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DISSERTATION ABSTRACT

Aran Clauson

Doctor of Philosophy

Department of Computer and Information Science

September 2013

Title: Search-based Optimization for Compiler Machine-code Generation

Compilation encompasses many steps. Parsing turns the input program into

a more manageable syntax tree. Verification ensures that the program makes some

semblance of sense. Finally, code generation transforms the internal abstract program

representation into an executable program. Compilers strive to produce the best

possible programs. Optimizations are applied at nearly every level of compilation.

Instruction Scheduling is one of the last compilation tasks. It is part of code

generation. Instruction Scheduling replaces the internal graph representation of the

program with an instruction sequence. The scheduler should produce some sequence

that the hardware can execute quickly. Considering that Instruction Scheduling is

an NP-Complete optimization problem, it is interesting that schedules are usually

generated by a greedy, heuristic algorithm called List Scheduling.

Given search-based algorithms’ successes in other NP-Complete optimization

domains, we ask whether search-based algorithms can be applied to Instruction

Scheduling to generate superior schedules without unacceptably increasing

compilation time.
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To answer this question, we formulate a problem description that captures

practical scheduling constraints. We show that this problem is NP-Complete given

modest requirements on the actual hardware. We adapt three different search

algorithms to Instruction Scheduling in order to show that search is an effective

Instruction Scheduling technique. The schedules generated by our algorithms are

generally shorter than those generated by List Scheduling. Search-based scheduling

does take more time, but the increases are acceptable for some compilation domains.
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CHAPTER I

INTRODUCTION

My first compiler was a pirated copy of Turbo C.1 It was given to me, along with a

copy of Kernighan and Ritchie’s The C Programming Language by my boss at a local

coffee shop. It was the 80s and I was still in high school. It was inspirational. Suddenly

I had access to the full computational power of my 7.16 MHz Tandy computer. It

was magic!

Oh, how things have changed. Today, compilers are omnipresent. Just

about anyone who uses a computer uses a compiler. Software engineers use them

to build their applications, computer scientists use them to probe at the edges

of computability, and even causal users unknowingly invoke compilers by simply

browsing websites, watching videos, or driving cars.

Due to their ubiquity, compilers have held the attention of researchers and

software engineers since their conception. At the highest level, compilers are

translators that read in a program in one format then write it out in another, typically

converting the program from one humans can read to one machines can execute. This

translation is not one-to-one; along the way, the program is typically modified to

improve the new form of the program. Improving the target program has always

been a compilation goal.

The first optimizing compiler was IBM’s FORTRAN compiler released in 1957.

At that time, most programmers were working with assembly. For FORTRAN to

be accepted as an alternative, the generated program had to be efficient. Backus [4]

described the situation as follows:

1The statue of limitations has long since expired.
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It was our belief that if FORTRAN, during its first months, were

to translate any reasonable “scientific” source program into an object

program only half as fast as its hand coded counterpart, then acceptance

of our system would be in serious danger.

The importance of compiler optimization has only increased since that time.

Translating a program from one form to another involves several steps. At the

highest level, these steps are parsing, verification, and code generation. Parsing

converts the input or source code representation of the program to a more manageable

syntax tree. An abstract syntax tree (AST) contains all of the same control structures

as the original program. Functional decomposition, if-statements, and arithmetic

logic are all encoded in the syntax tree. The next phase of compilation is verification.

This pass ensures that the syntax tree contains a meaningful program. For example,

the compiler must verify the constraints imposed by the type system. Passing an

integer to a function that takes a string may be syntactically correct but is invalid.

Strict separation of these three steps is unnecessary. Often some verification is

performed during parsing. However, the order is important as parsing generates the

syntax tree on which verification operates and code generation produces the target

program.

The source program is built up of high level, abstract components. Language

constructs like if-statements, loops and functions rarely have hardware level

equivalents. To realize the language-level semantics, the compiler must remove all

of these abstractions, replacing them with the targeted machine’s instructions. For

example, function invocation is replaced by a number of instructions that move

arguments into the correct locations followed by some type of jump instruction. The

very structure of the program must change. High level languages provide a recursive

2



view of control structures. If-statements are nested within loops that are nested

within subroutines. In the Algol family of languages, even subroutines nest. All of

these abstractions must be removed.

The recursive control structures are replaced with a two-level structure. The

outer structure, called a Control Flow Graph (CFG), captures the possible execution

paths through the program. Each vertex of the CFG contains a portion of the program

code. At one extreme, each CFG vertex could contain a single statement. More often

each vertex is a larger block of code. In either case, the block is almost always

represented as a directed acyclic graph called a Dependency Graph (DG).

The DG realizes the program block’s semantics. The vertices correspond to

primitive hardware instructions. The edges between vertices capture the flow of data

from one instruction to others. Without optimization, the DG structure is nearly

identical to the syntax tree. Optimization turns the tree structure into an arbitrary

acyclic graph. For example, the following program fragment implements the quadratic

formula:

double x1 = (−B + sqr t (d ) ) / (2 ∗ A) ;

double x2 = (−B − s q r t (d ) ) / (2 ∗ A) ;

The unoptimized DG for this fragment is shown in Figure 1.1. Except for literal

values and variables, shown as boxes, the DG is two trees; one for each statement.

The optimized DG, shown in Figure 1.2, lost the trees and is an acyclic graph. The

DG structure is one of the last abstractions removed by the compiler.

Most physical hardware uses a primitive concept of execution. A program counter

indicates which instruction to execute. The hardware executes that instruction and,

barring a jump operation it moves to the next instruction. That is, the hardware

executes a sequence of instructions. It does not execute a graph.

3



A

MUL

B

MOV

d

MOV

NEG

MUL

SQRTNEG 2

ADD

SQRT

x2x1 DIVDIV

SUB

FIGURE 1.1. Unoptimized Dependency Graph for the Quadratic Formula.

The DG must be serialized. This serialization process is called Instruction

Scheduling; it is the focus of this thesis. Typically, the algorithm used is a heuristic

adaptation of the topological sorting algorithm called List Scheduling [19]. This

algorithm is a one-pass algorithm that builds a single sequence quickly. It is simple

to implement, executes quickly, and generates reasonably good sequences. Good in

this sense means that the hardware can execute the sequence quickly.

Back in the day of FORTRAN I, processors executed each instruction to

completion [38]. For these systems, all instruction sequences from the same DG

were equally good. In 1961 IBM released the 7030. This STRETCH-based system

introduced the Instruction Pipeline. Now executing different sequences from the same

DG could take different amounts of time.

When viewed as a decision problem, Instruction Scheduling is an NP-Complete

problem [1]. That is, instruction scheduling is as difficult as the Discrete Knapsack

problem, the Traveling Salesman problem, and the Job Shop problem [17, 33]. In

each case there is no known polynomial time algorithm.

The NP complexity class refers exclusively to yes/no decision problems. What

we are really interested in is the optimization problem: generate a sequence with the

shortest execution time. While List Scheduling is pretty good at creating schedules,

4



A

MOVMOV

B d

ADD

DIV

SUB

DIV

SQRTMUL

-2

x2x1

FIGURE 1.2. Optimized Dependency Graph for the Quadratic Formula.

it does not find optimal schedules. However, search-based optimization algorithms

are frequently successful at generating optimum or near optimum solutions to other

NP-Complete optimization problems.2

It is a little surprising, then, that most compilers use List Scheduling to sequence

DGs. We are left to wonder why search-based scheduling is so rarely used in compilers.

The central question address in this thesis is: Can search-based instruction scheduling

produce better schedules than traditional schedulers without unacceptably increasing

compile time?

To address this question, we formally state the scheduling problem as a

specialization of resource constrained scheduling with precedences (Chapter III). The

main contribution in the problem statement is identifying the way that CPU resources

behave differently from traditionally studied Job Shop resources. Further, we show

that instruction scheduling is NP-Complete even when constrained to a bounded

number of conflicting resources.

2“NP-Complete optimization” is technically incorrect. We are interested in the generated
schedule, not a yes/no answer. We will see that Instruction Scheduling is in the class FPNP[log n] or
in FPNP depending on the problem formulation. These complexity classes deal with functions, FP,
rather than decisions and they allow a limited number of calls to an NP Oracle.
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We adapt three search-based optimization algorithms to our formulation of

instruction scheduling (Chapter IV). Each algorithm depends differently on heuristic

functions. The algorithm presentation includes an analysis of run-time complexity,

the attribute contributing to compile time. We also discuss the extent to which each

algorithm explores the range of possible solutions.

Using the SPEC CPU2006 benchmark suite, we compare the three search-based

schedulers against the List Scheduling algorithm (Chapter V). We are primarily

interested in the effect these techniques have on schedule quality and on scheduling

run-time. Secondarily, we are interested in register allocation. We do not consider

register allocation directly. Instead, we compare the number of registers needed to

fully allocate each generated schedule.

In Chapter VI we discuss related scheduling research and possibilities for future

work based on this thesis. We conclude with a summary remarks and directions for

further research (Chapter VII). Before we can delve into search-based scheduling,

we begin with background information necessary to begin discussing the details of

instruction scheduling, in Chapter II.

6



CHAPTER II

BACKGROUND

Although a formal Instruction Scheduling problem statement is delayed until

Chapter III, Section 2.1 presents a more extensive view of code generation than

the introduction. Following this, Section 2.2 describes several existing approaches

to Instruction Scheduling. Section 2.3 provides a brief overview of search-based

optimization algorithms and the ways search differs from scheduling.

2.1. Code Generation

At the highest level, code generation comprises three tasks: Instruction Selection,

Instruction Scheduling, and Register Allocation. Instruction selection chooses

the appropriate hardware instructions that realize the program’s desired behavior.

Instruction Scheduling converts the compiler’s graph representation of the program

into an executable sequence. However, this sequence uses an unbounded number of so

called virtual registers to store data. Register allocation assigns physical registers to

the virtual registers used in the sequence. In the presence of typical optimizations like

common subexpression elimination, each of these tasks is NP-Complete [1, 8, 10, 34].1

Usually these three tasks are performed separately and they are usually performed in

the described order [11].

This thesis is concerned with Instruction Scheduling. Instruction Scheduling

involves two subtasks: block selection and scheduling. Block selection identifies the

1In addition to these references, we will prove our formulation of Instruction Scheduling NP-
Complete with modest bounds on the parameters (e.g., number of functional units).
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parts of the program to be scheduled together. Basic blocks are typically the smallest

unit of scheduling. Formally,

A basic block is a sequence of consecutive statements in which flow of

control enters at the beginning and leaves at the end without halt or

possibility of branching except at the end.[2]

Roughly speaking a basic block corresponds to the body of an if-statement provided

there is no internal control structure. When the predicate expression is true the body

of the if-statement is executed together starting at the top and exiting at the bottom.

The code associated with a basic block is represented by the compiler as a

directed acyclic Dependency Graph (DG). Each vertex corresponds to a hardware

instruction. Edges encode the dependencies between these instructions. Scheduling

orders the instructions honoring these dependencies. That is, the DG represents a

partially ordered set of instructions. Scheduling constructs a totally ordered extension

of this partial order.

For example, consider the function Quadratic shown in Figure 2.1. This C++

program returns the two real quadratic roots if they exist and two NANs if they do

not.2 Parsing and verification succeed and the compiler generates the CFG shown in

Figure 2.2. The vertices of this CFG contain fragments of the original C++ source

code. This more clearly shows what portions of the program belong to each basic

block. This program has no looping structures, so the CFG is acyclic. Control will

flow from basic block BB1 to either BB2 or BB3. Finally control joins together at

BB4 and the function returns its results.

2The symbol NAN is a IEEE 754 floating point constant that means that the value is not a
number.

8



pair<double , double> Quadratic (double A, double B, double C)
{

double x1 , x2 ;
double d = (B ∗ B) − 4 ∗ A ∗ C;
i f (d >= 0) {

x1 = (−B + sqr t (d ) ) / (2 ∗ A) ;
x2 = (−B − s q r t (d ) ) / (2 ∗ A) ;

}
else {

x1 = NAN;
x2 = NAN;

}
return make pair ( x1 , x2 ) ;

}

FIGURE 2.1. Quadratic Formula

Our interest lies in scheduling. If we select BB2 we find the DG shown in

Figure 2.3 (also shown in Figure 1.2). We included data elements, shown in boxes,

to help illustrate the DG’s relationship to the original expressions. The compiler has

optimized the two assignment statements in this block. Without optimization, the two

statements in the block would be two largely independent trees that correspond almost

directly to the parse tree. The optimizer has reduced the instruction count from about

twelve to eight. Optimally scheduling trees is relatively easy[17]. Unfortunately,

scheduling arbitrary graphs is NP-Complete [2].

Scheduling this DG involves choosing a valid topological sort of the graph. One

possible ordering is the following:

v1 = MUL A, −2
v2 = SQRT d
v3 = DIV B, v1
v4 = DIV v2 , v1
v5 = SUB v4 , v3
v6 = ADD v4 , v3

MOV v5 , x1

9



BB1:
pair<double , double> Quadratic (double A, double B, double C)

double x1 , x2 ;
double d = (B ∗ B) − 4 ∗ A ∗ C;
i f (d >= 0)

BB2 :
x1 = (−B + sqr t (d ) ) / (2 ∗ A) ;
x2 = (−B − s q r t (d ) ) / (2 ∗ A) ;

BB3 :
x1 = NAN;
x2 = NAN;

BB4 :
return make pair ( x1 , x2 ) ;

FIGURE 2.2. Quadratic’s Control Flow Graph

MOV v6 , x2

Variables A, d , and v1 through v6 are all virtual registers. In a later register

allocation phase, these variables will be replaced with physical hardware registers.

This sequence is valid but not optimal. Using Intel Core2 instruction latencies we

find that floating point multiplication takes three clock cycles and square root takes

14. This means that the second divide cannot start until cycle 16.3 A better schedule

would start the square root operation first.

With only eight instructions and nine (meaningful) edges, optimally scheduling

BB2 is easy. We could enumerate all possible sequences and choose the one with the

shortest execution times. This is not generally possible. Other graphs will have many

more valid sequences, too many to enumerate completely. Even counting the number

3The square root operation starts in clock cycle two and finishes in cycle 16.
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A

MOVMOV

B d

ADD

DIV

SUB

DIV

SQRTMUL

-2

x2x1

FIGURE 2.3. Dependency Graph for Quadratic’s Basic Block BB2.

of valid sequences is hard; it is an #P-Complete problem[7].4 Clearly we need a more

elegant scheduling algorithm.

2.2. Scheduling Algorithms

Instruction Scheduling algorithms try to find a good sequence—that is, short

execution times—without spending too much time scheduling. Most algorithms

combine block selection with scheduling. The most basic instruction scheduler is

a basic block List Scheduler.

A basic block scheduler places all of its focus on scheduling and none on block

selection. The List Scheduling algorithm is the most commonly used scheduler. A full

description is given in Chapter IV. At the highest level, List Scheduling is essentially

Kahn’s Topological sorting algorithm [26]. List Scheduling works by finding all of the

instructions at the top of the DG. These instructions do not depend on the result of

other instructions. In our example, initially the set of “ready” instructions are MUL

4#P is the class of enumeration problems that corresponds to NP-Complete decision problems.
A #P problem asks how many linear extensions are there for a given partially ordered set. A
polynomial-time solution to any of the #P-Complete problems implies that P=NP.
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and SQRT. One of these instructions is selected. It is removed from the DG, and

added to the partially constructed sequence. This processes repeats until the graph

is empty.

Which instruction is selected from the ready list dictates the quality of the

generated sequence. In our example sequence, we chose the MUL first. This choice

led us to the suboptimal solution presented above.

List Scheduling uses a heuristic function to choose the next instruction to

schedule. Given that the heuristic function has such profound impact on the quality

of the generated schedule, many List Scheduling heuristics have been proposed.

Smotherman et al. [39] provide an extensive survey of heuristics, their relative

complexities, and effectiveness.

Dealing with just one basic block at a time is a little limiting. Consider our

Quadratic function again. If BB1 and BB2 were scheduled together we could move

the square root operation before the if-test. This of course would require a SQRT

instruction that would not trigger a hardware exception when its operand is negative.

This non-faulting instruction variant is actually common specifically for this kind of

optimization. The question is which blocks should be combined?

Hwu et al. [24] combine basic blocks into Superblocks. Like basic blocks,

superblocks have single entry points. However, they may have multiple exit points.

Ideally, the last exit is the one most often taken. Figure 2.4 shows Quadratic’s

CFG with basic blocks BB1 and BB2 combined into a superblock. The combined DG

contains instructions for both basic blocks. This enables the scheduling algorithm to

move the square root instruction earlier in the sequence as discussed above.

If the superblock is constructed correctly for a given application, most invocations

of Quadratic execute the block in its entirety. That is, the then-part of the if-
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BB1:
pair<double , double> Quadratic (double A, double B, double C)

double x1 , x2 ;
double d = (B ∗ B) − 4 ∗ A ∗ C;
i f (d >= 0)

BB2 :
x1 = (−B + sqr t (d ) ) / (2 ∗ A) ;
x2 = (−B − s q r t (d ) ) / (2 ∗ A) ;

BB3 :
x1 = NAN;
x2 = NAN;

BB4 :
return make pair ( x1 , x2 ) ;

FIGURE 2.4. Quadratic’s Control Flow Graph

statement is executed most often. If d is negative, then the side exit is taken and

execution jumps to BB3. In this case, the SQRT executes but its result is unused.

Generally, this is called speculative execution. They measure the degree of speculation

and use it to judge the value of moving instructions between basic blocks.

Superblock construction depends on knowing the common execution path. Hwu

et al. [24] use static code analysis to identify these common paths. Although it is

effective, code analysis is fundamentally limited. Quadratic could be used in a

larger program that uses Quadratic to computes many valid roots. Conversely, the

larger program could be looking for a single set of parameters with valid roots. In

this later case, Quadratic executes BB3 often but BB2 just once. Static analysis

alone cannot always determine which behavior to expect.

Fisher [16] proposed using profiling data to capture execution traces. The

program is compiled twice. First using a simple basic block scheduler with

13



instrumentation added. After running a few test cases, the instrumentation data

is used to identify the common execution paths or traces. Trace scheduling then

constructs and schedules trace-derived superblocks.

Many other block construction schemes have been proposed. Havanki et al. [23]

construct Treegions that capture trees of basic blocks. In Quadratic, BB1, BB2,

and BB3 could be collected into one treegion rooted at BB1. Using block duplication,

two copies of BB4 could be generated and grafted on to BB2 and BB3 making the

entireQuadratic program into one large treegion. Regions [21] combine basic blocks

from other functions, essentially doing basic block level in-lining. Mahlke et al. [28]

construct hyperblocks that, like treegions, can contain internal branching.

The goal of all of these block construction algorithms is to provide more flexibility

to the scheduling algorithm. Allowing the scheduler to move instructions across basic

block boundaries enables it to better handle long latency instructions and balance

resource usage.

Given all of these different block selection and construction techniques, it might

be surprising to note that they all use the same scheduling algorithm: List Scheduling.

For example, Chang et al. [11] describe their six-step scheduling processes as follows:

1. Trace selection

2. Superblock formation

3. Superblock optimization

4. Dependence graph construction

5. Dependence graph optimization

6. List scheduling.

While it is ubiquitous, basic List Scheduling is not the only scheduling algorithm

in use.
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Pinter [35] approaches code generation more from a resource usage perspective

than an instruction sequencing perspective. Starting with a DG, he builds a parallel

graph called an Interference Graph that models the ways that instructions conflict

with each other for CPU resources. In addition to limited functional units, physical

registers are assigned. By considering register assignments, the Interference Graph

includes more potential conflicts than traditional scheduling algorithms. The final

sequence is generated by a modified List Scheduling algorithm that filters the set

of ready instructions by the conflicts contained in the Interference Graph. This

integrated scheduler/allocator approach is quite effective.

Goodman and Hsu [19] generate instruction sequences that are easier to allocate

than those produced by a basic List Scheduler. Their List Scheduling adaptation

uses two different heuristics: Code Scheduling for Pipeline processors (CSP) and

Code Scheduling to minimize Register usage (CSR). CSP maximizes instruction level

parallelism and leads to shorter schedules that are difficult to allocate. CSR, on the

other hand, reduces the allocation work at the expense of longer schedules. While

the List Scheduling algorithm builds the sequence, it keeps track of the number of

physical registers used by the sequence. If the number of needed registers (or “register

pressure”) is low, the algorithm uses CSP. If the register pressure gets too high, the

algorithm uses CSR. This two-focus composite heuristic is effective and led to several

variations of Goodman’s cooperative scheduler [6, 12, 31].

Goodman’s approach still needs a separate register allocation pass. Typically,

allocation recreates many of the same structures used by the scheduling algorithm.

Leveraging this observation, Cutcutache and Wong [13] fold together List Scheduling

with Linear Scan register allocation [36, 41]. Their focus was on decreasing

compilation time of embedded compilation. By reusing the same structures, their
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algorithm generates both an instruction sequence and a register allocation faster than

as two separate tasks.

Like Goodman, Win and Wong [45] integrate scheduling with allocation. They

use an iterative approach that builds a fully allocated sequence, then evaluates its

resource usage. If some resource is overused the heuristic is adjusted via instruction

weights and a new allocated sequence is created. This process continues until a

valid schedule is constructed. This technique is very similar to Joslin and Clements

[25] Squeaky Wheel Optimization, with one important distinction. Win and Wong

iterate until a valid schedule is constructed, then stop. Joslin and Clements, on the

other-hand, iterate a specified number of times keeping the best schedule as the result.

2.3. Search-Based Optimization

Win’s integrated scheduler is an example of search-based scheduling. The other

instruction schedulers built a single, valid sequence and stop. Win’s approach builds

several sequences and stops only when it finds a valid schedule. That is, it searches

for a solution but it does not perform any optimization.

Search-based optimization considers many valid solutions. The best solution

found is used as the final result. Unlike construction algorithms, search-based

optimization needs an evaluation function.

Instruction Scheduling favors shorter valid schedules. With this evaluation

function, a naive search-based optimization algorithm could try to enumerate every

possible schedule favoring the valid schedule with the shortest execution time. On

the plus side, this algorithm is guaranteed to find all optimum sequences. However,

this approach is infeasible. There are |V |! sequences where V is the set of instructions
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in the DG. As discussed above, limiting the search to just the valid schedules is also

infeasible. We must reduce or prune the search space further.

Malik et al. [29] generate optimum schedules using a pruning technique called

branch-and-bound. The algorithm systematically generates each possible valid

sequence. When a partially completed sequence is longer than the best sequences

seen so far it gives up on the solution. Since the incomplete solution is already worse

than the best seen, there is no point in completing it. Further, we know that any

solution that shares this prefix will be suboptimal. This saves more than just the time

to complete just the one candidate. It can prune large portions of solution space.

The main problem with branch-and-bound in this domain is that we must

construct most of the instruction sequences before they can be shown suboptimal.

That is, we save some but not a lot of time. Malik found that their scheduler took

nearly two hours to schedule the Spec CPU200 benchmark suite. “While such long

compile times would not be tolerable in everyday use, these times are well within

acceptable limits when compiling for software libraries, embedded applications, or

final release builds”[29].

Both exhaustive search and branch-and-bound are optimal search algorithms.

During execution they construct a proof of optimality. The exhaustive search

algorithm shows that all other solutions are inferior. Branch-and-bound is a bit

more sophisticated. It shows that some early decisions lead to large numbers of poor

solutions without actually constructing them. However, both of these techniques take

too much time.

There are many search-based optimization algorithms, all of which share certain

properties. For example, we can categorize algorithms based on the extent to which

they explore the solution space. Another important property is completeness. Search
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algorithms like those described above work through the solution space in a systematic

fashion eventually finding the optimum solutions. An alternative approach would

be to generate solutions randomly, possibly building the same solution many times.

Given enough time, complete algorithms are guaranteed find the optimum solutions,

but non-systematic algorithms tend to be simpler. They do not need to order the

solution space nor keep track of what has been seen before.

In addition to the properties described above, different algorithms depend

differently on heuristic functions. A heuristic is a “rule of thumb” that has proved

useful in the past. Heuristics work well for domains where problems share some

underlying similarities. In some cases, heuristic search algorithms can still offer proofs

that their results are optimal. However, this is not possible in all cases. Often the

best that can be claimed is that the solution is within some bound of an optimal

solution.

Some algorithms search through heuristic space rather than solution space.

These metaheuristic algorithms produce solutions indirectly. Instead of assuming

some underlying similarity between problems, these algorithms develop an effective

heuristic function for each problem individually. Each heuristic change is evaluated

by constructing then evaluating the corresponding solution. The evaluation function

further tunes the heuristic.

Not all algorithms are heuristically focused. Local search views solution space

as a graph. Each valid solution is a vertex. Edges indicate which solutions are close

to others. That is, edges define the local neighborhood of a solution. Morphing

one solution into one of its neighbors is relatively easy. Local search starts at some

solution, possibly heuristically generated, then moves to neighbors looking for a better

solution.
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Often local search algorithms employ some technique that keeps them from

exploring the same few solutions repeatedly. For example, Tabu Search keeps a

bounded list of “visited” solutions [18]. The local exploration cannot revisit these

solutions again.

In this thesis we apply and evaluate three search-based optimization algorithms.

A full description of each algorithm is provided in Chapter IV. Limited Discrepancy

Search (LDS) is a heuristically directed complete search algorithm [22]. It uses the

heuristic function to focus its search effort toward one area of solution space. Unlike

List Scheduling, LDS is free to deviate from the heuristic to consider more than just

one solution. To keep compilation time low, LDS explores a very small portion of

the search space. However, when the problems are small enough, LDS’s completeness

allows it to search exhaustively and produce one optimum solution.

Squeaky Wheel Optimization (SWO) is a metaheuristic algorithm. It alternates

between building an instruction sequence and constructing a new heuristic function.

Each iteration attempts to tune the heuristic function toward better solutions.

However, its nonsystematic approach means that even for very small problems there

is no guarantee that an optimum solution will be generated.

Iterative Flattening (IFlat) [9] is a local search algorithm. IFlat is different

from the algorithms we consider. It constructs a schedule and not just an instruction

sequence. That is, IFlat assigns a start time to each instruction. Further, IFlat focuses

on resource conflicts instead of DG dependencies. The initial solution is constructed

by randomly resolving conflicts until a valid solution is constructed. Then, the local

neighborhood is explored. Like the construction of the initial solution, neighborhood

exploration is random. That is, IFlat is a nonsystematic local search algorithm that

employs no techniques to prevent reconsideration of candidates.
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2.4. Summary

This chapter has introduced and discussed compiler code generation. Generally

speaking, all three major code generation tasks are NP-Complete problems. The

Instruction Scheduling task is further divided into two subtasks: block selection and

scheduling. Block selection identifies and collects a piece of the program to schedule

together. The size and shape of scheduling blocks is an active area of research on

its own. However, we are interested in the scheduling algorithm. The simplest

effective block size is the basic block and this is the block selection scheme we will

use throughout the remainder of this work.

Compilers have generally used a simple heuristically driven scheduling algorithm

called List Scheduling. This one-pass algorithm is fast and, depending on the heuristic

function, effective at generating efficient instruction sequences. However, Instruction

Scheduling is an NP-Complete optimization problem. As such a simple one-pass

algorithm cannot guarantee an optimal solution.5

We introduced search-based optimization and three ways to describe the

algorithms. Further, we briefly introduced three algorithms that we will evaluate

as scheduling algorithms for compiler code generation. That is, we propose to build

and evaluate three basic block search-based Instruction Scheduling algorithms.

5This, of course, assumes P 6= NP . However, even if P = NP , a linear solution to Instruction
Scheduling is unlikely.
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CHAPTER III

THE SCHEDULING PROBLEM

This chapter introduces several formal problem statements that capture the

details of Instruction Scheduling. These problems are similar to classic Job Shop

scheduling. Job Shop scheduling is a source of initial intuition, but there are

significant differences between Instruction Scheduling and Job Shop scheduling. These

differences all relate to resources.

Job Shop resources fit nicely into two categories: capacity resources and

reservoir resources. Capacity resources model tools and machines that are in use

throughout the execution of a task. When the task is complete, these resources are

immediately available. Reservoir resources, on the other hand, model work product

and consumable items. Rivets and bolts are perfect examples. Some tasks produce

these resources adding them to the reservoir or buffer. Other tasks consume these

resources. As long as the buffer is nonempty, the consuming tasks can be scheduled.

These models capture the resource behavior of a Job Shop, but fail to model CPU

resources accurately.

The basic CPU resources are functional units and registers. Functional units

contain computational logic like arithmetic units and floating-point units. Modern

machines have several parallel functional units. At first glance, functional units

appear like capacity resources but this is not the case. Functional units are pipelined.

That is, each unit can start executing a new operation at each clock cycle. Rather

than capturing the resource throughout the execution of an instruction, like capacity

resources, the unit is only busy when the instruction starts or is dispatched.
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Registers also behave unlike either of the Job Shop resources. Before an

instruction can execute, all of its input data or operands must be available. These

operands are usually the result of some other instructions. At first glance, it appears

that the instruction that generates a value is the producer and the using instruction

is the consumer of a reservoir resource. However, unlike rivets and bolts, which are

interchangeable, the data defined by one instruction is very different from the data

defined by another. The using instruction must have access to the right data, not

just some data. Further, each datum takes storage space. Specifically, the defined

data are stored in a limited set of registers that are busy until all using instruction

have been dispatched.

The resource usage models are different from those in Job Shop scheduling.

However, the two problem spaces share a great deal (e.g., parallel machines, latencies,

and dependencies). Much of the computational complexity of Instruction Scheduling

comes directly from these elements of Job Shop scheduling. In fact, we will reduce

from classic scheduling problems to show that Instruction Scheduling is NP-Complete.

The remainder of this chapter is organized in the following manner. Section 3.1

presents the basic, register-unaware scheduling problem. This is the problem

formulation addressed by most scheduling algorithms. Section 3.2 introduces special

purpose registers and the corresponding scheduling problem. Section 3.3 considers

the limited number of registers and the associated problem statement. Section 3.4

analyzes the complexity of this problem, showing it NP-Complete. Finally, Section 3.5

contains a summary and concluding remarks.
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3.1. Basic Instruction Scheduling

Instruction scheduling is a variant of the resource constrained scheduling

problem. As described above, the resources are functional units and registers. At the

most basic level, the scheduler completely ignores the register limitations. Instead, it

is assumed that the register set is unbounded. This assumption allows schedulers to

focus on functional unit usage alone.

Modern processors are equipped with several parallel function units. Each

functional unit is pipelined, allowing each to execute multiple instructions

simultaneously. However, each pipeline can start at most one instruction in each

clock cycle.

It is tempting to cast basic instruction scheduling as a special case of Job Shop

scheduling where each task has unit latency. This approach does not work. Latencies

are still important to the scheduling problem. While each operation uses a dispatching

resource, the data it generates takes time. A dependent operation cannot start until

the necessary data are available. For example, the SQRT instruction in Figure 2.3

takes 14 cycles to execute. Although it takes a single dispatch resource, the dependent

DIV instruction cannot start until SQRT finishes 14 cycles later. This kind of data

relationship is a kind of inter-instruction dependency.

There are two types of instruction dependencies. Primarily, instructions depend

on the data produced by others. However, some dependencies enforce a particular

execution order. For example, consider an increment instruction, INC, that modifies

its single operand. That is, INC is destructive. If it shares its operand with another

instruction, say ADD, then it is important that ADD is executed before INC. There

is an order dependency between ADD and INC.
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There is one additional complication that is worth noting. Superscalar

processors, processors with more than one pipeline, honor scalar semantics. That

is, the processor may execute two or more instructions in parallel but it will ensure

that the effects are identical to serial execution. In the case where ADD and INC

share an operand, both could be dispatched at the same time, but INC must appear

second in instruction sequence. A schedule alone is not enough to generate a valid

program.

Together the two types of dependencies make up one partial order, ≺. We will

use the notation ≺d to denote a data dependency and ≺o to denote an order

dependency. These two dependency types define two different problems: sequencing

and scheduling. The scheduling problem is concerned with execution times and

efficiencies. The sequencing problem focuses on program correctness. We use a

combination of an instruction sequence and instruction schedule called a totally

ordered schedule. That is, a solution to the scheduling problem is the pair (σ,<)

where σ : V → N maps instructions to start times1 and < is a total order on V such

that

x < y ⇒ σ(x) ≤ σ(y).

With this notation we can present the following formal instruction scheduling

problem statement:

[IS1] Basic Instruction Scheduling

INSTANCE: a set of operations V , two compatible partial orders ≺d and ≺o, latencies

l : V → N+, dispatch limit (or number of parallel pipelines) P , and deadline D.

1We use N to denote the set of natural integers.
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QUESTION: is there a totally ordered schedule (σ,<), such that:

p ≺o q ⇒ p < q (3.1)

p ≺d q ⇒ σ(p) + l(p) ≤ σ(q) (3.2)

0 ≤ c < D ⇒ |σ−1(c)| ≤ P (3.3)

max
v∈V

(σ(v) + l(v)) ≤ D (3.4)

Most of the constraints in IS1 follow directly from the above discussion: 3.1 ensures

that all order dependencies are respected, 3.2 ensures enough time for operations to

produce data, 3.3 enforces the functional unit dispatch limit, and 3.4 answers the

fundamental question.

Most practical schedulers focus on effectively and efficiently solving IS1. In

isolation, IS1 is missing important practical constraints defined by the hardware. We

have already acknowledged that IS1 ignores the register limit: register management

is left to a later compiler component. However, not all register assignments can be

safely ignored; special purpose registers must be considered by the scheduler.

3.2. Special Purpose Registers

Most production hardware has some sort of special purpose registers. For

example, MIPS has registers LO andHI that store the results of integer multiplication

and division, Intel x86, ARM, and many other processors use one or more flags

registers that store the results of comparisons. Of these special purpose registers,

Intel’s x86 flags register is the most difficult to schedule.

The flags register in the x86 instruction set stores the result of a comparison

operations like CMP. CMP sets the flags to indicate the arithmetic relationship
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between its two operands. For example, if comparing two equal operands, then CMP

sets bits in the flags register to show this relationship. Usage of the flags register

is illustrated in Figure 3.1. In the assembly fragment, the CMP operation sets the

flags register and the JE jumps to the label end if when the flags register shows that

the last comparison was equal, skipping the body of the if -statement. There is no

explicit link between the CMP instruction and the JE instruction in the assembly

fragment. The flags register is an implied operand for these operations: an output

operand for CMP and an input operand to JE. If the flags register were set by just

a few operations, scheduling would be relatively simple. However, this is not always

the case.

At first glance, the assembly fragment in Figure 3.1b appears equivalent to that

of Figure 3.2a. However, the ADD instruction sets the flags register, overwriting the

value set by CMP. ADD is not alone, many of the x86 integer operations set the flags

register as a side effect. These operations implicitly compare their result with zero.

In this fragment the results of the CMP instruction are unused. The actual behavior

is like the source in Figure 3.2b, which is significantly different from Figure 3.1a.

Valid solutions must ensure that the data stored in each special purpose register

is available to the correct using instruction. Before we can define the formal constraint

we need a few definitions.

Each processor has a set of special purpose registers, F . For each register f ∈ F ,

let Definef ⊆ V denote the operations in V that define f and Usef : V → 2V the set

of operations that use the value in f defined by each operation in V . Further, these
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x + = 1 ;
i f ( y ! = z ) {

. . .
}
e nd i f :

(a) Source

x = ADD x , 1
CMP y , z
JE e nd i f
. . .

e n d i f :

(b) Assembly

FIGURE 3.1. The C code fragment in (a) could be translated to the assembly
fragment in (b). Note that the body of the if statement is elided in both fragments.

CMP y , z
x = ADD x , 1

JE e nd i f
. . .

e n d i f :

(a) Assembly

y = = z ;
x + = 1 ;
i f ( x != 0) {

. . .
}
e nd i f :

(b) Source

FIGURE 3.2. Incorrect schedule for Figure 3.1 and the actual corresponding source
fragment.

sets satisfy the following constraints:

d 6∈ Definef ⇒ Usef (d) = ∅ (3.5)

d ∈ Definef , u ∈ Usef (d)⇒ d ≺d u (3.6)

Constraint 3.5 prevents special purpose data dependencies on operations that do

not set a special purpose register and 3.6 ensures that if a special purpose register

dependency exists, it is encoded in the edges of the graph. We now have the support

necessary to ensure that a totally ordered schedule satisfies the special purpose register

constraints.

Given a total order <, we can keep track of instructions that need data stored

in a special purpose register at the dispatch point of each instruction. Considering
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an instruction a ∈ V the set

⋃
p<a

Usef (p) \ {p|p < a}

contains all of the instructions that are sequenced at or after a that need the data

stored in register f . If a sets f (i.e., a ∈ Definef ), then this set must either be empty

or it must be only {a}. If it is empty, then a is safe to define f . If it is the set

{a}, then a itself uses the value in f to compute the new value. This presentation

considers just one instruction’s effect on the special purpose register. If we verify that

this is true for all instructions that set the register, then the ordering is valid with

respect to this one spanning resource.

We can now generate the following formal problem statement.

[IS2] Instruction Scheduling with Special Purpose Registers

INSTANCE: in addition to the inputs to IS1, (V,≺d ,≺o , l, P,D), a set of special

purpose registers F , special purpose register defining sets Definef ⊆ V , and usage

functions Usef : Definef → 2V .

QUESTION: is there a totally ordered schedule, σ : V → N and < that satisfies all

of the constraints of IS1 and

f ∈ F, a ∈ Definef ⇒

(⋃
p<a

Usef (p) \ {p|p < a}

)
⊆ {a} (3.7)

The new constraint, 3.7, ensures that data stored in each special purpose register is

preserved until any operation that needs the data has been dispatched.

There are two intuitive interpretations of 3.7. The first is that a valid solution

cannot order an operation in Definef between any define-use pair of f , like CMP
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and JE.2 The alternate interpretation is instructions in Definef are barriers. Any

define-use pair must be scheduled both before, or both after, the barrier operation.

In Figure 3.1b, ADD is the barrier operation. Since ADD cannot be scheduled after

JE, otherwise it may not be executed, both CMP and JE must be sequenced after

ADD. This barrier idea is essential for the proof that IS2 is NP-Hard (see Section 3.4).

IS2 is essential to correct compiler output. However, compilers that use IS2

as their problem definition still require a separate register allocation pass through

the program. This separation of scheduling/sequencing from allocation simplifies the

compiler implementation, but limits the effectiveness of both operations.

3.3. Limited Registers

The scheduler tries to schedule as many operations concurrently as possible,

leveraging the parallel functional units. However, the instruction level parallelism

requires the availability of more data; the operands of all of the executing instruction

must be available. This makes register allocation more difficult. When the allocator

runs out of registers, data is moved to memory. This temporarily frees a register for

some other purpose. Moving data to memory is comparatively slow.

Consider a well optimized solution to IS2 that requires too many registers to

effectively allocate. The register allocator will insert instructions that move data

between registers and memory. The net effect of these moves may be a program that

executes more slowly than a sub-optimal solution to IS2.

There are two strategies for allocation aware scheduling. More common is

cooperative scheduling, which is register usage or register pressure sensitive. The

second is an integrated scheduler/allocator that generates a schedule and register

2We use the term pair here rather loosely. There could be several users of that defined value.
This is the case where |Usef (x)| > 1.
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allocation simultaneously. This section develops problem statements for both

approaches.

3.3.1. Cooperative Scheduling

Cooperative schedulers monitor the number of registers needed by the schedule.

Just like special purpose registers, the data stored in each register must be held until

all operations that use the data have executed.

However, unlike special purpose registers that are defined within the scheduling

problem or basic block, some registers hold data at basic-block entry. These are input

data to the block. Similarly, some data are held in registers at basic-block exit; the

block’s results. Input and output data may be expressed as unschedulable, virtual

operations. Let I define the set of input virtual operations, let O define the sets of

output virtual operations, and let V̄ = I ∪O ∪ V .

The set of data dependencies includes input data on the left and output data on

the right. That is,

≺d ⊆ (I ∪ V )× (O ∪ V ) .

We can define Use as

Use(p) = {q|p ≺d q} ⊆ (O ∪ V ) .

Given a sequence, <, we can measure the number of registers needed by the

sequence. Using the above definitions:

Pressure(p) = |{q| (q ≤ p ∨ q ∈ I) ∧ (∃r ∈ Use(q), r ∈ O ∨ p < r)}| .

That is, register pressure at p is the number of data defining instructions that are

separated from one or more using instructions by p.
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With this definition of register pressure we can describe the cooperative

scheduling problem formally.

[IS3] Cooperative Instruction Scheduling

INSTANCE: Same as IS2 except the set of operations is V̄ = I∪O∪V , and a register

limit R.

QUESTION: is there a totally ordered schedule, σ : V → N and < that satisfies the

constraint of IS2 and

∀p ∈ V ⇒ Pressure(p) ≤ R (3.8)

Constraint 3.8 ensures that the number of registers needed to hold the produced

data never exceeds the limit, R. This constraint is enough for cooperative scheduling.

Generally, registers are interchangeable and the allocator is free to choose any physical

assignment. However, simply measuring the total register pressure is insufficient for

practical compilers and preassigned registers.

3.3.2. Integrated Scheduling

The formulation of IS3 assumes that all general purpose registers are

interchangeable. However, this is not the case. Some instructions are tied to specific

registers. ARM’s branch-with-link instruction, BL, stores the return address in

register R14 and Intel x86’s integer divide uses registers EDX and EAX as implied

input and output operands.

At first glance, preassigned and special purpose registers appear to be the same.

Unlike special purpose registers, preassigned registers can be used for other purposes.

For example, the EAX and EDX registers can be used as operands other instructions
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(e.g., ADD and MOV). It is just a few instructions, like IDIV, that require the use

of these specific registers.

Preassigned registers are not limited to instruction set idiosyncrasies, but also

part of the execution environment. Traditionally, function arguments and return

values are passed in memory. The calling code stores the values to their assigned

location.3 Accessing memory is relatively slow. In modern systems, arguments and

return values are stored in registers. These locations are set by published standards.

For example, the execution convention for 64-bit Intel x86 places the first three

integer-sized arguments in RDI, RSI, and RDX and it places the first two return

values in RAX and RDX. Notice that RDX is used for both input and output. This

double-duty may require some register juggling.

An integrated scheduler and allocator generates a totally ordered schedule and

a register assignment, A : V̄ → R where R is the set of hardware registers. The

register assignment must honor all of the preassigned registers: hardware and compiler

assigned. Additionally, the register assignment creates the same register availability

problems as special purpose registers. We can extend Define and Use to include

general purpose registers.

Definer = A−1(r)

User(v) =


Use(v) if A(v) = r

∅ otherwise.

3In languages like C and Pascal, arguments are stored in main memory locations relative to the
execution stack. FORTRAN stores arguments in compiler-assigned, fixed memory locations.

32



With these extensions, we can now formally describe the Integrated Instruction

Scheduling problem.

[IS4] Integrated Instruction Scheduling

INSTANCE: In addition to the inputs to IS2, a set of general purpose registers R, an

initial register assignment A∗ : V ′ → R (where V ′ ⊆ V ),

QUESTION: is there a totally ordered schedule, σ : V → N and <, and total register

assignment A : V → R that satisfies the constraints of IS2 and

A∗(v) = r ⇒ A(v) = r (3.9)

r ∈ R, a ∈ Definer ⇒

(⋃
p<a

User(p) \ {p|p < a}

)
⊆ {a} (3.10)

Constraint 3.9 ensures that A honors the pre-assigned registers. 3.10 places the same

define-use limits on the general purpose registers that 3.8 places on special purpose

registers. That is, it ensures that the data defined by one operation remains in the

register until all operations that use that data are executed.

3.4. Problem Complexity

This chapter has introduced four variants of instruction scheduling. This section

will show that each is an NP-Complete problem. The reduction strategy is illustrated

in Figure 3.3. We begin with IS1.

Claim 1. IS1 is NP-Hard.

Proof. This proof is by reduction from the Precedence Constraint Scheduling

presented by Garey and Johnson [17, pp. 239], which was proved NP-Complete by

Ullman [42] using a reduction from SAT3.

[SS9] Precedence Constrained Scheduling
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IS41RCS

FIGURE 3.3. Reduction outline showing Instruction Scheduling NP-complete.

INSTANCE: a set T of tasks, each having length l(t) = 1, a number m ∈ N+ of

processors, a partial order l on T , and a deadline D ∈ N+.

QUESTION: is there an m-processor schedule σ for T such that:

pl q ⇒ σ(p) + l(p) ≤ σ(q) (3.11)

0 ≤ c < D ⇒ |σ−1(c)| ≤ m (3.12)

∀t ∈ T . σ(t) + l(t) ≤ D (3.13)

Precedences are guaranteed by 3.11, 3.12 ensures that at mostmmachines are utilized

at any time, and the overall deadline is enforced by 3.13.

Given an instance of SS9, we can construct an instance of IS1 by setting V = T ,

≺d = l, ≺o = ∅, P = m, with the same latencies and deadline. It remains to be

shown that IS1 answers yes exactly when the answer to the SS9 problem is yes. If

there is a schedule for the SS9 problem, then it supports 3.11, 3.12, and 3.13. These

three constraints are equivalent to 3.2, 3.3, and 3.4 of IS1. Since≺o = ∅, 3.1 is always

satisfied. Thus, IS1 will answer yes if SS9 answers yes. Conversely, if IS1 is yes, then

the four constraints are satisfied, 3.1 trivially. By the same equivalences described

above, the three constraints of SS9 are satisfied. Thus IS1 answer yes only for those

problem instances that SS9 answers yes. Therefore, SS9 ≤p IS1 and, according to

Ullman [42], SAT3 ≤p SS9, proving IS1 is NP-Hard.
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While it is sound, this proof only shows that the general form of IS1 is NP-Hard.

Ullman’s reduction from SAT3 to SS9 requires P proportional to the number of clauses

in the SAT3 instance. However, practical compilers target specific hardware or a

closely related family of hardware. These systems have a fixed number of pipelines,

not an unbounded number. Garey and Johnson [17] noted this in their discussion of

SS9, “[this problem] can be solved in polynomial time if m=2. . . Complexity remains

open for all fixed m ≥ 3 when l is arbitrary.” This leaves the practical complexity

of ISP with a fixed P in a dubious state.

Returning to Figure 3.3, this establishes the edges from SAT3 to SS9, thanks to

Ullman, and from SS9 to IS1.

Proving the edge from IS1 to IS2 is straightforward, as IS1 is a sub-problem is

IS2. That is, constraining IS2 with F = ∅, we are left with IS1 exactly (3.7 is trivially

satisfied). However, this leaves the NP-Hardness of IS2 in the same dubious state as

IS1. We can make a stronger claim about the complexity of IS2.

Claim 2. IS2 is NP-Hard with bounded P , F , and l.

Proof. The proof is by reduction from a special case of Resource Constrained Schedule

called 1RCS (defined formally below). The 1RCS problem comes from the domain

of Job Shop Scheduling. Like our Instruction Scheduling problems, 1RCS has a set

of tasks with precedences. The special case has only two machines that can perform

the tasks and a single shared resource that is used by some of the tasks. At most one

task can use the shared resource at any one time; this property is what makes 1RCS

difficult.

35



Formally, 1RCS is defined as follows:

[1RCS] One-Resource Constraint Scheduling

INSTANCE: a set T of tasks, a partial order l on T , a set of resource use tasks

R ⊆ T , and a dead line D.

QUESTION: is there a schedule τ for T such that:

pl q ⇒ τ(p) < τ(q) (3.14)

0 ≤ c < D ⇒ |τ−1(c)| ≤ 2 (3.15)

0 ≤ c < D ⇒ |R ∩ τ−1(c)| ≤ 1 (3.16)

∀t ∈ T τ(t) < D (3.17)

Much of this problem formulation is from Garey and Johnson [17]. The original

problem is from Ullman [43] where it is proved NP-Complete.

Constraint 3.14 requires that the schedule, τ , honors the precedences contained

in the partial order l. Constraint 3.15 prevents the schedule from needing more than

two machines at any time point. Constraint 3.16 ensures that at most one task can

use the shared resource at any one time. Finally, 3.17 requires that all tasks are

scheduled before the deadline.

Notice that at any time in a valid schedule there are five possible task patterns:

1. No tasks are scheduled

2. One task is scheduled that uses the resource

3. One task is scheduled that does not use the resource

4. Two tasks are scheduled that do not use the resource
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5. Two tasks are scheduled where one does and one does not use the resource

The missing sixth case is where two tasks are scheduled that both use the resource.

This is not valid since there is only one shared resource and it is prevented by 3.16.

From an instance of 1RCS we will construct an instance of IS2 as follows:

– (V ): For each t ∈ T , add three instructions, t1, t2, and t3. Add {Bi|0 ≤ i ≤ D}

(for the deadline D of the 1RCS problem).

– (≺d): For p, q ∈ T and p l q, then p3 ≺d q1. For t ∈ T , t1 ≺d t2 ≺d t3. For

0 ≤ i < D, Bi ≺d Bi+1.

– (≺o): Empty.

– (l): For t ∈ T , l(t1) = l(t3) = 1. If t ∈ R, then l(t2) = 2. Otherwise l(t2) = 5.

For 0 ≤ i < D, l(Bi) = 8 and l(BD) = 1.

– (P ): The dispatch limit P = 1.

– (D): The deadline for the IS2 problem is 1 + 8D.

– (F ): Three special purpose registers x, y, z.

– (Definex): For all t ∈ T , t1 ∈ Definex. For 0 ≤ i ≤ D, Bi ∈ Definex.

– (Definey): For all t ∈ T , t2 ∈ Definey. For 0 ≤ i ≤ D, Bi ∈ Definey.

– (Definez): For all t ∈ T , t2 ∈ Definez. For 0 ≤ i ≤ D, Bi ∈ Definez.

– (Usex): For all t ∈ T , Usex(t1) = t2).

– (Usey): If t ∈ R, Usey(t2) = t3.

– (Usez): If t 6∈ R, Usez(t2) = t3.
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The Bis must be scheduled at σ(Bi) = 8i. Otherwise the latencies would cause

the last BD to be scheduled past the deadline. Since each Bi defines each of the

three special purpose registers and the three operations for each task have a special

purpose define-use relationship, all three operations must be scheduled between two

Bis. For example, for any t ∈ T , if t1 were scheduled before some Bi and t2 were

scheduled after Bi, t2 would loose access to t1’s definition of x. This would violate

IS2’s Constraint 3.7.

Between any two Bi and Bi+1 we are left with five scheduling patterns. Table 3.1

illustrates the five possible patterns.4 Notice that these five patterns correspond

exactly to the five patterns described above for 1RCS. If a schedule exists for IS2,

we can construct a schedule if 1RCS by mapping the patterns in Table 3.1 to the

patterns for 1RCS. Conversely, given a solution to 1RCS, we can construct a solution

to IS2 by the inverse mapping.

To show that the dependencies in 1RCS are enforced correctly in IS2 consider any

two tasks p, q ∈ T where pl q. By inspection of Table 3.1 we see that σ(p3) > σ(q1)

when p and q are scheduled between the same barrier instructions, Bi and Bi+1.

This ensures σ(p) < σ(Bi) < σ(q) < σ(Bi). Thus the IS2 formulation honors the

dependencies of 1RCS.

Finally, both construction of the IS2 instance and conversion of the answer back

to 1RCS can be done in polynomial time. Ullman [43] reduced SAT3 to 1RCS. Hence,

IS2 is NP-Hard with P , F , and l bounded.

This proves the edges in Figure 3.3 left of IS2. The edges from IS2 to IS3 and IS4

are easily shown since IS2 is a sub-problem of both. That is, IS3 adds 3.8 to IS2.

Given an instance of IS2, we can construct an instance of IS3 with R = |V |. In this

4The Type 3) pattern includes any right-shifting of the three operations.
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Type 8i 8i+ 1 8i+ 2 8i+ 3 8i+ 4 8i+ 5 8i+ 6 8i+ 7 8i+ 8

1) Bi Bi+1

2) Bi r1 r2 r3 Bi+1

3) Bi p1 p2 p3 Bi+1

4) Bi p1 p2 q1 p3 q2 q3 Bi+1

5) Bi r1 r2 q1 q2 q3 r3 Bi+1

x z

x y

x
y

x
y

x

z
x y

TABLE 3.1. The five possible partial schedules for the 1RCS problem converted to
IS2 with p, q, r ∈ T , p, q 6∈ R, and r ∈ R. Arrows indicate the define-use relationship
between operations by special purpose register.

case 3.8 is always satisfied and the solutions are identical. The same is true for IS4,

let A∗ = ∅, R = V , and A(v) = v. Both 3.9 and 3.10 are trivially satisfied.

We have established that all four scheduling problems are NP-Hard. There are

several options for showing that the four problems are NP-Complete. The simplest is

showing that a solution, σ and<, is verifiable in polynomial-time. By inspection, all of

the solution constraints are easily verifiable in polynomial-time. Alternatively, basic

blocks are linear. We could simply execute the schedule and verify the constraints.

Claim 3. IS1, IS2, IS3, and IS4 are NP-Complete.

3.5. Summary

This chapter has developed four formal problems statements that capture the

complexities of instruction scheduling. At the most basic level, instruction scheduling

and Job Shop scheduling are similar, differing primarily in resource usage models.

The problem statements presented above are each formulated as decision

problems. With these formulations, we proved each NP-Complete. However, we
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are more interested in the optimization problem. That is, what totally ordered

schedule has the minimum deadline? Three of these problems, IS1, IS2, and IS4, are

in FPNP[log n].5 That is, a program can produce an optimum totally ordered schedule

in polynomial time by calling an NP-oracle a logarithmic number of times.6 Problem

IS3 is different in that it is a multi-objective optimization problem.

Rather than a single value, IS3 optimizes over both D and R. These two values

compete with each other. Rather than a single optimum value, a solution to IS3 is

a set of values, that are all Pareto optimal. Each solution is superior to all other

members of the set by either D or P . That is,

∀s ∈ S ⇒ ∀t ∈ S, t = s ∨D(s) < D(t) ∨ P (s) < P (t).

This puts IS3 in the slightly broader complexity class of FPNP . That is, polynomial

time with a polynomial number of inquires to an NP-oracle.

Generally speaking, any of these complexity classes is too hard to solve to

completion; unless, of course, P = NP. Given that exact solutions are sometimes

impractical, we are justified in exploring a search-based approach to instruction

scheduling.

5To truly be FPNP[log n] we must bound instructions latencies by a polynomial of the input size.

6The algorithm to solve the optimization problem is a binary-search through deadlines until the
NP-oracle answers no for D − 1 and yes to D.
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CHAPTER IV

SEARCH-BASED OPTIMIZATION

Search-based optimization algorithms acknowledge a certain level of uncertainty

or intractability of solution domains. Rather than investing in more complicated

domain models, these algorithms probe through the set of possible solutions actively

seeking better results. Some search algorithms depend heavily on a well tuned

heuristic function. These algorithms leverage similarities between the problems to

direct the search toward promising areas of the solution space. Other algorithms

assume little similarity between problem instances. These algorithms probe around

the search space developing a problem-specific heuristic function. Finally, some

algorithms do not use heuristics at all. These algorithms assume very little about the

solution space or, rather, they assume that any meaningful heuristic functions are

themselves intractable. These techniques tend to construct many candidate solutions

and employ efficient evaluation algorithms to find the best results.

In this chapter we will explore one search technique from each of the algorithm

classifications described above. Limited Discrepancy Search (LDS) uses a well-tuned

heuristic function to guide schedule construction. The heuristic pushes construction

toward specific areas of the search space but the algorithm explores more than a single

solution. Squeaky Wheel Optimization (SWO) focuses its attention on the difficult-

to-schedule tasks, effectively discovering a heuristic function tuned for the specific

scheduling problem. Finally, Iterative Flattening (IFlat) does not use a heuristic

function at all. Instead, it focuses its attention on resource-heavy points within a

schedule. By resolving resource violations, IFlat initially builds a valid solution. It

then explores similar solutions by creating then resolving new resource conflicts.
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While the focus of this thesis is Search-Based Instruction Scheduling, we begin

by describing the ubiquitous List Scheduling algorithm.

4.1. List Scheduling

List Scheduling is the de facto standard Instruction Scheduling algorithm.

Despite its name it is actually an instruction sequencer. That is, it generates a

valid sequence but it does not schedule the instructions’ start times.1 List Scheduling

is an adaptation of the topological sorting algorithm by Kahn [26]. The algorithm for

list scheduling is shown in Figure 4.1.

List Scheduling gets its name from the ready list or set in this description. This

set contains the instructions that are “ready” to be sequenced. The ready set invariant

is

∀r ∈ ready , p ∈ preds(r), r 6∈ S ∧ p ∈ S .

We abuse notation here by using the list S as an operand to the set operator ∈.

The invariant is initially established at line 2 by adding all instructions without

predecessors. Since S is empty and these instructions have no predecessors, the

invariant is trivially true. Lines 8 and 11 maintain the invariant. This implementation

keeps a count of unsequenced predecessors for each instruction, P . When an

instruction is added to the sequence, the P value is decremented for each of that

instruction’s successors. When the P count for some instruction, v , is exhausted, all

of its predecessors are in S , and v is added to the ready set.

1List Scheduling could be extended to assign start times, but the affects these times have on the
remainder of the schedule are generally not used.
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List-Schedule(G = (V,≺), <)

1 For each v ∈ V , P (v)← | preds(v)|
2 ready ← {v|v ∈ V ∧ preds(v) = ∅}
3 S ← []
4 while ready 6= ∅
5 do choose v from ready minimal by <
6 S ← S : v
7 ready ←ready\{v}
8 for w ∈ succ(v)
9 do P (w)← P (w)− 1
10 if P (w) = 0
11 then ready ← ready ∪{w}
12 return S

FIGURE 4.1. Naive List Scheduling Algorithm

The sequence, S , is built incrementally by moving one instruction from the ready

set to S . The sequence invariant is the constraint

S = 〈〉] ∨
(
S = 〈Tav〉 ∧ preds(v) ⊆ T

)
.

Again, we abuse set notation by using the list T as an operand to ⊆. This invariant

is maintained initially by setting S to the empty list. It is maintained at line 6 by

appending an element of the ready set, v . Since v was in the ready set, the ready set

invariant ensures S ’s invariant is maintained.

The main loop invariant is the combination of the ready set invariant and the

partial sequence invariant. What remains is to show that when the main loop exits, S

contains a valid and complete sequence of G. The loop terminates when the ready set

is empty. If S were incomplete then there are some instructions that were never added

to the ready set. These instructions have predecessors that were never sequenced.

Since G is finite, this implies that there is a cycle in G. But, G is an acyclic directed
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graph so this cannot be the case. Finally, since after each instruction is added to S

the sequenced invariant holds, the completed S is valid and complete.

Topological Sort’s runtime complexity is well known. The inner loop considers

each edges exactly once. That is, The inner loop executes once for each edge. The

outer loop executes exactly once for each vertex. Assuming that the rest of the

operations within the loop are constant time, the sorting algorithm has complexity

O(|V | + | ≺ |), linear in the size of the input. For shorthand, let n = |V | + | ≺ |.

This gives us O(n). However, selecting the minimal element from the ready set is not

necessarily constant time.

If the heuristic is static, meaning that it does not depend on the partially created

sequences, then the ready set can be implemented as a priority queue. Operations

on a priority queue generally take O(log n) time. Depending on implementation, it

could be O(log n) insert, or O(log n) remove-min, or some combination of both. Since

each instruction is inserted and removed exactly once from the priority queue, these

details are unimportant. What is important is that, when using a priority queue, list

scheduling has runtime O(n log |V |) = O(n log n).

There are two details that must be addressed. First, not all heuristics functions

are static. Some examine the partially constructed sequence when choosing an

instruction from the ready set. For example, the dynamic critical path heuristic gives

priority to instructions on the critical path given the timing of the partial sequence.

In the worst case, these heuristics preclude a simple priority queue and a full scan of

the ready set may be needed. Further, calculating the heuristic may be a complex

task. For these types of heuristics, list scheduling takes time O(n2h) where h is the

time-complexity of the heuristic function.
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The second problem is resource constraints. Since list scheduling is simply a

sequencer, the dispatch limit is unaddressed. The actual schedule is determined by

the CPU at execution time. Internally, the CPU uses register assignments to track

dependencies. If the data needed by one instruction is still being computed, the

instruction is delayed. While List Scheduling can ignore the instruction schedule, it

must still manage special purpose registers.

We have established that sequencing with special purpose registers is an NP-

Complete problem. A simple, one-pass, heuristically-greedy scheduler is insufficient.

Schedulers in practical compilers get around this issue by altering the scheduling

problem. Typically, this involves saving the results of some operations to main

memory to be restored later or regenerating the data by duplicating the defining

instruction. The second approach effectively de-optimizes the schedule.

Modifying the scheduling problem presents a whole new optimization problem.

For this evaluation, we do not alter the scheduling problem. Instead, we have

expanded list scheduling to track special-purpose register usage. A set Statef is

maintained for each special purpose register. When an instruction, v , that defines a

special purpose register, f , is moved from ready to S , Statef = Usef (v). However,

if the data stored in f is needed by an unsequenced instruction, then adding v to S

is invalid. Stated another way, S extended with v is valid if either v 6∈ Definef or

Statef ⊆ {v}.

Selecting an instruction from ready is now a little more complicated. Rather

than simply choose the heuristically minimum instruction in ready , the algorithm

chooses the heuristically minimum instruction in ready , v , such that Sa v is valid. If

there is no such instruction, the algorithm fails. We extend the Naive List Scheduler
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to manage a single special purpose registers, shown in Figure 4.2. Extending the

algorithm to include multiple special purpose registers is straightforward.

The runtime complexity of the special purpose register aware List Scheduler

is different from the original algorithm. Choosing v is more difficult than a simple

priority queue operation. In the worst case, the entire queue must be searched. This is

an O(n) operation that is invoked once for each instruction. The extended algorithm

is now O(n2h) where h is complexity of the heuristic function. For our purposes we

assume that the heuristic runs in constant time. For static heuristics, this is not an

unreasonable constraint.

Before we move on to search-based instruction scheduling, we make one further

extension to list scheduling: backtracking. Rather than simply failing when there is

no valid candidate instruction in the ready set, backtracking enables the algorithm

to retract a decision and try an alternative. Consider the scheduling problem shown

in Figure 4.3. This very simple problem has three instructions with C depending on

both A and B . Additionally, both A and B define a special purpose register but C

depends only on A’s definition; this is illustrated by the bold edge between C and A.

The List Scheduling algorithm presented above fails to sequence this problem if it uses

a heuristic that favors A over B . Initially the ready list contains A and B . Following

the heuristic, A is moved from the ready list to S . Now only B is ready but B cannot

be added to S . That would overwrite A’s definition of the special purpose register.

With the addition of backtracking the algorithm can move A back into the ready set

and choose B . This decision leads to the only valid sequence B , A, C .

We extend List Scheduling with backtracking for two reasons. First, backtracking

enables List Scheduling to sequence any solvable scheduling problem. This puts List

Scheduling on an equal footing with the search-based schedulers described below.
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List-Schedule(G = (V,≺), <)

1 For each v ∈ V , P (v)← | preds(v)|
2 ready ← {v|v ∈ V ∧ preds(v) = ∅}
3 S ← []
4 Statef ←∅
5 while ready 6= ∅
6 do choose v from ready minimal by < s.t. Definef (v)⇒ Statef ⊆ {v}

If no such v , return FAIL
7 S ← S : v
8 Statef ←(Statef \{v}) ∪ Usef (v)
9 ready ←ready\{v}
10 for w ∈ succ(v)
11 do P (w)← P (w)− 1
12 if P (w) = 0
13 then ready ← ready ∪{w}
14 return S

FIGURE 4.2. Special Purpose Register Aware List Scheduling Algorithm

A

C

B

FIGURE 4.3. Scheduling Problem with Special Purposes Register conflict.

Second, it provides a gentle introduction to the algorithmic layout of the search-based

schedulers.

Figure 4.4 illustrates the backtracking version of List Scheduling. Unlike the

previous descriptions, this presentation is recursive rather than iterative. This allows

us to save the backtracking information in the call stack rather than an explicit

structure.

There are a few things to notice about this presentation. First, there are three

returns: Lines 3, 9, and 10. The return on Line 3 corresponds to the final, successful

return in the iterative presentation. That is, the ready set is empty and S is a
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List-Schedule-Rec(G = (V,≺), <, S , Statef )

1 ready ← {v|v ∈ V ∧ preds(v) ⊂ S}
2 if ready = ∅
3 then return S
4 for v ∈ ready increasing by <
5 do if Definef (v)⇒ Statef ⊆ {v}
6 then NewStatef ← (Statef \{v}) ∪ Usef (v)
7 Sln ← List-Schedule-Rec(G,<, (S : v),NewStatef )
8 if Sln 6= FAIL
9 then return Sln
10 return FAIL

List-Schedule(G = (V,≺), <)

1 return List-Schedule-Rec(G, <, [], ∅)

FIGURE 4.4. List Scheduling Algorithm with Backtracking

valid sequence. The return on Line 10 corresponds to the failure return on Line 6 of

Figure 4.2. The return on Line 9 is peerless in the iterative presentation. This return

corresponds to the while-loop iterations. More accurately, it corresponds to leaving

the while-loop and discarding the saved information related to backtracking.

Each recursive call to List-Schedule-Rec, Line 7, moves an instruction from

the ready set to the sequences S . While heuristically preferred, adding the selected

instruction to the sequence may cause the remaining problem to be invalid.

If there is a valid sequence, List Scheduling with Backtracking will eventually find

it. This could take time exponential in the size of G in the wost case. This, however,

is somewhat unsatisfying. In practice backtracking is only necessary in about 0.5%

of the benchmark problems. That is to say, 99.5% of the time, this algorithm has

runtime O(n2).

Adding backtracking to List Scheduling turns the one-pass construction

algorithm into a systematic search algorithm. However, it performs no optimization.
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Like Win and Wong’s [45] scheduler, this algorithm simply runs until it finds one

valid solution.

4.2. Limited Discrepancy Search

Good heuristic functions significantly improve the quality of the solutions

generated by algorithms like List Scheduling. Well tuned heuristics are effective but

they cannot overcome the inherent complexities of Instruction Scheduling.

Harvey and Ginsberg [22] found that, while heuristics may not lead directly to

the optimum solution, the heuristic solution is often close to the optimum. Closeness,

in this context, refers to how many times the heuristic selected the wrong instruction

from the ready set. LDS uses this observation to direct exploration through the

scheduling search space. Rather than simply following the heuristics, LDS will

construct alternative schedules by occasionally not following the heuristic selection.

Ignoring the heuristic is called a discrepancy. A parameter to LDS is the maximum

number of discrepancies to use when generating alternative solutions.

Consider the search space illustrated in Figure 4.5. In the figure, each decision

point is binary. That is, | ready | = 2 at each point except for the leaves of the tree.

This binary branching is for illustrative purposes only; in practice the branching factor

is larger than two. Say that at each decision point, the heuristic chooses the left-hand

edge at each internal node. List Scheduling would follow the left-most path to leaf g

and stop. Given a single discrepancy, LDS would explore leaves g, k, i, and h.

Harvey and Ginsberg’s LDS uses discrepancies as early as possible. In this

example, leaves are explored from k to g. The original LDS algorithm initially

searches the tree with no discrepancies, finding leaf g. It then searches the tree
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FIGURE 4.5. Limited Discrepancy Search search tree.

with one discrepancy, finding (k, i, h, g). It continues searching the tree with one

more discrepancy than the previous search until the entire tree is explored.

The original presentation of LDS searches for a valid solution. In this domain we

are looking for better schedules, not necessarily the best.2 Rather than follow Harvey

and Ginsberg’s increasing discrepancy approach, we fix the number of discrepancies

and search through the reachable portion of the tree in its entirety. In a production

scheduler, coupling Harvey and Ginsberg’s approach with a time-out may be effective.

The LDS scheduling algorithm is shown in Figure 4.6.3 This algorithm is similar

to List Scheduling with Backtracking. The differences begin at Line 8. This is where

the List Scheduling algorithm finished and returned its solution. If there are no

discrepancies available, D = 0, and LDS behaves the same. When discrepancies

are available, LDS constructs a new heuristic function with the selected instruction,

v , penalized (described below). This heuristic function is used to construct an

alternative solution via a second recursive call to LDS-Rec. In addition to the

new heuristic, this recursive call is given one fewer discrepancy and a new portion of

the search space is explored.

2As we discussed in the summary of Chapter III, in practice Instruction Schedules is not an
NP-Complete decision problem but an FPNP[log n] optimization problem.

3We overload the meaning of min to return the preferred solution. For Instruction Scheduling,
this is the solution with the shorter total execution time. As a tie breaker, solutions with lower
register pressure are preferred.
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LDS-Rec(G = (V,≺), <, D , S , Statef )

1 ready ← {v|v ∈ V ∧ preds(v) ⊂ S}
2 if ready = ∅
3 then return S
4 for v ∈ ready increasing by <
5 do if Definef (v)⇒ Statef ⊆ {v}
6 then NewStatef ← (Statef \{v}) ∪ Usef (v)
7 Sln ← LDS-Rec(G,<,D , (S : v),NewStatef )
8 if Sln 6= FAIL ∧ D > 0
9 then �←< with v penalized
10 Alt ← LDS-Rec(G,�,D −1, S , Statef )
11 if Alt 6= FAIL
12 then return min(Alt , Sln)
13 else return Sln
14 return FAIL

LDS(G = (V,≺), <, D)

1 return LDS-Rec(G, <, D , [], ∅)

FIGURE 4.6. Limited Discrepancy Search

There are many approaches to penalizing an instruction. We chose to adjust the

heuristic ordering by moving penalized instructions after non-penalized instructions.

Otherwise, the heuristic ordering is preserved. Effectively, we used several priority

queues. One queue is for non-penalized instruction, one for penalized instruction,

another for doubly-penalized instruction, and so on. Instructions are pulled from the

non-penalized queue first.

Unlike List Scheduling, LDS can construct several alternative solutions. We

must ask: how many solutions does LDS generate given D discrepancies? Returning

to the search tree representation, each leaf denotes a full sequence and each interior

node a decision point. For any scheduling problem graph, G = (V,≺), the height

of the corresponding decision tree is H = |V |. Each node corresponds to extending
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the partial solution with an additional instruction. For this analysis, we assume that

every interior node in the tree has at least D choices; this is not always the case. So

the question restated is, how many leaves are reachable by LDS with D discrepancies?

Each leaf has a unique path from the root. Any leaf explored by LDS has at

most D discrepancies at any of the H − 1 interior levels in the tree. That is, the

number of generated sequences is at most

D∑
d=0

(
(H − 1)

d

)
≤ (H)D = O

(
|V |D

)
= O(nD). (4.1)

In the degenerative case, D = 0, LDS produces just one sequence, the same solution

as List Scheduling.

Creating those solutions is not without its costs. Considering the runtime

complexity of LDS, the worst case answer is easy: because it is built on the

backtracking variant of List Scheduling, LDS’s runtime is exponential in the size

of the input.4 Just like List Scheduling with Backtracking, this answer is somewhat

unsatisfying but we can make the same assumptions.

Assume that backtracking is rare and can be safely ignored. That is, there is an

instruction v such that Definef (v) =⇒ Statef ⊆ {v} and the recursive call never

returns FAIL. The runtime complexity of each individual call to LDS-Rec is O(|V |)

since scanning the entire ready set may be required (e.g., the only valid instruction is

heuristically last in the ready set). Each recursive call to LDS-Rec corresponds to

an edge in the search tree. So, the complexity of LDS is proportional to the number

of edges in the search tree.

4Note that this exponential runtime is an artifact of the underlying algorithm and is not an
attribute of LDS with a fixed number of discrepancies.
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Except for the root, each node is reached by traversing an edge. So, we are

equally interested in the number of unique nodes visited in the search. By the same

arguments for Equation 4.1, we can enumerate the number of nodes in each level of

search tree using the same summation. For the total tree, we have

H−1∑
h=0

D∑
d=0

(
h

d

)
≤

H−1∑
h=0

(h+ 1)D =
H∑

h=0

(h)D = O
(
HD+1

)
= O

(
|V |D+1

)
. (4.2)

On average, each edge of the search tree takes O(|V |) time for a overall total of

O(|V |D+1|V |) = O(nD+2) time.

Again, if we consider the degenerative case where D = 0, LDS takes time O(n2),

the same as List Scheduling, as expected.

Limited Discrepancy Search is our first search-based scheduler. It relies on the

provided heuristic. It searches around the heuristic path, bounded only by the specific

discrepancy limit. Not all search algorithms rely quite so heavily on a heuristic as

LDS.

4.3. Squeaky Wheel Optimization

Joslin and Clements [25] separated solution construction from heuristic selection.

Following the adage, “the squeaky wheel gets the grease,” Squeaky Wheel

Optimization constructs a solution, analyzes the solution for problem tasks, and

adjusts the heuristic ranking of the problem or “squeaky” tasks. It then builds a

new solution and continues. The three major components are a simple constructor,

solution analyzer, and a prioritizer.

Figure 4.7 illustrates the SWO view of scheduling. The left-hand space is the set

of all solutions. (In this case, solution space is all legal instruction sequences.) The
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FIGURE 4.7. Squeaky Wheel Optimization’s view of solution vs priority space.

right-hand space is the set of all instruction orders or List Scheduling heuristics.5 The

set of heuristics is larger than the set of solutions. There are |V |! possible instruction

orderings but, due to the dependencies, there are far fewer legal sequences. The three

components of SWO map points from one space to points in the other.

The constructor maps an ordering from priority space to a solution in solution

space. For Instruction Scheduling, orderings are List Scheduling heuristics specialized

for a specific problem instance. The analyzer and prioritizer map a solution back to

priority/heuristic space.

It is important to note that the constructor, List Scheduling, maps priorities

onto solutions. That is, every solution is reachable from some priority. This is easily

shown. Choose a valid solution. Since this is a total ordering of the instructions

it corresponds directly to an element of priority space. Using that heuristic, List

Scheduling will produce the original solution. The first instruction pulled from the

ready set is the first instruction in the heuristic, the second instruction is the second,

and so on. The main loop in List Scheduling chooses the next instruction in the

priority.

5Strictly speaking, priority space is just the set of static heuristics. Heuristics like Dynamic
Critical Path depend on the partially constructed solution to order tasks and comprise a much
larger set.
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A similar claim cannot be made with the analyzer. Since heuristic space is larger

than solution space, analyze/prioritize cannot be onto.

Our SWO scheduling algorithm is shown in Figure 4.8. The prioritizer is a total

order, <, on the instructions and a heuristic ordering. As described above, we use

List Scheduling as the simple constructor. Once a full sequence is constructed, the

Blame function evaluates the sequence for problem instructions and generates a new

prioritization. A new solution is generated and the search continues.

The Blame function is responsible for evaluating a sequence and finding the

squeaky wheels. It makes a single pass over the solution finding cases where one

instruction is delayed by another. The delayed instruction’s priority is decreased and

the delaying instruction’s priority is increased. This tries to move the predecessor

earlier in the next sequence and the successor later.

There is some flexibility in the initial prioritization. A random order or any of the

List Scheduling heuristics can be used. We evaluated both initialization approaches

but found that a meaningful seed heuristic performed better.

We are left with the same questions for SWO that we had for LDS: how many

sequences are considered and how long does it take to generate those solutions?

There is a simple answer to the first question. Each call to List-Schedule

generates a single sequence. This call is made iters times. However, there is no

guarantee that each sequence is unique (consider G a linked list). So, SWO generates

at most iters sequences.

Only the question of runtime complexity remains. Analyzing a sequence

involves a single pass through the sequence and verifying latencies. This takes time

O(|V |+ | ≺ |) = O(n). Constructing a heuristic is little more than assigning a ranking

to each operation, an O(n) operation. As discussed above, a reasonable expected
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SWO(G = (V,≺), iters)
1 construct <̇ a total order on G.
2 sln ← List-Schedule(G, [], <̇)
3 for i← 2 to iters
4 do sln ← min (sln,List-Schedule(G, [],Blame (sln))
5 return sln

FIGURE 4.8. Squeaky-Wheel

runtime complexity for List-Scheduling is O(n2). This clearly dominates the other

two operations. Then SWO has runtime O(iters ×n2) when List Scheduling does not

backtrack.

SWO builds upon List Scheduling by focusing its search in priority-space or

rather heuristic space. Joslin and Clements [25] describes the behavior as:

A point in the solution space represents a potential solution to the

problem, and a corresponding point in priority space, derived by analyzing

the solution, is an attempt to capture information about the structure of

the search space in the vicinity of the solution.

The intuition is that small moves in priority space correspond to large, coordinated

moves in solution space.

While not the view of Joslin and Clements, SWO can be thought of as a heuristic

discovering algorithm where the heuristic is “tuned” for the specific problem. Contrast

this to LDS which uses the heuristic to focus the search.

Not all search algorithms are built around a heuristic function or heuristic

functions.
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4.4. Iterative Flattening

The last search-based scheduler we consider is Iterative Flattening. It was

developed by Cesta et al. [9] for multi-capacity scheduling problems, a similar but

more difficult problem than Instruction Scheduling. IFlat focuses on resource conflicts

rather than the heuristic or priorities of LDS and SWO. That is, rather than construct

a schedule from start to finish, IFlat finds and resolves resource conflicts.

Figure 4.9 shows the IFlat algorithm. First notice that IFlat works with

schedules and not sequences.6 The supporting function Flatten initially schedules

each node at its earliest start time. EST makes no attempt to satisfy resource

constraints, it simply puts each instruction at the earliest point in the schedule that

satisfies the dependencies in G. This will probably violate some resource constraints

(i.e., dispatch limits and special purpose register usage). Conflicts scans the

solution, collecting these conflicts.

A single conflict is selected randomly from among the set of conflicts that

Conflicts identifies. From this conflict a Minimum Conflict Set (MCS) is chosen.

An MCS is a set of tasks, instruction in this case, that violates some resource

limit. Further, the MCS is constructed such that an edge added between any two

instructions resolves the conflict. For our formulation of Instruction Scheduling there

are only two resources to consider: dispatch limit and special purpose registers.

The dispatch resource, P , limits the number of instructions that can be started at

any point in the schedule. Figure 4.10a shows a partial schedule with five instructions

scheduled in the second clock cycle. Assuming that P = 3, this schedule violates the

dispatch limit. Choosing any four instructions from the set gives a MCS for this

6We overload min further to operate on schedules.
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IFlat(G = (V,≺), iters)
1 σ, G = Flatten(G)
2 for i← 2 to iters
3 do σ ← min (σ,Flatten(Relax(G)))
4 return σ

Flatten(G = (V,≺)))
1 σ ← EST(G)
2 cfl ← Conflicts(σ)
3 while cfl 6= ∅
4 do choose c ∈ cfl
5 choose mcs from c
6 G ← Resolve(G ,mcs)
7 σ ← EST(G)
8 cfl ← Conflicts(σ)
9 return σ, G

(Continued)

FIGURE 4.9. Iterative Flattening

violation. We arbitrarily picked the top four instructions. Adding an edge between

any two of these instructions resolves the conflict.

For special purpose registers, the MCS is composed of two instructions that define

the same special purpose register and one of the instructions scheduled between the

other defining instruction and one or more of its using instructions. This is shown

in Figure 4.10b. Here the last (right most) instruction uses the definition of the first

but the middle instruction defines the same special purpose register. The MCS for

this resource violation is simply the two defining instructions. There are two possible

resolutions. First, we could add an edge from the first instruction to the second. This

would ensure that the second instruction is moved early in the schedule. Second,

we could add an edge from the second instruction to the last. This would move the
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EST(G = (V,≺))
1 For each v ∈ V , σ(v)← v’s earliest start time.
2 return σ

Relax(G = (V,≺))
1 crt ← {e|e ∈≺ and on a critical path}
2 art ← {e|e ∈≺ and added by Flatten}
3 rlx ← a few of (crt ∩ art)
4 G← (V, \ rlx )

Conflicts(σ)

1 disp ← {σ−1(c)|σ−1(c) > P}
2 spr ← {(p, q)|f ∈ F p, q ∈ Definef , p < q ∧ ∃r ∈ Usef (p), q < r}
3 return disp ∩ spr

FIGURE 4.9. Iterative Flattening

middle instruction after the using instruction. Assuming that neither edge will create

a cycle in the graph, either resolves the conflict.

Once the MCS is resolved, a new solution is generated by EST. More conflicts

are created and resolved. Eventually, the schedule is conflict free and the solution is

valid for both dependencies and resources. However, this is just a single schedule.

The search continues by removing some of the added edges. The procedure

Relax finds the critical paths in the modified G. Of the artificial edges added by

Flatten, some lie on a critical path. Relax removes a small number of these

dependencies and Flatten is given another chance to generate a schedule.

Like SWO, IFlat is a nonsystematic algorithm. It generates at most iters

candidate solutions. Since it is nonsystematic the same schedule can be generated

repeatedly.
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(a) An MCS for a
Dispatch violation

(b) An MCS for
a Special Purpose
Register violation

FIGURE 4.10. Example Minimum Conflict Sets

The question of runtime complexity remains. We will begin by analyzing

Flatten. There are four main subroutines: Conflicts, MCS construction,

Resolve, and EST.

Finding conflicts is a linear pass over the proposed schedule that counts the

number of instruction dispatched in each cycle and which instruction defined the

special purpose registers last. Conflicts has runtime O(|V |). MCS construction

is, in general, NP-Complete [9]. However, in this case, both types of conflicts allow

easy MCS construction; choosing P + 1 operations for dispatch limit violations or

choosing two defining instructions for special purpose register conflicts. We will call

MCS construction O(P ) or O(1) since P is a fixed parameter of the targeted hardware.

Finally, EST constructs an ordered schedule with each operation at its earliest start

time. This is isomorphic to longest-path finding, an O(n) operation. The real question

is how many conflicts there can be?

Flatten’s main loop continues until there are no more conflicts. There are

two types of conflicts that interest us: dispatch limits, and special purpose registers.

Resolving either type of conflict introduces a new edge into the graph. There can be

at most
(|V |

2

)
edges inserted before a cycle is introduced. This puts an upper bound

on the number of iterations of Flatten’s loop at O(|V |2) = O(n2). Given that
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Algorithm Schedules Expected Complexity
List-Scheduling 1 O (n2)
LDS O(|V |D) O

(
nD+2

)
SWO iters O (iters ×n2)
IFlat iters O (iters ×n3)

TABLE 4.1. Summary of scheduling algorithms and their complexity. Note: n =
|G| = |V |+ | ≺ |, D is the number of discrepancies, and iters is the fixed number of
iterations. Further, these results assume no backtracking by List Scheduling.

the longest running component of the algorithm is O(n), flatten has worst-case

complexity O(n3).

The runtime complexity of IFlat is composed of Flatten and Relax. Relax

must compute the critical path and remove a small number of edges from G. This

time is dominated by the critical path calculation, with a known time-complexity of

O(n). Given that IFlat is dominated by Flatten, IFlat’s runtime complexity is

O(iters ×n3).

4.5. Summary

This chapter introduced and analyzed the four scheduling algorithms: List

Scheduling, Limited Discrepancy Search, Squeaky Wheel Optimization, and Iterative

Flattening. These results are summarized in Table 4.1. In each case, the search-

based algorithms are more costly, from a runtime perspective, than List Scheduling.

However, each algorithm evaluates more than the single solution that List Scheduling

generates and should produce better solutions.
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CHAPTER V

EXPERIMENTAL RESULTS

In the previous two chapters we formally introduced instruction scheduling as a

resource constrained scheduling problem and we proved these problems NP-Complete.

We described four different instruction scheduling algorithms and gave an analysis of

both runtime complexity and number of solutions considered. This presentation is

theoretically sound, but without a experimental evaluation, it would be incomplete.

In this chapter we evaluate the scheduling algorithms on the SPEC CPU2006

benchmark suite. The evaluation criteria that we use are schedule length, scheduling

time, and register pressure. Additionally, we analyze instruction scheduling as a

multi-objective optimization problem and we show that no one scheduler is universally

superior to the others.

The following section introduces the evaluation metrics, benchmark problems,

and experimental platform. An outline of algorithm performance is given in

Section 5.1. Section 5.2 presents the success rates for the evaluated schedulers.

Section 5.3 evaluates the lengths of the generated schedules. Section 5.4 compares the

schedulers based on runtime. Section 5.5 presents a surprising comparison of register

pressures of the generated schedules. Section 5.6 considers instruction scheduling

as a multi-objective optimization problem and combines the results of the previous

few sections. We consider simulated execution in Section 5.7. Section 5.8 explores

a possible strategy that balances the costs and benefits of search-based scheduling

in a just-in-time context. Finally, Section 5.9 provides concluding discussion and

summarizes the material presented in this chapter.
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5.1. Measuring Performance

The Standard Performance Evaluation Corporation (SPEC) maintains a

collection of benchmark suites. Each suite targets a specific computer usage model

(e.g., power usage and email servers). The SPEC CPU2006 benchmark suite is a

collection of applications that represent typical, CPU-intensive computer usage. This

suite includes common applications like GCC and Perl as well as more scientific

programs like linear programming and laminar viscous flow modeling.

From this benchmark suite, we extracted 734,054 scheduling problems using

LLVM 2.7. These scheduling problems target the Intel Core 2 CPU. That is, we use

the Intel x86 64 instruction set and the Core 2 instruction latencies. We applied each

of the four scheduling algorithms to these problems with various search parameters

(i.e., iterations and discrepancies). These experiments were run on a 2.66 GHz Intel

Core 2 Duo (6700) CPU running Linux 2.6.32.

The question of how to measure an instruction scheduler’s performance is

complicated. On the one hand, the length of the generated schedule is important; after

all, we want efficient generated programs. On the other hand, we want the scheduler

itself to execute quickly. A long running scheduler adds to the overall compilation

time. However, these are not the only measures of scheduling performance.

Not all basic blocks are schedulable. The interactions between special purpose

registers can create implied cycles in the dependency graph. Even when the problem

does have a valid schedule, the constraints imposed by special purpose registers can

make it difficult to construct a valid schedule. This is especially true for the simple,

non-backtracking List Scheduling. So then, we must compare the algorithms based

on the percentage of solved scheduling problems.
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There are several reasons that an algorithm may fail to generate a schedule.

Some problems have no valid schedules. Others are simply too difficult for a simple

scheduler to find. The non-backtracking form of List Scheduling, for example, can

get “stuck” with a ready set full of unschedulable instructions. Contrast this with

the search-based approach which will eventually find a valid schedule but may, due

to time constraints, give up.

Failing to generate a schedule for a basic block, then, can happen for one of three

reasons: the problem has no valid solution, the algorithm reached a terminal state

without a valid schedule, or the algorithm timed out.

The three measures described above focus on the effectiveness of a scheduling

algorithm in isolation, but instruction scheduling is not the last compilation step.

After a valid schedule is generated, a separate register allocation pass assigns physical,

hardware registers to the data defined within the problem. These general purpose

registers are another limited resources. Typically, the CPU has only a few general

purpose registers. When the data demands of a schedule exceeded the available

physical registers, some data must be moved to memory. The allocator will insert

move instructions to copy data into memory to free up some registers for another

data assignment.

The same scheduling problem can have schedules that demand many physical

registers or few. The term register pressure describes the number of physical registers

needed to successfully allocate the schedule without spilling data to memory. High

pressure means the schedule needs more registers. We compare the scheduling

algorithms by measuring and comparing the register pressure of each generated

schedule.
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5.2. Success Rates

An instruction scheduler can fail to create a schedule for three reasons. Some

scheduling problems are simply not schedulable. Of the 734,054 basic blocks in the

benchmark suite, 2,107 have cycles in their dependency graphs implied by special

purpose usage.1 The remaining 731,947 scheduling problems have valid solutions.

These are the scheduling problems of interest for the remainder of this section.

The second failure mode is unique to the non-backtracking List Scheduling. List

Scheduling builds solutions one instruction at a time. Without the ability to retract

a decision, the algorithm can get caught with a non-empty ready set without any

valid instruction to schedule. That is, each instruction in the ready set violates a

special purpose register constraint. Of the 731,947 schedulable problems, the simple

non-backtracking List Scheduling finds solutions for 720,306 of the problem and the

non-backtracking List Scheduling fails to find a schedule for 11,641 basic blocks.2

The final failure condition is timeout. Scheduling problems range in difficulty

from the easy to the very hard. The most challenging problem instances require

several seconds to schedule. The scheduler is given a maximum time limit. Problems

that take longer than this limit are unscheduled and the algorithm is considered to

have failed.

Since timeout is a scheduling parameter, we are left without a single value, but

a range for each algorithm. Figure 5.1 shows the success rate for List Scheduling

for timeouts as high as 60 seconds. Increasing the timeout can only lead to more

1Unschedulable basic blocks are not a compiler error. In practical schedulers, the dependency
graph is modified to break implied cycles. These modifications define a separate search problem and
are outside of the scope of this work.

2Just like unschedulable basic blocks, this is not a compiler error. When trapped by early
mistakes, practical schedulers modify the dependency graphs.
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FIGURE 5.1. List Scheduling success rate by timeout limits

successfully scheduled problems—that is, the curves are non-decreasing. While there

appears to be a single line, the plot actually contains both the simple non-backtracking

List Scheduling as well as with backtracking. The addition of backtracking causes

little impact on the scheduling time but succeeds 0.62% more often. In both cases,

half of the scheduling problems succeed in less that five microseconds. At the upper

extreme, List Scheduling succeeds in 98.7% with 0.3 second timeout for the non-

backtracking variant and 99.4% with 0.5 seconds and backtracking.

List Scheduling constructs a single schedule. In this case, judging success or

failure is well defined. Except for the degenerative cases (e.g., LDS with zero

discrepancies) the meanings of success and failure for the search-based algorithms are

less clear. Consider LDS with one discrepancy on a very large scheduling problem. If

given enough time, LDS will construct O(|V |) schedules. If the algorithm times out

partway through the search, having considered fewer than this limit, did LDS fail?

The most liberal definition of success would say that if LDS builds a single schedule,
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then it succeeded. Conversely, the conservative definition would say that LDS failed

unless it runs to completion.3

The three search-based scheduling algorithms have tuning parameters:

discrepancies for LDS and iteration count for SW and IFlat. In each case, larger

values of this parameter subsume the search performed by the lower value. For

example, LDS with D > 0 discrepancies considers the same potential solutions as

LDS with D − 1 discrepancies, then builds more schedules. The same is true for

iteration counts for SW and IFlat. This subsumption property allows us to address

both the conservative and liberal definitions of success.

Consider the results for LDS shown in Figure 5.2. The simple List Scheduling

curve is plotted for comparison. Clearly LDS takes significantly more time that

List Scheduling. For almost any time-out where List Scheduling succeeds, LDS fails

even with no discrepancies (there is a small overlap in the 10−5 to 10−4 timeout

range). Looking at a 10−3 second timeout, LDS-2, the two-discrepancy scheduler,

conservatively succeeds on just 58% of the problems. If we use the liberal definition

of success, then LDS-2 succeeds on 91% of the problems, the same as LDS-0. For the

remainder of this chapter, we will use the conservative definition of success.

Given zero, one, and two discrepancies, LDS successfully schedules 99%, 95%

and 78% of the problems (respectively) with a timeout of 60 seconds. Approximately

half of the problems are scheduled with timeouts of 24, 25, and 450 microseconds for

LDS-0, LDS-1, and LDS-2 respectively.

The success curves for LDS roughly match those of List Scheduling shifted down

and right. Considering that LDS is an adaptation of List Scheduling, the similarities

of these curves are expected.

3This is where a practical compiler would use the exploration order described by Harvey and
Ginsberg [22] (see the discussion on page 51).
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FIGURE 5.2. LDS scheduling success rate by timeout limit

Like LDS, SW is built upon List Scheduling and the success curves for SW,

shown in Figure 5.3, have the same, log-sigmoid shape. The success curves shown

are for SW with one to five iterations. Like the curves for LDS, the List Scheduling

curve is added to ease comparison. SW succeeds for roughly half of the scheduling

problems in 20 to 70 microseconds. With the full 60 second timeout, SW eventually

succeeds in 99.3% of the problems for all five iteration counts.

Success rates for IFlat are a bit more interesting. Figure 5.4 shows the success

rates for IFlat with one to ten iteration counts. The one-iteration curve is similar to

List Scheduling and SW. However, once relaxations are applied, the problems divide

into two sets. A little more than half of the problems succeed with the same timeout

regardless of iterations. This implies that relaxation and flattening are fast and

expose few if any new conflicts. The problems that remain take more time to relax

and re-flatten. The assumption here is that the relaxation step exposes many new

conflicts. In either case, IFlat successfully schedules half of the scheduling problems

with a 14 microsecond timeout for one iteration and 17 microseconds for two to ten
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FIGURE 5.3. SW scheduling success rate by timeout limit

iterations. With the full 60 second timeout, IFlat successfully schedules 97% of the

scheduling problems. It achieves all of this in the first second of runtime.

With the possible exception of LDS and depending on the definition of success,

all of the search-based schedulers successfully schedule nearly all of the benchmark

scheduling problems. However, simply generating a schedule is not enough. We are

also interested in the quality of the generated schedules.

5.3. Schedule Length

Ultimately, the goal of search-based instruction scheduling is to generate shorter

schedules. We measured the length of schedules generated by the various algorithms

and compare the results against the schedules generated by List Scheduling. With a

60-second timeout, we compared the length of the generated schedules by each search-

based algorithm with various search parameters (e.g., iterations and discrepancy

counts) against the schedules generated by the simple List Scheduler.
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FIGURE 5.4. IFlat scheduling success rate by timeout limit

We limit the reported results to scheduling problems for which the search-based

algorithm and List Scheduling succeeded in generating valid schedules. We measure

schedule lengths by computing the makespan or total execution time of each problem

assuming x86 64 Core2 instruction latencies, special purpose register behavior and

number of pipelines.

Figure 5.5 compares the schedule lengths generated by LDS against those

generated by the simple List Scheduling algorithm. We added the identity function

(y = x) as a dashed line to aid in the comparison. Each problem is plotted with

the List Scheduling schedule length as the x-coordinate and the LDS schedule length

as the y-coordinate. Points below the diagonal indicate that LDS generates shorter

schedules. Points above the line indicate the LDS’s schedulers are longer.

Unsurprisingly, LDS-0 is essentially the same scheduler as List Scheduling and

the results in the first plot are generally on top of the diagonal line. The differences

shown in the first plot are simply the variation in heuristic tie-breaking. As the

number of discrepancies increases, more of the scheduling problems move below the
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FIGURE 5.5. Schedule length generated by List Scheduling (x-axis) vs LDS (y-axis)
for zero, one, and two discrepancies.

identity function, represented by the dashed-diagonal line. In other words, LDS-1

shows an improvement over LDS-0, and LDS-2 shows even greater improvement.

The solid lines in Figure 5.5 are the best-fit, Deming regression lines. For the

three plots, these lines are

f0(x) = (0.014± 0.017) + x (0.998± 0.003)

f1(x) = (0.177± 0.016) + x (0.944± 0.003)

f2(x) = (0.282± 0.017) + x (0.915± 0.003)

for LDS-0, LDS-1, and LDS-2 respectively. In all three cases, slope and intercept

ranges are for the 99.9% confidence interval. By these results, LDS-0 is roughly

equivalent to List Scheduling. This is an unsurprising result. Except for heuristic

tie-breaking, LDS-0 follows the same scheduling steps as List Scheduling.

The slope of the regression lines indicate that LDS-1 and LDS-2 both perform

better on larger scheduling problems than smaller problems. Schedule length is

roughly proportional to the number of instructions and LDS explores approximately

O(|V |D) schedules. With larger scheduling problems, LDS generates more schedules
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and chooses the best schedule from among the larger candidate pool. The consequence

is that LDS produces better schedules. LDS is the only search-based scheduler

evaluated with this non-linear exploration of scheduling space. Both SW and IFlat

generate one schedule per iteration.

Figure 5.6 shows the schedule length comparison plot for SW. The best-fit

regression lines added. The regression lines are

f1(x) = (0.030± 0.031) + x (0.995± 0.005)

f2(x) = (0.021± 0.024) + x (0.993± 0.004)

f5(x) = (0.002± 0.017) + x (0.996± 0.003)

for one, two, and five iterations respectively. Since SW-1 constructs a single schedule

using the seed heuristic ordering, we expect the regression line to approximate y = x.

This is what we see given the 99.9% confidence. Once the blame-prioritize-rebuild

cycle executes SW-2 and above, we see a slight decrease in the slope of the regression

line. However, the slopes for both SW-2 and SW-5 are below the diagonal but just

slightly.

Both LDS and SW construct schedules similarly to List Scheduling. This is

apparent from the previous two figures. IFlat builds schedules in a completely

different way. This is clearly shown in Figure 5.7 by the larger schedule length

variation. The best-fit regression lines are

f1(x) = (1.337± 0.198) + x (0.739± 0.031)

f5(x) = (1.313± 0.196) + x (0.731± 0.031)

f10(x) = (1.298± 0.187) + x (0.730± 0.030) .
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FIGURE 5.6. Schedule length generated by List Scheduling (x-axis) vs SW (y-axis)
for one, two, and five iterations.
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FIGURE 5.7. Schedule length generated by List Scheduling (x-axis) vs IFlat (y-axis)
for one, five, and ten iterations.

Again, these are the 99.9% confidence intervals. Note that the confidence intervals

for IFlat are ten times larger than the other schedulers.

Clearly IFlat performs better than List Scheduling, LDS, and SW when

considering just schedule length. It is also interesting to note that the slope of the

regression lines (except LDS-0 and SW-1) are less than one. These slopes indicate

that the search-based scheduling algorithms perform better on larger problems. These

larger problems may provide more opportunities for the search-based algorithms to

improve the generated schedules.
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Schedule length is critical, but not the only metric by which a scheduling

algorithm is judged. We must consider the time it takes to schedule each problem as

well.

5.4. Scheduling Time

While schedule length is ultimately the goal of search-based scheduling, it is not

the only criterion by which scheduling algorithms are measured. Total compilation

time is also a concern, since scheduling time contributes to compilation time. In this

section we compare the scheduling time of three search-based schedulers against the

simple, non-backtracking List Schedule.

Scheduling time is measured against the system’s monotonic clock. This timer

reports the wall-clock time, not the process’s CPU usage. CPU utilization timers

proved to be unstable when measuring instruction scheduling. CPU usage timers are

updated at the end of the OS’s quantum or CPU burst. Easy scheduling problems are

scheduled entirely within a single CPU burst. This causes the OS to estimate the CPU

usage for the entire problem and this estimate is too rough for these experiments. To

mitigate system load effects on the monotonic clock, these experiments were executed

on a dedicated multi-core, system and no unnecessary services were running.

For each experiment, we scheduled each problem using the simple List Scheduling

time as the x-coordinate and the search-based algorithm as the y-coordinate. Except

for the discrepancy count, nothing in the development of these algorithms involves

exponential relationships. Despite this, we have plotted these values on a log-scale to

provide a greater range of values and better visualization of the relationships between

the timing data.
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Figure 5.8 compares LDS against List Scheduling. We added a best-fit regression

line in the logarithmic domain. These regression lines translate to the following curves:

f0(x) = 0.841× x0.829

f1(x) = 3670× x1.469

f2(x) = 5 070 000× x2.039

for LDS-0, LDS-1, and LDS-2 respectively.

These plots show that in all three cases, LDS takes more time than List

Scheduling. The curve for LDS-0 is nearly linear. Since LDS-0 is essentially List

Scheduling with the search overhead, this nearly linear relationship is expected.

Adding a single discrepancy increases the number of generated schedules from

1 to O(|V |) and the runtime complexity increases form O(n2) to O(n3). We expect

the exponent for f1 to be at most 1.829, one more than the exponent of f0. We find

1.469, a little less than expected. This suggests that while LDS-1 could explore |V |

schedules, dependencies within the graph prevent LDS-1 from reaching this number.

With two discrepancies, LDS explores up to O(|V |2) schedules. Just like the step

from LDS-0 to LDS-1, we expect a similar increase in the exponent in f2. We find

2.039, which is a bit less than expected.

Like LDS, SW is built on List Scheduling and we expect the runtime behavior

of SW to be similar. Figure 5.9 contains the scheduling time comparison. The three
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FIGURE 5.8. Scheduling time use by List Scheduling (x-axis) vs LDS (y-axis) for
zero, one, and two discrepancies.

best-fit regression curves are

f1(x) = 0.427× x0.791

f2(x) = 1.657× x0.861

f5(x) = 8.224× x0.932

for one, two, and five iterations.

In all three cases, these curves will eventually cross the diagonal line. Since SW

uses List Scheduling to construct each candidate schedules, this would certainly not

be the case and the runtime of SW will always be above that of List Scheduling.

These curves show that the blame-prioritize-rebuild cycle overhead is mitigated when

applied to longer and more difficult to schedule problems.

Figure 5.10 shows the scheduling time comparison for IFlat against List

Scheduling for one, five, and ten iterations. The best-fit regression curves for these
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two, and five iterations.
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FIGURE 5.10. Schedule time use by List Scheduling (x-axis) vs IFlat (y-axis) for
one, five, and ten iterations.

plots are

f1(x) = 189 ∗ x1.314

f5(x) = 22140 ∗ x1.658

f10(x) = 565908 ∗ x1.910

for the one, five, and ten-iteration experiments respectively. IFlat takes more time to

schedule than List Scheduling and generally follows the same increases. Unlike LDS

and SW, IFlat appears to behave in two different ways.
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The one-iteration case appears to partition the scheduling problems into two

clusters. This trend continues with five iterations. With ten iterations, the two

clusters are clear. DBSCAN, a clustering algorithm from data mining [15], finds

these two major and several smaller clusters in the IFlat-10 data. The lower cluster

represents about two-thirds of the experiments and the upper cluster about one-third.

We fit curves to the two clusters that DBSCAN identified:

flower(x) = 0.00811 ∗ x0.512

fupper(x) = 1054 ∗ x1.299.

The exponent value of the lower cluster approaches the diagonal in much the same

way as the curves for SW-0 and SW-2. From this we draw the same conclusion: the

search overhead is mitigated by larger problems. The upper cluster is a different

story.

The upper curve’s exponent is greater than one and the regression moves away

from the diagonal as the problems get harder. This supports the assumptions that

we derived from the curves in Figure 5.4 that, for some problems, relaxation exposes

several new conflicts.

These scheduling-times support the runtime complexity analysis of the previous

chapter. The search-based algorithms take uniformly more time that list scheduling,

but tend to produce shorter schedules. Scheduling success is measured by more than

just length and time. How the schedules interact with the rest of the compilation

processes must also be considered.
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5.5. Register Pressure

While register allocation is typically a separate compiler task usually performed

after scheduling, the two tasks are not fully separable. Shorter schedules tend

to require more registers. These schedules tend to exploit more instruction

level parallelism—that is, have more instructions executing simultaneously. More

simultaneous operations mean more data on which to operate.

Register pressure is a function of the instruction sequences, <. At any point

in the sequence, the instantaneous register pressure is the number of instructions

sequenced before that point that define data used by instructions after that point.

Formally, we can partition V at v ∈ V into two sets:

Pv = {p ∈ V |p < v}

Sv = {s ∈ V |s = v ∨ v < s}.

The instantaneous register pressures at this point is

R(v) = | {d|d ∈ Pv ∧ ∃s ∈ Svs.t. (d, s) ∈ E ∧ l(d, s) > 0} |,

and the register pressure for the entire scheduling problem is

R(V ) = max
v∈V

R(v).

Strictly speaking, this is a lower-bound on the actual register pressure. We

exclude instructions that produce two values. For example, the Intel x86 integer-

divide instruction calculates the integer quotient and the remainder simultaneously.
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For allocation purposes, this under-estimate would be significant; for scheduling

method comparison, this measure is sufficient.

When comparing two different schedules, our search-based implementation

always chooses the schedule with the shorter length. However, given two schedules of

the same length, the algorithms prefer the schedule with the lowest register pressure.

In other words, there is a slight bias toward lower register pressures but not at the

expense of longer schedules.

The register pressure comparison of search-based schedules against List

Scheduling is shown in Figure 5.11. We focus solely on the more extreme versions of

the schedulers: LDS-2, SW-5, and IFlat-10. The following Deming regressions lines

are added to the plots:

fLDS(x) = −0.300 + x ∗ 0.959

fSW (x) = 0.385 + x ∗ 0.993

fIF lat(x) = 5.118 + x ∗ 1.112

These curves show that the register pressure of LDS tends to be lower than that of List

Scheduling. Further, the slope of the regression line is slightly less than unity. This

suggests that LDS can make better use of the available registers as the scheduling

problems become more complicated. However, LDS failed to schedule any of the

problems with register pressures above 80.

While LDS makes some headway with register pressure, SW performs about the

same as List Scheduling and IFlat performs rather poorly. In nearly every problem,

schedules generated by IFlat require significantly more registers than List Scheduling.
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FIGURE 5.11. Register pressure comparison of LDS-2, SW-5, and IFlat-10 against
List Scheduling

So far we have considered the three major metrics (time, length, and pressure)

independently. This is a myopic view of instruction scheduling. If the domain

demands fast scheduling, List Scheduling should be used; if it demands short

schedules, IFlat is preferred. A more pragmatic approach balances the strengths

and weaknesses of the various algorithms.

5.6. Multi-Objective Comparison

Schedule performance is more complicated than a one-dimensional comparison.

Comparing generated schedule lengths without considering the scheduling time or

register pressure only tells part of the story. Fundamentally, instruction scheduling

is a multi-objective optimization problem.

Multi-objective optimization accepts that there may not be one optimum

solution, but an entire set of optimal solutions. This set is called Pareto optimal.

Members of the Pareto optimal set are superior to all other solutions on at least one

objective function.

For Instruction Scheduling, there are three objectives: schedule length,

scheduling time, and register pressure. This creates a 3-D objective space with

81



the origin at the ideal point (short schedules, generated quickly, with low register

pressure). Rather than work in three dimensions, we will analyze the results using

two objectives at a time staring with length and time.

In order to compare the three algorithms, we limited the results to the 685,600

scheduling problems that were successfully scheduled by all experimental runs. This

represents a little more than 93% of the schedulable problems.

For each scheduling algorithm, we calculated the mean schedule length and mean

scheduling time. These results are shown in Figure 5.12. The y-axis is plotted on a

log-scale to compress the scheduling times vertically. Lines were added to visually

connect the same scheduling algorithm with different parameters; this should not

suggest that embedded continua exists.

As a two-objective problem, List Scheduling, SW-1, SW-2, and all of the IFlat

schedulers are among the Pareto optimal solutions. The LDS solutions are excluded

from the set because they are above and to the right of some other solutions. For

example, IFlat-1 produces shorter schedules in less time than either LDS-1 or LDS-2,

thus LDS-1 and LDS-2 are excluded.

Scheduling time and schedule length are the two primary objects to consider, but

register pressure does play a significant roll in code generation. This is especially true

for platforms with few general purpose registers. This interaction between scheduling

and register allocation is well studied. Bradlee et al. [6] found the relationship between

length and pressure follows

c+ d/x2

where c and d are constants set for the specific scheduling problem. To compare

scheduling algorithms, we consider the trend of the mean register pressures.
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FIGURE 5.12. Schedulers plotted by scheduling time vs schedule length
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We compared mean schedule length to mean register pressure and the results

are shown in Figure 5.13. A new Pareto optimal set is created when just focusing

on these two objectives. Here the optimal set includes LDS-2, and all of the IFlat

schedulers.

It is interesting to notice that the pressure trends for LDS and SW are contrary to

the results of Bradlee et al. [6]. Rather than tending to increase with shorter schedules,

the register pressure decreases. One possible explanation is that the comparison

between two candidate schedules uses register pressure as a secondary component. In

other words, the search algorithms always favor shorter schedules, but between two

schedules of the same length, the one with the lower pressure is chosen. Considering

that LDS-2 considers many candidate schedules, this slight preference in selection

appears to make a significant difference in the results.

When considering all three objective functions, we are left with a rather large

optimal set that includes all of the IFlat schedulers, List Scheduler, SW-1, SW-2,

LDS-1, and LDS-2.

In the end, we are comparing search-based scheduling to List Scheduling. These

data are shown in Table 5.1 as ratios compared to List Scheduling. We see that, on

average, LDS-2 takes 1810 times the scheduling time compared with List Scheduling,

but LDS-2 produces schedules that are nearly 4% shorter than List Scheduling and

that require 4% fewer registers.

These results summarize all of the scheduling problems on which all of the

schedulers succeeded. In Section 5.3 we found that the search-based schedulers

perform better on more difficult problems. Table 5.2 contains the same results for the

337,840 problems with more than 5 instructions. Here we see that IFlat-10 generates

schedules that are bout 7.2% shorter than List Scheduling.
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FIGURE 5.13. Register pressure (x-axis) vs schedule length (y-axis)

5.7. Simulated Execution

Comparing scheduling algorithms based on per-problem results is valuable, but

incomplete. As users of compiler technology, we are more interested in the effect

these schedulers have on the generated program. Stated another way, the presentation

above assumes that basic blocks are executed with equal probability. This is certainly

not the case.

We modified LLVM to insert instrumentation that logs invocation counts in to

the scheduling problems . This resulted in 3.4 trillion execution events covering about

64 thousand basic blocks.
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Method Time/List Length/List Registers/List
IFlat-1 27.6 0.959 1.038
IFlat-5 49.2 0.948 1.043
IFlat-10 73.5 0.945 1.043
LDS-0 4.78 1.000 1.000
LDS-1 76.9 0.973 0.976
LDS-2 1810 0.961 0.959
SW-1 3.39 1.000 1.000
SW-2 6.29 0.996 0.997
SW-5 14.8 0.996 0.996

TABLE 5.1. Scheduler Performances Proportional to List Scheduling.

Method Time/List Length/List Registers/List
IFlat-1 29.6 0.947 1.049
IFlat-5 52.8 0.932 1.054
IFlat-10 78.9 0.928 1.054
LDS-0 4.57 1.000 1.000
LDS-1 82.4 0.965 0.972
LDS-2 1950 0.950 0.952
SW-1 3.17 0.999 1.000
SW-2 6.03 0.995 0.996
SW-5 14.5 0.995 0.996

TABLE 5.2. Scheduler Performances Proportional to List Scheduling.

We simulated execution by multiplying the invocation counts of each basic block

by the schedule length generated by the various schedulers. These results are shown

in Table 5.3 relative to List Scheduling. The 99.9% confidence interval is ±0.01.

Here we see that the larger, more difficult to schedule basic blocks tend to be

executed more frequently than smaller blocks. This magnifies the effectiveness of

the search-based schedulers. Except for SW and LDS-0, the search based schedulers

significantly improve the performance of the generated program. However, these

blocks have not been allocated. The 15% speedup indicated for IFlat-10 would only

be realized on hardware with many general purpose registers.
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Method Time / List
IFlat-1 0.890
IFlat-5 0.860
IFlat-10 0.858
LDS-0 1.010
LDS-1 0.948
LDS-2 0.926
SW-1 0.998
SW-2 1.010
SW-5 1.009

TABLE 5.3. Simulated execution time relative to List Scheduling

Actually running these schedules would be the ultimate test. However, many

details are masked by the processor. For example, most modern hardware contains

out of order execution circuitry. This hardware feature reschedules the program at

execution time, essentially correcting or improving poorly constructed schedules.

Why are we interested in better schedules in the presence of out of order circuitry?

Out of order execution requires a large number of transistors and die real estate. In

some cases, like small embedded processors, the chip simply cannot support this

feature. More generally, if compilers generate schedules that depend less on out of

order execution, then those transistors and die real estate could be used for different

purposes (e.g., an additional pipeline or more L1 cache).

The purpose of this thesis is to answer the question: can search based scheduling

improve compiler code generation? At this point, evaluating these schedulers in a

practical compiler would add little to answering that question.

5.8. Just-In-Time Compilation

The results presented so far are most applicable to traditional, off-line

compilation. Separating compile-time from run-time makes compilation speed less
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critical. Even significant increases in compilation time can be justified by modest

performance improvements in the generated program when that program is executed

many times by many users. However, embedded or just-in-time compilers do not have

this luxury.

Dynamically compiled languages like Java, Python, and JavaScript compile

during execution time. Unlike off-line compilation, embedded compilers have access

to invocation specific profiling data. These data include block execution frequencies.

Initially the program is interpreted by the execution environment or virtual machine

(VM). While interpreting the program, the VM keeps a count of each block’s

executions. When this count passes a threshold, the VM compiles the block. All

future invocations execute the much faster compiled form. The VM amortizes the

compilation costs against the performance improvement of all future invocations of

the block. Ideally the overall performance effect is positive.

With the possible exception of very long-lived programs, replacing List

Scheduling with any of the search-based algorithms is probably a poor choice. For

example, using IFlat-10 increases compile time by 80 times while decreasing execution

time by 15%. To fully amortize the increases scheduling time the program’s execution

time needs to increase by about 535 times. This is a poor choice For short-lived

programs. However, this all-or-nothing approach is unnecessary.

Rather than use one algorithm for every block consider using two. List Scheduling

is used for the less active blocks and a search-based scheduler is used for the more

active blocks. Embedded compilers have access to block execution count data like

those shown in Figure A.4. We must ask: can this two-scheduler approach can

achieve some of the performance improvements of the pure search-based schedulers

with scheduling times closer to that of List Scheduling?
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To answer this question we combined List Scheduling and IFlat-10. Using the

data shown in Figure A.4 we schedule the most frequently executed blocks with IFlat

and the rest with List Scheduling. Scheduling time is reported proportionally to a

pure List Scheduling approach. Execution is measured by multiplying the length of

the generated schedule with block execution count. Like scheduling time, execution

time is reported proportionally. The results are shown in Figure 5.14.

Using IFlat-10 to schedule the top 3% most frequently executed blocks increases

scheduling time by a factor of five and reduces overall execution time by about 14%.

Reserving IFlat for the most frequent 1% increases scheduling time by just 20% and

increases performance by about 5%.

It is difficult to indicate exactly when a VM would choose to employ List

Scheduling and when it should opt for the more aggressive IFlat or other search-

based scheduler. However, using more than one scheduling algorithm seems effective

at increasing overall performance when using an embedded compiler. Further, by

providing an additional compilation parameter the VM gains additional control over

the expense and effectiveness of just-in-time compilation.

5.9. Summary

Each of the search-based instruction schedulers produces shorter schedules than

List Scheduling. This improvement is at the cost of significant increases in scheduling

time. Turning this extra scheduling time into better schedules, however, differs greatly

between the different schedulers.

LDS explores a large portion of the solution space. This contributes to the large

scheduling time and to the large scheduling improvements that it makes. Harvey and

Ginsberg’s [22] assumption that the heuristic is good, but not perfect at directing
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FIGURE 5.14. Two-Scheduler Scheduling Time vs Proportional Speedup

construction is clearly valid in the Instruction Scheduling domain. However, the

amount of work required to widen the search area makes LDS unattractive for any

application that requires fast compilation. In domains where register usage is more

important than compilation speed, LDS performs very well. This is despite the fact

that the experimental heuristics we used do not consider register pressure at all. It

is just the slight bias toward lower register pressure and the extent to which LDS

explores the solution space that reduces the register pressure of the solutions.

SW is much less computationally expensive than LDS, but it does not make

the same improvements to the generated schedules. This would imply that directing

instruction scheduling from priority or heuristic space is more difficult than expected.

SW’s non-systematic approach allows it to generate the same solution over and over.
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Generally, SW is applied to domains where priority space is smaller than solution

space. For task scheduling, where each task is given a specific start time, this is usually

the case. This allows the constructor to be one-to-one or it is nearly one-to-one. That

is, each prioritization leads to a unique solution. In this domain, however, solution

space is much smaller than priority space. We believe that this is what causes SW to

make a modest improvement in the first full cycle and then get stuck.

The success of IFlat is a bit surprising. Aside from conflict identification and

resolution, it has no embedded instruction scheduling knowledge. Conflicts are solved

randomly. Despite this uninformed approach, IFlat produces significantly shorter

solutions than any of the other algorithms explored. This is true when IFlat does no

search but just constructs a single solution. It is difficult to draw any other conclusion

than that reasoning about conflicts is superior to reasoning about dependencies. This

is not to say that IFlat’s successes are only because of its conflict resolution focus.

Each additional iteration builds upon the success of the previous solution. So the

local searching that IFlat does is advantageous, but it clearly starts with a very good

solution.

There is no one clear “winner” among the search-based schedulers. Each has

its advantages and disadvantages. Our multi-objective interpretation of instruction

scheduling let us identify the suite of schedulers that may be ideal for some domain.

This Pareto Optimal set includes instances of each of the implemented schedulers.

Only some of the SW instances are excluded from the set. Which scheduler to use

depends on the demands and expectations of the specific domain.
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CHAPTER VI

RELATED AND FUTURE WORK

Our problem description of Instruction Scheduling with Special Purpose

Registers appears to be unique. This is a bit surprising since including special purpose

registers in the problem description moves Instruction Scheduling from NP-Complete

with unbounded parameters (e.g., arbitrary latencies and number of pipelines) to NP-

Complete with tight bounds on the parameters. Usually, special purpose registers are

treated as an implementation detail.

A noteworthy exception is early work by Muchnick and Gibbons [32]. Their

scheduling algorithm is a post-compilation optimizer. Rather than compiling to a

binary executable, the compiler generates an assembly file. This file is read and the

Dependency Graph is recreated. Muchnick and Gibbons reschedule the basic blocks

using heuristics that are specifically designed for their target hardware, an early PA-

RISC. Since their input is a complete but unassembled program, physical registers

have already been assigned. The rescheduled program uses the same registers.

Further, the authors mention a PA-RISC special purpose register: the carry/borrow

bit. Muchnick and Gibbons [32] described their solution as:

Carry/borrow dependencies are handled specially in constructing the

dags, since carries and borrows are very frequently defined but only rarely

used. Serializing all carry/borrow definitions against each other would

be unduly constraining. Instead, a special subgraph is generated within

the dag for each instruction which uses a carry or borrow; the subgraph

includes all the instructions which must appear between the use and
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the corresponding definition (or the beginning of the basic block if no

definition is found in it).

This subgraph approach is similar to how our IFlat implementation handles SPRs.

For the basic Instruction Scheduling problem, List Scheduling reigns supreme.

Research based on List Scheduling generally falls into two categories. The first group

uses List Scheduling as a component in a larger scheduling algorithm. Generally these

algorithms manipulate the heuristic function or they annotate the dependency graph

that List Scheduling uses.

These algorithms try to learn the “correct” heuristic function for the specific

scheduling problem. Auyeung et al. [3] used several heuristics with List Scheduling.

They applied their approach to task scheduling, not instruction scheduling. However,

the two domains are closely related. They actively tune the relative weights of

these heuristics with a Genetic Algorithm (GA). Grajcar [20] use GA to develop

the heuristic ordering directly. Their approach is very similar to our SW scheduler.

Terada et al. [40] described SW as a form of GA with a population of one that

uses genetic engineering rather than cross-over and mutation as genetic operators.

They incorporated SW into a GA-based search algorithm. They found that GA+SW

performs better than GA alone after many generations. From their perspective, our

SW scheduler is a primitive GA algorithm. However, a full GA approach with a large

population and several genetic operations would significantly increase scheduling time.

Wang et al. [44] used an Ant System Optimization (AS) approach to heuristic

discovery [14]. Unlike GA, which considers a few samples from the population,

the agents in AS communicate with each other via a “pheromone” trail. This

communication channel enables AS to converge on a common solution more quickly

than a more general GA approach.

93



Russell et al. [37] applied Decision Tree Induction (DT) to learning List

Scheduling heuristics. Unlike the schedulers described above, DT develops a heuristic

off-line using training data. The learned heuristic is used directly by a List Scheduling

compiler. Since the training is done beforehand, compile time is greatly reduced

compared to the other AI schedulers.

The second type of List Scheduling research extends the basic algorithm with

additional functionality. For example, Goodman and Hsu [19] added a leader set to

List Scheduling. The leader set are ready instructions that have resource conflicts with

the partially generated schedule. That is, leaders are almost ready. Goodman and Hsu

use this approach to manage register usage while scheduling. Their scheduler solves

the Cooperative Scheduling problem. A second register allocation phase was still

needed. Others have built upon this basic design to solve the Integrated Scheduling

problem that simultaneously schedules instructions and assigns physical registers [6,

12, 13].

Moon and Ebcioğlu [30] adapt the core List Scheduling algorithm to maximize

Instruction Level Parallelism (ILP) on superscalar and VLIW systems with predicated

instructions. Predicated instructions only execute if the corresponding predicate

expression is true. For example, the x86 CMOV instructions move data but only if

the correct condition bits are set in the flags register. VLIW systems bundle several

instructions together. With predicated instructions, VLIW systems can effectively

execute both sides of an if-statement without branching. Moon and Ebcioğlu [30]

developed Selection Scheduling that behaves much like List Scheduling. The major

difference is that Selection Scheduling is a global scheduler. It schedules an entire

subroutine not just a single basic block.
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Our LDS scheduler fits nicely with these schedulers. LDS is an extension to the

basic List Scheduling algorithm. Unlike Moon and Ebcioğlu [30], our LDS scheduler

is a local scheduler since it operates on a single basic block.

Not all compilers use List Scheduling. IFlat’s approach is unlike that of

List Scheduling or any of the algorithms described above. Similarly, Convergent

Scheduling makes several passes over the scheduling problem [27]. Each pass can

modify the solution addressing a particular aspect of the target hardware. This is

similar to IFlat’s Conflicts function. However, IFlat resolves a single conflict at

a time. A Convergent Scheduling pass finds and solves a particular kind of conflict

throughout the potential solution. This would be analogous to IFlat resolving all

dispatch conflicts in one pass and resolving all of the conflicts for one particular

special purpose register in another. Convergent Scheduling applies these heuristics

repeatedly until the schedule converges.

Win and Wong [45] combine Convergent Schedule with Linear-Scan register

allocation [36]. Their Integrated Scheduler uses the same DG for scheduling and

allocation. What is more interesting about their solution is that it uses a blame-

prioritize-rebuild cycle that is very similar to SW. However, their algorithm does not

search through scheduling space for a better solution. It searches through priority

space for a weighted heuristics that generate a valid schedule and allocation.

Measuring performance is something of a challenge. Win and Wong [45] were

concerned with embedded JIT compilation and focus on scheduling time and register

pressure. They ignore schedule length entirely. Contrast this approach with Bebenita

et al. [5] who focus on schedule length or, more accurately, the execution time of the

generated program.
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The most common approach is to report scheduling time and schedule length over

some appropriate benchmark suite. Moon and Ebcioğlu [30] use SPEC 89, Russell

et al. [37] use SPEC 2000, and Bebenita et al. [5] use SunSpider benchmark suites.1

Following this pattern, we chose to use the latest SPEC CPU 2006 benchmark suite

for our experiments.

Our work fits nicely with the body of Instruction Scheduling research. The three

search-based scheduling algorithms that we developed are similar to other schedulers

and our experiments use the latest benchmark suite and cover at least the metrics

used in the literature. But where do we go from here?

6.1. Future Work

This thesis presented three significant Instruction Scheduling problems. Our

scheduling algorithms only address one of the three, Instruction Scheduling with

Special Purpose Registers. The effect on register pressure was measured but we did

not address register usage directly. These algorithms can be extended to Cooperative

and possibly Integrated scheduling.

IFlat is successful without any embedded knowledge of the scheduling domain.

Adding domain specific knowledge should improve its results. For example, when

resolving special purpose register violations, IFlat orders the two defining instructions

randomly. This is the case even if one of the instructions is already scheduled before

the other. Further, no consideration is given to instructions on the critical path when

resolving dispatch constraint violations. IFlat may delay a critical instruction, thus

1SPEC Benchmark suites are collections of FORTRAN, C, and C++ programs that are considered
“typical”computationally intensive applications (see http://www.spec.org). The SunSpider is a
benchmark suite for JavaScript (see http://www.webkit.org/perf/sunspider/sunspider.html).
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extending the length of the entire schedule. Adding even these simple extensions to

IFlat should make significant improvements.

Further, our experimental results were based on basic block scheduling length.

These algorithms should be applied to larger blocks like Traces or Regions. The same

performance improvements should be available to the search-based schedulers that

were seen by List and Convergent Schedulers.

Finally, these schedulers should be implemented in a production compiler like

LLVM. We explored the effect that search-based scheduling has on the schedule length

without allocating registers and without directly executing the schedules. Measuring

the schedule lengths in isolation is the best way to gauge the effectiveness of the

scheduling algorithm. As a multi-objective optimization problem, it is difficult to

judge the tradeoffs between shorter schedules and longer compilation times without

truly understanding the effect that these choices have on the performance of the

generated program.
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CHAPTER VII

CONCLUSION

The central question that this thesis addresses is whether search-based

optimization algorithms can be applied successfully to compiler instruction

scheduling.

In answering this question we established a formal definition of instruction

scheduling. At the highest level, instruction scheduling is an instance of general

resource constrained scheduling. However, the resources of a CPU are different from

the resources models used in general scheduling. Spanning resources, the model that

describes preassigned and implied registers, are enough to show instruction scheduling

NP-Complete with modest assumptions about instruction interactions.

Considering that search-based optimization is successful in other NP-Complete

domains including resource constrained scheduling, the fact that search-based

schedulers generated shorter schedules than the standard, construction-based List

scheduler is not a surprise. However, success in this domain is not simply a question

of shorter schedules, but what is the cost to generate these schedules?

Instruction scheduling considers the quality of the generated schedule in addition

to the time spent scheduling and number of hardware registers required by the

generated schedule. This is fundamentally a multi-objective optimization problem as

different compilers will place different values on these goals. The relative importance

of these objectives may change within the same compiler.

Consider a just-in-time compiler embedded within a Java Virtual Machine or

Python interpreter. Initially, the compiler favors compile time over all other factors.

After all, embedded compilers consider compile-time run-time. In this mode, List
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Scheduling is clearly preferred. If the program spends most of its time executing just

a few rather large blocks, the compiler could reschedule those blocks with more focus

on schedule length.

Contrast this model with a static, off-line compiler for small embedded hardware.

These systems have modest performance and very few registers. In this model, the

focus may shift to register usage and schedule length with little regard for compilation

time. Here, LDS is the preferred scheduler.

For commercial-off-the-shelf software, the customer places no value on compile-

time. The software is purchased in binary, compiled form and simply executed.

This could easily justify the increased compilation of a more aggressive search-based

scheduler.

The answer to our central question is yes, search-based scheduling can be

successfully applied to instruction scheduling. Search algorithms are not a compiler’s

panacea. There are domains where IFlat, LDS, and SW are inappropriate.

In the end, we have shown that there are different tools for different jobs.
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APPENDIX

BENCHMARK STATISTICS

We use the SPEC CPU 2006 benchmark suite to gather the experimental results

shown in Chapter V. The benchmark suite is a collection of typical CPU intensive

applications that are written in C, C++, and FORTRAN. From these programs

we extracted the scheduling problems used in the experimental evaluation of our

scheduling algorithms. This appendix provides summary statistics of these benchmark

problems.

Graph order measures the number of vertexes in the graph. For DGs, graph order

indicated the number of instructions. Figure A.1 shows the number of scheduling

problems of orders up to 100. The largest graphs have several hundred to thousands

of instructions. However, there are very few of these problems. Less than 3000

problems have more than 100 instructions. Problem order nearly fits a log-normal

distribution with µ = 1.61 and σ = 0.69. We can see from these statistics that

scheduling problems tend to be very small. The peak at three instructions represents

almost 20% of the scheduling problems alone.

The size of a graph refers to the number of edges. For instruction scheduling,

this includes both data dependencies and order dependencies. The distribution of

DG sizes is shown in Figure A.2 for graph sizes up to 100 edges. The data actually

extend to about 15, 000 edges. Only about 100 problems have more than 1000 edges.

Like graph order, size follows a log-normal distribution with µ = 2.15 and σ = 1.19.

Figure A.3 shows these two distributions as a scatter plot. The linear best fit

has slope 0.43, which represents about 2.3 dependencies per instruction. Further, we
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FIGURE A.1. Dependency Graph Order distribution.

see that most of the problems are clustered near the origin indicating that the DG

are relatively small and easy to schedule.

Finally, Figure A.4 shows the execution frequency distribution. This distribution

shows that roughly 80% of the scheduling problems are executed fewer than one

million times. Further, this curve supports the 90-10 rule as 10% of the scheduling

problems are executed 90% of the time. Further, there is no strong correlation between

execution frequencies and problem size. That is, large basic blocks are executed about

as often as smaller blocks.
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