, while the bayesian worldview interprets with weatherman as stating

that they have a 40% belief in the premise "it will rain on this day" .

We use this idea of "belief strength" in the following bayesian-reasoning based

method:

1. Generate a graph by estimating the number of missing edges and adding in

that many edges from P.

2. Estimate the likelihood of that graph using the K-S test.

109

3. Perform all subsequent analysis, weighting the results by the likelihood of the

input graph, using the same estimates of likelihood that we used in the

frequentist method.

4. Repeat until a large enough sample has been processed.

5. Report a weighted average of all analyzed samples.

Again, this method does not have a well-defined termination condition. Much

like with the frequentist method, deciding when to stop sampling from a space is

more an art than a science.

In this way, we both capture a larger fraction of the space of possible graphs,

and we can derive both an expected value and a standard deviation from the

repeated, weighted results of multiple analyses. In this sense, the bayesian

algorithm gives us more data, because it provides not just with an answer, but also

with a confidence interval. The downside is that it also requires us to only perform

analyses which result in an output amenable finding a mean and standard deviation

- which means that graph analysis techniques which produce something other than

a scalar values are generally not suitable for this method.

5.7 Sunlmary

Using an initial graph from CAIDA, and then the algorithm from Figure 8, we

can assign direction to each of the measured edges. Then using techniques from

statistics and machine learning, we attempt to derive an accurate picture not of the

measured AS graph, but of the complete directed AS graph from which our

measurements were taken.

110

Along the way to developing these techniques, we developed two algorithms for

enumerating all possible edges which might have been missed by our measurements.

We also proved that finding the maximum size AS graph is an NP-complete

problem. Fortunately for us, the complete directed AS graph is highly unlikely to be

equal to the maximum AS graph. We formalized this knowledge that not all graphs

are equally likely into two algorithms based on the two major schools of statistical

reasoning2
.

By using these techniques together it becomes possible, for perhaps the first

time, to accurately assess and describe the complete directed AS graph of the

Internet. In the next chapter we use our these techniques to set up an analysis

pipeline for AS graph data. We first try the "lucky" method, and only engage the

greater sophistication of the frequentist and bayesian methods if we are not lucky.

2It is interesting to note that while bayesians form a majority in the machine learning community,
they are the minority in most mathematical statistics programs. It turns out that bayesian analysis
performs really well at certain machine learning problems such as, most famously, determining
whether a message is spam or not[61], and so the bayesian viewpoint has gained much ground due
to its utility. The debate between the two camps has gone on for decades.

111

CHAPTER VI

THE EVOLUTION OF THE AS GRAPH

In which we analyze a series of network measurements in an effort to

understand how the AS graph has changed over time, and in doing so we

apply the methods of the previous chapters

In this chapter, we can finally start discovering how the AS graph has evolved

over time. To do this, we apply the pipeline developed in the previous chapter with

metrics that have been of interest in the existing literature. In order to decide what

to measure, and recalling the breakdown of graph analysis techniques in Section 2.5,

we begin with a survey of what has been measured already.

6.1 Previous Analyses of the AS Graph

Previous analyses of the AS graph have measured the changing size of the

measured AS graph, found the degree of the power-law degree-distribution of the

measured AS graph for a given date, found the clustering coefficient for a given

date, and have analyzed the eigenvalues of the graph matrix. These techniques have

become part of the standard arsenal of algorithms to throw at a problem in the

general area of what has come to be called graph mining in some communities or

network analysis in others. We will only detail the techniques from this emerging

112

field that are immediately useful to us, and the reader interested in the generic field

of graph mining is referred to the book by Brandes and Erlebach[14] or the survey

article by Chakrabarti and Faloutsos[20]. One important thing to note is that, with

only one or two exceptions, the graph analyzed has been the measured AS graph.

Researchers almost exclusively have been analyzing their measurements (the

measured AS graph, sometimes directed, sometimes undirected), rather than the

object from which the measurements have come (the complete directed AS graph).

Furthermore, many of the analysis techniques were taken from analysis methods

designed for undirected graphs and blithely used on the undirected AS graph.

Previous analyses have come to the conclusion that the AS graph is growing

(indeed, the growth study by Huston[39] was one of the main drivers for the

introduction of 32-bit AS numbers), that the AS graph is a small world graph, and

that the AS graph is a power-law graph. We re-examine the power law claim in a

subsequent section.

6.2 Network Size

The first, and easiest, question to answer about the AS graph is "How many

vertices does it have?" In Section 5.5, and Figure 25, we found experimental

validation for our previous assumption that our measurements do contain all the

vertices of the AS graph. Therefore, to measure the number of vertexes over time, it

suffices to merely count the measured vertices over time. Our measurements provide

exactly the same curve as those of Huston[39]' which provides further support for

the basic correctness of our processing pipeline implementation.

As we can see in Figures 25 and 26, the number of vertices in the AS graph has

been steadily growing over time, from an initial value of 10,000 in the year 2000, to

more than 30,000 today. The growth is quite steady, despite the dot-com boom,

113

bust, and subsequent recovery. In this, we see that the Internet infrastructure seems

to always be growing. It is possible that the state of the surrounding industry and

economy does affect the growth rate of the AS graph, but it does not seem to have

ever caused the AS graph to stop growing.

6.3 Size of the Network Core

When measuring the AS graph, we created an estimator for vertex degree. Recall

that our predictor only worked on vertices with degree greater than two. If a vertex

has a degree of two or less, then it is highly likely that the AS it represents does not

playa central role in the Internet infrastructure. To measure the size of the core, we

repeatedly remove all vertices of degree one until all remaining vertices have degree

two or higher. We call this the core of the network. Because we repeatedly removed

all vertices of degree one, we might also call this the I-core of the network.

We also calculate the 2-core by repeatedly removing all vertices of degree two or

less. Now we can compare the I-core to the 2-core to the complete AS graph, and

we can see the growth of each over time. In Figure 26, we can see that the AS

graph, the I-core, and the 2-core have all been growing over time, but the size of the

2-core is less than half of the size of the complete AS graph, which means that most

ASes are not part of the 2-core.

6.4 Degree Distribution

The degree distribution of a graph is a discrete probability distribution X, where

X [i] is equal to the number of vertices in the graph with degree i. Past studies of

this property have concluded that the AS graph degree distribution was a power-law

degree distribution. Then, more recently, it was shown that graphs sampled via

114

Size of the 1-core and 2-core of the AS graph vs the complete AS graph

, I

2010
, I J

2009
I ,

2008
I I ,

2007200620052004200320022001
o I ,

2000

90000 -

50000 -

70000 -

80000 -

40000 -

60000 -

100000 ,r....'-,..--,-......'-r,-"--rl-'~'~',,-"'-'~,-r,.,-r,-,,~,-Ir-r'~'""'---'1~,-r,-"--rl-"~'-'.....,.,~'....,-,..-,',++"""'"""'~.,.....,
Number of edges in the Complete AS Graph + +-t

Number of edges in the 1-core x +
Number of edges in the 2-core lK.......... :;+.*ir -

Number of ASes in the Complete AS Graph 0

Number of ASes in the 1-core • x~ x
Number of ASes in the 2-core o #+t... .. ·······x·.. ··

-t + >«,j<

~¥L7
rl- "*1-+ X<

···V-r#··

+~+ :Illl:~
++ ~

..................................... ++1: >#: .
+'* x0lfCA

+il<* ~ ~~..,;;.+)(i<•-.

"it/'')1(
30000 -+~:tH*x:~li(lIl*lJIIlE~JJlK .[IIliJW o

:::~····:::2==:~:::: :::::.....
.....- . .' . <JiI!Ill> Ql) till oocrJlllJD (Gllll!D co «IIlPaD 0
. o~ O3IIlaroill)(Jl)~(lJ) Oltil OJ)oooO)

,<:X:tE, , , , , , tit I , I J , ,I J' I

FIGURE 26. The size of the network core over time, for the both I-core and the
2-core.

115

shortest paths may evince a degree distribution in their samples when no such

distribution exists in the underlying graph[46]. So now things are a bit confused. To

resolve this confusion, in Figures 27 through 31 we look at the degree distribution of

a sampling of candidate complete AS graphs and find that our candidate

completions (which attempt to remove that bias) still evince a distribution that is

"heavy-tailed" .

When a distribution is power law, its graph evinces an exponential decay. In

general, all power law functions are in 8(xk), which means that, if we would like to

turn our degree distribution into a graph statistic, we can find the best-fit k for each

day and then graph k over time. Unfortunately, this would be, in a very real sense,

overfitting our data to a perceived model. As Willinger et al. noted, measurements

of the Internet are of extremely high variability, and while any and all reasonable

models of Internet connectivity suggest a heavy-tailed distribution, they do not

specifically suggest a power-law distribution. [73]. To see this principle in action, we

need only look at the best-fit line of the graph to see that fitting the data to a

straight line on a log-log plot is almost certainly the wrong thing to do. Modeling

the AS graph as strictly a power-law graph systemically mis-represents its structure,

and almost all generative models of the AS graph create a power-law degree

distribution[77]. In particular, note the kink in the middle of the graph, around the

degree of 64 in Figure 301. No model of the AS graph yet known will produce such a

degree distribution, and pretending that the kink doesn't exist because it

contradicts a clean model is the very opposite of the scientific method. Therefore,

we find that there are significant aspects of AS graph structure which are being

ignored in current power-law models.

1It is suggested by Flaxman and Vera that the kink in the graph around the degree of 64 is a
phenomenon associated with the availability of routers with 64 ports, but not 65 or more[32]. In this
model, the marginal cost of adding a 65th neighbor is much greater than the marginal cost of adding
a 64th, as a new hardware pnrchaBe is re4uired. This idea is intriguing, but should be regarded as
unproven.

100000 r-
Degree distribulion of the compktle AS gmph on 2005-4-11

Filled curya proporliJJllIllo)(~-2.15

10000 ~-...._

"!:. ---,+

1000 ~ -,t

1 ~

Degree drslribuUon or IhB complete AS graph on 2005-4·12

116

Degree distribution of the complete AS graph on 2005-4-13

100000 " " I I I I I I i I • • •• , • l r r r I I i J
Fitted curve proportional to xA-2.15 -------

10000
t

1000

100 -

10

+
+

+

10

-ttIH-tIlIHlUIlI__ "*" -1+ + ++

-11111•• :

100

+*-+++

1000 10000

Degree djstributlon at the complete AS graph on 2005·4·14 Degree astribution ollhe complele AS graph on 2005·4·15

\0000 ~"'~-
-t '<:

-',,--

1000 =-

100 =-

1 ~

1000 1000[1

1000

10 100 1000

FIGURE 27. The degree distribution of different candidate complete AS graphs on
13 April 2005 (logarithmic scale), along with the same graph for the two days prior,
and the two days afterwards.

117

0.1 IL,---~~:---~~,LOO-~·~---~~":'c:---~~lOOOO

Degree distribution of the complete AS graph on 2006-4-11

'00000 ro----~-~~~~~F;c"C"d:-:'~""~~~"~_~rtC'i6r"":;:,'-,-o '-'.~::-2.:-::'5~~~-----=J

10000 }>'"

1000 :-

100 :-

10 ~-

,,

-d

--"','t.

,.~

~
1.~~ ••.I.I.1I11

Degree distribution 01100 complear AS graph on 2006-4-12

'00000 ro----.......,----~~F=-,'~""~'~"~~.~Pro~po~rt~i6rM~Il~"'~.~~2r'5~~~~~~~~~""'_ ~

1000 t- .

100 ::--

Degree distribution of the complete AS graph on 2006-4-13

100000 .--~---,--,---,-~.~.~.~." --~~~.~.-,-.~.~.~.,.----,-,-"T'~'~'-'~'~.T'1',.---~.-~,--,.-r.-,,-,-.n.'''lJ
Fitted curve proportional to x"-2_ 15 ------- J

1000 ~ ..

100

10

...................................-i

+++++ ·r

10 100 1000 10000

Degree distribUlion of lha complete AS graph on 2006-4-14

'00000 ro----~----~~=-Fit~,""r,~~r~r,,-Op~ort-i6r.Mrll-"'- •.r2.-'5-.-_-~~-~ .",
Degree distribution or the oomplel.e AS graph on 2006-4-15

'00000 ro----~---~~~F=-.~'dr,~"'-,,~p,~opo~rt""i4rMr,Io~ •.,.•.-,-2r'5~~~~~.~~~""'.

100 ::--

1000 ::--

10000 t"<
-'.

10 t

1000 t-

1 ;., ,

10000 ;"<',.+
'>'"

", +

">'-t

~(;
~++*

FIGURE 28. The degree distribution of different candidate complete AS graphs on
13 April 2006 (logarithmic scale), along with the same graph for the two days prior,
and the two days afterwards.

Degree dislribulion ollhe complele AS graph on 2007-4-11

100000 [r---~~~~~~~~-CF::c"'c-"':-,~~~~P,~"po-''"iJ-M:-I1"-'.,-.--'.1"::5~._~_.~._:.~

118

Degree lislribulion o! the complele AS graph on 2007-4-12

100000 (r-~~~~"'~~~~~-CF=.~'d:-'~""~'-"'-Oport"""~-M:-1I"-'''-'-:C21:::5-'''''''''

10000.; J",,<.., 10000 ;--.,•.,,:

1000

10 b-

-""
'v

_......<." .

N~.
, +~-H-

'..... ... +++-+

Degree distribution of the complete AS graph on 2007-4-13

100000 iii i! iii iii I Iii Iii I i I " i I Iii IJ

Fitted curve proportional to x"-2.15 ------- j

10 100 1000

J i j

10000

Degree distribution 01100 complsle AS graph on 2007·4-14

100000 " -~~~~-~~-~~:-FltI-",-,~~-",-"po~rtiOr:na-1I-0-"--'-'5-.~""'"

Degree ~lribulion 0' the complele AS graph on 2007-4-15

100000 " -~~~"""----~~F:-,,-.d:-'-""-'-P'-OP-O'-i~'M-1I-"-'.:-'-'5~-.-.."

FIGURE 29. The degree distribution of different candidate complete AS graphs on
13 April 2007 (logarithmic scale), along with the same graph for the two days prior,
and the two days afterwards.

119

Degree distribuHon o! the cornplete AS graph on 2008-4-11

'00000 r,---~~----~~=Fill="'=,~"~~,~p,~opo~rt=IOr'~=1I=oXA-215~u~~u ~

Degree cistribulion 01 the complete AS graph on 2008·4-12

100000 r ~~--""-----~==Fj'='d=,~"~~,~p~,"po~rt=iOr:M=lI=O'"':"'-=2_=i5,.----.-~"

"'.
100000£ ...

Degree distribution of the complete AS graph on 2008-4-13

100000 , iii I , , , i i'l , , [, iii i i .,., , i , 'J
Fitted curve proportional to xA-2_15 ------- "

10--

.-.- - .

i! i
10000

..;

1000
t i i

100
i i j

-tftHil - ..----IIH...IHIII-H-II..: ... ---+--JHt---+ -------------.--.--.--

10

!! I0_1

100

1000

Degree dislribulion of the complete AS graph on 2008·4·14

100000 r,-~~~~----~~=Fjl1="'-,-'-~-p-'"po...."rtiO"""=IO="--::-2"'C.i5=-~---.."

Degree cistribulion 01 lhe complete AS graph on 2008·4·15

100000 r,-~~-~-----~=Fill="'='~"'~W~pro~port=i6na=1I=""':"'_=2.=i5C'_~-__-,":

"",
0.1 L'_~~~~-,----~~~~~~_",-"',_~'-"'-_~~~~

1 1000

10000 >,""!<,,
-"';

1000 =-

100 =-

, ~ ~-_••_.+,+ +- +

FIGURE 30. The degree distribution of different candidate complete AS graphs on
13 April 2008 (logarithmic scale), along with the same graph for the two days prior,
and the two days afterwards.

120

Degree distribution 01 lhe complete AS graph on 2009-4·11

100000 r,-~~-~---~~.,-F'C"~"~,~",~,"~,,,~opo~rt~jrir""~I-"'C'--'-2-C:15~~

Degree dis1ril;Ju1jon 01 lhe complete AS graph on 2009·4· 12

100000 r,--~~~-~---~07-'---'---r'r-,-~=-~'"
Fitted curve proporli~nal to)("·2 15 ------- •

1000 ~

10 b",

Degree distribution of the complete AS graph on 2009-4-13

100000 iii ,! iii I Iii iii iii i' iii iii J
Fitted curve proportional to xA-2.15 ------- j

10000 t-

1000

100 -

10

+

* +
fl.-- -- ------------------

0.1 Li__~_ __'_____''_~~~,~,.Li______''_----'_~_'_~~.~,..JI '_____''_.:....._'__........_',~,...i'____'__~_'__'__'__........, J..JIi
10 100 1000 10000

Degree distribution or the complete AS graph on 2009·4·15

10 F'··

100 ~

1000 r-

Degree dislribution ol,he complete AS graph on 2009-4-14

100000 r,-~~-~-----~;::Fil,..I".,-'-"'-,,-"'-Opo....,-rliOr:na---:It~O..,"--::-2::15-~..,

FIGURE 31. The degree distribution of different candidate complete AS graphs on
13 April 2009 (logarithmic scale), along with the same graph for the two days prior,
and the two days afterwards.

121

6.5 Clustering Coefficient

The clustering coefficient is an attempt to find out how many of a vertexes

neighbors are neighbors of each other. Graphs with a high clustering coefficient will

tend to have a lot of triangles, as well as a high degree of fault tolerance. The

clustering coefficient can be misleading, as all bipartite graphs have a clustering

coefficient of 0, but for graphs which are not bipartite, the clustering coefficient

serves as a common way of trying to asses the intuitive notion of how "clustered" or

"clumpy" the vertices of a graph are arranged.

The clustering coefficient of a vertex is defined to be the number of

neighbor-neighbor links which can be found around the given vertex, divided by the

number of neighbor-neighbor links which could possibly exist. If we define N (v) to

be the set of vertices which are adjacent to v in some graph G = (V, E), then the

clustering coefficient is 1{(u,w)ju,WEN(v)l\(u,W)EE}1 The clustering coefficient of a graph
[N(v)I*(IN(v)l-l)

G = (V, E) is the average clustering coefficient over all vertices in the graph, and

may calculated as in Figure 32. This algorithm for calculating the clustering

coefficient differs from the one introduced by Watts and Strogatz[71], because that

original definition was ambiguous about how to treat vertices of degree 1 and O.

Instead, we use the definition of clustering coefficient that Bu and Towsley used to

analyze the AS graph[19].

Our results, which can be seen in Figure 33 mirror the results of Bu and Towsley

on the days in which our data overlaps, and demonstrate that, despite the rapid

grown in size, the clustering coefficient of the AS graph has grown from 0.47 to .50

and then come back to a value of 0.47.

122

Vertex-Clustering-Coefficient (G = (V, E), v)
if Ineighbors(v) I :s: 1

return 0
count f-- 0
for u E neighbors(v)for W E neighbors(v) \ {u}

if W E neighbors(u)
count f-- count + 1

return count
Ineighbor s(v) I*(Ineighbors(v) 1-1)

Graph-Clustering-Coefficient (G = (V, E))
list f-- 0
for v E V

append(list, Vertex-Clustering-Coefficient (G, v))
return average(list)

FIGURE 32. The algorithm for calculating the clustering coefficient of a graph, using
the definition of Bu and Towsley.

6.6 Characteristic Path Length

Characteristic path length of a graph is the average shortest path length. It is

meant to be a robust version of graph diameter that is less vulnerable to being

thrown off by the existence of a single long path. Calculating characteristic path

length is easy, albeit a bit time consuming on large graphs - simply find all the

length of all shortest paths and take the average. Past analysis of the AS graph has

not taken direction into account, and we reproduce that analysis in Figure 34.

From this graph, we can see that that despite the huge growth of the AS graph

from under 10,000 ASes to almost 30,000 ASes, the average shortest path length has

only increased from 3.25 to 3.5. This provides strong evidence that the AS graph is

a small-world graph, which is exactly a graph in which the number of vertices is

large, but the average shortest path length is small.

Unfortunately for the relevance of that analysis, traffic in the AS graph does not

travel along shortest paths, it travels along valley-free shortest paths. Therefore, we

123

Clustering coefficient of the family of possible complete AS graph over time

0.52 " ~,~....--~,~,..-r'--'I~'~,..-r,--'Ir-r-~'~'--'I~'~,~,-'I~'~,~,',~'~,~,"~'~,~,"~'~,~,-,-~--,---,

c
OJ
'u
;::
OJ

8
OJ
c.;:
2
'"::l

<:5

+
. ~

0.5 - ·~1;;4;;!1t

048 - ,~ I~t'· .1··'t 1r1Jt':,··•*11
0.46 _ ~p................................ . + + i .
0.44 -

0.4 -

0.38 -

0.36 -

*0.34!' 1 I ! ±. , I I ! J 1 ,I, ,I, ,I, ,I, ,I, ,I, ! I

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

FIGURE 33. The clustering coefficient of the AS graph over time has grown and
shrunk from a starting and ending value of around 0.47.

124

Characteristic path length vs Time

3.5 i,---r~~-,-~,---r---.~-,-~,---r, ---.,-'''''-'''---''-,.---r,---.,-,.---r.---.,-,,---r,---.,-'''''-'''---''~-,-.",.---r,~,",-r,-,.-,-r-o

+$

'f 1'++ -Ii-

t

3.45 -

:li-+
3.4 -

3.3 -

3.35 -

f4rY-:
+

++ +++...............................+ ...
+ +-P.;.
~+

++,r-T
............................ +:t...

+ +iJ.
+ 11-

+ + ++-1'++

+ .t+++~++ t*
3.25 _ + .

2010200920082007200620052004200320022001
3.2 ,-'~,~~,-,I~,~~,----,-,~,~~,--'-,~~~,-',~,~~,----,-I~,~~,--'-,~,~~,-',~,~~,----'-,~~~,--'-,~,~--"--',!

2000

FIGURE 34. The characteristic path length of the AS graph over time

125

also calculate the characteristic valley-free path length over time, and present those

results in Figure 35.

In this figure, we can see that the valley-free path length, after 2004, has grown

very slowly. Prior to 2004, we do not have any pre-parsed data from CAIDA

available, which means that our analysis of edge-directions prior to 2004 is more

suspect, as the CAIDA graphs incorporate data which is not publicly available.

Still, from 2004 onwards, we see an increase in average valley-free shortest path

length from 3.38 to 3.51. This is only slightly greater than the characteristic path

length that neglected edge direction, and implies that policy-compliant routing has

not caused paths on the AS graph to be much larger than they would be without

needing to conform to policy concerns.

Dhamdhere and Dovrolis note that because the graph has grown tremendously

in size, but not in average path length, it must have become dense. This insight led

an analysis of the growth rates of inter-AS links, which concluded that the AS graph

has been through at least two distinct growth phases, each with distinctive

patterns [26] . This result also serves to highlight the folly of trying to fit a simple

model to the growth and connection patterns of the AS graph. Instead, we are

forced to deal with the data itself, largely absent any generative model.

6.7 Developing Our Own Metrics

In this section, we examine the concerns of the AS graph stakeholders. Once we

enumerate some ways in which the AS graph structure might contribute to these

concerns, we can then attempt to devise some metric that measures the degree to

which the structure is present.

The AS graph is, at a fundamental level, a graph of contracts over which traffic

flows. When examining networks of contracts, the relevant concerns are in the

126

Characteristic valley-free path length vs Time

4.1 -

4 -

3.9 -

3.8

3.7 -

+

+
t +

.T.. +t + ..
+ +

+ ++
+

+
+I-

+·t +
+ + + +

+
+
+

+.ff+ +
t ++ ++++

+

+

3.6 - . ..

3.5 _..

3.4 _.

3.3 I. ,I, ,I, ,I ,

2000 2001 2002 2003
!, ,I, ,I, ,I, ,I! ! I, ,I

2004 2005 2006 2007 2008 2009 2010

FIGURE 35. The characteristic valley-free path length of the AS graph over time,
CAIDA has not provided edge directions prior to 2004, so this also shows how much
of an improvement their method is over previously existing methods, which we are
forced to use in the absence of a preprocessed graph.

127

domain of policy, and one of the leading policy questions on the Internet is that of

network neutrality. There are several definitions of network neutrality, from the

exceedingly general to very specifically technical. Some definitions have to do with

blocking traffic and dropping some packets instead of other packets or the idea of

differentiated services. Some refer to the motivations of the ISPs, while others make

assumptions about core bandwidth versus edge bandwidth. Some researchers think

the whole debate foolish and consider it another name for differentiated services.

Differentiated services has a long history in computer networking, and tuning a

network for different classes of service and different service types could potentially

yield big dividends in efficiency and reliability. But network neutrality is more a fear

of blackmail than a fear of technical innovation. Of course, some proposed network

neutrality rules also end up potentially prohibiting all forms of differentiated services

- including those forms which are useful for network operators and network

customers alike, such as dropping too-old VOIP packets. If voice-over-IP packets

arrive too late, or are too old, then they will just be discarded by the end host,

because playing them would be like pressing rewind on a conversation. So network

operators can save their customers the bother of throwing away useless data and

save themselves the expense of carrying that packet by inspecting VOIP traffic and

discarding too-old packets. Unfortunately, this is in many respects indistinguishable

from anti-VOIP behavior, where an ISP could purposely degrade third party VOIP

streams in an effort to get people to purchase the ISP's voice-over-IP solution. Both

of these situations are examples of differentiated services, and arguably violations of

the ideal of network neutrality, but in one case an ISP interferes with customer

communications in order to extract more money from their customers (an economic

"rent") and in the other case, both the customers and the ISP are better off.

We should note that the technological determinists who believe that network

neutrality legislation is inherently unnecessary have at least some leg to stand on.

128

At the moment, there's a good argument to be made that the cost of offering

differentiated services is greater than the cost of simply building enough capacity

into a neutral network to make all of the issues irrelevant. If this argument is true,

and all networks in the Internet are rational independent actors, then network

neutrality may arise naturally and need no legislative backing. Economics, rather

than law, could ensure an open Internet.

All of the concerns about network neutrality generally boil down to a fear of

monopolistic behavior. The fear that, if a particular network or group of networks

was large and properly positioned inside the network, then the Internet would in

some crucial way not be the Internet as we know it, but would be a network that

was controlled, in all important respects, by that single network or group. To

distinguish this group of ASes from other sets of ASes, we call the controlling

powerful group of ASes a cabal.

Topology can amplify network neutrality concerns. An Internet service provider

can exert power only over that traffic which it originates, receives, or passes along.

Thus, an ISP can exert control over network traffic both by originating and

receiving a lot of traffic (by being large), and by having a lot of traffic pass through

it (by being well-positioned). It is possible to construct networks in which being

well positioned can be even more important than being large. Consider the bow-tie

network in Figure 36. The gray vertex is not large, but all communication between

the two large networks must go through it. The gray vertex gains control over

network communication through clever placement in the topology, and not through

its own size.

Thus, if we wish to examine how much market power an ISP can exert, then we

must examine both the ISP's size, as well as try to account for the amount of traffic

which flows through it. Implicit in that is the need to account for how traffic flows

on the network. Fortunately for us, this is a well-studied area.

129

FIGURE 36. Despite its small size, the gray vertex can control a lot of traffic due to
its position on the only path between two large ISPs

6.7.1 Modeling the Inter-AS Traffic Matrix

Through measurement, experiment, and backing theoretical model, the inter-AS

traffic matrix has been verified to conform to a gravity model[21, 29, 76, 72J. In a

gravity model, the amount of traffic flow between two entities (u, v) is proportional

to the product of their two sizes divided by the square of the distance.

fl () e (
Isize(u) I*Isize(v) I)

ow u, v E d(u, V)2

This equation is exactly analogous to the gravitational force between two bodies in

space, and hence the name. With this method, we cannot derive absolute traffic

flow quantities, as we would need actual traffic measurements in order to derive the

constants involved, but we can derive exact relative flow quantities, which is more

than enough in many situations.

130

6.8 Moving from Policy to Graph Theory

How is market power distributed among ISPs? This question is of interest to

policy makers, and the AS graph is the ideal object of study to answer the question.

Every vertex of the AS graph is an ISP, and potentially geographically distributed,

so failure of a single vertex doesn't make a lot of sense, unless the failure takes place

at not a router level, but instead at a company/policy level. Every edge of the AS

graph represents a contract between two ASes, which means that analyzing

robustness to edge failure is equivalent to analyzing robustness to contract failure.

An ISP can only influence the traffic which flows to, from, or through it. Thus, the

question of market power distribution is initially a question of how much traffic each

individual ISP can influence. If we substitute "AS" for "ISP", then we take our first

step towards stating this question as a graph theory problem on the AS graph.

In much previous research[30, 78], a phenomenon of a "rich club" of densely

inter-connected, high degree ASes was noted. This rich club, if centrally placed and

small, could serve as a bottleneck and be an example of just the kind of group

which, if all the members agreed to behave in a certain way, might influence a large

amount of Internet traffic.

In order to calculate the power of an AS, we need to know two things: the AS

traffic matrix, as well as the chosen path from every AS to every other AS.

Unfortunately, neither of these are directly measurable. Instead, we use the number

of IP addresses as a rough estimator for the amount of traffic an AS sends, we use

the gravity model to figure out the traffic quantities and destinations, and for every

valley-free shortest path for which we do not have data, we randomly choose from

among the available shortest valley-free paths on the AS graph. Now, armed with

all the data required to tackle this problem, we state it formally as: What

percentage of Internet traffic does each AS control, and what is the distribution of

this power among ASes?

131

The distribution of power is key here, because it gives insight into two things:

Firstly, the amount of traffic controllable by any given AS should not be too high,

where "too high" is a number determined by each individual's political beliefs.

Secondly, if the distribution contains large gaps, then that suggests that there may

be significant barriers to entry in the market. If there are no ASes of middling

influence, merely extremely weak ones and extremely powerful ones, then there

exists no smooth transition an AS may make on its way from being small to

becoming large, or vice versa. From the mean value theorem in calculus, we know

that to go from small to large, we must go through medium. Thus, if there are no

ISPs of medium size, it implies that it may be difficult for an AS to grow from small

size to a large size. In an effort to determine these factors, we define the problem

VERTEXPOWER.

Problem 6.8.1 (VERTEXPOWER).

INSTANCE: A graph G = (V, E), a spanning set of shortest valley-free paths Pv

for every vertex v E V from G = (V, E), a flow quantity for each path, and vertex of

interest u, and a percentage p.

QUESTION: What percentage of the overall traffic flows to, through, and from

the vertex u?

This problem is easily solved by summing all of the traffic flows along all of the

paths which contain the vertex in question, and then dividing by the total amount

of traffic along all paths in the graph. The algorithm is written out explicitly in

Figure 37(A).

The runtime of this algorithm is 0 (PL), where PL is the total length of all the

paths (PL = L:vEV L:PEPv Ipl). If we would like to find the VERTEXPOWER of every

vertex in the graph, so as to form a distribution, we call the problem

NETWORKPOWER. We note that there is a faster algorithm for NETWORKPOWER

than just performing the algorithm for VERTEXPOWER for every vertex, which

132

would be O(n * PL). Instead, we transform the VERTEXPOWER algorithm slightly

and it becomes the algorithm in Figure 37(B). That algorithm for

NETWORKPOWER is also O(PL), which is potentially a significant savings of both

time and effort.

Both VERTEXPOWER and NETWORKPOWER bear a strong resemblance to the

idea of betweenness centrality, which is a measurement that attempts to assess how

"central" a vertex is by calculating the percentage of shortest paths that contain the

given vertex. Betweenness centrality has many variants, and the methods for

calculating each of them are spelled out in a survey paper by Brandes[13], but our

situation is somewhat unique. The advantage that our methods have over

betweenness centrality is that our methods take into account the unique structure of

the AS graph, and the valley-free model. Again we have an example of a case where

the AS graph is just special enough to require the development of a new method

instead of the simple adaptation of an established one.

However, the market power of single ASes is not the only thing to worry about.

It is possible that several autonomous systems might join forces and form an

oligopoly. Thus, we not only have to worry about individual ASes behaving badly,

we must also worry about multiple ASes behaving badly in concert. This problem

becomes even more algorithmically interesting once we notice that it is incorrect to

simply add the power of two ASes in order to find the power of those two ASes

acting in concert. Consider the bowtie example again, and make a cabal of size two

consisting of the gray vertex as well as one of its neighbors. If we were to simply

add the power of each of the vertices together, then we would double-count all

traffic which goes through both vertices, which in this case includes all the traffic

between the two large ASes - yielding the possibility of a significant overcount.

Formally, we define the problem OLIGOPOLYVULNERABILITY as follows:

Problem 6.8.2 (OLIGOPOLYVULNERABILITY).

Vertex-l'vlarket-Power (P, v)
/ / P is a set of tuples (p, t) of paths p and each path's traffic t
/ / v is the vertex of the graph under test
power f- 0
total f- 0
for each (p, t) E P

total f- total + t
for every vertex U E P

if v == U

power f- power + t
t power

re urn total
(A) An algorithm for VERTEXPOWER

Network-J\1arket-Power (P, V)
/ / P is a set of tuples (p, t) of paths p and each path's traffic t
/ / V is the set of all vertices
power f- [0,0, ... 0, 0] / / The length of the array is /VI
total f- 0
for each (p, t) E P

total f- total + t
for every vertex v E p

power[v] f- power [v] + t
for each v E V

Power[v] f- power [v]
total

return power
(B) An algorithm for NETWORKPOWER

FIGURE 37. Two algorithms for assessing market power on a graph

133

134

INSTANCE: A flow quantity f, a spanning set of shortest valley-free paths Pv

for every vertex v E V from G = (V, E), and the amount of traffic that flows along

each path.

QUESTION: What is the minimum set of vertices that can control f of the flow

in G?

First, we give some bad news and prove2 that this problem is NP-Complete via

a reduction from HITTINGSET. Even worse news is that HITTINGSET is not

approximable to within a constant factor [80] , so finding an answer to our question

which might even have a bound on its correctness is quite difficult.

Theorem 6.8.3 (OLIGOPOLYVULNERABILITY is NP-Complete). Given an

instance of OLIGOPOLYVULNERABILITY consisting of a graph G, a set of paths with

flows P, and a total flow quantity f, the question of whether or not there exists a set

of vertices of size k or less which can control f flow is NP-Complete.

Proof. First, we note that given a certificate consisting of the set of vertices, we can

verify in polynomial time that the set controls at least a flow of at least f.

Therefore, the problem is in NP.

To prove completeness, we reduce from HITTINGSET. An instance of

HITTINGSET consists of set of sets S, and a set of elements U that is the union of

all the sets in S, and a parameter k. The problem is to decide whether there exists

a subset of U of size no more than k such that each at least one element from each

set in S is present.

2Thank you to Daniel Lokshtanov for valuable help with these reductions and a literature search.

-_._---------------

135

We transform an instance of HITTINGSET into an instance of

OLIGOPOLyVULNERABILITY in the following manner. We make the set of vertices

of the graph G be equal to U. For each set in S we create a path p with flow 1

consisting of the elements of the set in arbitrary order. We augment the edge set of

G with all the edges on the path. We then ask if there exists a set of vertices of size

no more than k which has a flow of at least lSI.
If there is a hitting set of S of size k, then that hitting set will, in our

formulation, also contain vertices that are on each of the lSI paths, and so will have

a total flow of lSI. Therefore, a yes answer to HITTINGSET directly implies a yes

answer for OLIGOPOLyVULNERABILITY.

If there is a set of vertices of size k that can control lSI flow, then that set must

contain vertices that are on at least lSI different paths. Therefore, the same set of

vertices will also form a hitting set of size k. Thus, a yes answer to

OLIGOPOLYVULNERABILITY directly implies a yes answer to HITTINGSET.

We have now shown that OLIGOPOLYVULNERABILITY is in NPand the

NP-complete problem HITTlNGSET may be reduced to it. Therefore,

OLIGOPOLyVULNERABILITY is NP-complete. 0

Because OLIGOPOLyVULNERABILITY is NP-complete, our next step is to

attempt to approximate the optimal answer. Unfortunately, HITTlNGSET is not

approximable to within better than a factor of 19 n of optimal unless P is equal to

NP[31]. In our reduction, the existence of a hitting set of size k directly implies the

existence of a set of size k for OLIGOPOLYVULNERABILITY, and vice versa.

Therefore, it follows immediately that any E-approximation of

OLIGOPOLYVULNERABILITY will also be an E-approximation of HITTINGSET.

Therefore, OLIGOPOLYVULNERABILITY is also not approximable to within a factor

of better than 19n (unless P = NP).

136

All is not lost however, as the dual of HITTINGSET is SETCOVER and when

there is a curve of diminishing returns, like we see in Figure 39, then SETCOVER

can be approximated to within a factor of 1 -- ~ via the greedy algorithm[75]. Let us

attempt to leverage this surprising-seeming result and look look at the dual of

OLIGOPOLYVULNERABILITY, which we call OLIGOPOLyPOWER and define as

follows:

Problem 6.8.4 (OLIGOPOLYPOWER).

INSTANCE: A graph G = (V, E)) a number of vertices k) a spanning set of

shortest valley-free paths Pv for every vertex v E V from G = (V, E)) and the traffic

quantity that flows along each path.

QUESTION: What is the maximum amount of traffic controllable by a set of k

vertices from V?

Note that the main difference between OLIGOPOLyVULNERABILITY and

OLIGOPOLYPOWER is that in the first one, we attempt to minimize the set size for

a given flow quantity, and in the second, we attempt to maximize the flow quantity

for a given set size.

OLIGOPOLyPOWER is of course still NP-complete in the general case. It is the

dual of an NP-complete problem, which means that a polynomial time algorithm for

OLIGOPOLyPOWER would immediately imply a polynomial-time algorithm for

OLIGOPOLyVULNERABILITY.

Theorem 6.8.5 (OLIGOPOLYPOWER is NP-Complete). Given an instance of

OLIGOPOLyPOWER and a flow quantity f) the question of whether there exists a set

of vertices of size k which can control f flow is NP -Complete.

However, we should point out that there is an obvious O(lVlk *PL) algorithm

for small k - enumerate all sets of size k and check if they satisfy our criteria! Even

more nicely, the greedy algorithm will well-approximate OLIGOPOLYPOWER, using

137

a result of Nemhauser et al. which states that a maximization problem that is

maximizing a monotone submodular function is 1 - .! approximable using the
e

greedy algorithm[52]. Submodularity and monotonicity are defined as in Asahiro et

al. [75] as:

Definition 6.8.6. Let 5 be a finite set, and f : 28 -----+ lR be a function with

f(0) = O.

f is called submodular if for any sets X, Y <::: 5,

f(X U Y) + f(X n Y) :::; f(X) + f(Y)

f is called monotone if for any set X <::: 5 and s E 5 \ X,

f(X U {s}) - f(X) 2: 0

To use this result, we must show that the function we are maximizing (total flow

to and through all vertices in the set) meets this criteria.

Lemma 6.8.7. OLIGOPOLYPOWER is submodular. That is, if we define f to be the

flow to and through a given vertex set, then, for all sets of vertices X, Y <::: V, it is

true that f(X U Y) + f(X n Y) :::; f(X) + f(Y).

Proof. e prove this by noting that f(X) + f(Y) 2: f(X U Y) because some flow goes

through vertices of both and X and Y. The "double-counted" flow in f(X) + f(Y)

that goes through both X and Y is at least equal to f(X n Y), although it may be

greater than that. To show this, consider the case where X -::f Y. In this case, then

some flow gets double counted because it comes from a member of X \ Y and flows

to a member of Y \ X. This flow will not necessarily be included in f(X n Y), but it

will be counted in both f(X) and f(Y). All of which is to say that

138

j(X) + j(Y) - j(X n Y) 2: j(X U Y), which immediately implies our conclusion

that j(X) + j(Y) 2: j(X U Y) + j(X n Y) D

Lemma 6.8.8. OLIGOPOLyPOWER is monotone. That is jor any set X ~ V and

SEV\X! j(XU{s})-j(X)2:0

Proof. Adding a vertex to a set will never decrease the total flow to and through a

set, as long as all flows are positive (and they are). That is, j(X U {s}) 2: j(X) for

all X ~ V and s E V. This immediately implies our desired conclusion. D

These two lemmas, taken together, imply that the flow function in

OLIGOPOLyPOWER is both submodular and monotone, and therefore the results of

Nemhauser et al. apply, and the greedy algorithm will achieve an approximation

ratio of at least 1 - ~. Therefore, after performing all of our reductions and analysis,

we find that OLIGOPOLYPOWER is the question which we may best answer, and to

answer it, the greedy algorithm is the algorithm of choice. This final algorithm in all

its simplicity is enumerated in Figure 38.

Unfortunately, calculating the influence for everything would be cost-prohibitive,

as enumerating the set of all paths is O(V2 *p), where p is the length of the longest

valley-free shortest path. This run time, while technically in P, is not in-practice

fast enough. However, we have gone as far as we can with theory-based speedups.

In the next sections, we look at speedups and lower bounds that are based on

specific features of our input data.

6.8.1 An Easy Lower Bound on Oligopoly Power

As we established in Section 6.8, determining the maximum influence that can be

exerted by a cabal of ASes is NP-complete. However, our proof of this fact hinged

011 the idea that an AS can exert power not just on the traffic it sends and receives,

but also on the traffic it forwards. If we restrict ourselves to only considering the

139

Oligopoly-Power (P, k, G = (V, E))
/ / P is a set of tuples (p, t) of paths p and each path's traffic t
/ / k is the number of vertices we would like to put in our answer set
/ / G is the graph
total f-- °
repeat k times

power f-- [0,0, ... 0,0] / / The length of the array is IVI
for each (p, t) E P

for every vertex v E p
power[v] f-- power [v] + t

v f-- the index of the maximum element of power
total f-- total + power [v]
for each (p, t) E P

if v E p
remove (p, t) from P

return total

FIGURE 38. The greedy approximation algorithm for OLIGOPOLYPOWER.

traffic an AS sends and receives, then our analysis becomes a lot easier, and can

serve as a lower bound for our connectivity-sensitive analysis. In particular, we note

that connectivity will never reduce the amount of traffic originated by an AS - the

only thing that connectivity affects is the amount of traffic that goes through an AS.

Therefore, to establish the power of a cabal that refuses to influence traffic

across their network, we can simply take the most powerful ASes in order of their

expected traffic loads. There are only two things we must be careful of when

performing this analysis. This first thing, is that we should be careful that we do

not double-count any netblocks; the netblock 10.2.5.0/24 is completely contained

inside the netblock 10.0.0.0/8. If an AS were to announce both blocks, we should

discard 10.2.5.0/24 in an effort to not double-count the number of addresses

controlled by an AS. The second note is that we should not entirely ignore topology.

In particular, sibling-sibling links indicate that the two ASes are actually controlled

140

by a single entity. In that case, we should treat the two ASes as a single AS for the

purposes of cabal size.

Thus, our algorithm for connectivity-insensitive oligopoly power is as follows:

1. If two ASes are linked by a sibling-sibling edge, combine those two ASes into a

single AS.

2. Count the total number of IP addresses controlled by each AS, being careful

not to double-count.

3. The power of a cabal of size k, is the power of the k ASes that control the

largest number of IP addresses.

We run this algorithm for a single day (13 April 2008) and graph the results in

Figure 39. From this graph, we see that the situation, even without considering the

topology, is potentially quite dire! The power of a small group of ASes grows so

dramatically that we must resort to a logarithmic scale to see the dramatic initial

growth in power.

On that day, 10% of ASes cont~olled 90% of Internet traffic. And the problem

was even worse as we zoom in on the logarithmic scale. Looking there, we see that

1% of ASes control 40% of Internet traffic! These results are even more surprising

when we recall that we have not yet taken topology into account at all - the only

topological concern we addressed was the sibling edges, where we considered ASes

that were linked via a sibling edge to be part of the same umbrella organization.

Based on that single day, we note that a small number ASes can control a

significant amount of Internet traffic. Has it always been this way, or has it been

getting worse over time? In order to answer this question, we track the power of a

cabal of ASes of size 18 over time to see if the power of a cabal of that size has been

growing or shrinking. We chose 18 simply because on the day we tested, a cabal of

size 18 could control 30% of Internet traffic. Note that we would expect a fixed-size

- - ------ ------------------

141

Topology-free lower bound on cabal size versus power

Q) 0.7
:0
.!'1e 0.6E
0
()

()

~
0.5

'5
E 0.4
Q)
()

Qj
0.30-

0.2
+++

0.1
++- ..
+
+

0'
0 0.1 0.2 0.3 0.4 0.5 0.6

Percent ot ASs in the cabal

0.7 0.8 0.9

Topology-free lower bound on cabal size versus power

0.1

... -

, -

0.001 0.01

Percent of ASs in the cabal (log scale)

0.0001

+

.1

++
..................... ,,++

++
+

++ .

+

0.9 --..

0.8 _..

Q) 0.7 _...

:0
.!'1e 0.6 -E
0
()

()

~
0.5 _...

'5
E 0.4 -
Q)
()

Qj
0.3 -0-

0.2 _..

0.1 _.

0 !

le-05

FIGURE 39. Topology-free measure of cabal size versus cabal power for the AS graph
on 13 April 2008

142

cabal to be more powerful in the past, because the network itself was smaller then.

In an effort to counter-balance this objection, we note that 18 ASes is .06% of active

ASes on the day that we measured. Therefore, as well as tracking the power of a

fixed number of ASes, we also track the power of a cabal consisting of .06% of active

ASes.

When we look at this number over time, we see that the power of an oligopoly of

.06% of ASes has actually been increasing over time. Not by much, but by a small

amount. In particular, in the beginning of 2004, a cabal of that size could only

control 25% of the traffic on the Internet, while in 2008 it could control 30%, and by

2009, a cabal of just .06% of ASes could control almost a third of Internet traffic.

The full graph of these changes from 2004 to now can be seen in Figure 40. Looking

at this graph, we find that even when we largely neglect issues of topology, there

has, over time, been an increase in the power of a fixed percentage of ASes.

In Figure 41, we see the power of 18 ASes over time.

This topology-insensitive measurement will serve as a lower bound on the

centrality of the network, because taking topology into account will strictly increase

the amount of traffic an AS can control, and will never decrease it. In the next

section we examine how much greater the OLIGOPOLyPOWER becomes when

connectivity patterns are taken into account.

6.8.2 An Approximation of Oligopoly Power

Our algorithm for OLIGOPOLYPOWER (Figure 38) runs in time proportional to

k times the total length of all the shortest paths in the graph. This is at least

O(k *V 2), and, depending on this average shortest path length, could be much

higher. Despite being polynomial, this algorithm takes too long in practice to be

useful. Can we approximate our approximation? While the general case appears

difficult, the origins of traffic flow in the AS graph are, as we saw in the previous

143

The topology-free oligopoly power of .06% of ASs

0.5 I I iii, I • Ii, iii' , , I I I , I I I I ' i ••• I • , iii iii i , iii I • I i I I , I [J j iii j I I I j I I I I

0.4 -

0.3 -

+++ + + *' -fit- + +++ /
+-111-

0.2 -

0.1 -

..-

a I , , , , , I , I , I , I , , , ! ! I , , '" ! , , , , , I , , , I , I , , , I , I , , •• , I. , • , , I ! , , , , I, , , I , !

2004 2004 2005 2005 2006 2006 2007 2007 2008 2008 2009 2009

Date

FIGURE 40. The topology-free oligopoly power of .06% of the AS graph over time

144

Topology-free oligopoly power of a cabal of size 18 over time

0.7 r,~~r-r~~~TI-,~,-,-,--;,,-r'~.--;''-r\~,~~,---'-,~,~,~,'1-'-'-'~'---'I-,~.-,-.--'I,-r~~-r-~~--,

+

0.2 _.

0.6 -
-0
~
<5
-E
8 0.5-
C1l
.0
Cco
()

1ii 0.4­
~
()

~
.::-
a; 0.3-
E
.$
.5:
'0
c::
o

~
u::

0.1 -

+..... 'i+

+#1J-;It

-++-

o 1 •

2000 2001
J ,

2002
I ,

2003
! I

2004
, I 1

2005
, I I

2006
, I !

2007
, I ,

2008

, I ,

2009
, I

2010

FIGURE 41. The topology-free oligopoly power of 18 ASes over time

145

section, very clustered around relatively few ASes. Therefore, we can simply take

the ASes that send and receive, say, 90% of Internet traffic, and if we only calculate

the traffic flows for those ASes, we can be confident that our results, in the worst

case, are off by no more than 10% of the total Internet traffic flow.

Note that while we only calculate the flow through other ASes from the large

ASes, we will still take into account the flow sent and received by the smaller ASes.

We simply neglect to calculate the flow through the AS graph that originates from

the smaller ASes.

Several other data-based facts allow for other speedups. For example, there is a

very large number of edges which may be present in the graph. Therefore, rather

than enumerating the set of possible edges, it turns out to be faster to simply guess

an edge at random, and then check whether that edge is a possible edge. For a

situation where the set P is very small, this algorithm could take much more time

than the deterministic algorithm, but using this method on our data yields a

significant speedup in practice.

The in-practice fastest algorithm for approximating OLIGOPOLyPOWER that we

use is as follows:

1. Generate the measured AS graph from combination of CAIDA data and

Route Views and RIPE as in Chapter III.

2. Augment the measured AS graph by the number of edges indicated by the

capture/recapture method in Chapter V.

3. Find the ASes that send and receive the most traffic, as measured by the

number of IP addresses they control.

4. Take enough ASes from this set to control the desired percentage of Internet

traffic.

146

5. Calculate the traffic flow from each of these ASes to and through every other

AS by finding a valley-free shortest path for each of them and using the

gravity model as outlined in Section 6.7.1. Make sure to save the contribution

of each source AS to each other AS's total overall flow.

6. Now, select the AS that controls the greatest amount of traffic, and add it to

the cabal. Update the flows through every other AS to reflect the fact that the

traffic from, to, and through the newly selected AS is now already controlled.

Repeat this process until the cabal is of the desired size.

7. Report the power controlled by the cabal, and the likelihood of the graph from

which we derived said cabal.

This can be seen, in pseudocode, in Figure 42. If we choose to propagate only,

say 90% of Internet traffic, then we can be sure that this algorithm will

well-approximate OLIGOPOLyPOWER with an approximation ratio of (1 - ~) * .9.

Using this modified version of the algorithm, we find that the power of a small

cabal has been growing over time. This is, of course, not a surprise, as the

topology-insensitive lower-bound on OLIGOPOLYPOWER also indicated an increase

in the power of a small cabal.

The final graphs, to which this dissertation has been leading, are in Figures 44,

45, and 46. In these graphs, we see the oligopoly power versus oligopoly size for a

single day, just like in Figure 39, and we see the growth in power of a cabal of .06%

over time, and the growth in power of a cabal of size 18 over time, just like in

Figure 40. As we can see, the growth of the power of a cabal is even faster once the

topology is taken into account. The power of a group of size 18 has stayed relatively

constant, even as the graph has grown, while the power of a group of 0.06% of ASes

has grown over time. Thus, we see no evidence that power is dispersing, but not

very strong evidence that power is centralizing. Rather, we find that through all of

147

Greedy-Cabal-Power-Approximation (G = (V, E), S,p, k)
/ / G = (V, E) is the graph from one of the methods of Section 5.6.2
/ / S is the traffic to/from each vertex in V
/ / p is the percentage of flow
/ / k is the cabal size

/ / Perform UNION-FIND for all sibling edges
for each v E V

MAKE-SET(v)
for each (u, v) E E

if EDGE-TYPE(U, v) = sibling
UNION(U, v)

/ / Calculate the amount of traffic each vertex sends and receives
sizes +- {}
for each v E V

U +-FIND(V)
sizes[u] +- 0

for each v E V
U +-FIND(V)
sizes[u] +- sizes[u] + Sv

/ / Find the set through which the largest amount of traffic flows
Cabal +- {}
flow +- 0
for i = 0 ... k

v, f +- VALLEY-FREE-BFS-FLOW(G, sizes, Sources, Cabal) / / Figure 43
Cabal +- Cabal U {u E V I FIND(U) = FIND(v)}
flow +- flow + f

return flow

FIGURE 42. The algorithm for finding a lower bound on Oligopoly Power

148

Valley-Free-BFS-Flow (G, sizes, Sources, Cabal)
total f- L:vEV size[v]
missingtotal f- total - L:vESources size[v]
/ / F is a list where Fv is the uninfluenced flow through v
for v E V

w f-FIND(V)

if w E Sources U Cabal
Fw f- 0

else / / Keep track of the flows that we won't be testing with BFS
Fw f- sizes[w] *missingtotal/total

for start E Sources \ Cabal
Q f-CREATE-QUEUE()

upseen f- {} / / The set of vertices we have seen on an upwards-only path
seen f- {} / / The set of vertices we have seen on any path
ENQUEuE(start, "up", {})
while NOT-EMPTY(Q)

v, direction, path f- DEQUEUE(Q)

if v E seen 1\ v E upseen
Next-while / / Don't revisit already-seen vertices

if path n Cabal = {} 1\ v tj. seen / / Only augment F for uninfluenced flow
for u E path

w f-FIND(U)

Fw f- Fw + size[start] * size [vJltotal/d2 (start, v)
/ / Make sure the search continues to be Valley-Free
if direction = "up" 1\ v tj. upseen

upseen f- upseen U {v}
for u ENEIGHBOR(V, G)

if EDGE-TYPE(u, v) E {customer, sibling}
ENQUEUE(u, "up" , path U {v})

else
ENQUEUE(u, "down" , path U {v})

elseif direction = "down" 1\ v tj. seen
for u ENEIGHBOR(V, G)

if EDGE-TYPE(U, v) E {provider, sibling}
ENQUEUE(u, "down" , path U {v})

seen f- seen U {v}
return the maximum flow, Fv , and the vertex v with that flow

FIGURE 43. An algoritbm for finding the vertex that can influence the greatest
amount of uninfluenced traffic. The runtime for this algorithm is O(V2E) in the
worst-case, but, because our input data is far from the worst case, is faster than a
naIve algorithm on our data.

149

Oligopoly power on 13 April 2008

0.9 _.

0.8 -

0.7 _.

;;: 0.6­
:2
a
c: 0.5 - .
o

~
It 0.4-

..-

0.3 -

0.2 -

0.1 - +

+

0.10,001 0.01

Number of ASes in the cabal

0.0001
o ''-----~-~~,'-'--'-~-~~,.1.-1-~-~~,.1.-1-~-~~,-<-,_~_~----L..J

1e-05

FIGURE 44. An approximation of OLIGOPOLyPOWER on 14 April 2008.

its rapid growth, the Internet is, on an absolute scale, no more vulnerable to

oligopoly control than it ever was. On a relative scale, the power of a small

oligopoly has grown, but that is because of a changing definition of "small" , instead

of a changing graph structure. Of course, both of these analyses presume that the

value of the Internet has been held constant over time. It is quite possible that a

level of oligopoly vulnerability that used to be acceptable is no longer acceptable if

the Internet has grown in importance over time.

Despite dramatic growth, OLIGOPOLyPOWER on the AS graph has changed

very little. The only sense in which power has changed is that the group of ASes

----- ---------------

150

Topology-sensitive oligopoly power of a cabal of size 18 over time

+

+ *

0.4 -

0.5 -

++

+-1+ +
+:t it- *+++ f

+ +

+

0.2 _...

0.6 -
"0
.!!!
g
c:
8
OJ
.c
c:
~
1ii
~
u

~
ill 0.3-
E
.!!!
.E:
'0
c:
o

~
It

0.1 -

o I ,

2000

, , ,

2001
! ,

2002
, r ,

2003

[,
2004

, , ,

2005
, , 1

2006
I , ,

2007

I , ,

2008
1 I

2009

FIGURE 45. An approximation of the OLIGOPOLyPOWER of 18 ASes over time.

151

Topology-sensitive oligopoly power of a cabal of size .06% over time

0.7 I , , I , , , I , , I , , I , , , I , , , I

+
+ ...-

0.6 -
""0

++ -f+:\:1j:.!!1
12 + +~
"E +

8 0.5 - +

Q) +
.0 -tr+ tV -tr
c:
Cll

* "'+ -fI-++
+ +

'-' * +
1ii 0.4 -
oS + +*#'-' + + :t +i: + -i\-+ +~ ++ + +
Cll + + +t+:l:.p +
Ql 0.3
E +
.'!l
EO
0 0.2 -c:
0

U +
~ +

LL +
0.1 -

0' , , I , , I , , I , I , , I I , , , , I , , I

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

FIGURE 46. An approximation of the OLIGOPOLyPOWER of 0.06% of ASes over
time.

..._------ -----

152

that can control Internet traffic has failed to grow along with the AS graph itself.

We therefore must conclude that the AS graph is no more vulnerable to oligopoly

control than it ever was.

6.9 Chapter Summary

We have, finally, actually measured the properties of the AS graph. We found

that many classical graph analysis techniques glossed over important features of the

AS graph. We then developed our own metric, designed to discover whether

Internet traffic has been centralizing over time, and found that the power of a small

cabal of ASes has grown relatively, but not absolutely - it has held constant, even

as the AS graph has trebled in the number of vertices and quadrupled in the

number of edges. As a preliminary result, this is quite interesting, and shows off the

potential of these new analysis methods to shed light on the AS graph.

The new metric we used was actually NP-complete to calculate, but we were

able to use various combinations of theoretical approximation algorithms and

data-specific speedups to actually calculate the graph properties in a reasonable

time. We hope that this metric, a variant of betweenness centrality, can be useful in

other contexts involving shortest paths, as very little of our derivation was specific

to the AS graph.

153

CHAPTER VII

SUMMARY

Where we bring it all together and review what has been accomplished

The Internet, which is a very specific internet, has many different layers, each of

which could be thought of as "the Internet graph". We concentrated on the layer

which best reflected the social aspect of the Internet - the AS graph. In the AS

graph individual networks, or autonomous systems (ASes), are represented by a

single vertex. Two networks are linked to each other if there exists a contract

between them to exchange traffic. Broadly speaking, there are three types of

contract that can exist between ASes: peer-to-peer, sibling-to-sibling, and

customer-to-provider. That last type of edge is a directed edge from the customer to

the provider.

Internet traffic on the AS graph flows in a very particular way. We model this

with the valley-free model of Internet routing. The valley-free model, as detailed in

Chapter II, restricts both the flow of traffic, and also the available data. When we

attempt to model the process of deciding from where in the network our data should

be gathered, we find that the problem is NP-complete, although there exist graph

classes in which individual models may be efficiently computable.

154

The incompleteness of our data informed our analysis in Chapter V, where we

delved into methods both to add direction to any undirected edges, and to decide

how many edges were missing from the AS graph at a given time. We ended up

enumerating three methods: lucky, frequentist, and bayesian, but in subsequent

analyses in Chapter VI, we found that we were fortunate enough to be able to apply

the much easier lucky method.

The analyses of the AS graph in Chapter VI were both a driving force behind

the previous chapters on parsing and incompleteness, as well as being a nice

example of what can be done with these techniques. We analyzed the AS graph and

found that its degree distribution was fat-tailed, but not necessarily power law. We

also found that its clustering coefficient was now the same as in 2004, but it had

varied significantly between then and now. We also analyzed just the size of the AS

graph, and in doing so found that the number of ASes (vertices) has trebled in the

past 7 years, while the number of edges has more than quadrupled.

We ended the chapter by developing a new graph metric, related to the idea of

betweenness centrality, that tries to express the proportion of total Internet traffic

that a single AS or a group of ASes might control. When we did this, we found that

18 ASes could control 45% of Internet traffic, and that this number has remained

constant over time, despite the rapid growth in the AS graph.

7.1 Future Work

Although there could be more interesting graph classes for the graph cover

problems in Chapter IV, the greatest amount of future work lies in building on the

work in Chapter VI. In particular, analyzing the structure of the AS graph to

determine exactly how the graph could grow so much without distributing traffic

flows more than it has. Other work could analyze the makeup of the group of 18

155

ASes to attempt to determine whether it was the same 18 ASes over time, or

whether new ASes were gaining and losing power.

Another aspect that was not considered in the dissertation was the fact that

ASes do not often cross international boundaries, and therefore the concentration of

power within a country might be very different than the concentration of power on

the AS graph as a whole. Yet another avenue might be to investigate how much of a

cabal's power remains even if we allow affected traffic to attempt to route around

the cabal if possible.

7.2 In Conclusion

In this dissertation, we have described how to process AS graph data, analyzed

the graph theoretic problems that arise when you consider the measurement biases

and methods of AS graph data, developed methods to counteract bias in our data,

developed a graph theoretic measure of oligopoly market power, and applied our

measure to our data in a statistically valid way.

Along the way, we ended up finding out that most interesting questions we

might ask of the AS graph have intractable solutions: sometimes the problems were

NP-complete, but other times the sheer size of our data made a mockery of the

traditional idea that polynomial was the same thing as solvable. The question of

network neutrality/oligopoly power, however, can be efficiently approximated when

we take into account both the structure of the problem's solution in the general

case, as well as the clustering properties of the AS graph data.

Most of the techniques developed in this dissertation are modular by design,

which means that they could hopefully be used in other contexts, or to analyze

other questions of AS graph data. In this way, we hope to have served not just the

interests of those who are curious about network neutrality and the distribution of

156

traffic flows on the Internet, but also lent a helping hand to other researchers who

might be faced with similar problems in a different domain.

157

APPENDIX

CODE

Code for Parsing New-Style Routing Table Dumps

/*

/*

*/

*/

RIPE NCCCopyright (c) 2002

Parts of this code have been engineered after analiyzing GNU Zebra'S

code and therefore might contain declarations/code from GNU

Zebra, Copyright (C) 1999 Kunihiro Ishiguro-. Zebra is a free ronting

software. distributed under the GNU General Public License. A copy of

this license is included with libbgpdump.

THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING

ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS; IN NO EVENT SHALL

AUTHOR BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY

DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN

AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF

OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

All Rights Reserved

static canst char RCSID[] = "$Id: bgprocess.c,v 1.2 2008-03-24 08:52:06 peter Exp $U;

/*

Permission to use, copY. modify. and distribute this software and its

documentation for any purpose and without fee is hereby granted, provided

that the above copyright notice appear in all copies and that both that

copyright notice and this permission notice appear in supporting

documentation, and that the name of the author not be used in advertising or

publicity pertaining to distribution of the software without specific,

written prior permission.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

158

do

"CONNECT" ,

lIIDLE" •

bgprocess. c

Dan Ardelean (dan~ripe.net) and then Peter Boothe (peter~cs.uoregon. edu)

IIACTIVE" ,

II OPEN_SENT II ,

!(Unknown ll ,

bgpdump_close_dump(my_dump) ;

return 0;

} while(my_dump->eof==O);

my _entry=bgpdump_read_next (my_dump) ;

if(my_entry!=NULL) {

process (my_entry) ;

bgpdump_free_mem (my_entry) ;

if (my_dump==NULL)

printf(IIError opening dump file ... \n ll
);

exit(t);

if (argc>l) {

my _dump=bgpdump_open_dumpCargv [1]) ;

else {

my_dump=bgpdump_open_dumpC"dumps/updates .20020701.0032") j

void process (BGPDUMP_ENTRY *entry) j

void show_attrCstruct attr *attr);

void show_prefixes(int count ,struct prefix "'prefix);

#ifdef BGPDUMP _HAVE_IPV6

#include "bgpdump_lib.h ll

#include <time.h>

int mainUnt argc. char argv) {

BGPDUMP *my_dump;

BGPDUMP_ENTRY *my_entry=NULL;

void shoW'_v6_prefixes(int count, struct prefix "'prefix);

#endif

Filename

Module Header

Author

#include <stdlib.h>

#include <netinet/in.h>

#include <sys/socket .h>

#-include <arpa/jnst.h>

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93 "OPEN_CONFIRM",

94 "ESTABLISHED",

95 NULL

96 };

97

98 char +bgp_message_types []

99 "Unknown" J

100 "Open".

101 llUpdate/Withdraw lt
•

102 UNotification".

103 "Keepalivell

104 };

105

106 char +notify_codes [] = {
107 lIUnknown" •

108 "Message Header Error".

109 "OPEN Message Error",

110 "UPDATE Message Error ll
•

111 ItHold Timer Expired".

112 "Finite State Machine Error" J

113 "Cease"

114 };

115

116 char +notify_subcodes[) (12) = {

117 { NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, ~'ULL },

118 /+ Message Header Error */

119

120 II None II J

121 lIConnection Not Synchronized".

122 HBad Message Length",

123 "Bad Message Typel!.

124 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL

125 },

126 /* OPEN Message Error +/

127

128 II None 1I J

129 "Unsupported Version Number".

130 "Bad Peer AS" J

131 "Bad BGP Identifier".

132 "Unsupported Optional Parameter".

133 "Authentication Failure tl
•

134 "Unacceptable Hold Time".

135 NULL, NULL, NULL, NULL, NULL

136 }.

137 /+ UPDATE Message Error +/

138

139 lINone".

140 "Malformed Attribute List ll
,

141 "Unrecognized Well-known Attribute ll
•

142 "Missing lJell-knO'iffi Attribute ll
•

143 "Attribute Flags Error".

144 "Attribute Length Error".

145 "Invalid ORIGIN Attribute".

146 .tAS Routing Loop".

147 "Invalid NEXT_HOP Attribute 11 ,

148 ItOptional Attribute Error".

159

149 "Invalid Network Field",

150 "Malformed AS_PATH"

151 },

152 1* Hold Timer Expired */

153 { ItNone lr
, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL },

154 /-. Finite State Machine Error */

155 { "None", NULL, NULL, NULL, NULL, NULL, NULL, NULL. NULL, NULL, NULL. NULL }.

156 1+ Cease ./

157 { "None", NULL, NULL, NULL. NULL. NULL. NULL, NULL, NULL. NULL. NULL, NULL}

158

159 };

160

161 void process (BGPDUMP _ENTRY *entry) {

162 char prefix [BGPDUMP_ADDRSTRLEN], peer_ip [BGPDUMP _ADDRSTRLEN] ;

163 int i;

164 BGPDUMP _TABLE_DUMP _V2]REFIX *e;

165

166 if(entry->type == BGPDUMP_TYPE_ZEBRA_BGP

167 && entry->subtype == BGPDUMP_SUBTYPE_ZEBRA_BGP _MESSAGE

168 ttl entry->body .zebra_message. type == BGP _MSG_KEEPALIVE)

169 return;

170 if(entry->type == BGPDUMP_TYPE_ZEBRA_BGP

171 && entry->subtype == BGPDUMP_SUBTYPE_ZEBRA_BGP _MESSAGE

172 ttl entry->body.zebra_message.type == BGP _MSG_OPEN)

173 return;

174 if(entry->type == BGPDUMP_TYPE_ZEBRA_BGP

175 && entry->subtype == BGPDUMP_SUBTYPE_ZEBRA_BGP _MESSAGE

176 ttl entry->body .zebra_message. type == BGP _l'lSG_NOTIFY)

177 returnj

178 if (entry->type == BGPDUMP_TYPE_ZEBRA_BGP

179 && entry->subtype == BGPDUMP_SUBTYPE_ZEBRA_BGP_STATE_CHANGE

180 &:.& entry->length == 8)

181 return;

182

183 sWitch(entry->type) {

184 case BGPDUMP_TYPE_MRTD_TABLE_DUMP:

185 if(entry->subtype == AFI_IP) {

186 strcpy(prefix 1 inet_ntoa(entry->body .mrtd_table_dump.prefix. v4_addr» j

187 strcpy(peer_ip, inet_ntoa(entry->body .mrtd_table_dump.peer_ip. v4_addr» ;

188 #ifdef BGPDUMP_HAVE_IPV6

189 else if (entry->subtype == AFI_IP6)

190 inet_ntop(AF _INET6. Q:entry->body .mrtct...table_dump.prefix. v6_addr, prefix,

191 sizeof(prefix»;

192 inet_ntop(AF_INET6 1 &entry->body .mrtd_table_dump.peer_ip. v6_addr J peer_ip,

193 sizeof (peer_ip» j

194 #endif

195 else {

196 *prefix = '\OJ;

197 *peer_ip = 1\0';

198

199 print! ("%s/%d II ,prefix.entry->body .mrtd_table_dump.mask) ;

200 sho'W_attr(entry->attr);

201 break;

202

203 case BGPDUMP_TYPE_TABLE_DUMP_V2:

204

160

161

printf("Error: BGP table dump version 2 entry with unknOlm sUbtype\n") j

break;

if (e->entries [1] .peer->afi == AFI_IP){

inet_ntop(AF_INET. &e->entries [1] . peer->peer_ip, peer_ip, INET6_ADDRSTRLEN) j

printf (U%s\n". attr->aspath->str) ;

int i;

char str [lNET6_ADDRSTRLEN] ;

if(attr != NULL) {

if ((attr->flag t ATTR_FLAG_BIT(BGP_ATTR_AS_PATH)) ! =0)

else printf (t'\n") ;

VDid show_prefixes(int count,struct prefix .prefix)

int i;

for(i=Q; i<count; i++)

printf(lI %srl.d\n ll ,inet_ntoa(prefix[i] .&ddress.v4_addr) ,prefix(i] .len);

void show_attr(struct attr .attr) {

default:

printf ("TYPE Unknown %d\n", entry->type);

show_attr(entry->attr) ;

break;

show_attr(e->entries[i] .attr);

sprintfCpeer_ip, liN/A, unsupported AFU);

} else

#endif

else if (e->entries [1] .peer->afi == AFI_IP6){

inet_ntop(AF_lNET6. &e->entries [i] . peer->peer_ip, peer_ip, INET6_ADDRSTRLEN);

forei = 0; i < e->entry_countj i++){

printf("%s/%d It ,prefix,e->prefix_length);

#endif

} else {

#ifdef BGPDUMP_HAVE_IPV6

} else if (e-)afi == AFI_IP6) {

inet_ntopCAF_INET6. &e->prefix. v6_addr, prefix. INET6_ADDRSTRLEN);

if (e->afi == AFI_IP) {

strcpy (prefix. inet_ntoa(e->pref ix. v'Laddr» ;

#ifdef BGPDUMP _HA VE_IPV6

void show_v6_prefixes(int count, struct prefix .prefix) {

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262 for(i=Oji<countji++){

263 inet_ntop(AF_INET6. &prefix [iJ . address. v6_addr. str. sizeof (str» j

264 printf(1I %s/%d\n".str. prefix[i] .len);

265

266

267 #endif

Code for Creating the Graph

#! fusr/bin/env python

2

3 import sys. as. commands

4 sys. path. append ('/opt/rocks/lib/python2 .4/site-packages/')

5

6 verbose:::: True

7 class Debug:

8 def write(self. s):

9 if verbose:

10 sys.stderr.write(s)

11 debug = DehugO

12

13 def rnainO:

14 global verbose. options

15 from optparse import OptionParser

16 parser:::: OptionParserO

17 parser.add_option(1l-d". "--day ll. dest:::: J' day l1. metavar="day ll. type="int tl
•

18 help=U>40REQUIRED* The DAY to analyze")

19 parser.add_option(ll-m", "--month ll , dest:::: lImonth U, metavar="MONTH".

20 type=II int" • help=It*REQUIRED* The MONTH to analyze")

21 parser.add_option("-yll J U_-year", dest=lI year li J metavar="YEAR", type=ltint",

22 help.. Il*REQUIRED* The YEAR to analyze")

23 parser.add_option(ll-s tl, ll--sources", dest="sources",

24 default=ltripe,routeviells" J help="0nl y use SOURCES for the data",

25 metavar=IIS0URCES")

26 parser .add_option("-v", action=lI s tors_true ll
J dest="verbose", default=True,

27 help="Be verbose (right nOll this is alllays on)lI)

28

29 options, args = parser.parse_argsO

30 verbose = options. verbose

31 if options.day == None or options.month ="< None or options.year == None:

32 print »sys. stderr, IlRandomly choosing a date ... II

33

34 if options .year == None:

35 options.year = random.choice([2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008])

36 if options. month == None;

37 options .month = random. choice(range(1, 13))

38

39 if options . day == None:

162

ia 40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

options . day = random. choice (range(1, 32»

print »sys.stderr, "Date is:". options.year, options.month. options.day

sources_copy = sources .copyO

for source in options. SOUI"ces. spli t (I.'):

if source not in sources:

print »sys. stderr. nUnknown sourCe: II. source

sys . exit (1)

for source in Sources:

if source not in options.sources.splite'.'):

del sources_copy [source]

if not sources_copy:

print »sys.stderr. IINo sources left! Something is llrong."

sys.exit(l)

sav8_day(options .year. options .month, options . day • sources_copy)

sav8_caida(options. year, options .month, options .day)

def save_caidaCyear. month, day):

import urllib

dir = lhttp://as-rank,caida,org/data/%d/' % year

page = urllib.urlopen(dir) .readO

import re

matches = [x[l:-1] for x in re.findall('>as-rel.*.txt<', page)]

datestring = '%d%02df,02d' % (year, month, day)

m = None

for m in matches:

if m. split (, . ') [1] >= datestring:

break

if m != None:

urllib.urlretrieve(dir + m, filename=' /home/peter/textdata/%d-%d-%d/caidagraph' % (year, month, day»

else:

open(' /home/peter/textdata/%d-%d-%d/caidagraph' %(year, month. day). 'w J
)

def savs_day(year, month, day, slist=None):

if slist == None:

slist = sources

newdir = None

for urI, localfilename, source in getDataFiles (year, month, day, slist):

for block, path in parse_file (loca1filename) :

newdir = save(block, path, year, month, day, urI, source, tmpdir)

finish(tmpdir, newdir)

if tmpdir:

os. rmdir (tmpdir)

sources = {

J routeviews J :

http://archive. routevisws. org/bgpdata/\

%(year)d.%(month)02d/R1BS/rib.%(year)d%(month)02d%(day)02d. [0-9) [0-9) [0-9) [0-9) .h22

http://archive . routeviews. org/route-views. eqix/bgpdata/\

163

96 %(year) d.%(month) 02d/RIBS/rib.%(year) d%(month) 02d%(day) 02d. [0-9] [0-9] [0-9] [0-9] .bz2

97 http://archive .routeviews. org/route-views. isc/bgpdata/\

98 %(year) d. %(month) 02d/RIBS/rib. %(year) d% (month) 02d%(day) 02d. [0-9] [0-9] [0-9] [0-9] .bz2

99 http://archtve .routeviews . org/route-views . kixp/bgpdata/\

100 %(year)d. %(month)02d/RIBSlrib. %(year) d% (month) 02d%(day) 02d. [0-9] [0-9] [0-9] [0-9] . bz2

101 http://archive . routevie\lS. org/route-views .linx/bgpdata/\

102 %(year)d.%(month)02d/RIBSlrib. %(year) d%(month) 02d%(day) 02d. [0-9] [0-9] [0-9] [0-9] .bz2

103 http://archive. routevie\ls. org/route-views . \iide/bgpdata/\

104 %(year) d. %(month) 02d/RIBS/rib. %(year) d% (month) 02d% (day) 02d. [0-9] [0-9] [0-9] [0-9] .bz2

105 http://archive .routeviews. org/oix-rollte-vievs/\

106 %(year) d. %(month) 02d/oix-ful1-snapshot-%(year)d-%(month)02d-%(day) 02d- [0-9] [0-9] [0-9] [0-9] .dat. bz2

107 http://archive .routevie\ls. org/route-views3/\

108 %(year)d. %(month) 02dlroute-vievs3-fu11-snapshot-%(year) d-%(month)02d-%(day)02d- [0-9] [0-9] [0-9] [0-9] .dat. bz2

109 """.sp1itO.

110 'ripe': 111111

111 http://data.ris .ripe.net/rrcOO/%(year)d. %(month)02d/b?viev. %(year) d%(month)02d%(day)02d. [0-9] [0-9] [0-9] [0-9] .gz

112 http://data.ris .ripe .net/rrcOl/%(year)d. 'l.(month)02d/b?viev. %(year) d'l.(month)02d%(day)02d. [0-9] [0-9] [0-9] [0-9] .gz

113 http://data.ris .ripe .netlrrc02/%(year)d. 'l.(month)02d/b?viev. %(year) d%(month)02d%(day)02d. [0-9] [0-9] [0-9] [0-9] .gz

114 http://data.ris .ripe .net/rrc03/%(year)d.%(month)02d/b?viev. 'l.(year) d'l. (month) 02d%(day)02d. [0-9] [0-9] [0-9] [0-9] .gz

115 http://data.ris .ripe .netlrrc04/%(year)d. %(month)02d/b?viev. %(year)d%(month) 02d%(day)02d. [0-9] [0-9] [0-9] [0-9] .gz

116 http://data.ris .ripe .net/rrc05/%(year)d. %(month)02d/b?viev. %(year) d'l. (month) 02d%(day)02d. [0-9] [0-9] [0-9] [0-9] .gz

117 http://data.ris .ripe. netlrrc06/%(year)d. %(month)02d/b?viev. %(year)d%(month) 02d'l.(day)02d. [0-9] [0-9] [0-9] [0-9] .gz

118 http://data.ris .ripe .net/rrcO?I%(year)d. 'l.(month)02d/b?viev. %(year) d'l.(month)02d'l.(day) 02d. [0-9] [0-9] [0-9] [0-9] .gz

119 http://data.ris .ripe .net/rrc08/%(year)d. %(month) 02d/b?viov. %(year)d%(month)02d'l.(day) 02d. [0-9] [0-9] [0-9] [0-9] .gz

120 http://data.ris .ripe .net/rrc09/%(year)d. 'l.(month)02d/b?viev. %(year) d%(month) 02d%(day)02d. [0-9] [0-9] [0-9] [0-9] . gz

121 http://data.ris .ripe .net/rrclO/%(year)d. %(month)02d/b?viev. %(year) d%(month)02d'l.(day)02d. [0-9] [0-9] [0-9] [0-9] .gz

122 http://data.ris .ripe .net/rrcl1/%(year)d. 'l.(month)02d1b?viev. %(year) d%(month)02d'l.(day) 02d. [0-9] [0-9] [0-9] [0-9] .gz

123 http://data.ris . ripe .net/rrc12/%(year)d. 'l.(month)02d/b?viev. %(year) d%(month) 02d'l.(day)02d. [0-9] [0-9] [0-9] [0-9] .gz

124 http://data.ris .ripe .net/rrc13/%(year)d. 'l.(month)02d/b?viev. 'l.(year) d'l.(month)02d'l.(day)02d. [0-9] [0-9] [0-9] [0-9] .gz

125 http://data.ris .ripe .netlrrc14/%(year)d. 'l.(month)02d/b?viev. %(year) d%(month)02d%(day)02d. [0-9] [0-9] [0-9] [0-9] .gz

126 http://data.ris .ripe .net/rrc15/%(year)d.%(month)02d/b?viev. %(year Jd'l.(month) 02d%(day)02d. [0-9] [0-9] [0-9] [0-9] .gz

127 http,lldata.ris.ripe.net/rrc16/'l,(year)d. %(month)02d/b?viev. %(year)d%(month) 02d'l.(day)02d. [0-9] [0-9] [0-9] [0-9] .gz

128 """.splitO

129

130

131

132 from urllib2 import urlopen. URLError

133 import re

134 import random

135 import tempfile

136 from filesaver import save. finish

137 tmpdir = None

138

139 def downloadAndOpen(repository. directory, name):

140 global tmpdir

141 print »debug. 'Getting the listing in', directory

142 try:

143 listing = urlopen(directory) ,read()

144 except URLError, e:

145 print »debug, "Directory not found: II. directory

146 print »debug, e

147 return None, None

148

149 possibilities = []
150 for possibility in re,finditer(name, listing):

151 possibilities. append(possibility . group 0)

164

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

if not possibilities:

print »debug, "nothing matching". name. "found in", directory

return None. None

urI = directory + 'I' + random.choice(possibilities)

print »debug. 'Using the file', urI

if not tmpdir:

tmpdir = tempfile.mkdtemp(lIthesis". "peter ll
• '/tmp/')

if url.endswithC'.gz') or url.endswith('.bz2'):

tmpfilename = tmpdir + '/, + Curl.rsplit('/'. 1)[-1])

commands.getoutput('cd %8 ; \lget -T 30 -0 \igetlog hS' X (tmpdir. urI)

print »debug. lIFile downloaded to". tmpfilename

return tmpfilename. urI

else:

assert False, 'Unknown file type 1.5 - this should never happen' %name

def getDataFiles(year. month. day, sources):

for repOSitory in sources:

for source in sources [repository] :

source Yo= {'year': year. 'month'; month, 'day': day}

directory, fname = source.rsplit(l/', 1)

filename, urI = dO'imloadAndOpen (repository, directory. fname)

if filename:

print »debug, 'Successfully opened'. urI

yield urI. filename. repository

os. remove(filename)

print »debug. 'Removed'. filename

import os

def parse_file(filename):

_, input = os.popen2('-/thesis/code/libbgpdump-1.4.99.8/peter hS' h filename)

for line in input:

try:

block, path = line.stripO .split(· 1)

yield block. path

except ValueError:

print »debug, lIBAD LINE: II, line

continue

print »debug, "Read all the output from II , filename

if __name

mainO

165

predictor.py
#1/usr/bin/env python

2

3 import os

4 import save_day

5 from collections import defaultdict

6

7 class Predictor:

8 def __ init__ (self, year. month. day):

9 neighbors = defaultdictClambda: defaultdict(set»

10

11 dname = '/home/peter/textdata/y'd-Y,d-Y,d J Yo (year. month, day)

12 repositories = ['routeviews' J 'ripe']

13

14 for repo in os.listdir(dname):

15 if rapo not in repositories: continue

16 for Source in as .listdir(dname + '/' + repo):

17 print repo. source

18 self. addSource(source.

19 open(' /, .join«dname, repo, source»).

20 neighbors)

21

22 self . degree = {}

23 DS = len(neighbors)

24 c = a
25 for v in neighbors:

26 c += 1

27 if c % 1000 == 0,

28 print c. '/' J

29

30 prediction = int(self.predict(v, neighbors[v]»

31 if prediction> 0:

32 self.degree[v] = prediction

33

34 def addSource(self J source. data, neighbors):

35 for line in data:

36 try:

37 path = line. split 0 [Ll

38 except:

39 print "BAD LINE. line

40 continue

41

42 for i in range(len(path)-l):

43 fr = path [i]

44 to = path[i+l]

45 neighbors [fr] [source] . add (to)

46 neighbors [to] [source] .add(fr)

47

48

49 def predict(self, v, data):

50 pairs = []

51 keys = data. keys 0

52

53 for s in range(len(keys)):

54 ssize = len(data[keys [s]])

55 for t in range(s+l, len(keys)):

56 both = len(data[keys [s]] . intersection(data[keys [t]]))

57 if both <= 2:

58 continue

59

60 tsize = len(data[keys [t]])

61 pairs. append (ssize + tsize / float (both))

62

63 pairs. sortO

64 if pairs:

166

65 return pairs [len(pairs) / / 2]

66 else:

67 return 0

68

69

70 def getPredictor(year. month, day):

71 saveMeasuredDay(year. month, day)

72

73 import pickle

74 fname = '/home!peter/textdata/%d-%d-%d/predictor' % (year. month, day)

75 if not cs.path.exists(fnaroe):

76 predictor::::; Predictor(year, month, day)

77 f = file(fname, 'w')

78 pickle. dump (predictor, f)

79 else:

80 predictor = pickle load(file(fname, J r '»
81 return predictor

82

83 def saveMeasuredDay(year, month, day):

84 dname = '/home/peter/textdata/%d-%d-%d' % (year. month, day)

85 if not os.path.exists(dname + J /tinished'):

86 save_day.save_day(year, month. day)

87

88 if not os.path.exists(dname + '/caidagraph'):

89 save_day. save_caida(year. month, day)

90

91 if __name__ == I __main__ I :

92 predictor = getPredictor(2008. 4, 13)

93 total = 0

94 for v in predictor.degree:

95 total += predictor.degree[v]

96 print total / / 2, len(predictor.degree)

generate.py
#! /usr/bin/env python

2

3 # Both of these are for speed. We disable gc because we never create cyclical

4 # garbage, and psyco is a JIT compiler for x86

5 import gc; gc. disable 0

6 try:

7 import pSYCOi psyco.fullO

8 except:

9 pass

10

11 import os

12 import math

13 import pickle

14 import random

15 from collections import defaultdict

16

17 import save_day

18 from predictor import Predictor, getPredictor

19

167

20

21 class ASgraph:

22 def __ini t __ (self) :

23 self .netblocks : defaultdict(dict)

24 self .graph = defaultdict(dict)

25

26 def __getitem__ (self, item):

27 return self .graph . __getitem__ (item)

28

29 def __ setitem__ (self. item. value):

30 return self .graph. __setitem__ (item. value)

31

32

33 class Generator:

34 def ~_init__ (self. year, month, day, predictor):

35 self .distances = defaultdict(dict)

36 self .netblocks = defaultdict(dict)

37 selt .graph = defaultdict(dict)

38 self. predictor = predictor. degree

39

40 dir = J Ihome!peter!textdata/%d-%d-%d' % (year, month, day)

41

42 if os.path.exists(dir + '/caidagraph'):

43 self. addCAIDA (open (dir + 'I caidagraph' »
44

45 print "# Reading BGP data"

46 for repo in os.listdir(dir):

47 if repo not in ['routevie'Ws') 'ripe']: continue

48 sources = os.listdir(dir + 'I' + repo)

49 for source in sources:

50 print '#'. repo J source

51 self.addFile(source. open('I·.join«dir. repo. source))))

52

53

54 def addCAIDA(self. data):

55 print 11# Reading CAIDA data ll

56 relations = { 11_1
11

: "c2p" , "0 11 : " p2p lt, Ill": lI p2c ll , 112": II S 2s 11 }

57

58 for line in data:

59 line = line. split('#') [0] . stripO

60 if not line: continue

61 fr. to, reI = 1ine.splitO

62 reI = relations [reI]

63 self . graph [fr] [to] = reI

64

65

66 def addFile(self. source. data):

67 for line in data:

68 line = line. split 0

69 netb10ck = 1ine[O]

70 path = line [1 :]

71 if not path: continue

72 self .netblocks [path [-1]] [netblock] = None

73 self. addPath(source, path)

74

75 def legalUplink(self, fro to):

168

76 # If the link exists. is it an up link?

77 if (fr in self.graph) and (to in self.graph[fr]):

78 return (self. graph [fr] [to] in (lI c2p", 11 8 28"»

79

80 # The link does not exist. Therefore it COULD be an UP link

81 return True

82

83

84 def addPath(self. source> path):

85 # By default. if possible, make the path one continuous UP

86 i = 1

87 while < len (path) and self .1egalUplink(path[i-l], path[i]):

88 if path[i] not in self.graph[path[i-l]]:

89 self. graph [path [i-l]] [path [i]] = "c2p"

90 self . graph [path [i]] [path[i-1]] = "p2c"

91 self. distances [path[i]] [source] = (i. I1 Up ")

92 i += 1

93

94 # Now. we can no longer go up. So we go down.

95 while i < len (path) :

96 if path[i] not in self.graph[path[i-1]]:

97 self . graph [path [i-1J] [path[i]] = "p2c"

98 self. graph [path [i]] [path[i-l]J = uc2p ll

99 self. distances [path [ill [source] ::. (i, "down")

100 i += 1

101

102 def legalEdgeTypes(self I fr. to):

103 possible = set{i'c2p p2c p2p lt .splitO)

104 for source in self . distances [fr} :

105 if source not in self. distances [to]: continue

106 if not possible: return []

107

108 distf. dirf self .distances [fr] [source]

109 distt. dirt self .distances [to] [source]

110

111 if distf + 1 < distt:

112 if dirf :1= Fl Up ":

113 if dirt == lIdown":

114 return []

115 else:

116 possible discard(lF c 2p Fl)

117 possible.discard("p2pll)

118 else: # dirt == "dolln lt

119 it dirt == "down":

120 possible.discard("p2c")

121 possible discard{i'p2p ")

122 else:

123 pass

124 return [p for p in possible

125

126 def generate(self):

127 # First. we count up how many half-edges we are missing

128 half edges = []

129 for v in self .predictor:

130 pred = int (self. predictor [v])

131 deg = len([u for u in self.graph[v] if u in self.predictor])

169

132

133 if deg < pred:

134 for i in range(deg. pred):

135 balfedges.append(v)

136

137 # Now we make a new AS graph

138 asgraph = ASgraphO

139 asgraph.netblocks = self .netblocks

140

141 # Now we copy over the entirety of X. the graph that is known to exist

142 for u in self .graph:

143 for v in self .graph[u]:

144 asgraph[uJ [vJ = self. graph [uJ [vJ

145

146 # Now we use the half-edges to try to generate edges from P

147 opposite = { "p2C":"c2p ", "C2pll:tt p2c". "p2p":"p2pH, "82s":"828"

148

149 count = 10*len(halfedges)

150 print "# Now adding" J len(halfedges). "halfedges (hopefully)"

151 while count> 0 and len(halfedges) > 0:

152 count -= 1

153 frindex = random.randint(O. len(halfedges)-l)

154 toindex = random.randint(O. len(halfedges)-l)

155 fr = halfedges [frindexl

156 to = half edges [toindex]

157

158 if fr == to: continue

159 if to in self.graph[fr]: continue

160

161 types = self . legalEdgeTypes(fr. to)

162 if not types: continue

163

164 edgeType = random. choice(types)

165 asgraph [frJ [toJ = edgeType

166 asgraph [to] [fr] = opposite [edgeType]

167

168 if frindex > -1 and toindex > -1:

169 halfedges [-1]. halfedges [frindex] = halfedges [frindex]. halfedges [-1]

170 halfedges[-l], halfedges[toindex] = halfedges[toindex]. halfedges[-1)

171 halfedges.popO

172 halfedges. popO

173 elif frindex > -1:

174 halfedges[-t]. halfedges[frindex) = half edges [frindex] , halfadges[-1)

175 halfedges. popO

176 alif to index > -1:

177 halfedges [-1]. halfedges [to index] = half edges [toindex]. half edges [-1]

178 half edges. popO

179

180 print '#', len(halfedges)//2, "remain un-added to the graph II

181

182 return asgraph

183

184 def getGenerator(year. month, day):

185 pred = getPredictor(year, month, day)

186

187 fname = '/home/peter/textdata/%d-%d-%d/generator J % (year, month. day)

170

171

188 if not os.path.exists(fname):

189 print 11# Making new generator"

190 generator = Generator(year, month, day. pred)

191 f = file(fname. 'v')

192 pickle. dump (generator , f)

193 else:

194 generator = pickle.load(file(fname. 'r'»

195 return generator

196

197 if __name __ == ' __main__ J:

198 y,m,d = 2008, 4, 13

199

200 import sys

201 if 1enCsys.argv) == 4:

202 y,m,d = map(int, sys.argv[1:])

203

204 generator = getGenerator (y J mJ d)

205

206 print len(generator.graph) J 'vertices'. \

207 su.m([len(generator.graph[v]) for v in generator.graph])/2, \

208 I edges measured l

209

210 asgraph = generator.generateO

211

212 print lenCasgraph.graph). 'vertices', \

213 sumC[lenCasgraph.graph[v]) for v in asgraph.graph])/2,

214 'edges predicted'

Code for Analyzing the Oligopoly Vulnerability of

the AS graph

centralization.py

l lUSTIbin/env python

2 import psyCOj psyco .full ()

3

4 import os. sys

5 import random

6 from collections import defaultdict

7 import generate

8 from generate import Generator

9 from collections import deque

10 from nb import Netblock

11

12 class UnionFind:

13 def __init__ Cself I data):

14 self. parent = self

15 self. data = data

16 def findCself):

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

if self . parent ! = self:

self .parent == self.parent.findO

return self. parent

else:

return self

def union(self. other):

self .findO . parent = other.find{)

def __repr__ (self):

return "UF(%s -> %8) II %(streself. data). str(self. parent .data))

def find_cliques(graph):

uf = {}

for v in graph:

uf [v] == UnionFind(v)

for v in graph:

for u in graph[v] :

if graph[u] [v] == 's2s':

uf[uJ .union(uf[v])

cliques == {}

for v in graph:

cliques[v] == uf[v] .findO . data

return cliques

def test_find_cliquesO:

tg = {}

for i in range(lO):

tg[i] = {}

for i in range (10) :

tg[i] [(i+l) % 10] 'p2p'

tg[(i+l) % 10] [i] 'p2p'

tg[4] [6] = '828'

tg[6] [4] = '828'

cliques == find_cliques(tg)

assert cliqu8s[4] == cliques[6]

for i in range(lO):

assert cliques [1] != cliques [(1+1) %10]

print '# find_cliquesO tests okay!'

def compact_blocks(blocks):

blocks. sort ()

blocks .reverse()

new-blocks = []

for test in blocks:

for b in blocks:

if test != b and test in b:

break

else:

newblocks. append(test)

return newblocks

def test_compact_blocks():

8 = "0.0.0.0/0 10.2.3.4/16"

blocks = [Netblock(b) for b in s.splitO]

assert 1 == len(compact_blocks(blocks». str(blocks)

8 = "10.0.0.0/8 10.2.3.4/16"

blocks = [Netblock(b) for b in s.splitO]

172

next.append«u, "dnll. path + [u]»

it graph[v] [u] in [tl p2c". 11 525"]:

next.append«u, "dn ll • path + [u] »

if dir == "Up ":

it graph[v] [u] in ["C2p ". I s 2s"]:

next. append«u. It Up ". path + [u] »

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

assert 1 == lenCcompact_blocksCblocks». str(blocks)

s = "3.0.0.0/8 10.2.3.4/16"

blocks II:: [Netblock(b) for b in s.splitOJ

assert 2 == len(compact_blocks(blocks». strCblocks}

print 11# compact_blocks tests okay! II

def find_sizes Casgraph):

sizes =: defaultdict(lambda: 0)

for v in asgraph.graph:

blocks = [Netblock(b) for b in asgraph.netblocks[v] if

blocks [b for b in blocks if b. bits >= 8]

blocks = compact_blocks (blocks)

sizes[v] = sum([b.size() for b in blocks])

return sizes

def calc_flow(start. graph, sizes):

extratloW" = defaultdictUarobda: 0.0)

upseen = set 0

dnseen = setO

tbd = [J

next = []

tbd.append«start. II Up ". []»

while tbd or next:

if not tbd:

tbd = next

random.shU£fle(tbd)

next=: [J

v. dir. path = tbd.popO

if v not in upseen and v not in dnseen and path:

flow = sizes[start] ,.. sizes[v] / float(len(path)**2)

tor u in path[:-l]:

extraflow [u] +=: flow

if dir == "Up " and v not in upseen:

upseen.add(v)

elit dir == "dn" and v not in dnseen:

dnseen.add(v)

else:

continue

for u in graph [v] :

else:

elif dir == "dn":

Now we need to normalize the augmented flow

in band b != '0.0.0.0/0']

173

129 total = sum(extraflow.valuesO)

130 factor = sizes[start] I float(total)

131 for v in extraflow:

132 extraflow[v] *= factor

133 return extraflow

134

135

136 if __name__ == ' __main__ I:

137 try:

138 Y,m,d = mapUnt, sys.argv[l].split('-'»

139 percent = float(sys. argv [2])

140 except:

141 print "# USING THE DEFAULT OAY AND PERCENT"

142 y,m,d = 2008, 4, 13

143 percent = .75

144 test_find_cliquesO

145 test_compact_blocksO

146

147 asgraph = generate.getGenerator(y, m, d) .generateO

148

149 print "# Finding cliques ll

150 cliques = find_cliques(asgraph.graph)

151 clique_members = defaultdict(set)

152 for f,t in cliques.itemsO:

153 clique_members [t] . add(f)

154

155 print 11# Finding sizes ll

156 sizes = find_sizes(asgraph)

157

158 clique_sizes = defaultdict(lambda: 0)

159 for rep in clique_members:

160 for member in clique_members [rep] :

161 clique_sizes[rep] += sizes[member]

162

163 print "# Processing sizes"

164 csizes = [(5. r) for (r,s) in clique_sizes.itemsO]

165 csizes. sortO

166 csizes.reverseO

167 totalsize = sum(s for (s. _) in csizes)

168

169 print "# Finding the numer required to get to 75%"

170 total = 0.0

171 for i in range(len(csizes)) :

172 total +::: csizes [i] [0]

173 if total >= percent * tota1size:

174 break

175 print "# %d ASes control %f%% of the traffic ll % U. 100*percent)

176

177 print "# Augmenting the sizes with flow ll

178 extraf10w = {}
179 for L. rep) in csizes[:i]:

180 rep = cliques [rep]

181 for AS in cliqueJllembers[rep]:

182 if sizes [AS] == 0: continue

183 extraflow[AS] = calc_f1ow(AS. asgraph.graph. sizes)

184

174

185 print 11# Calculating the total flow"

186 totalflov = {}
187 for v in sizes:

188 totalflow[vJ = sizes[v]

189 for u in extraflow:

190 totalflow[vl += extraflow[uJ [v]

191

192 print "# Finding the ASes with the greatest flow~ in order"

193 AS_ordering = [(f. AS) for (AS, f) in totalfloW'.itemsO]

194 AS_ordering. sort 0

195 AS_ordering.reverseO

196

197 available set (AS for AS in totalflow)

198

199 print "# n n% floW' flow% totaltloW' totalflowXn

200 count = 0

201 cliquecount = 0

202 total = 0.0

203 for flow, AS in AS_ordering:

204 oldtotal = total

205 if AS not in available: continue

206 rep = cliques [AS]

207 cliquecount += 1

208 for suborned in clique_members [rep] :

209 count += 1

210 total += totalflow[subornedJ

211 available. discard(suborned)

212 # Now we need to fix overlapping t10w problems

213 if suborned in extraf10w:

214 tor v in extraf10w[suborned]:

215 totalt10w[v] -= extraf10w[suborned] [v]

216 if v not in available:

217 total -= extraf10w[suborned] [v]

218 for u in extraflow:

219 it suborned in extraf10w[u] and u in suborned:

220 total -= extraf10w [u] [suborned]

221

222 print c1iquecount, float(cliquecount)/1en(c1iqu8_members). count. \

223 count/f10at(len(AS_ordering)), tota1-01dtota1. \

224 (total-oldtotal) /tota1size, total, tota1/tota1size. '#'. AS

nb.py
class Netb10ck:

2 det __ init__ (se1f, block):

ip, bits = b10ck.sp1it('/')

4 self. bits = int(bits)

5 self. block = block

6 ip = mapUnt, ip.split(J .J))

7 self. ip = (ip [OJ « 24) + (ip [lJ « 16) + (ip [2J « 8) + ip [3J

8 self .mask = (OxFFFFFFFF « (32 - self. bits» & OxFFFFFFFF

9 assert se1f.bits <= 32, "Bad block:" + block

10 selt . length = intO « (32-se1f. bits»

11

175

176

def __ cmp __ Cselt. other):

assert type(other) == type(self). 'What is J + str(other) + ' doing in the array?'

sizecmp = cmp(seH .length, other.length)

if sizecmp != 0:

return sizecmp

else:

return -1 ,. cmp(self. ip. other. ip)

rWl some tests

def __repr__ (self):

return "Netblock(tr + self.block + 11)11

Cnb.ip &; self.mask»

(to, to, tt, tt)

def s1ze(self):

return self . length

def __contains__ Cself J nb):

return self.bits <= nb.bits and «self.ip tl self.mask)

def __ str__ (self) :

return "Netblock(1' + self.block + ")"

assert Netblock('10.0.1.0/24') in NetblockC'10.0.0.0/B')

assert Netblock('10.0.1.0/B') not in Netblock('10.0.0.0/16')

assert Netblock('10.0.0.0/8') not in Netblock('10.0.0.0/16')

assert Netblock('10.0.1.0/24') not in Netblock(J11.0.0.0/8')

assert Netblock(110.0.0.0/8') not in Netblock('11.0 0.0/8')

assert Netblock(J 10.0.1.0/24 1) . size () == 256

assert Netblock(110.0.1.0/8'). size () == 256*256*256

assert tuple (1)

tt == Netblock('10.0.1.0/24 1)

to == Netblock(I11.0.0.0/8')

= [to, tt, to, tt]

1. sort ()

1. reverse ()

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

177

BIBLIOGRAPHY

[1] D. Achlioptas, A. Clauset, D. Kempe, and C. Moore. On the Bias of
Traceroute Sampling; or, Power-law Degree Distributions in Regular Graphs.
In Symposium on Theory of Computing, pages 694 - 703, May 2005.

[2] A. Akella, S. Chawla, A. Kannan, and S. Seshan. Scaling properties of the
Internet graph. In PODC)03: Proceedings of the twenty-second annual
symposium on Principles of distributed computing, pages 337-346, 2003.

[3] D. Alderson, L. Li, W. Willinger, and J. C. Doyle. Understanding Internet
topology: principles, models, and validation. IEEE/ACM Transactions on
Networking, 13(6):1205-1218, 2005.

[4] D. L. Alderson. Technological and Economic Drivers and Constraints in the
Internet's "Last Mile". Technical Report CIT-CDS 04-004, California Institute
of Technology, 2004.

[5] D. G. Andersen, N. Feamster, S. Bauer, and H. Balakrishnan. Topology
inference from BGP routing dynamics. In IMW)02: Proceedings of the 2nd
ACM SIGCOMM Workshop on Internet measurment, pages 243-248, 2002.

[6] G. D. Battista, T. Erlebach, A. Hall, M. Patrignani, M. Pizzonia, and
T. Schank. Computing the types of the relationships between autonomous
systems. IEEE/ACM Transactions on Networking, 15(2):267-280, 2007.

[7] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihalak, and
L. S. Ram. Network Discovery and Verification. In Proceedings of the 31st
International Workshop on Graph- Theoretic Concepts in Computer Science
(WG 2005), volume LNCS 3787, pages 127-138. Springer, 2005.

[8] S. T. Berners-Lee. http://dig.csail.mit.edu/breadcrumbs/node/144. It
seems appropriate to use a URL to cite the inventor of the world wide web.

[9] A. Bonato. A survey of models of the web graph. In Combinatorial and
Algorithmic Aspects of Networking, pages 159-172. Springer-Verlag LNCS,
2004.

.._------------

178

[10] A. Bonato and J. Janssen. Infinite Limits of Copying Models of the Web
Graph. Internet Mathematics, 1(2):193-213, 2004.

[11] P. Boothe, Z. Dvorak, A. Farley, and A. Proskurowski. Graph covering via
shortest paths. Congressus Numerantium, 2007.

[12] S. Bradner and A. Mankin. The Recommendation for the IP Next Generation
Protocol. Internet Engineering Task Force: RFC 1752, January 1995.

[13] U. Brandes. On variants of shortest-path betweenness centrality and their
generic computation. Social Networks, 30(2):136-145, 2008.

[14] U. Brandes and T. Erlebach, editors. Network Analysis, volume 3418 of LNCS.
Springer-Verlag, 2005.

[15] A. Brandstadt, V. B. Le, and J. P. Spinrad. Graph classes: a survey. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999.

[16] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata,
A. Tomkins, and J. Wiener. Graph structure in the web. Computer Networks,
33(1-6):309-320, 2000.

[17] A. Broido and kc daffy. Internet Topology: connectivity of IP graphs. In
Proceedings from the SPIE International Symposium on Convergence of IT and
Communication, pages 172-187, August 2001.

[18] A. Broido, E. Nemeth, and kc daffy. Internet Expansion, Refinement and
Churn. European Transactions on Telecommunications, 13(1):33-51, January
2002.

[19} T. Bu and D. Towsley. On distinguishing between Internet power law topology
generators. In Proceedings of IEEE INFO COM, pages 638-647, June 2002.

[20] D. Chakrabarti and C. Faloutsos. Graph mining: Laws, generators, and
algorithms. ACM Computing Surveys, 38(1):2, 2006.

[21] H. Chang, S. Jamin, Z. M. Mao, and W. Willinger. An empirical approach to
modeling inter-AS traffic matrices. In IMC '05: Proceedings of the 5th ACM
SIGCOMM conference on Internet Measurement, pages 12-12, Berkeley, CA,
USA, 2005. USENIX Association.

[22] S. Chien, C. Dwork, R. Kumar, D. R. Simon, and D. Sivakumar. Link
Evolution: Analysis and Algorithms. Internet Mathematics, 1(3):277-304, 2004.

179

[23] D. Clark. Design Philosophy of the DARPA Internet Protocols. In Proceedings
of ACM SIGCOMM, pages 106-114, August 1988.

[24] A. Curtis, D. Massey, and R. M. McConnell. Efficient algorithms for optimizing
policy-constrained routing. In International Workshop on Quality of Service
(IWQoS 2007), pages 113-116, 2007.

[25] B. de Fluiter. Algorithms for Graphs of Small Treewidth. PhD thesis,
Universiteit Utrecht, March 1997. ISBN 90-393-1528-0.

[26] A. Dhamdhere and C. Dovrolis. Ten years in the evolution of the internet
ecosystem. In IMC '08: Proceedings of the 8th ACM SIGCOMM conference on
Internet measurement, pages 183-196, New York, NY, USA, 2008. ACM.

[27] X. Dimitropoulos, D. Krioukov, M. Fomenkov, B. Huffaker, Y. Hyun, kc daffy,
and G. Riley. AS Relationships: Inference and Validation. ACM SIGCOMM
Computer Communications Review, 37(1):29-40, 2007.

[28] D.J. Rose. On simple characterizations of k-trees. Discrete Math, 7:317-322,
1974.

[29] J. C. Doyle, D. Alderson, L. Li, S. Low, M. Roughan, S. Shalunov, R. Tanaka,
and W. Willinger. The "Robust Yet Fragile" Nature of the Internet.
Proceedings of the National Academy of Sciences, 102(41):14497-14502,2005.

[30] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On Power-law Relationships of
the Internet Topology. In SIGCOMM, pages 251-262, 1999.

[31] U. Feige. A Threshold of Ln N for Approximating Set Cover. Journal of the
ACM, 45:314-318, 1998.

[32] A. D. Flaxman and J. Vera. Bias Reduction in Traceroute Sampling - Towards
a More Accurate Map of the Internet. In Proceedings of the 5th Workshop on
Algorithms and Models for the Web-Graph (WAW2007), pages 1-15, 2007.

[33] M. J. Freedman, K. Lakshminarayanan, S. Rhea, and 1. Stoica. Non-Transitive
Connectivity and DHTs. In Proceedings of the Second Workshop on Real, Large
Distributed Systems (WORLDS '05), pages 55-60, 2005.

[34] L. Gao. On inferring autonomous system relationships in the internet.
IEEE/ACM Transactions on Networking, 9(6):733-745, 200l.

[35] L. Gao and F. Wang. The Extent of AS Path Inflation by Routing Policies. In
IEEE Global Internet Symposium, volume 3, pages 2180-2184, 2002.

180

[36] M. R. Garey and D. S. Johnson. Computer and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[37] M. X. Goemans and D. P. Williamson..879-approximation algorithms for
MAX CUT and MAX 2SAT. In STOC '94: Proceedings of the twenty-sixth
annual ACM Symposium on Theory of Computing, pages 422-431, New York,
NY, USA, 1994. ACM.

[38] H. Haddadi, D. Fay, A. Jamakovic, O. Maennel, A. W. Moore, R. Mortier,
M. Rio, and S. Uhlig. Beyond Node Degree: Evaluating AS Topology Models.
Technical Report UCAM-CL-TR-725, University of Cambridge, Computer
Laboratory, July 2008.

[39] G. Huston. Exploring Autonomous System Numbers. The Internet Protocol
Journal, 9(1), March 2006.

[40] Y. Hyun, A. Broido, and kc daffy. Traceroute and BGP AS Path Incongruities.
Technical report, University of California, San Diego, 2003.

[41] Y. Hyun, B. Huffaker, D. Andersen, E. Aben, M. Luckie, kc daffy, and
C. Shannon. The IPv4 Routed /24 AS Links Dataset. http://www.caida .
org/data/active/ipv4_routed_topology_aslinks_dataset.xml.

[42] J. Matousek and R. Thomas. Algorithms finding tree-decompositions of graphs.
Journal of Algorithms, 12(1):1-22, March 1991.

[43] J. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. S. Tomkins. The
Web as a graph: Measurements, models and methods. In Proceedings of the 5th
Annual International Conference on Computing and Combinatorics, 1999.

[44] T. Kloks. Treewidth. PhD thesis, Rijksuniversiteit te Utrecht, June 1993. ISBN
90-393-0406-8.

[45] A. Lakhina, J. W. Byers, M. Crovella, and P. Xie. Sampling Biases in IP
Topology Measurements. In Proceedings of IEEE INFO COM, volume 1, pages
332-341, 2003.

[46] S. H. Lee, P.-J. Kim, and H. Jeong. Statistical properties of sampled networks.
Physical Review E, 73(1), 2006.

[47] 1. Li, D. Alderson, W. Willinger, and J. Doyle. A First-Principles Approach to
Understanding the Internet's Router-level Topology. In Proceedings of ACM
SIGCOMM, pages 3-14, 2004.

181

[48] D. Liben-Nowell. An Algorithmic Approach to Social Networks. PhD thesis,
MIT, June 2005.

[49] 1. Lovasz. Very large graphs. Current Developments in Mathematics, (to
appear), December 2008.

[50] E. P. Markatos. Tracing a large-scale Peer to Peer System: an hour in the life
of Gnutella. In 2nd IEEEIACM International Symposium on Cluster
Computing and the Grid, pages 65- 65, 2002.

[51] M. Mitzenmacher. Editorial: The Future of Power Law Research. Internet
Mathematics, 2(4):525-534, 2006.

[52] G. Nemhauser, 1. Wolsey, and M. Fisher. An analysis of the approximations
for maximizing submodular set functions. Mathematical Programming,
14:265-294, 1978.

[53] A. Norman. Information Architecture and the Emergent Properties of
Cyberspace. InterJournal Complex Systems, 376, 2005.

[54] W. B. Norton. Internet Service Providers and Peering. Technical Report
www.equinix.comjpdfjwhitepapersjPeeringWP.2.pdf, Equinix, DRAFT 25.

[55] R. V. Oliveira, D. Pei, W. Willinger, B. Zhang, and L. Zhang. In search of the
elusive ground truth: the Internet's AS-level connectivity structure.
SIGMETRICS Performance Evaluations Review, 36(1):217-228, 2008.

[56] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank Citation
Ranking: Bringing Order to the Web. Technical report, Stanford Digital
Library Technologies Project, 1998.

[57] M. Ripeanu. Peer-to-Peer Architecture Case Study: Gnutella Network. In 1st
IEEE International Conference on Peer-to-peer Computing (P2P2001), 200l.

[58] M. Ripeanu, 1. Foster, and A. Iamnitchi. Mapping the gnutella network:
Properties of large-scale peer-to-peer systems and implications for system
design. IEEE Internet Computing Journal, 6(1), 2002.

[59] E. C. Rosen. Exterior Gateway Protocol (EGP). Internet Engineering Task
Force: RFC 827, October 1982.

[60] M. Roughan, S. J. Tuke, and O. Maennel. Bigfoot, sasquatch, the yeti and
other missing links: what we don't know about the as graph. In IMC '08:
Proceedings of the 8th ACM SIGCOMM conference on Internet measurement,
pages 325-330, New York, NY, USA, 2008. ACM.

182

[61] M. Sahami, S. Dumais, D. Heckerman, and E. Horvitz. A Bayesian approach to
filtering junk e-mail. In AAAI'98 Workshop on Learning for Text
Categorization, 1998.

[62] G. Siganos, M. Faloutsos, P. Faloutsos, and C. Faloutsos. Power laws and the
AS-level internet topology. IEEE/ACM Transactions on Networking,
11 (4):514-524, 2003.

[63] D. B. Stouffer, R. D. Malmgren, and L. A. N. Amaral. Comment on The origin
of bursts and heavy tails in human dynamics. e-print
(http://arxiv.org/abs/physics/0510216/), October 2005.

[64] D. Stutzbach and R. Rejaie. Characterizing Unstructured Overlay Topologies
in Modern P2P File-Sharing Systems. In Proceedings of the Internet
Measurement Conference, pages 49-62, October 2005.

[65] L. Subramanian, S. Agarwal, J. Rexford, and R. H. Katz. Characterizing the
Internet Hierarchy from Multiple Vantage Points. In Proceedings of IEEE
INFO COM, June 2002.

[66] The Cooperative Association for Internet Data Analysis.
http://www.caida.org. 1997 - present (2009).

[67] The Internet Engineering Task Force (IETF). MRT routing information export
format. draft-ietf-grow-mrt-04. txt, 2004.

[68] The RIPE Routing Information Services. http://www.ris.ripe.net. 1999 ­
present (2009).

[69] The Working Group on Internet Governance (WGIG). Background Report.
http://www.wgig.org/docs/Background-Report.htm. June 2005.

[70] University of Oregon Route Views Project. http://routeviews.org, 1997 ­
present (2009).

[71] D. Watts and S. H. Strogatz. Collective dynamics of "small-world" networks.
Nature, 393:440-442, 1998.

[72] W. Willinger, D. Alderson, and J. C. Doyle. Mathematics and the Internet: A
Source of Enormous Confusion and Great Potential. Notices of the AMS, 56(5),
May 2009.

[73] W. Willinger, D. Alderson,and L. Li. A Pragmatic Approach to Dealing with
High-Variability in Network Measurements. In Proceedings of the 4th ACM
SIGCOMM confeTence on Internet measurement, pages 88-100, Taormina,
Sicily, Italy, October 2004.

183

[74] Young Hyun and Bradley Huffaker and Dan Andersen and Emile Aben and
Matthew Luckie and kc daffy and and Colleen Shannon. The IPv4 Routed /24
AS Links Dataset - 2002-2009. http://www.caida.org/data/active!ipv4_
routed_topology_aslinks_dataset.xml.

[75] Yuichi Asahiro and Eiji Miyano and Toshihide Murata and Hirotaka Ono. On
Approximation of Bookmark Assignments. In Mathematical Foundations of
Computer Science, volume 4708, pages 115-124. Springer-Verlag LNCS, 2007.

[76] Y. Zhang, M. Roughan, C. Lund, and D. Donoho. An information-theoretic
approach to traffic matrix estimation. In SIGCOMM '03: Proceedings of the
2003 conference on Applications, technologies, architectures, and protocols for
computer communications, pages 301-312, New York, NY, USA, 2003. ACM.

[77] S. Zhou and R. J. Mondragon. Accurately Modeling the Internet Topology.
Physical Review E, 70, 2004.

[78] S. Zhou and R. J. Mondragon. The Rich-Club Phenomenon in the Internet
Topology. IEEE Communication Letters, 8:180, 2004.

[79] H. Zimmerman. OSI reference model - the ISO model of architecture for open
systems interconnection. In IEEE Transactions on Communications,
volume 28, pages 425-432, 1980.

[80] D. Zuckerman. NP-complete problems have a version that's hard to
approximate. In Proceedings of the Eight Annual Structure in Complexity
Theory Conference, pages 305-312. IEEE Computer Society, 1993.

