
TWIG: A CONFIGURABLE DOMAIN-SPECIFIC LANGUAGE

by

GEOFFREY C. HULETTE

A DISSERTATION

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

June 2012

DISSERTATION APPROVAL PAGE

Student: Geoffrey C. Hulette

Title: Twig: A Configurable Domain-Specific Language

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Computer
and Information Science by:

Dr. Allen D. Malony Chair
Dr. Michal Young Member
Dr. Zena Ariola Member
Dr. Shawn Lockery Outside Member

and

Kimberly Andrews Espy Vice President for Research & Innovation/
Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate
School.

Degree awarded June 2012

ii

c© 2012 Geoffrey C. Hulette

iii

DISSERTATION ABSTRACT

Geoffrey C. Hulette

Doctor of Philosophy

Department of Computer and Information Science

June 2012

Title: Twig: A Configurable Domain-Specific Language

Programmers design, write, and understand programs with a high-level

structure in mind. Existing programming languages are not very good at capturing

this structure because they must include low-level implementation details. To

address this problem we introduce Twig, a programming language that allows

for domain-specific logic to be encoded alongside low-level functionality. Twig’s

language is based on a simple, formal calculus that is amenable to both human

and machine reasoning. Users may introduce rules that rewrite expressions,

allowing for user-defined optimizations. Twig can also incorporate procedures

written in a variety of low-level languages. Our implementation supports C and

Python, but our abstract model can accommodate other languages as well. We

present Twig’s design and formal semantics and discuss our implementation. We

demonstrate Twig’s use in two different domains, multi-language programming and

GPU programming, and compare Twig against a well-known typemapping system,

SWIG.

iv

CURRICULUM VITAE

NAME OF AUTHOR: Geoffrey C. Hulette

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:
University of Oregon, Eugene, OR
University of California, San Diego, CA
Tufts University, Somerville, MA

DEGREES AWARDED:
Doctor of Philosophy in Computer Science, 2012, University of Oregon
Master of Science in Computer Science, 2007, University of California, San
Diego

Bachelor of Arts in Computer Science, 2000, Tufts University

AREAS OF SPECIAL INTEREST:
Programming languages, multi-language programming, high-performance
computing.

PUBLICATIONS:

G. C. Hulette and J. Solis. On source code transformations for steganographic
applications. In Proceedings of the 2011 IEEE/WIC/ACM International
Conferences on Web Intelligence and Intelligent Agent Technology - Volume
03, WI-IAT 11, pages 261264, Washington, DC, USA, 2011. IEEE Computer
Society.

G. C. Hulette, M. J. Sottile, R. Armstrong, and B. Allan. OnRamp: enabling
a new component-based development paradigm. In Proceedings of the 2009
Workshop on Component-Based High Performance Computing, CBHPC 09,
pages 110, New York, NY, USA, 2009. ACM.

M. J. Sottile, G. C. Hulette, and A. D. Malony. Workflow representation
and runtime based on lazy functional streams. In Proceedings of the 4th
Workshop on Workflows in Support of Large-Scale Science, WORKS 09,
pages 110, New York, NY, USA, 2009. ACM.

G. C. Hulette, M. J. Sottile, and A. D. Malony. WOOL: A workflow
programming language. In Proceedings of the 2008 Fourth IEEE
International Conference on eScience, ESCIENCE 08, pages 7178,
Washington, DC, USA, 2008. IEEE Computer Society.

v

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisors, Prof. Allen

Malony and Dr. Matthew Sottile, for their support and guidance during my Ph.D

work. Their patience, enthusiasm, and deep knowledge of my chosen areas were

instrumental in my research.

I would also like to thank my committee: Prof. Zena Ariola, Prof. Michal

Young, and Prof. Shawn Lockery, for their insightful questions and feedback.

I would like to acknowledge my colleagues at Sandia National Laboratories,

who supported me throughout this process. I would especially like to thank

my mentor, Dr. Robert Armstrong, and my very patient manager, Dr. Keith

Vanderveen.

Last but not the least, I would like to thank my friends and family. I could

not have written this dissertation without their help. My deepest and most sincere

thanks go to my wife, Dr. Annmarie Hulette, for her understanding, patience,

encouragement, and love. She has been an inspiration to me, in both my work and

life.

My research was supported in part by the Department of Energy Office of

Science, Advanced Scientific Computing Research. I very grateful to my colleagues

who were part of that grantwriting effort.

vi

I dedicate this dissertation to my parents, Richard and Mary Hulette. Their love,

generosity, and guidance have enabled me to pursue my dreams, and for that I am

deeply grateful.

vii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

Benefits of Capturing High-level Structure 1

Existing Approaches . 2

Twig . 3

Contributions . 7

II. BACKGROUND . 9

Multi-language Programming . 9

Typemap Tools . 57

Term Rewriting . 63

Workflow Programming . 67

III. CODE GENERATION . 72

Abstract Code Generation . 72

Generating C . 76

viii

Chapter Page

IV. THE TWIG LANGUAGE . 80

Formal Semantics . 80

V. USER-DEFINED EXPRESSION REDUCTIONS 95

Expression Normalization . 96

Implementation . 98

Discussion . 99

VI. THE DESIGN OF TWIG’S INTERPRETER 101

The twigc Application . 101

Embedded Design . 101

Code Generation . 103

Expression Reductions . 105

VII. EVALUATION OF TWIG . 106

Twig Compared . 106

Multi-language Programming . 112

GPU programming . 122

ix

Chapter Page

VIII. FUTURE WORK . 130

Implementation . 130

Theory . 132

IX. CONCLUSION . 137

Summary of Results . 137

Advantages . 138

Limitations . 139

Twig in Context . 140

APPENDIX: PROOFS . 141

Associative Operators . 141

Expression Identities . 147

REFERENCES CITED . 155

x

LIST OF FIGURES

Figure Page

1. A sequence of two permutation blocks. 77

2. Two basic blocks. 78

3. Sequential block composition. 78

4. Parallel block composition. 79

5. Permutation of tuples. 94

6. Typemap identities. 120

xi

CHAPTER I

INTRODUCTION

Programmers design, write, and understand programs with a high-level

structure in mind. In most cases, however, that structure is not captured in the

artifacts resulting from the coding process. This occurs because programming

languages are not very good at expressing the high-level and/or domain-specific

logic of a program. There are simply too many details to capture in the lower-

level logic of any non-trivial program, and these details obscure and possibly

even subvert the higher-level logic. This is especially true in the very common

case where a program undergoes multiple modifications, rewrites, extensions,

and refactoring over the course of its lifetime – even if the high-level logic were

captured, perhaps in natural language comments or design documents, its

relationship to the actual code weakens over time.

The kind of high-level structure we are concerned with typically arises from

the programmer’s domain-specific thought process and reasoning. Often, the logic

may be quite simple, at least conceptually – sequences of operations, conditional

branches, cycles, and the like, although the exact semantics of these structures

within the logic of a particular domain may differ and be more complex when

compared against the versions found within a mainstream programming language.

Benefits of Capturing High-level Structure

If we could somehow capture this high-level logic, what might we do with

it? First, since it expresses domain-specific structure, it could be used for domain-

specific optimization. For example, in a GPU code, if the high-level logic captures

1

memory copying operations, we could recognize a redundant copy and eliminate

it. This optimization might be quite difficult to do if the algorithm were written

in a language that does not capture high-level structure. In C, for example, GPU

memory copies are performed via API calls that appear as regular functions and

are therefore outside the scope of the compiler to analyze.

Second, in some cases we can design reusable software tools, such as code

generators or runtime engines, that enable programmers or domain experts to work

with the high-level structure and leave the low-level details to an automated tool.

Workflow systems are an interesting and successful example of this kind of tool.

Third, if the high-level logic is somehow associated with the final code, it

may serve as a high-quality and high-fidelity form of documentation, enabling a

programmer to grasp the high-level interpretation of a program more easily.

Existing Approaches

Programmers are, of course, aware that this kind of high-level information is

both important and difficult to capture, and so there have been several attempts to

improve the situation.

The most common method for capturing high-level information is informal

documentation based on natural language descriptions of the program components

and their intended functionality. In this case, the information may be embedded

in code comments, perhaps using a structured comment tool such as Doxygen or

JavaDoc. Or, it may be captured in an entirely separate document. Either way, the

informal nature of this sort of documentation does not capture much (if any) logical

structure, and does not lend itself to the kind of reasoning we are interested in.

Furthermore, the loose connection between documentation and the code it describes

2

infamously leads to out-of-date, misleading, or completely inaccurate descriptions.

This phenomenon is often referred to as “version skew,” as the version of software

referred to in the documentation gradually deviates from the most current version.

In many cases, for a programmer attempting to understand code, this scenario is

worse than having no documentation at all.

Formal models, like those used by model checking tools such as SPIN [45],

do capture the kind of high-level program structure we are interested in. Indeed,

a model is essentially a high-level abstraction of a program’s behavior. However,

these kinds of models are not tied to the code and they cannot be used to alter

or optimize it directly. Also, as with informal documentation, there is significant

potential for version skew if the program evolves and the model is not updated.

Workflow systems allow for the expression of high-level structure in a

domain-agnostic fashion, but are typically informal and involve complex external

requirements. A workflow-based program’s behavior is essentially defined by the

workflow runtime used to execute it, and this can make such programs brittle and

hard to maintain as the software evolves. Workflow programming systems also tend

to focus on coordination of relatively large components, such as whole applications,

which often have little in common in terms of their design. Since the components

tend to be so heterogeneous, it is uncommon for these systems to provide ways to

reason about the semantics of the workflow as a whole.

We discuss these approaches further in Chapter II.

Twig

Ideally, we would like a programming paradigm that allows for high-level,

domain-specific logic to be encoded alongside the low-level implementation details

3

in a way that binds the two together. The high-level structure would organize the

low-level details, and be available for automated analysis, reasoning, and formal

verification. The low-level logic, meanwhile, would be available for modification

and tuning by the programmer. Ideally, this hypothetical system would also

allow programmers to incorporate their own domain- or application-specific rules,

allowing them to reason about and exploit the exposed high-level structure. Such

a system would lead to software that is easier to develop and maintain, since

it would be easier for both humans and machines to reason about than today’s

typical programming languages allow. It would also be much easier for humans

to interpret and understand programs written in this way, since the high-level

structure would be provided explicitly, and would never become out-of-date.

Through these benefits, we argue that this type of system would represent an

important advancement in the way that programs are written.

Twig is a language for writing typemaps – small, declarative programs used

to translate data from one representation to another. Twig represents a step in

the direction for programming we envision above, by uniting two levels of semantic

information in one program. In Twig, programmers are able to express programs

in terms of a combined high- and low-level logic, with the final program being

synthesized automatically. Twig’s high-level logic is based on a simple, formal

calculus that is amenable to either human or machine reasoning, and can be

adapted with extra rules for reasoning in domain-specific contexts. The low-level

domain code is expressible, in theory, in any mainstream programming language.

Our implementation allows for C and Python, and can be extended to support

other languages.

4

Twig is, in many ways, quite similar to typemap-based tools like SWIG, but

it equips SWIG’s typemap language design with extra structure and expressiveness.

The result is a language that is flexible while remaining broadly applicable

to practical problems. We exploit its structure by introducing the idea of

reductions, which allow for user-defined, domain-specific typemap optimizations

and transformations.

Twig addresses the issues identified above:

1. The high-level, domain-specific structure of a program is lost in

the process of writing low-level code. Twig’s language, while restricted

to relatively small programs called typemaps, is a move in the direction of

providing high-level structure over low-level program code. The high-level

aspect of a Twig program is based on just a few combinators, described in

Chapter IV. Twig’s relatively simple primitives and combinators restrict

the program’s semantics, but allow for easier reasoning, analysis, and

transformation. In particular, Twig’s high-level combinators are adaptable

enough to express domain-specific constructions and transformations; we

demonstrate this with examples in Chapter VII.

2. Programs written at a very high level lose the flexibility that low-

level coding affords. Twig aims to provide a bridge between high-level

abstraction and low-level code. Twig allows for low-level code, written

in languages such as C or Python, to be embedded in primitives. The

programmer is then able to work with the primitives at a high-level, using

Twig’s combinators. The output of a Twig program is the low-level code,

combined and synthesized according to the high-level rules. Thus, the low-

5

level representation is available for flexibility, but is still subject to the

structure imposed at the high level.

Domain-specific languages are generally a purely high-level approach,

and are typically tied to a particular domain. Twig, by comparison, can

be customized and applied to many different domains. We review some

approaches to domain-specific programming in Chapter II, and show how

Twig can be applied in two application domains, GPU programming and

multi-language programming, in Chapter VII.

Twig’s set of high-level combinators can be used to build program structures

similar to those commonly found in workflow systems. Unlike workflow

systems, Twig generates code instead of managing its execution at runtime.

This approach has the advantage of decoupling the workflow implementation

from the abstraction presented to the programmer. We review some existing

workflow systems in Chapter II.

3. Existing approaches to capturing the high-level structures of low-

level code are fragile, because the two representations evolve

independently and can become inconsistent. Twig’s language associates

low-level code, written in languages like C or Python, with primitive

structures in its high-level logic. These primitives are combined via a set

of simple combinators. In addition, unlike formal modeling tools, in Twig

neither the low nor high levels of the program can be changed without

impacting the overall program’s behavior, and thus the high-level and low-

level semantics are tightly coupled. We describe the lower-level semantics for

code block synthesis in Chapter III, and our implementation in Section 6.3.

6

These primitives can be combined using Twig’s high-level semantics,

described in Chapter IV.

4. Programs that lack explicit high-level structure can be difficult

to optimize in domain-specific ways. Twig programs can be reduced,

via both built-in and user-defined rules for reorganizing and combining

expressions. Twig’s simple high-level logic makes such rules easy to describe

and express. By providing the proper domain-specific rules, domain-specific

optimizations may be designed, even by end-users. The process of reduction

is described in Section V, and we give the details of our implementation in

Section 6.4. Sections 7.2 and 7.3 demonstrate practical examples.

5. Programs that lack explicit high-level structure force programmers

to work at an inappropriate level of abstraction. Twig allows

programmers to abstract their own low-level code, and then work with it in

a domain abstraction. It also exposes the high-level structure for analysis. We

exploit this capability with reductions, presented in Section V.

Contributions

To summarize, with Twig we have made the following novel contributions:

1. Designed a simple model for low-level code synthesis;

2. Extended the semantics of System S to incorporate this model;

3. Shown how term rewriting tools can be used to reduce typemaps written in

our language;

4. Implemented a prototype of this language;

7

5. Demonstrated the utility of typemap reductions in a domain where they had

not previously been applied: that of GPU programming.

8

CHAPTER II

BACKGROUND

Multi-language Programming

Foreign function interfaces

A foreign function interface (FFI) allows a program written in one language

to invoke routines and/or access data in another language. The term FFI is

somewhat misleading; in addition to function calls, FFIs may allow method

invocations for object-oriented languages, or hooks for a low-level language to work

with high-level data.

FFIs allow interoperation between exactly two languages. This restriction

differentiates them from approaches that allow more than two languages, such as

language-neutral intermediate representations (Section 2.1) or interface definition

languages (Section 2.1). FFIs are directional, and we say that the source language

initiates calls to the target language. Many FFIs, however, also support callbacks

from the target language to the source language.

FFIs are a common feature in mainstream programming languages

because they provide two important capabilities. First, FFIs allow high-level

languages to use low-level functions and capabilities not definable in the high-

level language itself. For example, a high-level language may not be able to call the

operating system directly, or may require low-level access to hardware features for

performance-critical routines. Second, FFIs are used to wrap and expose existing

libraries of routines so that they need not be rewritten in the high-level language.

9

FFIs must reconcile the runtime environments and application binary

interfaces of two different languages. This may present a variety of challenges,

depending on the features of those languages. We will now consider some examples

of FFI systems and the issues they face.

Examples

Fortran Bind(C) Fortran 2003 introduced an FFI that allows bidirectional

interoperability between Fortran and C [76, 75]. Since Fortran and C are similar,

the FFI is straightforward. BindC introduces a set of interoperable types in Fortran

that represent C’s primitive types (e.g., int, float, and so on). Values of these

types may be passed back and forth between C and Fortran with no conversion

needed. Derived types, such as structures, arrays, and pointers are interoperable if

their component types are interoperable. To expose a C function to Fortran, the

C function is defined as usual and linked into the Fortran program. The Fortran

program must declare a correspondingly named function marked with the BIND(C)

keyword. The function’s signature (i.e., its argument and return types) must

consist only of interoperable types, and it is the programmer’s responsibility to

ensure that the declared signature in Fortran matches the C definition.

BIND(C) is a bi-directional FFI, so this process also works in reverse. If a

Fortran function is defined with an interoperable signature, then the C program

can access it by linking in the Fortran code and declaring a C function with the

corresponding name and signature.

Java Native Interface The Java Native Interface (JNI) [60] is an FFI from

Java to C. The JNI makes extensive use of glue code, that is, code that does not

contribute to the core program functionality, but rather serves to “glue” otherwise

10

incompatible code together (see Section 2.1, below). In the JNI, glue code is used

within C functions to provide access to Java object data, and to invoke methods.

When it is invoked, the C function is passed a special pointer (called JNIEnv) that

acts as a reference to the JVM. This pointer is used by special JNI functions that

allow C code to look up classes and types by name, instantiate objects, invoke

methods, and so on. Interaction occurs dynamically, and no static type checking is

performed. One benefit of this dynamic approach is binary compatibility. Because

the JNI uses Java’s type reflection mechanism [39] to work with JVM entities by

name, the C code will not need to be recompiled even if the JVM implementation

changes.

The JNI uses glue code extensively. Primitive Java types are passed by

value and mapped to corresponding C primitive types, while objects are passed by

reference (except arrays, see below). The references appear to C as opaque pointers

and must be manipulated exclusively through glue code. There are two kinds of

references: local and global. Local references are valid only until the C function

returns to Java. When control has returned to the JVM, locally referenced objects

may be garbage collected. Global references are never be garbage collected until

they are explicitly released. This implies that the C code must take care to release

global references or else incur memory leaks. A global reference is created from a

local one. Object-type arguments to JNI functions are always local.

Because objects are accessed indirectly through references and glue code,

the garbage collector is free to move objects around in memory at any time. The

data may even be moved during the C call if the garbage collector is running

on a separate thread – the JNI standard requires that implementations take this

possibility into account.

11

Java arrays are treated specially for performance reasons. Native code is

able to access arrays directly, circumventing the usual glue code. This makes

array manipulation fast. But, it means the garbage collector must take care not

to move the data while the native code is accessing it. There are three ways to

accomplish this task. First, the programmer can ask the JNI to “pin” the array;

this tells the garbage collector to leave it in place until the programmer unpins

it. This method is effective and easy to program, but can significantly complicate

the garbage collection algorithm. Therefore not all JVM implementations support

pinning. Second, the JNI can copy the array’s contents to a buffer so that the C

code can work on it locally, and then copy it back. While the copied array is being

modified, the garbage collector is free to relocate the original array. This method

works when pinning is not available, but large or frequent array copies may be

costly. Third, the native code can enter a critical region that temporarily suspends

the Java garbage collection thread. While the garbage collector is suspended, the

native code can work on the array undisturbed. However, within the critical region

the native code is restricted from blocking.

Extra care must be taken when using arrays in multi-threaded JNI programs.

For example, consider what would happen if two Java threads tried to invoke a

native method on the same array concurrently, using the method of copying the

array to a local buffer. The program would contain a race condition – the first

method would complete and write the array back to Java, and then the second

method would complete, and overwrite the first array. Or, if instead the program

uses the critical region method, it must take care that other threads will not

exhaust Java’s available memory while the garbage collector is suspended. The

JNI enables native code to acquire and release locks via a glue code interface to

12

the usual Java synchronization mechanism, but otherwise does not provide special

support for multi-threaded code.

The JNI supports callbacks from C to Java. The C program can use glue

code to acquire object references, and pass these references to a Java method. The

method signatures are obtained and invoked dynamically, via the JNIEnv data

structure.

The JNI allows C code to throw Java exceptions. When an exception is

thrown from C, the native function exits immediately, control returns to Java, and

the exception is processed normally. Because the JNI allows callbacks, it is possible

that an exception thrown from a Java method will be encounter a C function on

its way up the stack. In this case, control returns to C. The exception does not

interrupt the native code, but is recorded in the JNIEnv data structure. Therefore,

it is the responsibility of the C function to check whether there are any pending

exceptions after control returns from a callback. If an exception is detected, the C

function can handle it or else re-throw it.

Python Ctypes Ctypes [55, 4] is one of several Python FFIs to C; it is

interesting because it uses dynamic instead of static libraries. Dynamic libraries are

files containing compiled C functions, formatted in such a way that the code can

be loaded and executed by other programs at runtime. Dynamic libraries include a

symbol table so that functions can be found by name.

The Ctypes Python module is initialized with a dynamic library, and it

generates Python wrapper code to expose each function in the library as a Python

method. Dynamic libraries do not contain type information, so the programmer

must explicitly set the number and types of the arguments as well as the return

type for each function.

13

Ctypes knows how to convert simple data representations between C and

Python. Primitive C types are converted to equivalent Python types. Structures

in C are converted recursively into Python objects. Arrays may be converted if

they contain only primitive types. Structures and arrays are passed to Python as

references to the C heap or stack. The references are just pointers, but Python is

prohibited from manipulating them directly. Instead, Ctypes provides Python glue

code to manipulate each kind of data structure through the pointer.

Ctypes can construct a C function pointer from a Python routine, allowing C

to call back into Python. The documentation suggests that Python objects passed

to C should have references held in Python, to prevent them from being garbage

collected [4].

Matlab MEX files The Matlab programming environment provides MEX

files [3], a simple but effective FFI that allows Matlab to call C, C++, or Fortran

functions. MEX foreign functions are just C functions, written using the MEX

API to decode and manipulate Matlab’s matrix values. It is the programmer’s

responsibility to ensure that the MEX functions they provide conform to Matlab’s

requirements; for example, failing to properly parse an argument list should result

in the function returning a MEX-specified error. Matlab makes no effort to check

that the functions conform in these ways.

SML/NJ Standard ML of New Jersey (SML/NJ) provides an FFI to C [48].

It is an interesting example because the two languages are quite different. The

representations even of basic data types are different in SML. In particular, data

types in C depend on the compiler, where in SML they are fixed by the standard.

The FFI avoids this problem by parameterization, using meta-information about

14

the C compiler. The meta-information includes details such as the size of an

integer, byte ordering, calling convention, and so on. The parameterized FFI then

exposes a set of types to ML programs representing those used by the C compiler,

along with conversion routines to and from common SML types.

SML/NJ manages memory with a garbage collector. As we saw in the JNI,

this can cause problematic interactions. For example, a C program using a pointer

into the ML heap must ensure that the dereferenced data will not be moved or

disposed of. SML/NJ’s implementation supports “pinning” memory, i.e., explicitly

instructing the garbage collector to temporarily leave the data in place. So, C

functions that wish to work with ML data directly must pin the data first.

Functions exported to SML from a C file must be marked with a special

macro, which enables SML/NJ to look up the function’s address by name. Since

compiled C function libraries do not include type information, C functions must be

registered in SML at runtime, and assigned the appropriate argument and return

types. The FFI provides an ML type representing a pointer onto the C heap. It

also provides C glue code to manipulate ML data structures via a pointer onto

the ML heap. These pointer types allow complex data to pass across the language

boundary.

SML/NJ’s FFI provides callbacks to ML functions. A callback’s arguments

and return types are restricted to the C-compatible data types, including pointers

to ML data. ML callbacks are created from regular ML functions, i.e., closures.

The conversion is accomplished by dynamically registering an ML closure with the

FFI – this creates a “bundle” at a fixed address, which contains code to invoke the

closure. The bundle’s address is presented to C as a function pointer. With this

scheme, the closure may be relocated by the garbage collector – when this happens,

15

the bundle’s contents are updated to reflect the closure’s new address. The bundle

itself remains at its original address, and so the function pointer remains valid in C.

Haskell 98 The Haskell 98 FFI [27] is part of the Haskell 98 standard. The FFI

includes some placeholders intended to facilitate calls from Haskell to any external

language, but only the binding to C is defined in detail. Haskell presents some

interesting challenges to integration with C. Like ML, Haskell features first-class

functions, a strong and static type system, and automatic memory management. In

addition, it has call-by-need semantics, and distinguishes functions that may cause

side effects from so-called “pure” functions.

A foreign function is exposed by declaring its type signature in the Haskell

source code, along with the keywords foreign import. This tells the Haskell

compiler that the function definition will be found in a C library.

The Haskell 98 FFI restricts the type signature of foreign functions to a set

of basic types that map unambiguously between Haskell and C. Basic types include

the usual primitive types, such as integers and floating point numbers. Basic types

also include a set of “raw” types such as Word32, that are independent of the

machine architecture and C compiler. Finally, basic types include several varieties

of pointers. First, there are regular pointers to the C heap, parameterized with

another basic type describing the dereferenced data. Second, there are C function

pointers. Third, there are “stable” pointers, which are references to Haskell

expressions guaranteed to never be deleted or moved by the garbage collector until

they are explicitly released. Stable pointers may be safely stored in C, without

worry that they will be invalidated when control returns to Haskell. Finally, there

are “foreign” pointers, a type representing a pair of a regular pointer onto the C

heap along with a function pointer. The function pointer should point to a finalizer

16

function, to be called by the Haskell when the object is garbage collected. Foreign

pointers allow C data objects to be memory managed by Haskell.

The Haskell 98 FFI permits callbacks. A Haskell callback must be a function

declared with the foreign export keywords, and defined in Haskell. The callback

function is always evaluated strictly (not lazily) if invoked from C. To invoke

a Haskell callback, the calling C function should be declared “safe” using the

safe keyword. Safe foreign functions entail some extra overhead to call, but they

guarantee that the Haskell runtime will be in a consistent state if a callback is

invoked. Unsafe foreign functions are faster, but callback behavior is undefined.

Haskell functions used as callbacks should not throw exceptions; the runtime

behavior in this case is undefined.

Haskell uses monadic types to represent functions that may cause side

effects. Using type inference, the Haskell compiler can (usually) construct this type

information from the Haskell code. For foreign functions, however, Haskell cannot

infer the type information. So, by default, the FFI must conservatively assume that

all foreign functions may cause side effects. The programmer may override this

assumption, asserting that an imported foreign function is pure. Pure functions

have two benefits. First, the FFI assigns the foreign function a less restrictive

type (i.e., it does not wrap the return type in the IO monad). Second, the Haskell

runtime is free to memoize invocations of pure function, including pure foreign

functions.

GreenCard GreenCard [53] is a different approach to designing a Haskell FFI

to C. GreenCard focuses on providing an easy way to generate wrappers, i.e., layers

of code that expose pre-existing libraries of C functions. Usually, such libraries are

provided as a pair of files – one a pre-compiled library of functions; the other a

17

“header” file of C declarations, including the names, arguments, and return types

of each function. Where the Haskell 98 FFI requires that programmers manually

declare foreign function signatures, GreenCard uses the header file to automatically

generate appropriate types and glue code for each function.

Ideally, GreenCard could extract all the required information from only the

header file. Unfortunately there are ambiguities. For example, C programmers

generally use the type char * to represent null-terminated strings. But char *

may also represent a pointer to a single character, or to an array of bytes. C does

not distinguish between these cases, but Haskell, due to its strict type system,

does. To resolve these ambiguities, GreenCard augments the header file with

annotations. An annotations contains a Haskell type declaration for a C function,

and the correspondence between the declared C and Haskell types resolves any

mapping ambiguities. GreenCard includes a default mapping of types from C

types to Haskell. If the defaults are satisfactory for a particular function, then no

annotation is required.

GreenCard uses a type translation mechanism (see Section 2.2) called “Data

Interface Schemes” (DIS). DISs are like macros or functions that describe how a

type in C is converted to its Haskell equivalent. DISs have a flexible syntax, with

common cases handled by simple directives, and uncommon cases with arbitrary

code. For example, there is a DIS directive for converting a C enum to an equivalent

Haskell variant type.

Another DIS directive is used for C pointer return values. Many C functions

that return a pointer will return the value NULL in case of a failure, or else a valid

pointer. The DIS maps the pointer type to a Haskell Maybe type. The value will be

18

None in case the pointer is NULL, and Just x otherwise, where x is the dereferenced

pointer value.

GreenCard assumes by default that C functions may cause side effects, and

wraps them in the IO monad. The programmer may override this assumption if

they know the function is pure.

Since its purpose is wrapping existing C libraries, GreenCard restricts itself

to calling C from Haskell. So, GreenCard does not include callbacks. It therefore

avoids issues with garbage collection and exceptions.

CHASM CHASM [74] is a restricted kind of FFI between C++ and Fortran

90 (F90). F90 programs have a compiler-dependent interface, because the F90

standard leaves many decisions to the implementation. CHASM generates wrappers

around F90 procedures that present a consistent and well-defined interface. This

allows C++ code to call F90 procedures, without having to modify the calls to suit

a particular F90 compiler. CHASM’s static analysis uses the Program Database

Toolkit (PDT) [63] to parse and query Fortran and C++ programs.

There are two important facets of F90’s procedure interface that are left to

the implementation. The first is the way that arrays are passed to functions. The

F90 standard declares that arrays are passed by “descriptor,” without specifying

the descriptor’s exact representation. So, depending on the F90 compiler, a

procedure might expect a simple pointer for a descriptor, or an integer handle, or

some data structure. The second compiler-dependent aspect of F90 is procedure

names. Some compilers, for example, store F90 procedures names using only capital

letters, while others precede names with an underscore. If a caller does not know

the naming convention, it cannot find the F90 procedure.

19

CHASM solves this problem by abstracting each Fortan 90 procedure, using a

compiler-independent wrapper function. The wrapper uses a well-defined, compiler-

independent naming scheme for Fortran procedures, and within the wrapper it calls

the compiler-dependent name.

The wrapper function also presents a compiler-independent interface for

passing arrays to procedures. The wrapper procedure has the same number and

types of arguments as the wrapped procedure and except for arrays, these are

passed through unchanged. The wrapper replaces each array descriptor argument,

however, with an integer handle representing the array. This handle is an index into

a globally-scoped table, maintained by CHASM. The table relates integer handles

to array references. An array only needs to be registered in the table if it passes

through one of the wrapper functions. Therefore, the wrappers contain all the logic

needed to maintain the tables.

CHASM also includes a C++ class that encapsulates a Fortran array.

CHASM will generate stubs for calling F90 procedures in C++ as well, and these

wrappers automatically convert the integer handle to the array class.

Glue code

The examples in this section have illustrated that we can categorize FFI

systems according to the way they use glue code. Glue code is a term for program

logic that helps to connect or reconcile two different representations of data or

code. In general, frameworks endeavor to minimize the need for glue code. As we

have seen, FFIs are rarely able to exclude glue code altogether, but there are ways

to mitigate the burden this places on programmers.

20

Glue code in FFIs serves to overcome semantic ambiguities where the two

languages interact. These issues include pinning arrays as in the JNI, or registering

the appropriate C function type signatures at runtime, as seen in SML/NJ and

Ctypes. The most common use of glue code, though, is to allow the data types

of one language to be interpreted and manipulated by the other. In the JNI,

for example, programmers must use an API to pick apart Java objects passed

to C functions. This kind of glue code is often used to address the problem of

type mapping (see Section 2.2), where the “natural” data types of one language

are mapped to a convenient and/or natural analog in the other. For example,

many FFIs map between some high-level data type for strings and C’s char *

representation.

Many systems that we will examine in Sections 2.2 and 2.1, such as [44],

attempt to automatically or semi-automatically generate FFI glue code.

FFIs may require glue code in the source language, the target language,

or occasionally both. The former is useful for generating high-level “wrapper”

functions for existing libraries, because the library source code may be inconvenient

or impossible to modify. This is the approach taken by Haskell GreenCard and

the Haskell 98 FFI, Ctypes, and SML/NJ. The latter option, glue code in the

target language, may be preferable when foreign functions are written with

interoperability in mind. It allows low-level functions to work directly on complex,

high-level data types, possibly avoiding data conversion. This approach is taken by

the JNI and Matlab’s MEX files. Fortran BindC requires little glue code because

Fortran and C are fairly similar.

21

Type safety

A FFI cannot make strong guarantees about type safety if one of its

interacting languages is unsafe. In particular, a program in an otherwise type-safe

language employing a FFI to C is no safer than C itself.

Glue code should, in principle, be able to check for some kinds of safety

violations at runtime. In practice, this does not seem to be a popular FFI feature.

This is probably because one of the foremost benefits of a C FFI is the speed of C

code, which runtime checks could degrade. None of the FFIs above include runtime

safety checks.

Garbage collection

Automatic memory management, i.e., a garbage collector [16], in one or both

languages presents challenges for FFIs. The most common problem is notifying a

foreign garbage collector that a reference to one of its objects is held, so that the

object will not be released. Usually, this must be done explicitly. Depending on the

scheme, the object may have to be explicitly deallocated as well.

In addition, garbage collectors may move objects around in memory. If the

garbage collector runs on a separate thread (e.g., in Java), the object could even be

moved while the main thread is operating on the data in a foreign function. In this

case, the result would be a disaster – the data would literally be moved out from

under the running program.

A seemingly simple solution is to suspend garbage collection for the duration

of an FFI call. This is insufficient in general. Pointers to foreign objects stored

across separate FFI invocations may still be invalidated (i.e., moved or deallocated)

when control returns from the FFI invocation. If the FFI includes callbacks, the

22

FFI must usually resume garbage collection when the foreign function calls back;

in this case, even local pointers might be invalidated by the time control returns to

the foreign code.

A better solution, used in the JNI and SML/NJ, is to “pin” data objects

used by the foreign language. This tells the garbage collection algorithm that the

data should not be moved or deallocated, until the pin is released. Unfortunately,

pinning may complicate the garbage collector implementation. In cases where

pinning is not or cannot be implemented, an alternative is to copy the data from

the source language to a buffer in the target language, and then copy it back after

the function completes. However, the overhead of copying may be substantial

for large objects, or if it is called frequently. Moreover, copying becomes more

complicated if the target language stores a pointer to the buffer; the FFI must then

reconcile the two buffers on every entry or exit from the foreign runtime.

Exceptions

Exceptions are a common feature of high-level languages that can be difficult

to map properly into low-level language semantics. Usually, FFIs connect higher-

level languages to lower-level ones, so exceptions only cause problems if the

FFI permits callbacks. In the absence of callbacks, there is no way for a thrown

exception to reach a foreign function.

If the FFI has callbacks and the high-level language has exceptions, there are

two approaches. The first, expedient option is to declare the program’s behavior

undefined when an exception reaches a foreign function. This approach is used

in Ctypes and the Haskell 98 FFI. The second option, used for example in the

JNI, is to set an exception flag when control returns to a foreign function. The

23

foreign function must check the flag to see if the callback returned normally, or

via an exception. If an exception was thrown, the foreign function may re-throw

the exception. Or it may handle it, resetting the flag to indicate the exceptional

condition was resolved, and returning normally.

Discussion

The primary goal of most FFIs is to provide efficient access to C from a

higher-level language. This goal is practical – most higher-level languages otherwise

would sacrifice some or all of the low-level capabilities that C offers.

Efficient access to C is generally at the cost of the other interoperability goals.

Targeting C precludes strong type checking and safety guarantees; in fact, use of

an FFI will generally compromise these properties in a high-level language that

features them. Furthermore, as we have seen, the programming model for FFIs

may not be as natural as possible. While function calls seem like a good enough

abstraction, FFIs frequently require glue code to reconcile language differences.

This glue code generally obscures the main program logic, and ensures that the

interoperability is not seamless. Finally, it is clear that FFIs are not scalable,

because by definition an FFI connects exactly two languages.

Another reason to use FFIs is to decompose a program or algorithm across

two languages, with the programmer writing different parts in the language most

suited to the task. With the exception of using C for performance, as previously

discussed, this use of FFIs is not seen very often. This may be because the design

and implementation of an FFI is labor-intensive, and it is easier to use C as an

intermediate lingua franca than to write a different FFI for every language.

24

Interface definition languages

Interface definition languages (IDLs) are a popular approach to

interoperability [54]. An IDL describes an interface to a software component (see

below), in terms that are abstracted as much as possible from the underlying

implementation language, operating system, architecture, network protocol, and

so on. The goal of this abstraction is to allow the software to be reused in many

contexts. Here, we are interested in the ways that IDLs permit components written

in different languages to interact.

A key concept in IDL-based systems is marshalling. IDLs are used to generate

code that implements the abstract interface they describe in some target language.

Among other things, this involves deciding which types in the target map to those

of the IDL. IDLs usually specify some binary format for data in their type system

so that it can be moved from place to place and interpreted in different languages

or systems. The process of translating data from a language’s native representation

to that of the IDL is called marshalling. The reverse process, translating from the

IDL representation to a native data format, is called unmarshalling.

Although details vary, IDL systems often work by generating skeleton and

stub code. Skeleton code implements a template of the IDL-specified interface in

some target language. The skeleton handles unmarshalling the arguments, invoking

the correct function, and marshalling the return value. The skeleton contains hooks,

i.e., spaces for an implementation of the interface functions to be filled in by the

programmer. The stub code presents the interface in the target language, usually

as a set of callable functions. Stub code marshals the arguments, finds and invokes

the corresponding skeleton function, and unmarshals the return value. The stub

25

and skeleton code work together to hide the complexities of the framework from the

programmer.

There are many different IDLs, a fact which in itself deters from the IDLs

goal of maximal interoperability. This proliferation reflects the challenge of

designing an abstract interface language that is interoperable with many different

languages, while easy to use in any given language.

In this section we give an overview of components and remote procedure

calls, two branches of software design where IDLs play an important role. Then

we provide examples of several IDL-based systems, and conclude with a discussion

of the reasons why IDLs are popular and some of the weaknesses they entail.

Components

A software component, generally, is a piece of code that is intended to be

reused. The exact definition is a matter of some debate [46]. A reasonable, inclusive

definition might be “a physical packaging of executable software with a well-defined

and published interface” [46]. Software components are generally designed to be

composed and reused by third parties, i.e., by programmers other than those who

wrote the component itself.

Most component systems use IDLs to describe component interfaces [84].

IDLs allow components to be written in whatever language is most appropriate or

convenient, while still presenting an interface that other components can consume.

This approach to multi-language programming potentially allows many different

languages to interoperate, in contrast to FFIs which allow only two [40].

Component-oriented software engineering describes a method for building

software that consists entirely of composing systems of components [17, 56].

26

Components in this model are classified by their role and origins [84]. The

most general-purpose components are those needed by many different kinds of

applications (e.g., database access services, graphics, and so on). An application

programmer rarely creates these kinds of components from scratch, since they

are often available from third parties, and may be difficult to create. A middle

tier of component generality encompasses those components that are needed

by many applications within a particular domain. For example, many medical

applications may need to access DICOM format images [2]. These components

may expose a somewhat less general interface, if widely-used standards exist

for the domain. These kinds of components are also rarely written solely by an

application programmer, but large application developers may often contribute

to or improve the components. Finally, there are application-specific components.

These are always written by the application developer, and may be difficult to reuse

outside the application context for which they are created. These components may

implement things like a specific graphical user interface for the application.

A component framework is required to instantiate components, manage

their execution and interoperation, and provide semantics for component

composition [69]. As we will see in the examples, the exact definition of a

component is usually tied to the framework in which it operates [46].

Component-oriented programming has several important advantages over

traditional techniques [69]. First, it has been shown to simplify the design of

large applications by decomposing them into smaller parts. Second, it increase

flexibility, as component-based applications may be recomposed and/or augmented

in response to changing requirements. The drawback to component-based software

is the increased time and effort required to design component interfaces, and to

27

ensure that components conform to the framework’s requirements. Component

frameworks may also entail some performance costs. Finally, use of an IDL often

restricts the form of composed interfaces [54]. We examine this last drawback in

more detail in Section 2.1.

Examples of component frameworks

In this section we examine component frameworks that provide connections

between components written in multiple languages. There are other important

component frameworks, including Enterprise Java Beans (EJB) [31, 72] and

Microsoft’s Component Object Model (COM) [1] that we omit here because they

do not support multi-language programming.

CORBA The Common Object Request Broker Architecture (CORBA) [84] is

a large and popular component framework standard. Components in CORBA are

called “objects,” although they are quite different than the notion of objects in

object-oriented programming languages. In particular, CORBA components have a

unique identifier, are created once, and then are accessed only through an interface

which is defined in CORBA’s IDL (described below).

The CORBA standard describes a framework that is based on an “Object

Request Broker” (ORB), which acts as a backplane for inter-component

communication. Every component in a CORBA system has access to the ORB.

Many CORBA ORB implementations provide support inter-ORB communication,

even to other ORB implementations [84]. The ORB has many functions, including

services that allow components to be looked up either by name or by interface.

The ORB encapsulates almost all aspects of a component, isolating them

from other components except for the IDL-defined interface. Hidden properties

28

include the network location of the component, implementation details including

the programming language used to write the component, and the execution state of

the component (uninitialized, idle, or currently servicing a request).

CORBA’s IDL is simple by design, so that as many languages as possible may

be used to write CORBA components. The IDL is used to construct an interface,

which components may then choose to provide. An interface which can be thought

of a set of functions with names and associated argument and return types. When

a component provides an interface, it implements the functions described in the

interface, using the appropriate types. CORBA can generate skeleton and stub

code from an interface for any language that the implementation supports.

The IDL allows functions to take any fixed number of arguments, and to

return a single value. Each argument and the return value must have a type, and

the available types are specified by the IDL. The types include a set of precisely

specified primitive numeric types (e.g., 8-, 16-, 32-, and 64-bit integers, booleans,

32- and 64-bit floating point numbers), and both ASCII and Unicode characters.

There are fixed- and variable-length strings and lists. There are also constructed

types, such as structure and union types similar to those in C, and a special “any”

wildcard type. Finally, there is an interface reference type for CORBA interfaces,

which can be used to pass typed references to components. Since many languages

do not support pointers, the IDL intentionally lacks explicit pointer types.

The CORBA IDL requires that each function argument be marked as in, out,

or inout, to indicate its directionality. Arguments marked in are effectively passed

by value, and changes to the value within the function will not be propagated back

to the caller. Arguments marked out are references; their initial value from the

caller is ignored, but changes within the function will modify the referenced value

29

in the caller’s context. Arguments marked as inout are treated like out arguments,

but their value at input is not ignored.

For a programming language to support CORBA, a mapping must be defined

from CORBA’s type system to the language’s type system, and vice-versa. Because

the CORBA IDL specifies a fairly limited and common set of types, this mapping

is straightforward for many languages. For example, in a C compiler, a CORBA

string maps to a char *. In C++, it may be mapped to a std::string.

Language interoperability is realized by the CORBA IDL’s type system,

which acts essentially as a commonly-understood, intermediate format for data

exchange across languages. Note that since the IDL includes a notion of references

to other components, it also allows CORBA to act as a kind of FFI between any

two languages that the implementation supports, allowing function calls from one

language to another.

In practice, many popular languages provide support CORBA integration in

the form of a mapping from their basic types to CORBA’s IDL [84]. This support

makes CORBA a practical choice for multi-language programming scenarios that

require interoperation of two languages which do not have a dedicated FFI. It is

also useful for situations where more than two languages are required.

CCA The Common Component Architecture (CCA) [17] is a component

framework for high-performance scientific applications. CCA is strongly influenced

by CORBA, and the two systems have much in common.

Scientific application developers are good candidates to adopt component-

based software engineering. Reuse of highly complex and specialized scientific codes

is highly desirable, and the nature of scientific research, especially the need for

30

repeatable experiments, encourages sharing [56]. The CCA was created to address

these requirements.

CCA describes component interfaces using an IDL called called SIDL [80].

SIDL is essentially an extension of CORBA’s IDL that adds types of particular

interest to scientists. These include multi-dimensional arrays (with either fixed

or dynamic size) and complex numbers. A tool called Babel implements a SIDL

parser, and can generate stub and skeleton code in C, C++, Fortran 77, Fortran

90, and Python.

In CCA, interfaces are called ports. A component may provide a port, which

means that the component implements functions that match those described in

the port. A component may also declare that it uses a port. This means that

the component requires an implementation of a component that provides that

port to be loaded in the component environment. This system allows for different

components that provide the same functionality (i.e., provide the same port) to

easily be swapped in and out of an application [17].

CCA does not currently support type mapping (see Section 2.2) beyond the

default primitive and structure maps in CORBA, although recent work has been

moving towards this goal [49].

Cactus Cactus [37, 38] is a component framework with a focus on scientific

applications. It does support components written multiple languages, but it does

not use an IDL. Instead, it limits the languages that components may be written

in to C, C++, and Fortran, and uses their existing interoperability facilities for

inter-language component communication. In particular, C++ can call C functions

directly since C++ is derived from C and shares much of its architecture, and

Fortran has a bi-directional FFI to C (see Section 2.1).

31

Remote Procedure Calls

Remote procedure call (RPC) is an approach to inter-process communication,

where each participating processes is assumed to be running on a separate

computer connected by a network [43, 24, 83, 42]. The mechanism disguises itself

as a procedure call, but after the call is made, the RPC system packages the

function and its arguments in a binary message, and sends it to be handled by

some other process. How the receiving process is chosen and located is a feature

of the particular RPC system, and in general the receiver may be running on a

different machine. After the message is received, the function and arguments are

decoded, the function is executed, and the return value is passed back to the calling

process. When the caller receives the response, it decodes the value and returns it

via the regular function call return mechanism. From the caller’s point of view, this

entire process is indistinguishable from a regular function call.

RPC’s straightforward semantics have made it a popular approach to

distributed programming [83]. Also, and more importantly for our purposes, RPC

systems usually allow for multi-language programming [43]. Their use of IDLs to

describe exposed procedures has the effect of abstracting language-specific details,

allowing for RPC to work across any language that supports the particular RPC

protocol.

In fact, RPC can be thought of as a general approach to handling

heterogeneity in computing systems [70], since it can be designed to abstract

different operating systems, machine architectures, programming languages, and

networking, all under the guise of a simple procedure call.

32

Both component frameworks and most RPC systems make use of IDLs [43].

In RPC, the units of interoperability described by the IDL are procedures or

functions rather than components, but the approach is very similar.

Two models of RPC semantics are popular: blocking and non-blocking [83].

The blocking model uses strives to emulate the semantics of a normal procedure

call, i.e., from the point of view of the caller, execution is suspended until the

call returns. In the non-blocking model, the call is still made normally, but for

the caller, execution continues immediately and does not wait for the remote call

to return. Later, the caller can use the RPC’s API to check whether or not a

response has been received, and to collect the return value if one is available. Many

systems provide both blocking and non-blocking calls. For the purposes of language

interoperability, the distinction is immaterial.

RPC designs generally favor hiding the details of the network communication

from the caller. Ideally, the caller need not even be aware of whether a call is

remote or local. This abstraction principle is somewhat leaky, however. First, RPC

calls must generally avoid passing arguments that are tied to the local address

space (e.g., a pointer to an array), since the callee might be located in a separate

address space. Second, the possibility of network errors implies that RPC systems

must handle failures that regular procedure calls do not [24, 70]. For example, the

correct semantics for RPC are unclear if the network stops functioning entirely, and

must be defined by the implementation or standard. More subtle network failures

are also possible, and RPC systems must be careful in the design of their protocols

to ensure that, for example, failures do not cause a single call to result in more

than one execution of a remote function [81].

33

There are several issues in RPC systems that we will not examine here

because they are not relevant to our discussion of multi-language programming.

In particular, RPC systems are often concerned with their performance under

different network configurations and parameters, as well as the security implications

of exposing program functions on the network [83].

Examples of RPC systems

In this section we will examine several RPC systems and show how they

facilitate multi-language programming. One important RPC system, Java Remote

Method Invocation (RMI), is omitted because it is tied to Java and does not

directly support multiple languages [89].

Sun RPC Sun RPC introduced the “External Data Representation” (XDR), an

influential and at the time innovative IDL design [29]. Sun RPC was originally

designed to enable network distributed function calls to and from C, and not

necessarily for inter-language function calls. So, XDR’s data types look a lot

like those of C. In addition to the usual primitive types (integers, floating point,

characters, and so on), XDR supports C-style structures and unions, although these

may only be one level deep (e.g., no structs within structs). XDR also supports

fixed-length strings, as well as fixed- and variable-length arrays of primitives.

Finally, XDR supports an “opaque” data type, that represents a sequence bytes

guaranteed not to be modified by marshalling and unmarshalling [82]. XDR

does not support explicit pointer types, since a raw pointer value has no valid

interpretation outside its local address space. The mappings to and from these

types and their representations in C are fixed by XDR.

34

XDR was designed for C, and C’s native data representation is tied to

the machine architecture and compiler. This explains why XDR’s binary data

representation is so precisely specified, since it must accommodate marshalling

between data formats that may have different integers lengths, different endianess,

different ways of packing structs, and so on. This is also why XDR is a useful

system for interlanguage communication – by abstracting the data transport

representation from the in-language representation, and keeping its supported

set of types minimal and fairly universal, XDR becomes a language-independent

standard.

ILU Inter-Language Unification (ILU) goes beyond traditional RPC systems in

two ways. First, it explicitly focuses on facilitating multi-language programming

through an RPC-based approach. Second, it creates a system where objects may be

passed by reference through the IDL interface [52]. Objects in ILU are not merely

static collections of data; as in OOP languages, object instances have a unique

identity, may have methods, and those methods may be invoked anywhere a valid

reference to the object is held, even from other languages.

ILU works much like Sun RPC, but adds a notion of modules. In an

application, there may be only one instance of a module, and a module has

exactly one interface, specified in the IDL. Modules reside permanently in one

address space, on one machine, and each module is written using one language.

An application consists of a set of module instances.

In addition to regular procedures, modules may expose objects through

their interface. Objects have a type, which is specified by another IDL interface

with a set of methods. Object instances are owned by the module that exported

the object’s type. However, a reference to the object may be obtained by other

35

modules. This reference may be used to invoke the object’s methods, which are

executed via RPC to the owner module.

ILU provides a garbage collection scheme for objects. The module that

owns an object instance is responsible for disposing of the object when there

are no longer any references to the object. To manage this in ILU’s distributed

environment, ILU must arrange for the owner module to keep track of external

modules holding references to its object, and periodically query them over the

network to see if the reference is still held.

The ILU implementation supports modules written in Modula-3, FORTRAN

77, C++, Lisp, and Python [52].

XML-RPC XML-RPC [8] was designed to be a simple RPC protocol that

would be easy to support from a number of languages. It uses an XML format

instead of binary to represent a marshalled data, and provides two formats: one

for function call requests and another for responses. XML-RPC does not provide a

dedicated IDL; instead it describes a set of data representations in terms of XML,

and expects implementations to define their own mapping from the language to

those representations.

XML-RPC provides XML encodings for the usual primitive number, boolean,

and character types, as well as variable-length strings and arrays of primitive types,

and structures of arbitrary nested depth.

XML-RPC specifies an extra field in the response encoding, the presence

of which indicates that an error occurred during the function execution. The

interpretation of the error code depends on the implementation.

36

Web Services Web services are a general-purpose approach to “distributed

services” [5, 30]. In practice, web services are used to provide RPC functionality on

top of web protocols and standards like XML and HTTP.

The design of web services encompasses three orthogonal components required

for distributed services. These are a communication protocol to encode data

(analogous to a format for marshalled data in RPC), a way to describe services

(analogous to IDLs), and a method for discovering services on the network.

SOAP is the most common communication protocol used in web services [5,

30]. Like XML-RPC, it is based on XML, and describes formats for requests

(function invocations) and responses (function returns). SOAP is more complex

than XML-RPC, and specifies formats for meta-data like security credentials.

The XML standard has a specification, called XSD [23], for encoding

primitive and structured data in an XML format. These include numbers, booleans,

structures, arrays, and so on, as well as some higher-level types like dates and

times. XSD also supports construction of new data types from this primitive set

using sequencing, discriminated union, and restriction. This last mechanism is

unique, and interesting: it specifies or restricts ranges of valid values that the

underlying type may take. While decidedly more complex and verbose than the

data encoding used by XML-RPC, XSD has the advantage that encoded data can

be checked for correctness at runtime using XML processing tools that are available

for a wide variety of platforms and languages. For example, integers can be verified

to be within the representable range, strings can be checked to contain only valid

Unicode characters, and so on.

A second XML format, called WSDL [30] provides a way to describe the web

service interface. WSDL, then, acts like the IDL in a traditional RPC mechanism.

37

A WSDL specification defines a set of valid messages in terms of XSD types. These

messages are used by a set of ports, each of which contains a set of operations.

Each operation describes a sequence of valid request and response messages.

These operations might be similar to regular RPC semantics (i.e., a caller request,

followed the callee’s response), asynchronous messaging (i.g. just the request, with

no response expected), or some other protocol entirely. WSDL therefore trades

simplicity for flexibility; it can describe very complex protocols.

A WSDL description also contains a concrete binding, that tells the service

what encoding and transport protocols to use (e.g., SOAP over HTTP). The

concrete binding also maps operations to URLs, which gives them a globally unique

endpoint for communication.

Like an IDL, the WSDL specification is processed through a tool that

generates a skeleton for the implementation of the service in the desired target

language. A stub implementation can also be generated from the WSDL. Typically,

WSDL for a service is made available on the internet, and clients who wish to use

the service may download the WSDL interface and generate stubs in the language

of their choice.

While complex, the XML standards that web services are built upon are

standardized and implemented in a wide variety of languages and systems.

Thrift Thrift [79] is a recent RPC system developed at Facebook, with a focus

on multi-language interoperability. It uses an IDL that, in addition to the usual

primitive and structured types, includes data structures, such as maps and sets,

common in modern “scripting” languages (e.g., Python, Ruby).

Thrift abstracts the marshalled representation of this data with a functional

interface. So, marshalled data structures may be constructed or picked apart using

38

and API with functions like writeInt, writeStruct, or endStruct. This API has

been ported to C++, Java, Python, PHP, and Ruby, so Thrift can marshall data to

and from a variety of languages.

Instead of using the API functions, most users of Thrift describe data

structures in an IDL. The IDL is processed in the usual way, producing marshalling

and unmarshalling routines for the desired language. These routines are generated

with calls to the API. The benefit of this approach is that the API routines may

be rewritten, and the underlying data representation altered, without requiring any

changes to the client code.

The IDL can describe functions, and these have the same semantics as RPC.

Functions that have no return value may be marked with the async keyword, which

allows callers of that function to continue execution without waiting for the call to

return.

Discussion

Relatively little effort is required, in general, to implement a mapping of

a language’s basic data types to those of an IDL, and to enable the IDL tools

to generate stub and skeleton code for that language. This allows IDL-based

approaches to multi-language programming to scale well – if you have n IDL-

mapped languages, then you have n2 language bindings, since any language in the

set can interoperate with any other [54].

The cost of this approach is a lack of specificity to any particular language

and set of types. In particular, domain-specific data types (e.g., complex numbers,

matrices, images, and so on), will need to be expressed in terms of the simple

primitives and structures that most IDLs offer, and not the more natural high-level

39

types that some languages may offer. IDLs cannot easily get around this limitation,

because the types they define must constitute, in some sense, a lowest common

denominator type system across any and all languages that wish to participate [54].

If an IDL included say, a type for images, then each language would have to be able

to decode that image type into meaningful data (or accept an incomplete mapping,

but this defeats the purpose of interoperability). As we will see in Section 2.2,

customizable type maps can help to resolve this issue.

IDL-based interoperability systems usually require marshalling for complex

types, even for communication between components written in the same language.

Therefore, use of an IDL may be inefficient compared to other approaches.

Language-neutral intermediate representations

Language-neutral intermediate representations (neutral IRs) are, in some

sense, similar to IDL-based approaches. Both work by constructing a “common

ground” that participating languages must be able to interface with. This approach

connects each language, by transitivity, to every other language that targets the

same IR.

In the language-neutral IR approach, each language is compiled to some

target language (the IR) that is general enough to encode the data representations

and semantics for a variety of languages. The IR serves as the mechanism for

interoperability. The nature of the IR determines how interoperability mechanisms

are exposed in each languages. Neutral IRs, then, can be seen as providing a

framework or mechanism for multi-language interoperability, on top of which other

strategies (including FFIs or language integration) can be applied.

40

Examples

The following systems all feature multi-language interoperability facilitates by

a language-neutral IR.

UNCOL As far back as 1958, there was interest in developing a “universal

compiler IR,” called UNCOL [65]. UNCOL was more a concept than an actual

proposal, and it was never successfully designed. The idea was proposed as a means

to reduce the effort required to write compilers, which was at the time considerable.

Machine architectures at the time were not standardized, and language features like

records, pointers, and data types were still novel. A universal IR was thought to be

a partial solution – languages could target the IR, which would then be portable to

many hardware architectures. Language interoperability was hardly considered, but

was mentioned as a potential extra benefit.

Microsoft Common Language Infrastructure Microsoft’s Common

Language Runtime (CLR) [9, 41] is a language-neutral IR and execution

specification, similar to Java’s virtual machine bytecode [62], but designed to

support many different languages. It is one of the foundational technologies for

Microsoft’s “.NET” platform. The CLR supports compilation and execution of

procedural, functional, or object-oriented paradigms languages. CLR’s language-

neutral bytecode format is called Common Intermediate Language (CIL), and it has

a language-neutral type system called the Common Type System (CTS).

Like the JVM, the CLR provides high level services like garbage collection,

a class loader with security features, and an extensive (and language-independent)

class library providing many common data structures and algorithms.

41

CLR programs are self-describing, with extensive annotations describing the

types, fields that are read-only, and so on. These annotations are packaged along

with the compiled CIL code. This allows compiled CIL code to be distributed

independently of the source program that generated it, but still inspected and used

by other CIL modules.

When executed, the platform-independent CIL is translated to platform-

specific native code. CIL is a stack-based model, and although it retains type

annotations as meta-data to be used by compilers and other tools, the execution

engine ignores the types entirely.

The CIL is essentially a stack-based form of assembly language. Unlike

assembly languages, however, it is not tied to a particular ISA, and is designed

to be interpretable on any modern CPU.

Although similar to JVM bytecode, CIL has some important differences

that facilitate its language neutrality. Unlike the JVM, unsafe CIL codes can be

generated and are permitted to be executed. This enables languages like C++

that feature unsafe pointer arithmetic to interoperate. Also unlike JVM bytecode,

CIL permits global variables, function pointers, and the ability to pass primitive

parameters by reference. The garbage collection algorithm is required to support

pinning data (see Section 2.1), which guarantees that pointers may be used on

memory managed data.

The CTS provides a language-neutral type system for the CLR. There are

two kinds of types in CTS: value and reference types. Value types are bit sequences

(e.g., integers), allocated on the stack. The value type describes what operations

are appropriate, but values do not carry their type information, so type checking

must be done statically. References types are similar to object references in Java.

42

Values of reference types carry their type information with them, and so can be

checked dynamically.

Like Java, reference types are part of an inheritance hierarchy, and must

inherit from exactly one parent. Value types exist outside the hierarchy. The

CLR has a notion of interfaces, which are sets of methods. Inheriting from an

interface implies that the reference type implements all the methods described in

that interface. Inheritance from multiple interfaces is allowed, and the sub-typing

rules permit a reference type that inherits an interface to be used wherever that

interface is expected.

Notably, although the CTS defines inheritance behavior, it intentionally omits

method overloading. This is because different languages have different overloading

rules. It is relatively easy for languages that wish to support overloading to

implement it themselves by mangling method names.

To support language interoperability, CLR defines a Common Language Spec

(CLS), which is a subset of the CTS type system. At a minimum, CLS compliant

languages must be able to import and use CLS types, which include object types

as well as a set of primitives. Notably, CLS-compliant languages need not be able

to extend object types via inheritance, or even to define new object types. CLS

specifies some other constraints as well, for example it mandates an interoperable

naming scheme for identifiers, and disallows architecture-specific primitive types.

Compliance with CLS is not required, it guarantees interoperability with any other

CLS compliant code. In some ways CLS is like an IDL, but an exceptionally rich

one.

Error handling in the CLR is done through exceptions, so compliant

languages are required to either handle or tolerate exceptions that are thrown

43

to them. Exceptions are implemented by a two-pass stack unwinding: first the

stack is searched for a handler, and then the second pass performs cleanup before

invoking the handler. Exception information is stored in fixed-format table that

precedes each method entry in the CIL format. The table contains a pointer to the

handler as well as a discriminator indicating whether the handler may re-throw the

exception or simply terminate. Exception handling is late-bound; no work is done

until the exception is thrown, and then the stack is searched. With this system, an

exception can be raised in one language and caught in another.

Targeting a particular language to the CLR can be easy or difficult,

depending on how well the language’s concepts map onto the CLR’s infrastructure.

For example, the CLR does not support nested functions, multiple inheritance, or

callcc, so languages with these facilities must either omit the feature, or transform

the feature into CLR-compatible terms. Moreover, in order to interoperate with

other languages in the CLR, a language must support the minimum requirements

of the CLS. This can be awkward. For example, support for SML required an

extension to the language to support object types.

LLVM LLVM [58] specifies an intermediate code representation based on a

3-address, RISC-like architecture, but abstracted from actual hardware. It also

provides a compiler infrastructure to transform that representation, including

compilation to real hardware.

LLVM’s representation is language independent; it is only slightly richer than

a RISC-like assembly language. It does include a type system, but the types may

be treated as annotations, and do not prevent definition of programs that ignore

the type information. LLVM does not impose any particular runtime requirements

on programs, and does not provide high-level runtime features (e.g., garbage

44

collection) directly. This makes LLVM a very different kind of system than the

CLR or JVM, which provide many high-level features but also usually require that

compliant languages use them.

The LLVM IR has just 31 opcodes, but most have overloaded semantics

based on the types of their arguments. LLVM does not permit type coercion; types

must be cast explicitly to other types if desired, so language features like implicit

coercions must be compiler directed. LLVM’s IR uses an infinite set of virtual

registers. The definition of a register always dominates its use, i.e., registers have

single-assignment semantics. The IR includes load and store opcodes to access a

heap. Control flow in LLVM is explicit: functions are basic blocks, and each block

ends in either a branch, a return, or one of two exception opcodes (see below).

LLVM’s type system is designed to be language-independent. Every register

and heap object has an explicit type, and opcodes work differently with different

types. The type system includes the usual set of primitive types as well as four

kinds of derived types. These are pointers, arrays, structures, and functions.

LLVM is designed to support weakly-typed languages (e.g., C) so declared

type information in an LLVM program may not be reliable. In particular, there

is an unsafe opcode that will cast any type to any other type. The cast opcode is

the only way to convert types; this implies that programs without the cast opcode

are typesafe. 1 Heap address arithmetic uses a dedicated opcode (instead of the

general-purpose addition opcodes) that preserves type information.

LLVM uses a flexible, language-independent scheme for exceptions. The IR

includes two special opcodes called invoke and unwind. Invoke works like a regular

function call, but takes an extra basic block argument that represents an exception

1Lack of the cast opcode does not prevent memory errors, such out-of-bounds memory or array
accesses, from occurring.

45

handler. When the unwind opcode is executed, it works up through the call stack

until an invoke opcode is found. Execution then transfers control to the exception

handler block of that invoke.

Type information allows a range of aggressive transformations that would

not otherwise be possible, e.g., reordering fields; optimizing memory management.

These can only be done with reliable type information however, so they include an

algorithm (Data Structure Analysis) that uses the declared types as speculative,

and conservatively checks whether load/stores are consistent.

Moby Moby is a functional programming language that supports

interoperability with C through its compiled intermediate representation, called

BOL [34, 77]. BOL is more expressive than Moby itself; in particular, it can also

be used as an IR for C. The two languages have very different features, but can

interoperate using BOL.

The BOL IR framework serves as a mechanism for interoperability, but

does not define a policy. The distinction is important. The policy determines

how low-level data structures are represented and manipulated in the high-level

language. The mechanism, by contrast, exists to reify the policy. Ideally, if the

interoperability mechanism is both flexible and powerful, it may support many

different kinds of policies.

BOL is an extended, low-level lambda calculus. It has a weak type system,

designed to be almost equivalent to that of C, but lacking C’s recursive types.

Type constructors in BOL include enumerations, pointers, arrays, and structures.

BOL code can make C function calls and work with C data types directly. No

marshalling is required because there is a direct mapping from BOL’s types to

those of C.

46

Types in Moby can be defined in terms of BOL types; this is Moby’s primitive

types are defined. Primitive Moby functions can also be defined in BOL; this can

be used, for example, to wrap the C standard library for use in Moby, since BOL

can call C functions directly.

There are two separate ways to access C from Moby, representing two

distinct interoperability policies. The first is an IDL-based approach. Tools are

used to parse a C header file and map the function signatures to Moby’s type

system. The header file may include some extra annotations to disambiguate

the mapping of pointer types. Stubs are generated in BOL code that call the

appropriate C functions, but map the types to Moby’s high-level representations.

Some marshalling code, also in BOL, may be generated if needed to implement the

mapping.

The second interoperability policy is called Charon, which implements a

type-safe embedding of C into the Moby language using phantom types. This

allows Moby to manipulate C data structures and call C functions directly, without

sacrificing type safety. Charon was inspired by, and is very similar to, NLFFI [25],

which is discussed in Section 2.1.

Whirl Whirl is the IR used in the Pro64/Open64 compiler suite [7, 67, 61]

and its many offshoots. Whirl is designed to be used as the input and output of

every internal compiler pass. This makes it easy to reorder optimization passes in

the compiler, which is important because the optimal order of the optimization

passes with respect to some performance criteria may be different for different

applications.

Whirl was designed to support a fixed set of languages, namely C, C++,

Java, and FORTRAN 77, and it may be adequate for other languages as well.

47

Whirl code may be designated as being at a “level” with higher levels being

closer to the source language, and lower levels closer to the machine architecture.

The process of compilation, then, is a gradual translation of a program from the

highest level to the lowest one. Each level is well-defined, i.e., there are constructs

in the higher-level IR that must be eliminated before the level can be reduced.

At the highest level, Whirl code is very close the original language, and at

this stage it is even possible to translate from Whirl back to the original language.

Whirl supports this high-level representation through constructs that are specific

to different language semantics. For example, Whirl contains a DO LOOP element

that corresponds to Fortran’s loop semantics, as well as DO WHILE and WHILE DO

elements for C. At the highest level, language-specific types are preserved as well.

While Whirl does provide a language-neutral IR for the languages it supports,

it would have to be extended for an additional language to participate. Moreover,

Whirl does not offer any special support for interoperability between the languages

it supports. For example, Whirl does not bother to define an IR representation of C

code calling a Java function, since it does not accept a source language that would

admit this construct in the first place.

SUIF SUIF [90] is a compiler infrastructure that includes a flexible

IR component. SUIF is particularly focused on facilitating parallelizing

transformations. To detect the data dependencies required for parallel

transformations, SUIF uses a fairly high-level intermediate representation. Lower-

level IRs often erase high-level representations of loops and conditionals, and

array accesses are expressed as pointer arithmetic, and this makes certain data

dependence analyses more difficult or impossible.

48

The SUIF IR includes standard RISC-like operations, but also higher-level

representations for various loops, conditional statements, and array accesses. The

loops and conditionals representations are similar to those in an abstract syntax

tree, but are designed to be independent of a particular language.

Because it preserves high-level constructs, SUIF may be a good choice for a

language-independent IR. At the moment, the SUIF distribution includes front-ends

for both C and Fortran.

Discussion

C is something of a lingua franca among programming languages, not unlike

a universal intermediate IR. As we saw in Section 2.1, most mainstream languages

have some kind of ability to interoperate with C. C enjoys this status for at least

two reasons. First, it is a highly desirable language to interoperate with owing to

the vast numbers of existing libraries it can access. Second, C may be used for

programming tasks that high-level languages are ill-suited for, such as coding of

performance-sensitive algorithms that can take advantage of specialized hardware.

Third, C is a very low-level program representation while remaining platform-

independent. It also has some convenient higher-level features, such as types. In

some ways, though, C makes for a poor language-neutral IR, in particular because

it lacks high-level features like garbage collection and exceptions.

In contrast to C, frameworks like the CLR have lots of high-level features,

and support a more coherent form of interoperability because those features can be

shared across languages. By the same token, however, requiring that these features

be supported (or at least tolerated) by participating languages may constrain

language implementations, and prevent different but useful approaches. This in

49

turn may limit the utility of multi-language programming, reducing language

specialization to a matter of syntax in the most extreme scenario. In addition many

higher-level systems such as the CLR or JVM require a large, complex runtime

system to support their execution. The runtime must be ported, possibly at great

cost and/or effort, to each platform where programs will be run.

Language-neutral IRs provide a mechanism that facilitates multi-language

interoperability and programming. Some systems, like the CLR, use this

mechanism to provide multi-language interoperability by designing participating

languages with certain unified language semantics. Other systems, like BOL and

Moby, use the neutral IR as a framework for standard approaches like FFIs. Each

case, therefore, meets our goals for multi-language interoperability differently, but

the use of a neutral IR impacts the goal of scalability. Like IDLs, neutral IRs allow

any number of languages to interact through a single common representation – this

reduces the number of required interfaces for n languages to 2n. However, the cost

to add each language amounts to the cost of writing a full compiler that targets the

neutral IR.

Whether a neutral IR can accommodate multi-language type safety, offer

a natural programming model, and operate efficiently depends on the system in

question. The CLR, for example, goes to great lengths to fulfill these goals. It

largely succeeds, at the cost of restricting language features. Systems like Moby

take a different approach, allowing different interoperability policies to be layered

on top of BOL. These policies, then, determine whether and how interoperability

goals are fulfilled.

50

Language Integration

Integrating two or more languages involves reconciling the syntax and

semantics of those languages. The combination may produce an entirely new

language, or one language may be entirely expressible in terms of another.

Examples

The following systems are examples of systems that achieve language

interoperability through an integration.

NLFFI NLFFI embeds C’s type system within SML, allowing for data-level

interoperability with C code [25]. It allows SML to call C functions, without the

need to map types or marshall data, since ML can just pass the arguments in the

representation that C expects. The tradeoff is that, since C’s type system is not

safe, ML programs that use NLFFI are no longer guaranteed to be safe either.

NLFFI uses a type system “trick” (see below) to set up a one-to-one

correspondence between types in C and a set of types defined in ML. The ML

compiler is modified to generate C code for expressions that have these types.

The embedding is rather complicated; here, we give a few examples of the kinds

of techniques they use.

NLFFI relies heavily on phantom types, which are type constructors used only

to construct other types, and not assigned values. Consider the following ML type:

sig type bin

type binary

type ’a dg0

type ’a dg1

51

end

These types can be used as a kind of “type language,” to construct binary

numbers. For example, the type binary dg1 dg0 dg0 represents 1002, or 4 in base

10. In NLFFI the technique is only slightly more complex. Specifically, NLFFI

uses a decimal number representation instead of binary, and introduces extra type

parameters to prohibit leading zeros, which ensures that each number corresponds

to a unique type.

For example, to encode C’s fixed-size array types, NLFFI uses phantom types

in a one-to-one relation to non-negative integers to type fixed-length arrays, by

using the phantom type to indicate the array’s length. With this scheme, C arrays

of the same length will have the same ML type, which conforms to C’s typing rules.

As another example, NLFFI encodes C’s const pointer type parameter

by including a tag in the C pointer type. The tag itself is a phantom type that

corresponds to two values, const or non-const. NLFFI provides functions to read

and write data from a pointer, and these functions take the pointer type as an

argument. While the read function is polymorphic in the const tag, writing is

strict. This technique allows ML to statically reject code that attempts to write

to a const pointer.

NLFFI does not address some of the usual aspects of multi-language

programming. In particular, it does not allow C to access SML’s data or functions.

NLFFI is therefore a one-way integration.

Jeannie Jeannie [44] combines the syntax and semantics of C and Java, and

allows each to be embedded in the other recursively. Programmers switch between

languages using a special operator (Jeannie uses the backtick character to switch

52

from Java to C, or from C to Java). The Jeannie compiler produces two separate

programs, one in Java and the other in C, and connects them with automatically

generated JNI code (see Section 2.1).

The complete syntax of each language is supported, but the switch operator

must be used explicitly to change from one language to the other. The switch

operator may be applied to either statements or expressions. Jeannie adds some

extra syntax for convenience, such as synchronized blocks and exception constructs

like try, throw, and catch for C, as well as extra functions, such as a version of

memcpy that copies a block of memory from Java’s heap to C’s.

Jeannie statically type checks the separate Java and C code according to their

own typing rules. It also adds static checks across language boundaries, which are

not normally performed on JNI code. For example, there are cross-language checks

to ensure that checked exceptions are either caught locally or declared, and that

private and protected Java methods are not called from C. Because it incorporates

C, Jeannie is not type safe. Cross-language checks are an improvement over hand-

written JNI in this regard, however.

Jeannie uses the same type equivalences defined in the JNI, but also checks

that they are used correctly. C constructs like explicit pointers, structs and

unions have no equivalents in Java, and so Jeannie checks to make sure they do

not cross over to Java without being explicitly marshalled.

Operators like break and continue cannot divert control flow across language

boundaries, since the JNI does not support it. Other control flow operators, such

as throw, are able to divert control flow because they have a semantics in C that is

defined by the JNI (see Section 2.1).

53

MLj MLj [22] is a Standard ML (SML) compiler that generates Java bytecode.

It includes an extension to SML, allowing it to call Java code. The “semantic gap”

between the two languages is fairly small. Java and SML both have strong typing,

similar basic types, and checked bounds. They use similar exception semantics.

Both prohibit explicit pointers and have automatic memory management. There

are differences, however. Java’s objects and inheritance subtyping have no

counterpart in ML. Java lacks parametric polymorphism and support for closures.

The goal of MLj’s extension is to allow ML to call Java methods and handle

Java objects as first-class entities, i.e., store them and use them as arguments

and/or return values from ML functions. Furthermore, they allow Java classes

to be constructed within MLj, and these classes may use ML objects freely.

The complete formal semantics are given in [22]. Here, we highlight some of the

interesting points.

MLj extends SML with Java types and terms. Primitive types in Java

are equated with their respective ML types. So, in MLj, a ML int and a Java

int refer to the same type. Some basic classes, like ML’s string and Java’s

java.lang.String are also equated. Java’s package hierarchy is equated with ML’s

modules, and Java’s import syntax is mapped to ML’s module open. Conveniently,

Java’s package syntax and ML’s module syntax are identical, and so they work

without modification.

Unlike in ML, which requires that values be bound when they are declared,

Java allows reference types (i.e., objects) to be null. Therefore, MLj wraps Java

object types within an option2 type. In this scheme, a null reference is given the

2ML’s option type is a variant with two constructors: None or Just α.

54

value None, while valid values are constructed with Just. This approach is similar

to how the Haskell 98 FFI and GreenCard represent null pointer return values in C.

MLj allows certain implicit coercions to make the code more natural. Here, a

coercion is an implicit type cast and conversion from one datatype to another. In

particular, MLj allows a widening coercion on Java objects that implements Java

inheritance rules. Specifically, for Java object types T1 and T2, if T1 <: T23, then

whenever T1 is expected, it will be coerced to T2. This coercion is always well-

defined for Java objects. Explicit casts, notably downcasts (i.e., a cast from T2 to

T1, where T1 <: T2), are supported for Java objects. As in Java, an invalid cast

will throw an exception.

MLj also permits coercion from an option type option α to α, which

simplifies programming with the null pointer mapping described above. This

coercion will throw a Java NullPointerException if the value is None.

Java methods may be “overloaded,” i.e., share the same identifier within a

single class, and distinguished by their argument types. At an overloaded method

call site, the specific method is determined by examining the supplied argument

types. Overloading can be ambiguous, however. Consider the following Java class A,

with overloaded method foo:

class A {

void foo(String s) {System.out.println("1");}

void foo(Object o) {System.out.println("2");}

public static void main(String [] argv) {

A a = new A();

a.foo("hello");

3The notation <: is read “is a subtype of.”

55

}

}

The call to foo in main is ambiguous; the value "hello" can be typed as

either a String and an Object, because String <: Object. Java handles this

ambiguity by choosing the most specific method with respect to an ordering on

types (roughly, the ordering is determined by the inheritance hierarchy, with extra

rules for primitives). So, in Java, the example above will output 1. Note that a

unique most specific method may not exist, and in this case the Java compiler will

terminate with an error.

Unfortunately, ML’s type inference algorithm cannot accommodate the “most

specific” technique of selecting overloaded methods, and so MLj discards it. The

specific overloaded method must be unambiguously selected by the programmer,

using ML’s type annotation syntax if necessary to disambiguate argument types.

MLj’s compiler produces Java bytecode, which is executed within a single

Java virtual machine (JVM). Therefore, MLj’s ML and Java portions share a

garbage collection system, and so the special rules for pinning arrays and so on

that we saw in Section 2.1 are not needed. By the same token, in MLj Java and

ML share a call stack, and since ML’s exn type and Java’s java.lang.Exception

type are equated, exceptions may flow freely up the stack from one language to the

other.

Discussion

Integrated languages are a bit of a catch-all category for systems that achieve

interoperability by combining two or more languages. The approach is clearly

not scalable, because considerable effort is required even to define the syntax and

56

semantics of a language that combines two other languages, let alone implement

a compiler. However, the result can accommodate a very natural programming

style. It is especially interesting that the examples in this section are able to go

beyond function calls as the main abstraction for interaction. They focus, instead,

on expressions. MLj is even able to maintain the type safety guarantees of both ML

and Java. Whether or not a given integrated language system is efficient depends

on the system in question. Jeannie, for example, generates JNI code, and so is no

more efficient than the JNI itself.

Typemap Tools

In multi-language programming, there is always the question of how to relate

the data types in one language to the types in another. For low-level, primitive

types such as integers and floating point numbers, the mapping is usually obvious

because both languages are likely to have to types that correspond very closely, if

not exactly. The question becomes more complicated, however, for higher-level data

types. For example, consider the following C struct and function declaration:

struct Point {

double x, y;

};

double norm(struct Point *p);

How would an IDL or FFI expose norm to, say, Java? One possibility would

map the Point structure to the java.awt.Point class, and construct a norm

method in Java like so:

57

double norm(java.awt.Point p);

There are other options, as well. For example, Point could be mapped

to java.awt.geom.Point2D.Double, or even to a new point class, defined by

recursively mapping individual elements of the structure to corresponding new

instance variables. A type map is some data structure or algorithm that allows

these cases to be disambiguated. Type mapping is a common feature across many

kinds of multi-language interoperability systems, because it is difficult in general to

match types across languages. These systems may be quite simple and/or inflexible.

In particular, many systems require that user-defined types by translated to some

simpler type with a known cross-language mapping, in order to be passed across

language boundaries. The examples we cover here are more involved. In particular,

high-level type mapping systems allow arbitrary user-defined types to be mapped to

across language boundaries in ways that are, to some extend, customizable by the

programmer.

Examples

In this section we will examine some examples of systems that have popular

or interesting approaches to high-level type mapping.

SWIG

SWIG [21] is a “wrapper generator”, intended to generate tedious glue

code needed for higher-level languages to interact with lower-level ones. It has a

particular focus on connecting so-called “scripting” languages, such as Python,

Ruby, and Perl, to pre-existing libraries written in C. SWIG can be configured to

generate any kind of glue code, so the exact output will depend on the FFI system

58

used. To call a C function from these languages, glue code must be generated that

converts the function arguments from the scripting language representation to some

representation in C, invokes the C function, checks for possible error codes, converts

the return value to a high-level representation, and finally transfers control back to

the high-level language.

To direct the code generation, the SWIG tool takes an interface file as input.

The interface consists of ANSI C function prototypes and variable declarations.

SWIG handles simple primitive type conversions automatically. By default, SWIG

does not perform sophisticated type mapping. Instead, it simply converts pointer

types in C to an “opaque pointer” type in the high-level language. Opaque pointers

are represented as the pointer’s contents (i.e., an address in memory) encoded as

hexadecimal strings. Null pointers are converted to the string value “NULL”. This

scheme treats pointers as opaque handles, which may only be used by passing them

to (appropriately typed) wrapped C functions.

If a more involved mapping of pointer types is desired, SWIG has a notion of

type mapping functions [6]. A type mapping function is a block of glue code that

implements a conversion from a low-level C data type to some high-level type in

the scripting language, or vice-versa. In general, to convert from C to a high-level

language and back requires a pair of symmetric type maps. The code in a typemap

can be arbitrarily complex. For example, it could pick apart a C structure, field

by field, instantiate a new object in Python, set some fields in the Python object

instance, and then return the object.

To insert the code block that implements a type conversion, SWIG must

be able to recognize the data types to which it applies. SWIG uses a regular

expression pattern, paired with each type map definition, to match types lexically.

59

SWIG extends the pattern matching to account for things like aliased types. Once

a type is matched, the type mapping code will be inserted into the generated glue

code at the appropriate point to convert the data type.

Parameterizing SWIG with a set of typemaps defines a type mapping policy.

By changing the typemaps, the policy will be changed. SWIG is distributed with

a set of default type maps, but users are free to define their own and augment or

replace the defaults.

We compare a typemap written in SWIG to an equivalent one written in our

own language, Twig, in Section 7.1.

FIG

FIG is a tool used to wrap existing C libraries for Moby [77]. Since Moby

already uses BOL as a language-neutral IR (see Section e.g.,), the mechanism for

interoperability with C is already in place. Fig’s job is to fix a policy that maps

types in C to types in Moby, and is able to generate the BOL code that implements

the conversion.

The input to FIG is a C header file along with a script that is used to guide

the translation of types. Internally, FIG represents the contents of the header file

(i.e., function type declarations) as a set of typed terms, and transforms the terms

from C to Moby through the application of term rewriting rules (see Appendix 2.3).

Typemaps in FIG are built from rewriting rules whose input terms are BOL

types, and whose output is either another BOL type or ⊥, which indicates failure.

The use of BOL’s language-neutral type representations allows type terms to be

uniformly represented in BOL, while still translating between Moby and C.

60

A typemap in FIG is a 4-tuple, consisting of a high-level type Tm, a low-level

type Tc, a marshalling function that converts a value of type Tm to a value of type

Tc, and an unmarshalling function that converts values from Tc back to Tm. The

marshalling and unmarshalling functions are defined in BOL. When FIG needs to

generate conversion code for a type, it simply checks to see if a registered typemap

takes that type as input, and then inserts the marshalling or unmarshalling code to

perform the conversion.

FIG also defines a combinator language that allows simple typemaps to be

composed into more complex conversions. The composition rules are based on term

rewriting strategies, and System S in particular (see Section 2.3). Strategies allow

flexible composition of typemaps, including simple constructions like sequencing

(i.e., the output of one typemap is sent to the input of another), or more complex

rules like mapping a typemap across the elements of tupled types. Typemap

combinators are a useful and powerful feature that distinguishes FIG from other

approaches to typemapping. We adopt FIG’s combinators in Twig’s language, as

described in Chapter IV.

FIG also has a pattern matching feature, not unlike that of SWIG, that can

select terms based on identifiers or other lexical constructs. This can be used, for

example, to disambiguate cases when two typemaps may apply to the same type, or

to apply certain typemaps only when particular naming conventions are being used

in the header file.

Twig was partially inspired by FIG. We designed Twig to be similar to FIG

in terms of its language, but with the ability to generate code for target languages

other than Moby.

61

PolySPIN

PolySPIN is a multi-language interoperability system designed for object-

oriented languages [20]. It seeks to make interoperability for any number of OOP

languages totally seamless, i.e., such that a programmer need never be aware that

they are working with objects written in a different language. PolySPIN rejects

the IDL approach, since it requires programmers to define an interface in terms of

the IDL. Even if the interface is automatically generated, it does supports only a

limited type system, and so using the interface is unnatural when high-level types,

including objects, are involved.

PolySPIN’s approach to interoperability is based on automatically generated

mappings between high-level types, using a process called “type matching”.

Matching objects are pairs of inter-language object types that have equivalent, or

roughly equivalent, interfaces. PolySPIN implements this check using signature

matching [92]. Strict signature matching works by equating a set of primitive

types across languages (e.g., a Java int is defined to match a C++ int), and then

recursively equating constructed types, including method signatures and objects.

Matching can also be relaxed in various ways; for example, an object may match

another object if they match strictly except that the first object contains additional

methods that are not in the second object. Matching criteria in PolySPIN can be

defined by programmers, and may include lexical criteria such as a type’s identifier.

To make use of matching, PolySPIN introduces a system that binds a unique

name to each object in a multi-language application. The methods of each object

are modified so that they consult this binding whenever they are invoked. If the

underlying object is instantiated locally in the calling language, the method is

invoked normally. But it is also possible that the object is acting a facade to a

62

matched object in another language. In this case, when a method is invoked,

PolySPIN redirects the method call back to the underlying object in the original

language. Facade objects may be obtained by passing regular objects across

language boundaries, for example in a method’s arguments. In any case, when an

object is passed to a different language, a matching type is found, and is used as a

facade to the original object.

It is worth noting one drawback of PolySPINs approach – because PolySPIN

must modify the methods of each class, the full program source code must be

available. So, existing libraries for which only the compiled code is available cannot

be used with PolySPIN.

Discussion

The systems in this section illustrate the use of type maps in multi-language

programming. Type maps are best viewed as a feature of these systems, rather

than a general approach to interoperability. The goal of high-level type maps,

generally, is to make programming in multi-language applications more natural

by allowing programmers to use familiar high-level types instead of a restricted,

predefined set interoperable types. As with all marshalling code, high-level type

maps may be at odds with efficiency, since they potentially introduce extraneous

transformations.

Term Rewriting

Term rewriting is a formal technique for reducing terms to some normal form

with respect to a set of rules [18]. Much of the interest in term rewriting stems

from its utility in program transformation [86].

63

Terms are built from variables and constructors [18]. Variables are

placeholders for other terms. Constructors are functions from terms to a single

term, with some unique constant symbol and arity n ≥ 0. We adopt the convention

that constructors symbols begin with lowercase letters (e.g., cons), while variables

are usually represented by a single uppercase letter (e.g., X). If a constructor has

zero arity, we refer to it as a constant symbol. For example, x and y are both terms,

and if cons has arity 2, then cons(x, y) is also a term. A signature is a set of

function symbols with associated arities. Notably, the terms of a properly defined

signature can be used to represent the abstract syntax tree of a program.

Rewrite rules have the form t1 → t2, and define a transformation of a term

matching the pattern t1 to a term t2. If the pattern t1 contains variable terms,

these will be bound as a result of a successful pattern match. These bindings may

then be used in the construction of t2.

Given a term t and a set of rewrite rules R, we say that t contains a redex s

if s is a subterm of t and if s matches one or more rewrite rules in R. A term is in

normal form with respect to R if it contains no redices.

The task of most term rewriting systems is the reduction of terms to a normal

form with respect to some set of rules R by applying rewrite rules to subterms until

no more rules may be applied. In general, a term may contain many redices; one

challenge for term rewriting implementations is to devise a strategy for deciding

when and where to apply each rule within a term [86].

If repeated application of a set of rewrite rules is guaranteed to eventually

reduce to a normal form, then the rules are said to terminate. For example,

consider the rule set containing the single rule f(X)→ f(f(x)). It is easy to see

that this rule will never terminate, because every application grows the term and

64

the redex still applies. Unsurprisingly then, for a given a set of rules termination is

undecidable in general [18].

If a set of rules is terminating, and repeated application of a set of rules will

always produce a unique normal form, then the rules are said to be confluent. Like

termination, confluence is undecidable in general. However, for rules which are

known to terminate, confluence is decidable [18].

System S

System S is a language that provides the basic machinery for term

rewriting [87]. It can be used to implement different term rewriting strategies, that

is, methods for deciding which redices to reduce, and when to reduce them relative

to other redices. As we will discuss in Chapter IV, System S is the basis for Twig’s

language.

Terms in System S are defined formally, but the rules for constructors,

variables, and pattern matching are very similar to the canonical definitions given

above, so we omit the details here.

In System S, a rule s is a binary relation
s−→⊆ S × (S ∪ ⊥), where S is a set

of terms and ⊥ is a special term indicating failure. Specifically, we say that t
s−→ t′

succeeds if and only if (t, t′) ∈ s−→, and t′ 6= ⊥. If (t, t′) ∈ s−→, but t′ = ⊥, we say it

fails. If (t, t′) /∈ s−→ then t
s−→ t′ is undefined in s.

Atomic rules are just primitive defined rules t → t′, and rules may be defined

to fail. System S introduces a set of compositions on rules that allow new rules to

be created from existing ones. The complete semantics for these compositions are

given in [87]. The compositions include a sequencing operator ;, where for rules s1

and s2, s1; s2 applies s1 first and, if it succeeds, applies s2 to the result (and fails

65

otherwise). Other combinators include deterministic and non-deterministic choice, a

fixed-point operator that allows recursive composition, as well as a set of operators

to traverse subterms by enumerating them. Twig makes use of these operators as

well, although we extend their semantics to support code generation.

Twig (Aho et al.)

Aho’s Twig [13] is a language (not to be confused with our own language, also

called Twig) that uses tree rewriting rules to specify code generators for compiler

back-ends. Twig’s rewriting rules operate on intermediate representation trees,

which encode a program at the level of the target machine. Rules specify a template

tree, a replacement node, a cost function, and a block of object code that will be

emitted as a side-effect of the rule being applied. Emitting code in this way is

similar to our own scheme, although in our language the ordering of side-effects

is controlled by the user through rewriting strategies, whereas in Twig the ordering

is decided through a combination of depth-first traversal and dynamic programming

based on the cost function for each rule. The cost function allows Twig to generate

object code that is optimal, up to the accuracy of the given costs.

Twig differs from our own language in that the rewrite rules are applied to

program trees. In our Twig, rewrites are applied to types. Our Twig is able to take

a somewhat looser approach to rewrite rules, e.g. rules need not reduce to a single

node and may contain variables. Our Twig has this freedom since we rely on user-

provided strategies to control rule application. Their Twig’s use of cost functions

to control application provides an interesting metric for comparing application

strategies – it would be quite interesting to try to incorporate something similar

into our own language.

66

Workflow Programming

Workflow programming refers to a rather broad category of languages and

tools. Very generally speaking, workflows are programs constructed as graphs by

connecting the inputs and outputs of various components. The components act in

some way on their inputs to produce outputs, and the wiring determines the flow of

data through the program.

We take special note of workflow programming in Twig because our code

generation semantics, described in Chapter III, are based in part on our own

previous work in designing the WOOL workflow programming language [50].

Twig builds upon and expands this work, and in particular provides a more robust

formalization of the programming model.

In this section we review some popular workflow languages and systems,

including WOOL, and describe how WOOL influenced Twig’s code generation

model.

Workflow Languages

There are many existing languages and tools for describing workflows. Most

provide complete systems that include languages for describing workflows, a way of

programming activities, and a runtime engine for executing a workflow.

Many earlier workflow systems were designed to address the needs of business

users, and employed coordinated web services as a enactment back-end. Examples

of this style of workflow system include BPEL4WS [15] and WSFL [59]. These

languages were designed to support and coordinate activities accessed through

XML-based web services, and so while they are good at describing and enacting

67

workflows in this particular domain, they are not very useful for abstract workflow

representation.

Other workflow systems have focused on scientific workflows. These are

intended for use by scientists who want to focus on their problem domain and

leave the low-level details to the workflow system. Scientific workflow tools

delegate the often-tedious programming needed to connect and orchestrate series

of computational steps to the language and/or runtime system.

Triana [28][66] uses a visual scientific workflow language that includes both

data- and control-flow constructs. Triana, like other XML web service-oriented

workflow systems, has a type system based on XSD schema datatypes [23]. XSD

datatypes are powerful and flexible, but introduce additional complexity.

Taverna [71], part of the myGrid project, is a scientific workflow system

focused on supporting life sciences experiments. Activities are implemented either

as web services or Java classes. Taverna relies on an XML-based language called

SCUFL for workflow specification. SCUFL has a type system, but data types are

restricted to MIME-types, names from the myGrid bioinformatics ontology, and

free form text.

VisTrails [26] is another system support scientific workflows. It is interesting

because it keeps extensive provenance information for both the data being

processed as well as workflows themselves. This allows VisTrails to treat workflows

as a kind of scientific notebook, documenting the evolving scientific process.

VisTrail uses a visual workflow language, and is focused on workflows intended to

be executed immediately and interactively.

Kepler [14] inherits a visual environment and the Modeling Markup Language

(MoML) from Ptolemy [51], and adds scientific workflow features like the ability to

68

test a workflow without needing to completely program all its activities, distributed

execution with a web-services framework or Globus grid [36], database access, and

other specialized actors.

Other workflow systems are designed to let users easily harness the power of

grid computing [35]. One example is WFEE [91], which uses a relatively simple

workflow description language (called xWFL) with grid-specific constructs. WFEE

features support for workflow parameterization using filenames, ranges of number,

and constants, which is important for scientific workflow applications. Another

example is GSFL [57], designed for Globus OGSA-based grids.

The Abstract Grid Workflow Language (AGWL) [32] was designed to specify

workflows in a way that balances abstract representation with enough information

to execute the workflow in a real environment. AGWL makes parallelism an

explicit construct in the language. This allows for a high degree of programmer

control at the expense of abstractness of the workflow specification. Explicit

parallelism may also increase the required level of sophistication for workflow

programmers. AGWL workflows are executed on a portable back-end system

called CGWL [33]. CGWL must be ported to a particular platform, and acts as

an interface between the platform and the workflow.

WOOL

We designed WOOL [50] as a language for specifying workflows abstractly,

similar in spirit to AGWL. To this end, the language deliberately excludes

information related to the runtime system. WOOL has an intentionally simple

syntax and semantic interpretation. Workflows are composed of “activities,” which

are basic “units” of computation. Each activity has a type which assigns it a set

69

of input and output ports and other properties. Connections between the ports

on activities, from outputs to inputs, establish data-flow relationships. WOOL

workflows can be composed hierarchically, with sub-workflows treated as activity

types in a higher-level workflow. Activity ports are typed such that WOOL can

check that the kinds of values flowing across ports match up.

WOOL includes a standard library of activity types, available to all workflows

and providing helpful functionality such as control flow primitives. The WOOL

language provides syntactic sugar to make certain control flow idioms easier to

type and read. These idioms are normalized at compilation time to the equivalent

sequence of language primitives.

Truly abstract workflow specifications must avoid making assumptions about

the architecture(s) where they will be run. As such, WOOL adopts a minimal set of

assumptions about the semantics of its data-flow execution model. In theory, this

makes WOOL workflows portable to almost any workflow execution system.

In many ways, Twig’s code generation scheme (described in Chapter III) was

inspired and influenced by our work on WOOL. Twig’s blocks are conceptually

similar in principle to WOOL’s activities – they are, essentially, functions that

transform one or more inputs to one or more outputs. In WOOL, inputs and

outputs could be “wired together” arbitrarily. In Twig we adopt a more formal

model. In particular, Twig’s blocks are composed via the sequence (Section 3.1)

and parallel (Section 3.1) composition operators. This gives Twig’s blocks more

structure than a WOOL workflow, and this is motivated by Twig’s need to match

the semantics of its code generation scheme to the semantics of its language based

on term rewriting.

70

In WOOL, the meaning of connections between activities was somewhat

informal. A connection from the output of one activity to the input of another

implied a dataflow relationship but, in keeping with WOOL’s abstract focus,

the exact meaning was left up to the implementation and runtime. Twig adopts

a similar approach for blocks – we leave the exact interpretation of blocks and

the connections between them up to the implementation for a particular target

language. In this way, we avoid tying ourselves to a particular target language.

71

CHAPTER III

CODE GENERATION

Twig is able to generate code in different target languages by relying on an

abstract, language-independent model with a small number of basic operations. To

implement a new target language, it suffices to implement these operations only.

In particular, there is no need to modify the core Twig interpreter, which assumes

only the language-independent model. This model for code generation was partly

inspired by our own previous work on the WOOL workflow programming language,

which we discuss in Section 2.4.

We make use of the code generation model in describing Twig’s semantics

in Chapter IV. It is also helpful in clarifying the precise operations which Twig

supports, without getting bogged down in the rather complicated details of

rendering code for a particular target language.

In Section 3.1, we describe the code generation model abstractly, and apart

from any specific target language. Then, in Section 3.2, we show how the model can

be specialized to generate C code.

Abstract Code Generation

We call a single unit of generated code a block. A block is an abstract

representation of some code in a target language, which accepts inputs and

produces outputs. We denote the set of all blocks M , and provide functions

72

in : M → N

out : M → N

which map a block in M to the number of its inputs and outputs,

respectively.

Sequential Composition

The first binary operation on blocks is sequential composition, which we

represent as “addition” on the elements of M , i.e.

+ : M ×M →M

Sequencing represents connecting two blocks “vertically,” feeding the outputs

of the first block to the inputs of the second. The block x + y ∈ M is defined if and

only if out(x) = in(y). The outputs of the first element must be equal in number to

the inputs of the second element because they are “fused” pairwise in the sequence

operation. We define

in(x+ y) = in(x)

since the inputs of the first block will become the inputs of the combined

block. Similarly,

out(x+ y) = out(y)

73

for the outputs.

Implementations must ensure that + is associative. That is, they must

enforce the fact that

∀a, b, c ∈M : (a+ b) + c = a+ (b+ c)

Parallel Composition

The second block operator is parallel composition. We represent this operation

as “multiplication” on the elements of M , i.e.,

× : M ×M →M

Parallel composition attaches two blocks “horizontally,” where each block

executes independently of one another, but they appear as a single block with

combined inputs and outputs. For the block x× y ∈M , we define

in(x× y) = in(x) + in(y)

and

out(x× y) = out(x) + out(y)

Implementations must ensure that × is associative, that is that for all a, b, c ∈

M , (a× b)× c = a× (b× c).

74

Permutation and Identity Blocks

We define a set of special blocks in M called permutation blocks. These

blocks represent the primitive operation of “wiring” m inputs to n outputs in

arbitrary order, without altering the values. We call the block permuting m inputs

to n outputs Πm(i1, . . . , in), where

i1, . . . , in ∈ {i | 1 ≤ i ≤ m}

Identity blocks are a subset of the permutation blocks. The simplest of these

is Π1(1), which acts as an identity transformation with one input and one output.

That is, the block Π1(1) takes its single input and passes it unchanged to its single

output. We refer to this block as I1. There are an unlimited number of identity

transformations which take n inputs to n outputs without reordering. We refer to

these blocks as In, where 1 ≤ n, and In = Πn(1, 2, . . . , n). By definition, in(In) =

out(In) = n.

When n is implied from the context, we will sometimes write I for In. For

example, when we write x + I, we mean x + In where it is understood that n =

out(x).

Since the blocks I represent identity operations, we assign them a special

meaning in the semantics. Namely, I acts as both a left- and right-identity under

the sequence operator. So, for all x ∈ M , x + I = x and I + x = x. We usually use

I as a “no-op” block.

It is worth noting one further identity, namely that In is equivalent to the

n-way parallel composition of I1, that is

75

In = I1 × . . .× I1︸ ︷︷ ︸
n

Permutation blocks may be used to “drop” values by not wiring an input

to any output, or to “duplicate” a value by wiring an input to more than one

output. We leave the exact meaning of dropping or duplicating values depends

on the implementation. The reason for this design choice is that duplicating a value

may mean different things in different target languages. For example, depending on

the value the implementation may need to allocate memory and perform a copy

operation. Or, it might simply copy a reference to the value’s underlying data.

Therefore, Twig ignores some potential identity relationships among permutation

blocks. Figure 1 shows the block Π1(1, 1) + Π2(2), a sequence of two permutation

blocks. The top block “duplicates” its single input, while the second block “drops”

its first input and outputs its second. The combination should pass a value

through unchanged, i.e., be equivalent to I. Twig does not assign semantics to

duplicating or dropping elements and thus cannot consider the illustrated block

to be equivalent to I.

Note that any object that provides and conforms to the operations above can

be “generated” by Twig. Because the system is so general, this could include trivial

or non-sensical implementations. The code generation implementation should

conform to the intuitive interpretation of blocks and their composition.

Generating C

We have adapted the model described above to generate C code. Our

implementation must provide a way to construct a primitive block from an

arbitrary chunk of C code since the abstract model, by design, does not provide

76

∏1(1,1)

∏2(2)

FIGURE 1. A sequence of two permutation blocks.

this facility. In our implementation for C, a primitive block is a string of C code

with some specially-named variables indicating inputs and outputs. In fact, our

implementation makes no attempt to parse the C language per se – it treats code

as plain text with the aforementioned special variables.

To use the block’s inputs, the code references escaped variables named

$in1, $in2, and so on. Similarly, the variables $out1, $out2, and so on represent

the outputs. We allow $in as a synonym for $in1, and $out for $out1, for the

common case where a block has just one input and/or output. When the code is

rendered, these variables will be replaced with unique, generated variable names.

For example, the code

$out = foo($in);

represents a primitive C block with one input and one output. Figure 2 shows

a visual representation of two primitive blocks of C code, labeled A and B, with

inputs on top and outputs on the bottom.

77

$out1 = $in1*2;

in1

out1

$out1 = $in1+1;

in1

out1

A B

FIGURE 2. Two basic blocks.

To implement block sequencing in C, Twig generates variable names such that

the output(s) of the first block in the sequence are the same as the inputs(s) of the

second, and the text is concatenated. Figure 3 shows the two blocks from Figure 2

composed sequentially. The variable “tmp” is created, and renaming performed, so

that the outputs of block A flows to the inputs of block B.

tmp = $in1*2;
$out1 = tmp+1;

in1

out1

A+B

FIGURE 3. Sequential block composition.

78

Parallel composition for C is implemented similarly; Twig generates

independently-named variables for the inputs and outputs of the two blocks, and

then concatenates the text. Figure 4 shows the two blocks from Figure 2 composed

in parallel. Renaming is performed such that the composed block has two inputs

and two outputs.

$out1 = $in1*2;
$out2 = $in2+1;

in1

out1

A×B in2

out2

FIGURE 4. Parallel block composition.

Implementing the permutation and identity blocks is a matter of performing

the appropriate bookkeeping and renaming on the variable names. Note that this

implementation does not perform resource management, such as allocating or free

memory, as part of the permutation operations. The generated code will follow C’s

semantics for passing data by value.

79

CHAPTER IV

THE TWIG LANGUAGE

Formal Semantics

Twig is based on System S [88], which was originally designed as a core

language for term rewriting systems [19]. A review of term rewriting and System S

is given in Section 2.3. In Twig, use the operators of System S to combine primitive

rules into complex expressions. An expression is applied to an input term, which

represents some type in the target language. The expression may transform the

given type, generating code as a side effect, or the transformation may fail. In

this way, different code can be generated depending on the input term. Twig’s

semantics are inspired by Fig [78], but extended to incorporate our code generation

model. In the following sections we describe this process more formally.

Terms

Twig programs operate on values called terms. Terms represent tree-

structured data with labeled internal nodes, a versatile data type useful in a variety

of applications. For example, abstract syntax trees are naturally represented as

terms.

We define the grammar for constructing terms as follows:

t := x | c | f(t1, . . . , tn)

A term is either a variable x, a constant c, or the application of a constructor

f to at least one other term. In Twig’s syntax, constants and constructors can

80

be any string of characters beginning with a lower-case letter. The only string

excluded from this condition is the special constructor tuple (see Section 4.1,

below). Variables are represented by strings of characters beginning with a capital

letter; in our presentation we will typically use a single capital letter only, e.g., X or

Y. We use a fixed-width font when presenting terms, e.g., the constant term myterm,

or the constructed term with a variable cons(myterm1,X).

Following the notation of System S, we denote the set of all variables X ,

and the set of all terms containing variables T (X). We denote the set of all terms

without variables, known as ground terms, as T .

In many systems, terms are typed through the use of signatures [19]. That

is, certain terms can be defined as valid in a particular domain, and terms not

found to conform can be flagged as errors. Twig could be extended to support

term signatures, and indeed this might be useful. In our current work, however,

we consider only untyped terms.

For the purposes of Twig’s semantics, the meaning of a particular term (other

than tuples) is abstract. Terms are defined by their use in the program’s rules,

described below.

Tuples

Twig recognizes a special kind of term: tuples. The tuple elements are

represented as the sub-terms of a term with a special constructor: tuple. Tuples

may have any length. Twig’s syntax equates the absence of any constructor with

the presence of the tuple constructor. For example, the syntax (string,int) is

interpreted as the tuple(string,int). This term represents a tuple of length two,

whose first element is string and whose second element is int.

81

The size of a tuple is simply the cardinality of its children. We will sometimes

write tuplen(. . .) to indicate a tuple of length n, where the length is not otherwise

clear from the context.

One complication arises since we permit tuples to be nested to arbitrary

depth. For example the term

tuple(tuple(int, float), tuple(double))

is a nested tuple. In our semantics, we will require the width of a tuple,

defined as

width(t) =

∑i=1

n width(ti) if t = tuple(t1, . . . , tn)

1 otherwise

Intuitively, the width of a tuple corresponds to its size after being “flattened,”

where the elements of nested tuples are pushed up, recursively, to the top level. If

we flattened the tuple in the example above, we would get

tuple(int, float, double)

and its width would be three.

Terms representing types

In Twig, terms are used to represent types in a target language. For example,

we use terms such int and float to represent primitive types in C. Terms built

with constructors can represent types with some structure, e.g., the term ptr(int)

82

can represent a C pointer to an integer. More complicated terms may involve

multiple children, and may be nested to any depth. For example, the term

struct(int, float, struct(ptr(char)))

can represent a structure with three fields: an int, a float, and a second

structure with a single string (pointer to char) field.

The mapping between terms and types in the target language is a

configuration option, customizable for a particular domain. The mapping need

not be injective, that is, multiple terms in Twig may represent a single type in

the target language. For example, you might have the distinct terms string and

ptr(char) both map to a char pointer in C.

Expressions

Twig expressions can be either primitive rules (Section 4.1) or else built from

other expressions using operators (Section 4.1). We denote the set of all expressions

S. An expression s ∈ S maps ground terms T to elements of the set (T ×M)∪{⊥},

i.e., either a pair (t′,m) where t′ ∈ T and m ∈M is a block of generated code in the

set M (see Chapter III), or else the special, distinguished value ⊥. Formally, s ∈ S

is a function:

s : T → ((T ×M) ∪ {⊥})

Following Fig’s notation, we use ⊥ to denote “failure.” In particular, ⊥ is

used in the semantics for the operators described in Section 4.1.

83

As with System S and Fig, Twig allows expressions to be named. An

expression’s name may be used in place of itself within other expressions. The

syntax is

v = s

where v is an expression identifier and s ∈ S is an expression of the form

described below. A Twig program is a list of such name/expression assignments.

To prevent circular references, expressions may only reference names that have been

previous defined (i.e., appearing before the expression in the program text). For the

same reason, expressions may not reference their own name. For example:

foo = foo ; bar

is not allowed, because the definition of foo references foo itself. Programs

requiring recursive expressions should use the #fix fixed-point operator instead.

There is a special expression name, main, which designates the top-level

expression for the program.

Primitive Rules

The simplest Twig expressions are primitive rules, which describe a single

step of a type transformation. Since Twig terms represent types in a target

language, a primitive rule in Twig describes how to transform an instance of one

type into an instance of another in that language.

The syntax for primitive rules is

[p1 -> p2]<<< m >>>

84

where p1, p2 ∈ T (X), i.e. p1 and p2 are non-ground terms potentially having

variables, with the condition that variables appearing in p2 must also appear in p1.

These syntactic elements are called the input pattern and output pattern of the rule,

respectively. The element m ∈ M is a block representing some code in the target

language (see Section III). We can write the semantics of primitive rules formally

with two statements:

t
[p1 -> p2]<<< m >>>−−−−−−−−−−−−−−→ (t′,m) if ∃σ : σ(p1) = t ∧ σ(p2) = t′ (4.1)

t
[p1 -> p2]<<< m >>>−−−−−−−−−−−−−−→ ⊥ if 6 ∃σ : σ(p1) = t (4.2)

The statement in (4.1) says that the rule [p1 -> p2]<<< m >>> rewrites t

to (t′,m) if there exists a substitution sigma mapping variables to ground terms

such that the substitution of σ in p1 is t and the substitution of σ in p2 is t′. The

statement in (4.2) says that the rule [p1 -> p2]<<< m >>> fails if there exists no

substitution mapping p1 to t.

Note that these semantics allow for some relatively sophisticated matching

tasks. For example, if the same variable appears more than once in the input

pattern, it must be bound to the same sub-term. For example, the input pattern

foo(X,X) would match foo(bar,bar) but not foo(bar,baz). This can be

useful when we want to test that a term has some symmetric properties, without

necessarily needing to care about the specific sub-terms involved. In addition,

variables appearing in the input pattern need not appear in the output pattern;

extraneous sub-terms can be matched and eliminated in this way.

Informally, the primitive rule above transforms t to (t′,m) if and only if

85

1. t successfully matches the input pattern p1, binding terms to variables in

sigma and

2. t′ is built, by substituting the bound values in σ into the variables of p2;

and otherwise fails.

In our implementation, when a term is matched we mean that Twig attempts

to unify [19] it with the input pattern. In fact, Twig’s matching algorithm is

simpler than full unification, since there is no equational theory and the input

term may not contain variables (i.e., must be a ground term). If unification is

successful, variables are bound to their corresponding terms in an environment.

The environment is then used to construct the output term by substitution into the

output pattern. See [19, 88] for details on unification algorithms.

As an example, consider the following primitive rule. In C it is easy to

convert an integer value to floating point. Twig’s syntax for writing this rule is

as follows:

[int -> float] <<< $out = (float)$in; >>>

In this example, if the input term matches the input pattern int, then the

output will be the term float along with the code block. If the input term does

not match int then the output will be ⊥.

As mentioned, input and output patterns can have variables in place of terms

or sub-terms. For example the rule

[ptr(X) -> X] <<< $out = &$in; >>>

describes a transformation of any C pointer type to its referent. The variable

X is bound to the corresponding value of the matched input on the right, and

86

that value is substituted for the variable where it appears on the left. Variables

may stand in place of a single term only, not constructors; e.g., patterns such as

[X(int) -> X] are not allowed.

Operators

Expressions can be combined using Twig’s operators. In the following

semantics, let t range over terms, m range over blocks, and s range over

expressions, i.e., either a primitive rule, or else another expression built with

operators.

The sequence operator, written as an infix semi-colon (;), chains the

application of two rules together by sending the output of the first to the input

of the second. The combined expression fails if either sub-expression fails. With

this operator, simple rules can be composed into multi-step transformations. Upon

success, the result blocks are combined sequentially using the block sequence

operation (see Section 3.1). The formal semantics are:

t
s1−→ (t′,m1) t′

s2−→ (t′′,m2)

t
s1;s2−−→ (t′′,m1 +m2) (4.3)

t
s1−→ ⊥

t
s1;s2−−→ ⊥ (4.4)

t
s1−→ (t′,m) t′

s2−→ ⊥
t

s1;s2−−→ ⊥ (4.5)

87

The sequence operator is associative, that is for any expressions f, g, h,

(f ; g);h is equivalent to f ; (g;h). This allows us to write expressions like f ; g;h

without ambiguity. We prove this fact in Section A.1.

Left-biased choice, written as a vertical bar (|), will attempt to apply the first

rule expression to the input, and if it succeeds then its output is the result. If it

fails, it attempts to apply the second rule instead. This operator allows different

code to be generated depending on the input type. Formally:

t
s1−→ (t′,m1)

t
s1|s2−−→ (t′,m1) (4.6)

t
s1−→ ⊥ t

s2−→ (t′,m2)

t
s1|s2−−→ (t′,m2) (4.7)

t
s1−→ ⊥ t

s2−→ ⊥
t

s1|s2−−→ ⊥ (4.8)

Like the sequence operators, left-biased choice is associative. For any

expression f, g, h, (f |g)|h is equivalent to f |(g|h), allowing us to write f |g|h

without ambiguity. We prove this fact in Section A.1.

Twig includes a variety of other basic operators. The identity (T) expression

will always succeed, returning its input and an identity block. Conversely, failure

(F) will always return ⊥.

t
T−→ (t, I) (4.9)

88

t
F−→ ⊥ (4.10)

The unary operator test (?) succeeds only if its argument succeeds, returning

the original term and discarding the result term and block. This operator is useful

for examining a term’s structure without actually making use of its sub-terms.

t
s−→ (t′,m)

t
?s−→ (t, I) (4.11)

t
s−→ ⊥

t
?s−→ ⊥ (4.12)

Negation (¬) also takes a single expression argument. It succeeds only if its

argument fails on the input, returning the original term.

t
s−→ (t′,m)

t
¬s−→ ⊥ (4.13)

t
s−→ ⊥

t
¬s−→ (t, I) (4.14)

Twig also provides some operators especially for tuples.

The congruence operator applies a tuple of expressions to the elements of

a tuple term, pairwise, and returns a tuple of results. It fails in case any of the

individual rule applications fail. Upon success, the result block is the parallel

composition (see Section 3.1) of the individual result blocks. The formal semantics

are as follows:

89

t1
s1−→ (t′1,m1) · · · tn

sn−→ (t′n,mn)

tuple(t1, . . . , tn)
(s1,...,sn)−−−−−→ (tuple(t′1, . . . , t

′
n),m1 × . . .×mn) (4.15)

ti
si−→ ⊥

tuple(. . . , ti, . . .)
(...,si,...)−−−−−→ ⊥ (4.16)

tuple(t1, . . . , tm)
(s1,...,sn)−−−−−→ ⊥ if m 6= n (4.17)

t
(s1,...,sn)−−−−−→ ⊥ if t 6= tuple(. . .) (4.18)

The family of unary branch operators apply a single expression to one, all, or

some of a tuple’s elements, depending on the variant.

The branch operator #one attempts to apply its parameter s to a single

element: the first element, from left to right, for which s does not fail. The other

elements of the tuple are unchanged. The expression fails if s fails for each element.

The formal semantics for #one are as follows:

ti
s−→ (t′i,mi)

tuple(. . . , ti, . . .)
#one(s)−−−−→ (tuple(. . . , t′i, . . .), (I × . . .×mi × . . .× I)) (4.19)

t1
s−→ ⊥ · · · tn

s−→ ⊥

tuple(t1, . . . , tn)
#one(s)−−−−→ ⊥ (4.20)

t
#one(s)−−−−→ ⊥ if t 6= tuple(. . .) (4.21)

90

The branch operator #all applies its parameter s to each element of a tuple.

The expression fails if s fails for any element. The formal semantics for #all are:

t1
s−→ (t′1,m1) · · · tn

s−→ (t′n,mn)

tuple(. . . , ti, . . .)
#all(s)−−−−→ (tuple(. . . , t′i, . . .), (m1 × . . .×mn)) (4.22)

ti
s−→ ⊥

tuple(. . . , ti, . . .)
#all(s)−−−−→ ⊥ (4.23)

t
#all(s)−−−−→ ⊥ if t 6= tuple(. . .) (4.24)

The branch operator #some applies its parameter s to at least one element of

a tuple. The expression fails if s fails for each elements. The formal semantics for

#some are:

P (t) =

 t′ if t
s−→ (t′,m)

t if t
s−→ ⊥

Q(t) =

 m if t
s−→ (t′,m)

I if t
s−→ ⊥

∃i : i ∈ {1..n} ∧ ti
s−→ (t′i,m)

tuple(t1, . . . , tn)
#some(s)−−−−−→ (tuple(P (t1), . . . , P (tn)), Q(t1)× . . .×Q(tn)) (4.25)

t1
s−→ ⊥ · · · tn

s−→ ⊥

tuple(t1, . . . , tn)
#some(s)−−−−−→ ⊥ (4.26)

91

t
#some(s)−−−−−→ ⊥ if t 6= tuple(. . .) (4.27)

A projection extracts a single indexed element from a tuple, discarding the

other tuple elements. The formal semantics are:

tuple(. . . , ti, . . .)
#i−→ (ti,Π(i)) (4.28)

tuple(t1, . . . , tn)
#i−→ ⊥ if i > n (4.29)

t
#i−→ ⊥ if t 6= tuple(. . .) (4.30)

The path unary operator applies a rule to a single indexed tuple element,

leaving the other elements unchanged.

ti
s−→ (t′i,mi)

tuple(. . . , ti, . . .)
#i(s)−−−→ (tuple(. . . , t′i, . . .), I × . . .×mi × . . .× I) (4.31)

ti
s−→ ⊥

tuple(. . . , ti, . . .)
#i(s)−−−→ ⊥ (4.32)

tuple(t1, . . . , tn)
#i(s)−−−→ ⊥ if i > n (4.33)

t
#i(s)−−−→ ⊥ if t 6= tuple(. . .) (4.34)

92

The permutation operator allows arbitrary permutation of a tuple’s elements,

including duplicating or dropping elements. The operator is parameterized by

the width of the input tuple and a list of indices into the tuple. The output will

rearrange the elements of the tuple in the order of the indices. The expression will

fail if the input does not have the given width, or if the input is not a tuple.

tuple(t1, . . . , tn)
#permuten(x1,...,xm)−−−−−−−−−−−−→ (tuple(tx1 , . . . , txm),Πw(yx1 , . . . , yxm))

where

{x1..xm} ∈ N

w =
∑n

j=1 width(ti)

bi =

 0 if i = 1∑i−1
j=1 width(ti) if i > 1

yi = bi + 1, . . . , bi + width(ti)

(4.35)

tuple(t1, . . . , tm)
#permuten(...)−−−−−−−−→ ⊥ if m 6= n (4.36)

t
#permuten(...)−−−−−−−−→ ⊥ if t 6= tuple(. . .) (4.37)

The #permute operator has relatively complex rules for constructing the

result block. This is because blocks must account for each element of a tuple with

a separate input and output. The #permute operator, by contrast, rearranges

the top-level tuple but must preserve the ordering of elements within sub-

tuples. Figure 5 shows the application of #permute4(4, 3, 2, 1) to the tuple term

93

((t1, t2, t3), t4, (t5, t6), t7) – the top-level tuple elements are permuted, while in the

interior tuples, ordering is preserved.

((t1,t2,t3),t4,(t5,t6),t7)

(t7,(t5,t6),t4,(t1,t2,t3))

FIGURE 5. Permutation of tuples.

The #fan operator takes a integer parameter n, and replicates the input term

n times in an n-element tuple. It is similar to #permute but does not require that

its input be a tuple.

t
#fan(n)−−−−→ (tuple(t, n. . ., t),Πw(y, n. . ., y))

where

w = width(t)

y = 1, . . . , w

(4.38)

The fixed-point operator, #fix, allows Twig to express rules for handling

recursively defined data types like lists and trees. An application of x within the

expression #fixx(s), that is, x appearing within s, is essentially a recursive call to

the expression #fixx(s).

t
s[x 7→#fixx(s)]−−−−−−−−→ (t′,m)

t
#fixx(s)−−−−−→ (t′,m) (4.39)

t
s[x 7→#fixx(s)]−−−−−−−−→ ⊥
t

#fixx(s)−−−−−→ ⊥ (4.40)

94

CHAPTER V

USER-DEFINED EXPRESSION REDUCTIONS

In addition to the code generation and core semantics discussed in

Chapters III and IV, we have outfitted Twig with semantics that allow users to

add a customized optimization phase. We call this facility expression rewriting or

expression reduction.

Expression reductions are an addition to the core semantics of Twig, not a

necessary feature. Our implementation of Twig can be directed to ignore reduction

directives.

An expression reduction is defined by a directive, written like so:

@reduce e1 => e2

Where e1 and e2 are Twig expressions (see Chapter IV). Reduction directives

can appear anywhere within a Twig program.

Informally, the directive above will cause the expression e1 to be replaced with

the expression e2 anywhere it appears in the top level main expression, before the

program is evaluated on its input. Expression names are substituted with their

values within the main expression and, for each directive, within e1 and e2 before

substitution begins. Directives are applied in the order in which they appear within

the program text, and the main expression is transformed iteratively.

In order to match expressions for substitution, we need a notion of equality

among expressions. Unfortunately, in the case of primitive rules, this is somewhat

tricky. For one, we have only defined syntactic equality among the terms in T (X)

95

used for the input and output patterns. A better solution might involve something

like alpha-equivalence among terms, allowing us to equate patterns like foo(X)

with foo(Y). Additionally, we do not define equality among abstract blocks because

such a notion depends on the target language and thus the implementation.

We sidestep these issues by stipulating that there is no equality among

primitive rules. That is, each primitive rule that appears in the program is assigned

a unique identifier (having a well-defined notion of equality), and then matched

by that identifier. This allows users to assign primitive rules to expression names,

reference those names in reduction directives, and have the name stand for the

primitive rule in a well-defined way. It also means that primitive rules should not

appear on the left-hand side of reduction directives, since they will be assigned a

unique identifier distinct from any appearing within the program, and thus never

matched.

Expression Normalization

In addition to expression reduction directives provided by the user, Twig

is able to apply some reductions based on the characteristics of its expression

semantics. This is known as normalization of the expression.

The goal of the normalization procedure is to maximize the length of sequence

expressions. This goal is motivated by our intuition that it is relatively easier for

people to reason about sequence than the other operators, and so most user-defined

reductions are likely to be in terms of sequences. For example, we have found in

practice that reduction directives such as

@reduce f ; g => h

96

are quite common in our own work. Therefore, we would like to transform

the program without otherwise altering its meaning to maximize the length of

sequences, so that user-defined expression reductions based on sequences have the

best chance of matching.

To that end, before user-defined reduction directives are applied, Twig can

attempt to rewrite expression according to some built-in rules. Currently, we

have identified two expression transformations which preserve the meaning of the

program while rearranging expressions to prefer sequence over other operators.

First, sequence distributes over choice from the left. Stated formally:

∀f, g, h ∈ S : f ; (g|h) = (f ; g)|(f ;h)

We exploit this identity by rewriting any expression of the form f ; (g|h) to

(f ; g)|(f ;h), which preserves its meaning but creates longer sequences.

Second, congruence distributes over sequence. Stated formally,

∀r1..rn, s1..sn ∈ S : {r1, . . . , rn}; {s1, . . . , sn} = {r1; s1, . . . , rn; sn}

Again, we can exploit this identity by rewriting the left-hand side of the

equation to the right, which preserves the meaning of the expression but gives

longer sequences.

We prove these identities in Section A.2, below. Note that these built-in

identities could not be expressed by a user as reduction directives in the code,

because we do not allow variables in the expressions. This is an area of future work.

97

Implementation

Our current implementation of reduction directives is rather ad hoc. We

simply export the main expression as a string after substituting expression names

for their values and primitive rules for their unique identifiers, as described above.

Then, we process the string in a separate term rewriting tool, and import it back

into Twig’s internal expression representation. We have used the tool Maude [64]

successfully for rewriting, although there is no particular reason that other tools,

such as Stratego [85], could not be used instead.

To perform normalization we use Maude’s functional modules. Here is a

(partial) listing for the functional module we use to rewrite expressions of the form

f ; (g|h) to (f ; g)|(f ;h):

fmod TWIG-EXPR is

protecting QID .

sort Expr .

op rule : Qid -> Expr [ctor] .

op _;_ : Expr Expr -> Expr [ctor assoc] .

op _|_ : Expr Expr -> Expr [ctor assoc] .

vars F G H : Expr .

eq F ; (G | H) = (F ; G) | (F ; H) .

endfm

As an example, we can export a very simple Twig expression to a string, and

substituting unique identifiers rule(’a), rule(’b), and so on for primitive rules as

described above, yielding something like this:

rule(’a) ; (rule(’b) | rule(’c) | rule(’d)) .

98

After applying the rewriting specified in the Maude module above, we get:

(rule(’a) ; rule(’b)) | (rule(’a) ; rule(’c))

| (rule(’a) ; rule(’d))

which we can import back into Twig and evaluate as usual.

One intriguing alternative implementation would use Twig itself to rewrite

its own expressions. Twig’s rules operate on terms, and Twig expressions can be

represented as terms, so the approach would be straightforward to implement. This

is a project we plan to pursue in the future.

Discussion

As we will demonstrate in Chapter VII, expression reductions are a powerful

tool that allows users a high degree of control over how Twig evaluates programs.

In particular, they allow users to introduce domain-specific optimizations for

a given set of rules. Other tools, such as the Glasgow Haskell Compiler, have

introduced similar facilities in their tools with promising results [73].

As with all powerful tools, however, caution must be exercised when using

reductions. Because they allow arbitrary, user-defined rewriting of expressions, it is

easy to introduce errors or even rules which will cause non-termination of the Twig

tool.

For example, if a user introduces a directive such as

@reduce f => f;f

then Twig will keep rewriting f to f;f, then to f;f;f;f, and so on, ad

infinitum. Other cases may be more subtle, especially when reduction directives

interact. For example, the two reduction directives:

99

@reduce a => b;c

@reduce c => a

are individually harmless but, if they are both introduced in the same

program, they will cause a chain of infinite expansion.

In general, the set of expression reductions including the rules described in

Section 5.1 and any user-defined directives, should be normalizing for expressions.

That is, application of the set of rules should rewrite any expression to a unique

form, and terminate. For more details on normal forms and rewriting, see

Section 2.3.

100

CHAPTER VI

THE DESIGN OF TWIG’S INTERPRETER

The twigc Application

Our implementation of Twig is called twigc. This command line application

expects as input a .twig file containing a list of named rule expressions along with

a main rule expression, as described in Section 4.1. It also expects an initial value

(i.e., a term, representing a type in the target language), which will be used as

the input to the main rule expression. As discussed below, our implementation

supports both C and Python as target languages.

To render C, Twig must be configured with a mapping from terms to C types.

Currently, this mapping is provided with a simple key/value text file. Note that

this mapping is not necessary for Python, since types do not need to be declared in

that language.

If the input value can be successfully rewritten using the main rule expression

provided, then Twig will output the rewritten term along with the generated block

of code. If desired, this code block may be redirected to a separate file. In C, for

example, the file may then be included in a program using an #include directive.

Embedded Design

The twigc tool is written in Haskell. We have found Haskell very well suited

to this kind of interpreter development. This is due primarily to Haskell’s ability to

embed domain-specific languages within itself [47].

101

In Haskell, we can easily describe the structure of Twig’s expressions as a

datatype. Here is a simplified version of our expression datatype in Haskell:

data RuleExpr = Rule Pattern Pattern String

| Seq RuleExpr RuleExpr

| LeftChoice RuleExpr RuleExpr

Our “interpreter” is then a function that takes a RuleExpr, and yields

another function having the type

Term− > Maybe(Term, Block)

This is the type of a function takes a term (represented by the datatype

Term) and returns a value of type Maybe (Term,Block). This type represents

a choice (the Maybe constructor) between either a pair of a term and a block,

or else the single distinguished value Nothing, representing ⊥ or failure in our

semantics. Implementing the interpreter is straightforward. For example, here is

the (somewhat simplified) code for Twig’s sequence operator:

eval (Seq e1 e2) t =

case eval e1 t of

Nothing -> Nothing

Just (t’,m1) ->

case eval e2 t’ of

Just (t’’,m2) -> Just (t’’,m1 ‘seqn‘ m2)

Nothing -> Nothing

And here is left-biased choice:

102

eval (LeftChoice e1 e2) t =

case eval e1 t of

Just (t’,m) -> Just (t’,m)

Nothing ->

case eval e2 t of

Just (t’,m) -> Just (t’,m)

Nothing -> Nothing

We find this code quite elegant.

Code Generation

Our implementation supports generation of two different target languages: C

and Python. We have described the C generation scheme and our implementation

in Section 3.2. Our Python implementation is quite similar. In fact, generating

Python is a bit simpler, because we do not have to worry about declaring generated

variables before they are used.

We have added an experimental feature where the programmer can select

between C and Python in the same Twig program file using a special directive. We

note this feature because we make use of it in the example in Section 7.2.

Consider the Twig file:

@language{Python}

r1 = [py(int) -> py(float)] <<<

$out = float($in)

>>>

103

@language{C}

r2 = [py(float) -> double] <<<

$out = PyFloat_AsDouble($in);

>>>

main = r1;r2

Note the directives @languagePython and @languageC. These directives

inform Twig that the code blocks in the primitive rules following the directive are

written in the language indicated. If we evaluate this program on the input term

py(int), the output term will be a double, and Twig will generate two code files,

one for C, and another for Python. The generated Python file wraps the Python

output in a function, like this:

Filename: output.python

def gen1_py(in):

gen1 = float(in)

return gen1

And the C file automatically calls the Python function using the Python/C

API [12]:

void gen(PyObject *in) {

PyObject *gen1;

double gen2;

gen1 = call_python("output","gen1_py",in);

gen2 = PyFloat_AsDouble(gen1);

104

}

The C program invokes the generated Python function via the call python

function. The function accepts a single Python value as an input argument, along

with some parameters indicating which Python function to invoke, and returns a

single Python value. The code for our call python function is as follows:

PyObject *call_python(char *module, char *f, PyObject *in) {

PyObject *module,*dict,*func,*out;

module = PyImport_ImportModule(module);

dict = PyModule_GetDict(module);

func = PyDict_GetItemString(dict,f);

out = PyEval_CallObject(func,in);

return out;

}

This approach is promising, but at the moment is relatively ad hoc. We are

able to automatically combine the two languages in this way only for simple data

types, and in particular tuple terms cannot be passed from Python to C. Ideally,

we would provide a way for user’s to customize the call python function, so that

multi-language facilities other than the Python/C API could be used.

Expression Reductions

We have described our implementation of Twig’s facility for user-defined

expression reductions in Section 5.2. Here, we note only that expression reductions

are implemented in a way that is orthogonal to the rest of the interpreter – they

can be turned on or off as needed.

105

CHAPTER VII

EVALUATION OF TWIG

In this chapter we will show how Twig may be used for a variety of

applications. First, in Section 7.1, we compare Twig against SWIG, the best-

known system that uses typemaps. In Section 7.2, we demonstrate how Twig’s

abstract code generation model can be used to work with multiple target languages

in the same typemap. Finally, in Section 7.3, we show how GPU programming,

a seemingly dissimilar problem, can also benefit from Twig’s approach to multi-

targeted programming.

Twig Compared

We now walk through the construction of a simple typemap in Twig. In this

example, our goal is to convert a set of C structures representing polar coordinates

to a suitable representation in Python. The C structure comes in both a float and

double variety. The Python code expects a Cartesian coordinate system, not polar,

so we must perform this conversion as well. The C structures we will convert are

defined in a header file, like so:

struct PolarD {

double r;

double theta;

};

struct PolarF {

float r;

float theta;

106

};

The first step is to unpack each polar structure into a Twig tuple. We define

two rules to do exactly this:

unpackd = [polard -> (double,double)] <<<

$out1 = $in.r;

$out2 = $in.theta;

>>>

unpackf = [polarf -> (float,float)] <<<

$out1 = $in.r;

$out2 = $in.theta;

>>>

Next, we define a rule for casting floats to doubles, and use the congruence

operator to lift it to a conversion on tuples. This cast is sequenced after unpackf so

that that rule will produce doubles instead of floats. We combine that conversion

with unpackd using the choice operator, and name the new rule unpack. This new

rule will accept either a polarf or a polard, and produce a 2-tuple of doubles.

f2d = [float -> double] <<<

$out = (double)$in;

>>>

unpack = (unpackf;{f2d,f2d}) | unpackd

Next, we define the conversion from polar to Cartesian coordinates.

107

polarToX = [(double,double) -> double] <<<

$out = $in1 * cos($in2);

>>>

polarToY = [(double,double) -> double] <<<

$out = $in1 * sin($in2);

>>>

These two rules take a pair of doubles, which represent a polar radius and

angle, and convert the pair to the x (respectively, y) component of the equivalent

Cartesian representation. But, we need both the x and y components, and we only

have one polar pair. We use the fanout operator to duplicate the pair, and then

sequence it with a congruence of the x and y rules, like so:

polarToCart = #fan(2);{polarToX,polarToY}

The rule polarToCart will convert a polar coordinate pair of doubles to a

Cartesian pair of doubles.

Next, we define rules to convert from C types to Python. We use Python’s C

interface API [12], which allows us to work with Python values in C.

d2pyf = [double -> pyfloat] <<<

$out = PyFloat_FromDouble($in);

>>>

mkpytuple = [(pyfloat,pyfloat) ->

pytuple(pyfloat,pyfloat)]

<<<

108

$out = PyTuple_Pack(2,$in1,$in2);

>>>

pack = {d2pyf,d2pyf};mkpytuple

The first rule, d2py converts a C double to Python’s floating-point type,

which we call pyfloat. 1 The next rule, mkpytuple will combine a pair of

pyfloats into a single Python tuple object (not a Twig tuple). The pack rule

combines these in the usual way to convert a pair of C doubles to a Python tuple.

Finally, by placing these parts in sequence, we achieve our goal: a single

rule which will convert either a PolarD or PolarF struct in C into a Cartesian

coordinate in Python. We call the final rule convert.

convert = unpack;polarToCart;pack

We can invoke Twig with this typemap as its program. To generate the C

code to perform the transformation, we apply convert to one of the terms polarf

or polard. If we choose polarf, Twig will generate the code to convert a PolarF

struct, like so:

PyObject *convert(struct PolarF gen1) {

float gen2,gen3;

double gen4,gen5,gen6,gen7;

PyObject *gen8,*gen9,*gen10;

gen2 = gen1.r;

1In the API, a pyfloat is actually mapped to a more general PyObject *; one interesting
benefit of Twig is that it can potentially track more detailed type information than would be
available from API itself.

109

gen3 = gen1.theta;

gen4 = (double)gen2;

gen5 = (double)gen3;

gen6 = gen4 * cos(gen5);

gen7 = gen4 * sin(gen5);

gen8 = PyFloat_FromDouble(gen6);

gen9 = PyFloat_FromDouble(gen7);

gen10 = PyTuple_Pack(2,gen8,gen9);

return gen10;

}

Versus SWIG

It is interesting to contrast Twig’s implementation of the typemap example

above with the equivalent typemaps in SWIG. In that system, programmers are

required to construct two separate typemaps by hand, like so:

%typemap(out) struct PolarD %{

double r = $1.r;

double theta = $1.theta;

double x = r * cos(theta);

double y = r * sin(theta);

PyObject *px = PyFloat_FromDouble(x);

PyObject *py = PyFloat_FromDouble(y);

$result = PyTuple_Pack(2,px,py);

%}

110

%typemap(out) struct PolarF %{

float fr = $1.r;

float ftheta = $1.theta;

double r = (double)fr;

double theta = (double)ftheta;

double x = r * cos(theta);

double y = r * sin(theta);

PyObject *px = PyFloat_FromDouble(x);

PyObject *py = PyFloat_FromDouble(y);

$result = PyTuple_Pack(2,px,py);

}

%}

Even in this simple example, there is a considerable amount of duplicated

code across the two typemaps. This duplication is unnecessary in Twig since simple

typemaps, such as those to convert polar to Cartesian coordinates or convert C

doubles to Python, can be recombined and reused. In addition, the choice operator

helps to reduce the overall number of typemaps needed, since one typemap can be

used to generate different code depending on the input.

Twig has a few other advantages over SWIG. First, Twig allows sets of types

to be mapped together using tuples. This is a common problem – consider function

argument lists, or a pointer paired with a length to form an array.

Second, Twig has greater flexibility with respect to target languages. In

particular, Twig can be extended to generate target languages other than C. Our

implementation, for example, is able to generate Python as well as C. SWIG is

currently able to generate only C.

111

Versus Fig

Twig shares much of its core semantics with Fig, but Twig aims to serve

a more general role as a typemapping language for a variety of applications. In

particular, Fig is intimately tied to its target language, Moby. Twig, by contrast,

can support a large range of mainstream languages. Our own implementation

supports C and Python, and Twig’s abstract formal semantics for code generation

are designed to allow other languages to be incorporated easily.

In addition, unlike Fig, Twig’s primitive rules may be polymorphic, allowing

variables in place of types. For example, certain primitive rules in Twig such as

deref = [ptr(X) -> X] <<<

$out = *$in;

>>>

would be difficult to express with as much generality in Fig. Instead, a

different primitive rule would be required for each specific type.

Multi-language Programming

In this section, we demonstrate how Twig can be used for multi-language

programming. In a short example program, we will show how Twig can describe

typemaps that convert between three different type systems – C, Python, and

JSON – and how it allows us to automatically reason about identity relationships

among them. JSON is Java-Script Object Notation, an intermediate representation

and serialization format commonly used in web programming [11]. We describe a

set of expressions similar to the kind of typemaps found in systems such as SWIG,

but which leverage Twig’s operators to build complex typemaps from simple ones.

112

We then show how user-defined expression reductions (see Chapter V) can be used

to optimize the composed typemaps.

Imagine that we have a Python object representing some (very) simple

personal contact information:

class Contact():

def __init__(self,name,age):

self.name = name

self.age = age

We would like to be able to use this object from a C program, and we can

use a typemap to perform the conversion. We can convert the data in a number of

different ways. One way is to convert the data directly from Python to C using

the Python/C API [12]. Another way, less direct but more flexible, is to first

marshall the Python object to a JSON string and then unmarshal the JSON into

C. We might prefer to convert via JSON if, for example, we were writing typemaps

intended to work with a variety of languages, thus avoiding the n2 binding problem

described in Section 2.1.

In this example, we use the multi-language generation scheme described in

Section 6.3. First, we write some primitive rules that unpack the object into its

fields. Note that we tell Twig that the target language in this section of code is

Python, using the @language(Python) directive.

@language(Python)

name = [contact -> py(string)] <<<

$out = $in.name

113

>>>

age = [contact -> py(int)] <<<

$out = $in.age

>>>

The terms py(string) and py(int) represent a string and an integer in the

context of Python. The term contact represents the Contact object defined above.

Next, we define some primitive rules for marshalling the Python data types

in JSON. Note that for the JSON types, like py(json(int)), we retain the outer

py constructor – this is to indicate that the JSON string is still represented in the

context of the Python language.

py_int_to_json = [py(int) -> py(json(int))] <<<

$out = int_to_json($in)

>>>

py_string_to_json = [py(string) -> py(json(string))] <<<

$out = string_to_json($in)

>>>

py_tuple_to_json =

[(py(json(X)),py(json(Y))) -> py(json(pair(X,Y)))] <<<

$out = ’[’ + ’,’.join($in1,$in2) + ’]’

>>>

The rule py tuple to json lifts a pair of JSON objects, represented by a

Twig tuple, to a pair within JSON.

114

Now, using these rules, we can write a more general-purpose Python-to-JSON

typemap:

py_to_json_step =

py_int_to_json | py_string_to_json | py_tuple_to_json

py_to_json = #fix(X, (#all(X) | T) ; py_to_json_step)

The rule py to json uses the #fix operator to recursively convert nested

tuples of Python objects to JSON.

Finally, to convert our Python Contact object to JSON, we can write the

following rule:

py_address_to_json = #fan(2);{name,age};py_to_json

This rule sends the single contact object to a congruence extracting the name

and age, resulting in a 2-tuple of Python data types. Then, it converts that tuple

to JSON.

Next, we need primitive rules to convert from JSON into C. We use the

Jansson library [10] to manipulate JSON data in C. Note that at this point we use

the directive @language(C) to tell Twig to use C as the target language.

@language(C)

json_to_tuple = [json(pair(X,Y)) -> (json(X),json(Y))] <<<

$out1 = json_array_get($in,0);

$out2 = json_array_get($in,1);

>>>

115

json_to_int = [json(int) -> int] <<<

$out = json_int_value($in);

>>>

json_to_string = [json(string) -> string] <<<

$out = json_string_value($in);

>>>

from_json_step =

json_to_int | json_to_string | json_to_tuple

from_json = #fix(X, from_json_step ; (#all(X) | T))

Notice that, in the rules above, we are using terms like json(int) to

represent JSON types, rather than py(json(int)). This is because in these rules,

we are working with JSON data in a C context (here, we equate the absence the

py constructor to indicate that the type is in C). In both Python and C, with the

libraries we chose, JSON data is represented by a string. So, in order to move from

Python to C, we need to be able to convert a Python JSON string to a C JSON

string. The following rule accomplishes this, using the Python/C API to convert

the string.

py_json_to_c = [py(json(X)) -> json(X)] <<<

json_error_t $tmp1;

char *$tmp2 = PyString_AsString($in);

$out = json_loads($tmp2, JSON_DECODE_ANY, &$tmp1);

116

>>>

In py json to c, we use a variable X in the rule’s input and output pattern.

In this case, we do not care what the underlying JSON data represents, and we can

convert it regardless. This kind of polymorphism is a powerful feature of Twig.

Putting our rules together, we can define a main expression which will convert

a Python Contact first to JSON, and then to C.

main = py_address_to_json;py_json_to_c;from_json

If we run Twig with this program on the input term contact (the only

term for which this program will succeed), the output will be the tuple term

(string,int) representing a pair of C types. Twig will generate the following

Python code:

def gen1_py(in):

x1 = in.name

x2 = in.age

x3 = string_to_json(x1)

x4 = int_to_json(x2)

x5 = tuple_to_json(x3,x4)

return x5

and this C code:

struct gen1_tuple {

char *x1;

int x2;

}

117

gen1_tuple gen1_c(PyObject *in) {

gen1_tuple ret;

PyObject *x1;

char *x2;

json_t *x3, *x4, *x5;

char *x6;

int x7;

x1 = call_python("target","gen1_py",in);

json_error_t tmp1;

x2 = PyString_AsString(x1);

x3 = json_loads(x2, JSON_DECODE_ANY, &tmp1);

x4 = json_array_get(x3,0);

x5 = json_array_get(x3,1);

x6 = json_string_value(x4);

x7 = json_integer_value(x5);

ret.x1 = x6;

ret.x2 = x7;

return ret;

}

The generated C function needs to return a pair of values, so we

automatically generate a C struct type for this purpose. Our implementation

currently handles this case in an ad hoc manner, and we are working on a more

robust solution.

118

Now, let us suppose we add some rules that leverage the Python/C API to

convert data directly, without marshaling through JSON.

py_string_to_c = [py(string) -> string] <<<

$out = PyString_AsString($in);

>>>

py_int_to_c = [py(int) -> int] <<<

$out = (int)PyInt_AsLong($in);

>>>

py_to_c_step = py_string_to_c | py_int_to_c

py_to_c = #fix(X, (py_to_c_step | #all(py_to_c_step)) ; (#all(X) | T))

We can introduce the following expression reduction directive to

automatically replace the JSON marshaling process with calls to the Python/C

API.

@reduce py_to_json;json_to_c;from_json => py_to_c

This directive exploits the isomorphic relationship between conversions from

Python to JSON, and then JSON to C, and those directly from Python to C.

This relationship is illustrated in Figure 6, where f , g, and h are Twig expressions

transforming Python to JSON, JSON to C, and Python to C, respectively. In the

figure f ; g = h, which is the relationship we wish to exploit using an expression

reduction.

The original version of main was

119

JSON

Python C

f g

h

FIGURE 6. Typemap identities.

main = py_address_to_json;py_json_to_c;from_json

which is equivalent to

main = #fan(2);{name,age};py_to_json;py_json_to_c;from_json

after substituting for the value of py address to json. After applying the

expression reduction directive, main is rewritten to

main = #fan(2);{name,age};py_to_c

Applying this new expression to the term contact still yields the output term

(string,int), but the generated code is much simpler and more efficient. The

Python code is now:

def gen1_py(in):

120

x1 = in.name

return x1

def gen2_py(in):

x1 = in.age

return x1

and the C code is:

gen1_tuple gen1_c(PyObject *in) {

gen1_tuple ret;

PyObject *x1,*x2;

char *x3;

int x4;

x1 = call_python("target","gen1_py",in);

x2 = call_python("target","gen2_py",in);

x3 = PyString_AsString(x1);

x4 = (int)PyInt_AsLong(x2);

ret.x1 = x3;

ret.x2 = x4;

return ret;

}

It is notable that systems such as SWIG, based on monolithic typemaps,

could not perform reductions of this kind. This is because, unlike Twig expressions,

monolithic typemaps have no structure that SWIG can rewrite.

121

GPU programming

In this section we present an example Twig program that targets C code

interacting with a graphics processing unit (GPU). This style of program is known

as “hybrid” computing, since the program is intended to run on a hybrid system,

incorporating more than one device. Hybrid computing has some interesting

features in common with multi-language programming, including reasoning about

types in different contexts.

CUDA [68] is a well-known and relatively simple API for interacting with

GPUs from C. We use this API in our example below. In the interest of clarity, we

simplify our code by omitting CUDA’s setup and teardown logic and assuming that

values such as N BLOCKS, BLOCK SIZE, SIZE, and N are constants defined elsewhere.

A real application might pass these values within the rules, perhaps using tuples or

custom data structures.

First, we define two primitive rules for moving data to and from the GPU:

copyToGPU=[array(float) -> gpu(array(float))] <<<

cudaMalloc((void **)&$out,SIZE);

cudaMemcpy($out,$in,SIZE,cudaMemcpyHostToDevice);

>>>

copyFromGPU=[gpu(array(float)) -> array(float)] <<<

$out = malloc(SIZE);

cudaMemcpy($out,$in,SIZE,cudaMemcpyDeviceToHost);

>>>

122

The rule copyToGPU copies an array of floating point numbers from main

memory to the GPU’s separate memory hierarchy. First, it allocates memory

on the device, then it invokes the appropriate CUDA call to copy the data. In

a similar fashion, copyFromGPU copies an array of floats from GPU back to the

system.

Next, we define primitive rules for invoking two different GPU kernels on

the data, after it has been moved to the GPU. A kernel is essentially a function on

arrays, performed on the GPU.

kernelFoo = [gpu(array(float)) -> gpu(array(float))] <<<

foo \<\<\<N_BLOCKS,BLOCK_SIZE/>/>/>($in, N);

$out = $in;

>>>

kernelBar = [gpu(array(float)) -> gpu(array(float))] <<<

bar \<\<\<N_BLOCKS,BLOCK_SIZE/>/>/>($in, N);

$out = $in;

>>>

These two rules do almost exactly the same thing, except that kernelFoo

invokes a kernel called “foo” while kernelBar invokes a kernel called “bar.” The

kernel names refer to CUDA functions defined elsewhere. Note that we needed to

escape the triple angle brackets in CUDA’s syntax; otherwise, they would interfere

with Twig’s own block syntax.

Next, we can define our main program, using some auxiliary expressions.

runFoo = copyToGPU;kernelFoo;copyFromGPU

123

runBar = copyToGPU;kernelBar;copyFromGPU

main = runFoo;runBar

The expressions runFoo and runBar will perform a single logical function

on the GPU. Note that these expressions will be semantically valid in any context

where they appear, since they ensure that the data is moved onto the GPU before

the kernel is executed, and then that the data is copied back. The programmer

may effectively ignore the fact that runFoo and runBar interact with the GPU;

they appear to perform a function on a local array. This abstraction is considerably

simpler than that presented by raw CUDA calls.

The main expression is the top level of the program. It executes the two

kernels foo and bar in sequence. As noted above, the invocations of runFoo

and runBar would normally result in a copy to and from the GPU. This is a

conservative design, hiding the details of the interaction with the GPU from the

programmer.

Evaluating this expression on the input term array(float) will output the

result term array(float), along with the following generated code:

float *twig_gen_fun(float *in) {

float *tmp01,*tmp02,*tmp03,*tmp04,*tmp05,*tmp06,*tmp07;

tmp01 = in;

cudaMalloc((void **)&tmp02,SIZE);

cudaMemcpy(tmp02,tmp01,SIZE,cudaMemcpyHostToDevice);

foo <<<N_BLOCKS,BLOCK_SIZE>>> (tmp02,N);

tmp03 = tmp02;

tmp04 = (float *)malloc(SIZE * sizeof(float));

cudaMemcpy(tmp04,tmp03,SIZE,cudaMemcpyDeviceToHost);

124

cudaMalloc((void **)&tmp05,SIZE);

cudaMemcpy(tmp05,tmp04,SIZE,cudaMemcpyHostToDevice);

bar <<<N_BLOCKS,BLOCK_SIZE>>> (tmp05,N);

tmp06 = tmp05;

tmp07 = (float *)malloc(SIZE * sizeof(float));

cudaMemcpy(tmp07,tmp06,SIZE,cudaMemcpyDeviceToHost);

return tmp07;

}

The generated function is assigned the unique name twig gen fun. It takes

a pointer to an array of floating point numbers somewhere in system memory and

returns a pointer to the transformed array.

This code is correct, but unfortunately it contains a redundant memory copy.

That is, the program copies an array from the GPU to system memory, and then

immediately copies it back to the GPU without modification. Copying across

devices is a relatively expensive operation. For large arrays, or for code in a tight

loop, this kind of redundancy will significantly reduce performance.

To see why the redundant copy is introduced, we substitute the names runFoo

and runBar with the expressions they denote in main. Now we can see that main is

equivalent to this expression:

main = copyToGPU;

kernelFoo;

copyFromGPU;copyToGPU;

kernelBar;

copyFromGPU

125

Notice that in the middle, the sequence copyFromGPU;copyToGPU is

unnecessary. It is introduced into the program as an artifact of the sequence of

runFoo with runBar. We can solve this problem using an expression reduction, as

described in Chapter V. The reduction directive

@reduce copyFromGPU;copyToGPU => T

instructs Twig to search for the expression copyFromGPU;copyToGPU within main,

and to replace it with T, the identity rule, wherever it occurs. In this context T

serves essentially as a no-op – it does not generate any code. After the reduction

is performed, the expanded version of main has had the extra copies removed and

replaced by T:

main = copyToGPU;

kernelFoo;

T;

kerneBar;

copyFromGPU

Based on this expression, Twig will generate the following code:

float *twig_gen_fun(float *in) {

float *tmp01,*tmp02,*tmp03,*tmp04,*tmp05;

tmp01 = in;

cudaMalloc((void **)&tmp02,SIZE);

cudaMemcpy(tmp02,tmp01,SIZE,cudaMemcpyHostToDevice);

foo <<<N_BLOCKS,BLOCK_SIZE>>> (tmp02,N);

tmp03 = tmp02;

126

bar <<<N_BLOCKS,BLOCK_SIZE>>> (tmp03,N);

tmp04 = tmp03;

tmp05 = (float *)malloc(SIZE * sizeof(float));

cudaMemcpy(tmp05,tmp04,SIZE,cudaMemcpyDeviceToHost);

return tmp05;

}

This code omits the redundant copy, and is therefore more efficient. Although

this example is simple, it demonstrates the power of user-defined expression

reductions. The reduction rule given here could be paired with the copyToGPU and

copyFromGPU rules in a module intended for consumption by domain programmers,

allowing them to perform GPU operations without worrying about the design

of the rules. Sophisticated users, however, could add their own rules or even

application-specific reductions, enabling very powerful and customizable code

generation based on domain-specific logic.

Integrating Twig in Practice

The preceding example demonstrates how Twig can be used to generate

a block of CUDA code. On its own, of course, the block is useless – it must be

integrated into a larger program. At the moment, Twig uses a fairly rudimentary

process to accomplish this. We describe that process in this section.

Twig is used to generate a block of code which is then incorporated into a

larger program that calls it using the language’s file inclusion facility. First, the

programmer provides the Twig program along with an input type to the Twig

tool. Twig will evaluate the program on the input type, producing (if successful) an

output type along with a block of code in the target language that will transform

127

the input type to the output type. Our Twig implementation will optionally wrap

the block of code inside a function that takes values having the input type(s) as

arguments, and returns a value having the output type. The block of code may be

redirected to a file. A main program may then include the generated function, and

invoke it within its own functions.

The example above generates a C/CUDA function called twig gen fun,

which takes a floating point array and produces another floating point array. We

use Twig to redirect this code to a file called twig.cu. The main CUDA program

resides in a file called main.cu, and contains the following code:

#include <stdio.h>

#include <cuda.h>

const int N = 10;

const size_t SIZE = N * sizeof(float);

const int BLOCK_SIZE = 4;

const int N_BLOCKS = N / BLOCK_SIZE + (N % BLOCK_SIZE == 0 ? 0:1);

__global__ void foo(float *a, int N) {

int idx = blockIdx.x * blockDim.x + threadIdx.x;

if(idx<N) {

a[idx] = a[idx] * a[idx];

}

}

__global__ void bar(float *a, int N) {

128

int idx = blockIdx.x * blockDim.x + threadIdx.x;

if(idx<N) {

a[idx] = a[idx] + 1;

}

}

#include "twig.cu"

int main(void) {

float *input, *result;

input = (float *)malloc(SIZE);

for(int i=0; i < N; i++) {

input[i] = (float)i;

}

result = twig_gen_fun(input);

for(int i=0; i < N; i++) {

printf("%d -> %f\n", i, result[i]);

}

return 0;

}

Notice how we include twig.cu in the main file. The include occurs only

after we have defined the various constructs (such as the foo and bar kernels, and

constants like BLOCK SIZE, that are needed within the generated code. Compiling

main.cu with the regular CUDA compiler (nvcc) will suffice to produce an

executable program.

129

CHAPTER VIII

FUTURE WORK

There are a number of potential avenues for future research with Twig.

Implementation

We presented our current implementation of Twig, called twigc, in

Chapter VI. We are quite happy with the overall design of the interpreter, and

in particular with how it we have embedded the core semantics in Haskell. There

are still many improvements and additional features we would like to incorporate.

Term-to-type Specification

In order to generate C code, Twig needs to be configured with a mapping

from terms representing C types to the appropriate syntax with which to declare

variables of that type. For example, we have terms such as ptr(int) which, in the

generated C code, must be declared like so:

int *x;

Automatically generating casts in C presents a similar problem. In our

current implementation, twigc must be parameterized with a list of pairs, matching

terms to the C syntax of the type they represent. So, users must provide a list like

this one:

int = int

float = float

ptr(int) = int *

130

ptr(float) = float *

mystruct = struct MyStruct

Providing this list quickly becomes tedious if there are lots of user-defined

types, or many types with recursive structure, or both. There are a few possible

solutions to this problem. One idea is to add the ability for twigc to parse some

structure in the list, like so

int = int

float = float

ptr(X) = X *

In this scheme, X is a variable that can be matched against the appropriate

term, and then substituted with the appropriate syntax where necessary. This

would make structured types easier to specify. Another idea would be to provide a

built-in mapping for the basic C types, and then have Twig automatically decide on

a term structure for user-defined types. For example, each struct in a header file

could be mapped to a term based on the structure name, e.g. struct Foo would

be mapped to the term foo. This would eliminate the need for users to provide the

term-to-type mapping, but would reduce flexibility. In particular, users could not

provide their own term structure, which is sometimes useful (see the example in

Section 7.2).

Expression Reductions

As we mentioned in Chapter V, our current implementation of expression

reductions is ad hoc. We export the Twig program and reduction rules as strings,

parse and process them in the Maude term rewriting system, and then import the

131

result back into Twig. In addition to making Twig dependent on an external tool,

this approach is potentially quite inefficient for large programs. Instead, it would be

both beneficial and interesting to use Twig’s own language to rewrite its expression

tree.

In principle, rewriting Twig expressions with Twig itself is easy to do. Twig

is based on System S, a core language for term rewriting. It is simple to specify

reduction rules – they are simply primitive rules in Twig. To apply the rules, we

can exploit Twig’s ability to encode very general rewriting strategies. For example,

to perform a top-down rewrite, we could use an expression such as

try(s) = s | T

repeat(s) = #fix(x, try(s ; x))

topdown(s) = #fix(x, s | #one(x))

reduce(s) = repeat(topdown(s))

The expression reduce takes an expression argument s and applies it to one

term in a tree, searching in a top-down fashion. It then repeats the procedure until

no rewrites are able to be applied, and returns the transformed tree. Alternatively,

we could specify a similar bottom-up strategy, or a mix of the two.

Note that the strategies would require parameterized rules, covered in

Section 8.2, which are not currently implemented in twigc.

Theory

The formal theory underlying Twig could be extended in a number of ways.

132

Environments and Conditional Rules

System S has different “levels” of semantics for term rewriting, corresponding

to different levels of complexity and different features. A feature, which Twig does

not currently incorporate into its own semantics, are the environment operators

of System S. They environment operators are called match and build – they

separate the operation of primitive rules into two distinct phases. In the first

phase, the term is matched against an input pattern, and its variables are bound

in an environment. This environment is then passed along via expressions and

possibly extended. The environment is used to either build a new term from its

bound values and an output pattern, or else used to test whether its bound values

meet some condition. Essentially, this feature would allow Twig to incorporate

“conditional” rules, i.e. rules which only match if certain other rules have matched

before, as indicated by the environment.

This would be a relatively straightforward addition to the semantics, since it

would follow System S fairly closely, and would not require extensive modification

to accommodate our extended code generation semantics.

Parameterized Rules

In System S, expressions are first-order. That is, they may be parameterized

by other expressions. In Twig, parameterized expressions might look like this:

try(s) = s | T

This statement creates a rule called try which is parameterized by an

expression s. To invoke try, an expression must be passed as its argument, like

so:

133

foo = [foo -> bar] <<< ... >>>

main = try(foo)

Here, foo is a primitive rule, but it could be any Twig expression.

Parameterized expressions would facilitate reuse and modularity. They

turn out to be somewhat tricky to implement, since we must ensure that circular

references are not introduced. We can solve this problem by stipulating that

expressions must be defined before they are referenced, and that expressions may

not reference themselves.

Code Generation

Our current model for code generation is intentionally abstract, in the

sense that it does not assume very much about the languages it might be used

to generate. The abstraction is a feature – it allows Twig to be used to generate

different languages without altering its core semantics. However, there are certain

features that, in our experience, would make code generation more convenient.

First, we often write primitive rules that allocate memory. It would be

nice if the code generation model allowed for “closing blocks,” i.e. a way to call

some tear down code at the end of the generated code’s lifetime. Clearly, this is a

difficult problem in general, since it may not always be clear when objects should

be deallocated or files closed. Still, one could imagine rules like the following being

useful:

alloc_array = [int -> array(int)] <<<

$out = malloc($in * sizeof(int));

>>><<<

134

free($out);

>>>

In this (invented) syntax, Twig would automatically insert the second block

wherever it determines that the variable generated for $out goes out of scope. One

challenge with supporting such a syntax would be incorporating it into the abstract

model.

Higher-order Rules

In many cases, Twig could generate much more complex kinds of code if

we could parameterize primitive rules with expressions. Essentially, this would

make rules higher-order. This idea is somewhat different than the parameterized

expressions presented in Section 8.2, which would make expressions first-order.

Higher-order rules would allow Twig to generate code that takes context

into account. For example, the following rule (using a made-up syntax), would

transform an array of elements of type X to an array of elements of type Y , given

another transformation named s that transforms X to Y .

map = [array(X) -> array(Y) | s : X -> Y] <<<

$out = malloc(N * sizeof($Y));

for(int i = 0; i < N; i++) {

$out[i] = $s($in[i]);

}

>>>

The example implements the familiar map function, common in functional

programming languages.

135

Expression Reductions

Currently, expression reductions are not formalized with the same degree of

rigor as the rest of Twig’s semantics. In particular, we rely on our implementation

to decide how Twig rewrites expressions. These details could matter in practice.

For example consider the directives:

@reduce foo => bar

@reduce foo;foo => baz

Clearly, these reductions are ambiguous in the absence of a formal description

of how they will be applied. This is because the rules are not confluent.

Twig will currently send both rules, in the order given, to Maude. At that

point we defer to Maude’s implementation. Currently Twig side-steps this problem

by simply insisting that expression reductions should be confluent, and that the

result is undefined if they are not. However, if the system was formalized, or if we

allowed users to specify rewriting strategies, we could allow for non-confluent rules.

In addition, we think it would be quite useful to allow for variables in

expression reductions, allowing users to write directives such as

@reduce foo;X;bar => foo

or

@reduce X;foo;Y => X;Y

This would greatly increase the flexibility and reusability of reduction

directives.

136

CHAPTER IX

CONCLUSION

We have presented Twig, a language for writing composable typemaps. As

illustrated in our evaluation, we have found that Twig is an interesting and useful

system for creating configurable domain-specific languages. These languages are

based on Twig’s core semantics, but incorporate primitive rules and expression

reduction directives that take the domain’s structure into account.

Summary of Results

Twig is based on Systems S, a core language for term rewriting. We have

extended System S and equipped it with semantics that allow it to generate code.

Our model for code generation is abstracted from any particular language, allowing

Twig to be used to generate a variety of target languages.

Twig uses terms to represent types in the target language. A Twig expression

is a program that transforms one term into another. According to how the term

transformation takes place, code is generated to transform values from and to

target language types corresponding to the terms. The simplest expressions are

primitive rules, which include blocks of code to be generated in a designated target

language. Primitive rules can be combined into more complex expressions using

Twig’s operators and built-in expressions.

Twig allows users to customize the meaning of expressions by introducing

their own expression reduction rules. Expression reductions are applied by Twig

before the program is evaluated, and can cause a given Twig expression to be

137

rewritten into another. This can be useful for introducing optimizations and other

automated reasoning that take advantage of domain-specific program structure.

We demonstrated how Twig can be used for multi-language programming

as well as GPU programming. In both these contexts, we introduce domain-

specific expression reductions that potentially improve the efficiency of the final

program. We also compared a Twig program with a similar program written in

SWIG, a language with a similar notion of typemapping, and found that, due

to its operators and abstract code generation model, Twig’s language allows

greater flexibility, modularity, and reusability than SWIG’s traditional, monolithic

typemaps.

Advantages

As we discussed in Chapter I, the primary goal of our work was to design a

language that allowed high-level, domain-specific logic to co-exist with low-level,

detail-oriented code, with each informing the structure of the other, in a single

program specification. Twig represents a step in this direction.

The main advantage conferred by Twig is that its simple, high-level semantics

restrict the kinds of programs that can be written. While this advantage is also a

limitation (see below), it does make the structure of Twig programs easy to reason

about. We exploited this capability in our multi-language and GPU programming

examples, using expression reduction directives to recognize simple but useful

patterns in the code, and then rewriting those patterns into more efficient ones.

The equivalent C or Python code would be very difficult to automatically rewrite

in a similar fashion, since the patterns are obscured by the details of declaring

variables, allocating memory, and so on.

138

Another advantage of Twig is its ability to mix high- and low-level code in its

primitive rules, and that these rules are the only place where such mixing occurs.

A corollary of this observation is that, once a set of primitive rules are properly

designed, relatively unsophisticated users can make use of them by using them

as “building blocks,” that is, using a provided set of primitive rules by combining

them with Twig’s operators and built-in expressions only. This suggests a possible

model of usage for Twig: a domain expert first designs and crafts a set of primitive

rules and expression reduction directives that capture the required functionality

for a domain, and then less sophisticated users can write programs without having

to worry about writing any low-level code. If the expression reductions are well-

designed, they may not even have to worry about optimization for common cases.

Limitations

Above, we observed that the simple, somewhat sparse structure of Twig’s

language makes it easy to reason about and to automatically rewrite. The dual of

this observation is that writing large or complex programs in such a basic language

can be challenging. This may limit Twig’s applicability to relatively simple jobs,

such as small typemaps for multi-language or multi-target programs. Writing

larger programs cries out for more versatile abstractions such as the λ-calculus or

traditional imperative control structures, but we think that it is precisely these

facilities that make traditional programs so difficult to reason about. This tension

may be inherent to programming language design.

In addition, our current model code generation does not adequately address

the kinds of real-world problems faced by multi-language systems, such as resource

management or error handling, discussed in Section 2.1. We believe it will be

139

challenging to add these features while retaining the highly abstract nature of the

model. Again, intuitively there seems to be a fundamental tension here, between

the expressivity and fidelity of a code generation model on the one hand, and its

ability to be adapted to many different languages on the other.

Twig in Context

Twig represents a significant contribution to the state-of-the-art for

typemapping languages. We believe that Twig’s language, or something similar,

should be adopted by tools that require programmers to write small programs to

that transform data across different domains. In particular, the flexibility afforded

by Twig’s operators and its abstract approach to code generation recommend it for

this purpose over current, monolithic approaches.

Twig is also an interesting experiment that moves towards achieving the

goals we presented in the introduction. That is, Twig allows programmers to mix

high- and low-level code in a way that retains the former’s ease of development

and reasoning, as well as the latter’s flexibility and power. Our future research

will determine whether we can resolve the outstanding issues with code generation

and general usability that we find currently hamper Twig as a language for general

program development.

140

APPENDIX

PROOFS

In this appendix we present proofs of some properties of Twig’s operators and

expressions.

Associative Operators

In this appendix we present proofs that sequence and choice are associative.

This allows us to write expressions such as f ; g;h or f |g|h without ambiguity.

Sequence

We want to show that (f ; g);h = f ; (g;h). To do this, we have to prove two

cases:

t
(f ;g);h−−−−→ (t′,m)⇔ t

f ;(g;h)−−−−→ (t′,m) (A.1)

and also

t
(f ;g);h−−−−→ ⊥ ⇔ t

f ;(g;h)−−−−→ ⊥ (A.2)

Case #1:

We have to show

t
(f ;g);h−−−−→ (t′,m)⇒ t

f ;(g;h)−−−−→ (t′,m) (A.3)

So we assume the premise:

141

t
(f ;g);h−−−−→ (t′,m) (A.4)

By (4.3):

t
f ;g−→ (t′′,mfg) t′′

h−→ (t′,mh) (A.5)

and let m = mfg +mh. By (4.3):

t
f−→ (t′′′,mf) (t′′′

g−→ (t′′,mg) (A.6)

and let mfg = mf +mg. By (4.3):

t
f−→ (t′′′,mf) t′′′

g;h−→ (t′,mg +mh) (A.7)

By (4.3):

t
f ;(g;h)−−−−→ (t′,mf +mg +mh) (A.8)

The reverse case of the implication proceeds almost identically.

Case #2:

We want to prove

t
(f ;g);h−−−−→ ⊥ ⇒ t

f ;(g;h)−−−−→ ⊥ (A.9)

So we assume the premise:

t
(f ;g);h−−−−→ ⊥ (A.10)

142

and now there are three possible sub-cases.

Sub-case #1:

By (4.4):

t
f ;g−→ ⊥ (A.11)

By (4.4):

t
f−→ ⊥ (A.12)

By (4.4):

t
f ;(g;h)−−−−→ ⊥ (A.13)

Sub-case #2:

By (4.4):

t
f ;g−→ ⊥ (A.14)

By (4.5):

t
f−→ (t′,mf) t′

g−→ ⊥ (A.15)

By (4.4):

t′
g;h−→ ⊥ (A.16)

By (4.3):

143

t
f ;(g;h)−−−−→ ⊥ (A.17)

Sub-case #3:

By (4.5):

t
f ;g−→ (t′,mfg t′

h−→ ⊥ (A.18)

By (4.3):

t
f−→ (t′′,mf) t′′

g−→ (t′,mg) (A.19)

where mfg = mf +mg. By (4.4):

t′′
g;h−→ ⊥ (A.20)

By (4.3):

t
f ;(g;h)−−−−→ ⊥ (A.21)

The reverse case of the implication proceeds almost identically.

Choice

We want to show that (f |g)|h = f |(g|h). To do this, we have to prove two

cases:

t
(f |g)|h−−−−→ (t′,m)⇔ t

f |(g|h)−−−−→ (t′,m) (A.22)

144

and also

t
(f |g)|h−−−−→ ⊥ ⇔ t

f |(g|h)−−−−→ ⊥ (A.23)

Case #1:

We assume the premise:

t
(f |g)|h−−−−→ (t′,m) (A.24)

There are three sub-cases:

Sub-case #1:

By (4.6)

t
f |g−→ (t′,m) (A.25)

By (4.6)

t
f−→ (t′,m) (A.26)

By (4.6)

t
f |(g|h)−−−−→ (t′,m) (A.27)

Sub-case #2:

By (4.6)

t
f |g−→ (t′,m) (A.28)

145

By (4.7)

t
f−→ ⊥ t

g−→ (t′,m) (A.29)

By (4.6)

t
f−→ ⊥ t

g|h−→ (t′,m) (A.30)

By (4.7)

t
f |(g|h)−−−−→ (t′,m) (A.31)

Sub-case #3:

By (4.6)

t
f |g−→ ⊥ t

h−→ (t′,m) (A.32)

By (4.8)

t
f−→ ⊥ t

g−→ ⊥ t
h−→ (t′,m) (A.33)

By (4.6)

t
f−→ ⊥ t

g|h−→ (t′,m) (A.34)

By (4.7)

t
f |(g|h)−−−−→ (t′,m) (A.35)

146

Case #2:

We assume the premise:

t
(f |g)|h−−−−→ ⊥ (A.36)

By (4.8):

t
f |g−→ ⊥ t

h−→ ⊥ (A.37)

By (4.8):

t
f−→ ⊥ t

g−→ ⊥ t
h−→ ⊥ (A.38)

By (4.8):

t
f−→ ⊥ t

g|h−→ ⊥ (A.39)

By (4.8):

t
f |(g|h)−−−−→ ⊥ (A.40)

Expression Identities

In this section we prove the identity relationships between expressions. We

exploit these relationships in expression reductions, as described above.

147

Distribution of sequence over choice

First, we show that sequence distributes over choice from the left, but not

from the right.

From the left

First we will show that sequence distributes over choice from the left. We

must prove that

∀f, g, h ∈ S : f ; (g|h) = (f ; g)|(f ;h) (A.41)

There are two cases to be proved. First,

t
f ;(g|h)−−−−→ t′ =⇒ t

(f ;g)|(f ;h)−−−−−−→ t′ (A.42)

and second,

t
f ;(g|h)−−−−→ ⊥ =⇒ t

(f ;g)|(f ;h)−−−−−−→ ⊥ (A.43)

To prove the first case, we assume the premise

t
f ;(g|h)−−−−→ t′ (A.44)

working backwards by (4.3) we can conclude

t
f−→ t′′ t′′

g|h−→ t′ (A.45)

There are two possible sub-cases from t′′
g|h−→ t′. From (4.6) we could conclude

148

t′′
g−→ t′ (A.46)

and since we have established t
f−→ t′′ we have

t
f−→ t′′ t′′

g−→ t′ (A.47)

and thus, by (4.3), we have

t
f ;g−→ t′ (A.48)

and by (4.6) we have

t
(f ;g)|(f ;h)−−−−−−→ t′ (A.49)

and this sub-case is complete. The next sub-case from t′′
g|h−→ t′ by (4.7) is

that

t′′
g−→ ⊥ t′′

h−→ t′ (A.50)

By (4.4):

t
f ;g−→ ⊥ (A.51)

By (4.3):

t
f ;h−−→ t′ (A.52)

By (4.7):

149

t
(f ;g)|(f ;h)−−−−−−→ t′ (A.53)

And this sub-case is complete. Next we must show

t
f ;(g|h)−−−−→ ⊥ =⇒ t

(f ;g)|(f ;h)−−−−−−→ ⊥ (A.54)

We assume the premise

t
f ;(g|h)−−−−→ ⊥ (A.55)

Case #1:

By (4.4):

t
f−→ ⊥ (A.56)

By (4.4):

t
f ;g−→ ⊥ t

f ;h−−→ ⊥ (A.57)

By (4.8):

t
(f ;g)|(f ;h)−−−−−−→ ⊥ (A.58)

Case #2:

By (4.5):

t
f−→ t′ t′

g|h−→ ⊥ (A.59)

150

By (4.8):

t
f−→ t′ t′

g−→ ⊥ t′
h−→ ⊥ (A.60)

By (4.5):

t
f ;g−→ ⊥ t

f ;h−−→ ⊥ (A.61)

By (4.8):

t
(f ;g)|(f ;h)−−−−−−→ ⊥ (A.62)

From the right

It turns out that although sequence distributes over choice from the left, it

does not do so from the right.

(f |g);h 6 =⇒ (f ;h)|(g;h) (A.63)

We can easily show this with a counterexample. Assume we have three

expressions

t1
f−→ t2 t1

g−→ t3 t3
h−→ t4 (A.64)

Now we can see that

t1
(f |g);h−−−−→ ⊥ (A.65)

but

151

t1
(f ;h)|(g;h)−−−−−−→ t4 (A.66)

So

t
(f |g);h−−−−→ ⊥ 6 =⇒ t

(f ;h)|(g;h)−−−−−−→ ⊥ (A.67)

which would be required to show (A.63).

Distribution of congruence over sequence

Here, we want to show that congruence distributes over sequence, i.e., that

{r1, . . . , rn}; {s1, . . . , sn} =⇒ {r1; s1, . . . , rn; sn} (A.68)

Case #1:

(t1, . . . , tn)
{r1,...,rn};{s1,...,sn}−−−−−−−−−−−→ (t′1, . . . , t

′
n) =⇒ (t1, . . . , tn)

{r1;s1,...,rn;sn}−−−−−−−−−→ (t′1, . . . , t
′
n)

(A.69)

By (4.3):

(t1, . . . , tn)
{r1,...,rn}−−−−−→ (t′′1, . . . , t

′′
n) (t′′1, . . . , t

′′
n)
{s1,...,sn}−−−−−→ (t′1, . . . , t

′
n) (A.70)

By (4.15):

t1
r1−→ t′′1 · · · tn

rn−→ t′′n t′′1
s1−→ t′1 · · · t′′n

sn−→ t′n (A.71)

152

By (4.3):

t1
r1;s1−−→ t′1 · · · tn

rn;sn−−−→ t′n (A.72)

By (4.15):

{r1; s1, . . . , rn; sn} (A.73)

Case #2:

(t1, . . . , tn)
{r1,...,rn};{s1,...,sn}−−−−−−−−−−−→ ⊥ =⇒ (t1, . . . , tn)

{r1;s1,...,rn;sn}−−−−−−−−−→ ⊥ (A.74)

Assume the premise:

(t1, . . . , tn)
{r1,...,rn};{s1,...,sn}−−−−−−−−−−−→ ⊥ (A.75)

Sub-case #1 by (4.4):

(t1, . . . , tn)
{r1,...,rn}−−−−−→ ⊥ (A.76)

By (4.16):

ti
ri−→ ⊥ where 1 ≤ i ≤ n (A.77)

By (4.4):

ti
ri;si−−→ ⊥ (A.78)

153

By (4.16):

ti
{...,ri;si,...}−−−−−−→ ⊥ (A.79)

Sub-case #2 by (4.5):

(t1, . . . , tn)
{r1,...,rn}−−−−−→ (t′1, . . . , t

′
n) (t′1, . . . , t

′
n)
{s1,...,sn}−−−−−→ ⊥ (A.80)

By (4.15):

t1
r1−→ t′1 · · · tn

rn−→ t′n (A.81)

By (4.16):

t′i
si−→ ⊥ where 1 ≤ i ≤ n (A.82)

By (4.5):

ti
ri;si−−→ ⊥ (A.83)

By (4.16):

(. . . , ti, . . .)
{...,ri;si,...}−−−−−−→ ⊥ (A.84)

154

REFERENCES CITED

[1] COM: Component Object Model Technologies.
http://www.microsoft.com/com/default.mspx.

[2] The DICOM standard. http://medical.nema.org/.

[3] MEX-files Guide.
http://www.mathworks.com/support/tech-notes/1600/1605.html.

[4] Python v2.6.4 documentation: ctypes – A foreign function library for Python.
http://docs.python.org/library/ctypes.html.

[5] Simple Object Access Protocol (SOAP) 1.1.
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

[6] Swig documentation: Typemaps.
http://www.swig.org/Doc1.3/Typemaps.html.

[7] WHIRL intermediate language specification.
http://www.open64.net/documentation/.

[8] XML-RPC Specification. http://www.xmlrpc.com/spec.

[9] Standard ECMA-335: Common Language Infrastructure (CLI). http:
//www.ecma-international.org/publications/standards/Ecma-335.htm,
June 2006.

[10] Jansson C library for working with JSON data.
http://www.digip.org/jansson/, Apr. 2012.

[11] JSON. http://www.json.org/, Apr. 2012.

[12] Python/C API Reference Manual. http://docs.python.org/c-api/, Jan.
2012.

[13] A. V. Aho, M. Ganapathi, and S. W. K. Tjiang. Code generation using tree
matching and dynamic programming. ACM Trans. Program. Lang. Syst.,
11(4):491–516, Oct. 1989.

[14] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, and S. Mock. Kepler:
an extensible system for design and execution of scientific workflows. In
Proceedings of the 16th International Conference on Scientific and Statistical
Database Management 2004, pages 423–424, 2004.

155

[15] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business
Process Execution Language for web services version 1.1.
http://www.ibm.com/developerworks/library/specification/ws-bpel/, May
2003.

[16] A. W. Appel. Modern Compiler Implementation in ML. Cambridge University
Press, 1998.

[17] R. C. Armstrong, D. Gannon, A. Geist, K. Keahey, S. R. Kohn, L. C. McInnes,
S. R. Parker, and B. A. Smolinski. Toward a common component architecture
for high-performance scientific computing. In Proceedings of the 8th IEEE
International Symposium on High Performance Distributed Computing, pages
13–23, 1999.

[18] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, 1998.

[19] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University
Press, New York, NY, USA, 1998.

[20] D. J. Barrett, A. Kaplan, and J. C. Wileden. Automated support for seamless
interoperability in polylingual software systems. In In ACM SIGSOFT’96,
Fourth Symposium on the Foundations of Software Engineering, pages
147–155, 1996.

[21] D. M. Beazley. SWIG: an easy to use tool for integrating scripting languages
with C and C++. In TCLTK’96: Proceedings of the 4th conference on
USENIX Tcl/Tk Workshop, 1996, July 1996.

[22] N. Benton and A. Kennedy. Interlanguage working without tears: blending
SML with Java. In ICFP ’99: Proceedings of the fourth ACM SIGPLAN
international conference on Functional programming, pages 126–137, New
York, NY, USA, 1999. ACM.

[23] P. V. Biron and A. Malhotra. XML schema part 2: Datatypes second edition.
W3C recommendation, World Wide Web Consortium, October 2004.

[24] A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. ACM
Trans. Comput. Syst., 2(1):39–59, 1984.

[25] M. Blume. No-longer-foreign: Teaching an ML compiler to speak C natively. In
Electronic Notes in Theoretical Computer Science, volume 59, 2001.

156

[26] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T.
Vo. Managing the evolution of dataflows with VisTrails. In 22nd
International Conference on Data Engineering Workshops (ICDEW’06),
pages 71–75, Los Alamitos, CA, USA, 2006. IEEE Computer Society.

[27] M. Chakravarty, S. Finne, F. Henderson, M. Kowalczyk, D. Leijen, S. Marlow,
E. Meijer, S. Panne, S. P. Jones, A. Reid, M. Wallace, and M. Weber. The
Haskell 98 foreign function interface 1.0: An addendum to the Haskell 98
report. http://www.cse.unsw.edu.au/~chak/haskell/ffi/, 2003.

[28] D. Churches, G. Gombas, A. Harrison, J. Maassen, C. Robinson, M. Shields,
I. Taylor, and I. Wang. Programming scientific and distributed workflow with
Triana services. Concurrency and Computation: Practice and Experience,
18(10):1021–1037, 2006.

[29] G. Coulouris, J. Dolllimore, and T. Kindberg. Distributed Systems: Concepts
and Design, chapter Sun RPC, pages 138–144. International Computer
Science. Addison Wesley, 2 edition, 1994.

[30] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana.
Unraveling the web services web: an introduction to SOAP, WSDL, and
UDDI. Internet Computing, IEEE, 6(2):86–93, March/April 2002.

[31] L. DeMichiel and M. Keith. JSR-000220 Enterprise JavaBeans 3.0 Final Release
Specification. http://java.sun.com/products/ejb/docs.html, May 2006.

[32] T. Fahringer, S. Pllana, and A. Villazon. A-GWL: Abstract Grid Workflow
Language. In 4th International Conference on Computational Science (ICCS
2004), Lecture Notes in Computer Science, pages 42–49. Springer Berlin /
Heidelberg, June 2004.

[33] T. Fahringer, J. Qin, and S. Hainzer. Specification of grid workflow applications
with AGWL: an abstract grid workflow language. In CCGRID ’05:
Proceedings of the Fifth IEEE International Symposium on Cluster Computing
and the Grid (CCGrid’05) - Volume 2, pages 676–685, Washington, DC, USA,
2005. IEEE Computer Society.

[34] K. Fisher, R. Pucella, and J. Reppy. A framework for interoperability.
Electronic Notes in Theoretical Computer Science, 59(1):3–19, September
2001.

[35] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. Grid services for distributed
system integration. Computer, 35(6):37–46, June 2002.

[36] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling
scalable virtual organizations. Int. J. High Perform. Comput. Appl.,
15(3):200–222, Aug. 2001.

157

[37] T. Goodale. Workflows for e-Science, chapter Expressing Workflow in the
Cactus Framework, pages 416–427. Springer London, 2007.

[38] T. Goodale, G. Allen, G. Lanfermann, J. Masso, E. Seidel, and J. Shalf. The
Cactus framework and toolkit: Design and applications. In Vector and
Parallel Processing - VECPAR ’2002, 5th International Conference. Springer,
2003.

[39] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Specification.
Prentice Hall PTR, second edition, June 2000.

[40] M. Grechanik, D. Batory, and D. E. Perry. Design of large-scale polylingual
systems. In ICSE ’04: Proceedings of the 26th International Conference on
Software Engineering, pages 357–366, Washington, DC, USA, 2004. IEEE
Computer Society.

[41] J. Hamilton. Language integration in the Common Language Runtime. ACM
SIGPLAN Notices, 38(2):19–28, 2003.

[42] P. B. Hansen. The origin of concurrent programming: from semaphores to
remote procedure calls. Springer-Verlag New York, Inc., New York, NY, USA,
2002.

[43] R. Hayes and R. Schlichting. Facilitating mixed language programming in
distributed systems. IEEE Transactions on Software Engineering,
13:1254–1264, 1987.

[44] M. Hirzel and R. Grimm. Jeannie: granting Java native interface developers
their wishes. In Proceedings of the 2007 OOPSLA conference, volume 42,
pages 19–38, New York, NY, USA, 2007. ACM.

[45] G. Holzmann. Spin model checker, the: primer and reference manual.
Addison-Wesley Professional, first edition, 2003.

[46] J. Hopkins. Component primer. Communications of the ACM, 43(10):27–30,
October 2000.

[47] P. Hudak. Modular domain specific languages and tools. In Proceedings of Fifth
International Conference on Software Reuse, pages 134–142. IEEE Computer
Society, June 1998.

[48] L. Huelsbergen. A portable C interface for Standard ML of New Jersey.
Technical report, AT&T Bell Laboratories, January 1996.

[49] G. C. Hulette, M. J. Sottile, R. Armstrong, and B. Allan. OnRamp: enabling a
new component-based development paradigm. In Proceedings of the 2009
Workshop on Component-Based High Performance Computing, CBHPC ’09,
pages 1–10, New York, NY, USA, 2009. ACM.

158

[50] G. C. Hulette, M. J. Sottile, and A. D. Malony. WOOL: A workflow
programming language. In Proceedings of the 2008 Fourth IEEE International
Conference on eScience, ESCIENCE ’08, pages 71–78, Washington, DC, USA,
2008. IEEE Computer Society.

[51] C. Hylands, E. Lee, J. Liu, X. Liu, S. Neuendorffer, Y. Xiong, Y. Zhao, and
H. Zheng. Overview of the Ptolemy project. Technical report, University of
California Berkeley, 2003.

[52] B. Janssen and M. Spreitzer. ILU: Inter-language unification via object
modules. In Workshop on Multi-language Object Models, Portland, OR,
August 1994.

[53] S. P. Jones, T. Nordin, and A. Reid. Green card: a foreign language interface
for Haskell. In ACM SIGPLAN Haskell Workshop (in conjuction with
ICFP97), February 1997.

[54] A. Kaplan, J. Ridgway, and J. Wileden. Why IDLs are not ideal. Software
Specification and Design, International Workshop on, 0:2, 1998.

[55] G. K. Kloss. Automatic C library wrapping – Ctypes from the trenches. The
Python Papers, 3(3), 2008.

[56] S. Kohn, G. Kumfert, J. Painter, and C. Ribbens. Divorcing language
dependencies from a scientific software library. In Proceedings of the 10th
SIAM Conference on Parallel Processes, Portsmouth, VA, March 2001.

[57] S. Krishnan, P. Wagstrom, and G. von Laszewski. GSFL: A workflow
framework for grid services, 2002.

[58] C. Lattner and V. Adve. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In Proceedings of the 2004 International
Symposium on Code Generation and Optimization (CGO’04), Palo Alto,
California, Mar 2004.

[59] F. Leymann. Web Services Flow Language (WSFL 1.0). Technical report, IBM,
May 2001.

[60] S. Liang. Java Native Interface: Programmer’s Guide and Specification.
Addison-Wesley, June 2002.

[61] C. Liao, O. Hernandez, B. Chapman, W. Chen, and W. Zheng. OpenUH: an
optimizing, portable OpenMP compiler. Concurrency and Computation:
Practice and Experience, 19(18):2317–2332, 2006.

[62] T. Lindholm and F. Yellin. Java Virtual Machine Specification. Prentice Hall,
2nd edition, April 1999.

159

[63] K. A. Lindlan, J. Cuny, A. D. Malony, S. Shende, F. Juelich, R. Rivenburgh,
C. Rasmussen, and B. Mohr. A tool framework for static and dynamic
analysis of object-oriented software with templates. In Supercomputing ’00:
Proceedings of the 2000 ACM/IEEE conference on Supercomputing
(CDROM), page 49, Washington, DC, USA, 2000. IEEE Computer Society.

[64] P. L. M. Clavel, S. Eker and J. Meseguer. Principles of maude. In J. Meseguer,
editor, Electronic Notes in Theoretical Computer Science, volume 4. Elsevier
Science Publishers, 2000.

[65] S. Macrakis. From Uncol to ANDF: Progress in standard intermediate
languages. White paper, Open Software Foundation, 1993.

[66] S. Majithia, M. Shields, I. Taylor, and I. Wang. Triana: A graphical web service
composition and execution toolkit. In Proceedings of the IEEE International
Conference on Web Services (ICWS’04), volume 0, pages 514–522, Los
Alamitos, CA, USA, 2004. IEEE Computer Society.

[67] M. Murphy. NVIDIA’s experience with Open64. Open64 Workshop at CGO
’08, 2008.

[68] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel
programming with cuda. Queue, 6(2):40–53, Mar. 2008.

[69] O. Nierstrasz and T. D. Meijler. Research directions in software composition.
ACM Computing Surveys (CSUR), 27(2):262–264, 1995.

[70] D. Notkin, A. P. Black, E. D. Lazowska, H. M. Levy, J. Sanislo, and
J. Zahorjan. Interconnecting heterogeneous computer systems. Commun.
ACM, 31(3):258–273, 1988.

[71] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,
K. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna: a tool for the
composition and enactment of bioinformatics workflows. Bioinformatics,
20(17):3045–3054, November 2004.

[72] D. Panda, R. Rahman, and D. Lane. EJB 3 in Action. Manning Publications
Co., Greenwich, CT, USA, 2007.

[73] S. Peyton Jones, A. Tolmach, and T. Hoare. Playing by the rules: Rewriting as
a practical optimization technique in GHC. In Proceedings of the 2001 Haskell
Workshop, pages 203–233, Sept. 2001.

[74] C. E. Rasmussen, K. A. Lindlan, B. Mohr, J. Striegnitz, and F. Jlich. CHASM:
Static Analysis and Automatic Code Generation for Improved Fortran 90 and
C++ Interoperability. In In Proceedings of the Los Alamos Computer Science
Symposium 2001 (LACSI’01, 2001.

160

[75] J. Reid. The new features of Fortran 2000. SIGPLAN Fortran Forum,
21(2):1–31, 2002.

[76] J. Reid. The new features of Fortran 2003. SIGPLAN Fortran Forum,
26(1):10–33, 2007.

[77] J. Reppy and C. Song. Application-specific foreign-interface generation. In
GPCE ’06: Proceedings of the 5th international conference on Generative
programming and component engineering, pages 49–58, New York, NY, USA,
2006. ACM.

[78] J. Reppy and C. Song. Application-specific foreign-interface generation. In
Proceedings of the Fifth International Conference on Generative Programming
and Component Engineering, pages 49–58, Oct. 2006.

[79] M. Slee, A. Agarwal, and M. Kwiatkowski. Thrift: Scalable cross-language
services implementation. Technical report, Facebook, Palo Alto, CA, April
2007.

[80] B. A. Smolinski, S. Kohn, N. Elliott, and N. Dykman. Computing in
Object-Oriented Parallel Environments, volume 1732, chapter Language
Interoperability for High-Performance Parallel Scientific Components, pages
61–71. Springer Berlin / Heidelberg, 1999.

[81] A. Z. Spector. Performing remote operations efficiently on a local computer
network. Commun. ACM, 25(4):246–260, 1982.

[82] R. Srinivasan. XDR: External Data Representation Standard. RFC 1832 (Draft
Standard), 1995. Obsoleted by RFC 4506.

[83] B. H. Tay and A. L. Ananda. A survey of remote procedure calls. SIGOPS
Oper. Syst. Rev., 24(3):68–79, 1990.

[84] S. Vinoski. CORBA: Integrating diverse applications within distributed
heterogeneous environments. IEEE Communications Magazine, 35(2):46–55,
February 1997.

[85] E. Visser. Stratego: A language for program transformation based on rewriting
strategies. In A. Middeldorp, editor, Rewriting Techniques and Applications
(RTA’01), volume 2051 of Lecture Notes in Computer Science, pages 357–361.
Springer-Verlag, May 2001.

[86] E. Visser. A survey of rewriting strategies in program transformation systems.
Electronic Notes in Theoretical Computer Science, 57:109 – 143, 2001. WRS
2001, 1st International Workshop on Reduction Strategies in Rewriting and
Programming.

161

[87] E. Visser and Z. el Abidine Benaissa. A core language for rewriting. Electronic
Notes in Theoretical Computer Science, 15:422 – 441, 1998. International
Workshop on Rewriting Logic and its Applications.

[88] E. Visser and Z. el Abidine Benaissa. A core language for rewriting. Electronic
Notes in Theoretical Computer Science, 15:422–441, Jan 1998.

[89] J. Waldo. Remote procedure calls and Java remote method invocation.
Concurrency, IEEE, 6(3):5–7, Jul-Sep 1998.

[90] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson,
S. W. K. Tjiang, S.-W. Liao, C.-W. Tseng, M. W. Hall, M. S. Lam, and J. L.
Hennessy. Suif: an infrastructure for research on parallelizing and optimizing
compilers. SIGPLAN Not., 29(12):31–37, 1994.

[91] J. Yu and R. Buyya. A novel architecture for realizing grid workflow using tuple
spaces. In GRID ’04: Proceedings of the Fifth IEEE/ACM International
Workshop on Grid Computing, pages 119–128, Washington, DC, USA, 2004.
IEEE Computer Society.

[92] A. M. Zaremski and J. M. Wing. Signature matching: a key to reuse. In
SIGSOFT ’93: Proceedings of the 1st ACM SIGSOFT symposium on
Foundations of software engineering, pages 182–190, New York, NY, USA,
1993. ACM.

162

