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DISSERTATION ABSTRACT

Hassan Rasti Ekbatani

Doctor of Philosophy

Department of Computer and Information Science

December 2012

Title: Investigating the Mutual Impact of the P2P Overlay and the AS-level Underlay

During the past decade, the Internet has witnessed a dramatic increase in the

popularity of Peer-to-Peer (P2P) applications. This has caused a significant growth in

the volume of P2P traffic. This trend has been particularly alarming for the Internet

Service Providers (ISPs) that need to cope with the associated cost but have limited

control in routing or managing P2P traffic. To alleviate this problem, researchers have

proposed mechanisms to reduce the volume of external P2P traffic for individual ISPs.

However, prior studies have not examined the global effect of P2P applications on

the entire network, namely the traffic that a P2P application imposes on individual

underlying Autonomous Systems (ASs). Such a global view is particularly important

because of the large number of geographically scattered peers in P2P applications.

This dissertation examines the global effect of P2P applications on the underlying

AS-level Internet. Toward this end, first we leverage a large number of complete

overlay snapshots from a large-scale P2P application, namely Gnutella, to characterize

the connectivity and evolution of its overlay structure. We also conduct a case

study on the performance of BitTorrent and its correlation with peer- and group-

level properties. Second, we present and evaluate Respondent-driven sampling as a
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promising technique to collect unbiased samples for characterizing peer properties in

large-scale P2P overlays without requiring the overlay’s complete snapshot. Third,

we propose a new technique leveraging the geographical location of peers in an AS

to determine its geographical footprint and identify the cities where its Points-of-

Presence (PoPs) are likely to be located. Fourth, we present a new methodology to

characterize the effect of a given P2P overlay on the underlying ASs. Our approach

relies on the large scale simulation of BGP routing over the AS-level snapshots of the

Internet to identify the imposed load on each transit AS. Using our methodology, we

characterize the impact of Gnutella overlay on the AS-level underlay over a 4-year

period. Our investigation provides valuable insights on the global impact of large

scale P2P overlay on individual ASs.

This dissertation includes my previously published and co-authored material.
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CHAPTER I

INTRODUCTION

Nearly 25 years after introduction of the first TCP/IP-based wide area network,

the Internet has become a complex phenomenon and a vital part of human life.

It has grown enormously in size and structure, while exhibiting rapid and dynamic

changes in behavior. Because the Internet plays such an important role in society, it is

imperative that its characteristics are thoroughly studied and understood. However,

the decentralized and distributed nature of the Internet makes this task extremely

challenging. Efforts to build a complete network topology map of the Internet, for

example, have focused primarily on building representative models of the Internet

topology due to the inherent difficulty of building an accurate map of such a large

scale and complex phenomenon. Adding to this challenge is the fact that the Internet

serves as the infrastructure for a diverse group of players, each seeking their own goals.

While Internet Service Providers (ISPs), network providers and content providers try

to maximize their specific benefits, governments try to enforce traditional laws in this

new domain.

In parallel with the development of traditional client/server-based network

applications, a group of peer-to-peer applications emerged, in which participating

users (peers) connect together, forming a fully-decentralized overlay network to

assist each other towards the application goal. The P2P concept provides a self-

scalable, low-cost, user-centric structure for a variety of applications, primarily

content distribution. P2P applications quickly became popular enough to account

for up to 70% of Internet traffic according to some reports. Their popularity and

unique features makes the study of P2P applications an important research subject.
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However, popular P2P applications such as BitTorrent and Gnutella form dynamic

and large scale distributed systems for which capturing accurate and complete pictures

is infeasible. Thus, researchers have tried to provide representative snapshots to study

the features and shortcomings of various important P2P applications.

Clearly, these P2P overlay-based applications have a huge impact on the

underlying network with serious economic and social consequences. For instance,

with the widespread deployment of peer-to-peer file sharing applications, some ISPs

tried to block or limit the traffic associated with P2P applications while the users and

application developers have tried to evade these limitations. The high volume of P2P

traffic is unprecedented, and the pattern of P2P traffic is dramatically different from

what the ISPs expect and are provisioned for. Yet to date, very little research has

focused on understanding how the behavior of P2P applications affects the Internet.

Our work seeks to fill this gap.

1.1. Overview of the Problem

The key question addressed by this dissertation is the following: “What is

the impact of P2P applications on the underlying network?” Answering this

question involves the following challenges: (i) measurement and characterization

of P2P/overlay applications, (ii) capturing and characterization of the Internets

autonomous systems (AS-level) topology, and (iii) characterization of the impact of

P2P applications on the underlying AS-level network.

1.1.1. Measurement and Characterization of P2P Applications

Popular P2P applications are dynamic large scale distributed systems with global

footprints. In the case of pure P2P systems, there is no entity that holds all the

2



information about participating peers and their connections. In some cases, there are

bootstrapping servers with partial information about participating peers; however,

they typically do not share such information with the academic research community

and they often do not have connectivity information. The dynamic nature of these

systems is another challenge for the researcher as it often results in distorted pictures

of the system.

1.1.2. Characterization of the Internet’s AS-level Topology

The complex challenge we face in understanding the Internets AS-level topology

is due to many aspects of this network:

– The Internet is a huge network with more than 30,000 ASs, hundreds of

thousands of routers and billions of nodes. Mapping a network of this scale

is hard, even if there was no limitation on data gathering.

– The Internet is a decentralized network of networks. No central entity

has complete information about all the networks. Each AS makes internal

decisions independently and each pair of ASs may establish links for private

or public traffic exchange. Commonly used techniques for gathering Internet

topology information (e.g., traceroute-based and BGP-based) have well-known

shortcomings and the resulting maps are known to be incomplete.

– Business, political or security motivations impact ASs willingness to share

information about their internal topology, user population, business agreements,

costs, routing preferences, etc. Therefore direct inquiry (including the

companies websites) may be of limited use.
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– A limited number of AS-level paths can be directly extracted from the archived

BGP tables. Besides this subset, finding paths among pairs of ASs is a

challenging task that requires information about the connectivity among ASs as

well as routing preferences at each ISP. Although there are available techniques

for inferring the types of relationships among connected ASs, they have limited

accuracy.

1.1.3. Characterizing the Impact of the Overlay on the Underlay

How then can we hope to understand the impact of large, fully-decentralized,

highly dynamic P2P applications on the even more vast, complex, and dynamic

AS-level network? How does the P2P overlay network map to the underlying AS-

level overlay network? Using archived BGP tables, we could try to map each IP

address in the overlay to their respective AS. However for many ASs, different

geographical parts of the AS may have different routing preferences. In these cases,

pinpointing the actual AS-level path from one IP host to another becomes extremely

challenging. This problem also holds in the general case of multi-homed ASs (those

with multiple providers) that perform load balancing among their providers. Clearly,

these questions require new advances in networking research to address a range of

challenging problems.

1.2. Our Approach

Our approach to characterizing the impact of a P2P/overlay application on the

underlying AS-level network breaks the problem down into the three steps discussed

above. We discuss our work in more detail below.

4



1.2.1. Measurement and Characterization of P2P Applications

As described earlier, P2P applications form large-scale dynamic systems.

Capturing an instant image of the system is not possible due to decentralization

and lack of central control. We have developed new efficient and effective crawlers to

capture snapshots of large-scale P2P applications to study the topology, application

behavior, as well as user behavior. As a case study, we examine Gnutella file sharing

application. We gathered full snapshots of Gnutella over the course of two years

and presented the long-term trends and evolution of this system. We also performed

a measurement study of peer performance in BitTorrent. We used tracker logs for

popular torrents from which we extract each peers download and upload rates during

their session times and examine the root causes for the observed performance by

individual peers.

Depending on the size of the network and crawling speed, the picture provided

by a crawler can be distorted due to the time factor involved in data gathering (the

system changes while the picture is being taken). Thus, we use sampling techniques

to capture a representative subset of the system in a short time. In particular we

implement a special version of respondent-driven sampling for this purpose.

1.2.2. Characterization of the Internets AS-level Topology

When we study the Internet as a network of networks, we can use the AS-

level abstraction. In an AS-level topology, nodes represent ASs and edges represent

connectivity and peering relationships among ASs. Current methods for capturing

an AS-level map of the Internet have known limitations. We use a combination

of available data sources and techniques including archived BGP tables and IXP
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(Internet exchange point) membership information to build an AS-level connectivity

and relationship map.

In order to find AS-level paths, we translate the inter-AS relationships into

common routing policies and simulate BGP routing on a full AS-level network.

Although the accuracy of the resulting paths may be questionable, we argue that they

can be used to represent the actual paths, because; (i) the actual paths often change

due to load balancing, and (ii) the characteristics (e.g., topological and hierarchical)

are representative of the actual paths.

The available methods for capturing AS-level topology do not provide a complete

picture. Both BGP-based and traceroute-based methods have limited views of the

inter-AS connectivity. Although they provide a rather complete picture of the core

of the network, they have limited vision on the edge.

We propose a complementary method in which we characterize the geographical

footprints of eyeball ASs (end-user ISPs). In this method, we use snapshots of popular

P2P applications as user IP address pools. For each eyeball AS, we extract their

part of user IP pool and map the IP addresses into geographical locations using

commercially available tools. Next, a two dimensional kernel method is used to

derive a geographical user-density function for each AS. The resulting function is

used to estimate the PoPs (Points of Presence) for each AS, as well as to visualize

the geographical footprint of the AS.

We study the underlying factors behind the observed AS-level topology. We

explore the reasons behind peering relationships among ASs and find out which factors

are more important in ISP decisions on which provider to choose, which peering

connection to establish and which IXP to attend to. We consider two groups of goals:

(i) business goals: i.e., each AS tries to minimize costs and maximize benefits, and
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(ii) geographical feasibility: i.e., ASs that are not in the geographical vicinity of each

other are less likely to establish direct peering.

1.2.3. Characterizing the Impact of the Overlay on the Underlay

The large and growing traffic associated with P2P applications and the concern

among ISPs who need to carry this traffic have led researchers to focus on the

idea of making P2P traffic less network-costly. However, the global impact of P2P

applications on the underlying network is not well understood. For example, it is not

known what portion of the P2P traffic is local (in terms of AS, country or continent),

how far the traffic has to go up in the AS hierarchy, or how the answer to these

questions differ across different P2P applications. We tackle this problem by using

the Gnutella P2P application as a sample case, using the datasets and tools we

developed. We aggregate peers based on which AS they come from and then we

assume a simplistic traffic model on the overlay. We form a global AS-level traffic

demand matrix in which the traffic demand between each pair of ASs is presented. We

also present the AS-level paths in a sparse binary matrix format and then we derive a

traffic matrix showing the amount of traffic on the links between connected ASs. By

plugging in any desirable P2P overlay map and any traffic model, this method provides

the traffic matrix on the underlying AS-level network. By examining the resulting

traffic matrix we can characterize the impact of any P2P overlay application.

1.3. Roadmap

The rest of this dissertation is organized as follows. In Chapter II, we present

the background and the related work of this research. Chapter III presents our

measurement study on Gnutella P2P application. In Chapter IV, we propose a
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novel sampling technique for capturing peer characteristics in large scale overlay

networks. This technique complements the method used in Chapter III (capturing

full snapshots) by enabling the researcher to capture peer properties of a very large

scale P2P application in a short time. In Chapter V, we present our case study

on P2P performance evaluation focusing on BitTorrent. This chapter provides

another perspective of P2P applications by focusing on the user experience rather

than overlay characteristics. Also, we showcase another technique for characterizing

P2P applications in which we do not perform any active or passive measurement.

Instead, we perform a sophisticated set of analyses on the log files provided by the

P2P bootstrapping hosts. Next, we turn our attention to the AS-level underlay.

Chapter VI presents our study on geographical mapping of ASs. In this chapter,

we use the datasets gathered in the study presented in Chapter III in addition to

other P2P snapshots we gathered later and propose a novel method for geographical

mapping of ASs. Chapter VII presents our work on the impact of P2P overlay on

the AS-level underlay. In this chapter, we use the technique and tool described in

Chapter III for gathering a large collection of P2P snapshots and showcase our novel

method for assessing the traffic imposed by a P2P application on the underlying

network of ASs. Finally, we present concluding remarks, summary of contributions

and future directions in Chapter VIII.

Chapters III,IV,V,VI,VII of this dissertation are based heavily on my published

papers with co-authors [102, 105, 103, 106, 104]. In all of the works, the experimental

work is entirely mine, with my co-authors contributing technical guidance, editorial

assistance, and portions of writing.
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CHAPTER II

BACKGROUND AND RELATED WORK

The Internet has evolved greatly since its first days in different aspects. The

network infrastructure has grown from a few academic and research institutions to

a huge global network with nodes in almost every home. In the meantime, a new

class of applications have been designed and widely used over the Internet for a

wide variety of functions; peer-to-peer (P2P) applications. In P2P applications,

participating peers form overlays through which they exchange data. The load

imposed by the P2P applications on the network has raised concerns in ISPs due to its

high volume and different pattern compared to traditional client-server applications.

These issues have motivated three areas of research : (i) Internet topology, (ii) design

and characterization of P2P applications, and (iii) studying the mutual impacts

between the P2P applications and the underlying network. In this chapter, we survey

the research works published in these areas in order to locate any open issues and

problems. Below, we present an overview of these areas.

2.1. Overview

In this section, we present an overview of Chapter II by providing a high-level

categorization of the previously published research works related to this dissertation.

2.1.1. Internet Topology Characterization

In this area, the researchers study the Internet connectivity graphs in order to

learn about the structure of the Internet and how it is evolving. Such information

is critical for Internet researchers as it provides knowledge about potential features
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and shortcomings that may result from certain connectivity structure. For instance,

some studies (e.g., [3]) have claimed that the Internet has a scale-free structure and

therefore its connectivity is dependent on a small number of very high degree nodes

(hubs) and concluded that the Internet is vulnerable to targeted attacks on these

hubs.

The Internet topology is often studied at two different abstraction levels: (i)

Router-level topology describes the connectivity graph of the routers that interconnect

the Internet, while in (ii) AS-level topology the connectivity of autonomous systems

(i.e., networks with an independent management) is the subject of study. Since the

expansion of the Internet to a global network, no complete topology of the Internet

has been presented to date and such a task still remains infeasible to do due to the

distributed nature of the Internet. Despite this fact and other challenges, a significant

number of research studies have been working on capturing and characterizing the

Internet topology at both AS- and router-level using innovative techniques that we

will discuss in Section 2.3..

2.1.2. P2P Application Design and Characterization

The attractive features of the P2P network application model has encouraged

application developers to employ the P2P model in a variety of applications.

Specifically, in the area of content delivery and sharing, P2P applications have been

mostly successful and popular. Nevertheless, designing an efficient, reliable and high

performance P2P application can be very challenging. In such systems dynamics

of peer participation, heterogeneity of the peers in terms of available resources and

bandwidth along with some other issues are the main challenges that an application
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designer has to overcome. We will discuss some of the research works in this area in

Section 2.2.1..

Once a P2P application is widely adopted by the Internet users, there are

still many questions that need to be answered about it. Due to the distributed

and nature of these applications, there is often no central monitoring or controlling

entity and therefore one cannot answer questions on issues such as the performance

and efficiency of the working system without a thorough network measurement.

Also, the researchers are often interested in studying large P2P overlay networks

as samples of complex networks in order to discover their features and shortcomings.

In Section 2.2.2., we discuss some of the mostly cited works in the area of P2P

measurement and characterization.

2.1.3. Overlay-Underlay Interaction

We mentioned before that the participating peers in a P2P application form an

overlay. An overlay is a virtual data communication network that is built over a real

network (Internet) actually responsible to carry the data packets. In recent years,

the traffic imposed by the P2P overlays has raised concerns in many ISPs urging

them to limit or control this traffic. In the area of overlay-underlay interaction, the

researchers discuss the following issues: (i) The impact (load) of the P2P overlays on

the network, (ii) ISP efforts to limit the impact and the reaction of P2P applications,

(iii) ISP-friendly P2P applications, and (iv) ISP-P2P cooperation.

The increasing popularity of the peer-to-peer applications has caused the traffic

of such systems to become an issue for the ISPs. On one hand, the P2P model is

attractive to the content providers because it empowers them to feed more users

with little investment. For instance, NBC has re-branded a P2P streaming and
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file sharing platform, called Pando, for high definition rebroadcasting of their shows

over the Internet. On the other hand, many ISPs have raised concerns about both

level and pattern of the traffic caused by P2P applications. Furthermore, some ISPs

have incorporated mechanisms to detect and limit the amount of traffic associated

with certain P2P applications. In the summer of 2008, the Federal Communications

Commission (FCC) issued a ruling against Comcast on “discrimination among

applications” and ordering them to stop such practices. The ruling was based on

a complaint accusing Comcast of blocking P2P traffic. This was after other attempts

by P2P applications to make P2P traffic harder to detect and control by the ISPs

(e.g., encryption).

2.1.4. Grounds for ISP Concerns

Earlier we mentioned that with the growth of P2P traffic, many ISPs became

concerned and took actions to limit or block P2P traffic. Here we try to answer

the following question: Why are the ISPs concerned about P2P traffic ? There are

two important differences between the P2P applications and common client-server

applications; (i) In most of the traditional client-server applications (e.g., WWW),

the uplink traffic of the users is relatively small. However, in P2P applications,

participating peers may generate as much upload traffic as they download. This

results in a significant increase in the amount of upload traffic that the ISPs have

to transmit. (ii) In most traditional applications, the traffic flow has a temporal

dependence with the human interaction. For example, when the user clicks on a

WWW link, the client starts to download the targeted page or file and the flow stops

as soon as the download is complete which normally takes between a few seconds

to a few minutes for larger files that are requested less frequently. In contrast,
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in P2P applications, although the traffic flow starts with user interaction, it will

often continue much longer without any user action. For instance, in BitTorrent (a

popular peer-to-peer file distribution application) the network link is often utilized

in both outbound and inbound directions during the downloading time. Even once

the download is complete, the client automatically continues providing content to

other participants until stopped by the user effectively keeping the uplink busy even

after the download is complete. The uplink traffic is often sent to peers in other

ISPs and therefore increases the load on the inter-ISP links. Therefore, the advent

of P2P applications increases ISPs’ costs by (i) increasing the ISPs’ uplink traffic

for the same volume of download (ii) changing the user traffic pattern from bursty

(short flows of traffic that are originated by user interactions) to steady (continuous

flow even without user interaction). Assuming fixed amount of download per user,

increased uplink traffic often means that the ISPs should purchase more bandwidth

for the same number of users. Also, bursty traffic pattern which was the dominant

user utilization pattern, allowed a much larger provisioning ratio for the ISPs (the

short flows by different users occur in different times and therefore the momentary

load of the ISP is small) compared to a steady pattern, effectively forcing ISPs to

purchase larger bandwidth for a fixed number of users.

The problem of P2P traffic for ISPs has motivated several sets of research

projects. Some have proposed methods to make P2P applications “ISP-friendly”

mainly by localizing their traffic within ISPs. Although localization can reduce ISP

load for certain scenarios without degrading the application’s performance, in many

cases localization may limit the performance of P2P applications, mainly by making

the groups of peers that can help each other smaller. Such limitations suggest that
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localization is not enough and some other mechanisms need to be used to differentiate

between external peers.

Recently, there has been multiple research works suggesting cooperation between

peer-to-peer applications and the ISPs. In summary, within such cooperative

methods, ISPs help peer-to-peer applications select neighbors in order to minimize

the load on the ISP’s costly links. The ISP uses its information about the topology,

link costs and utilization in order to adjust the amount of P2P traffic on its own

external links.

2.1.5. Roadmap

In this chapter, we survey and categorize the research works in the three areas

mentioned above. We aim to understand the mutual effects of the P2P overlays

and the Internet underlay. However, in order to characterize such effects, we first

need to understand the characteristics of the P2P overlays and the underlying

network. Toward this end, in Section 2.2., we survey research studies on the

design and characterization of P2P applications. Section 2.2.1. categorizes P2P

overlays according to the function, structure and shape of the overlay. Section 2.2.2.

surveys and groups research works in the area of characterizing P2P overlays through

measurement, modeling and simulation. In Section 2.3. we survey some outstanding

research studies on the Internet topology. In Section 2.3.1., we discuss research

studies characterizing the AS-level topology of the Internet and categorize their data

gathering and characterization methods. Section 2.3.2. surveys the studies on router-

level topology of the Internet and categorizes their data sources and characterizations.

Section 2.4., we focus on the mutual impacts of the P2P overlays and the

underlying network. Section 2.4.1. surveys research works on the impact of P2P
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overlays on the network. In Section 2.4.2. discusses the actions made by the ISPs to

manage the P2P traffic and why they are not acceptable by the network community.

In Section 2.4.3., we summarize research works that try to form ISP-friendly overlays

and in Section 2.4.4., we survey the recent works based on the cooperation between

the ISP and the P2P applications. Finally, Section 2.5. concludes the chapter by

reviewing the main challenges and shortcomings.

2.2. Overlay Networks

P2P applications are used to provide a variety of network services in a

decentralized fashion. Such systems are: (i) robust, since they do not have a single

point of failure; (ii) scalable, as each user adds resources to the system, and capable

of functioning at (iii) very low cost. The collection of participating peers in a

P2P network form a P2P overlay which is a virtual network over which the peers

exchange data. In most of today’s P2P systems, the overlay networks are formed

without considering the underlying network. For instance, in a random overlay

network two peers that are in the same physical network have only a small chance

of getting connected to each other while each may have neighbors from across the

globe. Besides random overlays, in another group of P2P applications the overlay

construction may have particular goals. For instance, in a gaming overlay, it is fair

to assume that minimizing delay (between interacting peers) should be the goal of

overlay construction while in streaming, maximum bandwidth from the source might

be as important. In this class of P2P overlays, the goals of minimizing delay and

bandwidth may indirectly cause overlay connections to become more localized.

Finally, a few recently proposed P2P overlays explicitly follow the goal of

locality-awareness or network-awareness either with or without the support from the
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underlying network 1. Considering the popularity of the P2P applications and the

load they impose on the underlying network, it is important to study different types of

P2P applications as well as the research works aiming at characterizing P2P overlays.

The impact of a P2P overlay on the underlying network depends on: (i) overlay

connectivity structure, (ii) traffic generation pattern and (iii) packet forwarding and

routing mechanism in the overlay. In order to study this imapct, we need to learn

about the structure, packet generation and data paths in the overlays. The P2P

applications are used for a variety of functions and their respective overlay networks

have different shapes, structures and characteristics according to the functionality

they are designed for. In Section 2.2.1., we categorize most well-known P2P overlay

networks in research and user communities according to the overlay’s functionality,

structure and shapes and compare the subgroups, accordingly. In Section 2.2.2. we

overview a number of research works on characterizing P2P overlays while categorizing

them according to their approaches.

2.2.1. Categorizing P2P Overlays

P2P applications can be categorized from numerous aspects. In this report,

we focus on the overlays and therefore we categorize P2P applications with this

focus. Although overlays may be used for a variety of purposes, generally one

overlay is constructed and used for a single functionality. In some P2P applications,

multiple overlays are formed and used for multiple functionalities. This is because

the structure, shape, and characteristics of the overlay depends on its functionality.

The two main classes of overlay functionalities are (i) Signaling and control

and (ii) Content delivery. In content delivery overlays, large amounts of data

1We will discuss this issue in detail in Section 2.4.
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are transferred through the overlay to reach interested peers while in signaling

overlays only queries and responses that are often short are transmitted through

the overlay. We discuss and further subgroup signaling and content delivery overlays

in Sections 2.2.1.1. and 2.2.1.2., respectively.

2.2.1.1. Signaling and Control Overlays

In a variety of P2P applications, overlays are used for maintaining membership

and exchanging queries and responses. In this class of overlays, the main goal of

the overlay construction are reachability and resiliency and therefore the overlays are

often richly connected. The following are some examples of the signaling overlays

categorized by the functions.

2.2.1.1.1. Categorizing Signaling Overlays Based on Functionality

– Searching is an important problem in file sharing applications. In these

applications each user shares a number of files with other users and is interested

in finding and downloading other files shared by other users. In order to

avoid single point of failure issue associated with a central indexing server

(e.g., Napster), a decentralized search mechanism is used by some file sharing

applications such as Gnutella. In Gnutella, participating peers form an overlay

to handle the decentralized search functionality. Peers send their search queries

to their neighbors and each peer checks the query against their own shared files.

If they have a matching file, they will send back a positive response, otherwise

they relay the query to their neighbors. Although simple, searching over a large

scale flat overlay may become quite inefficient. In Semantic Small World [77],

peers form a highly clustered overlay. The clusters are based on the semantics
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of the content shared by peers. Taking advantage of similar interests by groups

of people, the semantic based clustering makes searching much more efficient in

SSW.

– Store and lookup services are handled by a group of popular P2P

applications called Distributed Hash Tables (DHT). A DHT is responsible for

distributed storage of key-value pairs, similar to a local hash table. In DHTs

each peer is assigned with an ID and is responsible for a part of the hash space

according to the assigned ID. Each peer maintains a routing table consisting of

a set of links to other peers that are its neighbors. Together these links form the

overlay network. A node picks its neighbors according to a certain structure

that is the main difference between different DHTs and is often referred to

as the DHT’s topology. Commonly, the routing table size and the routing

algorithm complexity in DHTs are O(log(n)) where n denotes the number

of participants. In CAN[108], peers form an overlay over a virtual multi-

dimensional Cartesian coordinate space. This d-dimensional coordinate space

is a virtual logical address, completely independent of the physical location and

physical connectivity of the nodes. In Chord[126], node keys are arranged on

a circle. Each peer’s routing table includes its successor and predecessor which

are the next and the previous node on the circle, respectively. Each peer is

responsible for the ID space contained between that peer and its successor. In

addition to the successor and predecessor the routing tables also include a few

shortcuts to other locations in the circle for the sake of faster routing.

Other well-known proposed DHTs are Pastry[113], Tapestry[141] both using

circular ID spaces and Kademlia[87] uses the XOR metric to calculate the binary

distance between two peers, in order to determine neighboring and routing
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information. Due to the efficient decentralized store/lookup service they offer,

DHTs are widely used in different applications for indexing and state keeping.

For instance, in Vuze, a popular BitTorrent client, a DHT is formed to act

instead of a BitTorrent tracker, in case it becomes unavailable. In Freenet[34]

a DHT-like overlay is formed for anonymized distribution of data to protect

freedom of speech. The protocol design ensures anonymity of the publisher and

downloaders of the data.

2.2.1.1.2. Categorizing signaling overlays based on structure

Signaling overlays are generally divided into two groups based on the their

structure. Below we compare and contrast the two groups with examples.

– Unstructured overlays: In this group of overlays, peers connect to each

other in an arbitrary fashion. Each peer can individually select its own

neighbors after a peer discovery phase in which peers acquire information about

other participating peers. The resulting overlay topology is often close to a

random graph, and thereby, highly resilient to churn (i.e., dynamics of peer

participation).

In Gnutella, peers upon joining follow a peer discovery mechanism and learn

about a number of other participating peers. Among those peers, they randomly

select a subset and try connecting to them and continue until a predefined

number of neighbors is reached. However, our study on Gnutella presented in

Chapter III shows that there is a certain level of connectivity preference towards

geographically close peers that may allow one to argue that Gnutella overlay is

not purely random.
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Although unstructured overlays are easy to build and maintain, their

performance and efficiency are often points of concern. Searching for popular

content in an unstructured overlay is often easy and fast, while the search

performance for unpopular content is lower. This is because the query should

eventually reach all the participating peers to ensure that a rare content can be

found. There is also a trade-off between efficiency and performance of searching

that a P2P application can control by adjusting the forwarding range of each

query.

Although signaling overlays usually do not carry heavy traffic, high packet rate

may become an issue for large flat overlays. To alleviate this problem multiple

techniques have been used including the two-tier topology in modern Gnutella.

– Structured overlays: In structured overlays, also known as distributed hash

tables (DHT), globally consistent protocols are used for neighbor selection and

query routing in order to ensure efficient routing and resolution of queries.

CAN[108], Chord[126], Pastry[113], Tapestry[141] and Kademlia[87] are the

most well-known DHTs and we briefly discussed them earlier.

Structured overlays can offer high levels of performance and efficiency. Most

operations, such as joining the overlay and looking up a key value are performed

in O(log(n)) where n denotes the overlay size. However, maintaining the overlay

in presence of churn is often quite costly. When a peer leaves the DHT, its

responsibility should be transferred to other peers. Also when a new peer joins

the system, it should find its place and often load the keys previously stored

in its responsibility zone from other peers. Additionally, most DHTs require

periodic maintenance to keep the space allocation balanced and their routing

tables up-to-date.
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Although most structured overlays are used for store-lookup services, there are

exceptions such as Freenet [34] in which published files by the users are stored

in the overlay in order to provide an anonymous and non-traceable file sharing

environment.

2.2.1.2. Content Delivery Overlays

In this class of overlays, participating peers assist each other in downloading

the content by contributing their upload bandwidth. The content is either a file or a

stream which all peers are interested in receiving. The content is often broken into

chunks and transmitted through the overlay and relayed by each peer to reach all

other peers. In the traditional client-server content distribution, the server needs to

have a large bandwidth as well as other resources in order to serve all the clients.

However, in P2P content delivery, the source will only need to upload the content a

small number of times (ideally once) and then the peers will download the content

from each other. Thereby, content delivery overlays provide a scalable, resilient and

low cost method for distributing large files and streams and therefore have become

very popular.

In this section we divide the content delivery overlays from 3 aspects: (i) content-

type, (ii) overlay shape, and (iii) content delivery mechanism.

2.2.1.2.1. Categorizing Content Delivery Overlays Based on the Content

Type

The content distributed through the overlay may be a file or a stream.

– File distribution overlays: In these P2P applications, a file or a set of files are

shared by a source among the participating peers. Although the downloading
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peer’s goal is to complete the download as fast as possible, there is no hard

timing constraints and therefore this class of content is also referred to as elastic

content. BitTorrent [36] is the most popular P2P file distribution application.

In BitTorrent, users interested in downloading the same file or set of files form a

dynamic content delivery overlay. The files are divided into small blocks. Each

peer receives the list of blocks available in its neighboring peers and subsequently

sends requests for the blocks that it needs. While the tit-for-tat mechanism

ensures bandwidth contribution by all peers, the rarest-first policy used by each

peer for selecting which block to download, facilitates diffusion of all the blocks

across the overlay. The content delivery method used by BitTorrent in which the

data is broken down to small blocks which are undeterministically distributed

in an overlay is also called swarming.

– P2P streaming overlays: In this class of P2P applications, multimedia

streams are shared among interested users. In comparison to file distribution,

streams are more challenging to distribute through an overlay due to strict

timing requirements. In particular, each block of the stream will be useful at

each peer only if it arrives before its playout time (non-elastic). Also, a sustained

average delivery rate, equal to the stream bandwidth is necessary to each peer

in order to ensure uninterrupted playback of the live stream.

These overlays are used in delivering two types of streams. While some of

the streaming overlays such as PRIME[82] and Coolstreaming [140] focus on

delivering live audio-video streams, another group of P2P streaming applications

such as Pando provide streaming of pre-recorded media often with VCR

functionality. In pre-recorded streaming, a longer portion of the stream can

be buffered to prevent interruptions during the playback, making the timing
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requirements looser. In live streaming, the amount of acceptable buffering is

usually shorter. On the other hand, with pre-recorded streaming, participating

peers play different parts of the stream at the same time and therefore the

possibility of mutual uploading between two peers is very limited.

2.2.1.2.2. Categorizing Content Delivery Overlays Based on the Overlay

Shape

Content delivery overlays are designed in one of the following shapes: (i) tree,

(ii) multiple-tree, and (iii) mesh.

– Tree: In a tree-based overlay, peers form a single source-rooted tree and

the content is distributed to all peers along the tree. In tree-based overlays

such as Narada[33], each peer has only one parent from which all the content

is downloaded. Tree-based overlays are simple to build, however they often

suffer from multiple shortcomings including limited robustness and stability

in presence of churn and limited scalability in terms of control overhead and

latency.

– Multiple-trees: In more recent proposed works such as CoopNet[96] and

Splitstream[23], multiple trees are built for content delivery overlays. In

multiple-tree based overlays, the content (usually a stream) is divided to

multiple parts and each part is delivered through one tree. This mechanism has

three main advantages over a single tree approach: (i) In a single-tree overlay,

the leaves do not contribute any bandwidth to the system while in multiple

tree, each leave in one tree may have children in other trees. (ii) In a multiple-

tree overlay, each peer’s departure will disrupt receiving the content for all its

descendents while in a multiple-tree overlay, each peer concurrently receives
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content from multiple parents and a temporary disconnection from one tree will

only limit the rate or quality of the content. (iii) Peer heterogeneity can be

supported in multiple-tree approach by joining a number of trees proportional

to the peer bandwidth.

– Mesh: In a mesh-based overlay, such as BitTorrent [36] and PRIME [82], a

random directed or undirected overlay among participating peers is formed.

Each peer may download some part of the content from any of its neighbors.

In contrast to tree-based approach, the mesh-based approach does not need to

construct and maintain an explicit overlay structure for delivery of content to

all peers. This further simplifies the overlay maintenance in presence of churn.

2.2.1.2.3. Categorizing Content Delivery Overlays Based on Content

Delivery Mechanism

According to their content delivery mechanism, content delivery overlays belong

to either of the following groups:

– Push: In push-based content delivery, often used over tree-based overlays, each

parent is responsible for forwarding the content to its children. The content flow

to all peers is predetermined with the overlay shape. For instance, SplitStream

[23] is a high-bandwidth content distribution system based on application-level

multicast. In this application, multiple trees are formed and the shared stream

is divided into multiple sub-streams, each pushed down through one of the trees.

All proposed end-system multicast projects such as Narada [33], NICE [11] and

Overcast [68] also follow the push mechanism.
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– Pull: In pull-based content-delivery, usually used over mesh-based overlays,

peers exchange their block availability status and then each peer requests or

pulls the blocks it needs from neighbors who have them. With this mechanism,

no peer is responsible for providing certain content to another and the data

exchanges are based on availability and request. For instance, in BitTorrent[36]

peers receive a bitmap depicting content availability at each neighbor and then

use rarest-first policy to decide which blocks to request from their neighbors

ensuring maximum block diversity in each neighborhood. Peers will only provide

a sustained upload if the receiving party also provides them with a “high” upload

rate on the blocks that they request. Non-contributing peers will get choked by

other peers and may not receive a sustained download.

2.2.2. Characterizing P2P Overlays

Due to the increasing popularity of P2P applications, several research studies are

published that try to characterize P2P applications through (i) network measurement,

(ii) modeling and (iii) simulation. In this section, we review some outstanding

examples of these research studies.

– Network Measurement: In this class of studies, Internet measurement is

performed over an active P2P overlay in order to assess performance, show

possible shortcomings or provide an analytical model.

Saroiu et al. [116] perform a measurement study on Gnutella and Napster P2P

overlays. They measure peer properties including session times and number of

shared files, as well as network properties such as end-to-end latency, reported

and available bandwidth. Their measurements show that there is significant
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heterogeneity and lack of cooperation across peers participating in Gnutella

and Napster.

Stutzbach et al. [132] introduce cruiser a high performance crawler for the

Gnutella overlay. Using cruiser they capture full snapshots of the Gnutella

overlay taken in a few minutes. They show that snapshots taken with slow

crawlers lead to erroneous results biased towards short-lived peers. The authors

observe an Onion-like structure according to which peer connectivity is related

to uptime. Moreover, they show the existence of a stable core in Gnutella overlay

that ensures reachability despite peer participation dynamics.

Izal et al. [66] provide a measurement study of the BitTorrent using a 5-month

long BitTorrent tracker log file. Using this source of information the authors

capture several metrics related to a popular swarm including population,

each peer’s upload and download volumes and rates and downloading times.

They show that the seeds (the peers who stay in the system after download

completion) significantly contribute to the system and they show that

BitTorrent can successfully sustain handle flash crowds.

In our research work presented in Chapter III, we capture a large number

of snapshots from the Gnutella overlay during a 15-month time-span. We

characterize the evolution of Gnutella during this time period and show how

the revisions of the popular Gnutella clients have effectively managed to keep

the overlay balanced and efficient despite the population becoming quadrupled.

– Modeling P2P applications: Analytical and stochastic modeling is used in

a number of research studies, in order to capture and explain some of their

characteristics. Qiu and Srikant [98] propose a fluid model of BitTorrent using
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game theory and validate the model by simulation and experiments. They assign

exponential distributions to peer arrival rate, abort rate and departure times

and model peer evolution from the joining time until it leaves the system using

a fluid model. They provide formulas for the number of seeds and downloaders

and downloading time accordingly assuming a Nash equilibrium.

Some other research works also target modeling of different aspects of P2P

applications. Ge et al. [50] model a generic P2P file sharing system as a

multiple-class closed queuing network. Zou and Ammar [142] provide a “file-

centric model” for P2P file sharing systems. In their model, they focus on a

file’s movement through the system and its interaction with the peers.

None of the observed modeling studies focus on the overlay structure and

characteristics.

– Simulation studies on P2P applications: Many research studies on P2P

applications use some kind of simulation. Simulation is often used as a low

cost method for evaluating a proposed system or a modification to an existing

system. Simulations may be performed in different levels. A session-level

simulation of a P2P system provides a simple environment for testing basic

functionalities of a P2P system without getting involved in packet-level details

and dynamics.

Bharambe et al. [15] develop a session-level simulator of the BitTorrent

system that models peer activity (joins, leaves, block exchanges) as well as

many of the associated BitTorrent mechanisms (local rarest first, tit-for-tat).

Using their simulator, they study effectiveness of BitTorrent’s mechanisms and

show that their proposed technique can improve fairness in BitTorrent. As
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another example, in our study presented in Chapter IV, we perform session-

level simulation of an unstructured P2P overlay and our proposed sampling

technique, in order to study the effect of churn on the accuracy of sampling.

A packet-level simulation is closer to a real experiment. Such simulations are

often used in evaluating lower layer protocols such as congestion control, routing

and data link layer protocols. However, in the cases that the packet dynamics

are important to the applications functionality, they can also be used. The

network simulator (NS-2) [65] is widely used by the researchers as a reliable

and flexible packet-level simulator. For instance, Magharei et al. [82] implement

their proposed P2P streaming application over NS-2 and use it to evaluate its

functionality and performance.

Although packet-level simulations are more realistic, they may not be used for

simulating very large networks. In this case, session-level simulation may be

used if the packet-level details are not very important.

2.3. Internet Topology (Underlay)

Although the Internet is a man made phenomenon, because of its true distributed

nature, no entity can claim to have a full map of its topology. Since the rapid

evolution of the Internet in the 90s, capturing its topology has become an interesting

challenge for the researchers. In addition to the network researchers who study

Internet architecture in order to learn the associated features and shortcomings, some

scientists have also shown interest in the Internet topology as a large scale complex

network.

The Internet topology may be studied in two different levels. In AS-level

topology, the connectivity graph is composed of nodes that each represent an
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Autonomous System (AS) and edges that represent a physical link between the two

corresponding ASs. Roughly speaking, each AS represents an independent company’s

network and therefore AS-level topology depicts connectivity between companies.

Since packet routing over the inter-AS links is handled by the BGP routing protocol

and the main deciding factors in BGP routing are often predefined policies, having a

simple connectivity graph of ASs is of little use when data paths are of any interest.

Therefore, the edges of the AS-level connectivity graph are often annotated with the

peering relationships among the corresponding ASs that also reflect the BGP policies

applied on the link.

AS-level topology can provide a high-level view of the Internet and is very useful

in describing the structure of the Internet, however, it may not provide enough details

about the network technology. In router-level topology, the nodes of the connectivity

graph represent routers and each edge of the graph represents a physical link between

two routers. The common method to gather router-level connectivity practiced by

the researchers is using traceroute to capture a massive number of router-level paths.

The main challenges in studying Internet topology are data gathering and

characterization. Capturing connectivity data is each level has its own limitations

and hurdles which need to be addressed. Once the data is available, a researcher will

have to use right methods to look at the data in order to extract new and interesting

features.

In this section we survey and categorize the most important research works

in Internet topology characterization. In Section 2.3.1. we discuss the studies on

AS-level topology and categorize them based on the data sources they have used,

characterization method they have employed and also the type of model they provide

for the Internet connectivity.
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In Section 2.3.2. we survey important research conducted on the router-level

topology of the Internet and categorize them according to their data source,

characterization method and modeling class.

2.3.1. AS-level Topology of the Internet

The Internet is a network of networks. Each network operated and controlled by

a separate and independent administrative entity is called an Autonomous System

(AS). Since connectivity structure and packet routing within and among ASs are

each based on different goals and principles, AS-level and router-level topology need

to be studied separately. Connectivity among ASs is often based on business decisions

rather than technical ones and for this reason, packet routing also follows business

policies. For instance, a small ISP often chooses a provider offering a lower price for

their desired service level.

In the AS-level connectivity graph, each node represents an AS and each edge

shows a physical connection between two ASs. Note that if two ASs cover a large

geographical area, they may have multiple physical links connecting their networks in

different locations. However, in AS-level topology the number of links between two

ASs is usually not considered.

One of the main challenges of the studies on the AS-level topology is obtaining

a reliable data source. In most of the studies, the AS-level connectivity data is

obtained from BGP monitoring and archiving servers such as University of Oregon’s

RouteViews. Although the data from such sources is known to be incomplete, it

is still used as the best source of information on AS-level connectivity. One of

the main reasons for studying Internet topology is learning about the paths that

the data packets traverse from source to destination. Since the inter-AS routing is
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policy-based and handled by BGP routing protocol, the BGP policies also need to

be included in AS-level topology, otherwise, the connectivity information will not be

useful. In Section 2.3.1.1., we discuss different data sources used in AS-level topology

and categorize published works from this aspect.

AS peering policies are usually simplified in AS relationships. In this

categorization the relationship between each pair of connected ASs belongs to one

of the following groups: (i) customer-provider, (ii) peer-peer and (iii) sibling-sibling.

The basic BGP policy that is commonly used is usually referred to as “valley-free”

routing. This model associates a hierarchical model to the Internet in which each

customer is located below its provider(s). In this hierarchy, the top level ASs have no

providers, instead they are connected to each other over peer-peer relationships. In

this hierarchy, the tier of each AS is simply its level in the hierarchy, where top level

ASs are tier-1, their customers are tier-2 and so on. This hierarchical structure is

an insightful characterization of the AS-level topology. In Section 2.3.1.2., we discuss

the characterization techniques and methods used in AS-level topology and categorize

the research works from this point of view.

In order to better understand the AS-level topology, some studies have taken the

modeling approach. In some of these works, connectivity of the ASs and its pattern

and evolution are the subject of mathematical and stochastic models. For example,

the node degree distribution of the AS connectivity graph has been modeled with

different stochastic models. We will discuss the modeling alternatives and survey

research on modeling AS-level topology in Section 2.3.1.3..
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2.3.1.1. Data Sources for AS-level Topology

One of the main challenges of studying AS-level topology of the Internet is

obtaining accurate and complete data. Using inaccurate, outdated or biased data

can mislead a researcher towards incorrect conclusions. For instance, Chen et al. [28]

show that missing a large number of peering links interconnecting medium-sized ISPs

in the BGP traces used by some earlier works has been the main cause of observing

power law degree distributions and consequent incorrect results.

Research studies have used three sources of data in studying AS-level topology.

Below, we discuss these sources and survey the studies using each.

– Using BGP archives: One group of common sources of information for

capturing AS-level topology are public BGP monitoring and archiving servers.

One of the mostly cited such projects is University of Oregon’s RouteViews that

has been actively monitoring and archiving BGP routing tables and updates

since late 1997. In BGP, each routing update includes the complete AS-path

from the update origin up to the router receiving the update, therefore, each

BGP router maintains all the AS-level paths connecting it to all other reachable

networks, which is essentially one view of the Internet’s AS-level topology. We

should note that this view, as shown in Figure 2.1. only includes the links

appearing in the paths starting from our BGP router’s AS and all other links

of the AS connectivity graph are hidden from it.

In RouteViews, a large number of BGP peerings are established to many

volunteer ASs all over the Internet which will act as RouteViews’ vantage points.

Over these peerings, each vantage point relays all the updates visible from their

32



1

2

5

3

6

4

Monitor-1

(a) 3 links are hidden from monitor-1.

1

2

5

3

6

4

Monitor-2

(b) 3 links are hidden from monitor-2.

1

2

5

3

6

4

Monitor-2

Monitor-1

(c) One link is hidden from both monitors.

FIGURE 2.1. BGP monitors cannot observe all links.

points of view to RouteViews. Effectively, the set of all paths received by

RouteViews includes a large portion of all the links between ASs.

Using BGP archives one can produce an AS-level topology snapshot that

includes all the active ASs. Also, using saved archives from different points

in time, one can study the dynamics of the AS-level topology over a certain

time period. On the down side, BGP snapshots often do not include backup

links since they are not actively used and advertised by the corresponding ASs
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unless their main links stop working. Also, as mentioned earlier, by including

more vantage points (BGP peers), a BGP monitoring service can extend their

sight to observe a larger number of links, however, there are always links that

remain hidden. Roughan et al. [112] try to identify and enumerate these missing

links.

Several studies on AS-level topology such as papers by Govindan et al. [52],

Faloutsos et al. [45], Medina et al. [89], Gao [48] and Mahadevan et al. [85],

the authors have used BGP data to produce AS-level topology of the Internet.

Chen et al. [28] expose incompleteness of BGP data as the main cause of the

observed power-laws in earlier works such as the paper by Faloutsos et al. [45].

They claim that in BGP snapshots 20%-50% of the links are missing.

Chang et al. [24] compare RouteViews data sets with the BGP data sets they

have gathered from a set of looking glasses and routing registries and find 25-

50% more AS relationships and 2% more ASs. A looking glass is a web interface

allowing public viewing access to an ISP’s BGP routers, while in an Internet

Routing Registry (IRR), the routing policies of each AS is maintained in a

public database.

Zhang and Liu [139] compare the AS-level topology obtained from RouteViews

snapshots with those they have produced by gathering data from looking glasses,

routing registries and multiple route servers including RouteViews. In order to

observe backup links that do not usually appear in the RouteViews paths, they

obtain all BGP updates over a one year period from RouteViews and include

the links observed in these updates to their data set as well. The final AS-level

topology they produce includes 44% mode links and 3% more ASs than the

average graph obtained from RouteViews data alone.
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Roughan et al. [112] aim to estimate the number of missing links in the AS

connectivity graph obtained from RouteViews using stochastic and information

theory models. Their estimates approve 3 earlier works ([139, 91, 61]) that

tried to produce a complete AS-level topology. They estimate the number of

missing links to be about 37% of the observed links at a certain time. They

also estimate that using 700 route monitors, we can observe 99.9% of the links

in the AS connectivity graph.

– Converting router-level paths to AS-level: Some researchers including

Chang et al. [25] have suggested gathering router-level path information such

as traceroute logs and converting them to AS-level paths. In this method,

AS-level connectivity can be obtained in finer granularity (e.g., multiple links

between ASs). Another advantage in comparison with BGP data is capturing

ASs whose routes are aggregated in BGP with other ASs. However, using

this method involves some serious data gathering challenges, i.e., accessing

a sufficient number of vantage points to run traceroute experiments. Also,

traceroute data is known to have certain issues resulting in incomplete or in

some cases erroneous data that we will discuss in Section 2.3.2.. Besides these

issues, mapping routers to ASs may also add some error due to using foreign

IP addresses in border routers. Chang et al. [25] use traceroute logs from the

Internet Mapping Project [29]. They present some techniques to avoid the effect

of the issues mentioned above. The authors claim that the method addresses

some shortcomings of the BGP-based method, however, due to the increasing

security concerns, networks are blocking traceroute access to their networks and

therefore capturing a nearly complete picture of the Internet using traceroute

based methods is infeasible.
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– Extracting AS relationships from routing registries: One of the services

usually provided by the Regional Internet Registries (RIRs), including ARIN[8],

RIPE[110], APNIC[7], LACNIC[73] and AfriNIC[1], is maintaining routing

registries for their own geographical zones. Additionally, some third party

organizations such as RADB[100] also run routing registries. A routing registry

is a public database for keeping and publishing the BGP routing policies used

by individual ASs over each of their peering relationships with their neighboring

ASs.

Using routing registries, a researcher not only can obtain AS connectivity

information, he can also infer the relationship types using the policies listed.

Routing registry data can be quite useful for an Internet topology researcher,

since it provides all peering information including backup links as well as details

of the policy without any measurement and these information are hard to obtain

from sources discussed earlier. However, in practice routing registry data is of

limited use in Internet topology studies because the entries are often out of

date and incomplete due to the fact that the ISPs have little motivation to keep

them up to date. Gao [48] uses ARIN’s routing registry information to compare

and evaluate her algorithm for inferring AS relationships while Chang et al. [24]

use RIPE’s routing registry to complement data obtained from RouteViews and

looking glass websites, as described earlier in this section.

In summary, although routing registry data is often considered incomplete and

therefore it is not relied on as a sole source of information, some researchers

have used it in order to complete the topology obtained from other sources or

as a reference to compare and evaluate their methods, such as inferred sibling

relationships.
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2.3.1.2. Characterization Methods for AS-level Topology

Characterizing the AS-level topology of the Internet is a common goal that has

been pursued using different techniques and methods. The common goal is discovering

interesting characteristics and features of the AS connectivity graph that can provide

an insight on better understanding the way Internet works and evolves. The most

important subjects of AS-level topology characterization, according to the volume of

research work, are : (i) Degree distribution in AS connectivity graph, (ii) Hierarchy

of the AS-level topology, and (iii) Inferring inter-AS relationships. In this section we

survey the research work addressing each of these subjects and mention the benefits

and the challenges involved in each case.

– Node degrees in AS connectivity graph: In AS connectivity graph, each

node, representing an AS, is connected to a number of other nodes. The

number of ASs that each AS is connected to, determines the degree of the

corresponding node. Node degree distribution provides the most basic view of a

graph’s connectivity and therefore it has been used in numerous research works

to capture and present the structure of the AS connectivity graph.

Faloutsos et al. [45] in one of the first works in AS-level topology

characterization claim that the degree distribution of the AS connectivity

graph follows a power-law distribution. They also discover other power law

relationships in the Internet topology, including the number of nodes within

h hops as a function of h. Based on these finding, they show that random

graphs do not represent the Internet topology. Later, Medina et al. [89] analyze

possible root causes for the observed power laws in the previous work. They

identify preferential connectivity together with incremental growth as the key
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contributing factors to the power law relationships. Fabrikant et al. [44] propose

an explanation for the power laws based on a toy model of Internet growth in

which two objectives are optimized simultaneously: last mile connection costs

and transmission delays measured in hops. Power laws tend to arise as a result

of complex, multi-objective optimization.

Chen et al. [28] identify incompleteness of BGP data as the main cause of the

observed power-laws. The paper shows that by compensating for the missing

links, the resulting degree distribution becomes heavy-tailed but not power-law.

It also claims that the connectivity dynamics and growth processes assumed

in [89] do not apply to the Internet. Later, Li et al. [76] show that degree

distribution alone cannot capture the specifications of a graph completely by

showing examples of different graphs with very different characteristics showing

the same degree distributions. Although the heavy-tail degree distribution of

the AS-level topology shows that there are a few ASs with very large degrees

while the vast majority have very small degrees, such pattern should not be

used to conclude a certain structure in the Internet.

Joint degree distribution is proposed by Mahadevan et al. [85] as a definitive

metric in order to capture the connectivity preferences with regards to node

degrees. This paper shows that the Internet topology is disassortative, i.e.,

nodes have a tendency for connecting to nodes with dissimilar degrees.

Caveats: Although node degree is an important factor and it can reveal several

features of the graph, care must be taken in identifying graphs based on their

degree distributions alone. Also, considering the incompleteness of the available

AS connectivity graphs, any findings regarding node degree may be an artifact

of the missing links.
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– Inferring relationships between ASs: As mentioned earlier, AS relationship

information is an important part of the AS-level topology since such information

is necessary in order to understand the BGP policies that are used in routing

among ASs. However, the relationships are business information and can be

private. Therefore, the researchers have tried to infer the relationships from

other information such as AS connectivity graph as well as the routing registry

information. These inference techniques are often based on common conditions

that one expects to observe in these relationships. For instance, it is expected

that the degree of a provider be larger than that of its customer. However,

since there are always exceptions and special cases, such assumptions lead to

a certain amount of error. Although inferring customer-provider relationships

might be less challenging, inferring peer-peer and sibling-sibling relationships

often requires additional information.

Gao [48] proposes a method for inferring relationships from the AS-paths

obtained from RouteViews. Her proposed algorithm is based on the valley-free

routing principle according to which no customer lies between two providers of

its own in an AS-path since a customer does not provide transit service to its

providers. It is also assumed that in each customer-provider relationship, the

degree of the provider is larger than that of the customer. In this algorithm, in

each AS-path the AS with the highest degree is chosen as the top AS and the

other relationships are inferred based on the valley-free principle. By processing

each path, one vote is cast towards the inferred relationships along that path

and the final decision is based on the total votes resulting from processing

all the paths after certain adjustment and refinement. Subramanian et al.

[133] present the AS relationship assignment as an optimization problem and
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propose a heuristic algorithm to solve this problem by combining AS-paths

from multiple vantage points in the Internet. Other works by Xia and Gao

[136] and Dimitropoulos et al. [41] evaluate the proposed algorithms and

suggest incremental improvements over those algorithms by accounting for

missing relationships and including routing registry information in inferring

sibling relationships, respectively. The Cooperative Association for Internet

Data Analysis (CAIDA)[20] generates AS relationship snapshots of the Internet

using algorithms from [41] applied to RouteViews data on a regular basis and

archives and publishes the results for the public use.

The main challenges involved in this problem are inferring sibling-sibling

relationships as well as accounting for the missing connectivity information. The

inferred relationships are widely used in a variety of research works involving

the Internet topology and traffic.

– Hierarchy of the AS-level topology The relationships between ASs are

commonly used in the area of AS-level topology to depict the hierarchy of

the Internet. According to this hierarchy, each AS is assigned a tier number

reflecting a level of the hierarchy. Generally, tier-1 ASs are those who have no

providers and a tier-n AS has at least one tier-(n− 1) provider. Understanding

the hierarchical structure of the Internet in insightful and can be used to explain

many characteristics of the Internet and the way traffic flows over it. However,

there are a few challenges that makes this work nontrivial. First, there is

some controversy on defining tier-1 ASs and the instances. Since the business

contracts among top-level ASs are confidential, accurate inference of the type

of relationships becomes challenging. Also, some peer-peer and sibling-sibling
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relationships make shortcuts linking different tiers to each other that makes

some of the assumptions invalid.

Ge et al. [49] provide an algorithm to classify ASs in their respective tiers

according to the inferred customer-provider relationships using the above

definition. They also make available a tool called TierClassify) implementing

their algorithm for public use.

Dimitropoulos et al. [40] provides an alternative classification of the ASs.

They define 6 classes of ASs, namely, Large ISPs, Small ISPs, Customer ASs,

Universities, Internet exchange points and Network information centers. They

use AdaBoost machine learning tool and manually classify more than 1000 ASs

in order for the machine learning algorithm to learn the characteristics of each

class. The AS attributes include IP space size and type and number of AS

relationships along with boolean attributes that reflect the results of searching

certain words in the AS description field from the registry.

2.3.1.3. Modeling the AS-level Topology

Modeling is often used in characterizing complex systems. This method can be

very helpful in simplifying and understanding the basic rules governing the system

behavior and it can possibly enable the researchers to predict the system’s behavior

in response to anomalies or unexpected events. Modeling the AS-level topology has

been pursued in a number of research works. The main challenge of a useful modeling

work would be finding the right model that not only fits measured data but also can

provide an insight into the limitations and tradeoffs governing the AS-level topology.

In this section we categorize some of the research works on modeling the AS-level

topology according to the type of the model they use.
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– Descriptive Models: In this class of modeling works, certain characteristics

of the AS-level topology are captured by measurement and then mathematical

models are provided trying to fit the captured data. Faloutsos et al. [45] fit

the degree distribution of the AS connectivity graph with a power-law model

and Medina et al. [89] find preferential connectivity and incremental growth

as the main causes of the power-laws. However, Chen et al. [28] questions the

Barabasi-Albert model for AS-level topology based on the fact that the observed

degree distributions were artifacts of incompleteness of the AS connectivity

graph. They suggest that the actual degree distribution of the AS connectivity

graph does not fit a BA model although it is heavy-tailed and suggest adapting

a HOT-based model for AS-level topology.

In another example of modeling, Roughan et al. [112] in an effort to discover

the missing links of the AS-level topology, employs the capture-recapture idea

from biology, to derive a Binomial Mixture Model(BMM) for the number of

observations of each link across all view points. They estimate the model

parameters using an Expectation Maximization (EM) algorithm.

Since descriptive models are only based on measured data, they can be

vulnerable to measurement errors.

– Generative Models: In multiple areas of networking, the researchers need

to set up simulations. These simulation often need a topology graph that

has similar characteristics as the Internet. Generative models are algorithms

designed to generate graphs with similar characteristics as the modeled graph.

BRITE [88]is a topology generator tool that is able to generate topology

graphs using a variety of models. In particular ASWaxman generates AS-level

topologies with the properties of a random graph in which nodes with shorter
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distance are more likely to get connected to each other while ASBarabasiAlbert

results in topologies that have power-law degree distribution and try to represent

the hierarchical structure of the Internet. Some older examples of the generative

models of the Internet are GT-ITM and Transit-stud[22] and Tiers[42]. A

representative generative model can be a quite useful tool for evaluating a design

using simulation or verifying a hypothesis about the Internet however since each

model focuses on representing the Internet from a certain aspect or a number

of aspects they always miss some other characteristics of the real Internet.

– HOT-based Models: Any complex system can be thought of as a solution

to an optimization problem with certain constraints and tradeoffs. Highly

Optimized Tolerance (HOT) denotes a class of models that are based this

very principle. In HOT-based modeling, researchers try to find use these

optimizations and tradeoffs in order to build a model that describes behavior

of the system. Fabrikant et al. [44] are the first to provide a HOT-based

model of the AS-level topology. They propose a toy model of the incremental

access network design optimizing a tradeoff between connectivity distance and

node centrality. They also show that the relative importance of these factors

can significantly change the resulting topology. Alderson et al. [4] make a

proposal of identifying the economic and technical tradeoffs involved in network

access design for building a HOT-based model of the Internet topology. They

suggest that the “Buy-at-Bulk” scheme is an optimization to a tradeoff on the

bandwidth provisioning problem according to which “larger capacity cables have

higher overhead costs , but lower per-bandwidth usage costs.”

Chang et al. [26] also apply HOT concept to the AS connectivity problem. They

extend earlier works by presenting a multivariate optimization problem that
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determines AS decisions in choosing an upstream provider: (i) AS-geography

i.e., location and number of ASs within each AS, (ii) AS-specific business models

and (iii) AS evolution i.e., a historic account of each AS in the dynamic market.

Although HOT-based models are much more challenging to develop compared to

the descriptive models, they are quite more robust against measurement errors.

On the other hand, since the Internet evolution is a distributed process driven

by many independent entities with potentially different goals and limitations,

assuming that the same set of tradeoffs are controlling this process in different

places seems questionable.

2.3.2. Router-level Topology of the Internet

As mentioned earlier, the Internet topology studied in two different abstraction

levels. While in AS-level topology the connectivity among ISPs is the focal point and

the most important factor forming the topology is business relationships, in router-

level topology, the network infrastructure is the primary subject of study and the

network technology is the major factor.

The most important challenge in studying router-level topology of the Internet is

data gathering. Although a simple tool such as traceroute is potentially able to capture

the router-level paths between any two points in the Internet, practical limitations

significantly reduce the usability of the results. Commonly in router-level Internet

topology, the main source of information is the data resulting from of the Internet is

captured via a large-scale series of traceroute operations.

The router-level topology, if captured with acceptable accuracy, provides a higher

resolution over AS-level topology. In spite of the AS-level topology, multiple paths
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may be captured as well. However, the main problem remains accurate data gathering

due to limitations that the traceroute and other tools have.

2.3.2.1. Data Sources for Router-level Topology

In this class of studies, traceroute has been the basic tool used when a global scope

is desired while in studies with local scope, topology information is usually provided

by the ISPs. Traceroute[67] can provide the router-level path from a source over

which the researcher has control to any arbitrary destination host over the Internet.

Traceroute, originally developed by Van Jacobson, sends a series of packets with

controlled TTL values. TTL ( time to live) of an IP packet determines the maximum

number of routers it can pass before reaching destination, a mechanism designed to

dispose of the packets that get stuck in routing loops as a result of routing problems.

In order to capture the router-level path from host A to B, traceroute must be run on

host A. Upon execution, it starts sending packets (ICMP or UDP packets depending

on version and parameters used) with TTL value of zero. As a result, the first router

on the path will dispose of the packet and send an ICMP error message back to

the sender. In each round, traceroute increments the TTL value by one until either

the packet reaches the destination or the TTL reaches a predefined maximum value

(usually 30). The error messages returned by the transit routers as a result of TTL

expiration are used by traceroute to identify routers on the path and thereby produce

a list of IP addresses of the routers on the path.

Although traceroute has been very useful for determining routing problems, its

ability to capture the global router-level topology is limited for the following reasons.

First, in order to produce the Internet topology a researcher needs to capture a large

number of paths. The usefulness and representativeness of the resulting topology
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highly depends on the number and distribution of the endpoints of the paths. In

order to capture the Internet topology with an acceptable coverage, a researcher

would need access to a large number of hosts worldwide which is very hard to obtain.

Second, increasingly many networks are using firewalls that block traceroute packets

into their networks, specially at the edge of the Internet. This will limit the coverage

and accuracy of the captured paths and the resulting topology. Third, there are

known limitations in traceroute technique that result in erroneous results in presence

of dynamic routing. Remember that each hop is identified by a separate packet and

due to dynamics of routing, different packets may take different paths between the

same pair of end-points. Using such erroneous paths can mislead the researcher to

including false links in the topology.

There are a number of projects and tools built on top of the basic traceroute

technology with the goal of achieving higher accuracy and wider coverage. Since data

gathering is a major challenge in studying the Internet topology, below we compare

these data gathering tools and projects and the research works using each.

– Skitter[21] is a project of CAIDA with the goals of (i) determining forward

IP paths, (ii) measuring RTTs, (iii) tracking persistent routing changes and

(iv) visualizing network connectivity.Skitter uses the traceroute technique in

addition to some kernel hacks in order to increase the accuracy of RTT

measurements. Barford et al. [14]employ Skitter traces between 8 sources and

more than 1000 destinations spread all over the world to build up a partial

picture of the Internet backbone in the year 2000. While the sources are all

hosts owned by the project placed in volunteer networks, the destinations are a

web servers distributed over the Internet. They argue that towards the goal of

characterizing the Internet backbone, the utility of adding more vantage points
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in a traceroute study is marginal. Specifically, they claim that a careful selection

of two or three vantage points will result in nearly same coverage as all the 8

sources used by skitter. Archipelago (Ark) is the evolution of the skitter project

including the skitter monitors, measurement tool, several other data processing

tools. Later the skitter measurement tool was replaced with scamper. Scamper

[54]is an extended version of the skitter tool that also supports IPV6 and is able

to flexibly use TCP or UDP probing packets. Luckie et al. [79] use scamper from

8 vantage points distributed across the globe and 3 different sets of destinations

including random routable addresses, top 500 websites according to Alexa [6],

and a list of known routers from an earlier study. They show that although

ICMP traceroute probing is able to reach more destinations and discover more

AS links, UDP probes infer the greatest number of IP links.

– Mercator proposed by Govindan et al. [53] focuses on the problem of finding

useful destination addresses in a traceroute-based technique. They use informed

random address probing to make guesses about which prefixes might contain

addressable nodes by heuristics from common patterns of IP space allocation.

They also employ source routing (supported by a only 8% of the Internet

routers) to include cross links considering that they only employ one vantage

point. Mercator addresses the problem of IP address aliasing by sending probes

to the discovered address of the router and comparing the discovered address

with the responding address to verify whether or not the two addresses belong

to the same router.

– Rocketfuel proposed by Spring et al. [125], is a tool for mapping the router-

level topology of an ISP using traceroute, RouteViews data, and reverse DNS.

They perform traceroute experiments sourced from 800 vantage points hosted
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by nearly 300 traceroute web servers (servers that provide traceroute service

from their location to any desirable host). The authors focus on improving the

efficiency of probing. Using their path reduction techniques, they manage to

reduce the number of probes needed by three orders of magnitude compared

to a brute-force all-to-all probing without any significant accuracy loss. They

capture a much more complete graph with roughly seven times as many links.

– Paris Traceroutewas proposed by Augustin et al. [9]. The authors focus

on the traceroute errors in presence of dynamic routing. They list possible

traceroute anomalies such as loops, cycles and diamonds and show how they can

happen as a result of different forms of dynamic routing such as load balancing.

Also, in a number of studies, such as the work by Li et al. [76], Abilene is used

as a source of data. Abilene Network (now known as Internet2 Network) is a high

performance backbone network in the U.S. mainly connecting academic and research

centers throughout the country using high speed links (10 Gbps). Abilene Network

provides a useful research case for Internet researchers because it makes all the

topology and traffic information publicly available. Although such data does not

represent the Internet, it still provides useful insights particularly as a real testbed

to evaluate methods and tools for measurement and characterization of the Internet

topology and traffic.

Despite all the efforts, finding a reliable source of date that provides highly

accurate and representative data on the router-level topology of Internet is still a

problem.
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2.3.2.2. Characterization Methods for Router-level Topology

In characterizing router-level topology, the researchers usually search for

interesting characteristics and features of the routers’ connectivity. In some research

works with pure science theme, the router connectivity graph is studied as a complex

network with little attention to the context and the root causes. Another group of

works study the router-level connectivity in order to understand the Internet and

possibly discover its features and shortcomings.

Below, we survey some of the subjects discussed in the router-level topology

characterization and discuss their advantages and shortcomings.

– Node degree distribution is commonly used as a characterization metric

for router-level topology of the Internet. Similar to many other graphs, degree

distribution is often considered the most basic piece of information that can

capture and present some characteristics of the router-level connectivity graph

mainly by showing the heterogeneity level across the nodes. Faloutsos et al.

in their SIGCOMM paper [45] in addition to the AS-level topology that we

discussed in Section 2.3.1., use a router-level topology map from an earlier work

from 1995 and show that the degree distribution follows power law similar to

the AS-level topology. This result has been rejected from different aspects in

the works published later. Yook et al. [138] suggest a fractal model for the

Internet topology and show that the power laws do not represent the Internet

and the degree distributions are in fact exponential. Lakhina et al. [74] show

that the power laws are an artifact of sampling the router-level topology using

traceroute. They perform simulations showing that traceroute-like sampling will

result in power-law degree distributions even if the original graph is a random

ER graph.
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Nonetheless, all the studies agree that the router-level topology of the Internet

has a heavy-tailed distribution. Some papers such as the work by Albert et al.

in the Nature journal [3] have warned that in this heavy-tailed distribution,

there are extremely high degree nodes that act as the central hubs of the

Internet and failure of each can disconnect a large portion of the network.

This idea was rejected by Li et al. [76] who showed that several graphs with

very different characteristics may have similar power-law degree distributions.

Although degree distribution provides a first level of understanding about the

router connectivity graph, care must be taken not to read too much from it.

– Tomography of the Internet Since the researchers do not have direct access

to the core of the Internet, they use information gathered from several endpoints

in order to provide an image of the core. This practice is commonly referred

to as tomography in many disciplines. According to this definition, we can

categorize any traceroute-based studies of the Internet router-level topology as

tomography. Coates et al. [35] provide a survey of the techniques for making

inferences about the Internet based on the observed behavior. They include

two classes of network tomography: (i) estimating link-level characteristics from

path-level data and (ii) estimating path-level characteristics from link-level data.

The inferred data may be loss rate, packet delay or the connectivity. Although

the common perception is that having more vantage points, the tomography

results will be more accurate and reliable, Barford et al. [14] question the

“more is better” approach and show that increasing the size of the network

measurement infrastructure only leads to marginal improvement in Internet

tomography.
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2.3.2.3. Modeling the Router-level Topology

The modeling approaches for router-level topology of the Internet are similar to

those we discussed for the AS-level topology in Section 2.3.1.3.. They aim to find

mathematical models that describe and explain the connectivity patterns. A good

model not only should match the measured and confirmed data from the router-level

topology, it should also provide an insight for understanding how the network grows

and evolves. Using a reliable model, a researcher can detect vulnerabilities or predict

potential malfunctioning threatening the Internet. Developing models that bear the

mentioned capabilities has been a challenging task. Below we provide a survey of the

modeling studies on the router-level topology of the Internet.

– Descriptive Models: In this group of studies, certain measured data on the

router-level topology is examined for similarities against known mathematical

models. Faloutsos et al. [45] use a router-level topology data set captured in

1995 and find similarities with the power-law model which was later rejected.

This work is explained in more detail in Section 2.3.1.3..

– Generative Models: Similar to the description given for AS-level topology

modeling, generative models of the router-level topology are algorithms or

programs designed to generate synthetic topologies resembling the real router-

level topology of the Internet. These models are widely used in simulation-

based evaluation of network applications. Furthermore, they often provide

the flexibility of generating a range of topologies by one or more controlling

parameters.

BRITE [88] (also an AS-level topology generators) is a tool that is able to

generate topology graphs using a variety of models. In the class of flat router-
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level models, it places the nodes on a plane based on random or heavy-

tailed model and after establishing the links using either RouterWaxman or

RouterBarabasiAlbert, assigns link bandwidth according to either constant,

uniform, exponential or heavy-tailed models with controlled parameters.

RouterWaxman generates AS-level topologies with the properties of a random

graph in which nodes with shorter distance are more likely to get connected

to each other while RouterBarabasiAlbert results in topologies with power-law

degree distribution by using incremental growth technique with preferential

attachment. Medina et al. [88] also categorize earlier generative models into

two groups of (i) ad-hoc models that are mostly built based on educated guesses

such as the hierarchical structure of the Internet (e.g., GT-ITM [22]) and (ii)

measurement-based models that try to reproduce the measurement results such

as Barabasi-Albert models that reproduce power-law degree distributions using

preferential attachment.

Li et al. [76]use a first-principles approach in developing a generative model for

the router-level topology of the Internet. They apply technological limitations

and economical considerations into a performance optimizing design process

yielding a generative model of the Internet’s router-level topology.

While a generative model can be useful in evaluating a new design using

simulation or verifying a hypothesis about the Internet structure, one may

not assume that a generated topology resembles the network in every aspect.

Limitations of each generative model should be recognized before employing

them.

– HOT-based Models: General description of HOT-based models is provided

in Section 2.3.1.3.. Li et al. [76]pursue a first-principles approach aligned with
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the idea of HOT-based modeling in which the technological constraints and

economical considerations are identified as the primary factors determining a

network’s decisions at the time of topology construction. According to this

paper, the router building technology limits the bandwidth-degree product due

to the limited bandwidth of the router’s data bus. They use a number of

state of the art Cisco routers in 2004 in order to identify the technological

limits at the time and argue that the market mostly demands for relatively low

bandwidth ports while the core of the network requires very high bandwidth

ports. Therefore the solution to the optimization problem would be configuring

routers with maximum number of ports at the edge (low bandwidth) and

maximum bandwidth ports (small number) at the core of the network. They

compare graphs generated by different generative models and show that the

HOT graph has the highest performance (throughput) and lowest likelihood.

The authors publish another paper [5] in which they extend the previous work

by evaluating their HOT graph with Abilene and Rocketfuel data. HOT-based

models are still a hot topic in studying the Internet topology and due to not

relying on measurements, they are not subject to measurement errors. However,

it seems that the idea is not yet developed enough to produce useful models

representing the Internet topology from multiple aspects.

Yook et al. [138] suggest a fractal model (scale-free) for the Internet topology

in which the links are placed by competition between preferential attachment

and linear distance dependence. According to their scale-free model, the

Internet connectivity depends on a small number of very high degree nodes

that representing the Internet hubs. They conclude that although the Internet

is robust to random node failures, it is quite fragile to targeted attacks on these
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hubs. Doyle et al. [43] extend their earlier works on modeling the router-level

topology by suggesting a “robust-yet-fragile” model for the Internet. They

show that the characteristics of the scale-free model does not match those of

the Internet while the HOT model they had suggested earlier [5] shows similar

features and characteristics as the Internet using the two metrics of performance

and likelihood. In their view, the Internet’s fragility does not lie directly within

its topological aspect. By focusing on the protocol stack, they mention that

the lowest layers of the Internet are highly constrained by technological and

economical limitations while the higher layers have more flexibility and freedom.

The flexibility on the higher levels of the protocol stack such as the application

layer is what makes the Internet robust and yet the same flexibility makes the

network fragile to malicious exploitation.

2.4. Interactions between Overlay and Underlay

In this section we focus on the mutual effects, interactions and possible

cooperation between the P2P overlay and the Internet underlay. A number of research

studies have focused on the impact of the P2P overlays on the underlying network

using measurement and simulation. We discuss this group of studies in Section 2.4.1..

In Section 2.4.2., we discuss the unilateral efforts by the ISPs in limiting the impact

of the P2P overlays and the network neutrality concept. Next, in Section 2.4.3., we

overview a number of research studies proposing P2P overlays that try to minimize

their impact on the underlying network, called ISP-friendly or network-aware overlays.

Finally, Section 2.4.4., introduces a number of research projects and engineering

efforts proposing cooperation between the overlay and the underlay in order to build

overlays that are desirable for both underlay and the P2P application.
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2.4.1. Overlay Impact on the Underlay

The direct effect of the overlay network on the underlay is the traffic associated

with the P2P overlay that can lay a costly and unexpected load on the ISPs. As we

discussed in detail in Section II, the P2P traffic in costly for the ISPs because of its

temporal pattern and symmetric load. In this section, we survey two research studies

that try to characterize the impact of the P2P overlay on the ISPs. They both rely

on packet traces captured at vantage points connecting an ISP or campus network

to the Internet. They both show that the P2P traffic consumes a large portion of

the gateway links and thereby they motivate modifications in the P2P overlays by

localizing or caching in order to save a considerable amount of traffic on the Internet

gateways of the ISPs.

– Karagiannis et al. [71] compare the load on the ISP for the cases of traditional

client-server, P2P, local caching and their proposed mechanism. They propose

a locality-aware overlay for peer-assisted content-delivery and show that its

performance and the external load (impact on the ISP) is the best among the

compared cases. They show that current P2P content distribution overlays

(e.g., BitTorrent) are not ISP-friendly because they generate a large amount of

external traffic that can be avoided.

– Gummadi et al. [55] capture a 200-day trace of KazaA traffic at their campus

gateway. They observe that most requests are for small files while most of the

traffic volume is formed by large files. Although they do not capture the internal

traffic, they show that there is a considerable amount of requests going outside

the network while they can be resolved locally and therefore they suggest that

a locality-aware scheme can help in reducing external traffic of KazaA.
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2.4.2. Underlay Limiting Overlay

The ISPs have tried to control the P2P traffic in different ways. Toward this

end, the P2P overlay traffic needs to be identified first. The simple methods of using

TCP and UDP port numbers is now of little use because most P2P applications are

flexible in the port number that they use and in some cases NAT traversal techniques -

which are now very common - require using non-standard ports. There are a number

of commercial protocol analyzers that combine a variety of techniques in order to

identify the application responsible for each flow of traffic. These technique include

deep packet inspection and traffic pattern analysis. Some researchers including Suh

et al. [134] and Branch et al. [19] propose techniques based on temporal patterns of

packets and packet sizes to identify Skype traffic.

The next step after identifying a P2P flow would be applying some type of

restriction. The following methods have been reportedly used to contain or block the

P2P traffic:

– Packet Filtering: This method requires implementation on routers, can be costly

and limiting the router performance. In this method all packets identified as

the target class will be dropped by the router. It will quickly alarm the users

because their P2P applications will often stop working and therefore it is rarely

used by ISPs who have to compete customer satisfaction. This method has been

used in some campus residential networks where the users have limited options.

– Traffic Policing: This method (also known as rate limiting) also requires

implementation on the routers however it is more flexible and less likely to be

noticed by user. In this method, the network administrator defines an access-list

that identifies target traffic flows and then assigns a maximum data rate to each
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class of traffic or to any flow belonging to that class. All packets exceeding the

predefined maximum rates, will be dropped and as a result users will experience

slow P2P transactions. Since the low speed may be associated with many factors

including the P2P application itself, this method does not alert most of the P2P

users against the ISP. Class based rate limiting can be technologically costly for

the ISPs.

– Connection Resetting: This method has been reportedly used by some ISPs

and its advantage is that the intervening device does not need to be on the

path of the traffic therefore it can be implemented on a regular computer (not

necessarily a router) with monitoring access to the traffic. In this technique

after detecting a P2P flow, in order to terminate the connection, TCP reset

packets are sent to both ends of the connection on behalf of the other end. In

order to avoid alarming the users, this method can be applied on a random

subset of the matching flows.

– Transparent traffic redirection: In this method, designed for localizing

BitTorrent-like traffic, the ISP runs a transparent tracker proxy. When

BitTorrent clients try to access a tracker to join a swarm, the connection will

be redirected to the transparent proxy. The proxy server then controls the

external traffic related to the swarm by connecting the local peers to each other

and preventing local peers to connect to external peers. This method aims

at smoothly limiting of the external traffic with minimum service degradation

for the P2P application. However, in BitTorrent-like P2P overlays, certain

level of random connectivity is needed to ensure that the blocks can diffuse

all neighborhoods. Excessive localization will result in a heavily clustered
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overlay and thus may degrade the performance of the overlay by limiting the

opportunity for peers to help each other.

2.4.2.1. Network Neutrality

All the methods described above, regardless of the technique used, are criticized

by a large group of people in the networking community. They believe that the

network should treat all packets equally regardless of the application they belong to.

In other words the network should avoid discrimination among applications. This

thesis, consistent with the end-to-end argument, is referred to as network neutrality

and was the basis of the FCC’s ruling against Comcast[37]. In this ruling, the Federal

Communications Commission ordered Comcast, a large ISP with a national market

in the U.S., to “end discriminatory network management practices”.

2.4.3. Topology Aware Overlays

In response to the ISP concerns, the P2P research community proposed ideas

towards ISP-friendly P2P applications. The common goal across these research works

is trying to decrease the inter-ISP traffic by increasing the relative number of local P2P

connections and reducing number of external connections. Although these methods

are often successful in limiting the ISP load, the effect on P2P performance is not

evaluated from a neutral point of view. Additionally, since there is no authoritative

topology or link cost information, such systems cannot use low cost external links

or unpaid peering links between ISPs. In this section, we survey some outstanding

research works on this topic.

– Ratnasamy et al. [109] suggest a binning scheme to find nearby nodes for

peering and server selection. The bins are formed by sorted closeness to well-
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known landmarks(e.g., 12 root DNS servers). They assign coordinates to each

node in n-dimensional space where each dimension can take 3 values. The

authors suggest a modification on CAN to selection node coordinates based on

its network location.

– Harvey et al. [59] present SkipNet, a DHT-like overlay that allows for content

locality and path locality. The locality is based on the node’s DNS domain

name.

– Kim and Chon [72] present a topologically-aware application-layer multicast

overlay. In their scheme, close-by nodes are using network distance

measurements to a few landmarks. Nodes are partitioned into topologically-

aware clusters and local paths are determined between local nodes.

– Choffnes and Bustamante [31] propose Ono, . In Ono, nearby peers are

identified according to their CDN server choice. In the CDNs they use, including

Akamai and Limelight, a smart DNS server designates closest CDN server to

each peer by a DNS lookup. Ono takes advantage of this system and tries to

connect peers with the same CDN server together in order to (i) reduce the

load on external ISP links, and (ii) improve system performance by avoiding

bandwidth bottlenecks in the network. The authors claim average improvements

of between 30% to 200% in download rates on the BitTorrent clients using Ono

plugin. An advantage to previous works is that Ono does not need any costly

network measurement or probing, instead, it only depends on periodic DNS

lookups.
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2.4.4. Cooperation between Overlay and Underlay

Considering the limitations of independent (unilateral) ISP-friendly P2P

applications described earlier, it has become evident that the proper way to make

the applications ISP-friendly is by using information provided by the ISP. P4P and

Oracle were recently proposed based on the idea of an interface between the ISP

and the P2P application over which the ISP shares information with the application

regarding the ISP’s relative preference among candidate peers. In addition to the

mentioned research works, there have been ongoing efforts in IETF on the idea of

Application Layer Traffic Optimization (ALTO). As a result, multiple Internet drafts

have been published addressing different aspects of the problem and their proposed

solutions. Below we provide an overview of the outstanding publications on this topic.

– Xie et al. [137] propose P4P, an interface that provides ISP preferences to

the application layer in order to enable the application to redirect its traffic to

satisfy the ISP preferences in its neighbor selection. In P4P, the ISP runs

a server called iTracker which is aware of the ISP’s topology, current link

loads and costs associated to each link. The iTracker is then responsible for

translating these factors into a single cost metric that can be looked up on a

per-destination basis. The local application tracker (e.g., BitTorrent tracker)

should contact the iTracker to look up the cost values and include the ISP goals

as well as the application goals in the neighbor selection process. The paper

also demonstrates, using simulation and experiments that the method improves

or at least maintains application performance while reducing the cost on the

ISP.
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– Aggarwal et al. [2] propose Oracle, an interface between ISP and P2P

application that takes the list of prospective neighbors from each peer, sorts

them according to the ISP preferences before they are returned to the peer.

This method is simpler however it requires implementation in each application.

Also, the scalability is questionable since the neighbor selection duty is on the

shoulder of one server for each ISP.

– ALTO is a working group in the Internet Engineering Task Force (IETF) with

the goal of “designing and specifying an Application-Layer Traffic Optimization

(ALTO) service that will provide applications with information to perform

better-than-random initial peer selection”. Here we provide an overview of

three Internet drafts published within this working group.

Seedorf and Burger [117] provide a problem statement of the application

layer traffic optimization problem. According to their draft, in current P2P

applications, peers choose neighbors without reliable information (e.g., based

on measurements or simply randomly) leading to suboptimal choices. This

document describes problems related to optimizing traffic generated by peer-to-

peer applications and associated issues. Such optimization problems arise in the

use of network-layer information. Crowley [38] argues that the problem of P2P

traffic optimization is not solved by standardization at this point due to lack of

motivation in the user community. He suggests that ISPs should deploy pricing

models based on the amount of each user’s external traffic. Shalunov et al.

[119] discuss the format and standardization of the ISP-P2P information export

service. The suggested method is similar to P4P[137] and an ISP controlled

agent sets priority values on each potential peering relationship. The peers will

61



then select their neighbors according to their own preference, as well as the

ISP’s.

2.5. Summary

In this survey, we reviewed a number of important research studies on the P2P

overlays, the underlying network, and their mutual impacts on each other. We cover

a set of fundamental design and evaluation issues by surveying previous studies. We

find and report an array of open problems and challenges in the covered area.

In Section 2.3., we studied research works on the AS-level and router-level

topology on the Internet. We observed that one important challenge in studying

Internet topology is gathering data that is reasonably complete. In studying AS-

level topology, the hidden links between low-tiered ASs cause incomplete topology

snapshots while in studying router-level topology, limitations of traceroute technique

and blocking of probe packets cause incompleteness of the data.

In Section 2.2., research works on P2P overlays were surveyed. We categorized

P2P overlays according to their function, structure, shape and content type. These

differences have key importance when we study the mutual effects between the

underlay and the overlay. One main challenge in P2P overlays is providing incentives

for the users to contribute their resources. Towards this end, P2P applications should

be designed with selfishness as a basis rather than depending on people’s altruism. We

observe that although several research works have been published on characterizing

P2P applications, the attention on the overlay structure, specifically in modeling

areas, has not been significant. Modeling of P2P overlays and their traffic is an

important prerequisite for understanting the impact of the overlays on the underlay.
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Finally, in Section 2.4., we provided a survey of the research and engineering

efforts on the issues involving both the P2P overlay, and the underlying network.

We observed that although there are methods proposed for network aware overlay

construction with the cooperation of network layer, they are not widely deployed by

the ISPs and P2P applications due to the lack of motivation on the user’s side which

depends on the P2P application performance. There is little unbiased study reporting

significant benefits of such cooperation for the user and the P2P application. On the

other hand, ISPs still have concerns about the possible abuses and vulnerabilities

resulting from an ISP-P2P interface such as P4P.
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CHAPTER III

MEASUREMENT STUDY ON GNUTELLA OVERLAY

Most of the content of this chapter has been adopted from my previously

published paper [102] co-authored with Dr. Daniel Stutzbach and Prof. Reza Rejaie.

The experimental work is entirely mine and the text has been contributed by myself

and the co-authors. The Gnutella crawler used was originally developed by Dr. Daniel

Stutzbach.

Contrary to common assumptions about the limited scalability of unstructured

Peer-to-Peer (P2P) file-sharing applications, the top-three P2P file sharing

applications (i.e., FastTrack or Kazaa, Gnutella and eDonkey) have witnessed a

dramatic increase in their popularity during the past few years. For example,

the number of simultaneous users in the Gnutella network has quadrupled during

the 15 months measurement period. Furthermore, some studies report that the

popular P2P file sharing applications make a significant contribution to total Internet

traffic [124, 70].

To scale with this rapid growth in user population, major P2P file sharing

applications adopted a two-tier overlay topology along with more efficient search

mechanisms (e.g., Dynamic Querying [47] in Gnutella). In this two-tier overlay

architecture, a small subset of participating peers promote themselves to become

ultrapeers in a demand-driven fashion and form a top-level overlay. Other peers,

called leaf peers, connect to the top-level overlay through one or multiple ultrapeers

(Figure 3.1.). The two-tier architecture attempts to dynamically maintain the

following two properties in order to scale with the number of peers while ensuring

short pairwise distances between peers as they join/leave the system: (i) a proper
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FIGURE 3.1. Gnutella’s two-tier overlay topology

balance between ultrapeers and leaf peers, and (ii) a well-connected top-level

overlay where each ultrapeer has a configured number of neighbors. To achieve

these goals, participating peers collectively implement two mechanisms: First, a

promotion/demotion mechanism that determines when a leaf should be promoted

to become an ultrapeer and vice versa. Second, an ultrapeer discovery mechanism

that enables either ultrapeers to find a neighbor or leaf peers to locate a parent in

the top-level overlay with available open slots for neighbor or child peer, respectively.

The properties of the two-tier overlay in a widely-deployed P2P system depend

not only on the portion of peers that support this feature but also on the

coherency (or compatibility) of implementations (and configuration parameters)

among participating peers. These properties can be further aggravated in open-

source P2P applications since users can arbitrarily change their software. This raises

the basic question of: how can such a fluid two-tier overlay topology effectively

accommodate such a rapid increase in peer population despite the heterogeneity of

client software while maintaining a short pairwise distance among peers?

This chapter, presents our investigation to answer the above question by

empirically examining the long-term evolution of the Gnutella two-tier overlay

topology during the last 15 months over which the user population has more than

quadrupled. Using accurate snapshots of the Gnutella overlay, we characterize
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the following three angles of its long-term evolution: client, graph-related, and

geographical properties of the overlay. We explore potential correlation between

different observed characteristics and take the steps to identify some of the underlying

causes.

The results presented in this chapter lead to two major findings: First, in

response to the quick growth in user population, Gnutella successfully maintained

its desirable graph properties by making modifications in the major client software

releases and users contributed to this success by quickly upgrading to newer software

releases. Second, we noticed a strong bias in the connectivity of peers towards other

peers in the same region (continent). This observation was more outstanding in

continents with smaller user populations and was maintained during the dramatic

growth of the user base. The main contribution of this chapter is to illustrate the

long-term evolution of a two-tier overlay in a widely-deployed P2P system while it has

coped with a significant increase in user population. While it is extremely difficult to

pinpoint the underlying causes of every observed characteristic in a large P2P system,

this study sheds some light on how P2P overlays evolve.

In an earlier publication [131], my coauthors characterized graph-related

properties of the Gnutella overlay topology across several snapshots (spanned over

a few months) in order to provide representative results. This study complements

mentioned earlier work by focusing on long-term trends in the two-tier overlay

topology.

The rest of this chapter is organized as follows: In Section 3.1., we explain the

importance of capturing accurate snapshots of a P2P system and briefly present my

data collection methodology, my measurement tool and dataset. Section 3.2. presents

the evolution of overlay properties in the Gnutella network.
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3.1. Data Collection

To accurately characterize P2P overlay topologies, we need to capture complete

and accurate snapshots. By “snapshot”, we mean a graph that captures all

participating peers (as nodes) and the connections between them (as edges) at a

single instant in time. The most common approach to capture a snapshot is to crawl

the overlay. In practice, capturing accurate snapshots is challenging due to the large

size and the dynamic nature of P2P systems. Because overlays change as the crawler

operates, captured snapshots are inherently distorted where the degree of distortion

is proportional to the crawling duration [128].

In this study, we use an efficient Gnutella crawler tool, namely Cruiser [127].

The measurement techniques developed in this tool improve the accuracy of captured

snapshots by significantly increasing the crawling speed primarily through two

mechanisms. First, it leverages the two-tier structure by contacting only ultrapeers.

Since leaf peers connect only to ultrapeers, all of their topological information can

be captured without contacting them directly. Second, Cruiser significantly increases

the degree of concurrency in crawling by running on several machines and opening

hundreds of simultaneous connections from each machine.

Cruiser can capture the Gnutella network with 2.2 million peers in around 8

minutes, or around 275 Kpeer/minute (by directly contacting 22 Kpeer/minute).

This is orders of magnitude faster than the fastest previously reported crawler

(2.5Kpeers/minute in [116]). Cruiser captures the following information from each

peer it successfully contacts: (i) peer type (ultrapeer or leaf), (ii) brand and version

of client, (iii) a list of the peer’s neighbors, and (iv) a list of an ultrapeer’s leaf nodes.

Since the crawler does not directly contact leaf peers, I do not have information about

their brand and versions.
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3.1.1. Dataset

We have captured around 20,000 snapshots of the Gnutella network using Cruiser

between Oct. 2004 and Jan. 2006 1. To minimize any possible error on the long-term

analysis due to the time-of-day or day-of-week variations in overlay characteristics,

we select 18 comparable snapshots that are taken around 3pm PDT on weekdays

scattered during the 15-month measurement period 2.

3.2. Evolution of Overlay Properties

This section, presents the evolution of the two-tier overlay over a 15-month

period. In the following subsections, we examine the evolution of three aspects of the

Gnutella overlay topology: (i) the composition of participating clients, (ii) graph-

related properties, and (iii) geographical properties.

3.2.1. Client Properties

Figure 3.2.a illustrates the growth in the population of Gnutella network during the

past 15 months, and the breakdown of participating peers between the two levels of

the overlay. This figure shows that the population has quadrupled during this period.

The growth in population has been surprisingly linear with a noticeable dip over the

2004–2005 winter holiday season.

Now, we explore the different varieties of Gnutella clients in use and observe

how users upgrade their software as new versions are released. Figure 3.2.b depicts

the breakdown of ultrapeers across the major brands that implement Gnutella.

1Unfortunately, we did not capture any snapshots during May or June of 2004.

2While we do have a huge number of snapshots, the number of comparable snapshots is
significantly smaller.
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This figure shows that the two most popular implementations are LimeWire and

BearShare. Overall, the ratio between LimeWire and BearShare has been fairly stable,

with LimeWire making up 75–85% of ultrapeers, BearShare3 making up 10–20%, and

other brands making up 3–7%.

Gradual upgrading by users implies that different versions of each brand coexist

at any point of time. P2P systems may need to evolve quickly in order to

accommodate growing user demand. Otherwise, users may not observe acceptable

performance and leave the system. This raises the following fundamental question:

“How rapidly and effectively can a widely-deployed P2P system evolve in order to cope

with increasing user demand?”

Since LimeWire clients make up an overwhelming majority of ultrapeers, we

explored the breakdown among popular versions of LimeWire. Figure 3.2.c shows

the percentage of LimeWire ultrapeers running each version, revealing that within

2 months of the release of a new version most LimeWire users are running it. This

is illustrated by the way the market share of a version quickly increases from 0% to

more than 50%, and only decreases when a new version appears. This behavior can be

attributed to the automatic notification of new versions coupled with the simplicity

of using the P2P system for distributing updates quickly. The quick upgrade by users

also implies that new features rapidly become widespread throughout the system. Due

to the rapid deployment of new versions, “flag days” are practical in P2P systems

where new clients are configured to use a new, incompatible feature on a particular

date.

3BearShare clients support more leaves per ultrapeer, and thus tend to have fewer ultrapeers.
Therefore, while my results accurately represent the top-level overlay, they could potentially under-
represent BearShare users.
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3.2.2. Graph-related Properties

We now turn our attention to the evolution of different graph-properties of the

overlay topology.

3.2.2.1. Ultrapeer to Leaf Ratio

A key property of the two-tier overlay is the balance between the population of

ultrapeers and leaves. We know that each ultrapeer attempts to maintain 30 leaf

children, and each leaf tries to maintain 3 ultrapeer parents. Given the number of

ultrapeers in the system, |U |, and the number of leaves, |L|, we can reason that there

are 30 ∗ |U | slots available for leaves, of which 3 ∗ |L| are in use. If the ultrapeer-

promotion mechanism is working well, and leaves can efficiently locate parents with

open slots, then we would see few open slots (δ), i.e., (30 − δ) ∗ |U | = 3 ∗ |L|. For

δ = 0, fulfilling this equation yields a mix of 9% ultrapeers and 81% leaves. However,

if δ is very small, this indicates that the system is working very hard to keep the

balance perfectly despite constant churn in the system. To allow some flexibility, in

practice the target percentage of ultrapeers is slightly more than this minimum of

9%, in order to provide some resiliency against dynamics.

Figure 3.4.a presents the change in the percentage of ultrapeers during the

measurement period. As the population has grown, the percentage of ultrapeers have

increased and reached two clear peaks (on Jan. and Sep. 2005), but has dropped back

to the expected value (around 15%) in both cases. In Gnutella, leaf peers become

ultrapeers only when they cannot locate a sufficient number of ultrapeers that can

accept an additional leaf [122]. This increase in the percentage of ultrapeers illustrates

the inability of leaves to locate available ultrapeers as the system has grown in size.

However, the problem has been apparently addressed in the newer version of the client
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which led to the drop in the percentage of ultrapeers. There seems to be a correlation

between the drop in percentage of ultrapeers in Sep.–Oct. 2005 and the increase in

popularity of LimeWire version 4.9, shown in Figure 3.2.c and discussed earlier.

3.2.2.2. Node Degree

To investigate changes in the connectivity of the overlay topology, we examine

three different angles of the node degree distribution in the two-tier overlay: (i)

for ultrapeers, the number of ultrapeer neighbors; (ii) for ultrapeers, the number of

leaf children; and (iii) for leaves, the number of ultrapeer parents4. To show the

4We limit the range of node degree to 500 in these graphs. This range includes all but a small
percentage of peers (<0.1%) with a higher degree.
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evolution of the degree distribution over time, we have examined each angle of the

degree distribution for all candidate snapshots. However, for clarity of the presented

results, we show only four evenly spaced snapshots. The presented trends were similar

across other snapshots except where noted.

In the absence of other factors, as the population grows, one expects the

distribution to change proportionally across different degree values, i.e., the ratio

of peers with different degree would remain approximately constant. Figure 3.3.a

shows the distribution of the number of top-level neighbors across ultrapeers for

four snapshots in a log-log plot. All four distributions show a strong peak in the

range of 20 to 30 neighbors, with a significant number of peers having less than 20

neighbors. Comparison of these snapshots reveals that the peak has dramatically

grown, while the number of peers with fewer than 20 neighbors has increased only

slightly rather than proportionally. This implies that despite the dramatic growth

in the total population, ultrapeers with open slots for neighbors continue to quickly

locate one another and form a well connected top-level overlay.

Figure 3.3.b shows the distribution of the number of leaf children across

ultrapeers for four snapshots in a log-log plot. In all four snapshots, there are

peaks at 30 and 45 children, corresponding to the maximums set in LimeWire and

BearShare, respectively. However, unlike the number of neighbors, the peaks have

not significantly increased over time. Instead, the dramatic increases have been in the

number of ultrapeers with fewer children. This means that there are proportionally

more ultrapeers with open slots for more children. This is the direct result of the

unnecessary increase in the percentage of ultrapeers as illustrated by the two peaks

in Figure 3.4.a. However, the increasing trend in the number of ultrapeers with open

slots has reversed in the most recent snapshots as a result of drop in the percentage of
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ultrapeers during recent months. Note that the number of peers with fewer children

has dropped between the two most recent snapshots in figure 3.3.b (i.e., 7/19/05 and

1/20/06).

Figure 3.3.c shows the distribution of the number of ultrapeer parents among

leaves in a log-log plot. In all snapshots, there is a peak at 1–3 parents, with many

peers having slightly more parents. While the number of peers with 1–3 parents

has proportionally increased with the population, the number of peers with more

parents only exhibits a minor increase. This seems reasonable given the fact that both

LimeWire and BearShare clients attempt to maintain 3 ultrapeer parents by default

whereas peers with fewer parents are trying to find 3 parents. It also shows that the

number of peers with more parents, presumably due to modified implementations,

have not increased.

3.2.2.3. Clustering Coefficient

To examine the degree of clustering in the overlay topology, Figure 3.4.b depicts

the evolution of the clustering coefficient during the measurement period. Comparing

this figure with the population of ultrapeers (Figure 3.2.a) shows the clustering

coefficient is inversely related to the population of ultrapeers. Since the degree

distribution among ultrapeers is relatively fixed, as the number of ultrapeers increases,

the top-level overlay becomes more sparse (i.e., a smaller percentage of the possible

edges exist), resulting in a lower clustering coefficient.

3.2.2.4. Pair-wise Distance

The distribution of pair-wise distances among pairs of peers is another interesting

aspect of the overlay topology that determines the maximum useful scope for proper
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reachability in some search mechanisms. Figure 3.4.c depicts this distribution between

all pairs of participating peers for three snapshots during the measurement period5.

This figure illustrates that the significant growth in the population of peers has led to

only a minor increase in the distances between peers. This is not surprising because

of the logarithmic effect of population on the distances between peers in randomly

connected graphs.

5Since the required processing for pair-wise distances is expensive (O(n2)), we only conducted
this analysis for these three snapshots.
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3.2.2.5. Resiliency to Peer Departure

Finally, we examine the resiliency of the Gnutella overlay topology to both

random and highest-degree node removal (or failure). Figure 3.5.a shows the

percentage of ultrapeers that must be removed for the largest connected component to

contain fewer than 50% of the remaining ultrapeers (i.e., the overlay becomes severely

fragmented). This figure shows that more than 90% of peers must be randomly

removed from the overlay for it to become severely fragmented. Furthermore, the

degree of resiliency has remained relatively constant during the past year. Resiliency

to the removal of the highest-degree nodes is clearly worse than random node removal.

Overall Gnutella is growing increasingly resilient to highest-degree removal. Since

these results are normalized by total population, the actual number of removed

ultrapeers has increased by a factor of 3 (i.e., n ∗ 50% in Oct. 2004, n ∗ 3 ∗ 60%

in Sep. 2005).

3.2.3. Geographical Properties

While neighbor selection is largely a random process in Gnutella, one key question

is whether connectivity in the Gnutella overlay topology is geographically-aware. In

other words, whether peers in a certain region are more likely to connect to other

peers in their region.

3.2.3.1. Client Location

To characterize this property, first we examined the breakdown of ultrapeers

across different regions and countries using GeoIP 1.3.14 from MaxMind, LLC.

Figure 3.5.b shows the distribution of Gnutella clients across four regions, namely

North America (NA), South America (SA), Europe (EU), and Asia (AS) that
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collectively make up 98.5% of the total ultrapeer population. This figure reveals that

a majority of Gnutella ultrapeers are in North American (80%) with a significant

fraction (13%) in Europe. Furthermore, the user population of different regions have

grown proportionally over time. The distribution of user populations across different

countries has also grown proportionally, except for China where client population has

dropped significantly (94%). Clients in US, Canada, and UK make up 65%, 14%, and

5% of the total population, respectively6. The remaining countries made up less than

2% each, but make up 16% in total. Thus, while the Gnutella network is dominated

6These values are from the snapshot taken on 9/20/05 and are similar to the other values observed
during the study period, as shown in Figure 3.5.b.
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by predominately English-speaking countries, around one-fifth is composed of users

from other countries7.

3.2.3.2. Intra-Region Bias in Connectivity

For each one of the main four regions, Figure 3.5.c depicts the percentage of

neighbors for all ultrapeers in a region that are located in the same region. If there

is no bias towards intra-region connectivity, the percentage for each region should be

the same as the percentage of the total population that are located in that region

(Figure 3.5.b). Figure 3.5.c reveals that there is a strong bias towards intra-region

connectivity, especially within smaller regions. More specifically, even though 13.3%,

2.8%, and 2.3% of the overall population are located in EU, AS and SA, more than

22.9%, 24.5%, and 16% of their neighbors are within the same region, respectively.

This biased intra-region connectivity occurs due to three reasons: First,

LimeWire clients attempt to maintain at least one neighbor with the same locale

setting [16], i.e., at least one neighbor whose user speaks the same language. Second,

when peers are attempting to establish more neighbors, they initiate connections to

more peers than are actually needed and select the fastest responders, dropping any

extras. This simple mechanism implicitly leads to bias in connectivity within each

region. Third, because users in the same region tend to arrive at around the same

time of day, their clients tend to be looking for neighbors at the same time and

are more likely to find one another. Clearly, one could determine the potential for

such a biased connectivity by examining the source code of various implementations.

However, my results quantify the degree of such bias in practice.

7We noticed that, the population of North American and European clients peak at around 7pm
and 11am PDT with 86% and 24%, respectively. This figure indicates that the 3pm snapshots
capture roughly average daily population, i.e., not at any of the peaks.
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This intra-region biased connectivity in the overlay topology implies that users

searching for content are more likely to locate content among other peers in the same

region with the same language and culture. Furthermore, response time to queries will

also be faster since geographical distance is a good first-order estimator of network

latency.

3.3. Summary

In this chapter, we explored long-term trends in properties of the overlay topology

in the popular Gnutella P2P file-sharing system. In particular, we illustrated how

the two-tier overlay topology has evolved in order to accommodate dramatic changes

in the scale of the user population during the 15 month measurement period. The
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rapid rate of software updates by participating users enabled developers to effectively

modify their software to cope with this moving target and maintain a two-tier

overlay with desired properties. We have explored potential correlations between

the evolution of overlay properties and the popularity of different versions of major

client releases. Finally, we illustrated the intra-region bias in the connectivity among

peers.

The main two findings of this chapter are the following: First, the quick growth

in user population begun to push the Gnutella overlay past its limits. However,

the developers quickly responded by making modifications in major Gnutella clients

(LimeWire and Bearshare) and the users quickly adopted the new releases and thus

the desirable properties of the overlay were maintained despite the dramatic growth

in user population.

Specifically;

– Ultrapeer to leaf ratio target is a little over 9% for good performance. During the

study, the ratio became unbalanced reaching peaks of 18% and 20%. However,

in both cases, the Gnutella software upgrades were able to respond, bringing

the ratio to an acceptable level of about 15%.

– Our study of client-based properties of the Gnutella overlay showed a dominance

of one implementation (Limewire) by 75-85% of ultrapeers, with the second

implementation (BearShare) making up 10-20% of ultrapeers. Clients quickly

adopt new upgrades as they are released, providing rapid adaptation to any

instability that results from rapid growth of the user population.

– Our study of graph-related properties of the Gnutella overlay (ultrapeer node

degree, degree from ultrapeers to leaves, and leaves to ultrapeers) shows that
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similar patterns occur over multiple snapshots in time. Peak values occur at

certain specific values in all snapshots, but all are consistent with a system that

reacts successfully to increasing numbers of peers, i.e., new releases of Limewire

and BearShare bring the P2P network into reasonable balance.

Our study of other graph-related properties (clustering co-efficient, pair-wise

distances, and resiliency to peer departures) all exhibit characteristics that are; (i)

consistent with expectations, and (ii) indicative of stability i.e., these metrics remain

in ranges that are appropriate for effective performance for Gnutella’s file-sharing

needs.

Second, in Gnutella overlay, despite the general randomness, peers show a

meaningful bias in connecting to other peers in the same continent, specially in

continents with smaller user populations. This connectivity bias has not changed

during the dramatic growth in user population. Our study of geographic properties

of the Gnutella P2P overlay suggests that Gnutella is much more popular in English-

speaking countries and there is a strong bias toward intra-region connectivity.

Although this is not a surprising result, we are the first to quantify this pattern.

The key contributions of our work include the rigorous measurement of graph

theoretic and geographic characteristics of the Gnutella overlay network. Through

use of the Cruiser crawler, we have captured much more accurate measurements than

previously reported. Our measurement study has also taken more snapshots than

other work because of the speed of Cruiser. These measurements will serve as useful

baseline measurements for future studies of P2P overlay characteristics.

Our measurements over a two-year period demonstrate the ability of Gnutella

software (most notably Limewire) to provide mechanisms to adapt to rapid growth

in user populations through fast adoption of Limewire releases. Coupled with the
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stability in the geographic properties of the P2P overlay, this analysis provides

information that will be very useful in our investigation of the impact of the overlay

on the underlay network.

The measurement technique used in this chapter was based on taking full

snapshots of a live P2P overlay in a relatively short time slot. Although this method

was shown to be effective for Gnutella at the time the study was performed, we should

note that this technique becomes very challenging as the network becomes more and

more populated. For instance, if a P2P network has 10 times the maximum number

of peers we observed in this study (35 million peers), taking a full snapshot will take

about ten times longer, making the snapshots likely to be distorted as we will observe

in Section IV. In the next chapter, we will introduce an efficient sampling technique

that will significantly reduce the measurement time in order to improve the accuracy

of the measurement for even larger P2P networks.
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CHAPTER IV

LARGE SCALE OVERLAYS: SAMPLING

Most of the content from this chapter has been adopted from my previously

published paper [103] co-authored with Mojtaba Torkjazi, Prof. Reza Rejaie, Dr.

Nick Duffield, Dr. Walter Willinger, and Dr. Daniel Stutzbach. The experimental

work is mine with some assistance from Mr. Torkjazi and the text has been

contributed by myself and the co-authors.

During the past few years, unstructured Peer-to-Peer (P2P) systems such as

Gnutella and BitTorrent have become very popular and have significantly contributed

to the total traffic over the Internet. This has motivated researchers to characterize

the basic properties of these systems through measurement. Such characterizations

can be leveraged to address several key issues about these systems including: (i)

understanding the properties and dynamics of these systems, and use these findings

to improve their performance and scalability, and (ii) assessing the impact of these

systems on the Internet.

To characterize unstructured P2P systems, one needs to capture accurate

“snapshots” of the connectivity structure. Examining individual snapshots reveals the

connectivity structure at a particular point of time whereas comparing consecutive

snapshots over time illustrates the evolution of the connectivity structure. Such

snapshots are typically captured by a crawler that queries a set of known

nodes to learn about their neighbors and progressively discovers the connectivity

structure. Capturing accurate snapshots of the connectivity structure for large-scale

unstructured overlays is challenging because such systems may significantly evolve

during the time required to capture a full snapshot. Therefore, captured snapshots are
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likely to be distorted and this could significantly degrade the accuracy of any results

derived from such snapshots. In [130], my co-authors have shown that commonly used

sampling techniques in prior empirical studies on P2P systems (e.g., [115]) can easily

lead to significant bias towards short-lived or high degree peers due to the dynamics of

peer participation or the heterogeneity of peer degrees, respectively. Graph sampling

(e.g., [130]) is a natural approach to tackle this problem and often occurs in two

steps. First, a crawler explores parts of the structure and selects a (random) subset

of discovered nodes as samples. Second, the desired property of sampled nodes is

measured to yield an estimate of the distribution of that node property across the

entire population.

This chapter presents Respondent-Driven Sampling (RDS) as a promising

technique for sampling unstructured P2P overlays. This allows one to accurately

estimate the distribution of a desired peer property without capturing the entire

overlay structure. RDS is a variant of snowball sampling that has been proposed and

used in the social sciences to characterize hidden population in a society [62, 114]. We

apply the RDS technique to unstructured P2P network and evaluate its performance

over a wide range of static and dynamic graphs as well as a widely deployed P2P

system. Throughout our evaluation, we compare and contrast the performance of the

RDS technique with another sampling technique, namely Metropolized Random Walk

(MRW), that we developed in our earlier work [130].

The presented results illustrate three main findings: First, the performance of

RDS is equal or better than that of MRW in all examined cases. The advantage in

performance and accuracy is most outstanding in cases where the overlay structure

features a highly skewed node degrees while the node clustering coefficients are also

highly skewed. Second, both sampling techniques exhibit acceptable performance in
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accurately estimating peer properties over dynamic unstructured overlays according

to our dynamic simulations as well as empirical evaluation. Third, we observed lower

efficiency and accuracy from both techniques in empirical evaluation compared to the

simulations results. We believe this is due to the fact that we are unable to obtain

perfect reference snapshots in real world experiments.

The rest of this chapter is organized as follows: Section 4.1. presents an overview

of both the RDS and MRW techniques, and sketches our evaluation methodology. We

examine both techniques over variety of static and dynamic graphs in Section 4.2. and

4.3., respectively. Section 4.4. presents the empirical evaluation of the two sampling

techniques over Gnutella network.

4.1. Graph Sampling Techniques

An unstructured overlay can be represented as an evolving undirected graph G,

with vertices V and edges E. The vertices and edges of G represent the peers and

pairwise connections between them, respectively. An accurate snapshot of the full

graph (the overlay) is not available, however we can query any known peer for a list

of adjacent peers in order to progressively discover portions of the overlay. Some

fraction of discovered peers are selected as samples and the distribution of the desired

peer property (number of neighbors, number of files, access link bandwidth or session

time) among the samples provides an estimate for that property among all peers.

The efficiency of sampling can be quantified by the ratio of sampled peers to the total

number of peers queried. To provide an accurate estimate, sampled peers should be

selected uniformly at random. This is challenging because the overlay topology and

peer dynamics introduce bias towards discovery and thus selection of peers with large

degrees and short session times, respectively [130].
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Random walk is a promising technique for sampling. In an ordinary random

walk, the sampler begins at a node, x, and chooses a new node, y, uniformly at

random from x’s neighbors. The walk transitions to the neighbor and then chooses

a new node from y’s neighbors. Formally, the ordinary random walk has a transition

function, P (x, y), defined as follows:

P (x, y) =











1
degree(x)

y is a neighbor of x,

0 otherwise

The stationary distribution, π(x), of the walk defines the probability of being

at any particular node x. For an ordinary random walk, graph theory [78] proves

π(x) ∝ degree(x). That is, the fraction of time spent at a node is directly proportional

to the node’s degree. Thus, the ordinary random walk is inherently biased towards

nodes with higher degree.

4.1.1. Respondent Driven Sampling

Respondent Driven Sampling (RDS) is a development of Snowball Sampling

(SBS)[62], a group of related sampling techniques proposed in the social sciences to

sample hidden populations. Salganik [114] defines a population as “hidden” when

there is no central directory of all population members, such that samples may only

be gathered through iterative referrals from existing samples.

RDS is a variant of SBS [62], which forms asymptotically unbiased estimators

by appropriate re-weighting of estimators to take account of topological biases [114].

The special case where each respondent recruits only one individual maps exactly onto

the case of a random walk on a graph. This in turn can be recast as a Monte Carlo

Markov Chain (MCMC) problem [51] The problem of estimating peer properties in
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unstructured overlays is analogous to the sampling of hidden population in the social

sciences. We wish to estimate the distribution of a node property X ; specifically,

consider any partition {R1, . . . , Rm} of the range of possible values ofX . We partition

the node set V accordingly into groups of nodes {V1, . . . , Vm}, i.e., Vi = {v ∈ V :

X(v) ∈ Ri}. A simple example is when X is positive integer value and we group by

value: Vi = {v ∈ V : X(v) = i}.

The RDS approach is to estimate the proportion pi of nodes that are in group

i from observed node degree and group memberships of nodes traversed in the

random walk. Specifically, consider the n-step walk that visits the set of nodes

T = {t1, t2, . . . , tn} where individual nodes may be visited more than once. Let

Ti = T ∩Vi denote the visited nodes that lie in group i. For any node property X , the

Hansen-Hurwitz [58] estimator Ŝ(X) := n−1
∑

v∈T
X(v)
π(v)

is an unbiased and consistent

estimator of the sum S(X) :=
∑

v∈V X(v) when T is drawn from a stationary random

walk, i.e., one that evolves from an initial node that is randomly selected according

to the stationary distribution. Consider two special cases. When X = IVi
is the

indicator of a node being in group i, i.e., IVi
(v) = 1 if v ∈ Vi and 0 otherwise, then

Ŝ(IVi
) estimates the total number of nodes in Vi. When X = 1 then Ŝ(1) estimates

the total number of nodes |V | in the graph. Thus we can estimate the proportion pi

by

p̂i =
Ŝ(IVi

)

Ŝ(1)
=

∑

v∈Ti

1
degree(v)

∑

u∈T
1

degree(u)

where degree(v) is the degree of the node v. p̂i is consistent—it converges to

the true value pi—as the number n of visited nodes grows. The RDS estimator

can be recognized as an importance sampling estimator weighted by the stationary

distribution π, applied to the MCMC of the random walk on the vertex set V .
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4.1.2. Metropolized Random Walk

Our earlier work [130] evaluates the use of Metropolized Random Walks (MRW)

for gathering unbiased samples from unstructured P2P networks. The Metropolis–

Hastings technique [30, 60, 90] provides a way to alter the next-hop selection to

produce any desired stationary distribution, π(x). In [130], we choose the next-hop

appropriately to produce the uniform distribution, π(x) = 1
|V |

, as follows:

Q(x, y) =











P (x, y)min
(

degree(x)
degree(y)

, 1
)

if x 6= y,

1−
∑

z 6=xQ(x, z) if x = y

Essentially, the walk tentatively selects a neighbor of x uniformly at random (P (x, y))

and then accept the transition randomly with probability min
(

degree(x)
degree(y)

, 1
)

. Otherwise

(1 −
∑

z 6=xQ(x, z)), the walk remains at the current node, effectively taking a self-

edge. Put simply, the bias toward higher degree nodes is removed by reducing the

probability of transitioning to higher degree nodes at each step.

We note that RDS is complementary to the MRW approach in the following way.

In MRW, we seek to modify the random walk in order to have an equal probability

of visiting each node and hence derive unbiased estimates. In RDS, the walk is

unmodified; however, we reweight the sampled values to obtain an unbiased estimate

of the group proportions pi.

4.1.3. Evaluation Methodology

To evaluate the RDS technique, first we simulate the sampling techniques over

a wide range of static and dynamic graphs where the accurate distribution of the

sampled property (ground truth) is known. Simulation over synthetic graphs not
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only offers an opportunity for accurate evaluation of the sampling techniques, but

also allows us to identify the separate effects of graph properties and graph dynamics

on the accuracy and efficiency of these techniques. Second, we empirically evaluate

both techniques over Gnutella P2P overlay.

Performance Metric: To quantify the accuracy of a sampling technique in each

scenario, we compare the sampled and true distributions of a desired peer property

using the Kolmogorov-Smirnov (KS) statistic, D. If we plot the estimated and true

CDFs of a desired property, D is the maximum vertical distance between the plots of

the two functions with a range of [0, 1]. For example, a value of D ≤ 0.01 corresponds

to no more than a one percentage point difference between CDFs and is excellent for

most measurement purposes. Due to the limited space, we only present a subset of

our results that illustrate our main findings in Sections 4.2. and 4.3.. Complete results

are available in the related technical report [101].

4.2. Evaluation over Static Graphs

In this section, we examine how the connectivity structure of a graph affects

the accuracy and efficiency of the RDS and MRW sampling techniques using the

following candidate graph types: (i) Erdös-Rényi Random graphs (ER) [17], (ii)

Small-world graphs (SW) [135], (iii) Barabási-Albert graphs (BA) [12]: Scale-free

graphs of the preferential attachment-type, (iv) Hierarchical Scale-Free graphs (HSF)

[13]: A class of (deterministic) graphs generated by an iterative algorithm to produce

heterogeneous node degree and heterogeneous node clustering coefficients. More

specifically, node degree distribution follows power-law while clustering coefficients

at individual nodes is inversely proportional to node degree, independent of graph
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size. (v) Gnutella graphs (GA): A snapshots of the Gnutella ultrapeer topology,

captured on 05/15/2008 using cruiser [130].

Figure 4.1.a shows the KS error for the degree distribution from samples collected

by the RDS and MRW techniques as a function of the number of samples over

the different graph types. To make the results comparable, the number of vertices

(|V | = 390,625) and edges (|E| = 1,769,110) are similar across the different graph

types. Figure 4.1.a illustrates the following two important points. First, the accuracy

of the RDS technique rapidly improves with the number of samples. The rate of

improvement in accuracy across all graph types (i.e., slope of the line) is similar. The

overall accuracy of the MRW technique follows a trend similar to RDS for all graphs

(except the HSF graph) but on average slightly (≈ 2 ∗ 10−3) lower than the RDS

technique. Given this similarity, the results for MRW are not shown in Figure 4.1.a

except for the HSF graph. For the HSF graph, MRW sampling not only exhibits

a significantly lower accuracy compared to the other graph types, but the rate of

improvement in accuracy with the sample size (i.e., slope) is much worse. Second,

for a given number of samples, while both techniques exhibit a lower accuracy for the

HSF graph, the impact on the MRW technique is significantly more pronounced, i.e.,

the rate of improvement in accuracy with the sample size (i.e., slope) for the MRW

technique is much worse than RDS.

Focusing on the HSF graph, the reported differences in the accuracy of RDS

and MRW and their observed lower performance can be attributed to the following

phenomenon. In HSF graphs, at each level of their hierarchical structure, there are

groups of well inter-connected low degree nodes which form pronounced clusters. The

only way for a random walker to leave these clusters is via a much higher degree node

that resides outside these clusters, i.e., the walker has to traverse an edge from a low
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degree node within such a cluster to a much higher degree node outside this cluster.

As described in Section 4.1., for the MRW technique, the probability of moving along

such an edge is proportional to the ratio of the (low) degree of the node within

the cluster to the (very high) degree of the node outside this cluster which is very

small. Therefore, when an MRW walker ends up in one of these clusters, it keeps

collecting samples from low degree nodes within these clusters for a disproportionally

long time. This in turn degrades the accuracy of sampling especially among high

degree nodes. The impact of clusters on the RDS technique is significantly lower

because the probability of selecting the next node in RDS does not depend on node

degree.

Figure 4.1.b shows the accuracy of the MRW sampling technique over the same

HSF graph when 0%, 1%, 5%, and 50% of its edges are randomly shuffled (i.e.,

rewired) while preserving the degree of individual nodes. Increasing the percentage

of randomly shuffled edges gradually removes the explicit hierarchical structure of

HSF graphs and enforces a more homogeneous clustering behavior across the graph

structure as compared to the original HSF graph. For comparison, we also present the

results for the RDS technique over the graphs when 0% and 50% of edges are shuffled.

The figure demonstrates that even a small percentage of shuffled edges dramatically

improves the accuracy of the MRW technique.

These results suggest that the main reason for the degraded performance of the

two sampling techniques over HSF graphs is a combination of highly skewed node

degrees and highly skewed node clustering coefficients.
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FIGURE 4.1. Efficiency of RDS and MRW over different graph types, estimating
degree distribution

4.3. Evaluation over Dynamic Graphs

In this section, we use our session-level simulator [129], called psim, to examine

the behavior of the RDS technique over dynamic graphs. psim simulates peer

arrivals, departures, pairwise latencies, per discovery and neighbor connections.

The latencies between peers are randomly selected from the King data set [56].

Peers use the following popular bootstrapping mechanisms for peer discovery [130]:

Oracle, FIFO, HeartBeat and History. Individual peers try to maintain the number

of their connections (i.e., their degree) between a given minimum (MinDeg) and

maximum (MaxDeg) degree. When the number of connections for a peer drops

below MinDeg, it uses the discovery mechanism to establish additional connections

and reach MinDeg. A peer neither accepts nor initiates any new connections once

its degree reaches MaxDeg. To query a peer for a list of neighbors, the sampling

node must establish a TCP connection, submit its query, and receive a response.

psim simulates churn by controlling the distributions of peer inter-arrival intervals

and peer session lengths. New peers arrive according to a Poisson process, where the
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mean peer arrival rate combined with the session length distribution yield a desired

mean population size in steady state. We use the following models for session length

distribution that we derived in our earlier empirical study of churn [129] in P2P

networks: Weibull, Pareto and Exponential. We run each simulation for a warm-up

period until it reaches steady state with 100,000 concurrent peers before gathering

samples.

Impact of Parallel Sampling: A desired number of samples from a dynamic overlay

can be collected by a number of parallel (RDS or MRW) walkers that start from the

same nodes. Increasing the number of parallel samplers has two conflicting effects

and thus introduces an interesting tradeoff. Increasing the number of parallel walkers,

reduces the required walk length to collect a desired number of samples. This in turn

decreases the time to collect the samples and thus reduces the error that occurs due to

the evolution (i.e., churn) in the overlay. However, increasing the number of samplers

leads to redundant sampling of nodes around the starting point and degrades sampling

accuracy. Figure 4.2. demonstrates this tradeoff and depicts the accuracy of the RDS

and MRW techniques as a function of walk length for different number of parallel

samplers.

Clearly, the accuracy of the RDS and MRW techniques in estimating a peer

property is not affected by overlay dynamics if the desired peer property does not

interact with the walk. Therefore, to evaluate these techniques over dynamic graphs,

we only consider the following peer properties that may interact with the walk: (i)

Node Degree (DEG): The degree of an individual node in the graph determines the

probability that a node is visited. (ii) Session length or Uptime (UT): The dynamics

of peer participation drives the evolution of the graph with time and affect the

probability of visit for individual peers. (iii) Query latency (RTT): In a dynamic
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FIGURE 4.2. Effect of number of samplers and walk length in sampling node degree.
Churn Model: Weibull with k = 0.59, median sess. len.=21min, MinDeg=30

overlay, each step requires querying a peer. Since the query latency for individual

peers depends on their relative round-trip time, this could lead to a bias correlated

with the query latency.

4.3.1. Effect of Churn

Figure 4.3.a depicts the accuracy of the RDS technique in estimating the

distribution of node degree as a function of median session length (i.e., churn rate)

for different churn models. The results for sampling session length is very similar to

Figure 4.3.a and thus is not shown. Figure 4.3.a shows that the median session length

is the primary factor that affects the accuracy of sampling techniques. To explain

this behavior, we note that the median session length is a rough measure of the level

of overlay dynamics. When the churn rate is high (i.e., median session length is less

than 5 minutes), the overlay significantly evolves during the sampling period which

in turn leads to larger error. Earlier empirical studies suggest that the median session

length in actual P2P systems is rarely below 10 minutes for which the sampling error

is below 0.01. Figure 4.3.b presents the accuracy of the RDS technique in estimating
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FIGURE 4.3. Sampling error as a function of median session length for two peer
properties using different churn models. Bootstrapping=FIFO, MinDeg=30, sampled
by 1066 parallel samplers, each taking 49 hops

the distribution of query latency. Since the query latency between pairs of nodes are

selected from the fixed King data set, its distribution among samples is less sensitive

to the dynamics of peer participation.

4.3.2. Effect of Target Node Degree

Figure 4.4.a presents the accuracy of the RDS sampling technique in estimating

the distribution of node degree as a function of minimum node degree (MinDeg).

This figure reveals that when MinDeg is larger than a threshold of about five,

the accuracy does not change with the the minimum node degree (except for the

History bootstrapping mechanism). Figure 4.4.b shows that the accuracy of the RDS

technique in estimating query latency follows a similar pattern. The rapid degradation

of accuracy for lower node degrees is mainly due to the fragmentation of the overlay

which makes some parts of the graph inaccessible to the random walkers. In real P2P

systems, such a fragmentation does not occur since the peer degree is often larger

than five.
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FIGURE 4.4. Sampling error as a function of minimum degree for two peer properties
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sess. len.=21min, 1066 parallel samplers, each taking 49 hops

To explain the abnormal behavior of the History bootstrapping mechanism in

Figure 4.4., we note that in this mechanism each peer relies on the list of its neighbors

in previous sessions. This leads to a number of isolated peers since all their neighbors

from previous sessions have departed. While the number of isolated peers is not large

at any given time, and they eventually get connected to the overlay by contacting

bootstrapping node, their extended isolation time have an impact on the reachability

of these nodes and thus on the accuracy of sampling techniques.

4.4. Evaluation over Gnutella

To empirically evaluate our sampling techniques, we use them to estimate

properties of ultrapeers in the Gnutella network on sampling peer properties of

Gnutella, a well-known and popular P2P system. We incorporate both sampling

techniques into our sampling tool called ion-sampler[130]. We concurrently start

1000 RDS and 1000 MRW samplers, where each sampler takes a 500-step walk to

sample the degree of Gnutella ultrapeers in the Gnutella network to collect samples
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FIGURE 4.5. Results of sampling experiment over Gnutella

of node degree. At the same time, we use cruiser [132] to collect complete back-to-

back snapshots of the top-level Gnutella overlay roughly every seven minutes.

Figure 4.5.a presents the distribution of node degree from collected samples

by the RDS and MRW techniques as well as full snapshots collected by the

crawler. Figure 4.5.a shows that all three distributions of node degree are almost

indistinguishable, i.e., both sampling techniques exhibit similar performance. To

further investigate the variability of observed accuracy for the sampling techniques, we

repeat each sampling experiment with different walk length for six times. Figure 4.5.b

presents the average KS error and associated error bars as a function of walk length

for both sampling techniques. Figure 4.5.b indicates that increasing the walk length

beyond about 30 hops quickly decreases the KS error because of the larger number

of collected samples. However, the rate (i.e., slope) of improvement in accuracy is

diminishing beyond a certain walk length. Collecting more samples through longer

walks does not improve the fidelity of samples due to major changes in the system

during the sampling period.
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4.5. Summary

In this chapter, we presented RDS as a powerful technique for sampling

unstructured P2P networks. While RDS has been developed in the social sciences

for sampling static graphs, we adopted this technique to the networking domain and

explored its applicability in the context of dynamic connectivity structures. Through

simulations involving a variety of synthetically generated static and dynamic graphs

and experiments over the Gnutella network, we examined the performance of the RDS

technique and compared its performance with another graph sampling technique,

namely, MRW. Our study demonstrates how the connectivity structure among nodes

and its dynamics affect the accuracy of both sampling techniques. We showed that

RDS generally performs as good or better than MRW. In particular, RDS achieves

a significantly better performance than MRW when the overlay structure exhibits

a combination of highly skewed node degrees and highly skewed node clustering

coefficients.

Our experiments on a variety of synthetically generated static graphs show that

RDS and MRW perform equally well for most graph types including ER, BA, SW,

and GA in which sampling accuracy is roughly inversely proportional to the square

root of the sample size (walk length). For HSF graph, we observe that RDS performs

much better than MRW. For instance comparing both techniques at their largest

experimented sample size (nearly 1 million samples), MRW and RDS reach best

sampling errors of roughly 10−1 and 3× 10−3, respectively.

We also examined the performance of RDS via dynamic simulation in presence

of churn. We find that increasing churn level beyond a certain point (i.e., when the

median session length is less than 5 minutes), the overlay changes significantly during

the sampling time and therefore the sampling accuracy is largely degraded. Also,
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when the set the target node degree (in overlay construction) below a threshold of

about 5, the sampling accuracy is degraded significantly. We believe this is due to

major fragmentation that occurs in the dynamic graph when the node degree is small.

We test RDS in a real world measurement by sampling the Gnutella network

and we find that RDS and MRW perform equally well in sampling Gnutella reaching

a sampling error of about 3× 10−2.

In the framework of measurement studies of P2P systems, in the past two

chapters we focused on the P2P overlay and how to capture overlay/node properties

using full crawling or sampling. Another aspect of P2P systems which is the most

important from the user’s perspective, is the performance experienced by the user.

In the next chapter, we focus on P2P performance evaluation using a case study of

BitTorrent.
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CHAPTER V

P2P PERFORMANCE EVALUATION: BITTORRENT CASE STUDY

Most of the content of this chapter has been adopted from my previously

published paper [105] co-authored with Prof. Reza Rejaie. The experimental work

and analysis is entirely mine and the text has been contributed by myself and my

co-author.

During recent years, the Internet has witnessed a rapid increase in the popularity

of BitTorrent and therefore its contribution in network traffic. BitTorrent is a peer-

to-peer (P2P) content distribution mechanism that enables a single node to provide

its static content to a large number of peers without requiring a large access link

bandwidth. BitTorrent incorporates swarming content delivery to effectively utilize

the outgoing bandwidth of participating peers and thus achieve scalability. The

scalability of BitTorrent along with the ease of deployment has led to its increasing

popularity over the Internet. This in turn has motivated researchers to examine

the performance of BitTorrent using different techniques including modeling ([98]),

simulations ([15, 98]), and in particular measurement ([66, 57, 71]).

One key aspect of performance in BitTorrent is the download rate that is achieved

by participating peers. It is often stated (by users and developers) that BitTorrent

provides a good performance to individual peers, i.e., users can effectively utilize

their available (or configured) incoming access link bandwidth. However, capturing a

“representative” value of observed peer performance in practice is a non-trivial task.

A typical measurement approach to study peer-level performance is to use one (or

multiple) instrumented BitTorrent client(s) that participate in an existing torrent

and download content [66, 75]. While this approach provides detailed information
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about the observed performance by a few instrumented peers, it is unclear whether

its findings properly represent observed behavior by the entire population, i.e., the

results may not be representative. Intuitively, the observed performance by individual

peers in a torrent could depend on their peer-level properties (e.g., outgoing access

link bandwidth) or group-level properties (e.g., group population, content availability

or churn). This implies that results of a measurement study using “instrumented

client” could easily depend on time of measurement, location of instrumented clients

or properties of the torrent and thus they are not representative. In essence, to

investigate the peer-level performance in BitTorrent, the following two important

and related questions should be addressed:

– What is the distribution of the observed performance by individual peers in a

torrent?

– What peer- or group-level properties primarily determine the observed

performance by individual peers in a torrent?

The first question reveals how similar (or dissimilar) are the observed performance by

individual peers. This in turn determines whether a few peers can properly represent

the entire population of participating peers and how they should be selected. The

second question explores any potential dominant factor(s) that affect the observed

performance by individual peers. To our knowledge, these questions have not been

investigated by previous measurement studies on BitTorrent.

In this chapter, we try to answer these two important questions by capturing

the observed performance for almost all participating peers in several torrents with

different groups of users. We present our methodology to derive peer- and group-level

properties of participating peers in a torrent from its tracker log. We also describe
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various challenges in our approach including the difficulty to accurately estimate

the observed performance by all participating peers. To tackle the first question,

we examine the distribution of the derived peer- and group-level properties in our

candidate torrents and illustrate that both the observed performance and the observed

group level properties significantly vary among participating peers. To answer the

second question, we investigate the correlation between the observed performance by

each peer and both its peer-level and its observed group-level properties using several

classic techniques. Our analyses demonstrate that while the performance of each

peer has the highest correlation with its outgoing bandwidth, there is no dominant

peer- or group-level property that primarily determines the observed performance

by the majority of peers. This suggests that the dominant determining factors

for the observed performance by individual peers is different. This chapter makes

the following contributions: (i) it presents a set of techniques to accurately derive

peer-level and group-level properties of all participating peers in a torrent; (ii) it

illustrates that the commonly used approach of instrumented clients is inappropriate

to characterize peer-level performance in BitTorrent; and (iii) it provides several

evidences that the relationship between the peer-level performance and other peer- or

group-level properties is non-trivial, and although there are significant correlations,

there is no dominant factor that determines peer-level performance.

The rest of this chapter is organized as follows: In Section 5.1., we present a

brief overview of BitTorrent to provide the required background for our study. Our

measurement methodology, our dataset and our data processing are described in

Section 5.2.. We present the peer-level and group-level properties in Section 5.3..

In Section 5.4., we examine the correlation between peer performance and various

properties. Finally, Section 5.5. concludes the chapter.

101



5.1. BitTorrent: An Overview

To provide the proper context for our study, we present a brief overview of those

aspects of BitTorrent that are relevant to our measurement and characterization. In

BitTorrent, all participating peers that join the system to download the same file are

referred to as a “torrent”. All peers in a torrent form a random mesh and incorporate

swarming content by pulling their missing segments from connected peers. Peers are

generally divided into two groups, seeds and leechers, that have the entire or part

of the entire file, respectively. All peers provide content to their neighbors but only

leechers need to download content.

BitTorrent features a peer-level incentive mechanism among connected peers

called tit-for-tat. This mechanism tends to connect together peers with similar

ability to provide content. Therefore, the tit-for-tat mechanism can affect achieved

download rate by individual peers. In general, the observed download and upload

rates by each peer is limited by its incoming and outgoing access link bandwidth,

respectively. However, these rates could be further limited by the user and by cross

traffic. Peers can join and leave a torrent in an arbitrary fashion. These dynamics of

peer participations (or churn) could also affect observed performance by individual

peers.

For each torrent, there is a well known node called tracker. The tracker keeps

track of all the participating peers in a torrent as well as their download progress.

Each peer contacts the tracker when it joins or leaves a torrent, or requires more

neighbors. Each peer also periodically (every 30 minutes) reports its total amount

of uploaded and downloaded bytes, among other information, to the tracker. The

tracker records all these interactions (including peer arrival, departure and periodic
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updates) in a log file. In the next section, we describe how the tracker log of a torrent

can be leveraged to characterize its peer- and group-level properties.

5.2. Measurement Methodology

A common approach to study BitTorrent is to run multiple instrumented clients

and capture their observed performance. This approach provides detailed information

(e.g., access link bandwidth, variations of download rate over short timescales) about

observed performance by several peers. However, this approach has two important

limitations: (i) Since the distribution of observed performance among participating

peers is unknown, the observed performance may not provide a representative view of

the entire population. (ii) This approach does not provide any group-level information

(e.g., average content availability, group population) that might have a significant

impact on the peer-level performance.

To address this problem, we leverage BitTorrent tracker log to estimate both

peer-level properties (namely download and upload rate) for nearly all participating

peers and key group-level properties (i.e., churn rate, content availability, and group

population) that are observed by individual peers. This information allows us to

answer our two key questions. It is worth noting that this approach has its own

limitations as follows: First, as we explained earlier, each peer sends an update of

its download (and upload) progress once every 30 minutes. Therefore, we can only

estimate “average” peer-level properties over 30 minute timescale. This implies that

variations on download and upload rates over shorter timescale can not be captured

by this approach. Second, the tracker log does not contain any information about

the connectivity between participating peers (i.e., shape of the overlay topology).

Therefore, we are not able to examine the potential effect of content availability
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among neighbors of a given peer on its performance. Third, the tracker log does not

provide any explicit information about the maximum download or upload rate that

each peer is able (willing or configured) to achieve. This could affect the accuracy

of estimated performance by each peer. We further elaborate on this issue and

explain our approach to address this problem in subsection 5.2.3.. In the next

two subsections, we describe how peer- and group-level properties are derived from

tracker logs.

5.2.1. Deriving Peer-Level Properties

We only focus on two peer-level properties: download and upload rates. Toward

this end, we define a session as a collection of events associated with a single

appearance of a particular peer in a torrent. A complete session starts with a sign-in

event in the tracker log, continues with several periodic updates, and finally ends with

a sign-out event. Note that the tracker log is missing “sing-in” (or “sign-out”) events

of a session if these events occur outside our logging window. A session may also

include a download completion event which implies that a peer has become a seed. In

our study, we only focus on the observed performance by leechers until they complete

their download.

The average download (or upload) rate for a particular peer between two

consecutive updates is estimated by dividing the increase in the amount of downloaded

(or uploaded) bytes during this interval updates by its duration. This leads to several

rather short term average upload and download rates (one per update) for each peer.

The average download and upload rate during the entire session can be similarly

estimated by comparing the first and the last (or the download completion if it occurs

during the session) reports. Figure 5.1.a depicts the evolution of downloaded and
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FIGURE 5.1. Capturing peer- and group-level properties

uploaded bytes over time for a single peer. The slope between two consecutive points

represents the average download/upload rate for that interval whereas the slope of

the line that connects the first and last points represents the average rate across the

entire session. This figure clearly shows that: (i) This peer completes its download

shortly before 5pm but remains in the system as a seed, and (ii)its average upload

rate is higher than its average download rate.

5.2.2. Deriving Peer-View of Group-Level Properties

Our goal is to derive the average value of key group-level properties, namely

population, churn rate, and content availability, that are viewed by individual peers

during their session. To achieve this goal, we first derive evolution of these properties

over time. We sample the value of these group-level properties at evenly spaced points

in time. Figure 5.1.b demonstrates this approach by showing the arrival time of all

received updates from each peer (with a circle) on a horizontal line. At each sampling

point, we only consider the last report before and the first report after the sampling

point for each active session (shown with a filled circle). Given the available content
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at each peer in these two reports, we can estimate the available content at that peer at

the sampling point. Then, we can average the available content across all active peers

to estimate average content availability at that sampling point. Counting the number

of active sessions at a sampling point provides an estimate for the population of peers

at that point of time. Comparing the identity of peers at a sampling point with

the last sampling point reveals the number of departed or arrived peers since the last

sampling point. Using this information, we can estimate the evolution of these group-

level properties during the appearance of individual peers (i.e., a session). Then, the

peer-view of these group-level properties can be derived for each peer by averaging

their values during that peer’s presence as a leecher. More specifically, we focus on

the average value of group population, churn rate and content availability during the

downloading time of each peer to derive the observed value of these group properties

for that particular peer. In essence, peer view of these properties represents the state

of the group during the appearance of a peer as a leecher.

5.2.3. Performance Metrics

The main goal of individual peers in a torrent is to maximize their download

rate. To determine observed performance by individual peers, we should measure

their ability to utilize their access link bandwidth, i.e., the ratio of average download

rate to the maximum rate that a peer is able and willing to receive content (i.e.,

its physical, available or configured incoming bandwidth). However, the tracker log

does not provide any explicit information about incoming access link bandwidth of

individual peers. Therefore, we use the maximum value of per-interval download

rate for each peer as an estimate for its access link bandwidth. Since the measured

download rates are averaged over 30 minute intervals, they provide a “loose” lower
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bound for maximum download rate. Using this estimate of incoming access link

bandwidth, we define the following two performance metrics for each peer:

– Access Link Utilization: The ratio of average download rate to its maximum

value during a session estimates the utilization (or relative performance) of a

peer.

– Variability of Download Rate: The ratio of standard deviation of per-interval

download rate to its average value during a session represents the normalized

variations or the variability of observed performance by each peer.

The first metric accurately captures performance of each peer but it is sensitive to

the estimated access link bandwidth for individual peers. The second metric does not

depend on access link bandwidth but it is a rather indirect measure of performance.

5.2.4. Data Set

We have examined the tracker logs for more than 4185 torrents and selected

three torrents from different user communities, namely RedHat (RH) and Debian

(DE) Linux distributions, and a 3D Game software(GA). Table 5.1. summarizes the

characteristics of these three torrents. This table shows that the tracker logs have

been collected at different points of time that are at least a few weeks long, and

have different population and different number of sessions. The diversity across these

tracker logs enables us to determine whether our findings are rather common or

specific to a particular torrent. We have conducted several sanity checks on tracker

logs to identify any potential error in our dataset. For example we examined whether

reported amount of download/upload data by all peers always monotonically grows.

We discovered that a small fraction of (potentially buggy) clients do not pass this
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TABLE 5.1. Characteristics of three selected torrents

Community #Start Time End Time #Sessions Max. Pop.
Red Hat 3/2003 8/2003 170814 3684
Debian 2/2005 3/2005 139736 91

3D Games 10/2004 12/2004 195660 1530

condition. We also noticed that there are some gaps in some tracker logs (i.e., no

event is recorded for a couple of hours). This could occur when tracker becomes

unreachable for any reason. We have removed information about any misbehaving

session from our logs and only focus on the portion of logs that does not contain

any gap to avoid any significant error in our analysis. We also remove all the short-

lived sessions (with uptime less than 30 minutes) since their performance could be

significantly affected by their short stay in the system.

5.3. Distribution of Observed Properties

In this section, we examine the stability of peer-level and group-level properties

in our three candidate torrents. Toward this end, we try to answer the first question

that we raised earlier as follows: What is the distribution of the observed peer-level and

group-level properties among participating peers in a torrent? Note that participating

peers in a torrent may appear at different points of time during our long measurement

period. We explore this issue for peer-level and group-level properties in the following

subsections.

5.3.1. Peer-Level Properties

Figures 5.2.a and 5.2.b present the distribution (CDF) of two peer-level

performance metrics, the average utilization of incoming access link and the
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normalized standard deviation of download rate, among participating peers in all

three torrents where each torrent is labeled with its corresponding community. These

distributions reveal several interesting points as follows: First, despite the differences

among these torrents, the distribution of each performance metric has an interestingly

similar shape for all three torrents. Second, around 10% of participating peers in

Figure 5.2.b exhibit significant variations in their download rates, i.e., experience

poor performance. If we exclude these low-performing outliers from Figure 5.2.b,

both figures depict a pretty smooth distribution without any dominant mode. This

implies that the probability of experiencing a certain level of performance (between

0 and 1) is rather similar. In a nutshell, our results from all three torrents illustrate

that participating peers in a torrent experience a rather diverse performance with a

roughly uniform distribution.

To explore the behavior of other peer-level properties, Figure 5.2.c shows the

distribution of normalized standard deviation of upload rate for all three torrents.

These distributions are very similar to those for normalized download rate (in Figure

5.2.b) which suggest that the contribution of participating peers into their torrent is

rather diverse. Furthermore, the contribution of participating peers in the RedHat

torrent is higher than the Debian torrent, and in the Debian torrent is higher than the

Gaming torrent. To explain this we note that participating users in the RedHat and

Debian torrents are usually tech-savvy clients that have nodes with higher bandwidth

connectivity and processing capabilities. The similarity between the distribution of

normalized download and upload rates suggest that they might be correlated. We

will further examine this issue in the next section.
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FIGURE 5.2. Distribution of performance metrics across all peers for three torrents

5.3.2. Peer-View of Group-Level Properties

We now turn our attention to the observed group-level properties and examine

their variability among participating peers in a torrent. Figure 5.3.a, 5.3.b, and

5.3.c present the distribution of peer-view of three key group-level properties among

participating peers in our three candidate torrents. The distribution of average group

population (in 5.3.a) is clearly different across three torrents. The RedHat torrent

contains the initial flash crowd where the population of peers varies between 200

to 3500 peers, and around 55% of peers complete their download during this initial

phase. The Debian and Gaming tracker logs do not contain the flash crowd phase.
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FIGURE 5.3. Distribution of peer-view of group-level properties for three torrents

The observed group population by peers in the Debian torrent changes between 50 to

1500 whereas the population of the Gaming torrent remains rather stable around 50

peers. In short, the observed average group population among participating peers

in these three torrents exhibit significantly different characteristics. Despite this

difference in group population, the distribution of observed content availability and

churn among participating peers in each torrent is rather similar (i.e., distribution

is not too skewed). More specifically, peers in each torrent have experienced around

50-70% average content availability among their coexisting peers in the system (not

necessarily among their neighbors), and the average observed churn rate by peers is

different across these torrents but is rather similar among peers in each torrent. In
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summary, our results show that the participating peers in a torrent do not experience

a similar performance. Except for group population, other peer- and group-level

properties exhibit similar overall trends across different torrents.

5.4. Identifying Underlying Factors

In this section, we tackle the second question that we raised earlier as follows:

What are the peer- or group-level properties that primarily determine the observed

performance by individual peers in a torrent?. To answer this question, we derive

the observed performance by each peer (based on both performance metrics) along

with its peer- and group-level properties. Given this information for all peers in

a torrent, we leverage several classic techniques to identify (either qualitatively or

quantitatively) any correlation between each performance metric and the following

key properties that we discussed in the previous section: upload rate, group size,

content availability and churn. Simple techniques such as scatter-plots did not reveal

any clearly visible correlation between the observed performance and peer- or group-

level properties. Therefore, we focus on more elaborate techniques in this section.

5.4.1. Linear Regression

We perform linear regression (using Splus) as a classic statistical technique

to establish a linear relationship between observed performance by each peer and

its main peer- and group-level properties(i.e., median upload rate, average group

population, average content availability and average churn rate). The derived model

also quantifies the impact of each property on the overall performance. To minimize

the effect of outliers, we remove any session whose properties are within the top or

bottom 10% of observed range of values.

112



TABLE 5.2. Linear regression results for RedHat torrent. (Coefficient, P-Value)

Model R-square outbw.50p avg.grp.pop avg.grp.cont.avail avg.grp.churn
util 0.0651 0.0091, 0 -0.1206, 0 0.3493, 0 0.0015, 0

util-log 0.0603 0.0965, 0 -0.0311, 0 0.4367, 0 0, 0
util-step 0.0603 0.0965, 0 -0.0309, 0 0.4358, 0 removed
sdev 0.0709 -0.0142, 0 0.2245, 0 -0.3344, 0 -0.0029, 0

sdev-log 0.0741 -0.1585, 0 0.0778, 0 -0.6486, 0 -0.0005, 0.0095
sdev-step 0.0741 -0.1585, 0 0.0778, 0 -0.6486, 0 -0.0005, 0.0095

Each row of Table 5.2. presents the coefficients for different properties that

represent the derived linear model by this technique for RedHat torrent. The results

for other torrents are similar. For each torrent, we examined each performance

metric in the following three scenarios in a progressive fashion: (i) The base model

that relates a performance metric with all properties, (ii) the model that relates a

performance metric to the log value of some properties (population and upload rate),

and (iii) same as step (ii) but we use the “step” function in Splus to simplify the

model by removing least important factors when possible. The goal in examining log

value of properties is to reduce the range of values for properties which in turn could

reveal any non-linear relationship that might exist as well. Each row also includes

“R-Squared” value which estimates the percentage of sessions that can be properly

predicted by the derived model.

As Table 5.2. indicates, all R-square values are smaller than 0.1 (i.e., models

can predict performance in less than 10% of sessions). In essence, this table

provides a clear evidence that there is no simple linear (or non-linear) model that

properly captures the relationship between the observed performance and other

examined properties for individual peers. Therefore, instead of deriving a model

that incorporates all the properties, we explore the pairwise correlation between
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the observed performance and each property which is easier to observe in the next

subsection.

5.4.2. Spearman’s Rank Correlation

We use Spearman’s rank correlation test as powerful technique to quantify the

degree of correlation between each performance metric and peer- and group-level

properties. Spearman’s rank correlation coefficient is a non-parametric measure of

correlation that assesses how well an arbitrary monotonic function could describe

the relationship between two variables, without making any assumptions about

the frequency distribution of the variables. Table 5.3. presents the Spearman’s

rank correlation coefficient between our two performance metrics and the following

properties for all three candidate torrents in Table 5.1.: normalized standard

deviation of upload rate (dev.upload), average group population (pop), average

content availability (cont), and average churn rate (churn).

This table illustrates several interesting points: First, despite difference between

three torrents, both performance metrics appears to have the highest correlation with

the upload rate. This suggests that the variability of upload rate has the highest effect

on the observed performance which in turn implies that tit-for-tat mechanism has

the most noticeable impact on performance. Furthermore, in all three torrents, the

correlation coefficient between our two performance metrics and outgoing bandwidth

have a close absolute value with opposite signs. Second, aside from the upload rate,

the effect of other parameters on observed performance by individual peers seems

to vary across different torrents and in some cases between different performance

metrics. In the RedHat torrent, both performance metrics have a relatively stronger

correlation with group population and churn. This could be due to the fact that the
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TABLE 5.3. Spearman’s rank correlation coefficient (3 torrents)

Torrent Perf. dev.upload Pop Cont Churn
RH inbw.util -0.46 -0.13 0.05 -0.12
RH inbw.nsdev 0.49 0.20 -0.03 0.19
DE inbw.util -0.42 -0.02 0.10 -0.02
DE inbw.nsdev 0.47 0.03 -0.10 0.00
GA inbw.util -0.36 -0.05 0.04 -0.05
GA inbw.nsdev 0.47 0.14 -0.11 0.14

log for this torrent contains the initial flash crowd phase where more than half of the

captured sessions lie. Average content availability has a relatively larger coefficient

for both metrics in the Debian torrent. This is most likely due to the small population

in this torrent. Finally, in the Gaming torrent, the first performance metric (access

link utilization) has a small and comparable coefficient for all three properties while

the second performance metric (normalized standard deviation of download rate) has

larger coefficients for all three properties. Clearly, the potential error in estimating the

incoming access link bandwidth could affect the derived coefficients in our analysis.

However, since the coefficients for upload rates and both metrics are similar, we believe

that the impact of error on the largest coefficients is rather small. In summary, our

results suggest that upload rate by individual peers (i.e., its contributed upload rate

to the system) has the primary effect on their observed performance. This finding is

based on both performance metrics and across all three torrents.

5.5. Summary

In this chapter, we examined a repeated claim that BitTorrent can provide high

performance (i.e., download rate) to participating peers in a torrent. We derived

peer-level performance along with observed peer- and group-level properties among

all peers in three different torrents. We showed that the distribution of performance
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among participating peers in the a torrent is roughly uniform. We also investigated the

impact of various properties on the observed performance by individual peers. First,

we try to build a linear model for the observed performance using linear regression

based on various peer- and group-level properties. The group-level properties are

essentially specifications of the particular torrent during the life time of a particular

peer. We include torrent population, average content availability, and average churn.

The resulting R-square value in all cases is below 0.1 which means that the linear

regression cannot model the observed performance with reasonable accuracy. Next we

use Spearman’s rank correlation in order to find any rank correlation among group-

and peer-level properties with the observed performance. The only parameter showing

significant correlation with the performance metrics was the average upload rate of

the peer.

Main findings are the following: (i) There is no clear relationship between peer-

level performance and main peer- and group-level properties, i.e., the relationship

could significantly vary among peers, and (ii) average upload rate (i.e., contribution)

of individual peers has the highest correlation with its observed performance. This

suggests that the tit-for-tat mechanism in BitTorrent is the primary factor that affects

peer-level performance. These findings reveal that a common approach of using a few

instrumented clients does not provide a representative view of BitTorrent behavior.

Instead, a more global view must be considered in order to derive a reliable and

general conclusion.

During the past chapters, we presented three measurement studies on P2P

systems. First, we studied the Gnutella P2P application and studied its evolution

over time. Next we introduced a sampling technique, namely, RDS, and showed how

it can be used to efficiently capture peer properties of a large scale P2P system. In this
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chapter we focused on the performance measurement in a P2P application, namely,

BitTorrent and tried to establish relationships between the observed performance and

the properties of the peer itself, as well as properties of the group during the peer’s

lifetime.

After visiting the P2P overlay and the involved problems, we will turn our

attention to the Internet underlay. In the next chapter, we focus on the Internet

infrastructure and its building blocks, namely, Autonomous Systems (ASs). We use

our P2P measurement techniques and data to capture the geographical properties of

the ASs and their connectivity.
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CHAPTER VI

AS-LEVEL UNDERLAY: GEOGRAPHICAL MAPPING

Most of the content from this chapter has been adopted from my previously

published paper [104] co-authored with Dr. Nazanin Magharei, Prof. Reza Rejaie,

and Dr. Walter Willinger. The experimental work is mine with some assistance from

Dr. Magharei and the text has been contributed by myself and the co-authors. I

am grateful to Prof. Matthew Roughan for his invaluable ideas contributing to this

project. Kad and BitTorrent datasets are kindly provided by Ghulam Memon and

Dr. Ruben Cuevas. I acknowledge Kaveh Kazemi for extracting PoP information

for a large number of ASs from the web. I also thank Maxmind and Hexasoft for

providing their IP geo-location databases.

As a network of networks, the Internet consists of some 30,000 inter-connected

Autonomous Systems (ASs). This AS-level topology has been the focus of much

research in the past decade, with studies that range from measurements and

inference [85] to modeling and analysis [83] and the development of synthetic topology

generators [84]. In fact, much of the research in this area has been fueled by large-

scale data collection projects (e.g., [64, 93, 120]) that have resulted in a high volume

of readily available BGP-based or traceroute-based measurements. These datasets

have been used to infer the Internet’s AS-level topology as a graph where nodes are

ASs and edges indicate business relationships (e.g., customer-provider, peer-to-peer)

between ASs.

More recently, this graph view of the AS-level Internet has been questioned.

First, there has been an increasing awareness that the available BGP- or traceroute-

based measurements are of limited quality to obtain an accurate and complete picture
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of the AS-level connectivity structure of today’s Internet (e.g., see [10, 95] and

references therein). Second, the models that this graph view has motivated are

largely descriptive in nature and essentially agnostic to the main forces responsible

for shaping the structure and causing the evolution of this inherently virtual rather

than physical topology of the Internet.

Partly in response to this criticism, alternative approaches to study the AS-level

Internet have been advocated that align more closely with the real-world business

relationships and practices encountered in the logical fabric of the Internet (see for

example [26] and [39] and references therein). These recent efforts often start with

the realization that ASs are not generic nodes but are entire networks that operate for

a purpose and have a rich internal structure. Depending on an AS’s size, its network

interconnects a number of geographically dispersed points-of-presence (PoPs), where

it connects to its customers or interconnects with other networks, either directly

or via Internet eXchange Points (IXPs). The importance of AS geography (i.e.,

geographic coverage or reach, number and location of PoPs, presence at IXPS) is

further highlighted by the fact that the peering contracts of many ASs list explicit

and geography-specific requirements for potential peering partners. For example, AS

X will only peer with AS Y if Y ’s geographic reach is sufficiently large, or X and Y

have a certain number of overlapping PoP locations, or X and Y are both present

at a certain number of IXPs. Unfortunately, little is known in general about the

geography of most ASs, with the possible exception of their presence at IXPs that

was specifically examined [10].

In this chapter, we outline a promising approach to tackle the problem

of AS geography; that is, inferring an AS’s geographic coverage (geo-footprint)

and identifying its likely PoP locations. Our approach is complementary to the
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traditional BGP- or traceroute-based method of inferring AS-level connectivity, in

both perspective and type of data used. First the traditional approach is known to

perform in general increasingly worse the closer to the “edge” of the network (i.e.,

end users) the measurements are made [27]. However, our approach starts at the

“edge” (i.e., “eyeballs”) and experiences increasingly more difficulties as we move

away from the edge towards the core of the Internet. In terms of data, instead of

using BGP or traceroute data, our approach relies on the geographical location of end

users or “eyeballs” (i.e.,, IP addresses) that are associated with an AS. In particular,

the starting point of our work is a dataset consisting of the IP addresses of about 48

million users of three popular P2P applications that map to a total of 1233 “eyeball”

ASs. Our main contributions in this chapter are the following:

– Considering end-users as pinpoints, we propose a general methodology for

mapping the geographical footprints of eyeball ASs. We map each end-user’s

location using their IP addresses and then build a user density function for each

AS using KDE mathematical tool (Sections 6.1., 6.2.).

– We propose a method to identify the likely PoP locations of an eyeball AS by

associating the local maxima of the user density function with close-by cities

within the geographical footprint of the AS (Section 6.3.) and validate our

approach using published PoP locations of numerous eyeball ASs.

– We perform a case study using our inferred PoP locations and the state of

the art AS connectivity information in order to explore peering relationships

between eyeball ASs. The observation shows that the peering relationship at

the “edge” of the network are very complex and simple eyeball ASs actively
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peer at local and remote Internet Exchange Points while maintaining a rich

upstream connectivity.

The question of how to leverage the geo-properties of an eyeball AS to predict

likely scenarios of how the AS connects to the rest of the Internet is left for future work.

In view of our preliminary findings, a major challenge will be to explain the observed

rich connectivity structure of eyeball ASs and characterize it in a quantitative manner.

6.1. Our Approach: An Overview

The basic idea of our approach is to use the location of end-users (i.e., customers)

of an AS to infer the AS’s geographical reach (geo-footprint) as well as its PoP

locations. To achieve this goal, our method consists of the following four steps:

– Sampling end-users: We collect a large number of IP addresses associated with

Internet users.

– Mapping end-users to locations: We map individual IP addresses (or users) to

their geo-location.

– Grouping end-users by AS: We use BGP information to group users to their

corresponding ASs.

– Estimating AS geo-footprints: We leverage the collection of geo-locations of

end-users associated with an eyeball AS to determine the geo- and PoP-level

footprint of that AS.

There are three main reasons for our focus on eyeball ASs. First, the geo-features

and connectivity of eyeball ASs indicate how end-users connect to the rest of the

Internet. These eyeball ASs are not adequately visible to traceroute- or BGP-based
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approaches. Second, the accuracy of IP-geo mapping tools is significantly higher

for IP addresses associated with end-users compared to infrastructure nodes [123].

Lastly, it is feasible to obtain a collection of IP addresses associated with end-users

from eyeball ASs. Next, we provide further details for the first three steps of our

approach. The last step, estimating geo- and PoP-level footprints, is described in

Sections 6.2. and 6.3..

Sampling End-users: We crawl three large-scale P2P applications (i.e., Kad,

BitTorrent and Gnutella) during the months of January to June of 2009 to obtain

more than 89.1 million unique IP addresses associated with end-users (peers) of these

applications.

Mapping Users to Locations: To estimate the geo-location of each IP address, we

examined several IP geo-location tools and databases and selected GeoIP City from

Maxmind [86] and IP2Location DB-15 from Hexasoft [63] because of their reputation

and coverage. Each of these databases map any IP address to a geo-location record

with the following format (city, state, country, longitude, latitude). The resolution of

the provided coordinates is zip codes in each city, i.e., all users in a given zip code

are mapped to the same coordinates. We eliminated roughly 2.4M peers for which

at least one of the databases did not provide city-level location. Since the two IP-

geo mapping databases are from independent sources, we use the difference between

their reported locations for each peer as a measure of error in IP-geo mapping 1. We

use GeoIP City as the main reference for IP-geo mapping in our analysis and use

IP2Location as a second reference to estimate the error in IP-geo mapping. Using

this notion of error, we remove all IP addresses whose error is larger than the diameter

1While this measure of error may not be accurate, it provides a first-order approximation of geo
error and could be useful to conservatively remove problematic peers with potentially large error in
their geo-location.
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TABLE 6.1. Target eyeball ASs profile.

#Peers by source(k) #ASs by level
Region Kad Gnu BT City State Country
NA 1218 8984 1761 36 162 129
EU 18004 2519 2529 60 76 292
AS 17865 1606 1016 117 35 134

of typical metropolitan area, around 100km. We further elaborate on the selection of

this threshold in Section 6.2..

Grouping Users by AS: We also group the users based on their AS affiliation using

archived BGP tables from the routeviews[93] database collected during the same time

period that our P2P data was gathered. To ensure a minimum density of samples in

each AS, we eliminate all ASs with less than 1000 peers.

Target Dataset: Conditioning our dataset based on error in geo-location and density

of sampled peers per AS significantly decreases any noise that could affect our analysis.

However, it also reduces the total number of peers to 48 million and the corresponding

number of eligible eyeball ASs to 1233. We call this set of ASs our target dataset.

Given the location of all peers associated with an AS, we can broadly classify all ASs

in this target dataset into city-, state-, country-, continent-level, or global ASs by

identifying the smallest geographical region that contains a large majority (>95%) of

the associated peers. Table 6.1. summarizes the number and level of our target ASs

in North America(NA), Europe (EU) and Asia (AS).

6.2. Estimating Geo-Footprint

Given the locations of peers associated with an eyeball AS, our first goal is to

infer the geographical region(s) where the AS offers service to end-users (i.e., its geo-

footprint) and estimate the density of users throughout the identified regions. We use
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a Kernel Density Estimation (KDE) [18] method with a Gaussian kernel function to

estimate the probability density of customer population for an eyeball AS based on

the locations of peers associated with that AS. More precisely, we place a (bivariate)

kernel function with a predefined bandwidth at the geo-location of individual users of

the AS. The aggregation of these kernel functions forms a function that estimates the

overall user density over the map for each AS as shown in Figure 6.1.. The largest

contour of the aggregate density represents the geo-footprint of the AS at certain

levels of resolution and may consist of one or multiple partitions. The geo-footprint

of an AS clearly highlights the area within a state, country, or continent where

an AS offers service, and its pronounced peaks indicate the main places with high

user concentration throughout the covered region. This geo-footprint provides useful

information about the services offered (e.g., residential vs. retail) and connectivity

provided (many vs. a few peaks) by individual eyeball ASs.

The KDE method presents a weighted average across close-by peers that serves

two purposes. First, averaging smooths out the effect of error in IP-geo mapping

across close-by users and provides a more reliable estimation of user density. Second,

averaging offers a more aggregate (lower resolution) view (city- or state-level) of the

users that is typically more useful than a detailed user-level view for assessing the

geo-footprint of an AS.

6.2.1. Setting the Kernel Bandwidth

The level of smoothing (i.e., scope of averaging) performed by the KDEmethod is

directly controlled by the bandwidth of the kernel function. Increasing the bandwidth

leads to aggregation over a larger geographical region that has two important effects.

First, it results in a coarser resolution and thus less accurate estimation of the geo-
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(a) City-level Geo Footprint (b) State-level Geo Footprint

(c) Country-level Geo Footprint

FIGURE 6.1. 3D visualization of user density from KDE method for AS 3269 (in
Italy) using 2.2M samples with kernel bandwidth of 20km, 40km, and 60km.
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footprint for an AS. In fact, the bandwidth of the kernel function can be viewed as a

tuning parameter that offers a multi-resolution view of an eyeball AS’s geo-footprint.

Figure 6.1. clearly demonstrates how increasing bandwidth can change the resolution

of the geo-footprint from city- to region- and finally country-level. Second, averaging

smooths out the variations in user density which makes the distinction of (smaller)

peaks more difficult. It is therefore desirable to set the bandwidth so that the following

two conditions are satisfied: (i) the resulting geo-footprint should have the desired

resolution, and (ii) the expected geo-location error across the provided users should

be filtered out. In summary, the larger value of the minimum bandwidth required by

each one of these conditions determines the proper bandwidth value for the kernel

function. For example, samples with a large geographical mapping error (geo error)

cannot provide reliable city-level resolution of an AS’s geo-footprint.

In our analysis, we focus on the city-level resolution because it provides the most

useful view for detecting the main concentration point of users in order to infer likely

PoP locations for each eyeball AS. To achieve this goal, the bandwidth should be larger

than the average radius of a city which is around 30-35km. We set the bandwidth of

the kernel function to 40km to achieve aggregation over a slightly larger region and

avoid multiple peaks over a single city (e.g., a separate peak for each zip code).

To determine a lower bound for the bandwidth based on geo error, we could set

the bandwidth for each AS to the 90th percentile of geo error across all peers in that

AS. This would result in an AS-dependent bandwidth selection. Instead, we remove

all the ASs whose 90th percentile of geo error is larger than 80km. This is the main

justification for removing all peers with geo error larger than 80km from our initial

dataset. This strategy allows us to set the bandwidth to 40km for all ASs to obtain
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a city-level resolution. This choice simplifies the comparison of geo-footprints across

different eyeball ASs

6.3. Estimating PoP-Level Footprint

A geo-footprint of an eyeball AS can be summarized or represented by the list

of major cities where significant portions of its customers are located. Intuitively,

each AS must have a proportional level of presence (e.g., PoP) in areas where there

is a high concentration of customers. Therefore, this representation of an AS geo-

footprint offers a reasonably reliable view of its PoP-level infrastructure that we call

PoP-level footprint. Since eyeball ASs usually connect to their provider, peering and

customer ASs at their PoPs, the PoP-level footprint also reveals valuable information

about the location(s) of connections between related ASs.

6.3.1. Estimating PoP Coordinates

To extract the PoP-level footprint of an eyeball AS from its geo-footprint, we

proceed as follows. First, we identify the geo-coordinates of all the local maxima D(i)

(i.e., peaks) in the estimated density function and determine the density value of the

highest peak (Dmax). Next we select all the peaks D(i) with a relatively large density

compared to the highest peak, i.e., (D(i) > α*Dmax), where α is a threshold that

determines the range of density values that are considered for PoP identification. We

set α to 0.01 to conservatively select peaks with a density of at least two orders of

magnitude below Dmax.
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6.3.2. Mapping PoPs to Cities

The coordinates of identified major peaks may not directly map to a city due to

the combined effects of selected bandwidth, threshold for peak selection (i.e., α), and

the distribution of user population around each city. To address this issue, we map

identified peaks to a particular city in a “loose” fashion as follows: we assume that

PoPs are more likely to be located in the most populated city of a given region. For

each identified peak, we examine a circular region with a radius equal to the selected

kernel bandwidth around the location of the peak and map the peak to the city with

the largest population in that circular region. Otherwise, we report “no city” for a

peak. Using small values for α may result in an error whereby minor peaks of user

density get selected at locations where a small number of users are randomly clustered

due to their geo error.Using a proper α threshold, we can filter out such peaks if the

selected location is not in the required vicinity of any city with sufficiently large

population. The resulting PoP-level footprint obtained by this process consists of a

list of cities sorted by their associated user density where PoPs of an eyeball AS are

likely to be located. The user density of each PoP quantifies the level of presence of an

AS in that city. For example, PoP-level footprint of an AS number 3269 that serves

Italy is as follows: [Milan (.112), Rome (.083), Naples (.076), Florence (.052), Venice

(.048), Turin (.045), Catania (.031), Palermo (.028), Bari (.024), Ancona (.023)].

6.3.3. Bias in Sampling Different Locations

We crawl peers in major P2P applications to sample customers of eyeball ASs

from different geo-locations. Uneven penetration of P2P applications among Internet

users in different ASs and locations could introduce bias to our samples. However,

it is generally difficult to clearly distinguish the small market share of an AS from
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low penetration of a P2P application in a particular city. This potential bias can be

qualitatively considered at two different levels.

1) Mild Bias: This scenario occurs when the fraction of sampled peers for an AS A in

city C has a noticeable density (DA(C) > α ∗Max(DA)) but is disproportional with

respect to the total number of AS customers in C. In this case, the derived PoP-level

footprint of the AS includes city C as a PoP but the density value associated with C

is inaccurate.

2) Significant Bias: A significant bias in collected samples could result from having

a negligible (or zero) fraction of samples from a particular PoP location for a given

eyeball AS. In this case, our approach does not discover that PoP location. However,

for an AS with a sufficiently large number of samples, the probability of not capturing

a major PoP (with a large number of customers) should be rather small. We do not

examine sampling bias in this study and leave this for future work.

Another issue is whether the strategy for IP-geo mapping leverages the location

of PoPs for each AS to estimate the location of end-users in that AS? In this case,

our approach simply identifies the PoP locations that were used for IP-geo mapping.

Our private communication with maxmind.com confirmed that the IP-geo mapping

strategy relies on the information provided by users through online surveys, and

information from Internet registries and ISPs. Since the actual location of PoPs for

each ISP is unknown and thus not considered for determining the geo location of

users in an ISP, the identified PoP locations by our approach are not affected by the

mapping strategy used for each dataset.
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6.4. Evaluation

This section summarizes the preliminary evaluation of our proposed technique.

Towards this end, we collect the reported PoP information of some eyeball ASs on the

Web as the ground truth for validation. Unfortunately, collecting this information is

a rather tedious task since many ISPs do not post this information online or do not

use a consistent terminology or approach for listing these PoPs. For example, some

ISPs may consider their access points as a PoP or list their PoPs of their peering ISPs

as their own.

We focused on 672 state- or country-level ASs in our target dataset and searched

the Web for their PoP information. We were able to identify PoP information for a

total of 45 eyeball ASs (10 state-, 33 country-, and 2 continent-level) across North

America and Europe 2. We consider this information as ground truth and call this

our reference dataset. Overall, our approach on average identified 31.9, 13.6 and 7.3

PoPs per AS with kernel bandwidth of 80km, 40km and 10km, respectively. The

average number of reported PoPs per AS in our reference dataset is 43.7. We match

a discovered PoP location by our technique for each AS with a reported PoP locations

in the reference dataset if their relative distance is less than the radius of a city (i.e.,

40 km), i.e., matching PoPs at the city level. Figure 6.2.a depicts the distribution of

the percentage of PoPs in the reference dataset that are matched with the identified

PoPs by our techniques using different bandwidth values. When kernel bandwidth

is 40km, for the bottom 60% of ASs, the fraction of matched PoP locations in the

reference dataset is less than 20%. However, this ratio is larger than 50% for the top

10% of ASs. Furthermore, this figure suggests that using lower bandwidth generally

results in mapping a larger number of PoPs in the reference dataset.

2This information will be posted online at http://mirage.cs.uoregon.edu/AS2PoP
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FIGURE 6.2. Validation of our technique with the reported PoP information online

Figure 6.2.b illustrates the opposite view by showing the distribution of the

percentage of discovered PoP locations by our technique for each AS that match a

reported PoP in the reference dataset. This figure reveals that with the bandwidth

of 80km, 60% of ASs exhibit perfect match. Interestingly, decreasing the value of

kernel bandwidth to 40km and 10km rapidly drops the percentage of perfect match

to 41% and 5%, respectively. Collectively, these results indicate that using larger

kernel bandwidth leads to a smaller but more reliable set of PoP locations for most

ASs.

Our preliminary examination revealed that the following factors appear to cause

the mismatched PoPs: First, some eyeball ASs seem to use certain PoPs in locations

away from their regular customers to connect to provider (or peering) ASs. Since

these ASs do not serve end-users, our approach is not able to identify them. Second,

some eyeball ASs have a few PoPs within a relatively short distance. Using the KDE

approach especially with moderate to large bandwidth does not distinguish these

PoPs. As part of our future work, we plan to use different kernel bandwidth and

determine these PoPs based on the relative distance and user density of associated
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peaks with different bandwidths. Third, we might have mis-interpreted a non-IP PoP

as valid PoP from the obtained information online or a PoP location might be missing

due to the obsolete online information. We plan to explore these issues in our future

work

We have also compared our discovered PoP locations with the PoP coordinates

reported in a recent traceroute-based study by the DIMES project [121]. The overlap

between the two datasets consists of 226 eyeball ASs across EU and NA. While for

those common eyeball ASs, our approach identified 7.14 PoPs per AS on average (with

bandwidth=40km), DIMES reports only 1.54 PoPs per AS. We match a discovered

PoP location by our technique for an AS with a reported PoP coordinates in the

DIMES dataset within 40km distance. Our results show that for 80% of eyeball ASs

our identified PoPs are a clear superset of reported PoPs by the DIMES project.

6.5. AS Connectivity at the “Edge”: A Case Study

Having derived the geo-footprint and PoP locations of eyeball ASs, we next

examine what this information may enable us to say about how these eyeball ASs

connect to the rest of the Internet. Our comparisons are made against the current

state-of-the-art “best effort” ground truth for AS-level Internet connectivity and is

provided by two different datasets. For customer-provider relationships, we rely

on either the CAIDA AS data from the Ark project [64] or the UCLA data from

the Cyclops project for peer-to-peer relationships at IXPs, we consult the dataset

produced by the IXP mapping work described in [10].

To illustrate the challenges of making any claims about real-world AS-level

connectivity at the “edge” of the network, we present a case study involving a

metropolitan-area eyeball AS in Europe. Specifically, we consider AS8234 (RAI -
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Radiotelevisione Italiana). Based on our data, this AS has 3,000 P2P users whose

geo-locations are all mapped to the city of Rome. As a city-level eyeball AS, we

expect it to have one or two regional or country-wide upstream providers. Examining

the geo-footprints of some of our Italy-wide eyeball ASs, a natural choice of such a

provider is AS1267 (Infostrada) for which we observe 1470K P2P users and obtain

PoP locations across Italy, including Rome. The large number of P2P users for this

ISP suggests that its major business is selling Internet connectivity to residential

customers across Italy, and a look at the company’s website confirms this. Expecting

at least one alternative connection of RAI to the rest of the Internet, plausible options

include another upstream provider (possibly with more global reach than Infostrada)

or peering at the Rome IXP NaMEX with a selected number of tier-2 ISPs.

However, when comparing against the best effort ground truth which we

validated by performing a set of selective traceroute experiments, we encounter a

substantially more complex AS-level connectivity picture for RAI. For one, this Rome-

based eyeball AS has a total of five upstream providers: Infostrada (as expected)

and Fastweb, two Italy-wide ISPs; Easynet and Colt, two service providers with

global reach; and BT-Italia, Italy’s legacy ISP. Moreover, while RAI is not present

at the Rome IXP, it is a member of the Milan IXP MIX and peers there with three

other ASs (i.e., GARR - the Italian academic and research network, ASDASD - an

Italian network provider, and ITGate - an Italian Internet service company). The

two unexpected findings are the richness of upstream connectivity of this eyeball AS

and its decision to peer remotely at MIX rather than locally at NaMEX.

Thus, when trying to determine the actual upstream connectivity of eyeball

ASs such as RAI, one quickly run into a bewildering web of real-world peering

relationships [92, 46, 81, 80]. In some cases, a partial explanation of this richness in
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AS connectivity may be the separate treatment of residential and business customer

traffic; e.g., residential traffic is carried by one upstream provider, while commercial

traffic is sent on to a different provider. In the case of RAI, having the legacy ISP

BT-Italia as an additional provider may be more a historical artifact than a strategic

business decision. Dual connectivity to upstream providers with global reach may

again be a strategic decision based on the eyeball’s business model. With respect to

RAI’s remote peering at MIX, it is worth pointing out that while one of its peering

partners there (i.e., GARR) is also present at the Rome IXP, the two other networks

(i.e., ASDASD and ITGate) are not members of NaMEX. This suggests that the

ability for RAI to peer with the latter two networks is important enough to forgo a

cheaper local solution over a more expensive remote peering arrangement.

This example of a simple eyeball AS illustrates the challenges associated with

trying to leverage the geo-properties of eyeball ASs to predict and ultimately explain

their connectivity to the rest of the Internet.

6.6. Summary

In this chapter, we targeted the problem of AS geography, i.e., inferring the

geographic coverage of an AS and identifying its likely PoP locations. The main

contributions of this study can be summarized as follows: (i) using our captured

snapshots from popular P2P applications including millions of user IP addresses,

we propose a general methodology for mapping geographical footprints of eyeball

ASs; (ii) using the locations of all P2P users associated with an AS, we form the user

density function for each eyeball AS, through the use of KDE mathematical tool; (iii)

we present our hypothesis that the local peaks of the resulting user density function

for each AS, are correlated with the PoP locations of that AS; (iv) we successfully
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validate our hypothesis using published PoP locations for a set of eyeball ASs; (v)

using the resulting PoP locations from our method and the state of the art AS-

level connectivity information, through careful case studies we demonstrate that the

peering relationships at the edge of the network are highly diverse and complex.

The work described in this chapter has demonstrated the potential of obtaining

the geographic footprints of eyeball ASs, which in turn can be used to infer

infrastructure-related properties (e.g., PoP locations, AS connectivity) or business-

specific features (e.g., serving residential vs. business customers) of these ASs. Doing

so by relying solely on measurements at the “edge” of the Internet (i.e., eyeball

IP addresses) provides a complementary approach to the more traditional methods

for studying the AS-level Internet that exploit exclusively BGP- or traceroute-based

measurements. It also suggests a possible fusion of the two approaches whereby the

former is augmented with tracerouting capabilities from the “edge” and the latter is

empowered with performing targeted tracerouting towards the edge of the Internet

(i.e., eyeballs). Such a combined approach holds the promise to unearth much of

what has remained invisible in the AS-level Internet and reveal a maze of real-world

peering relationships whose solution will require substantial future research efforts.

In this chapter we presented a new method for capturing the geographical

characteristics of ASs and tried to understand the inter-AS peering relationships.

The ASs together with the peering relationships that connect them together build

the infrastructure of the Internet that carries the traffic associated with different

Internet applications. A global picture of the traffic exchanged over each peering

relationship essentially depicts a map of Internet traffic exchange. Characteristics of

such traffic depends on: (i) How the Internet applications demand, or impose traffic

on the underlying network, and (ii) How the underlying network routes the traffic. In
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the next chapter, we study the impact of a P2P application overlay, namely Gnutella,

on the underlying network, the AS-level underlay.
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CHAPTER VII

IMPACT OF P2P OVERLAY ON AS-LEVEL UNDERLAY

Most of the content from this chapter has been adopted from my previously

published paper [106] co-authored with Prof. Reza Rejaie and Dr. Walter Willinger.

The experimental work is mine and the text has been contributed by myself and the

co-authors.

The large volume of traffic associated with Peer-to-Peer (P2P) applications has

led to a growing concern among ISPs which need to carry the P2P traffic relayed by

their costumers. This concern has led researchers and practitioners to focus on the

idea of reducing the volume of external P2P traffic for edge ISPs by localizing the

connectivity of the P2P overlay (for recent work, see for example[2, 31]). However,

such an approach only deals with the local effect of an overlay on individual edge

ASs. Even though the volume of P2P traffic on the Internet is large and growing,

assessing the global impact of a P2P overlay on the individual ASs in the network,

which we call the AS-level underlay, remains a challenging problem and is not well

understood. This is in part due to the fact that investigating this problem requires

a solid understanding of an array of issues in two different domains: (i) design and

characterization of overlay-based applications, and (ii) characterization of AS-level

underlay topology and BGP routing in this underlay. Another significant challenge

is dealing with inaccurate, missing, or ambiguous information about the AS-level

underlay topology, AS relationships and tier properties, and BGP routing policies.

This chapter investigates the problem of assessing the load imposed by a given

overlay on the AS-level underlay. We show that assessing this impact requires

tackling a number of challenging problems, including (i) capturing accurate snapshots
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of the desired overlay, (ii) estimating the load associated with individual overlay

connections, and (iii) determining the AS-path in the underlay that corresponds

to individual overlay connections. Toward this end, this chapter makes two main

contributions. First, we present a methodology for assessing the impact of an

overlay on the AS-level underlay. Our methodology incorporates a collection of the

best known practices for capturing accurate snapshots of a P2P overlay and, more

importantly, for determining the AS-path corresponding to each overlay connection.

We rely on snapshots of the AS-level Internet topology provided by CAIDA where

each link between two ASs is annotated with the relationship between them. Using a

BGP simulator called C-BGP [99], we perform a detailed simulation of BGP routing

over these annotated snapshots of the AS-level underlay to infer the corresponding AS-

path for each overlay connection and determine the aggregate load crossing individual

ASs. To assess the propagation of overlay traffic through the AS-level hierarchy, we

also infer the tier information for individual ASs using the TierClassify tool [49].

Second, we illustrate our methodology by characterizing the impact of four

snapshots of the Gnutella overlay that were captured over four successive years on

the AS-level underlay snapshots of the Internet taken on the same dates the Gnutella

overlay snapshots were obtained. Our analysis provides valuable insight into how

changes in overlay connectivity and underlay topology affect the mapping of load on

the AS-level underlay.

The rest of this chapter is organized as follows. In Section 7.1., we further

elaborate on the problem of mapping an overlay on the AS-level underlay, describe the

challenges involved, and present our methodology. Section 7.2. describes our datasets

and presents our characterization of the load imposed by the Gnutella overlay on the

corresponding AS-level underlay, spanning a 4-year period.
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7.1. The Problem and Our Methodology

Our goal is to map the traffic associated with a P2P overlay to the AS-level

underlay. The input to this process is a representation of a P2P overlay structure

consisting of the IP addresses (and port numbers) of the participating peers together

with their neighbor lists. The output is the aggregate load on all affected ASs and

between each pair of affected ASs that have a peering link with one another (in each

direction). Our methodology to tackle this problem consists of the following intuitive

steps:

1. Capturing the topology of a P2P overlay,

2. Estimating the load on individual connections in the overlay,

3. Inferring the AS-paths associated with individual overlay connections,

4. Determining the aggregate load on each AS and between connected ASs (in

each direction separately).

In this section, we discuss the challenges posed by each step, clarify our assumptions,

and describe our approach for each step.

7.1.1. Capturing the Overlay Topology

Capturing a snapshot of the overlay topology for a P2P application is feasible if

the list of neighbors for individual peers can be obtained. For example, in Gnutella

it is possible to query individual peers and retrieve their neighbor lists. Therefore,

a Gnutella-specific crawler can be developed to progressively collect this information

until a complete snapshot of the overlay is captured.
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In our earlier work, we have developed a fast P2P crawler that can capture

accurate snapshots of the Gnutella network in a few minutes [131]. Using this crawler,

we have captured tens of thousands of snapshots of the Gnutella overlay topology

over the past several years. In this study, we use a few of these snapshots for the

top-level overlay of Gnutella (an overlay consisting of Gnutella Ultrapeers). While

other P2P applications such as BitTorrent are responsible for a significantly larger

volume of traffic over the Internet than Gnutella and would therefore provide a more

relevant P2P system for this study, we are not aware of any reliable technique to

capture accurate snapshots of the corresponding overlays. Since accuracy of the

overlay topology is important in this study, we focus on Gnutella. However, our

methodology is not restricted to this application and can be used with other P2P

systems.

7.1.2. Estimating the Load of Individual Overlay Connections

The load of individual overlay connections depends on the subtle interactions

between several factors including: (i) the number of peers that generate traffic (i.e.,

sources), the rate and pattern of traffic generation by these peers, and their relative

location in the overlay, (ii) the topology of the overlay, and (iii) the relaying (i.e.,

routing) strategy at individual peers. Capturing these factors in a single model is a

non-trivial task and could be application-specific. For example, the load of individual

connections for live P2P video streaming is more or less constant, whereas the load

of individual BitTorrent connections may vary significantly over time.

In the absence of any reliable model for per-connection traffic, without loss of

generality, we assume in our analysis that all connections of the overlay experience the

same average load in both directions. This simplifying assumption allows us to focus
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on the mapping of the overlay topology on the underlying AS-level topology. If a

more reliable model for the load of individual connections is available, it can be easily

plugged into our methodology by assigning proper weights (one in each direction) to

each connection of the overlay. In this chapter, we simply assume that the weight for

all connections in both directions is one.

7.1.3. Inferring AS-Paths for Individual Overlay Connections

For each connection in the overlay, determining the corresponding AS-path in the

underlay is clearly the most important and most challenging part of our methodology.

We use a popular BGP simulator to determine the AS-path between any given pair

of ASs, but note that carefully-designed measurement-based approaches may provide

viable alternatives. Our simulation-based method consists of the following steps:

7.1.3.1. Mapping Peers to ASs

We use archived BGP snapshots from RouteViews [93] to map the IP addresses

of individual peers to their corresponding ASs that we call edge ASs. Therefore,

determining the AS-path for the overlay connection between two peers translates into

determining the path between their corresponding edge ASs.

7.1.3.2. Capturing AS-level Topology and Inter-AS Relationships

In this study, we rely on the AS-level topologies provided by CAIDA [20]. These

topologies have been widely used in the past, even though more recent work has

shown that the provided topologies are missing a significant portion of peering links

between lower-tiered ASs [94, 112]. Note that our approach is not tied to using

the CAIDA-provided AS-level topologies, and any more complete AS-level topology
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can be incorporated once it becomes available. To properly simulate BGP routing,

we need to determine the AS relationship between connected ASs in the AS-level

topology. Toward this end, we use the fact that CAIDA’s snapshots of the AS-

level topology [20] are annotated with the inferred relationships between each pair of

connected ASs. In these snapshots, AS relationships are inferred using the algorithm

initially proposed by Gao [48] and extended by Dimitropoulos et al. [41]. This

algorithm, mainly based on the concept of “valley-free routing” in BGP (along

with some other intuitive assumptions), categorizes the AS relationships into three

categories: (i) Customer-Provider, (ii) Peer-Peer, or (iii) Sibling-Sibling.

7.1.3.3. Simulating BGP

We determine the AS-path between any pair of edge ASs that host connected

peers in the overlay (i.e., infer the corresponding AS-path) by simulating BGP over

the annotated AS-level topology using the C-BGP simulator [99]. C-BGP abstracts

the AS-level topology as a collection of interconnected routers, where each router

represents an AS. It simulates the desired BGP routing policies for each relation

between connected ASs. We use a set of intuitive BGP policies for each type of AS

relationships that are specified by C-BGP. In particular, these policies (i) ensure that

the routes through one’s customers have the highest preference and those passing

through its providers have the lowest preference, and (ii) prevent ASs with multiple

providers from acting as transit node among their providers. We noticed that some

characteristics of CAIDA’s annotated AS-level topology, in particular the presence

of circular provider-costumer relationships among a group of ASs, prevent our C-

BGP simulations to converge with the above policies. To resolve these problems,

we systematically change a small number of relationships (e.g., to break a cycle in
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customer-provider relationships). Further details of this process are described in our

related technical report [107]. We select snapshots of both the AS-level topology and

the overlay topology of the same dates so as to minimize any potential error due to

asynchrony in the snapshots.

Clearly, representing each AS by a single router results in inferring only one AS-

path between each pair of ASs. This implies that multiple AS-paths that may exist

in practice between two ASs [91] are not accounted for in our simulations. While this

assumption simplifies the problem in a way that is not easily quantifiable, we are not

aware of any existing technique that can reliably capture and account for this subtle

behavior of BGP routing.

7.1.3.4. Assessing AS Tiers

To characterize the propagation of P2P traffic through the AS-level hierarchy, we

first need to assess the location of each AS in this hierarchy. We use the “TierClassify”

tool [49] to identify the tier of each individual AS. The algorithm used in this tool

relies mainly on the assumption that all tier-1 ASs should be interconnected with

one another. Therefore it tries to find a clique among the ASs with highest degrees.

Once the tier-1 clique is identified, the algorithm simply follows provider-customer

relationships and classifies other ASs such that each tier n AS can reach the tier-1

clique in n− 1 hops.

7.1.3.5. Determining Aggregate Load on and between Individual ASs

Given the corresponding AS-path for each overlay connection, we can easily

determine the aggregate load (in terms of the number of connections) that passes
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through each AS, as well as the transit load (in each direction) between each pair of

connected ASs in the topology.

7.2. Effect of the Overlay on the Underlay

In this section, we characterize the effect of a P2P overlay on the AS-level

underlay using four snapshots of the Gnutella top-level overlay. We broadly divide

ASs into two groups: Edge ASs that host peers in an overlay, and Transit (or Core)

ASs that provide connectivity between edge ASs. We first describe our datasets (i.e.,

the snapshots of overlay and the corresponding AS-level underlay topologies), and

then we characterize the imposed load on the underlay using the following measures:

(i) diversity and load on individual AS-paths, (ii) load on individual transit ASs, (iii)

identity and evolution of the top transit ASs, (iv) AS-path length, and (v) propagation

of traffic through the AS-level hierarchy.

7.2.1. Datasets

We use four snapshots of the top-level Gnutella overlay that were collected in four

consecutive years starting in 2004. Examining overlay snapshots over time enables us

to assess some trends that are associated with the evolution of the AS-level topology.

We use the labels G-xx to refer to the snapshot taken in year 20xx. The left

columns of Table 7.1. (labeled “Gnutella snapshots”) summarize the capture date,

number of peers and edges for these overlay snapshots. The table shows that the

population of Gnutella peers in the top-level overlay and their pairwise connections

have both increased by ≈ 600% during this four-year period.

We also use daily snapshots of the BGP routing table retrieved from the

RouteViews archive collected at the same dates as our overlay snapshots. The middle
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TABLE 7.1. Data profile: Gnutella snapshots, BGP snapshots and mapping overlay
connections to the underlay. Imp. AS-paths are those with +100 overlay connections.

Gnutella Snapshots BGP Snapshots AS-Paths
Snapshot Date #Peers #Conn. #Prefixes #ASs #Unique %Important
G-04 04-11-20 177k 1.46M 165k 18.7k 192k 2.0
G-05 05-08-30 681k 5.83M 185k 20.6k 384k 2.9
G-06 06-08-25 1.0M 8.64M 210k 23.2k 605k 2.8
G-07 07-03-15 1.2M 9.80M 229k 24.9k 684k 2.7

columns in Table 7.1. (labeled “BGP snapshots”) give the number of IP prefixes

and the total number of ASs in each BGP snapshot. These numbers show that the

AS-level topology has also grown significantly during this four-year period.

7.2.2. Diversity and Load on Individual AS-Paths

One way to characterize the impact of an overlay on the underlay is to determine

the number of unique AS-paths that all overlay connections are mapped on as well as

distribution of load among those AS-paths. The right columns of Table 7.1. (labeled

“AS-paths”) show the number of unique AS-paths for all connections of each overlay

along with the percentage of those paths that carry more than 100 overlay connections.

The number of unique AS-paths is growing over time but at a lower pace compared

to the number of overlay connections. This suggests that there is more similarity in

AS-paths among overlay connections as the overlay grows in size over time.

To examine the mapping of overlay connections to AS-paths more closely, Figure

7.1.a depicts the CCDF of the number of overlay connections that map to individual

AS-paths in log-log scale for all four overlay snapshots. The skewed shape of these

distributions indicates that a small number of AS-paths carry a large fraction of load.

For example, whereas around 10% of paths carry more than 10 connections, only

1% of the paths carry more than 200 connections. Interestingly, the distributions of

145



overlay connections that map to AS-paths are very similar across different snapshots

despite significant changes in the identity of peers and in the topologies of overlay

and underlay.

7.2.3. Observed Load on Individual Transit ASs

Since we assumed that all overlay connections have the same load, we simply

quantify the load on each transit AS by the number of overlay connections crossing

that AS. Figure 7.1.b depicts the number of overlay connections that cross each transit

AS in log-log scale, where ASs are ranked (from high to low) based on their overall

observed load. The figure shows that the load on transit ASs is very skewed. A small

number of them carry a large volume of traffic while the load on most transit ASs

is rather small. Again, we observe that the overall shape of the resulting curves is

very similar for all four snapshots, except for the outward shift in the more recent

snapshots caused by the increasing size of the overlay over time. This similarity in

the skewness of the observed load on transit ASs despite significant changes in the

overlay and underlay topologies over time could be due to the dominance of one the

following factors: (i) the stability over time of the top-10 ASs that host most peers,

and (ii) the constraint imposed by valley-free routing over the hierarchical structure

of the AS-level underlay.

To further investigate the underlying causes for the observed skewed nature of

observed load on transit ASs, we examine the distribution of the number of unique

AS-paths (associated with overlay connections) that pass through each transit AS in

Figure 7.1.c. The shape of this distribution is very similar to Figure 7.1.b, suggesting

that the number of crossing connections for individual ASs is primarily determined

by the underlay shape and routing rather than connectivity and footprint of the
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FIGURE 7.1. Traffic load distribution

overlay. Figure 7.2. validates this observation by showing a scatterplot of the number

of crossing AS-paths (x-axis) and number of overlay connections (y-axis) through each

transit AS. This figure essentially relates the previous two distributions and confirms

that the observed load on individual transit ASs depends primarily on the number of

unique AS-paths crossing those ASs. Note that once the number of cross AS-paths

exceeds a certain threshold (a few hundreds), the observed load increases at a much

faster pace.
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7.2.4. Identity and Evolution of Transit ASs

To investigate the observed load by transit ASs from a different angle, we examine

and present the identity of the top-10 transit ASs that carry the highest number of

crossing overlay connections (and their evolution over time) in Figure 7.3.. For each of

the four overlay snapshots, the transit ASs are rank-ordered (highest load first), and

the figure depicts their standings in these rank-ordered lists over time. We observe

that only four transit ASs (i.e., AT&T, AOL, Level3, and Cogent) remain in the

top-10 list across all four snapshots and that the changes in the other transit ASs

is more chaotic. This is due to the fact that ranking of transit ASs is affected by

a combination of factors including changes in the topology of AS-level underlay, in

routing policies, and in the location of peers. Disentangling these different factors and

trying to identify the root causes for the observed churn among the top-10 transit

ASs over time remains a challenging open problem.

7.2.5. AS-Path Length

One way to quantify the impact of an overlay on the AS-level underlay is to

characterize the length of AS-paths for individual overlay connections. Figure 7.4.a
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FIGURE 7.4. Distribution of AS-path length

shows the empirical density of the length of all AS-paths between edge ASs for each

of the four snapshots. We observe that around 40% of the paths are three AS-hops

long, while 80% of the paths in each overlay are at most 4 AS-hops long.

Figure 7.4.b depicts the empirical density of AS-path length across all overlay

connections for each of the four snapshots. In essence, this plot can be viewed as

a weighted version of Figure 7.4.a described above where the length of each path is

weighted by the number of overlay connections crossing it. The figure shows a very

similar pattern across all overlay snapshots despite the changes in the number of
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peers and their connections. The two figures are very similar, however the average

path length across the overlay connections is slightly shorter indicating that a slightly

higher fraction of connections are associated with shorter paths. (e.g., for G-07, the

average length of all AS-paths is 3.2 hops while the average path length across overlay

connections is 3.7 hops.)

7.2.6. Propagation of Traffic through the AS-Level Hierarchy

An interesting way to quantify the load that an overlay imposes on the AS-level

underlay is to determine the fraction of load that is propagated upward in the AS-

level hierarchy towards the top-tiered ASs. Table 7.2. gives the percentage of paths

and percentage of overlay connections whose top AS is a tier-1, tier-2, and tier-3

AS, respectively, in each overlay snapshot. The columns marked “Path” give the

percentage of the relevant AS-paths reaching each tier while the columns marked

“Conn” represent the percentage of the overlay connections (i.e., aggregate load)

reaching each tier. We note that more than half of the paths reach a tier-1 AS, and

roughly 40% of the paths peak at a tier-2 AS across all four snapshots.

The percentage of connections that reach a tier-1 AS is even higher than that for

paths, indicating that a larger fraction of connections are mapped to these paths.

At the same time, a lower percentage of connections reach a tier-2 AS (16% to

37%) compared to paths that peak in tier-2 ASs. Interestingly, the percentage

of connections that reach a tier-1 AS decreases over time while the percentage of

connections that peak in a tier-2 AS is increasing. A plausible explanation of this

trend is the increasing connectivity over time between ASs in the lower tiers which

reduces the fraction of connections that have to climb the hierarchy up to tier-1 ASs.

A closer examination (not shown here) confirmed that this shift in traffic towards
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TABLE 7.2. Percentage of paths/connections reaching each tier of AS hierarchy

Tier-1 Tier-2 Tier-3
Snapshot Path Conn Path Conn Path Conn
G-04 51 84 46 16 2.4 0.0
G-05 59 73 38 27 3.0 0.0
G-06 52 64 38 36 10 0.0
G-07 55 63 41 37 3.6 0.1

lower tiers is indeed primarily due to the presence of shortcuts between lower-tier

ASs in the AS topology (e.g., more aggressive peering at Internet exchange points

over time). In particular, the observed shift has little to do with changes in the

overlay topology, mainly because the connectivity of the Gnutella overlay has not

become significantly more localized over time.

7.3. Summary

In this chapter, we studied the problem of quantifying the load that a particular

overlay imposes on the AS-level underlay. We identified the challenging aspects of

this problem and described existing techniques to address each of these aspects. We

presented a methodology for mapping the load of an application-level overlay onto the

AS-level underlay. We illustrated our methodology with an example of a real-world

P2P overlay (i.e., Gnutella).

This chapter makes two main contributions. First, we propose a methodology for

capturing the impact of an overlay on the AS-level underlay. The method involves the

best known practices for capturing snapshots of a P2P overlay as well as determining

the AS-path corresponding to each overlay connection. We use the AS-level snapshots

provided by CAIDA in which each AS-AS links are annotated with the type of

relationship between the two ASs. Using C-BGP tool, via simulation of BGP routing

over the annotated AS-level snapshots, we infer the corresponding AS-paths for each
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overlay connection and determine the aggregate load crossing individual ASs. Second,

using our methodology we characterize the impact of four snapshots of the Gnutella

overlay captured during 2004-2007 on the AS-level topology snapshots of the Internet

taken on the same dates as the Gnutella overlay snapshots. We characterize the load

imposed by these overlays on the corresponding underlay in a number of different

ways: (i) observed load on individual AS-paths and its diversity, (ii) observed load

on individual transit ASs, (iii) AS-path length, and (iv) the propagation of overlay

traffic through the AS-level hierarchy. Our analysis provides valuable insight into how

changes in overlay connectivity and underlay topology affect the mapping of load on

the AS-level underlay.

From the presented results, we find that the distribution of load across AS-paths

is highly skewed such that top 0.001% of the paths carry more than 10,000 overlay

connections, the bottom 90% carry less than 10 connections each. We attribute this

highly skewed load distribution to the highly hierarchical structure of the AS-level

underlay. Although both the overlay and the underlay have grown over 4 years, the

distribution patterns remain the same.

Ranking the ASs by the volume of transit traffic, we observe that four of the top-

10 transit ASs remain in top-10 during the four years of our study and other ASs are

gradually replaced by other ASs. Examining the AS-path length distribution across

overlay connections, we notice that the average length is decreasing over the 4-years

despite the growth in network size. We also notice that the percentage of overlay

connections reaching a tier-1 AS has decreased from 84% in 2004 to 63% in 2007,

suggesting that the AS connectivity is becoming more decentralized over time and a

larger portion of the traffic gets to destination using peering links without having to

go to the top of the AS hierarchy.
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While our study contributes to a deeper understanding of the interactions

between application-level overlays and the AS-level underlay in today’s Internet,

a more detailed analysis of the sensitivity of our results to known overlay-specific

issues, known underlay-related problems (e.g., incomplete AS graph, ambiguous AS

relationships), and known BGP-related difficulties looms as important next step.
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CHAPTER VIII

CONCLUSION

This chapter concludes the dissertation by outlining the main contributions of

the research presented in each chapter, and by suggesting related future work.

8.1. Contributions

This dissertation has focused on the mutual impacts of the P2P overlay and the

AS-level underlay. Towards this end, we presented our work on P2P applications

(Chapters III to V), mapping of the AS-level underlay (Chapter VI), and the impact

of the P2P overlay on the AS-level underlay (Chapter VII). Below we summarize our

main contributions on each of these issues.

8.1.1. Measurement Study on Gnutella Overlay

In Chapter III, we monitored the popular Gnutella P2P overlay by taking

frequent snapshots for 15 months using our fast P2P crawler, Cruiser. We illustrated

how the two-tier overlay has evolved in order to accommodate dramatic changes in

user population during the 15 month measurement period. We have explored potential

correlations between the evolution of overlay properties and the popularity of different

versions of major client programs. Finally, we illustrated the intra-region bias in the

connectivity among peers.

Our results illustrate two important points: First, as the Gnutella network

has experienced a dramatic increase in user population, the two-tier overlay has

repeatedly begun to lose its balance. However, proper modifications in major client

software coupled with the rapid upgrade rate of users, has enabled the developers to
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maintain the overlay’s desired properties. Second, despite its random connectivity, the

Gnutella overlay exhibits a strong bias towards intra-continent connectivity, especially

in continents with smaller user populations. Furthermore, this bias has not changed

as the population has quadrupled. In particular, our study of geographic properties

of the Gnutella P2P overlay shows dominance of users in English-speaking countries

with a strong bias toward intra-region connectivity.

The key contributions of our work include the rigorous measurement of graph

theoretic and geographic characteristics of the Gnutella overlay network. Through

use of the Cruiser crawler, we have captured much more accurate measurements than

previously reported. Our measurement study has also taken more snapshots than

other work because of the speed of Cruiser. These measurements will serve as useful

baseline measurements for future studies of P2P overlay characteristics.

8.1.2. Sampling of Large-Scale Overlays

In Chapter IV, we proposed a new sampling technique, namely, respondent-

driven sampling (RDS) in order to capture the characteristics of large-scale P2P

overlays, for which taking accurate full snapshots is not feasible. We explain the

technique, describe its theoretical basis, and present a detailed comparison of the

proposed technique with a previous sampling technique named Metropolized Random-

Walk (MRW), over a variety of synthesized and real world networks.

Our main findings can be summarized as follows: First, RDS outperforms MRW

across all scenarios. In particular, RDS exhibits significantly better performance

than MRW when the overlay structure exhibits a combination of highly skewed node

degrees and highly skewed (local) clustering coefficients. Second, our simulation and

empirical evaluations reveal that both the RDS and MRW techniques can accurately
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estimate key peer properties over dynamic unstructured overlays. Third, our empirical

evaluations suggest that the efficiency of the two sampling techniques in practice is

lower than in our simulations involving synthetic graphs. We attribute this to our

inability to capture accurate reference snapshots.

RDS can be used as a viable tool for sampling large-scale static or dynamic

networks on which the researcher has the ability to crawl, i.e., query a node for the

list of its neighbors.

8.1.3. P2P Performance Evaluation

In Chapter V, we focused on another aspect of P2P applications which is

the most important from the user’s perspective: observed performance. Using

BitTorrent tracker log files, we extracted several parameters pinpointing the status

of participating peers as a group as well as the status of each individual peer. We

propose several defining parameters for observed peer performance and then tried

to correlate these parameters with several group- and peer-level properties, using

different statistical techniques.

Our main contributions in this chapter are the following: (i) we present a set of

techniques enabling a researcher to capture peer-level and group-level properties of the

participating peers in a torrent using the log files normally generated by the trackers;

(ii) we show that the commonly used technique of “instrumented clients” falls short

in accurately characterizing peer-level performance in BitTorrent; and (iii) we show

that establishing relationships and models between the peer-level performance and

other peer- or group-level properties is non-trivial, and no single dominant factor can

determine peer-level performance with acceptable statistical significance.
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8.1.4. Geographical Mapping of AS-Level Underlay

In Chapter VI, we tackled the problem of AS geography, i.e., inferring an ASs

geographical coverage (geo-footprint) and identifying its likely PoP locations. Our

approach is based on extensive monitoring of P2P networks and capturing the IP

addresses of participating peers, mapping these IP addresses to the ASs where they

belong and also finding their geographic locations on the map. This approach,

considering P2P users as pins pinpointing provider ASs, is complementary to the

traditional BGP- or traceroute-based method of inferring AS-level connectivity due

to its focus on the edge of the network, i.e., ASs close to users, rather than at the

core of the network.

The main contributions in this chapter are the following: (i) we present a

methodology for determining the geo-footprint of eyeball ASs by leveraging the geo-

locations of their end users; (ii) we use the above method to identify the likely PoP

locations of an eyeball AS by associating areas with high user concentration with

close-by cities in its geo-footprint; (iii) we validate our approach using published PoP

data from a number of ASs that make this information available on their websites; and

(iv) using the PoP locations identified by our method and the AS-level connectivity

resulting from a state-of-the-art inference approach, we show that the world of peering

relationship at the edge of the network is highly diverse and complex. For example,

even simple eyeball ASs tend to peer very actively at local and remote IXPs, especially

in Europe, and also maintain rich upstream connectivity.

8.1.5. Impact of the P2P Overlay on the AS-Level Underlay

Throughout Chapter VII, we investigated the problem of assessing the load

imposed by a given overlay on the AS-level underlay. Towards this end, (i) we
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captured P2P overlay snapshots; (ii) using an appropriate overlay traffic model,

we derived the load associated with individual overlay connections; and (iii)

we determined the AS-path corresponding to individual overlay connections and

calculated the aggregate associated load on each AS-AS peering link.

The main contributions of this chapter can be summarized as follows. First we

propose a methodology for assessing the P2P overlay-underlay impact incorporating a

collection of state of the art practices for capturing P2P snapshots and for determining

the AS-path corresponding to each overlay connection. Second, we demonstrate our

methodology by characterizing the impact of four snapshots of the Gnutella overlay

captured over four years on the AS-level snapshots of the Internet taken on the same

dates the Gnutella overlay snapshots were obtained.

The main findings from the results presented in this chapter are the following.

The distribution of load across AS-paths is highly skewed with the top 0.001% of the

paths carrying more than 10,000 overlay connections and the bottom 90% carrying less

than 10 connections each. Similar skewness is observed in the distribution of overlay

connections across transit ASs. The observed high skewness of load distribution is

mainly due to the highly hierarchical structure of the AS-level underlay. We also

observe that while four out of the top-10 ASs remain in the top-10 during 2004-2007,

the rest of them get replaced by other ASs.

The average AS-path length slightly decreases over the 4-years despite the growth

in underlay network size. Another important observation is that the percentage

of overlay connections reaching a tier-1 AS has decreased from 84% in 2004 to

63% in 2007, suggesting that the AS-level underlay connectivity is becoming more

decentralized over time and a larger portion of the traffic gets to destination using

peering links without having to go to the top of the AS hierarchy. This finding is
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consistent with the observation in Chapter VI that the ASs are becoming more and

more inter-connected by peering links between eyeball ASs.

8.2. Future Work

In this section, I present some research problems I am planning to work on in

the future. These proposed research ideas are inspired by the works presented in this

dissertation.

8.2.1. Traffic Modeling

In Chapter VII, we tried to build a basic model for inter-AS traffic caused

by a P2P application. Although P2P traffic is important, it is only part of the

Internet traffic. In order to build a realistic traffic matrix, we will need to identify

data centers, content providers and CDNs. A basic idea is to identify the IP

addresses of the most popular data sources and then map them into respective AS

numbers. However, capturing the IP addresses of the real servers sourcing the traffic

is challenging. Popular content providers usually offer their services via Content

Distribution Networks (CDNs) in which the client is automatically redirected to the

closest server. In such cases, in order to detect the real data sources in a global scale,

a researcher needs to have a large number of vantage points distributed across the

world. After detecting the data sources, the researcher may assume a simplistic model

in which traffic from all data sources flows towards all eyeball ASs in proportion to

their user base. More sophisticated models may also consider time of day effects, etc.

The BGP-based method we have used in Chapter VII for detecting AS-paths

may be complemented with other sources of AS connectivity information such as
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traceroute data sets. The resulting traffic matrices, may be analyzed and presented

in different useful ways including complex network visualization techniques.

8.2.2. Towards a Directory of Autonomous Systems

In Chapter VI, in order to validate the results of our PoP locating system, we

used manual data collection to gather PoP lists for 50 ISPs from their websites.

Although time consuming, it was a successful attempt at gathering data on ASs from

authoritative sources. This is an important step towards building the first public AS

directory over the Internet. Researchers may utilize additional methods including

company websites and e-mail communication to gather a variety of information on

each individual AS. The information may include PoP locations, inter-AS links and

their types and locations, number of customers, areas where services are provided,

etc. Such a data base will be very valuable for users, researchers as well as ISPs.

Considering the large number of active ASs, this may seem a prohibitively large

amount of work. However, we should notice that once the data is gathered for tier-

1 and popular tier-2 ASs, the database will become standardized and widely used

urging the rest of the ASs to submit their information to be included on a voluntary

basis.

8.2.3. Effect of P2P Traffic on AS Connectivity

According to the traditional Internet usage models, almost all the traffic flows

from data centers towards the users. Due to this pattern, the ISPs had little

incentive to have peering relationships with one another since there is little traffic

demand between ISPs (i.e., between users). Based on the traffic model we proposed

in Chapter VII, P2P applications impose a large traffic demand among end-users.
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According to this model, which is the result of the widespread use of P2P applications,

ISPs may have reasonable economical and technical incentives to connect to one

another and exchange traffic to save on costly traffic towards/from their upstream

providers.

Our future work could include a study similar to Chapter VII perhaps with more

focus on a group of ISPs in a country or a region to derive a traffic demand matrix

among ISPs. Using a basic traffic cost model, we could calculate the monetary savings

that the ISPs will accrue if they establish peering relationships. Such peering links

may also lead to establishing Internet exchange points to lower the costs.

8.2.4. Modeling AS Connectivity

Besides technical factors, ASs primarily follow business incentives when deciding

to establish peering links to one-another. ISPs may save on the costly traffic sent

to and received from their upstream providers, by establishing peering connections

among each other. From an economical point of view, the decision should be made

when the savings and benefits of having the link surpasses the costs of establishing

and maintaining it. It is reasonable to assume that the relative geographical locations

of a pair of ISPs play an important role in such a decision. If the two ISPs have close-

by PoPs, or if they are already present in the same location, then the initial cost of

establishing a peering link should be very small. Otherwise, they will have to incur

data transport charges.

Another important factor can be the size of each AS, both in terms of customer

base, and service zone. This is also the determining factor in defining the type of

the business agreement governing the traffic exchange. If the ISPs are roughly of the
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same size and class, the traffic exchange is usually a non-paid peering; otherwise, the

smaller ISP becomes a customer of the larger, and pays for the traffic exchange.

Based on this hypothesis, a researcher may derive a model for AS connectivity

in which the geographical parameters of the ASs (e.g. PoP locations), as well as

their customer base (number of direct and indirect users) are used as input. The

model will then calculate, for each pair of ASs, the connectivity parameters such as

probability (or value) of having a link, and the type of traffic exchange agreement.

Such a system will be very useful for ASs to evaluate and optimize their current and

potential inter-AS links including customer-provider and peering links.
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