EXTENDING DYNAMIC INVARIANT DETECTION
WITH EXPLICIT ABSTRACTION

by

DANIEL BRIAN KEITH

A DISSERTATION

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon
in partial fulfillment of the requirements
for the degree of
Doctor of Philosophy

March 2012

DISSERTATION APPROVAL PAGE

Student: Daniel Brian Keith
Title: Extending Dynamic Invariant Detection with Explicit Abstraction
This dissertation has been accepted and approved in partial fulfillment of the requirements

for the Doctor of Philosophy degree in the Department of Computer and Information
Science by:

Michal Young Chair

Zena Ariola Member

Christopher Wilson Member

Edward Vogel Outside Member

and

Kimberly Andrews Espy Vice President for Research & Innovation/ Dean

of the Graduate School
Original approval signatures are on file with the University of Oregon Graduate School.

Degree awarded March 2012

il

(© 2012 Daniel Brian Keith

il

DISSERTATION ABSTRACT
Daniel Brian Keith
Doctor of Philosophy
Department of Computer and Information Science
March 2012

Title: Extending Dynamic Invariant Detection with Explicit Abstraction

Dynamic invariant detection is a software analysis technique that uses traces of
function entry and exit from executing programs and infers partial specifications that
characterize the observed behavior. The specifications are reported as logical precondition
and postcondition expressions (invariants) that relate arguments, instance variables, and
results. Detectors typically generate large collections of invariants, among which most
are true but few are interesting or useful. Refining this flood of invariants into a useful
subset often requires manual tuning through configuration options and modification of the
program under analysis.

Our research asks whether we can improve dynamic invariant detection by enabling
explicit abstractions to be declared and applied to a program under analysis and whether
this is practical; this dissertation shows that it is indeed practical and useful. Given a
concrete program we can synthesize a model program composed of functions and modules
that are abstractions of selected concrete modules. When we execute the model program
in parallel with its underlying concrete program and apply dynamic invariant detection, we
obtain abstracted invariants that can reveal the behavior of the underlying concrete program.

We developed the Alembic system to support and experiment with the above
technique, enabling a practical method for steering the invariant detection process and
shaping the analysis to produce more refined results than obtainable via traditional means.
Alembic provides a simple language for defining abstractions and managing detection
experiments; the system generates the necessary instrumentation, representation classes,
and functions, freeing the analyst to focus on the expression of abstractions and detection
experiments.

Alembic currently leverages the invariant detection capability of Daikon, a powerful
first-generation detector, to analyze synthetic traces on abstractions. However, the

principles we demonstrate apply to any detector and language that observes function entry

v

and exit. We present some applications of this technique to example problems and then
evaluate Alembic on production code such as the Guava class library. Our research suggests
new uses for existing detectors and enables the design and evaluation of features to inform
the next generation of dynamic invariant detection systems.

This dissertation includes previously unpublished co-authored material.

CURRICULUM VITAE

NAME OF AUTHOR: Daniel Brian Keith

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene
Northwestern University, Evanston, Illinois

DEGREES AWARDED:

Doctor of Philosophy, Computer and Information Science, 2012, University of Oregon
Master of Science, Computer and Information Science, 2008, University of Oregon
Bachelor of Science, Computer Science, 2004, Northwestern University

AREAS OF SPECIAL INTEREST:

Programming Language Semantics
Logic and Proof Theory

PROFESSIONAL EXPERIENCE:

Research Assistant, Department of Computer and Information Science, University of
Oregon, Eugene, 2010-2012

Teaching Assistant, Department of Computer and Information Science, University of
Oregon, Eugene, 2005-2010

GRANTS, AWARDS AND HONORS:

Graduate Teaching Fellowship, Department of Computer and Information Science,
2007 to present

Vi

PUBLICATIONS:

Keith, D., Young, M., and Smaragdakis, Y. 2012. Extending dynamic invariant
detection with explicit abstraction. Submitted to ACM SIGSOFT International
Symposium on the Foundations of Software Engineering (FSE) 2012.

Ariola, Z., Herbelin, H., Herman, D., and Keith, D. 2011. A robust implementation of
delimited control. In TPDC 2011: Theory and Practice of Delimited Continuations
2011.

Keith, D., Hoge, C., Frank, R., and Malony, A. 2006. Parallel ICA Methods for
EEG Neuroimaging. In IPDPS 2006: Proceedings of the 2006 IEEE International
Parallel & Distributed Processing Symposium.

vii

ACKNOWLEDGEMENTS

I am grateful to the Department of Computer and Information Science for providing
support and a positive environment for my education and research, and I humbly
acknowledge the support of the National Science Foundation for funding the research
described herein. I am indebted to my dissertation committee, who accommodated a highly
constrained thesis defense schedule to allow me to finish this Winter. Thank you so much,
Chris, Ed, Zena and Michal.

During my time in the graduate program, I had the unusual fortune to work in
three entirely different areas in computer science, with three excellent advisors. My first
advisor, Zena Ariola, fulfilled my need to understand the scope, power and intricacies of
formal language, logic and proof. My second advisor, Matthew Sottile, shared my love of
programming and enabled me to build interesting and practical implementations of abstract
ideas, without leaving the ethereal level of pure functional programming languages. I am
especially grateful to my third and final advisor, Michal Young, who helped me find a
research path where I could contribute my perspective and ultimately complete this work.

Along the way, I benefited from the tutelage of David Spivak and Patrick Schultz, who
helped me understand the ubiquity and applicability of category theory and gave me a new
mental tool with which to see all worlds. They were incredibly patient with my questions
and tolerant of the mismatch in language and concepts between my computer science and
their mathematical viewpoints.

The folks in the front office, Star Holmberg, Cheri Smith, and Jan Saunders, were
invaluable in helping me navigate the necessary administrative waters, and a pleasure to
talk to as well. I appreciate their help and patience and especially Star putting up with my
unerring ability to ask her a question that she had already answered in a previous email.

I also want to thank the friends who supported me, including Doug Yook and Chris
Hoge, who helped immensely by listening to my fretting and griping long enough for me
to get back to work, and Don Macnaughtan, who encouraged me and set a great example
with the completion of his book.

Finally and most importantly, my progress and success as a graduate student was only
possible with the patience and support of my amazing wife, Melanie, and the tolerance of
my daughters, Indica and Nikola. I would not and could not have done this alone, and am

fortunate to have such a wonderful family. I hope that I can make up for time lost.

viii

For my Mom and Dad.

X

TABLE OF CONTENTS

Chapter Page
L. INTRODUCTION ...t e 1
1.1. Specifications and Contractscovveiiiieeiiiineeiiineeeinnneennn. 1

1.2, Static and Dynamic Analysisoooiiiiiiiiiiiiiiiiiiiiiiaenn 4

1.3. Dynamic Invariant Detectionc.ccooiiiiiiiiiiiiiiiiinnn... 5

1.4. Daikon and Alembic Comparisonceiveeiineeeinineeennn.. 8

1.5. Research Contributionsoiiiiiiiiiiiiiiiiie i, 14

1.6. Structure of this Document ..., 20

II. STATIC AND DYNAMIC ANALYSIS ..o 28
2.1. Behavioral Interface Specification Languages 28

2.2, Static ANalySIS...oooviiiiiiiii i 41

2.3, Dynamic AnalysSiscoeiiiiiiiiiieee et 45

2.4. Dynamic Invariant Detectionooiiiiiiiiineeeniiiiinn... 46

2.5. Dynamic Symbolic Execution (DySy)cooooiiiiiiiiiiit. 54

2.6. Related Work ... 55

III. ABSTRACTION AND ALEMBIC ...t 59
3.1. The Importance of Abstractioncoviiiiiiiiiiiiiiiiiinnn. 59

3.2. Guidelines for Abstraction US€coeiiiiiiiiiiiiiiiiinnnnn... 60

3.3. Existing Abstraction Mechanismsccuiiiiiieiiiiinnnn... 61

X

Chapter Page

34, AlCmDIC ... 65

3.5. Non-Daikon and Non-Java Implementation............................. 75

IV. EXAMPLES, EVALUATIONS AND RESULTS ..., 77

4.1. Evaluation Methodologycooviiiiiiiiiiii i 77

4.2. Guava Collection ClasSesoveeeieiiiiiiiiieeeiiiiiiiiaeeeeeees 80

4.3, Proofs of CONCEPLvveiiiiiiiii e 105

V. CONCLUSION ..ttt 117

5.1, Future Work ..o 117

5.2. Suggestions for Detectorsooviiiiiiiiiiiii i 123

5.3 SUMMATY ...ttt e e 123
APPENDICES

A. SCRIPT TO RUN DAIKON ON MMPQ UNIT TEST ... 125

B. FULL DAIKON RESULTS FOR MMPQ UNIT TEST 126

REFERENCES CITED ...ttt 136

X1

Figure

1.1.

1.2.

1.3.

1.4.

2.1
2.2.
2.3.
24.
3.1.

4.1.

LIST OF FIGURES

Page
Static Analysis of the source code infers properties, optimizations and
specifications without actually executing the code 4
Dynamic Analysis considers the executing code of a targeted module,
observing the transient values of variables and other metrics, and
inferring properties from these. A dynamic analysis may also use static
analysis to name, organize and interpret its output 5
Dynamic Analysis can be viewed as a collection process and an analysis
PTOCESS et vttt ettt ettt e et e e ettt et e e e e et e, 6
Alembic synthesizes an model program upon which invariant detection is
PEIfOrmed. 14
Behavioral Interface Specification Languages (BISLs) 30
Hoare triple as a set-theoretic function..................oiiiiiiiiii .. 32
Program Points and Visible Variables...................ooooooi 49
Dynamic invariant detection PrOCESSvveetettrriiieeeeeeeeiiiaeeeeeeennnnns 58
Alembic invariant deteCtion PrOCESSeeeeeruutneeeeeeeiiiiiaeeeeeeannnn. 67
Graph showing reported invariants of Daikon and Alembic when performing
the various Guava experiments in this sectioncoooviiie.. .. 105

Xii

Table

1.1.

1.2.

1.3.
1.4.

L.5.

2.1.
3.1.

3.2
4.1.
4.2.
4.3.
4.4.
45.
4.6.

LIST OF TABLES

Page

A tabular specification of the ToyMath module that displays the

preconditions and postconditions for each of the three methods in the
MOdULE ..o 3

A partial list of the candidate invariants for the ToyMath.sqr postcondition;
these are all potentially true until falsified by execution observations....... 7
Daikon-reported invariants for the ToyMath.sqgr postcondition 7

Useful invariants for MMPQ.offer reported by Daikon, and interpretations of
theSe INVAIIANESoitttt e 9

Intermediate files generated from MMPQ.alembic, and their content and
fUNCHION ..o 13
A tabular specification of a Stack classcooooiiiiii 39

Execution overhead for different levels of invariant detection on the MMPQ
unit test. The time reported is elapsed wall clock time in seconds 73
Execution overhead for phases of Alembicccoooiiiiiiiin. 74
Alembic and Daikon analyses of MMPQ ..., 86
Alembic and Daikon analyses of HBT ..., 89
Alembic and Daikon analyses of TBT ..., 91
Alembic and Daikon analyses of HM i, 97
Alembic and Daikon analyses of ALM ... 100
Guava collection classes and simple Alembic abstractions 104

Xiii

LIST OF LISTINGS

Listing Page
1.1. The ToyMath Java class, and a main to eXercise it..............ovveeeeiunnnnnn... 22
1.2. This test program, MMPQTest, exercises the MMPQ.offer method with

positive, zero and Negative INLEZETSoveeerrrriieeeeeeeiiiiiaaeeeeennnns 23
1.3. Invariants reported by Daikon for the postcondition of MMPQ.offer() 24
1.4. Shell commands required to compile MMPQTest, instrument and execute it

with Guava’s MMPQ, and to analyze the results with Daikon 25
1.5. The MMPQ.alembic file contains declarations required to lift MMPQ.offer

invocations into corresponding invocations on the SortedObjects trait,

via the ToSortedODbjects VIEWoiiiiiiiii i 26
1.6. Alembic-reported postconditions for SortedObjects.offer as abstracted via

the ToSortedObjects view of the concrete MMPQ.offer method 27
2.1. A Hoare triple characterizing the ToyMath.sqrt function, written vertically

for readability, and to suggest the form used by textual specification

JANGUAZES . ettt 31
2.2. An Eiffel interface specification fora TOYMATH classooo.t. 33
2.3. A Larch Shared Language specification for a PriorityQueue trait (from

Leavens [1000]) ... 36
2.4. Larch/C++ PriorityQueue specificationoeeiiiiiiiineeeeiennnnnnnnn.. 37
2.5. JML (Java Modeling Language) annotating a Java implementation of the

TOYMath Class.ooeee e 40
2.6. Java code implementing a simple class named Simple with a method .m() 48
2.7. Java code exercising Simpleiiiii i 48
2.8. A shell script to compile, instrument and execute the SimpleTester program

WIth CRICOTY e 48
2.9. A shell script to analyze the generated tracefile using Daikon................... 49
2.10. Daikon-inferred invariants for class Simple upon method .m() 50

Xiv

Listing Page

3.1. An Alembic file that abstracts invocations of MMPQ into two traits, Length
and Sorted (1 Of 2) ..o e 69

3.2. An Alembic file that abstracts invocations of MMPQ into two traits, Length
and Sorted (2 0f 2) .. 76

4.1. The MMPQ.alembic file, containing definitions required to lift method
invocations on MMPQ to method invocations on the SortedObjects trait,
via the ToSortedODbjects VIEWooviiiiiiiiiii i 82

4.2. A fragment of our test driver MMPQUnitTest which invokes most of the
battery of Guava-provided unit tests to exercise MMPQ 83

4.3. Alembic invariants for MMPQ as exercised by MMPQUnitTest using
the view ToSortedObjects to abstract the concrete object to the
SortedObjects trait. Program points without reported invariants have
been excluded from this listing (1 of 2) ..., 84

4.4. Alembic invariants for MMPQ as exercised by MMPQUnitTest using
the view ToSortedObjects to abstract the concrete object to the
SortedObjects trait. Program points without reported invariants have

been excluded from this listing (20f2)ccooiiiiiiiiiiiiiiiii 85
4.5. Partial listing of Daikon invariants for methods of MMPQ exercised by

MMPQTESE (1 0f 2) .ot e i 87
4.6. Partial listing of Daikon invariants for methods of MMPQ exercised by

MMPQTeESE (2 0F 2) e e 88
4.7. Daikon invariants for the put method of HBT exercised by HBTUnitTest 91
4.8. Fragment of Alembic file HBT.alembic that views HBT as an RCV trait 92

4.9. Alembic invariants for the put and remove methods of HBT as exercised by
HBTUnitTest using the view TORCV to abstract the concrete object to the

ROV trait. ... e 93
4.10. Daikon invariants for the put and remove methods of TBT exercised by

TBTUNITTESt ..o 94
4.11. Fragment of Alembic file TBT.alembic that views TBT as an RCV trait......... 95

4.12. Alembic invariants for the put and remove methods of TBT as exercised by
TBTUnitTest using the view TORCV to abstract the concrete object to the
O 96

4.13. Daikon invariants for the add and remove methods of HM exercised by
HMURNITTEST ... 98

XV

Listing Page
4.14. Fragment of Alembic file HM.alembic that views HM as a Set trait 98

4.15. Alembic invariants for the add and remove methods of HM as exercised by
HMUnitTest using the view TORCV to abstract the concrete object to the

ROV ALl . ..o 99
4.16. Daikon invariants for the put and remove methods of ALM exercised by

ALMUNItTest (1 0f 2) ..oooiii 101
4.17. Daikon invariants for the put and remove methods of ALM exercised by

ALMUNItTest (20T 2) ..oooiiiii 102
4.18. Fragment of Alembic file ALM.alembic that views ALM as a Set trait 103

4.19. Alembic invariants for the put and remove methods of ALM as exercised by
ALMUnitTest using the view TORCV to abstract the concrete object to the

ROV trait. ... e 103
4.20. The Container Java Class.........uuiiiiit i e 107
4.21. The ContainerTester Java classccooviiiiiiiiiiiiiiiiiiiiiiiiiiiiiia .. 108
4.22. The ContainerHistory.alembic example uses aggregate abstraction to

summarize the common behavior of add* methods 109
4.23. The Alembic invariants for the ContainerHistory.alembic example 110

4.24. Two pairs of Alembic probes added to a loop that sums the first n odd
nUMbETS t0 COMPULE 122 i e 112

4.25. Explicit probes capture the loop invariant as the object invariant of the

LoopInvariants trait.oeeieuie e 113
4.26. Loops.alembic defines the LoopArrows and Looplnvariants traits 114
4.27. The Alembic invariants for LOOPAITOWSuuiieeiiiiiiiiiii e 115
5.1. This ContainerHistorySum example defines a trait containing length and

sum state variables, and a single method addToSum(int increment) 119
5.2. Alembic invariants for ContainerHistorySum ... 120
A.1. Shell commands required to analyze MMPQUnitTestooo .. 125
B.1. Daikon output for MMPQ (1 of 10)oooiiiii e 126
B.2. Daikon output for MMPQ (2 0f 10) ...oiiiiiee e 127
B.3. Daikon output for MMPQ (B3 0f 10)coiiiii 128
B.4. Daikon output for MMPQ (4 0f 10)oiiiiiii 129

Listing Page

B.5. Daikon output for MMPQ (5 0f 10) ...ooiiiii 130
B.6. Daikon output for MMPQ (6 of 10)ooiiiii 131
B.7. Daikon output for MMPQ (7 0f 10)ooiiiiiiiiii e 132
B.8. Daikon output for MMPQ (8 of 10)cooiiiiii 133
B.9. Daikon output for MMPQ (9 0f 10)coiiiiii 134
B.10.Daikon output for MMPQ (10 0f 10)coiiiiiii e 135

xvii

CHAPTER I

INTRODUCTION

A dynamic invariant detector characterizes the observed behavior of a program under
analysis as a set of logical clauses called invariants. Most detectors report a large amount
of useless invariants along with a small amount of genuinely relevant invariants, placing a
burden on the analyst to discern which invariants are useful and relevant. We developed a
technique, explicit abstraction, for enhancing the quality of reported invariants by allowing
the shaping and focusing of the detection process. We developed a domain-specific
language, Alembic, to facilitate this abstraction technique and to make using dynamic
invariant detection more fruitful.

We begin this chapter with a brief summary of the software engineering concepts
of specification and analysis, which leads to the introduction of the dynamic invariant
detection technique, and some of its applications. We point out some of the well-
known problems associated with dynamic invariant detection, and use these to informally
introduce our idea of explicit abstraction as a way to shape and refine the invariant detection
process to produce higher-level descriptions of modules under analysis. We sketch this
technique by applying it to the MinMaxPriorityQueue container class from the Guava
Collections Library [Google, 2011]. Chapter III expands on this technique and how it
is facilitated by the Alembic language', which we evaluate more fully in Chapter IV by

applying Alembic to other classes in the Guava library.

1.1. Specifications and Contracts

A modern medium or large-scale software system is quite complex, usually
comprising reusable third-party libraries, application-specific libraries, and driver programs
to execute the ensemble according to the needs of the system. Partitioned, compositional
design of such software is essential to the understanding, development, and maintenance of
these systems. The use of well-defined interfaces and datatypes for limiting and clarifying
the interactions of components helps manage the complexity of these systems.

Software interfaces that isolate the implementation of a component from the services

it presents to its clients are common and expected in developing modern software. Less

'The name Alembic derives from an ancient distillation apparatus that enables separation and
concentration of essential chemicals and scents from a dilute mixture; alembics have been used for medicine,
alcohol and perfume production. The name was chosen to reflect the way that abstraction allows important
information and invariants to be refined or distilled from the dilute sea of true, but, irrelevant invariants.

common in practice are interfaces augmented with the use of structural invariants and
assume-guarantee specifications (software contracts) to increase the clarity, robustness
and verifiability of software libraries. These rich specifications can serve as abstractions
that can be used to aid program understanding, or to clarify the requirements for an
implementor. These same specifications can also be used to mechanically generate or verify
the coverage of unit tests, and as a basis for further analysis and verification tasks [Ernst
et al., 2007].

In the next chapter, we will look at specifications in more depth, including a discussion
of specification languages, enforcement and mining. For our purposes in this introduction,

we confine ourselves to the following informal notion of module specification:

A specification of a module is a description of the member functions of that
module that constrains possible implementations, as well as possible sub-
specifications. A specification describes what a module does, but not how it
does it. We use the term module to refer to both object-oriented classes as well
as package-oriented collections of functions and state.

We structure this specification by associating a set of logical precondition expressions
with each function’s entry, and a set of logical postcondition expressions with each
function’s return. These precondition and postcondition expressions of a function,
collectively referred to as the function’s invariants, constrain the possible implementations
of the function, as well as constraining legitimate sub-specifications of the function.

A precondition of a function is a logical expression composed of a subset of the
variables visible at function entry, as well as expressions built from these variables. These
variables include the function’s formal arguments, the keyword this, and any state or
member variables visible from within the function. For example, the precondition for a
square root function, sqrt, over the real numbers would likely include a clause requiring
the argument n to be a non-negative number:

n>=0

If this specification were included along with an implementation of sqrt, then we
would interpret it as saying that the function is only defined for non-negative integers, and
has unspecified behavior otherwise.

A postcondition of a function is similar to a precondition, except that it may refer to
both the original and final values of state variables and arguments, as well as to the function
result. In this way, a postcondition describes some aspect of how a function behaves. For
example, the postcondition for the square root function, sqrt, should include a clause that

relates the function’s result, return, to its argument, n:

2

return * return ==n
A convenient way to represent the specification for a module is as a table. For
example, we can imagine a ToyMath module containing the above sqrt function, as well
as a sqr and floor function; the table in Table 1.1 conveniently displays the preconditions

and postconditions.

Table 1.1. A tabular specification of the ToyMath module that displays the preconditions
and postconditions for each of the three methods in the module.

Precondition Method Postcondition
none float sqgr(float n) return == n**2
n>=0 float sqgrt(float n) return**2 ==
none int floor(float n) n >=return

n < return + 1

Specifications provide behavioral information that supplements the type information
supplied by the function’s signature. Alternatively, specifications can be seen as a way to
more clearly specify the domain of a function’s types than can be specified with syntactic
data types.

Specifications consisting of precondition/postcondition clauses such as the above are
often referred to as contracts, where the alternative names assume/guarantee or require/
ensure are used to identify precondition or postcondition clauses, respectively [Meyer,
1992]. The term contract refers to the idea that a specification promises to ensure a
postcondition after a function executes, provided that the caller satisfied the precondition
before execution.

Our ToyMath module has no state variables; however, most object-oriented classes
have member variables that record the current state or contents of the object. Invariants over
these classes can include member variables as well as arguments and results. In the case of
stateful modules or classes, there is a notion called the module invariant or class invariant
that refers to a predicate that must hold when the module or class is in an observable state
(i.e., before and after any public method) [Liskov and Wing, 1994]. Detectors like Daikon
(and layered extensions such as Alembic) infer these invariants by finding clauses that

satisfy both the precondition and postcondition of all of the observed methods of a class.

1.2. Static and Dynamic Analysis

Software analysis techniques infer analysis-specific properties like resource metrics,
safety and liveness, and characterizations of variable domains and function behavior. These
can be crudely partitioned into static and dynamic techniques. Static analysis examines the
text of implementations (in source or compiled form), whereas dynamic analysis observes
executing implementations and the transient values and properties associated with this
execution.

Given a module and a specification that purports to describe the module, there
are static analysis techniques that can analyze the source code and verify that the
implementation conforms to the specification (static verification). We can also use a
specification to mechanically generate unit tests that attempt to exercise the implementation
(test generation), or to dynamically verify that the implementation conforms to the
specification (specification checking). Finally, we can use a specification to aid in
understanding a module’s behavior and intent; this can guide the development of
a satisfying implementation, clarify and communicate assumptions about a module’s
behavior, or make it easier for a client to use the module.

In the case where we have no specification for a module other than its implementation
and signature, we can apply software analysis techniques to discover these specifications
(specification mining). Static analysis techniques examine implementations and derive
specifications from these. They can be used at compile-time during the development of
an implementation to ensure that the specification is being honored. In many cases, static
analysis can provide an assurance that the analysis is comprehensive, and that all possible
paths or situations have been analyzed. See Figure 1.1 for a schematic of static analysis,
where the primary input is source code for a target module, and the output is a report of
discovered properties. These properties can include a specification, or an observation that

no exceptions are thrown, for example.

Module’s
properties or
specification

Static
Analyzer

Module’s

Source Code

Figure 1.1. Static Analysis of the source code infers properties, optimizations and
specifications without actually executing the code.

In contrast to static techniques, dynamic techniques are suitable for observing
properties that are not easily computable from the text of an implementation. These
properties include resource metrics such as processor time and space, as well as properties
derived from linked libraries that cannot be analyzed statically.

A particular dynamic analysis technique known as dynamic invariant detection
analyzes modules that are executing in some test harness or in a live deployment, and

infers specifications from the observations of function entry and exit (Figure 1.2).

Module’s

Source Code

Module’s
properties or
specification

Dynamic

— Analyzer

Module’s
Compiled

Code Instrumented

—————— Program
Execution

Test Driver
Program

——

Figure 1.2. Dynamic Analysis considers the executing code of a targeted module,
observing the transient values of variables and other metrics, and inferring properties from
these. A dynamic analysis may also use static analysis to name, organize and interpret its
output.

We assume that we can logically separate the role of instrumenting a module to emit
trace streams from the role of analyzing the resulting trace streams. In fact, the Daikon
analyzer separates these into separate executable processes, enabling repeated analysis of
the same run. A schematic of dynamic analysis using separate collection and analysis

processes is in Figure 1.3 below.

1.3. Dynamic Invariant Detection

Our research focuses on dynamic invariant detection, which observes a running
program and infers specifications for targeted modules. In the literature, the term invariant
is often used to refer to a clause (precondition or postcondition) in one of these inferred
specifications. The Daikon dynamic invariant detector [Ernst et al., 2007] is a well-known
representative of a particular class of invariant detectors (we include DIDUCE [Hangal and

5

Trace Trace
Collection Analysis

Process Trace stream Process
(network or file)
Instrumented .
Dynamic
Program }oooooooooooo’
E tion Analyzer
xecutio Contains
observations of
variables,
arguments and
results

Figure 1.3. Dynamic Analysis can be viewed as a collection process and an analysis
process. These processes communicate via a trace stream containing runtime observations.

Lam, 2002] and Agitator [Boshernitsan et al., 2006] in this class) that obtain trace data
from function entry and exit.

Daikon’s approach to invariant detection can be viewed as a search problem, although
there are several important optimizations in Daikon to make this search practical [Perkins
and Ernst, 2004]. Daikon searches over a space of possible invariants, eliminating those that
are falsified by evidence gathered during program execution. This is detailed in Chapter
II. Whatever invariants remain at the end of a suitably robust execution are presumed true
and can be considered as part of a potential specification. At the very least, the remaining
invariants are consistent with the observed executions, which may reveal bias or weakness
in the execution framework.

A simple example may clarify this. Consider the ToyMath module from 1.1. and an
implementation and test program for it in Listing 1.1. For this example, we only include
the sqr function.

There are an infinite number of potential candidate postcondition expressions that can
be generated from the lexicon consisting of the argument, n, and the result value, return,
as well as the arithmetic operations and common constants such as 0, 1, et al. Daikon
populates its initial candidate set with a subset of these possible expressions; this subset
is typically limited in complexity to expressions with one or two arithmetic operators and
a single relational operator. In Table 1.2, we see a subset of those candidate invariants

associated with the postcondition of sqr. Notice that not all of them can be true, and that

several of them are likely to be falsified with only a single invocation of sqr. However,

some of the candidates searched will be true for all of the invocations, and will be reported.

Table 1.2. A partial list of

.)) return > n return==n + 1
the candidate invariants for the *
ToyMath.sgr postcondition; these return *n ==0 return == 5
are all potentially true until falsified n== nl=0

by execution observations. ...and many more ...

An analyst wishing to understand the sqr function will create a test program to exercise
the function over a variety of values, and will execute this test program in conjunction
with Daikon. Daikon will instrument the program so that traces are emitted at the entry
and exit of the sqr function (as well as for all other public functions in the program, by
default). At the end of execution, Daikon will report those invariants that are consistent
with the invocations of sqr that were observed (Table 1.3). Prior to reporting invariants,
Daikon filters out redundant and obvious invariants, which reduces the amount of invariants
reported, usually to the benefit of the analyst.

As this example shows, a dynamic invariant detector can prove useful in characterizing
a module’s behavior in an easily understood form. In this example, the implementation was
quite simple. The important point is that any implementation that satisfies our notion of a
sqgr function will result in the same invariants; the detector abstracts the implementation
as an implementation-independent specification. This is potentially a very powerful tool,
as we shall show in Chapter II, where we review some of the uses of a dynamic invariant

detector.

Table 1.3. Daikon-reported invariants for the ToyMath.sqr postcondition.

return >=0 return == n**2 return >=n

One troubling aspect that is hinted at in Table 1.3 is the need for us to ignore the true,
but irrelevant, invariants in order to see the important ones. For example, the invariant
return == n**2 is the only invariant of the three reported that usefully characterizes the
implementation of sqr. The return >= 0 is implied by the laws of real-valued arithmetic,
and is therefore not useful or interesting. On the other hand, the return >=n is a
consequence of a weakness in our test: we are not exercising sqr with values between
-1 and +1. We will discuss this latter aspect of using invariant detection to reveal test

weaknesses in Chapter II.

As we increase the number of arguments, and add state variables to the lexicon
of symbols available for invariant expressions, we dramatically increase the number of
invariants that must be considered, and that are ultimately reported. The next section
presents a more realistic example of applying invariant detection, and the associated
difficulties.

1.4. Daikon and Alembic Comparison

One benefit of Daikon and similar tools is that they can automatically infer and report
specifications. Unfortunately, they also generate a lot of distracting noise in the form of
true, but irrelevant, statements; and they may also fail to detect important aspects of the
behavior. In practice, a user must augment their use of dynamic invariant detection with
filters and command line arguments in order to constrain the output to produce useful,
focused, and relevant invariants. Our research explores the potential of using explicit
abstractions to refine, shape and focus the invariant detection process in a way that is not
possible or convenient via a first-generation detector like Daikon.

To illustrate how explicit abstraction helps focus invariant detection, we present
a motivating example that contrasts Daikon with Alembic. @~ We will attempt to
analyze a portion of the MinMaxPriorityQueue (MMPQ) class from the Google Guava
library [Google, 2011]. This will allow us to contrast the usage and analysis of Daikon
alone with that of Alembic (which uses Daikon as its invariant detector). The MMPQ class
implements a priority queue data structure that supports the retrieval of a minimum or a
maximum, and also supports an optional bound on the queue size. Guava is a library of
utility classes used by Google for their Java-based products.

Note that we will not be using the source code of the Guava library for this analysis;
only the compiled .jar files will be used. Daikon and Alembic are able to see the internal
member variables of the class, although the public Javadoc documentation does not indicate
their existence. The goal of our analysis might be to understand the class better, or to verify
that documented behavior is accurate, or perhaps to verify that our test program has no bias
Or missing coverage cases.

Ordinarily when using an invariant detector, we would examine the behavioral
description of an entire module and its methods. For the sake of brevity in this example, we
will focus on the single method, offer(<E> element), that takes an element of generic type
E and adds it to the min-max priority queue. We exercise the queue and associated offer()

with the main program in Listing 1.2.

The intent of a good test program is to exercise the offer method systematically in a
variety of different situations. This helps ensure that the resulting invariants describe actual
characteristics of the offer method, and not simply artifacts of a biased test program. Our
particular test program below is written for clarity, and not thoroughness. In Chapter IV,
we perform analysis of MMPQ and other Guava classes by using the unit tests written for

Guava release testing.

1.4.1. Daikon Analysis of MMPQ

When we apply the Daikon tool to an execution of the above program, targeting the
MinMaxPriorityQueue, we obtain the output in Listing 1.3. For this introductory example,
our comparison will focus only on the postcondition of offer, as indicated by the suffix
::EXIT on the method name at the top of the listing?. In Chapters II and IV, we will see
how the precondition associated with a method can also be useful. Appendix B presents
listings of the Daikon invariants reported for all the public methods in MMPQ.

It is likely that all of the invariants reported by Daikon are true, but they are very
uninformative, and the few invariants that characterize the behavior of offer() are buried
amidst the rest. Sifting through the output in Listing 1.3, we can find a few invariants that
seem to be genuine and useful descriptions; Table 1.4 contains these invariants and their

interpretation.

Table 1.4. Useful invariants for MMPQ.offer reported by Daikon, and interpretations of
these invariants.

Invariant Interpretation

this.size-orig(this.size) - 1 == 0 The this.size variable increases by one each time
offer returns.

this.size <= size(this.queue]]) The this.size variable is always bounded by the
size of the internal array queue[].

this.queue[this.size-1] == The pre-state last element of queue becomes the

this.queue[orig(this.size)] post-state second-to-last element.
orig(element) in this.queue(] The element argument is somewhere in queue at

function exit.

>The name com.google.common.collect. MinMaxPriorityQueue has been shortened to MMPQ in most
listings, and the invariants have been indented for readability. Invariants involving the getClass() function
have been filtered in our Daikon examples because they are filtered by default in Alembic, and are not useful
for most cases.

A typical Daikon user faced with this output would begin fiddling with the rich set
of Daikon command line options in an attempt to filter the invariants down into something
useful. Sometimes this is effective, but there is often as much work involved in finding the
right set of option settings as in performing a manual analysis of the source code. Note that
the above invariant this.size-orig(this.size)-1 == 0 could have been expressed more clearly
as this.size == orig(this.size)+1. A Daikon user has very little control over which form of
expression is emitted; we treat this as a minor inconvenience that can be addressed with
post-processing. The major problem is not the individual form of the expressions, but the
overwhelming amount of expressions to consider in the output.

Ordinarily, a skilled Daikon user would use the rich set of configuration options to
tune the detection process for a specific problem. This configuration information may
be passed on the command-line or via a configuration file, but it needs to be specified
to allow the analyst to narrow the search and focus the reported invariants into a set that
is useful and reasonable. For the output above, we instructed Daikon to ignore invariant
expressions containing the symbol getClass(), which our experience has shown to produce
mostly irrelevant invariants; Alembic disables getClass() by default. The full shell script

that we used to run the previous Daikon example is in Listing 1.4.

1.4.2. Alembic Analysis of MMPQ

Alembic was designed to address the above ‘needle in a haystack’ problem of sifting
through invariants, many of them over opaque internal structures. Instead of performing
invariant detection upon observations of the concrete implementation class, Alembic uses
synthesized observations on a user-defined abstraction class as the basis of invariant
detection. Alembic is applied to a problem by creating an Alembic source file; in this
example, we will call it MMPQ.alembic (Listing 1.5), and then using the alembic command
to process the file.

In short, this file instructs Alembic to run a program, MMPQTest, and to lift
invocations of MMPQ.offer into synthetic invocations on the trait SortedObjects. The trait
declaration defines a synthetic class upon which to perform invariant detection; the view
defines when and how to transform concrete invocations upon MinMaxPriorityQueue into
abstract invocations upon SortedObjects. This technique allows the traditional invariant
detector (Daikon) to perform inference on a more focused, possibly higher-semantic level,
set of variables and functions. We will explain this in detail below.

One concern the reader might have is whether the investment in crafting such an

Alembic file is worth the trouble. Minimally, this file specifies the test program to run and

10

associated build configuration information; this information is similar to what is needed to
run the program via Daikon (Listing 1.4). In the case of Daikon, we must not only specify
the program to run, but we usually specify several command-line options to filter and focus
the Daikon output. With Alembic, the compilation and Daikon invocation are performed by
the alembic command behind the scenes. For simple abstractions, the size of an Alembic
file is comparable to the size of a script needed to run Daikon.

Alembic was created to simplify the process of performing invariant detection, so that
experiments can be performed and adapted more easily. Alembic manages the phases of
invariant detection that would ordinarily be relegated to a shell script (Listing 1.4). This
requires that the MMPQ.alembic file in our example have declarations of where and how
to build the program, where and how to execute the program, and any custom analysis
or postprocessing required. These roles are performed by the program, execution, and
analysis declarations in the Alembic file.

A program declaration specifies build parameters for compiling and instrumenting a
target main program and indicates which traits and views to use. An execution declaration
specifies runtime arguments to the program and an execution directory, and the analysis
declaration can be used to specify any special post-processing desired.

The abstraction declarations trait and view provide the analyst with the opportunity to
shape the invariant detection process. Depending upon the amount of control they want,
the size and complexity of the Alembic file changes. However, even simple abstractions
that require only knowledge of the public methods of a concrete class can provide insight
not easily obtainable with a traditional detector. When the analyst wishes to explore more
sophisticated abstractions, Alembic’s simple language is sufficient to express these without
requiring any additional constructs; instead, the analyst can focus on expressing their
abstractions.

A trait describes an abstraction consisting of method and state variable definitions; this
abstraction is intended to represent some facet of the underlying concrete object’s behavior
and state. In this example, we surmise that a priority queue can be viewed as an ordered
sequence, which we express in the SortedObjects trait. The use clause indicates that we
wish to copy selected method signatures from the concrete class MinMaxPriorityQueue into
our trait definition.

In order to generate observations to feed our traits, we specify corresponding views
that indicate which concrete invocations should be instrumented, and how the concrete
variables are used to compute values for the corresponding variables in the trait. These
views are declared in the same Alembic file as the traits they reference. The lift clause of

the view specifies the concrete class to measure, as well as the trait that will represent

11

the concrete class. The lift_state clause provides a code fragment that implements a
representation function that transforms concrete state into the abstract state within the
view’s trait.

For this example, we declare a view named ToSortedObjects that will lift invocations
of offer from the concrete MMPQ to the abstract SortedObjects trait. The lift_state code
invokes the toArray() method on the concrete object, and sorts it. The resulting sorted array
is stored into the abs variable which refers to a synthesized instance of SortedObjects.

When we obtain the output from Alembic (Listing 1.6), we can see what our embedded
traditional detector is able to discover when performing inference upon our SortedObjects
trait. Simply considering the number of reported invariants, the human cognitive load is
lower when examining the Alembic output. More importantly, the characteristic behavior
of the underlying priority queue is revealed concisely in the Alembic invariants. Rather
than having to understand the relationship between concrete variables and the effect of
offer upon these, we can consider the effect on our abstraction, which encapsulates the

concrete variables via the view, presenting us with a model-oriented view of the class.

1.4.3. How Does Alembic Do It?

It may be useful in understanding the above example to know how Alembic
works (this information is presented in more detail in Chapter III). After creating the
MMPQ.alembic file, and preparing a suitable test program, the analyst uses the shell
command alembic MMPQ.alembic to invoke the Alembic system. This results in a
model program being synthesized from the concrete program by adding generated classes
and instrumentation. The resulting Alembic-enhanced program is then executed via
Daikon’s Chicory tool, which collects the trace information generated by the Alembic
instrumentation and writes it to a file, where it is subsequently analyzed by the Daikon
detector. We can view the alembic command as a supervisor (Figure 1.4) that first translates
a program into a model program, then executes it to produce a trace stream reflecting model
behavior, which is then analyzed by a traditional detector to produce invariants on the
model.

The files that are generated are detailed in Table 1.5. The augmentation adds generated
classes and Aspect] aspects which are responsible for:

e Representing the abstraction as a Java class.
e Instrumenting the targeted concrete executions.

e Invoking lift_state to translate concrete state to abstract state.

12

Table 1.5. Intermediate files generated from MMPQ.alembic, and their content and
function.

Filename Description

Abstraction_SortedObjects.java

This defines a class that contains any state variables declared for the
abstraction, in this case, the variable sorted is our only state variable. This
class also contains the necessary code to translate values and synthesize
traces to the back-end detector (Daikon, in this case).

Adaptor_com_google_common_collect_ MinMaxPriorityQueue.aj

This Aspect] aspect augments the compiled concrete class
com.google.common.collect. MinMaxPriorityQueue so that executions of
targeted public methods will be instrumented. When these methods are
invoked, corresponding entry and exit methods are invoked on any views
associated with this concrete class.

Abstractor_ToSortedObijects.aj

This aspect does not instrument any executions; rather, it augments the
concrete class with the representation function, as well as any lift_method
handlers. It is responsible for relaying observed concrete invocations
from the Adaptor (above) to the Abstraction, possibly transforming values
along the way.

13

Model Model Model
Program Execution Invariants

Model simulated
via AspectJ and
Alembic

>

Concrete Concrete Concrete
Program Execution Invariants

Figure 1.4. Alembic synthesizes an model program upon which invariant detection is
performed.

1.5. Research Contributions

The central question of our research is whether dynamic invariant detection can be
applied to user-defined abstractions of concrete modules, and the corollary questions of
whether it is useful and practical. We answer affirmatively to all of these questions, and
encourage the adoption of explicit abstraction features in existing and future dynamic
invariant detectors. Our research develops ways to use existing detectors in conjunction
with explicit abstractions to discover more useful and focused invariants. We introduce the
Alembic system as a way to specify and apply these abstractions to existing programs and
detectors, and to manage some of the mechanical tasks of post-processing and analysis.
In addition to making dynamic invariant detection more useful, Alembic can expand
the applicability of dynamic invariant detection to inferring program characteristics not
previously considered as targets of such analysis. The main contributions of our work are

summarized below.

1.5.1. Improving the Use of Existing Detectors

The use of explicit abstraction in conjunction with a traditional detector such as
Daikon addresses some of the problems associated with such a tool. There are several

aspects to this:

14

Managing complexity The limited depth and complexity of expressions considered
by Daikon can be ameliorated by providing abstraction functions that encode
complex expressions of multiple variables into expressions over one or more
abstract variables, allowing the limited-depth inference mechanism to operate
upon these derived abstraction expressions. This has the effect of constructing
a more refined search space within which to search for invariants; in addition,
invariants that were too complex or deep to be discoverable may now be
considered because some of the complexity has been supplied by the explicit
abstraction.

Reducing opacity The general-purpose nature of a detector like Daikon prevents
it from discovering useful invariants when the underlying data structure is
opaque or not expressible in one of the detector’s canonical forms (String,
List, Object, Integer, et al) in a meaningful way. This can be addressed by
providing abstraction functions that lift these opaque or convoluted concrete
implementation structures into more general structures and values that are
amenable to traditional analysis. For example, a binary heap is an efficient
structure for maintaining a sorted list, but its internal structure is inscrutable to
an invariant detector, which will see it simply as an array of elements. Alembic
provides a lift_state clause to translate this heap into a more transparent, but less
efficient, sorted array, which may produce more meaningful invariants.

Restricting visibility Applying an invariant detector to a concrete implementation
can produce a large amount of invariants, many of them true but irrelevant; others
are based upon internal state or arguments that may not be of concern to an
analyst (e.g., internal statistics variables) for a given problem. But if we apply
our detector to an abstracted version of the implementation, we can control which
variables and arguments are visible; this enables the focusing of the tool onto the
areas in which the analyst is most interested.

Together, these features of abstraction-based invariant detection allow the lifting of a

concrete implementation to a higher semantic level, where the resulting invariants may be

more meaningful and understandable by a human analyst.

1.5.2. New Applications of Invariant Detection

Our research into abstraction was originally motivated by a desire to create more

useful and meaningful invariants via Daikon; we soon discovered that the techniques

15

enabled us to apply a traditional detector to a variety of entirely new problem domains.
Below is a summary of some of the applications we have considered and partially explored:

State Abstraction The most basic form of abstraction is where the state of the
concrete object is mapped to an abstracted state within the abstraction object.
Variables in the concrete object may be converted to corresponding variables in
the abstraction or may be simply ignored. Variables in the abstraction may be
synthesized from multiple variables in the concrete object. The lift_state clause
of an Alembic view specifies a representation function that lifts the concrete state
to an abstracted state defined by a trait.

Effect Abstraction We can construct abstractions whose state is derived from effects
that would ordinarily be unobservable by an invariant detector. For example, a
File object’s read and write methods could be abstracted such that the effect on
the file system is captured as observable state on an Alembic trait. This in turn
enables an invariant detector to perform inference on the read and write methods’
effects. The lift_-method clause of a view enables the capture and transformation
of arguments and runtime properties (e.g., CPU time) by providing entry and exit
hooks for the targeted methods.

Abstract Functions We can consider a sequence of statements in a Java program as
a composition of functions (in the functional programming sense), each of which
performs some computation and successively modifies the shared state. If we
treat the start and end of such a sequence as the entry and exit of an abstract
method in an Alembic trait, then our invariant detector can report invariants
over the set-theoretic function that the composition implements. This feature
currently requires the explicit insertion of Alembic probes, which are calls to
liftEntry and liftExit methods on the generated abstraction class. This abstract
function capability can be used to determine invariants over common sequences
of method calls (e.g., f.open;f.read;f.close or s.push;s.pop) or, as we detail below,
common control structures such as loops.

Loop Invariant Detection This is actually a special case of abstract functions,
where we view the loop entry as the beginning of our composition, and the
loop exit as the end. Applying an invariant detector to the resulting abstraction
enables the discovery of the loop variant and invariants; similarly, an abstract
function from before the loop to after the loop can be used to summarize the
loop’s behavior as a black box.

Aggregate Behavior Detection The methods of a module are often logically

partitioned into different roles: e.g., readonly methods, private methods, insertion

16

methods, and deletion methods. Given a module where can we can partition its
methods into different logical groups, we can define an abstraction of the module
that contains a parameterless function for each of these groups. By abstracting
each concrete method into the shared method corresponding to its group, we
enable an invariant detector to infer the pre and post conditions common to each
member of a group. This may result in a better description of the module’s
behavior; for example, all of the read* methods in a File class could be grouped
and a common precondition of isSOpen==true might be deduced.

History Constraint Detection A specific usage of aggregate abstraction is where
we aggregate the public methods into a single abstract method. The resulting
invariants reported on this method correspond to the JML history constraint for
the module [Leavens, 2006]. A JML history constraint is a set of pre- and post-
conditions that must hold for all methods (or public methods) in the class or any
of its subclasses. For example, a PatientVisitLog class might wish to ensure that
records can only be added and that no subclasses can ever violate this; a history

constraint is the appropriate way to specify this requirement.

1.5.3. Alembic System

We developed the Alembic program analysis system to allow the easy expression and
application of abstractions. The system consists of a language, a runtime, and a workflow
manager. These components are described below in terms of the features they provide, as
well as a brief description of how they manifest in the current implementation.

Alembic Language The language allows for the specification of program, execution,
trait and view constructs in an Alembic source file. program and execution entities
provide a way to specify build and execution environments and configurations.
trait and view entities are the means by which Alembic creates synthetic Java
classes and functions that will be analyzed by the invariant detector. An Alembic
source file is effectively defining an experiment to run, where the invariant
detection is performed not on the concrete functions of the implementation,
but on the synthetic classes and functions generated by Alembic. The Alembic
compiler is an ANTLR-based parser [Volkmann, 2008] that generates a makefile
that manages the invocation of other tools and code generators written in Python.

Alembic Runtime The runtime supports the synthesis of abstraction classes and
the dynamic mapping of concrete method invocations into invocations on the

abstraction. This results in execution traces on the concrete program being

17

reflected and transformed into execution traces on the synthesized abstraction
classes, where they can be analyzed by an ordinary dynamic invariant detector
(Daikon, in the current implementation). Alembic achieves this by using Aspect]
to modify the target module by inserting calls to abstraction and trace-generation

code at the entry and exit of each targeted concrete method.

Build Management We designed Alembic with a scientific workflow viewpoint,

where we consider the concrete execution of a target program and its subsequent
analysis to be a series of tasks that are mechanical and can be mostly hidden
from the analyst. The refined analysis results at the end of this pipeline are
what we seek for most purposes. Another benefit of this model is that we can
add additional analysis tools or invariant detectors within the pipeline without
requiring a change to the Alembic files describing the experiments. We have
found that the isolation of the various command line arguments and build phases
from the specification of the desired abstractions has made it much easier to
perform experiments than the traditional way of maintaining a shell script to

invoke the various phases directly.

Alembic makes some things easy that would otherwise be difficult, error-prone or

tedious:

Different experimental abstractions can be tried out without modifying the source
program.

The Alembic language provides a convenient high-level way to express
abstractions and the relation between these abstractions and the underlying
concrete modules.

Reusing traits and views is easier because they are specified separately from the
concrete execution.

Tuning, parameters, and post-processing that would normally be necessary when
using a raw invariant detector are encapsulated in the Alembic build system,
enabling the analyst to focus on experimenting with different abstractions and

obtaining useful results.

1.5.4. AspectJ-based Instrumentation

Aspect-oriented programming (AOP) is a programming language facility that allows

new code to be woven into existing sources or compiled code in a systematic, structured

way. The new code and its weaving directives are specified as one or more aspects, when

are then applied to existing code by an aspect compiler or code weaver. Aspect] [Kiczales

18

et al., 2001] provides AOP for Java; AspectC++ [Spinczyk et al., 2005] provides a similar
facility for C++. Although our current work focuses primarily on Java and Aspect], the
results are applicable to any other language with an AOP facility.

One of the important features of Alembic is that it enables traits and views to be
declared in an Alembic source file; these are compiled into Java classes and Aspect]
aspects. The aspects are woven into one or more concrete classes as specified in the
Alembic file. These aspects add instrumentation to the concrete classes so that every
concrete method execution is wrapped with code that emits a pair of traces corresponding
to the pre-invocation state and post-invocation state. These traces are not the traces of
genuine concrete method invocations, but are instead synthetic traces on the corresponding
abstraction.

Importantly, the Alembic file may specify executable code in its view definitions that
is intended to transform or filter the data from the concrete invocations. This code executes
in the context of the running program, and not in the context of the analyzer, which is often
a separate process that reads trace files at a later time.

Ordinarily, a Daikon user would use the Chicory tool (Daikon’s Java bytecode
instrumenter) to instrument their code with calls to the Chicory trace-generation functions.
This instrumentation is achieved by a BCEL (Byte Code Engineering Library) API that
modifies the Java classes at the byte code level [Dahm, 2001]. Chicory instruments every
public method entry and exit, by default; this can be adjusted via command-line options.

Our original experiments in applying abstraction techniques to dynamic invariant
detection involved a modified version of Chicory. Modifying this was difficult and the
result was inflexible. We abandoned this effort and instead chose to use Aspect] to weave
our instrumentation into target classes. This has enabled rapid progress and suggested
further enhancements such as context-sensitive invariant detection.

In the current version of Alembic, Aspect] serves as the instrumenter, and the woven
aspects first invoke the Alembic abstraction mechanisms which will ultimately result in the
invocation of the Chicory trace-generation functions to generate the synthetic traces. The
use of Aspect] has several advantages over the use of Chicory:

Flexibility Aspect] allows us to specify arbitrary code to execute at the concrete
execution entry and exit points. We use this to transform the concrete visible
variables into a trace tuple that will be emitted to the invariant detector for
analysis. We suspect that the potential for this flexibility is mostly untapped
in our current implementation, and look forward to using this to implement more

sophisticated abstractions and inference mechanisms.

19

Independence By using Aspect] instead of Chicory, we obtain a solution that is more
independent of the particular invariant detector. In the event that we want to adapt
Alembic to work with a non-Daikon detector, it is far easier to adapt Alembic’s
aspect generation code to the new detector, rather than trying to modify Chicory
even further. Most likely, we would end up abandoning Chicory and rewriting
an instrumenter from scratch; fortunately, the use of Aspect] avoids the entire
problem.

Control Daikon has a very limited way of controlling what gets analyzed and
when. Command-line arguments provided at startup govern the entire program
execution. Modifying these parameters during execution is possible, but requires
modifying the target program’s source code. Aspect] lets us control when, where
and in what context our instrumentation runs, and it does so with a very fine
degree of control. Importantly, we can augment the concrete program with
abstractions without requiring that it be rebuilt from source. We anticipate that
this fine control will be useful as we develop more sophisticated abstractions, or

when we want to be very selective about what gets analyzed and when.

1.6. Structure of this Document

This Chapter I, Introduction, presented dynamic invariant detection as a technique for
use in software analysis and specification, and some of the problems with the technique. We
showed how applying invariant detection to a model program abstracted from the concrete
can address some of these problems by allowing an analyst to specify explicit abstractions
that are then used as targets of dynamic invariant detection.

In Chapter II, Static and Dynamic Techniques, we begin with a review of the
background and terminology used in the software analysis and specification field. We will
focus on the Daikon system for dynamic invariant detection, which is the mechanism we
build upon for Alembic. We look at dynamic invariant detection and several alternative
techniques that have been used in its implementation.

Chapter III, Abstraction and Alembic, details the principle of explicit abstraction
applied to dynamic invariant detection, and presents the Alembic language as a way to
facilitate the use of this technique. We will describe the syntax, usage and architecture of
Alembic.

Chapter 1V, Examples, Experiments, and Results, develops a set of examples that

illustrate the capabilities of Alembic. These include proofs-of-concept to illustrate

20

particular abstraction patterns, as well as richer examples applied to production libraries
such as the Guava Collection classes.

Chapter V, Conclusion, summarizes the current state of the project and suggests
promising directions and work. We also briefly describe some of the avenues exposed,
but not fully explored, by this research. We offer the results of our research to inform next-
generation dynamic invariant detectors; we believe that the features offered by abstraction

can be fruitfully integrated into the software analysis tool suite.

Some of the research described in this dissertation was performed in
collaboration with Michal Young, who participated in the refinement of the
abstraction theory and its explication. In addition, Michal Young and Yannis
Smaragdakis collaborated on the preparation and submission of a conference
paper for FSE 2012. T was the primary contributor to the theory of abstraction,
developed the Alembic language, and did all of the writing for this dissertation.

21

Listing 1.1. The ToyMath Java class, and a main to exercise it.

public class ToyMath

{
public float sqr(float n)

{

return n % n;

}

public static void main(String[] args)

{
ToyMath tm = new ToyMath();

for (inti=0;i<10; ++i)

{
for (intj=0;j < 100; ++j)
{

tm.sqr(j);

}

}

¥
}

22

Listing 1.2. This test program, MMPQTest, exercises the MMPQ.offer method with
positive, zero and negative integers.

import com.google.common.collect.x;

public class MMPQTest

{
public static void main(String[] args)
{
MinMaxPriorityQueue.Builder<Comparable> builder =
MinMaxPriorityQueue.maximumSize(1000);
for (int whichlter = 0; whichlter < 20; ++whichlter)
{
MinMaxPriorityQueue<Integer> b = builder.create();
for (inti=0;i<10; ++i)
{
b.offer(i);
}
for (inti=0;i<10; ++i)
{
b.offer(—i);
}
for (inti=0;i<15; ++i)
{
b.removeFirst();
}
for (inti=1;i<10; ++i)
{
b.offer(i xi);
}
¥
}
}

23

Listing 1.3. Invariants reported by Daikon for the postcondition of MMPQ.offer() when
exercised by the MMPQTest driver program. Compare to Listing 1.6.

MMPQ.offer(java.lang.Object):::EXIT
this.minHeap == orig(this.minHeap)
this.maxHeap == orig(this.maxHeap)
this.maximumSize == orig(this.maximumSize)
this.queue[this.size—1] == this.queue[orig(this.size)]
this.size >=1
this.modCount >= 1
return == true
this.queue[this.size—1] != null
this.maximumSize > orig(this.size)
this.maximumSize > orig(this.modCount)
this.maximumSize > orig(size(this.queuel]))
orig(element) in this.queue(]
this.size — orig(this.size) — 1 ==0
this.size != orig(this.modCount)
this.modCount > orig(this.size)
this.modCount — orig(this.modCount) — 1 ==
MMPQ.EVEN_POWERS_OF_TWO > orig(this.size)
MMPQ.EVEN_POWERS_OF_TWO > orig(this.modCount)
MMPQ.ODD_POWERS_OF _TWO < orig(this.size)
MMPQ.ODD_POWERS_OF_TWO < orig(this.modCount)
this.queue[MMPQ.DEFAULT_CAPACITY —1] in orig(this.queue[])
orig(this.size) <= size(this.queue[])—1
orig(this.modCount) != size(this.queue][])
size(this.queue[]) >= orig(size(this.queuel]))
size(this.queue[])—1 = orig(size(this.queuel]))
size(this.queue[])—1 >= orig(size(this.queue[]))—1

24

Listing 1.4. Shell commands required to compile MMPQTest, instrument and execute it
with Guava’s MMPQ, and to analyze the results with Daikon.

Compile the unit test. MMPQ is already compiled in the Guava lib
> javac —g —cp $CLASSPATH:${GUAVA_JAR} MMPQTest.java

Execute an instrumented (via Chicory) MMPQTest, collecting traces
> java \
—cp .:$CLASSPATH:${GUAVA_JAR} \
daikon.Chicory \
——ppt—select—pattern="com.google.common.collect.[".]+.offer’ \
——omit—var="getClass’ \
——dtrace—file=MMPQTest.dtrace.gz \
MMPQTest

Interpret the traces and report invariants detected
> java \
daikon.Daikon \
——var—omit—pattern="getClass’ \
——config_option daikon.Daikon.progress_delay=—1 \
MMPQTest.dtrace.gz

25

Listing 1.5. The MMPQ.alembic file contains declarations required to lift MMPQ.offer
invocations into corresponding invocations on the SortedObjects trait, via the
ToSortedObjects view.

trait SortedObjects

[

]

view ToSortedObjects

[

]

program MMPQP

[

]

execution MMPQPE

[

]

analysis MMPQPEX1

[
]

use com.google.common.collect. MinMaxPriorityQueue : ""offers";
state Object[] sorted;

lift com.google.common.collect. MinMaxPriorityQueue<?> : ""offers$" to
SortedObijects;
lift_state

{
}

java.util.Arrays.sort(abs.sorted = this.toArray());

builddir ". ./../examples/MMPQ/";
views "ToSortedObjects";

program MMPQP;
rundir "../../examples/MMPQ/";
main "MMPQTest";

execution MMPQPE;

26

Listing 1.6. Alembic-reported postconditions for SortedObjects.offer as abstracted via the
ToSortedObjects view of the concrete MMPQ.offer method.

SortedObijects.offer(java.lang.Object):::EXIT
size(this.sorted[])—1 == orig(size(this.sorted[]))
return == true
size(this.sorted[]) >= 1
orig(element) in this.sorted[]

27

CHAPTER 11

STATIC AND DYNAMIC ANALYSIS

This chapter presents some background on the software analysis concepts and
techniques that are related to the motivation, implementation and understanding of our
research. We begin by reviewing the relevant terminology of software specification
and analysis, and look at techniques whose goal is to infer, communicate and enforce
specifications.

Our discussion of specification will begin with Hoare’s Axiomatic Semantics [Hoare,
1969], its adoption as a behavioral specification mechanism with the contract-based
Eiffel programming language [Meyer, 1992] and the two-tiered Larch Specification
Language [Guttag et al., 1985], and its eventual embodiment in the Java Modeling
Language (JML) [Leavens, 2006]. We will discuss the syntax of JML and some of its
applications, especially those related to invariant detection. We will describe the Larch
family of specification languages and the influence of Larch on JML’s model field capability
and on the idea of explicit abstraction and Alembic.

We then describe and contrast static and dynamic analysis techniques that are related
to the specification ideas above. Static techniques include symbolic execution, abstract
interpretation, flow analysis, and other forms of reasoning that can be performed on the
source code without requiring execution. For example, most compiler optimizations are the
result of various static analyses. We briefly discuss the halting problem and its relevance to
static and dynamic analysis.

Finally, we present dynamic analysis techniques, their applications, and the additional
benefits they can provide over static analysis. A dynamic analysis is a method for
measuring dynamic properties of executing programs, and inferring understandable and
useful information from these measurements.

We survey several dynamic techniques, including dynamic symbolic execution,
profiling, and tracing. We then present dynamic invariant detection in detail, explaining
Daikon’s approach and contrasting it with other ways to approach the problem of invariant

detection.

2.1. Behavioral Interface Specification Languages

The field of software specification encompasses languages and systems that
characterize the structure, behavior and constraints on software entities. These systems

describe large-scale system concepts such as process and system architecture, data flows,

28

performance and resource metrics, security, and protocols. They also describe smaller scale
entities such as software modules, classes and functions; it is this area of specification
where we will be concentrating our discussion in the following sections.

To explain our research and place it into context, we will primarily be presenting the
particular set of specification languages and applications that are related to module and
function specification, dynamic invariant detection and abstraction. The particular class
of specification languages we will focus on are called Behavioral Interface Specification
Languages, or BISLs [Leavens et al., 1998].

A BISL specifies two aspects of a module:

Interface This is the structure of a module in terms of its publicly visible methods,
features and supported interfaces. Often, the interface specification simply refers
to the implementation language’s syntax for this structure and provides additional
details that are not part of the implementation syntax.

Behavior This is a formal description of how the module behaves when used, usually
by providing clauses for each method as well as the module itself. These clauses
clarify the external semantics of each method, as well as any module invariants
that must hold outside of methods. Most modern implementation languages
do not support behavior specification natively, and the specification is provided
as an annotation or in a separate file. Eiffel, of course, embeds the behavior
specification syntax natively in the language (See 2.1.2. Eiffel and Design By
Contract).

A BISL is distinct from an Interface Definition Language (IDL), which usually
specifies the methods and argument types of an inferface, but has no provisions for
specifying behavior. It is also distinct from an ordinary programming language such as
Java, where a class implementation defines a particular interface and behavior, but where
this behavior is not summarized into an externally usable specification. Eiffel is unusual
in that it is a programming language that also contains a way to specify behavior in clause
form as part of the externally usable interface.

There are a multitude of specification languages and means to enforce, verify, and infer
them. For this dissertation, we will focus on a particular line of descent that culminates in
Java Modeling Language, invariant detection and the ideas of abstraction presented here.
In Figure 2.1, we see how the earlier technology and theory influenced the present-day Java
Modeling Language.

The invariants reported by a dynamic invariant detector are a form of specification. As
we described in the Introduction, a specification can be viewed as some form of description

that constrains implementations. Different formalizations of specifications emphasize

29

Axiomatic Semantics (Hoare)

requires {...} ensures
The ‘Atom’ of modern specifications

/ Clauses refer to arguments and state variables \

Larch (Guttag, Wing, Hornin: Eiffel (Meyer)
Two-tiered (dyadic) specification requires/ensures clauses
Shared: Abstract Theory (Traits) Class Invariant

Interface: Behavior and Structure Spec Clauses use implementation names

requires/ensures clauses
Clauses use interface and trait names
Class Invariant

\ Java Modeling Language (Leavens /

requires/ensures clauses
Clauses use model and implementation
names
History Constraint
Class Invariant
Model Fields

Figure 2.1. Behavioral Interface Specification Languages (BISLs).

different properties that are to be constrained and described. In the following sections, we

look at some of these formalizations and how they relate to dynamic invariant detection.

2.1.1. Hoare Triples

One of the earliest attempts to characterize program semantics was Hoare’s Axiomatic
Semantics [Hoare, 1969], which specified a way to assign meaning to programs, procedures
and statements. The semantics consists of formulae called Hoare triples, and a set of
axioms and inference rules for generating these triples. A Hoare triple is of the form:
P {S} Q, where P is the precondition, Q is the postcondition, and {S} is a statement,
procedure or program. The interpretation of this triple is:

When {S} begins execution in a state where P holds, then Q will hold at the end
of the execution of {S}. If {S} does not terminate, then Q does not necessarily
hold (partial correctness).

Using the axioms and inference rules, it is possible to prove triples for sequences
of statements, procedures and whole programs. Our interest in Hoare triples stems not
from the inference rules and proof theory, but from the idea that the precondition and
postcondition characterize the possible behavior of the associated program {S}, while not
mandating a particular implementation. This idea forms the basis of many subsequent

specification languages, including Eiffel, Larch, and JML, which we describe in the

30

following sections; it is also the basis of how dynamic invariant detectors structure and
report discovered specifications.
An example of a Hoare triple describing the function sqr is in Listing 2.1, where we

see the sqr function defined.

Listing 2.1. A Hoare triple
characterizing the ToyMath.sqrt
function, written vertically for

n>=0
{ result = ToyMath.sqrt(n) }

readability, and to suggest the returnxx2 ==
form used by textual specification
languages.

The precondition and postcondition of a Hoare triple are logical clauses over
arguments and state variables, and a natural interpretation of the triple is as a software
contract. If the caller ensures that the precondition is satisfied, then the body of the triple
will guarantee that the postcondition is satisfied upon exit. If we elide the body of the triple
and only consider the precondition/postcondition pair, then we have isolated a specification
of a function that is independent of its implementation. This is the basis of all of the
specification languages we will discuss in this chapter, as well as forming the basis of
dynamic invariant detection. This idea of software contract will be developed further in the
following sections with discussions of Eiffel, Larch and JML.

An alternative interpretation of Hoare semantics considers the code of a triple to be
the implementation of corresponding set-theoretic function from one set of possible worlds
(the domain) into a different set of possible worlds (the codomain). The domain is defined
as the set of variable value tuples that satisfy the precondition of the triple; similarly, the
codomain is defined as the set of variable value tuples that satisfy the postcondition. In
Figure 2.2, we illustrate the correspondence between a Hoare triple specification and a
functional specification. We use the notation sat(pre) and sat(post) to indicate the sets of
states that satisfy the logical clauses in pre and post, respectively.

The advantage of this interpretation for our purposes is that it is a better model for
dynamic invariant detection, which is based upon capturing these value tuples and then
characterizing them as a set of logical clauses. In a sense, the dynamic invariant detection
problem is about reverse engineering the Hoare triple precondition and postcondition
clauses by observing value tuples emitted before and after the triple’s implementation
executes. From the sets sat(pre) and sat(post), dynamic invariant detectors infer pre and
post clauses. This will be expanded upon later in this chapter (see Dynamic Invariant

Detection below).

31

Hoare Triple Form

pre {code} post

sat(pre) code sat(post)
satisfies implements satisfies
pre func post

Functional Form

func : sat(pre) -> sat(post)

Figure 2.2. A Hoare triple as a set-theoretic function function from sat(pre) to sat(post).
sat(pre) and sat(post) indicate the sets of states that satisfy the logical clauses pre and post,
respectively.

The functional interpretation enables one to more easily imagine exotic applications of
dynamic invariant detection where we are considering the code of the triple to be something
other than an ordinary procedure body. In the case of the abstraction techniques we discuss
in Chapter III, this code does not even exist, it is an illusion created by synthesizing traces
to the invariant detector. We extend this even further in Chapter IV, where we synthesize
functions from loop bodies or from aggregate behavior of the methods in a module. As
long as we can populate the sets sat(pre) and sat(post) with tuples corresponding to some
abstract function, then the invariant detector can infer pre and post invariants from these

tuples.

2.1.2. Eiffel and Design By Contract

The Eiffel programming language ensconced the idea of Hoare triples in the
syntax of its module definitions via the use of require (precondition) and ensure

(postcondition) clauses associated with each function in an Eiffel class. Eiffel was

32

designed to enable the development of large systems with boundaries defined by behavioral
interface specifications, and to facilitate a software methodology known as Design-by-
Contract [Meyer, 1992]. Eiffel is unusual in that the use of behavioral specifications is
built into a programming language syntax, rather than as a specification-only language or
annotation language (see Larch Specification System and Java Modeling Language (JML)

We can implement our example ToyMath module from earlier in this chapter
(Table 1.1) as an Eiffel class; a client of this class would likely consult the corresponding
class interface (Listing 2.2) as the behavioral specification for the class. Eiffel uses the
keyword feature to indicate both functions and attributes within a class. The require clause
indicates that a necessary precondition to calling sqrt is that the input argument, n, is
positive. The ensure clause indicates that the result of the function, indicated with Result,

can be squared to produce the input, n.

Listing 2.2. An Eiffel interface specification for a TOYMATH class.

class interface
TOYMATH

feature
sqrt (n : DOUBLE) : DOUBLE
require
n>=0
ensure
Result « Result =n

sqr(n : DOUBLE) : DOUBLE
ensure
Result=n xn

floor(n : DOUBLE) : INTEGER
ensure
Result <=n
n — Result < 1

end —— class ToyMath

Our interest in Eiffel is in the use of require and ensure to characterize the expected
behavior of functions, and the use of these software contracts as specifications. Eiffel also
introduces the idea of a class invariant, which is a set of clauses which must hold when

a method of the class is not in execution; in other words, the class invariant holds before

33

execution of a method and after execution of a method. In effect, the class invariant is
conjoined with the the precondition and postconditions for every method.

Although Eiffel is a programming language, it has all of the important aspects
of a behavioral interface specification language (BISL), including the declaration of
preconditions, postconditions and object invariant clauses. These clauses are expressions
phrased in the concrete Eiffel language and referring to members and functions belonging
to concrete Eiffel classes. In the next section, we contrast this concrete form of
behavioral specification with the two-tiered system of Larch, which provides for abstracted

specifications.

2.1.3. Larch Specification System

We have described how Hoare specifications characterize the behavior of a function
by describing the precondition and postcondition as logical clauses over the visible
implementation variables and arguments. We have shown how Eiffel incorporates this
notion of software contract into a full programming language that characterizes the
structure and behavior of an interface as a set of per-method contract-style specifications,
as well as a class invariant. We now look at Larch [Guttag et al., 1985], which is not
a programming language, but is instead a behavioral interface specification language
intended to be used in conjunction with a traditional programming language such as
C++ [Leavens, 1996]. Unlike non-behavioral IDLs (Interface Definition Languages), Larch
provides a way to specify the behavior of an interface as well as its structure.

Larch was influential in the development of subsequent specification languages and
features, including the Java Modeling Language, which we will discuss in the next section.
Larch is interesting for our purposes because abstraction plays a central role in Larch;
specifications relate language-specific interface details such as methods, arguments and
results to abstractions known as traits, which have no implementation and are specified in
an algebraic specification language (the Larch Shared Language).

Larch is known as a dyadic or two-tiered specification language because a
specification is separated into two formal languages, one focused on expressing an
abstract theory of a data type, and another focused on binding that theory to a particular
implementation [Guttag et al., 1993]. The Larch Shared Language (LSL) provides a way
to specify abstract traits consisting of operators and their signatures, and equations that
relate these operators. Alembic’s notion of abstraction was inspired by Larch, and we
have adopted Larch’s trait keyword as the way that abstractions are declared in an Alembic

source file.

34

The Larch system is designed to express a reusable library of commonly used concepts
and data structures in an implementation-independent algebraic language, the Larch Shared
Language (LSL). Examples of traits in this specification library include analogues of
common data structures such List, PriorityQueue, and MultiSet, as well as mixin-style traits
such as Enumerable and TotalOrder. A Larch trait contains no implementation; instead,
it consists of operators and a set of algebraic expressions that relate these. The value
of the algebraic shared language is that it allows reuse of the algebraic abstractions across
multiple implementation languages, and it also is amenable to theorem proving. We provide
an example of an LSL definition of a priority queue trait in Listing 2.3.

To complement the language-independent algebraic Shared Language, Larch provides
an operational interface language for each particular implementation language to be used
(for example, Larch/SmallTalk and Larch/C++). The role of specifications written in the
interface language is to describe the implementation’s interface in terms of one or more
traits in the LSL. For example, the interface specification for a C++ PriorityQueue class
would be written in Larch/C++ to provide a behavioral specification of the class’s methods
in terms of the abstract trait PriorityQueue, which is itself specified in the LSL.

Larch/C++ is implemented as an annotation language upon ordinary C++. This way
there is only one syntax for the interface aspects and a separate syntax for the behavioral
aspects. We provide a fragment of a Larch/C++ specification of a priority queue in
Listing 2.4. Note that LSL traits are stateless, but that LIL specifications usually assume
stateful underlying implementations.

A C++ class implementation that satisfies a LIL specification will provide methods
that correspond to those in the specification, and these methods will behave according
to the specification. This behavior is described in a contract-style, with logical requires
and ensures clauses for each method. The LIL specification acts as a bridge between
the language-specific concrete implementation and the algebraic theory of the underlying
datatype. Alternatively, the LIL specification acts as a view of the concrete implementation
as seen through the lens of one or more LSL traits.

In the sections above, we considered the Hoare specification of a procedure as a
function from sat(pre) to sat(post). We showed how we can consider an Eiffel specification
as a structure containing one of these functions for every method. In both of these cases, the
names used in the behavioral clauses are drawn from the names visible from each function
(arguments, results and state variables). Larch is different from these systems because the
behavioral clauses are expressed in terms of names drawn from the traits written in the

shared language.

35

Listing 2.3. A Larch Shared Language specification for a PriorityQueue trait (from Leavens
[1996]).

PriorityQueue (>:E, E —> Bool, E, C): trait
assumes TotalOrder (E for T)
includes Integer

introduces
empty: —> C
add:E,C —>C

count: E, C —> Int
__e€ __ E,C—> Bool
head:C —> E

tail: C —> C

len: C —> Int
isEmpty: C —> Bool

asserts
C generated by empty, add
C partitioned by head, tail, isSEmpty
Ve el:E q:C
count(e, empty) == 0;
count(e, add(e1, q)) == count(e, q) + (if e = e1 then 1 else 0);
e € q == count(e, q) > 0;
head(add(e, q)) ==
if g = empty vV e > head(q) then e
else head(q);
tail(add(e, q)) ==
if g = empty vV e > head(q) then g
else head(q);
len(empty) == 0;
len(add(e, q)) == len(q) + 1;
isEmpty(q) == q = empty

implies
Container (add for insert)
Ve, el,e2:E q:C
add(e1, add(e2, q)) = add(e2, add(e1, q));
len(q) > O;
add(e, q) # empty
converts count, €, head, tail, len, isEmpty exempting head(empty), tail(empty)

36

Listing 2.4. Larch/C++ PriorityQueue specification. Suffixes " and ’ refer to the pre- and
post- values of the suffixed variables, respectively (from Leavens [1999]).

template <class Elem 4@ expects PriorityQueueRequirement(Elem) @x/>
//@ where Elem is {
//@ bool operator <= (Elem x, Elem y);
//@ behavior {
//@ ensures returns \ result = (x <=y);
@} y;
class PriorityQueue {
public:
//@ uses PriorityQueueTrait(PriorityQueue< Elem> for PQ[Elem]);

... constructors have been elided for space reasons ...

virtual void Insert(Elem e) throw();

/@ behavior {

/@ modifies self;

/@ ensures liberally self’ = add(e, self’);
/@

virtual Elem Largest() const throw();
/@ behavior {

/@ requires len(self’) >=1;

/@ ensures result = head(self’);

/@ }
virtual Elem Removelargest() throw();

/@ behavior {

/@ requires len(self’) >=1;

/@ modifies self;

/@ ensures result = head(self’) \ self = tail(self);
/@ }

virtual bool IsEmpty() const throw();

//@ behavior {

/@ ensures result = isEmpty(self”);

/@

virtual long int Length() const throw();

/@ behavior {

/@ ensures liberally result = len(self”);

/@)

37

Larch’s abstraction mechanism was one of the primary influences for our abstraction
research. In the same way that Larch seeks to express behavior in terms of abstractions, we
seek to use dynamic invariant detection to discover behavior in terms of abstractions. In
the next section, we look at Java Modeling Language, which incorporates some of Larch’s

abstraction features as an optional way to specify behavior.

2.1.4. Behavioral Subtyping

Liskov and Wing [Liskov and Wing, 1994], and subsequently, Leavens [Leavens,
2006] refined the idea of behavioral subtyping and addressed some of the problems
with Eiffel’s handling of argument covariance. JML is the product of this research, and
facilitates the expression of specifications that honor their notion of behavioral subtyping.

The idea behind behavioral subtyping is to enforce subtyping relationships that honor

the principle of supertype abstraction (from [Leavens and Naumann, 2006]):

The basic idea of modular reasoning, which we call supertype abstraction, is
clear. It is a generalization of typechecking: reasoning about an invocation,
say E.m(), is based on the specification associated with the static type of E, and
constraints are imposed on implementations of m() at all subtypes.

This kind of reasoning, supertype abstraction, is modular in that it does not
depend on E’s dynamic type, and hence does not have to be changed when
subtypes of T [the static type of E] are changed in compatible ways or are added
to a program. Supertype abstraction supports maintenance and evolutionary
programming styles.

One of the contributions of the work on behavioral subtyping is the idea of the
class invariant and history constraint, which are invariant clauses that specify common
behavior for all methods of a class and its subclasses. Such invariants are important for
ensuring that the principle of supertype abstraction is enforced. As we described in 2.1.2.
Eiffel and Design By Contract, the class invariant is conjoined with the precondition and
postcondition of every method. The history constraint (if any), is conjoined with the
postcondition of every method, and is intended to specify what a method must do or cannot
do. For example, a PatientVisitLog might have a history constraint to restrict methods from
modifying or deleting any entries.

In Table 1.1, we described the specification for the ToyMath module as a table where
each row corresponds to a Hoare triple consisting of (precondition,method,postcondition).
We extend this tabular notation to encompass state variables and the notions of class
invariant and history constraint, which we will illustrate using a simple Stack class that

38

contains a single state variable, elements, and the methods push, pop, and reset (Table 2.1).
The class invariant in this example is elements != null, which holds in any publicly
observable state. This particular class has no history constraint, but such a constraint would
specify a postcondition that must hold for each method of the class in addition to any per-
method postconditions. In 4.3.1. Aggregate Abstraction and History Constraints, we use

Alembic to infer potential history constraints.

Table 2.1. A tabular specification of a Stack class that displays the preconditions,
postconditions, class invariant, and history constraint. This specification is incomplete
in that it doesn’t require that push and pop maintain any elements other than the most
recently pushed; such specification would require use of loops or universal quantifiers,
which is provided by many specification languages.

State Vars Class Invariant History Constraint
Object[] elements elements != null none

Precondition Method Postcondition

none void reset() elements[] == []
none void push(Object x) size(elements) ==

orig(size(elements))+1

X == elements[size(elements)-1]

size(elements) >=1 Object pop() size(elements) ==
orig(size(elements))-1

return ==
orig(elements[size(elements)])

Another reason for understanding behavioral subtyping is that it was used as the basis
for a dynamic invariant detection application that inspired our work on abstraction [Csallner
and Smaragdakis, 2006]. In this application, Daikon was used to detect invariants on
objects representing the supertype abstraction. This was achieved by synthesizing traces
from subtype invocations and copying them to the supertype’s invocation. The net result is
that Daikon would see an amalgam of invocations from the various subtypes, but that they
would be viewed through a supertype lens.

In our research on abstraction, we have generalized the notion of propagating traces to
supertype objects into a system for synthesizing or transforming traces prior to propagating

them to synthesized abstraction objects. In both cases, however, we use a traditional

39

invariant detector to interpret the transformed traces through their projection onto an

abstraction object. This will be discussed in detail in Chapter III.

2.1.5. Java Modeling Language (JML)

The Java Modeling Language (JML) is a BISL that is typically used to annotate Java
class and interface definitions with behavioral specifications in the form of require and
ensure clauses, as well as several other behavior modeling features [Leavens, 2006]. We
will be presenting some of the features of JML that are related to abstraction and Alembic,
including JML’s ghost and model keywords.

Like Larch/C++, JML is primarily used as an annotation language layered upon Java,
although JML specifications can also be generated and manipulated separate from any
Java implementation class or source file. We provide an example of our ToyMath class

in Listing 2.5 below.

Listing 2.5. JML (Java Modeling Language) annotating a Java implementation of
theToyMath class (from Leavens and Cheon [2006]).

public class ToyMath

{
public final static double epsilon = 0.0001;

//@ ensures JMLDouble.approximatelyEqualTo(\result, x * x, epsilon);
public static double sqr(double x)

{
}

//@ requires x >= 0.0;
//@ ensures JMLDouble.approximatelyEqualTo(x, \result « \result, epsilon);
public static double sqrt(double x)

{
}

//@ ensures \result <= x
//@ ensures x — \result < 1
public static int floor(double x)

{
}

return x x Xx;

return Math.sqrt(x);

return Math.floor(x);

40

There is a relationship between a model field of a JML specification and a feature of
a Larch trait. In both cases, the feature exists only in the abstraction, although its value
is derived from the concrete implementation. JML differs from Larch in that it embeds
this abstraction capability into the interface definition syntax, rather than having a separate

shared language like Larch.

2.1.6. Other Specification Systems

Although we have highlighted a small selection of representative specification
languages and facilities, there are several others worth mentioning in this dissertation.
While these didn’t have a direct influence on our research, they are related because they
may represent additional application opportunities for Alembic (e.g., as alternate input and
output formats), or they may provide an alternate perspective on invariant detection and
abstraction. We highlight some of these below.

Z Specification Language This language is similar to the Larch Shared Language in
that it is designed for expressing models of software systems [Spivey, 1989]. The
emphasis in Z is on using the language to specify models and their properties and
behavior directly. This is in contrast to Larch, whose Shared Language expresses
relations and facts, but without an underlying data. Instead, Larch provides an
interface language to bind the algebraic language to an data structure.

Alloy Alloy [Jackson, 2002] is a specification language based on Z, but with
enhanced object modeling facilities and designed with an eye towards automatic

analysis of specifications.

2.2. Static Analysis

The previous section introduced the class of behavioral interface specification
languages characterized by logical clauses describing preconditions and postconditions.
The goal of dynamic invariant detection is to infer these specifications from observing
executions. Before we discuss the dynamic inference of these specifications in detail, we
will be reviewing at some of the uses and limitations of related static and dynamic analysis
techniques. In this section, we will focus on the static analysis of modules.

A static analysis is a technique for examining source code (or something derivable
from source code without requiring prior execution) and determining properties of the
code. These properties can include statements about whether an exception is thrown, what

the result type might be, or whether there are any loops. Due to inherent properties of

41

computation (see Halting Problem below), many static analyses are able to detect and report
that a program has a property, but they cannot guarantee that it doesn’t have it.

Some static analysis techniques border on the dynamic because they involve
simulation, interpretation or evaluation of some parts of a program. In effect, the program
is executing dynamically in the mind of the analyst or the memory of the tools. Abstract
interpretation and symbolic execution are examples of this notion, but any programmer
who has stepped through a program’s source code to understand it is usually performing a
form of symbolic execution.

Ideally, we’d like to be able to determine important properties of a program and its
modules simply by examining the source code. These properties include:

e Will this program ever crash? For which inputs?

What are the preconditions and postconditions that a particular function expects?

How will a particular function’s performance scale as a function of its arguments?

Will this program always halt? If not, for which inputs?

Can a static analyzer determine that the sum of the first N odd numbers is N"2?

2.2.1. Halting Problem

There are important and fundamental limits to the program properties that can be
inferred using software analysis. Many of these limitations occur when we try to use one
program (e.g., a software analysis tool) to understand a target program in terms of the
partial function it implements, where such understanding is usually phrased as, “Does the
function implemented by this program have non-trivial property X?”. It has been proven
that there must be programs for which this question cannot be answered in a general way.
These questions can all be rephrased as a halting problem, which is the question, “Will this
program halt?”.

Rice’s Theorem [Rice, 1953] generalizes this halting problem by stating that if we
have a program written in a Turing complete programming language (i.e., almost any
programming language), then there is no general decision procedure to determine whether
the function implemented by the program satisfies any particular non-trivial property we
might choose to examine. Because a software analysis algorithm is a general decision
procedure, Rice’s theorem means that we cannot write an analyzer that can determine non-
trivial properties of programs under analysis for any arbitrary program.

The relevance of this to invariant detection can be understood by recalling how
the Hoare specification of a program corresponds to a set-theoretic function between

sets of satisfying tuples. An invariant detector (static or dynamic) that could determine

42

the invariants of an implementation would effectively be determining the properties of
the underlying function, which is prohibited by Rice’s Theorem; therefore, invariant
detection is undecidable in general. In practice, however, there are some properties that are
determinable for most programs, and static analyses seek to exploit these for optimization
and correctness. But generalized static invariant detection is tantamount to contradicting
Rice’s Theorem.

One example that illustrates the limitations of static analysis is to consider two
implementations of the sqr(float n) function. The first implementation is the obvious one
and simply returns n *n. The second implementation computes sqr(float n) in a non-
obvious fashion. For example, we might sum the first n odd numbers to achieve sqr; or
we might add n to itself n times. Static invariant detection would allow us to determine that
these implementations both have the postcondition invariant of return == n * n; however,
such a static analyzer would have to understand general properties of natural numbers in
order for it to make this judgment. This cannot be done in general, because it would
require a decision procedure for arbitrary statements about the natural numbers, which is
impossible as shown by Godel’s Incompleteness Theorem.

Unlike static invariant detection, dynamic invariant detection is able to discover
the observation invariants for both implementations of sqr above, and these observation
invariants imply (or are identical to) the invariants that describe the behavior of sgr. Indeed,
one of the promising features of dynamic invariant detection is its ability to find these
program properties even if the implementation of the program is complex or otherwise
inscrutable. One caveat with the observation invariants reported by dynamic invariant
detection is that they only hold for past observations; it is very possible that the observations
do not include a crucial input that would cause the program to crash or loop forever,

meaning that observation invariants cannot be treated as proven or true.

2.2.2. Symbolic Execution

Symbolic Execution [King, 1976] is a static analysis technique that produces symbolic
descriptions of procedures in terms of the effect of the procedure on state variables and
results as a function of the input state variables and arguments. This is done by simulating
the execution of the procedure, but instead of variables storing actual values, they will
store symbolic expressions during this simulation. Branch points are encoded into these
expressions so that the resulting expressions will describe any conditional behavior. In
the absence of loops or recursion, symbolic execution is able to exactly characterize the

internal behavior of a procedure as a set of expressions.

43

Symbolic execution is based upon exploring all possible worlds, which becomes
problematic in the case of loops or recursion, because the analyzer can get into a loop.
Dynamic Symbolic Execution is a dynamic analysis technique that performs similar
reasoning to the static version, except that instead of all possible worlds, only those paths
actually dynamically executed will inform the symbolic execution [Csallner et al., 2008].

We discuss this more in 2.5. Dynamic Symbolic Execution (DySy).

2.2.3. Abstract Interpretation

The static analysis technique known as abstract interpretation has significant parallels
with our work. The principle of abstract interpretation is to determine an abstract semantics
or specification for a program fragment, and to apply traditional static analyses to this
abstraction [Cousot and Cousot, 2004] [Schmidt, 1998]. Contrast this with Alembic, which
determines an abstract program and uses a traditional dynamic invariant detector upon the
abstracted program.

During the formation of Alembic abstractions, it is often helpful to use the principles
of abstract interpretation. For example, if we are performing an Effect Abstraction,
capturing the CPU time metric cost of targeted function calls, we might wish to discretize
the CPU time to make it more amenable to Daikon analysis. We believe that the rich catalog
of abstractions and techniques developed for abstract interpretation can be a useful source

of abstraction patterns for use with Alembic.

2.2.4. Model Checking

Model checking is a static analysis technique based upon abstracting a concrete
program into a checkable model, and then using algorithms to evaluate safety and liveness
properties of the model. The model is an abstraction of the concrete program, usually
containing fewer and more discrete states than the concrete program. Often, the model is
developed first in a specification language such as Alloy, and then evaluated with a model
checker such as the Alloy Analyzer before ultimately being implemented in code. A model
checker typically seeks to discover if a given predicate could ever be satisfied, and if so,
what values of variables would satisfy it. If this predicate is something like will this plane
ever get into an uncontrolled stall?, and a suitable model of the flight control system were
specified, then a model checker could report the conditions under which the predicate is
satisfied.

44

2.3. Dynamic Analysis

One of the advantages of static analysis over dynamic analysis is that it can be used to
check important properties during the development process, informing the programmer
about potential problems or non-conformance with a specification or requirement. At
a minimum, static analyses are a key component to compiler optimizations and bug
detection mechanisms. Dynamic analysis techniques are most applicable where we require
knowledge of transient values and metrics, such as profiling or assertion-checking; or, as we
showed above in Static Analysis, where we seek properties denied us by Rice’s Theorem.

An analogue of the static versus dynamic analysis distinction can be found in applied
mathematics, where there are many problems which cannot be solved symbolically as
closed-form expressions (static analysis), but are amenable to numerical methods when
the problem is bound to actual values and parameters (dynamic analysis).

We can partition dynamic analyses into those that operate at the syntax level of
the executing program and those that operate at the implementation level. A syntax-
based dynamic analysis measures properties associated with source code elements such as
functions, variables, arguments and results, in addition to intra-procedural elements such as
loops, conditionals and assignments. These analyses include dynamic invariant detection,
dynamic symbolic execution, bounds and pointer checking, and assertion checking.

The other type of analysis measures properties associated with implementation
artifacts such as number of instructions, execution time and space, stack depth, and
similar runtime properties. Examples include profiling of resource usage (time and
space, minimally), coverage analysis, and concurrency analysis. Even though dynamic
invariant detection is a syntax-based analysis, we can use Alembic to capture some of these
implementation properties and /ift them into traits where they can be subject to dynamic
invariant detection. We call this technique Effect Abstraction and describe it briefly in 5.1.4.
Other Ideas.

Two common forms of dynamic analysis are profiling and coverage analysis. Profiling
associates resource metrics (space or time) with various events that occur during execution;
minimally, these events include the entry and exit of a function. Profilers may obtain these
metrics either by transforming the program to capture and emit the measurements, or by
externally sampling the metrics via operating system facilities. Another useful dynamic
analysis is bounds and pointer analysis, which can assist in debugging a program or
detecting misuse of the heap or a data structure by revealing leaks, dangling pointers, and

array bound violations.

45

There are three primary ways to obtain the necessary information for performing a
dynamic analysis:

Instrumentation The program may be transformed into an instrumented program by
inserting code at various observation points (typically function entry and exit).
This code then captures and emits the data needed for analysis. Instrumentation
often affects the performance of the instrumented program negatively.

Sampling The operating system or other mechanism periodically takes a snapshot of
the program’s address space and uses data from this snapshot to perform dynamic
analysis. Sampling is ideal when the target program cannot be instrumented, but
it is imperfect in that not all events will necessarily be observed, depending on
the sample frequency.

Simulation While this is properly a static technique, it involves running the program
in some virtual machine that provides all of the needed observational data to the
dynamic analyzer.

Both Daikon and Alembic rely upon instrumentation of the target program to capture

and emit the data required for invariant detection.

2.4. Dynamic Invariant Detection

Although there are several important optimizations in the Daikon detector, the
fundamental idea is easily understood [Perkins and Ernst, 2004]. At initialization, Daikon
prepares a set of candidate invariants for every module targeted for analysis. These
logical expressions are generated from a lexicon of variable names and operators that are
visible and appropriate for each public function entry and exit declaration. As the program
executes, traces are emitted to the detector for each targeted function entry and exit; these
traces contain the values of arguments, state variables and results. For each trace, Daikon
examines its set of candidate invariants and eliminates from the set any that are falsified
by the observed trace data. Whatever candidates remain at the end of a suitably robust
execution are presumed true and can be considered as potential specifications. At the very
least, the remaining invariants are consistent with the observed executions, which may
indicate bias or weakness in the execution framework.

A dynamic invariant detector can be viewed as a process that takes as input a program
(in source or binary form) and one or more valid executions of that program, and produces
as output an operational abstraction for each targeted module (e.g., Java class) within
the program. The operational abstraction summarizes the observed behavior of a module

in terms of properties that are externally visible, such as input arguments, state variables

46

and return values. This behavior is reported as as set of structural invariants and function
precondition/postcondition pairs'.

The Daikon [Ernst et al., 2007] dynamic invariant detector accomplishes the above
by using trace information from an instrumented program as input to an inference engine
that generates a set of candidate invariants and then eliminates those not supported by
the trace observations. The resulting invariants associate logical propositions with objects
or modules (structural invariants), and with function entry and exit points (precondition/
postcondition).

In the dynamic invariant detection terminology, a program point refers to a point in
the program text at which traces are collected and from which inferences are made. Each
program point has a set of visible variables such as input arguments, results, and object
state variables.

In addition to the program points corresponding to function entry and exits, Daikon
also considers the synthetic CLASS and OBJECT program points, where we can measure
the structural invariants of an object, class or module that hold outside of a function
execution. Figure 2.3 illustrates the important program points for an example class Foo

and a method bar within the class.

2.4.1. An Example of Dynamic Invariant Inference

We present a simple example of Daikon usage, from the initial instrumentation of a
target program to the execution. Assume that we have a Java class, Simple, that contains a
single instance method, .m() and no instance variables as in Listing 2.6. We exercise this
class with a main program as in Listing 2.7.

We use the script in Listing 2.8 to compile, instrument and execute the program. The
—ppt-select-pattern is present as an optimization to ensure that Daikon only needs analyze
the Simple class and its implementation of .m(). The default behavior of Chicory is to
instrument the class files and then to execute the main class given on the command line
(SimpleTester, in the above example). The traces generated as each instrumented function
is entered and exited are typically output to a trace file, which is then read by Daikon for
subsequent invariant inference.

We use the script in Listing 2.9 to invoke the Daikon detector upon the trace file

generated by Chicory above.

I'The terms operational abstraction and invariant will be used interchangeably in this document following
usage in the invariant detection literature. A more accurate terminology is that an operational abstraction is a
specification in terms of invariants and assume/guarantee constraints.

47

Listing 2.6. Java code implementing a simple class named Simple with a method .m().

public class Simple
{
public Simple() // Object constructor
{
¥
public int m(int input) // Invariants will be observed on this method
{
return input x input;
¥
¥

Listing 2.7. Java code exercising Simple.

public class SimpleTester

{

public static void main(String[] args)

{

Simple simple = new Simple();

for (inti=—100;i <=100; ++i)
{
assert simple.m(i) == i x i; / Give method .m() data for inference
¥
}
¥

Listing 2.8. A shell script to compile, instrument and execute the SimpleTester program
with Chicory.

javac —g *.java ## Compile
java \ ## Instrument and Execute
daikon.Chicory \
%\dd%dtrace—file=SimpleTester.dtrace.gz \
%\ dd%ppt—select—pattern="Simple.m|Simple:::OBJECT|Simple:::CLASS’ \
SimpleTester

48

public class Foo

{

int aninstanceVar;

public int bar(int input)

{
int result;// ENTER point

result = input * input;

return result;// EXIT point

}
}

The Foo class has an associated synthetic
program point Foo::OBJECT whose visible
variable set is the set of instance variables,
in this case simply anlnstanceVar.

The Foo::bar()::ENTER program point

has visible variables corresponding to the
prestate of the method. These include those
in Foo::OBJECT as well as input and this.

The body or implementation of a function
is considered opaque. Traces are captured
before and after the body in the ENTER
and EXIT program points.

The Foo::bar()::EXIT program point
corresponds to the implicit common exit
point where a called function returns.
Visible variables include the original
and new values of instance variable and
arguments, as well as the result variable.

Figure 2.3. A function and its associated program points and visible variables. For each
program point, there is an associated set of visible variables. Execution that proceeds
through a program point will obtain the values associated with that point’s visible variables.

This is called a trace.

After executing the instrumented program and analyzing the traces, Daikon prints the

invariants displayed in Listing 2.10. Note that we have slightly reformatted Daikon’s output

for readability; also, we only present the entry/exit invariants for method .m().

The invariants printed by Daikon in Listing 2.10 reveal the following potential

invariants:

e There is no discernible invariant associated with the input variable at
Simple.m(int):::ENTER. One would expect our invariant detector to discover that
input >=-100 and input <= 100, but the Daikon detector does not discover this

Listing 2.9. A shell script to analyze the generated tracefile using Daikon.

java \ ## Analyze
daikon.Daikon \

%\ dd%config_option daikon.Daikon.progress_delay=—1\

%\dd%format JML \
SimpleTester.dtrace.gz

49

by default; it requires command-line options to enable the detection of this type
of bounds.

e Daikon discovers two potential invariants associated with Simple.m(int):::EXIT.
The first is our desired invariant, return == orig(input)**2, which indicates
that the return value is the square of the input value. The other invariant,
return >= orig(input), is also correct, but not as useful because it is implied (by

the laws of arithmetic) by the first invariant.

2.4.2. Uses for Invariant Detection

There are a variety of applications of traditional dynamic invariant detection, and our

research enables some new ones. Described below are some of the common uses:

Understanding The invariants reported can be used to guide understanding of a
module, even when source code is unavailable or obtuse. This understanding can
be used to confirm or disprove assumptions and expectations about a module,
revealing bugs or poor documentation.

Specifications The invariants discovered by dynamic invariant detection can be used
to automatically build specifications for modules. These specifications can then
be used by tools such as JML and ESC/Java2 to verify that the implementation
conforms to the specification, or to enforce the invariants at runtime [Nimmer
and Ernst, 2002]. It has been observed [Csallner and Smaragdakis, 2006]
that simply taking the invariants produced over method implementations is not
sufficient to build specifications that reflect behavioral subtyping. Our research
was originally motivated by a desire to enhance the detection mechanism to
address this problem. We believe that the abstraction techniques can solve this as
well as other unanticipated problems.

Test Coverage Reported invariants not only reveal the implementation of the

targeted modules, but also some aspects of the test framework that exercises the

Listing 2.10. Daikon-inferred invariants for class Simple upon method .m().

Simple.m(int):::ENTER
(no invariants detected)

Simple.m(int):::EXIT
return == orig(input) =2
return >= orig(input)

50

modules. For example, if the discovered precondition for method foo(int n) is
(n > 0), then this might reveal a weakness in our test framework; perhaps we

should be exercising foo with negative and zero inputs.

2.4.3. How Daikon Works

We will illustrate how an incremental dynamic invariant detector works by describing
how Daikon performs its inference on the above example. The original version of Daikon
used a simple algorithm that we describe below. Subsequent optimizations increased the
performance and scalability of Daikon [Perkins and Ernst, 2004], but do not substantially
alter the description for our purposes here.

The basic steps in using Daikon are to compile and instrument the target code with
the Chicory tool, to execute the code, and to analyze the resulting traces with the Daikon
analyzer; this process will output a set of invariants describing the observed behavior. See

Figure 2.4 for an overview of the process, which we detail in the rest of this section.

2.4.3.1. Instrument the Program with Chicory

The first step is to mechanically instrument the compiled Java class files. In the
Daikon system, this is performed with the Chicory tool, which typically instruments and
then executes the code. Chicory reads the class files and inserts tracing code at each
implementation function’s entry and exit points>. These entry and exit points are examples
of Program Points in Daikon’s model.

During the execution of an instrumented program, whenever control passes through an
instrumented program point, a trace tuple is emitted which records the values of arguments
and member variables that are visible at that program point. For example, in the case of
the exit program point Simple.m(int):::EXIT, the visible variables are simply this, input and
return, where return indicates the result value that will be returned to the caller of .m().
If class Simple had data members, then their values would also be visible at this program
point.

It should be noted that Daikon’s Java tracing does not include inherited data members,
even if they are protected or public. The Turnip system of Kuzmina and Gamboa addresses
this potential problem [Kuzmina and Gamboa, 2007] as is discussed in 2.6.3. Polymorphic
Analysis.

2Chicory uses the Byte Code Engineering Library (BCEL) to analyze Java class files and to insert the
appropriate instrumentation. A version of BCEL is also incorporated into Aspect] for its code-weaving
purposes.

51

2.4.3.2. Execute the Program

Once the compiled code has been instrumented with Chicory, it is executed under the
direction of either a test program intended to exercise the target code, or it is executed as
part of a larger system (not all of which need be instrumented). The traces generated as
each instrumented function is entered and exited are typically output to a trace file, which
is then read by Daikon for subsequent invariant inference.

The important part of execution is to fully exercise the targeted modules to provide

Daikon with as much information about the program points’ data values as is practical.

2.4.3.3. Initializing Daikon

One of the artifacts produced by Chicory as it instruments the code is a declaration
file that contains description of the program points discovered as well as the variables that
are associated with these program points. This file is read by the Daikon analyzer prior to
reading any data traces; in fact, it is usually just prepended to the trace file.

Daikon reads in the declaration file and builds a set of candidate invariants that might
apply to the loaded program points. The candidate invariants for a given program point
(e.g., the Simple.m(int):::EXIT point) are constructed from a set of predefined templates
of possible relational expressions, which are then instantiated over the variables visible at
that program point. The templates available in Daikon include unary, binary, and ternary
relations and include common relations such as arithmetic <, >, and ==, as well as more
sophisticated relations such as x € someList.

When instantiating templates, Daikon uses both the primitive variables visible at a
program point, as well as derived variables that are built by combining or transforming
the primitive variables. For example, if alList[] is a Java array variable visible at a program
point, then Daikon would also consider the derive variable size(alList[]), which represents
the length of the array. Daikon has a configuration option (disabled by default), that would
additionally consider aList[0], aList[1], and aList[-1], which are the first, second, and last
array element, respectively. If the variable idx and aList are visible at a program point, then

Daikon will consider invariants that involve the derived variable aList[idx].

2.4.3.4. Elimination via Falsification

As a result of the combination of its rich set of invariant templates and derived
variables, Daikon is able to construct a large set of candidate invariants. After initialization,

Daikon will begin reading the data traces produced by the instrumented program. A data

52

tuple contains the values of visible variables at each instrumented function’s entry and exit
point.

For each data tuple, Daikon examines the set of candidate invariants and eliminates
those that are falsified by the evidence in the data tuple. As a consequence, the bulk of
the candidate invariants are eliminated rapidly (after a few tuples), and the resulting set of
candidate invariants are those that have not yet been falsified via evidence. If the unit test
or framework executing the target code is sufficiently rich and exercises the spectrum of
possible legal calls to the target, then the invariants that remain unfalsified can be treated
as approximate behavioral descriptions.

Daikon uses a parameter known as the confidence limit as the basis of a statistical test
that will suppress invariants that haven’t seen sufficient evidence. The term likely invariant
is used to refer to those unfalsified invariants that have met the desired confidence limit.
It may be that the reported invariants appear true because of weaknesses in the coverage
of the exercising program; enhancing the test suite to cover more cases may falsify these
invariants. A software engineer analyzing partial results may still be able to derive useful

behavioral descriptions or determine that the test suite is insufficient.

2.4.3.5. Limitations of this Approach

Because dynamic invariant detection relies upon evidence-based inference, the
accuracy of the detected invariants will be dependent upon the completeness and coverage
of the unit test or program that exercises the modules under test. A gap in the testing
framework will result in unfalsified invariant candidates that will be reported as potential
invariants. However, this characteristic of dynamic invariant detection can be used as a
feature when trying to construct exhaustive tests. Incorrect reported invariants can reveal
incompleteness in the testing regimen.

Another limitation of the template-based approach is that the set of templates is
restricted in size and scope, in order to perform reasonably in the general case. As we
increase the depth of expressions considered, the number of possible operators, the number
of invariant types, and the number of visible variables, we also increase dramatically the
number of candidate invariant to be processed.

Alembic is designed to address this by augmenting the template-based implicit
abstractions with explicit abstractions that may express arbitrarily complex expressions.
An alternative solution to the limits of templates is discussed in 2.5. Dynamic Symbolic

Execution (DySy).

53

2.4.4. Alternative Schemes

Daikon’s contribution to dynamic invariant detection is twofold. First, Daikon
provides a front-end for instrumenting a target program to emit traces containing entry
and exit values and expressions. Second, Daikon provides a back-end to analyze traces
and infer specifications. As we will show in Chapter III, Alembic provides an alternative
front-end that uses Aspect] to instrument the program.

Although it is not in the scope of this dissertation, we have considered alternative back-
end schemes for deriving invariants from trace data. Alembic was designed to allow the
potential use of such alternate back-ends. The fundamental back-end problem of dynamic
invariant detection is about finding a model that explains a set of observed data. This model
is to be expressed as a set of invariants (preconditions and postconditions).

Some of the approaches that can be used:

e Search
e Genetic Programming
e Grammatical Evolution

e Numerical Regression

2.5. Dynamic Symbolic Execution (DySy)

One of the potential drawbacks of the Daikon technique for discovering invariants is
that the grammar of the invariants detected depend upon the set of templates and derived
variable forms that are built into the detector. Ideally, the most appropriate specification of
a module under analysis can be discovered by combining the appropriate templates and
derived variables. However, in order to achieve acceptable performance, Daikon does
not consider all possible invariants, but only the finite set derivable from its finite list of
templates and derived variables.

This means that the invariants generated may not be the most natural or useful ones.
This shows up most clearly with conditional invariants. A conditional invariant is a set
of cases, where each case consists of a precondition and a postcondition. Conditional
invariants naturally express conditional behavior of functions. However, a tool such
as Daikon does not derive conditional invariants except when given explicit directives
regarding the splitting condition that is used to build the precondition expression, or when
the function is boolean or has multiple exit points.

The DySy (Dynamic Symbolic Execution) system [Csallner et al., 2008] addresses this
problem by using the principles of dynamic invariant detection upon a symbolic execution

engine. DySy generates expressions that are not derived from an arbitrary set of templates,

54

but that are derived from the dynamically observable symbolic expressions present in the

executing code.

2.6. Related Work

The research described below was influential in the development of abstraction and

Alembic. We briefly describe the relevant aspects of each.

2.6.1. Contract Soundness

Findler and Felleisen developed a specification and checking framework known as
Contract Java [Findler and Felleisen, 2001] that supports the creation of programs that
embed contracts as part of the language definition. These contracts are checked at runtime
for violation of preconditions and postconditions, as well as for checking for behavioral
subtyping hierarchy errors. The work is significant for our purposes here because the
mechanism used by Contract Java for runtime checking of hierarchy errors is similar to

that we will be using to propagate data traces.

2.6.2. Inferring Behavioral Subtypes

The motivating example for this research was described by Csallner and
Smaragdakis [Csallner and Smaragdakis, 2006], where they outlined problems with
Daikon’s specifications. Specifically, they presented an example where the JML
annotations produced by Daikon are inconsistent with behavioral subtyping, resulting in
a failure in the ESC/Java2 (Extended Static Checker for Java) tool [Cok and Kiniry, 2004].

The key idea extracted from this paper was the idea of trace propagation, where
concrete executions of methods upon dynamic receivers (subclass instances) were reflected
as though they were also executions upon the superclasses that also contained those
methods. This is a form of aggregate abstraction, where traces from multiple program
points are joined to produce invariants that summarize the behavior of the component
program points.

We realized that the notion of trace propagation and the associated notion of trace
transformation could be applied to a variety of problems. We also believe that the solution
in the paper above has some drawbacks. Specifically, by feeding subclass traces to the
superclass method, we dilute the information obtainable by an invariant detector because
we can no longer get invariants over the concrete superclass implementation. Instead,

the superclass’s implementation of a method becomes the target for observations from

55

its subclasses. In addition, the reliance upon a concrete superclass means that abstract
superclasses or interfaces cannot be used as targets.

We address this with Alembic by forcing the definition of a parallel class hierarchy
that will contain the aggregate observations. This allows us to use our detector on both
hierarchies: one reveals implementation details about each concrete class, the other reveals
aggregate behavior corresponding to behavioral subtyping. This approach is described

briefly in 5.1.2. Supertype Abstraction.

2.6.3. Polymorphic Analysis

Kuzmina and Gamboa have created a dynamic invariant detector similar to Daikon
that they call Turnip [Kuzmina and Gamboa, 2007]. It uses a method similar to
Daikon’s. They have developed improvements to obtain behavior specifications that
are broken into cases, based upon the dynamic receiver of a method. In effect, the
invariants are conditional invariants where the preconditions for the cases are of the form
this.getClass() == SomeClass.getClass(). They do this by augmenting the instrumentation
layer to include the dynamic class of the receiver, as well as those member variables that are
visible from that class. The resulting case-based invariants are sometimes more informative

and useful than Daikon-produced invariants.

2.6.4. Variable Hierarchy

Nimmer and Ernst considered several optimizations and extensions to the original
Daikon implementation, several of which were eventually incorporated. The idea of
propagating data traces to superclasses and to abstract interfaces was suggested, but never
implemented [Nimmer and Ernst, 2002].

Daikon does use some of the features suggested by Nimmer in the form of the variable
hierarchy optimization. This feature allows data traces from child program points to be
copied or propagated to parent program points. The two main uses for this feature in
Daikon are:

e Traces from internal function exits are propagated to the terminal function exit,
which summarizes the aggregate behavior of all exits from the function.

e The pre- and post- values of state variables for each instrumented function
invocation are propagated into the object invariant, which summarizes the
aggregate invariant common to all entries and exits in the class.

The abstraction techniques described in this dissertation are similar to the variable

hierarchy propagation in Daikon; the aggregate abstraction techniques we describe in 4.3.1.

56

Aggregate Abstraction and History Constraints rely upon the same principle of propagating
traces upwards to an aggregation abstraction. However, the hierarchy in Daikon derives
from the program text, and there is no transformation of values between the child and
parent in the hierarchy. Alembic allows transformation of values, selective propagation,

and the synthesis of arbitrary abstractions.

57

SimpleTester.java

Simple.java public int main ()
IRkt et .51mple simple = new
. Simple ()
input) . . .
for (int 1 =-100; 1<
return
100; ++1i)

inputxinput;

x 105

~

assert simple.m(i) ==

Compile Java Sources
javac —g Simplex*. java

Simple.class SimpleTester.class

JVM Bytecode

VM B
J ytecode 0A CF 97

.0ACF97 ...

N

Instrument and execute program
java daikon.Chicory SimpleTester

v
SimpleTester.dtrace

Simple.m(int
Simple.m(int
Simple.m(int
Simple.m(int

) : : :ENTER input=-100
) : 1 :EXIT result=10000
) : : :ENTER input=-99

) : 1 :EXIT result=9801

Simple.m(int) : : :ENTER input=100

Simple.m(int) : : :EXIT result=10000
¥

Analyze trace file
java daikon.Daikon
SimpleTester.dtrace.gz

A £
SimpleTester.inv
Simple.m(int) :: :EXIT
return == orig (input) x*2

return >= orig (input)

Figure 2.4. The dynamic invariant detection process and intermediate files involved in
instrumenting, executing, and analyzing the Simple example.

58

CHAPTER III

ABSTRACTION AND ALEMBIC

The central questions of our research are: Can dynamic invariant detection be applied
to user-defined abstractions of concrete modules?, Is this useful?, and Is it practical?. In
this chapter and the next, we answer these questions positively by showing several ways
to use abstraction techniques with a dynamic invariant detector, and by showing that the
results obtainable add value to the basic dynamic invariant detector.

We begin this chapter by reviewing the abstraction mechanisms available to dynamic
invariant detectors; these include source code modification and the use of simple abstraction
facilities such as Daikon’s purity-file. We then consider the possibilities afforded by creating
synthetic traces to abstraction classes, and how these can be injected into our invariant
detector, causing it to perform inference upon a model program, rather than a concrete
program. We illustrate this by showing how a crude abstraction mechanism can be built
upon Daikon by hand-coding the instrumentation code and the abstraction class.

We then introduce Alembic as a system that can automate the above synthesis and
abstraction process, and as a declarative language that can easily express the desired
abstractions at a high level. Using Alembic, we will construct several example abstractions
as a way of explaining Alembic, as well as revealing some of the abstraction possibilities.
In the next chapter, we will answer the remaining two questions above about the utility and
practicality of abstraction.

In the next chapter, we will also present more sophisticated abstractions that cannot be
practically expressed within the context of existing dynamic invariant detectors. However,
Alembic enables the creation of explicit abstractions whose behavior can be observed by a
dynamic invariant detector to produce useful results on the abstractions. These can then be

used to better understand the concrete module.

3.1. The Importance of Abstraction

We begin with a brief reminder of what we hope to gain by abstraction. An invariant
detector that is operating upon a concrete module will report invariant expressions built
from the concrete state variables, arguments and results visible at a function entry or
exit point. A general-purpose detector such as Daikon will explore a finite search space
of expressions containing subsets of these variables. Some expressions will never be
considered due to the necessity of a finite search and the resulting limited depth of

expressions explored.

59

Another reason that some expressions are not considered is that they may involve
operations or relations that are not in Daikon’s general-purpose vocabulary. In addition, a
detector may not be able to see important and relevant quantities that are only obtainable
via functions or system calls. Finally, even if a true and relevant invariant is discovered,
it may be phrased in terms of concrete variables that contain opaque or convoluted data
structures, and will therefore remain inscrutable to a human analyst.

Abstraction techniques let us address all of the above by providing a way for a user
to guide the search and shape the results. This can be done by building abstractions
that ignore irrelevant variables, that make visible the quantities that would ordinarily
be hidden, and that create higher-level operations and representations more suited to
understanding (human or mechanical). These explicit abstractions do not always require
in-depth knowledge of the concrete class’s implementation and variables. Often, the raw
information needed for abstraction is easily available as one or more public accessor
functions on the object. For example, we can use the size() method, rather than traversing

an opaque internal structure (provided we trust the size() function is correct).

3.2. Guidelines for Abstraction Use

The proposal that users learn and use an additional language (Alembic) in order to be
able to perform refined analysis brings up legitimate questions about whether the effort is
worth the reward and how best to discover or invent abstractions. Alembic is designed to
allow an analyst to try out several different abstractions simultaneously; this is to encourage
experimentation. Alembic ensures that even though multiple views may be associated with
a given method, the underlying concrete method will only be invoked once.

The development of abstractions is a balance between several factors:

e The cost of the representation function lift_state impacts the performance of all
instrumented methods on a class.

e There is an advantage to using simple datatypes in the abstraction (e.g., a native
Java array instead of a linked list) because the invariant detector is limited in its
vocabulary.

e Including more variables in the trait means that more invariants will be produced
as the detector tries to relate them to each other.

e [f state variables are grouped into different traits, each containing related
variables derived from the concrete module, then irrelevant invariants are less
likely to be produced. Each trait is a filter that reveals one facet of the underlying

behavior; each facet may consist of one or more derived state variables.

60

e A trait need only contain potentially relevant state variables that are meaningful
in the abstraction. Concrete variables that are primarily reflective of what an
implementation does rather than how it does it are good candidates for lifting.
Often all concrete state variables can be eliminated in favor of a few abstraction
variables derived from pure (readonly) instance methods.

e Depending upon the dynamic invariant detector used, there are limitations in the
types of relations and operators used in invariant clauses. This can constrain
the datatypes that can practically be used in an abstraction. Abstraction can be
used to transform data values into types more digestible by a dynamic invariant
detector.

Even using a traditional dynamic invariant detector will require some tuning of
the configuration options to elicit good results. The effort required to tune Daikon for
a particular problem is tantamount to that required to develop simple abstractions that
generate good results. In the MMPQ comparison of Daikon and Alembic in Chapter I,
the shell script written for Daikon and the MMPQ.alembic file written for Alembic had a
similar level of complexity.

3.3. Existing Abstraction Mechanisms

Before we begin our discussion of Alembic in the next section, we will describe
some of abstraction techniques available to a Daikon user, although some of these will

be adaptable to any dynamic invariant detector.

3.3.1. Implicit Abstraction

We should first observe that a trace-based dynamic invariant detector (e.g., Daikon)
is already performing an abstraction on the concrete implementation. This is a lossy
abstraction, where data is gathered only partially, or not at all.

The traces that are generated at program points with a tool such as Daikon’s Chicory
are actually abstractions of the program state at those points. Only a subset of the available
information is recorded, and thus available for use by an inference engine.

The information typically captured by Daikon includes:

e The value of the dynamic receiver (e.g., this)

e The value of the dynamic receiver’s class (e.g., this.class)
e The value of the dynamic receiver’s immediate members
e The value of any arguments and their immediate members

The return value of the function and its immediate members

61

Information not captured by Daikon’s Chicory includes:

e The deep structure of the receiver or its arguments. There is a limit to how much
nested structure is recorded. The default in Daikon is to record the immediate
member values of a variable. If those values are structured, then only a limited
depth of this structure is captured in the trace information.

e The static receiver class. This is essential for the propagation of traces necessary
to deduce behavioral subtypes, as in the behavioral subtyping example.

e Other aspects of the calling context, including the caller’s caller. Nimmer and
Ernst [Nimmer, 2002] discuss some of the possibilities available by using this
context as a basis for invariant detection.

e Inherited data members of the target object, state variables, and arguments.
See 2.6.3. Polymorphic Analysis for an alternative to this limitation.

In addition, the instrumentation mechanism only performs these abstractions over
method executions, and not over more complex control structures such as loops and
compositions.

Our research provides a mechanism to abstract arbitrary amounts of state and
argument data and place it into an abstraction object, where it is made visible to a traditional
detector. In addition, we can place the detector’s probes anywhere we choose, synthesizing
traces corresponding to a variety of control and composition constructors. Some of the

diverse applications of these capabilities are described below.

3.3.2. Filtering

One of the best ways to reduce the flood of invariants is to use filters to restrict
which methods are examined, and to restrict which variables are considered for use in
invariants. This is effectively a projection abstraction, where we are projecting from the
full set of concrete methods and variables into an abstraction with a potentially smaller set
of both. Daikon provides the ability to control the invariants that are reported by filtering
method names with the —ppt-omit-pattern and —ppt-select-pattern command options, and by
filtering variable names using the —var-select-pattern and —var-omit-pattern options [Ernst,
2010]. Daikon can also restrict the data that is included in the trace stream by use of the
—var-omit-pattern option.

For all of our experiments, we use —var-omit-pattern to eliminate the .class variable
that is added to all objects, because this variable usually results in a large number of

uninteresting invariants.

62

There is a problem with Daikon if one tries to restrict the variables at a program
point too much: member variables cannot be isolated. Excluding the this variable from
the invariant lexicon will also exclude all variables of the form this.foo, where foo is a
member variable. This means that it is impossible to obtain the simple results we’ve shown
with Alembic (see example in Chapter I) using Daikon. Admittedly, this limitation is not

inherent to invariant detectors and may be an addressable problem bug within Daikon.

3.3.3. Inline Abstracted State

Although an invariant detector such as Daikon has a rich vocabulary of invariant
templates, many modules have properties that are not visible or describable via the standard
templates. One way to address this is to extend an implementation of such a module to
maintain an additional set of state variables that collectively represent an abstraction of
the original module, and to modify each of the module’s called methods to update these
derived fields at entry and exit. The invariant detector can then be directed to focus only on
invariants that include these derived fields and to exclude invariants referring to the original
concrete fields.

Effectively, the desired abstraction has been merged with the concrete object, and the
invariant detector has been directed to ignore the bulk of the concrete object. This parallels
the ghost field of JML (see Java Modeling Language (JML)), which is a specification-only
field that is updated via explicit specification directives.

This technique, while guaranteed to work in any invariant detector, is tedious
and requires modification of the source code to implement the updating of the derived
abstraction variables at entry and exit. In the next section, we describe a feature of Daikon

known as a purity-file that simplifies this process.

3.3.4. Inline Pure Methods

In the case of Daikon, it is possible to declare a set of member functions to be pure,
meaning that they promise to not modify any object state when called. This capability
is enabled via the —purity-file option, which allows functions to be listed in a file. These
functions will be evaluated at function entry and exit and the results will be included in the
trace stream as though they were ordinary member variables. This enables Daikon to report
invariants over a larger lexicon that includes these pure functions.

This mechanism of including the value of pure functions in the trace stream is a form
of abstraction, where the pure function is presumably abstracting some values derived from

the object’s state into a new value that is more meaningful. For example, the size() method

63

for a container class is a good candidate for being a pure function. It abstracts a complex
data structure (e.g., a tree) into a much simpler value (e.g., an integer) that is more useful
to an analyst and that is more amenable to the limitations of a dynamic invariant detector,
which may be limited in the types of data it understands.

This parallels the model field of JML (see Java Modeling Language (JML)), which is
a specification-only field whose value is derived from fields in the concrete object. This
mechanism is similar to the basic feature of Alembic which enables a trait’s state variable
to be derived from the concrete object via a lift_state clause. However, the use of inline
abstractions and an associated purity-file has the following problems:

e There will not always be an existing pure method on the class that expresses a
desired abstraction, so an analyst might need to add such a method. However,
this violates the separation of concerns by mixing the analyst’s abstraction and
instrumentation code with the implementor’s code.

e Daikon sees no difference between the pure abstraction functions and the
concrete state variables, so in its search for invariants, it will report relationships
between the pure function and the concrete state; these relationships are true,
but irrelevant, and they distract from the important invariants that the analyst
seeks. We use the term cross-talk for this problem of the detector trying to infer
relationships between the concrete and the pure function. It is a general problem
whenever an abstraction is placed inline with the thing that is being abstracted.
Alembic addresses this by moving the abstracted information into its own class,
where it can be measured separately from the concrete class underlying the

execution.

3.3.5. Explicit Abstraction

The abstraction mechanisms described above all rely upon the invariant detector
measuring the concrete instance when its methods are invoked, and capturing state
associated with the concrete instance (directly via member variables, or indirectly via
inline abstracted state or pure functions). Isolating the abstraction variables requires
filtering to separate them from the concrete variables. This naturally leads to the idea
of creating a separate abstraction instance that parallels the concrete instance, and to locate
the abstraction variables in that lifted instance. If we have an interface to our invariant
detector that lets us pretend to invoke methods on the abstraction, then we can perform
invariant detection on the abstraction, obtaining results that are isolated from the concrete

variables, yet informed by them.

64

There are other benefits to creating a separate abstraction object. One of the initial
motivations for our research on abstraction involved behavioral subtype invariant detection,
where we needed to create abstractions that corresponded to the superclasses of an instance,
and to propagate traces to these synthetic classes. As we will detail in 3.4. Alembic),
Alembic adopts this idea of creating an explicit abstraction object and applying the invariant
detector to it. We will show other examples in Chapter IV that involve creating abstraction
instances that do not correspond to concrete instances, and could not be solved in Daikon

alone.

3.3.6. Aspect]

The most powerful and general abstraction techniques proposed above require that the
concrete source code is modified in some way. This modification might be the addition
of special pure functions to be used by a purity file or the addition of instrumentation to
update inline abstracted state variables or to synthesize traces to an explicit abstraction. In
any case, the requirement that source code be modified to perform analysis is problematic.

One way to address this is to use a code-weaver like Aspect] [Kiczales et al., 2001],
which allows all of these code modifications to be specified in a separate set of aspect files.
The ajc compiler is used instead of javac for compiling source files and aspect files; the
compiler weaves the code amendments from the aspect files into the final set of compiled
class files. Another benefit is that Aspect] does not require source code at all; it is able to
weave code into compiled class files or libraries.

Our initial work on abstraction involved the manual creation of abstraction classes
and the hand-modification of concrete methods to synthesize invocations on the abstracted
methods. This was extremely tedious and inflexible, but sufficient to demonstrate the
promise of abstraction. We adopted Aspect] as a way to more easily insert the required
trace generation at function entry and exit, but found that its capabilities were very useful
in other ways. For example, we use Aspect] to place the representation function generated
by the lift_state clause into the concrete class. Effectively, we are adding an abstraction-
specific pure function to the concrete class. Porting Alembic to a non-Java platform would
necessitate adopting a different code-weaving facility, such as AspectC++ [Spinczyk et al.,
2005].

3.4. Alembic

Alembic is a language and system for specifying and performing dynamic program

analysis. Specifically, the dynamic analysis will infer behavioral specifications from

65

executing programs by using the dynamic invariant detection mechanism upon classes that
are synthesized from corresponding Alembic language declarations.

Some of the examples of abstraction presented in this dissertation could be developed
manually by explicitly creating abstraction classes and explicitly inserting instrumentation
into concrete classes, as we described in the preceding sections. However, the tedium and
brittleness of such a solution makes it impractical. To address this, we developed Alembic
to manage the generation of abstraction classes, the weaving of instrumentation, and the
management of the multi-phased build and analysis process. Our experience so far has been
positive; we can conceive and perform experiments rapidly by simply editing an Alembic
source file and executing it.

One way to view dynamic invariant detection is as a series of processes (micro-
invariant detectors) that are fed trace streams via some instrumentation mechanism. These
trace streams contain a record of the value of arguments and state variables for all of
the targeted function entry and exits. The micro-detectors read these streams and infer
invariants that describe the observed patterns of behavior. Alembic generalizes this notion

by providing a mechanism for trace propagation and trace transformation.

3.4.1. Using Alembic for Analysis

The first step in using Alembic for program understanding is to create an Alembic
source file that describes the program to execute and the trait and view declarations to apply
and analyze. For our purposes, we assume that a human creates the Alembic file, although
the language is designed to be easily generatable by other tools. We also assume that the
author has knowledge of the interface of the targeted class, including of any variables that
might be needed for a view’s lift_state clause.

The Alembic compiler is then used to parse the Alembic file, creating an execution
environment and script. Executing this script results in the generation of a Java class for
each trait, an Aspect] aspect for each view, and an aspect for each concrete class to be
instrumented. Alembic then executes the target program in conjunction with the generated
classes and aspects and Daikon’s trace generation library.

The traces that result from the above execution are synthetic traces upon the
abstraction class’s methods, and it is these that are fed to the traditional detector (Daikon)
for invariant detection. The invariants reported by this detector are then post-processed
slightly for readability before being output to the user as the result of the Alembic analysis
(see Figure 3.1).

66

e R
Alembic
abstract instrument monitor format
MMPQ.alembic I [
trait Length]...] A " Daikon
view TolLength]...] spect (runtime portion)
program ...
execution ...
analysis ...

MMPQ.class o

AR Y
[~

Length.offer(...) ::: EXIT

ToLength > Lengff’ length — orig(length) ==

S

Figure 3.1. The Alembic invariant detection process. Traits defined in an Alembic file
are translated into Java source files (not shown) with empty implementations. Views are
inserted into the class under test through a combination of BCEL and Aspect], and feed
pseudo-events on the abstraction classes to the dynamic analysis portion of Daikon.

Abstraction via Alembic provides an additional way to analyze a module, which can
often lead to improved understanding of that module. Alembic can be used to supplement
or to replace traditional invariant detection. The analyst effort in constructing an Alembic
file is proportional to the sophistication of the abstraction; the bookkeeping needed to apply
the abstraction is hidden, providing leverage for the analyst.

In addition to reducing the amount of glue code necessary to express an abstraction,
Alembic provides a syntax that is more expressive and concise than manual encoding of
abstractions and the requisite aspects and adaptors. One other advantage of a DSL (domain-
specific language) like Alembic is the possibility of determining errors at compilation time,
based upon the global knowledge available to the alembic compiler. Alembic does not
currently implement a deep error analysis prior to generating code, although this is clearly
possible in the framework.

Alembic is designed to be used by an analyst by first creating an Alembic source file
that specifies the target program and one or more execution configurations. Together, these
will be sufficient information to build and execute the target program. We assume that the
author has some knowledge of the interface of the targeted class, including of any variables
or accessor methods that might be needed for the view’s lift_state function.

We begin by declaring one or more traits in an Alembic file (see Listing 3.1). These

will result in the generation of corresponding abstraction classes. If the use clause is

67

specified, then a static abstraction is performed on the concrete class. This build-time
operation populates the generated abstraction class with methods that are based upon the
concrete class’s public methods.

Finally, one or more views are declared in the Alembic file. These specify the
abstraction functions via the lift_state clause, as well as when and how they should be
applied to the concrete invocations.

The alembic compiler is then used to parse the Alembic file, creating a runtime
script and environment (a build directory and a makefile). Executing these results in the
generation of a Java class for each trait and an Aspect] aspect for each view. After all
necessary code is generated, the system executes the target program in conjunction with
the generated classes and aspects and Daikon’s trace generation library.

The traces that result from the above execution are synthetic traces upon the
abstraction class’s methods, and it is these that are fed to the traditional detector (Daikon)
for invariant detection. The invariants reported by this detector are then post-processed
slightly for readability before being output to the user as the result of the Alembic analysis.

We can conceive of Alembic applications where the .alembic file is generated by
another tool, rather than hand-crafted by an analyst. For example, it may be possible to
derive view and trait information from a JML specification so that invariant detection can
be performed on the JIML model fields. Or perhaps a preprocessor could generate .alembic
files and .patch files to automatically instrument loops and perform loop analysis upon

them (see 4.3.2. Abstract Functions and Loop Abstraction).

3.4.2. Structure of the Alembic Language

The Alembic syntax is primarily declarative, although there may be embedded Java
code to implement representation functions and other customizable aspects of Alembic. An
Alembic file consists of a series of declarations of the following constructs:

trait This declares state variables and method definitions and results in the
generation of a Java class that represents an abstraction and serves as the target
of dynamic invariant detection. The use clause enables the copying of method
signatures from a concrete class, simplifying the abstraction of concrete classes
as traits.

view This represents the [ift operation that translates executions on a concrete object
into executions on an abstract trait. Minimally, a view must specify a lift clause

indicating the underlying concrete class to instrument and the target trait to use

68

Listing 3.1. An Alembic file that abstracts invocations of MMPQ into two traits, Length
and Sorted (1 of 2).

trait Length
[

use com.google.common.collect. MinMaxPriorityQueue;
state int length;

]

trait Sorted
[

use com.google.common.collect. MinMaxPriorityQueue;
state int[] sorted;

]

view ToLength

[

lift com.google.common.collect. MinMaxPriorityQueue<?> to SortedObjects;
trait Length;
lift_state

{
}

abs.length = this.size();

]

view ToSorted

[

lift com.google.common.collect. MinMaxPriorityQueue<?> to SortedObjects;
lift_state

{
}

java.util.Arrays.sort(abs.sorted = this.toArray());

69

for synthetic traces. The view also provides a lift_state clause to perform state
abstraction, a lift_method clause to perform method transformation.

program This declaration identifies a program or library to be built, via the builddir

option, and specifies the traits and views to include via the traits and views
clauses.

execution An execution declaration specifies a particular, parametrized running of a

previously declared program referred to via the program clause. The rundir and
main clause indicate which main program should be used and where it should
be executed. The args clause allows runtime arguments to be specified in the
Alembic file that will be passed to the program execution.

analysis The analysis keyword is currently necessary in Alembic, but has no useful

options other than referring to a prior execution via the execution keyword.

Alembic distinguishes between the static interface defined by trait and the dynamic
transformation defined by view, rather than having a single construct that manages both the
representation and transformation. This is to support abstraction patterns where multiple
concrete methods or classes can be lifted to a single trait or a single method within a trait.
Together, these separate constructs allow a rich variety of abstractions to be constructed,
upon which an invariant detector can perform its inference.

An Alembic script includes blocks defining and applying explicit abstractions, and
directives controlling the execution and analysis processes. A simple form of block
inheritance allows attributes declared in one block to be used in another, simplifying
construction of Alembic scripts with multiple abstractions and views targeting a common

class.
(Script) ::= ((Abstraction) | (Control))*

(Abstraction) ::= (Trait) | (View)
(Control) ::= (Program) | (Execution) | (Analysis)

The shape of an abstraction is defined separately from the /ifting mechanism that
extracts it from concrete state; in some cases, we wish to lift multiple sources to a common
abstraction so that the same abstract state, such as a set of ordered pairs, can represent
different concrete structures, such as a hash table and search tree implementations of a
dictionary. The trait declaration can contain state variables and a subset of methods derived

from a concrete Java class.

70

(Traity ==traitid[: id]
[((TraitAttr);)*

(TraitAttr) ::= state type-id id
| use classname : regexp
| trait id
| class classname

| filter regexp

The class and filter attributes of a trait create methods in the abstraction class mirroring
the public methods in a concrete class; variants specialized to extracting method definitions
from jar files and source code libraries are also provided. filter allows a subset of methods
matching a regular expression to be copied. The syntax use <class> : <filter> is a
convenient way to specify these options.

A view defines the mapping from the concrete class (the class and filter attributes)
to a trait; it is effectively a functor from the concrete class to the abstract class generated
from the trait. The lifting function from concrete to abstract state is specified operationally
as Java code in the lift_state attribute. The optional lift_ method clause enables explicit,
dynamic control of the abstraction process, which allows values to be transferred between
state, argument and result variables prior to invoking a method on the trait.

(View) n=viewid|[: id |
[((ViewAttr);)* 1

(ViewAttr) ::= trait id
| as_method method-name
| class class-name
| 1ift_state { Java code }
| 1ift_method method-name
[(EnterGlue) (ExitGlue) 1

The control part of an alembic script manages the execution and analysis workflow. A
program specifies the subset of declared traits or views to be applied, as well as build and
environment options for the concrete program; an execution specifies which program to
run, along with its parameters; and an analysis determines what kind of invariant detection

is performed for each execution.

71

(Program) =programid|[: id]
[((ProgramAttr);)*]

(ProgramAttr) ::=builddir directory path

| traits string | views string

(Execution) =executionid| : id]

[((ExecutionAttr);)* |

(ExecutionAttr) ::= rundir directory-path
| program id
| main class-name

| argument s string

(Analysis) = analysisid[: id]
[((AnalysisAttr);)* 1
(AnalysisAttr) = classes string

| execution id

3.4.3. Performance Characteristics

Our experience with Alembic so far has shown that it introduces no significant
overhead to the use of dynamic invariant detection. In this section, we break down the
various factors that could potentially contribute to Alembic’s overhead. There are three
primary components that impact the user’s experience using Alembic:

Building This is the time required to compile the Alembic file, generate Java classes
and Aspect] aspects, and to compile these components and the main program
specified in the program clause of the Alembic file. This is a relatively fixed cost,
proportional to the number of signatures copied or instrumented via use and lift
clauses. We do not consider it a significant factor affecting the tool’s utility.

Execution This is the time required to run the target program, plus the overhead
of instrumentation, abstraction, and trace generation. Alembic and Daikon
both must bear the cost of instrumentation and trace generation; Alembic’s
representation functions (lift_state) add an additional cost that Daikon does not
share. However, this extra cost may be offset by a reduced amount of data
that must be emitted as traces; several of our Guava examples in Chapter IV

demonstrate this reduction in trace size and overall execution time. In principle,

72

one might write a very complex lift_state function that is very expensive; however,
our experience has been that in practice the execution time of the representation
function is insignificant compared to the impact of trace size on execution time.

Analysis This is the time required for the reading and interpretation of generated

traces. Alembic plays no part in this phase, except in its influence on the size and
content of the traces. As with the Building component, we treat this as a fixed
cost and do not measure it further.

We focus our performance analysis on the Execution component above, because it
is the only place where non-linear Alembic overhead could jeopardize its utility. We
first compare the execution time for the MMPQ unit test program under various levels
of invariant detection and abstraction, which we show in Table 3.1. We chose this test
program because it is the most robust of the Guava tests and has a relatively long execution
time. The timing code is inserted into the main program after any initialization has been

performed.

Table 3.1. Execution overhead for different levels of invariant detection on the MMPQ unit
test. The time reported is elapsed wall clock time in seconds.

Level Description Time

Raw Test Unmodified execution of the program without Daikon or 0.5
Alembic.

Daikon Test Daikon instrumentation and tracing, filtered to include only 29.2

public, non-static methods. No Alembic used.

Stateless Abstraction of MMPQ to a trait with no state or lift_state 94
used.

Integer Abstraction of MMPQ to a trait with single integer state 11.8
variable with trivial lift_state used.

Pair Abstraction of MMPQ to a trait with two integer state 13.1
variables with trivial lift_state used.

Length Abstraction of MMPQ to an integer length. 11.8

SortedObjects Abstraction of MMPQ to a sorted array. 20.8

The times in Table 3.1 reveal that the default Daikon instrumentation of MMPQ’s
public, non-static methods adds almost 29 seconds to the raw unit test cost of 0.5 seconds.
When we consider the various Alembic abstractions, we see that the primary factor in
execution time is the size of trace generated, which is based upon the number and types of
the variables traced. A scalar state variable will have a small trace footprint, whereas an

array of arrays will have a potentially much larger trace.

73

If we look closer at the phases of processing and abstraction that Alembic uses, we
can isolate the various costs involved, which we report in Table 3.2. The elapsed time
reported for each was gathered by incrementally modifying the Alembic code generator to
add successively more layers of processing, until the ultimate generation of abstract traces.
From the table, it is clear that the bulk of the overhead is in the trace generation. The
costs of the Aspect] instrumentation and the lift_state function are overwhelmed by the cost
of trace generation. This fact is in Alembic’s favor, because Alembic provides a way to

control the size of the trace file in more selective ways that Daikon alone.

Table 3.2. Execution overhead for phases of Alembic on the MMPQ unit test
(SortedObjects trait), broken down into the steps involved in instrumentation, abstraction,
and trace synthesis. The time reported is elapsed wall clock time in seconds.

Phase Description Time

Raw Test Unmodified execution of the program without Daikon or 0.5
Alembic.

No Trace Daikon Executed under control of Daikon, but no traces emitted. 1.0

Aspect] Aspect simply proceeds and perform no further abstraction 1.6
or tracing.

Adaptor Aspect manages the dispatch and interlocks that enable 1.6
multiple abstractions, but no lifting or trace generation
occurs.

Lift lift_state is invoked, but no traces are generated. 2.6

Trace Traces are generated from the abstracted invocations. 20.8

3.4.4. Modifications to Daikon

Alembic relies upon the ability to fool the back-end invariant detector into thinking
that a method was invoked on an abstraction object, so that invariant detection is
performed upon these synthetic invocations. In the case of Daikon, we used the methods
Runtime.enter and Runtime.exit within the daikon.chicory package. Daikon’s instrumenter,
Chicory, will ordinarily insert Java bytecode to call Runtime.enter at the beginning of an
instrumented method body, and to call Runtime.exit before each return in the method body.
Alembic’s generated abstraction classes contain a pair of methods liftEntry_someMethod
and liftExit.someMethod for every method someMethod that exists in the trait. These lift
methods are responsible for converting argument types into the wrappers necessary for

Daikon, and then calling the Daikon enter/exit methods to generate traces.

74

One requirement for Alembic to use Daikon’s Runtime.enter and Runtime.exit is that
we provide a method index, which is an integer index identifying a unique class and
method combination. These method indexes are generated within Daikon (specifically,
Chicory) when it loads class definitions to be analyzed for instrumentation. We made a
small modification to Daikon such that it maintains a hash table that can efficiently turn a
class and method name into a method index and we use this when initializing Alembic’s
generated abstraction classes to compute the method indexes necessary to synthesize
invocations.

One additional improvement we made to Daikon’s Chicory tool was to enable filtering
of the getClass() pseudo-variable via the Chicory —omit-var command-line option. This
variable was not being correctly excluded from traces, so we made a modification to

Chicory so that it honored the —omit-var=getClass we use for Alembic and Daikon.

3.5. Non-Daikon and Non-Java Implementation

Although we are using Java and Aspect] for the current implementation of Alembic,
the technique is amenable to any language where we can obtain the value of visible
variables at function entry and exit. Instrumentation for other languages would require
the use or development of something like Aspect]. There are existing aspect-oriented
programming (AOP) systems for many languages, including C++ [Spinczyk et al., 2005],
that could provide the needed mechanism. Even in the absence of AOP support, all that
Alembic really needs is a way to insert code into methods at entry and exit points; this is

achievable with existing tools, although AOP makes the solution easier to support.

75

Listing 3.2. An Alembic file that abstracts invocations of MMPQ into two traits, Length
and Sorted (2 of 2).

program MMPQP

[
builddir ". ./../examples/MMPQ/";
views "ToLength ToSorted";

]

execution MMPQPE

[
program MMPQP;
rundir"../../examples/MMPQ/";
main "MMPQUnitTest";

]

analysis MMPQPEX1

[
execution MMPQPE;

]

76

CHAPTER IV

EXAMPLES, EVALUATIONS AND RESULTS

Portions of the material in this chapter were co-developed with Yannis
Smaragdakis and Michal Young for an unpublished paper. They helped with
the experimental design and data presentation.

In the previous chapter, we presented Alembic and illustrated some of its capabilities
with simple examples. We continue in this chapter with a more systematic evaluation of
Alembic as well as a presentation of some of the more interesting abstraction capabilities
possible.

Our research is oriented towards the exploration of abstraction techniques, some of
them immediately practical, and some of them we considered because they seemed to
follow naturally from our work or seemed to be promising paths for future researchers.
This chapter begins with a description of the methodology, software and environments
used for the experiments presented in the remaining sections. We use the term experiment
loosely here; it is intended to indicate a usage scenario consisting of a goal (e.g., module
understanding or clarification), execution and subsequent analysis.

The first type of scenario we consider is oriented around simple state abstraction
of container classes, including several representative classes from the Guava Java
Library [Google, 2011]. We will show how we can [ift potentially opaque implementation
state into simple and transparent data structures that are more suitable for invariant
detection.

We then look at some of the more exotic abstraction techniques enabled by Alembic,
including loop invariants and history constraints. These examples are still preliminary, but
illustrate the potential for Alembic in enabling invariant detection to be applied in a wider
context. We conclude this chapter with a discussion of Alembic’s performance implications

by dissecting the overhead of the various phases of instrumentation and abstraction.

4.1. Evaluation Methodology

Our research introduces an enhanced form of dynamic invariant detection, where the
user can mine invariants associated with abstracted versions of targeted concrete classes.
In the following sections of this chapter, we will present a series of usage scenarios for
this type of enhanced detection. We make the case that this new analytic technique, and

its implementation in Alembic, can provide better insight into a module’s behavior than

77

can a detector observing only concrete behavior. This better insight may sometimes be
in the form of a reduced set of invariants for the human analyst to study, or in the form
of invariants that are expressed in terms of methods and variables suited to the analyst’s
desired level of abstraction and understanding. In some cases, abstraction is used simply
to transform an opaque data structure into something more visible and manipulable by a
dynamic invariant detector.

These characteristics are inherently subjective, so our case for the value of abstraction-
enhanced invariant detection will be primarily based upon showing examples of Alembic
in action. We will, however, adopt a few metrics to attempt to quantify this notion of better
invariant detection.

Alembic Script Lines The size of the input Alembic file in terms of source lines,
ignoring blank lines and lines with only brackets. This usually reflects the effort
that an analyst needs to use to extract useful information from the invariant
detection tool. We treat the Daikon script size as a constant to favor Daikon
in our comparison; however, we actually must add —ppt-omit-pattern clauses to
the Daikon script in order to filter out private and static methods so that the trace
file size and execution time comparisons are meaningful.

Source Lines The number of source lines of the class under analysis. This is a crude
surrogate for the class’s complexity, but it is easily obtained and is a widely
accepted metric.

Methods Instrumented The number of methods which were instrumented, even if
no invariants were reported. In our invariant listings, we ignore methods for
which no invariants are reported, even if we requested their instrumentation.
Usually, an empty report indicates that the methods were never called, or that
no detectable pattern was observed (i.e., an invariant of true) in the invocations.

Invariants Reported The number of invariants reported for public, non-static
methods and the object invariant. In the case of Daikon, we use explicit
—ppt-select-pattern qualifiers to include only these methods to ensure fairness
in comparison with Alembic.

Number of State Variables The number of visible variables available for use in
invariant expressions. Generally, the number of invariants scales combinatorially
with the number of visible variables.

Trace File Size For a given test program of an instrumented module, the size of the
trace file generated is indicative of the amount of data being captured, and of the
amount of data that must be analyzed by the detector. We indicate this file size in

units of megabytes. Daikon uses compressed files for transport and archive, but

78

generates and consumes uncompressed files; we show both sizes in most cases
below.

Execution Time Each test driver we use captures the wall-clock execution time via
Java’s System.nanoTime() function and reports this time in seconds. For most
tests, we encapsulate the central driver loop in timing code, and leave any one-
time initialization code outside of the timing block.

Ideally, the Alembic input and output quantities above would be smaller than the
corresponding Daikon quantities for each problem we present. However, there are cases
where the additional insight made available by Alembic is impossible with Daikon alone,
or where an increase in the effort crafting an Alembic file pays off in a more focused

invariant report.

4.1.1. Hardware and Software

The results in this section were obtained using the following hardware and software

environment:

e Apple MacBook Pro (2009 aluminum unibody model)

e Intel Core 2 Duo 2.66GhZ Processor

e 4GB Memory

e JavaSE 1.6

e Mac OS X 10.7.2 (Lion)

e Daikon version 4.6.4

e Aspect] Compiler 1.6.12

e ANTLR v3.3

e Python 2.7.1

e Guava Release 09'

4.1.2. Experimental Setup

Only public instance methods will be instrumented for both Alembic and Daikon
experiments. Daikon instruments all methods by default and there is no convenient way
to instruct it to operate on public methods only, so we simply exclude the non-public or
static methods from the metrics we report. Alembic traits, on the other hand, are generated

such that only the intended methods are instrumented.

'Our original Guava work began with Guava release 09, which we have continued to use. The current
version of Guava as of January 2012 is Guava Release 11.

79

4.2. Guava Collection Classes

One of the common usage scenarios we anticipate with Alembic is where a stateful
concrete object is to be analyzed by creating an abstracted version of the object that has
abstracted state variables, and method signatures that match the public, non-static methods
of the concrete class®>. We call this type of abstraction state abstraction, and Alembic is
well-suited to expressing experiments that perform invariant detection on abstractions of
stateful objects. The subsections below describe individual use cases where we choose a
container class from the Guava library and develop a few abstractions to apply. Our intent
isn’t to show that the particular abstractions we choose are the best or smallest, but to show
that the analyst has some control over the invariant detection process, and that playing
around with different abstractions is quite easy in Alembic.

We begin below with a detailed continuation of the MMPQ example from Chapter
I, followed by analyses of representative container classes from the Guava library. The
Guava library [Google, 2011] is a set of Java classes developed by Google for its
Java-based applications. We chose this library because it is a real production library
actively used in widely deployed applications, because it has easily available source
code, and because it provides a set of container classes that are highly optimized, but
mostly inscrutable via traditional invariant detection. In addition to the container classes
(com.google.common.collect.*), Guava provides a rich set of classes that make Java

programming more powerful and pleasant. These include:

Precondition testing mechanisms

Better handling and of exceptions and errors

Cache management utilities

Concurrency abstractions to simplify writing correct concurrent code
e String manipulation utilities
e Math utilities
We focus on the collection classes for our simple state abstraction examples because
collections have optimized and usually inscrutable data structures as their implementation
of state, making a traditional concrete invariant detector less useful for their analysis.
However, these classes are ideal candidates for applying abstraction techniques which lift

this optimized concrete state into simpler data structures more accessible to a dynamic

%In the next section, we will consider more exotic abstraction patterns where the abstraction may have a
distinct set of methods from the concrete class, and where multiple concrete methods are lifted to a common
abstract method.

80

invariant detector. Later examples in this chapter will use additional abstraction techniques

for other, non-collection, classes.

4.2.1. MinMaxPriorityQueue

The MinMaxPriorityQueue (MMPQ) example from Chapter I was a simple one, where
we created an abstraction with a single offer method whose signature matched the concrete
MMPQ.offer method (Listing 1.5). We used a lift_state clause to declare our representation
or abstraction function, which abstracted the concrete queue as a sorted array of objects.
The resulting invariants revealed the behavior of offer in terms of the trait SortedObjects.
Although we only had our Alembic file from Chapter I consider the offer method, this was
simply an optimization to reduce the amount of trace data generated.

In this section, we will repeat the experiment without the offer filter, so that all of the
public methods in MMPQ will be abstracted into the SortedObjects trait. In addition, we
will replace our handcrafted test driver, MMPQTest, with a new test driver, MMPQUnitTest,

that runs most of the unit tests from the Guava distribution?

. We do this to reduce any
perceived bias in our testing regime, as well as to provide us with richer tests for free. The
remainder of the Guava tests in this chapter will be instrumenting all public methods and
using the Guava-provided unit tests when possible.

We summarize the important metrics associated with this comparison experiment in
Table 4.1, where we present the common attributes of the test as well as the metrics used
to compare Daikon and Alembic. Note the reduced amount of invariants for the Alembic
run, as well as the reduced execution time. These quantities will not always be lower for
Alembic, depending on the size and complexity of the abstraction; however, they do show
that reasonable results can be obtained without significant overhead difference from Daikon
alone. The Guava experiments we present in this chapter all of Alembic execution times
that are the same order of magnitude as the corresponding Daikon execution times, and
sometimes smaller.

The Alembic file in Listing 4.1 will instrument all of the public methods in MMPQ
and will exercise the module using the more thorough unit test in Listing 4.2. The resulting
invariants are displayed in Listing 4.3 and Listing 4.4 below. Note that Daikon uses the
suffix ::ENTER to represent an entry program point, and :::EXIT for an exit point, which

syntax Alembic passes through to its final report.

3The unit tests consist of a main test function that invokes a series of roughly 35 Guava-provided tests
of different MMPQ features and capabilities. The amount of time and space used by Daikon for some of
these tests was prohibitive, so we opted to not use them for our comparison, although Alembic would likely
perform better in these cases. The remainder of the Guava tests use unmodified unit tests from Guava.

81

Listing 4.1. The MMPQ.alembic file, containing definitions required to lift method
invocations on MMPQ to method invocations on the SortedObjects trait, via the
ToSortedObjects view.

trait SortedObjects
[

use com.google.common.collect. MinMaxPriorityQueue;
state Object[] sorted;

]

view ToSortedObijects

[

lift com.google.common.collect. MinMaxPriorityQueue<?> to SortedObjects;
lift_state

{
}

java.util.Arrays.sort(abs.sorted = this.toArray());

]

program MMPQP
[

builddir ". . /. ./examples/MMPQ/";
views "ToSortedObjects";

]

execution MMPQPE

[
program MMPQP;

rundir "../../examples/MMPQ/";
main "MMPQTest";

]

analysis MMPQPEX1
[

]

execution MMPQPE;

82

Listing 4.2. A fragment of our test driver MMPQUnitTest which invokes most of the
battery of Guava-provided unit tests to exercise MMPQ. Some Guava-provided tests were
prohibitively expensive for Daikon to analyze, and were therefore omitted from our test
driver for both Alembic and Daikon.

import com.google.common.collect.x;

// Guava—provided unit tests invoked below
testCreation_simple();
testCreation_comparator();
testCreation_expectedSize();
testCreation_expectedSize_comparator();
testCreation_maximumsSize();
testCreation_comparator_-maximumsSize();
testCreation_expectedSize_maximumSize();
testCreation_withContents();
testCreation_comparator_withContents();
testCreation_expectedSize _withContents();
testCreation_maximumSize_withContents();
testCreation_allOptions();

testSmall();

testSmallMinHeap();

testRemove();

testContains();
testlteratorPastEndException();
testlteratorConcurrentModification();
testlteratorRegressionChildlessUncle();
testlnvalidatingRemove2();
testinvalidatingRemove2();
testlteratorinvalidatinglteratorRemove();
testlteratorinvalidatinglteratorRemove2();
testCreateWithCapacityAndOrdering();

try { testlteratorTester(); } catch (Exception e) {}
try { testlteratorTesterLarger(); } catch (Exception e) {}
testRemoveAt();
testCorrectOrdering_regression();
testCorrectOrdering_smallHeapsPollFirst();
testCorrectOrdering_smallHeapsPollLast();
testCorrectOrdering_73ElementBug();
testRegression_dataCorruption();
testlsEvenLevel();

try { testNullPointers(); } catch (Exceptione) {}

83

Listing 4.3. Alembic invariants for MMPQ as exercised by MMPQUnitTest using the view
ToSortedObijects to abstract the concrete object to the SortedObjects trait. Program points
without reported invariants have been excluded from this listing (1 of 2).

SortedObjects:::OBJECT
this has only one value
this.sorted != null
this.sorted[] elements != null

SortedObjects.add(java.lang.Object):::ENTER
element != null

SortedObjects.add(java.lang.Object):::EXIT
size(this.sorted[])—1 == orig(size(this.sorted[]))
return == true
size(this.sorted[]) >= 1
orig(element) in this.sorted[]

SortedObjects.addAll(java.util.Collection):::ENTER
this.sorted[] == []

SortedObjects.addAll(java.util.Collection):::EXIT
return == true
size(this.sorted[])—1 > orig(size(this.sorted[]))

SortedObjects.comparator():::ENTER
size(this.sorted[]) one of { 0, 6 }

SortedObjects.comparator():::EXIT
this.sorted[] == orig(this.sorted[])
size(this.sorted[]) one of { 0, 6 }

SortedObijects.iterator():::EXIT
this.sorted[] == orig(this.sorted[])

SortedObijects.offer(java.lang.Object):::ENTER
element = null

SortedObijects.offer(java.lang.Object):::EXIT
size(this.sorted[])—1 == orig(size(this.sorted[]))
return == true
size(this.sorted[]) >= 1
orig(element) in this.sorted([]

84

Listing 4.4. Alembic invariants for MMPQ as exercised by MMPQUnitTest using the view
ToSortedObjects to abstract the concrete object to the SortedObjects trait. Program points
without reported invariants have been excluded from this listing (2 of 2).

SortedObjects.peek():::EXIT
this.sorted[] == orig(this.sorted[])

SortedObjects.peekLast()::EXIT
this.sorted[] == orig(this.sorted[])

SortedObjects.poll():::EXIT
size(this.sorted[]) <= orig(size(this.sorted[]))
size(this.sorted[]) >= orig(size(this.sorted[]))—1
size(this.sorted[])—1 <= orig(size(this.sorted[]))—1

SortedObjects.pollFirst():::ENTER
size(this.sorted[]) >= 1

SortedObjects.pollFirst():::EXIT
size(this.sorted[]) == orig(size(this.sorted[]))—1
return in orig(this.sorted[])

SortedObjects.pollLast():::EXIT
size(this.sorted[]) <= orig(size(this.sorted(]))
size(this.sorted[]) >= orig(size(this.sorted[]))—1
size(this.sorted[])—1 <= orig(size(this.sorted[]))—1

SortedObjects.size():::EXIT
this.sorted[] == orig(this.sorted[])
return == size(this.sorted[])
return == orig(size(this.sorted[]))

85

Table 4.1. Alembic and Daikon analyses of MMPQ.

Abstraction MinMaxPriorityQueue (MMPQ) as a sorted array of
objects, in ascending order.

Class Size (lines) 947

Public Methods 16

Raw Execution (seconds) < 1.0

Alembic Script (lines) 18

Daikon Alembic

Number of Invariants 352 34
Trace file compressed (M) 4.5 6.5
Trace file uncompressed (M) 248 153
Execution Time (sec) 30 22

We can use Daikon to observe the same unit test execution by using the commands
in Appendix A (Listing A.1). This generates over 350 invariants, most of which are not
useful for specification purposes or much of anything. The invariants are referring to
internal variables that are used in the implementation of a class, and not to variables that
clearly express the desired abstract class. The state variables needed to implement a class
efficiently is often not the same set as the state variables that best express the abstract
behavior of the class, which is one reason why Alembic can be useful in presenting an
abstracted class for invariant detection.

We show the first two pages of the ten pages of Daikon output for the same test in
Listing 4.5 through Listing 4.6 below. As can be seen in the Daikon output for this example,
most of the invariants are useless for us to infer the behavior of this class, or even whether
it is behaving according to its documented specification. On the other hand, the Alembic
invariants nicely express the behavior of the methods in terms of our desired abstraction
as a sorted list of objects. The entirety of the Daikon output has been placed in several
listings in Appendix B (Listing B.1). For subsequent Guava examples, we will not display

the Daikon output in its entirety for space reasons.

4.2.2. HashBasedTable

The next experiment we describe involves the Guava collection class HashBasedTable

(HBT). We summarize our results in Table 4.2, and present details about the comparison

86

Listing 4.5. Partial listing of Daikon invariants for methods of MMPQ exercised by
MMPQTest (1 of 2).

MMPQ:::OBJECT
this.minHeap != null
this.maxHeap != null
this.maximumSize one of { 42, 2147483647 }
this.queue != null
this.size >=0
this.modCount >=0
this.maximumSize > this.size
this.maximumSize > this.modCount
this.maximumSize |= MMPQ.EVEN_POWERS_OF_TWO
this.maximumSize > MMPQ.ODD_POWERS_OF_TWO
this.maximumSize > MMPQ.DEFAULT_CAPACITY
this.maximumSize > size(this.queue][])
this.size <= this.modCount
this.size < MMPQ.EVEN_POWERS_OF_TWO
this.size > MMPQ.ODD_POWERS_OF_TWO
this.size <= size(this.queue[])
this.modCount < MMPQ.EVEN_POWERS_OF_TWO
this.modCount > MMPQ.ODD_POWERS_OF_TWO
MMPQ.EVEN_POWERS_OF_TWO > size(this.queue[])
MMPQ.ODD_POWERS_OF_TWO < size(this.queue[])—1

MMPQ.add(java.lang.Object):::ENTER
this.maximumSize == 2147483647
element != null

MMPQ.add(java.lang.Object):::EXIT
this.minHeap == orig(this.minHeap)
this.maxHeap == orig(this.maxHeap)
this.maximumSize == orig(this.maximumSize)
this.queue[this.size—1] == this.queue[orig(this.size)]
this.maximumSize == 2147483647
this.size >=1
this.modCount >= 1
return == true
this.queue[this.size—1] != null
this.maximumSize > orig(this.size)
this.maximumSize > orig(this.modCount)
this.maximumSize > orig(size(this.queuel[]))
orig(element) in this.queue]]
this.size — orig(this.size) — 1 ==

87

Listing 4.6. Partial listing of Daikon invariants for methods of MMPQ exercised by
MMPQTest (2 of 2).

this.size != orig(this.modCount)

this.modCount > orig(this.size)

this.modCount — orig(this.modCount) — 1 ==0
MMPQ.EVEN_POWERS_OF_TWO > orig(this.size)
MMPQ.EVEN_POWERS_OF_TWO > orig(this.modCount)
MMPQ.ODD_POWERS_OF_TWO < orig(this.size)
MMPQ.ODD_POWERS_OF_TWO < orig(this.modCount)
orig(this.size) <= size(this.queue[])—1
orig(this.modCount) != size(this.queue][])
size(this.queue[]) >= orig(size(this.queuel]))
size(this.queue[])—1 = orig(size(this.queuel]))
size(this.queue[])—1 >= orig(size(this.queue[]))—1

MMPQ.addAll(java.util.Collection):::ENTER
this.size == this.modCount
MMPQ.DEFAULT_CAPACITY == size(this.queue][])
this.queue[this.size] == this.queue[MMPQ.DEFAULT_CAPACITY —1]
this.maximumSize == 2147483647
this.queue[] contains only nulls and has only one value, of length 11
this.queue[] elements == null
this.size == 0
this.queue[] elements == this.queue[this.size]

MMPQ.addAll(java.util.Collection):::EXIT
this.minHeap == orig(this.minHeap)
this.maxHeap == orig(this.maxHeap)
this.maximumSize == orig(this.maximumSize)
this.size == this.modCount
this.queue[this.size] == orig(this.queue[post(MMPQ.DEFAULT_CAPACITY)—1])
this.queue[this.size] == orig(this.queue][this.size])
this.queue[this.size] == orig(this.queue[this.modCount])
this.maximumSize == 2147483647
return == true
size(this.queue[]) one of { 11, 24, 50 }
this.queue[this.size] == null
this.size = MMPQ.DEFAULT _CAPACITY
this.size > orig(this.size)
this.size < size(this.queue[])—1
this.size != orig(size(this.queue[]))—1
MMPQ.DEFAULT _CAPACITY <= size(this.queue][])
MMPQ.DEFAULT_CAPACITY != size(this.queuel])—1

88

below. The HBT class represents a two-dimensional table whose underlying storage is
a HashMap. The Guava version of HBT has the bulk of its implementation in a hidden
(package-private) superclass, StandardTable; the public class HBT is primarily a series of
wrapper methods that invoke the corresponding superclass method. Both Alembic and
Daikon are able to see into that superclass via bridge methods, which is why Daikon
reports the invariants on StandardTable, rather than HashBasedTable, as we will see in
the invariant listing below. We include StandardTable’s source code when we count source

lines in the summary in Table 4.2.

Table 4.2. Alembic and Daikon analyses of HBT.

Abstraction HashBasedTable (HBT) as parallel arrays of rows,
columns, and values (RCV).

Class Size (lines) 1350 (with StandardTable)

Public Methods 22

Raw Execution (seconds) < 1.0

Alembic Script (lines) 34

Daikon Alembic

Number of Invariants 434 253
Trace file compressed (M) 0.241 0.107
Trace file uncompressed (M) 14 1.2
Execution Time (sec) 2 3

When we apply Daikon to the put method of HBT, it reveals nothing of interest to us.
This is because the only instance variables are two internal HashMaps that are inscrutable
to Daikon; Daikon is unable to inspect the embedded HashMap instances within HBT. The
output from Daikon for the put method can be seen in Listing 4.7.

Although the set of invariants reported by Daikon is relatively small, they reveal no
information about the behavior of the HashBasedTable. The bulk of the state is hidden
in data structures that are deeper than Daikon’s default. Even if we increased the Daikon
search depth with the —nesting-depth option, it would likely generate a larger batch of
invariants that were equally difficult to read and understand.

The above problem of limited depth and opaque data structures is one of the reasons
we created Alembic. We can use a simple Alembic abstraction to capture the table’s cells

into three parallel arrays corresponding to the rows, columns and values of the table; these

89

arrays are more suited to Daikon’s inference, as well as human understanding. We call the
trait RCV (row, column, value), and place the trait and its view in an HBT.alembic file as
in Listing 4.8 below; we don’t show the program, execution and analysis because they are
boilerplate text unrelated to abstraction.

We do not include the full output from the Daikon execution; as we showed above
with the put method, it is mostly useless data. In Listing 4.9, we show the put and remove
output from the Alembic run, as it is representative of the type of information available via
our RCV trait.

4.2.3. TreeBasedTable

The Guava TreeBasedTable class represents a two-dimensional table whose rows and
columns are ordered. We use the same RCV abstraction on the TreeBasedTable (TBT) class
that we used on the previous HBT class. Not surprisingly, the results are similar. It is most
likely that any differences are due to differences in the Guava unit tests. We summarize the
comparison between Daikon and Alembic for this experiment Table 4.3, and present details
about the comparison below.

Similar to HBT, the Guava version of TBT is unusual in that the bulk of the
implementation lies in a hidden (package-private) superclass, StandardRowSortedTable,
which itself extends the hidden StandardTable; the public class TBT is primarily a series
of wrapper methods that invoke the corresponding superclass method. Both Alembic and
Daikon are able to see into that superclass via bridge methods, which is why Daikon reports
the invariants on StandardTable, rather than TreeBasedTable, as we will see in the invariant
listing below. We include StandardTable’s and StandardRowBasedTable’s source code
when we count source lines in the summary in Table 4.3.

When we apply Daikon to the put method of TBT, it reveals nothing of interest to us.
This is because the only instance variables are two internal HashMaps that are inscrutable
by Daikon; Daikon is unable to inspect the embedded HashMap instances within TBT. The
output from Daikon for the put method can be seen in Listing 4.10; it is identical to that for
HBT.

Although the set of invariants is relatively small, they reveal no information about the
behavior of the TreeBasedTable. The bulk of the state is hidden in data structures that are
deeper than Daikon’s default. As with HBT above, increasing the Daikon search depth with
the —nesting-depth option will not help; it will likely generate a larger batch of invariants
that are equally difficult to read and understand.

90

Listing 4.7. Daikon invariants for the put method of HBT exercised by HBTUnitTest.

StandardTable.put(java.lang.Object, java.lang.Object, java.lang.Object):::ENTER
this.cellSet == null

this.columnKeySet == null

this.rowMap == null

rowKey != null

columnKey != null

value != null

StandardTable.put(java.lang.Object, java.lang.Object, java.lang.Object):::EXIT
this.backingMap == orig(this.backingMap)
this.factory == orig(this.factory)

this.cellSet == orig(this.cellSet)
this.rowKeySet == orig(this.rowKeySet)
this.columnKeySet == orig(this.columnKeySet)
this.values == orig(this.values)

this.rowMap == orig(this.rowMap)
this.columnMap == orig(this.columnMap)
this.cellSet == null

this.columnKeySet == null

this.rowMap == null

Table 4.3. Alembic and Daikon analyses of TBT.

Abstraction TreeBasedTable (TBT) as parallel arrays of rows,
columns, and values (RCV).

Class Size (lines) 1800 (with StandardRowSortedTable, StandardTable)

Public Methods 27

Raw Execution (seconds) < 1.0

Alembic Script (lines) 33

Daikon Alembic

Number of Invariants 517 269
Trace file compressed (M) 0.054 0.122
Trace file uncompressed (M) 1.8 1.3
Execution Time (sec) 2 3

91

Listing 4.8. Fragment of Alembic file HBT.alembic that views HBT as an RCV trait.

trait RCV
[
use com.google.common.collect.HashBasedTable<Integer,Integer,Integer>;
state Object[] rows;
state Object]] cols;
state Object|] vals;

]

view ToRCV
[

lift com.google.common.collect.HashBasedTable<Integer,Integer,Integer> to
RCV;

lift_state

{

Set<Table.Cell<Integer,Integer,Integer>> cset = (Set) this.cellSet();

abs.rows = new Object[cset.size()];
abs.cols = new Object[cset.size()
abs.vals = new Object| cset.size()

l;
].

)

inti=0;
for (Table.Cell<Integer,Integer,Integer> cell : cset)
{
abs.rows] i] = cell.getRowKey();
abs.cols[i] = cell.getColumnKey();
abs.vals[i] = cell.getValue();
++i;
}

}

92

Listing 4.9. Alembic invariants for the put and remove methods of HBT as exercised by
HBTUnitTest using the view ToRCV to abstract the concrete object to the RCV trait.

RCV.put(java.lang.Object, java.lang.Object, java.lang.Object):::ENTER
rowKey != null

columnKey != null

value = null

RCV.put(java.lang.Object, java.lang.Object, java.lang.Object):::EXIT
size(this.rows[]) >= 1

orig(rowKey) in this.rows]

orig(columnKey) in this.cols[]

orig(value) in this.vals]]

size(this.rows[]) >= orig(size(this.rowsl[]))

size(this.rows[])—1 <= orig(size(this.rows[]))

size(this.rows[])—1 >= orig(size(this.rows[]))—1

RCV.remove(java.lang.Object, java.lang.Object):::ENTER
size(this.rows[]) one of { 2, 3 }

RCV.remove(java.lang.Object, java.lang.Object):::EXIT
size(this.rows[]) one of { 1,2, 3 }

size(this.rows[]) <= orig(size(this.rows][]))
size(this.rows[]) >= orig(size(this.rows[]))—1
size(this.rows[])—1 <= orig(size(this.rowsl]))—1

93

Listing 4.10. Daikon invariants for the put and remove methods of TBT exercised by
TBTUnitTest.

StandardTable.put(java.lang.Object, java.lang.Object, java.lang.Object):::ENTER
this.cellSet == null
this.columnKeySet == null
this.values == null
this.rowMap == null
rowKey != null
columnKey != null
value = null

StandardTable.put(java.lang.Object, java.lang.Object, java.lang.Object):::EXIT
this.backingMap == orig(this.backingMap)
this.factory == orig(this.factory)
this.cellSet == orig(this.cellSet)
this.rowKeySet == orig(this.rowKeySet)
this.columnKeySet == orig(this.columnKeySet)
this.values == orig(this.values)
this.rowMap == orig(this.rowMap)
this.columnMap == orig(this.columnMap)
this.cellSet == null
this.columnKeySet == null
this.values == null
this.rowMap == null

StandardTable.remove(java.lang.Object, java.lang.Object):::ENTER
this.cellSet == null
this.columnKeySet == null
this.values == null
this.rowMap == null

StandardTable.remove(java.lang.Object, java.lang.Object):::EXIT187
this.cellSet == return
this.rowKeySet == return
this.columnKeySet == return
this.values == return
this.rowMap == return
this.columnMap == return
this.backingMap has only one value
this.factory has only one value
return == null
orig(this) has only one value

94

We can use an identical Alembic abstraction to that we used in the previous section
on HBT. We capture the table’s cells into three parallel arrays corresponding to the rows,
columns and values of the table; these arrays are more suited to Daikon’s inference, as well
as human understanding. We call the trait RCV (row, column, value), and place the trait
and its view in an TBT.alembic file as in Listing 4.11 below; we don’t show the program,
execution and analysis because they are boilerplate text unrelated to abstraction.

Listing 4.11. Fragment of Alembic file TBT.alembic that views TBT as an RCV trait.

trait RCV
[
use com.google.common.collect. TreeBasedTable <Integer,Integer,Integer>;
state Object[] rows;
state Object|] cols;
state Object|] vals;

]

view ToRCV
[
lift com.google.common.collect. TreeBasedTable<Integer,Integer,Integer> to
RCV;

lift_state

{

Set<Table.Cell<Integer,Integer,Integer>> cset = (Set) this.cellSet();

abs.rows = new Object[cset.size()];
abs.cols = new Object[cset.size()];
abs.vals = new Object| cset.size()]

inti=0;
for (Table.Cell<Integer,Integer,Integer> cell : cset)
{
abs.rows[i] = cell.getRowKey();
abs.colg[i] = cell.getColumnKey();
abs.vals[i] = cell.getValue();
++i;
t

}

In Listing 4.12, we show the put and remove output from the Alembic run, as it is

representative of the type of information available via our RCV trait.

95

Listing 4.12. Alembic invariants for the put and remove methods of TBT as exercised by
TBTUnitTest using the view ToRCV to abstract the concrete object to the RCV trait.

RCV.put(java.lang.Object, java.lang.Object, java.lang.Object):::ENTER
rowKey != null
columnKey != null
value != null

RCV.put(java.lang.Object, java.lang.Object, java.lang.Object):::EXIT
size(this.rows[]) >= 1
orig(rowKey) in this.rows]
orig(columnKey) in this.cols[]
orig(value) in this.vals]]
size(this.rows[]) >= orig(size(this.rowsl[]))
size(this.rows[])—1 <= orig(size(this.rows[]))
size(this.rows[])—1 >= orig(size(this.rows[]))—1

RCV.remove(java.lang.Object, java.lang.Object):::ENTER
size(this.rows[]) one of { 2, 3 }

RCV.remove(java.lang.Object, java.lang.Object):::EXIT
size(this.rows[]) one of { 1, 2, 3 }
size(this.rows[]) <= orig(size(this.rowsl[]))
size(this.rows[]) >= orig(size(this.rows[]))—1
size(this.rows[])—1 <= orig(size(this.rows[]))—1

96

4.2.4. HashMultiset

The HashMultiset (HM) class represents a multiset using a java.util.HashMap as its
storage. We choose to abstract this data structure as an array consisting of the distinct values
from the underlying HM; in other words, as a Set. We summarize the comparison between
Daikon and Alembic for this experiment Table 4.4, and briefly discuss the comparison
below. In the same way that HBT and TBT used hidden superclasses as their primary
implementation, the HM class uses hidden superclasses AbstractMapBasedMultiset and
AbstractMultiset for the bulk of its implementation; we include these superclasses in the

source line count, as before.

Table 4.4. Alembic and Daikon analyses of HM.

Abstraction HashMultiset (HM) as a Set.

Class Size (lines) 730 (with AbstractMapBasedMultiset, AbstractMultiset)
Public Methods 20

Raw Execution (seconds) < 1.0

Alembic Script (lines) 18

Daikon Alembic

Number of Invariants 222 165
Trace file compressed (M) 0.047 0.043
Trace file uncompressed (M) 0.963 0.504
Execution Time (sec) 2 2

In Listing 4.15, we show the add and remove output from the Alembic run, as it is

representative of the type of information available via our RCV trait.

4.2.5. ArrayListMultimap

The ArrayListMultimap (ALM) class represents a multimap using instances of
java.util.ArrayList as its underlying storage. We choose to abstract this data structure
as an array consisting of only the keys from the underlying ALM. We summarize the
comparison between Daikon and Alembic for this experiment Table 4.5, and briefly
discuss the comparison below. In the same way that HBT and TBT used hidden
superclasses as their primary implementation, the ALM class uses hidden superclasses

AbstractMapBasedMultiset and AbstractMultiset for the bulk of its implementation; we

97

Listing 4.13. Daikon invariants for the add and remove methods of HM exercised by
HMUnitTest.

AbstractMultiset.add(java.lang.Object):::ENTER
this.elementSet == null
this.entrySet != null
element != null

AbstractMultiset.add(java.lang.Object):::EXIT
this.elementSet == orig(this.elementSet)
this.entrySet == orig(this.entrySet)
this.elementSet == null
this.entrySet != null
return == true

AbstractMultiset.remove(java.lang.Object):::ENTER
this.elementSet == null

AbstractMultiset.remove(java.lang.Object):::EXIT
this.elementSet == orig(this.elementSet)
this.entrySet == orig(this.entrySet)

(return == false) ==> (orig(element) has only one value)
(return == false) ==> (orig(this) has only one value)
(return == false) ==> (this.entrySet has only one value)

this.elementSet == null

Listing 4.14. Fragment of Alembic file HM.alembic that views HM as a Set trait.

trait Set
[

use com.google.common.collect.HashMultiset<Object>;
state Object[] elements;

]

view ToSet

[

lift com.google.common.collect. HashMultiset<Object> to Set;

lift_state
{
Set<Object> cset = (Set) this.elementSet();
abs.elements = cset.toArray();
¥
]

98

Listing 4.15. Alembic invariants for the add and remove methods of HM as exercised by
HMUnitTest using the view TORCV to abstract the concrete object to the RCV trait.

Set.add(java.lang.Object):::ENTER
this.elements[] elements |= null
element != null

Set.add(java.lang.Object):::EXIT
this.elements[] elements != null
return == true
orig(element) in this.elements[]
size(this.elements[]) >= orig(size(this.elements]]))
size(this.elements[])—1 <= orig(size(this.elements[]))
size(this.elements[])—1 >= orig(size(this.elements][]))—

Set.remove(java.lang.Object):::ENTER
size(this.elements[]) one of { 0, 1,2 }

Set.remove(java.lang.Object):::EXIT
(return == false) ==> (orig(element) has only one value)
(return == false) ==> (orig(this.elements) has only one value)
(return == false) ==> (orig(this.elements[]) == [])
(return == false) ==> (this.elements has only one value)
(return == false) ==> (this.elements[] ==[])
(return == false) ==> (this.elements[] == orig(this.elements[]))
(return == true) <==> (orig(size(this.elements[])) one of { 1,2 })
(return == true) ==> (orig(element) in orig(this.elements][]))
(return == true) ==> (size(this.elements[]) one of { 0, 1,2 })
size(this.elements[]) oneof {0,1,2}
size(this.elements[]) <= orlg(S|ze(th|s elements]]))
size(this.elements[]) >= orig(size(this.elements[]))—1
size(this.elements[])—1 <= orig(size(this.elements[]))—

99

include these superclasses in the source line count, as before. In Listing 4.16 and
Listing 4.17, we show the put and remove output from the Daikon run, and in Listing 4.19,
we show the output from the Alembic run for the same two representative methods.

Table 4.5. Alembic and Daikon analyses of ALM.

Abstraction ArrayListMultimap (ALM) as an array of the keys in
the concrete object.

Class Size (lines) 1674 (with AbstractListMultimap, AbstractMultimap)

Public Methods 22

Raw Execution (seconds) < 1.0

Alembic Script (lines) 18

Daikon Alembic

Number of Invariants 681 142
Trace file compressed (M) 1.3 0.841
Trace file uncompressed (M) 42 11
Execution Time (sec) 8)

4.2.6. Summary of Guava Results

Although the Guava collection library consists of many classes, we have selected a
representative from each of the main container types and presented possible abstractions
for each. These abstractions that we chose are not necessarily the best for all purposes;
however, Alembic is designed to make it easy to try out new abstractions in a convenient
way, encouraging the exploration of abstraction possibilities. We present a summary of the
experiments we performed and their associated metrics in Table 4.6.

One of Alembic’s primary benefits is reduction in the amount of invariants reported.
We can interpret the data in Table 4.6 in a more meaningful way by looking at a graph
comparing the invariants reported by the two systems (Daikon and Alembic), as in
(Figure 4.1). It is clear that the number of invariants reported by Alembic is consistently,

and sometimes dramatically, lower than the corresponding Daikon number.

100

Listing 4.16. Daikon invariants for the put and remove methods of ALM exercised by
ALMUnitTest (1 of 2).

AbstractMultimap.put(java.lang.Object, java.lang.Object):::ENTER
this.map != null
this.keySet == null
this.multiset == null
this.valuesCollection == null

AbstractMultimap.put(java.lang.Object, java.lang.Object):::EXIT
this.map == orig(this.map)
this.keySet == orig(this.keySet)
this.multiset == orig(this.multiset)
this.valuesCollection == orig(this.valuesCollection)
this.entries == orig(this.entries)
this.asMap == orig(this.asMap)
this.map != null
this.totalSize >= 1
this.keySet == null
this.multiset == null
this.valuesCollection == null
return == true
this.totalSize — orig(this.totalSize) — 1 ==
AbstractMultimap.serialVersionUID > orig(this.totalSize)

AbstractMultimap.remove(java.lang.Object, java.lang.Object):::ENTER
this.map != null
this.totalSize >= 1
this.keySet == null
this.multiset == null
this.valuesCollection == null

101

Listing 4.17. Daikon invariants for the put and remove methods of ALM exercised by
ALMUnitTest (2 of 2).

AbstractMultimap.remove(java.lang.Object, java.lang.Object):::EXIT
this.map == orig(this.map)

this.keySet == orig(this.keySet)

this.multiset == orig(this.multiset)

this.valuesCollection == orig(this.valuesCollection)

this.entries == orig(this.entries)

this.asMap == orig(this.asMap)

(orig(key) has only one value) =
orig(key) has only one value)
orig(key) has only one value)
orig(key) has only one value) ==

orig(key) has only one value) =
(key))
(key))=
(key))

(orig(this) has only one value)
(==> (orig(this.totalSize) == 1)
(==> (orig(value) has only one value)
((return == false)
((this.asMap has only one value)
(orig(key) has only one value) ==> (this.entries has only one value)
(orig(key) has only one value (this.map has only one value)
(orig(key) has only one value) ==> (this.totalSize == 1)
(orig(key) has only one value) ==> (this.totalSize == orig(this.totalSize))
(return == false) <==> (this.totaISize == orig(this.totalSize))
(return == false) ==> (orig(this.totalSize) one of { 1,2 })
(return == false) ==> (this.totalSize one of { 1, 2 })
(return == true) ==> (this.totalSize — orig(this.totalSize) + 1 == 0)
this.map != null
this.keySet == null
this.multiset == null
this.valuesCollection == null
this.totalSize <= orig(this.totalSize)
AbstractMultimap.serialVersionUID > orig(this.totalSize)

102

Listing 4.18. Fragment of Alembic file ALM.alembic that views ALM as a Set trait.

trait Set
[

use com.google.common.collect.ArrayListMultimap<Object>;
state Object[] elements;

]

view ToKeys

[

lift com.google.common.collect.ArrayListMultimap<Object,Object,Object> to Keys;
lift_state
{
Set<Object> keyset = (Set) this.keySet();
abs.keys = keyset.toArray();
}
]

Listing 4.19. Alembic invariants for the put and remove methods of ALM as exercised by
ALMUnitTest using the view ToRCV to abstract the concrete object to the RCV trait.

Keys.put(java.lang.Object, java.lang.Object):::ENTER

Keys.put(java.lang.Object, java.lang.Object):::EXIT
return == true
size(this.keys[]) >= 1
orig(key) in this.keys]
size(this.keys[]) >= orig(size(this.keys[]))
size(this.keys[])—1 <= orig(size(this.keys[]))

Keys.remove(java.lang.Object, java.lang.Object):::ENTER
size(this.keys[]) one of { 1,2 }

Keys.remove(java.lang.Object, java.lang.Object):::EXIT
(return == false) ==> (size(this.keys[]) one of { 1,2 })
(return == false) ==> (this.keys[] == orig(this.keys[]))
(return == true) ==> (orig(key) in orig(this.keysl[]))
(return == true) ==> (size(this.keys[]) one of { 0, 1,2 })
size(this.keys[]) one of { 0, 1,2 }
size(this.keys[]) <= orig(size(this.keys[]))
size(this.keys[]) >= orig(size(this.keys[]))—1
size(this.keys[])—1 <= orig(size(this.keys][]))—1

103

Table 4.6. Guava collection classes and simple Alembic abstractions.

Class Lines Public Daikon Alembic Alembic
Methods Invs Script Invs
Abstracted to
MinMaxPriorityQueue 947 16 352 18 34

Sorted array of Integer

Notes: Daikon produces a large number of invariants relating variables internal
to the implementation. Figures 4.5 and 4.3 compare raw Daikon invariants to
Alembic invariants.

HashBasedTable 1350 22 434 33 253

Parallel arrays of row keys, column keys, and values

Notes: Public interface methods for HashBasedTable are mostly synthesized
“bridge” methods to a package-private superclass, StandardTable. Alembic
reports the invariants for public methods in the abstraction, regardless of where
they are implemented. Daikon reports almost nothing for HashBasedTable (it
is blind to synthesized bridge methods), but reports corresponding invariants
for like-named methods in implementing classes. The counts here include
invariants for those implementing methods.

TreeBasedTable 1800 27 517 33 269
FParallel arrays of row keys, column keys, and values

Notes: As above, Daikon reports invariants for methods in package-private
Guava superclasses (StandardRowSortedTable and StandardTable) that
implement the functionality of TreeBasedTable via bridge methods in the
public interface.

HashMultiset 730 20 222 18 165
Array of distinct elements (i.e., as a Set)

Notes: As above, Daikon reports invariants for methods in package-private
Guava superclasses (AbstractMapBasedMultiset and AbstractMultiset) that
implement the functionality of HashMultiset via bridge methods in the public
interface.

ArrayListMultimap 1674 22 681 18 142
Array of keys

Notes: As above, Daikon reports invariants for methods in package-
private Guava superclasses (AbstractListMultimap and AbstractMultimap)
that implement the functionality of ArrayListMultimap via bridge methods in
the public interface.

104

Test Name

B Daikon
Alembic

MMPQ

HBT

TBT

HM

ALM

o

175 350 525 700

Invariants Reported

Figure 4.1. Graph showing reported invariants of Daikon and Alembic when performing
the various Guava experiments in this section.

4.3. Proofs of Concept

Alembic was initially designed as a way to conveniently perform state abstraction
experiments, with the intent of looking at various specialized abstraction concepts and
techniques, and demonstrating their potential utility with Alembic. These specialized
techniques could then be considered as potential features to be built in to future
implementations of invariant detectors. In that vein, we’d like to present some of the
more exotic forms of abstraction we have explored with Alembic, and suggest research
problems and directions associated with them. These examples will not be as rigorous
in terms of metrics as the Guava examples above; in many cases, there is no analogous
feature in Daikon with which to compare our Alembic results. We invite the reader to

consider possible extrapolations of these basic abstraction patterns.

4.3.1. Aggregate Abstraction and History Constraints

Given a module where can we can partition its methods into different logical groups
(e.g., readonly methods, insertion methods, deletion methods), we can define an abstraction
of the module that contains a function for each of these groups. By abstracting each
concrete method into the shared method corresponding to its group, we enable an invariant

detector to infer the pre and post conditions common to each member of a group. This is

105

another example of aggregate abstraction, which we refer to in 2.6.2. Inferring Behavioral
Subtypes and 2.6.4. Variable Hierarchy.

Aggregate abstraction is a technique where we take tuples originating from more than
one concrete program point and merge them into a single set; we can associate such merged
sets with the entry and exit of an abstract function (i.e., a method declared in a trait), and
the resulting invariants will summarize the behavior of the source program points. We
have utilized this general technique in deriving history constraints as described in [Liskov
and Wing, 1994] and [Leavens, 2006]. A history constraint is a set of precondition and
postconditions that must hold for any public method of a class or any of its subclasses.

We can compute an aggregate precondition and postcondition in Alembic by using a
many-to-one projection of the concrete class’s instance methods onto a single builtin trait
method called invoke. The signature for this method is void invoke(); it takes no arguments
and returns no result. However, it does provide program points for the back-end invariant
detector to perform detection. When an Alembic view specifies a target method in the
trait, a many-to-one projection is implied, and Alembic ensures that traces are propagated
from the concrete entry to the aggregate method’s entry; similarly, traces from the concrete
exits are propagated to the aggregate method’s exit. Because this aggregate method has
no arguments, only the abstracted state is observable in the trait. The resulting invariant
detection upon the aggregate method will reveal the generalized history constraint for
those concrete methods observed. From Liskov and Wing [Liskov and Wing, 1994], the
history constraint is part of a type specification that contains a set of preconditions and
postconditions that must hold for any public method the type, or any of its subtypes.

To make this clearer, we provide an example below. The example will be based
upon the simple Container class in Listing 4.20 and the test driver in Listing 4.21. We
will use the Alembic file in Listing 4.22 to capture two traits, Length and LengthHistory.
The first, Length, will be an ordinary state abstraction, where each concrete method
results in the synthetic invocation on a corresponding method in the trait. For example,
Container.add(5) will result in an invocation of Length.add(5). We expect to see
invariants reported on the Length trait for each of the add, addTwo and addAll methods,
and this is indeed the case, as shown in the first part of Listing 4.23.

The second trait we derive, LengthHistory, is populated via the ToLengthHistory view,
which performs the same state abstraction and instruments the same concrete Container
methods. However, it lifts each of the concrete methods into a single, zero-argument,
method called invoke() on the trait. The resulting invariants on LengthHistory.invoke shown
in the second part of Listing 4.23 reveal the common behavior of each of the add* methods

in terms of their precondition and postcondition on the abstracted aggregate method.

106

Listing 4.20. The Container Java class.

import java.util. Arrays;
import java.util.Collections;

public class Container
{
private Object opaqueArray(];

public Container()

{
reset();
}
public void reset()
{
opaqueArray = new Object[0];
}
public void add(Object element)
{
int oldLen = opaqueArray.length;
opaqueArray = Arrays.copyOf(opaqueArray, oldLen + 1);
opaqueArray[oldLen] = element;
}
public void addTwo(Object element1, Object element2)
{
int oldLen = opaqueArray.length;
opaqueArray = Arrays.copyOf(opaqueArray, oldLen + 2);
opaqueArray| oldLen] = element1;
opaqueArray[oldLen + 1] = element2;
}
public void addAll(Object[] elements)
{
int oldLen = opaqueArray.length;
opaqueArray = Arrays.copyOf(opaqueArray, oldLen + elements.length);
System.arraycopy(elements, 0, opaqueArray, oldLen, elements.length);
}

107

Listing 4.21. The ContainerTester Java class.

import java.util.x;

public class ContainerTester

{
public static void main(String[] args)
{
int outerBound = 3;
int bound = 10;
Container ¢ = new Container();
for (inti = —outerBound; i <= outerBound; ++i)
{
c.reset();
Object[] os = new Object[bound];
for (intj=1;j <=bound; ++j)
{
cadd(i+j);
os[j—1]=ix];
c.addTwo(i, j);
}
c.addAll(os);
}
¥
}

108

Listing 4.22. The ContainerHistory.alembic example uses aggregate abstraction to
summarize the common behavior of add* methods.

trait Length
[

path "../../examples/Container/";
use Container : "~ add";
state int length;

]

trait LengthHistory
[

]

state int length;

view ToLengthT
[

path "../../examples/Container/";
lift_state

{
}

abs.length = opaqueArray.length;

]

view ToLength : ToLengthT
[

]

lift Container : "~add" to Length;

view ToLengthHistory : ToLengthT
[

]

lift Container : "~add" to LengthHistory.invoke;

109

Listing 4.23. The Alembic invariants for the ContainerHistory.alembic example.

Length:::OBJECT
this has only one value

Length.add(java.lang.Object):::ENTER
element != null

Length.add(java.lang.Object):::EXIT
this.length — orig(this.length) — 1 == 0

Length.addAll(java.lang.Object[]):::ENTER
this.length == 30
size(elements|]) == 10

Length.addAll(java.lang.Object[]):::EXIT
elements[] == orig(elements]])
this.length == 40

Length.addTwo(java.lang.Object, java.lang.Object):::ENTER
element1 != null
element2 != null
Length.addTwo(java.lang.Object, java.lang.Object):::EXIT
this.length — orig(this.length) — 2 ==
LengthHistory:::OBJECT
this has only one value

LengthHistory.invoke():::ENTER

LengthHistory.invoke():::EXIT
this.length > orig(this.length)

110

4.3.2. Abstract Functions and Loop Abstraction

In the examples below, we look at a class of abstraction techniques where the methods
in the abstracted trait do not correspond to concrete method invocations at all. Rather, they
correspond to an abstract function from an abstract entry point to an abstract exit point.
These points may correspond to specific code locations, as in the case of Loop Abstraction
below. Or they may correspond to the occurrence of more abstract events, such as the
beginning and end of a timer. However, the mechanism we use to synthesize these abstract
functions is unrestricted, and we can conceive of potential applications of this, some of
which we describe in 5.1. Future Work.

In the discussion below, we sometimes use the term arrow to refer to these abstract
functions to emphasize that they have no implementation and do not correspond to existing
functions or methods. An arrow is defined by the sets of tuples corresponding to its entry
(the domain) and its exit (the codomain). An invariant detector is able to describe such an
arrow with invariants.

The composition of two or more functions may be treated as a method on an
abstraction object, where the entry conditions for the first function become the entry
conditions of the abstract method, and the exit conditions for the composition become
the exit conditions for the abstract method. Note that this mechanism can be easily applied
to a procedural language such as Java by considering each statement to be a function from
old state to new state, and by considering a sequence of statements to be a composition
of functions. In other words, we can treat a sequence of statements as an composition of
functions, and we can consider the abstract arrow from the beginning of this sequence to
its end.

What Alembic provides is a way to abstract over these compositions or sequences,
and to produce invariants that describe the change induced by them. In fact, the primary
capability of any invariant detector is to infer, for each targeted method, an abstract arrow
over the fixed sequence of statements comprising that method’s implementation. Alembic
enables this invariant detection capability to be applied anywhere we can call Alembic’s
liftEntry and liftExit methods to inject traces into an arrow. We show a practical use for this
technique by using Alembic to infer loop properties in the examples below.

Loop Abstraction is actually a special application of abstract functions, where we
view one part of the loop structure as an entry point, and another part as an exit point
for the composition, and the loop exit as the end. Applying an invariant detector to the
resulting abstract function or arrow enables the discovery of loop properties that might

be unobtainable otherwise. It is necessary to insert explicit calls to Alembic functions in

111

order to use abstract functions; we did not need to insert explicit calls in our prior Guava
examples of simple state abstraction, because the concrete method entry and exit can be
instrumented by Aspect] to insert these calls on behalf of the user.

We will provide two examples of how Alembic can be used to capture loop properties.
The first will demonstrate the creation of an abstract function corresponding to the per-
iteration body of the loop and of an abstract function corresponding to the loop as a
whole. These two arrows will be specified as methods on the LoopArrows trait defined
in Listing 4.26. The second example will compute the loop invariant as the state of the
Looplnvariants abstraction object defined in the same file. In both examples, we will
synthesize traces to our arrows (abstract functions) by inserting probe pairs into the source
of the Java function in Listing 4.24 and Listing 4.25. Each pair of probes corresponds to
the head and tail of an abstract function arrow from the visible state at the head probe to
the visible state at the tail probe.

Listing 4.24. Two pairs of Alembic probes added to a loop that sums the first n
odd numbers to compute n?. The first pair synthesizes an invocation upon the LBLA
(LoopBeforeLoopAfter) method of the LoopArrows trait; the second synthesizes an

invocation upon the BBBA (BodyBeforeBodyAfter) method.

static void runLoopArrows(int bound)

{
Abstraction_LoopArrows loop = Abstraction_LoopArrows.getTheAbstraction();
for (intn=1;n < bound; ++n)
{
int sum = 0;
inti=0;
Alembic.InvokeContext IblaContext = loop.liftEntry LBLA(n);
while (i <n)
{
Alembic.InvokeContext bbbaContext = loop.liftEntry_ BBBA(n, i, sum);
i=i+1;
sum+=(i—1)x* 2+ 1;/ Add next odd number
loop.liftExit BBBA(bbbaContext, n, i, sum, sum);
¥
loop.liftExit_ LBLA(IblaContext, n, sum);
¥
¥

112

Listing 4.25. Explicit probes capture the loop invariant as the object invariant of the
Looplnvariants trait.

static void runLooplnvariants(int bound)

{

Abstraction_Looplnvariants loop = Abstraction_Looplnvariants.getTheAbstraction

for (intn=1;n < bound; ++n)

{

();

int sum = 0;

inti=0;

loop.sum = sum;

loop.i = 0;

Alembic.InvokeContext probeContext = loop.liftEntry_probe();

while (i< n)

{
i=i+1;
sum+=(i—1)*2+1;
loop.sum = sum,;
loop.i = i;
loop.liftExit_probe(probeContext, null); // end one arrow
probeContext = loop.liftEntry_probe(); // begin the next
}
loop.sum = sum;
loop.i =i;

loop.liftExit_probe(probeContext, null); // finish the last arrow

In the Loops.alembic file (Listing 4.26), we define two traits, LoopArrows and

Looplnvariants. The first of these contains methods corresponding to the following

functional arrow types:

LoopBeforeLoopAfter (LBLLA) This method treats the entire loop execution as a

function from the loop’s pre-state to the loop’s post-state. Graphically, we are
creating an abstract function that is the arrow from before a loop to after the
loop. This treats the entire loop as a black box and derives a description of its

behavior.

113

BodyBeforeBodyAfter (BBBA) This method looks at the inner body of the loop as
though it were a function from the values of variables at the top of the loop body
to the values at the bottom of the loop body. Graphically, we are creating the
arrow from the top of the loop body to the bottom of the loop body. This should

produce a description that characterizes an arbitrary execution of the loop body.

Listing 4.26. Loops.alembic defines the LoopArrows and Looplnvariants traits.

trait LoopArrows

[

method "int LBLA(int n)";
method "int BBBA(int n, int i, int oldSum)";

]

trait Looplnvariants

[

state int i;
state int sum;

method "void probe () ";

]

program LoopP
[

builddir ". ./../examples/loops/";
traits "LoopArrows LoopInvariants";

The Alembic build process will generate code for both traits and will then invoke
Daikon to execute the program, resulting in the generation of execution traces and
ultimately, invariants. If we examine Listing 4.27 we see descriptions of two traits.
Notice how LBLA(int):::EXIT characterizes the black box behavior of the loop, and how
Looplnvariants:::OBJECT contains the loop invariants for our loop example. In each case,
the return variable corresponds to the result we fed to the probe at the end of our respective
arrow.

Because loop invariant detection involves treating a subregion of a function as though
it were a composition of functions, it is necessary to delimit this subregion somehow. In
the current prototype of Alembic, this is done by the explicit insertion of liftEntry and
liftExit calls and state abstraction into the target code. We anticipate that a future version of
Alembic could use a more convenient mechanism (e.g., the Java 1.5 annotations feature)
for delimiting the subregion that comprises a loop. This syntactic sugar would still require

114

Listing 4.27. The Alembic invariants for LoopArrows.

LoopArrows.BBBA(int, int, int):::ENTER
i>=0
oldSum >=0
n>i
i <=oldSum
oldSum == ixx2

LoopArrows.BBBA(int, int, int):::EXIT
return >= 1
return > orig(i)
return > orig(oldSum)
return — 2 x orig(i) — orig(oldSum) — 1 ==

LoopArrows.LBLA(int):::EXIT
return % orig(n) == 0
return == orig(n)*=2
return >= orig(n)

Looplnvariants:::OBJECT
this has only one value
this.i >=0
this.sum >=0
this.i <= this.sum
this.sum == this.ix*2

115

a slight modification to the target code in the form of a call to some placeholder functions
Alembic.BeginArrow and Alembic.EndArrow function; these would then be detected by an
Aspect] aspect that would transform it into the form desired by Alembic.

116

CHAPTER V

CONCLUSION

We complete this dissertation by summarizing the ideas and results presented, looking
at some of the directions this research might take, and concluding with some remarks and

recommendations regarding dynamic invariant detection and abstraction.

5.1. Future Work

The current implementation of Alembic has proven sufficient to demonstrate a variety
of abstraction techniques and applications. There are several promising directions for both
the Alembic technology and the theory and applications of abstracted dynamic invariant

detection. We sketch some of these ideas below, including how they might be implemented.

5.1.1. Method Transformation

Although we haven’t written any examples at this time, Alembic has a powerful
feature which allows a user to control the per-method abstraction in a fine-grained way.
Alembic provides an optional lift_method clause in the view declaration syntax; this clause
is similar to the lift_state clause in that it provides a way for Java code to be inserted.
However, the lift_method clause has an entry and exit handler, where the user may specify
custom handling of the lift-on-entry and lift-on-exit behavior. We show an example of this
in Listing 5.1, which is similar to the example of aggregate abstraction in 4.3.1. Aggregate
Abstraction and History Constraints and uses the same base class Container and unit test
ContainerTester (Listing 4.20 and Listing 4.21, respectively). For the sake of space in this
dissertation, we only show the implementation of the addTwo method, although add and
addAll are just as simple.

Unlike the previous Container example, we explicitly capture the arguments of each
add* method and abstract them as an integer which is fed to increment on the aggregate
method, addToSum(int increment). The resulting invariants on LengthHistorySum are
displayed in Listing 5.2. The first two exit invariants reveal the underlying behavior;
because we chose to define a trait with both a length and sum attribute, we get the inevitable
irrelevant invariants, such as this.length != orig(this.sum). This could have been avoided
if we had created separate traits; however, we wanted to demonstrate the power of the

lift_-method clause in terms of its ability to capture and transform both state and argument

117

variables into new state and argument variables, perhaps even invoking an abstract function,
as in this example.

An unexplored potential use of this lift_method feature of Alembic is that we can
implement conditional abstractions, where the view and its associated lift_method clauses
may control where to and whether to propagate a trace. The Csallner/Smaragdakis paper
on behavioral subtyping relies upon this conditional propagation.

Other cases where conditional abstraction may be useful include:

e Dynamic filtering of traces prior to invariant detection
e (Case-splitting of traces into multiple abstractions (the inverse of aggregate
abstraction)

The current implementation of lift_method is very raw in the sense that the entirety
of the lifting process is laid bare for an analyst to use, and we hope that this power
finds a good use. It does require that the analyst create potentially tedious lift method
clauses for each method, however. We believe that the same wildcard feature provided by
Alembic’s use and lift clauses can be extended to allow a template-based way to specify
multiple lift_method clauses with a single directive. Example uses might be to transform
concrete arguments into an abstraction-compatible form; a wildcard facility would allow
this transformation to be specified once in a lift_method clause, and it would be applied to

all the implicitly generated lifting code.

5.1.2. Supertype Abstraction

Our approach to abstraction was initially inspired by the Csallner and Smaragdakis
work on inferring behavioral subtype specifications using dynamic invariant detection.
Their approach used trace propagation to transform concrete subclass invocations to
synthetic invocations on a superclass object, and then used a dynamic invariant detector
to infer specifications about the superclass [Csallner and Smaragdakis, 2006]. We call
this technique supertype abstraction, which is also the name used by Leavens to refer to
the principle of modular reasoning that an object reference of a given superclass can be
bound to an instance of that superclass or any of its subclasses [Leavens and Naumann,
2006]. Leavens proves that a type hierarchy organized as behavioral subtypes will satisfy
the principle of supertype abstraction (see 2.6.2. Inferring Behavioral Subtypes).

One direction that could be taken with Alembic is to continue the work proposed by
Csallner and Smaragdakis for inferring behavioral subtype specifications. A rough sketch
of how this could be done is presented below. This would involve the development of

additional tools to analyze the class hierarchy and generate intermediate files. We will

118

Listing 5.1. This ContainerHistorySum example defines a trait containing length and sum
state variables, and a single method addToSum(int increment). The full declaration of add
and addAll has been left out for space reasons..

trait LengthHistorySum |
state int length;
state int sum;
method "void addToSum(int increment)";

]

view ToLengthHistorySum : ToLengthT [
lift Container : " ~add" to LengthHistorySum;

lift_state {
abs.length = opaqueArray.length;

}

lift_method "void addTwo (Object el, Object e2)"
[
state int enterSum;
entry {
inti1 = (int) ((Integer) element1);
int i2 = (int) ((Integer) element2);
enterSum =it + i2;
context = absThis.liftEntry_addToSum(enterSum);

}
exit {

absThis.sum += enterSum;

absThis.liftExit_addToSum(context, enterSum, concreteResult);
}

]

lift_method "void add(Object element)" [
// Elided for brevity |

lift_method "void addAll (Object[] elements)"|
// Elided for brevity |

119

assume, for the outline below, that we have a class hierarchy consisting of a superclass S
and its two subclasses L and R. The method .m() is defined in S and overridden in L.

Generate Abstraction Hierarchy For each class (S, L, R), generate an Alembic trait
containing state variables corresponding to the instance variables on that class
and containing method definitions corresponding to each of the instance methods
on that class. Let’s call these traits TraitS, TraitL, and TraitR.

Generate View Hierarchy For each class (S, L, R), generate an Alembic view that
lifts invocations to the corresponding trait, as well as to traits corresponding to
supertypes. For example, an invocation on L.m() should be lifted to invocations
on TraitL.m() as well as TraitR.m(). This capability can be built upon the Alembic
lift_-method syntax, which allows explicit control over the trace propagation and
transformation mechanism.

The Csallner and Smaragdakis work shows that determining behavioral subtypes is
not as simple as just using trace propagation. They point out that invocations on a subclass
that do not satisfy the superclass’s precondition should not be propagated. But these
preconditions themselves need to be discovered before this determination can be made. So
they propose a two-phase solution where the first phase determines preconditions, and the
second phase uses these to selectively propagate invocations to superclasses. Implementing

this in Alembic would require some equivalent to this two-phase solution.

5.1.3. Improved Lifecycle Control

Currently, traits are implemented as shared singleton objects that are constructed at
program startup; this is sufficient for single-threaded applications where the only state

in the abstraction is derived from entry and exit, and where this state is not required to

Listing 5.2. Alembic invariants for ContainerHistorySum. The first two exit invariants are
the useful ones; the other two exit invariants are noise which could have been avoided if
we had separated the trait into two traits.

LengthHistorySum:::OBJECT
this.length >=0

LengthHistorySum.addToSum(int):::EXIT
this.length >= orig(this.length)
this.sum — orig(this.sum) — orig(increment) ==
this.length != orig(this.sum)
this.sum != orig(this.length)

120

persist between invocations. In other words, each abstraction has no history other than that
derived from the concrete object at entry and exit. This encompasses all of our simple state
abstractions described in Chapter I'V.

However, there are experiments we can conceive where we need to associate state
with an abstraction and where this state is derived from the unique history of the concrete
object, but where this history is not maintained by the concrete object. For example, if we
desire to have a File abstraction maintain a history of the operations invoked upon it, then
we need a unique abstraction instance corresponding to each unique concrete instance.

This will require modifying the instrumentation layer to construct these abstractions.
We are confident that our current use of Aspect] will make this modification possible.
The same effort required to track concrete instance constructions and mirror them with
abstraction constructions will likely result in Alembic being able to reasonably abstract

constructors and static methods, which it does not currently support.

5.1.4. Other Ideas

There are several ideas and interesting directions we considered during this research,

but haven’t explored fully. These are briefly summarized below.

Protocols and Temporal Abstraction One research path suggested by Alembic is
to explore the mining of temporal specifications that describe the legitimate
sequences of method calls for an object. We would provide a function to abstract
a method invocation and its state into a foken that would be fed to a state-machine
miner which generated a set of candidate finite-state machines. At the same
time, the invariant detector would be used to associate invariants with certain
states. It may be possible to use these building blocks to develop temporal
specification miners as in [Lorenzoli et al., 2008] and [Ammons et al., 2002].
Lamport provides a nice description of how to map behavioral specifications in
precondition/postcondition form into state machine format [Lamport, 1989].

Effect Abstraction A dynamic invariant detector such as Daikon is well-suited to
capturing invariants over common datatypes such as floats, integers, and strings,
as well as over some container classes (arrays, lists, sets). When the behavior of a
class is characterized by its external effects, then it is necessary to use abstraction
to capture these effects in a form that is amenable to invariant analysis. We can
construct abstractions whose state is derived from effects that would ordinarily be
unobservable by an invariant detector. For example, a File object’s read and write

methods could be abstracted such that the effect on the file system is captured

121

as observable state on the abstraction object. This in turn enables an invariant
detector to perform inference on the read and write methods’ effects. Other
effects that can be captured are size, time, and even the number of instructions
executed in a method. We believe that this type of abstraction may lead to the
ability of using invariant detection to compute resource complexity measures as
invariants.

Layered Abstraction It is conceivable that one might apply the abstraction
technique to a Java class that was itself an abstraction (i.e., generated by Alembic
from a trait). Traces from the concrete would be propagated to its abstraction (the
primary abstraction), where the same mechanism (but a different view and target
trait) could be applied to propagate traces from the primary abstraction to the
secondary. We haven’t come up with anything but contrived examples for this,
but the theory indicates that it is legitimate. Usually one who wanted to perform
two abstractions lift; and lift, would simply compose the abstraction functions
and use a single abstraction liftyolift;, without any intermediate abstraction object.
However, a complex abstraction tower might necessitate the use of multiple
abstraction layers.

Context-dependent Instrumentation Aspect] provides us with a powerful way to
determine what our calling context is. This could be utilized to ensure that
methods were only abstracted when invoked from outside of a module, for
example. The ability to capture the static calling context would enable Alembic
to implement supertype abstraction, which requires that we propagate traces to
an abstraction corresponding to the static receiver.

Alternative Back-ends Alembic currently uses Daikon as its general-purpose back-
end invariant detector. The design of Alembic allows for a trait to be hooked
up to alternative, specialized detectors. These detectors would see an abstracted
trace stream and perform specialized inference upon it, producing invariants and
other types of behavioral description. Examples of detectors that might be useful
include a regular expression detector and a regression solver.

Concretization Concretization is the inverse of abstraction. Once invariants are
discovered over an abstraction, it may be desirable to take these invariants and
automatically translate them back into invariants on the concrete object. If the
user provided an unlift clause that indicated how to translate an abstract invariant
into a concrete invariant, then Alembic could emit concrete invariants derived

from abstractions.

122

5.2. Suggestions for Detectors

Alembic is not designed to replace traditional detectors, although we hope that some of
the features demonstrated by Alembic get incorporated natively into the next generation of
detection technology. In addition to these capabilities, there are some features of detectors
that would make implementation of Alembic and abstraction systems easier and more
powerful to use. We briefly describe these below:

Preloaded Invariants The ability to preload known invariants would allow
specifications from other sources (e.g., from JML annotations) or from prior
detector runs to be used as input, so that the invariant detector could build upon
these to discover invariants that supplement the preloaded invariants. Optionally,
these preloaded invariants would be excluded from the final report.

Supported Third-Party API Our development of Alembic required some minor
modifications to Daikon so that we can synthesize traces. In addition, we ended
up calling functions that were likely not intended for a layered facility like
Alembic. If Daikon provided these functions (or API wrappers) as a documented
and supported capability, it would make building facilities like Alembic easier

and more robust.

5.3. Summary

We have described limitations in the application of Daikon-style dynamic invariant
detection to concrete implementations. Specifically, the complexity of invariant
expressions is limited due to memory and performance considerations, and the breadth and
scope of invariant expressions are limited due to the use of a general-purpose vocabulary of
invariant operators and terms. This results in output that is less useful due to the presence
of true, but irrelevant invariants and due to true invariants being unreported because the
requisite expressions are inexpressible in the general purpose and limited-depth vocabulary.

We described a new approach that addresses these limitations as well as providing
several new capabilities. We showed that by creating abstractions of the concrete
implementations, we can focus the invariant detector on arbitrarily deep and complex
invariants, while filtering out extraneous variables and operators that would normally
detract from the invariant output with the noise of true, but irrelevant, invariants.

We presented a new program analysis tool called Alembic that simplifies the
expression of these abstractions and automates the requisite instrumentation and code

generation. We used Alembic programs to illustrate a diverse set of applications of

123

this mechanism, including history constraint detection, effect abstraction, loop invariant
detection, and ad hoc abstraction of concrete implementations.

We can use the lessons learned here to inspire and inform the next generation of
detectors. Abstraction is a practical tool for eliciting information via dynamic invariant
detection, and the Alembic system is an extensible foundation for performing dynamic

invariant detection experiments and applying new abstraction techniques.

124

APPENDIX A

SCRIPT TO RUN DAIKON ON MMPQ UNIT TEST

Listing A.1. Shell commands required to analyze MMPQUnitTest by first instrumenting
with Chicory, then executing it against Guava’s MMPQ implementation, and finally
analyzing the results with Daikon.

export CLASSPATH="$ {CLASSPATH} : $ { GUAVA_JAR} : $ {GUAVA_TESTS}:${GUAVA_TESTLIB}:
${JUNIT_JAR}:${TRUTH_JAR}"
> javac —g MMPQUnitTest.java
> export MMPQ=""com.google.common.collect.MinMaxPriorityQueue"
> java \
daikon.Chicory \
——ppt—select—pattern="com.google.common.collect.[".]+.offer’ \
——ppt—omit—pattern="${MMPQ}.create’ \
——ppt—omit—pattern="${MMPQ} .create’ \
——ppt—omit—pattern="${MMPQ}.orderedBy’ \
——ppt—omit—pattern="${MMPQ}.expectedSize’ \
——ppt—omit—pattern="${MMPQ}.maximumSize’ \
——ppt—omit—pattern="${MMPQ}.<init>" \
——ppt—omit—pattern="${MMPQ}.elementData’ \
——ppt—omit—pattern="${MMPQ}.getMaxElementindex’ \
——ppt—omit—pattern="${MMPQ}.removeAt’ \
——ppt—omit—pattern="${MMPQ} fillHole’ \
——ppt—omit—pattern="${MMPQ}.removeAndGet’ \
——ppt—omit—pattern="${MMPQ}.heapForindex’ \
——ppt—omit—pattern="${MMPQ}.isEvenLevel \
——ppt—omit—pattern="${MMPQ}.isIntact’ \
——ppt—omit—pattern="${MMPQ}.capacity’ \
——ppt—omit—pattern="${MMPQ} .initialQueueSize’ \
——ppt—omit—pattern="${MMPQ}.growlfNeeded’ \
——ppt—omit—pattern="${MMPQ}.calculateNewCapacity’ \
——ppt—omit—pattern="${MMPQ}.capAtMaximumSize’ \
——ppt—omit—pattern="${MMPQ}.<init>" \
——ppt—omit—pattern="${MMPQ}.access$500" \
——ppt—omit—pattern="${MMPQ}.access$600’ \
——ppt—omit—pattern="${MMPQ}.access$700" \
——omit—var="getClass’ \
——dtrace—file=MMPQUnitTest.dtrace.gz \
MMPQUnitTest
> java \
daikon.Daikon \
——var—omit—pattern="getClass’ \
——config_option daikon.Daikon.progress_delay=—1 \
MMPQUnitTest.dtrace.gz

125

APPENDIX B

FULL DAIKON RESULTS FOR MMPQ UNIT TEST

The listings Listing B.1 through Listing B.10 comprise the Daikon output
when analyzing the MMPQ class with the Guava unit tests, as described in 4.2.1.
MinMaxPriorityQueue. As before, we have shortened the name com.google.common.
collect.MinMaxPriorityQueue to MMPQ for formatting purposes. The getClass() method

has been excluded from the invariant detection process for both Alembic and Daikon.

Listing B.1. Daikon output for MMPQ (1 of 10).

MMPQ:::OBJECT
this.minHeap != null
this.maxHeap != null
this.maximumSize one of { 42, 2147483647 }
this.queue != null
this.size >=0
this.modCount >= 0
this.maximumSize > this.size
this.maximumSize > this.modCount
this.maximumSize = MMPQ.EVEN_POWERS_OF_TWO
this.maximumSize > MMPQ.ODD_POWERS_OF_TWO
this.maximumSize > MMPQ.DEFAULT _CAPACITY
this.maximumSize > size(this.queue[])
this.size <= this.modCount
this.size < MMPQ.EVEN_POWERS_OF_TWO
this.size > MMPQ.ODD_POWERS_OF_TWO
this.size <= size(this.queue]])
this.modCount < MMPQ.EVEN_POWERS_OF_TWO
this.modCount > MMPQ.ODD_POWERS_OF_TWO
MMPQ.EVEN_POWERS_OF_TWO > size(this.queue(])
MMPQ.ODD_POWERS_OF_TWO < size(this.queue[])—1

MMPQ.add(java.lang.Object):::ENTER
this.maximumSize == 2147483647
element != null

MMPQ.add(java.lang.Object):::EXIT
this.minHeap == orig(this.minHeap)
this.maxHeap == orig(this.maxHeap)
this.maximumSize == orig(this.maximumSize)
this.queuelthis.size—1] == this.queue[orig(this.size)]
this.maximumSize == 2147483647
this.size >= 1
this.modCount >= 1

126

Listing B.2. Daikon output for MMPQ (2 of 10).

return == true

this.queue]this.size—1] != null

this.maximumsSize > orig(this.size)

this.maximumSize > orig(this.modCount)
this.maximumSize > orig(size(this.queue[]))
orig(element) in this.queue]]

this.size — orig(this.size) — 1 ==

this.size != orig(this.modCount)

this.modCount > orig(this.size)

this.modCount — orig(this.modCount) — 1 == 0
MMPQ.EVEN_POWERS_OF_TWO > orig(this.size)
MMPQ.EVEN_POWERS_OF_TWO > orig(this.modCount)
MMPQ.ODD_POWERS_OF_TWO < orig(this.size)
MMPQ.ODD_POWERS_OF_TWO < orig(this.modCount)
orig(this.size) <= size(this.queue[])—1
orig(this.modCount) != size(this.queue[])
size(this.queue[]) >= orig(size(this.queue[]))
size(this.queue[])—1 != orig(size(this.queuel]))
size(this.queue[])—1 >= orig(size(this.queue[]))—1

MMPQ.addAll(java.util.Collection):::ENTER
this.size == this.modCount
MMPQ.DEFAULT _CAPACITY == size(this.queue[])
this.queuelthis.size] == this.queue[MMPQ.DEFAULT _CAPACITY —1]
this.maximumSize == 2147483647
this.queue[] contains only nulls and has only one value, of length 11
this.queue[] elements == null
this.size == 0
this.queue[] elements == this.queue]this.size]

MMPQ.addAll(java.util.Collection):::EXIT
this.minHeap == orig(this.minHeap)
this.maxHeap == orig(this.maxHeap)
this.maximumSize == orig(this.maximumSize)
this.size == this.modCount
this.queuelthis.size] == orig(this.queue[post(MMPQ.DEFAULT _CAPACITY)—1])
this.queue(this.size] == orig(this.queue]this.size])
this.queuelthis.size] == orig(this.queue[this.modCount])
this.maximumSize == 2147483647
return == true
size(this.queue[]) one of { 11, 24, 50 }
this.queue(this.size] == null
this.size |= MMPQ.DEFAULT_CAPACITY
this.size > orig(this.size)
this.size < size(this.queue[])—1
this.size |= orig(size(this.queuel]))—1

127

Listing B.3. Daikon output for MMPQ (3 of 10).

MMPQ.DEFAULT _CAPACITY <= size(this.queuel])
MMPQ.DEFAULT _CAPACITY != size(this.queue[])—1
orig(this.queue(]) elements == this.queue[this.size]
orig(this.size) < size(this.queue[])—1
size(this.queue[])—1 >= orig(size(this.queue[]))—1

MMPQ.comparator():::ENTER
this.size == this.modCount
this.size one of { 0,6 }
size(this.queuel]) one of { 8, 11 }
this.queue]this.size] == null
this.size < MMPQ.DEFAULT_CAPACITY
this.size < size(this.queue[])—1
MMPQ.DEFAULT _CAPACITY >= size(this.queue[])

MMPQ.comparator():::EXIT
this.minHeap == orig(this.minHeap)
this.maxHeap == orig(this.maxHeap)
this.maximumSize == orig(this.maximumSize)
this.queue == orig(this.queue)
this.queue[] == orig(this.queue(])
this.size == this.modCount
this.size == orig(this.size)
this.size == orig(this.modCount)
this.size one of { 0,6 }
return != null
size(this.queue[]) one of { 8, 11 }
this.queue(this.size] == null
this.size < MMPQ.DEFAULT_CAPACITY
this.size < size(this.queue[])—1
MMPQ.DEFAULT _CAPACITY >= size(this.queue[])

MMPQ.iterator():::ENTER
this.maximumSize == 2147483647
size(this.queuel]) one of { 11, 24, 50 }
this.queue(this.size] == null
this.size |= MMPQ.DEFAULT_CAPACITY
this.size <= size(this.queue[])—1
MMPQ.DEFAULT _CAPACITY <= size(this.queuel])
MMPQ.DEFAULT _CAPACITY != size(this.queue[])—1

128

Listing B.4. Daikon output for MMPQ (4 of 10).

MMPQ.iterator():::EXIT
this.minHeap == orig(this.minHeap)
this.maxHeap == orig(this.maxHeap)
this.maximumSize == orig(this.maximumSize)
this.queue == orig(this.queue)
this.queue[] == orig(this.queue(])
this.size == orig(this.size)
this.modCount == orig(this.modCount)
this.maximumSize == 2147483647
return != null
size(this.queuel]) one of { 11, 24, 50 }
this.queue(this.size] == null
this.size '= MMPQ.DEFAULT_CAPACITY
this.size <= size(this.queue[])—1
MMPQ.DEFAULT _CAPACITY <= size(this.queue[])
MMPQ.DEFAULT _CAPACITY != size(this.queue[])—1

MMPQ.offer(java.lang.Object):::ENTER
element != null

MMPQ.offer(java.lang.Object):::EXIT
this.minHeap == orig(this.minHeap)
this.maxHeap == orig(this.maxHeap)
this.maximumSize == orig(this.maximumSize)
this.queuefthis.size—1] == this.queue[orig(this.size)]
this.size >= 1
this.modCount >= 1
return == true
this.queue]this.size—1] != null
this.maximumSize > orig(this.size)
this.maximumSize > orig(this.modCount)
this.maximumSize > orig(size(this.queue(]))
orig(element) in this.queue]]
this.size — orig(this.size) — 1 ==
this.size != orig(this.modCount)
this.modCount > orig(this.size)
this.modCount — orig(this.modCount) — 1 ==
MMPQ.EVEN_POWERS_OF_TWO > orig(this.size)
MMPQ.EVEN_POWERS_OF_TWO > orig(this.modCount)
MMPQ.ODD_POWERS_OF _TWO < orig(this.size)
MMPQ.ODD_POWERS_OF_TWO < orig(this.modCount)
orig(this.size) <= size(this.queue[])—1
orig(this.modCount) != size(this.queue[])
size(this.queue[]) >= orig(size(this.queue[]))
size(this.queue[])—1 != orig(size(this.queuel]))
size(this.queue[])—1 >= orig(size(this.queue[]))—1

129

Listing B.5. Daikon output for MMPQ (5 of 10).

MMPQ.peek():::ENTER
this.queuelthis.size] == this.queue[this.modCount]
this.queuelthis.size] == this.queue[MMPQ.DEFAULT _CAPACITY -1]
this.maximumSize == 2147483647
size(this.queuel]) one of { 11,12 }
this.queue(this.size] == null
this.size < MMPQ.DEFAULT_CAPACITY
this.size < size(this.queue[])—1
this.modCount < MMPQ.DEFAULT_CAPACITY
this.modCount < size(this.queue[])—1
MMPQ.DEFAULT _CAPACITY <= size(this.queue]])
MMPQ.DEFAULT _CAPACITY >= size(this.queue[])—1

MMPQ.peek():::EXIT
this.minHeap == orig(this.minHeap)
this.maxHeap == orig(this.maxHeap)
this.maximumSize == orig(this.maximumSize)
this.queue == orig(this.queue)
this.queue[] == orig(this.queue(])
this.size == orig(this.size)
this.modCount == orig(this.modCount)
this.queuelthis.size] == this.queue[this.modCount]
this.queuelthis.size] == this.queue[MMPQ.DEFAULT _CAPACITY —1]
this.queuelthis.size] == this.queue[orig(this.modCount)]
this.queue(this.size] == orig(this.queue[post(this.modCount)])
this.queuelthis.size] == orig(this.queue[post(MMPQ.DEFAULT _CAPACITY)—1])
this.queuelthis.size] == orig(this.queue[this.modCount])
this.maximumSize == 2147483647
size(this.queue[]) one of { 11,12 }
this.queue(this.size] == null
return in this.queue[]
this.size < MMPQ.DEFAULT_CAPACITY
this.size < size(this.queue[])—1
this.modCount < MMPQ.DEFAULT_CAPACITY
this.modCount < size(this.queue[])—1
MMPQ.DEFAULT _CAPACITY <= size(this.queue]])
MMPQ.DEFAULT_CAPACITY >= size(this.queue[])—1

MMPQ.peekLast():::ENTER
this.queuelthis.size] == this.queue[this.modCount]
this.queuelthis.size] == this.queue[MMPQ.DEFAULT _CAPACITY -1]
this.maximumSize == 2147483647
size(this.queue[]) one of { 11,12 }
this.queue]this.size] == null
this.size < MMPQ.DEFAULT_CAPACITY
this.size < size(this.queue[])—1
this.modCount < MMPQ.DEFAULT_CAPACITY
this.modCount < size(this.queue[])—1
MMPQ.DEFAULT _CAPACITY <= size(this.queuel])
MMPQ.DEFAULT _CAPACITY >= size(this.queue[])—1

130

Listing B.6. Daikon output for MMPQ (6 of 10).

MMPQ.peekLast():::EXIT
this.minHeap == orig(this.minHeap)
this.maxHeap == orig(this.maxHeap)
this.maximumsSize == orig(this.maximumSize)
this.queue == orig(this.queue)
this.queue[] == orig(this.queue(])
this.size == orig(this.size)
this.modCount == orig(this.modCount)
this.queuelthis.size] == this.queue[this.modCount]
this.queuelthis.size] == this.queue[MMPQ.DEFAULT _CAPACITY —1]
this.queuelthis.size] == this.queue[orig(this.modCount)]
this.queue(this.size] == orig(this.queue[post(this.modCount)])
this.queuelthis.size] == orig(this.queue[post(MMPQ.DEFAULT _CAPACITY)—1])
this.queuelthis.size] == orig(this.queue[this.modCount])
this.maximumSize == 2147483647
size(this.queue[]) one of { 11,12 }
this.queue(this.size] == null
return in this.queue(]
this.size < MMPQ.DEFAULT_CAPACITY
this.size < size(this.queue[])—1
this.modCount < MMPQ.DEFAULT_CAPACITY
this.modCount < size(this.queue[])—1
MMPQ.DEFAULT _CAPACITY <= size(this.queue[])
MMPQ.DEFAULT _CAPACITY >= size(this.queue[])—1

MMPQ.poll():::ENTER
this.maximumSize == 2147483647
size(this.queuef[]) one of { 11, 24, 102 }
MMPQ.DEFAULT _CAPACITY <= size(this.queuel])
MMPQ.DEFAULT _CAPACITY != size(this.queue[])—1

MMPQ.poll():::EXIT
this.minHeap == orig(this.minHeap)
this.maxHeap == orig(this.maxHeap)
this.maximumSize == orig(this.maximumSize)
this.queue == orig(this.queue)
size(this.queue[]) == orig(size(this.queue]]))
this.maximumSize == 2147483647
size(this.queuef[]) one of { 11, 24, 102 }
this.queue(this.size] == null
this.maximumSize > orig(this.size)
this.maximumSize > orig(this.modCount)
orig(this.queue[post(MMPQ.DEFAULT _CAPACITY)—1]) in this.queue[]
this.size < this.modCount
this.size <= orig(this.size)
this.size < orig(this.modCount)
this.size <= size(this.queue[])—1
this.modCount > orig(this.size)
this.modCount >= orig(this.modCount)

131

Listing B.7. Daikon output for MMPQ (7 of 10).

MMPQ.EVEN_POWERS_OF_TWO > orig(this.size)
MMPQ.EVEN_POWERS_OF_TWO > orig(this.modCount)
MMPQ.ODD_POWERS_OF_TWO < orig(this.size)
MMPQ.ODD_POWERS_OF_TWO < orig(this.modCount)
MMPQ.DEFAULT _CAPACITY <= size(this.queue]])
MMPQ.DEFAULT _CAPACITY != size(this.queue[])—1
return in orig(this.queue(])

orig(this.size) <= size(this.queue[])

MMPQ.pollFirst():::ENTER
this.maximumSize == 2147483647
this.size >=1
size(this.queue(]) one of { 11, 24,102 }
this.queuelthis.size—1] != null
MMPQ.DEFAULT _CAPACITY <= size(this.queue]])
MMPQ.DEFAULT _CAPACITY != size(this.queue[])—1

MMPQ.pollFirst():::EXIT
this.minHeap == orig(this.minHeap)
this.maxHeap == orig(this.maxHeap)
this.maximumSize == orig(this.maximumSize)
this.queue == orig(this.queue)
size(this.queue[]) == orig(size(this.queuel[]))
this.queue(this.size] == this.queue[orig(this.size)—1]
orig(this.queue[post(this.size)]) == orig(this.queue[this.size—1])
this.maximumSize == 2147483647
return != null
size(this.queue[]) one of { 11, 24, 102 }
this.queue(this.size] == null
orig(this.queue[post(this.size)]) != null
this.maximumSize > orig(this.size)
this.maximumSize > orig(this.modCount)
orig(this.queue[post(MMPQ.DEFAULT_CAPACITY)—1]) in this.queue[]
this.size < this.modCount
this.size — orig(this.size) + 1 ==
this.size < orig(this.modCount)
this.size <= size(this.queue[])—1
this.modCount > orig(this.size)
this.modCount — orig(this.modCount) — 1 ==

132

Listing B.8. Daikon output for MMPQ (8 of 10).

MMPQ.EVEN_POWERS_OF_TWO > orig(this.size)
MMPQ.EVEN_POWERS_OF_TWO > orig(this.modCount)
MMPQ.ODD_POWERS_OF_TWO < orig(this.size)
MMPQ.ODD_POWERS_OF_TWO < orig(this.modCount)
MMPQ.DEFAULT _CAPACITY <= size(this.queuel])
MMPQ.DEFAULT _CAPACITY != size(this.queue[])—1
return in orig(this.queuel])

orig(this.size) <= size(this.queue[])

MMPQ.pollLast():::ENTER
this.maximumSize == 2147483647
size(this.queuel]) one of { 11,24 }
MMPQ.DEFAULT _CAPACITY <= size(this.queue]])
MMPQ.DEFAULT _CAPACITY != size(this.queue[])—1

MMPQ.pollLast():::EXIT
this.minHeap == orig(this.minHeap)
this.maxHeap == orig(this.maxHeap)
this.maximumSize == orig(this.maximumSize)
this.queue == orig(this.queue)
size(this.queue[]) == orig(size(this.queue[]))
this.maximumSize == 2147483647
size(this.queuel]) one of { 11,24 }
this.queue]this.size] == null
this.maximumSize > orig(this.size)
this.maximumSize > orig(this.modCount)
orig(this.queue[post(MMPQ.DEFAULT _CAPACITY)—1]) in this.queue[]
this.size < this.modCount
this.size <= orig(this.size)
this.size < orig(this.modCount)
this.size <= size(this.queue[])—1
this.modCount > orig(this.size)
this.modCount >= orig(this.modCount)

133

Listing B.9. Daikon output for MMPQ (9 of 10).

MMPQ.EVEN_POWERS_OF_TWO > orig(this.size)
MMPQ.EVEN_POWERS_OF_TWO > orig(this.modCount)
MMPQ.ODD_POWERS_OF_TWO < orig(this.size)
MMPQ.ODD_POWERS_OF_TWO < orig(this.modCount)
MMPQ.DEFAULT _CAPACITY <= size(this.queuel])
MMPQ.DEFAULT _CAPACITY != size(this.queue[])—1
return in orig(this.queuel])

orig(this.size) <= size(this.queue[])

MMPQ.size():::EXIT
this.minHeap == orig(this.minHeap)
this.maxHeap == orig(this.maxHeap)
this.maximumSize == orig(this.maximumSize)
this.queue == orig(this.queue)
this.queue[] == orig(this.queue(])
this.size == return
this.modCount == orig(this.modCount)
return == orig(this.size)
return >=0
this.maximumSize > return
this.modCount >= return
MMPQ.EVEN_POWERS_OF_TWO > return
MMPQ.ODD_POWERS_OF_TWO < return
return <= size(this.queue]])

134

Listing B.10. Daikon output for MMPQ (10 of 10).

MMPQ.toArray():::ENTER
this.maximumSize == 2147483647
size(this.queue[]) one of { 11, 102 }
this.queue(this.size] == null
this.size < size(this.queue[])—1
this.modCount = MMPQ.DEFAULT_CAPACITY
MMPQ.DEFAULT _CAPACITY <= size(this.queue]])
MMPQ.DEFAULT _CAPACITY != size(this.queue[])—1
7 * this.size + 7 * this.modCount — 10 * size(this.queue[]) — 2 ==
7 * this.size + 7 * this.modCount — 10 * size(this.queue[])—1 — 12 ==

MMPQ.toArray():::EXIT
this.minHeap == orig(this.minHeap)
this.maxHeap == orig(this.maxHeap)
this.maximumSize == orig(this.maximumSize)
this.queue == orig(this.queue)
this.queue[] == orig(this.queue(])
this.size == orig(this.size)
this.size == size(return(])
this.modCount == orig(this.modCount)
this.maximumSize == 2147483647
return != null
return[] elements != null
size(this.queue[]) one of { 11, 102 }
this.queue(this.size] == null
this.size < size(this.queue[])—1
this.modCount = MMPQ.DEFAULT_CAPACITY
MMPQ.ODD_POWERS_OF_TWO < size(return[])—1
MMPQ.DEFAULT _CAPACITY <= size(this.queue]])
MMPQ.DEFAULT _CAPACITY != size(this.queue[])—1
7 * this.size + 7 * this.modCount — 10 * size(this.queue[]) — 2 ==
7 * this.size + 7 * this.modCount — 10 * size(this.queue[])—1 — 12 ==
7 % this.modCount — 10 * size(this.queue[]) + 7 = size(return[])—1 + 5==0
7 * this.modCount — 10 * size(this.queue[])—1 + 7 * size(return[])—1 — 5 ==

135

REFERENCES CITED

AMMONS, G., BODIK, R., AND LARUS, J. R. 2002. Mining specifications. In POPL
'02: Proceedings of the 29th ACM SIGPLAN-SIGACT symposium on Principles of
Programming Languages. ACM Press, New York, NY, USA, 4-16.

BOSHERNITSAN, M., DOONG, R., AND SAVOIA, A. 2006. From Daikon to Agitator:
lessons and challenges in building a commercial tool for developer testing. In ISSTA

"06: Proceedings of the 2006 International Symposium on Software Testing and
Analysis. ACM Press, 169-180.

CokK, D. R. AND KINIRY, J. R. 2004. ESC/Java2: Uniting ESC/Java and JML - progress
and issues in building and using ESC/Java2. In Construction and Analysis of Safe,
Secure and Interoperable Smart Devices: International Workshop, CASSIS 2004.
Springer—Verlag.

Cousort, P. AND CoUSOT, R. 2004. Basic Concepts of Abstract Interpretation. Kluwer
Academic Publishers, 359-366.

CSALLNER, C. AND SMARAGDAKIS, Y. 2006. Dynamically discovering likely interface
invariants. In Proc. 28th ACM/IEEE International Conference on Software
Engineering (ICSE), Emerging Results Track. ACM, 861-864.

CSALLNER, C., TILLMANN, N., AND SMARAGDAKIS, Y. 2008. DySy: Dynamic
symbolic execution for invariant inference. In Proc. 30th ACM/IEEE International
Conference on Software Engineering (ICSE). ACM, 281-290.

DAHM, M. 2001. Byte code engineering with the BCEL API. Tech. rep.

ERNST, M. D. 2010. Daikon Invariant Detector User Manual. MIT Computer Science
and Artificial Intelligence Laboratory.
http://groups.csail.mit.edu/pag/daikon/download/doc/daikon.html.

ERNST, M. D., PERKINS, J. H., GUo, P. J., MCCAMANT, S., PACHECO, C.,
TSCHANTZ, M. S., AND X1A0, C. 2007. The Daikon system for dynamic detection
of likely invariants. Science of Computer Programming 69, 1-3, 35-45.

FINDLER, R. B. AND FELLEISEN, M. 2001. Contract soundness for object-oriented
languages. In In OOPSLA "01 Conference Proceedings, Object-Oriented
Programming, Systems, Languages, and Applications. ACM, 1-15.

GOOGLE. 2011. Guava: Google core libraries for Java 1.5+.

GUTTAG, J. V., HORNING, J. J., GARL, W. J., JONES, K. D., MODET, A., AND WING,
J. M. 1993. Larch: Languages and tools for formal specification. In Texts and
Monographs in Computer Science. Springer-Verlag.

136

GUTTAG, J. V., HORNING, J. J., AND WING, J. M. 1985. The Larch family of
specification languages. Software, IEEE 2, 5, 24-36.

HANGAL, S. AND LAM, M. S. 2002. Tracking down software bugs using automatic
anomaly detection. In Proceedings of the 24th International Conference on Software
Engineering. ICSE *02. ACM, New York, NY, USA, 291-301.

HOARE, C. A. R. 1969. An axiomatic basis for computer programming.
COMMUNICATIONS OF THE ACM 12, 10, 576-580.

JACKSON, D. 2002. Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11, 2, 256-290.

KICZALES, G., HILSDALE, E., HUGUNIN, J., KERSTEN, M., PALM, J., AND
GRISWOLD, W. 2001. Getting started with Aspect]. Commun. ACM 44, 59-65.

KING, J. C. 1976. Symbolic execution and program testing. Commun. ACM 19, 7,
385-394.

KuzMINA, N. AND GAMBOA, R. 2007. Extending dynamic constraint detection with
polymorphic analysis. In Proceedings of the 5th International Workshop on Dynamic
Analysis. WODA ’07. IEEE Computer Society, Washington, DC, USA, 1-.

LAMPORT, L. 1989. A simple approach to specifying concurrent systems. Commun.
ACM 32, 1, 32-45.

LEAVENS, G. T. 1996. An overview of Larch/C++: Behavioral specifications for C++
modules. Tech. rep., DEPARTMENT OF COMPUTER SCIENCE, IOWA STATE
UNIVERSITY.

LEAVENS, G. T. 1999. Larch/C++ reference manual. Version 5.41. Available in
ftp://ftp.cs.iastate.edu/pub/larchc++/Icpp.ps.gz or on the World Wide Web at the
URL http://www.cs.iastate.edu/~ leavens/larchc++.html.

LEAVENS, G. T. 2006. JML’s Rich, Inherited Specifications for Behavioral Subtypes. In
ICFEM, Z. Liu and J. He, Eds. Lecture Notes in Computer Science Series, vol. 4260.
Springer, 2-34.

LEAVENS, G. T., BAKER, A. L., AND RUBY, C. 1998. Preliminary design of JML: A
behavioral interface specification language for Java. Tech. rep.

LEAVENS, G. T. AND CHEON, Y. 2006. Design by contract with JML.

LEAVENS, G. T. AND NAUMANN, D. A. 2006. Behavioral subtyping, specification
inheritance, and modular reasoning. Tech. Rep. 06-20b, Department of Computer
Science, lowa State University, Ames, lowa, 50011. Sept.

Liskov, B. H. AND WING, J. M. 1994. A behavioral notion of subtyping. ACM
Transactions on Programming Languages and Systems 16, 1811-1841.

137

LORENZOLI, D., MARIANI, L., AND PEZZE, M. 2008. Automatic generation of software

behavioral models. In Proceedings of the 30th international conference on Software
engineering. ICSE *08. ACM, New York, NY, USA, 501-510.

MEYER, B. 1992. Applying "Design by Contract”. IEEE Computer 25, 10, 40-51.

NIMMER, J. W. 2002. Automatic generation and checking of program specifications.
Tech. Rep. MIT-LCS-TR-852, MIT Lab for Computer Science, 200 Technology
Square. June.

NIMMER, J. W. AND ERNST, M. D. 2002. Automatic generation of program
specifications. In ISSTA 2002, Proceedings of the 2002 International Symposium on
Software Testing and Analysis. Rome, Italy, 232-242.

PERKINS, J. H. AND ERNST, M. D. 2004. Efficient incremental algorithms for dynamic
detection of likely invariants. In Proceedings of the ACM SIGSOFT 12th Symposium
on the Foundations of Software Engineering (FSE 2004. 23-32.

RICE, H. G. 1953. Classes of recursively enumerable sets and their decision problems.
Transactions of the American Mathematical Society 74, 2, 358-366.

SCHMIDT, D. A. 1998. Trace-based abstract interpretation of operational semantics. Lisp
and Symbolic Computation 10, 3, 237-271.

SPINCZYK, O., LOHMANN, D., AND URBAN, M. 2005. Advances in AOP with
AspectC++. In SoMeT, H. Fujita and M. Mejri, Eds. Frontiers in Artificial
Intelligence and Applications Series, vol. 129. I0S Press, 33-53.

SPIVEY, J. M. 1989. The Z notation: a reference manual. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA.

VOLKMANN, R. M. 2008. ANTLR 3. Java News Brief.
http://jnb.ociweb.com/jnb/jnbJun2008.html.

138

	(Cover)
	Abstract
	I. Introduction
	 1.1. Specifications and Contracts
	 1.2. Static and Dynamic Analysis
	 1.3. Dynamic Invariant Detection
	 1.4. Daikon and Alembic Comparison
	 1.4.1. Daikon Analysis of MMPQ
	 1.4.2. Alembic Analysis of MMPQ
	 1.4.3. How Does Alembic Do It?

	 1.5. Research Contributions
	 1.5.1. Improving the Use of Existing Detectors
	 1.5.2. New Applications of Invariant Detection
	 1.5.3. Alembic System
	 1.5.4. AspectJ-based Instrumentation

	 1.6. Structure of this Document

	II. Static and Dynamic Analysis
	 2.1. Behavioral Interface Specification Languages
	 2.1.1. Hoare Triples
	 2.1.2. Eiffel and Design By Contract
	 2.1.3. Larch Specification System
	 2.1.4. Behavioral Subtyping
	 2.1.5. Java Modeling Language (JML)
	 2.1.6. Other Specification Systems

	 2.2. Static Analysis
	 2.2.1. Halting Problem
	 2.2.2. Symbolic Execution
	 2.2.3. Abstract Interpretation
	 2.2.4. Model Checking

	 2.3. Dynamic Analysis
	 2.4. Dynamic Invariant Detection
	 2.4.1. An Example of Dynamic Invariant Inference
	 2.4.2. Uses for Invariant Detection
	 2.4.3. How Daikon Works
	 Instrument the Program with Chicory
	 Execute the Program
	 Initializing Daikon
	 Elimination via Falsification
	 Limitations of this Approach

	 2.4.4. Alternative Schemes

	 2.5. Dynamic Symbolic Execution (DySy)
	 2.6. Related Work
	 2.6.1. Contract Soundness
	 2.6.2. Inferring Behavioral Subtypes
	 2.6.3. Polymorphic Analysis
	 2.6.4. Variable Hierarchy

	III. Abstraction and Alembic
	 3.1. The Importance of Abstraction
	 3.2. Guidelines for Abstraction Use
	 3.3. Existing Abstraction Mechanisms
	 3.3.1. Implicit Abstraction
	 3.3.2. Filtering
	 3.3.3. Inline Abstracted State
	 3.3.4. Inline Pure Methods
	 3.3.5. Explicit Abstraction
	 3.3.6. AspectJ

	 3.4. Alembic
	 3.4.1. Using Alembic for Analysis
	 3.4.2. Structure of the Alembic Language
	 3.4.3. Performance Characteristics
	 3.4.4. Modifications to Daikon

	 3.5. Non-Daikon and Non-Java Implementation

	IV. Examples, Evaluations and Results
	 4.1. Evaluation Methodology
	 4.1.1. Hardware and Software
	 4.1.2. Experimental Setup

	 4.2. Guava Collection Classes
	 4.2.1. MinMaxPriorityQueue
	 4.2.2. HashBasedTable
	 4.2.3. TreeBasedTable
	 4.2.4. HashMultiset
	 4.2.5. ArrayListMultimap
	 4.2.6. Summary of Guava Results

	 4.3. Proofs of Concept
	 4.3.1. Aggregate Abstraction and History Constraints
	 4.3.2. Abstract Functions and Loop Abstraction

	V. Conclusion
	 5.1. Future Work
	 5.1.1. Method Transformation
	 5.1.2. Supertype Abstraction
	 5.1.3. Improved Lifecycle Control
	 5.1.4. Other Ideas

	 5.2. Suggestions for Detectors
	 5.3. Summary

	 A. Script to Run Daikon on MMPQ Unit Test
	 B. Full Daikon Results for MMPQ Unit Test
	REFERENCES CITED

