
BEHAVIOR-BASED WORM DETECTION

by

JOHN SHADRACH STAFFORD

A DISSERTATION

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

March 2012

DISSERTATION APPROVAL PAGE

Student: John Shadrach Stafford

Title: Behavior-based Worm Detection

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Computer
and Information Science by:

Dr. Jun Li Chair
Dr. John Conery Member
Dr. Chris Wilson Member
Dr. Yuan Xu Outside Member

and

Kimberly Andrews Espy Vice President for Research & Innovation/
Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate
School.

Degree awarded March 2012

ii

c© 2012 John Shadrach Stafford

iii

DISSERTATION ABSTRACT

John Shadrach Stafford

Doctor of Philosophy

Department of Computer and Information Science

March 2012

Title: Behavior-based Worm Detection

The Internet has become a core component of our lives and businesses.

Its reliability and availability are of paramount importance. There are many

types of malware that impact the availability of the Internet, including network

worms, bot-nets, viruses, etc. Detecting such attacks is a critical component of

defending against them. This dissertation focuses on detecting and understanding

self-propagating network worms, a type of malware with a proven record of

disrupting the Internet. According to Computer Economics, the Code-Red worm

caused more than 2.5 billion dollars in damages, and it was an unsophisticated

worm that hit nearly 10 years ago when the Internet was less important than it is

now. The recent StuxNet worm is a tremendously more sophisticated worm than

Code-Red, and had it been targeted at disrupting the Internet it seems a near

certainty that it could have caused significantly more damage than Code-Red.

For this reason it is supremely important that we focus on detecting and stopping

worms. Many worm detectors have been proposed and are being deployed, but the

literature does not clearly indicate which one is best. New worms such as IKEE.B

(also known as the iPhone worm) present new challenges to worm detection, raising

the question of how effective our worm defenses are.

iv

This dissertation studies the detection of self-propagating network worms with

the goal of improving our ability to detect slowly propagating “stealthy” worms.

We make the following contributions to the field: (i) we introduce a worm-detector

evaluation framework that allows us to easily evaluate a detector’s performance

across a variety of environments and worm types; (ii) we use this evaluation

environment to compare existing worm detectors to determine their strengths

and weaknesses; (iii) we examine evasive worms that attempt to avoid detection,

measuring how effective they are at remaining undetected and the propagation rate

they are able to achieve while doing so; and (iv) we introduce a new worm detector,

SWORD2, which provides superior performance at detecting stealthy or evasive

worms.

This dissertation includes previously published co-authored material.

v

CURRICULUM VITAE

NAME OF AUTHOR: John Shadrach Stafford

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:
University of Oregon, Eugene
Carleton College, Northfield, MN

DEGREES AWARDED:
Doctor of Philosophy, Computer and Information Science, 2012,
University of Oregon

Master of Science, Computer and Information Science, 2005,
University of Oregon

Bachelor of Arts, Computer Science, 1996, Carleton College

AREAS OF SPECIAL INTEREST:
Worm Detection, Network Behavior, Computational Science

PROFESSIONAL EXPERIENCE:

Senior Software Engineer, Palo Alto Software, 2011-current

Senior Software Consultant, Gecko Designs, 2006-2007

Graduate Research Fellow, NetSec Research Lab, University of Oregon,
2005-2008

Graduate Teaching Fellow, Department of Computer and Information Science,
University of Oregon, 2004-2005 and 2006-2007

Senior Software Consultant, Redside Solutions, 2003

Senior Software Consultant, Meridian Technology Group, 1999-2003

Internet Application Engineer, MetroOne Telecommunications, 1998-1999

Software Engineer, Integrity Solutions, 1996-1998

GRANTS, AWARDS AND HONORS:

Computer Science Graduate Teaching Fellow of the Year, University of
Oregon, 2007

vi

Award of Distinction on Directed Research Project, University of Oregon,
2006

Award of Distinction on Senior Comprehensive Project, Carleton College,
1996

PUBLICATIONS:

S. Stafford, J. Li, “Internet Worm Detection Techniques: A Survey,”
Technical Report CIS-TR-2012-01, University of Oregon, 2012.

S. Stafford and J. Li, “Behavior-based Worm Detectors Compared,”
in Proceedings of the Recent Advances in Intrusion Detection (RAID)
Symposium, pp. 38–57, 2010.

S. Stafford, J. Li, and T. Ehrenkranz, “Enhancing SWORD to Detect
Zero-Day-Worm-Infected Hosts,” in SIMULATION, vol. 83, pp. 199-212,
2007.

S. Stafford, J. Li, and T. Ehrenkranz, “On the Performance of SWORD in
Detecting Zero-Day-Worm-Infected Hosts,” in Proceedings of the Symposium
on Performance Evaluation of Computer and Telecommunication Systems,
vol. 38.3, pp. 559-566, 2006.

S. Stafford, T. Ehrenkranz, and J. Li, “Detecting Zero-Day Self-Propagating
Internet Worms Based on Their Fundamental Behavior,” in Proceedings of
the USENIX Security Symposium, Poster, 2006.

S. Stafford, J. Li, T. Ehrenkranz, and P. Knickerbocker, “GLOWS: A
High-fidelity Worm Simulator,” Technical Report CIS-TR-2006-11,
University of Oregon, 2006.

J. Li, S. Stafford, and T. Ehrenkranz, “SWORD: Self-propagating Worm
Observation and Rapid Detection,” Technical Report CIS-TR-2006-03,
University of Oregon, 2006.

R. Rejaie and S. Stafford, “A Framework for Architecting Peer-to-Peer
Receiver-driven Overlays,” in Proceedings of the International Workshop
on Network and Operating System Support for Digital Audio and Video,
pp. 42-47, 2004.

vii

ACKNOWLEDGEMENTS

I am grateful for the support and patience I received from Rebecca, Sophie,

Lillian, and the rest of my family.

I would also like to thank my advisor, Jun Li, for all of his help and

encouragement.

viii

For my children. Stick with it.

ix

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

1.1. Assumptions . 2

1.2. Challenges . 3

1.3. Key Contributions of This Research 4

1.4. Roadmap of This Dissertation 4

II. THE FUNDAMENTALS OF WORMS 6

2.1. Worm Scanning Mechanisms . 6

2.2. Worm Infection Mechanisms . 8

2.3. Case Studies . 9

2.4. Defenses . 13

2.5. Worm Damage Mitigation . 14

2.6. Advanced Worms . 16

III. A SURVEY OF EXISTING WORM DETECTORS 18

3.1. Desirable Features in a Detection System 18

3.2. Worm Detection Techniques . 20

3.3. Detection Systems . 54

x

Chapter Page

3.4. Detector Selection . 61

IV. EVALUATION FRAMEWORK FOR WORM DETECTORS 66

4.1. Trace Conversion . 66

4.2. Environment Generation . 71

4.3. Worm Simulation . 72

4.4. Evaluation . 75

4.5. Experiment Coordination and Results Processing 76

V. A COMPARISON OF BEHAVIOR-BASED WORM DETECTORS . . 77

5.1. The Selected Worm Detectors 77

5.2. Detector Performance Metrics 84

5.3. Experiment Design . 89

5.4. Results . 96

VI. EVASIVE WORMS . 112

6.1. Evasive Worm Capabilities . 113

6.2. Evasion Tactics . 114

6.3. Methodology . 118

6.4. Metrics . 119

6.5. Evasive Worm Detection Results 121

xi

Chapter Page

VII. A NEW WORM DETECTOR . 156

7.1. Preventing Fast Scanning . 157

7.2. Quiescent Periods . 159

7.3. Clustering . 162

7.4. SWORD2 . 163

VIII. AN EVALUATION OF THE SWORD2 DETECTOR 164

8.1. Burst Duration Detector . 165

8.2. Quiescent Period Detector . 169

8.3. SWORD2 Detector Compared with Existing Works 173

8.4. SWORD2 vs Evasive Worms . 177

8.5. Analysis . 183

IX. CONCLUSION . 185

9.1. Contributions . 186

9.2. Future Work . 188

9.3. Conclusion . 191

REFERENCES CITED . 192

xii

LIST OF FIGURES

Figure Page

2.1. A stack buffer-overflow attack . 8

3.1. Gateway deployment . 20

3.2. Detection taxonomy . 21

3.3. Double honeypot system . 29

3.4. Static signature . 31

3.5. Autograph architecture . 32

3.6. PolyGraph’s advanced signature . 36

4.1. Trace conversion architecture . 67

4.2. Connection extraction process . 71

5.1. False positives against legitimate traffic 97

5.2. F- against random worm . 101

5.3. Latency against random worm . 102

5.4. F- against local-preference worm . 103

5.5. Latency against local-preference worm 106

5.6. F- against topo worm . 108

5.7. Latency against topo worm . 109

6.1. Effective scanning rate vs DSC . 124

6.2. Evasion rate vs DSC . 125

6.3. Maximum effective rate vs DSC . 126

6.4. Effective scanning rate vs MRW . 128

6.5. Evasion rate vs MRW . 129

6.6. Maximum effective rate vs MRW . 130

xiii

Figure Page

6.7. Effective scanning rate vs RBS . 132

6.8. Evasion rate vs RBS . 133

6.9. Maximum effective rate vs RBS . 134

6.10. Effective scanning rate vs PGD . 136

6.11. Evasion rate vs PGD . 137

6.12. Maximum effective rate vs PGD . 139

6.13. Effective scanning rate vs TRW with 100 known targets 142

6.14. Evasion rate vs TRW with 100 known targets 143

6.15. Effective scanning rate vs TRW with 1000 known targets 144

6.16. Evasion rate vs TRW with 1000 known targets 145

6.17. Maximum effective rate vs TRW . 147

6.18. Effective scanning rate vs TRWRBS with 100 known targets 150

6.19. Evasion rate vs TRWRBS with 100 known targets 151

6.20. Effective scanning rate vs TRWRBS with 1000 known targets 152

6.21. Evasion rate vs TRWRBS with 1000 known targets 153

6.22. Maximum effective rate vs TRWRBS 154

7.1. Examples of observed connections over time 161

8.1. F- and detection latency for BDD with no clustering 167

8.2. F- and detection latency for BDD with clustering 169

8.3. F- and detection latency for QPD with no clustering 172

8.4. F- and detection latency for QPD with clustering 173

8.5. F- and detection latency for SWORD2 175

8.6. False Negatives for all detectors . 176

8.7. Effective scanning rate vs SWORD2 179

8.8. Evasion rate vs SWORD2 . 180

xiv

Figure Page

8.9. Maximum effective rate in enterprise environment 181

8.10. Maximum effective rate in campus environment 182

8.11. Maximum effective rate in department environment 182

8.12. Maximum effective rate in wireless environment 183

xv

LIST OF TABLES

Table Page

2.1. Worm case studies . 10

3.1. Desirable worm detector attributes with measurable metrics 19

3.2. Worm detection techniques (in order of publication year) 55

3.3. Accuracy and speed of selected systems 56

3.4. Detection technique coverage . 59

3.5. Worm detector capabilities . 60

3.6. Pros and cons of categories of worm detection 62

4.1. Flow definition . 69

4.2. Data elements captured about each flow 70

5.1. Metrics . 87

5.2. Trace statistics . 93

5.3. Parameter choices for the detectors . 100

6.1. Evasive worm capabilities . 115

8.1. Parameter choices for the Burst Duration Detector 166

8.2. Parameter choices for QPD . 171

8.3. Parameter choices for SWORD2 . 174

8.4. Average detection latency for all detectors 177

xvi

LIST OF CODE LISTINGS

Code Listing Page

6.1. DSC Blind Evasive Worm . 123

6.2. DSC Perceptive Evasive Worm . 123

6.3. MRW Blind Evasive Worm . 126

6.4. MRW Perceptive Evasive Worm . 127

6.5. RBS Blind Evasive Worm . 131

6.6. RBS Perceptive Evasive Worm . 131

6.7. PGD Blind Evasive Worm . 135

6.8. PGD Perceptive Evasive Worm . 135

6.9. TRW Blind Evasive Worm . 141

6.10. TRW Perceptive Evasive Worm . 146

6.11. TRWRBS Blind Evasive Worm . 148

6.12. TRWRBS Perceptive Evasive Worm 155

xvii

CHAPTER I

INTRODUCTION

The Internet plays a critical role in the operation of business, government,

and even our personal lives. Because of its importance, we must ensure that it is

reliable and available. Network worms are a form of malware that can compromise

the integrity and availability of the Internet. This dissertation focuses on detecting

worms, a critical component in defending the Internet against the damage they

can cause. Extensive research has been done in this field, but recent worms such

as IKEE.B and StuxNet have raised questions about our ability to detect modern,

evasive worms. This dissertation seeks to answer those questions, and introduces a

new worm detector that provides superior performance against evasive worms.

It is almost impossible to overstate the importance of the Internet in our

daily lives. It is almost equally difficult to overstate the number of new devices

that rely on the network that are activating every day Andy Rubin, of Google,

reported in December of 2011 that over 700, 000 new Android devices were being

activated every day[1]. Over the Christmas weekend in 2011, he reported that over

3.7 million devices were activated [2]. This is a phenomenal number of new devices,

and all of these devices need to use the Internet to operate effectively.

Advanced mobile operating systems, such as Apple’s iOS include sophisticated

measures to prevent malicious use of the hardware. However, these protections

can be circumvented by users wishing to run other software. In early 2012,

computer news website Gizmodo.com reported that during the first three days a

new “jailbreak” of Apple’s successful iPhone 4S and iPad 2 was available, nearly

one-million people used the jailbreak software [3]. Installing unsupported operating

1

systems such as this was the sole reason for the outbreak of the IKEE.B worm.

There is nothing the software vendors can do to protect user’s from this sort of risk.

A worm that utilized these jailbroken machines could cause significant

disruption to the Internet. These facts highlight the importance of effective worm

defenses. Specifically, we must be able to identify worm infected hosts without

needing to run software directly on each host machine. We must not rely on specific

byte-stream signatures to detect worm traffic because the traffic may be encrypted,

as was the case with IKEE.B. And we must be adaptive to new applications and

protocols, because users are downloading and installing more software then ever

before, iOS users have an App store with hundreds of thousands of applications

available for download [4]. To fight the threat that network worms pose, we need to

advance the state of the art of worm detection.

1.1. Assumptions

We make the following assumptions in this work:

We assume that despite advances in defensive measures such as address

space randomization and protected memory, there will always be vulnerabilities

in networked computing systems. This assumption seems to be a safe one based

on the decision making typical of end-users. The iPhone worm and “jailbreaking”

numbers referenced above are an an example of users unwittingly installing insecure

software on a network attached device. It is hard to imagine them giving up this

behavior.

In addition, we assume that IPv4 based networking will remain the standard

in the near future. The IPv4 standard will inevitably be replaced, and depending

on the nature of the replacement, the characteristics of network worms may

2

change greatly. For example, if Content Centric Networking [5] becomes the norm,

scanning for vulnerable hosts changes dramatically. A move to IPv6 will also

change host-level behavior, but it is unclear how this will play out in practice.

However, it is clear that any change in the core networking standards will take time

to complete, so the current worm threat will remain for the near future.

Finally, we assume that network operators are interested in detecting

malicious behavior on their network. This is perhaps our biggest and riskiest

assumption. It is unclear whether worm detection systems are broadly deployed,

and if they are not deployed, whether it is due to their poor performance or some

other reason. It seems logical to us that a network operator would want to be

aware of malicious activity on their network and so would deploy software to detect

it, but there is no practical way to verify this.

1.2. Challenges

There are a number of challenges inherent in worm detection research.

The first challenge is to define a scope and set of scenarios that enable us to

make meaningful evaluations. The field of worm detection is a broad one, and there

is no way to cover every aspect of it in detail. We have seen that worms can be a

threat to the Internet as a whole, but they also threaten individual organizations.

A worm can carry a malicious payload that can steal or delete important data.

The first step in defending against worms is knowing that they are present in a

network. Towards that end, in this work we have chosen to focus on detecting

worms in small protected networks. This sort of detection is broadly applicable,

unlike systems such as network telescopes like [6, 7] which require large address

spaces to deploy). A large organization such as a university could use a detector

3

targeted at small networks by deploying an instance of it for individual subnets

within their network. The opposite is not true however, a small network operator

simply cannot make use of a detector that requires a large network to operate.

One of the most significant challenges for this work is finding suitable network

traces. We would like to evaluate detectors against a broad range of traffic types,

but due to privacy restrictions it is very difficult to acquire such traces. In this

study we were forced to use some traces that are as much as 10 years old, which

may not provide an accurate representation of modern traffic.

1.3. Key Contributions of This Research

In this dissertation we present the following contributions to advancing the

state-of-the-art in worm detection research: we develop a framework to easily

evaluate behavior-based worm detection systems, compare the performance of

existing behavior-based worm detection systems to determine which performs the

best, extend the evaluation to include evasive worms that deliberately try to avoid

detection, and to use the principles learned in this evaluation to build a detector

that outperforms existing worm detection systems.

1.4. Roadmap of This Dissertation

This dissertation is organized as follows. In Chapter II we discuss the

fundamentals of network worms, outlining their lifecycle and presenting several case

studies. Chapter III describes the desirable features of a worm detector, surveys

existing worm detection systems, and discusses the evaluation parameters of worm

detectors. We present our framework for evaluating worm detection systems in

Chapter IV. We use this framework to evaluate six behavior-based worm detectors

4

in Chapter V, which was co-authored with Dr. Jun Li and published in the 2010

Proceedings of the Recent Advances in Intrusion Detection (RAID) Symposium.

Chapter VI extends this evaluation by considering worms that attempt to evaded

detection. Taking the lessons learned from evaluating existing worm detectors,

we present the design of the SWORD2 detector in Chapter VII and evaluate its

performance in Chapter VIII. Finally, we discuss future work and open issues along

with our conclusions in Chapter IX.

5

CHAPTER II

THE FUNDAMENTALS OF WORMS

A computer worm is a self-propagating program. A worm running on a host

will actively scan the network (or the entire Internet) that the host is connected to,

looking for additional victims to infect. A worm infects a remote host by gaining

sufficient privileges to copy itself to, and then execute itself on, the remote host.

Privileges are typically gained by exploiting a flaw in software running on the

remote host, but may also be acquired through poor configuration of software or

services.

The activity of a worm can be broken down two major steps: (1) finding new

hosts to infect, and (2) infecting newly found hosts. Finding hosts can be done in

a variety of ways, but each host must eventually be contacted over the network.

The infection step involves gaining privileges on the remote host, copying the worm

code to it, and executing the code on it. In nearly all existing worms, all of these

elements are combined into the single action of attempting malicious connections

to remote addresses with the goal of infecting them. The SQL-Slammer worm is an

excellent example of this: the UDP packets it sends are sufficient to compromise a

machine, so combine the finding and infecting into a single action. Because UDP is

a stateless protocol the source host does not need to establish a connection or wait

for a response from a remote address before moving on to the next target, allowing

SQL-Slammer to scan and infect at an astonishing rate.

2.1. Worm Scanning Mechanisms

Depending on the strategy for locating vulnerable hosts, the chance of

6

each connection finding a vulnerable host and infecting it may be low, as in

the case of a worm that scans randomly, or high, in the case of a worm that

has a hit-list of vulnerable targets. In their seminal work “How to 0wn the

Internet in Your Spare Time” [8], Staniford, Paxson, and Weaver catalogued a

variety of scanning mechanisms, including Random, Local Preference, Sequential,

Permutation, Topological, and Hit-list scanning. The most basic mechanism is

random scanning. Using this technique, worms simply generate a random 32-bit

address (assuming standard IPv4 network addressing), and then try to connect to

it. Random-scanning is simple to implement and effective, but is inefficient because

many connections will be made to addresses where no host is present. A more

efficient means of scanning, employed be several worms including Code Red II, is to

focus efforts on addresses near the currently infected host. This leverages the fact

that hosts are not evenly dispersed within the Internet, and that vulnerable hosts

tend to be clustered [9]. Staniford et al. outlined additional scanning strategies

that a worm can employ, including hit-list scanning, permutation scanning, and

topological scanning [8]. A worm using hit-list scanning works from a pre-compiled

list of vulnerable hosts, making it extremely fast. Permutation scanning allows

hosts to compartmentalize their efforts, all infected hosts share a permutation of

the address space, and have some section of that permutation assigned to them to

scan. Finally topological scanning worms acquire their targets from information

available from the infected host or on the network. This might include lists of

recently contacted hosts, connections into some peer-to-peer network, or even

search results from a major search engine [10].

The scanning mechanism impacts not only the speed with which a worm

propagates, but also may change the way it appears on the network. For example,

7

char c[12]

char *bar

unallocated stack space

saved frame pointer

return address

parent routine's stack

c[11]

c[0]

St
ac

k
G

ro
w

th

M
em

ory A
ddresses

(a) Typical allocation of the stack

char c[12]

unallocated stack space

parent routine's stack

A

A A A A

A A A A

A A A

St
ac

k
G

ro
w

th

M
em

ory A
ddresses

Address
0x80C03508

AA A A

AA A A

\x80\x80 \x35 \xC0

(b) The stack with buffer overflowed

FIGURE 2.1. A stack buffer-overflow attack on buffer c writes data beyond
what is allocated, overwriting the stack pointer and return address. A real attack
would write its payload shell-code to in place of the A characters.

a random scanning worm will typically generate many failed connection attempts,

while a topological worm will produce a much smaller number.

2.2. Worm Infection Mechanisms

There are many possible avenues that would allow a worm to take over a

remote host, but by far the most common is exploiting a buffer overflow. Despite

this style of attack having been a known vector for worm propagation for many

years, buffer overflow vulnerabilities continue to show up frequently in software. It

does not appear that they will be eradicated any time soon.

The essence of a buffer overflow attack is to write more data to a buffer than

it has allocated space for. The excess data will then overwrite adjacent memory

addresses, and when this is done properly, the overwritten memory areas can be

used to execute arbitrary code. Buffer overflow attacks must be targeted specifically

8

at an architecture and operating system. The buffers that are overwritten can be

either on the heap or the stack, with different exploitation requirements for the

two options. The heap is the pool of free memory that is allocated dynamically to

the running program. It is typically referenced indirectly. The call stack stores the

information about the execution of the program, but varies greatly with operating

system and machine environment. One typical function of the stack is to store the

address to which each function should return control when it finishes executing. See

Figure 2.1 for an example of using a buffer overflow to overwrite the return address

of a stack frame.

A second form of attack is known as code injection. It is typically found in

web applications. In this attack, a server accepts posted data from a client, and if

it doesn’t properly sanitize the data for code markers, it can end up executing the

posted data as code. This allows the client the opportunity to execute arbitrary

code on the server, allowing the client to compromise it and infect it with a worm.

2.3. Case Studies

To get a better sense of the threat, let us examine a few of the more

well-known worms that have been discovered in the wild. Table 2.1 summarizes

the details.

– Code-Red v2 (2001): Released on July 19, 2001, this worm infected

approximately 359,000 hosts in just 14 hours [11], with damages estimated at

more than two billion dollars [16]. It exploited a buffer-overflow vulnerability

in Microsoft’s IIS Web Server to inject code which defaced web pages,

randomly scanned the Internet for additional hosts to infect, and periodically

issued a denial of service attack against www1.whitehouse.gov.

9

TABLE 2.1. Worm case studies

Worm Scan Type Vector Payload Victims

Code Red v2 Random Buffer Defacement, DDOS ∼ 359K [11]
Code Red II Local Pref. Buffer Install backdoor ∼ 359K [11]
Sql Slammer Random Buffer None ∼ 75K [12]
Witty Hitlist, Rand. Buffer Erased HD ∼ 12K [13]
Santy Topological Injection Defacement < 20K [10]
Conficker Various [14] Buffer BotNet client > 4M [15]
IKEE.B Random Password BotNet client Unknown
Conficker Various Multiple Industrial sabatoge Unknown

– Code-Red II (2001): This worm exploited the same vulnerability as the

original Code-Red worm, but was otherwise unrelated. It did not deface web

pages or issue denial of service attacks, instead installing a back door allowing

root access to the infected machine. The Code-Red II worm is notable

because it used a more sophisticated scanning mechanism than previous

worms. Rather than scanning the entire Internet randomly, it preferentially

scanned local networks. Because vulnerable hosts tend to be clustered, this

scanning method improved the propagation speed of the worm [17, 18, 19].

– SQL-Slammer (2003): One of the fastest spreading worms observed in the

wild, the SQL-Slammer worm infected most of the vulnerable population of

approximately 75,000 hosts (servers running the vulnerable version of the

SQLServer software) in under 10 minutes. It propagated quickly because

each scan required only a single, small UDP packet; allowing high-bandwidth

victims to scan at enormous rates. The peak aggregate scanning rate was

approximately 55 million scans per second, which was sufficient traffic

to disrupt significant portions of the Internet [12]. It is remarkable that

SQL-Slammer achieved this much damage despite a naive random scanning

10

algorithm and a small vulnerable population. It serves a reminder that even a

small number of infected hosts can cause a great amount of damage.

– Witty (2004): The first widely propagated Internet worm to carry a

destructive payload, the Witty Worm was notable in that it took advantage

of a vulnerability in security software in order to propagate [13]. The Witty

worm scanned for victims randomly, stopping after 20,000 scan packets to

make detection harder. After scanning it began writing random data to the

hard-disk of the infected machine.

– Santy (2004): The first widely propagated search worm, Santy found

vulnerable hosts by submitting specially formulated search queries to the

Google search engine (later variants used a variety of search engines) to

find web servers running a vulnerable version of a PHP based bulletin board

software. The worm defaced the websites that it infected, but carried no other

malicious payload. The number of infected servers is estimated in the low

thousands [10], but no hard figures have been published.

– Conficker (2008): The Conficker worm infects Microsoft Windows machines

by crafting a malicious RPC (remote procedure call) request. It has

successfully spread to millions of machines [15] and continues to evolve

in response to defensive measures taken [20]. Conficker uses a variety of

scanning techniques including topological, local preference, and random

scanning. It has additional advanced features including: employing a variety

of techniques to hide itself within infected systems, deleting system rollback

points to prevent easy removal, actively disabling installed antivirus software,

and dynamically updating itself.

11

– IKEE.B, the iPhone Worm (2009): The IKEE.B worm targets “jail-broken”

iPhones [21]. These phones have had the default operating system replaced

by their user with a new operating system downloaded from the Internet.

“Jailbreaking” a phone in this way allows users to run software that would

not otherwise run on their system. Unfortunately, the jailbreak software

installed a default root password which was exploited by the worm. The

worm installed bot-net software and scanned network prefixes know to be

run by mobile phone operators who carry the iPhone. The worm itself was

relatively simplistic, but because it spread via ssh (an encrypted channel)

and exploited a configuration weakness rather than a buffer overflow, it was

invisible to host-based and content-based detector systems.

– StuxNet (2010): The StuxNet worm is the most sophisticated worm seen to

date, utilizing multiple zero-day vulnerabilities to attack industrial control

systems [22]. It was likely targeted at a uranium processing plant in Iran. It

utilizes a variety of mechanisms to propagate and attempts to cover its tracks

when it does infect a system. It is difficult to quantify the damage caused

by this worm, because it seems to be targeted a specific plant, but given the

level of sophistication it shows, it could have caused tremendous damage if

targeted at the Internet in general.

Early worms were exceedingly primitive and detecting them posed little

difficulty. The sophistication of StuxNet shows that this will not always be the

case. Worms like IKEE.B can propagate over encrypted channels and don’t rely

on buffer overflow attacks. Worms like StuxNet and Conficker attempt to hide all

traces of their existence on infected hosts. Worms are advancing in sophistication

and worm detection methodologies must accordingly keep up.

12

2.4. Defenses

Detection is not the only weapon in the arsenal against worms. There does

exist technology that could somewhat mitigate the risk from worms, by eliminating

some avenues for a compromising a host. These will not entirely eliminate the risk

from worms as other avenues will always remain open. The dominant majority of

the worm attacks in the wild exploit buffer overflows, but compiler technology can

ensure that many such vulnerabilities are eliminated from software.

StackGuard [23] is a compiler modification that protects programs against

buffer overflow in the majority of cases with only a small performance penalty. A

more advanced version is CCured [24], which protects all memory accesses, but

these technologies must be adopted into widespread usage before they will help.

Another possibility is that of address space layout randomization. In this

scheme, the locations of various libraries and system calls in memory is randomized,

making it more difficult for an attacker to call specific functions from buffer

overflow attacks. Both Microsoft Windows Vista and Mac OS X.5 implement a

form of this, in theory making it harder to take advantage of buffer overflows.

Research by Schachem et al. showed that this may only slow attackers, and not

stop them entirely [25].

The preceding tools limit the ability of a worm to infect hosts, but work by

Anatos et al. [26] show that is is also possible to reduce the ability of worms to find

hosts to infect. Instead of randomizing address locations, they suggest randomizing

the assigned addresses of servers on a regular basis to defeat the ability of worms to

have a hit-list of vulnerable servers to attack.

Once a worm has discovered vulnerable hosts and exploited their vulnerability

there are additional steps that can be taken. Infected hosts can also be quarantined

13

to limit their ability to infect additional targets [27, 28, 29]. Infected hosts can be

restored and patched to prevent reinfection. Brumley et al. examined the tradeoffs

between the above mentioned protection mechanisms vs patching and blacklisting

hosts [30]. They showed that the most useful approach is a hybrid of reactive

antibodies (which includes signature based defenses as well as active system

patching) coupled with protective measures such as address space randomization.

They showed address blacklisting requires unrealistically fast reaction times and

that local containment required an extremely high deployment rate to be effective.

Unfortunately all of these solutions provide only limited mitigation from

worms and broad adoption of them will take time. The threat from worms is here

for the foreseeable future.

2.5. Worm Damage Mitigation

Detecting the presence of a worm is not only task that must be accomplished.

Once we know that a worm is present, we must do something about it. This section

discusses the research that has been done into mitigating the damage caused by

worms. The solutions presented here generally take one of a couple of forms, some

suggest throttling the worm to reduce the speed at which it propagates, others

attempt to block only worm connections from an infected host, while finally some

solutions suggest blocking all connections from an infected host.

One of the earliest mitigation works [31], titled LaBrea after the LaBrea Tar

Pits, is a honeypot which responds more and more slowly to inquiries, keeping

the remote host occupied so it can’t propagate more widely. It was followed by

Williamson’s introduction of the notion of throttling connection rates (limiting

a hosts ability to connect to many destinations quickly) to slow the spread of

14

worms [32]. This work was further explored by Twycross and Williamson in [33],

and then extended to email viruses in [34].

Worm detection works that rely on observing connection failures can be easily

extended to reduce the rate of worm spread by employing credit base rate-limiting.

Schecter et al. [35] employ this method with their reverse sequential hypothesis

testing work. Each host is issued a starting balance of 10 credits, each connection

they open to a host not in their recent set of destinations costs one credit. That

credit is returned (plus an additional one) if the connection is successful, but is not

returned if the connection fails. Additionally, hosts receive a small allowance of

credits periodically if they exhaust their supply, and they are forced to surrender

some of their surplus credits if they acquire more than 15. In this way, a host is

prevented from making large numbers of connections that fail, while still allowing

for occasional normal failures. A similar solution based on Threshold Random Walk

was implemented by Weaver et al. [27].

Wong et al. studied the deployment effectiveness of throttling at backbone vs

edge routers [36]. They showed that it is dramatically more effective to deploy rate

limiting at the backbone than at edge routers.

A different approach is taken by Gu et al. in [37], which actively blocks

connections from hosts after they are discovered to be infected. They showed

that even blocking traffic entirely from infected hosts will not stop the spread of

the worm, though it will slow it down considerably. Kannan et al. showed that if

firewalls cooperate at blacklisting hosts, they can be much more effective [38], even

with as few as 10% of the firewalls participating.

Moore et al. examined the problem in a general sense, looking at the reaction

time, containment strategy, and deployment scenario [39]. They showed that a

15

fast reaction time is vital, that content filtering is more effective than address

blacklisting, and that a significant portion of the largest Autonomous Systems

(such as Internet service providers) must cooperate to effectively block the spread

of worms. Ganesh et al. used game theory to examine the best strategy for

worms and detectors [28]. They showed that a Bayesian approach to combining

information from multiple detectors can be effective, while for a worm, slow

scanning is the most effective strategy.

In addition to quarantine, infected hosts can be restored and patched to

prevent reinfection. Brumley et al. examined the tradeoffs between the above

mentioned protection mechanisms vs patching and blacklisting hosts [30]. They

showed that the most useful approach is a hybrid of reactive antibodies (which

includes signature based defenses as well as active system patching) coupled with

protective measures such as address space randomization. They showed address

blacklisting requires unrealistically fast reaction times and that local containment

required an extremely high deployment rate to be effective.

2.6. Advanced Worms

The threat from worms is substantial, and is most likely only going to

get worse as the speed of propagation and the stealthiness of worms increases

along with their countermeasure abilities against worm detection mechanisms.

In cataloging potential worm scanning techniques, Staniford et al. outlined the

great speed with which worms can infect the Internet and the vast threat that

they pose [8]. This analysis was taken even further by Weaver and Paxson in

2004, estimating that a well engineered worm could cause upwards of $50 Billion

dollars in damage and lost productivity [40]. Such a worm could move frighteningly

16

quickly, potentially infecting 95% of Instant Messenger clients in as little as 510

milliseconds [41].

There are many ways for a worm to be more stealthy in its spread as well.

Polymorphic worms change the code that they send across the network, limiting

the effectiveness of signature-based systems at detecting them. Song et al. showed

that polymorphic shellcode used in buffer overflow attacks can be disguised with

off the shelf polymorphism engines to appear as essentially random bytes [42]. Van

Gundy, Balzarotti, and Vigna furthered this attack, showing that web-based attacks

based on PHP exploits can also be extremely polymorphic [43]. These random

bytes can be manipulated to show a normal looking byte frequency distribution

by a blending attack, and described by Fogla et al. [44]. Multi-attack vector worms

that are capable of exploiting more than one vulnerability add an additional layer

of complexity, as detectors can’t focus on a single attack. Worms can also use

intelligent scanning to avoid some types of detection mechanisms all together, as

in the research by Rajab, Monrose, and Terzis [45].

Many of the detection mechanisms we will discuss rely on training against

legitimate traffic. This makes them susceptible to malicious training attacks that

can cause them to treat legitimate traffic as worm traffic. Attacks of this nature

have been described against several detection mechanisms ([46, 47]), and has

been formally defined as a “learning problem in an adversarial environment” by

Newsome, Karp, and Song [48]. These works show that as worms get smarter,

detecting them gets more difficult and dangerous.

17

CHAPTER III

A SURVEY OF EXISTING WORM DETECTORS

3.1. Desirable Features in a Detection System

The threat from worms is significant, but we are not defenseless in this battle.

With a basic understanding of worms, their life-cycle, and their capabilities, we

can now turn our attention to methods of detecting the presence of worms within a

network. In this section, we describe the desirable attributes of worm detection.

There are many desirable characteristics in a worm detection system (see

Table 3.1 for a summary). These attributes provide us with useful metrics to

consider as we examine proposed worm detection systems. The most obvious

desirable feature in a worm detection system is that it must be accurate. This

means that it must have a low false negative rate, meaning that it rarely fails to

detect worm activity; as well as a low false positive rate, meaning that it rarely

identifies legitimate activity as a worm.

Accuracy alone does not sufficient define a system as good or bad. It must

also offer comprehensive coverage, which is to say that it should detect all of

worms regardless of scanning type, infection vector, network protocol, or detection

countermeasures the worm may employ. A worm detection system should be fast,

meaning that it is able to detect a worm with a minimum of worm activity.

Worm detectors should also be easily deployable. A single deployment

location that can protect an entire network — such as at a network gateway —

is more desirable than requiring deployment on each machine in a network (see

Figure 3.1) as it would require less overhead to install and maintain. Additionally,

the system must not impose onerous overhead. If deployed at a network gateway

18

TABLE 3.1. Desirable worm detector attributes with measurable metrics

Desired Attribute Measurable Metrics

Accuracy False negatives (worm activity identified as legitimate)
False positives (legitimate activity identified as worm)

Coverage Scan types detected
Infection vectors detected
Network protocol limitations

Speed Detection latency

Deployability Deployment location
Runtime overhead

Capabilities Infected hosts identified
Worm connections identified (worm signature)
Vulnerability exploited identified

this means that it must be able to keep up with the volume of traffic on the

network. If deployed on an individual machine it must not overly impact the

performance of the software running on the machine.

Finally, the more information a worm detector gains, the more useful it is.

The minimum amount of meaningful information a detector can supply is simply

that a worm is present somewhere. This information is somewhat useful in that

it would raise the alert level of network administrators, but does not provide any

detail for them to act on. On the other hand, the maximal amount of information a

detector could provide would be to identify each individual network packet as worm

or non-worm, and to provide detailed information about the exploit the worm is

taking advantage of. A system generating this much information would certainly

give network operators information to combat the worm. A detector generating

that much useful data could potentially take automatic action itself against the

worm, perhaps blocking worm connections or even patching vulnerable hosts.

19

Protected Network

Monitor

Internet

Monitored Traffic

(a) Gateway Deployment

Protected NetworkInternet

= Monitored Machine

(b) Host-level Deployment

FIGURE 3.1. Gateway deployment is more desirable for a worm detection
system because it requires less overhead for installation and maintenance.

3.2. Worm Detection Techniques

We now examine each worm detection technique individually, as they are

applied in various detection systems. After describing each technique, we briefly

analyze its strengths and weaknesses towards worm detection.

There have been a variety of worm detection system proposed, using a wide

range of techniques. We make the distinction here between a detection system, a

relatively complete structure for detecting a worm which is typically the subject of

one or more research publications; and a detection technique, which is a specific,

low-level means of detecting one aspect of a worm. Worm detection systems

typically employ multiple techniques. Looking directly at the techniques allows

us to consider their strengths and weaknesses beyond the constraints of the system

they are implemented in.

To examine worm detection techniques, we first broadly categorize the

detection techniques (Figure 3.2) into one of four categories: host-based,

honeypot-based, content-based, or behavior-based. In Section 3.2 we summarize

each technique in the context of the published systems which used it; then in

Section 3.3 we examine the performance of each technique, again in the context

of the published detection system.

The four categories of worm detection techniques are as follows:

20

Honeypot-based

Buffer Overflow Detection
Input Correlation

System Calls

Honeypot

Static Signature
Dynamic Signature

Advanced Signature
Protocol Field Length

Network Telescope
Connection Failures

Destination Addresses
Causation

Host-based

Content-based

Behavior-based

Worm
Detection
System

FIGURE 3.2. Detection Taxonomy

– Host-based: Host-based detection is characterized by the fact that it uses

information only available at the end-host. It must be installed on each host

that is to be protected by it. Modifications may be required to the operating

system or the software that runs on it to give the detection software access

to the internals of the execution environment. Host-based techniques include:

buffer overflow detection, correlating network data to memory errors, and

looking for patterns in system calls.

– Honeypot-based: Honeypot-based systems place a vulnerable host on the

network that provides no real services. Because it provides no services, any

traffic to the honeypot can immediately be considered suspicious.

21

– Content-based: Content-based systems observe the contents of network traffic

looking for byte patterns that match the signature of a worm. The signatures

are either generated on the fly by the worm detector, or developed manually

from deconstruction of a worm instance. They rely on the fact that some

aspect of the data that is sent to take advantage of a vulnerability is never

sent as part of legitimate traffic, and can therefore be used to accurately

identify worm traffic. Content-based techniques include static signatures,

dynamic signatures, and advanced signatures.

– Behavior-based: Behavior-based systems work by observing the network

behavior of end hosts and identifying patterns that are indicative of the

presence of a worm. Behavior-based techniques include: connection failures,

network telescopes, pattern of destination addresses, and causation.

Host-level Techniques

Host-based worm detection is based on modifying the the software running on

a particular host to allow the observation of its internal state. Software modified in

such a manner is referred to as being “instrumented”, indicating that monitoring

instruments can observe its actions, which in turn allows the detection software to

spot the activity of the worm as it interacts with the operating system or deployed

software.

All host-based systems suffer somewhat in deployability, because they

require deployment on each host that is to be protected. If a host-based system is

employed only on the web servers within an organization, and a worm is launched

that attacks only mail servers, that organization might never detect the presence

of the worm. On the flip side, host-based solutions generally have high accuracy

22

because they have access to all the inner workings of the host and can know with

high accuracy when they are infected.

Buffer Overflow Detection

Most existing worms exploit buffer overflow vulnerabilities to propagate. One

way to detect a worm is simply to watch for these buffer overflows to occur. Buffer

overflows can happen during normal operations, however, so there must be some

way to limit false positives. The COVERS [49], Sweeper [50], and HoneyStat [51]

all use buffer overflow detection from a system such as StackGuard [23] to trigger

their worm detection.

Assessment: Systems relying on buffer overflow detection for worm defense

have two significant limitations. They do not have comprehensive coverage, being

unable to detect worms that exploit a non-buffer-overflow vulnerability A worm

like the Santy worm, which uses code injection to gain access to remote machines,

would go undetected by a system relying on buffer overflows. Additionally,

unless coupled with other techniques, buffer overflow detection gives virtually no

information about the nature of the attack. It can identify that a host has been

compromised, but give no more information than that.

Correlating Network Data to Memory Errors

Simple buffer overflow detection by itself doesn’t yield much insight into the

what caused the actual problem. Because of this, it is generally coupled with some

other technique to further refine the findings. One such method is to in some way

correlate network data to the memory error such that the source data that caused

the buffer overflow can be employed in signature generation.

23

The COVERS system by Liang and Sekar [49], attempts to determine the

root cause of a buffer overflow by forensic analysis of the system memory. COVERS

consists of four phases: attack detection, correlation to input, identifying the input

context, and signature generation. Attack detection works via a buffer overflow

monitor such as StackGuard. Once an attack is detected, a forensic analysis of the

host’s memory is initiated. This is based on the observation that memory error

attacks typically involve pointer corruption, and must include the corrupted pointer

value in the data. COVERS attempts to correlate the data used in the buffer

overflow attack with the network traffic received by that host. Once the attack data

is known, the input context is narrowed by employing protocol parsers, helping

to limit false positives. Finally a signature can be generated and disseminated.

Signatures generated by COVERS rely on knowing protocol information, and

specify the length of input fields and the byte-value distribution contained by them.

The TaintCheck system introduced in 2005 by Newsome and Song [52] labels

data from untrusted sources as “tainted”, then tracks the propagation of that

data in memory and monitors whether or not it is used in dangerous ways. This

has the advantage of not requiring specially compile binaries or the source code

to applications to be protected. TaintCheck works by running programs in an

emulation environment that allows all operations of the program to be monitored.

This allows data to be monitored and tracked through memory, and to raise an

alert before tainted data is used in ways deemed dangerous. Examples of dangerous

activities include using tainted data as a jump target, as a string format argument,

or as a system call argument. Once a dangerous activity is detected, TaintCheck

can log the questionable data and the path it took through the system. This data

could then be redirected to a signature generator.

24

Another system introduced in 2005, DACODA [53], works in a very similar

fashion. DACODA uses full-system symbolic execution to track data from the

network and observe malicious memory manipulations. Every byte of data read

from the network is labeled with a unique label enabling DACODA to determine

whether this data is used in a conditional flow transfer. If an oracle (such as

Minos [54]) determines that the flow transfer is illegal, DACODA can export the

data to a signature generator.

Vigilante [55] is a third contemporaneous system that instruments memory to

detect worm attacks. It also introduces the notion of self-certifying alerts to allow

hosts that detect worm attacks to broadcast that information to other hosts.

Tucek et al. combine several existing techniques in their Sweeper [50] work.

They recognize that systems like TaintCheck, DACODA, and Vigilante impose a

significant runtime overhead, making them problematic to deploy to live servers. To

combat this, Sweeper employs a lightweight monitoring during normal usage, then

reverts to more heavyweight analysis when an attack is detected. This utilizes the

best attributes of both techniques and avoiding the onerous runtime overhead that

plagues heavyweight analysis systems. They rely on address space randomization

(by using a system such as StackGuard) for their light-weight attack detection,

coupled with checkpointing and rollback to resume operation when an attack is

encountered. The attack is then analyzed with a variety of tools including static

core dump analysis, memory bug detection, dynamic taint checking [52], and

dynamic backward slicing. The analysis then enables the production of signatures

and execution filters.

Assessment: This technique is again very effective at against attacks that

actually use memory errors to gain the ability to execute code on a host. It suffers

25

from the same lack of comprehensive coverage that plagues buffer overflow based

detection. Worms that exploit some vulnerability that is not monitored by the

detection system will escape detection entirely. In addition, the implementation of

this technique is typically computationally expensive. TaintCheck, DACODA, and

Vigilante all require executing applications in some form of emulator causing both

runtime overhead as well as stability concerns. Because runtime performance and

stability are key attributes desired by operators, these systems may not be deployed

widely. Sweeper proposes a low-overhead solution by employing light-weight buffer

overflow detection with a rollback/re-execute strategy for doing in depth analysis

after an attack is detected, but even this imposes up to a 5% performance hit, and

an unknown impact to stability.

System Calls

This technique detects worms by examining the system calls that are made

by programs as they execute. A work by Malan and Smith [56] compares the

pattern of system calls on one machine with the patterns exhibited by its peers,

determining that a worm is present when the patterns overlap substantially.

They exploit the fact that a given worm will make a series of system calls during

execution that is relatively static across both time and instances of the worm, and

that normal host operation does not exhibit this consistency. In order to determine

if a host is infected with a worm, it exchanges snapshots of its system call activity

with its peers. It then determines the similarity of its own snapshot with that of its

peer’s by treating each snapshot as an unordered set of system calls and calculating

the percent of intersection between the snapshots. If more than 90% of snapshots

show an intersection rate of greater than 50%, then both hosts are considered to be

26

infected with a worm. This method can incur false positives however, which must

be limited by excluding legitimate applications from consideration. A followup

work exploits the temporal consistency between worm instances to further improve

accuracy [57].

Assessment: This technique has a serious limitation that is acknowledged

by Malan and Smith in their work, it is prone to false positives [56]. They suggest

that white-listing applications may be sufficient to reduce the false positives to

manageable levels, but it is unclear how effective this would really be. When an

application is white-listed, its system calls are no longer included in the pool that

is compared with peers, but if that application is exploited by a worm, then the

worm won’t be detected. Any application that is white-listed is not protected,

and if many applications must be white-listed the overall utility of the defense is

reduced substantially. The system also generates the minimum possible amount of

information about the attack, indicating that a worm is present, but no more than

that. This system also requires that at least one other peer of a host be infected

before detection can happen. This may significantly slow overall detection of the

worm.

Honeypots

Honeypot-based worm detection is closely related to host-based detection, but

differs in that host-based detection is deployed to live servers whereas honeypots

by design serve no function beyond worm detection. All host-based worm detection

methods could be deployed to the software running on a honeypot, but this is not

generally necessary as all connections to a honeypot are already considered to be

suspicious.

27

Honeycomb [58] was among the first honeypot systems to automatically

generate signatures from traffic directed at it. It uses a simple longest common

substring algorithm to spot similarities in packet payloads across multiple

connections, and was successful at generating precise signatures for the CodeRed II

and Slammer worms in the wild. Tang et al. determined that the assumption that

all traffic to honeypots is malicious or a deliberate attack is a flawed one [59] but

proposed two detection models to more accurately determine whether connection

activity represents an actual attack.

The HoneyStat work by Dagon et al. [51] takes a slightly different approach.

It uses a buffer overflow detector like StackGuard [23] to detect malicious activity,

then couples this with disk and network monitoring. It generates a series of event

notices which are forwarded to an analysis node that checks them and determines

whether or not to issue a worm alerts and develop a signature. The events

generated fall into the following categories: malicious memory events such as buffer

overflows, unexpected network events such as outgoing traffic (the honeypot makes

no outgoing connections of its own), and disk events such as critical system files

being overwritten. The analysis node then employs a logit analysis to determine

which events stem from a possible worm attack.

The use of honeypots was furthered in work by Tang and Chen [60]. They

used a double-honeypot system like the one depicted in Figure 3.3. Incoming traffic

to the network is directed to one honeypot. Outgoing traffic from that honeypot

is directed to a second honeypot. This ensures that the second honeypot only sees

traffic generated by the worm, helping to isolate that traffic and give a clean sample

from which to build a signature.

Assessment: Perhaps the biggest limitation to honeypots is that despite

28

Local Network Internet

Outbound
Honeypot

Inbound
Honeypot

Worm

Internal
Translator

Gate
Translator

Worm Traffic

FIGURE 3.3. The double honeypot system directs incoming traffic to a
honeypot that can be infected by worms. The outgoing traffic from this honeypot
is directed to a second honeypot, and can be used to generate signatures. (Graphic
adapted from [60])

serving no resources to legitimate users, they must attract connections from

worms and be providing the vulnerable service that the worm takes advantage of.

Non-targeted scanning worms can have their connections directed to honeypots

relatively easily, as all unused network addresses can be redirected and delivered to

a honeypot. The same is not true for more sophisticated worms like a topological

worm. For a honeypot to detect the Santy worm, for example, it would need to be

running the vulnerable software and be in a search engine’s index.

Content-based Techniques

Content-based worm detection is based on the idea that when a worm exploits

a given vulnerability, it typically does so by sending a carefully constructed message

with some portion of fixed content that is unique to the exploit. Because this

exploit-content is the same across each infection attempt and is not typically a

29

part of normal network traffic, it can be used as a signature to identify connections

stemming from a given worm (see Figure 3.4 for an example of a static signature).

Traffic containing such a signature is almost certainly generated by a worm, so once

the signature is established, worm detection becomes straight-forward. Historically,

signatures were established by researchers. They either observed the worm in

action and manually identified the constant content, or they reverse engineered the

worm’s code to determine the signature. The following techniques all use this basic

method, with more or less advanced ways of building and matching signatures.

Content-based systems possess many desired attributes. They can be situated

at a network gateway, making deployment easy. They give a large information gain,

identifying individual connections (and by extension the source hosts) as carrying

worm infection. The biggest limitation on content based systems is that they do

not provide coverage for polymorphic worms that change the appearance of their

payload for each connection.

Static Signatures

There are a number of existing systems that employ static signatures in worm

detection. Snort [61] and Bro [62] are two of the most popular and established

open-source systems. They are designed to be deployed at a network gateway to

monitor inbound and outbound network traffic. The Netbait [63] system extended

this idea to use a collection of Snort-based detectors in a distributed fashion to

provide relatively comprehensive information about which hosts on the Internet

were infected with well known worms. Netbait is limited by its reliance on well

known signatures: it cannot detect zero-day worms, those for which a signature has

not yet been developed.

30

No Match

Partial MatchPacket matches worm signature

... 0x55 0x7F 0xDD 0x05 0x78 0x39 0xE2 0x67 0xAD 0x42 0x50 0xB3 0x14 0x22 ...

... 0x37 0x55 0xA3 0x01 0x0A 0xFF 0x53 0x68 0x61 0x50 0xF1 0x9C 0x33 0x34 ...

... 0x46 0x53 0x68 0x61 0x64 0x99 0xEA 0x3D 0x59 0x3A 0x00 0x00 0x12 0x03 ...

0x53 0x68 0x61 0x64Signature:

FIGURE 3.4. A static signature is a set of bytes (typically longer than the
4-bytes shown here) that can be watched for in network traffic. When a packet
contains the full sequence of bytes (as in line 3) it matches the signature as is
considered to be a worm packet.

Assessment: Static signatures will likely always have a place in worm

defense due to their low deployment cost, but their utility is clearly limited by their

inability to defend against zero-day worms.

Dynamically Generated Signatures

To overcome this reliance on pre-generated signatures, worm detection

systems must be able to detect zero-day worms and automatically generate a

signature for them. To do so, they first need to identify which network traffic

is worm traffic, and secondly, use that traffic in developing a signature. Several

systems use behavior-based techniques to identify suspicious traffic, then develop a

signature based on the content in the suspicious flows.

WEW proposed a basic signature generation algorithm. It sends suspicious

traffic (as identified by TCP scanning) to a honeypot and does longest common

substring matching to produce a signature [64].

Autograph [65] and EarlyBird [66] are two contemporaneous landmark works

in the field, using different methods to develop signatures dynamically based on

analyzing the content of network traffic.

Autograph first identifies traffic as suspicious when that traffic stems from

a a host that has attempted more than a set number of connections that fail.

31

The flow classifier is a pluggable component in Autograph, and it could in theory

use a more sophisticated flow classifier to determine whether traffic is suspicious.

Once the suspicious traffic is identified, it is grouped by target port with the

traffic for each port being handled separately. Autograph then looks for the most

frequently occurring byte sequences across the suspicious flows to a given port

(see Figure 3.5 for an overview of the architecture). It is prohibitively expensive

to search for prevalent byte sequences for any variable size sequence, so the flow

contents are divided up into chunks using a content-based partitioning scheme that

splits the flow on a predefined break-mark (such as a predefined byte-value). These

data chunks are also bounded by minimum and maximum sizes to prevent short,

non-specific signatures and long, overly specific signatures. Once the prevalent byte

sequences are identified, they are filtered to include only those sequences that have

originated from more than one source address. They are then evaluated against

the suspicious flows until a set of signatures is identified that match against a

configured portion of the population of suspicious flows. A blacklist is maintained

of signatures that should not be allowed, in order to prevent signatures on common

innocuous byte sequences that would then block legitimate flows.

Suspicious
Pool

Flow
Classifier

Non-suspicious
Pool (ignored)

Signature
Generator

Flow
Capture

Payload
Partitioning

Prevalence
Determination

FIGURE 3.5. Autograph Architecture

32

EarlyBird also finds common byte sequences to generate a signature.

However, rather than first identifying suspicious traffic and then limiting analysis

to that, Earlybird analyzes all traffic that crosses a gateway. It identifies traffic

as suspicious when it is prevalent (contains frequently appearing byte sequences)

and highly dispersed (is associated with many distinct source and destination

addresses). Suspicious byte sequences become a worm signature when they exceed

given thresholds in both prevalence and dispersion. Real-time analysis of the

volume of traffic crossing a fast gateway requires a number of optimizations. Like

Autograph, EarlyBird cannot examine all arbitrary size byte sequences. It instead

looks both at whole packets and all subsequences of the packet of a set size. Rather

counting instances of the content itself, which would require large index tables,

EarlyBird borrows techniques from the conceptually similar problem of finding

high-bandwidth “heavy hitters”. The heavy hitter algorithms track behavior

based on a standard flow identifier (source/destination address, source/destination

port, protocol). EarlyBird replaces this concept with the notion of a content

identifier. These are 32-bit CRC values for the whole packet chunks and 40-byte

Rabin fingerprints for the fixed size subsequences. These values are efficient to

compute and require less storage space than using the full content itself. Sampling

subsequences further reduces computational load. The prevalence counting

serves as sort of a high-pass filter for EarlyBird, only once a chunk of content

is shown to be prevalent is its dispersion tracked. This is done by recording the

source and destination IP addresses involved with sending and receiving it. This

recording happens in a memory efficient manner by hashing each content source

and destination into a scaled bitmap. A scaled bitmap is a novel extension to

existing bitmap techniques, where when the bitmap has too many bits set to retain

33

accuracy, an additional scaled bitmap is added that maps to a progressively smaller

portion of the address space. These multiple bitmaps allow accurate counting to

high numbers in minimal memory space with low double-counting bias. When a

prevalent byte-sequence shows sufficient dispersion, it is automatically converted

into a Snort [61] formatted content-signature that can be used to automatically

block connections containing the signature. Earlybird was shown to be extremely

effective against the worms present in the wild in 2004, and also efficient enough

to be deployable on large networks [66]. In addition, Madhusudan and Lockwood

showed that a system based on Earlybird’s basic design could be implemented

in hardware for even greater scalability [67]. The effectiveness of EarlyBird was

further increased through research by Gopolan et al. who developed a more

effective suspicious traffic identification algorithm [68]. Instead of simply looking

for content prevalence and dispersion when identifying suspicious traffic, Gopolan

et al. employ additional metrics that examine the fanout of unsuccessful attempts

from suspicious hosts. This reduces false positives by avoiding categorizing common

protocol headers as malicious.

The PAYL system proposed by Wang and Stolfo [69, 70] detects suspicious

traffic by performing a statistical analysis of packet payloads into a protected

domain. When packets are observed that don’t match the statistical profile of

the domain, they are considered suspicious. The statistical profile of the protected

domain is measured by first grouping connections by destination port and length

— based on the observation that different services will have different profiles, and

within a given service, packets of different lengths will have different profiles —

and then performing n-gram analysis against each group. The PAYL system uses

1-grams (single bytes), and computes the mean and standard deviation of each

34

1-gram within a given sliding window size. These means and standard deviations

form the feature vector that describes the profile of traffic for that group. Packets

are considered suspicious when their Mahalanobis distance from the standard

profile for their group exceeds a given threshold. When a host receives a suspicious

packet and then begins sending suspicious packets on the same port number, they

are considered to be worm packets. A longest common subsequence algorithm is

then applied to generate a worm signature which can be used to block all worm

traffic. PAYL was enhanced in 2006 with the packets first being classified with a

self-organizing map in the POSEIDON system [71]. An advanced version of the

PAYL system uses high-order n-grams to thwart content-mimicry attacks [72], but

otherwise operates in a similar fashion to the original PAYL system.

Assessment: Whereas dynamically generated signatures can defend against

zero-day worms, they are again powerless to stop polymorphic worms.

A greater problem with any sort of dynamic content-based worm detection

is that if the content analyzer can be duped into labeling legitimate traffic as

worm traffic, the detector itself can be used to disrupt normal traffic. In 2006,

Perdisci et al. showed that such detectors could be rendered useless by the careful

injection of noise packets [47]. This work was extended in [48] to to show the full

extent of the threat and formally classify the problem as a learning problem in

an adversarial environment. A similar work by Chung and Mok [46] showed that

Autograph could be used to constrain legitimate traffic. One proposed solution is to

use a corpus of legitimate traffic to filter signatures against, but further research by

Chung and Mok showed that even the use of such a corpus will not prevent allergy

attacks [73]. This problem also applies content-based detection mechanisms that

employ advanced signatures.

35

Advanced Signatures

One limitation of the above systems is that they all result in a simplistic

contiguous fixed signature that matches against any packet that contains it. These

signatures are inherently limited, they must be long enough to be specific to the

worm content so as not to accidentally block legitimate traffic, yet as short as

possible to be as sensitive as possible to the worm. Even simple polymorphism

can evade a signature of this type, rendering it useless. Thus a class of detectors

with advanced signatures that employ additional information beyond basic byte

matching has been developed.

Polygraph is an extension to the Autograph work which enables it to generate

a variety of more advanced signatures making it less vulnerable to polymorphic

worms [74]. The authors observe that the majority of exploits show invariant code

in the exploit framing and overwrite values, and conclude that these invariants can

be used to build a successful signature. They enhance autograph to build signatures

of three types: conjunction, token subsequence, and Bayes (see Figure 3.6 for

examples of conjunction and token subsequence). A conjunction signature matches

against content when all of its tokens are found in any order. A token subsequence

signature is similar, but only matches when its tokens are found in a specified

order. A Bayes signature consists of a series of tokens with corresponding scores. If

Token Subsequence Match

No Match

Conjunction Match (not in order)

... 0x46 0x78 0x39 0xE2 0x73 0x5A 0xE1 0x3D 0x59 0x3A 0x53 0x68 0x12 0x03 ...

... 0x37 0x53 0x68 0x01 0x0A 0xFF 0x19 0x73 0x5A 0xE1 0xF1 0x9C 0x33 0x34 ...

0x53 0x68, 0x73 0x5A 0xE1Tokens:

... 0x55 0x7F 0xDD 0x05 0x78 0x39 0xE2 0x67 0xAD 0x42 0x50 0xB3 0x14 0x22 ...

FIGURE 3.6. PolyGraph’s advanced signature uses tokens in different ways. A
Token Subsequence signature matches all tokens in order (Line 1). A conjunction
signature matches all tokens in any order.

36

the content contains enough tokens to exceed an overall threshold, it is considered

a match. Polygraph generates these signatures in a manner similar to autograph. It

relies on a pool of suspicious connections which it can then analyze. In Polygraph’s

case, the token extraction is more thorough, extracting all distinct tokens of a

minimum size that are not substrings of another token (unless they appear outside

of that token with a specified frequency). This gives Polygraph a larger and more

comprehensive pool of tokens to match on. Conjunction signatures are generated

by finding sets of tokens which exist in every sample in the suspicious pool

Token-subsequence signatures are generated by first converting each connection

in the suspicious pool to the tokens extracted (separated by whitespace), then

iteratively applying the Smith-Waterman string alignment algorithm to find the

longest ordered sequence of tokens that matches all connections in the suspicious

pool. Bayes signatures are generated by first assuming that each token appears

independently from other tokens (whether the string is known to be innocuous

or worm), then calculating the percent of connections in the suspicious pool the

token appears in and the percent of connections in the innocuous pool the token

appears in. For each token, whichever of these percentages is higher is used in the

classifier and resulting signature. The overall threshold is calculated based on the

observed rates of false positives and false negatives when the signature is applied

to the the connections in the suspicious and innocuous flow pools. To generate

all three of these types of signatures against a suspicious pool that contains more

than one type of worm, the suspicious pool is first grouped by applying hierarchical

clustering, and then running the signature generation against each cluster.

The Hamsa system [75] by Li et al. is similar in design to Polygraph. It uses

a flow classifier to produce pools of normal and suspicious traffic and generates

37

signatures from tokens appearing in the suspicious pool. A key distinction in

Hamsa is that it provides provable robustness against polymorphism as long as

at least minimal fixed byte sequences are present. Hamsa uses a suffix array based

algorithm to extract tokens, and generates signatures consisting of multi-sets of

tokens. A connection matches a signature if it contains the required tokens with the

required frequency (similar to the conjunction signature of Polygraph).

Tang and Chen [60] identify suspicious traffic in their PADS system by

employing a double-honeypot which isolates worm traffic from general background

noise. They then introduce a position-aware distribution signature system which

uses byte frequency distributions combined with simple string matching to produce

a signature capable of detecting primitive types of polymorphic worms. A PADS

signature of size ω defines the probability of each byte to appear at each location

from 0..ω for both legitimate traffic and a specific worm variant. To match some

content against a signature of size ω, PADS segments the content into overlapping

chunks of size ω and for each chunk finds the location that maximizes the score

against the worm probabilities and minimizes the score against the legitimate traffic

probabilities. The score for the content is the maximum value for any segment’s

worm score divided by its legitimate score. If the score for the content exceeds a

given threshold, the content is considered to match the worm signature.

Assessment: Dynamically generated signatures advanced enough to catch

polymorphic worms would be a truly useful form of worm detection. Unfortunately

Crandall et al. [53] showed that Polygraph needs relatively long tokens, and is

therefore unable to catch many windows-based worms which require only short

fixed payload elements. Hamsa can detect polymorphic worms using with only

short fixed content sequences, but still requires those fixed elements to be present.

38

Furthermore, the recent research into polymorphism by Song et al. [42] has shown

that modern polymorphism engines can generate code that very nearly looks like

random bytes, posing a significant challenge for signature based systems. Fogla

et al. introduced the notion of a blending attack [44], where a worm could control

its polymorphism to make it better blend in with legitimate traffic, making it

harder for content-based detectors to discern it.

Protocol Analysis

The previous content-based systems all generate exploit-based signatures

based on invariant content and are therefore susceptible to polymorphism attacks.

The LESG system [76], on the other hand, examines network data for the

excessively long field lengths which are used to overflow a buffer. It requires an

understanding of each protocol it monitors so that it can parse the network data

into protocol level fields. LESG considers a field to be a sequence of bytes with

special semantic meaning within the designated protocol. Fields can be of fixed or

variable length, and in some cases a series of fields may be associated into a single

semantic meaning and are therefore concatenated. LESG assumes that all variable

length fields are vulnerabilities. Like many of the other content-based systems, it

relies on a separate flow classifier to identify suspicious flows, and it then builds

signatures by comparing the suspicious and legitimate flows.

Assessment: LESG represents an advance over other content-based systems

because it is robust against polymorphic worms while retaining the advantages of

network gateway-based deployment. Additionally, LESG is resilient to many of the

forms of allergy attacks that plague the other content-based systems. It is limited

in that it can only detect attacks in the protocols that it understands (and it is

39

unclear how quickly new protocols will be decoded), and in that it won’t detect

attacks that don’t exploit a buffer-overflow as the infection vector.

Behavior-based Techniques

In contrast to content-based worm detection techniques, behavior-based worm

detection attempts to detect the presence of a worm by monitoring the network

without examining the payload of transmitted packets. Instead, these techniques

rely solely on patterns of network activity that are characteristic of worm-specific

behavior, such as the aggressive scanning a worm might rely on in searching for

vulnerable targets.

Like content-based systems, behavior-based systems are typically easily

deployable as they are often amenable to being installed at a network gateway.

They offer an additional advantage in that they are robust against content

polymorphism, thus potentially providing better overall coverage. On the other

hand, behavior-based systems typically produce less information gain. They

can detect the presence of the worm, and may be able to identify which host is

infected, but they typically cannot generate a signature that could be used to block

individual worm connections.

There are a number of behaviors exhibited by a worm that may be observed

in network traffic. The most obvious is the scanning behavior of a worm as it

attempts connections to many destinations to infect new victims. This scanning

behavior is the basis several behavioral techniques, each of which perceives it in a

slightly different manner.

40

Connection Failures

Random scans will invariably lead to attempted connections towards dark

addresses where no host is present. One technique for detecting worms is to

watch for the failures that occur when these connections to dark addresses fail.

Berk et al. employ this technique in their work, watching for ICMP Undeliverable

packets indicating connection failures [77]. A worm which is actively scanning will

generate higher numbers of these packets than will be observed in normal activity,

so a system monitoring the level of ICMP undeliverable packets will be able to

detect the presence of a worm. Berk et al. propose having routers forward these

messages to a central server where they can be analyzed. A sliding window of

ICMP Undeliverable messages is maintained for each source address, and when

the number of hosts showing unusually high connection failure rates exceeds some

threshold, the alert is raised that a worm is active.

A similar work, the Worm Early Warning (WEW) system by Chen and

Ranka uses TCP reset messages to the much the same effect [64]. The TCP reset

message is sent in response to a syn packet when the target host exists, but does

not service the target port. WEW observes the outgoing TCP reset messages at

a gateway to determine scan activity inbound from the Internet and potentially

the presence of a worm. The gateway intercepts the TCP reset message and

replaces it with a SynAck packet, to establish whether the scan source address was

spoofed. WEW can then maintain a list of the number of scanning sources, and

raise the alert that a worm is present when the number exceeds a given threshold.

WEW performs better when the gateway monitors a large, densely-populated

address-space, but many small WEW monitors can aggregate their results to

achieve the same results.

41

Rather than attempting to detect worm activity in the Internet, Schecter,

Jung, and Berger rely on failed connections to detect worm scanning originating

from a protected network. Their system employs reverse sequential hypothesis

testing to quickly find hosts with too many connection attempts that fail [35].

For each outgoing TCP syn packet or UDP packet, they consider the connection

successful if a synack response is receive or any UPD packet is received within

a timeout period. The success or failure of each connection is recorded against

the originating host and is evaluated via a reverse sequential hypothesis test.

Sequential hypothesis testing takes two hypotheses (the host is infected and

the host is uninfected in this case), and considers each event in sequence to see

which hypothesis is more likely to be true. When a threshold is exceeded, in

one direction or the other, that hypothesis is considered to be true. Sequential

hypothesis testing is useful because it provides guarantees on the number of

false positives and false negatives, and it minimizes the number of observations

needed to make an assessment based on the strength of the evidence observed. In

this case, the connections are run in reverse order (hence the reverse sequential

hypothesis testing) such that if a host becomes infected and begins scanning, it

will be detected as quickly as possible because those scanning connections (the

strong evidence) will be considered first. They couple this with a credit-based

connection-rate-limiting feature that prevents high-speed worms from quickly

scanning large numbers of addresses.

This technique is also employed by Autograph [65] to establish a pool of

suspicious connections to be further evaluated by its content-based analysis engine.

A 2006 work by Cheetancheri et al. [78] relies on connection failures as well,

but has each host determine its own status of infected or not. Hosts share their

42

status with their peers. When a host receives a message from another host saying

it is infected, it passes it along with its own status information attached. When

many hosts are infected, the group can come to a consensus that a worm is actually

present.

Assessment: Those systems that rely on detecting connection failures

([77, 64, 35]) attempt to detect the worm as it searches for new targets. Connection

failures occur when the worm attempts to connect to a dark address or a to a

service (or port) that isn’t provided by the remote host. This technique suffers

from a couple of significant drawbacks. The first is that there may be no way to

determine whether a connection is successful or not. TCP connection failures are

easy to determine, they fail when the three-way handshake specified in the protocol

doesn’t complete within a timeout period. UDP connections, on the other hand,

have no notion of a handshake, and there is no clear way to identify whether they

are successful or not. One metric is to say that a UDP connection fails if there is

no UDP traffic returned from the destination back to the source, but this relies on

applications actually behaving this way which may not happen in practice. Another

drawback to this technique is that it relies on the worm making connections to

addresses that only have a low probability of existing. If a worm has access to some

other means of identifying which hosts are likely to exist — perhaps examining

web browsing history or peer-to-peer network interaction logs in the case of a

topological worm, or simply having a pre-computed hit list — it won’t show a high

connection failure rate and this technique won’t detect it. This lack of coverage is a

significant limitation of connection failure techniques.

43

Network Telescopes

The three systems above rely on the random scanning nature of worms to

generate connection failures which can be observed. However it is also possible to

observe this behavior simply by monitoring large numbers of addresses that should

not receive traffic, in what is called a network telescope. Network telescopes enable

one to observe the aggregate scanning behavior of hosts across the entire Internet.

Zou et al. were among the first to use this idea for worm detection [6]. They

proposed using distributed ingress monitors to watch for connections to dark

addresses (in a way very similar to the work by Berk et al. above) coupled with

egress monitors that could capture the scanning behavior of a host once it was

deemed to be infected. The monitors would report to a central observatory which

would analyze the infection and scanning rates, attempting to build a model for the

worm propagation. When the overall scanning rate exceeded a given threshold,

the system would begin to employ a Kalman filter on the number of scans to

determine whether the effect was a new worm or simply an overall increase in

scanning activity.

Wu et al. proposed a similar solution [7], again with distributed detectors

monitoring connections to unused addresses and forwarding their results to a

central observatory. They consider a host to be infected if it makes at least

two scans to unused addresses. An adaptive threshold on the number of hosts

considered infected accounts for noise and helps to prevent false positive reports.

When the number of infected hosts increases between time ticks by more than some

value, an alert is raised that a worm is active.

This usage of a network telescope was enhanced and refined by Bu et al.

[79] who observed that scan arrival times appear as a non-stationary poisson

44

process rather than the gaussian distribution assumed above, and that this allows

a more sensitive detector. They use a two stage detector. The first stage employs

a CUSUM procedure that triggers the second stage when scan inter-arrival times

show an exponential pattern of decrease. The second stage determines whether the

decrease is due to a worm attack and estimates the worm propagation model.

Yegneswaran, Barford, and Plonka showed the practicality of a network

telescope based solution by actually implementing and testing one against real

networks [80]. They used their system to monitor roughly 16 million addresses and

found that it successfully detected the LovGate email worm.

Finally, Rajab, Monrose, and Terzis furthered the practicality of such

systems by analyzing the coverage required to detect worms given the non-uniform

distribution of hosts in the Internet [81]. They showed that many small monitors

are more effective than a single large monitor, and when the monitors are placed in

the most populated prefixes, they are even more effective.

Assessment: Similar to the connection-failure technique described above,

the network telescope technique employed by some systems [6, 7, 80] is fragile in

that it relies on somewhat random scanning by the worm. A topological worm

like the Santy worm won’t scan dark addresses and won’t be detected by this

technique. Additionally, Rajab, Monrose, and Terzis showed that even if a worm

is not topologically scanning and doesn’t have a hit-list, it can limit its exposure

to network telescopes via careful scanning [45]. They showed that a worm can

efficiently scan address blocks with probes designed to blend into background noise,

to determine whether there are active hosts within the address block.

45

Pattern of Destination Addresses

The network-telescope and connection-failure schemes outlined above rely on

the worm scanning randomly, causing it to attempt to connect to dark addresses.

However, it is also possible to detect scanning behavior without depending on the

scanning to be random in nature. The enabling observation is that during normal

operation a host shows a pronounced pattern in the number of unique destinations

it connects to that differs from the pattern exhibited when scanning.

The SWORD system [82] relies on this fact as one of its components in

worm detection. SWORD measures the distribution of the number of visits each

destination receives versus the rank ordering (by popularity) of the destination.

An uninfected host exhibits a distribution that resembles a power-law while an

infected host that is actively scanning exhibits a flat distribution. These can be

distinguished by doing a linear least-squares regression analysis on the log of

the number of visits versus the log of the popularity rank. When the correlation

coefficient is weak (close to zero), it indicates that the host is actively scanning.

The threshold that distinguishes infected from uninfected is based on training the

detector on legitimate traffic.

Sekar et al. measure this behavior in a slightly different way [83]. They

observe that the number of unique destinations visited by a normal host

grows sub-linearly with the size of the history, and that as the history length

increases, the rate of increase in unique destinations slows. By employing multiple

threshold/history size pairs, they can catch fast-scanning worms early with a short

window, but also catch slow-scanning worms with a longer window. To choose these

history sizes and thresholds, a choice must be made between detection latency and

the false positive rate. They present an Integer Linear Programming solution for

46

choosing history-sizes and thresholds based such that the detection latency and

false positive rate are minimized based on training data from legitimate traffic.

Jung et al. extend their use of sequential hypothesis testing introduced in the

TRW paper [84] to test the rate with which first-contact connections are made in

their RBS+TRW work [85]. They observe that the inter-arrival time of first-contact

connections follows an exponential pattern. They employ sequential hypothesis

testing against new connections observing whether each connection fits that model

or not. This procedure is adaptive to bursty legitimate connections. They then

combine this work with their TRW work to produce an effective behavior-based

worm detector.

A related technique is employed by EarlyBird [66] to identify suspicious

traffic. A scanning worm will send its attack payload to many destinations, so

EarlyBird looks for identical content that is widely dispersed and adds that traffic

to its suspicious pool, to be passed on to its content-based analysis engine for

further study.

Assessment: The destination address based techniques provide better

coverage than the connection failure techniques discussed previously, as the worm

simply cannot avoid contacting destinations if it wishes to propagate. Worms that

wish to propagate widely must connect to many destinations, and this scanning

behavior can be detected, regardless of the scanning mechanism. The goal of

a worm is to propagate widely, and to do so the worm must connect to many

destinations. Even if a worm relies on a hit-list or topological information, every

connection it makes that is not piggybacked on a legitimate connection changes

the pattern of the destinations addresses visited. Three existing works have used

this technique successfully [82, 83, 85], and while it remains an open research

47

question the extent to which the worm can blend its connections with the stream

of legitimate ones, it is clear that any worm action must at some level change the

pattern of destinations visited.

Causation

The scanning behavior of worms is triggered by being infected by a

connection from another infected host. This idea can be thought of in the context

of one connection causing another connection to occur. It was first used in worm

detection in the GrIDS work published in 1996 [86]. GrIDS employs LAN specific

monitoring nodes that build graphs of network activity. A worm is identified by the

distinctive tree shape it forms, as a single infected node infects several neighbors,

who in turn infect several of their neighbors. GrIDS employs a sophisticated

rule-based scheme for graph building, where as each connection is reported, it may

be added to one or many graphs based on sharing hosts and temporal proximity

with the existing graphs. Each LAN then shares it information with its parent

network, but only in a condensed form (i.e. the local network’s graph is condensed

to a single node in the parent network’s graph). This graph reduction was intended

to decrease overhead, but also has the impact of decreasing the information

available to the parent node.

The ideas behind GrIDS were extended in 2002 by Toth and Kruegel [87].

They observed that the incoming infection vector to a host is typically the same

one that the worm scans for in its outgoing connections, and that this content

similarity could be leveraged to further enhance the effectiveness of the detector.

They further adopted connection failures as an additional indicator and require

significantly less overhead than GrIDS. Toth and Kruegel’s detector works by

48

building host-specific connection histories. A connection history contains all of the

connections sent to that host, along with a portion of the payload. Connection

trails for each host are also maintained, which represent chains of connections that

end at the host, where a chain of connections consists of a series of connections

ordered in time where the destination of one connection is the source of the next

connection, the final destination in the chain is the host in question. An outgoing

connection from this host is compared with the incoming connections in the

connection history and connection trail. When similar payloads are found, the

connection is added to a suspicious pool. Each time the suspicious pool for a host is

updated, the number of repeating elements (connection payloads) is counted, as is

the number of connections to non-existent hosts and non-existent services (referred

to as obsolete connections in the paper). These three counts are weighted by factors

established by the network operator, and if the sum of the weighted counts exceeds

a given threshold, the host is considered to be infected.

In 2004, Ellis et al. presented a similar approach with a more in depth

analysis [88]. Their behavioral worm detection work relied on three causal

identifiers to detect worms: a server changing into a client, content similarity

between incoming and outgoing connections from a host, or a link predicate that

may only be useful when considered in the context of the connection graph (such

as connections that aren’t closed properly). They observe that in many network

architectures, a server will never initiate connections, but limits its activity to

responding to connections initiated towards it. A host that changes this pattern

is likely infected with a worm. Their second worm identifier is similar to an aspect

of Toth and Kruegel’s work (which was not cited in the work by Ellis et al.). They

note that the connection that infects a host will cause outbound connections with

49

the same payload (ignoring the potential of polymorphic worms), and observing

this similarity is a good indicator of causality. Their final identifier, is the notion

of link predicates that identify worm connections. These predicates could range

in specificity from: host a contacted host b to a detailed signature such as host

a sent a UDP packet to host b on port 1434 with the contents equal to the SQL

Slammer worm. They suggest that a middle ground such as: host a opened a TCP

connection to host b and didn’t close it gracefully might make a nice middle ground

of sensitivity and specificity. Once this link predicate is identified, it can be used

to build descendant relationships in the connection graph (where two hosts are

connected by a link that satisfies the link predicate) forming suspicious subgraphs

that can be analyzed. The suspicious subgraph can have the following attributes

measured: depth, number of descendants, branching factor, and time to get to a

specific depth. If these attributes match specific values, such as a branching factor

of greater than one, that can indicate the presence of a worm. Unfortunately no

detailed analysis was performed of specific link predicates or attribute thresholds.

SWORD (discussed above [82]), employs yet another take on causality

as one of its components for detecting worms. SWORD maintains a causal

connection graph, where each node in the graph represents a single connection

and the directional links represent potential causality. A new node (connection)

added to graph becomes a child of existing nodes in the graph that satisfy the

Lamport “happened-before” constraint and are potential causes of this new node.

Connections to the same host that originates the new connection are potential

causes, as are outbound connections from the originating host. To keep the

graph and node degree manageable, causality is transitive, such that an ancestor

connection that is potentially causal of a parent node, is also potentially causal

50

of the child node. When a node is added to the graph, it is compared with its

ancestors for similarity, where similarity is defined as having matching connection

attributes among: protocol, destination port, and TCP flags. Unlike the above

works [88, 87], content is not considered as an attribute for similarity to maintain

robustness against polymorphic worms. When the number of similar ancestor

connections exceeds a threshold established during a training process, then the

child connection is considered suspicious. If a connection is considered suspicious

by this heuristic as well as the destination address technique described above, it is

tracked in a sliding window. When sufficient suspicious connections are present in

the window the alert is raised that a worm is present.

The DSC system by Gu et al. is another work that seeks to identify

transitions between server and client [37]. They consider it suspicious when a host

receives a connection to a given port and then begins making outgoing connections

on that same port. This work does not rely on connection graphs, maintaining

only limited state information for each host. A training period establishes normal

connection rate parameters for each host in the network. After a host receives an

inbound connection on a given port, its rate of outbound connections to that port

is monitored and an alert is raised if it exceeds the bounds established during

training. Once a host is identified as suspicious its outgoing connection rate is

monitored. If the connection rate is above a threshold for that host that was

established in a training period, then the host is considered to be infected.

Assessment: Ellis et al. identified three types of network application

architectures: pure client-server, where no host may act as both a client and

a server; client-server, with a similar restriction but loosed such that no host

may act as both a client and a server for the same service; and ad-hoc networks

51

that have no such restrictions. They observed that some causal identifiers like

a server turning into a client are extremely effective in the pure client-server

and client-server architectures, but entirely ineffective in ad-hoc networks, which

dominate academic environments.

The causation technique at first glance appears to be extremely effective,

what better way to detect a worm that to observe the connection that infected it

and the resulting outgoing scans. However, there are some limiting factors. A worm

may employ multiple attack vectors, making it difficult to correlate the incoming

connection and with the resulting outgoing connections because they would share

no similarity. Additionally, worm detectors placed at a network gateway would

only be able to observe infections from the external network and the resulting

outgoing scans. If a host was infected internally, the infection connection would

not be visible to the monitor making it impossible to correlate with the outgoing

connections. For this reason, techniques that do not rely on observing the infecting

connection will be more reliable and comprehensive.

Graph-based Detection

Many worm detection techniques have been refined over the years, as both

the ideas of what a “normal” network is and the expected behavior from a worm

have changed. One interesting example of this is graph-based detection, (which

is included causation category in this work). This is one of the oldest detection

techniques. It was first presented in a work by Staniford-chen et al. in 1996 [86] but

is still undergoing refinements to the basic idea.

The initial idea as proposed in GrIDS relied on a heavyweight monitoring

solution and a rigid hierarchical structure controlled by a central organization

52

hierarchy server, or OHS. It appears that the authors expected networks to be well

controlled and show predictable behavior.

The works by both Toth and Kruegel [87], and Ellis et al. [88] relaxed the

requirements for this rigid structure while providing more context to the causal

tree by looking at network payload and link predicate rules. This had the effect

of reducing the overall deployment overhead while increasing the accuracy of the

worm detectors. In both cases however, worm detection relies on having global

network knowledge and on observing the payload. Both works suggested that a

gateway node in promiscuous mode would collect all network traffic, but that is not

that case in a large network. Global network knowledge is difficult to come by in

networks comprised of more than one subnet, as traffic within a subnet won’t make

it to a root monitoring node without dedicated hardware to route it there. This

may make such systems impractical to deploy. Furthermore, polymorphic worms

will not show the payload similarity that these systems rely on, rendering them

unable to detect an entire class of worms.

These developments led to the SWORD system, which further relaxes the

constraints on causation. Because SWORD will observe only that traffic which

crosses the gateway where it is deployed, it is unable to reconstruct an entire

infection graph to look for tree structures. The threat from polymorphic worms

makes strongly identifying causation (incoming content matching outgoing content)

impossible. These two factors lead SWORD to rely on weak potential causation,

which by itself isn’t accurate enough to detect worms. Only when coupled with

complementary heuristics does this causal connection graph technique work

effectively.

This evolution of graph based detection from a rigid structure to a much

53

looser structure in many ways mirrors the evolution of the network as a whole.

Systems like DHCP and open wireless networks have transitioned the typical

network from a centrally allocated and controlled network to a more free flowing

and ad-hoc design. Worm detection techniques must adapt to these changes.

3.3. Detection Systems

Having discussed the individual worm detection techniques in isolation, we

now turn our attention to complete worm detection systems and their overall

performance. Table 3.2 lists a selection of published worm detection systems and

which techniques each system employs. We will examine the systems with regards

to each of the desired worm detection attributes discussed in Section 3.1.

Speed and Accuracy

One of the most difficult aspects of comparing worm detection systems is

comparing their performance. There are no standardized tests that are run on all

detection systems, and even the metrics used vary widely. In Table 3.3 we have

summarized the performance data culled from the papers which present these

systems. Frequently the performance of a system is best represented not with a

single number, but with a ROC curve, comparing the sensitivity to specificity of a

system over a range of configuration options. However, virtually no systems present

their results this way. Many systems, in fact, are presented without any supporting

evaluation.

54

TABLE 3.2. Worm detection techniques (in order of publication year)

Host-based Honeypot Content-based Behavior-based

B
u

ff
er

O
v
erfl

ow

In
p

u
t

C
o
rrela

tio
n

S
y
stem

C
alls

H
o
n

ey
p

o
t

S
ta

tic
S

ig
n

a
tu

re

D
y
n

a
m

ic
S

ign
atu

re

A
d

v
.

S
ign

atu
res

P
roto

co
l

F
ield

s

N
etw

o
rk

T
elescop

e

C
o
n

n
.

F
ailu

res

A
d

d
ress

D
istrib

u
tion

C
au

sation

Snort [61] •
HoneyComb [58] • • •
NetBait [63] •
Berk et al. [77] •
Zou et al. [6] •
Wu et al. [7] •
Autograph [65] • •
Reverse SHT [35] •
EarlyBird [66] • •
HoneyStat [51] • • •
iSink [80] •
DSC [37] •
PAYL [69, 70] •
HBD [89] •
COVERS [49] • •
WEW [64] • • •
TaintCheck [52] •
DACODA [53] •
Vigilante [55] •
Malan et al. [56, 57] •
Polygraph [74] •
PADS [60] • •
Bu et al. [79] •
Hamsa [75] •
Anagram [72] •
SWORD [82] • •
HonIDS [59] • • •
COOP [78] •
MRW [83] •
Poseidon [71] •
Brumley et al. [90] •
Sweeper [50] • •
LESG [76] •
d-ACTM [91] •
TRW+RBS [85] • •

55

TABLE 3.3. Accuracy and speed of selected systems

System Accuracy Speed

COVERS [49] No measured F-, F+ rated
as unlikely

Detects worm on first
attack connection, <10ms
for signature

TaintCheck [52] F+ in 2 of 15 experiments,
no F-, Generated signatures
show F+ 0.0015%

-

DACODA [53] - -

Vigilante [55] - <400ms to deploy filter on
vuln. host

Sweeper [50] - <60ms to filter

Malan et al. [56, 57] - 5 seconds

HoneyStat [51] No measured F+ -

HoneyComb [58] - -

HonIDS [59] - -

Snort [61] Dependant on Signatures -

Autograph [65] Best case of 0 F+ and 0 F- <1% of hosts infected (with
distributed monitoring)

EarlyBird [66] F+ yes, F- unknown but
none reported vs Snort
signatures

-

PAYL [69, 70] - -

Polygraph [74] F+ <0.01% for most cases,
no F-

Variable

PADS [60] - -

Hamsa [75] F- 0%, F+ 0.1839% 64-361 times faster than
Polygraph

POSEIDON [71] F- 26.8%, F+ < 1% -

Anagram [72] F- 0%, F+ 0.006% -

LESG [76] F- 0%, F+ 0% for most
scenarios

Signature generation <5
seconds

Berk et al. [77] - 5 seconds (4 hosts)

WEW [64] - <5 hours for Code-Red
worm

Continued on next page

56

Table 3.3 – Continued

System Accuracy Speed

Reverse SHT [35] Efficiency 0.324,
Effectiveness 0.917

<10 first-contact
connections

Cheetancheri et al. [78] - 14 seconds, 32% of vuln.
hosts infected

Zou et al. [6] - 1-2% of vuln. hosts infected

Wu et al. [7] - <1.5% of vuln. hosts
infected

Bu et al. [79] - <10 % of vuln. hosts
infected

Yegneswaran et al. [80] - -

SWORD [82] F- 0% for random/local
scanning, 10% for topo
scanning, F+ 0%

<10 seconds for 100
scans/sec, <250 seconds
for 1 scan/sec

Multi-resolution [83] F+ 0.04 per 10 seconds, F-
0%

<500 seconds for all worm
types

DSC [37] - <0.64% of vuln. hosts
infected

Dubendorfer et al. [89] - -

TRW+RBS [85] <1 F+ per hour, 2
measured F-

7 first-contact connections

d-ACTM [91] F+ 0.1% vs silent worm <7% of internal hosts
infected by silent worm

Coverage

The coverage of a system is the percent of different types of attacks that

it can detect. Most published worm detection proposals discuss the coverage of

the proposed system at least in passing, but few devote any great level of detail

towards it. Furthermore, a review of the published literature has revealed that the

coverage of worm detection systems is directly tied to the techniques it employs. To

57

discuss coverage then, we present not a list of the systems as we did in the section

on performance, but instead list the detection techniques with analytically derived

descriptions of each technique’s coverage in Table 3.4)

Table 3.4 shows that host-based techniques (Buffer Overflow, Input

Correlation, and Systems Calls) have good coverage, with the exception of

application-level attacks. Honeypot-based systems have good coverage against

untargeted worms, but only for those applications running on the honeypot. The

content-based techniques have good coverage except against polymorphic worms. It

remains to be seen whether advanced signatures can detect the most polymorphic

of worms. Behavior-based techiques have good coverage against high-speed and

random scanning worms, but will fail to be effective against slow-scanning, targeted

worms.

Capabilites

Different worm detection systems have different capabilities. Some are capable

of detecting simply that a worm is present within the network, while others are

capable of detecting which individual network connections contain the attack, what

the vulnerability is, and which hosts within the the network are infected Table 3.5

lists the various capabilities in the left-hand column, and the worm detection

systems that possess that capability in the right-hand column. The capabilities

are generally equivalent for systems using the same detection techniques.

Systems using content-based detection techniques are typically the most

58

TABLE 3.4. Detection technique coverage

Technique Coverage

Buffer Overflow Misses application-level injection attacks, otherwise
good

Input Correlation Misses application-level injection attacks, otherwise
good

System Calls Good
Honeypot May miss targeted scans, misses attacks against

unmonitored applications
Static Signature Misses zero-day worms for which signatures have not

yet been developed
Dynamic Signature Misses polymorphic worms
Advanced Signature May miss advanced polymorphic worms
Conn. Failures Misses targeted scans if they experience low connection

failure rates
Network Telescope Misses targeted scans (like topographical worms)
Causation Good for single attack vector worms
Dest. Addr. Dist. Good for worms with scan rates greater than normal

traffic

capable, able to develop an attack specific signature and detect all actively

scanning hosts. Host-based and Honeypot-based techniques are nearly as capable,

but are only able to detect those hosts that actually attack a protected host.

Systems built using behavior-based techniques are typically the most limited in

capabilities. Some, such as TRW+RBS can detect all active infected hosts, but

many behavior-based systems can do no more than simply detect the presence of a

worm in the network.

Analysis of Detector Systems

Table 3.6 outlines the major pros and cons of each type of worm detector.

Host-level techniques that observe memory accesses to detect buffer overflows

59

TABLE 3.5. Worm detector capabilities

Capability Systems with this capability

Detect that a worm
is present

Berk et al. [77], WEW [64], Cheetancheri et al. [78],
Zou et al. [6], Wu et al. [7], Bu et al. [79],
Yegneswaran et al. [80], Dubendorfer et al. [89], Malan
et al. [56, 57]

Detect which hosts
in a protected
network are infected

Reverse SHT [35], SWORD [82], Multi-resolution [83],
DSC [37], TRW+RBS [85], Snort [61], Autograph [65],
EarlyBird [66], PAYL [69, 70], Polygraph [74],
PADS [60], Hamsa [75]

Detect attacks
against specific hosts
(protected hosts or
honeypots)

COVERS [49], TaintCheck [52], DACODA [53],
Vigilante [55], Sweeper [50], HoneyStat [51],
HoneyComb [58], HonIDS [59]

Generate attack
specific signature

COVERS [49], TaintCheck [52], DACODA [53],
Vigilante [55], Sweeper [50]

Generate
content-based
signature

Autograph [65], EarlyBird [66], PAYL [69, 70],
Polygraph [74], PADS [60], Hamsa [75]

60

are effective against the class of worms that exploit buffer overflows, but they

impose a performance cost on all operations on the computer. Additionally,

unless they are built into the operating system host-level detection systems pose

a substantial deployment overhead for large organizations.

Honeypot-based techniques have limited coverage in that they may not detect

hit-list or topological worms.

Content-based techniques have the advantage that they generates signatures

that can be used to block worm traffic, and that they are easily deployed: requiring

only a single monitor for a given organization. These advantages are offset by their

inability to detect polymorphic worms, and their susceptibility to malicious training

attacks.

Behavior-based worm detection systems do not have the weaknesses shown

by content-based systems. They are robust to polymorphic worms; and as they do

not generate signatures used to block traffic, they can’t be duped into blocking

legitimate traffic. However, current behavior-based systems provide limited

information, they may tell you that a worm is present, but most likely can’t tell

you what exploit is being targeted. Beyond this limitation, many of the more naive

content-agnostic detectors can be easily avoided by intelligent worm design.

3.4. Detector Selection

Having established the pros and cons of different worm detection mechanisms,

we can select some algorithms as candidates for further study. We performed an

61

TABLE 3.6. Pros and cons of categories of worm detection

Category Pros Cons

Host-based IRobust against
Polymorphism

IPer-machine deployment
IBuffer-overflow attacks
only

Content-based IDeployable at gateway
IFast vs non-polymorphic
worms

IVulnerable to
polymorphism

Behavior-based IDeployable at gateway
IRobust against
polymorphism

INo signature generation

extensive evaluation of proposed worm detectors, considering 36 different published

works. We grouped them into the following categories based on their detection

algorithm: host-based detectors, content-based detectors, and behavior-based

detectors. Each category has its own strengths and weaknesses.

Detectors that we classified as host-based included, among others:

COVERS [49], DACODA [53], TaintCheck [52], and Sweeper [50]. COVERS

attempts to determine the root cause of a buffer overflow by forensic analysis

of the system memory. DACODA uses full-system symbolic execution to track

data from the network and observe malicious memory manipulations. TaintCheck

labels untrusted data as tainted, then tracks its propagation through memory and

monitor its usage. SWEEPER combines several of these techniques with a more

light-weight monitoring framework. These detectors are very effective and ongoing

research continues to reduce runtime overhead. Several factors, however, lead us to

62

exclude host-based detectors from this study. Host-based detectors require end-host

deployment but a network operator may have no control over what software is

installed on the end-hosts running in their network. Furthermore, users may

circumvent host-based software installs as illustrated by IKEE.B, which targeted

only those users who intentionally installed an unsupported operating system.

Finally, it is unclear whether host-based systems are capable of detecting an attack

like that used by IKEE.B. The systems listed above all rely on observing malicious

memory manipulations such as buffer overflows, but IKEE.B did not perform any

illegal memory operations; it merely exploited a configuration vulnerability.

Detectors that monitor the network instead of end-hosts seem much more

promising because they do not require deployment on each host to be protected.

We first look at detectors that examine the contents of network traffic, including

AutoGraph [65], EarlyBird [66], PAYL [69], Anagram [72], and LESG [76].

AutoGraph identifies suspicious traffic based on flow patterns, then examines

that traffic for frequently occurring byte sequences. EarlyBird operates similarly,

identifying prevalent and highly dispersed traffic as suspicious and then counting

recurring data elements. PAYL and Anagram take a slightly different approach,

performing statistical analyses of packet payloads. LESG identifies the protocol

of monitored traffic and looks for long fields that violate the protocol definition.

Each of these detection mechanisms share a similar limitation that leads us

to exclude them from our comparison: they are unable to monitor encrypted

63

traffic. Encrypted traffic is a special case of polymorphic traffic. Content-based

systems designed to catch polymorphic worms (such as Polygraph [74]) depend

on attack-specific, invariant sections of content which may not be present for an

encrypted worm. Even when worms are transmitted using unencrypted connections,

advances in polymorphism research such as [92] have threatened the promise of

these detectors. As a further consideration, it is prohibitively difficult to acquire a

variety of network traces which contain full network content making it is infeasible

to evaluate these detectors.

The remaining and largest class of detectors is behavior-based (or payload

oblivious) detectors. These include TRW [35], RBS [93], PGD [94], and many

others. These systems also monitor network traffic, but they examine the

behavior of traffic from end hosts rather than the contents of their packets. This

type of system is easily deployed, requiring as little as a single monitor at the

network gateway. They are capable of detecting worms regardless of the scanning

mechanism or propagation type (including propagation via encrypted channels),

and many of them are capable of identifying the worm-infected hosts. However,

we do exclude some behavior-based systems that a network operator could not

easily deploy. For example, detectors using network telescopes (such as those by

Wu et al. [7] and Zou et al. [95]) require a large dark address space and cannot be

deployed by a network operator unless they control a large address space.

After our exhaustive evaluation of worm detectors, we are left with the

64

following selections: TRW [35], RBS [93], TRWRBS [93], PGD [94], DSC [37], and

MRW [83].

These six detectors seem worth of further examination. To this end, we first

develop a framework that allows for the easy evaluation of behavior-based detectors

across a range of scenarios. This framework is described in Chapter IV. Chapter V

discusses the selected detectors in more detail and contains a complete evaluation of

their performance characteristics in detecting worms.

65

CHAPTER IV

EVALUATION FRAMEWORK FOR WORM DETECTORS

In order to compare the worm detectors that we identified in the previous

chapter, we need to see how well they detect worms. The best way to do this is to

run them against known worm traffic in a variety of different settings and measure

their performance. Repeatable controlled experiments that allow us to measure

their performance in a variety of situations will enable us to determine which

detector would be the most effective in the real world. We discuss the results of this

evaluation in the next chapter, but first we present the framework we developed to

enable this measurement.

There are four primary components to the framework, as shown in Figure 4.1.

The first component processes packet level network traces into our flow-level

database format. The second component extracts a subset of the trace that forms a

complete environment to run experiments in. The third component simulates worm

traffic in a given environment. The final component uses the environment and the

worm traffic to evaluate the performance of the various worm detection heuristics.

We will now examine each of these components in more detail.

4.1. Trace Conversion

The primary external input to our framework is network traces captured at

facilities from around the world. These traces capture real network traffic and

66

1) Trace
Conversion

2) Build
Environments

3) Worm
Sim

4) Heuristic
Eval

Input
Trace

Conn
DB

Env.
DB

Worm
DB

Env.
DB

Results

FIGURE 4.1. Trace conversion architecture

provide the context that ensures that our experiments provide accurate results.

Network traffic from different locations can exhibit very different characteristics,

so to fully test worm detectors it is important to test them against as many

network traces as possible. The more different network traces we can use, the more

confidence we will have in our results, so a key consideration in our framework is

supporting as many network trace formats as possible.

The first stage in our framework accomplishes this goal by translating input

network traces into a common format. This TraceConversion process is built using

a pluggable python architecture that allows new formats to be added easily. The

current implementation includes three input adapters: a libpcap adapter that

reads tcpdump captures, a CoralReef adapter that can convert any format that the

CoralReef toolkit supports (which includes a wide variety of capture standards),

and a special converter for the custom binary format that our PKU trace was

delivered in.

Our goal is to convert the packet level traces into a format that we can

67

efficiently and effectively work with. All of the detectors we evaluate are flow level

detectors. That is to say, they do not rely on the packet level details of network

traffic but only on higher level attributes. When we started this project, the

terminology around network “flows” was in its early stages and had not settled

into a standard. We named our output data structure a ConnectionDescriptor,

but today a more common term would be a network flow. We use these two terms

interchangeably.

The idea of a network flow was originally established by Cisco and other

router vendors but is not a well defined standard. This means that our definition

may not match perfectly with the definition of flows in other contexts. The term

“network flow” generally refers to the aggregate network traffic between two

hosts on a single protocol. For TCP based traffic, a flow typically represents one

complete TCP connection from setup through tear-down. However, we want to

refer to the idea of a flow more broadly than that, specifically, we want to include

UDP traffic. UDP does not include any connection semantics, so we must establish

our own. This requires us to answer some questions, such as: what time delay

between packets terminates one flow and begins a new flow? Table 4.1 specifies

our flow description, and Table 4.2 describes the data elements we capture about

each flow.

The process for converting packets into our common format is outlined

in Figure 4.2. Trace converters implement a single method “parsePacket”

68

TABLE 4.1. Flow definition

Flows are defined as a collection of packets between two IP addresses that
occur with no more than one minute elapsed between packets and meet the
following additional criteria:

For UDP traffic
(1) specify the same source and destination port

For TCP traffic
(1) meet the UDP flow criteria above
(2) are contained within a single TCP connection. If the connection is

terminated with fin packets and then a new connection is established with
syn packets on the same ports within the timeout period, this new TCP
connection is recorded as a new flow

For other protocols
We currently disregard communication on protocols other than TCP,

UDP, or ICMP

which takes a single line of input and returns the packet data encoded in that

line as an instance of our internal Packet class. The packet is handed to the

ConnectionBuilder component which maintains a list of currently open flows. If

the packet is part of an open flow, the flow is updated with the information from

the packet, otherwise a new flow is created. Periodically (based on the observed

timestamps) the open flows are filtered for flow that should be closed due to

timeout. Closed or timed out flows are written to the database.

The advantage of writing flows to a database instead of a flat file is that we

can use the data in different ways. For example, a worm detector that relies only

on the opening packet of a connection can sort the connections by first packet

time. Conversely, a worm detector that looks at whether a connection succeeds

or fails cannot process a connection until that has been established. We record

69

TABLE 4.2. Data elements captured about each flow

Attribute Name Description

startTime timestamp of first packet in this flow
statusTime timestamp when we determined the status of the flow
endTime timestamp of the last packet in the flow
protocol transport protocol (tcp, udp, icmp, etc.)
sourceAddr IP address of source as dotted quad
sourceAddrInt IP address of source as unsigned integer
sourcePort source port number (TCP and UDP protocols)
destAddr IP address of destination as dotted quad
destAddrInt IP address of destination as unsigned integer
destPort destination port number (TCP and UDP protocols)
packetsSent number of packets sent from originator
packetsReceived number of packets received by originator
bytesSent number of bytes sent by originator
bytesReceived number of bytes received by originator
syn (TCP) boolean: was syn packet seen?
synAck (TCP) boolean: was synAck packet seen?
est (TCP) boolean: was 3-way handshake completed?
sourceFin (TCP) boolean: did source send fin packet?
ackSourceFin (TCP) boolean: was source fin packet ack-ed?
destFin (TCP) boolean: did destination send fin packet?
ackDestFin (TCP) boolean: was destination fin packet ack-ed?
rst (TCP) boolean: was a reset packet seen?
finInit (TCP) conn. terminated by source, dest, or timeout
pushCount (TCP) num. of packets observed push flag set
urgentCount (TCP) num. of packets observed with urgent flag set
ecnEchoCount (TCP) num. of packets observed ecn flag set
winReducedCount (TCP) num. of packets with win reduced flag set

70

Object

libpcap
Converter

CoralReef
Conveter

PKU
Converter

Input Parser

Connection
DB

Connection
Processing

Flow Flow Flow

Flow Flow Flow

Flow

Connection
Builder

OutputFilter
Input File

FIGURE 4.2. Connection extraction process

this time information as well (as statusTime) and can sort the connections based

on that time simply by specifying a different “order by” clause when we fetch the

connections.

4.2. Environment Generation

The full traces converted in step one of our evaluation process may contain a

larger network or a longer trace than is needed for our evaluations. Additionally,

the worm simulation and detector evaluation steps of our process require metadata

about the trace they are operating on. The next step in the process then is to build

an evaluation environment based on the full trace. An evaluation environment

consists of an XML descriptor, a trace to perform training on, and a trace to

evaluate against. The XML descriptor contains file references to the training and

evaluation traces, the address space of the network in the trace, a list of the active

internal hosts addresses, and lists of the busiest, least busy, and randomly selected

internal hosts.

71

Building a standard descriptor of a given trace allows us to easily plug

different configurations into the worm simulator and detector evaluator.

4.3. Worm Simulation

To generate the worm traffic required to evaluate the effectiveness of the

various detectors, we implemented the worm emulator described in [96].

GLOWS takes an environment as an input, and simulates the outbreak

of a worm in the protected network. GLOWS cannot, of course, simulate the

entire Internet. Instead it uses a finite-state model to simulate the behavior of

every address in the protected network and every vulnerable host in the Internet;

and uses a probabilistic model for the remainder of the Internet. Modeling the

vulnerable hosts with the finite-state model yields greater verisimilitude than a

pure probabilistic model. It is feasible because the number of such hosts is only

a small fraction of the total hosts in the Internet. Furthermore, we don’t model

packet level interactions which reduces computational overhead and we don’t model

congestion effects or background traffic.

Ignoring congestion effects impacts the accuracy of the model, but we focus

our evaluation at the first stages of worm infection and at that point congestion

effects due to the worm should be very small.

GLOWS implements the following worm scanning algorithms as described by

Staniford et al. [8]: random-scan, local-preference scan, and topological scan.

A random scanning worm simply chooses target addresses at random from

72

the entire IPv4 address space. This typically results in many connection attempts

to addresses with no host present or with a host that is not running the requested

service, resulting in many connection failures. Permutation and sequential scanning

worms should show very similar characteristics and are not evaluated separately

here.

A local-preference worm scans local addresses (in the same prefix) more

frequently than addresses in the full address space. This results in more scans that

do not cross the network border (and are therefore not visible to a border-located

detection mechanism). Existing local-preference scanning worms, such as Code-Red

II [11], target the local /16 network (that is, those network addresses sharing

the same 16 high-order bits) approximately 50% of the time, the local /8 (as

before, network addresses sharing the same 8 high-order bits) 25% of the time,

and the entire network the remaining time. As all our traces are about a /22

network, such a worm would largely resemble a random scanning worm. Instead,

our local-preference worm scans the local /22 50% of the time, the local /8 25%

of the time, and the entire network the remaining time. This means that the

local-preference worm generates fewer connections visible to the detectors and has a

much higher chance of infecting multiple targets within the network.

The topological-scanning worm starts with a list of addresses that it knows to

be running the target service. These hosts are not necessarily vulnerable, but can

be scanned without causing a connection failure which can help the worm to evade

73

some types of detectors. The number of new hosts (referred to as “neighbors”)

the worm discovers is dependent on its neighbor detection algorithm. We use

three implementations of the topo worm with differing neighbor counts. The

topo100 worm starts with 100 neighbors, the topo1000 worm starts with 1000

neighbors, and the topoall worm starts with an unlimited supply of neighbors.

After scanning its known neighbors, the topo worm must either stop scanning

or switch algorithms. In our implementation it reverts to random scanning after

exhausting its neighbor list. Note that the neighbors discovered by the topo worm

are randomly located, so could appear both inside and outside the protected

network. Also, they will be running the target service but are not guaranteed to

be vulnerable.

GLOWS accurately models the connection-level interaction between two hosts

during an infection attempt, right down to setting appropriate TCP flags. Scanning

attempts to non existent hosts result in SYN/RST exchanges as one would expect

to see in the real world, and the worm client can disconnect at any point leaving

the connection in an arbitrary state. The payload and target port number are also

configurable.

We run GLOWS 16 times for each scan type in each environment. Each run

of GLOWS uses a different seed for the random number generator. This gives us a

variety of traces for each scenario to eliminate situations where a bad random seed

gives us peculiar behavior.

74

We run the worm simulation outside of the evaluation engine for simple

worms because it improves overall performance as we do not need to replicate

the worm simulation for different detector types. However, some scenarios require

implementing the worm inside the evaluation engine.

4.4. Evaluation

The core component of our system runs the actual detectors to measure their

performance. It is by far the most complex component and contains the most code.

The evaluation engine is written in Java and is comprised of approximately 17,000

lines of code.

The basic task of the evaluation engine is to read the network connections

for a given network trace and simulated worm, and to run the selected detector

against those connections, recording the output of the worm detector. Because the

evaluation engine knows which connections are worm connections and which are

legitimate, we are able to measure the detectors ability to detect worm traffic.

Before a detector can be run against worm traffic though, it must establish

the thresholds that define anomalous behavior by training against benign, or

legitimate traffic. Furthermore, we must establish each detector’s false positive

rate by running it against a period of benign traffic that contains no worm traffic.

Finally, we must ensure that the false positives triggered when the worm is not

present are not considered successful detection in future runs using the same benign

traffic that do include worm traffic.

75

4.5. Experiment Coordination and Results Processing

The final portion of the framework is a set of scripts that pull it all together.

The script collates the data from the different experiments and automatically

generates specific graphs and summaries.

76

CHAPTER V

A COMPARISON OF BEHAVIOR-BASED WORM DETECTORS

The comparison described in this chapter was performed in conjunction

with Dr. Jun Li and was published in the 2010 edition of the Proceedings of the

Recent Advances in Intrusion Detection (RAID) Symposium. I was the primary

contributor for both the underlying research and the writing, but Dr. Li helped to

guide the research and edit the text.

5.1. The Selected Worm Detectors

Having selected detectors for our comparison work, we now describe them

each in more detail. We present only a brief a summary of each work, please refer

to the original publications for more detail. We use the same parameter choices

that were presented in the original publication of each work. Note we used existing

acronyms for each work where available.

The TRW detector was published by Schechter et al. in 2004 [35]. TRW

identifies a host as worm infected if connection attempts to new destinations result

in many connection failures. TRW is based on the idea that a worm-infected host

that is scanning the network randomly will have a higher connection failure rate

than a host engaged in legitimate operations. Even with the IPv4 address space

getting closer to complete allocation, the majority of addresses will not respond

to a connection attempt on any given port. Randomly targeted connections (as in

77

worm scanning) will likely fail. A TCP connection is only deemed successful upon

completion of the three-way handshake. A UDP connections is considered to be

failed when there is not a return UDP packet with the same source or destination

port as the originating UDP packet within a timeout period. A higher connection

failure rate of hosts can be efficiently observed by employing sequential hypothesis

testing. Two hypotheses are established, one that the host is engaged in legitimate

behavior (and therefore has a high connection success rate), the other that the

host is infected with a worm (and therefore has a low connection success rate).

Each connection to a new destination is observed as either a failure or success, and

likelihood of each hypothesis is calculated. When the likelihood exceeds a given

threshold for one hypothesis then it is considered to be true.

The TRW algorithm has the following parameters:

θ −multiple : θ is the probability with which legitimate hosts make connections

to new destinations successfully. The θ − multiple is a value between 0 and

1 used to calculate the probability with which worm infected hosts make

connections to new destinations successfully. We use the θ −multiple chosen

in [85], 0.2.

α : The false positive probability. A user-configured parameter between 0 and

1 that provides a bound on the false positive rate (if all the assumptions

about event independence hold true). We start with the α from the original

publication of 0.00001 and then modify it to fix our false positive level.

78

β : The detection probability. Similar to alpha, this is a user-configured parameter

that provides a bound on the detection rate. We use β from the original

publication, 0.99.

History size : Only connections to new destinations are considered the TRW

algorithm, but TRW cannot remember all the visited destinations. The final

parameter is the history size for establishing whether a destination is a new

destination or a previously visited destination. We use the history size from

the original publication, 30 minutes.

The destination-source correlation detector (DSC) was published in 2004 by

Gu et al. [37]. It detects a worm infection by correlating an incoming connection

on a given port with subsequent outgoing infections on that port. If the outgoing

connection rate exceeds a threshold established during training, the alarm is raised.

A different threshold is maintained for each destination port.

The DSC detector uses the following parameters:

Window Size : After an incoming connection to a host, the DSC detector monitors

outgoing connections from the host for a set amount of time. We use a

60-second window, which is established via the training algorithm outlined

in the original publication.

σ −multiple : The threshold for each port is selected based on the mean of

observed infection-like events plus a multiple of the standard deviation.

Modifying the σ − multiple changes the aggressiveness of the detector. We

79

modify this value for each environment to set a fixed false positive level after

training.

The MRW detector was first published in 2006 [83]. It is based on the

observation that scanning results in connections to many destinations, and during

legitimate operations the growth curve of the number of distinct destinations over

time is concave. As the time window increases, destination growth slows. This can

be leveraged by monitoring over multiple time windows with different thresholds

for each window. Each time a host contacts a new destination, its recent history

of contacting distinct hosts is evaluated against a collection of window sizes and

thresholds. If the number of new destinations for a host within a given window

exceeds the threshold, the alarm is raised. The key element in the MRW detector

is window-size and threshold selection. The system can choose shorter window

sizes and low thresholds that will result in high false positives but lower detection

latency, or less aggressive values that will result in lower false positives but higher

detection latency. The false positives and detection latency are the security cost

components of the system, and are modeled as a simple linear combination with a

user-selected weighting factor. The system then seeks to minimize the overall cost

in choosing window sizes and thresholds.

The MRW algorithm has the following parameters:

β : The weighting parameter in the cost model. Higher values of β make for a

more conservative system with lower false positives but higher latency. We

80

use a β of 65536 as is selected in the original publication.

Min worm rate : The minimum worm rate to input to the window-size and

threshold selection algorithm. We use the minimum worm scan rate that we

evaluate the detectors with, 0.005 scans per second.

Max worm rate : The maximum worm rate to input to the window-size and

threshold selection algorithm. We use the maximum worm scan rate used

in our evaluation: 10 scans per second.

Worm rate step : The size of the incremental changes to the worm rate to select

worm rates for the window-size and threshold selection algorithm. We use the

value from the paper of 0.1.

The RBS detector was first published in 2007 [93] by Jung et al.. Similar to

the MRW detector, RBS measures the rate of connections to new destinations.

The work is based on the hypothesis that a worm-infected host contacts new

destinations at a higher rate than a legitimate host does. RBS measures this rate

by fitting the inter-arrival time of new destinations to a exponential distribution.

Each time a new destination is contacted, the RBS evaluates the likelihood of

two hypotheses: that the host is benign and is contacting destinations at a low

rate, and that the host is worm infected and is therefore contacting destinations

at a higher rate. When the likelihood of the worm infected hypothesis exceeds a

threshold, the alarm is raised that the host is infected.

The RBS parameters are quite similar to the TRW parameters.

81

λ−multiple : λ is the rate at which benign hosts make connections to new

destinations. The λ −multiple is used to derive rate at which worm-infected

hosts make connections to new destinations. We use the λ −multiple chosen

in the original publication, 10, except in the wireless environment where we

were unable to set the false-positives to the desired level without adjusting

the λ−multiple

α : The false positive probability. Identical to the value for the TRW detector.

β : The detection probability. Identical to the value for the TRW detector.

Training window size : The RBS system continuously trains itself, monitoring

the hosts in the network for a period, then deriving the new λ value from the

observed training. We use the training window size of 10 minutes from the

original paper.

History size : Similar to the TRW detector, RBS maintains a history to determine

whether a connection is to a new destination or not. We use the value from

the publication: 30 minutes.

The TRWRBS detector was published alongside the RBS detector [93]. It

combines the TRW and RBS detectors into a unified scheme, and observes both

the connection failure rate and the first contact rate. It performs a sequential

hypothesis testing on the combined likelihood ratio to detect worms.

The TRWRBS detector uses the following parameters:

82

θ −multiple : Uses a value of 0.6, from the original publication.

λ−multiple : Uses a value of 5, from the original publication.

α : Same as the RBS detector.

β : Same as the RBS detector.

Training window size : Same as the RBS detector.

History size : Same as the RBS detector.

The Protocol Graph detector (PGD) was introduced by Collins and Reiter

in 2007 [94]. It is targeted at detecting slowly propagating hit-list or topologically

aware worms. PGD works by building protocol-specific graphs where each node in

the graph is a host, and each edge represents a connection between two hosts over

a specific protocol. Collins and Reiter made the observation that during legitimate

operation over short time periods, the number of hosts in the graphs is normally

distributed and the number of nodes in the largest connected component of each

graph is also normally distributed. During a worm infection, however, abnormal

graph and largest connected component sizes are observed, indicating the presence

of the worm. PGD is capable of giving some indication of which host is infected,

but as this work is still in development we terminate processing as soon as PGD

identifies that a worm is present in the network.

The PGD detector uses the following parameters:

83

Window Size : The PGD detector monitors the network for a set amount of time

before checking the graph sizes. We use the window size from the published

work, 60 seconds.

σ −multiple : The node count and largest connected component size thresholds

are calculated for each protocol by adding a multiple of the observed standard

deviation to the observed mean. We modify the false positive rate to set it at

a fixed value after training by modifying the σ −multiple.

5.2. Detector Performance Metrics

The goal of this study is to evaluate the selected detectors over a

comprehensive parameter space to identify their strengths and weaknesses. We

must first, however, determine which performance attributes we are most interested

in capturing, and what metrics would be suitable for assessing them.

There are many aspects to consider in the the overall performance of a worm

detector. One could look at it from its accuracy in identifying infected hosts or

worm traffic, the speed with which it makes a determination of whether a host

is infected, the runtime processor or memory requirements, the types of worm

propagation that it can detect, the complexity of configuring or installing it, and

so on. Once a particular performance attribute is identified, one then needs to

determine what metric to use. This is not as simple as it sounds. Accuracy, for

example, can be measured in a variety of related, but different, ways including:

84

false positive rate (claiming a worm is present when one isn’t), false negative rate

(failing to identify the presence of a worm), ROC curve (a combination of the above

two illustrating how they interact), sensitivity (the portion of worm infected hosts

that are identified as such), specificity (the portion of non-worm infected hosts that

are identified as benign), or F-score (a weighted combination of sensitivity and

specificity) to name just a few. Let us first discuss the performance attributes we

are interested in capturing, then the metrics we will use to measure them.

The focus of this study is on the ability of the detectors to discover the

presence of a worm in the network. We thus want to measure their accuracy: does

a detector alert us when a worm is present—but not do so when there is no worm?

Furthermore, we want to measure its ability to detect a broad range of worm

scanning algorithms. Moreover, accurate detection is not helpful if it happens too

far after the fact. We must obtain some notion of the speed of the detectors—does

it find a worm quickly or does it allow the worm free action for a long time before

raising the alarm.

There are some attributes that we are not as interested in. At this time we

are ignoring runtime costs such as processing or memory requirements. These are

dependent on implementation and optimization details, and can vary widely for a

given detection algorithm (for example, see the hardware implementation of TRW

by Weaver et al. [27]). It is beyond the scope of this work to attempt to determine

how efficiently each of these algorithms could be implemented. Similarly, we do not

85

consider the complexity of installing or running the detector. This is not because

installation complexity does not impact the potential adoption rate of a detector,

but because it is somewhat orthogonal to the accuracy of the detector itself and

could be addressed separately from the detection algorithm itself.

As shown in Table 5.1, we have identified four metrics as the most useful

measures of the performance of a worm detector. We explain them below:

Our primary performance attribute is accuracy in detecting a worm. We use

two metrics to characterize accuracy: the false negative rate and the false positive

rate. We have selected these metrics because they are easy to understand and are

more relevant to worm detection than other metrics. Specificity and sensitivity

are more common metrics, but are designed around reporting the performance of

a test that is applied once or infrequently. A worm detector is constantly testing

the network to see if an infection is present making the specificity and sensitivity

values difficult to understand. This is known as the “base rate fallacy” in intrusion

detection, a test can show what appears to be excellent sensitivity or specificity but

perform poorly in practice because of the frequency with which the test is applied.

We address this problem by reporting not the per-test rate, but instead reporting

the aggregate number of false positives and false negatives seen at the experiment

level.

Our false negative metric works as follows. For each experiment we introduce

a worm to the background legitimate traffic. The detector is limited to a time

86

TABLE 5.1. Metrics

F- Percentage of experiments where worm traffic is
present but not detected in time period τ

F+ by host The number of false alarms raised during a time
period τ , limited to at most one false alarm per
host

F+ by time Perce ntage of minutes during a time period τ
where a false alarm is triggered for any host

Detection Latency The number of outbound worm connections from
an infected network prior to detecting the worm

period τ (typically an hour) to detect the worm after it becomes active. If in that

time span an alarm is not raised, the experiment is scored as a false negative for

the detector. The false negative rate (F-) is the percentage of experiments scored as

false negatives. (We report F- for each different scanning rate of the worm.)

The flip side of false negatives is false positives: reporting legitimate traffic as

a worm infection. This is a critical metric for worm detectors, because a detector

that repeatedly raises a false alarm (“cries wolf”) will quickly be ignored by

network administrators. We measure false positives by running the detector against

benign traffic with no injected worm activity. (Because we have inspected the

traces for known worm activity, we consider every alarm raised by a worm detector

a false alarm.) However, because worm detectors often repeat their worm infection

tests—on every connection in some cases, the same set suspicious behavior may

cause the alarm to be raised repeatedly, and these repetitive alarms should be

coalesced into a single notification to the network administrators. But the exact

mechanism and scope of alarm coalescing will be specific to the needs and resources

87

of the network administrators at each site. As a result, we present two forms of

false positive rate. We present the number of hosts identified as infected (coalescing

alarms by network address) as the false positive rate by host (F+ by host). We also

define false positive rate by time (F+ by time), which is the fraction of minutes of

the trace where an alarm is raised on at least one host; note the alarm duration is

only until the end of the current minute as we coalesce alarms into 1 minute bins.

The combination of these two metrics give a better view of the overall false positive

performance of the detector than either does individually.

The next major performance attribute to consider is the speed with which

a worm is detected. The faster detection occurs, the less damage the worm can

do because the fewer additional hosts it will have the opportunity to infect. We

measure detection latency as the number of outbound worm connections initiated

by all infected hosts in the protected network prior to detection of any internal

infection. (Scans that do not leave the network do not inflict damage on the

Internet as a whole and are not included in this count.) Alternative approaches

such as using clock time or infected host count are less accurate and less descriptive

than our metric.

An alternative approach to measuring latency would be to measure it in terms

of clock time. This turns out to be a poor way of measuring because the slower

a worm scans, the more clock time it will take for detection without changing

the amount of damage the worm is doing. Another possible metric would be the

88

number of hosts within the protected network that are already infected prior to

detection. However, our experiments show that when a monitored network is not

very large, the number of infected internal hosts is almost always one at detection

time, making this metric uninteresting.

5.3. Experiment Design

We run the detectors against legitimate traffic to measure false positives, then

against legitimate traffic plus known worm traffic to measure false negatives and

detection latency. We developed a custom testing framework and implemented each

detector in our framework based on the detector’s published specifications. Our

framework can run against online, real-time traffic on the DETER testbed [97],

as well as run in an offline (not real-time) mode. We use legitimate traffic from

a variety of sources and generate known worm traffic by simulating a worm with

our GLOWS [96] simulator. We vary the following parameters as we evaluate each

worm detector: the environment it is run in (meaning the network configuration

and legitimate traffic), the worm scanning method, and the worm scanning rate.

We evaluate each detector against network traces containing legitimate traffic

as well as ones containing both legitimate traffic and known worm activity. We

use legitimate traffic from a variety of sources. We split the legitimate traffic into

training and experiment segments. After training a detector against the training

segment, we evaluate it against the experiment segment. We use our GLOWS [96]

worm simulator to generate worm traffic for each experiment. GLOWS takes as

89

input information about the legitimate trace, including the network configuration,

host addresses, as well as host activity levels. It then simulates a worm for a given

set of parameters and produces a worm trace, which is then merged with the

legitimate trace to provide a trace with both legitimate and known worm traffic.

Evaluation Environment and Background Traffic

Worm detectors must be evaluated in the context of a subnet to be protected

and against the legitimate background traffic that occurs in that subnet. This

has traditionally been one of the difficulties in comparing published results of

different detectors, they were evaluated in different scenarios with different traffic

and were therefore not directly comparable. Real network traffic contains sensitive

information and is not generally released to the public, making it difficult to

acquire good traces to evaluate against. This difficulty has led researchers to each

publish on privately acquired traces such that experiments cannot be repeated.

For our experiments, we define an environment as the network address space to be

monitored, the IP addresses of the active hosts inside that address space, and the

IP network traffic into and out of that address space during two time periods. We

use the first time period for training and the second to run experiments against. To

make the environments comparable to each other and to enable us to ensure that

they do not contain worm traffic, we select a /22 subnet from the original recorded

traces to use as the protected address space in our environment. Every environment

is thus a /22 network with between 100 and 200 active hosts. We use four distinct

90

environments in our evaluation.

Summary statistics of the traces can be seen in Table 5.2. These traces

provide us legitimate background traffic from different time periods and different

settings. They have a heavy academic leaning, which may influence our results, but

they represent as wide a range of background traffic as we could acquire.

The enterprise environment is built from a trace collected at LBNL [98] (a

member of the national laboratory system managed by the University of California)

in January of 2005. The trace was captured in one-hour segments at individual

router ports, and each segment sees only a subset of the overall traffic. Heavy

scanners were removed from the trace before it was released. It has 139 active hosts

and the training and experiment segments each contain roughly 25,000 connections.

The campus environment is built from a trace that was collected in 2001 at

the border of Auckland University [99]. It contains over a month of traffic from the

entire university with two /16 networks and several /24 networks. There are over

6,000 active hosts generating substantial traffic on a variety of protocols. The trace

was anonymized using a non-prefix preserving anonymization scheme, so we cannot

entirely accurately reconstruct the internal structure of their network. Instead,

we randomly select 200 hosts and construct an environment using traffic to and

from those hosts. Each segment of the trace in our campus environment contains

approximately 25,000 connections.

The wireless and department environments are built from traces collected

91

at the University of Massachusetts in 2006 [100]. The department environment

is built from a trace capturing all traffic to and from the wired computers in the

CS department. It has 92 active hosts and approximately 30,000 connections in

each segment. The wireless environment comes from a trace capturing all wireless

network traffic from the university. It has 313 active hosts and approximately

120,000 connections in each segment.

We cannot establish ground truth for any one of these traces as the IP

addresses have been anonymized and there is no connection payload recorded. This

leaves us in an unenviable position of trying to evaluate detectors against traces

with unknown quantities of worm activity present. The traces are also too large

to carefully vet each host’s behavior for normalcy. To mitigate these problems,

we randomly select a much smaller subnet from the trace and concentrate our

analysis on that. For each trace we selected a /22 network from within the trace

containing between 100 and 200 active hosts. This small network size represents a

realistic workgroup or department size and allows us to establish the legitimacy of

the traffic with a higher degree of confidence.

Worm Parameters

Several key parameters of a worm may impact the effectiveness of worm

detectors. Worms can use a variety of methods to find new targets to infect.

We start our investigation by examining naive worms that use straight-forward

scanning strategies. We examine the following scanning strategies at a variety

92

TABLE 5.2. Trace statistics: for each trace we list the number of active hosts
inside the network, the total number of connections in the experiment segment, the
percent of those connections that are initiated inside the network with a destination
outside the network, and the percent of the total number of connections that use
the TCP protocol.

Name Active Connection Outgoing TCP
Hosts Count Portion Portion

Enterprise 139 25042 76.3% 50.6%
Campus 117 22935 66.2% 86.4%
Department 92 29634 53.0% 48.0%
Wireless 313 120032 72.3% 59.8%

of scanning rates: random scan, sequential scan, permutation scan, and

local-preference scan. In practice, the evaluated detectors perform identically

against the random scan, sequential scan, and permutation scanning worms, so

we show on the results for the random and local-preference scanning worms. In this

experiment the worms are naive, and make no effort to evade detection.

Our GLOWS simulator takes an environment as input and simulates a worm

as if it were attacking the network defined by that environment. The simulation

starts with a single inbound worm connection that infects one host in the protected

network. We run the simulator once for each permutation of worm parameters. The

scanning mechanisms are defined as follows.

See Section 4.3 for more detail about the scanning strategies of the worms

used in this study.

In addition to scanning mechanism the worm uses, the rate at which it

initiates connections is important. The faster a worm scans, the more visible it

93

is to worm detectors. To illustrate this point, consider a worm scanning at 1000

connections per second versus one scanning at only one connection per day. The

worm with the higher scanning rate is a more significant disruption to “normal”

traffic than the worm with the slow scanning rate We run experiments for a variety

of worm scanning rates ranging from 10 connections per second down to one

connection every 200 seconds. This allows us to determine which detectors are more

sensitive and able to detect the slower moving worms.

The final variable parameter is the activity profile of the host that is first

infected with a worm. Some hosts within the network have substantially more

network traffic than others. We split the hosts into two categories: busy hosts are

the 16 busiest hosts in the network, idle hosts are the 16 least busy hosts in the

network, and random hosts are the 16 randomly selected hosts in the network.

This allows us to examine how the legitimate traffic generated by a host impacts

a detector’s ability to discern the worm activity.

Experiment Procedure

Measuring detector performance is a multi-step procedure. For each

environment, every detector must (1) establish thresholds via training, (2) be

evaluated against the legitimate traffic in the environment to measure false

positives, (3) adjust their parameters to fix false positives at a specific level, and (4)

be evaluated against legitimate traffic combined with worm traffic to measure false

negatives and detection latency. Let us now discuss each of these steps in more

94

detail.

These detectors are anomaly detectors, and they look for traffic that diverges

from normal. To do this, they must first measure what normal is. The TRW,

MRW, DSC, and PGD detectors are run against the training segment of the trace

using the training method outlined in their publication to perform this operation.

The RBS and TRWRBS detectors perform on-the-fly training as they are run

against the experiment segment of the trace.

After the thresholds are established from the training segment of the trace,

each detector is run against the experiment portion of the trace to measure false

positives. We measure F+ using the thresholds obtained from training and the

default detector parameters outlined in the original publication of each work,

presenting those results in Section 5.4.

Note that each detector can be tuned to favor producing either more F+ or

more F-. After reporting F+ using the default detector parameters as published,

in order to provide a fair comparison of the false negative rate of the detectors, we

modify each detector’s parameters such that they all produce the same number of

false positives in each environment. We chose to peg each detector at a rate of two

false positive alarms during the experiment period. Two false positives is a high

rate for the one-hour time period evaluated, but was chosen as an achievable value

for all detectors requiring the minimum amount of parameter modifications.

After measuring F+ and adjusting the detectors to match their F+ levels,

95

we then measure the performance of the detectors against worm traffic. For each

detector in each environment, we run 16 experiments for every permutation of

the worm parameters. A single experiment consists of running the detector for 10

minutes of the experiment trace to warm up the connection histories, then injecting

the simulated worm traffic into the trace, and running until either an hour has

elapsed or the worm is detected. Each of the 16 experiments that we run for a

given set of worm parameters has a different host in the protected network being

infected first and uses a different random seed. The percentage of experiments

where the worm is not detected is the false negative rate, and the mean number

of worm connections that have left the network at detection time is the detection

latency.

5.4. Results

We now measure the performance of the worm detectors in a variety of

worm scenarios. We first look at the false positives, then introduce worm traffic

to measure false negative rates and detection latency, first for random scanning

worms, then for local-preference scanning worms. We then look at the impact of

the activity profile of the first infected host as well as the worm attack port.

False Positives Against Legitimate Traffic

Figure 5.1a shows the results for each detector using default parameters

from its original publication. Raising an alarm for a host could either (a) indicate

96

that the host is considered permanently infected, or (b) indicate that the host is

behaving anomalously now (for some definition of now). Figure 5.1a shows F+

results using strategy (a) (with PGD limited to one alarm per 1-minute window

because it does not identify the infected host). Figure 5.1b shows F+ results using

strategy (b) and with an alarm duration of one minute. Strategy (a) is probably

more representative of how detectors would be deployed in practice, but it is

illustrative to show that without such a limitation, in some environments RBS and

TRWRBS would be in an alarm state more than 50% of the time and TRW and

MRW would be in an alarm state 100% of the time.

These results also demonstrate the impact that environment has on the

detector performance. TRWRBS has five F+ in the wireless environment but none

in the campus or department environments. MRW is in an alarm state 100% of the

time in the department environment but not at all in the campus environment. An

evaluation using only a single environment could produce grossly inaccurate results.

 0

 1

 2

 3

 4

 5

trw rbs trwrbs mrw pgd dscFa
ls

e
Al

ar
m

s
(li

m
it

1
pe

r h
os

t)

Detector

enterprise
campus

department
wireless

(a) By Host

 0

 20

 40

 60

 80

 100

trw rbs trwrbs mrw pgd dsc%
 o

f M
in

ut
es

 w
ith

 F
al

se
 A

la
rm

Detector

enterprise
campus

department
wireless

(b) By Time

FIGURE 5.1. False positives against legitimate traffic: when running with
default parameters against the experiment segment of the traces with no worm
traffic injected

97

The wireless environment showed the most F+ activity with the default

parameter choices. This appears to stem from several hosts playing network games

such as Counter-Strike (UDP connections on ports in the 27010-27050 range) and

NeverWinter Nights (TCP connections on port 5121) as well as from hosts using

BitTorrent (33 hosts active on ports in the 6881-6999 range). This environment

represents the most residential/recreational usage patterns and indicates that

this sort of traffic is less amenable to behavior-based worm detection than the less

variable traffic of the enterprise environment. This represents the first findings we

are aware of that validate a common hypothesis: current behavior-based anomaly

detectors are not optimized for residential style network traffic and may not show

satisfactory performance in such an environment.

The above results were with the default parameters for each detector.

However, detectors can be adjusted to be more aggressive at identifying hosts as

infected, causing more false positive results as a side effect. To ensure a balanced

comparison between the detectors, after measure the false positive levels with

default parameters we modify the parameters to result in 2 false positives during

each one-hour experiment trace. This certainly represents a higher than desired

level of false positives for such small networks and a short time period, but it is

achievable by all detectors with the smallest changes to the parameters.

Table 5.3 shows the default parameters and the values they were changed to

for each environment to achieve the desired level of false positives. In some cases

98

the parameter changes make the detector more aggressive and increase the number

of false positives, while in other cases they make the detector less aggressive to

reduce the number of false positives. For the TRWRBS and MRW detectors in the

campus environment we were unable to achieve exactly two false positives. In these

cases we set the parameters at the highest levels that generated one false positive.

The DSC detector never generated false positives in the enterprise environment

because there were no outgoing connections triggered by incoming connections. In

this case we set the σ −mult to zero to make the detector as aggressive as possible.

When analyzing false positives there is always the question as to whether

there is actually a worm present in the trace. We limited the network size in each

environment to enable us to review connection activity by hand. We found no

obvious worm traffic, but because we have packets headers only there is no way

to sanitize the traces completely. We examined the false positives and found that

the detectors frequently mis-identified different hosts as infected. MRW and RBS

had F+ for the same host 4 times across all the environments. DSC and RBS also

had F+ for the same host 4 times, but only 1 host was a F+ for all three detectors.

In no other cases did two detectors show F+ for the same host on more than twice.

This indicates that the F+ are not dominated by a few very active hosts, but are

generally different for the different detectors. This reinforces our belief that these

are truly false positives, and not detection of unknown worm activity.

99

TABLE 5.3. Parameter choices for the detectors. The default parameters are
what is suggested by the original publication of each detector. The parameters for
each environment are what was chosen to achieve a false positive rate of two falsely
identified hosts per hour during the experiment.

Detector Parameter Default Enterprise Campus Dept. Wireless

TRW α 10−6 10−3 10−6 10−13 10−25

RBS α 10−6 10−3 10−9 10−6 10−6

λ−mult 10 10 10 10 1.5
TRWRBS α 10−6 10−4 3.9e−3 10−3 10−18

MRW β 65536 16 51 65536 750
PGD σ −mult 3.5 2.3 2.8 3.5 2.3
DSC σ −mult 3 0 2.35 2.76 1.87

Detector Performance Against Random Worm

In this section we report false negative and latency results against random

scanning worms. Figure 5.2 shows that TRW is the most consistently effective

detector across the environments, discovering all instances of the worm down

to 0.05 scans per second and catching the majority of the slower scans in the

enterprise and campus environments. RBS is the least effective, only able to

consistently detect the worm scan rates greater than five scans per second.

TRWRBS blends the two detectors with results right in the middle. The DSC

and PGD detectors are an order of magnitude more effective in the enterprise

environment than in the other environments due to the lower activity levels (and

hence lower thresholds) in the enterprise environment. The MRW detector provides

middle of the road performance except against in the wireless environment where it

is unable to detect the worm at speeds slower than five scans per second.

Figure 5.3 shows the average number of connections each infected network

100

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(a) TRW

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(b) TRWRBS

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(c) RBS

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

ent.
campus

dept.
wireless

(d) MRW

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(e) DSC

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(f) PGD

FIGURE 5.2. F- against random worm: percent of experiments where the worm
was not detected (lower is better performance) with a random scanning worm
infecting randomly selected hosts and targeting port 80. For each environment and
scanning rate we conducted 16 individual experiments using different first infected
hosts and different random seeds. In each case the experiment was run until the
worm was detected or one hour elapsed without detection.

was able to make before detection. Note that the scale is not consistent across the

graphs. Recall that the detectors are based at the network gateway and observe

only those connections that leave the network. The latency measure here is the

number of scans the worm is able to make toward the outside network before it

is detected. We only show the value for those scenarios where F- is zero in order

to eliminate selection bias in the results. DSC is consistently the fastest detection

mechanism, never allowing the worm to scan more than 23 times before detection.

TRW again highlights the variation between environments, allowing roughly 50

worm scans in the wireless environment before detection, but only five scans

in the enterprise environment. MRW and RBS allowed several hundred scans

101

 0
 10
 20
 30
 40
 50

 0.005
 0.01
 0.02
 0.05
 0.1
 0.2
 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

ent.
camp.
dept.
wire.

(a) TRW

 0
 50

 100
 150
 200
 250
 300

 0.005
 0.01
 0.02
 0.05
 0.1
 0.2
 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(b) TRWRBS

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0.005
 0.01
 0.02
 0.05
 0.1
 0.2
 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(c) RBS

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0.005
 0.01
 0.02
 0.05
 0.1
 0.2
 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(d) MRW

 0

 5

 10

 15

 20

 0.005
 0.01
 0.02
 0.05
 0.1
 0.2
 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(e) DSC

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0.005
 0.01
 0.02
 0.05
 0.1
 0.2
 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(f) PGD

FIGURE 5.3. Latency against random worm: from worm infection time to
detection time for random scanning worm, measured as the number of worm
connections leaving the protected network prior to detection. We report results
only for those environments and scan rates where the worm was detected with
100% accuracy.

before detection in the wireless environment, but were much faster in the other

environments. PGD showed the most variation, allowing over 1000 scans before

detection in some scenarios in the wireless environment but detecting the worm

in 30-40 connections in the other environments. TRWRBS showed increasing

latency as the scan rate drops. This is due to the influence of the RBS algorithm

that increases the destination threshold as the time window increases. The fast

scanning worm is caught in a short window, but the slower scanning worms take a

substantially longer time to hit the critical number of destinations.

Across the board, TRW shows the best detection performance against

random scanning worms. This indicates that connection failures are a strong and

highly identifiable signal. TRW also had consistent and low latencies, limiting the

102

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(a) TRW

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(b) TRWRBS

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(c) RBS

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(d) MRW

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

ent.
campus

dept.
wireless

(e) DSC

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(f) PGD

FIGURE 5.4. F- against local-preference worm: percent of experiments where
the worm was not detected (lower is better performance) with a local-preference
scanning worm targeting port 80.

damage a worm could do. Destination pattern based detection such as MRW and

RBS typically requires greater numbers of connections for accurate identification

and might be effective over longer time frames than the one-hour duration of

our experiments. PGD performed adequately, but is designed to detect multiple

infected internal hosts which did not happen with the random-scanning worm.

Detector Performance Against Local-Preference Worms

Having examined the baseline case using the random scanning worm, we now

investigate performance against a more advanced foe: the local-preference scanning

worm. The local-preference worm directs half its connections at the local network,

meaning both that it is more likely to infect multiple hosts inside the protected

network and that fewer connections per time period are visible to a gateway-based

103

detector. However, the scan is still random in nature, so shares the same general

characteristics as the purely random scanning worm.

Figure 5.4 shows that for most scenarios, the detectors show a slight decrease

in sensitivity. This is visible as a shift to the right in the false negative curves.

The TRW detector was able to detect 100% of the random worms in the wireless

environment at 0.05 scans per second, but is only able to detect 100% of the

local-preference worms at 0.1 scans per second. TRWRBS, RBS, MRW, and DSC

all show similar decreases in performance in some environments. The reason for

this is simply the reduction of worm scans that are visible to the detector. The

limit of a detector’s ability to spot the worm—meaning the slowest worm that

it can detect reliably—is at the point where it can just barely observe enough

evidence to infer that a host is infected. If a worm scans more slowly or not all

its scans cross the gateway (as in local-preference worms), the evidence visible to

the detector may not be enough to make the determination that a worm is present.

The one detector that shows a significantly different response is the PGD

detector, showing better performance against the local-preference worm than it

did against the random worm. The PGD detector measures the protocol graph of

all hosts in the network, and the more infected hosts there are, the more scanning

there will be using the protocol the worm targets. This leads to either more total

nodes in the graph or a larger connected component, allowing the PGD detector

to spot the local-preference worm in situations where it would not have detected a

104

random scanning worm.

The latency results are also impacted by the local-preference scanning

strategy (Figure 5.5). The TRWRBS, RBS, DSC, and MRW detectors show worse

detection latency in all environments for the local-preference worm as compared

to the random worm. This is because the worm targets the local network so

aggressively that in many scenarios it infects multiple hosts inside the network

before it is detected. Recall that our latency metric measures the combined

external scanning of all infected hosts in the network. The TRW detector, on

the other hand, shows identical latency performance for all environments when

comparing random and local-preference worms because it detects the worm before

it infects multiple hosts (except in the wireless environment).

PGD behaves quite differently than the other detectors. It detects the

local-preference worm more quickly than the random worm in the enterprise

and campus environments, but slower in the department environment. And in

the wireless environment the local-preference worm is detected more quickly at

scanning rates of two scans per second or less, but the random worm is detected

more quickly at rates above two scans per second.

The DSC detector is the fastest, allowing fewer than 25 outgoing worm

connections in all scenarios where it was able to detect the worm 100% of the

time. TRW is also quite fast, allowing fewer than 27 connections in all environment

except for the wireless environment where it allows roughly 100. Note TRW also is

105

 0
 20
 40
 60
 80

 100
 120

 0.005
 0.01
 0.02
 0.05
 0.1
 0.2
 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(a) TRW

 0
 2000
 4000
 6000
 8000

 10000

 0.005
 0.01
 0.02
 0.05
 0.1
 0.2
 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(b) TRWRBS

 0
 10000
 20000
 30000
 40000
 50000

 0.005
 0.01
 0.02
 0.05
 0.1
 0.2
 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

campus
department

wireless

(c) RBS

 0
 10000
 20000
 30000
 40000
 50000

 0.005
 0.01
 0.02
 0.05
 0.1
 0.2
 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(d) MRW

 0
 5

 10
 15
 20
 25

 0.005
 0.01
 0.02
 0.05
 0.1
 0.2
 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(e) DSC

 0
 100
 200
 300
 400
 500
 600

 0.005
 0.01
 0.02
 0.05
 0.1
 0.2
 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(f) PGD

FIGURE 5.5. Latency against local-preference worm: from worm infection
time to detection time for local-preference scanning worm, measured as the number
of worm connections leaving the protected network prior to detection.

the most sensitive detector, successfully detecting the worm at the lowest scanning

rates in all environments.

Evading TRW

Topo scanning changes the observed behavior of an infected host by reducing

the number of connection failures that the detector can observe (See Section 4.3

for a complete description of the topo worm). The neighbors discovered by the

topo worm are vulnerable at the same level as other hosts in the network but

are guaranteed to be present, different from random scanning where a large

number of scans go to addresses with no host present. The only detectors that are

impacted by this strategy are those detectors that rely on observing connection

failures: TRW and TRWRBS. The RBS, MRW, DSC, and PGD detectors show

106

identical performance against the topo worm and the random worm. The pattern

of neighbors—whether they can be connected to or not—is random in both the

random and topo worms and thus triggers those algorithms in the same way.

The TRW detector is unable to detect the topo worm during its topo

scanning phase because of the lack of connection failures. It only detects the worm

after it reverts to random scanning. In the topo100 scenario (Figure 5.6a), this

occurs relatively quickly as it does not take long for the worm to exhaust its list of

100 neighbors. TRW is able to detect the worm at speeds as low as 0.01 scans per

second in all environments. However, in the topo1000 scenario, the list of neighbors

is not exhausted during the one-hour experiment for speeds below 0.5 scans per

second and the TRW detector is unable to detect topo worms with slower scanning

rates (Figure 5.6a). In the topoall scenario—where the topo worm never exhausts

its list of neighbors—the TRW detector is never successful at detecting the worm

(Figure 5.6c).

Not only is TRW’s ability to detect the worm compromised, but even in

scenarios where it does detect the worm it is much slower at it. Figure 5.7 shows

the latency results for TRW against the topo worm. Because during the worm’s

topo phase none of its scans were detected, the latency results against the topo100

worm are approximately 100 scans worse than they were for TRW against the

random scanning worm. Similar results can be seen for the topo1000 scenario,

where TRW’s detection latency is 1000 connections worse than it was for the

107

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(a) TRW vs topo100

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(b) TRW vs topo1000

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(c) TRW vs topoall

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(d) TRWRBS vs topo100

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(e) TRWRBS vs topo1000

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

enterprise
campus

department
wireless

(f) TRWRBS vs topoall

FIGURE 5.6. F- against topo worm: percent of experiments where the worm
was not detected (lower is better performance) by the TRW and TRWRBS
detectors with a topo scanning worm targeting port 80. The topo100 worm uses
100 neighbors before reverting to random scanning, the topo1000 worm uses 1000
neighbors before reverting to random scanning, and the topoall worm never uses
random scanning.

random scanning worm.

This shortcoming in TRW is one of the motivations for the TRWRBS

detector. It uses connection failures in the detection algorithm, but it can also

detect a worm even with no connection failures by checking the rate of connections

to new destinations. The TRWRBS detector is able to detect the topo100 at rates

above 1 scan per second in the wireless environment and above 0.2 scans per

second in all other environments (Figure 5.6d). It does not perform quite as well

as TRW in this scenario because TRW is able to leverage the connection failures

so effectively. In the topo1000 scenario the detectors are effective at approximately

the same worm scanning rate (Figure 5.6e); but if one looks at the latency, the

108

 0
 20
 40
 60
 80

 100
 120
 140

 0.005
 0.01
 0.02
 0.05
 0.1
 0.2
 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(a) TRW vs topo100

 0
 200
 400
 600
 800

 1000

 0.005
 0.01
 0.02
 0.05
 0.1
 0.2
 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(b) TRW vs topo1000

-1

-0.5

 0

 0.5

 1

 0.005
 0.01
 0.02
 0.05
 0.1
 0.2
 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

Not Detected

(c) TRW vs topoall

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

 0.005
 0.01
 0.02
 0.05
 0.1
 0.2
 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(d) TRWRBS vs topo100

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0.005
 0.01
 0.02
 0.05
 0.1
 0.2
 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(e) TRWRBS vs topo1000

 0
 100
 200
 300
 400
 500
 600
 700

 0.005
 0.01
 0.02
 0.05
 0.1
 0.2
 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

enterprise
campus

department
wireless

(f) TRWRBS vs topoall

FIGURE 5.7. Latency against topo worm: from worm infection time to
detection time for topo scanning worm, measured as the number of worm
connections leaving the protected network prior to detection. The topo100 worm
uses 100 neighbors before reverting to random scanning, the topo1000 worm uses
1000 neighbors before reverting to random scanning, and the topoall worm never
uses random scanning.

TRWRBS detector is able to detect the worm more quickly at most scanning rates

(Figure 5.7e). At worm scanning rates of 2 scans per second and higher, TRWRBS

can detect the worm in under 30 connections in all the environments except for

the wireless environment. This compares well against the TRW algorithm which

requires over 1000 scans before detecting the topo1000 worm. The TRWRBS

detector even detects the worm in the topoall scenario where the TRW detector

could not.

This reliance on connection failures highlights a potential weakness of the

TRW algorithm. If a worm can generate a big enough list of hosts running the

target service that are likely to exist, it can make enough successful connections

109

to completely evade the TRW algorithm. The detectors based on destination

distributions do not have this weakness.

Summary

Reviewing our findings, we can see that the TRW detector shows the best

performance against naive worms. It can detect slower random and local-preference

scanning worms than any of the other detectors in all the environments we tested.

The PGD detector was capable of detecting all types of worms scanning at 0.5

scans per second or faster in all environments, but was relatively slow, frequently

allowing several hundred scans prior to detection. The TRWRBS detector showed

similar to the PGD detector. The RBS detector was only capable of detecting fast

scanning worms. The MRW detector struggled to detect worms in the wireless

environment and was incapable of detecting the local-preference worm in that

environment. Finally, the DSC detector performed quite well in many respects,

but is otherwise quite limited due to the requirement that an inbound infecting

connection be observed in order for the detector to function. An initial infection

that came via some other vector (removable media, direct download, etc.) would be

undetectable by DSC.

The wireless environment was the most difficult for detectors to operate

successfully in. In virtually all scenarios, detectors showed the worst sensitivity

in the wireless environment, and detection latencies were typically an order

of magnitude worse. The traffic in this environment is more focused around

110

entertainment type activities such as network gaming and peer-to-peer file sharing.

These activities are prone to resembling worm scanning activity, making it more

difficult for the detectors to differentiate between legitimate hosts and worm

infected ones. For example, a peer-to-peer network client may receive a list of

peers who were recently active and attempt to contact every host on the list. If the

peer-to-peer network has a high churn rate and hosts on the peer list have left the

network, this activity will result in many connection failures, just as if a worm were

scanning for potential targets. Even in the face of this type of activity, however,

the detectors were still typically able to detect true worm activity. As in the other

environments, the TRW detector was able to detect slower worms than any other

detectors. The PGD detector showed the next best performance.

Our results indicate that worms scanning at one connection per second or

better are relatively easily detected in most environments. However, these are naive

worms, in the next chapter we reconsider this detection performance in light of

worms that attempt to evade detection.

111

CHAPTER VI

EVASIVE WORMS

The worms we looked at in the previous chapter are well known worms as

published in “How to to 0wn the Internet” [8]. However, they use relatively naive

scanning strategies that do not consider detection. In this chapter, we examine

improving the worm scanning strategies in order to better evade detection. We first

look at the basic principles behind evasion, then develop a series of evasive worms.

We identify the metrics which best gauge their performance, and finally measure

ability to propagate while evading detection.

The basic goal of the worms studied in this work is to propagate widely. A

worm can propagate more successfully if it goes undetected. When a worm is easily

detected in the network, countermeasures can be deployed against it. The worms

in the previous chapter did not take this aspect of operation into consideration.

They operated blindly without considering existing network traffic or what impact

their additional traffic would have. It is almost laughable to consider a worm

that would ignore such basic concepts, yet existing worms generally do not focus

on network behavior based detection and so in fact do not take their network

behavioral signature into account. Note that this not the case when examining the

data signature of worms. Extensive research has been done in polymorphic worms

that avoid sending a identifiable byte stream signature across the network.

112

A major contribution of this work is to examine the capability of network

worms to modulate their behavioral signature and avoid behavior-based worm

detectors. We consider the potential capabilities of such worms and examine their

ability to evade actual detectors.

6.1. Evasive Worm Capabilities

The first step in evaluating evasive worms is to define a problem space.

There are unlimited capabilities that a worm might have, from no knowledge

of its operating environment (the typical naive worm), to knowing the location

and supported services of every host on the targeted network, even to the point

of having a group of coordinated worm infected hosts operating jointly (swarm

activity [101]).

To simplify our evaluation, we first establish a small number of realistic

capabilities that define our problem space. Future work may expand upon these

capabilities, but these give a good starting point. We split capabilities into two

categories: (1) knowledge of the infected host, and (2) knowledge of the target

environment.

Knowledge of the infected host means knowledge of the network connections

it initiates and receives. This is actually a fairly easily achievable goal, as any worm

that achieves root access on its target host can monitor network activity. However,

it is not a given, and as we will see in the evaluation results, the knowledge of local

network traffic provides a non-negligible advantage to a worm.

113

The second capability is knowledge of the target environment. Specifically,

this means knowing algorithm employed by the worm detector, and further

knowing the parameters under which it operates. It is slightly harder to justify this

knowledge, but we assume that a worm knows it via some out of band operation.

It is conceivable that a detection algorithm could gain such prominence that it

was the only one that is commonly deployed, which would give worms a good

idea of what they are up against. Furthermore, it is probable that detectors

would commonly be deployed with their default settings, making establishing the

operating parameters feasible. We do not examine the matter of a how a worm

would come by such information in this work, however. All evasive worms evaluated

in this chapter have at the very least, knowledge of the detector employed against

them.

In the remainder of the chapter we’ll use the following terms to refer to the

different capabilities of evasive worms as established above (see Table 6.1). A worm

with no knowledge of the legitimate network traffic on an infected host is said to

be blind, whereas if it can observe the traffic it is perceptive. A host that does not

know the parameters of the detector deployed against it is described as speculative

whereas one that knows the actual deployed parameters is said to be informed. We

consider all permutations of these capabilities.

6.2. Evasion Tactics

The tactics for a worm that is trying to evade detection are simple. Know the

114

TABLE 6.1. Evasive worm capabilities

Capability Description

blind unable to observe legitimate on infected host or network
perceptive able to observe all traffic on infected host or network
speculative knows detector used against it, but does not know configuration
informed knows detector used against it and all detector parameters

underlying details of the detector being used, then minimize behavior that would

trigger detection.

The detectors we have evaluated employ three basic techniques for detecting

worms. They look for an infection signature, an anomalous number of destinations

visited, or an anomalous connection failure rate. Once a worm knows what

detection technique is employed against it (remember, at this point we do not

address how this knowledge is gained) it simply must adopt a suitable scanning

technique to minimize this behavior. Let us now examine each of these behavior

techniques individually.

Evading Infection Signature-based Detection

The DSC detector employs an infection signature-based technique for

detecting worms. It correlates incoming connections to a given service with

bursts of outgoing connections on that service. Evading a detector such as this

is relatively straight-forward. The worm simply adds a delay between infection

and the beginning of scanning. The DSC detector relies on a fairly short window

between infection and subsequent scanning activity. If the worm waits longer

115

than this window, it will not be detected. It must, however, watch for additional

incoming connections to this service that would then cause its scanning to be

considered malicious. For this reason, the perceptive worm should be expected to

perform better than the blind worm, because it can watch for incoming legitimate

connections and pause its scanning when it observes them so as to avoid detection.

An informed worm will be marginally more successful than a speculative worm

because it will know precisely how long it must wait after infection before scanning.

Evading Destination Counting Detection

The MRW and PGD, and RBS, and TRWRBS detectors all employ some

form of destination counting mechanism. This detection mechanism also happens to

be the hardest to evade, because a worm cannot avoid contacting destinations, as

that is how a worm must propagate. A worm can, however, moderate its scanning

behavior. A perceptive worm can avoid scanning any time legitimate scans are

made so as to avoid the additive impact of the legitimate and worm scanning

connections. An informed worm will know the precise scanning rate that will

trigger detection. Note that this information by itself will not necessarily allow

the worm to evade detection entirely. This is because the connections are always

measured over some time frame, and the worm cannot predict the future behavior

of the host.

Consider a simplified example where a host is considered infected if it

connects to more than 10 different destinations within a 10 second period. The

116

worm cannot simply scan at one connection per second and expect to evade the

detector, because in any 10 second period where there was a legitimate connection,

the alarm would sound (the 1 legitimate destinations plus the 10 worm destinations

exceeding the threshold of 10). Instead, the worm must operate at some fraction

of the threshold that leaves sufficient room to allow for legitimate traffic without

exceeding the threshold. We will examine this more in Section 6.5.

Evading Connection Failure Detection

The TRW and TRWRBS detectors employ a connection failure counting

mechanism. A naive worm that is scanning for hosts to infect will likely encounter

an increased connection failure rate that can be used to detect the scanning. Both

of these detectors are based on the connection failure rate (to new destinations

only, not counting repeated connections to a single destination) rather than the

total number of connection failures.

There are several methods that a worm may employ to evade detection by

this type of detector. Because the failure rate is used rather than an absolute

number of connection failures, if the worm has a list of known hosts that it can

connect to it can use the successful connections to these known hosts to lower its

failure rate. The TRW and TRWRBS detectors are not designed to keep their state

forever, and “forget” about destinations after 30 minutes. This means that a list

of known destinations can be re-used every 30 minutes, meaning that the list need

not be excessively large. If a slow initial propagation rate is acceptable, a perceptive

117

evasive worm could build up its own list of known hosts by observing successful

connections and remembering the destinations.

A second means of evading this type of detector is to use some other means

of finding hosts to infect rather than simple scanning. Staniford et al. describe

this type of worm as a topological worm. A worm that uses information found on

the infected host to find additional hosts to infect. These hosts could come from

lists of peers on the network, recently visited web and mail hosts, or a variety of

other sources. Connections to these hosts would have a low connection failure rate,

allowing the worm to avoid detection.

6.3. Methodology

We evaluate the evasive worms using the same techniques outlined in the

previous chapter. Each worm detector is measured against a worm designed

specifically to evade it. This presents the worst-case scenario for each detector to

illustrate their potential weakness. We did not feel it necessary to evaluate each

detector against all types of evasive worms, as that additional data would simply

muddy the results that measure the robustness of each detector when specifically

targeted for evasion.

We run each evasive worm in the same scenarios that were used in the

previous section. Additionally, for each evasive worm we vary a parameter ζ

between zero and one, controlling the aggressiveness of the scanning. A value

of one, means that the worm will modulate the traffic it generates from its own

118

scanning to bring the detector exactly to its threshold. A value of zero would cause

the worm to modulate its traffic so that it presented no signature to the worm (if

possible). A value of zero for ζ of course, might mean that the worm would not

scan at all. We use the term load factor because this worm traffic is additional load

against the detector threshold beyond whatever legitimate traffic originates from

the host.

Let us use an example to help illustrate the use of this parameter: imagine

a simple rate based detector that would raise the alarm when a host made

more than 20 connections per second. An evasive worm with a ζ of 1 would

attempt to generate precisely 20 connections per second. The maximum possible

without raising the alarm. This same evasive worm with a ζ of 0.5 would attempt

to generate 10 connections per second, using half of the threshold for worm

connections. This parameter is valuable because even a perceptive worm cannot

predict future traffic. A worm that is tries to match the worm threshold exactly

may frequently exceed the threshold and be detected.

We run each evasive worm once in each environment for each of 16 different

randomly selected first infected hosts, for 10 different values of ζ in the range [0.1 -

1.0].

6.4. Metrics

Use three metrics to evaluate the success of an evasive worm. As we vary

the load factor, we measure the worms ability to evade detection: its evasion rate.

119

This represents the percent of experiments where the evasive worm is not detected

during the one hour run.

The second metric is the effective scanning rate. This is the average number

of worm scans per second the evasive worm is able to make during the one hour

experiment for a given environment and value of ζ.

The higher the value of ζ, the faster the evasive worm will scan, increasing its

effective scan rate. This will also increase the chance of detection, decreasing the

evasion rate. An evasive worm author’s goal is to scan as quickly as possible while

maintaining a fixed chance at detection. We call this allowable rate of detection ψ.

By choosing a value for ψ we can then find the maximum effective scanning rate for

an environment by finding the maximum load factor with an evasion rate of greater

than 1 − ψ. For this experiment we chose a value of .10 for ψ (10%). This means

that an evasive worm will be detected in no more than one of the 16 experiments

for a given load factor in a single environment. The maximum effective scanning

rate is the ultimate determination of a worm detector’s effectiveness. The lower

the maximum effective scanning rate allowed, the more effective a detector is. This

single metric is the best metric for comparing detectors, as it reveals the damage

that a worm can cause without being detected.

The decision to base our metrics on detection on clock time rather than on

the number of hosts infected may seem an odd one, but it is actually quite sensible.

Our initial thought was to measure it based on the number of hosts infected before

120

detection, but this does not yield interesting results. An extremely slow worm

(scanning once per week, for example) will operated undetected for an extremely

long time and may eventually be able to infect all vulnerable hosts without

triggering any detector (assuming a very patient attacker). However, this does not

mean that the worm is particularly worthwhile. All the detectors we studied can

be evaded by only scanning once per day. Limiting the detection window to one

hour means that we’re testing an evasive worm’s ability to propagate as quickly as

possible. It means that we truly test each detector’s ability to slow down the worm

and therefore to limit the overall propagation rate.

6.5. Evasive Worm Detection Results

In this section we present the results of our experiments against the six

worm detectors evaluated in Chapter V. Each detector is measured against a

custom evasive worm designed specifically to evade it. We use the same network

traces, first infected hosts, and detector configuration parameters as were used

in Chapter V. We limit an evasive worm’s scanning rate to 10 scans per second.

In some scenarios a worm could achieve a higher maximum scanning rate if we

increased this value, but in those cases it is clear even with this capped rate that

the detector is a poor performer, and increasing the rate would not add additional

information. We first examine the DSC detector, which uses the infection signature

as core heuristic. We then consider the MRW, RBS, and PGD detectors, which

each use some form of destination counting. The TRW detector and it’s connection

121

failure detection scheme follows, with the TRWRBS’ hybrid destination counting

and connection failure scheme last.

DSC

We first examine the DSC detector. It performed well against naive worms,

with a very low detection latency and good sensitivity. The DSC detector, however,

is trivially evaded. A worm must simply wait long enough after it infects a host

before scanning to avoid any causality connection between the infection event

and the scanning. Once the worm has waited long enough to avoid any causality

connection, it may proceed to scan at arbitrarily high rates. The only way the

worm will be detected is if there is an incoming connection which could trigger

causality. Even in this case, a perceptive worm will detect the incoming connection

and can stop scanning long enough to break causality. Listing 6.1 shows the core

logic of the blind version of this evasive worm while Listing 6.2 shows the core logic

of the perceptive version of this worm.

Figure 6.1 shows the achieved scanning rate by different types of evasive

against the DSC detector as a function of load factor. For this worm, the load

factor is inconsequential because of the trivial means of evading the worm. For

most of the duration of the experiment the worm is able to scan at its maximum

rate, yielding an effective scanning rate very near to 10.

Figure 6.2 shows that the worm is able to evade detection in all virtually

all circumstances. The perceptive worms perform slightly better than the blind

122

LISTING 6.1. DSC Blind Evasive Worm

// t imeout i s time requ i r ed between i n f e c t i o n and scanning
f unc t i on doScan () {

i f (now <= infec t i onTime + timeout) {
// wai t f o r t imeout
wai tUnt i l (in f ec t i onTime + timeout) ;

}
// once t imeout i s passed , scan as f a s t as p o s s i b l e
scanRandomTarget () ;

}

LISTING 6.2. DSC Perceptive Evasive Worm

// t imeout i s time requ i r ed between i n f e c t i o n and scanning
f unc t i on doScan () {

// check f o r recen t i n f e c t i o n a c t i v i t y
l a s t I n f e c t i o n T i m e = c h e c k F o r I n f e c t i o n A c t i v i t y () ;
while (now <= l a s t I n f e c t i o n T i m e + timeout) {

// wai t the t imeout per iod again
wai tUnt i l (l a s t I n f e c t i o n T i m e + timeout) ;
l a s t I n f e c t i o n T i m e = c h e c k F o r I n f e c t i o n A c t i v i t y () ;

}
scan () ;

}

worms because they recognize the incoming connections to one of the hosts in the

department environment.

Figure 6.3 shows the maximum effective rate for an evasive worm with

different capabilities against the DSC detector. These results show the importance

of considering evasive worms when evaluating the quality of detectors. The DSC

detector appears to be an excellent performer when evaluated against naive worms,

but performs very poorly against a worm targeted to evade it.

123

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(a) Blind Speculative Worm

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(b) Blind Informed Worm

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(c) Perceptive Speculative Worm

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(d) Perceptive Informed Worm

FIGURE 6.1. Effective scanning rate vs DSC detector as a function of Load
Factor

MRW

Unlike the DSC detector, the MRW detector puts significant constraints on

the behavior a worm can exhibit and effectively limits its achievable scanning rate.

The worm’s evasion mechanism is to limit it’s scanning rate to the fastest one that

won’t be detected by any of the detection windows. This algorithm may sound

simplistic, but ultimately, it is the only one that can succeed against a detector of

this type. The blind evasive worm assumes that no legitimate traffic originates from

the infected host. The perceptive worm can observe legitimate traffic and so more

accurately limit it’s scanning rate. Listing 6.3 shows the core logic of the blind

124

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(a) Blind Speculative Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(b) Blind Informed Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(c) Perceptive Speculative Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(d) Perceptive Informed Worm

FIGURE 6.2. Evasion rate vs DSC as a function of Load Factor

version of this evasive worm while Listing 6.4 shows the core logic of the perceptive

version of this worm.

Figure 6.4a shows the effective scanning rate of the Blind Speculative MRW

evasive worm. It achieves the same scanning rate across all environments because it

uses the same conservative threshold values in all environments. It knows nothing

about the environment it is deployed in so cannot make any adjustments to its

scanning rate. Because it chooses a conservative threshold, it also shows fairly good

evasion rates across the environments. (see Figure 6.5a). It shows the worst evasion

rate in the enterprise environment, which is also the environment with the lowest

thresholds. The Perceptive Speculative version of this worm shows slightly more

125

campus enterprise department wireless

Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Blind Speculative Worm
Blind Informed Worm

Perceptive Speculative Worm
Perceptive Informed Worm

9.
99

9.
99

9.
99

9.
99

9.
99

9.
99

9.
99

9.
99

9.
99

9.
99

9.
99

9.
99

9.
99

9.
99

9.
99

9.
99

FIGURE 6.3. Maximum effective rate vs DSC as a function of Load Factor

LISTING 6.3. MRW Blind Evasive Worm

// i n t e r v a l i s time between scans at maximum undetec ted scanning ra t e
f unc t i on doScan () {

wait (i n t e r v a l) ;
scan () ;

}

variation in its effective rate (Figure 6.4c). This is due to the fact that the worm

scales back its scanning as it sees legitimate traffic. This slightly helps the evasion

rate of the worm (Figure 6.5c), but makes only a moderate improvement because

the speculative thresholds are already conservative. It has the negative side effect of

actually lowering the worm’s effective rate.

The Blind Informed version of this worm shows similar evasion rates

(Figure 6.4b to the Blind Speculative version, with slightly worse evasion results

126

LISTING 6.4. MRW Perceptive Evasive Worm

// i n t e r v a l i s time between scans at maximum undetec ted scanning ra t e
f unc t i on doScan () {

wait (i n t e r v a l) ;
updateScoreFromLegit imateAct iv ity ()
i f (! wouldRaiseAlarm ()) {

scan () ;
}

}

as the load factor approaches 1.0. Knowing the threshold is most significant

when looking at the effective rate of the worm. The Blind Informed worm was

able to achieve an effective rate of greater than 3 scans per second in the wireless

environment compared to roughly 0.1 for the Blind Speculative worm. The wireless

environment has generally busier hosts and therefore higher thresholds, allowing an

evasive worm to scan more quickly without being detected

Figure 6.6 shows the maximum effective rates achieved by the different

varieties of MRW evasive worm in the different environments. The most interesting

feature of this graph is that with the exception of the wireless environment the

different capabilities of the worm made little difference. In the campus environment

the Informed worms saw roughly a 27% boost in scanning rate. In the enterprise

and department environments, however the informed worms saw no advantage,

but the perceptive worms showed 20% and 28% improvements in the respective

environments. The wireless environment shows that in some cases, knowing more

about the environment can make a significant advantage. The informed worms were

able to scan 30x faster than the speculative variety.

127

0.00

0.02

0.04

0.06

0.08

0.10

0.12

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(a) Blind Speculative Worm

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(b) Blind Informed Worm

0.00

0.02

0.04

0.06

0.08

0.10

0.12

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(c) Perceptive Speculative Worm

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(d) Perceptive Informed Worm

FIGURE 6.4. Effective scanning rate vs MRW as a function of Load Factor

128

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(a) Blind Speculative Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(b) Blind Informed Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(c) Perceptive Speculative Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(d) Perceptive Informed Worm

FIGURE 6.5. Evasion rate vs MRW as a function of Load Factor

It is important to note that these scanning rates map almost precisely to

the undetected scanning rates observed in the naive experiments in Chapter V

(see Figure 5.2d). The nature of the underlying algorithm of MRW — counting

the number of destinations contacted — is inherently unavoidable by the worm.

There is no way to cover up a connection to a destination. This contrasts directly

with the results seen for the DSC detector. An evasive worm is able to attain a

dramatically increased scanning rate than a naive worm because the evasive worm

is able to avoid exhibiting the behavior that the detector relies on. That is not the

case with the MRW worm, there is no way for the worm to avoid exhibiting the

behavior of visiting destinations.

129

campus enterprise department wireless

Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Blind Speculative Worm
Blind Informed Worm

Perceptive Speculative Worm
Perceptive Informed Worm

0.
11

0.
05

0.
07 0.
11

0.
14

0.
05

0.
07

3.
15

0.
10

0.
06

0.
09

0.
090.
14

0.
06

0.
09

3.
26

FIGURE 6.6. Maximum effective rate vs MRW as a function of Load Factor

RBS

The RBS detector also relies upon destination counting to detect worms.

It uses a different detection algorithm than MRW, but our evasive worm

implementation is essentially the same. Each instance of the worm runs an

internal version of the RBS detector and monitors its own score. It determines the

maximum sustained scanning rate that will not be flagged by the detector, and

then scans at that rate. Listing 6.5 shows the implementation of the blind variants

of the worm. Listing 6.6 shows the implementation of the perceptive variants.

Note that one significant distinction between the MRW and RBS detectors is

that the RBS detector can identify a host as “legitimate” if it’s connection activity

does not look suspicious. This has the effect of resetting the host’s score and

130

LISTING 6.5. RBS Blind Evasive Worm

// i n t e r v a l i s time between scans at maximum undetec ted scanning ra t e
f unc t i on doScan () {

wait (i n t e r v a l) ;
scan () ;

}

LISTING 6.6. RBS Perceptive Evasive Worm

// i n t e r v a l i s time between scans at maximum undetec ted scanning ra t e
f unc t i on doScan () {

wait (i n t e r v a l) ;
updateScoreFromLegit imateAct iv ity ()
i f (! wouldRaiseAlarm ()) {

scan () ;
}

}

starting it from zero again. It is possible that a worm that shaped its connection

activity so as to periodically be identified as “legitimate” might be able to achieve

a greater sustained scanning rate that one that constantly scans at an undetectable

rate. Our simplistic evasive worm sufficiently showed that the RBS detector is

outperformed by the MRW detector, so we did not pursue this avenue for further

optimization.

Much like the other destination counting worms, Figure 6.7a shows that the

blind speculative worms achieved scanning rate increases linearly with the load

factor and is the same across all environments. The evasion rates achieved by the

blind speculative worm is quite different however (Figure 6.8a). The worm has

difficulty consistently evading the detector in the campus environment. The reason

for that is that the campus environment has the most restrictive thresholds for the

RBS detector, so the speculative worm is actually operating quite close the actual

131

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(a) Blind Speculative Worm

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(b) Blind Informed Worm

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(c) Perceptive Speculative Worm

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(d) Perceptive Informed Worm

FIGURE 6.7. Effective scanning rate vs RBS as a function of Load Factor

threshold for the environment. This graph may look odd compared with the success

of the naive worms at evading the detector in all environments (see Figure 5.2c). It

is important to keep in mind that this graph is a function of load factor, which is

quite different than the graph from Chapter V which is a function of scanning rate.

In this case, the worm is substantially more aggressive than the naive worm, with

the achieved rate of greater than one scan per second even at a load factor of 0.1.

The RBS detector shows a poor maximum effective rate across the board.

It allows an evasive worm to operate freely at relatively high scanning rates

(Figure 6.9).

132

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(a) Blind Speculative Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(b) Blind Informed Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(c) Perceptive Speculative Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(d) Perceptive Informed Worm

FIGURE 6.8. Evasion rate vs RBS as a function of Load Factor

PGD

The PGD detector is the final detector that uses some form of destination

counting as its sole detection heuristic. It is also the only detector that measures

the aggregate traffic from a protected domain. Like the other destination counting

detectors, there is only one way to evade detection, and that is to scan at the

maximum sustained rate that won’t be detected.

The implementation of the PGD evasive worm is very similar to the

implementations of the other destination counting evasive worms. The blind

variants don’t bother to run an implementation of the detector internally because

it isn’t useful. Without observing other traffic, an internal implementation of PGD

133

campus enterprise department wireless

Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Blind Speculative Worm
Blind Informed Worm

Perceptive Speculative Worm
Perceptive Informed Worm

0.
66

5.
95

5.
95

3.
31

0.
66

5.
00

5.
99

3.
38

3.
30

5.
94

5.
94

3.
28

3.
30

4.
98

5.
97

3.
39

FIGURE 6.9. Maximum effective rate vs RBS as a function of Load Factor

would do nothing other than to limit the scanning rate to the maximum undetected

rate. This can already be accomplished by simply calculating that rate from the

speculated thresholds. Listing 6.7 shows the implementation of the blind variants of

the worm. The perceptive version of the implement an internal version of PGD and

can stop scanning during a detection window when the detector is getting close to

the its threshold. Listing 6.8 shows the implementation of the perceptive variants.

Figure 6.10a and Figure 6.11a show the very poor performance of the blind

speculative version of PGD evasive worm (note that an effective rate is only

reported for scenarios where at least one infected host evaded detection). The blind

speculative worm never evaded detection at load factors of greater than 0.5, and

was limited to effective rates of 0.3 scans per second or less in all scenarios. This

134

LISTING 6.7. PGD Blind Evasive Worm

// i n t e r v a l i s time between scans at maximum undetec ted scanning ra t e
f unc t i on doScan () {

i f (now + i n t e r v a l > nextWindowStartTime ()) {
scheduleScheduleScanFor (nextWindowStartTime ()) ;

} else {
scheduleScanFor (now + i n t e r v a l) ;

}
}

LISTING 6.8. PGD Perceptive Evasive Worm

f unc t i on doScan () {
s coreLeg i t imateConnect ions () ;
while (wouldScanRaiseAlarm ()) {

waitOneTick () ;
}
// how much time i s l e f t in t h i s d e t e c t i on window?
timeRemainingInWindow = windowEndTime − lastAct iveTime ;
// how f a s t shou ld we scan to use remaining a v a i l a b l e
// s l o t s in window? t h i s keeps us from scanning too f a s t
t a r g e t I n t e r v a l = timeRemainingInWindow / countScansUnderThreshold () ;
scheduleScanFor (lastAct iveTime + t a r g e t I n t e r v a l) ;

}

is because the infected host cannot see any other traffic in the domain so assumes

that it is the only host generating traffic. It generates enough traffic to fully fill

the threshold of the detector (limited by the load-factor). For detectors that only

operate on the traffic from a single host, there is a reasonable chance that each

individual host won’t generate much legitimate traffic, so that a blind worm can

operate at higher load factors without triggering the detector. PGD operates on

the aggregate of traffic from the protected domain, so there is less overall variation

in the legitimate traffic, and the proportion of the traffic from a single host to the

overall threshold is substantially lower. This leads the blind worm to trip the alarm

at very low load factors.

135

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
department

wireless

(a) Blind Speculative Worm

0.00

0.05

0.10

0.15

0.20

0.25

0.30

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
department

(b) Blind Informed Worm

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(c) Perceptive Speculative Worm

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(d) Perceptive Informed Worm

FIGURE 6.10. Effective scanning rate vs PGD as a function of Load Factor

A second interesting feature of these results is that the worm was unable

to evade detection in any scenario in the enterprise environment. This seems odd

given that the that detector showed greater than 80% false negatives at the slowest

scanning rate against a naive worm (see Figure 5.2f). The reason for this is that

the PGD detector operates on distinct one-minute intervals of network traffic and

in the enterprise environment there is an interval that is exactly one connection

below the threshold. A worm scanning at 0.005 scans per second makes a scan only

once every 3.33 minutes. The naive worms had a decent shot at simply skipping

over that specific interval. However, the evasive worms attempt to maximize their

scanning rate so perform at least one scan every minute. This always triggers the

136

detector in the campus environment. The other environments do not have any

windows that are so close to the threshold with just the legitimate traffic, so the

worm is able to make at least some scans. TODO: add some analysis on the chance

of windows like this. It seems like they should be rare.

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(a) Blind Speculative Worm

 0

 20

 40

 60

 80

 100
 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)
Load Factor

campus
enterprise

department
wireless

(b) Blind Informed Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(c) Perceptive Speculative Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(d) Perceptive Informed Worm

FIGURE 6.11. Evasion rate vs PGD as a function of Load Factor

The blind informed version of this worm performs even worse (see

Figure 6.10b and Figure 6.11b). The worm is still hampered by not seeing any of

the traffic, but now is using more aggressive thresholds. This makes the worm more

likely to fail, and in fact in the wireless environment it now no longer is ever able to

evade detection.

The perceptive variants of the worm perform much better. The perceptive

137

speculative version of the worm is able to evade detection in all environments up to

a load factor of 0.4 (see Figure 6.11c). This enables it to achieve decent scanning

rates in all environments (Figure 6.10c). The perceptive informed worm does even

better (see Figure 6.11d and Figure 6.11c). It has lower evasion rates at high load

factors because it is using higher threshold targets, but gets correspondingly higher

effective rates.

The maximum evasive rates achieved against the PGD detector (Figure 6.12)

show that PGD a very effective detector at suppressing worm traffic. In several

scenarios in both the enterprise and wireless environments the evasive worms were

unable to evade detection in any scenarios. An interesting development is that in

the campus and department environments the perceptive worms performed more

poorly than the blind worms. It is important to remember that the PGD detector

operates on distinct one minute segments of network traffic. In these cases, the

perceptive worms are cautious in an attempt to evade detection. They limit their

scanning rate to a fraction of the available scans under the threshold because they

do not know the actual timing of the windows of the detector. The blind worms

don’t have this caution and essentially luck out by scanning more aggressively. It

seems quite likely that further optimizations to the perceptive worm would improve

its performance to match that of the blind variant in those environments.

138

campus enterprise department wireless

Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Blind Speculative Worm
Blind Informed Worm

Perceptive Speculative Worm
Perceptive Informed Worm

0.
22

0.
00

0.
15

0.
15

0.
27

0.
00

0.
15

0.
00

0.
12

0.
03

0.
10

0.
00

0.
10

0.
03

0.
09

0.
19

FIGURE 6.12. Maximum effective rate vs PGD as a function of Load Factor

TRW

As we observed in Chapter V, a worm that can make connections to hosts

known to be running the target service of the worm can evade the TRW detector.

TRW detects scanning behavior by watching for first contact connections that

fail, but its scoring algorithm uses both successful connections and unsuccessful

connections in assessing a host, where a successful connection essentially cancels

out an unsuccessful connection. If a malicious user wanted to release a worm to

evade the TRW detector, a sensible strategy would be to set up a series of hosts

across the Internet running the target service. Each instance of the TRW worm

could make periodic connections to these hosts to keep its score from exceeding the

TRW threshold. Furthermore, TRW only tracks a connection as a “first contact”

139

for 30 minutes, so the dummy hosts could be reused periodically. In evaluating the

TRW detector we consider two scenarios. In the first scenario each worm has 100

of these known neighbors at its disposal; in the second scenario each worm has 1000

known neighbors.

Listing 6.9 shows the core implementation of the TRW Blind Evasive worm.

It runs an instance of the TRW detector internally and keeps a running tally of

its score. It it appears that a connection will cause the TRW detector to raise the

alarm, a known neighbor is used instead to reduce the score. If the worm doesn’t

have a known neighbor that can be used (all the known neighbors have been used

more recently than the TRW timeout) the worm will wait until one of the known

worms can be used again and will appear as a new destination to TRW. The

Perceptive variant of the worm (Listing 6.10 is quite similar, the only being that

the perceptive worm can more accurately track its score.

For the Blind Speculative variant of the worm with 100 known neighbors

the worm is able to achieve scanning rates between 0.10 and .13 scans per second

(Figure 6.13a). The increase is linear with the load factor. This variant of the

worm evades detection almost all scenarios (Figure 6.14a).

The perceptive speculative variant of the worm shows very similar

performance. It is able to achieve a higher effective scan rate in the wireless

environment because the higher volume of successful legitimate connections allows

it to complete more random scans without tripping the detector (Figure 6.14c).

140

LISTING 6.9. TRW Blind Evasive Worm

f unc t i on doScan () {
i f (wouldFailedConnectionRaiseAlarm ()) {

targetAddress = waitForAvailableKnownNeighbor (now) ;
scanTargetAddress (targetAddress) ;

} else {
scanRandomAddress () ;

}
t i c k ++;

}

// ge t a known neighbor , wai t pas t the TRW timeout
// so i t appears new again i f needed
f unc t i on waitForAvialableKnownNeighbor (now) {

neighbor = knownNeighbors . g e t F i r s t () ;
i f (ne ighbor . l a s tV i s i t edTime + trwTimeout > now) {

now = wai tUnt i l (ne ighbor . l a s tV i s i t edTime + trwTimeout) ;
ne ighbor . l a s tV i s i t edTime = now ;
knownNeighbors . addLast (ne ighbor) ;

}
return neighbor . address ;

}

The informed variants of the worm show slightly higher effective rates

(Figure 6.14b and Figure 6.14d). As the evasive worms increase their scanning rate

they are less able to evade detection, but even in the worst case are still evading

detection more than 50% of the time (Figure 6.14).

We reran the same experiments with 1000 known neighbors (Figure 6.15 and

Figure 6.16). The results are largely similar except that the effective rates attained

by the evasive worms increased by roughly a factor of 10.

The evasive worms with 1000 neighbors had similar evasion rates to the

worms with only 100 neighbors, but were able to accomplish significantly more

scanning.

Figure 6.17 shows the maximum effective rate of each variant of this worm in

141

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(a) Blind Speculative Worm

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(b) Blind Informed Worm

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(c) Perceptive Speculative Worm

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(d) Perceptive Informed Worm

FIGURE 6.13. Effective scanning rate vs TRW with 100 known targets as
a function of Load Factor

142

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(a) Blind Speculative Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(b) Blind Informed Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(c) Perceptive Speculative Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(d) Perceptive Informed Worm

FIGURE 6.14. Evasion rate vs TRW with 100 known targets as a function of
Load Factor

143

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(a) Blind Speculative Worm

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(b) Blind Informed Worm

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(c) Perceptive Speculative Worm

0.00
0.20
0.40
0.60
0.80
1.00
1.20
1.40
1.60

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(d) Perceptive Informed Worm

FIGURE 6.15. Effective scanning rate vs TRW with 1000 known targets as
a function of Load Factor

144

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(a) Blind Speculative Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(b) Blind Informed Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(c) Perceptive Speculative Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(d) Perceptive Informed Worm

FIGURE 6.16. Evasion rate vs TRW with 1000 known targets as a function
of Load Factor

145

LISTING 6.10. TRW Perceptive Evasive Worm

f unc t i on doScan () {
s coreLeg i t imateConnect ions () ;
i f (wouldFailedConnectionRaiseAlarm ()) {

targetAddress = waitForAvailableKnownNeighbor (now) ;
scanTargetAddress (targetAddress) ;

} else {
scanRandomAddress () ;

}
t i c k ++;

}

// ge t a known neighbor , wai t pas t the TRW timeout
// so i t appears new again i f needed
f unc t i on waitForAvialableKnownNeighbor (now) {

neighbor = knownNeighbors . g e t F i r s t () ;
i f (ne ighbor . l a s tV i s i t edTime + trwTimeout > now) {

now = wai tUnt i l (ne ighbor . l a s tV i s i t edTime + trwTimeout) ;
ne ighbor . l a s tV i s i t edTime = now ;
knownNeighbors . addLast (ne ighbor) ;

}
return neighbor . address ;

}

each environment. The most striking feature of this graph is that the evasive worm

is able to achieve scanning rates more than 20 times greater that the fastest naive

worm (please refer back to Figure 5.2a). This shows that the underlying mechanism

used by TRW is susceptible to evasion.

TRWRBS

Because it relies on the TRW scoring mechanism for part of its detection

algorithm, it is again vulnerable to spoofing with known neighbors. We therefore

evaluate two versions of this worm, one with 100 known neighbors that can be

used to spoof TRW, and one with 1000 known neighbors. The TRWRBS evasive

worm is among the most complex of the evasive worms shown evaluated. It cannot

146

campus enterprise department wireless

Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Blind Speculative Worm
Blind Informed Worm

Perceptive Speculative Worm
Perceptive Informed Worm

1.
33

1.
26 1.
33

1.
331.

45

1.
26 1.

37

1.
35

1.
33

1.
26 1.
33

1.
331.

45

1.
26 1.

37

1.
36

FIGURE 6.17. Maximum effective rate vs TRW as a function of Load Factor

simply schedule connections at a set rate because it must manage its list of known

neighbors to avoid connection failure detection. It also can use the score of either

detection heuristic to balance out the score of the other, so must also manage the

balance between the two scores.

Listing 6.11 shows the implementation of the blind variants of the worm.

When it is time to scan, the worm determines whether scanning would raise

the alarm or whether its TRW score is getting excessive. If it has a known

neighbor available that will help its score, it uses it. Otherwise it waits a tick and

re-examines its scores. Waiting will help to reduce the RBS score (as it increase the

time interval between scans) and will also potentially allow a known neighbor to

become available.

147

LISTING 6.11. TRWRBS Blind Evasive Worm

f unc t i on doScan () {
while (wouldFailedConnectionRaiseAlarm () | |

predictedTRWScore >= etaOne) {
i f (predictedTRWScore >= etaOne &&

knownNeighborIsAvai lable (now)) {
// okay , we ’ ve go t a bad TRW score and the r e i s a ne ighbor
// a v i a l a b l e now i f us ing t ha t ne ighbor would improve our
// score , then l e t ’ s do i t
pred ictTRWScoreAfterSuccess fu lFi rs tContact () ;
i f (predictedTRWScore ∗ predictedRBSScore < etaOne) {

scanTargetAddress (getAvailableKnownNeighbor (now)) ;
return ;

}
// i f i t doesn ’ t improve t h i n g s enough , then l e t ’ s wai t
// and see what happens

} else i f (knownNeighborIsAvai lable (now)) {
// our o v e r a l l score i s too high , but our p r ed i c t e d
// TRW score i sn ’ t so bad
pred ictTRWScoreAfterSuccess fu lFi rs tContact () ;
i f (predictedTRWScore ∗ predictedRBSScore < etaOne) {

scanTargetAddress (getAvailableKnownNeighbor (now)) ;
return ;

}
}
// e l s e l e t ’ s wai t a t i c k to improve our RBS score or
// wai t f o r a known neighbor to become a v a i l a b l e
t i c k ++;

}

// a random scan wouldn ’ t cause a problem
return randomScan () ;

}

Listing 6.11 shows the implementation of the perceptive variants of the worm.

These versions of the worm are very similar, but add additional two checks against

legitimate traffic. The first check comes before any scan attempt is considered (to

account for any legitimate traffic since any previous scan) and the second comes

after every wait. Waiting may allow for legitimate traffic to change the hosts score

which will change the decision on whether to scan or not.

148

Figure 6.18a shows the effective rates achieved by the 100-neighbor blind

speculative variant of the worm. The worm does not scan quickly in comparison

to the RBS evasive worm, and is extremely effective at evading detection

(Figure 6.19a. This may indicate that the evasive worm implementation is not

aggressive enough at scanning and could be improved.

The results for the perceptive speculative variant of the worm backs up

this hypothesis. They show slower scan rates than the blind variant of the worm.

Accounting for the legitimate traffic from the host is causing the worm to scan

more cautiously. The complexity of balancing the two detection heuristics allows

for considerable room to vary the implementation of the worm, unlike the much

simpler worms used to evade destination counting heuristics like MRW, RBS, and

PGD.

The blind informed variant of the worm attains greater effective rates in most

environments as it uses more accurate thresholds (Figure 6.18b). It maintains high

evasion rates with the higher scan rates as seen in Figure 6.19b.

The perceptive informed worm performs similarly (Figure 6.18d and

Figure 6.19d) but again shows slightly slower scan rates than the blind worm.

Increasing the known neighbor count of the worm to 1000 increases

its effective scan rate by approximately a factor of 10 at high load factors.

Figure 6.20a shows the effective rates attained by the blind speculative variant of

the worm with 1000 neighbors. It is interesting to note that at low load factors,

149

0.00

0.02

0.04

0.06

0.08

0.10

0.12

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(a) Blind Speculative Worm

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(b) Blind Informed Worm

0.00

0.02

0.04

0.06

0.08

0.10

0.12

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(c) Perceptive Speculative Worm

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(d) Perceptive Informed Worm

FIGURE 6.18. Effective scanning rate vs TRWRBS with 100 known
targets as a function of Load Factor

150

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(a) Blind Speculative Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(b) Blind Informed Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(c) Perceptive Speculative Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(d) Perceptive Informed Worm

FIGURE 6.19. Evasion rate vs TRWRBS with 100 known targets as a
function of Load Factor

151

0.00

0.20

0.40

0.60

0.80

1.00

1.20

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(a) Blind Speculative Worm

0.00

0.20

0.40

0.60

0.80

1.00

1.20

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(b) Blind Informed Worm

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(c) Perceptive Speculative Worm

0.00

0.20

0.40

0.60

0.80

1.00

1.20

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(d) Perceptive Informed Worm

FIGURE 6.20. Effective scanning rate vs TRWRBS with 1000 known
targets as a function of Load Factor

the worm does achieve a 10x increase over its performance with only 100 neighbors.

This is because the RBS component of the detector limits the overall scanning rate

at low load factors so it is not able to use all of its known neighbors. At a load

factor of 0.1, the blind speculative worm uses less than 900 of its known neighbors.

The experiments are long enough in duration that neighbors that are used early

during the experiment are able to be re-used, so it is actually effectively using less

than half of its neighbors. At a load factor of 1.0 the worms are able to achieve

over 2000 scans, using all of their known neighbors. At the higher load factors the

TRW portion of the algorithm seems to be more limiting than the RBS portion.

Examining the maximum effective rate achieved by each variant of the

152

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(a) Blind Speculative Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(b) Blind Informed Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(c) Perceptive Speculative Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(d) Perceptive Informed Worm

FIGURE 6.21. Evasion rate vs TRWRBS with 1000 known targets as a
function of Load Factor

153

campus enterprise department wireless

Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Blind Speculative Worm
Blind Informed Worm

Perceptive Speculative Worm
Perceptive Informed Worm

1.
05

1.
05 1.
09 1.
13

1.
05

1.
05 1.
09

1.
08

0.
83

0.
70

0.
90

0.
72

0.
92

0.
56

0.
92

0.
90

FIGURE 6.22. Maximum effective rate vs TRWRBS as a function of Load
Factor

TRWRBS evasive worm in every environment in Figure 6.22, we can see that

that the TRWRBS detector is relatively ineffective at suppressing worm scanning

activity. In all scenarios the worm was able to achieve an effective rate of better

than 0.5 scans per second without being detected. The fact that the perceptive

variants of the worm performed more poorly than the blind version likely indicates

a failure to effectively code the evasive worm. The complexity of the code required

to evade a detector such as TRWRBS does play in its favor however, as it raises the

bar for what a malicious entity needs to do to evade the detector.

154

LISTING 6.12. TRWRBS Perceptive Evasive Worm

f unc t i on doScan () {
s coreLeg i t imateConnect ions () ;
while (wouldFailedConnectionRaiseAlarm () | |

predictedTRWScore >= etaOne) {
i f (predictedTRWScore >= etaOne &&

knownNeighborIsAvai lable (now)) {
// okay , we ’ ve go t a bad TRW score and the r e i s a ne ighbor
// a v a i l a b l e now i f us ing t ha t ne ighbor would improve our
// score , then l e t ’ s do i t
pred ictTRWScoreAfterSuccess fu lFi rs tContact () ;
i f (predictedTRWScore ∗ predictedRBSScore < etaOne) {

scanTargetAddress (getAvailableKnownNeighbor (now)) ;
return ;

}
// i f i t doesn ’ t improve t h i n g s enough , then l e t ’ s wai t
// and see what happens

} else i f (knownNeighborIsAvai lable (now)) {
// our o v e r a l l score i s too high , but our p r ed i c t e d TRW
// score i sn ’ t so bad
pred ictTRWScoreAfterSuccess fu lFi rs tContact () ;
i f (predictedTRWScore ∗ predictedRBSScore < etaOne) {

scanTargetAddress (getAvailableKnownNeighbor (now)) ;
return ;

}
}
// e l s e l e t ’ s wai t a t i c k to improve our RBS score or
// wai t f o r a known neighbor to become a v a i l a b l e or
// f o r l e g i t ima t e t r a f f i c to improve our score
t i c k ++;
// score any new l e g i t ima t e connec t ions t ha t happen
// wh i l e we are wa i t ing
s coreLeg i t imateConnect ions () ;

}

// a random scan wouldn ’ t cause a problem
return randomScan () ;

}

155

CHAPTER VII

A NEW WORM DETECTOR

The definition of a network worm is code that scans the network to find

and infect new hosts. With this definition, the only truly fundamental behavior

of worms is that of connecting to new destinations. Behavior based detection

systems that do not focus on this one fundamental behavior can be evaded

successfully by sufficiently smart worms. This conclusion was validated by the

results in Chapter VI. Therefore, the one behavior that we must include to improve

worm detection is that of visiting destinations. Are there techniques for detecting

anomalous destination visiting patterns that have not been explored yet and that

could help to reduce the effective scanning rate of worms?

We approach the issue from several directions. First, we investigate a new

way of preventing fast scanning by using a burst detection algorithm with more

detailed thresholds than existing algorithms. Second, we ensure that quiescent

periods in network activity do not disappear. Legitimate network traffic from most

hosts is not as consistently persistent as worm scanning, and by monitoring the

connection behavior of a host we can prevent a worm from constantly scanning for

targets. Finally, rather than applying a single threshold to an entire network of

hosts, we group hosts based on their recent activity profile and establish different

thresholds for different groups of hosts.

156

These techniques enable us to build a worm detector with superior

performance characteristics to the the detectors evaluated in Chapters V and VI.

We present the design and implementation of the detector in the remainder of this

chapter, and evaluate its performance against both naive and evasive worms in

Chapter VIII.

7.1. Preventing Fast Scanning

The most fundamental behavior of self-propagating network scanning worms

is the behavior of contacting new destinations seeking new victims to infect.

This behavior simply cannot be avoided by a worm that is looking to propagate,

so looking for anomalies in the rate at which new destinations are contacted

(first-contact connections) is an important component of a detection system. The

MRW and RBS detectors are two important systems that rely on this heuristic.

However, we have found that it is possible to improve their performance, achieving

fewer false negatives for a given false positive rate.

The MRW detector counts the number of first-contact connections in a series

of time windows of different sizes (hence the “multi-resolution” in the methods’s

title). It uses a relatively small set of windows (typically fewer than 10). An

intermediate window size might produce a detection window that would detect a

worm more quickly than the bigger or smaller sizes in use, but due to the limited

number of widows, the detector cannot take advantage it.

RBS, on the other hand, computes a threshold for every different window

157

size (using the number of connections instead of time to describe the window,

with elapsed time from the first connection to the last acting as the threshold).

This yields more opportunities to detect worms of different rates more quickly, as

we effectively use all the different window sizes. However, RBS attempts to fit a

single curve to the distribution of inter-connection intervals and uses this curve to

generate the thresholds. This leads to sub-optimal thresholds as in practice the

distribution of inter-connection intervals does not map perfectly to a simple curve.

Our approach avoids the drawbacks in the MRW and RBS approaches. We

have developed a new approach to monitoring for anomalies in the number of

destinations contacted. Rather than using fixed time-limited window sizes, we use

RBS’s method of creating a window for every different size of connection burst.

There is a threshold for a 2-connection burst, a 3-connection burst, a 4-connection

burst and so on up to a maximum burst size. During the training phase, we

measure the durations observed for each burst size and base our threshold on

the minimum duration observed for a given burst size. This has the advantages

of giving us a threshold for every different size burst (a large number of window

sizes) while allowing for a more complex distribution of inter-connection interval

times (more accurate thresholds). In our evaluations this new method yields better

performance against slow scanning worms.

The drawback to this method is greater overhead for storing different

thresholds and greater computational requirements for examining a recent

158

connection history to determine if it violates any of the thresholds. However, a

truism is that computational power and storage space are constantly increasing,

and we feel that this additional load is relatively inconsequential. Further research

remains to be on the performance aspect of this approach.

7.2. Quiescent Periods

To evade a detector using an approach like the one above, a worm must limit

the first-contact rate of the host to some value lower than the detection threshold.

As a host makes bursts of legitimate first-contact connections, the worm should

go quiet to avoid exceeding the detection threshold. When the host is otherwise

idle, however, the worm is free to make first contact connections without danger of

exceeding the threshold.

Legitimate traffic is typically bursty, with first-contact connections occurring

in groups and quiet periods between them (see Figure 7.1a for an example). A

worm that scans at a fixed rate will make connections during the middle of a

legitimate burst which will raise the overall observed connection rate from the

host (Figure 7.1b). An adaptive worm can avoid this additive effect by only

scanning when the host is otherwise idle. This will reduce the rate of connections

as it will keep the worm connections from adding to the legitimate connections

(Figure 7.1c). This is the technique used by the rate adaptive evasive worms

evaluated in Chapter VI. Preventing or limiting this behavior would help to reduce

the achievable scan rate of a worm, and is the basis for our next detection heuristic.

159

A normal host will exhibit regular quiescent periods where it does not make

any first-contact connections. Absence of these quiescent periods may be an

indicator that the host is infected by a worm that is scanning the network..

Figure 7.1 shows a series of example connection patterns that illustrate

this detection mechanism. Figure 7.1a shows an example pattern of legitimate

connections. Point A in the figure shows a quiescent period with no worm traffic,

followed by a burst of connections. Figure 7.1b shows the legitimate traffic with the

addition of naive worm traffic. Point B indicates a spot of increased connection

rate due to the worm connections adding to the burst of legitimate traffic. An

adaptive worm can avoid such a burst though. Figure 7.1c shows the legitimate

traffic with an adaptive worm overlaid. Even at a higher scanning rate than the

naive worm (with eight worm scans instead of five) the adaptive worm avoids any

scanning rate greater than the legitimate traffic for small window sizes. However,

it also does not exhibit any quiescent periods at all, which indicates the presence of

the worm.

The QPD detection heuristic measures the duration of active periods where

a host is making first-contact connections separated by quiescent periods of a fixed

size where no first-contact connections occur. For a given quiescent period size, it

measures the mean and standard deviation of all the active periods separated by

such a period. These values are used to generate a threshold duration. If a host has

an active period exceeding this duration, it is likely infected with a worm.

160

Time

A

(a) Legitimate Connections

Time

B

(b) Legitimate Connections Plus Naive Worm Connections

Time

(c) Legitimate Connections Plus Rate Adaptive Worm Connections

FIGURE 7.1. Examples of observed connections over time

161

7.3. Clustering

Existing behavior-based detection systems employ the same threshold for all

hosts in a protected network. This is a poor choice because the hosts in a network

show widely divergent behaviors. Desktop computers used primarily for web surfing

make connections in a different pattern than a department email server would, for

example. If a desktop computer started making connections at the same rate as the

email server it is likely an anomalous event, something strange must have happened

to that computer. But if the desktop computer has same thresholds applied to it

that the email server does, its behavior would not appear to be anomalous because

those thresholds must allow it as normal behavior to avoid constantly flagging the

email server as infected.

There are many ways to avoid this problem. One way would be to manually

maintain a list of servers (or more generally, machines with unusual profiles), but

manually maintaining such a list is error prone and labor intensive. A better way

must exist.

In fact there has been substantial research effort in clustering entities

based on their expressed characteristics in both the realm of statistics and

computer-science. We have leveraged this body of work and applied existing tools

to automatically categorize the hosts in a network such that different thresholds

can be applied to different groups of hosts.

We examined a range of clustering techniques, behavior characteristics

162

to cluster against, and number of clusters to create. We have found that using

k-means clustering to separate the hosts into just two groups allows us to improve

overall performance. We cluster based on only a single feature of the hosts, the

number of destinations contacted during a training period.

7.4. SWORD2

We have combined the above principles into a new Host Activity-based Worm

Catcher, or SWORD2, for short. SWORD2 uses the BDD and QPD detectors

outlined above, and declares a host to be infected with a worm when either

detection heuristic raises the alarm. SWORD2 observes legitimate network activity

for a period of time to cluster hosts into two groups and generate thresholds

for each cluster. In Chapter VIII we examine the performance of the SWORD2

detector and show it to perform better than the detectors evaluated in Chapters V

and VI.

163

CHAPTER VIII

AN EVALUATION OF THE SWORD2 DETECTOR

Having described our new detector, SWORD2, in Chapter VII, we now

evaluate its ability to detect worms and compare it to the detectors we evaluated

in Chapter V. We will first consider the Burst Duration Detector and the Quiescent

Period Detector in isolation to determine their performance characteristics. We

then add the clustering component to see how it improves their performance before

combining the two detectors and evaluating the performance of the SWORD2

detector as a whole.

To evaluate the detectors, we perform the same set of experiments using the

same network traces and worm simulations as described in Chapter V. This gives

us a fair comparison between these detectors and existing ones, and allows us to

objectively assess their performance.

As discussed in Chapter VI, a worm detector is worthless if it can be easily

evaded. After considering SWORD2’s performance against naive worms, we develop

and evasive worm that attempts to avoid exhibiting the behaviors that SWORD2

relies on. We measure this evasive worm’s effective connection rate, evasion rate,

and maximum effective rate against SWORD2 and show that SWORD2 is more

effective at limiting an evasive worm’s rate of spread than the other detectors we

evaluated.

164

8.1. Burst Duration Detector

We start with the Burst Duration Detector (BDD for short). This detector

relies on detecting anomalous first-contact connection rates. It is configured to

use burst sizes of between 10 and 4000. Smaller burst sizes included bursts that

happened so quickly in legitimate traffic that they did not help in detection. Larger

bursts were also not useful during detection. Either the worm was already caught

before 4000 connections had passed or else experiment ended before the worm had

scanned 4000 times.

Training

BDD performs it’s training like most of the other detectors we have evaluated.

It simply examines the traffic from a period of normal operation of the network,

and uses this as a baseline for establishing thresholds that mark behavior as

anomalous.

For each different burst size to be considered, we find the shortest duration

during which that size burst of first-contact connections was generated by a host.

A burst multiplier, α is applied to each burst duration to establish a threshold for

that burst size.

Table 8.1 shows the burst multipliers that were selected for each environment

to set the false positive rate to two. We do not display the individual burst

durations as there are nearly 4000 per environment. A surprising development is

165

TABLE 8.1. Parameter choices for the Burst Duration Detector. The
parameter choice for each environment is what was chosen to achieve a false
positive rate of two falsely identified hosts per hour during the experiment.

Detector Parameter Default Enterprise Campus Dept. Wireless

BDD α 0.5 0.74 0.3 1.05 0.24

that for the department environment, the multiplier is actually 1.05. This may

seem odd, but recall that the minimum burst durations are determined in the

training trace, but the parameters are tuned against the evaluation trace. In this

environment, an α of greater than one was required to fix the false positive rate at

two.

Without Clustering

The Burst Duration Detector is similar to the RBS and MRW detectors, and

we would therefore expect it to perform similarly to those detectors. In Figure 8.1

we show the performance of the BDD detector without the clustering component

being used. This means that BDD applies the same thresholds to all hosts, and

must establish thresholds that yield a suitable false positive rate when applied to

the entire network.

In comparing the false negative results for the BDD detector with no

clustering (Figure 8.1a) against the results for the MRW and RBS detectors

(Figure 5.2d and Figure 5.2c respectively) we can see that in fact the BDD detector

performs quite well. BDD shows more sensitivity than RBS in all but the wireless

environment, where it performed equivalently. It outperformed MRW in the

166

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

campus
ent.

dept.
wireless

(a) False Negatives

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800

 0.005
 0.01
 0.02
 0.05
 0.1
 0.2
 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

campus
enterprise

department
wireless

(b) Detection Latency

FIGURE 8.1. F- and detection latency for BDD with no clustering when
running against random scanning worms infecting randomly selected hosts.

campus and enterprise environments and equivalently in the wireless environment,

but performed worse in the department environment. In general, the sensitivity of

the BDD detector compares well with any of the detectors evaluated in the detector

comparison in Chapter V.

The latency of the BDD (Figure 8.1b) detector without clustering also

outperforms the MRW and RBS detectors (Figure 5.3d and Figure 5.3c). At a scan

rate of 0.2 connections per second, the BDD detector has an average latency of

19.25 connections in the campus environment compared to 47.33 connections for

MRW. A similar pattern holds for the campus environment, only in the department

environment does MRW significantly outperform BDD. For high speed worms

(greater than or equal to 5 connections per second), RBS shows a significantly

lower latency than BDD. RBS’ sensitivity is so poor, however, that we don’t have

any results to compare against slower worms.

167

With Clustering

When we add the clustering component to BDD, we can see that clustering

makes a significant difference in the overall performance of the detector

(Figure 8.2). Specifically, the clustering makes the most impact in the environments

that showed the worst performance. In the department environment, BDD was

sensitive to worms only down to 2 connections per second without clustering.

With clustering, however, it is sensitive to worm traffic all the way down to 0.05

connections per second. Similarly, for the wireless environment BDD becomes

sensitive to worm traffic down to 1 connection per second when it was previously

only sensitive at 5 connections per second.

The latency shows a good improvement in the problem environments, but

a less noticeable improvement in the other environments. In the department

environment, latency in detecting a worm scanning at 2 scans per second drops

from an average of 233.37 to an average of 35.81 connections. A similarly dramatic

improvement is seen in the wireless environment, where the latency at 5 scans

per second drops from an average of 1803.94 connections to an average of 300.62

connections.

This dramatic improvement is seen because the range in activity levels

between the busiest hosts and least busy hosts is greatest in the wireless and

department environments. The campus and enterprise environments are more

similar from host to host and so see a less noticeable improvement.

168

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

campus
ent.

dept.
wireless

(a) False Negatives

 0
 50

 100
 150
 200
 250
 300

 0.005
 0.01
 0.02
 0.05
 0.1
 0.2
 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

campus
enterprise

department
wireless

(b) Detection Latency

FIGURE 8.2. F- and detection latency for BDD with clustering when
running against random scanning worms infecting randomly selected hosts.

8.2. Quiescent Period Detector

The Quiescent Period Detector (or QPD for short) detects worms by

measuring the duration of their active periods. An active period is defined as the

duration of a period during which first-contact connections happen with no more

than the specified quiescent period between them. QPD uses a series of different

quiescent periods, each with their own threshold. The violation of any of the

quiescent period threshold raises the alarm.

Training

QPD is trained by observing legitimate traffic and measuring the active

periods. It is configured to use quiescent periods of: 30, 60, 90, 120, 150, 180, 210,

and 240 seconds.

For each quiescent period duration, it measures the durations of all of the

active periods that are bounded by a quiescent duration of at least that length.

169

The mean and standard deviations of all the measured active durations are

calculated. The threshold for the quiescent period size is the mean plus α times

the standard deviation. Alpha can be tweaked for different environments to fix the

false positives at a specific value. Table 8.2 shows the standard deviation multiplier

selected in each environment to fix the false positives at two per hour.

Without clustering

The QPD detector does not have any clear parallels to a detector evaluated

in Chapter V, so we will examine it the context of all the detectors. QPD shows

very promising sensitivity (see Figure 8.3a). It outperforms all the detectors except

TRW in the wireless environment where it detects the worm 100% of the time at

just 0.1 scans per second. In the other environments, it detects the worm at 0.05

scans per second. This performance is marginally worse than TRW (which detects

the worm down to 0.02 scans per second), but is better than TRWRBS, MRW,

and RBS; and beats DSC and PGD in all environments except for the enterprise

environment.

QPDs excellent sensitivity is coupled with good, but not great, detection

latency. Because the QPD detector waits for expected quiescent periods that do

not come, it is limited by clock time in its worm detection. This means that the

rate of worm scanning has very little impact on how fast (in clock time) the worm

is discovered, which means that faster scanning worms will achieve more scans

before detection than slow scanning worms will. With the parameters used, the

170

TABLE 8.2. Parameter choices for QPD. The parameter choice for each
environment is what was chosen to achieve a false positive rate of two falsely
identified hosts per hour during the experiment.

Detector Parameter Default Enterprise Campus Dept. Wireless

QPD α 3.5 2.3 8.0 4.4 3.4

worm is detected in an average of less than 22 connections at 0.1 scans per second

in all environments except for the wireless environment where it takes an average of

nearly 110 scans to detect the worm. This detection latency is substantially better

than MRW, PGD, and TRWRBS at the same worm scanning rates. RBS and

DSC weren’t able to detect the worm at that scanning rate so can’t be compared

directly. TRW is substantially faster in the enterprise and campus environment,

slightly slower in the department environment, and has about half the latency in

the wireless environment. These latency numbers are very encouraging for the QPD

detector. These, however, also also the very best latency numbers that are reported

for QPD. As the worm scanning rate goes up, so does the latency in QPD detecting

the worm. At 10 scans per second, QPD’s detection latency jumps to over 1000

scans in the campus, enterprise, and department environments, and to more than

10,000 in the campus environment! These poor latency results are one reason that

the QPD detector is not worthwhile on its own.

With clustering

Figure 8.4 reports QPD’s false negative and latency results when clustering is

used to establish better thresholds. Clustering improves QPD’s sensitivity, at the

171

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

campus
enterprise

department
wireless

(a) False Negatives

 0
 2000
 4000
 6000
 8000

 10000

 0.005
 0.01
 0.02
 0.05
 0.1
 0.2
 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

campus
enterprise

department
wireless

(b) Detection Latency

FIGURE 8.3. F- and detection latency for QPD with no clustering when
running against random scanning worms infecting randomly selected hosts.

cost of a single infection in the wireless environment that is no longer detected. In

the department environment, 100% of the infections are detected at 0.02 scans per

second, whereas none of them were detected in the unclustered experiment. False

negatives were less than 20% in the campus environment where they were 100% in

the unclustered environment.

The latency results showed a less noticeable improvement with the exception

of the wireless environment. Here, the detection latency at 0.1 scans per second

dropped from just under 110 to less than 24, a more than four-fold improvement.

The improvement applied at all scanning rates, reducing the average detection

latency to 2155 scans at 10 scans per second. This performance is still too poor

to deploy this detector on its own, but it is a significant improvement.

The high sensitivity of the QPD detector makes it an excellent scheme for

detecting slow scanning worms. Its poor latency for faster scanning worms means

that it needs to be coupled with another detector to handle those scenarios better.

172

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

campus
enterprise

department
wireless

(a) False Negatives

 0
 500

 1000
 1500
 2000
 2500
 3000

 0.005
 0.01
 0.02
 0.05
 0.1
 0.2
 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

campus
enterprise

department
wireless

(b) Detection Latency

FIGURE 8.4. F- and detection latency for QPD with clustering when
running against random scanning worms infecting randomly selected hosts.

8.3. SWORD2 Detector Compared with Existing Works

The SWORD2 detector is a simple combination of the BDD and QPD

detection mechanisms. SWORD2 raises an alarm when either BDD or QPD

is tripped. The thresholds must be modified for the detectors when operating

together like this to achieve the desired false positive rate, so the results are not

a simple combination of the above results.

Training

The training for SWORD2 is the same as the training for the two component

detectors. A period of legitimate network activity is observed, and the thresholds

are calculated from it. SWORD2 uses the same limits on burst sizes used in

the BDD section above, and the same quiescent period durations defined above.

Table 8.3 shows the parameter values used by SWORD2 to fix the false positives at

two. Having established both that the component mechanisms are effective without

173

TABLE 8.3. Parameter choices for SWORD2. The parameter choices for each
environment are what were chosen to achieve a false positive rate of two falsely
identified hosts per hour during the experiment.

Detector Parameter Default Enterprise Campus Dept. Wireless

BDD α 0.5 0.66 0.22 1.05 0.24
QPD α 3.5 3.6 8.0 4.4 5.6

clustering and that clustering does improve their performance, we see no reason to

present the SWORD2 results without clustering.

Results

Figure 8.5a shows the false negative rate achieved by the SWORD2 detector

against a random scanning worm. At the slower scanning rates the false negatives

look quite similar what was shown by the QPD detector. The worm was detected

at a scanning rate of 0.05 connections per second in every scenario except for a

single host in the wireless environment.

The latency graph shows much more interesting results (Figure 8.5b). Unlike

the QPD detector, with the SWORD2 detector the detection latency is low at

all scanning rates. In the campus, enterprise, and department traces the average

detection latency is under 40 scans for all worm scanning rates but one, where the

average detection latency is under 50 scans.

We only report detection latency for combinations of environment and

scanning rate where the worm was detected in 100% of the experiments. This

means that we do not see much of the latency performance in the wireless

174

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

campus
enterprise

department
wireless

(a) False Negatives

 0
 50

 100
 150
 200
 250
 300

 0.005
 0.01
 0.02
 0.05
 0.1
 0.2
 0.5
 1 2 5 10

of

 S
ca

ns

Worm Scans per Second (log)

campus
enterprise

department
wireless

(b) Detection Latency

FIGURE 8.5. F- and detection latency for SWORD2 when running against
random scanning worms infecting randomly selected hosts.

environment. However, if we were to relax our restriction and show the detection

latency for those 15 scenarios at each scanning rate where the worm was detected

in the wireless environment, we would see that the latency is under 67 for all scan

rates under 0.2, and under 327 for all worm scan rates. These latency numbers are

excellent, and compare well with the detectors we evaluated in Chapter V.

To make a direct head-to-head comparison between SWORD2 and the other

detectors easier, Figure 8.6 plots SWORD2 and the other detectors all on the same

graph.

In the campus environment (Figure 8.6a), we can see that the TRW detector

is able to detect some worms at slightly slower scan rates than SWORD2. It is the

only detector to do so, however, and does not detect 100% of the infections at any

scan rate slower than SWORD2 does. The enterprise environment (Figure 8.6c)

shows similar results. Again with TRW showing slightly better sensitivity and this

time PGD just barely beating SWORD2 at 0.02 scans per second. The other two

175

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

(a) Campus 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02
 0.05
 0.1
 0.2
 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

sword2
dsc

mrw
pgd
rbs
trw

trwrbs

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

(c) Enterprise

 0
 20
 40
 60
 80

 100

 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

(d) Department

 0
 20
 40
 60
 80

 100
 0.005
 0.01
 0.02

 0.05
 0.1
 0.2

 0.5
 1 2 5 10

F-
 (%

 o
f r

un
s)

Worm Scans per Second (log)

(e) Wireless

FIGURE 8.6. False Negatives for all detectors when running against random
scanning worms infecting randomly selected hosts.

environments, however, (Figure 8.6d and Figure 8.6e) show SWORD2 with the

best sensitivity, detecting worm infections at slower scanning rates than any other

detector.

A similar set of graphs for the detection latency is difficult make legible

because of the wide ranging latency values and because no data is present for

so many of the points. Instead, we present a simplified view, with the average

taken across all scanning rates where the worm was detected for each detector and

environment. These results are presented in Table 8.4.

The only two detectors that beat the SWORD2 detector in the sensitivity

tests were the PGD detector (in one environment only) and the TRW detector

176

TABLE 8.4. Average detection latency for all detectors. Each value
represents the average detection latency across all scan rates for a given detector
and environment, only including values where all worms were detected in a given
environment.

Detector Campus Enterprise Department Wireless

SWORD2 21.73 24.97 22.99 264.94
DSC 2.00 22.00 19.00 15.93
MRW 28.88 51.70 43.64 1014.16
PGD 93.80 28.11 25.81 621.75
RBS 17.36 4.25 26.44 349.53
TRW 4.23 11.13 24.75 49.93
TRWRBS 57.97 30.39 58.66 167.95

(in two environments). Against all other detectors SWORD2 has either better

sensitivity or detection latency, and in many cases both.

SWORD2 has a lower average detection latency than PGD in all

environments here, including a latency of less than half in the wireless environment.

The TRW detector had better sensitivity in two environments and has a lower

detection latency in three of the four environments. These tests make the TRW

detector appear to be a better detector than the SWORD2 detector. However, as

we saw in Chapter VI, a clever worm can evade the TRW detector by employing

known neighbors to befuddle the detector. In the next section we show that

the SWORD2 detector is dramatically better once evasive worms are taken into

account.

8.4. SWORD2 vs Evasive Worms

A good worm detector must be effective not only against naive worms, but

177

also against worms that are actively trying to evade detection. We now evaluate

SWORD2 against worms that are actively trying to evade detection by it. We

employ the same methodology and metrics that were used in Chapter VI. We test

SWORD2 against blind/perceptive and speculative/informed worms and measure

the worms effective scan rate and evasion rate. We then measure the maximum

effective scan rate achieved with a less than 10% chance of detection.

To evade detection by the SWORD2 detector, a worm must ensure that it

has sufficient quiescent periods to evade QPD, while also limiting its bursts of

connections to avoid triggering BDD. The combination of these two heuristics puts

significant constraints on the ability of the worm to scan.

Listing 6.1 shows the core logic of the blind version of this evasive worm.

The worm runs internal versions of both the QPD and BDD detectors. It first

checks to see whether a scan will violate any of the QPD constraints. If it will, the

worm waits long enough to end the current active period for the QPD constraint in

question. After eliminating QPD as a constraint the BDD durations are checked to

ensure that the BDD detector won’t be triggered.

The perceptive version of the worm is similar (see Listing 6.2). It uses a more

sophisticated waiting algorithm against the QPD detector to account for legitimate

activity.

The blind speculative version of the worm cannot achieve an effective scan

rate of greater than 0.03 scans per second in any scenario (see Figure 8.7a). In

178

0.00

0.01

0.01

0.01

0.02

0.03

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(a) Blind Speculative Worm

0.00

0.10

0.20

0.30

0.40

0.50

0.60

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(b) Blind Informed Worm

0.00

0.01

0.01

0.01

0.02

0.03

0.03

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(c) Perceptive Speculative Worm

0.00

0.10

0.20

0.30

0.40

0.50

0.60

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Load Factor

campus
enterprise

department
wireless

(d) Perceptive Informed Worm

FIGURE 8.7. Effective scanning rate vs SWORD2 as a function of Load
Factor

the department environment, even this low scan rate still gives an evasion rate

of 0% when the load factor is 1 in the department environment (see Figure 8.7a).

The perceptive speculative version of the worm does not improve the effective rate

at all (Figure 8.7c), but does improve the evasion rate in all but the department

environment (Figure 8.8c).

The informed versions of the worm do much better in the wireless

environment, with the worm able to achieve an effective rate nearly 10x greater

than the speculative worm was able to (Figure 8.7b and Figure 8.7d).

The informed versions of the worm do much better in the wireless

environment, with the worm able to achieve an effective rate nearly 10x greater

179

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(a) Blind Speculative Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(b) Blind Informed Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(c) Perceptive Speculative Worm

 0

 20

 40

 60

 80

 100

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

Ev
as

io
n

R
at

e
(%

)

Load Factor

campus
enterprise

department
wireless

(d) Perceptive Informed Worm

FIGURE 8.8. Evasion rate vs SWORD2 as a function of Load Factor

than the speculative worm was able to (Figure 8.7b and Figure 8.7d).

The best evaluation of the detector is the maximum effective rate achieved by

the evasive worm while running less than a 10% chance of being detected. We plot

the maximum effective rate achieved by the evasive worms against their respective

detectors.

In the enterprise environment (Figure 8.9), the maximum effective rate

allowed by the SWORD2 detector to any variety of evasive worm was 0.02 scans

per second. The PGD detector is the only one to beat SWORD2, the other

detectors all perform significantly worse. PGD detected the blind evasive worm

varieties in every scenario in this environment because of the window that had

180

MRW DSC PGD TRW RBS TRWRBS HAWC

Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Blind Speculative Worm
Blind Informed Worm

Perceptive Speculative Worm
Perceptive Informed Worm

0.
05

9.
99

0.
00

1.
26

5.
95

1.
05

0.
020.
05

9.
99

0.
00

1.
26

5.
00

1.
05

0.
020.
06

9.
99

0.
03

1.
26

5.
94

0.
70

0.
020.
06

9.
99

0.
03

1.
26

4.
98

0.
56

0.
02

FIGURE 8.9. Maximum effective rate in enterprise environment

a threshold that was only one scan over the legitimate traffic for this period.

However, the perceptive variant of the worm was able to achieve a maximum

effective rate of 50% greater against the PGD detector than against the SWORD2

detector.

For the campus environment (Figure 8.10), the benefits of the SWORD2

detector were more pronounced, beating all other detectors by at least a factor

of 2. In this environment, no other detector came close to limiting the maximum

effective rate of the evasive worms as well as SWORD2 did.

Figure 8.11 shows similar results for the department environment. SWORD2

outperforms all other detectors by at least a factor of three for all evasive worm

varieties.

181

MRW DSC PGD TRW RBS TRWRBS HAWC

Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Blind Speculative Worm
Blind Informed Worm

Perceptive Speculative Worm
Perceptive Informed Worm

0.
11

9.
99

0.
22

1.
33

0.
66

1.
05

0.
020.

14

9.
99

0.
27

1.
45

0.
66

1.
05

0.
040.
10

9.
99

0.
12

1.
33 3.

30

0.
83

0.
030.

14

9.
99

0.
10

1.
45 3.

30

0.
92

0.
05

FIGURE 8.10. Maximum effective rate in campus environment

MRW DSC PGD TRW RBS TRWRBS HAWC

Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Blind Speculative Worm
Blind Informed Worm

Perceptive Speculative Worm
Perceptive Informed Worm

0.
07

9.
99

0.
15

1.
33

5.
95

1.
09

0.
010.
07

9.
99

0.
15

1.
37

5.
99

1.
09

0.
010.

09

9.
99

0.
10

1.
33

5.
94

0.
90

0.
020.
09

9.
99

0.
09

1.
37

5.
97

0.
92

0.
03

FIGURE 8.11. Maximum effective rate in department environment

182

MRW DSC PGD TRW RBS TRWRBS HAWC

Ef
fe

ct
iv

e
R

at
e

(s
ca

ns
/s

ec
)

Blind Speculative Worm
Blind Informed Worm

Perceptive Speculative Worm
Perceptive Informed Worm

0.
11

9.
99

0.
15

1.
33 3.

31

1.
13

0.
02

3.
15

9.
99

0.
00

1.
35 3.

38

1.
08

0.
17

0.
09

9.
99

0.
00

1.
33 3.

28

0.
72

0.
02

3.
26

9.
99

0.
19

1.
36 3.

39

0.
90

0.
44

FIGURE 8.12. Maximum effective rate in wireless environment

Finally, Figure 8.12 shows that again, the PGD detector was able to

outperform SWORD2 in some scenarios. But even here, SWORD2 outperforms

PGD by a factor of 7 against blind speculative worms.

8.5. Analysis

In this chapter we have shown that the SWORD2 detector significantly

outperforms all other detectors. The TRW detector does perform slightly better

against naive worms, but against evasive worms was outperformed by a factor of 60

in most environments against most evasive worm types. TRWs best performance

against evasive worms was coming within a factor of 3 against a perceptive

informed worm in the wireless environment. This significant superiority against

183

evasive worms offsets any minor advantage TRW had over SWORD2 against naive

worms.

The PGD detector does outperform SWORD2 in 5 of the 16 evasive worm

scenarios (four evasive worm types by four environments), but is dominated in the

remaining 11 scenarios. It is also outperformed by SWORD2 against naive worms.

The only other detector to come close is the MRW detector, which is

consistently outperformed by SWORD2 against naive worms. MRW’s best

performance against evasive worms is to get within a factor of two of the SWORD2

detector. It is soundly beaten in every scenario.

None of the other detectors present even an appreciable level of competition.

184

CHAPTER IX

CONCLUSION

In this work we have presented an introduction to network worms, including

information about the way they propagate and case studies of real worms. This

information highlights the risks that worms present to our increasingly networked

world. We then presented a taxonomy and survey of existing worm detection

mechanisms. There are a wide variety of detection mechanisms spanning a number

of classes of detection including content-, behavior-, host-, and honeypot-based

algorithms. We chose to focus on behavior-based worm detection because of the

ease of deployment and attack agnostic attributes they possess. We selected the

six most promising behavior-based detection systems and developed a framework

to enable easy evaluation of them. This framework enables us to fairly test the

detectors across a range of scenarios.

The evaluation revealed that no detector stands out as being a panacea. The

TRW detector arguably performed the best in the evaluation, but a shortcoming

was observed against topological based worms. These worms do not exhibit the

same connection failure behavior that random scanning worms do, and so are not

detected as easily by TRW.

Chapter VI took our evaluation one step further and considered worms that

deliberately attempt to evade detection by a specific detector. In this chapter we

185

introduced a range of evasive worm capabilities and measured the evasive worms

evasion rate and effective scan rate. Against evasive worms, the detectors based on

first-contact connection rates outperformed other detectors because this behavior

is an essential behavior of worms, it cannot be masked or avoided. The PGD and

MRW worms showed the best ability to prevent an evasive worm from scanning

quickly.

Taking the information we learned from the performance of the evasive

worms, we established principles for a new detector that should show better

performance. In Chapter VIII we evaluate the performance of this new SWORD2

detector and show that it outperforms existing detectors against both naive and

evasive worms.

9.1. Contributions

The primary contributions of this work are (1) the framework for evaluating

behavior-based worm detectors (2) the comparison of existing behavior-based

detectors (3) the evaluation of evasive worms (4) a new worm detector that

outperforms existing behavior-based worm detectors.

In existing publications, worm detection systems are evaluated against a wide

range of network traffic and worms. A framework that makes it easy to compare

a detector against other detectors using standard network traces and worm

implementations will allow researchers to more quickly examine the performance

of their ideas and to present them with better evaluation results that are easily

186

comparable with other detectors.

The comparison of existing detectors using this framework provides a valuable

benchmark for the worm detection community. Previous to the publication of this

work, it was difficult to directly compare detectors. Some detectors, such as the

RBS detector appeared to perform very well in the experiments in their original

publication. Showing their performance with standardized traces and metrics

reveals some shortcomings in their implementation, giving researchers a more

complete picture of their overall value.

Furthermore, detectors should be evaluated not only against naive worms, but

also against worms that deliberately try to evade the detector. It is shortsighted to

assume that worm authors will not choose to attempt to avoid a popular detector

deployed against them. Detectors that seem relatively effective when deployed

against naive worms, such as DSC, are shown to be nearly worthless against worms

that are attempting to avoid exhibiting the behavior trait the detector relies on.

This evaluation is a significant step forward in the worm detection research field.

Finally, the SWORD2 detector represents a substantial improvement in the

performance of behavior-based worm detection. It’s performance against naive

worms was better than all detectors except for TRW which it performed nearly

as well as; and it substantially outperformed (by a factor of 60 in most cases) the

TRW detector against evasive worms. The only detector to provide somewhat

comparable performance against evasive worms was the PGD detector, which

187

was still outperformed in 11 of the sixteen scenarios. Against the most advanced

evasive worm, the perceptive informed evasive worm, the SWORD2 detector

outperformed PGD by factors of 1.5, 2, and 3 in three of the environments, while

being outperformed by PGD by a factor of 2.5 in only one environment. The

SWORD2 detector was substantially better than all other detectors against all

other evasive worm types.

9.2. Future Work

Despite these contributions, there is still a tremendous opportunity for future

research in the field of worm detection. We present the highlights of these topics

here, divided into three sections: (1) refining SWORD2 (2) evaluate the impact

of different environments (3) training detectors in an adversarial environment (4)

handling the evolution of network traffic profiles

Refining and Better Understanding the SWORD2 Detector

This work presents an initial evaluation of the SWORD2 detector, but

there is clearly a large body of work that remains to be done on it. The first area

of research is a better examination of the way SWORD2 clusters hosts before

establishing thresholds. We examined a number of behavioral traits to cluster on

and a range of numbers of clusters to produce; but we by no means completed a

comprehensive evaluation of this space. We do not know the minimum amount

of training time needed to classify a host, nor whether there may be additional

188

behavior characteristics that provide better clustering results. Further work in this

area has the potential to dramatically improve SWORD2’s performance.

SWORD2 has been evaluated against small networks, the environment for

which it was designed. However, it would be worthwhile to study its performance

in much larger networks. Could a large university deploy a single instance of

SWORD2 at its gateway to monitor all traffic in the network? SWORD2 may

actually perform well in such a scenario, particularly if the clustering performance

is improved. We have not evaluated SWORD2 against large networks so do

not have a good understanding of how it would perform. It may be that there

are tweaks that would be required for SWORD2 to perform well in a large

environment.

Additionally, the training mechanisms for SWORD2 should be examined

further. We currently use very simplistic methods for obtaining thresholds: the

minimum observed burst size and the mean plus standard deviation of the active

periods. It is possible that a more sophisticated training mechanism would be able

to establish more refined thresholds that would lead to fewer false positives and

lower detection latencies.

Different Environments

We have done our evaluations against the network traces available to us,

and have seen that the environment significantly impacts the performance of the

different detectors. There is a tremendous amount of room for further study here,

189

however. For example, by creating artificial traces made up of randomly selected

hosts from all of the environments, we could attempt to establish some confidence

level for how representative these traces are. Will hosts randomly selected from

environments with known performance characteristics yield a resulting trace with

similar or different characteristics? If we increased the size of the network does it

change the overall performance of the detectors?

Training in an Adversarial Environment

The biggest shortcoming of all of the detectors examined here is that

they require some form of training on what legitimate traffic looks like in the

environment they are deployed in. This is a problem if the network is already

infected with a worm, because the training data will be skewed by the presence

of the worm traffic. In fact, in most scenarios the worm traffic will be considered

normal and the thresholds set such that it is scored that way. This is a huge

problem that faces not only the SWORD2 detector, but all behavior-based worm

detectors.

It is a general problem of training in an adversarial environment. If you don’t

know that the corpus you are training on is legitimate, how can you use it for

training?

The TRW, TRWRBS, and RBS detectors use an ongoing rolling training

period to attempt to mitigate this problem, but that does not solve it completely.

A worm can influence the thresholds by gradually increasing its scanning rate.

190

The Evolution of Network Traffic

Network traffic is constantly changing as new protocols and applications

become popular. How does a worm detector adapt to these changes. This work is

directly related to the above point about training. Behavior-based worm detectors

are application and protocol agnostic, but they still rely on identifying anomalous

behavior. As applications come and go, behavior patterns change to suit the

application. It is unclear how a detector can adapt along with the changes.

9.3. Conclusion

In this work we have presented the risk that network worms pose to the

Internet and have made four contributions toward reducing that risk. Our

evaluation framework makes it easier for worm detector authors to quickly evaluate

the performance of their new detector. Our comparison of existing detectors

establishes a baseline for what a new detector needs to beat to be useful. Our

examination of evasive worms provides further insight into the effectiveness of

various detection mechanisms and highlights those that can be easily evaded.

Finally, our SWORD2 detector outperforms existing detectors, advancing the state

of the art of worm detection.

191

REFERENCES CITED

[1] A. Rubin, “There are now over 700,000 android devices activated every day,”
twitter, December 2011. [Online]. Available:
https://twitter.com/#!/Arubin/status/149329329237667844

[2] ——, “There were 3.7m android devices activated on 12/24 and 12/25,” twitter,
December 2011. [Online]. Available:
https://twitter.com/#!/Arubin/status/151918325260226561

[3] R. Baldwin, “Nearly 1 million iphone 4s and ipad 2s jailbroken in three days,”
January 2012. [Online]. Available: http://gizmodo.com/5878607/
nearly-1-million-iphone-4s-and-ipad-2s-jailbroken-in-three-days

[4] A. Inc., “Over 500,000 apps. for work, play, and everything in between,” January
2012. [Online]. Available: http://www.apple.com/iphone/from-the-app-store/

[5] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and
R. L. Braynard, “Networking named content,” in Proceedings of the
International Conference on Emerging Networking Experiments and
Technologies. New York, NY: ACM Press, December 2009, pp. 1–12.

[6] C. C. Zou, L. Gao, W. Gong, and D. Towsley, “Monitoring and early warning for
Internet worms,” in Proceedings of the Conference on Computer and
Communications Security. New York, NY: ACM Press, 2003, pp. 190–199.

[7] J. Wu, S. Vangala, L. Gao, and K. Kwiat, “An effective architecture and
algorithm for detecting worms with various scan techniques,” in Proceedings of
the Network and Distributed System Security Symposium. Reston, VA: The
Internet Society, 2004.

[8] S. Staniford, V. Paxson, and N. Weaver, “How to 0wn the Internet in your spare
time,” in Proceedings of the USENIX Security Symposium. Berkeley, CA:
USENIX, 2002, pp. 149–167.

[9] Z. Chen and C. Ji, “Measuring network-aware worm spreading ability,” in
Proceedings of IEEE INFOCOM. Washington, DC: IEEE Computer Society,
2007.

[10] N. Provos, J. McClain, and K. Wang, “Search worms,” in Proceedings of the
Workshop on Rapid Malcode. New York, NY: ACM Press, 2006, pp. 1–8.

[11] D. Moore, C. Shannon, and K. C. Claffy, “Code-red: A case study on the spread
and victims of an Internet worm,” in Proceedings of the ACM Internet
Measurement Workshop. New York, NY: ACM Press, 2002, pp. 273–284.

192

[12] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver,
“Inside the slammer worm,” IEEE Security and Privacy, vol. 1, no. 4, pp.
33–39, 2003.

[13] C. Shannon and D. Moore, “The spread of the witty worm,” IEEE Security and
Privacy, vol. 2, no. 4, pp. 46–50, July 2004.

[14] I. Symantec, “The downadup codex,” Symantec, Tech. Rep., March 2009.
[Online]. Available: http://www.symantec.com/content/en/us/enterprise/
media/security response/whitepapers/the downadup codex ed1.pdf

[15] P. A. Porras, H. Saidi, and V. Yegneswaran, “An analysis of conficker’s logic and
rendevous points,” SRI International, Tech. Rep., March 2009. [Online].
Available: http://mtc.sri.com/Conficker/

[16] C. Economics, “The cost impact of major virus attacks since 1995,” Website,
February 2004. [Online]. Available:
http://www.computereconomics.com/article.cfm?id=936

[17] P. Barford, R. Nowak, R. Willett, and V. Yegneswaran, “Toward a model for
sources of Internet background radiation,” in Proceedings of the Passive and
Active Measurement Conference, 2006.

[18] Z. Chen and C. Ji, “Optimal worm-scanning method using vulnerable-host
distributions,” International Journal of Security and Networks, vol. 2, no. 1/2,
2007.

[19] C. C. Zou, D. Towsley, and W. Gong, “On the performance of Internet worm
scanning strategies,” Performance Evaluation, vol. 63, no. 7, pp. 700–723,
2006.

[20] P. A. Porras, H. Saidi, and V. Yegneswaran, “Conficker c analysis,” SRI
International, Tech. Rep., April 2009. [Online]. Available:
http://mtc.sri.com/Conficker/addendumC/

[21] ——, “An analysis of the ikee.b (duh) iPhone botnet,” SRI International, Tech.
Rep., December 2009. [Online]. Available: http://mtc.sri.com/iPhone/

[22] N. Falliere, L. O Murchu, and E. Chien, “W32.stuxnet dossier,” Website,
Symantec Corp., Tech. Rep., February 2011.

[23] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,
Q. Zhang, and H. Hinton, “Stackguard: Automatic adaptive detection and
prevention of buffer-overflow attacks,” in Proceedings of the USENIX Security
Symposium. Berkeley, CA: USENIX, January 1998, pp. 63–78.

193

[24] J. Condit, M. Harren, S. McPeak, G. C. Necula, and W. Weimer, “CCured in
the real world,” in Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation. New York, NY: ACM
Press, 2003, pp. 232–244.

[25] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh, “On
the effectiveness of address-space randomization,” in Proceedings of the
Conference on Computer and Communications Security. New York, NY:
ACM Press, 2004, pp. 298–307.

[26] S. Antonatos, P. Akritidis, E. P. Markatos, and K. G. Anagnostakis, “Defending
against hitlist worms using network address space randomization,” in
Proceedings of the Workshop on Rapid Malcode. New York, NY: ACM Press,
2005.

[27] N. Weaver, S. Staniford, and V. Paxson, “Very fast containment of scanning
worms,” in Proceedings of the USENIX Security Symposium. Berkeley, CA:
USENIX, 2004, pp. 29–44.

[28] A. J. Ganesh, D. Gunawardena, P. Key, L. Massouli, and J. Scott, “Efficient
quarantining of scanning worms: Optimal detection and coordination,” in
Proceedings of IEEE INFOCOM. Washington, DC: IEEE Computer Society,
2006.

[29] L. Li, P. Liu, Y.-C. Jhi, and G. Kesidis, “Evaluation of collaborative worm
containments on DETER testbed,” in Proceedings of the DETER Community
Workshop on Cyber Security Experimentation and Test. Berkeley, CA:
USENIX, August 2007.

[30] D. Brumley, L.-H. Liu, P. Poosankam, , and D. Song, “Design space and analysis
of worm defense strategies,” in Proceedings of the ACM Symposium on
Information, Computer, and Communication Security. New York, NY: ACM
Press, 2006.

[31] T. Liston, “Welcome to my tarpit: The tactical and strategic use of labrea,”
http://www.threenorth.com/LaBrea/LaBrea.txt, None, Tech. Rep., 2001.

[32] M. Williamson, “Throttling viruses: Restricting propagation to defeat malicious
mobile code,” in Proceedings of the Annual Computer Security Applications
Conference. Washington, DC: IEEE Computer Society, 2002.

[33] J. Twycross and M. M. Williamson, “Implementing and testing a virus
throttle,” in Proceedings of the USENIX Security Symposium. Berkeley, CA:
USENIX, 2003, pp. 285–294.

194

[34] M. M. Williamson, “Design, implementation and test of an email virus throttle,”
in Proceedings of the Annual Computer Security Applications Conference.
Washington, DC: IEEE Computer Society, December 2003, p. 76.

[35] S. E. Schechter, J. Jung, and A. W. Berger, “Fast detection of scanning worm
infections,” in Proceedings of the Symposium on Recent Advances in Intrusion
Detection. Berlin, Heidelberg: Springer-Verlag, 2004.

[36] C. Wong, C. Wang, D. Song, S. Bielski, and G. Ganger, “Dynamic quarantine of
Internet worms,” in Proceedings of the International Conference on
Dependable Systems and Networks. Washington, DC: IEEE Computer
Society, 2004.

[37] G. Gu, M. Sharif, X. Qin, D. Dagon, W. Lee, and G. Riley, “Worm detection,
early warning and response based on local victim information,” in Proceedings
of the Annual Computer Security Applications Conference. Washington, DC:
IEEE Computer Society, 2004.

[38] J. Kannan, L. Subramanian, I. Stoica, and R. Katz, “Analyzing cooperative
containment of fast scanning worms,” in Proceedings of the USENIX Steps to
Reducing Unwanted Traffic on the Internet Workshop (SRUTI). Berkeley,
CA: USENIX, 2005.

[39] D. Moore, C. Shannon, G. M. Voelker, and S. Savage, “Internet quarantine:
Requirements for containing self-propagating code,” in Proceedings of IEEE
INFOCOM, vol. 3. Washington, DC: IEEE Computer Society, 2003, pp.
1901–1910.

[40] N. Weaver and V. Paxson, “A worst-case worm,” in Proceedings of the
Workshop on Economics and Information Security, 2004.

[41] S. Staniford, D. Moore, V. Paxson, and N. Weaver, “The top speed of flash
worms,” in Proceedings of the Workshop on Rapid Malcode. New York, NY:
ACM Press, 2004.

[42] Y. Song, M. E. Locasto, A. Stavrou, A. D. Keromytis, and S. J. Stolfo, “On the
infeasibility of modeling polymorphic shellcode,” in Proceedings of the
Conference on Computer and Communications Security. New York, NY:
ACM Press, October 2007, pp. 541–551.

[43] M. V. Gundy, D. Balzarotti, and G. Vigna, “Catch me, if you can: Evading
network signatures with web-based polymorphic worms,” in Proceedings of the
USENIX Workshop on Offensive Technologies. Berkeley, CA: USENIX,
August 2007, pp. 1–9.

195

[44] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee, “Polymorphic
blending attacks,” in Proceedings of the USENIX Security Symposium.
Berkeley, CA: USENIX, 2006, pp. 241–256.

[45] M. A. Rajab, F. Monrose, and A. Terzis, “Fast and evasive attacks: Highlighting
the challenges ahead,” in Proceedings of the Symposium on Recent Advances
in Intrusion Detection. Berlin, Heidelberg: Springer-Verlag, 2006.

[46] S. P. Chung and A. K. Mok, “Allergy attack against automatic signature
generation,” in Proceedings of the Symposium on Recent Advances in
Intrusion Detection. Berlin, Heidelberg: Springer-Verlag, 2006.

[47] R. Perdisci, D. Dagon, W. Lee, P. Fogla, and M. Sharif, “Misleading worm
signature generators using deliberate noise injection,” in Proceedings of the
IEEE Symposium on Security and Privacy. Washington, DC: IEEE
Computer Society, 2006.

[48] J. Newsome, B. Karp, and D. Song, “Paragraph: Thwarting signature learning
by training maliciously,” in Proceedings of the Symposium on Recent Advances
in Intrusion Detection. Berlin, Heidelberg: Springer-Verlag, 2006.

[49] Z. Liang and R. Sekar, “Fast and automated generation of attack signatures: A
basis for building self-protecting servers,” in Proceedings of the Conference on
Computer and Communications Security. New York, NY: ACM Press, 2005.

[50] J. Tucek, J. Newsome, S. Lu, C. Huang, S. Xanthos, D. Brumley, Y. Zhou, and
D. Song, “Sweeper: A lightweight end-to-end system for defending against fast
worms,” in Proceedings of the EuroSys Conference, 2007.

[51] D. Dagon, X. Qin, G. Gu, W. Lee, J. Grizzard, J. Levin, and H. Owen,
“Honeystat: Local worm detection using honeypots,” in Proceedings of the
Symposium on Recent Advances in Intrusion Detection, ser. Lecture Notes in
Computer Science, vol. 3224. Berlin, Heidelberg: Springer-Verlag, September
2004, pp. 39–58.

[52] J. Newsome and D. Song, “Dynamic taint analysis for automatic detection,
analysis, and signature generation of exploits on commodity software,” in
Proceedings of the Network and Distributed System Security Symposium.
Reston, VA: The Internet Society, February 2005.

[53] J. R. Crandall, Z. Su, S. F. Wu, and F. T. Chong, “On deriving unknown
vulnerabilities from zero-day polymorphic and metamorphic worm exploits,”
in Proceedings of the Conference on Computer and Communications Security.
New York, NY: ACM Press, 2005.

196

[54] J. R. Crandall and F. T. Chong, “Minos: Control data attack prevention
orthogonal to memory model,” in Proceedings of the ACM/IEEE International
Symposium on Microarchitecture. Washington, DC: IEEE Computer Society,
2004, pp. 221–232.

[55] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L. Zhang, and
P. Barham, “Vigilante: End-to-end containment of Internet worms,” Operating
Systems Review, vol. 39, no. 5, pp. 133–147, 2005.

[56] D. J. Malan and M. D. Smith, “Host-based detection of worms through
peer-to-peer cooperation,” in Proceedings of the Workshop on Rapid Malcode.
New York, NY: ACM Press, 2005.

[57] ——, “Exploiting temporal consistency to reduce false positives in host-based,
collaborative detection of worms,” in Proceedings of the Workshop on Rapid
Malcode. New York, NY: ACM Press, 2006, pp. 25–32.

[58] C. Kreibich and J. Crowcroft, “Honeycomb: Creating intrusion detection
signatures using honeypots,” in Proceedings of the Workshop on Hot Topics in
Networks. Berkeley, CA: USENIX, 2003, pp. 51–56.

[59] Y. Tang, H. Hu, X. Lu, and J. Wang, “Honids: Enhancing honeypot system
with intrusion detection models,” in Proceedings of the IEEE International
Information Assurance Workshop. Washington, DC: IEEE Computer
Society, 2006.

[60] Y. Tang and S. Chen, “Defending against Internet worms: A signature-based
approach,” in Proceedings of IEEE INFOCOM. Washington, DC: IEEE
Computer Society, 2005.

[61] M. Roesch, “Snort - lightweight intrusion detection for networks,” in Proceedings
of the Conference on Systems Administration. Berkeley, CA: USENIX,
November 1999, pp. 229–238.

[62] V. Paxson, “Bro: A system for detecting network intruders in real-time,” in
Proceedings of the USENIX Security Symposium. Berkeley, CA: USENIX,
1998.

[63] B. N. Chun, J. Lee, and H. Weatherspoon, “Netbait: A distributed worm
detection service,” Intel Research Berkeley, Tech. Rep. IRB-TR-03-033, 2003.

[64] S. Chen and S. Ranka, “Detecting Internet worms at early stage,” Journal on
Selected Areas in Communications, vol. 23, 2005.

[65] H.-A. Kim and B. Karp, “Autograph: Toward automated, distributed worm
signature detection,” in Proceedings of the USENIX Security Symposium.
Berkeley, CA: USENIX, August 2004, pp. 271–286.

197

[66] S. Singh, C. Estan, G. Varghese, and S. Savage, “Automated worm
fingerprinting,” in Proceedings of the Symposium on Operating System Design
and Implementation. Berkeley, CA: USENIX, 2004, pp. 45–60.

[67] B. Madhusudan and J. Lockwood, “Design of a system for real-time worm
detection,” in Proceedings of the IEEE Symposium on High Performance
Interconnects. Washington, DC: IEEE Computer Society, 2004.

[68] P. Gopalan, K. Jamieson, P. Mavrommatis, and M. Poletto, “Signature metrics
for accurate and automated worm detection,” in Proceedings of the Workshop
on Rapid Malcode. New York, NY: ACM Press, 2006, pp. 65–72.

[69] K. Wang, G. Cretu, and S. J. Stolfo, “Anomalous payload-based worm detection
and signature generation,” in Proceedings of the Symposium on Recent
Advances in Intrusion Detection. Berlin, Heidelberg: Springer-Verlag, 2005.

[70] K. Wang and S. J. Stolfo, “Anomalous payload-based network intrusion
detection,” in Proceedings of the Symposium on Recent Advances in Intrusion
Detection, ser. Lecture Notes in Computer Science, vol. 3224. Berlin,
Heidelberg: Springer-Verlag, September 2004, pp. 203–222.

[71] D. Bolzoni, E. Zambon, S. Etalle, and P. Hartel, “Poseidon: A 2-tier
anomaly-based network intrusion detection system,” in Proceedings of the
IEEE International Information Assurance Workshop. Washington, DC:
IEEE Computer Society, 2006.

[72] K. Wang, J. J. Parekh, and S. J. Stolfo, “Anagram: A content anomaly detector
resistant to mimicry attack,” in Proceedings of the Symposium on Recent
Advances in Intrusion Detection. Berlin, Heidelberg: Springer-Verlag, 2006.

[73] S. P. Chung and A. K. Mok, “Advanced allergy attacks: Does a corpus really
help?” in Proceedings of the Symposium on Recent Advances in Intrusion
Detection, ser. Lecture Notes in Computer Science, vol. 4637. Berlin,
Heidelberg: Springer-Verlag, September 2007, pp. 236–255.

[74] J. Newsome, B. Karp, and D. Song, “Polygraph: Automatically generating
signatures for polymorphic worms,” in Proceedings of the IEEE Symposium on
Security and Privacy. Washington, DC: IEEE Computer Society, 2005.

[75] Z. Li, M. Sanghi, Y. Chen, M.-Y. Kao, and B. Chavez, “Hamsa: Fast signature
generation for zero-day polymorphic worms with provable attack resilience,” in
Proceedings of the IEEE Symposium on Security and Privacy. Washington,
DC: IEEE Computer Society, 2006.

198

[76] Z. Li, L. Wang, Y. Chen, and Z. Fu, “Network-based and attack-resilient length
signature generation for zero-day polymorphic worms,” in Proceedings of the
IEEE International Conference on Network Protocols. Washington, DC:
IEEE Computer Society, October 2007, pp. 164–173.

[77] V. Berk, G. Bakos, and R. Morris, “Designing a framework for active worm
detection on global networks,” in Proceedings of the IEEE International
Information Assurance Workshop. Washington, DC: IEEE Computer
Society, 2003.

[78] S. G. Cheetancheri, J. M. Agosta, D. H. Dash, K. N. Levitt, J. Rowe, and E. M.
Schooler, “A distributed host-based worm detection system,” in Proceedings of
the SIGCOMM Workshop on Large-Scale Attack Defense. New York, NY:
ACM Press, 2006, pp. 107–113.

[79] T. Bu, A. Chen, S. V. Wiel, and T. Woo, “Design and evaluation of a fast and
robust worm detection algorithm,” in Proceedings of IEEE INFOCOM.
Washington, DC: IEEE Computer Society, 2006.

[80] V. Yegneswaran, P. Barford, and S. Jha, “On the design and utility of Internet
sinks for network abuse monitoring,” in Proceedings of the Symposium on
Recent Advances in Intrusion Detection. Berlin, Heidelberg: Springer-Verlag,
2004.

[81] M. A. Rajab, F. Monrose, and A. Terzis, “On the effectiveness of distributed
worm monitoring,” in Proceedings of the USENIX Security Symposium.
Berkeley, CA: USENIX, 2005.

[82] S. Stafford, J. Li, and T. Ehrenkranz, “On the performance of SWORD in
detecting zero-day-worm-infected hosts,” in Proceedings of the Symposium on
Performance Evaluation of Computer and Telecommunication Systems, vol.
38.3, July 2006, pp. 559 – 566.

[83] V. Sekar, Y. Xie, M. K. Reiter, and H. Zhang, “A multi-resolution approach for
worm detection and containment,” in Proceedings of the International
Conference on Dependable Systems and Networks. Washington, DC: IEEE
Computer Society, 2006.

[84] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan, “Fast portscan
detection using sequential hypothesis testing,” in Proceedings of the IEEE
Symposium on Security and Privacy. Washington, DC: IEEE Computer
Society, 2004.

[85] J. Jung, R. Milito, and V. Paxson, “On the adaptive real-time detection of
fast-propagating network worms,” Journal on Computer Virology, vol. 4,
no. 1, pp. 197–210, February 2008.

199

[86] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland,
K. Levitt, C. Wee, R. Yip, and D. Zerkle, “GrIDS: A graph based intrusion
detection system for large networks,” in Proceedings of the National
Information Systems Security Conference. New York, NY: ACM Press, 1996.

[87] T. Toth and C. Kruegel, “Connection-history based anomaly detection,” in
Proceedings of the IEEE Workshop on Information Assurance and Security.
Washington, DC: IEEE Computer Society, 2002, pp. 25–30.

[88] D. Ellis, J. Aiken, K. Attwood, and S. Tenaglia, “A behavioral approach to
worm detection,” in Proceedings of the Workshop on Rapid Malcode. New
York, NY: ACM Press, 2004.

[89] T. Dubendorfer and B. Plattner, “Host behaviour based early detection of worm
outbreaks in internet backbones,” in Proceedings of the IEEE International
Workshop on Enabling Technologies: Infrastructures for Collaborative
Enterprises (WETICE). Washington, DC: IEEE Computer Society, 2005, pp.
166–171.

[90] D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha, “Towards automatic
generation of vulnerability-based signatures,” in Proceedings of the IEEE
Symposium on Security and Privacy. Washington, DC: IEEE Computer
Society, 2006.

[91] N. Kawaguchi, H. Shigeno, and K.-i. Okada, “d-ACTM: Distributed anomaly
connection tree method to detect silent worms,” in Proceedings of the IEEE
International Conference on Malicious and Unwanted Software. Washington,
DC: IEEE Computer Society, April 2007, pp. 510–517.

[92] J. Mason, S. Small, F. Monrose, and G. MacManus, “English shellcode,” in
Proceedings of the Conference on Computer and Communications Security.
New York, NY: ACM Press, 2009, pp. 524–533.

[93] J. Jung, R. Milito, and V. Paxson, “On the adaptive real-time detection of
fast-propagating network worms,” in Proceedings of the Conference on
Detection of Intrusions and Malware and Vulnerability Assessment. Berlin,
Heidelberg: Springer-Verlag, July 2007, pp. 175–192.

[94] M. P. Collins and M. K. Reiter, “Hit-list worm detection and bot identification
in large networks using protocol graphs,” in Proceedings of the Symposium on
Recent Advances in Intrusion Detection. Berlin, Heidelberg: Springer-Verlag,
September 2007, pp. 276–295.

[95] C. C. Zou, W. Gong, D. Towsley, and L. Gao, “The monitoring and early
detection of Internet worms,” ACM Transactions on Networking, 2005.

200

[96] S. Stafford, J. Li, T. Ehrenkranz, and P. Knickerbocker, “GLOWS: A
high-fidelity worm simulator,” University of Oregon, Tech. Rep.
CIS-TR-2006-11, 2006.

[97] DETER, “DETER: Cyber defense technology experiment research (DETER)
network,” http://www.isi.edu/deter/.

[98] Lawrence Berkely National Laboratory, “LBNL/ICSI enterprise tracing
project,” http://www.icir.org/enterprise-tracing/, 2005.

[99] W. N. R. Group, “WAND WITS: Auckland-IV trace data,”
http://wand.cs.waikato.ac.nz/wand/wits/auck/4/, April 2001.

[100] University of Massachusetts Amherst, “Umass trace repository,”
http://traces.cs.umass.edu/, 2008. [Online]. Available:
http://traces.cs.umass.edu/

[101] F. C. C. Osorio and Z. Klopman, “And you though you were safe after
SLAMMER, not so, swarms not zombies present the greatest risk to our
national Internet infrastructure,” in Proceedings of the IEEE International
Conference on Malicious and Unwanted Software. Washington, DC: IEEE
Computer Society, April 2006, pp. 546–552.

201

