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DISSERTATION ABSTRACT

Victor Hanson-Smith

Doctor of Philosophy

Computer and Information Science

December 2011

Title: Error and Uncertainty in Computational Phylogenetics

The evolutionary history of protein families can be difficult to study

because necessary ancestral molecules are often unavailable for direct observation.

As an alternative, the field of computational phylogenetics has developed

statistical methods to infer the evolutionary relationships among extant molecular

sequences and their ancestral sequences. Typically, the methods of computational

phylogenetic inference and ancestral sequence reconstruction are combined with

other non-computational techniques in a larger analysis pipeline to study the

inferred forms and functions of ancient molecules. Two big problems surrounding

this analysis pipeline are computational error and statistical uncertainty. In this

dissertation, I use simulations and analysis of empirical systems to show that

phylogenetic error can be reduced by using an alternative search heuristic. I then

use similar methods to reveal the relationship between phylogenetic uncertainty and

the accuracy of ancestral sequence reconstruction. Finally, I provide a case-study

of a molecular machine in yeast, to demonstrate all stages of the analysis pipeline.

This dissertation includes previously published co-authored material.
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CHAPTER I

INTRODUCTION TO COMPUTATIONAL PHYLOGENETICS

Over the last two centuries of human thought, the discovery of biological

evolution profoundly changed – and continues to change – our perception of

the living world (Darwin (1859); Huxley (1942); Lewontin (1972)). Combined

with a modern understanding of molecular biology and genetic architecture,

an evolutionary perspective allows us to investigate the genesis and function

of diverse biological forms (Raff (1996); Carroll et al. (2005)). Further, an

evolutionary perspective is useful to learn how the overall ecology of our planet

is interconnected, and how our own bodies interact with that ecology. The study

of evolution can be challenging, however, because many interesting and relevant

biological systems evolved over timescales that are vastly longer than the length

of a human lifetime. The challenge is that necessary ancestral forms are often

unavailable for direct study because they existed millions – or billions – of years

ago.

The Role of Computer Science in Evolutionary Studies

We can time travel, in a sense, using computational models of molecular

evolution. The field of computational phylogenetics has developed Markov models

to infer evolutionary history from contemporary molecular sequence data. These

types of Markov models are used to reconstruct the phylogenetic history of gene

families and to reconstruct ancestral gene sequences. These two in silico techniques

– phylogenetic inference and ancestral reconstruction – are often combined with in

vivo or in vitro molecular techniques to generate and then test hypotheses about
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the evolutionary trajectory of protein families. This combination of computational

analysis with wet-lab experimentation is the cornerstone to an emerging paradigm

for studying functional molecular evolution (Dean and Thornton (2007)).

A multi-algorithm analysis pipeline combines the methods of phylogenetic

inference and ancestral reconstruction with non-computational molecular techniques

(Fig. 1.) (Thornton (2004)). This pipeline begins with a family of molecular

sequences whose evolution we wish to investigate. Sequences are typically chosen

whose functions vary across a family, and we wish to know how those functions

shifted over evolutionary time. Here I briefly describe the pipeline stages. We

first align homologous sites in the sequences, infer the phylogeny that give rise to

the sequences, and then reconstruct sequences for ancestral species. An ancestral

gene sequence that has been computationally reconstructed can be physically

“resurrected” by synthesizing its coding sequence onto a plasmid, transfecting that

plasmid into a living cell, and then allowing the cell’s native genetic machinery

to transcribe and translate the reconstructed gene into real protein product.

Ancestral proteins can be functionally characterized using many different assays;

the appropriate assay depends on the type of protein under scrutiny. Overall, this

analysis pipeline allows us to observe ancient protein functions before and after

significant milestones in evolutionary history.

Error and Uncertainty

Two big problems surrounding this analysis pipeline are computational

error and statistical uncertainty. Error can be introduced at every stage in the

pipeline; the methods of sequence alignment, phylogenetic inference, and ancestral

reconstruction use heuristic algorithms that are known to produce errored results
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FIGURE 1. A multi-step analysis pipeline for evolutionary studies. This pipeline
is used to infer the evolution and function of ancestral proteins. Shown here is
the analysis of seven eukaryotic amino acid sequences, arbitrarily chosen for this
example. See text in chapter I for description of the pipeline steps.
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in some conditions. Identifying and eliminating sources of error is critical because

inaccurate inferences made at early stages in the pipeline will lead to inaccurate

inferences at downstream stages. Related to computational error, statistical

uncertainty measures the degree to which we think a particular inference is

accurate. The presence of significant uncertainty implies that alternate solutions

should be considered in addition to the best solution. Statistical uncertainty, like

error, can emerge at every stage in the pipeline; uncertainty comes in the form

of mismatch costs (for alignments), likelihood scores (for trees), and posterior

probabilities (for ancestral sequences). These types of uncertainty can be explicitly

propagated down the pipeline by performing each downstream stage on the

distribution of possible inputs from the upstream stage. Uncertainty propagation,

however, incurs non-trivial computational costs and becomes intractable when

taken to its philosophical extreme. It is therefore important to know when

uncertainty matters, and when uncertainty can be ignored.

This dissertation addresses the role of error and uncertainty within this

pipeline. I am broadly interested in two questions: (i) How do we make the results

of the pipeline more accurate? (ii) When is it appropriate to propagate uncertainty

from an early pipeline stage to downstream stages? In this introduction, I describe

each stage of the analysis pipeline in more detail. In chapter II, I discuss improving

the accuracy of phylogenetic inference, the role of heuristic search algorithms

in introducing ML phylogenetic error, and I propose a more accurate heuristic.

In chapter III, I discuss the role of phylogenetic uncertainty on the accuracy of

ancestral sequence reconstruction; I show that phylogenetic uncertainty can be

ignored due to a seemingly paradoxical relationship between trees and ancestral

sequences. The material in chapter III was previously published with co-authors
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(Hanson-Smith et al. (2010)). In chapter IV, I provide a case-study demonstrating

an analysis using all stages of the pipeline. The material in chapter IV was is co-

authored with collaborators in Tom Stevens lab at University of Oregon, and

– at the time of this writing – is currently in-press at Nature (2011). Curious

readers may also find appendix C useful, in which I show there is a complex, but

significant, relationship between alignment accuracy and ancestral reconstruction

accuracy.

A: Sequence Sampling

The first step of the pipeline is to collect molecular sequences – typically

nucleotides or amino acids – that are evolutionary related and whose encoded

functions are of experimental interest (Fig. 1.A). The amino acid sequences shown

in Fig. 1.A encode an arbitrary protein fragment in seven Eukaryotic species: S.

sclerotiorum (pathogenic plant fungus), D. rerio (zebrafish), M. gallopavo (turkey),

S. cerevisiae (budding yeast), M. musculus (house mouse), H. sapiens (humans),

and H. magnipapillata (fresh water polyp). Collecting molecular sequences is labor

intensive, and most evolutionary studies use sequences that have been previously

uploaded to sequence repositories. The database GenBank is the dominant

worldwide repository, storing millions of protein sequences from thousands of

species across the tree of life (Burks et al. (1992); Benson et al. (1999)).

B: Sequence Alignment

The second step of the analysis pipeline is to infer the relatedness – or

homology – between individual sites within the set of collected sequences (Fig. 1.

B). Families of sequences drift away from each other over evolutionary time, and
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it may not be clear how two or more related sequences are, in fact, related. This

problem is typically solved with dynamic string-matching algorithms, of which

there exist many varieties (Batzoglou (2005); Notredame (2007)). The result of

sequence alignment is a matrix of size M ×N , where M is the length of the longest

sequence in the collection, and N is the number of sequences. Each cell in this

matrix contains a single evolutionary character, and all the characters in each

column are assumed to be homologous. Over the course of evolution, insertion and

deletion events alter the length of a molecular sequence, such that some members

of a sequence family can have extra characters (in the event of insertions) or have

missing characters (in the event of deletions). Alignment algorithms place “gap”

characters to indicate the location of insertions and deletions.

C: Phylogenetic Inference

Given an alignment of sequences, the next step in the pipeline is to infer the

phylogeny that gave rise to the alignment (Fig. 1.C). A primitive approach is to

cluster sequences according to their pairwise distances, measured as percentage

sequence dissimilarity (Cavalli-Sforza and Edwards (1967); Sokal and Sneath

(1963); Saitou and Nei (1987)). However, distance-based methods have limited

utility because they compress the sequence alignment into a matrix of pairwise

distances between sequences, and thus discard potentially useful information

about evolutionary constraints at individual sequence sites. Rather, the dominant

paradigm for phylogenetic inference is to begin with a distance-based tree and then

optimize this tree using a Markov model in a likelihood framework. Unlike simpler

distance-based approaches, Markov models explicitly consider the substitutional
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process by which sequences evolved. The statistical foundations of molecular

Markov models are described in more detail in Appendix A.

Phylogenetic Markov models include parameters whose values are typically

unknown. These parameters include the phylogenetic topology, branch lengths

on that topology, the relative substitution rates between sequence states, and—

depending on the particular model—other parameters to account for various

evolutionary processes. A likelihood function is used to calculate the likelihood

of a particular set of parameter values (Felsenstein (1981)); a search function is

then used to find the set of values with the maximum likelihood. Given a sequence

alignment D, the likelihood L(t, θ|D) of a topology t with model parameters θ,

is defined as the probability P (D|t, θ) of observing D given t and θ. Likelihoods

are calculated using an algorithm that recursively traverses the phylogenetic tree

(described in Appendix B). The goal of maximum likelihood (ML) phylogenetics

is to find values for t and θ that maximize the function L(t, θ|D). The search

strategies used to find ML phylogenies are the subject of Chapter II.

D: Ancestral Sequence Reconstruction

Once a phylogeny is found, the next step in the pipeline is to infer the

sequences for ancestral nodes (Fig. 1.D). Although any ancestor on a phylogeny

can be reconstructed, usually only a few ancestors are experimentally relevant,

depending on the specific hypothesis under scrutiny. Most ancestral queries

target historical shifts in protein function; these types of studies require at least

two ancestors: one immediately before the shift and another immediately after

the shift took place. Other hypotheses may require more than two ancestors.

For example, more than a dozen reconstructed opsin protein ancestors were
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used to reveal that vertebrates historically evolved through a variety of aquatic

environments (Yokoyama et al. (2008)). In another example, eleven reconstructed

elongation factor protein ancestors were used to infer a historical shift in Earth’s

paleotemperature (Gaucher et al. (2003, 2007)).

Ancestral sequences are reconstructed using the same types of Markov models

that are used to infer ML phylogenies. However, rather than searching for the

ML tree, ancestral reconstruction uses a fixed ML tree and searches for the ML

ancestral states. The computational mechanics of ML ancestral reconstruction are

discussed in Chapter III.

E: Functional Characterization

After ancestral sequences have been computationally reconstructed, the

function of those ancestors can be experimentally observed using molecular

techniques (Fig. 1.E) (Thornton (2004); Liberles (2007)). Specifically, ancestral

sequences can be physically synthesized, subcloned onto plasmids, and transfected

into living cells. The cells’ native genetic machinery will then transcribe and

translate the plasmid sequence into actual proteins. In situations where the cell

naturally contains a contemporary descendant of the ancestral sequence, the cell’s

native copy can be disabled such that the only functional copy is the ancestral gene

on the plasmid. Once an ancestral protein is expressed, its function can be studied

using a variety of assays. The appropriate assay depends on the protein family.

Transcription factor proteins, for example, can be assayed to determine their

binding preference for different DNA motifs (Stormo and Zhao (2010)). Nuclear

proteins can be assayed to determine their binding-response to variable ligand

doses (Bridgham et al. (2006)). Some protein families can be studies at a coarse
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level, where simple cell growth can be taken as a proxy for function (Finnigan and

Hanson-Smith 2011 ). Finally, some proteins are amenable to structural analysis

– using techniques like X-ray crystallography – and the biophysical determinants

of their specific functions can be investigated (Ortlund et al. (2007); Harms and

Thornton (2010)). Taken together, this interdisciplinary analysis pipeline opens

a window into the evolutionary past and allows for the direct observation of

hypothesized protein functions that have not existed in millions – or billions – of

years.
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CHAPTER II

REDUCING ERROR IN PHYLOGENETIC INFERENCE

Phylogenetic tree structures are the de facto representation for evolutionary

relationships among related molecular sequences. Knowing the correct tree is the

necessary first step for many useful downstream analyses, including ancestral

sequence reconstruction (Liberles (2007)), phylogeography (Avise et al. (1987);

Avise (1998)), and estimation of species divergence times (Taylor and Berbee

(2006)). The correct phylogeny, however, is often unknowable because the

ancestral species necessary to determine historical branching patterns are typically

unavailable. Rather, phylogenies are usually inferred computationally from

contemporary sequences. The dominant paradigm for phylogenetic inference is

to use a parametric Markov model that describes the relative substitution rates

between different molecular states — typically, nucleotides, amino acids, or codons.

Given a molecular sequence alignment, the likelihood of a particular tree and model

equals the probability of observing the alignment, given the tree topology, branch

lengths on that topology, and specific values for substitution rates between states

(Felsenstein (1981); Bryant et al. (2005)). The true values for the tree, branches,

and parameters are typically unknown, and search and optimization algorithms are

necessary to find the combination with the maximum likelihood (ML) value. To

the extent that the likelihood function correlates with the accuracy of evolutionary

history, the ML phylogeny is the most probable explanation for the evolution of a

given sequence alignment.

The ML phylogeny, however, is not always easy to find because the space of

possible trees and parameter values is so immense that brute-force search strategies
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are computationally intractable for all but trivial-sized problems. Instead, search

heuristics are employed to constrain the ML exploration to high-likelihood regions

of parameter space (Felsenstein (2004)). The search for an ML tree is typically

decomposed into two nested problems: optimizing tree topologies, and optimizing

continuous parameters (Figure 2.). The primary problem is to search the space of

tree topologies and find the topology with the highest likelihood. The search for

the ML topology typically begins with an initial tree constructed using a neighbor-

joining algorithm (Saitou and Nei (1987); Gascuel (1997)). From this initial tree,

the space of possible tree topologies can be traversed by swapping tree branches in

order to transform one topology into a different topology. The secondary problem is

to optimize the branch lengths and other model parameters on each explored tree.

Virtually everyone solves the secondary problem using an approach I refer to as

Unimax, in which free parameters are sequentially optimized individually. Unimax

is typically implemented using the van Wijngaarden-Deker-Brent method, which

combines three unique hill-climbing algorithms – inverse quadratic interpolation,

root bracketing, and bisection – to find the maximum of a function with one free

parameter (Brent (1972)). Unimax is the default option in popular phylogenetic

software packages PhyML (Guindon et al. (2010)), RaxML (Stamatakis (2006); Ott

et al. (2007)), Garli (Zwickl (2006)), PAML (Yang (2007)), and PAUP (Swofford

(2003)).

Unimax assumes free parameters are separable. In other words, Unimax

assumes that the ML solution can be found by individually optimizing each

parameter while holding all other parameters constant. For branch lengths, at

least, this assumption seems to be incorrect because the likelihood of a phylogeny

is computed via a postorder traversal of the tree – using Felsenstein’s so-called
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input alignment d
Examine n 
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 T  = best swap 
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FIGURE 2. Flowchart of Unimax and Multimax optimization. Unimax and
Multimax use different approaches to optimize model parameters. Finding the
ML phylogeny involves two nested problems. (A) The high-level problem is find the
ML topology T . Starting with a multiple sequence alignment d, propose a topology
T , and optimize all free model parameters and branch lengths Θ on T . This process
stops when we converge on an ML T . Otherwise, we examine possible topological
rearrangements to T (tree swaps), and repeat the overall process. (B) The low-level
problem is optimize all continuous parameters on a fixed T . Unimax sequentially
optimizes each free parameter θ1, θ2, ..., θn ∈ Θ, using fixed values for all other free
parameters. Multimax simultaneously optimizes all parameters θi ∈ Θ, at each
iteration proposing a new set of parameter values.
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pruning algorithm – in which conditional probabilities of ancestral states at internal

nodes are propagated up the tree (Felsenstein (1981)); adjusting one branch length

affects the conditional probabilities at nearby internal nodes, which ultimately

affects the likelihood of nearby branch lengths. The recursive relationship between

branches means that branch lengths may be correlated parameters. Unimax ignores

this recursive relationship, and instead optimizes each parameter in isolation.

Stated formally, Unimax assumes that the ML solution for a parameter θi can

be found using fixed values for the alignment d, the topology t, and all other free

parameters θj in the set of parameters Θ (Eq. 2.1).

P (θ̂i|d, t, θj ∈ Θ, i �= j) (2.1)

In contrast, a non-separable optimization method simultaneously seeks the ML

solutions for all free parameters θ̂1, ..., θ̂n, using a fixed alignment d and topology t

(Eq. 2.2).

P (θ̂1, ..., θ̂n ∈ Θ|d, t) (2.2)

Although previous scholarship has recognized faulty logic in Unimax’s assumption

of separability, the degree to which this assumption impairs the accuracy of ML

phylogenetic inference has not been systematically investigated (Yang (2000);

Bryant et al. (2005)).

In order to assess the effect of separability on phylogenetic accuracy,

I implemented an alternative ML optimization algorithm that optimizes all

parameters simultaneously rather than separably. This approach, referred to here

as Multimax, is formally based on the conjugate-gradient approach of the Broyden-
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Fletcher-Goldfarb-Shanno (BFGS) algorithm (Press et al. (1992); Nocedal and

Wright (1999)). BFGS operates by estimating the first- and second-derivates of

the likelihood function locally around the current parameter values. BFGS then

uses these derivates to estimate an ML solution. BFGS jumps to this estimated

optimum, and recomputes the local derivatives. If the functional gradient at the

new point is zero or within an acceptable margin, BFGS has converged upon an

ML solution. Otherwise, BFGS uses the new gradient to estimate an updated ML

solution. BFGS repeats this process until it converges on an optimum or reaches a

user-specified maximum number of iterations.

I compared the performance of Multimax (MM) to Unimax (UM) under

a range of conditions, both empirical and simulated. Across these conditions, I

observed that UM’s assumption of separability significantly impaired the accuracy

of phylogenetic inference. UM was less accurate than MM because UM leads to

poor ML branch lengths, which ultimately drives the tree search algorithm into

suboptimal regions of tree space.

Materials and Methods

Unimax

I used PhyML’s implementation of Unimax using Brent’s method, as

described in chapter 9.3 of Numerical Recipes in C (Press et al. (1992)).

Multimax

Multimax using BFGS works as follows. Given a sequence alignment d,

a fixed tree topology T, and a set of starting values for all free parameters Θ,

BFGS estimates the first- and second-derivate gradients of the likelihood function
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L(Θ|T, d). My software implementation estimates these gradients as a Hessian

matrix, constructed with local secant approximation (Nocedal and Wright (1999)).

The likelihood gradients are used to find a multidimensional uphill direction p in

parameter space (Eq. 2.3).

Hp = −∇L(Θ|T, d) (2.3)

where H is the Hessian matrix of second-order partial derivates between all

parameters θ ∈ Θ, p is the direction of the functional optima relative to our current

values of Θ, and ∇L is the first-derivate of the likelihood function. After solving

for p, BFGS performs a line search in the direction of p in order to propose a new

optimum. BFGS then jumps to this proposed point. BFGS repeats these four steps

– calculating gradients, solving equation 2.3, proposing an optimum, and then

jumping – until it arrives at a point whose gradient is zero or 200 iterations have

been performed.

Tree Swapping

I used a combination of nearest neighbor interchange (NNI) and subtree

pruning and regrafting (SPR) to swap branches and propose new topologies

(Swofford and Olsen (1990)). I used the default implementations of NNI and SPR

within PhyML version 3.0. PhyML’s swap algorithm calculates a swap score for

every possible topology rearrangement; this score estimates the potential likelihood

increase of accepting the swapped tree relative to the pre-swapped tree. Swap

scores were calculated as the estimated likelihood of the swapped tree (Lt+1)

minus the likelihood of the current tree (Lt). The values for Lt+1 were estimated

by optimizing only the four branches directly affected by the swap.
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Simulated Sequence Alignments

In order to compare the accuracy of UM and MM on simplified conditions,

I simulated amino acid and nucleotide sequences evolving on randomly generated

trees whose sizes varied from 8 to 1024 terminal branches. For each tree size, I

generated twenty random trees and generated a random amino acid sequence at

the root of the tree. I simulated the ancestor evolving across the branches, without

insertion/deletion events, to produce an alignment of descendant sequences.

All branches were individually drawn from the uniform distribution [0.00,0.05]

for pinnate trees and [0.00,0.50] for balanced trees. Nucleotide sequences were

simulated using the JC69 model to create alignments with 1000 sites. Amino

acid sequences were simulated using the JTT model to create alignments with 400

sites. Simulations were performed using INDELible with insertion/deletion events

disabled (Fletcher and Yang (2009)).

Empirical Sequence Alignments

In order to determine if UM biased our evolutionary interpretation of real

sequence data, I used MM and UM to infer ML trees for sequence alignments

from six gene families: (i) steroid-hormone receptor ligand binding domains from

across Metazoa (Bridgham et al. (2008)), (ii) Mcm1 transcription factors from

twelve species of Fungi Ascomycete Saccharomycotina (Baker et al. (2011)), (iii)

vacuolar ATP-ase subunits c, c’, and c” sampled broadly from Opisthokonts (cite

XX), (iv) thioredoxins from species across the tree of life (Perez-Jimenez et al.

(2011)), (v) ribosomal 16S nucleotide sequences sampled from across proteobacteria

(cite XX), and (vi) TMO-4c4 gene nucleotide sequences, sampled broadly from the

mitochondria of ray-finned fish (Scorpaeniformes) (Smith and Wheeler (2004)).
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I compared the MM and UM ML trees using four criterion: their congruity with

our a priori expectations, their maximized likelihood scores, their complementary

topological differences, and their unique paths taken through tree space during tree

search.

Phylogenetic Inference

I inferred ML phylogenies for empirical alignments using our own in-house

modifications to PhyML version 3.0. Tree search began with the neighbor-joined

tree, as implemented in PhyML. The search was then driven by either UM or MM

until convergence on an optimum. The best-fitting Markov model was found by

repeating the search with different substitution matrices and levels of heterogeneity,

and then using the Akaike Information Criterion to find the model with the highest

likelihood without overparameterization (Akaike (1973)). Using the best-fitting

model, ML phylogenetic inference was performed with full tracing enabled, in which

PhyML records path taken through tree space.

Reciprocal Restart Analysis

In order to determine if UM or MM could further optimize the other

method’s ML tree, I restarted UM from the MM ML tree and restarted MM from

the UM ML tree. In order to determine if UM or MM could optimize the other

method’s ML branch lengths on the initial topology (before any swaps had been

performed), I disabled topology search and restarted MM from the UM ML branch

lengths on the initial topology and restarted UM from the MM ML branch lengths.
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Ancestral Sequence Reconstruction

I reconstructed ancestral sequences using maximum likelihood as implemented

in PAML version 4.2 and an in-house GUI – named Lazarus – that controls PAML

(Yang (2007); Hanson-Smith et al. (2010)).

Tree Error

For every simulated alignment, I measured relative tree error as the

symmetric difference between the neighbor-joined topology and the true tree,

divided by the number of branches in the tree. I computed symmetric differences

using the function dendropy.Tree.symmetric difference as implemented in the

DendroPy library (Sukumaran and Holder, 2010). Relative tree error, informally,

measures the proportion of spurious clades in a tree. In order to determine

statistical significance between Unimax and Multimax tree error, I used a

paired two-tailed T-test to measure if the mean tree errors were significantly

different. T-values and derived P-values were computed using the function

cogent.stats.math.t paired in the PyCogent library (Knight et al., 2007).

I measured the error in overall tree length by dividing the sum of branch

lengths on each ML tree by corresponding sum on its true tree. This product is

reported in this paper as length error. In order to determine statistical significance

between Unimax and Multimax tree length error, I used a paired two-tailed T-test

to measure if the mean tree errors were significantly different. T-values and derived

P-values were computed using the function cogent.stats.math.t paired within the

PyCogent library (Knight et al., 2007).
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Results

Separable ML optimization impairs evolutionary interpretation

Unimax (UM) and Multimax (MM) drove the tree search to find different ML

trees, so the assumption of separability does matter. For sequences simulated under

controlled conditions, the difference between UM and MM ML trees was greater for

large trees and for pinnate-shaped trees (Fig. 3.). For sequences of gene families

evolved under real conditions, UM and MM drove the tree search algorithm to

find disagreeing topologies for five out of six families (Figs. 4. - 8.). In most cases,

there was strong support for the disagreeing branches; in a typical analysis, the

placement of these discordant branches would not be interpreted as uncertain, nor

would their placement warrant further investigation regarding sequence choice.

MM was superior in finding trees with high likelihood scores and with less

error. This means the assumption of separability not only matters, but actually

impairs phylogenetic inference. For empirical sequences, MM-driven search led to

trees with higher likelihoods, indicating a more effective search of space (Fig. 10.).

For simulated sequences, in which the true is known, I found MM trees had fewer

erroneously placed clades than UM trees (Fig. 9.).

Separable ML optimization leads to suboptimal trees

I next sought why UM led to poor ML solutions. Was it that UM foiled the

search by getting stuck on ridges, saddles, or other non-peak features in parameter

space? Or, did UM irreversibly drive the search into poor regions of tree space

whose highest summits were non-global optima? I disqualified the first theory by

performing reciprocal restart analysis on ML trees (Fig. 11.). For the five empirical
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FIGURE 3. Discordance between Unimax and Multimax trees. Unimax and
Multimax found discordant ML topologies in many cases. N taxa is the number of
sequences in the simulated alignment. Proportion discordance, the mean proportion
of clades that differed between the UM and MM ML trees.
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FIGURE 6. Phylogenies of Thioredoxin protein family. Terminal sequences are
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FIGURE 8. Phylogenies of the TMO-4c4 gene family in Actinopterygii (ray-
finned fish). The Unimax ML tree is on the left; the Multimax ML tree is on
the right. Perciformes and suborders are highlighted in blue, purple, and green.
Scorpaeniformes are highlighted in orange. Support values on internal branches are
approximate likelihood ratio test values.
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FIGURE 9. Tree error for Unimax and Multimax ML trees. N taxa, the number
of sequences in the simulated alignment. ∆ tree error, the mean difference of UM
relative tree error and MM relative tree error (see Methods). Values above 0.0
indicate that MM was more accurate; values below 0.0 indicate that UM was more
accurate. Error bars are standard error of the mean.
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FIGURE 10. Maximum likelihood values of phylogenies for empirical alignments.
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unique topologies accepted by UM and MM during their search of tree space. ∆,
the final difference in log(L) scores between the Unimax and Multimax solutions.
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FIGURE 11. Schematic illustration of reciprocal restart analysis on ML trees. ML
search begins from an initial tree (tstart), typically found using a neighbor-joining
algorithm. UM and MM drive the search into different regions of tree space. UM’s
ML tree (t̂UM) is different from MM’s ML tree (t̂MM). In this reciprocal restart
analysis, MM-driven search was restarted from t̂UM and UM-driven search was
restarted from tMM . In no examined cases, could UM or MM drive tree search to
improve the other algorithm’s ML tree.
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alignment k N optima N > tUM

steroid-hormone receptors 31 12 4
Mcm1 20 7 4
thioredoxins 139 107 33
16S 46 33 5
TMO-4c4 30 29 7
V-ATpase subunits c, c’, c” 31 0 0

FIGURE 12. Schematic illustration of path restart analysis on UM trees. MM was
restarted from all trees along UM’s path through tree space (t1UM through t

k
UM).

The table shows path restart data from six sequence families evolved under real
conditions (see Methods). k, the number of trees unique to the UM path, excluding
t̂UM . N optima, the number of new optima found by MM. The fourth column,
N > t̂UM , is the number of new optima found by MM that also had log-likelihood
scores better than the UM ML tree (t̂UM).
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sequence alignments in which UM and MM ML trees disagreed, I restarted UM

from the MM-driven ML tree and restarted MM from the UM-driven ML tree. For

all five alignments, UM and MM were unable to drive the tree search algorithm to

find a better topology, indicating that UM-driven and MM-driven search indeed

found topological optima (but the MM optimum was better). Further restart

analysis revealed the second theory to be true: Unimax led to suboptimal trees.

Specifically, I restarted MM from every tree along the UM search path; MM-driven

search then found several additional optima with higher ln(L)s than the original

UM optimum (Fig. 12.). This reveals that UM-driven search repeatedly chose poor

topologies.

Separable optimization impairs branch length accuracy

In order to determine why UM-driven search chose suboptimal trees, I

examined the choices UM and MM made immediately before they diverged in

tree space (Fig. 13.). Tree search began from an initial tree (tstart) with initial

branch lengths (blNJ), constructed using a neighbor-joining algorithm. UM and

MM optimized the values of blNJ to arrive at different ML branch lengths b̂lUM and

b̂lMM , respectively. From the ML branch lengths on tstart, the tree search algorithm

then evaluated a list of candidate tree swaps for the next tree (t1). Each potential

swap was scored according to its estimated likelihood improvement. PhyML

calculated a swap score for each proposal by first making the swap, optimizing

only the branch lengths directly affected by the swap, recording the likelihood of

this partially-optimized tree, and then restoring the tree to its pre-swap condition.

Because proposed trees are partially optimized – rather than fully optimized – swap

scores are highly dependent on the ML branch lengths of the pre-swap tree. So if
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one uses an optimization algorithm that systematically finds erred branches, then

one might expect to make poor topology swaps.

In order to determine if UM branch lengths were erred, I measured the

accuracy of the sum of all branch lengths on the ML trees. I found UM ML

branches to be less accurate than MM ML branches (Fig. 14.). Specifically, the

sum of all branch lengths on the UM ML trees were too long, especially on pinnate-

shaped trees. On the six empirical alignments, branch length error cannot be

decisively tested because true branch lengths are unknown. Instead, I recorded

the sum of all branch lengths on the UM and MM trees over the duration of tree

search. Consistent with my observations from simulated alignments, the UM ML

trees were systematically longer than the MM ML trees (Fig. 15.).

I next determined if UM branch lengths were less accurate simply because

UM failed to climb peaks in the space of continuous parameters. I reciprocally

restarted UM from b̂lMM and MM from b̂lUM , disabling the tree search algorithm

(Fig. 13.). For all six empirical alignments, UM and MM were unable to find better

reciprocal ML branch lengths on tstart, indicating that b̂lUM and b̂lMM were indeed

optima in the space of continuous parameters.

Taken together, these observations suggest that UM chose suboptimal trees

because UM’s ML branches were erred.

Separable optimization finds ML values that are order dependent

Unimax’s ML branch lengths depend on the sequential order in which

parameters are optimized. To illustrate this point, I implemented alternative

versions of UM with different sequential orderings for branch lengths. I measured

how these alternative optimization orders affected ML values for a branch labeled
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FIGURE 13. Schematic illustration of reciprocal restart analysis on initial trees.
Tree search began on an initial tree tstart, with initial branch lengths blNJ . UM
and MM found ML branch lengths on tstart, labeled b̂lUM and b̂lMM , respectively.
When MM was restarted from b̂lUM , MM was unable to improve the values of b̂lUM .
Similarly, UM restarted from b̂lMM was unable to improve the values of b̂lMM . UM-
driven search and MM-driven search next chose different topology swaps, labeled
t
1
UM and t

1
MM .
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FIGURE 14. Tree length accuracy. Length error is ratio of the estimated (ML)
branch lenghs to the true branch lengths. N taxa is the number of sequences in the
simulated alignment. Error bars are standard error of the mean.
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FIGURE 15. The length of ML trees over the duration of tree search. Tree search
on the horizontal axis corresponds to the set of unique topologies explored by
Unimax and Multimax. Tree length on the vertical axis is the sum of all branch
lengths.
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FIGURE 16. Unimax suffers from an order-dependence problem. Multimax and
three versions of Unimax arrived at different ML lengths for the branch bjar,
attached to the sequence AngJapARb in Fig. 4.. The initial length of bjar was
determined by the neighbor-joining algorithm.
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bjar, attached to the protein sequence for the Anguilla japonica androgen receptor

beta (AngJapARb) in the tree of steroid hormone receptor proteins (Fig. 4.). The

branch bjar began with the length 0.104 substitutions per site (subs/site) in the

initial neighbor-joined tree (Fig. 16.). MM reduced bjar to 0.13 subs/site. UM, in

contrast, first optimized branches 1 through 444, then increased bjar (numbered

445) to length 0.121 subs/site, and then optimized branches numbered 446 through

473. I modified UM to optimize bjar first, and then optimize the other branches

afterwards. This version of UM arrived at an ML length for bjar of 0.117 subs/site.

I next modified UM to optimize branch lengths in a random order. This version of

UM optimized bjar to 0.118 subs/site. The fact that three different UM orderings

arrived at three different ML lengths for bjar indicates that UM’s ML solutions

depend on the order in which parameters are sequentially optimized.

Effect of Multidimensional Optimization on Ancestral Sequence Reconstruction

In order to determine if UM’s assumption of parameter separability has

downstream consequences for ancestral sequence reconstruction, I inferred

ancestral sequences on the UM and MM ML trees for the steroid hormone receptor

alignment. For several ancestors of interest, I compared their ML states and their

statistical support on the UM and MM ML trees.

I observed that UM and MM ML trees yielded significantly different ancestral

sequences. For the last-shared ancestor of all Androgen receptors (AncAR,

node251), the ancestral sequences disagreed at 5% (17 of 359) of the sites (Fig.

17.). Twelve of these sites form a motif at the beginning of the AR sequence; this

motif is missing in sharks, skates, gar, and other early-branching fish. The inferred

presence or absence of this motif in ancestral sequences is primarily contingent on
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FIGURE 17. Reconstructed ancestral androgen receptor sequences. Node names
correspond to labels in Fig. 4.. The height of each character expresses its posterior
probability at the indicated site. Empty sites indicate insertions or deletions. Red

indicates sites where the ML states on the MM tree and UM tree disagree. Orange

indicates sites where the ML states disagree between trees, but both sequences infer
complementary low support (≤0.5%) for alternative state. Green indicates sites
where the ML states agree, and one state vector – but not the other – introduces
significant uncertainty about the ML state.37



the phylogenetic placement of gar fish. The UM tree placed gar deep inside the

Neopterygii clade, and AncAR was therefore reconstructed to contain the motif.

On the MM tree, however, gar was placed in a more basal position and AncAR

was reconstructed to not contain this motif. The UM and MM trees also disagreed

about the presence of this motif at two nodes descendant from AncAR (nodes 252

and 253). Aside from this motif, the last-shared ancestor of Neopterygii (node 254)

was reconstructed with nineteen disagreeing sites between the UM and MM trees.

At seven of these sites, the dissenting state was not significantly supported in the

reconstruction on the other tree.

The role of line search, versus quadratic interpolation

My particular implementation of MM using BFGS differs from UM using

Brent’s method not only in their treatment of parameter separability. Specifically,

BFGS and Brent’s method use different mechanisms to move forward in parameter

space. BFGS uses line search to move in a direction informed by the functional

gradient, whereas Brent’s method uses quadratic interpolation to move in single

dimensions. I determined that this difference is not the primary reason that UM

and MM drove the tree search to different ML trees. I implemented an alternative

version of UM that uses line search, such that UM (with line search) and MM

would be identical except in their assumption of separability. I used this alternative

version of UM to infer ML phylogenies for the six empirical alignments in this

study. I observed that UM using line search and UM using quadratic interpolation

led to the same ML topologies for all six empirical alignments. Further, the final

ML values between the two methods differed by less than 0.0001 log likelihood

units. This means that the use of line search, rather than quadratic interpolation, is
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not the reason that UM and MM led to different ML trees. This result indicates

that UM’s assumption of parameter separability is the primary cause of UM’s

phylogenetic impairment.

Discussion

My results demonstrate that UM’s assumption of parameter separability

impairs its ability to find accurate ML phylogenies. By using an alternative ML

algorithm that does not assume separability, I was able to find more accurate and

higher-likelihood trees. UM repeatedly made suboptimal topology choices during its

search of tree space. UM ML branch lengths are less accurate than MM ML branch

lengths, and this difference is likely to be a mechanism by which UM-driven tree

search choose poor topologies. The assumption of parameter separability not only

affects phylogenetic accuracy, it also affects the downstream inference of ancestral

states.

Prior work has shown that ML phylogenetic inference is NP-hard (Chor and

Tuller (2005); Roch (2006)). Consequently, I know with certainty that no ML

search heuristic running in polynomial time – including UM and MM – can be

guaranteed to find the true ML phylogeny for every alignment. Indeed, I observed

that UM and MM were not accurate all the time, but MM was more accurate more

often.

An open question in phylogenetics is whether likelihood landscapes are simple

or complex (Fukami and Tateno (1989); Steel (1994); Rogers and Swofford (1999);

Yang (2000); Chor et al. (2000); Billera et al. (2001)). I observed that UM and MM

arrived at unique ML trees, and at unique ML branch lengths for fixed trees. These

results indicate that the phylogenetic likelihood landscape is complex on both the
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space of topologies and also on the subspace of continuous model parameters, at

least for the conditions studied here.

Although MM has been previously implemented in software for ML

phylogenetics, its performance heretofore has not been rigorously investigated.

The software suite PAML implements MM using BFGS as an option called

“simultaneous update.” PAML provides this option as a sort of algorithmic

curio, without any deeper analysis of the algorithm’s efficacy and accuracy.

Because BFGS – and MM in general – has not been deeply studied as a tool for

phylogenetics, there has not been any real motivation for evolutionary biologists

to use PAML’s implementation of BFGS. Rather, the scientific community has

continued to use the default UM implementations provided by PhyML, RaxML,

and GARLI (Guindon et al. (2010); Stamatakis (2006); Zwickl (2006)); perhaps this

is because PhyML, RaxML, and GARLI provide other useful features, including

support for large sequence datasets and command-line facilities for high-throughput

batch analysis. I implemented our own version of BFGS, rather than using PAML’s

code, in order to ensure computational efficiency and in order to instrument the

algorithm to report useful metrics, including likelihood gradients and neighbor-

swap tree scores. Our MM implementation is built within the open source code for

PhyML. I encourage you to use our software. It is available at the following URL:

http://markov.uoregon.edu/software/m3l.

40



CHAPTER III

ANCESTRAL RECONSTRUCTION AND TREE UNCERTAINTY

In this chapter, I show that ancestral sequence reconstruction is robust to

phylogenenetic uncertainty. Specifically, I discuss the relationship between poorly-

supported phylogenies and the downstream accuracy of ancestral reconstruction.

This work was previously published in the Oxford Journal Molecular Biology and

Evolution (Hanson-Smith et al. (2010)).

Ancestral sequence reconstruction (ASR) is widely used to formulate and

test hypotheses about the sequences, functions, and structures of ancient genes.

Ancestral sequences are usually inferred from an alignment of extant sequences

using a maximum likelihood (ML) phylogenetic algorithm, which calculates the

most likely ancestral sequence assuming a probabilistic model of sequence evolution

and a specific phylogenytypically the tree with the ML. The true phylogeny is

seldom known with certainty, however. ML methods ignore this uncertainty,

whereas Bayesian methods incorporate it by integrating the likelihood of each

ancestral state over a distribution of possible trees. It is not known whether

Bayesian approaches to phylogenetic uncertainty improve the accuracy of inferred

ancestral sequences. Here, I use simulation-based experiments under both simplified

and empirically derived conditions to compare the accuracy of ASR carried out

using ML and Bayesian approaches. I show that incorporating phylogenetic

uncertainty by integrating over topologies very rarely changes the inferred ancestral

state and does not improve the accuracy of the reconstructed ancestral sequence.

Ancestral state reconstructions are robust to uncertainty about the underlying

tree because the conditions that produce phylogenetic uncertainty also make the
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ancestral state identical across plausible trees; conversely, the conditions under

which different phylogenies yield different inferred ancestral states produce little or

no ambiguity about the true phylogeny. These results suggest that ML can produce

accurate ASRs, even in the face of phylogenetic uncertainty. Using Bayesian

integration to incorporate this uncertainty is neither necessary nor beneficial.

The properties and evolution of ancient genes and proteins can seldom be

directly studied, because such molecules are rarely preserved intact over very

long periods of time. In 1963, Pauling and Zuckerkandl proposed that ancestral

molecules could one day be “resurrected” by inferring their sequences and then

synthesizing them (Pauling and Zuckerkandl (1963)). Decades later, the methods

of ancestral sequence reconstruction (ASR) have emerged as important tools for

examining the trajectory of molecular sequence evolution and testing hypotheses

about the functional evolution of ancient genes (Thornton (2004); Liberles (2007);

Dean and Thornton (2007)). Among numerous examples, ASR has been used in the

last decade to investigate the evolution of elongation-factor proteins (Gaucher et al.

(2003), Gaucher et al. (2007)), steroid hormone receptors (Thornton et al. (2003),

Bridgham et al. (2006), Ortlund et al. (2007)), visual pigments (Shi and Yokoyama

(2004); Chang et al. (2002)), fluorescent proteins (Ugalde et al. (2004)), and alcohol

dehydrogenases (Thomson et al. (2005)).

Although the first ASR practitioners used parsimony methods (e.g., Jermann

et al. (1995)), most modern studies use maximum likelihood (ML) (Yang et al.

(1995); Koshi and Goldstein (1996); Pupko et al. (2000)). ML begins with an

alignment of extant gene sequences, a phylogeny relating those sequences, and a

statistical model of evolution. For each internal node in the phylogeny and each

site in the sequence, the likelihood of each possible ancestral state—defined as the
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probability of observing all the extant states given that ancestral state, the tree,

and the model—is calculated. The ML ancestral state is the state with the highest

likelihood. Confidence in any ancestral state inference is typically expressed as its

posterior probability, defined as the likelihood of the state (weighted by its prior

probability) divided by the sum of the prior-weighted likelihoods for all states.

The ML approach to ancestral reconstruction assumes that the alignment,

tree, model, and model parameters are known a priori to be correct. In practice,

this assumption is often not valid; for many real-world datasets, alternatives to

the ML tree and parameter values cannot be ruled out. To accommodate these

sources of uncertainty, Bayesian methods have been proposed. Whereas ML

assumes the most likely estimate of the tree and model parameters, Bayesian

approaches incorporate uncertainty by summing likelihoods over a distribution

of possible trees or parameter values, each weighted by its posterior probability.

Pagel et al. proposed a Bayesian method for integrating topological uncertainty

into inference of ancestral states for binary and other discrete characters (Pagel

et al. (2004)). Schultz and Churchill proposed a Bayesian method to integrate

uncertainty about the parameters of the evolutionary model into discrete character

reconstructions (Schultz and Churchill (1999)). For inference of ancestral DNA

and protein sequences, Huelsenbeck and Bollback developed a Bayesian method

to integrate uncertainty about the tree topology, branch lengths, and model

parameters (Huelsenbeck and Bollback (2001)).

It is not known how Bayesian approaches affect the accuracy of reconstructed

ancestral sequences. Here I focus on the specific effects of one source of

uncertainty—the phylogeny. There have been a few attempts to characterize

the robustness of reconstructed ancestral sequences with respect to phylogenetic
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uncertainty in specific cases: Gaucher et al. reconstructed ancestral elongation

factor proteins on two plausible phylogenies (Gaucher et al. (2003)), and Bridgham

et al. reconstructed the ancestral corticosteroid receptor on all trees within the 95%

confidence interval from a Bayesian phylogenetic analysis (Bridgham et al. (2006)).

In both cases, the maximum a posteriori ancestral sequences changed very little

when different phylogenies were assumed, and the functions of the reconstructed

proteins in experimental assays were also unchanged. Huelsenbeck and Bollback

used simulations to show that integrating uncertainty about the phylogeny, branch

lengths, and model parameters can affect the posterior probabilities of ancestral

states (Huelsenbeck and Bollback (2001)), but they did not study the effect of

integration on the inferred maximum a posteriori state or the accuracy of those

inferences.

To determine the causal effects of integrating over phylogenetic uncertainty on

ASR accuracy, I implement a topological empirical Bayesian method for ancestral

reconstruction that is identical to the ML algorithm, except that it integrates over

topologies. This approach allows us to directly infer the effects of incorporating

phylogenetic uncertainty on ASR accuracy. I simulate and record the evolution

of sequences under a variety of simplified and empirically derived conditions and

infer ancestral states from the evolved alignments, allowing us to characterize the

accuracy of each approach to ASR by comparing inferred ancestral sequences to the

”true” ancestors recorded during the simulation.
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Materials and Methods

Ancestral State Reconstruction Algorithms

The ML method for ancestral sequence reconstruction, also called the

empirical Bayes method (Yang et al. (1995)), calculates the posterior probability

that some ancestral node contained state a at a sequence site of interest, given

the observed sequence data d, an evolutionary model m, a topology t̂, and a set

of branch lengths and other model parameters θ̂; the topology and parameters

are those that maximize the likelihood over all data columns in the alignment.

The conditional likelihood of a equals the probability of observing d given a, m,

t̂, and θ̂. The prior-weighted conditional likelihood of a is the conditional likelihood

of a multiplied by the prior probability of observing a, which is given by πa, the

equilibrium state frequency of a. The posterior probability of a equals the prior-

weighted conditional likelihood of a divided by the sum of the prior-weighted

conditional likelihoods for all possible ancestral state assignments (4 for nucleotides

or 20 for amino acids) (Equation 3.1).

P (a|d, m, t̂, θ̂) =
P (d|a, m, t̂, θ̂)πa�

a

P (d|a, m, t̂, θ̂)πa

(3.1)

The ML state assignment is the state with the highest prior-weighted likelihood

(and necessarily the highest posterior probability, as well). The ML sequence is the

string of ML states. To reconstruct ML ancestral sequences, I used PAML v.4.1

(Yang (1997, 2007)).

The Topological Empirical Bayes (TEB) approach to ASR differs from ML

only by integrating ancestral reconstructions over a distribution of trees (Equation

2). The TEB posterior probability of ancestral state a is the weighted average of
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the posterior probability of a over all possible trees, where the weights are given

by the empirical Bayes posterior probability of each tree t. The empirical Bayes

posterior probability PEB of a tree assumes the maximum likelihood estimate of

branch lengths and other model parameters θ̂t on each tree (Kolaczkowski and

Thornton (2008), Kolaczkowski and Thornton (2009)):

PTEB(a|d, m) =
�

t

P (a|d, t,m, θ̂t)× PEB(t|d, m, θ̂t) (3.2)

Equation 3.2 takes a different form from but is equivalent to (see Supplemental

Note 1) the expression used by others (Pagel et al. (2004), Huelsenbeck and

Bollback (2001)) for ancestral state reconstructions integrated over topologies:

PTEB(a|d, m) =

�

t

P (d|a, t,m, θ̂t)πaP (t)

�

t

�

a

P (d|a, t,m, θ̂t)πaP (t)
(3.3)

The ML method also has an empirical Bayesian interpretation, because Equation

3.1 calculates a posterior probability and uses priors on ancestral states. For

simplicity, I will refer to the approach which uses only the ML tree as the “ML

method” and the approach which integrates over trees as the “TEB method.”

One issue with estimating ancestral states from a distribution of trees is that

every topology contains different ancestral nodes. I accommodate this problem by

defining an ancestral node to be reconstructed as the most recent common ancestor

(MRCA) of a specified set of descendants (Pagel et al. (2004)). On any rooted tree,

the clade descending from the specified ancestor will contain all members of this

set; additional sequences may also be included in that clade, depending on the

topology. A similar approach can be used to describe internal nodes on unrooted
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trees in relation to the split that places a specified set of terminal sequences into

the smallest possible partition of the tree.

I implemented both the TEB and ML method in a new software package

called Lazarus. This package spawns, manages, and then parses large batches

of parallelized PAML jobs, one for each of a set of user-specified topologies. For

each topology, branch lengths and model parameters are optimized by ML, the

maximum likelihood of the tree is calculated, and the posterior probability of each

ancestral state is calculated on that topology. Lazarus then parses these results to

calculate the posterior probability of each ancestral state integrated over topologies.

Lazarus includes a modular Python API with object classes for quickly abstracting

ancestral reconstruction data and is available at

Simulations

I compared the ancestral states reconstructed by the ML and TEB methods

on data simulated under both controlled and empirically-derived conditions. The

correct evolutionary model was assumed for all ancestral reconstructions.

Four-Taxon Phylogenetic Uncertainty

I simulated sequence evolution on four-taxon ultrametric trees of variable

height and internal branch length (Fig. 18.A) and on four-taxon trees with

randomly generated branch lengths. I examined ultrametric trees because they

can be described by specifying only the total height of the tree and the lengths

of the internal branches; the limited number of free parameters allows a detailed

investigation of ancestral reconstruction methods as phylogenetic signal varies.

Further, ultrametric trees represent the most difficult conditions for ancestral
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sequence reconstruction. For a pair of terminal branches with any given sum of

lengths descending from an internal node, the ultrametric case represents the

greatest total loss of character information about the ancestor; conversely, as some

branches descending from an ancestral node become longer and others shorter, the

information in the short branch has a more determinative effect on the inferred

ancestral state. In the limit as one descendant branch length approaches zero, the

ancestral state is inferred without ambiguity or error as the state in the sequence at

the end of that branch.
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On ultrametric trees, the internal branch length (labeled ’r’ in Fig. 18.A)

was varied from (0.01, 0.02, 0.03, 0.05, 0.1, 0.2), and the overall height of the

descendant clade (labeled ’h’ in Fig. 18.A) varied from 0.25 to 0.75 substitutions

per site in intervals of 0.125. For each combination of ’r’ and ’h,’ I used Seq-Gen

(Rambaut and Grassly (1997)) to generate 100 sets of replicate descendant amino

acid sequences of length 400 sites, using the JTT evolutionary model (Jones et al.

(1991)). For the non-ultrametric simulations, 1000 four-taxon trees were generated

by randomly drawing an internal branch length from the uniform distribution

U[0.01, 0.1] and drawing four terminal branches from the uniform distribution

U[0.25, 0.75]. Seq-Gen was then used to simulate the evolution of sequences 400

amino acids long on each tree (Fig. 18.C).

For each replicate, I used ML and TEB ASR to infer the posterior probability

of reconstructed ancestral states in the most-recent-common ancestor of taxa

{A, B, C}, of {A, B}, of {A, C}, and of {B, C}. Depending on the tree, some

of these ancestors are the same. For example, on the tree (((A, B), C, D), the

ancestor of {A, C} is the same node as the ancestor of {A, B, C}. However, on tree

(((A, C), B, D), the ancestors for {A, B, C} and {A, C} are unique. I compared the

maximum a posteriori ancestral state from TEB and ML to each other and to the

true state, which was recorded at all nodes during the simulation. I analyzed the

concordance and accuracy of TEB and ML ancestral states across all replicates and

in relation to the values of ’r’ and ’h,’ the state pattern in descendant taxa, and

whether the set of taxa in the clade descending from the ancestral node of interest

in the ML tree is identical to that set in the true tree. With respect to the last

criterion, the membership may be correct, a spurious taxon may be included as a
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FIGURE 18. Four-taxon simulation conditions. (A) I seeded randomly-generated
amino acid sequences at the root of an ultrametric tree with four terminal
branches. I simulated the ancestral sequences evolving across the branches
to produce four descendant sequences (including one outgroup descendant).
Simulations were performed under a variety of conditions by adjusting the internal
branch length r and the overall height of the descendant clade h. (B) For each
set of replicate sequences, I estimated the ML branch lengths and calculated the
posterior probability of all three possible topologies. (C) Sequences were also
simulated using non-ultrametric four-taxon trees with terminal branch lengths
drawn from the uniform interval [0.25, 0.75] and internal branch lengths from the
interval [0.01, 0.1].
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descendant (mem+), or a taxon may be incorrectly excluded from the clade (mem-

).

Empirically Derived Phylogenetic Uncertainty

I also compared the accuracy of ML and TEB reconstructions inferred from

sequences simulated on empirically-derived trees. I used phylogenies inferred from

the extant sequences of alcohol dehydrogenase (ADH) proteins (Thomson et al.

(2005)), steroid hormone-receptors (Bridgham et al. (2006)), green fluorescent-like

proteins (GFP) (Kelmanson and Matz (2003); Ugalde et al. (2004)), and Tu family

elongation factor (EF-Tu) proteins (Gaucher et al. (2003)). For each gene family,

the phylogeny and branch lengths were calculated by ML using Phyml version 2.4.4

(Guindon and Gascuel (2003)). The posterior probabilities of phylogenies in the

95% credible set (1,195 trees for ADH, 3,335 for steroid hormone receptors, 655

for GFP, and 544 for EF-Tu) were inferred using empirical Bayes Markov Chain

Monte Carlo (BMCMC), which integrates over topologies, each of which is assigned

its maximum likelihood branch lengths (Kolaczkowski and Thornton (2007)). The

ML phylogenies for AFH, GFP, and EF-Tu (Fig. 19.) differ only slightly from the

original ML phylogenies shown in those datasets’ corresponding publications. On

each ML phylogeny, 100 replicates of protein sequences 400 amino acids long were

then evolved by simulation, using the JTT model of evolution, to yield terminal

descendant sequences. For each replicate, ancestral sequences at all internal nodes

were then reconstructed using ML and TEB. I examined only the uncertain nodes

(with Bayesian posterior probability less than 1.0) and their immediate neighboring

nodes; nodes with PP = 1.0 have no uncertainty over which to integrate, and

therefore the TEB and ML reconstructions are identical.
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State Pattern Analysis

To illustrate how integrating over topologies affects ancestral reconstruction

for different data patterns under specific conditions, I performed ASR using ML

and TEB and calculated the probability of each ancestral state for each of the

possible state patterns of four nucleotides. I simulated DNA sequences 50,000

nucleotides long using the JC69 model on four taxon ultrametric trees with high

phylogenetic uncertainty (h=0.3, r=0.01) or virtually no phylogenetic uncertainty

(h=0.3, r=0.2). I then examined the posterior probability of each ancestral state

inferred using ML and TEB for each of the possible state patterns for four-

state data. Character state patterns are indicated using variables representing

nucleotides of the same type: for example, pattern xyxy for the four-taxon case

stands for the realizations ACAC, AGAG, ATAT, CACA, ...TGTG at that site in

the four leaves, respectively.

Statistical Analysis

The correspondence between posterior probabilities (PPs) and the frequency

of correct inferences for TEB and for ML were analyzed by binning inferences

according to their PPs and calculating the mean PP (x) and the fraction of correct

reconstructions (y) in each bin. The fit of the resulting points to the function y=x

was evaluated using a chi-square distribution with degrees of freedom equal to the

number of bins. The significance of the difference between ML and TEB in fit to

the function y=x was assessed by evaluating the ratio of the chi-square statistics

for the two methods using an F-distribution with degrees of freedom equal to the

number of bins. To compare the differences in mean accuracy of the ML and TEB
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FIGURE 19. Empirical phylogenies used for simulations. Internal nodes are labeled
with their empirical Bayes posterior probability; circles indicate nodes at which
ancestral sequences were reconstructed. A) Steroid hormone receptors (Bridgham
et al. (2006)). The tree and branch lengths were inferred from empirical protein
sequences using the JTT+G model. B) Alcohol dehydrogenases (Thomson et al.
(2005)). The tree and branch lengths were inferred from empirical DNA sequences
using GTR+G. C) Green fluorescent-like proteins Kelmanson and Matz (2003).
The tree and branch lengths were inferred from empirical DNA sequences using
GTR+G. D) EF-Tu family elongation factors (Gaucher et al. (2003)). The tree and
branch lengths were inferred from empirical protein sequences using JTT+G.
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reconstructions, I conducted a paired two-sample t-test against the null hypothesis

of no significant difference in accuracy between the two methods.

Results

Effect of Incorporating Phylogenetic Uncertainty

To determine how incorporating topological uncertainty affects ancestral

sequence reconstruction, I first examined the extent to which ancestors inferred

using ML and TEB differ from each other under a range of conditions. I found

that integrating over trees only rarely affected the inferred state at ancestral nodes

(Fig. 20.A). In simulations on ultrametric four-taxon trees with varying levels of

phylogenetic noise, the ancestral states inferred by ML and TEB differed at only

0.4% of sites. On non-ultrametric trees, they differed at 0.7% of sites. On larger

trees derived from empirical datasets of four gene families previously analyzed using

ASR—steroid hormone receptors, alcohol dehydrogenases, green fluorescent-like

proteins, and Tu family elongation factors—ML and TEB reconstructions differed

by one percent or less (Fig. 20.A).
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To determine whether certain phylogenetic conditions cause integrating over

topological uncertainty to have a stronger effect on inferred ancestral states, I

decomposed the results of the ultrametric four-taxon simulations according to

the state patterns in the terminal sequences that descend from the reconstructed

ancestor, the length of the branches on the tree, and the ways (if any) that the

ML tree differs from the true tree (Supplemental Table 2). There were no state

patterns that resulted in differences between ML and TEB ancestors greater than

0.5 percent. The effect of integrating over uncertainty was slightly greater for

divergent state patterns in which all ingroup descendants have different states

(pattern xyz ) than for patterns that contain phylogenetic signal (xxx or xxy, Fig.

20.B). Similarly, no branch length conditions examined caused ML and TEB to

differ by more than 0.5 percent; ML and TEB ancestors differed least when the

total root-to-tip branch length was short, and they differed to a slightly greater

extent as the terminal branches became very long (Fig. 20.C). When the ML

tree was correct (as it was in the majority of cases), integrating over uncertainty

had a particularly weak effect on the inferred ancestor; however, even when the

ML phylogeny erroneously inferred a spurious sequence as a descendant of the

ancestor of interest or excluded a true descendant, the two methods still produced

identical inferences at > 99% of sites (Fig. 20.B). Together, these data indicate that

integrating over topological uncertainty per se does not strongly affect ancestral

reconstructions; the effects are weak under conditions that cause the traces of the

ancestral state to be lost in descendant sequences and virtually non-existent under

those that preserve phylogenetic signal about the ancestral state.

I next analyzed whether integrating over topological uncertainty tends to

affect sites that are strongly or weakly supported by ML. Most ASR practitioners
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FIGURE 20. Integrating over phylogenetic uncertainty rarely changes ancestors.
(A) Proportion of sites simulated under a variety of conditions at which ML
and TEB methods inferred the same or different states. (B, C, D) Details of
similarity between ML and TEB reconstructions for the ultrametric four-taxon
simulations. (B) Proportion of sites at which ML and TEB infer identical states
is shown in terms of descendant state patterns and types of phylogenetic error.
Each row presents results for sites in which the descendant taxa A, B, and C have
the specified state pattern (where pattern xxx corresponds to AAA, CCC, GGG,
or TTT; xxy corresponds to AAC, AAG, AAT, ... or TTG). Columns indicate
whether the set of taxa descending from the reconstructed node in the ML tree
corresponds to those in the true tree: clade ok means the descendant membership
is correct, mem. + means the ML descendant set spuriously includes an extra
taxon, and mem. – means the ML descendant set incorrectly excludes a taxon.
(C) Similarity between ML and TEB reconstructions is plotted against the height
of the descendant clade (“h” in Fig. 18.). (D) Similarity between ML and TEB
reconstructions is shown versus the length of the internal branch (“r” in Figure 1).

56



examine the support for ancestral state inferences and experimentally characterize

the robustness of their inferences to alternate reconstructions that have posterior

probability above some defined plausibility cutoff (Bridgham et al. (2006); Ortlund

et al. (2007); Thomson et al. (2005); Chang et al. (2002); Ugalde et al. (2004)). I

found that ML and TEB reconstructions disagreed only at sites that were already

ambiguous in the ML reconstruction (Fig. 21.). In both ultrametric and non-

ultrametric four-taxon simulations, the ML and TEB reconstructions agreed at

all sites at which the ML reconstruction had posterior probability (PP) greater

than 0.70. In the ADH, GFP, and EF-Tu simulations, the two methods agreed

at all sites with PP greater than 0.76, 0.63, and 0.71, respectively. In the steroid

hormone simulation, the methods agreed at all sites with PP greater than 0.87, and

they disagreed at only 0.003% of all sites reconstructed with posterior probability

> 0.80. Over all four-taxon reconstructions, the maximum a posteriori ancestral

state from TEB was different from the first- or second-best state using the ML

method at only 0.001625% of sites. These data indicate that integrating over

topological uncertainty never causes inferred ancestral states that are strongly

supported by ML to be revised. Rather, TEB inferred a state different from the

ML state only when that state was ambiguously reconstructed anyway, switching

the favored state from one weakly supported possibility to another.
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FIGURE 21. ML and TEB differences versus phylogenetic support. ML and TEB
infer different ancestral states only when posterior probabilities are low. In each
pair of plots, the left plot (A1, B1, etc.) compares the posterior probability of
the maximum a posteriori state inferred by ML to that inferred by TEB. Black
points show sites at which ML and TEB methods inferred the same state; green
diamonds indicate that the two methods inferred different states. The right plots
(A2, B2, etc.) are histograms of the green points in the left plot: I grouped all ASR
inferences into 5%-sized bins based on their posterior probability and counted the
proportion of sites at which ML and TEB inferred different states. Results are
shown for simulations on ultrametric four-taxon trees (A1,A2), non-ultrametric
four-taxon trees (B1,B2), and the steroid-hormone receptor (C1,C2), ADH
(D1,D2), GFP (E1,E2), and EF-Tu phylogenies (F1,F2).

Effect of Incorporating Phylogenetic Uncertainty on ASR Accuracy

Although the ML and TEB methods inferred the same state at most sites,

it is possible that TEB might produce more accurate reconstructions at the rare

sites where the two methods differ. I measured accuracy as the proportion of sites

at which the reconstructed state was identical to that of the true ancestor, which I

recorded during each simulation. In the four-taxon and GFP simulations, ML was
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slightly, but not significantly, more accurate than TEB (Fig. 22.A, Supplemental

Table 7). In the ADH, steroid hormone receptor, and EF-Tu simulations, there was

no difference in accuracy between the methods. The accuracy of both ML and TEB

declined as terminal branch lengths grew longer, causing multiple substitutions to

occur (Fig. 22.B). ML’s superiority to TEB was greatest when the membership

of the descendant clade was correct (Fig. 22.C), presumably because when the

ML topology is the true tree, integrating phylogenetic uncertainty serves only to

introduce error. Even when the ML tree was incorrect, however, TEB generally

decreased accuracy; integrating over uncertainty improved accuracy only under the

rare condition that the descendant state pattern was textitxyz and a spurious taxon

had been included as a descendant of the node of interest. Under these conditions,

both methods performed poorly, because little or no phylogenetic signal of the

ancestral state was retained in the descendants. For all other state patterns and

forms of phylogenetic error, ML had accuracy equal to or slightly greater than that

of TEB.

Effect of Incorporating Phylogenetic Uncertainty on ASR Posterior Probabilities

I next examined whether TEB or ML yielded more accurate estimates of

statistical confidence in inferred ancestral states. For all simulations, I binned

reconstructed ancestral sites by their posterior probability and counted the

proportion of accurate inferences in each bin (Fig. 23.). If posterior probability is

an accurate predictor of the probability that an inferred state is correct, the mean

PP in that bin should equal the proportion of correct ancestral state inferences. I

observed that the ML and TEB methods generally produced similar PP values, and

both types of PP were good predictors of mean accuracy. The major exception
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FIGURE 22. ASR error rates, measured as the proportion of sites at which the
maximum a posteriori reconstructions differ from the true ancestral state. (A)

Results from the four-taxon and empirically-derived conditions are averaged over
all replicates. None of the differences between ML and TEB are statistically
significant. (B) Results from the ultrametric four-taxon simulation are shown
versus the height of the descendant clade (where height equals “h” in Fig. 18..
Error bars for ML and TEB are nearly identical. (C) Detailed results from the
ultrametric four-taxon simulation. Each cell reports two values: the proportion
of sites incorrectly reconstructed by ML (top) and TEB (bottom). Bold values
indicate the method with higher accuracy. Data are sorted according to the same
criteria in Fig. 20.B.
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to this pattern was the four-taxon simulation on ultrametric trees, in which

integrating over trees slightly inflated support for reconstructions with PP > 0.5

(Fig. 23.A); a chi-square test indicates that ML’s posterior probabilities fit the

ideal better than TEB’s PPs do, but the difference is small and does not reach

statistical significance (P = 0.16, Supplemental Table 1). When the ML tree was

correct, ML’s PPs were more accurate than TEB, but TEB was more accurate

when the ML tree was wrong; because the former conditions are more frequent

than the latter, however, ML’s accuracy was higher overall. For the empirically

derived conditions, ML’s PPs were slightly more accurate, but the difference was

again small and not statistically significant (Supplemental Tables 3, 4, 5, 6).

An Intrinsic Tradeoff Explains Why Incorporating Uncertainty Does Not Affect

ASR

In order to understand why integrating over phylogenies has such a weak

effect on ancestral reconstruction, I examined the relationship between the

plausibility of alternate phylogenies and the dependence of the reconstructed state

on the assumed phylogeny. I conjectured that as phylogenetic uncertainty increases,

the same state will be reconstructed on the plausible trees. To test this hypothesis,

I grouped all the replicates from the ultrametric four-taxon simulations according

to the posterior probability of their ML tree. For each replicate, I counted the

proportion of sites at which the inferred ancestral state differs between the ML

tree and the tree with the next-highest PP (Fig. 24.A). I observed that when

the ML tree was uncertain (PP <1.0), the ancestral states among trees rarely

disagreed. In contrast, when the ML tree was absolutely certain (PP = 1.0), the

ancestral states on the ML tree and the second-best tree disagreed at up to 25%
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FIGURE 23. Relationship of ancestral PP to accuracy. The posterior probability
(PP) of inferred ancestral states is plotted against the probability that those states
are correct. For both ML and TEB, I grouped all ancestral state inferences by their
PP into 5%-sized bins. Within each bin, I calculated the proportion of inferred
states that match the true state. Bins with fewer than 50 members were excluded.
Data are shown for simulations on (A) ultrametric four-taxon, (B) non-ultrametric
four-taxon, (C) ADH, (D) steroid hormone receptors, (E) GFP, and (F) EF-Tu
phylogenies.
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of sites; however, because the posterior probability of the second tree was so low,

it contributed virtually zero weight to the TEB reconstruction. Support measures

showed a similar trade-off: only when there was little or no uncertainty about the

tree did the PP of an ancestral reconstruction differ among phylogenies. These

results indicate that there is a trade-off between phylogenetic uncertainty and the

extent to which ancestral state reconstruction depends on the phylogeny assumed.
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FIGURE 24. Phylogenetic uncertainty versus alternate ancestral reconstructions.
Each point corresponds to one set of replicate descendants in the ultrametric four-
taxon simulation. Tree uncertainty for each replicate is measured as 1.0 minus the
posterior probability of the ML tree. (A) Tree uncertainty is plotted versus the
proportion of sites at which the most likely ancestral state on the ML tree disagrees
with the most likely ancestral state on the second-best tree. (B) Tree uncertainty
is plotted versus the average absolute difference between the posterior probability
of the most likely state on the ML tree minus the posterior probability of this same
state on the second-best tree.

To understand this trade-off in detail, I examined ancestral reconstructions

under two contrasting four-taxon conditions with different degrees of phylogenetic

uncertainty (Fig. 25.). In one condition, the true phylogeny had a long internal

branch, so the ML tree was inferred with no uncertainty (PP = 1.0); in the other,
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the true phylogeny had a very short internal branch, so the ML tree was inferred

with considerable uncertainty (PP = 0.384). For each state pattern, I reconstructed

the ancestral state on all three possible topologies. I found that when there was no

phylogenetic uncertainty, the probability of an ancestral state can differ radically

given different trees; for three of the state patterns, the maximum a posteriori

ancestral state inferred on the ML tree differed from that inferred on alternate

trees. Because the internal branch was long, however, these alternate trees had

zero posterior probability, so incorporating them into TEB reconstruction produces

ancestral state inferences and posterior probabilities identical to the ML inference.

In contrast, when the internal branch was short and the phylogeny was uncertain,

all three topologies were close to being star trees. In this case, the probability of

the ancestral state inferred on the ML tree was almost identical to the probability

of that state given any other tree. Because the inferred ancestral state did not

differ among phylogenies, TEB and ML again yielded the same reconstruction.

Discussion

My results demonstrate that a Bayesian approach to incorporating

uncertainty about the underlying phylogeny is not necessary for ancestral state

reconstruction. By comparing two methods of ancestral sequence reconstruction

that differ only in that one assumes the ML phylogeny while the other integrates

over phylogenies, I were able to determine the specific effect of incorporating

phylogenetic uncertainty on ancestral state inferences, their statistical support,

and their accuracy. I found that using TEB virtually never changes the inferred

ancestral state; when it does, the reconstruction was already ambiguous using ML.
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FIGURE 25. Inferred ancestral states are the same across uncertain trees. The
conditions that produce phylogenetic uncertainty cause ancestral state inferences
to be identical across trees. (A) I simulated sequences on trees with long (top)
and short (bottom) internal branches. On each, I randomly generated an ancestral
sequence 50,000 nucleotides long and simulated sequence evolution. (B) From the
descendant sequences, I inferred the empirical Bayes posterior distribution of the
three trees, each with its maximum likelihood branch lengths. (C) On each tree,
I used the true model to reconstruct the common ancestor of descendants A, B,
and C for all possible descendant state patterns (xxxx, xyxx, wxyz, etc.). Each bar
corresponds to the posterior probability of the best ancestral state on the ML tree
(blue), on the alternate trees (yellow and red), and integrated over all trees (green).
Stars indicate state patterns for which the maximum a posteriori ancestral state on
one of the alternate trees is different from that on the ML tree.
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ML has slightly higher accuracy, and its posterior probabilities provide a slightly

better predictor of the probability that an ancestral state inference is correct.

These analyses show that incorporating phylogenetic uncertainty only weakly

affects ASR because the conditions that cause phylogenetic uncertainty also

make the ancestral state the same across trees. This phenomenon occurs because

when internal branches are short, the distance in tree-space is small between the

ancestor on the ML tree and the ancestor on the second-best tree (Felsenstein

(2004)). At the limit, the true tree is a star tree with a zero-length internal branch,

and all resolved topologies have equal posterior probability, leading to maximal

phylogenetic uncertainty; however, the ancestral nodes on the different topologies

are identically located in tree space. In contrast, under the conditions that cause

inferred ancestral states to differ among trees, there is typically no phylogenetic

uncertainty to integrate over.

Prior work has shown that ASR is generally most accurate on star-like

trees, because the descendant sequences contain maximum mutual information

about the ancestral state when those descendants are completely independent

phylogenetically (Blanchette et al. (2004); Lucena and Haussler (2005)). Those

studies, however, assumed that the true phylogeny was known a priori, which is

particularly unlikely for star-like trees with short internal branches. My work shows

that phylogenetic uncertainty, which is inevitable under these conditions, is not

expected to undermine the accuracy of ancestral state reconstruction on star-like

trees. These results underscore the potential to accurately reconstruct ancestral

sequences at the base of rapid phylogenetic radiations despite phylogenetic

uncertainty, such as the ancestors of all mammals (Blanchette et al. (2004)) or all

metazoans (Rokas et al. (2005)).
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Previous work by Huelsenbeck and Bollback, like ours, showed a close

relationship between ancestral posterior probabilities estimated using the ML tree

and integrating over trees (Huelsenbeck and Bollback (2001)). Those authors did

suggest, however, that uncertainty in the phylogeny might lead to significantly

different interpretations of the ancestral state. This suggestion was illustrated using

trees with arbitrarily assigned branch lengths and posterior probabilities; for all

topologies in the illustration, the internal branch lengths were of significant length

and the posterior probabilities were substantial. In reality, it is unlikely that any

data set would support such a distribution of posterior probabilities over this set

of tree/branch length combinations, because non-trivial posterior probabilities on

”next-best” trees typically arise only when internal branches are short. My results

show that when the posterior probabilities on trees are derived from sequence data

rather than arbitrarily assigned, integrating over uncertainty has a negligible effect

on ancestral sequence inference and a negative impact, if any, on accuracy.

My results should not be interpreted as an endorsement for sloppy analysis.

Although incorporating phylogenetic uncertainty does not improve the accuracy

of ancestral reconstruction, this does not mean the phylogeny is unimportant.

Because ancestral reconstructions can vary across trees under some conditions,

arbitrarily choosing an incorrect and implausible phylogeny could yield inaccurate

reconstructions.

These findings should not be taken as evidence that ancestral reconstruction

never errs. There are numerous potential sources of error that I did not evaluate,

including use of incorrectly parameterized evolutionary models, which could

yield incorrect (and strongly supported) inferences of phylogeny (Kolaczkowski

and Thornton (2004)) or incorrect ancestral state reconstructions even when
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the true tree is assumed. ASR practitioners should continue to use rigorous

statistical practices, such as formal evaluation of a wide range of models that

incorporate evolutionary heterogeneity (Posada (2001); Lartillot and Philippe

(2004); Kolaczkowski and Thornton (2008)) and dense, targeted taxon sampling

(Hillis (1998); Pollock et al. (2002); Heath et al. (2008)). My analyses were specific

to Bayesian integration over uncertainty about the underlying phylogeny: I did not

address the effect on ancestral reconstructions of integrating over uncertainty about

branch lengths, the substitution model, or its parameters. Whether a Bayesian

approach to these sources of uncertainty would improve or degrade ASR accuracy

warrants further research.

In summary, incorporating phylogenetic uncertainty by integrating over

topologies does not improve the accuracy of ancestral sequence reconstruction,

because the conditions that cause phylogenetic uncertainty make the ancestral state

the same across trees. Using the ML tree will typically yield the best ancestral

reconstruction, even when the ML tree is uncertain. A Bayesian approach to

phylogenetic uncertainty is intuitively appealing but computationally demanding

and, in this case, unnecessary.
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CHAPTER IV

CASE STUDY: EVOLUTION OF INCREASED COMPLEXITY

In this chapter, I provide a case study demonstrating the analysis pipeline

previously described (Fig. 1.). I applied the methods in this pipeline to investigate

the evolution of increased complexity in a molecular machine with multiple

interacting parts. This project is groundbreaking because this is the first time

the evolution of an entire molecular complex has been traced through history,

and this is the first application of phylogenetic ancestral resurrection to all the

members of a complex. Collaborators in the the Stevens Lab performed the in vitro

experimentation. This work has been accepted for publication in the journal Nature.

Many cellular processes are carried out by molecular machines – assemblies

of differentiated proteins that physically interact to execute biological functions

(Pallen and Matzke (2006); Mulkidjanian et al. (2007); Forgac (2007); Dolezal et al.

(2006); Clements et al. (2009); Archibald et al. (2000)). Despite much speculation,

evidence is lacking concerning the mechanisms by which their complexity evolved.

Comparative genomic approaches suggest that the the components of many

molecular machines appeared sequentially during evolution, implying gradual

increases of complexity by incorporating new parts into simpler machines (Pallen

and Matzke (2006); Mulkidjanian et al. (2007); Dolezal et al. (2006); Clements

et al. (2009); Gabaldón et al. (2005); Liu and Ochman (2007)). These horizontal

analyses, however, are unable to decisively test these hypotheses or reveal the

mechanisms by which additional parts became obligate components of existing

systems. Here we perform the first vertical evolutionary analysis of a molecular

machine by using ancestral gene resurrection (Thornton (2004); Frattini et al.
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(2000)) and manipulative genetic experiments to reconstruct all components of

a complex – the hexameric transmembrane ring of the vacuolar H+-ATPase (V-

ATPase) proton pump – and identify the specific genetic and functional changes

that caused an increase in complexity hundreds of millions of years ago. We show

that the transmembrane ring of Fungi which is composed of three paralogous

proteins evolved from a two-paralog ancestral complex because of a very small

number of degenerative mutations, without the evolution of apparent new functions

by the parts. After a gene duplication, both descendant proteins lost some of

the specific inter-subunit interfaces required for their interactions with other

ring proteins; these losses were complementary, so both copies became obligate

components with restricted spatial roles in the complex. Reintroducing a single

historical mutation from each paralog lineage into the resurrected ancestral

proteins is sufficient to recapitulate this asymmetric degeneration and trigger the

requirement for the more complex three-component ring. Our experiments show

that increased complexity in an essential molecular machine evolved by simple,

high-probability evolutionary processes and suggest a plausible mechanism for the

evolution of complexity in other multi-paralog machines whose parts function in

specific spatial orientations.

The V-ATPase proton pump is a multi-subunit protein complex that pumps

hydrogen ions across membranes to acidify subcellular compartments; this function

is required for intracellular protein trafficking, coupled transport of small molecules,

and receptor-mediated endocytosis (Forgac (2007)). V-ATPase dysfunction has

been implicated in human osteopetrosis, acquired drug resistance in human tumors,

and pathogen virulence (Frattini et al. (2000); Pérez-Sayáns et al. (2009); Xu et al.

(2010)). A key component of the V-ATPase is the V0 subcomplex, a hexameric
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protein ring that utilizes a rotary mechanism to move protons across organelle

membranes (Fig. 26.A) (Hirata et al. (2003); Imamura et al. (2005)). Although

the V-ATPase is found throughout Eukaryotes, the V0 ring varies in subunit

composition among lineages. In animals and most other eukaryotes, the ring

consists of one subunit of Vma16 protein and five copies of its paralog, Vma3

(Fig. 26.B) (Forgac (2007)). In Fungi, the ring consists of one Vma16 subunit, four

copies of Vma3, and one Vma11 subunit, arranged in a specific orientation relative

to each other (Powell et al. (2000)). All three proteins are required for V-ATPase

to function in Fungi (Umemoto et al. (1990, 1991)), but the mechanisms by which

both Vma3 and Vma11 became obligate components with specific positions in the

complex are unknown.

To address this issue, we reconstructed the ancestral ring proteins from

periods just before and after the increase in complexity (Harms and Thornton

(2010)), synthesized and functionally characterized them (Thornton (2004); Liberles

(2007)), and used manipulative methods to identify the genetic and molecular

mechanisms by which their functions changed (20). We first inferred the phylogeny

and best-fit evolutionary model of the Vma3/11/16 protein family from the

sequences of all 139 extant family members available in Genbank. The maximum

likelihood phylogeny (Fig. 27.) indicates that Vma11 and Vma3 are sister proteins

produced by a duplication of an ancestral gene (Anc.3-11) deep in the Fungal

lineage, before the last common ancestor of all Fungi ( 800 million years ago) but

after the divergence of Fungi from other eukaryotes ( 1 billion years ago) (Taylor

and Berbee (2006)). The Vma11/Vma3 and Vma16 lineages, in turn, descend from

an even older gene duplication deep in the Eukaryotic lineage (Fig. 26.B). We then

used a maximum likelihood algorithm (Yang et al. (1995)) to infer the ancestral
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cerevisiae, the V-ATPase is assembled from fourteen subunits; the V1 subdomain
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(B) The maximum likelihood phylogeny of V-ATPase subunits Vma3, Vma11,
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72



1.0

1.0

1.0 0.94

1.0

1.0

0.99

0.54

1.0

1.0

Amoebozoa &
Apicomplexa
subunit 16 (c”)

Animals & 
Choanoflagellates
subunit 16 (c”)

Fungi subunit 16 
(c”)

Amoebozoa &
Apicomplexa
subunit 3 (c)

Animals & 
Choanoflagellates
subunit 3 (c)

Fungi subunit 11 
(c!)

0.76

1.0

1.0

1.0

0.38

0.75

1.0

1.0

Fungi subunit 3 (c)

0.0 1.0
ASR posterior probability (in 5% bins)

pr
op

or
tio

n 
of

 s
ite

s

0.0

1.0 73.2% of sites with P
Opisthokont Anc.16

93.5% of sites with PP
Opisthokont Anc.3-11

pr
op

or
tio

n 
of

 s
ite

s

0.0

1.0

1.0
ASR posterior probability (in 5% bins)

0.0

0.0 1.0
0.0

1.0

Fungi Anc.11

pr
op

or
tio

n 
of

 s
ite

s

ASR posterior probability (in 5% bins)

0.0 1.0
0.0

1.0

pr
op

or
tio

n 
of

 s
ite

s

ASR posterior probability (in 5% bins)

Fungi Anc.3
90.2% of sites with PP

1.0

0.78

0.58

0.99

1.0

FIGURE 27. The maximum likelihood phylogeny of V-ATPase subunits Vma3,
Vma11, and Vma16.

73



amino acid sequences with the highest probability of producing all the extant

sequence data, given the best-fit phylogeny and model. We reconstructed the two

paralogs that composed the ancient eukaryotic ring – Anc.3-11 (the last common

ancestral protein from which the Vma3 and Vma11 lineages descend) and Anc.16

(the ancestral proteins from which all Vma16s descend); we also reconstructed the

duplicated paralogs comprised by the three-member fungal ring in the ancestor

of all Fungi – Anc.3 and Anc.11, the progenitors of the differentiated subunits

Vma3 and Vma11, respectively, after Anc.3-11 was duplicated (Taylor and Berbee

(2006)). We synthesized DNAs that code for these reconstructed proteins and

assayed their functions in vivo using extant yeast S. cerevisiae.

Materials and Methods

In Silico Reconstruction of Ancestral Protein Sequences

V0 complex subunits Vma3, Vma11, and Vma16 are sometimes referred to

as subunits c, c, and c in the specialty literature. We queried GenBank for all

Eukaryote V-ATPase V0 ring sequences. Our query returned subunit 3, 11, and 16

protein sequences for twenty-six species in Fungi, and subunit 3 and 11 sequences

for thirty-five species in Metazoa, Amoebozoa, and Apicomplexa. We aligned

the sequences using PRANK v0.081202 (Loytynoja and Goldman (2005, 2008)).

This alignment is best-fit by the Whelan-Goldman matrix (WAG) with gamma-

distributed rate variation (+G) and proportion of invariant sites (+I), according

to the Akaike Information Criterion as implemented in PROTTEST (Abascal

et al. (2005)). Using WAG+G+I, we used PhyML v3.0 to infer the maximum

likelihood (ML) topology, branch lengths, and model parameters (Guindon and

Gascuel (2003)). We optimized the topology using the best result from Nearest-
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Neighbor-Interchange and Subtree Pruning and Regrafting; we optimized all other

free parameters using the default hill-climbing algorithm in PhyML. Phylogenetic

support was calculated as the approximate likelihood ratio (36). Our ML analysis

inferred the Nematoda 3 and 11 sequences to be connected by a very long

branch basal to the Chromalveolata lineages; this result is inconsistent with our

expectation that Nematoda are animals (Aguinaldo et al. (1997)) and we therefore

excluded Nematoda data from further downstream analysis.

We reconstructed ML ancestral states at each site for all ancestral nodes in

our ML phylogeny using our own set of Python scripts, called Lazarus, which wraps

PAML version 4.1 (Yang (2007)). Lazarus parsimoniously places ancestral gap

characters according to Fitchs algorithm (39). We characterized the overall support

for Anc.3-11, Anc.16, Anc.3, and Anc.11 by binning the posterior probability of the

ML state at each site into 5%-sized bins and then counting the proportion of total

sites within each bin (Supplement S2).

Robustness to Alignment Uncertainty

In order to assess if our ancestral reconstructions are robust to alignment

uncertainty, we aligned our protein sequences using four different alignment

algorithms: CLUSTAL version 2.0.10 (Thompson et al. (1994)), MUSCLE v3.7

(Edgar (2004)), AMAP v2.2 (Do et al. (2005)), and PRANK v0.081202 (Loytynoja

and Goldman (2005, 2008)). We then inferred the ML phylogeny and branch

lengths for each alignment, using the methods described above. The resultant

alignments varied in length from 347 sites (using CLUSTAL) to 683 sites (using

PRANK), but all four alignments yielded the same ML topology with nearly

identical ML branch lengths.
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In order to determine which alignment algorithm yields the most accurate

ancestral inferences under V-ATPase phylogenetic conditions, we simulated

sequences across the V-ATPase ML phylogeny using insertion and deletion

rates ranging from 0.0 to 0.1 indels per site. For each indel rate, we generated

ten random unique indel-free ancestral sequences 400 amino acids in length

and then used INdelible (Fletcher and Yang (2009)) to simulate the ancestral

sequence evolving along the branches of our ML phylogeny under the conditions

of WAG+I+G model with indel events randomly injected according to the specified

indel rate. The size of each indel event was drawn from a Zipfian distribution with

coefficient equal to 1.1 and the maximum length limited to 10 amino acids. We

aligned each replicates descendant sequences using AMAP, CLUSTAL, MUSCLEs,

and PRANK; for each alignment, we inferred the ML topology, branch lengths,

and model parameters using the methods described above. We used Lazarus to

reconstruct all ancestral states, and queried Lazarus for the most-recent shared

ancestor for Opisthokont subunit 3/11 and Opisthokont subunit 16 sequences. We

measured the error of ancestral reconstructions as the proportion of ancestral sites

that incorrectly contained an indel character (Fig. ??).

Plasmids and Yeast Strains

Bacterial and yeast manipulations were performed using standard laboratory

protocols for molecular biology (Sambrook and Russel (2001)). Plasmids used can

be found in Supplement S5. Ancestral sequences (pGF140, pGF139, pGF506, and

pGF508) were synthesized by GenScript (Piscataway, NJ) with a yeast codon bias.

Triple hemagglutinin (HA) epitope tags were included prior to each stop codon.

The Anc.3-11, Anc.16, Anc.3, and Anc.11 genes were subcloned to single-copy,
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CEN-based yeast vectors. The ADH terminator sequence (247 base pairs) and

NatR drug resistance marker (Goldstein and McCusker (1999)) were polymerase

chain reaction (PCR) amplified with 40 bp tails homologous to the 3’ end of each

coding region and vector sequence. Vectors were gapped, co-transformed into

SF838-1D yeast with PCR fragments, and cells were selected for NatR. A second

round of in vivo ligation was used to place the ancestral genes under 500 bps of

the VMA3 or VMA16 promoters to create pGF140 and pGF139, respectively. The

following vectors all used a similar cloning strategy: pGF240 - pGF41, pGF252,

pGF253, pGF503 - pGF508, pGF510, pGF512 - pGF515, pGF517 - pGF519,

pGF521, pGF523, pGF528, pGF529, pGF531, pGF534 - pGF537, and pGF542.

Briefly, the relevant locus (Anc.3-11, Anc.16, or Anc.3) was PCR amplified with

5’ and 3’ untranslated flanking sequence and cloned into pCR4Blunt-TOPO

(Invitrogen, Carlsbad, CA). If necessary, a modified Quikchange protocol (Zheng

et al. (2004)) was used to introduce point mutations before the gene was subcloned

into a yeast vector (pRS316 or pRS415). To generate pGF502, codon 31 through

the stop codon of Anc.16 were amplified with the ADH::NatR cassette from

pGF139, cloned into TOPO, and in vivo ligated downstream of the VMA16

promoter (including a start codon) in pRS415.

A triple-fragment in vivo ligation was used to generate pGF646 - pGF651.

Gapped vector containing the VMA16 promoter was transformed into yeast

with two PCR fragments of the ring genes to be fused. For pGF646, the coding

region of (i) VMA16 (without codons 2-41) and (ii) the coding region of Anc.11

(without codons 2-5) were amplified by PCR. The proteolipid on the C-terminal

portion of the gene fusion also contained the ADH terminator and NatR cassette;

the amplified products contained PCR tails with homology to link the genes to
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both the gapped vector and to each other. Gene fusions were modeled after the

experimental design of Wang et al. (2007) where the lumenal protein sequence

linking the two proteolipids was designed to be exactly 14 amino acids. To meet

these criteria, additional amino acids were inserted into the following vectors

linking the two subunits: pGF646 (TRVD), pGF648, pGF650 (TR), pGF649,

pGF651 (GS).

Yeast strains used can be found in Supplement S5. Strains containing deletion

cassettes other than KanR (Goldstein and McCusker (1999)) were constructed by

PCR amplifying the HygR or NatR cassette from pAG32 or pAG25, respectively,

with primer tails with homology to flanking sequences to the VMA11 or VMA16

loci. 11::KanR and 16::KanR strains (SF838-1D?) were transformed with the HygR

and NatR PCR fragments, respectively, and selected for drug resistance. The

11::HygR locus was amplified and transformed into LGY113 (to create LGY125)

and LGY115 (to create LGY124). This was repeated with the 16::NatR locus to

create LGY139 and LGY143.

Yeast Growth Assays

Yeast were grown in liquid culture, diluted five-fold, and spotted onto YEPD

media buffered to pH 5.0 or YEPD media containing 25 mM (Figs. 2, 3, 4) or 30

mM CaCl2 (Fig. 28.F).

Whole Cell Extract Preparation and Immunoblotting

Yeast extracts and Western blotting were performed as previously described

(47). Antibodies used in this study included monoclonal primary anti-HA (Sigma-
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Aldrich), anti-Dpm1 (5C5; Invitrogen), and secondary horseradish-conjugated anti-

mouse antibody (Jackson ImmunoResearch Laboratory, West Grove, PA).

Fluorescence Microscopy

Staining with quinacrine was performed as previously described (Ryan

et al. (2008)). The cell wall (shown in red) was visualized using concanavalin A

tetramethylrhodamine (Invitrogen). Microscopy images were obtained using an

Axioplan 2 fluorescence microscope (Carl Zeiss, Thornwood, NY). A 100x objective,

AxioVision software (Carl Zeiss), and Adobe Photoshop CS (v. 8.0) were used.

Results

To functionally characterize the resurrected proteins, we transformed them

into S. cerevisiae deficient for various ring components and therefore incapable

of growth in the presence of elevated CaCl2 (Kane (2006)). We found that the

ancestral two-component ring can functionally replace the three-component ring

of extant yeast; this result indicates that neither the complex nor its parts evolved

new functions required for growth under the conditions in which the ring is known

to be important. When the resurrected Anc.3-11 was transformed into yeast

deficient for Vma3 (3) or Vma11(11), growth in the presence of elevated CaCl2

was rescued, indicating that all the functions of the present-day Vma3 and Vma11

proteins were already present before their birth by gene duplication (Fig. 28.A).

Further, Anc.3-11 unlike either of its present-day descendants can partially rescue

growth in yeast that are doubly deficient for both Vma3 and Vma11 (311). In

addition, the reconstructed Anc.16 rescued growth in Vma16-deficient S. cerevisiae

(16) (Fig. 28.B), and co-expression of Anc.3-11 and Anc.16 together rescued
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cell growth in 31116 yeast, which lack all three ring subunits (Fig. 28.C). The

ancestral genes specifically restore proper V-ATPase function in acidification of the

vacuole lumen (Fig. 28.G). Further, mutation of the ancestral subunits to remove

glutamic acids residues known to be essential for V-ATPase enzyme function

(16,24) abolished their ability to rescue growth on CaCl2 (Supplement S7). These

inferences about the functions of Anc.3-11 and Anc.16 are robust to uncertainty

about ancestral amino acid states. We reconstructed alternate versions of Anc.3-11

and Anc.16 by introducing amino acid states with posterior probability ≥0.2, but

none of these abolished the ability of the ancestral genes to functionally substitute

for the extant subunits (Supplement S8).

Similar experiments with the components of the ancestral three-component

ring show that after Anc.3-11 duplicated, both Vma3 and Vma11 became necessary

for a functional complex, because each lost specific ancestral functions that were

maintained in the other. Unlike Anc.3-11, expression of Anc.3 can rescue growth

and vacuole acidification in 3 but not 11∆ yeast, and Anc.11 can rescue growth

in 11∆ but not 3∆ yeast (Fig. 28.D,E,G). Further, both Anc.3 and Anc.11 are

required to fully rescue growth in 311 yeast (Fig. 28.F). These data indicate that

after their birth by gene duplication, Anc.11 lost the ancestral proteins ability to

carry out at least some functions of Vma3, and Anc.3 lost the ancestral capacity to

carry out those of Vma11.

We conjectured that the evolution of the specialized roles of Vma3 and

Vma11 reflected the loss of specific interaction interfaces required for ring assembly

that were present in the ancestral protein. Previous experiments with fusions of

extant yeast proteins have shown that the arrangement of subunits in the ring

is constrained by the capacity of each subunit to partcipate in specific interfaces
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FIGURE 28. Reconstructed V-ATPase ancestors replace extant versions. The
ancestral V0 subunits functionally replace the three-component ring in extant
yeast. S. cerevisiae were plated on permissive media (YEPD) and media buffered
with elevated CaCl2. (A) Anc.3-11 rescues growth in yeast deficient for endogenous
subunit 3 (3?), subunit 11 (11?), or both (3?11?). Wild-type (WT) yeast growth
is shown for comparison. (B) Anc.16 rescues growth in yeast deficient for subunit
16 (16?). (C) Expression of Anc.3-11 and Anc.16 together rescues growth in yeast
deficient for subunits 3, 11, and 16. (D) Anc.11 rescues growth in 11? but not 3?
yeast. (E) Anc.3 rescues growth in 3? but not 11? yeast. (F) Anc.3 and Anc.11
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(which we labeled P, R, and Q) with the other subunits (Wang et al. (2007)).

Specifically, Vma11 is restricted to a single position between Vma16 and Vma3,

because its clockwise interface can participate only in interface R with Vma16, and

its counterclockswise interface can participate only in interface P with clockwise

side of Vma3 (Fig. 29.). Copies of Vma3, in contrast, occupy several positions in

the ring, because they form interface P with other copies of Vma3 or Vma11, as

well as interface Q with Vma16; Vma3 cannot, however, form interface R with

Vma16. As a result, both Vma3 and Vma11 are required in extant yeast in order

to form a complete ring with Vma16.

To test the hypothesis that specific interaction interfaces were lost during

evolution, we engineered fusions using ancestral ring proteins to assay the capacity

of each ancestral ring protein to form specific interfaces with the other subunits

required for a functional complex. Because Anc.3-11 can complement the loss of

both subunits 3 and 11, we hypothesized that Anc.3-11 subunit could participate

in all three specific interaction interfaces, and that these capcities were then

partitioned between Anc3 and Anc11 after the duplication of Anc.3-11 (Fig.

29.A,B). To test this hypothesis, we created six reciprocal gene fusions between

yeast subunit 16 and subunits Anc.3-11, Anc.3, Anc.11 (Fig. 29.C). Each fusion

constrains the structural position of subunits relative to extant subunit 16, allowing

us to determine which arrangements yield a functional ring. As predicted, Anc.3-11

functioned on either side of subunit 16 (Fig. 29.D), indicating that it could form

all three interfaces P, Q, and R. In contrast, Anc.3 functioned when constrained

to participate in interface Q with Vma16 and interface P with subunit 3; however,

ring function was lost when Anc.3 was constrained to form interface R with Vma16

(Fig. 29.E). Anc.11, in turn, functioned when constrained to participate in interface
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R with Vma16 and interface P with Vma3, but ring function was lost when Anc.11

was constrained to participate in interface Q with Vma16 and interface P with

Vma3. This result indicates that Anc.11 lost the capacity to form one or both of

these interfaces during its post-duplication divergence from Anc.3-11 (Fig. 29.F).

Taken together, these data indicate that the specificity of the ring

arrangement and the obligate roles of Vma3 and Vma11 evolved by complementary

loss of asymmetric interactions with other members of the ring (Fig. 29.G,H).

Before Anc.3-11 duplicated, the protein ring only contained an undifferentiated

subunit 3/11 and a subunit 16. Immediately after Anc.3-11 duplicated, the two

descendant subunits must have been functionally identical, so the protein ring

could have assembled with many possible combinations of the two descendants,

including copies of only one of the descendant proteins. This flexibility disappeared

when Anc.3 lost the ancestral interface that allowed it to interact with the

counterclockwise side of Vma16, and Anc.11 lost the ability to interact with

Vma16s clockwise side and/or Vma3s counterclockwise side. These complementary

losses are sufficient to explain the specific arrangement of contemporary subunits in

reconstructed and present-day fungal rings.

To determine the genetic basis for the partitioning of Anc.3-11s functions

between Vma3 and Vma11, we introduced historical mutations into Anc3.11

by directed mutagenesis and determined whether they recapitulated the shifts

in function that occurred during the evolution of Anc.3 and Anc.11. The two

phylogenetic branches leading from Anc.3-11 to Anc.3 and to Anc.11 contain

25 and 31 amino acid substitutions, respectively, but only a subset of these

were strongly conserved in subunits 3 or 11 from extant Fungi (Fig. 30.A). We

introduced each of these diagnostic substitutions into Anc.3-11 and determined
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FIGURE 29. Increasing complexity by complementary loss of interactions in the
fungal V0 ring. (A) Model of the protein ring composed of Anc.3, Anc.11, and
Anc.16, arranged as in extant yeast (Wang et al. 2007). Unique intersubunit
interfaces are labeled P, Q, and R. (B) Before duplication of Anc.3-11, the ring was
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whether they recapitulated the loss by Anc.3 or Anc.11 of the capacity to

complement Vma gene deletions. We found that a single amino acid replacement

that occurred on the branch leading to Anc.11 (V15F) abolished the capacity

of Anc.3-11 to function as subunit 3; it also enhanced the ability of Anc.3-11 as

subunit 11 (Fig. 30.B). Moreover, a single historical replacement (M22I) from the

branch leading to Anc.3 radically reduced the ancestral capacity to function as

subunit 11 (Fig. 30.C); the Anc.3-11-M22I mutant retains some of the ancestral

proteins capacity to rescue growth in the Vma11-deficient background, suggesting

that other mutations also contributed to the functional evolution of Vma3. One

other historical mutation (N88T) on this branch also impaired Anc.3-11s capacity

to function as Vma11, but it also reduced the proteins capacity to function as

Vma3, suggesting that epistatic interactions with other residues allow this mutation

to be tolerated in Anc.3 and its descendants. Several of the replacements on the

branch leading to Anc.11 display a similar pattern, reducing the proteins capacity

to replace Vma3, suggesting that these historical replacements function better

together than in isolation.

Discussion

How complexity and specific gene functions can evolve has long puzzled

evolutionary biologists (Ohno (1970); Jacob (1977); Lynch (2007b)), because

mutations that compromise function are far more frequent than those which

generate functional novelty (Hietpas et al. (2011)). Our results indicate that

increases in the architectural complexity of molecular assemblies can evolve due

to a small number of simple, relatively high-probability mutations that degrade

ancestral functions but leave other functions intact. The specific roles of subunits
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Proteolipid Yeast Growth 
in 3

Yeast Growth 
in 11

Anc.3-11 ++++ ++

Anc.11 none ++++++

Anc.3 ++++++ none

no proteolipid none none

V15F none ++++
M16A ++ ++
V38I ++++ ++
A42G +++ ++
V45T ++ ++
M46F ++ ++
I55L +++++ +++
A61S ++++ ++
Y87S ++ ++
F108Y + ++
T121Y ++++ ++
A122M + ++
I132V +++++ ++
 V15A + +++
M22I +++++ +
S25T +++ ++
M46L +++ ++
N88T ++ +
H92Q ++ ++
A120G ++ ++
N159D ++ ++

A B

C
Anc.3-11

Anc.3

Anc.11

Calcium

Calcium

Plasmid Genotype YEPD Calcium

Plasmid Genotype YEPD Calcium

WT

WT

Anc.3-11
Anc.3-11 V15F
Anc.3-11
Anc.3-11 V15F

Anc.3-11
Anc.3-11 M22I
Anc.3-11
Anc.3-11 M22I

none
none

none
none

FIGURE 30. Genetic basis for functional differentiation of Anc.3 and Anc.11. (A)
Experimental analysis of historical mutations. Strongly conserved historical amino
acid replacements from the branches on which Anc.3-11s functions were partitioned
are listed in the table. Yellow, replacements on the branch leading to Anc. 11; blue,
replacements on the branch leading to Anc.3. Each mutation was introduced singly
into Anc.3-11; the variant genes were transformed into S. cerevisiae, and growth
was assayed on elevated CaCl2. The table shows growth in semiquantitative terms
from zero (none) to wild-type (++++++). Bold mutations recapitulate in whole
or part the functional evolution of Anc.11 and Anc. 3. (B) Replacement V15F
abolishes Anc.3-11s capacity to function as subunit 3 and enhances its capacity to
function as subunit 11. (C) Replacement M22I impairs the capacity of Anc.3-11 to
function as subunit 11 without affecting its capacity to function as subunit 3.
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Vma3 and Vma11 appear to have been acquired when duplicated genes lost some

but not all of the ancestral proteins capacity to participate in interactions with

copies of itself and another protein required for proper ring assembly. Because

complementary losses occurred in both lineages, the two descendant subunits

became obligate components, and the complexity of the ring increased. It is

possible that specialization of the duplicated subunits allowed increases in fitness,

but genome-wide interaction screens and the phenotype of vma11∆ yeast provide

no evidence that Vma11 evolved novel functions in addition to those it inherited

from Anc.3-11 in the V0 ring (Tong et al. (2004)).

Our results indicate that increases in architectural complexity can evolve due

to a small number of simple, relatively high-probability mutations that degrade

ancestral functions but leave other functions intact. The specific roles of subunits

Vma3 and Vma11 appear to have been acquired when duplicated genes lost

some but not all of the ancestral proteins capacity to participate in interactions

with copies of itself and another protein required for proper ring assembly.

Because complementary losses occurred in both lineages, the two descendant

subunits became obligate components, and the architectural complexity of the ring

increased.

Because ours is the first mechanistic analysis of the evolutionary trajectory of

a molecular machine, the generality of our observations is unknown. By definition,

however, all molecular machines involve differentiated parts in specific spatial

orientations, and many are composed in whole or part of paralogous proteins. In

any such complex, additional paralogs could become obligate components due

to gene duplication (Pereira-Leal et al. (2007)) and subsequent mutations that

cause specific interaction interfaces among them to degenerate. For example, –

87



the V1 subcomplex, which represents the rest of the V-ATPase proton-translocating

complex (Mulkidjanian et al. (2007)), as well as chaperonin complexes (Archibald

et al. (2000)), the NADH:ubiquinone oxidoreductase (Gabaldón et al. (2005)),

the mitochondrial import machinery (Dolezal et al. (2006)), and the bacterial

flagellums rod, hook, and filament (Pallen and Matzke (2006)) are all composed

of paralogous subunits that can function only in specific spatial orientations; the

mechanisms we observed that account for the increased complexity of the V0 ring

could plausibly be involved in the evolution of these machines as well.

This view of the evolution of molecular machines is related to recent models

that explain other biological phenomena such as the retention of large numbers

of duplicate genes and mobile genetic elements within genomes as the product

of degenerative processes acting upon biological systems with some degree of

modularity (Lynch (2007a,b); Force et al. (1999)). Although mutations that

enhanced the functions of individual ring components may also have occurred

during evolution, our data indicate that simple degenerative mutations are

sufficient to explain the historical increase in complexity of a crucial molecular

machine. There is no need to invoke the acquisition of novel functions caused by

low-probability mutational combinations.
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CHAPTER V

CONCLUSION

In this dissertation I described a computational analysis pipeline for studying

the evolutionary history of protein families. This pipeline begins with protein

sequences that are evolutionarily related, and then proceeds to align the sequences,

infer a phylogeny from the alignment, and then reconstruct ancestral sequences on

the phylogeny. Reconstructed ancestral sequences can be physically synthesized and

expressed in vivo in order to observe their ancient functions.

In chapter II, I showed that ML phylogenetic error can be partially

ameliorated by using a multidimensional search heuristic. Virtually all

implementations of ML phylogenetic inference use a simple heuristic that assumes

parameters are separable. I implemented a multidimensional heuristic that does not

assume parameter separability, and thus simultaneously optimizes all parameters. I

observed that this heuristic found more accurate and higher-likelihood phylogenies

more often than the simpler heuristic.

In chapter III, I showed that statistical uncertainty about ML phylogenies

does not significantly impact the downstream accuracy of ancestral reconstruction.

The conditions that cause phylogenetic uncertainty also create a situation in

which ancestral sequences are the same across alternate phylogenies. Phylogenetic

uncertainty is correlated with short tree branches, which eliminate opportunity for

ancestral variance. This result is important because it allows experimentalists to

avoid a very time-consuming computation that may require weeks or months to

complete.
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Finally, in chapter IV, I combined the pieces of this pipeline – in collaboration

with molecular biologists in the Stevens Lab – to investigate the evolution

of a molecular machine. Our work not only demonstrates the computational

techniques I advocated in previous chapters, but also provides a novel biological

result: molecular machines can evolve increased complexity through degenerative

mechanisms.

Error versus Uncertainty

My results in chapter II may seem incongruous with my results in chapter

III. I want to dissuade readers from the following specious line of thinking:

Phylogenetic uncertainty does not significantly affect the accuracy of ancestral

sequence reconstruction, so who cares about the accuracy of my ML phylogeny?

The key to this puzzle is that error and uncertainty are not the same thing.

Error is inaccuracy, whereas uncertainty is ambiguity. In an ideal world, our

metrics for phylogenetic uncertainty would be perfect predictors of phylogenetic

accuracy – but this is not the case. This means that a correct inference can

sometimes be very uncertain, and an incorrect inference can be strongly supported.

Our metrics of phylogenetic uncertainty are imperfect because we do not have

global complete knowledge of the phylogenetic likelihood landscape. Just as our

optimization algorithms must be heuristic, our metrics of uncertainty must also be

heuristic. Phylogenetic uncertainty typically arises when the ML phylogeny exists

in a region of tree space with one or more strongly-supported nearby alternate

trees. This region of space can be imagined as a broad hill, with the ML tree at the

summit. In contrast, strongly-supported (i.e. certain) ML trees exists in a region

of tree space that can be imagined as a sharp peak with no significant support
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for nearby trees. Phylogenetic error occurs when the ML tree exists on the wrong

peak. An errored tree may be strongly supported (on a sharp peak) or ambiguously

supported (on a broad hill) – but either way, it’s the wrong tree. My results in

chapter II showed that Multimax does a better job finding the correct hill. My

results in chapter III showed that trees on the same hill yield the same ancestral

sequence.

Implications for the Future of Systems Biology

The analysis pipeline discussed in this dissertation was presented in the

context of studying single gene families in isolation. However, nearly all biological

phenotypes of scientific interest are produced by multiple genes working in concert.

A research frontier of biology is to study the evolution of complex phenotypes

as a consequence of multi-gene systems responding to particular environmental

cues. Future progress in this direction will be made by extending the methods of

phylogenetic ancestral reconstruction from single-gene studies to multi-gene studies.

My results in chapter IV demonstrate this multi-gene paradigm for a simple system

with three genes. I look forward to a not-so-distant future in which we can generate

and test hypotheses about the evolution of complex ancestral systems, including

ancestral regulatory networks, ancestral signal transduction networks, and the

ancestral assembly of complex molecular machines.

Computational error and statistical uncertainty will play an important role in

the future of systems-level evolutionary studies. When multiple genes are studied

in tandem, error and uncertainty can become amplified. For example, in any

reconstructed ancestral protein sequence, it is not uncommon for some proportion

of sites to be ambiguously inferred (with low posterior probability support). A

91



rigorous experimentalist will explicitly test alternate molecular states at these

ambiguous sites in order to observe their effect on reconstructed protein function.

The total number of uncertain ancestral sites increases when reconstructing

multiple ancestral proteins because there are simply more sequences being studied.

This means that reconstructing a complex multi-gene ancestral system increases the

degrees of uncertainty that must be systematically explored. In extreme cases, the

amount of labor required to test all ambiguous states could become overwhelming.

Therefore, as the field of systems biology adopts the methods of phylogenetic

ancestral reconstruction, it becomes increasingly important to minimize ancestral

uncertainty and maximize ancestral accuracy.

Software

There are currently few – if any – available software tools that chain

together all the algorithms necessary for multiple sequence alignment, phylogenetic

inference, and ancestral reconstruction into a unified toolkit. My software tools

(URL = XX) provide a first attempt at automating this pipeline. My tools

automatically make “smart” decisions during each pipeline stage, including time-

consuming tasks like ML model selection. I encourage you to use my software suite

in your future ancestral reconstruction projects.
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APPENDIX A

MARKOV MODELS OF SEQUENCE EVOLUTION

The core idea of molecular Markov models is that characters substitute to

other characters over time with some probability. The frequency of substitution

events is assumed to have a Poisson distribution, and the probability of k events

occurring in time t is:

P (k|t) =
t
k
e
−tµ

k!
(A.1)

where µ is our assumed rate of evolution. The probability that any number of

substitutions—from zero to infinity—occur in time t can be calculated by summing

over all values k:

P (0 ≤ k ≤ ∞|t) =
∞�

k=0

µt
k
e
−tµ

k!
= 1.0 (A.2)

Expression A.2 is used to calculate the likelihood of a single phylogenetic branch for

a single sequence site as follows.

Suppose we observe an evolutionary character—a single nucleotide or

an amino acid—currently in some state x, where x is one of the letters in the

nucleotide or amino acid alphabet. Also suppose we have a matrix R expressing

the relative substitution rates between states. R is an n-by-n matrix, where n

is the size of the alphabet. Finally, we have a vector π expressing the expected

frequencies of each state. Putting all these elements together, x will mutate to state

y over time t with probability calculated as follows:
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P (x→ y|t) =
∞�

k=0

(πxπyR
k
xy)

t
k
e

t

k!
(A.3)

. . . where Rxy is the relative rate of x transitioning to y, and (Rk
xy) the

extrapolated rate of x → y occurring over k steps. πx and πy are the frequencies

of states x and y, otherwise known as the stationary frequencies. Expression A.3 is

typically shown in a more compact form:

P (t) =
∞�

k=0

Qµt
k

k!
= e

Qµt (A.4)

. . . where the matrix Q equals ΠR − I. Π is the diagonal matrix, where Π[a, a]

equals the equilibrium frequency πa for state a in our alphabet. I is the identity

matrix. The value µ is chosen such that the total rate of possible mutation is one:

1 = µ ×
�
1 −

�

a

πaRaa

�
. Whereas Expression A.3 calculates a single floating-

point probability value, Expression A.4 calculates a matrix P of probability values

for any state x mutating to any other state y. A description of the matrix algebra

necessary to convert Expression A.3 into Expression A.4 is given in Bryant et al.

(2005).
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APPENDIX B

COMPUTING THE LIKELIHOOD OF A PHYLOGENY

The likelihood of an entire phylogeny is calculated by recursively applying

Expression A.4 to all branches in the tree. The likelihood L(t, θ|D) of the tree t

and model parameters θ, given sequence alignment D, is calculated as a product of

likelihoods
��

i

L(t, θ|Di)
�

for each sequence site i (Expression B.1).

L(t, θ|D) =
�

i

L(t, θ|Di) (B.1)

The likelihood L(t, θ|Di) of the phylogeny at site i is the sum of partial likelihoods
�

x

L
v
x of the root node (call it node v) having state x at site i (Expression B.2).

L(t, θ|Di) =
�

x

L
v
x (B.2)

Each partial likelihood L
v
x is calculated recursively, by descending from v along its

branches t1 and t2 to nodes u1 and u2. Along each branch, we calculate the sum of

probabilities of x mutating to some state y. (Expression B.3).

L
v
x =

��

y

P (x→ y|t1)Lu1
y

���

y

P (x→ y|t2)Lu2
y

�
(B.3)

L
u1
y and L

u2
y are the partial likelihoods of observing state y at nodes u1 and u2.

These partial likelihoods are calculated by deeper recursion to the branches

descending from nodes u1 and u2. Eventually, the recurrence arrives at a leaf node

uT . The partial likelihood L
uT
y of state y at node uT equals 1.0 if uT is state y in

the sequence data; otherwise L
uT
y equals 0. Figure 31. illustrates the data structures

involved in this recursion.
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u1 u2

v
t1 t2

Lu1 = [Lu1
x , Lu1

y , ..., Lu1
z , ] Lu2 = [Lu2

x , Lu2
y , ..., Lu2

z , ]

Lv = [Lv
x, Lv

y, ..., Lv
z , ]

FIGURE 31. The recursive data structure for the likelihood algorithm. We pick
an arbitrary root node v, with descendant branches t1 and t2 leading to nodes u1

and u2. We recursively calculate a vector of partial likelihoods for each node on
the tree. For example, the vector L

u1 contains the partial likelihood L
u1
x of node u1

existing as state x, the partial likelihood L
u1
y of u1 existing as state y, etc.

Markov Models Make Simplifying Assumptions About Evolution

Markov models of molecular sequence evolution make three major several

simplifying assumptions about the underlying evolutionary process. First, sites

within an alignment are assumed to evolve independently from each. Second,

the state-to-state substitution process is simplified to be time reversible. Finally,

the substitution process is assumed to be ergodic, such that the expected

frequency of each state is assumed to be static over evolutionary time. All three

of these assumptions have been shown to be incorrect for specific empirical

counterexamples, but for most protein families these assumptions seem to yield

robust and accurate evolutionary inferences.
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APPENDIX C

ALIGNMENT ERROR & ANCESTRAL RECONSTRUCTION

In this section I show there is a complex relationship between error in multiple

sequence alignments and the downstream error in ancestral reconstruction. I

observed that a collection of five alignment algorithms found significantly different

alignments for simulated sequences evolved in a variety of controlled conditions.

Further, these five alignments yielded downstream ancestral sequences that varied

in length and accuracy. My results show that the choice of alignment algorithm has

significant consequences for the accuracy of downstream evolutionary inference.

Further work is required to dissect the mechanisms of alignment algorithms in order

to understand why their accuracy varies in different evolutionary conditions.

Phylogenetic inference and all downstream analysis relies on the accuracy

of the multiple sequence alignment (MSA). The goal of MSA is to identify the

characters that are homologous – with shared evolutionary history – within

a collection of sequences. MSA can be difficult because molecular sequences

tend to acquire lineage-specific mutations over evolutionary time; the precise

relationships between sequences may be unclear. There exist dozens of algorithms

and software packages for MSA (Batzoglou (2005); Notredame (2007)). MSA

algorithms primarily differ in two ways: their cost functions, and their strategies

for hierarchically ordering the sequences.

Cost functions determine the relative penalties for inserting gap characters.

These functions are based on a dynamic string matching algorithms, using the

Needleman-Wunsch algorithm for global alignment (Needleman and Wunsch

(1970)) or the Smith-Waterman algorithm for local alignment (Smith and
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Waterman (1981)). Cost functions can be made arbitrarily complex to reflect

various biological similarities of molecular characters and the underlying

insertion/deletion process. It is computationally intractable to apply the cost

function to multiple sequences simultaneously, except in trivial-sized problems

(Gotoh (1990); Wang and Jiang (1994)). Rather, alignment software must employ

an iterative approach, in which the most similar sequences are first aligned and

then less similar sequences are progressively added until all the sequences have

been incorporated. The results of MSA are highly dependent on the order in which

sequences are ordered (Berger and Munson (1991); Landan and Graur (2009)).

The relative accuracy of different MSA algorithms has not been

comprehensively studied (Schwartz et al. (2005); Thompson et al. (2005)). Previous

work showed that different MSA algorithms result in significantly different

alignments, and these alignments ultimately yield different ML phylogenies (Wong

et al. (2008)). However, the effects of different MSA algorithms on the downstream

accuracy of ancestral reconstruction has not been investigated.

Here, I compared the performance of five different algorithms under a range of

evolutionary conditions. I observed these algorithms created alignments that were

significantly and consistently biased to be overaligned or underaligned, depending

on the algorithm. I reconstructed ML phylogenies and ancestral sequences for these

alignments. I observed that the accuracy of ancestral sequences varied among the

five alignment algorithms, but the accuracy of the alignment itself was a poor

predictor of the ancestral accuracy. My results show that the choice of alignment

algorithm has non-trivial ramifications for the accuracy of downstream evolutionary

inference.
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Methods and Materials

Simulated Sequence Alignment

In order to determine the extent to which a variety of alignment algorithms

affect the accuracy of ancestral sequence reconstruction, I simulated random amino

acid sequences evolving on a four-taxon tree:

(((ta:0.2,tb:0.2):0.1,tc:0.25):0.1,td:0.3);

Simulations were initialized with random ancestral sequences 400 amino acids long.

The ancestors were then evolved along the branches of the tree using the JTT

model of amino acid substitution, combined with one of six different distributions

of insertions/deletions (indels). I used (i) a small-mean and (ii) large-mean negative

binomial distribution, (iii) a small-mean and (iv) large-mean Zipfian (power)

distribution, and a (v) small-mean and (vi) large-mean uniform distribution. I

varied the probability of indel events from 0.0 to 0.4, in increments of 0.04. I

repeated the simulation twenty times for each combination of indel model and indel

probability.

Alignment of Simulated Sequences

I aligned the simulated sequences using the default settings in the software

Amap (cite Do et al. (2005); Schwartz et al. (2005)), Clustal (Thompson et al.

(1994)) , Mafft (Katoh et al. (2002)), Muscle (Edgar (2004)), and Prank (Loytynoja

and Goldman (2008)).
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Phylogenetic Inference

I inferred ML phylogenies for each alignment, using my own in-house

modifications to PhyML version 3.0. Trees were optimized using Multimax

(described in chapter II), using the default settings.

Ancestral Sequence Reconstruction

I reconstructed ancestral sequences for the most-recent-common ancestor of

taxa ta and tb using maximum likelihood as implemented in PAML version 4.2 and

an in-house GUI – named Lazarus – that controls PAML (Yang (2007); Hanson-

Smith et al. (2010)).

Ancestral Error

For every alignment, I measured the accuracy of the length of the ML

ancestral sequence by counting the total number of sites in the ancestor, sans indel

characters. I compared this value to the total number of sites in the true ancestral

sequence, which had been recorded during its simulation.

Results

Variability of Alignment Length

The five alignment algorithms found significantly different alignments for

sequences simulated under all six indel models (Fig. 32.). The algorithms Prank

and Clustal systematically under-aligned sequences, whereas Amap, Muscle, and

Mafft systematically over-aligned sequences. Across all conditions, Mafft created
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alignments with the most accurate lengths, whereas Prank created alignments with

the least-accurate lengths.

Effect on Ancestral Sequence Error

The accuracy of ancestral sequence lengths significantly varied among the

five alignment algorithms (Fig. 33.). Across all methods, the absolute amount of

ancestral error increased when the evolutionary conditions had large indel rates,

and also when the true indel length distribution had a large mean value. Amap,

Clustal, Muscle, and Prank inferred alignments whose ML ancestral sequences were

generally too long. Mafft, in contrast, inferred alingments whose ML ancestral

sequences were nearly always too short. Overall, the most accurate ancestral

sequences came from alignments inferred by Prank and Mafft.

Discussion

My results demonstrate that the choice of alignment algorithm has significant

consequences for the accuracy of the alignment, and for the downstream accuracy

of the length of inferred ancestral sequences. Further, my results suggest that

alignment error is a poor predictor of ancestral error. The least-accurate MSA

algorithm – Prank – ultimately produced some of the most accurate alignments.

Prank’s superiority for ancestral reconstruction may be understood by comparing

its underlying mechanisms to other algorithms. Whereas older MSA algorithms,

such as Clustal, attempt to minimize the total number of indel characters in an

alignment, the Prank algorithm attempts to minimize the total number of indel

events – where a single event may include multiple contiguous indel characters.
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Prank’s alignments seem to preserve a phylogenetic signal that is highly amenable

to placing ancestral indel characters.

My results suggest that phylogenetic practitioners should embrace alignment

uncertainty, and repeat their evolutionary analysis using several different MSA

algorithms in parallel.
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FIGURE 32. Alignment length versus insertion-deletion rate. Sequences were
simulated on the tree described in section C, using six different models of insertion-
deletion events (shown here in small insets). Vertical bars express the average
length of the alignment for the given model, indel rate, and alignment algorithm.
Error bars are standard error of the mean.
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FIGURE 33. Ancestral length error versus insertion-deletion rate. Sequences were
simulated on the tree described in section C, using six different models of insertion-
deletion events (shown here in small insets). Vertical bars express the scaling factor
by which ancestral sequences are too long or too short. Error bars are standard
error of the mean.
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APPENDIX D

V-ATPASE SUBUNIT PROTEIN SEQUENCES

The following list contains the GenBank accession IDs for protein sequences
used in chapter IV. The IDs are labeled with the first letter of their genus, the full
name of their species, and an integer number. 3, 11, and 16 indicate homology to
yeast subunits c, c’, and c”, respectively.

M musculus 16 NP 291095
O mordax 3 ACO09611
D rerio 3 NP 001098606
M grisea 16 XP 369356
M grisea 11 XP 366989
A niger 3 XP 001399935
C glabrata 3 XP 447321
A terreus 11 XP 001214955
A terreus 16 XP 001211600
C parvum 16 XP 627363
P vivax 16 XP 001616329
T castaneum 3 XP 967959
X tropicalis 3 NP 988893
G zeae 3 XP 390178
L elongisporus 3 XP 001526092
A fumigatus 3 XP 001263225
M grisea 3 XP 365764
S pombe 3 NP 594799
C albicans 3 XP 721376
B bovis 16 XP 001612047
G zeae 11 XP 388749
C muris 3 XP 002141961
S purpuratus 3 XP 797801
C immitis 16 XP 001246494
M mulatta 16 XP 001097275
Y lipolytica 3 XP 505831
B fuckeliana 16 XP 001552198
C immitis 11 XP 001242880
A mellifera 16 XP 392599
L elongisporus 11 XP 001523616
T annulata 16 XP 953463
N vectensis 3 XP 001637733
S Salar 16 NP 001134021
L elongisporus 16 XP 001525467
C neoformans 16 XP 773114
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C neoformans 11 XP 778255
P knowlesi 16 XP 002261350
A terreus 3 XP 001213329
A pisum 3 NP 001155531
S Salar 3 NP 001154112
P marneffei 3 XP 002152865
P stipitis 3 XP 001387092
A gossypii 3 NP 984787
C hominis 3 XP 667190
C muris 16 XP 002142524
X laevis 16 NP 001087741
M mulatta 3 XP 001088617
M brevicollis 16 XP 001742805
K lactis 3 XP 454966
T castaneum 16 XP 975026
C intestinalis 16 XP 002131348
E caballus 3 XP 001915231
G zeae 16 XP 385476
C globosum 3 XP 001229170
A clavatus 3 XP 001271234
N crassa 11 XP 965807
N crassa 16 XP 964449
X tropicalis 16 NP 001017064
P anserina 11 XP 001907168
P anserina 16 XP 001910317
H sapiens 16 AAP36886
T annulata 3 XP 952989
A gossypii 11 NP 985409
A gossypii 16 NP 983473
A pisum 16 NP 001155679
N crassa 3 XP 961418
V polyspora 3 XP 001642185
T adhaerens 3 XP 002112261
S cerevisiae 3 NP 010887
P marneffei 16 XP 002145395
D hansenii 3 XP 460869
S pombe 11 NP 593600
T guttata 3 ACH45347
S pombe 16 NP 594516
B fuckeliana 3 XP 001553113
T adhaerens 16 XP 002114348
S cerevisiae 16 NP 011891
R norvegicus 3 NP 033859
S cerevisiae 11 NP 015090
B taurus 3 NP 001017954

106



C familiaris 3 XP 537002
P anserina 3 XP 001911041
P marneffei 11 XP 002147471
P knowlesi 3 XP 002259621
T guttata 16 NP 001232246
B fuckeliana 11 CCD51873
C cinerea okayama 3 XP 001835649
P falciparum 16 XP 001350256
C intestinalis 3 XP 002132074
A niger 11 XP 001391591
A niger 16 XP 001397102
C parvum 3 XP 627909
S purpuratus 16 XP 790651
B floridae 3 XP 002598155
Y lipolytica 16 XP 505205
A mellifera 3 NP 001011570
A clavatus 16 XP 001275839
N vectensis 16 XP 001638230
A clavatus 11 XP 001274195
S sclerotiorum 3 XP 001588693
P falciparum 3 XP 001351750
D discoideum 16 XP 644318
C cinerea okayama 11 XP 001835902
D hansenii 16 XP 460013
D hansenii 11 XP 458901
C cinerea okayama 16 XP 001830694
P vivax 3 XP 001613765
C immitis 3 XP 001239974
A fumigatus 16 XP 755891
C neoformans 3 XP 772642
H sapiens 3 AAP36127
A fumigatus 11 XP 753781
Y lipolytica 11 XP 504637
M brevicollis 3 XP 001743042
D discoideum 3 XP 644319
P stipitis 16 XP 001386908
C albicans 16 XP 722165
C albicans 11 XP 721376
P stipitis 11 XP 001382501
X laevis 3 NP 001082675
C glabrata 11 XP 445959
E caballus 16 XP 001916016
C glabrata 16 XP 447739
V polyspora 11 XP 001645235
V polyspora 16 XP 001646358
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C hominis 16 XP 665533
C globosum 11 XP 001222467
C globosum 16 XP 001223715
O mordax 16 ACO10130
D rerio 16 NP 955855
B bovis 3 XP 001609797
B floridae 16 XP 002610356
M musculus 3 NP 033859
C familiaris 16 XP 539645
K lactis 11 XP 452911
K lactis 16 XP 454470
B taurus 16 NP 001033127
S sclerotiorum 16 XP 001590765
S sclerotiorum 11 XP 001595091
R norvegicus 16 AAH09169
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