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DISSERTATION ABSTRACT

Fernando Gutiérrez

Doctor of Philosophy

Department of Computer and Information Science

December 2015

Title: A Hybrid Approach for Ontology-based Information Extraction

Information extraction (IE) is the process of automatically transforming written

natural language (i.e., text) into structured information, such as a knowledge base.

However, because natural language is inherently ambiguous, this transformation

process is highly complex. On the other hand, as IE moves from the analysis

of scientific documents to the analysis of Internet textual content, we cannot rely

completely on the assumption that the content of the text is correct. Indeed, in

contrast to scientific documents, which are peer reviewed, Internet content is not

verified for the quality and correctness.

Thus, two main issues that affect the IE process are the complexity of the

extraction process and the quality of the data.

In this dissertation, we propose an improved ontology-based IE (OBIE) by

providing solutions to these issues of accuracy and content quality. Based on a hybrid

strategy that combines aspects of IE that are usually considered as opposite to each

other, or that are not even considered, we intend to improve IE by developing a more

accurate extraction and new functionality (semantic error detection). Our approach

is based on OBIE, a sub-area of IE, which reduces extraction complexity by including
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domain knowledge, in the form of concepts and relationships of the domain, to guide

the extraction process.

We address the complexity of extraction by combining information extractors

that have different implementations. By integrating different types of implementation

into one extraction system, we can produce a more accurate extraction. For each

concept or relationship in the ontology, we can select the best implementation for

extraction, or we can combine both implementations under an ensemble learning

schema. In tandem, we address the quality of information by determining its semantic

correctness with regard to domain knowledge. We define two methods for semantic

error detection: by predefining the types of errors expected in the text or by applying

logic reasoning to the text.

This dissertation includes both published and unpublished coauthored material.
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CHAPTER I

INTRODUCTION

Information Extraction (IE) is the process of automatically transforming natural

language text into structured information (e.g., relational databases) [2]. This

transformation occurs by identifying semantically relevant elements, such as entities

(e.g., concepts and instances) and relationships. IE has become a key approach

to text understanding in many applications, such as automatic text grading [3, 4],

transforming Web content into structured Semantic Web information [5, 6], and

helping identify candidates for clinical trials [7] among others. However, converting

available textual information into a structured format is not a trivial task. There are

two main issues in this transformation process: the complexity of the IE, and the

quality of the data.

Because of the inherent ambiguity of natural language (i.e., words have multiple

meanings), the process of extracting information from text is far from trivial.

Ontology-based Information Extraction (OBIE), a subfield of IE, mitigates this

difficulty by integrating domain knowledge through a domain ontology. An ontology

is an explicit specification of a shared conceptualization that represents knowledge

through concepts, relationships, and individuals [8]. These concepts and properties

guide the extraction process in OBIE [9, 10]. However, OBIE can introduce new

problems into the extraction process. Creating and maintaining ontologies used by an

OBIE system are rather complex tasks. These difficulties can be mitigated by utilizing

domain ontologies offered by a third party (e.g., Bioportal) [11, 12], although some

cases require application-specific ontologies [1]. On the other hand, because OBIE

systems are created with a specific ontology in mind, they need to be redesigned when
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used under a different ontology. These obstacles translate into costly deployment and

maintenance of OBIE systems, limiting their adoption.

As a way to promote the adoption of OBIE, Wimalasuriya and Dou have

proposed the Ontology-based Components for Information Extraction (OBCIE)

architecture [13]. OBCIE aims to encourage re-usability by modeling the components

of the IE system with as much modularity as possible. This modularity is achieved

through the separation between domain-dependent components (i.e., information

extractors) and domain-independent components (i.e., platform components).

Information extractors are the IE components that perform the extraction task. Each

information extractor encodes a specific component of the ontology (e.g., a concept),

so that extractions will depend only on this ontological element. On the other

hand, the IE platform components are the elements of the system that implement

IE techniques, which are both domain- and corpus- independent. These techniques

can be as simple as preprocessing modules (e.g., removing special characters from

the text) to complex ontology learning components (i.e., determining hierarchy and

relationships between extracted elements).

On the other hand, as IE and OBIE move from the analysis of scientific

documents to the analysis of Internet textual content, we cannot rely completely on

the assumption that the content of the text is correct. Indeed, in contrast to scientific

documents, which are peer reviewed, Internet content is not verified, neither for its

quality, nor for its correctness. So, it seems reasonable to consider, as part of the

process of extracting textual information, mechanisms, and techniques that allow us

to differentiate between correct and incorrect information.

However, it is not easy to determine the correctness of a sentence; hence, this

need has been addressed only indirectly. Research from the field of educational, such
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as automatic text grading, has mainly treated incorrectness as low similarity to a

gold standard. Automatic grading systems based on Latent Semantic Analysis [14]

and n-gram co-occurrence [15] try to determine how similar a student’s summary or

essay is with respect to a perfect summary or essay. If the student’s writings have

low similarity to the gold standard, this is interpreted to mean that it is less correct.

However, low similarity can still be obtained in the process of a correct text, such as

if the text was written in an unexpected fashion, or if the text content is broader than

the gold standard. On the other hand, incorrectness can be identified in the presence

of contradiction. The research area of Contradiction Detection [16], an extension

of Textual Entailment, intends to identify in text a pair of sentences that cannot

be true at the same time (i.e., a logic contradiction). By identifying specific lexical

and syntactical elements, the semantics of the sentences are captured and compared.

However, since Contradiction Detection is limited to the content of the text, itself, in

order to support the correctness of the contradicting sentences, it cannot determine

with certainty which sentence of the pair is false.

In this dissertation, we propose an improved Ontology-based Information

Extraction approach by providing solutions to these issues of accuracy and content

quality. Based on a hybrid strategy that combines aspects of IE that are usually

considered as opposite to each other, or not even considered, we intend to improve

OBIE, and expand IE, in terms of a more accurate extraction and a new functionality.

Brief descriptions of these directions are presented below.

1. Hybrid Implementation. Independent of the ontological component it

represents, an information extractor can be implemented as an extraction rule,

or by applying machine learning methods [13]. Based on regular expressions,

extraction rules capture information by identifying specific elements in a text.
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They can be based on lexical elements (i.e., keywords), syntactical elements

(e.g., noun phrases), or both. On the other hand, information extractors

can also be based on machine learning methods, such as Naive Bayes [17]

and Conditional Random Fields [18]. Under this approach, the information

extraction process is transformed into a supervised learning task, in which

classification methods and probabilistic models try to identify which elements

of a sentence are part of the sought information [13]. Although for any given

implementation strategy, there are some concepts that are more difficult to

extract than others, most IE systems only consider one type of implementation.

With this in mind, we have proposed a hybrid OBIE system, which incorporates

both extraction rules and machine learning-based information extractors.

We begin by proposing proposed combining information extractors that have

different implementations. This approach leads to higher precision and recall

than using only one type of implementation. Then, to obtain the best

performance from this hybrid implementation approach, we also propose

two types of strategies for combining information extractors: selection and

integration. While the selection strategy identifies the set of information

extractors that commits the fewest extraction errors, the integration strategy

combines the outputs of different implementations to produce a more accurate

extraction. For each one of these strategies, we propose a specific method that

focuses on obtaining the highest accuracy. For the selection strategy, we follow

an error minimization approach in order to obtain the subset of information

extractors that perform the most accurate extraction.

2. Semantic Error Detection. Although traditional IE makes the assumption

that the content of the text is correct, when we consider domains such as the
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Internet, where there are no guarantees about the correctness of the content,

this assumption does not hold. So, it seems reasonable to consider, as part of

the process of extracting textual information, mechanisms and techniques that

allow us to differentiate between correct and incorrect information. However,

the text, itself, is not a sufficient basis for determining the correctness of its

content. At most, it can be used to identify internal contradiction, i.e., a set of

sentences that cannot all be true at the same time [16, 19].

We propose the use of domain knowledge, through an ontology, as a framework

to determine the semantic correctness of a text. We define two methods for

semantic error detection based on ontology debugging, which is the area of

research that identifies the origin of inconsistency in an ontology [20], and

ontological constraints (e.g., disjointness between concepts). The first method

uses a heuristic to generate domain-inconsistent axioms that are encoded

into information extractors. These domain-inconsistent information extractors

can identify semantically erroneous sentences. The second method uses logic

reasoning to detect errors in a statement from text online. Such an approach

applies Information Extraction to transform text into a set of logic clauses.

The logic clauses are incorporated into the domain ontology to determine if

they contradict the ontology or not.

The remainder of this dissertation is organized as follows. In Chapter II, we

discuss background areas related to the original research work presented. The main

contributions of this dissertation are presented in Chapters III, IV, and V. In

Chapter III we discuss our hybrid implementation approach, while in Chapters IV

and V we discuss our two approaches to semantic error detection. Finally, in
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Chapter VI, we provide some concluding remarks and discuss future directions for

our research.

This dissertation includes published and unpublished coauthored materials. I

acknowledge the contribution of Dr. Dejing Dou, my advisor, who participated in the

design and development of the hybrid implementation approach to OBIE described

in Chapter III, and in the design of the semantic error detection methods described

in Chapters IV and V. I am also thankful to each of the following coauthors for

their unique contributions: to Prof. Stephen Fickas, who contributed to the design of

semantic error detection methods in Chapters IV and V; to Dr. Gina Griffiths, who

contributed to the study on the students’ summary dataset in Chapters IV and V;

to Dr. Daya Wimalasuriya, who contributed to the design hybrid implementation

explored in Chapters III; to Dr. Hui Zong, who contributed to the study on the cell

biology exam answers dataset described in Chapters III and IV; and to AdamMartini,

who contributed to the processing of the cell biology dataset used in Chapters III and

IV.
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CHAPTER II

BACKGROUND

This chapter covers the background areas and related work necessary to

understand the contributions of this dissertation. We propose a method to combine

information extractors into a hybrid implementation. This has led to consider OBIE

platforms architectures. We also propose a method to identify semantic error in

text by incorporating domain knowledge to the extraction process. This has led

us to consider research regarding Consistency Checking, Ontology Debugging, and

Information Extraction.

2.1. Ontology and Inconsistency

In Artificial Intelligence, an ontology is an explicit specification of a

conceptualization [8]. This conceptualization provides a formal knowledge

representation through concepts from a domain, and relationships between these

concepts. The term ontology comes from philosophy, where it corresponds to the

study of existence or reality, and as Gruber points out “For knowledge-based systems,

what exists is exactly that which can be represented” [8]. Through concepts,

individuals of these concepts, relations, and constraints, an ontology provides a

vocabulary and a model of the domain it represents. Because of this domain model,

it is possible to perform inference. In this work, we consider Description Logic based

ontologies, as those described through theWeb Ontology Language (OWL) [21]. OWL

is the standard ontology language proposed by the World Wide Web Consortium

(W3C) [22]. Description logic (DL) is a fragment of first-order logic that is decidable,

and it has sound and complete reasoners [23–25].
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2.1.1. Consistency Checking

As mentioned, an ontology describes a domain through concepts and

relationships, categorizing the entities of the domain and their properties and

relations. In this work, we will focus on ontologies that are based on Description

Logic, such as those described by the Web Ontology Language (OWL) [21] proposed

by the World Wide Web Consortium (W3C).

Description Logic (DL) is a set of knowledge representation languages. Many

DL languages are decidable fragments of first-order logic (e.g., SHOIQ), with sound

and complete reasoners such as HermiT [26] and Pellet [24]. In DL, concepts and

relationships (i.e., roles) are defined by boolean constructors, such as conjunction

(⊓) and disjunction (⊔), existential (∃) and universal (∀) value restrictions. In DL,

a knowledge base K consists of a tuple (R, T ,A). The TBox T is a set of general

concept inclusions (GCI) of the form C ⊑ D, for concepts C and D. The ABox

has concepts and role assertions of the form C(a) and R(a, b). Finally, the RBox R

consists of complex role constructions such as role inclusion (R1 ⊑ R2). However, not

all DL knowledge bases define a RBox, such as ALC, because they do not have role

construction.

The semantics of a DL knowledge base K is defined by an interpretation I =

(∆I , ·I ). The function ·I maps the knowledge base K to the domain ∆I . Under I,

each concept C of K is a subset of the domain (CI ⊂ ∆I), each role R of K is a subset

of product of the domain (RI ⊂ ∆I ×∆I), and each individual a of K is an element

of the domain (aI ∈ ∆I). If I satisfies all axioms of K, then K is consistent, and I is

a model of K. The interpretation consists of a domain (∆I) and a mapping function

(·I). The function maps the concepts, roles and assertions of the knowledge base to

the domain. If I satisfies all axioms of K, then I is a model of K, which makes K
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consistent. A basic service of a DL reasoner is to determine if a knowledge base K is

satisfiable.

Determining the satisfiability of a knowledge base K (i.e., consistency checking of

K) is a fundamental task for a DL reasoner. Its importance comes from the fact that

other types of inferences, such as entailment, can be reduce to satisfiability [27].

Satisfiability can be proved by a decision procedure such as a semantic tableau

(i.e., tableau algorithm). This method creates a sequence 1..n of ABoxes, where

the application of derivation rules on ABox (Ai−1) result in a new ABox (Ai) [26].

Following are commonly used tableau derivation rules for DL:

– Given C ⊑ D and an individual s, derive (¬C ⊔D)(s).

– Given (C ⊔D)(s), derive C(s) or D(s).

– Given (C ⊓D)(s), derive C(s) and D(s).

– Given (∃R.C)(s), derive R(s, t) and C(t) for a new individual t.

– Given (∀R.C)(s) and R(s, t), derive C(t).

The tableau algorithm terminates if no more derivation rules can be applied to

ABox (An), or if we reach a contradiction. In the case of contradiction, the algorithm

backtracks to the last OR derivation and choose a different path. For example, if

deriving C(s) from (C ⊔ D)(s) leads to a contradiction, we need to derive D(s). If

all choices lead to contradiction, K is unsatisfiable.

2.1.2. Inconsistency

As ontologies grow in size and complexity, their development and maintenance

has led to interesting research problems, one of the most important being ontology
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change [20]. Ontology change addresses the generic problem of modifying an ontology

to reflect changes in the domain of interest, to incorporate new elements to the

ontology, or to correct design flaws. Yet, modifying an ontology can have both

unexpected and undesired effects, such as the introduction of logical inconsistencies.

As stated by Haase and Volker [28], if there is a logical contradiction in an

ontology, the ontology becomes meaningless because any type of statement can be

derived from a set of logical axioms that contradict each other. This issue makes the

task of understanding and detecting inconsistencies in an ontology vital for ontology

dependent applications.

Flouris et al. [29] splits logical contradiction into inconsistency and incoherency.

An inconsistency occurs when an instance of either a class or of a property contradicts

an axiom of the ontology. More formally, an ontology is inconsistent if an axiom of the

ontology is unsatisfiable. For example, consider an ontology with the disjoint concepts

Professor and Student, and the instance Student(Fernando). If we add the instance

Professor(Fernando), the ontology will become inconsistent because disjoint concepts

cannot share individuals or subconcepts. On the other hand, an incoherency occurs

when an axiom of the ontology contradicts another axiom. Formally, an ontology is

incoherent if there exists a concept that for any interpretation of the ontology, it leads

to false. Consider the previous example of the ontology with the disjoint concepts

Professor and Student. If we add to the ontology the concept GTF as a subclass of

both Student and Professor, the ontology becomes incoherent.

Flouris et al. [29] notes that although these two type of logical contradictions

can occur independently, they are highly related. If adding an element to an ontology

keeps its consistency, then the ontology will maintain its coherency. Because of this

tight relation between the two types of contradictions, and because it most clearly
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evokes the state of lack of consistency, most authors define logical inconsistency of

an ontology as the logical contradiction that does not permit any valid interpretation

of its axioms (i.e., unsatisfiability) [28, 30–35]. For this work, when referring to

logical inconsistency, we will be considering the most general definition (logical

contradiction).

2.1.3. Ontology Debugging

The process of correcting an inconsistent ontology is called Ontology

Debugging [20]. Ontology Debugging has two main tasks: identifying the elements

from the ontology that are causing the inconsistency, and correcting the inconsistency.

In general, the first task of ontology debugging has become more relevant because of

the overall complexity of identifying the elements that are causing the inconsistency

while in most cases, the correction of the ontology can be obtained by removing the

inconsistent elements from the ontology.

Logic based methods use properties of the underlying DL language to discover

the inconsistency in the ontology. Usually, the inconsistency will be caused by a small

part of the ontology. However, this small set can affect many different parts of the

ontology, leading to many explanations of inconsistency. Because of this situation,

ontology debugging solutions that focus on local clash of concepts (i.e., inconsistency)

can only provide limited results [36]. Based on the definition of entailment justification

by Kalyanpur et al. [37], Horridge et al. [32] identifies two types of inconsistent subsets

of the ontology. First, we have inconsistency justification, which corresponds to an

inconsistent subontology. The second is an ontology repair, which is the minimal

set of inconsistency justifications. This minimal subset is called repair because, in
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essence, if it is removed from the inconsistent ontology, the resulting ontology will be

consistent.

In order to find the origin of the inconsistency in an ontology, we first

need to identify all the inconsistency justifications it contains. In the Schlobach

and Cornet [34] approach for debugging inconsistent ontologies with unfoldable

terminologies (atomic left-side defined acyclic axioms), for each unsatisfiable concept,

they determine the minimal unsatisfiability-preserving sub-TBoxes (MUPS ). The

MUPS of a concept is the set of axioms that cause the concept to be unsatisfiable. In

their original work, Schlobach and Cornet [34] obtained the MUPS of each concept

through a modified ALC reasoner that inserted traceable labels in the axioms when

performing consistency check. But because this approach does not scale well to

more expressive DL languages, Schlobach et al. [35] offer an alternative mechanism

to identify each concept’s MUPS. Based on Huang et al. [33] selection function for

reasoning with inconsistent ontologies, Schlobach et al. use an informed search to find

concept-relevant axioms. The set produced by the selection function is then pruned

by removing axioms that do not affect the unsatisfiability of the concept’s MUPS.

In the case of Horridge et al. [32], the inconsistent subsets of the ontology

are obtained by a modified version of the single justification algorithm, from the

entailment justification method [37]. This algorithm identifies subsets of the ontology

that are inconsistent through the division of the ontology. The intuition suggests that

the cause of inconsistency will be in the inconsistent part of the ontology, and not in

the consistent part. It is important to note that it is possible to remove accidentally

the inconsistency when dividing the ontology. To avoid missing an inconsistent subset,

the modified single justification also analyzes the recombination of the divided parts.
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Once we have the set of inconsistency justifications, we need to determine the

repair of the ontology. In the case of Schlobach and Cornet approach, from the MUPS

the minimal incoherence-preserving sub-TBoxes (MIPS ) are determined, which are

unsatisfiable sub-TBoxes that can become satisfiable if one atomic concept is removed.

Because each element of the MIPS set comes from some MUPS, the MIPS set is

contained in the union of all MUPS of the original TBox. Although theMIPS already

identifies the minimal inconsistent set of the ontology, Schlobach and Cornet offer an

even more fine grained solution. Because inconsistencies can be interpreted as the

effect of overspecified concepts, we can identify the actual concepts that are clashing

by generalizing the axioms of the MIPS. This new set is obtained by the generalized

incoherence-preserving terminology (GIT), where all elements in an axiom of the

MIPS, which do not affect its unsatisfiability, are removed.

On the other hand, Horridge et al. use the Hitting Set Tree algorithm [38]

to identify a repair in the inconsistent ontology from set of justifications of the

inconsistency. Reiter propose the Hitting Set Tree (HST) [38] as a form to determinate

the diagnosis of a faulty system. In a faulty system there can be multiple reasons

that explain the actual error (i.e., conflict sets). Yet in order to correct or fix the

system, it is necessary to identify the minimal conflict set (diagnosis). Reiter’s HST

finds the diagnosis by learning how the conflict sets intersect. The HST algorithm

iteratively searches or access the set of conflict sets, to constructs a tree where each

node indicates a conflict set, while the edges indicate an element of the conflict set.

The set formed by the labels on the edges along a branch of the HST corresponds

to one diagnosis. So, in the case of ontology inconsistency, the HST can identify

the repair of an inconsistent ontology by constructing a tree with the inconsistent

justifications.
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Finally, it must be mentioned that although the two approaches previously

presented have an exponential complexity, in most cases they can provide an answer

in a reasonable amount of time. First of all, the exponential complexity of these

methods comes mainly from the fact that they do consistency checking, which is a

decidable but intractable problem. In the case of Schlobach and Cornet approach,

when they create the MUPS the algorithm does a consistency check while labeling

the axioms. In the case of Horridge et al., the simple justification algorithm performs

many consistency checks in order to identify a justification. The HST algorithm

includes a series of optimizations that intend to reduce the amount of justifications

needed to complete the HST and avoid following non-interesting or repeated branches

of the HST. However, experimental results in both works have shown that it is possible

to obtain reasonable performance in most of the cases.

2.2. Information Extraction

Information Extraction (IE) is the task of automatically acquiring knowledge

from natural language text. In the process of extracting, IE attempts to retrieve

specific elements from text such as concepts, relationships, or instances, and it leaves

out irrelevant information to reduce the complexity associated to the task.

The main goal behind IE is to transform unstructured information (i.e., text) into

structured information (databases, knowledge bases). However, this transformation

of information is not a trivial process because of the inherent ambiguity of natural

language. A fact can be stated in many ways, and a statement can have more that

one interpretation. The complexity of extracting information from text has kept IE

from being more widely adopted, with most IE systems being implemented for specific

domains.
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In order to reduce the complexity of analyzing the text and identifying relevant

elements in it, information extraction is divided into subtasks. Some of these tasks

can be seen as steps that need to be fulfilled in order to perform the following task [39],

but in most cases each task can be carried out independently [17, 40, 41]. Jurafsky

and Martin [2] define the following Information Extraction tasks:

– Named entity recognition: is the process of detecting and classifying proper

names. It usually consists in determining if a proper noun is the name of a

person, place, and organization. A more specialized version of this task intends

to identify names of genes and proteins [42].

– Coreference resolution: is the process of determining if the mention of a

same or similar name refers to the same entity; it includes the resolution of

anaphoric references. This process is tightly related to name entity recognition.

– Relationship extraction: is the process of discovering semantic relations

between entities in the text. This process has become one of the most researched

sub areas of Information Extraction since it is fundamental for other tasks

such as ontology learning [43], knowledge base population [44], and semantic

annotation [40].

– Event extraction: is the process of identifying events that are related to the

entities in the text. Similarly to entity recognition, there is a need for coreference

resolution since many actors can be participating in an event, and the text can

mention one or more events.

– Temporal analysis: is the process of determining what is the temporal

relations between events. This task intends to identify temporal elements, such
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as date and time, that are related to events, and provide a resolution mechanism

that allows ordering of such events.

– Template filling: is the process of identifying documents that have

information in a form that is shared by other documents (i.e., stereotypical)

which allows direct extraction of entities into templates.

As mentioned, in the present work we are interest in analyzing domain specific

information that is present in the text, which can be mapped to an ontology. This

type of information mostly appears in the form of a relationship between two concepts

(property or subsumption relation) or between concept and individual (membership).

Because of this situation, we will mostly focus on systems that do relationship

extraction.

2.2.1. Ontology-based Information Extraction

Ontology-based Information Extraction (OBIE) is a subfield of IE, which

uses an ontology to guide the information extraction process. As presented in

Section 2.1., an ontology is defined as a formal and explicit specification of a shared

conceptualization [8]. The concepts and relationships of this conceptualization are

represented through classes, properties, instances and other type of axioms. This

formal and explicit specification guides the extraction process in OBIE [9].

The presence of an ontology in the extraction process does not only provide

guidance in the sense of indicating the specific sentences that need to be looked into;

the ontology can also provide contextual or structural information that can enhance

the extraction process. A clear example is the use of the concepts hierarchical structure

to provide additional information to the extraction [10, 11]. If we know that the
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concept Killer Whale has type Dolphin, then we can use information from Killer

Whale (e.g., an extractor for this concept) to extract objects related to Dolphin.

Ontologies in information extraction allows the possibility of Semantic

Annotation. Semantic Annotation is the process of adding meta-data information

that establishes relationships between unstructured data (text) and some entity

that provides context. Although an ontology is not strictly required for semantic

annotation, by annotating a text with ontological entities (formal annotation)

provides formalism and structure of the ontology to the text, which is the main

goal of the Semantic Web [45].

Even when the use of ontologies can improve the extraction process, it has become

more evident in recent years that systems that can be classified as OBIE have been

defined as information extraction systems by their authors. This trend might reflect

the current approach of extraction systems that can be applied to open domains, such

as the Internet. With that in mind, an ontology-based information extraction system

seems constrained and without the flexibility to scale to the Web. However, we argue

that any information extraction system that focuses on the extraction of relations can

be more or less integrated into an ontology-based information extraction process.

2.2.2. Ontology-based Components for Information Extraction

As mentioned, the Ontology-based Components for Information Extraction

(OBCIE) architecture [13] was proposed to promote the adoption of OBIE systems by

reducing the costs of deployment and management through modularity. In OBCIE,

an IE system is constituted of a set of modules that perform specific tasks. The

modules can be grouped as domain-dependent (i.e., information extractors) and

domain independent (i.e., IE platform). This separation in OBCIE promotes re-
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usability in two forms: by allowing an information extractor to be used (and re-used)

by any IE platform, and by allowing an IE platform to use any set of information

extractors it requires.

FIGURE 2.1. Ontology-based Components for Information Extraction.

In order to provide a more clear understanding of our proposed strategies, in the

following section we provide a brief introduction to the main OBCIE components that

are involved in the extraction process (Figure 2.1), which interact with the elements

of our hybrid approach.

2.2.2.1. Ontology

As previously mentioned, an ontology is an explicit specification of a shared

conceptualization [2]. Through concepts, relationships, axiomatic constraints, and

individuals, an ontology provides a formal representation of domain knowledge. In

OBCIE, the ontology is also a module that can be reused. Therefore, for any given

domain where the OBCIE platform is going to be deployed, if there are available

ontologies, they can be used for the OBIE process. For example, in the biomedical

domain there are publicly accessible ontologies. Through BioPortal [21] at the

National Center of Biomedical Ontology, it is possible to access more than 300

ontologies (e.g., BioModels Ontology, CRISP).
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2.2.2.2. Preprocessors

Preprocessors are the modules that perform modifications to the text to facilitate

and improve the extraction process. The modifications can filter unwanted elements

from the text (e.g., stopword removal), enhance the text with new information (e.g.,

as part-of-speech tagging), or transform the representation of the text (e.g., vector

representation). These modifications are mostly independent of each other, and they

are -usually- applied in a sequence. For example, it is very common that before a text

is transformed into a vector representation, stopwords are filtered, and part-of-speech

tagging is applied.

In general, preprocessors are independent of the domain and the information

extractors because they remove noisy features and enhance the text’s representation.

However, there are preprocessing tasks that are developed for a specific domain. For

example, in some domains, concepts might be referred to by their name and their

acronym (e.g., ETC and electron transport chain). To avoid multiple interpretations

between different representations of the same concept, a preprocessor would replace all

representations of a concept into a single one (e.g., ETC, ETCs, and electron transport

chain are changed to ETC ). It is also the case that some information extractors have

specific requirements. For example, a machine learning-based information extractor

will very likely require a vector representation of the text, such as term frequency-

inverse document frequency (TF-IDF). In some cases, the information extractor might

require a vector representation that includes alternative features, such as the position

of the words in the sentence [15].
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2.2.2.3. Information Extractors

Information extractors are the main components of the OBIE system since they

perform the extraction from the text. Each information extractor is defined by an

ontological element, to which they are bound [8, 16]. An information extractor

identifies the textual representation of a specific ontological element. In other words,

for each concept (or property) of the ontology we intend to extract from the text,

we need to define a specific information extractor. More formally, let us consider

the sentence xs ∈ X, where xx corresponds to a set of sentences from the domain

xx. Let us also consider a concept c from the ontology xx of the same domain xxx.

An information extractor ec will determine the connection between sentence xx and

concept c by resolving the sentence’s semantic content yyy x in the form:

ec(xs) = ycs (Equation 2.1.)

Depending on how ec is specified, ycs can vary. In the most simple case, ycs ∈ {0, 1}

tells us if sentence xx contains a reference to concepts c (i.e., ycs = 1), or if it does

not contain the reference (i.e., ycs = 0). It is also possible that ycs ⊆ xs, meaning that

there is a specific part of the sentence that is referring to concept c. This output is

useful when performing tasks such as semantic annotation over the text. Another

alternative is for the information extractor ec to produce a triple as output. In this

case, ycs = Rc(a, b), where Rc represents a property of c (i.e., relationship), with a as

domain of xx (and also as an instance of c), and b as range. This output is useful

when trying to populate a knowledge base with information from text.
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Independent of the ontological component it represents, an information extractor

can be implemented as an extraction rule or by applying machine learning

methods [13].

In OBCIE, an information extractor component must contain most (if not all) the

elements that are required for it to be used by the system. For example, a rule-based

extractor component has defined the extraction patterns it uses, plus gazetteer lists

that are associated with that component. For a machine learning-based extractor, it

will have the set of features (e.g., keywords) needed for the extraction. This approach

(i.e., self-contained extractor) allows us to reconfigure the OBIE system, in term

of extraction, with minimal change to the whole system. We can remove or add

extractors without affecting the rest of the extractors or the domain-independent

components.

2.2.2.4. Aggregators

In most cases, the outputs of the information extractors of an OBIE system

correspond to the final extraction output. However, there are cases where the

combination of extracted outputs can improve the extraction process. For example,

Wimalasuriya and Dou [6] have proposed a mechanism to do OBIE by using two

or more ontologies of the same domain. By using mappings between concepts

from different ontologies, we can determine which information extractors to combine

(through set operators). Because two ontologies, in most cases, can offer different

interpretations of the same domain, Wimalasuriya and Dou’s approach can produce

a more semantically complete extraction. OBCIE architecture has included this

combination approach as an aggregation module [8].
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2.2.3. Classification of Information Extraction

In their survey of Ontology-based Information Extraction, Wimalasuriya and

Dou [9] offer a classification of information extraction systems based on different

characteristics of the systems, such as: (i) the extraction methods used, (ii) if the

system constructs or updates the ontology, (iii) what type of components of the

ontology are extracted, and (iv) the source of the text that is used by the system.

Yet, current information extraction systems cannot be easily classified by any of

these features. If we consider the extraction mechanism, most systems use a blend of

techniques such as gazetteer list and linguistic features (part-of-speech, dependency

parse trees) in rule pattern [46, 47] or as features of a machine learning based

extractor [11, 41]. Most approaches have focus on extracting instances of concepts

and relationship [17], they use available ontologies [11] and knowledge bases [40], and

the Internet is their corpus of analysis [46–48].

Because most recently IE systems are being applied over very large corpus, such

as Internet, a new characteristic has risen that allows to differentiate between types

of extraction systems: the amount of human intervention in the preparation and

deployment of the system. This factor has led to three strategies for IE: supervised,

semi-supervised, and unsupervised. In some cases, a fourth type of information

extraction system has been proposed: self-supervised systems. In self supervised

systems, the data set used for training the information extractors is generated by the

system itself. However, if we pay attention to the mechanism of the system, it is

possible to distinguish elements that will classify it as either semi-supervised (e.g.,

Kylin [49]) or unsupervised (e.g., TextRunner [17]) system.

In the following sections we provide more details about each of the strategies.
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2.2.3.1. Supervised Information Extraction Systems

Supervised information extraction systems, also known as closed or traditional

information extraction system [18], rely on labeled training sets and handcrafted

extraction patterns to produce high quality extraction from text. However, because

it is not possible to offer labeling to all instances and it is not possible define patterns

to extract all the possible representations of a relationship, supervised systems tend

to have a limited coverage of possible extractions, and do not always perform well

on new data. Because of this limitation, supervised systems are mostly used for

domain specific extraction, such as OBIE [1, 11, 50]. Based on the type of information

extraction, there are two main strategies followed by supervised systems [9]: extraction

rules and machine learning.

Extraction rules capture information by identifying specific syntactic and

lexical elements in text, such as keywords [50], part-of-speech labels or other

semantic/syntactic structures. In most cases, extraction rules are simple to

design, and because they are handcrafted, extraction rules can be very accurate.

Although they can be defined following regular expressions, languages like SystemT’s

Annotation Query Language (AQL) [51] and GATE’s Java Annotation Patterns

Engine (JAPE) [52] have been created to specify extraction patterns. These specially

designed languages allow the creation of complex extraction rules through the

manipulation of annotations. AQL includes a series of optimizations that can reduce

significantly the execution time of an extraction when compared to regular expressions

based extraction rules [51], while JAPE can directly execute Java code from the

matching of a pattern [52].

On the other hand, machine learning methods such as classification methods and

probabilistic models try to identify which elements from a sentence are part of the
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sought after information. However, machine learning techniques are data-driven, so

the performance of these methods depend on the quality and quantity of the data used

for the training. For machine learning based extraction systems, this tight relation

comes from the fact that the training data used by the classifier or sequence model

has been labeled by an expert. In the case of extraction rules, the rules are created

and tuned by hand, based on data and knowledge of the domain.

The Ontology-based Components for Information Extraction (OBCIE) architecture

offers a two-phase machine learning extraction approach [13]. This approach

determines in the first phase which sentences of a text might contain extractable

information. Since this phase is handled by a classifier, sentences are transformed

into binary vectors that have features as keywords. Equivalently, if a sentence has

the first keyword but not the second, then the vector representation of the sentence

will have 1 for the first keyword and 0 for the second keyword. In the second phase,

this approach determines if the sentences actually has the sought information. This

is done by a sequence model that uses an enhanced sentence, which has the labels of

a set of lexical and syntactic features. If we also include the output of the sentences

classifier as part of the input of the sequence model, it is possible to obtain extractions

from sentences that have been incorrectly classified in the initial phase [53].

2.2.3.2. Semi-supervision Information Extraction Systems

Semi-supervised systems use the connection between sentences and hand built

knowledge bases to learn information extraction models and patterns for specific

relationships. In contrast with supervised systems which have an explicit link between

text and instances, semi-supervised systems have to discover this connection. In some

cases the connection is clear, as in the work of Kylin that exploits the relation between
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Wikipedia’s infoboxes and articles [41, 54, 55]. In other cases, where the corpus of

text is the Web [39, 40, 44, 56], or text in other language [57], the connection is not

that evident.

Although each system follows a different approach on how to determine the

connection between the knowledge base and the text, semi-supervised systems work

in a specific form, following three main steps: first instances from knowledge base

are looked up in sentences of the text; afterwards selected sentences are transformed

into sets of relevant elements; finally patterns or models are learned based on the

enhanced sentences.

The first step performed by a semi-supervised system is to identify sentences

that might represent the instances or tuples from the knowledge base. In the case of

Snowball [39], Distant Supervision (DS) [40], and the system by Snow et al. [56], if

a sentence contains a pair of entities that have a relationship in the knowledge base,

the sentence most likely represent the relationship. Even more, if there is a group of

sentences that have the same pair of entities, then it is very likely that they represent

the same relationship. This is not strictly true since it is possible for a pair of entities

to have a sentence that represent different relationships [58].

On the other hand, Kylin [55] determines the sentences where the instances

are mentioned following a two-phase classification approach. The first classifier

determines if a given document contains the instances sought. If the sentence does

contain the relational instance, then it passes by a sentence classifier that determines

which sentence of the document might have the instance. In the case of Kylin,

the sentence selection process can provide higher quality examples because it uses

Wikipedia articles with their infoboxes. Wikipedia’s infoboxes provide a tabular
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summary of attributes from an article. In other word, the most relevant information

of an article will appear in both the text of the article and in the infobox of the article.

The second step performed by a semi-supervised system is to determine what

elements of the sentence are important for the extraction process. In general, the

elements from the sentence are generalized to reduce it from its written form into

a set of features that are shared between sentences. Most systems use as lexical

features (specific words from the sentences), and syntactic features (part-of-speech,

dependency parsing). In some cases, semantic information (named entity) might be

included as features [39, 40, 55, 56]. DS considers that although a selected sentence

has the relation’s entities, it is quite possible that the sentence also have noise. To

learn a robust classifier that can manage this noise, each sentence is transformed

into a large set of features. These features are lexical and syntactical, and they

model the words before, after, and in between entities. In this step sentences are

also transformed into a representation that can facilitate the next task. In DS and

in the system by Snow et al. sentences are transformed into vectors by encoding

the features, while Kylin enhance the text with lexical and syntactical labels. In the

case of Snowball, the sentence is transformed into a combination of labeled terms and

weighted terms from the sentence.

The third step is to learn from example sentences. In the case of Snowball,

this task is mostly reduced to evaluate the set of extraction patterns to determine

the best set of extractors for the example sentences. The evaluation is done by

determining a matching score between a pattern and the set of examples sentences.

For Kylin and DS, this task consists on applying a machine learning technique. Kylin

uses Conditional Random Fields to learn a sequence model from the sentence by

consideration of a set of features such as the actual words from the sentence, part-of-
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speech, if the word is a the first or second half of the sentence, as also the output of

the sentence and document classifiers. In the case of Distant Supervision, the system

uses multi-class logistic classifier. The output is a relation name and a confidence

score.

Some systems integrate a fourth step that intends to use the underlying ontology

or representation structure to improve the quality of the extraction process. Kylin

Ontology Generator [41] improves the quality of Wikipedia’s infobox ontology by

refining the relation between classes and attributes. This leads to propagate properties

and instance through infoboxes, following the relation between their concepts. In a

similar form, the Carlson et al. [44] approach also performs a sharing of instances

depending on the logical relation between concepts. This structure-based refinement

is extended by filtering instances that are either mutually excluded (instances of

disjoint concepts), or have an erroneous type.

After a model or pattern of extraction is learned, new instances can be extracted

from text [48]. These new instances can lead to a new learning process, that can

produce higher quality extractors [54].

2.2.3.3. Unsupervised Information Extraction Systems

Unsupervised systems perform information extraction without requiring any

labeling or specific pattern construction. They perform extraction based on linguistic

features that are embedded in the text. By evaluating the quality of the relationships

extracted, unsupervised systems can learn more robust patterns a models that provide

a higher coverage of the extractions that the system can perform.

Core to all unsupervised systems are Hearst extraction patterns [59]. Hearst

has identified a small set of specific linguistic structures (combination of lexical and
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syntactical elements) that represent an hyponymy relationship between two or more

entities. For example, if the pattern,

NP0 such as [NP1, NP2, ..., (and|or) NPn]

is applied to the sentence “Motor vehicles such as automobiles, and motorcycles...”

leads to the extraction of the relations hypony(automobiles,motor vehicles) and

hyponym(motorcycles, motor vehicles). A hyponymy relation between two entities

L0 and L1 refers to membership relations in the form L0 is a (kind of) L1. In this

case, the hyponymy is roughly equivalent to the ontological relation between a concept

and its super concept.

In order to extract different type of relationships, Hearst original set of extraction

patterns have been extended to consider other patterns. New patterns, such as NP0

Verb NP1, have allowed systems like KnowItAll [60, 61] and TextRunner [17, 18] to

the extraction of a wide variety of relationship instances. In their case study, Banko

et al. [17] found that this extended set of extraction rules can cover up to 95% of all

binary relationship from their text corpus. However, because TextRunner combines

these extraction rules with either Naive Bayes [17] or Conditional Random Fields [18],

it can produce incoherent and uninformative extractions. Incoherent extractions are

produced when the sequence of decisions lead to an incorrect extractor. Uninformative

extraction occur when relevant information is removed from the relational phrase

because it is incorrectly handled.

In order to reduce these erroneous extractions, ReVerb [46] propose a refinement

in the extraction patterns by better defining the syntactical structure that represents

the relationship:
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V erb((Noun|Adj|Adv|Pron|Det) ∗ (Prep|Particle|Inf.marker))

Because this constraint can deal with phrases that have multiple verbs, it can mostly

eliminate incoherent extractions and reduce uninformative extractions.

Some systems include confidence value as a mechanism to support and validate

the extraction process. KnowItAll [60] measure the quality of an extraction pattern

based on redundancy of instances being extracted together [62]. It queries a search

engine with the output of the extraction, and based on the number of documents

retrieved by the query, a probability of correctness is estimated. TextRunner [18] also

uses the redundancy estimation of KnowItAll, but the probability is estimated over

the set of normalized (i.e., lemmatized) extractions. On the other hand, ReVerb [46]

learns a logistic regression classifier to estimate the confidence of an extraction.

The logistic regression classifier uses a set of syntactic and lexical feature from the

sentences. ReVerb also removes infrequent relations (less than 20 instances) to avoid

over specification.

Although the set of general extraction rules should allow the extraction of most

type of relationships (from 85% [46] to 95% [18] of all binary relationships), it is

possible to extend it by learning new extraction rules or robust extraction models

and patterns. From the initial extraction, it is possible to extend the extraction

strategy following an approach similar to semi-supervised system. The initial set of

extracted relations are used to learn new extraction patterns [47, 59] or an extraction

model [17, 18]. In the case of Ollie [47], the new extraction patterns are actually

templates. From a set of high confidence relations extracted by ReVerb, Ollie analyze

the dependency of the extractions to learn more general patterns. By including

dependency parsing, Ollie can manage complex relationships, defined by verb phrase
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structure, between complex entities. This leads to higher coverage of the extraction

patterns without loosing accuracy.

It must be noted that in general, the unsupervised systems strength is in the

coverage of the extraction rules without the need of a labeled training set. However,

they tend to have a low accuracy when compared with supervised or semi-supervised

systems. If the application requires high coverage over accuracy, then the best

approach is to consider an unsupervised system for the extraction process.
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CHAPTER III

HYBRID INFORMATION EXTRACTION

This chapter consists of work publish in the “Journal of Information Science”

in 2015 [63], and in the “Proceedings of the 12th IEEE international conference on

machine learning and applications” in 2013 [53]. Dr. Dejing Dou, Dr. Stephen Fickas,

and Dr. Daya Wimalasuriya contributed in the design of the method propose in this

chapter. Dr. Hui Zong contributed with the biology exam answers dataset. Adam

Martini contributed with the processing of the dataset.

Independent of the ontological component it represents, an information extractor

can be implemented as an extraction rule or by applying machine learning

methods [13]. Based on regular expressions, extraction rules capture information

by identifying specific elements in a text. They can be based on lexical elements

(i.e. keywords), syntactical elements (e.g. noun phrases), or both. On the other

hand, information extractors can also be based on machine learning methods such as

Naive Bayes [17] and Conditional Random Fields [18]. Under this approach, the

information extraction process is transformed into a supervised learning task, in

which classification methods and probabilistic models try to identify which elements

of a sentence are part of the sought information [13]. Although for any given

implementation strategy, there are concepts that are more difficult to extract than

others, most IE systems only consider one type of implementation.

With this in mind, we propose a hybrid implementation for OBIE systems,

which incorporates both extraction rules and machine learning-based information

extractors. We have found that our combination of information extractors that

have different implementations can obtain a higher precision and recall than using
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only one type of implementation. In order to obtain the best performance from

this hybrid implementation approach, we also propose two types of strategies for

combining information extractors: selection and integration. While the selection

strategy identifies the set of information extractors that commits the smallest quantity

of extraction errors, the integration strategy combines the outputs of different

implementations to produce a more accurate extraction. Because of its modular

approach to design OBIE systems, we have used OBCIE, mentioned in Section 2.2.2.

to incorporate this new approach to implementing information extractors.

3.1. Redefening Information Extractors

In order to implement this hybrid approach into the OBCIE architecture, we

offer a new characterization of information extractors. Traditionally, an information

extractor has been defined by the concept or property from the ontology [12, 41] it

extracts. We have extended the definition of information extractors by considering

a new fundamental and orthogonal aspect (i.e., dimension): implementation of the

information extractor [53]:

eci(xs) (Equation 3.1.)

Each information extractor (e) encodes an ontological concept or property

(c), under a rule-based or machine learning-based implementation (i). This new

dimension (implementation) allow us to include information extractors of different

concepts, using different implementations, into the same extraction system, i.e., a

hybrid OBIE system.

The original definition of information extractor included requirements to be

self-contained and to have platform independence. This new characterization of
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an information extractor does not conflict with those requirements. In terms

of platform independence, the OBCIE architecture considers domain-independent

elements, such as preprocessors, as per-demand functions. If, for example, an

information extractor requires part-of-speech labels, the platform will add them to (or

with) the text. In terms of self-containment, this new characterization maintains the

information extractors’ modularity. As mentioned, information extractors in OBCIE

had implementation elements already contained in the extractor, as a mechanism

to support the modular approach of the architecture. Our new definition simply

makes this aspect visible to the system at any time. On the other hand, this new

characterization allows establishing relations between information extractors. For

each concept, there is one information extractor based on machine learning, and

another based on extraction rules.

3.2. Combining Implementations

In most IE systems, the selection of a type of implementation for the extraction

process is made by considering the guarantees the implementation can offer in terms

of accuracy [47], and the features and restrictions the extraction process as whole

might have [39, 55]. From the information extractor eci(xs), we expect to obtain the

semantic content ycs by following implementation strategy i, which can be extraction

rules or machine learning. Once the selection is made, it is applied to the complete

IE process. However, any real implementation of eci can only offer an approximation

of the actual semantic content of the sentence:

eci(xs) ≈ ycs (Equation 3.2.)
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Even more, as it can be seen from the experimental results of different IE

systems, one implementation strategy cannot reach the same level of accuracy across

all extracted ontological elements [1, 12, 41, 44, 55]. This behavior might be originated

when some fundamental characteristic of an implementation strategy collides with

the textual representation of some ontological elements. Extraction rules are built

on patterns observed from a set of examples. In some cases, the examples lead to

tight patterns that allow very little error in the extraction process. However, the

high specificity of extraction rules does not permit many variations in the instance

to be extracted, and it can lead to an incomplete extraction. If unobserved instance

diverges from the set used for the construction of the extraction rule, it is possible

that it will not be extracted. In other cases, if examples differ significantly from each

other, it leads to error-prone patterns or multiple highly specific patterns. On the

other hand, machine learning-based information extractors learn a model that should

fit the training data in a fashion that can guarantee some flexibility to manage unseen

instances. This flexibility produces an almost complete extraction process, since the

extractor can identify instances that have not been seen. However, in a similar way

as extraction rules, this flexibility can also be the weakness of the machine learning-

based extraction. Because the model is more general than the instances observed in

the training set, it is possible that the method can extract unrelated elements.

Based on the OBCIE architecture, we have designed and included into an

OBIE system information extractors with different types of implementation, i.e., a

hybrid OBIE. We explore the impact that a hybrid OBIE can have when extracting

information as part of an evaluation system [53]. We found that improvements were

observable even when choosing an arbitrary configuration, e.g., for extracting n +

m concepts, we use n machine learning-based extractors and m extraction rules.
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Some of these configurations can produce more accurate extraction than when one

implementation approach is used for all information extractors. However, not all

configurations lead to improvement. Some configurations can also perform worse

than the single implementation approach, e.g., selecting the worst implementation

strategy for each concept [53].

To take full advantage of this hybrid implementation approach, we propose

two types of strategies that can determine which information extractors are used:

selection and integration. The first strategy intends to determine the most accurate

implementation of each information extractor, while the second strategy combines

the outputs of the implementations to improve accuracy.

3.2.1. Selection Strategy

The main goal behind the selection strategy is to determine the best subset

of information extractors of the OBIE system that can achieve highest accuracy.

In other words, we want to define a selection strategy that permits us to identify

the information extractor that possesses the most accurate implementation, for

each concept. At the beginning of Section 3.2., we have defined the output of an

information extractor as an approximation to the semantic content ycs of sentence

xs with respect to concept c. An implementation eci(xs) will produce an accurate

extraction if its difference with the actual semantic content is minimal. In other

words, the difference between the approximation offered by the implementation i

and the semantic content of the sentence xs is an indication of the error level of

the implementation. Because we are interested in estimating the overall error of an

implementation for each concept, we estimate the error across all sentences as:
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Ec
i (S) =

∑
s∈S

|eci(xs)− ycs| (Equation 3.3.)

where E is the accumulated error over the set of sentences S, of implementation

i, and concept c of the domain ontology O. We will consider the output of the

information extraction to be eci(xs) ∈ 0, 1, and the semantic content of the sentence

to be ycs ∈ 0, 1. So, when there is no difference between the information extractor’s

output and the semantic content of the sentences (i.e., when eci(xs) − ycs = 0), then

they are equivalent. This extraction error can easily be extended to the case where

the semantic content of a sentence and the output of an information extractor is

a relation of the type ycs = Rc(a, b). The difference between the two relations can

be determined by considering semantic similarity or using some variation of string

matching. To keep the description of the selection strategy simple, we have chosen

ycs ∈ 0, 1.

Because we need to select information extractors that produce the most accurate

extraction, the selection strategy minimizes the extraction error. This translates to

identifying the implementation i that has the minimal error Ec
i (S):

Ic(S) = argmini(E
c
i (S)) (Equation 3.4.)

where Ic(S) is the implementation with minimum error when extracting concept c

over the set of sentences S. We can consider that the selection of the most accurate

implementation is a function of the concept it extracts given the sentences observed.

So, we will restate Ic(S) as I(c, S).

To extend the selection of information extractors to all concepts, we pick the

information extractors for each concept with implementation Ec
i :
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∪
∀c∈O∆

eI(c,d)(xs) (Equation 3.5.)

The implementation that has the minimal amount of errors will be selected as

part of the OBIE. This selection leads to having a hybrid OBIE system because,

for concepts c, c′ ∈ O, their information extractors can have the same or different

implementations.

In general, OBIE systems perform this same selection process, but implicitly,

and at the system level. An OBIE designer will select the implementation strategy

that leads to a minimum set of errors by the system. Because our approach does the

selection at the concept level, the error of each information extractor is minimized,

which leads to a smaller total error.

3.2.2. Integration Strategy

Integration strategy intends to combine outputs of different extractors to improve

the OBIE process. The integration strategy is inspired by Wimalasuriya and Dou’s

approach of mapping information extractors from concepts of different ontologies for

OBIE (MOBIE) [12]. In MOBIE, if two concepts of different ontologies are mapped

as equivalent, the concepts’ information extractors’ outputs are combined into one

set.

Our integration strategy comes as an answer to the cases wherein it is difficult to

select one type of implementation because their performances are very similar. When

the level of accuracy between two implementations of information extractors is close,

the difference in performance can be originated by how the documents were selected

for evaluation. This performance improvement can be obtained by considering the

extraction process as an ensemble method. In machine learning, ensemble methods
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use multiple learning algorithms to obtain a better performance than any of the

individual methods that confirm the ensemble [64]. There are different types of

ensemble methods (e.g., boosting, bagging), which follow different mechanisms (e.g.,

manipulating training set, voting of different classifiers) to produce the best output.

However, given the constraints of integrating information extractors, most

ensemble methods are not suited for integrating information extractors. Voting is

an ensemble method that considers the output of each of the methods that are part

of the system as a vote. This approach requires an odd number of voting participants

or to have votes with different importance (i.e., some votes have higher importance

than others) to avoid drawing. In our case, voting does not seem to be a good option

because there are only two voters (i.e., two types of implementation for an information

extractor), and there is not a clear way to determinate which of the methods is more

important (i.e., weighted voting system). A different ensemble approach consists of

altering the training of the underlying methods, such as in the case of bagging and

boosting. In the case of bagging, each one of the underlying methods uses a randomly

selected subset of the training data set to learn a model. Once the models are learned,

their outputs are combined as an average or through voting. In the case of boosting,

the ensemble learns iteratively by training new models on instances that previous

learners misclassified. Because we cannot affect the design process of extraction rules

by applying some strategies to the training set (in contrast to machine learning),

neither bagging nor boosting are an option as an integration strategy.

For this work, we have selected stacking. Also known as stacked generalization, it

consists of training a model (i.e., top-level classifier) that uses as input the predictions

of several other methods (i.e., bottom-level classifiers). On other words, the set of

outputs of the bottom level classifiers create instances, which are passed to the top-
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level classifier. The top-level classifier finally produces a single output. Stacking

can be used as an integration strategy, since it can use the output of both types of

implementations as input for a top-level classifier. In most cases, stacking uses linear

regression as a top-level classifier with a set of meta-features and first-level classifier

outputs [65]. The input for the top-level classifier will be:

⟨ecML(xs), e
c
ER(xs), y

c
s⟩ (Equation 3.6.)

where ML corresponds to the machine learning-based implementation, ER

corresponds to the extraction rule implementation, and ycs is the semantic content

of sentence xs given concept c. In our case, because it is not clear what elements of a

sentence can be used as meta-features, linear regression does not perform as well as

Naive Bayes or decision trees. For this current work, we have selected Naive Bayes

as the top-level classifier.

3.3. Evaluation

In the following section, we provide details regarding the evaluation of our

proposed hybrid OBIE system. We have evaluated the effectiveness of our approach

with two different datasets.

3.3.1. Study Case: MUC4 Dataset

3.3.1.1. Dataset and Ontology

The MUC4 dataset we have selected for evaluation is the one presented by

Wimalasuriya and Dou in their multiple ontology approach to OBIE [12] and their

proposed OBCIE architecture [13]. This dataset is a subset consisting of 200 of
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the 1700 documents of the original dataset from the 4th Message Understanding

Conference. The documents of this dataset are news articles on terrorist activities in

countries in Latin America during the late 1980s and early 1990s.

The dataset also contains keys that are a description of details of terrorist

activities, such as the instrument used in the activity, the location the activity

occurred, and the target of the activity. Each news article can have multiple keys

associated with the article that can indicate different types of details or different

details of the same type. As a whole, these keys provide a gold standard of relevant

content for the dataset.

We have used the ontology constructed by Wimalasuriya and Dou multiple

ontology approach (Figure 3.1). The ontology is based on the structure offered by

the keys of the MUC4 dataset (Table 3.1). Since the keys indicate details such as

the instrument used in a terrorist-related activity, they can offer a classification of

entities (e.g., person) described by the documents of the dataset.

3.3.1.2. Implementation Details

To implement both our proposed hybrid approaches and the comparison

methods, we have used following the general approach.

In the case of rule-based extractors, we have randomly selected a subset of

documents to be used to generate extraction patterns for each ontological element

to be extracted. We have selected 30% of the dataset, which corresponds to 60

Element type Number of element
Concepts 15
Relationships 6
Subclass relationships 6

TABLE 3.1. Statistical information about the ontology.
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FIGURE 3.1. Graphical representation of a section of the ontology associated to the
MUC4 dataset.

documents, to define the patterns for the rule-based extractors for the different

ontological elements to be extracted. Since the dataset is not large, this subset

should offer a reasonable sample of sentences representing the sought concepts and

relationships.

In the case of machine learning-based extractors, we have selected a large subset

of documents to be used for training the machine learning methods. Similar to

Wimalasuriya and Dou machine learning-based implementation [13], we have selected

80% of the dataset (i.e., 160 documents) for training, while the rest is use for testing.

We incorporated the two-phase extraction approach previously described (Section

3.1.2), which is also seen in Kylin [41, 55] and in the study case of OBCIE [13].

In the first phase, we try to determine if a sentence contains the sought ontological

element (e.g., relationships) through a binary classifier. One class corresponds to the

sentences that carry the information while the other class corresponds to sentences

that do not have the information. In this phase, sentences are transformed into

vectors. The features of the vectors correspond to ontological metadata of the

concepts or relationships to extract (as defined in OBCIE): keywords, part-of-speech

41



labels, and WordNet synsets (i.e., sets of synonyms) [66]. For example, the metadata

for Myosin has keywords such as stuck, stay, get, and binding, while it has as synset

the words stick and releases. For this phase, we use a Nave Bayes classifier, which

is a popular option for text classification because of its simplicity and good general

performance [67]. In the second phase, we determine the part of the sentence (i.e.,

words) that represents the information. A probabilistic model (in our case Conditional

Random Fields [68]) determines if the sequence of words corresponds to the sought

information or not. This phase uses the sentence’s original metadata information used

in the first phase, plus the output of the previous phase classifier. It is possible to have

a large number of information extractors based on different machine learning methods,

such as Support Vector Machine [69] or Maximum Entropy [41, 55]. We have selected

Naive Bayes and CRF as the methods for the machine learning implementation

strategy because they have shown consistent and accurate results in IE [17, 18, 41, 55].

3.3.1.3. Comparison Methods

We will compare our proposed combination methods, selection (MinError)

and integration (StackNB), with single implementation systems. The single

implementation approach is when the implementation strategy is considered as a

guideline for the entire IE system. In other words, we will compare our proposed

methods to a system with all information extractors are implemented as rule-based,

and we will compare against a system with all information extractors implemented

based on machine learning.

We will also consider results obtained by Wimalasuriya and Dou when they

evaluated their OBCIE platform [13]. Although used to evaluate a machine learning-

based implementation of OBCIE, the implementation details such as the selection of
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features and training sets can offer an alternative view of how an extraction system

might behave when applied this dataset.

3.3.1.4. Evaluation Metric

The performance of an IE system is measured with the metrics Precision, Recall,

and F1 measure. While Precision measures how much of the extraction is correct,

Recall measures how complete is the extraction. The F1 measure is the average

between Precision and Recall that provides an overall measure of the IE system. To

estimate these measures, a golden standard must be established. In the present study,

the golden standard is defined as all possible instances that the extraction rules should

detect (or extract) when they are applied to the summaries.

Precision is calculated by dividing the number of correct extractions or true

positives (tp) by the total number of extractions, which are true positives plus false

positives (tp+ fp).

P =
tp

tp+ fp

Recall is calculated by dividing the number of correct extractions (tp) by the

total number of instances that should be extracted, which are true positives plus false

negative (tp+ fn).

R =
tp

tp+ fn

F1 measure is the simplest and most commonly used form of F-measure in OBIE,

which provides an average of Precision and Recall.

F1 =
2 · P ·R
P +R
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Metric MinError StackNB OBCIE Rule-based ML-based
Precision 52.2% 55.6% 23.6% 44.9% 26.7%
Recall 55.1% 59.6% 42.7% 60.0 % 36.4%
F1 53.6% 56.2% 30.4% 57.6% 30.8%

TABLE 3.2. Performance of extraction by our proposed methods of selection
(MinError) and integration (StackNB), the method by Wimalasuriya and Dou
(OBCIE), rule-based extraction, and machine learning-based implementation.

These traditional evaluation metrics do not consider the semantic relation

between domain elements when evaluating the correctness and completeness of the

extraction process [9]. An extraction (or label) is either correct or incorrect. Metrics

such as Balanced Distance Metric (BDM) [70] and Learning Accuracy (LA) [71] take

into account the similarity between the correct extraction and the system’s output.

Both metrics evaluate an extraction based on its semantic distance in the ontology’s

structure to the correct extraction. For example, if there is a subclass relationship

between two concepts, they are considered to be close.

3.3.1.5. Results

Table 3.2 presents the performance results of our proposed hybrid methods

selection (MinError) and integration (StackNB), the method by Wimalasuriya and

Dou (OBCIE), rule-based extraction, and the single implementation approaches (rule-

based and machine learning-based).

We can see clearly that both of our hybrid based methods provide a more accurate

performance. This difference is more notable than in the case of our previous dataset

(Section 3.3.) because MUC4 is more suitable of rule-based extraction that machine

learning-based extraction. Because our methods evaluate the dataset, it can provide

a more smart selection of implementation, leading to better results.
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It must be mention that it is possible that labels (keys) in the dataset are

incomplete. When revising the dataset, it became evident that for some type of keys

(e.g., Perpetrator) not all instances are indicated. This issue must have affected both

implementation strategies, but machine learning is more sensible to this problem.

Finally, as seen in Section 3.3., our proposed hybrid approach can produce a

more accurate extraction than single implementation strategies, such as rule-based

and machine learning-based extraction.

3.3.2. Study Case: Cell Biology Dataset

3.3.2.1. Data

Original Data Set The original data set corresponds to students’ answers to an

exam from an undergraduate biology class. From the biology exam, we have selected

one question that requires the students to present a short, justified answer. Following

is the selected question:

If you generate a mutation that breaks down the electron transfer
chain in mitochondria, will myosin proteins fall off microfilaments
or get stuck to it? Why?

Each answer is a short paragraph that consists of at most four sentences: the

answer to the question followed by a short justification. For the answer to be

correct, the paragraph must mention specific relations between four concepts: myosin,

adenosine triphosphate (ATP), adenosine diphosphate (ADP), and electron transport

chain (ETC). An example of a correct answer:

An answer is considered incorrect if the answer sentence is incorrect, or the

justification is incorrect. An example of an incorrect answer:
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They will tend to get stuck because the exchange of ATP for ADP
causes the myosin head to release the microfilament. If the ETC is
halted, ATP will no longer be produced.

They will fall off. This is because a mutation in the ETC will
cause an absence of ATP.

The answers have been labelled by domain experts (the instructor of the class and

his teaching assistants) indicating whether they are correct or incorrect and whether

the answers provide enough justification.

The nature of the text (i.e., student answers to an exam) has led to the data

set being less diverse, in terms of sentence structure and vocabulary, than other data

sets in IE. Because the documents of the data set are answers from an exam, it is

more likely that students will focus on content rather than the style of their answer.

On the other hand, the answers are focused on a very specific set of concepts and

relationships of the domain. For the text to be an effective answer, the text must

refer to concepts and relationships relevant to the questions.

Synthetic Data Set In order to evaluate our proposed extensions, there are some

requirements that the data set must meet. Although the original set of students’

answers is sufficient to other IE implementation approaches, the proposed combining

strategies for multiple implementations require a larger data set. For both combining

strategies, the data set needs to be large enough to allow three subsets: a first set

for training and designing the information extractors, a second set that is used for

initial evaluation by the selection strategy and for top-level training by the integration

strategy, and a third set for a final evaluation of the system (i.e., testing). To evaluate

both extensions, we have constructed from the original data set a synthetic data set.
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Concept Number of correct sentences Number of correct sentences
ATP 7 15
ADP 3 11
ETC 8 21
Myosin 12 28

TABLE 3.3. Number of template sentences for each concept.

As previously mentioned, the correct answer to the exam’s question can be

constructed by combining sentences that reference the relationships among four

concepts. The statement that provides the answer to the question is a property

of Myosin. The justification of the answer comes from a combination of properties

of ETC, ATP, and ADP. Therefore, to produce an answer that meets content

requirements, we need to create a paragraph that contains a statement from each

of the mentioned concepts. To provide diversity in synthetic answers, we created a

template set of correct sentences for each concept. We have also created a template

set of incorrect sentences for each concept. In general, the sets of incorrect sentences

are much larger than the sets of correct statements, because the incorrectness of a

sentence can be caused by multiple factors, such as an incorrect relation between a

pair of concepts or a contradiction of a logical constraint. Both correct and incorrect

sets of sentences for each concept contain sentences from the original data set, plus

sentences created based on domain knowledge.

A synthetic data set is generated by creating a number of answers with a

probability of having erroneous sentences. An answer from the synthetic data set

is created by first selecting a correct or incorrect sentence of a concept, based on the

probability of erroneous sentences in the data set (Table 3.3). The correctness of

the sentence for each concept is determined independently. Once the correctness of

the sentence has been determined, the actual sentence that will be included in the
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answer is selected from the set of correct (or incorrect) sentences for the concept. For

example, for the concept ATP we can select one of seven correct sentences and one

of 15 incorrect sentences.

3.3.2.2. Ontology

Currently, there are a large number of biology-related ontologies that are

available. Through the National Center for Biomedical Ontology’s BioPortal website,

it is possible to access more than 300 biomedical ontologies. By searching in BioPortal,

it is possible to identify eight ontologies (e.g., BioModels Ontology, CRISP 2006

Thesaurus) that contain the concepts (e.g., myosin and ATP) which are required

to analyze the students’ answers. However, these ontologies do not offer all of

the necessary relationships that are required to analyze the students’ answers.

This difference originates because many ontologies are created with the purpose of

providing a hierarchical classification of entities from the domain knowledge (i.e.,

taxonomy).

FIGURE 3.2. Graphical representation of a section of the ontology development for
this work.
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Element type Number of element
Concepts 17
Relationships 10
Subclass relationships 3

TABLE 3.4. Statistical information about the ontology.

For this work, we have designed an application-driven ontology (Figure 3.2).

Although we could have opted to extend one of the available ontologies with the

relationships needed to analyze the answers, the construction of an ontology was

significantly simpler when considering the logical consistency and complexity of the

domain ontology. For the construction of the ontology, we have followed two main

guidelines: it must contain all concepts and relationships that will allow for answering

the exam’s question, and it must not include any other concepts that are not required

to answer the question. The first requirement intends to provide the sufficient domain

knowledge to analyze the arguments of the answer, i.e., why the myosin is affected by

mitochondrial defect. The second requirement tries to reduce the complexity of the

ontology by keeping its focus on the part of the domain that is relevant to the task.

These criteria lead to an ontology that is highly connected, although it has a small

number of hierarchical relationships between concepts.

Based on the mentioned guidelines, we focus the ontology around the four

main concepts that need to be stated in an answer for it to be correct. These

concepts mostly have cause-effect (i.e., process) type relationships. For example,

ETC presence affects the production of ATP, or ADP affects the binding process

of Myosin. Because ontologies usually represent domain knowledge by classifying

concepts (taxonomy) and properties, process or cause-effect relationships can be

difficult to define. We represented these process-type relations as intermediary

concepts, e.g., Myosin Binding Process in Figure 3.2. These intermediary concepts
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have led the ontology having a rather sparse structure, with few concepts in an ISA

(i.e., subclass) relationship (Table 3.4).

3.3.2.3. Implementation Details

In general, the creation of individual information extractors mostly follows the

same considerations for single implementation (i.e., traditional OBIE), for multiple

implementations [53], and for our proposed combination strategies. In other words, all

extraction approaches, both the ones we propose (selection and integration) and the

comparison methods, are based on rule-based extractors and machine learning-based

extractors.

In the case of extraction rules, we have randomly selected a small subset of

instances to be used as examples. The examples are used to identify patterns that

can perform the extraction of a specific concept. We have considered the 20% of

the corpus to be used as examples for each concept. Since the complete data set

consists of 1000 synthetic answers, the number of examples for identifying patterns

for each concept is approximately 200 instances. This allowed having a good insight of

instances that could be expected for each concept while still being manageable. The

following extraction rule identifies the consequence of the break down of the electron

transfer chain (ETC):

$_ =~ /(It|Myson).+(((stay|get) stuck)|(bind))/i

Since the statement answers the question (if it breaks down the electron transfer

chain, the myosin gets stuck), a good portion of the answer references the concept

Myosin implicitly. This co-reference (i.e., It) was the only one observed in the data,

which made it significantly simpler to define in a pattern. The following extraction

rule identifies the effect of reduction of ATP, if ETC is broken:
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$_ =~ /(ETC(|s)).+(stops|loss|less|required).+(ATP)/i

In the case of the machine learning-based information extractors, we randomly

defined a training set (consisting of 65% of the data set), and a testing set (35% left

from the data set). We have used the two-phase approach, described in Section 3.3.1.,

where a classifier will identify relevant sentences while a probabilistic graphical model

determines the part of the sentences that refers to the sought information.

While all information extractors use the same implementation approach (as

previously described), our proposed combination strategies use the data in a slightly

different way. We divide the data set into three groups: a training set, first stage

testing set, and second stage testing set. We define the information extractors with

the training set, using 50% of the instances for the machine learning-based extractor

and a 20% of instances for the extraction rules. The first stage testing set is used

to evaluate and select the best set of extractors in the selection strategy, while the

integration strategy is for training the second level classifier. The first stage testing

set consists of 25% of the synthetic data set. Finally, the second stage testing set is

for evaluating the combined strategy.

3.3.2.4. Comparison Methods and Metrics

We will compare our proposed combination methods, selection (MinError)

and integration (StackNB), with single implementation systems and multiple

implementation systems. The single implementation approach is when the

implementation strategy is considered as a guideline for the entire IE system. Multiple

implementation systems have information extractors implemented as extraction rules

and machine learning-based extractors for each concept [53]. For this experiment,

there are four concepts and two types of implementations; we have identified
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five straightforward configurations of information extractors that the OBIE system

can use. Two of the five configurations are equivalent to single implementation

systems (i.e., pure configurations). There also are three hybrid configurations: using

three machine learning extractors and one extraction rule (3ML-1ER), using two

machine learning extractors and two extraction rules (2ML-2ER), and using one

machine learning extractor with three extraction rule extractors (1ML-3ER). When

considering one mixed configuration, it is possible to define multiple types of settings.

For example, in the case of using three machine learning extractors and one extraction

rule (3ML-1ER), we can choose an extraction rule implementation for any one of the

four concepts and use machine learning extractors for the rest. This has led us to

create 8 information extractors by combining all four possible concepts (Myosin, ETC,

ATP, ADP), and two implementations (i.e., machine learning and extraction rules).

As in previous section (Section 3.3.1.), we will use traditional IE metrics to

evaluate the performance of the different compared approaches. Precision determines

the correctness of the extraction while recall determines the completeness of the

extraction. F1 measure offers the harmonic mean between precision and recall.

3.3.2.5. Results

In this section, we present and discuss the results of the evaluation of our

proposed combination methods, selection (MinError) and integration (StackNB). The

results are presented in detail (Figure 3.3) with respect to the amount of errors in the

data set, which provides an insight into how errors can affect the extraction process.

The combined methods obtain, in general, better performance than both the

pure methods and the mixed methods which do not have any combination strategy.

However, both combined strategies depend on the quality of the extraction performed
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FIGURE 3.3. Precision, recall and F1 measure for information extractors under
different levels of error in text, with single implementation (ER and ML), and multiple
implementations with our proposed combination strategies (MinError and StackNB)

by extraction rule and machine learning-based extractors. This dependency is more

obvious in the case of integration strategy (StackNB), where if one of the underlying

extractors has a low accuracy, it can significantly affect the performance of the whole

process.

We also provide a general view of the experimental results, which allows a more

accessible comparison between methods. To keep the analysis clear, we present the

average performance of each configuration setting. We also include the performance

of the best and worst setting of each concept). With these three values (best, average,

and worst), it is possible to get a reasonable understanding of the performance

behavior of a configuration.

We see (Figure 3.4) that although the combined strategies outperform the other

methods in the case of best performance, their average performance is close (precision)

if not worse (recall) than single stage approaches. Because machine learning-based

extractors over-extract (i.e., extract more than the actual instance), they have a

low precision but a perfect recall. This behavior affects the combined strategies in

different ways when integrated with extraction rule performance. In the case of recall

machine learning dominates.
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FIGURE 3.4. Precision, recall and F1 measure for information extractors with single
implementation (ER and ML), multiple implementations without a combination
strategy (1ML-3ER, 2ML-2ER and 3ML-1ER), and multiple implementations with
our proposed combination strategies (MinError and StackNB)

From Figure 3.4, one might conclude that our proposed combination strategies

are sensitive to the performance of the underlying implementations, the performance

of the worse implementation seems to dominate.

Finally, we can see a clear impact to the extraction process of sentences that

represent incorrect facts of the domain (i.e., semantic incorrect statements). From

these results we cans see a need for a mechanism to identify these types of statements.
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CHAPTER IV

PRECOMPUTING SEMANTIC INCORRECTNESS

This chapter consists of work publish in the “Proceedings of the 21st ACM

international conference on information and knowledge management” in 2012 [1],

and in“Journal of Information Science” in 2015 [63]. Dr. Dejing Dou, Dr. Stephen

Fickas contributed in the design of the method propose in this chapter. Dr. Gina

Griffiths contributed with the students’ dataset while Dr. Hui Zong contributed with

the biology exam answers dataset. Adam Martini contributed with the processing of

the dataset.

The second contribution of this work is new extraction functionality for OBIE.

Traditionally, IE, and by extension OBIE have performed the functionality of

extracting information from sentences that express correct content. When we

categorize text as correct content, we mean that the sentences form a statement

that agrees with the domain knowledge, i.e., that is consistent with respect to the

domain. By contrast, a text with incorrect content, i.e., semantically erroneous text,

contradicts the domain. Considering that we have defined incorrect text as a false or

contradicting statement, it is reasonable to consider logic as a mechanism to identify

it.

However, the information contained in the text, itself, is not a sufficient basis for

evaluating whether or not it is incorrect. We need to know facts (i.e., true statements)

about the domain to verify if whether a sentence from the text is false or not. The

domain knowledge, represented through an ontology, can provide us with the frame

of what is correct within the domain. Therefore, combining this correct knowledge

frame with logic, we resolve the correctness (or incorrectness) of a text’s content.
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We propose precomputed semantic error detection as a mechanism to incorporate

into OBIE the functionality of extracting semantically erroneous information from

text. In OBIE the domain ontology guides the extraction process by encoding

ontological axioms into information extractors. Each information extractor is bound

to an ontological element (e.g., a concept), and it extracts in-text references about this

ontological element. However, because an ontology only represents true knowledge

about the domain, we need a mechanism to determine or generate domain-inconsistent

axioms that can guide the information extractors for semantic error detection. We

have proposed a heuristic method, based on an ontology debugging technique, which

can generate the domain-inconsistent axioms (precompute), that will be encoded later

into information extractors.

Precomputed semantic error detection works in two steps: determining

inconsistent axioms (i.e., precomputing), and extracting statements based on the

incorrect axioms. In the following sections we provide more details regarding each

step.

4.1. Determining Sentence Types

Based on their relationship with the domain, we have identified three types

of sentences [1]: correct sentences, incorrect sentences, and unknown sentences (or

incomplete).

4.1.1. Correct Sentence

A sentence is consider semantically correct if it is consistent with the domain

knowledge. So, any sentence that expresses an aspect of the ontology, such as a
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relationship between concepts, is correct. This definition also extends to subsumed

axioms. Let us consider the following example:

Ontology Producer ≡ Autotroph
Producer ⊑ ∃produce.Food

Axiom 1: Producer ≡ Autotroph
Axiom 2: Autotroph ⊑ ∃produce.Food

In Biology, a Producer is an organism that can produce their own food. They are

also known as Autotrophs. In the example, Axiom 1 is consistent with the ontology

because it makes direct reference of a definition of the domain, i.e., Autotrophs and

Producers are the same. Axiom 2 is an infered fact from the ontology. Both axioms

in the example are consistent with the ontology, making them semantically correct.

As mentioned in Section 2.2.1., OBIE extracts information from sentences that

mention ontological elements. Because an ontology can have a large number of explicit

and implicit (i.e., infered) axioms, only a subset of the ontology is selected to be used

in a OBIE system.

4.1.2. Incorrect Sentence

A natural consequence of the definition of semantic correct statement is the

definition of incorrect statement. We consider a sentence to be semantically incorrect

if it is a logical contradiction of some aspect of the domain ontology (i.e., domain-

inconsistency). However, an ontology only contains correct facts of the domain it

represents. We need a mechanism to determine axioms that are inconsistent with

respect to the domain ontology.

We have proposed a mechanism to determine axioms that are inconsistent with

respect to the domain based on the heuristic-based ontology debugging approach
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seen in Wang et al. [72]. As mentioned in Section 2.1.3., in ontology debugging,

research is focused on identifying the origin of inconsistency in an ontology. Wang

et al.’s approach looks for specific types of inconsistencies. They have identified a

set of common errors that are committed in the process of constructing an ontology.

Wang et al. have encoded these common errors into a set of pattern-based rules that

can identify inconsistency. Following the approach of Wang et al., it is possible to

determine a set of axioms that, if included in the domain ontology, would make the

ontology inconsistent. We use Wang et al.s heuristic as a generating mechanism to

define domain-inconsistent axioms.

Ontology Producer ⊑ ∃produce.Food
Producer ⊑ ¬Carnivore

Axiom Carnivore ⊑ ∃produce.Food

In the example, because of the disjointness between the concepts Producer and

Carnivore (i.e., Producer ⊑ ¬Carnivore), they cannot share subclasses or

individuals. By establishing as domain of a relationship a concept that is disjoint

with the original domain, such as “Carnivores produce their food” (i.e., Carnivore ⊑

∃produce.Food), we are generating a domain-inconsistent axiom. Although the

example seems to be a very simple case of inconsistency, sentences that represent

these types of inconsistent axioms are not so unlikely [1, 53].

Although this mechanism cannot generate all possible domain-inconsistent

axioms (incomplete), it still can generate a large set of axioms for semantic error

detection. To understand the domain and type of text to be analyzed becomes a

fundamental aspect to help produce the necessary domain-inconsistent axioms. This

understanding can lead to an effective and mostly complete analysis of the text.
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4.1.3. Unknown Sentence

Finally, we classify as semantically unknown those sentences that are neither

correct or incorrect. This type of sentence reflect the open world assumption that

ontologies follow where we cannot determine the truth value of undefined elements.

If the sentence contains elements that are not defined in the domain ontology, we

cannot determine if it contradicts the domain, or not.

Ontology Producer ⊑ ∃produce.Food

Axiom Tree ⊑ ∃produce.Food

In the example, the sentence “Trees produce their food” (i.e., Tree ⊑ ∃produce.Food)

is incomplete because it is indicating a property of the concept Tree that is not defined

in the ontology. Although we know that Trees are producers, making the sentence

true, the ontology does not have an axiom to indicate that Tree is a Producer (i.e.,

Tree ⊑ Producer).

In practice, semantically unknown information extractors are difficult to encode.

In most cases, they can be a vocabulary checker that determines if a sentence contains

unknown elements. However, this approach tends to be vague, leading to some overlap

with extractors for incorrect sentences. Because of these difficulties, we have not

included unknown extraction as functionality.

4.2. Extracting Sementics Errors

After determining the set of domain-consistent and domain-inconsistent axioms,

for the extraction of correct and incorrect sentences respectively, we need to encode

the axioms into information extractors. To integrate our precomputed semantic error
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detection into OBIE, we extend the definition of information extractor to include a

new aspect, which is orthogonal to both ontology and implementation [53]:

ecfi (xs) (Equation 4.1.)

Each information extractor (e) encodes an ontological concept or property (c),

following a correct or incorrect functionality (f ), under a rule-based or machine

learning-based implementation (i). Because the semantic correctness of a sentence

is based on its logical relation (e.g., logic contradiction) with the domain and is

not affected by other statements, the inclusion of the functionality dimension to

information extractors does not affect the modularity of OBCIE. Just as we can

include information extractors with different implementations into the same OBIE

system, we can also include information extractors with different functionality into

the same system.

4.2.1. Rule-based Information Extractor

We first proposed our precomputed semantic error detection approach

implemented as extraction rules [1]. Extraction rules use patterns to capture elements

from text. The patterns can be built over specific words, part-of-speech, or other

linguistic features (e.g., dependency relations). Extraction rules can be simple to

implement, and they are mostly an accurate extraction method. For our precomputed

error detection approach, extraction rules are based on keywords (e.g., concepts),

with each extraction rule representing one axiom (or domain-inconsistent axiom) of

the ontology.

In the example, Axiom 1 is a domain-consistent axiom inferred from the domain

ontology from the second (Professor teaches Student) and third statements in the
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Ontology Student ⊑ ¬Professor
Professor ⊑ ∃teaches.Student
UndergradStudent ⊑ Student

Axiom 1 Professor ⊑ ∃teaches.UndergradStudent
Axiom 2 Professor ⊑ ∃teaches.Professor

ontology. Because it shares a similar textual representation as one of the ontology

axioms (Professor ⊑ ∃teaches.Student), we can encode both axioms as a rule-based

extractor by the following regular expression (in Perl):

$_ =~ /(P|p)rof(\.|\w+) teach(|es) ((\w+) student|) (\w+)/

On the other hand, Axiom 2 is a domain-inconsistent axiom because it states that

the range of the relationship teach is a concept (Professor) that is disjoint with the

range defined in the domain. The encoding of domain-inconsistent axioms as rule-

based extractors is the same as with the domain-consistent axioms. Axiom 2 can

represented as the regular expression (in Perl):

$_ =~ /(P|p)rof(\.|\w+) (\w+) teach(|es) /(P|p)rof(\.|\w+) (\w+)/

4.2.2. Machine Learning-based Information Extractors

As seen in Section 2.2.2. there is a wide variety of possible methods that can be

used for implementing OBIE. However, because precomputed semantic error detection

generates a large number of domain-inconsistent axioms from a small set of consistent

axioms, the method used cannot rely on a large training set. We have consider as

machine learning-based implementation a two-phase classification scheme [13, 55].

In the first phase, the method identifies which sentences from the document

contain the information the extractor seeks. The process is defined as a binary

classification task (Naive Bayes [67]), where one class corresponds to sentences that
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carry the information and the other class corresponds to sentences that do not have

the information. In this phase, sentences are transformed into vectors. The features

of the vectors correspond to ontological metadata of the concepts or relationships to

extract (as defined in OBCIE): keywords, part-of-speech labels, and WordNet synsets

(i.e., sets of synonyms) [66].

The second phase of the platform identifies the elements of the sentence (words)

that contain the information. This is done by a probabilistic model (Conditional

Random Fields [68]). This phase uses metadata information from the first phase,

the output of the previous phase classifier, and a group of extra features that are

proposed and used by the Kylin system (e.g., capitalized words) [55].

It is possible to have a large number of information extractors based on different

machine learning methods, such as Support Vector Machine [69] or Maximum

Entropy [41, 55]. We have selected Naive Bayes and CRF as the methods for the

machine learning implementation strategy because they have shown consistent and

accurate results in IE [13, 17, 41, 55, 73].

4.2.3. Hybrid Extraction

We have also constructed information extractors following the hybrid

implementation approaches described in Chapter III. Because functionality is an

orthogonal aspect to implementation for an information extractor, it can be easily

integrated into the combination strategies for hybrid implementation extraction.

To include the semantic error detection functionality to the selection strategy, we

need to extend the original method which minimize both the extraction error of each

concept to minimizing the extraction error for each concept and the functionality. By
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incorporating functionality into the selection strategy for hybrid implementation, we

simple perform the process for a large number of axioms.

To include semantic error detection functionality for integration strategy, the

process of integrating outputs is as simple as for the selection strategy. For each

concept c and functionality f , a top level classifier uses as input the outputs of the

rule-based (ecfER(xs)) and machine learning-based (ecfML(xs)) extractors for the given

concept and functionality. In other words, for each concept and functionality there is

a stack of extractors.

4.3. Evaluation

We have evaluated the effectiveness of our approach with two different datasets.

4.3.1. Study Case: Ecosystem Dataset

The Ecosystem dataset is one of several datasets that are part of the study by

Sohlberg et al. [74]. Because the dataset is small, we used rule-based information

extractors. The following sections provide details regarding the data itself, the

ontology constructed, and the metrics used for evaluation.

4.3.1.1. Data

In this work we will use a set of summaries collected on an earlier study by

Sohlberg et al. [74] that looked at the use of electronic strategies (eStrategies) for

reading comprehension of college students. As part of the study, students were asked

to provide oral summaries of each article they had read, where each article is roughly 3

pages in length (4 articles were used). The oral summaries were manually transcribed

into text form. From the Sohlberg et al.s collection, we will consider for the present
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work 18 summaries from the Ecosystems article. The summaries vary in length from

a pair of sentences to 60 sentences. A section of a summary from the Ecosystem set

can be seen in the following example:

In the ecosystem there are different types of animals.
Producers make their own food from the environment.
Consumers eat other consumers and producers.
The producers are plants, trees, algaes.
...

Because the text are originally oral summaries, they slightly differ from written

ones (as it can be seen in the previous example). The transcribed summaries contain

repeated statements, and in some cases there are contradictions when considering the

summary as a whole. However, because we focus on resolving the semantic correctness

of the text one sentence at a time, these cohesion issues do not affect our analysis.

The summaries have been preprocessed in order to simplify the extraction

process. The preprocessing has been focused on resolving anaphoras and cataphoras

(e.g., pronouns) and on correcting misspellings. The summaries have also been labeled

at the sentence level according to the correctness of their content. The labeled

summaries have been used as the gold standard for the purpose of evaluation.

4.3.1.2. Ontology

We constructed an application-driven ontology for the domain of Ecosystems.

We used the introductory article that the student used for their summaries as the

sole guideline for the construction of the ontology. We included into the ontology

only explicit facts stated in the article, and we do not include facts from the entire

domain of Ecosystems. By keeping our ontology centered on the introductory article,
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Element type Number of element
Concepts 45
Relationships 28
Subclass relationships 7

TABLE 4.1. Statistical information about the ontology.

we intended that the ontology can better cover concepts and relationships from the

students summaries, which are also solely based on the article.

FIGURE 4.1. Graphical representation of a section of the Ecosystems ontology

Because of the strict construction criteria, the ontology has many concepts that

do not have a membership relationship with another concept, as well as not having

instances (Table 4.1). This is originated by the nature of the Ecosystems article.

Because the article is an introduction to the domain, a broad set of concepts and

relationships of the topic are presented rather than details, such as specific examples.

In Figure 4.1 we presents a graphical representation of a part of the Ecosystems

ontology.
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4.3.1.3. Evaluation Metrics and Comparison Methods

Just as in Section 3.3.1.4., the metrics used to evaluate are precision, recall, and

F1 measure. Although the ontology in this case study has more hight (hierarchical

structure) that the ontology used for the hybrid implementation evaluation, this

evaluation focus on the functional extraction of semantic errors.

Because error detection is a new functionality for IE, there is no other direct

method for comparison. For this reason, we will present evaluation metrics (precision,

recall, and F1 measure) separated by functionality, and the comparison will be

between functionalities. Although this is not an ideal approach for evaluating an

extraction method, it still can provide us with insight into what can be expected in

terms of quality of extraction when performing error detection.

However, we can obtain some insight of the new functionality by a indirect

method. From study by Sohlberg et al., the summaries were evaluated by an

instructor (i.e., gold standard), and by a Latent Semantic Analysis (LSA) evaluation

system.

LSA [14] is a method that has become popular in automatic grading systems,

such as Laburpen Ebaluaketa Automatikoa (LEA) [75], Intelligent Essay Assessor

(IEA) [76], and Knowledge Analysis Technologies (KAT) engine from Summary Street

[77]. It treats essays as a matrix of word frequencies and applies singular value

decomposition (SVD) to the matrix to find an underlying semantic space. It then

represents each to-be-graded essay in that space, as a vector, and assesses the cosine

similarity between the essay and the graded or standard essays or the text students

read. The cosine similarity can be transformed to the grade. Although LSA is not

a knowledge based approach to semantic error detection, it provides a method that

can determine some level of semantic incorrectness.
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Type of Extraction Rules
Metric Correct Incorrect
Precision 91.9% 97.4%
Recall 83.3% 88.63%
F1 87.4% 92.8%

TABLE 4.2. Performance of IE

Although OBIE does not provide a grade, we can define a type of evaluation

metric based on the extracted information from the summaries. We have used the

ratio of semantically correct sentences extracted over the total number of sentences

contained in the summary, i.e., a correctness ratio. We have removed the semantically

incorrect sentences before capturing (i.e., extracting) the correct ones. This gives a

sense of how relevant the content of the summary is with respect to the domain.

4.3.1.4. Results

Table 4.2 provides the performance of the OBIE. In general, the extraction for

both functionalities has a high accuracy. This result can be expected from both

the type of implementation used and the characteristics of the dataset. Rule-based

extraction can have a high precision, specially if there is a set of patterns for the

extraction of one concept or relationship (as it was the case for this evaluation). On

the other hand, because the summaries were initially provided orally, the vocabulary

tends to be smaller than a written document which can be edited and revised before

submission.

Because the ranges of grades from human graders, LSA, and our systems (ratio

of correctness over complete summary) are totally different, we have only conducted

correlation studies among them. We have found that the grades from our OBIE’s

correctness ratio does have a positive correlation with human grading. In other words,
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there is agreement between the human grader and OBIE. On the other hand, there

is no correlation between the LSA and OBIE’s correctness ratio. This can be easily

seen from Table 4.3, where there is almost no agreement between the methods. It

is interesting to note that, for the summaries used in the present work, both the

LSA grading and the instructor’s grading are not positively correlated. The most

straightforward answer is that LSA does not address incorrect statements. Given

that we found that 75% of the summaries contained at least one error, the divergence

from LSA is not surprising.

Pearson Correlations Spearman Correlations
Instructor LSA Instructor LSA

LSA -0.316 -0.163
Relevance 0.55 -0.068 0.531 0.176
Completeness 0.502 -0.168 0.547 -0.018
Importance 0.488 -0.119 0.559 0.016

TABLE 4.3. Correlation between grading metrics

It is worth looking at an example in the discussion of semantic error detection

by OBIE. Summary STIR33 (Table 4.4) has a grade of 7 from the instructor and

0.811 from LSA. The OBIE’s correctness ratio score is 0.222. OBIE found a number

of errors in this summary, including:

1. Detritivores do not eat inorganic matter.

2. Omnivores eat only plants and animals. They do not eat organic waste or

fragments of dead organisms.

3. Herbivores eat plants.

It is worth noting that the instructor’s score was 17 out of 20 for this summary.

We contacted the grader to try to gain insight into her high score given the number
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STIR33
Ecosystems are composed of different types of living
organisms.
There are herbivores, carnivores, detritivores and omnivores.
Detritivores eat inorganic matter or non-living matter.
Omnivores eat everything.
Herbivores eat meat and other organisms.
And herbivores eat vegetation.

STIR26
Carnivores are fish.
And I figure out what to say in my head.

TABLE 4.4. Example of summaries.

of errors we found. Our note to her prompted her to look at her raw scores again and

find a typo - her raw score was 7 not 17.

4.3.2. Study Case: Cell Biology Dataset

The Cell Biology dataset is the same as the one presented in Section 3.3.

Following is a short revision of the data, the ontology constructed, and the comparison

methods used in the evaluation. A more extensive description of he dataset can be

found in Section 3.3.

4.3.2.1. Overview of Data, Ontology and Comparison Methods

The dataset correspond to student answers in the final exam of an undergraduate

biology class. The corpus consists of 77 student answers. Each answer is a short

paragraph that may contain at most four sentences. The answers have been labeled

by domain experts (the instructor of the class and his teaching assistants) indicating if

they are correct or incorrect, and if the answers provide enough justification. Because

the size of the data is not large enough for the combination strategies, we have create a
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set of templates based on the students’ answers. We have generated a larger synthetic

dataset for the templates.

We have constructed an ontology for the biology domain of the final exam’s

question. Although there are many biology-related ontologies available (the National

Center of Biomedical Ontologys BioPortal1 website offers access to more than 300

biomedical ontologies), they do not offer the necessary relationships that are required

to analyze the students answers. To overcome this limitation we have developed

our own ontology. To construct the ontology we have followed two main guidelines:

it must contain all concepts and relationships that will allow answering the exams

question, and it must not include any other concepts that are not required to

answer the question. The first requirement intends to provide the sufficient domain

knowledge to analyze the arguments of the answer, i.e., why the myosin is affected by

a mitochondrial defect. The second requirement tries to reduce the complexity of the

ontology by keeping it focus on the part of the domain that is relevant for the task.

This criteria leads to an ontology that is highly connected, but has a small number

of hierarchical relationships between concepts.

As comparison methods, we have used a set of extraction approaches that

are based on rule-based and machine learning-based extraction. We can have

single implementation systems and multiple implementation systems. In the single

implementation systems, all information extractors are implemented as machine

learning-based extractors or as rule-based extractors, while multiple implementation

systems have information extractors implemented as extraction rules and machine

learning-based extractors for each concept. In this case, there are four concepts

which leads into three types of multiple implementation configurations: using three

machine learning extractor and one extraction rule (3ML-1ER), using two machine
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learning extractors and two extraction rules (2ML-2ER), and using one machine

learning extractor with three extraction rule extractors (1ML-3ER).

4.3.2.2. Results

As in Section 3.3., we present the evaluation results in detail with respect to the

amount of errors in the dataset. We also offer a general view of the evaluation by

presenting the best, the average, and the worse performance of each configuration

setting.

In general, as the amount of errors increases (higher probability of error in an

answer), the precision of all the methods increments (Figure 4.2). This is the inverse

trend of the one observed in Figure 3.3: as the error level increases in the data set,

the extraction of semantically correct sentences becomes less precise. In contrast, the

completeness (i.e., recall) of the extraction seems not to be affected by the level of

error.

FIGURE 4.2. Precision, recall and F1 measure for information extractors under
different levels of error in text, with single implementation (ER and ML), and multiple
implementations with our proposed combination strategies (MinError and StackNB)
with the functionality of extracting incorrect statements.

Figure 3.4 showed that, when extracting a semantically correct sentence,

the performance of in both combination strategies are influenced by the worse

implementation. The effect seems to differ from correct statement to error extraction
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functionality. In the case of extracting semantically incorrect sentences, our proposed

combination strategies for error extraction produce a more averaged performance

between the underlying implementations (Figure 4.3).

FIGURE 4.3. Precision, recall and F1 measure for information extractors with single
implementation (ER and ML), multiple implementations without a combination
strategy (1ML-3ER, 2ML-2ER and 3ML-1ER), and multiple implementations with
our proposed combination strategies (MinError and StackNB) with the functionality
of extracting incorrect statements.

Finally, Figure 4.4 compares the average performance of each configuration given

its functionality. In general, information extractors that extract correct statements

have a higher precision, recall, and F1 measure than their error extraction part, for

any given implementation. This difference in performance is a natural consequence

of how facts and errors can be represented in text. For example, we see in Table 3.3

that there are 12 types of correct sentences for Myosin, in contrast to the 28 types

of incorrect sentences. The information extractor for incorrect sentences needs to

consider more types of cases than an information extractor for correct sentences,

which leads to a higher possibility of inaccuracy. This situation is accentuated in the

case of machine learning implementation because not all errors are present in the same

frequency within the training set. This leads not only to the machine learning-based

extractor having to consider a wider range of types, but also that not all available
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types are available enough or frequent enough in the training set to be considered

relevant.

FIGURE 4.4. Comparison of correct statement extraction and error extraction
functionality in terms of precision, recall and F1 measure for information extractors
with single implementation (ER and ML), multiple implementations without
a combination strategy (1ML-3ER, 2ML-2ER, and 3ML-1ER), and multiple
implementations with our proposed combination strategies (MinError and StackNB).

Figure 4.4 also shows that the integration strategy StackNB performs better for

correct statement extraction, while MinError slightly outperforms the rest for the

error extraction.
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CHAPTER V

ONLINE REASONING FOR SEMANTIC ERROR DETECTION

This chapter consists of work publish in the “Proceedings of the 13th

international conference on ontologies, databases and application of semantics” in

2014 [78]. Dr. Dejing Dou, Dr. Stephen Fickas contributed in the design of the

method propose in this chapter. Dr. Gina Griffiths contributed with the students’

dataset.

In the precomputed semantic error detection approach described in Chapter IV,

domain-incorrect sentences are identified by predefined information extractors. These

information extractors encode domain-inconsistent axioms that are generated from

the domain ontology. In this way our previous method was able to identify errors (i.e.,

incorrect statements) which have been previously defined. However, this approach

can only recognize semantically incorrect sentences that represent one of the domain-

inconsistent axioms, if they were part of the training set or very similar to a sentence

in the training set. New sentences can not be judged correctly.

In order to provide the most complete analysis of text content, we propose online

reasoning for semantic error detection, a method for identifying domain-incorrect

content in text by incorporating online logic reasoning (i.e., inference) and domain

knowledge. Instead of having the ontology guiding the extraction process, the IE

is performed based on structural elements from the text, while the semantic error

detection comes from determining if the text is logically consistent with respect to

the modeled domain knowledge (i.e., ontology).

Our proposed inference-based approach consists of two steps. In the first

step, sentences are transformed into logic clauses through a combination of IE and
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vocabulary mapping. This step intends to take written natural language (i.e., the

sentence) to a formalized representation that is compatible with the domain ontology

(i.e., ontological axiom). In the second step, the transformed sentence is included

into the ontology to determine its consistency with the domain. This process, which

is performed by a reasoner, is known as consistency checking. If the domain ontology

becomes inconsistent after the extracted sentence is added into it, then the sentence

is semantically incorrect with respect to the domain.

We have identified two approaches when analyzing the extracted sentences: single

sentence analysis and multiple sentence analysis. In single sentence analysis, we

intend to determine the semantic correctness of text by considering one sentence at

a time. Under this approach the semantic content of each sentence is considered

independent from the rest of the text. In the case of multiple sentence analysis, a

group of sentences from the text are analyzed as set of clauses. Although the analysis

of multiple sentences leads to a higher computational complexity, it allows us analyze

the correctness between sentences. There are cases where sentences can be consistent

when considered independently, but become inconsistent when analyzed as a set.

Because we first identify all the relationships in the text, and then we determine

their semantic correctness against the whole ontology, it is possible to offer a complete

analysis of the text. Although this approach differs from the definition of OBIE [9],

we argue that it is still an OBIE process since the approach relies on the domain

ontology to determine the correctness of each statement.

5.1. Transforming Text to Logic Clauses

In the first step of our proposed online reasoning approach, sentences need to be

transformed from their written form into logic clauses which uses the same vocabulary
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than the domain ontology. This transformation is achieved by through IE and a

mapping mechanism.

5.1.1. Information Extraction

As previously mentioned in Section 2.2.3., there are three main strategies to

IE depending on the level of human intervention (i.e., data preparation). However,

because our approach intends to determine the correctness of each sentence presented

in the text, not all three strategies are suited for our approach. Supervised IE cannot

provide a complete extraction from the text since the process is guided by known

labeled data and predefined patterns. Similarly, semi-supervised IE systems are

guided to extract relationships based on sets of known individuals. Plus, in order

to provide quality extraction, semi-supervised IE requires a significant set of training

individuals.

For the present work, we have chosen the unsupervised strategy followed by

the Open Information Extraction system OLLIE [47]. Open Information Extraction

systems intend to extract binary relationships without using any training data (or

handcraft patterns). The main goal behind this approach is to offer an IE system that

can scale to the Web. To do this, Open Information Extraction follows a set of general

patterns to extract every possible relationship from a text [17, 46, 73, 79]. In the case

of OLLIE, the patterns are built by generalizing extractions with high confidence

(i.e., high quality extraction). The set of high quality extractions is obtained from

Open Information Extraction system ReVerb [46], which uses a verb-based patterns to

identify relations in text. These extractions (e.g., tuples) have two constraints: they

contain solely proper nouns as entities participating in the extracted relation, and they

have a high confidence value. Then, similar to semi-supervised IE systems, OLLIE
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gathers a set of sentences that contain the entities and relations from the extracted

tuples. To avoid collecting sentences that might introduce errors, OLLIE only gathers

sentences with a structure that is centered in the elements of the extracted tuple, i.e.,

elements of the relation must be in a linear path of at most size four in the dependency

parse [47]. From the selected sentences, OLLIE learns a set of general extraction

patterns. If the structure of a sentence meets a set of requirements (e.g., the relation

is in between the two entities in the sentence), a pure syntactic pattern can be learned

from the sentence (e.g., most general pattern). If the structure of the sentence does

not meet the requirements, lexical aspects of the sentence are considered in order to

produce a general pattern. These generalized patterns are used to extract new tuples

from text. For example, from the sentence “Scavengers feed from dead organisms,”

OLLIE will produce the tuple feed(Scavengers, dead organism).

Because we are focused on determining the correctness of the text content, we

considered OLLIE as a blackbox component of our system. This approach to the

extraction component of our method allows us change to other unsupervised IE

systems, such as ClausIE [79] or ReVerb [46], in the future without needing to redesign

our method.

5.1.2. Mapping Extractions to Ontology

Although the text and the ontology belong to the same domain, it is very possible

that the selection of words to represent concepts and relationships might differ. So, to

be able to use the domain ontology to evaluate the correctness of the text’s semantics,

we need to solve first the lexical gap that might exist between the text and the

ontology. In other words, we will need a mapping mechanism that can allow us pass
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from the vocabulary of the extracted entities and relationships to the vocabulary of

the ontology.

Because we are focused on semantic error detection, we have opted for a simple

and direct solution for the translation (i.e., vocabulary mapping) task. The mapping

mechanism that we proposed is based on two dictionaries of terms : one for managing

concepts, and another for managing relationships. In the case of the dictionary for

managing concepts, an extracted entity will lead to the equivalent ontological concept.

For example in Figure 5.1, both dead organisms and dead animals lead to the concept

Dead Organism.

FIGURE 5.1. Example of mapping between extracted terms and ontology concepts.

In the case of managing relationships, because a relationship might have different

meaning depending on other elements in the sentence, we consider both subject

entity and relation to determine the ontological property. For example, the concept

Carnivores and the relation feed will lead to the property feed from herbivore, while

concept Herbivore and relation feed will lead to the property feed from producer.

Both dictionaries are generated by considering a subset of extracted relationships

(i.e., sample) from the data set.
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5.2. Single Sentence Analysis

Once we have extracted all the relations from the text (e.g., “Autotrophs produce

their food,” to produce(Autotrophs, food)), and the relations have been mapped to

the vocabulary of the ontology (e.g., produce(Autotrophs, food) to Autotrophs ⊑

∃produce.Food), we proceed to analyze the correctness of the sentences by using

consistency checking.

As mentioned, we have identified two approaches when analyzing text

extractions: single sentence analysis and multiple sentence analysis. In single sentence

analysis, we intend to determine the correctness of text by considering one sentence

at a time. Under this approach the semantic content of each sentence is considered

independent from the rest of the text. In the case of multiple sentence analysis, a

group of sentences from the text are analyzed as set of clauses. Although the analysis

of multiple sentences leads to a higher computational complexity, it allows us analyze

the correctness between sentences.

In this section, we focus on single sentence analysis. Each sentence will be

included into the domain ontology independently. After the analysis of the sentence

has concluded, the sentence’s relationship will be removed from the domain ontology.

However, to be able to determine the semantic correctness of a sentence, we need

to consider some requirements for our approach. First, because our online reasoning

approach to semantic error detection uses logic reasoning, we need a more strict

definition of sentence types. Second, the domain ontology needs to be consistent and

complete. In the following sections, we provide details regarding these requirements
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5.2.1. Redefining Sentence Types

In Section 4.1., we present a classification of sentences based on their relationship

with the domain. Although the original definition is necessary for determining the

sentence’s type, it is not sufficient when using our online reasoning approach. In

the following sections, we offer a new definition of sentence types for reasoning-based

semantic error detection method.

5.2.1.1. Correct Sentences

In Section 4.1.1., we define a sentence is semantically if it is consistent with

respect to the domain. A sentence is consistent if the domain does not provide the

sentence to be false. However, although consistency is required, it is not sufficient to

prove correctness. Even more, if a sentence is completely unrelated to the domain, it

is more likely that the statement will not violate any constraint of the domain. Let

us consider the following example:

Planets ⊑ ∃orbits.Stars
Ontology orbits(Earth, Sun)

Stars(Sun)

Axiom 1 Planets(Earth)
Axiom 2 Myosin ⊑ AminoAcid

In the example, neither sentence contradicts the domain. We can see that Axiom 1,

which states that Earth is a Planet ( Planets(Earth) ), is logically consistent with the

domain ontology because from the domain we know that Planets orbit around Stars

( Planets ⊑ ∃orbits.Stars ), Earth orbits around the sun ( orbits(Earth, Sun) ),

and the sun is a star ( Stars(Sun) ). Axiom 2, which states that Myosin is an amino

acid ( Myosin ⊑ AminoAcid ), also is consistent with the domain because it does
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not contradict the domain. However, the ontology does not have any information

regarding the elements that are being referred in Axiom 2 that would allow us to

effectively determine its semantic correctness.

We have revised our definition of semantic correctness. A sentence is semantically

correct if it is a logic consequence of the domain, i.e., a semantically correct sentence

s can be entailed from the domain O (O � s) [78]. For a sentence to be entailed

by the domain, it must either express explicit or implicit (i.e., inferred) facts of the

domain. From the previous example, we can see that while Axiom 1 is entailed by

the domain, the second sentence, although consistent, cannot be entailed from the

domain.

5.2.1.2. Incorrect Sentences

The definition of semantic incorrect sentence presented in Section 4.1.2. is still

valid for our online reasoning approach. A sentence s is semantically incorrect if it

is inconsistent with respect to domain ontology O (O ∪ s �⊥) [78].

Ontology Producer ⊑ ¬Carnivore
Producer ⊑ ∃produce.Food

Axiom 1 Carnivores ⊑ ∃produce.Food

In the example, the domain ontology states that Producers can create (i.e.,

produce) Food (Producer ⊑ ¬Carnivore), and that Producers are not Carnivores

(Producer ⊑ ∃produce.Food). Axiom 1 is semantically incorrect because it defines

the relationship Carnivores produce their food ( Carnivores ⊑ ∃produce.Food ),

which contradicts the domain ontology.

81



Because of the new definition of semantic correct sentence presented previously

(Section 5.2.1.1.), the definition of semantic incorrect sentence becomes more natural.

In general, if a sentence is not correct, it is considered to be incorrect. For example,

automatic text grading systems based on LSA follow this approach. In LSA-based

systems [14], a text is correct if it is very similar to the gold standard (i.e., a perfect

text), while an incorrect text has very low similarity. Our definition of semantic

incorrect sentence can be restated as the consequence of a false statement, i.e., a

sentence s is semantically incorrect if its negation is a consequence of the domain

ontology (O � ¬s).

5.2.1.3. Unknown Sentences

All those sentences that are neither correct or incorrect, shall be consider in this

work as unknown. Although it might seem that this is the same definition given

in Section 4.1.3., it is not based on if the elements mentioned in the sentence are

defined in the ontology or not. Because of the new definition of semantic correctness

(Section 5.2.1.1.), a sentence is consider as unknown if it is neither true or false with

respect to the domain ontology ( O 2 s and O 2 ¬s).

Ontology Producer is not a Carnivore. ( Tree ⊑ Producer )
Producers create their own food. ( Producer ⊑ ∃produce.Food )

Axiom 1 Trees produce their food. ( Tree ⊑ ∃produce.Food )

In the example, we can see that Axiom is a semantically unknown sentence because it

states Trees produce their food ( Tree ⊑ ∃produce.Food ), and the domain ontology

only mentions that Producers produce their own food ( Producer ⊑ ∃produce.Food

). From the ontology, we cannot determine if the sentence is true or false.
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As mentioned in Section 4.1.3., determining if a sentence is semantically unknown

in the precomputed approach is not practical because its implementation lead to an

overlap with determining if a sentence is semantically incorrect. In contrast, under

the online reasoning approach, identifying a sentence unknown becomes an effect

of verifying if a sentence is semantically( O � s) or if it is semantically incorrect

(O � ¬s).

5.2.2. Ontology Consistency and Completeness

As seen in the preceding section, a sentence type depends on the relationship

between a sentence and the domain ontology. In order for the ontology to be

able to help us determine the semantic correctness of a sentence, it must meet two

requirements: consistency and completeness.

The first requirement, i.e., consistency, is the most important one. In general,

a domain ontology is expected to be consistent (i.e., no logical contradictions). A

consistent domain ontology provides an unambiguous taxonomic classification of

concepts and relationships of a domain. If the ontology is inconsistent, there is

a concept or relationship that has two or more irreconcilable interpretations (e.g.,

disjoint concepts stated in a subclass relationship). An inconsistent ontology is not

only problematic in terms of utility. From a more theoretical point of view, an

inconsistent ontology is seen as useless since anything can be inferred from a set of

contradicting axioms [28].

An inconsistent ontology is not useful in determining text correctness because

any sentence would be considered correct. So, consistency of the domain ontology,

is fundamental for determining the correctness of a sentence. Although it can be

argued that methods, such as those of Huang et al. [33] inconsistent reasoner and Liu
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et al. [80] probabilistic logic, can manage logic contradiction in an ontology, it is not

clear the meaning of a sentence that contradicts an inconsistent domain ontology.

On the other hand, the requirement of completeness of the domain ontology has

more practical implications. If the domain ontology has only a partial coverage of

the domain, it is more likely to leave out of the analysis a set of unknown sentences,

which should have been labeled as correct or incorrect. The more complete the domain

ontology is, the more accurate is the analysis of the text.

Although it might seem simple to address the issue of completeness of an

ontology, e.g., use ontology learning methods [28, 81] or ontology population [44]

to make the ontology more complete, change can easily lead to inconsistency

(Section 2.1.2.). Ontology completeness might be difficult to address since it can

lead to the need of a redesign of the ontology.

5.2.3. Determining Correctness of a Sentence

After a sentence has been transformed from its written form to logic

representation that is compatible with the domain ontology, we analyze the sentence

semantic correctness.

We start by determining if an extracted statement is correct by entailment

(Algorithm 1, line 2). If the extracted statement can be entailed, it is labeled

as correct. If it cannot be entailed, the statement is added to the ontology to

determine its consistency (Algorithm 1, line 3). If the domain ontology becomes

inconsistent after an extracted sentence is added to it, then the sentence is incorrect.

If the extracted statement is not entailed by the domain but consistent with it,

the statement is labeled as unknown (i.e., incomplete) with respect to the domain
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ontology. In this work we have selected as reason HermiT because of its higher

efficiency (i.e., hypertableau reasoning algorithm) [26].

1 while i ≤ n do

2 if O 2 si then

3 if O 2 ¬si then

4 si is unknown

5 else

6 si is incorrect

7 end

8 end

9 si is correct

10 end

Algorithm 1: Online reasoning approach for semantic error detection in single

sentence analysis.

In case of inconsistency (i.e., incorrect sentence), we preferred that the error

detection approach could provide an explanation of the origin of the inconsistency.

For that purpose, we have included into our approach the ontology debugging solution

proposed by Horridge et al. [32]. As previously mentioned, Horridge et al. explanation

approach integrates Reiter’s Hitting Set Tree (HST) [38] to identify the minimal

inconsistent sub-ontology, i.e., subset of axioms from the ontology that cause the

inconsistency. Since the inconsistency is originated by the sentence, the HST-based

debugging method can determine which part of the ontology is contradicted by the

incorrect sentence (i.e., the explanation).

Horridge et al.’s approach has been incorporated into popular DL reasoners, such

as Pellet [24] and HermiT [26].
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5.3. Multiple Sentence Analysis

In our previous approaches for semantic error detection, we analyzed individual

sentences of the text. Single sentence analysis is based on the notion that a sentence

is the smallest linguistic unit from which an IE system can extract information.

However, because sentences are usually used to construct paragraphs and documents

to express more complex ideas, they are dependent. Although not all sentences of

the same document are semantically connected, it is very likely that sets of sentences

refer to the same concepts and relationships. Let us consider the following example:

Ontology Planet ⊑ ¬DwarfP lanet

Axiom 1 Planet(Pluto)
Axiom 2 DwarfP lanet(Pluto)

From the domain ontology, we only know that a Planet cannot be Dwarf Planet.

If we state that Pluto is a Planet (Axiom 1), we cannot label it as a semantically

correct or incorrect statement. The same occurs with Axiom 2. In other words, if we

apply any of our previous approaches to determine the semantic correctness of these

two axioms, we would only discover that both axioms are unknown. However, it is

clear that, given the domain ontology, these axioms together would make a document

semantically incorrect.

In order to identify all possible semantic errors in a text, we need to consider

that sentences are not independent of each other, i.e., semantic errors can occur

by combining two or more sentences. As in the example, these semantic errors

become evident only when analyzing set of sentences as a whole and not as a series

of independent sentences.

86



5.3.1. Analyzing All Sentences Simultaneously

Although it is possible that the multiple sentence semantic error affect all

sentences of a text, it is more likely that a set of sentences can be domain-inconsistent.

But, because a set of semantically erroneous sentences can be formed with parts of

any section of the text (e.g, domain inconsistency between sentences from different

paragraphs), determining which set of sentences needs to be analyzed together

becomes a difficult issue.

A simple approach would be to analyze all the sentences of a text together. This

approach would avoid the complex task of determining which sentences need to be

consider as set to be analyzed. It also avoids the problematic of missing a set of

semantically incorrect sentences by splitting them into different analysis sets.

However, by considering all sentences at a time, we loose the information that

consistency checking can give in the single sentence analysis for the online reasoning.

Consistency checking can only determine the consistency of the ontology and the

set of sentences. In the case of the single sentence analysis, we could determine if

a sentence is semantically incorrect. On the other hand, if a set of sentences are

inconsistent against the ontology, that means at least one sentence is semantically

incorrect. We also cannot differentiate between semantically correct and unknown

sentences since both types are consistent with the domain ontology.

It can be argued that we could reduce the error detection problem to ontology

debugging (e.g., apply a method such as Horridge et al. [32]). However, if we

consider that the number of sentences to be analyzed could be large (analyzing a

large document), this approach becomes unpractical. Methods such as Horridge et

al. [32], Schlobach and Cornet [34], and Schlobach et al. [35] need to perform multiple

consistency checking. We can easily see that this approach becomes unpractical when
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considering that consistency checking has an exponential complexity in DL, and the

size of the ontology plus the extracted statements is significantly large.

5.3.2. Analyzing an Incremental Set of Sentences

Alternatively, instead of analyzing all sentences at the same time, we can consider

a subset of sentences, making the method more practical. However, under a subset

approach, it is possible to partition the set of sentences in a way that could eliminate

the actual semantic errors.

An option to analyze groups of statements with overlooking error is by

incrementally analyzing the set of statements. Iteratively, we add sentences into

the ontology, and we perform consistency checking. If there is an inconsistency, we

try to identify the origin. This incremental approach allows us to keep some control

over the complexity of the process while still providing completeness over the analysis.

In this approach, a key element is the order in which the sentences are

being added to the ontology for analysis. For example, we produce the set S =

s1, ..., si, ..., sj, ..., sn (with i much smaller than j) of extraction from sentences of

a text. Let us assume that the inclusion into the ontology of statements si and

sj together makes it inconsistent. Then, since i is much smaller than j, in our

incremental approach sj will be added many iterations after si. If we sort the

statements with a selection function, the analysis with both statements can be

performed earlier. Although this efficient ordering of statements does not reduce

the complexity of the consistency checking, it can reduce the complexity when trying

to find the origin of the inconsistency.

The weakness of this approach is that it can easily degrades into the approach

of analyzing all sentences simultaneously. As we iterate, the number of sentences to
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analyze will lead us into not determining which sentences are semantically correct, or

which sentences from the large set are semantically incorrect.

5.3.3. Reduce Sentence Set

We proposed that the single sentence analysis can provide insight into which

sentences need to be considered for multiple sentence analysis, and which sentences

do not need to be considered. To identify multiple sentence semantical errors, we

need to determine which sentences can provide new information into the analysis.

We propose that the sentences that do not provide new information can be

remove from the analysis process without losing content, i.e., the reduction of the

set of sentences still leads to a complete analysis. Our reduction is based on cut

elimination over entailed elements. Cut elimination is the central inference rule in

Sequent Calculus.

Γ ⊢ ∆, A A,Σ ⊢ ∆

Γ,Σ ⊢ Π,∆
. (Equation 5.1.)

As seen in Equation 5.1., cut-elimination mainly express that if we can entail a

logical formula A from a set of formulas Γ, we do not need A to entail other elements

(e.g., ∆) from Γ since the information of A is already contain in Γ.

Based on cut-elimination, we could remove two types of sentences without

affecting the completeness of our analysis approach: semantically correct sentences

and semantically incorrect sentences. Since semantically correct sentences are

consequence of the domain, they do not provide any information that is not already

contained in the domain ontology. Similarly, semantically incorrect sentences are false

consequence of the domain, i.e., inconsistent with the domain ontology.
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5.3.3.1. Determining Sentence Types

1 U set of unknown sentences while i ≤ n do

2 if O 2 si then

3 if O 2 ¬si then

4 if O ∪ U ∪ si �⊥ then

5 U ∪ si is incorrect

6 else

7 si is unknown and added to the set of unknown sentences U

8 end

9 else

10 si is incorrect

11 end

12 end

13 si is correct

14 end

Algorithm 2: Online reasoning approach for semantic error detection in

multiple sentence analysis.
As mentioned, because sentence type can allow us to determine which sentence

needs to be consider as part of a set of sentence for analysis, multiple sentence analysis

for online reasoning semantic error detection provides a generalized approach of our

reasoning-based approach.

The reduction of sentence occurs, as seen in Algorithm 2, by not including

semantically correct and semantically incorrect sentences for the following iteration of

the process. As it can be seen in line 4 in Algorithm 2, we only evaluate the consistency
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between unknown sentences. Since unknown sentences contain information that is not

in the ontology, we need to consider them for following iterations.

5.3.3.2. Proof of Completeness of the Analysis

Let us consider the set of extracted relations S = s1, ..., sn, si is an extracted

sentence with i ∈ [1, n], S ′ is a subset of extracted relations that have already been

analyzed ( S ′ ( S), and the domain ontology O.

– si: Let us assume that si is a correct sentence, i.e., O ∪ S ′ � si is true.

Then for si+1: Because O∪ S ′ can entail si (previous axiom is true), we do not

need si to determine if si+1 is a logical implication from the domain and the

previous sentences. Then through cut elimination, O ∪ S ′ ∪ si � si+1 can be

reduced to O ∪ S ′ � si+1.

– si: let us assume that si is an incorrect sentence, i.e., O ∪ S ′ � ¬si is true.

Then for si+1: Similarly to the case of si being a correct sentence, we do not

need ¬si to determine if si+1 is a logical implication from the domain and the

previous sentences. Then through cut elimination, O ∪ S ′ ∪ si � si+1 can be

reduced to O ∪ S ′ � si+1

– si: finally, let us assume that si is an unknown sentence.

O ∪ S ′ � si and O ∪ S ′ � ¬si are false. If O ∪ S ′ cannot entail si (previous

axiom is true), then we cannot remove si for the analysis of si+1.

We can see that S ′ contains all sentence that have been labeled as semantically

unknown because if we determine that a sentence is semantically correct (or incorrect),

we do not need to consider it for the following analysis.
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5.4. Evaluation

We have evaluated both the single sentence analysis and the multiple sentence

analysis of our proposed online reasoning approach for semantic error detection.

Following sections provide details of datasets, ontologies, and comparison methods

used for each type of analysis.

5.4.1. Evaluating Single Sentence Analysis

We have evaluated our online reasoning approach for single sentence analysis

against the Ecosystems dataset presented in Section 4.3.1. Following sections provide

details regarding the data itself, the ontology constructed, and the metrics used for

evaluation.

5.4.1.1. Overview of the Dataset and Ontology

As mentioned in Section 4.3.1., the Ecosystem dataset is a subset of 18 summaries

from the study by Sohlberg et al. [82] regarding electronic strategies (eStrategies)

for reading comprehension. The summaries of the Ecosystem dataset are oral

summaries manually transcribed that range from a pair of sentences to 60 sentences.

The summaries are based on a single, 3 pages in length, article which provides a

introduction to the topic of Ecosystems. We have preprocessed to resolve anaphoras

(e.g., pronouns) and on correcting misspellings.

On the other hand, the ontology used for this evaluation is based on the same

article used by the students for summarization. The construction of the ontology is

constrained to explicit facts from the domain knowledge defined by the article, and

does not include facts from the entire domain of Ecosystems.

92



Element type Original Extended
Concepts 45 55
Relationships 28 30
Axioms 7 224

TABLE 5.1. Comparison between statistical information about the original ontology
presented in Section 4.3.1. to evaluate the precomputed approach and the extended
ontology used to evaluate our proposed online reasoning approach.

Although the ontology used in our present approach is similar to the one used

in Section 4.3.1., there is a significant difference in the number of axioms of each

ontology (Table 5.1). In order to determine incorrectness based on logic contradiction,

the ontology for the present evaluation incorporates a large set of constraints, such as

disjointness between classes, and strictly defines domain and range for each property.

5.4.1.2. Evaluation Metrics and Comparison Methods

To obtain a better understanding of how well our online reasoning method

performs, we are comparing the performance of our method against two comparison

methods. Just as in Chapters III and IV, we will use precision, recall, and F1 as

metrics since our goal is to evaluate how complete is the analysis of these methods.

The first method is our previous precomputed approach defined in Chapter IV,

which is, to the best of our knowledge, the only ontology-based semantic error

detection method. As previously mentioned (Chapter IV), our previous precomputed

approach defines domain inconsistent axioms by violating ontological constraints.

These domain-inconsistent axioms are encoded into extraction patterns that can

detect semantically incorrect sentences before the extraction process begins (i.e.,

precomputed approach).

For comparison, we have used the same set of rules manually defined before. We

created the extraction rules by using the domain ontology and considering the content
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documents. Because it is possible to generate a large set of inconsistent axioms from

the domain ontology, we use the content of the four documents to limit the number

of extraction rules that need to be generated. This led to 31 extraction rules to

identify correct sentences, 16 extraction rules to identify incorrect sentences, and five

extraction rules to identify incomplete sentences.

The second comparison method is a variation to our online reasoning approach

that replace the IE process withmanual extraction. This variation can provide us with

insight of how the mapping and reasoning steps perform when analyzing correctness.

Because currently available IE implementations are not 100% accurate, the overall

performance of error detection might be affected by the IE process. The use of manual

extractions can lead to an overall performance depending on directly the performance

of the mapping and reasoning steps of our approach. We have constructed a data

set formed by binary relationships manually extracted from the 18 summaries. These

manually extracted relationships are then analyzed by our approach to determine

their correctness.

For the mapping step, we use the same dictionaries for both proposed approach

(i.e., automatic extraction) and the manual extraction method. The dictionaries were

constructed by observing extracted relationships from 40 sentences taken from four

of the 18 summaries.

5.4.1.3. Results

From Table 5.2, we can say that in the case of online reasoning approach, it is

possible to determine with high precision the semantic correctness of a sentence with

respect to the domain by logic reasoning. However, there is a significant amount of

sentences that, although contained in the domain, are considered to be unrelated to
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Automatic Manual Precomputed
Sentence Extraction Extraction approach
Correct 100% 100% 91.9%
Incorrect 100% 100% 97.4%
Unknown 89.5% 74.71% -

Automatic Manual Precomputed
Sentence Extraction Extraction approach
Correct 40.9% 80.23% 83.3%
Incorrect 41.3% 88.63% 88.6%
Unknown 100% 100% -

Automatic Manual Precomputed
Sentence Extraction Extraction approach
Correct 58.1% 89.0% 87.4%
Incorrect 58.4% 93.97% 92.8%
Unknown 94.4% 74.71% -

TABLE 5.2. Precision (top), recall (center), and F1 measure (bottom) for the
proposed method (automatic and manually extraction) and for the precomputed
approach [1].

the domain. There are a significant amount of cases where the IE process extracted

phrases as entities. Although this is not strictly incorrect, most of these phrases

represented something more than only a domain concept. This leads to a lower recall.

On the other hand, although not all semantically correct and incorrect sentences

were captured, the sentences that were labeled as correct are all semantically correct

sentences. The same goes with the semantically incorrect sentences.

The perfect precision (i.e., 100%) obtained by both online reasoning and the

manual extraction approaches in the case of semantically correct and incorrect

sentences might seem unrealistic. However, it is the natural outcome given the

underlying method used in the process (i.e., reasoning). If one sentence was labeled as

correct when it was actually incorrect, it would mean that reasoning process used to

determine the label the sentence is not accurate. However, as previously mentioned,
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we are using a DL reasoner (i.e., HermiT) which is sound and complete. So, once

the semantic elements of a sentence are mapped to the ontology, the reasoner can

accurately determine if it contradicts the domain ontology or not.

In the case of manually extracted relations, we can observe an increment in the

recall with respect to the online reasoning approach, with the same level of precision.

This result indicates that the quality of the extraction process has a significant effect

in the detection of correctness, it is not the only factor affecting the recall of correct

and incorrect sentences. In the case of manual extractions, the error in determining

the correctness of a sentence can be explained by the mapping between extractions

and ontology. The correct (and incorrect) sentences that were labeled as incomplete

are cases where the mapping procedure failed to connect extraction entities with

ontological concepts.

When compared with our previous approach, precomputed error detection, both

our proposed automatic extraction and manual extraction methods are more accurate

when identifying incorrect sentences. On the other hand, because our previous

approach seeks specific pre-defined patterns in the text, it has a higher recall.

However, the precomputed error has higher deployment conditions (i.e., overhead)

since the extraction rules need to be created by domain and ontology experts.

5.4.2. Evaluating Multiple Sentence Analysis

We have also evaluated our online reasoning approach for multiple sentence

analysis. However, because multiple sentence analysis is a new approach to semantic

error detection, rather than evaluating the method, we provide some observations

from the execution of this new approach over two synthetic datasets.
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5.4.2.1. Synthetic Datasets

Currently there is not datasets for semantic errors on multiple sentences. For this

evaluation, we have generated two synthetic dataset that contains multiple sentence

semantical errors.

Ecosystem Dataset. We have used this dataset for the evaluation of both

precomputed semantic error detection (Section 4.3.1.) and the online reasoning

semantic error detection for single sentence analysis (Section 5.4.). It consists of

18 oral student summaries that have been manually transcribed. The length of the

summaries can vary significantly, from 2 to 60 sentence.

For multiple sentence, we have used the same ontology defined in Section 5.4.1.1.

It is based on the introduction article read by the students participating in the

study. The ontology has explicitly defined all logical constraints that are usually

left undefined, such as disjointness between sibling concepts, and defined domain and

range for properties.

We have introduce into the summaries 20 sentences that, by them selfs, are

semantically unknown. However, when these sentences are analyzed in a set, they

are semantically incorrect. We have randomly added these sentence into 10 of the 18

summaries.

Wikipedia’s County Dataset. It consists of 570 articles from Wikipedia

regarding counties of the United States. These articles vary significantly in length,

with some articles containing less than 10 sentence, while others containing more than

60.

97



Element type Number of element
Concepts 15
Relationships 6
Axioms 40

TABLE 5.3. Statistical information about the ontology.

We have designed an ontology following patterns described in previous sections

(e.g., Section 3.3.2.2.). Because the counties’ articles had a very limited number

of share topics (e.g., origin of the name of the county), the ontology is small in

comparison to other ontologies used for evaluation of semantic error (Figure 5.2).

However, it still has a large number of constraints (Table 5.3).

FIGURE 5.2. Graphical representation of a section of the County ontology

The synthetic error introduce into the article is based on characteristics of the

dataset. There 41 cases where two or more counties, from different state, sharing the

same name. The semantic error is introduce by adding sentences from one county to

another county that has the same name. Because of constraints such as a county can

have on seat and it can belong to one state, the inclusion of a sentence indicating

another seat (or state) than the one in the article creates domain-inconsistency across
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multiple sentences. It is very likely that, at some point, these types of semantic error

might have occurred before the content was verified by Wikipedia editors.

5.4.2.2. Results

As mentioned, because semantic error detection over multiple sentence is a new

approach, there are no comparison methods. However, we can still get some insight

from the performance of the method.

In the case of the Ecosystem dataset, the results are mostly a reflection the

performance of the single sentence analysis. If the sentence was extracted and mapped

correctly to the ontology, the multiple sentence analysis method would accurately

identify the semantically incorrect sentences (90%). When the transformation from

text to logic clause fails, the sentences are labeled as unknown.

One of the mapping issues occurred because of a negation in the sentence.

Although information extraction system can handle negation in most cases, it is

not clear to which element in the ontology it should map. Because most DL

languages cannot handle complex negation of concepts, we have negation mostly used

in ontologies to define disjointness between concepts. Let us consider the concept

Carnivore from the Ecosystem ontology, which is disjoint with a set of concepts. It

is unclear if the statement noCarnivore refers to all of the concepts that are disjoint

to Carnivore, or it refers to a specific concept like Herbivore.
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CHAPTER VI

CONCLUSION

As automatic processing of written natural language progresses, while processes,

such as IE, moves to sources where the quality of text content cannot be guaranteed,

it seems reasonable to identify mechanisms that can help to coup with this lack of

quality. In this dissertation, we have explored how to overcome these difficulties in

IE by combining mechanisms of different nature. We have focused on two orthogonal

issues that affect IE: accuracy of extraction and semantic correctness of extraction.

The present dissertation, which consists of three parts, presents three different

approaches to improve accuracy and tackle semantic correctness.

In the first part of the dissertation, we proposed a hybrid implementation

approach for OBIE, which leads to a more accurate extraction process. It considers

the use of combined information extractors with different implementations. By

using both implementations (extraction rules and machine learning-based extractors),

it is possible to obtain higher accuracy in the extraction process. We offer a

selection strategy and an integration strategy to combine information extractors

with different implementations. The selection strategy determines the most accurate

set of information extractors by determining which implementation commits fewer

extraction errors. The integration strategy uses the ensemble method of stacking

to combine the outputs of both implementations. Stacking trains a classifier from

the outputs of the underlying methods (i.e. information extractors) to produce a

more accurate extraction. The evaluation of our proposed approach shows a clear

improvement in accuracy, providing an overall balance between precision and recall

of the extracted information.
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In the second part of the dissertation, we proposed a semantic error detection

method based on traditional Ontology-based Information Extraction, where semantic

errors are precomputed. Because an ontology only represents domain facts, this

approach requires a mechanism to create (or generate) axioms that are incorrect

with respect to the domain (i.e., domain-inconsistent axioms). These domain-

inconsistent axioms are encoded into information extractors that are applied to the

text. The information extractors were implemented as pattern-based rules, and as

machine learning based extractors in order to determine the most suitable method

for identifying incorrectness. Our approach to semantic error detection shows that it

is possible to integrate this new functionality without affecting traditional extraction

(i.e., semantically correct information). We can also see that it is possible to obtain

accurate extractions in spite of the inherent complexity of identifying semantic error.

In the third and final part of my dissertation, we proposed a semantic error

detection method based on reasoning. Under this approach, the text sentence needs to

be transformed from written natural language into a logic like representation, such as

IE extracted tuples. With the text in a logic form plus the domain ontology, we apply

ontology debugging methods, through reasoning, to determine the type of sentence

and the origin of the error. In contrast to the precomputed semantic error, where the

origin of the incorrectness is known because of the generation mechanism, this reason

based approach requires an explicit methods to determine the origin (i.e., explanation)

of the semantic error. We extended this reasoning-based method to analyze a text

as a whole and not as a set of independent sentences. This extension has led to a

generalized approach to error detection, which will allow analysis of both single and

multiple sentences. The evaluation of our proposed reasoning-based approach showed

that, although dependent on the quality of the extraction by the underlying IE system,
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such method can produce an accurate and very complete extraction, identifying single

and multiple sentence semantic errors.

6.1. Future Work

There are some aspect of the previous work that we believe can be extended into

the following work:

1. Hybrid Implementation From our work in hybrid implementation, there are

a few pending goals that we would like to analyze in more details.

(a) Alternative combination strategies. We would like to see if there are

alternative strategies that would allow a more accurate combination

of information extractors, such as the constraint coupling approach by

Carlson et al. [44] (logic constraints to improve accuracy) or the multiple

OBIE approach by Wimalasuriya and Dou [12].

For example, we want to see whether combining information extractors of

the same concept but different functionality can lead to a more accurate

extraction. A simple approach is to use an information extractor with one

functionality as a preprocessor for the other functionality. Preliminary

work shows that is possible to reach improvements under this functional

preprocessing approach around 10%.

(b) Alternative implementation approaches. In our proposed hybrid

implementation, rule-based and machine learning-based information

extractors are combined to improve accuracy of the extraction. We would

like to see if other methods, such graph model-based IE [58, 83–85] or more

sophisticated rule-based extractors (based on JAPE [52] or AQL [51]), can
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be combined into our hybrid approach to improve the extraction accuracy

even further.

2. Hybrid Semantic Error Detection From our work in semantic error

detection in text, we have identified three goals that require improvement.

(a) Specialized IE strategy for semantic error detection. Our online reasoning

approach, discussed in Chapter V, uses an unsupervised extraction strategy

to produce the most complete set of extractions (of relationships) as

possible. However, because unsupervised IE focus in the extraction

of entities rather than concepts (e.g., non-verb mediated relationship

between concepts), it can lead to unrecognizable extractions that might

not be possible to map to the ontology. We believe that this situation

could be solved by domain-aware methods such as current approaches to

semi-supervised IE [58, 83–85], or Named Entity Linking (domain-based

approach to Named Entity Recognition) [84, 86].

(b) Improve mapping between extraction and ontology. The mapping method

offered in this work is a simple and direct approach to the problem.

However, we need better mechanisms to define mappings between the

vocabulary of the text and the vocabulary of the ontology, specially when

consider larger document sets. We believe that this aspect of our method

can be automated by the inclusion of linguistic tools such WordNet [66],

or logic consistency [87].

(c) Explanation method for semantic error detection. Although current

ontology debugging methods can provide tentative solutions to this

problem, they have both different focus and different parameters to find the
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origin of inconsistency. As mentioned in Section 2.1.3., because in ontology

debugging the origin of the inconsistency is not known, a search mechanism

must be defined as part of the debugging process, which might no always

work. In the case semantic error detection the origin of the inconsistency

is the ontological axioms that are affected the analyzed text. We believe

that use of a selection function, such as the on used by Schlobach et

al. [35], would lead to a more reliable and efficient method for inconsistency

explanation.
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APPENDIX A

SEQUENT CALCULUS

Our proposed reduction is based on applying sequent calculus inference rules to

the analyzed sentence. Sequent calculus (Gentzen1934) is a logical argumentation

style that applies derivation rules to a sequence of sequents (i.e., logical expression).

The idea is that we apply inference rules to A1, ..., An ⊢ B1, ..., Bm, deriving a set of

Cl. For each Cl, we want to obtain

Cl ⊢ Cl

(I).

Inference rules in sequent calculus are group by the side of ⊢ they affect, and if

they apply to operators (logic rules) or to formulas (structural rules). The central

rules of sequent calculus is cut-elimination:

Γ ⊢ ∆, A A,Σ ⊢ ∆

Γ,Σ ⊢ Π,∆
.

The following are a subset of the inference rules:

Γ, A ⊢ ∆

Γ, A ∧B ⊢ ∆
(∧L1)

Γ, B ⊢ ∆

Γ, A ∧B ⊢ ∆
(∧L2)

Γ ⊢ A,∆

Γ,¬A ⊢ ∆
(¬L) Γ, A ⊢ ∆

Γ ⊢ ¬A,∆
(¬R)

Γ ⊢ ∆, A Σ, B ⊢ Π

Γ,Σ, A→ B ⊢ ∆,Π
(→ L)

Γ, A ⊢ B,∆

Γ ⊢ A→ B,∆
(→ R )

Γ1, A,B,Γ2 ⊢ ∆

Γ1, B,A,Γ2 ⊢ ∆
(PL)

Γ ⊢ ∆1, A,B,∆2

Γ ⊢ ∆1, B,A,∆2

(PR)
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In the previous inference rules, A and B are first-order predicate logic formulas,

Γ,∆,Σ and Π are sets of formulas (that can be empty).
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APPENDIX B

INCONSISTENCY AS COMPLEMENT ENTAILMENT

We can restate a incorrect sentence as its complement being entailed by the

domain as O � ¬ωi. In order to use this redefinition, we need to demonstrate its

equivalence with the original definition of error. In other words, we need to prove

that O∧ω �⊥−→ O � ¬ω. This equivalence can be proved through sequent calculus

(Appendix A). First, we will use the relation between absurdity and negation typically

used in sequent calculus ¬A←→ A→⊥. This transform the original expression into:

O ∧ ω �⊥−→ O � ¬ω

Second, we will consider for simplicity that O is a set of one element (e.g.,

O = {¬ω}), or as the element itself. It can be easily seen that the following proof

can be extended O with multiple concepts and properties.

O ⊢ O
(I)

ω ⊢ ω
(I)

⊢ ¬ω, ω
(¬R)

⊢ ω,¬ω
(PR)

O ⊢ O ∧ ω,¬ω
(∧R)

O,¬(O ∧ ω) ⊢ ¬ω
(¬L)

¬(O ∧ ω),O ⊢ ¬ω
(PL)

¬(O ∧ ω) ⊢ O → ¬ω
(→ R)

⊢ ¬(O ∧ ω)→ (O → ¬ω)
(→ R)
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