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On the one hand, ontologies provide a means of formally specifying complex

descriptions and relationships about information in a way that is expressive yet

amenable to automated processing and reasoning. When data are annotated using

terms from an ontology, the instances inhere in formal semantics. Compared to an

ontology, which may have as few as a dozen or as many as tens of thousands of

terms, the annotated instances for the ontology are often several orders of

magnitude larger, from millions to possibly trillions of instances. Unfortunately,

existing reasoning techniques cannot scale to these sizes.

On the other hand, relational database management systems provide

mechanisms for storing, retrieving, and maintaining the integrity of large amounts

of data. Relational database management systems are well known for scaling to

extremely large sizes of data, some claiming to manage over a quadrillion data.
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This dissertation defines ontology databases as a mapping from ontologies to

relational databases in order to combine the expressiveness of ontologies with the

scalability of relational databases. This mapping is s01J,nd and, under certain

conditions, complete. That is, the database behaves like a knowledge base which is

faithful to the semantics of a given ontology. \iVhat distinguishes this work is the

treatment of the relational database management system as an active reasoning

component rather than as a passive storage and retrieval system.

The main contributions this dissertation will highlight include: (i) the theory

and implementation particulars for mapping ontologies to databases, (ii)

subsumption based reasoning, (iii) inconsistency detection, (iv) scalability studies,

and (v) information integration (specifically, information exchange). This work is

novel because it is the first attempt to embed a logical reasoning system, specified

by a Semantic Web ontology, into a plain relational database management system

using active database technologies. This work also introduces the not-gadget, which

relaxes the closed-world assumption and increases the expressive power of the logical

system without significant cost. This work also demonstrates how to deploy the

same framework as an information integration system for data exchange scenarios,

which is an important step toward semantic information integration over distributed

data repositories.
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CHAPTER I

INTRODUCTION

Semantic \rVeb ontologies provide a means of formally specifying complex

descriptions and relationships about information in a way that is expressive yet

amenable to automated processing and reasoning. As we experience an explosive

growth of data being annotated using ontologies, particularly in the biomedical and

scientific communities, we strive for the promise of facilitated information sharing,

data fusion and exchange among many, distributed and possibly heterogeneous data

sources. From the field of knowledge engineering, this fluid, malleable,

interconnection of data is one of the major aims of the Semantic Web which has

gained significant popularity in recent years. One important challenge for realizing

this vision is to develop new reasoning technologies that can scale to handle

extremely large and growing data sets. Thus, we define an ontology database as a

mapping from ontologies to relational database management systems for the purpose

of combining the expressive power of ontologies with the scalability of databases.



2

Recent studies on the scalability of knowledge base systems for the Semantic

\!Veb have shown that most demonstrate significant signs of trouble at around one

million data instances and completely break down at about three million. For

example, the Gene Ontology, already has over 40 million annotated instances as of

this writing and it is rapidly growing. Most recent attempts at using databases to

address the scalability problem treat the database as a storage and retrieval

mechanism for reasoning engines. These approaches take advantage of database

features such as persistence, access methods, optimization, and indexing. Our

approach, on the other hand, goes beyond that to also consider the database as an

active component of the reasoning system itself.

For less expressive logics an ontology database can perform all the necessary

reasoning, but when the ontology employs more sophisticated constructs, the

database may not be able to guarantee that it will find all possible logical

conclusions. In other words, while we can guarantee that an ontology database is

always sound (that any conclusion derived is correct) it may fail to be complete for

some ontologies (that not all possible conclusions can be found).

\!Vhile it has been popular for Semantic Web researchers to assume

completeness as a requirement, we assume that a Semantic \!Veb system should

guarantee soundness but not necessarily completeness. Indeed, there appear to be

some emerging trends toward semi-complete systems in the community. The

difficulty is to find balance between expressiveness, efficiency and completeness. In



3

terms of efficiency, reasoning difficulty generally grows exponentially over the

number of concepts in an ontology, making reasoning hard with respect to the

ontology. However, if we allow more expressiveness, such as disjunctions (e.g.,

cP V 'lj;) and case analysis, then reasoning becomes exponentially difficult over the

size of the data, which can be several orders of magnitude larger than the ontology!

Some of the best reasoning systems, which have been optimized to handle some of

our largest biomedical ontologies being on the order of tens of thousands of terms,

are easily crippled in the face of the corresponding data being on the order of tens

of millions of instances. On the other hand, if we simply disallow disjunctions

altogether merely to guarantee completeness, which has been the approach of late,

then we cannot express something as simple as, "He loves me or he loves me not."

One of the goals of our research has been to understand more deeply the

relationship between efficiency, expressiveness, and completeness with respect to

ontologies and databases. In developing ontology databases, the strategy has been

to separate computations that a database can perform from inferences a reasoner

should perform. That is, we aim to offload aspects of inferencing to the database

management system. What aspects are left over? What can the database not

compute? If we can separate those inferences that the database cannot perform,

then we have identified an area of focus for autmnated theorem proving.

When using a relational database to assist with scalability issues for

knowledge base systems, we carefully consider structural representation as well as
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reasoning tasks. In terms of structure, a poorly designed database schema will

introduce the problem of having to locate disorganized information. If predicates

from the ontology were stored in arbitrarily chosen tables, we would need to

perform complex query rewriting to unwind those choices. This not only makes

implementation more difficult, but it also introduces an additional layer of

potentially inefficient computations. Our systems uses the decomposition storage

model, which is one of three generalized structural models which bypass the

rewriting problem. The decomposition storage model has recently been shown to be

more efficient on average than the popular vertical model while maintaining many of

its desirable features. In terms of reasoning tasks, few approaches besides ours

consider in combination the features of a relational database that can make them

powerful reasoning systems for the Semantic Web. One of our main contributions

has been to explore some of these features of the database.

Similar to the way in which object oriented databases were developed to

support data management for object oriented programming paradigms, ontology

databases are intended to support data management for reasoning on the Semantic

Web. What are the performance advantages of this method? What kinds of

reasoning can a relational database perform? What kinds of reasoning cannot be

performed? Can we extend our methods to support the distributed, heterogeneous

and interconnected vision of the Semantic Web?
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The remainder of this dissertation is organized as follows. First, in

Chapter II we cover the necessary background and related works for understanding

the main contributions of our research. Topics range from ontologies and the

Semantic vVeb to data base and knowledge base systems. Next, our main

contributions are presented in Chapters III, IV, V, and VI. For each contribution,

we include a discussion of our implementations and case studies. The mapping from

ontologies to databases is presented in Chapter III. The mapping covers the main

features of Semantic Web ontologies, one at a time, and shows how to embed them

inside a relational database management system. The two main reasoning tasks,

instance checking and consistency, are covered in Chapter IV and V. Chapter VI

demonstrates how to use ontology databases to perform information integration,

which has been one of our main motivating applications. Finally, we conclude with

a general discussion, summary and notes on future work in Chapter VII.
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CHAPTER II

BACKGROlJND

This chapter covers the background and related works for further

understanding the ideas introduced. Topic areas range widely from ontologies and

knowledge bases, to deductive and active databases, to information integration and

data exchange. Vve conclude this chapter with an overall summary and problem

statement.

Ontologies

The term ontology and its related discipline has a long history, but we adopt

the definition given by Nicola Guarino in 1998. Taxonomies or categorizations date

back as early as Aristotle in the middle of the third century E.G But the first

references to ontologies have been attributed to other philosophers in early 1600

A.D. denoting the science of what is, of the kinds of entities, objects, relationships,

processes and other things that exist in reality [67]. Even more recently, ontologies

have been adopted by information science researchers to mean a formal specification
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of a conceptualization as defined by Tom Gruber in 1993 [37]. An ontology will

often specify a set of terms and a set of relationships together with a set of axioms

that constrain their possible interactions by using a formal language based on

first-order logic. Nicola Guarino [38] further refined Gruber's definition of an

ontology as follows:

Definition 2.0.1 (Ontology). An ontology is an approximation of a

conceptualization which is achieved by constraining the possible models of a logical

language according to only those intended models (i.e., the ontological commitment)

of a given conceptualization.

The key observation for Guarino's definition is the fact that the intended

models of a language may be compatible over many possible worlds of a

conceptualization, not just one world in particular. This results in an ontology

being merely an approximation of a conceptualization because it does not narrow

the meaning of the vocabulary to a single world. What the language does, in other

words, is to eliminate those worlds which might be considered absurd. Furthermore,

the intended models are not enough to reconstruct the ontological commitment of

the language. Therefore, Guarino concludes that the ontology for a language merely

approximates a conceptualization if there exists an ontological commitment such

that all the intended models of the language are included in the models of the

ontology.
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Ontologies have become popular in biomedical informatics for standardizing

the vocabulary of a domain. However, ontologies also provide the knowledge model

for automated reasoning systems, which are referred to as knowledge base systems.

Knowledge Base Systems

A knowledge base (KB) is a logical system in which r is a set of formulae

which constitutes the knowledge in the system. A KB furthermore provides an

inference or proof system for deriving new formulae. The main services a KB offers

is the ASK-TELL interface [53] for asserting knowledge and for querying the KB.

First, please read 'T I- rjJ" as "r derives rjJ," and read 'T F rjJ" as "r entails rjJ." If

the formulae in r contain free variables, then we say that the formula rjJ is entailed

by r if it is true under all possible variable assignments (i.e., interpretations) in r.

Another way to see it is that r entails rjJ if rjJ is true in all possible models of r. We

call the proof system of r sound if r I- ¢> implies r 1= ¢>. If r 1= ¢> implies r I- rjJ,

then we call the proof system complete. Intuitively, in terms of a query system,

soundness tells us that the answers a system can find are correct; completeness tells

us the system is capable of finding all possible answers.

Two well-known proof procedures are modus ponens and resolution.

Resolution is both sound and complete for first-order classical logic, but modus

ponens is merely sound. If we restrict our logic to Horn Logic, then modus ponens is

both sound and complete. Horn Logic is a fragment of first-order logic which only
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permits formulae with at most one positive literal when presented in conjunctive

normal form:

We often equivalently view Horn formulae as rules with conjunctions of positive

atoms on the left-hand side and a single atom on the right-hand side of the

implication symbol:

vVhat makes Horn Logic interesting is that the well-known forward-chaining and

backward-chaining algorithms based on modus ponens are highly efficient. The main

idea of modus ponens is to satisfy the left-hand side of a rule in order to conclude

the right-hand side:

Generalized JVlodus Ponens (Gf..,,1P) extends this inference rule with conjunctions of

atomic formulae on the left-hand side of a rule, such that the rule is applied

whenever a substitution set (denoted bye) is found for the variables which

simultaneously satisfy the conjuncts. This process is called unification, and the

variable assignments come from the corresponding literals in each of the ground
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terms ¢~. After substituting the literals into 'I/J (denoted by SUBST(8,'I/J)), GMP

derives the desired conclusion:

¢1 1\ ¢2 1\ ... 1\ ¢n ----+ 'I/J ¢~ 1\ ¢; 1\ ... 1\ ¢~

SUBST(8,'I/J)

Unlike the procedures used for Horn Logic, resolution operates without

restriction on the number of positive literals and relies heavily on

proof-by-contradiction (¢ 1\ -,¢ being unacceptable) to reach a derivation:

Resolution is more powerful than generalized modus poncns because it does

not operate with the same restriction on the number of positive literals:

¢l V V ¢.i V ... V ¢n -'¢.i

¢1 V V ¢j~l V ¢j+l V ... V ¢n

where each literal ¢i other than the resolvent ¢j can be either positive or negative.

Knowledge base systems were designed to address representation and

reasoning using formal (logic-based) methods. However, without efficient persistent

storage methods, these memory intensive applications could not accommodate the

scale of growing information systems. Therefore, in the late 1960s to early 1970s

methods for efficient storage and retrieval of information were investigated, leading
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to one of the most practical contributions of computer science: the relational model

and relational database management systems.

Relational Database Management Systems

In 1970 when E.F. Codd developed the relational model [19] to address the

problem of data independence, the idea of separating the logical view of data from

its underlying physical implementation. This allowed application programmers to

store and retrieve data in a declarative rather than procedural manner, giving

front-end applications a high degree of adaptability as underlying disk storage

mechanisms and access paths were optimized, reorganized or otherwise changed.

Before this, the network and hierarchical database models (which will not be

covered here) required fine-grained manipulation of low-level data structures (such

as trees and lists). The well-known building blocks of the relational model include:

data types, relations, attributes, and schemata [2].

The idea to use the relational model to address data independence did not

really take hold until a decade later in the 1980's, when the International Business

Machines corporation (IBM) undertook an important project called System R [16],

the first influential relational database management system (RDBMS). System R

demonstrated that an RDBMS can effectively compete with an experienced

programmer, automatically choosing algorithms and data structures to store and

retrieve data efficiently at a low (disk and main memory) level. This was the birth
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of the ubiquitous SQL language covered in several well-known texts [2, 29] which

has resulted in many commercial RDBMSs such as Oracle, Informix, IBM DB2,

Microsoft SQL Server, Sybase, as well as popular open source databases such as

MySQL and PostgreSQL.

What makes modern RDBMSs most successful are the features that optimize

the physical storage and retrieval of tuples on disk, such as partitions and query

optimizers, as well as features that maintain data integrity, such as constraints and

triggers. Furthermore, a good RDBMS maintains a catalog of information about the

database itself (e.g., the size of relations, max and min values, indexes, etc.) to

decide which relational algebra expression will cost the least amount of disk access.

Of all the features, the query optimizer is what sets commercial RDBMSs apart.

Some years after Codd's paper, in 1976 Peter Chen introduced a higher level

representation called the entity-relationship model (ER Model) [17] as a design tool

bridging the user's conceptual model of his or her data with the relational model.

Hull and King [46] provide a nice survey of several other semantic data models as

well. In the context of biomedical informatics, ontologies and knowledge bases, one

open question is how to effectively design a logical database model based on an

ontology as a conceptual model. Important strides toward this solving this problem

have been made in the fields of deductive and active database systems.
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Deductive and Active Databases

There is a rich history of work on the connections between logic, knowledge

bases and databases [54], but it was Reiter's seminal works in particular which laid

firm groundwork for much of the subsequent research in ontologies, databases and

knowledge bases today, including Datalog [69]. Reiter coined the closed-world

assumption (CWA) and envisioned databases and inference engines working in

concert [60], he reformulated relational database theory in terms of first order

logic [62], and he pointed out that the semantics of integrity constraints requires a

modal operator [63, 64]. Perhaps as a sign of the times, one of the major

assumptions Reiter made is that space is limited and he therefore balanced

computation against space.

A deductive database is simply a knowledge base, typically restricted to

Horn Logic. Datalog is the famous deductive database system which introduces the

use of views and was inspired by the logic programming language, Prolog. A

Datalog view has a head and a body. The head is an atomic formula while the body

is a conjunction of atomic formulae. Although views correspond directly to Horn

formulae, they are often written in a specific syntax, like a Horn rule written

backward:
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What differentiates Datalog from Prolog is that each conjunct in the body

may have additional modifiers (e.g., cardinality constraints). Furthermore, popular

implementations of Datalog use forward and backward chaining algorithms, while

Prolog implementations often use linear resolution. Because of the kinds of

modifiers that Datalog allows on conjuncts, including arithmetic operations, Datalog

algorithms become undecidable (i.e., they may not terminate) unless additional

finite model conditions are added. Datalog provided a crucial step toward thinking

of relational databases as logical systems [54], which Reiter helped formalize in [62].

The main difference between database views and Datalog views is that databases do

not allow cycles. Therefore, Datalog offers more powerful semantics than traditional

database views, using fixed-point models to help guarantee termination. Almost

every relational database management system today implements views.

In subsequent work, database researchers found the need to consider

alternative approaches for rule-oriented processing within the relational database

management system. This lead to the event-condition-action (ECA) paradigm in

active databases [9, 30, 58]. An ECA rule is commonly referred to as a database

triggeT. The basic idea behind a trigger is to register with the management system a

condition that is checked whenever a particular event occurs on a table which

transitions the database to a new state. If the condition is satisfied, then the

specified action is performed. In general, the action can be any procedure that can

vary from possibly taking the database to yet another state, to causing a completely
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external process to occur, such as sending an email alert. In a database system,

there are only three events that can occur on a table: inserting a record, deleting a

record, and updating a record. In the context of logical systems, research has

explored the use of triggers for managing constraints [12], for maintaining logical

consistency as in a knowledge base [15], for deductive object-oriented databases [22],

for maintaining materialized views [13], and some have even gone so far as to

consider information integration scenarios [14]. Active database technologies are

also common features of relational database management systems today.

Therefore, databases not only provide important data independence features

such as query optimizers, data partitioning, and integrity constraints, but they also

provide views and triggers. The main question is how to apply the key features of

databases toward addressing scalable reasoning over ontologies for the Semantic

Web.

The Semantic Web

The Semantic Web is an idea envisioned by Tim Burners Lee et at. [5] that

brings together all of the fields mentioned above. The Semantic VVeb is an extension

of the World "Tide Web (or simply the Web) in which data becomes linked such

that machines, not just humans, can automatically combine and manipulate them.

The eXtensible Markup Language (XML) was an important leap forward toward

providing the structure for marking up data on the Web. However, XML still failed
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to provide the key ingredient for combining and manipulating the data as

envisioned, which is formal semantics. The World Wide \Veb Consortium (W3C)

has since converged on the Web Ontology Language (OWL) [45] as the defacto

standard language for encoding knowledge for the Semantic Web. OWL is a logical

language based on Description Logic (DL) [4] for giving data formal semantics using

ontologies.

A system based on Description Logic therefore provides the capability to

setup a knowledge base, which includes the ability to reason over its contents. DLs

divide the knowledge base into two components, the TBox and the ABox. The

TBox introduces general knowledge in the form of the terminology, whereas the

ABox contains the specific assertions about named individuals using the TBox

vocabulary [4]. The two common reasoning tasks for the TBox are satisfiability (i.e.,

descriptions are non-contradictory) and s'Ubs'Urnption (i.e., whether one term is

contained by another). In fact, satisfiability can be reduced to subsumption by

asking if any description is subsumed by the empty concept (i.e., the concept which

contains no instances). For the ABox, consistency (i.e., whether the set of assertions

has a model) and instance checking (i.e., whether a particular individual is an

instance of a give term) are the two main tasks.

OWL extends the Resource Description Framework (RDF), which is an XML

language designed for specifYing the semantics of data on the Web. RDF allows the

specification of classes and properties such that data can be expressed in a very
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general subject-property-object graph structure. In addition, RDF Schema provides

additional constructs for specifying class and property hierarchies. Furthermore,

domain and range restrictions can be applied to properties using RDF. OWL adds

additional features such as cardinality restrictions, property characteristics such as

transitivity, and additional kinds of property restrictions.

Although every DL statement can be expressed in standard first-order logic,

some claim that Description Logic is best suited for the Semantic Web because of

the ease of expressing terminologies by focusing on their descriptions. As an

example, the statement, "Every offspring has at most two biological parents," can

be expressed in DL very concisely:

Offspring ~ (::; 2 hasBiologicalParent)

In contrast, the equivalent first-order logic syntax is much more verbose:

'Vw,x,y,z: Offspring(w)

/\ hasBiologicalParent (w, x)

/\ hasBiologicalParent (w, y)

/\ hasBiologicalParent(w, z)

-----t sameAs(x, y) V sameAs(x, z) V sameAs(y, z)
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However, few ontologies in the biomedical domain use cardinality constraints.

With biomedical ontologies presenting the majority of serious applications, some

still question the actual suitability of DL in practice. Regardless of the motivation

for choosing DL, research in this area has contributed some of the most important

results on the tradeoffs between the expressiveness and tractability of various

fragments of first-order logic. Of particular relevance are two DL families: ££ [3]

and DL-Lite [11].

The ££ family of languages corresponds to the semantics of many biomedical

ontologies including SNOMED [7] and the Gene Ontology [35]. ££ does not include

cardinality constraints, but rather focuses on the ability to specify term hierarchies,

role inclusions, and basic role restrictions. Research on the ££ family has shown

that, in practice, most biomedical ontologies use less expressive ontologies. In

particular, the logic of these ontologies is tractable - that is, the algorithms proposed

to decide whether the individuals of one term are necessarily contained by another

term (i.e., subsurnption) is sound, complete and terminates in polynomial time [3].

DL-Lite [11] makes another important and relevant contribution by

examining DL with respect to databases. DL-Lite defines a family of logical

languages which closely captures database schema semantics. Importantly,

reasoning over DL-Lite has the important property of being computable in

polynomial time for both subsumption inferences in the TBox as well as instance

checking on the ABox based on conjunctive queries posed in terms of an ontology.
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This presents a significant step toward formalizing the problem of using databases

to assist ontology-based reasoning systems. DL-Lite is expressive enough to capture

schemas up to total participation constraints (also known as complete constraints or

covering axioms) which are a kind of disjunction. An example of a complete

constraint would be the statement, "All managers are either top managers or area

managers (there are no other kinds of managers)." However, the main features of

database management systems that DL-Lite exposes are based purely on structural

correspondences between the logic and the schema. That means DL-Lite query

answering mainly exploits the query optimization and indexing advantages of

databases.

Aside from placing theoretical bounds on the logical language used, many

other advances have been made toward addressing the scalability of ontology-based

query answering by focusing on optimal structures for storing logical predicates.

The most important observation is that almost any knowledge can be encoded in

the form of triples. The Resource Description Framework (RDF) is part of the

language stack that OWL is built upon, and RDF provides the mechanics for

specifying knowledge in terms of RDF triples. The vertical model is the most naive

implementation in which a single database table with three columns stores all the

RDF triples. The important advances on this method fall into two main categories.

Firstly, because query answering suffers from excessive and costly self-joins over

vertical triple stores (e.g., imagine the difficulty of finding all individuals sharing the
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same phone number in a phonebook indexed by last name), some attempt to

provide custom optimizations [8, 18, 56] (e.g., imagine creating a special index on

phone numbers). The problem with custom optimizations is they do not generalize

well and often introduce additional computation steps that do not scale. Secondly,

others attempt to side-step the costly self-joins by partitioning the vertical model

along properties or concepts [1, 20, 44], which includes the very successful

decomposition storage model strategy.

In addition to these works, other attempts have seriously considered deeper

connections between ontologies and databases. In particular, Motik et al. [55]

offload integrity constraint checking to the database, further bridging the gap. Their

work was motivated by the observations made by Raymond Reiter in an important

work connecting knowledge bases with modal logic when it comes to

constraints [64]. The key idea is that constraints are unlike regular first-order rules

in that they specify knowledge about knowledge. That is, integrity constraints are

epistemic in nature. Therefore, to properly specify an integrity constraint requires

introducing the K-modal operator into the logic which Motik et al. have proposed

for OvVL. The important contribution of this work was to stretch the ontology and

database relationship further, beyond purely structural considerations. Motik et al.

have essentially shown how to incorporate another important feature of database

management systems into the mix: the ability to maintain a degree of consistency

by checking for integrity constraints (e.g., foreign key constraints).
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The challenge boils down to addressing the impedance mismatch between

ontologies and databases, which should also include the rule-oriented and

event-driven features. A few notable works have begun to explore these

considerations. Cure and Squelbut explored the use of database triggers in the

context of ontologies for truth maintenance [21]. Vasilecas and Bugaite developed

an algorithm for transforming ontology axioms into rules [70], and Lee and Goodwin

employ similar techniques for managing large-scale applications [49].

Of the many applications for ontologies and the Semantic \iVeb, one of its

greatest promises is facilitated information sharing. Often lumped together as

information integration, data mediation, sharing, exchange and fusion are among

the most difficult yet important challenges of the last few decades.

Information Integration, Sharing and Fusion

For several decades now information integration has been, and it continues to

be, a challenging area of research in which ontology-based methods have gained

some traction [36, 71]. Information integration is defined as the problem of

combining data residing at different sources and providing a unified access to these

data through a reconciled global view [50].

For relational databases, integration can be decmnposed into query

translation or data translation. Query translation is typical in scenarios where a

mediator takes incoming queries and delegates sub-goals to the underlying
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resources. On the other hand, data translation is more common to migration or

exchange scenarios, where information is exported from one location to another.

Definition 2.0.2 (Query Translation). Quer-y tmnslation is the pTOcess of extmcting

data expr-essed using one schema to answer- the quer-y posed over- another- schema.

Definition 2.0.3 (Data Translation). Data tmnslation is the pTOcess of

tmnsfoTming data fTOTrI. a r-epositor-y under- one schema to a r-epository under another-

schema.

Because an ontology can capture the semantics of a database schema (as in

DL-Lite), integrating databases reduces to translating queries between two

ontologies. The way to do this is to merge the two ontologies and then reason over

them together. The key idea is to use namespaces to distinguish terms from each

repository and thus safely union concepts between two (or more) ontologies using

what are called br-idging axioms to create a mer-ged ontology. We then use an

inference engine to translate queries and data between the two KBs using the

bridging axioms in the merged ontology.

As an example, Figure 1 depicts the general idea for merging two family

genealogy ontologies (DRC-ged1 and BBN-ged2). The representations of the

genealogy ontologies highlight a difference in the way families are defined [27]. One

Ihttp://orlando.drc.com/daml/Ontology/Genealogy/3.1/Gentology-ont.dam

2http://www.daml.org/2001/01/gedcom/gedcom.daml
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could argue that BBN-ged is a more flexible definition since families can include

same-sex partners.

ORe-ged

* •• ':." ~/ -••••••••

spouse-marriage -- -- -- ~ ~'~ II ~","'T_.-'

correspondence ,,--' ;'# -.~,

....... .:: B"'''''''',,);; "~. .
....': Family

" :. .
' ..• •

:/BamiIY .,/. .
~~~- ,*"'"' '"

BBN-ged

FIGURE 1: Two merged geneology ontologies.

General rules such as the assumption made in DRC-ged families, "for each

DRC-ged family, there is at most one husband and wife," are usually encoded in

each individual ontology using some first-order logic-based language. Likewise, when

ontologies are merged, we include bridging axioms as new first-order rules in the

merged ontology with fully qualified namespaces such as the spouse-marriage

correspondence from Figure 1 ("husbands and wives in DRC are spouses in BBN"):

\Ix, y, z. DRC-ged:Family(z) /\ J\!fale(x) /\ Female(y) /\ husband(z, x) /\ wije(z, y)

::::} BBN-ged:Family(z) /\ spouseln(x, z) /\ spouseln(y, z)

Ontology-based integration therefore is as simple as making inferences (i.e.,

"translating") across bridging axioms [25, 26, 27, 28]. Applying this technique to
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database integration requires making the simple observation that database schemas

are like simple ontologies. It turns out to be a relatively trivial task to lift a schema

definition, which is mainly structural, into an ontology (which we have called a DB

ontology) by following some simple rules of thumb: relations become classes,

attributes become predicates, and primary keys become instance ident~fiers.

Extracted using these principles, the DB ontology for one database can be merged

with another such that database integration reduces to ontology translation. The

main advantage to this approach is that query translation is highly efficient and

depends mainly on the size of the ontology (not the data).

However, data translation does not benefit from this approach because it is

data-driven. Therefore, the question becomes: how to develop an approach that

scales for data translation? In fact, this question has originally motivated much of

our research.

Summary

In summary, Description Logics, the logic underpinning Semantic 'Neb

ontologies, divides rea.soning into TBox reasoning (i.e., reasoning about the

concepts in the ontology) and ABox reasoning (i.e., reasoning about the instances in

an ontology). Unfortunately, although existing techniques for TBox reasoning scale

adequately for most real-world ontologies [42], on the order of tens of thousands of

concepts, one of the major challenges still to overcome is the scalability of reasoning
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over annotated data instances in the ABox, on the order of tens of millions to

billions of instances.

One study on the scalability of knowledge base systems for the Semantic

\J\Teb by Guo et al. [39, 40] has shown that many memory-based and disk-based

systems demonstrate significant signs of trouble around one million instances and

completely fail at around three million. This early study made a strong case for the

use of database systems to help Semantic Web knowledge bases scale to large

numbers of instances.

Simply stated, the main problem we aim to address is to reason over a given

ontology-based knowledge base having a large number of facts using a plain database

management system such as MySQL. In our solution, we present ontology databases,

a new methodology which uses several first-order logic features of database

management systems in combination to directly support the reasoning process. In

addition to capitalizing on integrity constraint checking, our work uniquely explores

the use of event-driven, active database technologies (triggers) to perform modus

ponens over extended Horn-logics in a way that has not been done before, by

introducing explicit negations and not-gadgets into the ontology database structure.

Our approach differs from others by not requiring any external theorem prover to

perform reasoning; only a plain database management system is required.



26

CHAPTER III

ONTOLOGY DATABASES

We call the family of databases that model ontologies and answer

ontology-based queries ontology databases. The key ideas behind ontology databases

are to structure the database using a decomposition storage model and to map

implication rules to database ECA triggers. Furthermore, domain and range

restrictions on properties can be mapped to database integrity constraints. This

mapping causes the ontology database to compute the minimal model for KBs

based on simple ontologies such as the E£ family of biomedical ontologies, which

means the ontology database can not only perform efficient query answering but

also correct instance checking over a given ontology. If we extend the mapping

further to include explicit negations, then the ontology database can also perform a

limited form of inconsistency detection.

This chapter explains how to map an ontology to a relational database

management system. We use the extended Sisters-Siblings example to illustrate the

basic concepts. In this example, the main idea is that if any two people are sisters,



27

then we can infer that they must be siblings. Our main contribution is the

presentation of the mapping, feature-by-feature, from ontologies to databases. Our

novel approach is to use database triggers as a key feature in this mapping.

Structure

Arbitrary database structures result in expensive and complicated query

rewriting. Therefore, three generic storage models have been extensively studied in

the literature - horizontal, vertical and decomposed. Our system employs the

decomposed storage model for the reasons described below.

The horizontal model proposes a single, wide table where each attribute

(property) is a column. It is rarely used because it contains excessively many null

values (because not every entity participates in every property) and is expensive to

restructure because adding new predicates requires new columns.

Conversely, the vertical model presents a single, tall table with only three

columns: subject, property and object. It is quite popular because it avoids the two

main drawbacks of the horizontal model. Furthermore, the vertical model supports

very fast insertion of new data. In fact, Sesame [8], a popular Semantic Web RDF

storage framework, and most other RDF triple stores use the vertical storage model.

Unfortunately, the vertical storage model is prone to slow query answering

performance because of the excessive number of joins against the single, tall table

for most queries. Furthermore, type membership queries are somewhat awkward.
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The typical workaround is to first partition the vertical table to better support type

membership queries, then to partition it further along predicates that will optimize

joins along advantageous distributions. However, the partitions often seem arbitrary

and lead back toward the query rewriting problem.

The decomposition storage model can be viewed as a fully partitioned

vertical storage model, where the single table is completely partitioned along every

type and every predicate. That is, each type and each predicate gets its own table.

\;Vhen taken to this extreme, query rewriting becomes straight forward again. The

decomposition storage model keeps the advantages of the vertical model while

improving query performance. Although it is possible to customize more efficient

partitions, the cost of implementing the proper query rewriting tools is seldom

worth the benefit [1, 20].

Domain and Range Restrictions

Domain and range restrictions on properties in an ontology correspond to

integrity constraints on the subject and object of a property table, which can be

implemented by using foreign-key constraints referencing a type table or by

assigning the respective datatype (for datatype properties). For example, we might

restrict the domain and range of Sisters to Person as in Figure 2, where the dashed

lines and checkmarks denote a foreign-key (f-key) check. That is, before the
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assertion Sisters(Lily,Zena) is loaded, the database first verifies that Lily and Zena are

already in the Person table, otherwise an error is raised.

------- ... _._.--------____ • I

Sisters (subj, obj)

(Lily, Zena)

f-key tt
Person (id)

(Paul)

(Lily) ,J
(Zena) ,J

FIGURE 2: Restrictions using integrity constraints.

The domain and range restriction on Sisters object property would be

implemented in SQL as follows:

CREATE TABLE sisters (

subject VARCHAR NOT NULL,

object VARCHAR NOT NULL,

CONSTRAINT fk-sisters-subject-person FOREIGN KEY (subject)

REFERENCES person(id)

ON DELETE CASCADE,

CONSTRAINT fk-sisters-object-person FOREIGN KEY (object)

REFERENCES person(id)

ON DELETE CASCADE)
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Semantically, the first order formulae for restrictions go beyond Horn Logic

because they require negations. It has also been noted in the literature that we

require the K modal operator [4, 64] to precisely describe the semantics of these

features. The first order logic for the Sisters-Person restriction should technically be

the following:

\;Jx, y : -,KPerson(y) ~ -,KSisters(x, y)

Subsumption

The sub-class and sub-property (is_a) axioms define the subsumption

hierarchy (inclv,sion axioms) over which we can perform a majority of inferences. In

the literature, these have been mapped to views [57]. However, we propose mapping

the is_a relationship to a database trigger. One important reason for our approach

is that few systems support foreign-key checks on views - making it difficult to

consider restrictions in combination with subsumption.

:------------------.
I-key

Female (id) Person (id)

(Mary)

(Lily) (Paul)

(Zena) trigger (Lily)*).. (Zena)

---+ (Jane)

(Mary)

FIGURE 3: Subsumption using triggers.
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As an example, if Female is a sub-class of Person, then our system forward

propagates instances of Person as instances of Female are asserted by using database

triggers. Figure 3 illustrates how asserting Female(Mary) triggers (denoted by the

starburst and double arrow) the assertion of Person(Mary). The SQL

implementation would be the following:

CREATE TRIGGER subclass-female-person

ON INSERT (x) INTO female

FIRST INSERT (x) INTO person

Semantically, 'is_a relationships correspond to Horn rules, such as the

following Female-Person subsumption:

\Ix : Female(x) ~ Person(x)

However, triggers only capture part of the semantics intended. In particular, the

trigger corresponds semantically to the following rule [4]:

\Ix : KFemale(x) ~ KPerson(x)

To fully capture the intended semantics of the inclusion a..xiom, we should also

consider the contrapositive, which corresponds to a restriction (implemented as an
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f-key in Figure 3):

Vx : -,KPerson(x) -----+ -,KFernale(x)

Note that the "FIRST" keyword in the SQL for the trigger ensures that the

temporal dependency between the trigger and the integrity check is correctly

maintained. It may seem redundant to include a check since the trigger will

guarantee existence, however it is necessary to have this check to maintain

consistency going forward.

Cardinality

\Ve support only limited cardinality constraints on properties, zero or one,

for minimal or maximal participation. For example, the rule, "People have at most

one social security number (SSN)," is a maximal cardinality constraint of one on the

property hasSSN. The following axioms capture our everyday assumptions about

SSNs:
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Vx: ,KPerson(x) --+ ,K3y : hasSSN(x, y)

Vx, y : ,Ky : String["ddd - dd - dddd"] --+ ,KhasSSN(x, y)

Vx, y, z : hasSSN(x, z) 1\ hasSSN(y, z) --+ equal(x, y)

Vx,y,z: hasSSN(z,x) 1\ hasSSN(z,y) --+ equal(x,y)

Vx: KPerson(x) --+ K3y : hasSSN(x, y)

The first two rules are restrictions; the second one specifying a datatype

property restriction. The third and fourth rules specify that no two people have the

same SSN and no person has two SSNs, respectively. The last rule adds that every

person has at least one SSN. We use uniqueness constraints (e.g., a primary or

alternate key) to implement maximal cardinality. Cardinality axioms that have the

same semantics as restrictions are treated as such. For example, for the hasSSI\J

property, we would create the table as follows in SQL:
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CREATE TABLE hasSSN (

subject VARCHAR NOT NULL,

object VARCHAR (format:"ddd-dd-dddd") DEFAULT NULL,

UNIQUE (subject),

UNIQUE (object),

CONSTRAINT :fk-hasSSN-subject-person FOREIGN KEY (subject)

REFERENCES person(id)

ON DELETE CASCADE)

Minimal cardinality, on the otherhand, is more interesting. As the rule

suggests, it should be implemented as a positive trigger rule, but the existential

quantifier does not provide a specific value to forward propagate - merely that one

exists. As Reiter [64] suggests, we use a null value. Therefore, we would add a

trigger to complete the minimal cardinality constraint:

CREATE TRIGGER exists-person-hasSSN

ON INSERT (x) INTO person

INSERT (x,NULL) INTO hasSSN
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Null values can be difficult to work with in a KB setting. Using them in this

way can be considered a weak form of skolemization. What would be more useful is

to create a new skolem term, a variable that is functionally dependent on the

quantifiers that determine it. V-tables [47] offer an interesting alternative, a more

powerful approach that we did not choose because they are not widely adopted in

database management systems.

Explicit Negation

The closed world assumption (CWA) assumes that all facts are false by

default until asserted or inferred otherwise [61]. We differentiate explicit negations

from those that might be assumed from the CWA. That is, the explicit negation

asserting that Bob is not Female is treated differently from Bob being excluded from

the Female table in an ontology database allowing negations. If we allow negations

in the ontology database, then for every positive table (e.g., Fema Ie), we include a

corresponding explicit negation table (e.g., -, Fema Ie) in the database. Furthermore,

an exclusion dependency enforces the fact that ¢ and -,¢ cannot be simultaneously

true. An exclusion dependency is a special kind of integrity constraint which

ensures a tuple does not appear in both a positive and its corresponding negative

table at the same time.

If we consider the concept graph with triggers as directed arrows between

concept atoms, then the Sisters-Siblings sub-property would look like the following
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diagram:

Sisters ------+ Siblings

By adding exclusion dependencies (e.g., the constraint that the same tuple cannot

appear in both cP and -'cP) as undirected, dashed arrows, the concept graph takes on

a distinctive general structure, as in the following:

Sisters --*> Siblings
[ I

I I
I I

-,Si,sters -,Siblings

Vie refer to these structures as not-gadgets.

Not-gadgets help to detect inconsistencies as well as to answer a limited form

of disjunctive query. As an example of the latter, suppose we have a simple ontology

which states that, "All Persons are either Female or Male," and its extension, "Bob

and Jane are Persons. Jane is a Female, but the person Bob is not a Female." The

first order axiom, called a covering axiom, is in the form of a disjunction, but we

can transform it into a series of conjunctive statements with negations as follows:

\:Jx: Person(x) -------+ (Female(x) V jWale(x))

\:Jx: Person(x) -------+ (-,Female(x) -------+ Male(x))

\:Jx: (Person(x) 1\ -,Pemale(x)) -------+ l\!lale(x)

\:Jx: (Person(x) 1\ -,Male(x)) -------+ Female(x)
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The transformations rely on the following well-known theorems of classical logic,

respectively:

(4) V 'IjJ)

(4) ---* (4)' ---* 4>"))

(4)V?t')

(,4> ---* 'IjJ)

((4) /\ 4>') ---* 4>")

('ljJV4»

FIGURE 4: The Male-Female not-gadget.

Given just the conjullctive statements, we can still pose the disjullctive

query, "Is Bob either a Male or Female?" as a union over the Male and Female

tables and expect a concrete answer: true. In fact, the ontology database with

negations will explicitly store the fact that Bob is Male as shown in Figure 4.

Ordinary relational database modeling techniques would not return the correct

answer. Note, however, that without the negative fact Bob is not Female, neither

would an ontology database. This is the fundamental limitation of ontology

databases -- they are not guaranteed to be complete. We believe that this is

ultimately due to the constructive nature of relational database management

systems. Because an RDBMS concerns itself with concrete knowledge, it can never
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be as powerful as full classical logic with the non-constructive inference rules (case

analysis and reductio ad absurdum).

Disjunctive queries therefore reduce to unions of conjunctive queries. The

Male-Female covering axiom would be implemented in SQL no differently than

inclusion axioms, this time using explicit negations appropriately:

CREATE TRIGGER disjunction-female-male

ON INSERT (x) -female

FIRST INSERT (x) INTO male WHERE (x) IN

(SELECT y FROM person)

Summary

In summary, we have mapped four important features of ontologies to

database management systems. First, domain and range restrictions map to

integrity constraints. Second, is_a relationships map to triggers as well as integrity

constraints. Third, maximal and minimal cardinality constraints are mapped to

integrity constraints and triggers, respectively. Fourth, a limited form of negative

and disjuIlctive knowledge are mapped to not-gadgets with exclusion dependencies.

Finally, we use the decomposition storage model to easily store and retrieve

instances of terms from the ontology.
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Definition 3.0.4 (Ontology Database). An ontology database is a database that

models an ontology for supporting ABox reasoning (instance checking and

consistency) .

Figure 5 depicts each of the components described so far working together:

structure, restriction, subsumption, negation. For example, the Male-Female

covering axiom (bottom-left area of the figure) will propagate Male(Paul) while

verifying that ,Male(Paul) is not the case. Also, the cardinality constraints on

hasSSN (middle-right area of figure) will propagate null values as depicted. Finally,

as the Sisters-Siblings subsumption relationship is maintained (top area of the

figure), it is checked against the appropriate domain and range restrictions. In this

case, we have further restricted the Sisters domain and range to Female as indicated

by the dashed, foreign-keys.

.---------
I

Sisters (subj, obd
(-key

Siblings (subj, obj)

~
~

.t1eY.... . .........•••..••••...•••
persot td) hasSSN (subj, obj)

,_ ...
Female (id) :-•

(Lily, ~)_____ (Paul, Mary)

~ trigger
(Lily, lena)

(Mary, Jane)

-Male (id)

(Lily) (Paul) (Paul, 111-22-3456)

(lena) (lena) trigger (Lily) (Lily, null)
(Mary) ~ (lena) trigger

(lena, 555-22-3456)

trigger (Jane) ~ (Mary) ~ (Mary, nUll)

I
(Jane) ~ (Jane, null)

I
I I

Mal4 (id) -Female (id)

~ I (Paul) I~ III I (P~UI) I____ trigger _

(Mary, Jane)

FIGURE 5: The full Sisters-Siblings, Male-Female, hasSSN example.
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CHAPTER IV

INSTANCE CHECKING

Query answering is the generalized problem of determining whether a

predicate is true, which is called instance checking in Description Logic systems. In

the context of an ontology and KB system, query answering requires that subsumed

instances also be considered in the query answering process. The subsumption

hierarchy is primarily defined by the sub-class and sub-property axioms. Therefore,

when asking whether an instance belongs to a particular class, it requires asking

whether the individual belongs to all of the subsumed classes as well. We can

inductively define instance checking as follows:

Definition 4.0.5 (Instance Checking). Instance checking is a reasoning process that

returns true for ¢(a) whenever either ¢(a) is the case, or ¢t (a) is the case and

¢t ~ ¢ (similarly for properties or binary relations).

For Horn Logic, modus ponens is both sound and complete. Therefore, since

triggers implement a forward chaining algorithm for modus ponens, an ontology

database can return all of the correct answers to conjunctive queries over ontologies
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using features up to Horn Logic, such as is_a hierarchies. \lVhat differentiates

conjunctive queries over ontologies from those over traditional schemas is that

answers to each atomic query sub-goal should include instance checking over

subsumed terms.

An ontology database answers conjunctive queries in polynomial time with

respect to the data because the full extension of each term is pre-computed and we

perform no instance checking reasoning at query-time. Therefore, computing

answers takes only as long as the corresponding SQL query takes to run on the

database.

This chapter presents several case studies and discusses the benefits and

tradeoffs of our implementation with respect to conjunctive query answering. Our

main contribution is to analyze the performance benefits and tradeoffs of using a

trigger-based approach versus other traditional approaches. Also, we propose a new

benchmark for KB systems by varying not only the size of the extension, but also

the size and complexity of the ontology itself. Finally, we illustrate a novel

application domain which has provided promising results on both the usability and

performance of our implementation.

Case Study: Query Answering Performance

The fundamental difference between using views and triggers is the notion of

pre-computing the inference. In the view-based approach (non-materialized), the
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query is unfolded and answers are retrieved at query-time. In the trigger-based

approach, knowledge is forward-propagated as it is asserted. Clearly, the benefit of

forward-propagating knowledge, as with materialized views, is faster query response

time. In other words, we amortize the cost of pre-computation over the number of

queries, expecting queries to outnumber assertion events over time. Therefore, when

measuring the performance of a query answering system, it is important to also

consider the time it takes to load all of the assertions.

The Lehigh University Benchmark (LUBM) [41] is a framework for measuring

the scalability of a knowledge base system over extensions of varying sizes. LUBM

includes the University Ontology, a data extension generation mechanism, and a set

of 14 queries. The benchmark requires the system to report both load-time and

query answering performance. Query performance times should be averaged over at

least 10 trials, and then averaged again over 3 sessions. Between each session, all

caches should be flushed. Load-time is the total time it takes to load the ontology

as well as the generated data extension into the KB, whether or not it is an

in-memory or disk-based system. The LUBM data extension generator takes two

parameters which varies the size of the extension. The parameters represent (1) the

number of universities, and (2) the number of departments per university.

In [51] we evaluated ontology databases using triggers by comparing it with

the DLDB system [40, 39, 57] which is a very similar system using views. This

experiment was performed in October of 2007 using an unremarkable laptop having
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a 1.8 GHz Centrino processor and 1GB RA[\/I. We used the LUBMlO ,20 benchmark

and experimentally confirmed that by using triggers rather than views, query

performance clearly benefits by several orders of magnitude. However, we were

surprised to discover that it came at no observable cost in terms of load-time. We

expected load-time to increase by a factor proportional to the average depth of the

subsumption hierarchy, which for the LUBM is about three.
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FIGURE 6: LUBM lO ,20 performance results.

The overlapping trends in Figure 6(a) illustrates how the load-time for views

(DLDB) versus triggers (OntoDB) appears unaffected. In the figure, there is an

anomaly at around 1.2 million facts which we later confirmed was explained by disk

contention resulting from a virus scanner.

We used a non-logarithmic scale in Figure 6(b) to contrast how dramatically

different DLDB and our systeln, OntoDB, perform, especially on chain queries

(queries 10 and 13). Queries 2, 4, 8 and 9 are not shown in the figure as they have

extremely long running times showing no significant difference in performance for
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both the OntoDB and DLDB. These queries fall into the class of "complete queries"

which have many join predicates.

Finally, having stored the full transitive closure of all instances over the

subsumption hierarchy, the actual disk-space usage for LUBM using OntoDB

roughly triples in comparison to DLDB, as we might expect based on the average

depth of the subsumption hierarchy of the University Ontology, which has on

average depth three, because the OntoDB system literally copies data up the

hierarchy.

The surprising result regarding load-time prompted us to further explore the

performance of our OntoDB system along various other parameters that the LUBM

does not test, namely the size and depth of the ontology. The LUBM benchmark

uses a fixed ontology, the University Ontology, and varies the number of instances

for that ontology to compare the scalability and performance of knowledge bases

over large numbers of instances. However, the University Ontology is fairly small.

There are only about 78 terms in a subsumption hierarchy averaging a depth of

three with a maximum depth of five. Compared with biomedical ontologies such as

the Gene Ontologyl (on the order of 30-thousand terms up to depth 18) and

SNOMED [7](on the order of 270-thousand terms), the University Ontology is

minuscule.

Ihttp://berkeleybop.org/goose
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Case Study: Load-time Performance

Our theory for the surprising lack of visible load-time cost for the LUBM

case study is that for shallow hierarchies, the database can parallelize the writes to

several tables at once, depending on the number of write-heads on the disk. Hence,

for ontologies of significantly larger depth than the LUBM ontology, we would

expect the propagation cost to become more evident. Therefore we developed the

following experiment in which we randomly generated subsumption hierarchies of

varying complexity to better understand the factors that contribute to the load-time

performance of our ontology database system with regard to the subsumption

hierarchy. This experiment was performed in October of 2009, using an upgraded

desktop computer having a 2.2 GHz Dual Core processor and 8GB RAM.

We created some software that takes two parameters as input, depth and

size, and generates an ontology subsumption hierarchy having the supplied depth

and total number of terms. Size is the total number of terms or nodes in a

hierarchy; depth is the maximal path length from the root node to leaves. We note

that the software also takes fan-out (number of children) and density (probability of

maximal fan-out) parameters to help randomize the hierarchy structure, but these

parameters are of little direct interest in this study. Finally, the software generates a

target number of extensional data, which are asserted instances of randomly chosen

terms in the ontology (occurring at uniformly chosen depths).
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ontology time to load time to load

parameters database schema data instances

size depth (means per term) (means per instance)
78 5 0.00695 0.00365

small 81 10 0.00712 0.00757 0.00499 0.00478
72 20 0.00864 0.00569

1623 5 0.00821 0.00651
medium 1555 10 0.00893 0.00861 0.00945 0.01055

1827 20 0.00868 0.01569

19992 5 0.00957 0.01184
large 22588 10 0.00959 0.00982 0.02280 0.02493

19578 20 0.01028 0.04014

FIGURE 7: Additional load-time study ontologies.

Figure 7 summarizes the parameters of nine different ontologies we generated

and used for our study. In the table are the nine different ontology parameters

together with the corresponding schema load time and the data instance load time

for each. Times are measured in seconds. Each ontology is classified according to

size and then depth. The small ontologies have on the order of 100 terms; medium

around 2,000 terms; and large around 20,000 terms. For each ontology size group,

we also vary the depth from 5 to 10 to 20 (shallow, mid, deep). As mentioned, for

each ontology, we also generate data instances that are randomly scattered

throughout the class hierarchy. That is, for each data item, we randomly choose a

term from the ontology, regardless of position in the hierarchy, and make that data

an instance of the randomly chosen ternl. We measure (1) the time to load the

database schema that our tool generates, and (2) the time to load the data

instances into that database.
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Our hypotheses were each confirmed: (1) the schema load time will be

dependent on the size of the ontology but not dependent on depth (nor fan-out, nor

density); (2) within each ontology, the time it takes to load a single instance will be

constant, not depending on the total number of instances previously loaded; (3) over

all the ontologies, the time it takes to load a single fact will be proportional to the

depth and size of the ontology. We ran a standard analysis of variance (ANOVA)

test on the resulting metrics to confirm the first hypothesis that size has the only

significant effect on the schema load time and that depth, fan-out and density have

no significant interactions. Figure 8(a) shows that as the ontology size grows

significantly, the time to load the ontology increases. This can be very likely

explained by the performance of file systems at the operating-system level because

MySQL uses a file-per-table model for schematic information. Most operating

system file tables take performance hits as the number of files exceed certain

thresholds.
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(a) Schema load-time. (b) Instance load-time.

FIGURE 8: Additional load-time study results.
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Our second hypothesis was also confirmed: the time measures after every

lOOO-th insertion (up to one million) showed a steady, insignificant 3.9% average

standard deviation. Finally, our third hypothesis was of the most interest and is

summarized in Figure 8(b). The chart shows that both size and depth do playa

significant role in the insertion-time of each fact into the ontology database. As we

expected, depth shows a steady, near-linear influence on instance load time. It is

also clear that the number of terms (respectively, tables) in the ontology

(respectively, database) also has a distinct influence on the performance of instance

loading. What is not entirely clear, however, is the specific interaction between

ontology size and depth. For example, the medium-deep ontology takes more time

to load instances than a large-shallow ontology. This would be an interesting area of

future study.

Case Study: Neural Electromagnetic Ontologies

The Neural ElectroNIagnetic Ontologies (NEMO) [24, 32] project

decomposes, classifies, labels, and annotates event related potentials (ERP) data

using ontological terms. ERPs are measures of brain electrical activity (EEG or

"brainwaves") that are time-locked to experimental events (e.g., the appearance of a

word). These measures provide a powerful technique for studying brain function,

because they are acquired non-invasively and can therefore be used in a variety of

populations - e.g., children and patients, as well as healthy adults. In addition, they
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provide detailed information about the time dynamics, as well as the scalp spatial

distribution, of neural activity during various cognitive and behavioral tasks.

The NEMO project aims to include an ontology database component that

will store large numbers of ERP datasets collected from multiple research sites. The

database will support ontology-based querying and reasoning for complex queries

such as the following:

Return all data instances that belong to ERP pattern classes which have
a surface positivity over frontal regions of interest and are earlier than
the N400.

In this query, "frontal region" can be unfolded into constituent parts (e.g.,

right frontal, left frontal; see Figure 9). At an even more abstract level, the "N400"

is a pattern class that is also associated with spatial, temporal, and functional

properties.

In Figure 9, (a) is a representation of concepts from the NEMO ERP

ontology used for this preliminary case study; PIOO pattern and

medial-frontocentral (MFRON) channel groups are highlighted; (b) is a l28-channel

EEG waveplot with positive voltage plotted up for responses to words versus

non-words; (c) is a time course of the PIOO pattern factor for same dataset,

extracted using Principal Components Analysis; (d) is a topography of the P 100

factor with negative on top and positive at bottom; (e) is an international 10-10

layout with electrode location 'Fz' highlighted, which is placed on the



50

o

(e)

.........,.
-1-\ __ -~ +flV

(d)

measurementVaJue·,···..··..···~~0
L-_~__--'

··..··,··..•p..ltternMOdality

e

(c)

~
./i~"""f'V"-__/"V'_'~"-_

IT] = Class(A)

A__ B= sUbClassOf(A,B)

(b)

Leaend:
.....p....... =Property(P)

® = Datatype(D)
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medial-frontocentral scalp region; and (f) is an EEG net applied to the scalp surface

of a human subject. See [33] for additional background on ERP data.

Preliminary results on the application of ontology databases for NEMO have

been very promising. In particular, the ability to pose queries at the conceptual

level, without having to formulate SQL queries that take the complex structural

interactions and reasoning aspects into consideration, was very attractive to the

neuroscientists. In our preliminary study, we tested several queries similar to the

one above that examined ease of formulation, aggregation, subsumption, and total

number of instances against data that was annotated using an ontology similar to

the one in Figure 9. For example, we measured the time it takes to answer the

following queries:

Which patterns have a region of interest that is left-occipital and
manifests between 220 and 800ms?

What is the range of intensity mean for the region of intcr-cst for Nl00?

In every case, we found it easy to formulate the domain-scientist's queries using

terms from the ontology, not having to worry about the subsumed terminology.

Furthermore, the system achieved 100% precision and recall, providing exactly the

answers expected by our domain experts. This result was not surprising, given that

the NEMO ontology used for this study consisted mainly of is_a relationships.

Finally, the performance for every query was extremely fast, on the order of five to

ten milliseconds. Newer iterations of the NEMO ontologies [32] (see Figure 10) will
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likely incorporate disjointedness and completeness constraints and will motivate

using ontology databases with negations and not-gadgets as a future case study.
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Discussion

For simple is_a hierarchies, an ontology database using triggers is, for all

intents and purposes, the same as an ontology database using materialized views.

However, it CCUl be difficult to maintain materialized views and some database

management systems, such as MySQL, do not even provide this advanced feature.

It would be fair to say that an ontology database using triggers appears to be
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equivalent to a mechanism that keeps the appropriate materialized views always

up-to-date. In that sense, what we have contributed is an approach for reasoning

over Semantic Web ontologies that provides the same functionality as materialized

views might provide, but one that is more universally supported across underlying

relational database management platforms.

Another important observation we would like to make is that ontology

databases using triggers is a specialized implementation of the typical

forward-chaining algorithm for modus ponens:

Procedure ForwardChain(KB,fact)

FOR EACH RULE in the KB in which the

fact's predicate appears in the premise

DO

ADD fact to the KB

UNIFY the RULE premise against the KB

APPLY the variable substitution found

during unification to the RULE's conclusion,

consider that a new_fact

ForwardChain(KB,new_fact)

UNTIL no new facts are generated

Two things differentiate our implementation: (1) the KB resides in persistent

storage (on disk), (2) the unification phase is efficient (logarithmic time) because it
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takes advantage of the intrinsic database indexed search capabilities. These are

both important differences for performing reasoning over very large KBs. Firstly,

the persistent storage allows the KB to incrementally grow over time. NIany KB

reasoning systems are memory-based, loading all facts into memory, while

performing reasoning over a single session. For large datasets, memory-based

systems with either crash or begin to inefficiently thrash against the disk as virtual

memory is swapped. To address these problems, caching mechanisms can be

employed, but it becomes difficult to decide precisely what and how much data to

cache during the unification process. Relational database management systems do

this automatically and with proven success. Our implementation takes advantage of

this feature. Secondly, after a session terminates, the traditional KB system will

have to repeat the process if the same facts (or more) facts want to be reasoned

over, but an ontology database system can simply pick up where the last session left

off, allowing more facts to be added without having to recompute the previously

drawn inferences. In other words, the ontology database amortizes the cost of

precomputing and storing the inferences, making them outperform in scenarios

where queries are performed with significantly higher frequency than assertions.
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CHAPTER V

INCONSISTENCY DETECTION

Consistency is another important reasoning service provided by DL reasoners.

ABox consistency is related to TBox satisfiability, which is the problem of ensuring

that descriptions are non-contradictory. Whenever a KB with a satisfiable TBox

entails that an individual is both an instance of a term as well as its complement,

then the KB is inconsistent (contradictory). That is, for those worlds in which that

particular ABox holds, the KB is not satisfiable. Therefore, a KB is consistent if for

a given ABox there exists some extension for which the KB is satisfiable.

Definition 5.0.6 (Inconsistency Detection). Inconsistency detection is a reasoning

process that returns true whenever 1>(0:) and -,1>(0:) are the case (similarly for

properties or binary relations).

Detecting inconsistency is the dual problem to consistency checking: if

inconsistency is detected, then the ABox is not consistent. If no inconsistency is

detected we can only claim that the ABox is consistent if the inconsistency detection

algorithm is proven to be complete. Because we restrict ourselves to modus ponens,
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we cannot make that claim because we are required to consider negations which

take us beyond Horn Logic. Recall, Horn Logic is complete for modus ponens only

for rules having no negations. Therefore, although we demonstrate how to perform

inconsistency detection using ontology databases, we cannot claim that we are

solving the stronger problem of consistency checking for ABox reasoning.

This chapter introduces not-gadgets into the ontology database system to

handle inconsistency detection. Our main contribution is the definition and

implementation of a not-gadget and the accompanying exclusion dependency. As an

interdisciplinary contribution, we also apply this theory to solve an important open

problem in biomedical ontology research, which we summarize as a case study.

Not-gadgets

We introduced the concept of not-gadgets in Chapter III which as been

reported in [52]. The definition of a not-gadget relies on the notion of an exclusion

dependency, and we formally define these terms as follows:

Definition 5.0.7 (Exclusion Dependency). An exclusion dependency is a special

form of integrity constraint which raises an eT'TOr whenever a tuple is attempted to

be inserted into both the positive and the negative tables of a not-gadget. An

exclusion dependency enforces the axiom: -,K(cP 1\ -'cP).
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Definition 5.0.8 (Not-gadget). A not-gadget adds, for e1Jery positi1Je ter'm

(respectively, table), a negati1Je counterpart intended to store explicit negations

together with an exclusion dependency. In an ontology database using triggers, a

not-gadget also extends database tTiggeTs implementing any rule of the form, cP -+ 1/J

to also include rules of the form -'cP -+ 1/J. (As for GMP, the triggers may be

similarly extended to include negations OTL any predicate of the conjunction.)

By introducing negations and disjunctions, we go beyond Horn Logic, which

makes modus ponens an incomplete inference system. As we demonstrated in

Chapter III, an ontology database with not-gadgets can support limited forms of

disjunctive queries by unioning over atomic disjunctions. The unions return more

answers than typical databases using the closed-world assumption, because

additional inferences can be drawn over explicit negative knowledge via the triggers

on negative tables. However ontology databases cannot guarantee completeness in

general because of the limitations of Horn Logic. To guarantee completeness, we

would need to consider methods including reductio ad adsurdmn (also knoviTll as

proof-by-contradiction), case analysis (also known as or-elimination), or resolution

as core reasoning faculties - which goes beyond the scope of our investigation.

Another interesting byproduct of not-gadgets is that the exclusion

dependency raises an error whenever an inconsistency is detected for the not-gadget.

In combination with the forward-reasoning capability of the trigger rules, this proves
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to be a very powerful tool for detecting inconsistencies using ontology database. We

illustrate this feature using the following case study from biomedical informatics.

Case Study: the Serotonin Example

Background

The Gene Ontology (GO) [34, 35] is used specify the molecular functions,

biological processes and cellular locations of gene products for the purpose of

facilitating information sharing, data fusion and exchange [43] among biological

databases including the model organism databases. The Open Biomedical

Ontologies (OBO) specification of the GO has on the order of 30,000 concepts

arranged in a directed, acyclic graph using mainly two kinds of relationships, "is_a"

(sub-class) and "parLof" relationships, forming nearly 40,000 links among

concepts1
. Figure 11(a) shows where the GO term "nucleus" falls in the GO.

Because the GO is relatively simple and the concept hierarchy is mostly

limited to an average depth of about 8 and a maximum depth of 142 , reasoning over

the general GO structure is actually not hard at all. Well known transitive closure

algorithms suffice and existing Semantic Web reasoners work well enough [42]. The

problem is the number of gene annotations is several orders of magnitude beyond

lSince first preparing our research data, there are now over 48,496 edges as of April 1, 2009;
44,883 of which are is_a and part-of relationships.

2Taken April 1, 2009.
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biological process
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(a) The GO concept graph for nucleus. (b) The serotonin example.

FIGURE 11: Examples from the Gene Ontology.
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what most reasoners can handle, totalling nearly 27 million in March of 2009 when

we prepared our research data and growing at a tremendous rate3 .

What makes GO annotations especially interesting to us is that explicit,

negative knowledge is also annotated based on experimental results, such as "lzic is

not involved in beta-catenin binding4
." But negative data are clearly in the

minority. Compared to the 91,000 or so positive assertions from the Zebrafish

Information Network (ZFIN) [68] data we used, only 40 were negative facts; only

292 out of 154,000 facts from Mouse Genome Informatics (MGI) [10] data were

negative5 .

A negative annotation means a gene does not belong to the specified class

within the context of a given experiment. As our results confirm, a strong

interpretation of the not qualifier leads to contradictions that do not take the

biology into account. For example, biologists might observe directly from

experimentation that the p2rx2 gene is not involved in the molecular function

ATP-gated cation channel activity in the zebrafish6 . However, in the same

experiment, when considered in the context of another gene, p2rx2 gets a positive

annotation for the same GO-ID. One way biologists infer this kind of knowledge is

by using mutants which specifically disrupt the function of the specific gene (loss of

3Recent reports as of April, 2009 have annotations reaching over 40 million in number.

4http://zfin.org/cgi-bin/webdriver?Mlval=aa-markerview.apg&OID=
ZDB-GENE-040718-342

5Taken January, 24 2009.

6http://zfin.org/cgi-bin/webdriver?Mlval=aa-markergoview.apg&OID=
ZDB-GENE-030319-2
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function assay). Another way is to make inferences by adding the specific gene to an

accepted assay (gain of function assay).

Therefore, inconsistencies can point to any of the following possible causes:

(1) the nature of biology is simply ripe with exceptions, (2) the annotation may be

incorrect (e.g., a typographical or curation error), (3) the experimental results were

anomalous, or (4) the ontology is incorrect or incomplete. This raises some

interesting problems of how to deal with different kinds of inconsistencies, some of

which may be admissible, a kind of paraconsistent logic [66].

The Serotonin Example

Hill et al. specify a concrete and illustrative example of a recently discovered

flaw in the GO, which we refer to as the serotonin example [43]. This problem arose

particularly because of the interaction between positive and negative annotations

and their implications for the consistency of the type hierarchy in general:

"[GO annotations sometimes] point to errors in the type-type
relationships described in the ontology. An example is the recent
removal of the type serotonin secretion as an is_a child of
neurotransmitter secretion from the GO Biological Process ontology.
This modification was made as a result of an annotation from a paper
showing that serotonin can be secreted by cells of the immune system
where it does not act as a neurotransmitter."

In other words, the GO ontology serves as the most current understanding of

the world of genetics as far as the biologists know it to be. As biological knowledge

changes, so must the model. Hill et al. explain how difficult it is for gene scientists
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to detect such data-driven inconsistencies in the GO, leaving it as an open problem

to find ways to identify type-type inconsistencies based on annotations from the

model organism databases such as ZFIN and MGI.

Figure 11 (b) illustrates the inconsistency arising from the serotonin example.

In it, some gene (call it "gene-x") was annotated as both being an instance of

serotonin secretion while NOT being an instance of neurotransmitter secretion,

causing the logical inconsistency based on the type-type (i.e., is_a) hierarchy.

The serotonin example was easily detected by the biologist making the

annotation, probably because these concepts are well-known and so closely related,

and, furthermore, the annotation spanned a single experimental curation result.

However, it is quite possible that inconsistencies due to positive and negative

annotations in concepts that are, say, 14 relationships apart would easily go

unnoticed by humans - more so if the conflicting annotations span different

experiments, publications, curation attempts, or species of model organism.

Therefore, gene scientists are motivated to find such logical inconsistencies using

automated methods that can scale to large number of instances described by

medium- to large-sized ontologies7
.

7The GO might be characterized as medium-sized.
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Experiment and Results

An unremarkable laptop computer with a 1.8 GHz Centrino processor and

1GB of RAM was used to process the GO ontology in OBO format and generate the

corresponding MySQL database schema representing the GO ontology database

with negations. We used the OWL-API8, for this purpose. An unremarkable

desktop system with a 1.8 GHz Pentium Processor and 512:t\lB of RAM running

Ubuntu Linux was used as the MySQL database server.

We processed annotations from both the Zebrafish Information Network

(ZFIN) [68] and the Mouse Genome Informatics (MGI) [10] databases. Only is_a

relationships were implemented, as our goal was specifically to detect type-type

inconsistencies. As described above, we used a decomposition storage model,

therefore every GO-ID became a table, and every is_a relationship between GO-IDs

corresponds to a trigger which forward-propagates any insertion on the child class to

its parent. Furthermore, every GO-ID has a negative table as well, denoted with an

underscore "_" prefix. Between each table and its negative counterpart exists an

integrity constraint which ensures mutual exclusion or disjointedness. The exclusion

dependency was also implemented as a trigger on both the positive and negative

tables, which logs the error to a special table called "Jog". One limitation of

MySQL is to only allow one trigger per table per event. Therefore, we had to

8http://owlapi.sourceforge.net/
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implement multiple triggers in one in the case of multi-inheritance paths and

exclusion dependencies, which was not difficult to implement.

On January 24, 2009, we downloaded the Gene Ontology in OBO format

from the GO website9 , as well as annotations from ZFIN and 1.1Gl IO
. At the time,

there were 28,007 GO-IDs and 38,557 is_a relationships among them. The

annotation files have 15 delimited fields, of which we only considered the gene

symbol, qualifier (e.g., NOT), and GO-ID. The ZFIN annotations contained 91,147

positive and 42 negative unique annotations of this sort. The MGI annotations

contained 130,979 positive and 284 negative unique annotations of this sort.

Ignoring the other 12 annotation fields is a gross over-simplification, which we

discuss further below.

The steps involved in loading the GO plus annotations to detect

inconsistencies are: (1) run the OBO ontology through our tool to create the

ontology database with negations schema; (2) load the schema into the MySQL

database; (3) pre-process the ZFIN and MGI annotations to create SQL insert

statements, where the gene symbol is the value, the GO-ID is the table, and the

NOT qualifier indicates using the negative table; (4) load the annotations in to the

MySQL database; (5) check the Jog table for the type-type inconsistencies detected.

Loading the GO ontology database with negations schema took

approximately 32 minutes. We then loaded annotations in this order: (1) ZFIN

9Taken on January 22, 2009.

lOhttp://www.geneontology.org/gene-associations/
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positive and ZFIN negative, then (2) MGI positive, finally (3) MGI negative. The

results are summarized as follows (specific inconsistencies will be reported and

discussed separately in a bioinformatics journal):

1. Loading the ZFIN positive annotations takes 38 minutes. Loading negative

ZFIN annotations takes 4 seconds. Nine inconsistencies were logged after

loading just the ZFIN positive and negative annotations.

2. Loading the MGI positive annotations takes 42 minutes. Twelve new

inconsistencies were logged after loading the MGI positive annotations,

meaning there were inter-species inconsistencies with the ZFIN negative

annotations.

3. Loading MGI negative annotations takes 20 seconds. Fifty-four new

inconsistencies were logged after loading the MGI negative annotations,

meaning there were conflicts with both ZFlN and MGl positive annotations.

In total, we found 75 logic inconsistencies among ZFIN and MGI annotations

using the GO ontology database with negations technique. vVe confirmed these

results are the complete set of inconsistencies by using the GOOSEll database

directly. The observed logic inconsistencies fell into three categories. We provide the

following examples:

Ilhttp://www.berkeleybop.org/goose
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1. Intra-species logic inconsistencies between experimentally supported manual

annotations: The zebrafish p2rx2 gene12 is annotated as having (inferred from

a genetic interaction) and not having (inferred from a direct assay) ATP-gated

cation channel activity (GO:0004931).

2. Inter-species logic inconsistencies between experimentally supported manual

annotations: The zebrafish bad gene13 is annotated (inferred from a direct

assay) as not being involved in the positive regulation of apoptosis

(GO:0043065) in the zebrafish. Meanwhile, annotation of the corresponding

mouse gene, Bad, indicates it is involved in this biological process for the

mouse (inferred from a mutant phenotype).

3. Logic inconsistencies between experimentally supported manual annotations

and automated electronic annotations (between or within species): The

zebrafish lzic gene14 has been electronically annotated (inferred by electronic

annotation) as having the function beta catenin binding (GO:0008013) and

also not having the function beta catenin binding (inferred from physical

interaction) .

12http://zfin.org/cgi-bin/webdriver?Mlval=aa-markergoview.apg&OID=
ZDB-GENE-030319-2

13ZFIN:http://zfin.org/cgi-bin/webdriver?Mlval=aa-markergoview.apg&OID=
ZDB-GENE-000616-1, 1dGI:http://www.informatics.jax.org/javawi2/servlet/WIFetch?
page=markerGO&key=33374

14http://zfin.org/cgi-bin/webdriver?Mlval=aa-markergoview.apg&OID=
ZDB-GENE-040718-342
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We discussed results of these findings with ZFIN biologists and came to the

following general conclusions:

1. Intra-species logic inconsistencies involving annotations generated by

automated electronic annotation pipelines (lEA sources) that conflict with

experimentally supported manual annotations (e.g., inferred by direct assay),

such as the lzic example above, suggest that the automated electronic

annotation pipeline makes an assertion that is in direct contradiction to

experimentally supported data. This suggests that a review and refinement of

the electronic annotation pipeline is needed in this case.

2. Some inter-species inconsistencies highlight possibly interesting biological

differences between species that warrant further study. Our example of the

bad gene is one such example between mouse and zebrafish. In this proof of

concept study, we have simply compared- genes that use the same gene symbol.

However, one could imagine adding sophisticated gene clustering algorithms,

that do not rely on shared gene symbols, for determining exactly which genes

should be directly compared for logic conflicts.

3. Most intra-species inconsistencies are simply the nature of biology, and can

often be explained when the full context of the annotations are considered in

more detail, such as the p2rx2 gene. More complex reasoning would be

necessary to resolve whether such cases were of biological interest or not.
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4. There were no obvious type-type inconsistencies in the ontology itself. Though

this is a negative finding, it is a good one in the sense that much effort is

expended by the GO ontology editors to structure the ontology carefully to

avoid such cases.

The intra-species inconsistencies arising from direct evidence (IDA, IPI, and

other sources) versus automated electronic annotations (lEA sources) were of

particular significance and constitute an important biological finding. While

conflicting annotations from physical evidence alone are difficult to explain because

of the nature of biology, conflicts between manual and automated annotations point

directly to possible errors in the automated, electronic annotation transfer rules. We

reverse engineered this finding to generate a specialized query against the GO

Online SQL Environment (GOOSE) for biology researchers to follow-up on for

evaluating lEA transfer rules. This specialized SQL query, which generates precisely

the conflicts we discovered has been submitted to the Gene Ontology consortium 15.

As for the inconsistencies that arise because of the nature of biology, this raises

some very interesting problems of admissible types of inconsistencies, but we leave

this as a future direction in paraconsistent logics [66].

15http://sourceforge.net/tracker/?func=detail&aid=2686444&group_id=36855&atid=
469833
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Discussion

In ontology databases with negations and not-gadgets, the semantics of a

database delete operation became interesting. Deletion can be described using the

K modal logic operator, just as Reiter did for integrity constraints in [63]. The K

can be interpreted as meaning "know." A deletion is an assertion that we do not

know something is true, i.e., ,KG(a). Whereas, a negation is an assertion that we

know something is not true, i.e., K ,G(a). If we treat tuples in a relational database

as statements about what is known, such as KG(a), then the CWA assumption is

simply the axiom: ,KG _ K ,G. It turns out that Donini et al. made some similar

observations in [23].

In scientific applications, this distinction between deletion and negation is

important since it is often the case that we would like to distinguish between what

is assumed to be false (resp., true) and what we know to be false (resp., true), as in

hypotheses versus empirical evidence. Unlike the open-world assumption which

seeks out truth in all possible worlds, ontology databases with negations give us

something that remains concrete and constructive.

Theorem 5.0.9. A trigger-based ontology database has a distinctly different

operational semantics from a view-based implementation with respect to deletions.
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Proof. By counterexample, assert the following in the given order: A---+B, insert

A(a), delete A(a). Now ask the query B(?x). A trigger-based implementation returns

"{x/a}." A view-based implementation returns "null." D

Therefore, with respect to ontology databases with negations, we can say

definitively that a trigger-based approach is distinctly different from a materialized

view-based approach. Indeed, we go as far as to claim an ontology-based approach

with not-gadgets is more expressive than views. Consider the following example:

assert A---+B, insert A(a), negate B(a), now ask the query B(?x). A view-based

approach returns "{x/a}" whereas a trigger-based approach raises a contradiction.

This example points to an interesting problem in which views entangle assertions,

inferences, rule inverses and the contrapositive, but triggers allow for careful

differentiation among these logical features.
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CHAPTER VI

INFORMATION INTEGRATION

The event-driven architecture of ontology databases using triggers can be

extended to integrate two KBs. The key idea is to use namespaces to distinguish

terms from each KB and thus safely union concepts between two (or more)

ontologies using what are called bridging axioms to create a merged ontology. Each

KB namespace corresponds to the relational database prefix in the corresponding

ontology database. If bridging a:rioms in the merged ontology are Horn-like rules,

then we can implement them using triggers as we normally would for any other

axiom, adding the database prefix corresponding to each namespace.

In this chapter, we adopt the theory of inferential information integration

which includes the definition of merged ontology and bridging axiom as well as the

OntoEngine and OntoGrate reasoning systems developed by Dou et

0,1. [25, 26, 27, 28] and extend that framework to include data translation across

ontology databases. Our main contributions are to define inferential ontology
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database exchange, and to illustrate and discuss how to implement this process by

using a manufactured example.

Inferential Ontology Database Exchange

In inferential information integration, query translation and data translation

are formally defined as logical entailments with respect to a merged ontology having

bridging axioms. By performing sound inference over the merged ontology's

bridging axioms, the entailments under a target ontology can be inferred

automatically (because KB f--- ¢ implies KB 1= ¢). This method works well for our

purposes because we only require sound (not complete) inference to achieve our

desired results.

A merged ontology is similar to the notion of a global view over local

schemas (global-as-view) [50] for data integration. It consists of the union of

elements from a source and target ontology but also defines the semantic mappings

between them as bridging axioms. A merged ontology allows all the relevant

symbols in a domain to interact so that facts can be translated from one ontology to

another using inference over the bridging axioms. Discovering bridging axioms is

difficult and some claim that it cannot be fully automated. However, there are some

semi-automatic systems including ours [59].

Query translation is one way to integrate data. It applies mostly to scenarios

in which one system mediates queries among various sources. A typical example
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would be a federated database [65]. On the other hand, data translation is more

common to migration or exchange scenarios, where information is exported from

one location to another [48]. A typical example would be a data warehouse [6]. We

extend this idea to ontology databases by defining the following:

Definition 6.0.10 (Inferential Ontology Database Exchange). Let S be an ontology

database source and T be an ontology database target specified by ontologies Os and

OT, respectively. Let M = (Os, OT, L:) be a merged ontology containing bridging

axioms L:, such that L: is a set of Horn mles relating terms from Os and OT

qualified with namespaces. Let ds be a set of tuples in S. The

inferential ontology database exchange of ds is the largest set of assertions dT

entailed by ds with respect to M.

By simply extending ontology databases with the corresponding namespace

prefixes (supported by most DBMS), we can translate and exchange any data

asserted under a source ontology database S into data under Tusing ECA triggers

as usual for each bridging axiom expressed in Horn form. As data is inserted into a

table in S, the relevant event is detected, fires the appropriate triggers, and inserts

the corresponding data into T. Because our methodology implelnents the typical

forward-chaining algorithms for Horn Logic, our translation constitutes the sound

inference required.
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FIGURE 12: Merged Teacher-Student ontologies.

Case Study: Data Exchange

\iVe implemented two ontologies in the Teacher-Student domain and defined a

merged ontology using bridging axioms as depicted in Figure 12. In the figure, the

ontology on the right which uses the Faculty term is considered the source ontology

(based on the direction of the mappings we defined), whereas the other ontology

using the Teacher term is the target ontology. For example, there is an axiom

relating first and last name in the source ontology to full name in the target

ontology. That axiom can be expressed as a rule using the built-in string

concatenation function:

\/x, y, z. S:jirstname(x, y) /\ S:lastname(x, z)

==?- T:jullname(x, concat(y, ' ',z))
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Because the rule is a conjunction, we implement it as a set of triggers, one

for each conjunct. The reason we need two triggers is that satisfying either

predicate in the conjunct could potentially fire the rule, so we need to set a listener

on each predicate (i.e., table) which checks to see if the other predicate is also

satisfied. The triggers are written in MySQL syntax loaded as part of the source

ontology database as follows:

CREATE TRIGGER trg_fn_AFTER_INSERT AFTER INSERT ON firstname

FOR EACH ROW

trig:BEGIN

-- enforce bridging axiom: (mysource)fn + In -> (mytarget)n

INSERT INTO mytarget.fullname(subject,object)

SELECT fn.subject, concat(fn.object, ' " In. object)

FROM mysource.firstname fn, mysource.lastname In

WHERE fn.subject = In. subject

AND fn.subject = NEW. subject;

END trig

CREATE TRIGGER trg_In_AFTER_INSERT AFTER INSERT ON In

FOR EACH ROW

trig:BEGIN

-- enforce bridging axiom: (mysource)fn + In -> (mytarget)n
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INSERT INTO mytarget.fullname(subject,object)

SELECT fn.subject, concat(fn.object, ' " In. object)

FROM mysource.firstname fn, mysource.lastname In

WHERE fn.subject = In. subject

AND In. subject

END trig

NEW. subject;

Similar to what we did when testing load-time performance, we wrote a

program which generated some uniformly distributed extensional data instances for

the source ontology. Both ontologies are small enough to have a negligible schema

load time, taking under 100 milliseconds on average to load their respective

ontology database schemas. vVe generated four sets of data instances under the

source ontology semantics, each dataset greater than the last by a factor of ten (i.e.,

we used a logarithmic scale). We measured the total time it takes to load the

dataset into the source ontology database. Because the source ontology database

contains the regular ontology rules together with the bridging axioms rules, the

total time measured includes three major parts: (1) the time it takes to forward

propagate data within the source ontology database, (2) the time it takes to forward

propagate data across to the target ontology database (via the bridging axioms),

and (3) the time it takes to forward propagate data within the target ontology

database. Figure 13 summaries the performance results, which shows the near-linear
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performance we expect from small ontologies (based on our prior load-time

observations).

time in seconds (log-scale)

10

number of instances in thousands

2.5 25 250 2500

FIGURE 13: Integration Performance for Ontology Databases.

Discussion

Our research was inspired by prior inferential data integration work. By

lifting a database schema into an ontology, we reduced the problem of database

integration to ontology translation. The question that arose out of this work was

whether we can reverse the process: Can we (~gTOv,nd" an ontology into a database

schema? Originally, that question was simply focused around conceptual modeling

using ontologies. However, this case study shows that the very question has direct

ramifications to integration as well. That is, where the lifting process significantly

improves upon query answering performance, the grounding process significantly

improves on data translation scalability.
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Using the same merged ontology, the OntoEngine inference engine shows

significant trouble managing large amounts of data, which is consistent with

observations by Guo et at. [39, 40] on the trouble that memory-based KB systems

experience. Essentially, they run out of memory. Figure 14 illustrates how

OntoEngine performs over the same merged ontologies and datasets used above. In

the figure, we indicated that we needed to increase available memory to 4 GB of

RAM in order for the reasoner to process the 250k dataset. Even after increasing to

the maximum 8 GB of RAM on the system, the reasoner crashed for the 2.5M

dataset.

~. 79.421

time in seconds (log-scale)

~ 1 GBRAM

1.841

9.445

number of instances in thousands

-=- 4 GB RAM

2500 25000 250000 2500000

FIGURE 14: Integration Performance for OntoEngine.

The conclusion that we would like to highlight from this study goes back to

ideas discussed earlier in Chapter IV: that persistent KBs that use underlying,

efficient database optimization features can scale far beyond traditional

memory-based KB systems. If we recall from Chapter II, one of the major
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assumptions that Reiter made in the context of deductive query answering is that

space is limited and should be balanced against cOIllputational power. Our work

challenges this assumption: disk-space is unlimited and should be leveraged against

limited computational power. Moreover, our implementation is extremely simple

compared to the programming that would be required to implement the

sophisticated caching mechanisms already present in database management systems.

Finally, our implementation plays to the lowest common denominator for the

majority of relational database management engines. That is, we do not require

sophisticated materialized and updateable view features. Our work combines and

builds on the strengths of existing technologies in a simple and elegant fashion.
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CHAPTER VII

CONCLUSION

We presented a mapping from ontologies to databases such that a KB system

based on a given ontology can be embedded inside a relational database

management system. The mapping makes instance checking using ontology

databases sound and complete for ontologies based on Horn Logic. When

not-gadgets are included, we can also perform inconsistency detection. This

methodology has been implemented as a tool which can automatically re-purpose

off-the-shelf relational database management systems, such as MySQL, for reasoning

over Semantic Web knowledge bases.

The main problem we aimed to address by developing this methodology is

the poor scalability of reasoning systems over very large numbers of instances. Our

work differs from that of others because we take advantage of more features of

relational databases such as views, triggers and integrity constraints to implement

not only subsumption-like reasoning for instance checking, but also satisfiability-like

reasoning for inconsistency detection. Furthermore, unlike other similar approaches
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aimed at addressing the scalability of RDF stores, we do not use an external

theorem prover to perform any reasoning. Our main contribution hinges on the

updated assumption that space is more expendable than it has been in the past.

In addition to scalability, we also aimed to increase the expressiveness of

existing database-oriented techniques by extending Horn-like logics with negations.

Although we lose completeness, we are still able to solve an important open problem

in biomedical informatics. We have argued that there is a tradeoff not only between

expressiveness and tractability, but that the tradeoff is three-fold and includes

completeness. We hope that going forward the Semantic Web community will

consider relaxing the completeness requirement in order to solve more interesting

and relevant reasoning problems.

We applied our technique toward several case studies to better understand

and demonstrate the capabilities of our tool. Firstly, we compared the scalability of

our system against a well-studied and similar approach, the DLDB system, and

followed up with new studies and additional benchmarks on the surprisingly low

load-time costs of our methodology. Secondly, we demonstrated the promise that

ontology databases holds for our driving biomedical project, NEMO. Thirdly, we

illustrated other possible uses for ontology databases, such as for inconsistency

detection, in the serotonin example. Finally, we demonstrated that our tool can also

be used to perform highly scalable information integration between two KB systems.
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Future Work

Our next steps will be to extend the event-driven framework used here for

information integration to enable distributed information integration using ontology

databases. That is, we expect that KBs can reside locally on systems that are

distributed across a network. Bridging axioms and namespaces can be used to relate

terms across the ontologies. As data is asserted on a local ontology database, the

bridging axioms will be fired in an event-driven manner across the network to the

remote ontology database.

To realize this vision, we require two main extensions to our work so far.

Firstly, we need to develop a message-passing protocol that registers the bridging

axioms that will negotiates data exchange between the source and target KBs. The

protocol can be based on the publish-subscribe paradigm [31] which fits well with

the asynchronous nature of inference rule application. That is, the ordering of rule

applications (just as the ordering of events) is irrelevant. Secondly, we need a

mechanism for buffering the incoming data from remote KBs so that they do not

necessarily contend with reasoning over the local data store. Again because rule

application is asynchronous, we can employ the persistent queue methodology

outlined in [14] for this purpose. Queues are often used in forward chaining

algorithms. In fact, the persistent queue can be implemented as a buffer for

reasoning over the local repository as well, especially in scenarios where the

subsumption depth is extremely large (causing the slowdown we demonstrated in
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Chapter IV) and we do not want reasoning to interfere with other database tasks.

In other words, reasoning can become a background task which operates over a

persistent queue as resources are available. What would be an interesting research

question is whether, by using a background process together with persistent queues,

we can extend the expressiveness of the ontology database methodology even further

to include cyclic (yet terminating) terminologies.
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