
KNOWLEDGE BASE REFINEMENT AND KNOWLEDGE TRANSLATION

WITH MARKOV LOGIC NETWORKS

by

SHANGPU JIANG

A DISSERTATION

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

December 2015

DISSERTATION APPROVAL PAGE

Student: Shangpu Jiang

Title: Knowledge Base Refinement and Knowledge Translation with Markov Logic
Networks

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Computer
and Information Science by:

Dr. Dejing Dou Chair
Dr. Daniel Lowd Core Member
Dr. Andrzej Proskurowski Core Member
Dr. Reza Rejaie Core Member
Dr. Jonathan Brundan Institutional Representative

and

Dr. Scott L. Pratt Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate
School.

Degree awarded December 2015

ii

c© 2015 Shangpu Jiang

iii

DISSERTATION ABSTRACT

Shangpu Jiang

Doctor of Philosophy

Department of Computer and Information Science

December 2015

Title: Knowledge Base Refinement and Knowledge Translation with Markov Logic
Networks

Machine learning and data mining have provided plenty of tools for extracting

knowledge from data. Yet, such knowledge may not be directly applicable to target

applications and might need further manipulation: The knowledge might contain

too much noise, or the target application may use a different representation or

terminology.

In this dissertation, we study three problems related to knowledge

management and manipulation. First, given a knowledge base (KB) automatically

extracted from the text, we explore how to refine it based on the dependencies

among the possible KB instances and their confidence values. Second, when

the target application to which we want to apply our knowledge uses a different

schema, we explore how to translate the knowledge based on the mapping between

the schemas. Sometimes, the mapping between two schemas can be discovered

automatically, so the third problem we consider is whether we can find the mapping

more accurately using the corresponding knowledge contained in the two schemas.

iv

We notice that a large fraction of data and knowledge can be represented

in relational models, which can be formalized with first-order logic. Moreover,

uncertainty is a common feature existing in these problems, e.g., the confidence

values associated with the KB instances, the probabilistic knowledge rules to

be translated, or the schemas not perfectly aligned with each other. Therefore,

we adopt statistical relational learning, which combines first-order logic with

probabilistic models, to resolve these problems. In particular, we use Markov logic

networks (MLNs), which consist of sets of weighted first-order formulas. MLNs

are a powerful and flexible language for representing hard and soft constraints of

relational domains.

We develop the MLN formulations for each of these problems, and we use

the representation, inference and learning approaches in the literature with certain

adaptations to solve them. The experiment results show that MLNs successfully

provide solutions to these problems or achieve better performances than the

existing methods.

This dissertation includes previously published and unpublished coauthored

material.

v

CURRICULUM VITAE

NAME OF AUTHOR: Shangpu Jiang

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:
University of Oregon, Eugene, OR, USA
Tsinghua University, Beijing, China

DEGREES AWARDED:
Doctor of Philosophy, Computer and Information Science, 2015, University of
Oregon

Master of Science, Computer Science and Technology, 2010, Tsinghua
University

Bachelor of Science, Computer Science and Technology, 2007, Tsinghua
University

AREAS OF SPECIAL INTEREST:
Machine learning, data mining

PROFESSIONAL EXPERIENCE:

Graduate Research & Teaching Assistant, Department of Computer and
Information Science, University of Oregon, 2010 to present

Research Intern, SRI International, Menlo Park, California, 2013

GRANTS, AWARDS AND HONORS:

Graduate Teaching & Research Fellowship, Computer and Information
Science, 2010 to present

NSF Travel Grant, International Conference on Data Mining, 2012

PUBLICATIONS:

Jiang, S., Lowd, D., Kafle, S., and Dou, D. (2015). Ontology Matching
with Knowledge Rules. Submitted to Journal on Large-Scale Data and
Knowledge-Centered Systems.

vi

Jiang, S., Lowd, D., and Dou, D. (2016). A Probabilistic Approach to
Knowledge Translation. In Proceedings of the Thirtieth AAAI Conference
on Artificial Intelligence (AAAI-16). (To appear).

Jiang, S., Lowd, D., and Dou, D. (2015). Ontology Matching with Knowledge
Rules. In Proceedings of the 26th International Conference on Database and
Expert Systems Applications (DEXA 2015), Part I, Pages 94-108. (Best
Paper Award)

Jiang, S., Lowd, D., and Dou, D. (2012). Learning to Refine an Automatically
Extracted Knowledge Base Using Markov Logic. In Proceedings of the 12th
IEEE International Conference on Data Mining (ICDM 2012), Pages 912-
917.

vii

ACKNOWLEDGEMENTS

I am so grateful to have two enthusiastic, knowledgable and supportive

advisors, Dr. Dejing Dou and Dr. Daniel Lowd. Over the five years, they have

patiently taught me to develop the essential skills for a PhD student, from

identifying and defining an important and influential problem, to writing a research

paper. This work would not have been possible without their guidence and many

insightful discussions with them.

I would like to thank the National Science Foundation for funding this

research through award IIS-1118050 with Dejing Dou as PI and Daniel Lowd as

Co-PI, and thank the department of CIS for providing financial and other support.

I would also like to thank other members of my dissertation committee for the

comments and suggestions.

Finally, thank you to my family, and especially to my wife Xuemei Wan, for

their unconditional support.

viii

To my wife, Xuemei, and my daughter, Yuchen

ix

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

1.1. Dissertation Outline . 3

II. BACKGROUND . 4

2.1. Data Models: Ontologies and Relational Databases 4

2.2. Mapping of Schemas . 8

2.3. Statistical Relational Learning 10

2.4. Markov Logic Networks . 12

III. REFINING A KNOWLEDGE BASE WITH MARKOV LOGIC
NETWORKS . 17

3.1. Introduction . 17

3.2. Background and Related Work 20

3.3. Methodology . 25

3.4. Experiment . 35

3.5. Summary . 42

x

Chapter Page

IV. KNOWLEDGE AWARE ONTOLOGY MATCHING 43

4.1. Introduction . 43

4.2. Ontology Matching . 45

4.3. Representation of Domain Knowledge 46

4.4. Our New Knowledge-Based Strategy 49

4.5. Finding Complex Correspondences 53

4.6. Knowledge Aware Ontology Matching 55

4.7. Experiments . 58

4.8. Summary . 64

V. A PROBABILISTIC APPROACH TO KNOWLEDGE
TRANSLATION . 66

5.1. Introduction . 66

5.2. Related Work . 69

5.3. Probabilistic Representations of Knowledge and Mappings . . 73

5.4. Knowledge Translation . 79

5.5. Experiments . 83

5.6. Summary . 92

VI. CONCLUSION . 94

6.1. Future Work . 95

6.2. Concluding Remarks . 100

xi

Chapter Page

REFERENCES CITED . 102

xii

LIST OF FIGURES

Figure Page

3.1 Comparison of different methods on the NELL dataset 37

3.2 Comparison on the NELL dataset by predicate 39

4.1 Precision, recall and F1 on the census domain as a function of the string
similarity threshold τ . 62

4.2 Precision, recall and F1 on the OntoFarm domain with only the one-
to-one correspondences . 63

4.3 Precision, recall and F1 on the OntoFarm domain with the complex
correspondences . 64

4.4 Precision-recall curve on the OntoFarm domain with the complex
correspondences . 65

5.1 PLL for KT methods and baselines on target data in the NBA
domain . 89

5.2 PLL for KT methods and baselines on translated source data in the NBA
domain . 90

xiii

LIST OF TABLES

Table Page

2.1 Syntax and semantics of DL symbols 7

3.1 Comparison of different methods on the NELL dataset 37

3.2 Comparison on the NELL dataset by predicate 40

4.1 Syntax and semantics of DL axioms and non-DL rules 47

4.2 Profile of the datasets . 58

5.1 Comparisons between KT and related work 72

5.2 Overview of the different methods used in our experiments. 85

5.3 Evaluation on the target dataset for the university domain. 92

xiv

CHAPTER I

INTRODUCTION

Today, the amount of data is growing at a dramatic speed with the

advances of the Internet, social networks and sensors built into mobile devices.

Yet people thirst for knowledge, abstracted from data, which is a valuable

resource for many applications and tasks of our daily lives. Fortunately, with the

development of machine learning and data mining, we now have plenty of tools

for discovering knowledge from data automatically. This knowledge may have

various forms: deterministic or probabilistic, predictive or descriptive. In order

to be used in computer systems, it is often represented in formal languages. For

example, we may learn the fact that the Lakers are a Basketball team from

a sentence on a web page, which is represented as a first-order atomic formula

TeamPlaysSports(Lakers, Basketball), or, we may learn a predictive rule that

a person who is older than 40 and who works in a university has good financial

credit, which is represented as

Age(x) ∧ Employer(x, y) ∧ Type(y) = university⇒ credit(x) = good.

Usually, this kind of knowledge can be directly used to answer queries or

make predictions in certain tasks. Sometimes, however, the knowledge acquired

from data is not applicable immediately and requires additional postprocess. In this

dissertation, we consider two scenarios, and we propose solutions to the problems

arising from them.

1

In the first scenario, we have a knowledge base (KB) containing statements

that are automatically extracted from web pages or other sources, such as

TeamPlaysSports(Lakers, Basketball) or Athlete(Tiger Woods) representing

Tiger Woods is an Athlete. Such information extraction (IE) systems would often

include incorrect statements and ignore correct statements implied in the text. If

we could identify contraditions of the facts in the KB, we would potentially be able

to remove the wrong facts and add the correct ones. So the first question is how to

refine an automatically extracted knowledge base.

In the second scenario, we have learned knowledge from a database, but the

task to which we want to apply the knowledge uses a slightly different schema (a

schema is the terminology and structure used to organize the data and knowledge).

We want to convert the knowledge in the source schema to another form in the

target schema based on the mapping between them. So the second question is

how to translate knowledge from one schema to another given the mapping between

the schemas. Sometimes, the mapping of schemas is manually created by domain

experts. Alternatively, the mapping can be automatically discovered based on the

similar names and structures of the two schemas, which is a process called ontology

matching. In fact, if we also know the corresponding knowledge represented in the

two schemas, we can often find a more correct mapping. We name this process

knowledge aware ontology matching (KAOM). So the third question, which is

related to the second one, is how to discover the mapping between two schemas by

exploiting knowledge in addition to other information.

Our solution to all three of these problems is statistical relational learning

(SRL) (Getoor and Taskar, 2007). SRL is a subarea of machine learning that is

concerned with probabilistic frameworks for relational (i.e., first-order) domains.

2

A relational domain is a powerful model for a large fraction of data, knowledge

and knowledge bases in our daily applications, and first-order logic (FOL) is the

formal language for a relational domain. Yet, uncertainty is often presented in

the knowledge. For example, a knowledge base instance extracted from the text

may be uncertain; domain rules crafted by experts may be uncertain; the mapping

between two schemas may also be uncertain. SRL combines the power of FOL in

representing complex structured information and the power of probabilistic models

in representing uncertainty, and therefore becomes a perfect choice for tasks related

to knowledge manipulation. In particular, we use Markov logic networks (MLNs)

(Domingos and Lowd, 2009), the most powerful SRL models to date. We adopt

representation, inference and learning methods for MLNs proposed in the literature,

and we engage certain adaptations and improvements to make them work for the

problems of our interest. We also conduct thorough experiments relating all three

tasks to verify the effectiveness of our methods.

1.1. Dissertation Outline

The remainder of the dissertation is organized as follows. In Chapter II,

we introduce the representations of data and knowledge, as well as the basics

of Markov logic networks. In Chapters III, IV and V, we discuss knowledge

base refinement, knowledge aware ontology matching and knowledge translation

respectively. In Chapter VI, we conclude with future work.

Chapters III, IV and V contain previously published and unpublished

coauthored material.

3

CHAPTER II

BACKGROUND

In this chapter, we will introduce several pieces of background concepts

and previous work. First, a data model is a formalization of real world data and

knowledge for computer systems to manage and manipulate them, which is the

foundation of the topics in the dissertation. Ontologies and relational databases

are two widely used data models based on first-order logic. Second,the mapping

between schemas of two data models is utilized in the knowledge translation task,

and is also the output of the ontology matching task. Third, statistical relational

learning (SRL) extends first-order logic with uncertainty, which is a perfect

choice for representation, inference, and learning tasks for relational domains

and relational knowledge. Last, Markov logic networks, the most powerful SRL

models to date, are of particular interest in solving the problems proposed in this

dissertation and introduced in detail.

2.1. Data Models: Ontologies and Relational Databases

In computer science, a data model is a formal definition and representation of

concepts, entities, and their attributes and relationships for a domain of discourse.

Ontologies and relational databases are two mainstream data models with rich

structural information invented and developed in the AI and database communities

respectively.

As formal representations, ontologies and relational databases are both

equipped with logic systems for the purpose of reasoning and querying. These logic

4

systems are all subsets of first-order logic (FOL), and as a result, the domains they

represent are called relational (i.e., first-order) domains.

2.1.1. First-Order Logic

The syntax of first-order logic theory is defined by a signature Σ = (F ,P , r),

where F is a set of function symbols, P is a set of predicate symbols, and r : F ∪

P → N maps the function and predicate symbols to their arities. A term is either

a variable symbol (e.g., x) or a function f applied on r(f) terms. In particular, a

0-ary function symbol is a constant. An atomic formula or atom is a predicate P

applied on r(P) terms. A well-formed formula (wff) is either an atomic formula,

or conjunction ∧, disjunction ∨, negation ¬, implication → of wffs, or ∀xφ or ∃xφ

where φ is a wff containing x and x is said to be bounded. A literal is an atomic

formula or its negation, and a clause is a disjunction of literals. A sentence φ is a

wff without free variables. A logical theory Γ is a set of sentences.

The semantics of FOLs is defined through an interpretation I = (D, ·I) over

a signature Σ, where D is the domain or universe, i.e., the set of objects in the

domain of discourse, and ·I is a mapping from function and predicate symbols

to actual functions and relations over the domain. Specifically, fI ∈ {f̃ , f̃ :

Dr(f) → D}, P I ∈ {P̃ , P̃ ⊆ Dr(P)}. The evaluation of a sentence φ with respect

to an interpretation I is recursively defined, where the connectives are defined the

same as propositional logic, and the quantifiers ∀xφ and ∃xφ are defined based on

φ[x\c], the result of substituting c ∈ D for every free occurrence of x in φ. An

interpretation I is said to be a model of a theory Γ, denoted I |= Γ, when all

sentences in Γ are true. A theory Γ entails a sentence φ, denoted Γ |= φ, when

every model of Γ is also a model of φ.

5

In practise, we use meaningful phrases as predicate and function symbols. For

example, Basketball and Tiger Woods are constants, and TeamPlaysSport(t, s)

is a predicate that is true if team t plays sport s. In this dissertation, we do not

consider functions except for constants. By convention, we use lowercase identifiers

for variables and capitalized identifiers for constants and predicates. An atomic

formula is the application of a predicate to a tuple of variables and/or constants,

e.g., TeamPlaysSport(t, Basketball). A ground formula or ground atom is a

formula or an atom where all variables have been substituted by constants.

2.1.2. Ontologies

First-order logic is undecidable. Therefore, decidable subsets of FOL are

usually used for effective reasoning. In ontologies, the family of description logic

(DL) has been widely used as the logical formalism of ontologies, and is deployed in

the Semantic Web and the web language OWL 1.

The components of description logic (and ontologies) are concepts

(or classes), roles (or properties), individuals, and axioms describing their

relationships. Intuitively, there is a correspondence between DL and a restricted

fragment of FOL: A concept corresponds to a monadic predicate in FOL, a role

corresponds to a dyadic predicate, an individual corresponds to a constant, and an

axiom corresponds to an FOL sentence.

The DL axioms are divided into the terminological box (TBox), which

contains no individuals (e.g., the inclusion relation of two concepts/roles), and the

assertion box (ABox), which contains individuals (e.g., the concept/role instances).

The axioms may contain concepts and roles that are compositions of basic concepts

1http://www.w3.org/TR/owl2-primer/

6

and roles, which are also called complex classes and properties in OWL. See

examples of TBox and ABox axioms and constructors in Table 2.1.

TABLE 2.1. (From top to bottom) Syntax and semantics of common DL symbols,
constructors, TBox assertions, and ABox assertations

Description Syntax Semantics
Everything > D
Empty ⊥ ∅
Concept C CI ⊆ D
Role R RI ⊆ D ×D
Individual a aI ∈ D
Intersection C uD CI ∩DI
Union C tD CI ∪DI
Complement ¬C D\CI
Universal restriction ∀R.C {x ∈ D|∀y((x, y) ∈ RI → y ∈ CI)}
Existential restriction ∃R.C {x ∈ D|∃y((x, y) ∈ RI ∧ y ∈ CI)}
Role composition R ◦ S {(x, y)|∃z((x, z) ∈ RI ∧ (z, y) ∈ SI)}
Inverse R− {(x, y)|(y, x) ∈ RI}
Domain restriction R � C {(x, y) ∈ RI |x ∈ CI}
Range restriction R � C {(x, y) ∈ RI |y ∈ CI}
Subsumption C v D CI ⊆ DI

Equivalence C ≡ D CI = DI

Disjointness C v ¬D CI ∩DI = ∅
Concept instance a : C aI ∈ CI
Role instance (a, b) : R (aI , bI) ∈ RI

An ontology, in a narrow sense, contains only TBox statements, the

conceptualization of a domain. In a broader sense, it contains both TBox and

ABox statements, which is also called a knowledge base.

2.1.3. Relational Database

Databases, and in particular, relational databases, are the most widely used

mechanism for efficiently storing, manipulating, and retrieving data. A relational

database is a set of relational tables describing the attributes of objects and the

relationships among them.

7

A relational database is usually designed with an entity-relationship (ER)

model, and then normalized to a relational model that can be utilized by a

database management system (DBMS). Formally, in a relational model, we have

a set of types or attributes A and a set of relations R. Each relation Ri is a set of

tuples, where each tuple is a partial function from attribute names to values.

A relational model may also incorporate integrity constraints as semantics.

The constraints can essentially be arbitrary first-order logic sentences, but are

usually restricted subsets of FOL called dependencies due to inference feasibility.

Similarly, query languages for relational models are usually restricted subsets as

well, in particular, the language of conjuctive queries and its variants.

2.2. Mapping of Schemas

For the “knowledge aware ontology matching” and “knowledge translation”

problems, we introduce previous work in representing the mapping between two

schemas of the same domain. This topic is investigated in the database and AI

communities, respectively, with different flavors. In the database literature, people

focus on how to apply schema mappings for the task of semantic integration,

whereas in the AI literature, people focus on developing automatic tools for

discovering the alignment of two ontologies (i.e., ontology matching, matching as

a verb). Despite of the differences, both types of mappings are essentially subsets of

FOL.

2.2.1. Database Schema Mapping

Definition 2.1 (Schema mapping (Lenzerini, 2002)). Let S = {S1, · · · , Sn}

and T = {T1, · · · , Tm} be the source and target schemas, respectively. A schema

8

mapping is a triple M = (S, T , σ) where σ is a set of assertions of the forms

qS qT

qT qS

and qS and qT are two queries (views) in S and T respectively. Here, may have

different logical semantics: →, ← or ↔, which correspond to sound, complete and

exact mappings, respectively.

This type of schema mapping is called a GLAV (global and local as view)

mapping. Other restricted forms include LAV (local as view) and GAV (global as

view). Schema mapping plays a central role in semantic integration, including data

integration and data exchange. For different types of queries and mappings, the

decidability or complexity of semantic integration tasks may vary.

2.2.2. Ontology Matching

Definition 2.2 (Ontology Matching (Euzenat and Shvaiko, 2007)). Given two

ontologies O1 and O2, a correspondence is a 3-tuple 〈e1, e2, r〉 where e1 and e2 are

entities (i.e., classes or properties) of the first and second ontologies respectively,

and r is a semantic relation such as equivalence (≡) and subsumptions (v or w).

An alignment is a set of correspondences. Ontology matching is the task or process

of identifying the correct semantic alignment between the two ontologies. In most

cases, ontology matching focuses on equivalence relationships only.

The word “matching” in ontology matching implies an alignment with only

one-to-one correspondences. However, more sophisticated ontology matching

9

systems can also discover complex correspondences, which are essentially many-

to-many correspondences.

Definition 2.3 (Complex Correspondences). A complex concept is a composition

(e.g., unions, complements) of one or more simple classes or properties. 2 In OWL,

there are several constructors for creating complex classes and properties (See

Table 2.1). A complex correspondence is an equivalence relation between a simple

class or property and a complex class or property in two ontologies (Ritze et al.,

2008).

2.3. Statistical Relational Learning

One key weakness of a deterministic language such as first-order logic is

that it is very brittle: A single inconsistency renders the entire model false. In

the real world, knowledge is often uncertain. Even with perfect knowledge of the

world, many events are inherently stochastic. For example, in a social network, a

person who has a smoking friend is likely to smoke as well. This cannot be simply

represented with a first-order logic formula

∀x, y Friend(x, y) ∧ Smoke(x)⇒ Smoke(y).

The area of statistical relational learning (SRL) (Getoor and Taskar, 2007)

explores representation, learning, and inference of probabilistic models in relational

domains. For instance, with Markov logic networks (MLNs), one type of SRL

model, we can attach a weight to the above formula to indicate the degree of

certainty of a formula.

2Although the name is complex concept, it actually refers to both complex classes and complex
properties, such as unions or role compositions.

10

Relational domains are powerful enough for many daily scenarios and tasks.

In traditional machine learning and data mining, a less sophisticated setting is

usually considered: The datasets consist of a set of independent and identically

distributed (i.i.d.) data instances, each of them being a fixed length vector of

attributes. This type of data is called propositional data, and can be stored in a

single table in the attribute-value representation. A traditional (propositional) data

mining process can discover knowledge patterns from the propositional data and

use the knowledge to deal with various tasks, such as classification, regression,

clustering, and anomaly detection. Therefore, SRL can also be considered as an

extension of traditional probabilistic methods to relational domains.

2.3.1. Knowledge

The term knowledge generally refers to information we gained from experience

or data. In the context of “knowledge aware ontology matching” and “knowledge

translation”, knowledge is defined (informally) as statements about classes,

attributes or relations of a relational domain, which we would like to distinguish

from data. Here, data refers to data instances, which are facts about individuals,

whereas knowledge refers to meta-theorems about data instances. For example,

a TBox axiom is considered as knowledge, and an ABox axiom is considered as a

data instance.

Since SRL extends FOL and DL with uncertainty, it seems to be the most

powerful method for representing knowledge in a relational domain.

11

2.4. Markov Logic Networks

A Markov logic network (MLN) (Domingos and Lowd, 2009) or Markov logic

consists of a set of weighted formulas in first-order logic, {(Fi, wi)}. For example, in

a social network, we define a set of first-order predicates (e.g., Friends, Smokes,

Cancer) to represent the attributes and relationships. A Markov logic in this

domain could be

0.7 Friend(x, y) ∧ Friend(y, z)⇒ Friend(x, z)

1.5 Smokes(x)⇒ Cancer(x)

0.5 Friend(x, y) ∧ Smoke(x)⇒ Smoke(y)

Here and for the rest of the dissertation, formula weights are shown to the left of

the formula, and hard formulas are represented by placing a period (.) at the end of

the formula. Intuitively, each formula Fi represents a noisy first-order rule, and its

weight wi indicates the relative strength or importance of that rule.

Together with a finite set of constants (i.e., the domain), an MLN defines a

probability distribution over possible worlds or Herbrand interpretations (the truth

value assignment to all ground atoms) by:

p(X = x) =
1

Z
exp

(∑
i

wini(x)

)

where ni(x) is the number of satisifed groundings of Fi in the possible world x

and Z is a normalization constant. In the above example, we define a domain

containing two constants Anna and Bob. The Herbrand base (i.e., the set of all

ground atoms) would be Friends(Anna, Bob), Friends(Bob, Anna), Friends(Anna,

12

Anna), Friends(Bob, Bob), Smokes(Anna), Smokes(Bob), Cancer(Anna),

Cancer(Bob).

An MLN is a log-linear model of a relational domain. A log-linear model is

a compact way to represent a probability distribution p(X) over a set of random

variables X = {X1, X2, . . . , XN}:

p(X = x) =
1

Z
exp

(
θTφ(x)

)
,

where φ(x) is a vector of feature functions, θ is a vector of weights, and Z is a

normalization constant. For an MLN, the feature functions are ni(x), the number

of satisfied ground formula of each formula Fi.

In a propositional domain, many popular probabilistic graphical models, such

as Bayesian networks (Pearl, 1988) and Markov random fields (MRFs (Kindermann

and Snell, 1980)), can be represented as log-linear models. Markov logic networks

can be considered as an extension of Markov random fields into relational domains.

2.4.1. Inference

Inference helps us reason probabilistically about complex relations in Markov

logic networks. There are two basic types of inference: most probable explanation

(MPE) or maximum a-posterior (MAP) inference that finds the most probable

state of the world consistent with some evidence, as well as probabilistic inference

that finds the conditional/marginal distribution of a formula or a predicate.

Theorectically, any inference algorithm for Markov random field can be applied

to MLNs, but specialized algorithms that exploit the structure of MLNs often give

better performance.

13

The MPE inference task can be reformulated as maximizing the total weight

of satisfied ground formulas, and thus solved with MaxWalkSAT (Domingos and

Lowd, 2009). MaxWalkSAT iteratively searches for the highest-weight possible

world using a random walk. In each iteration, MaxWalkSAT picks a random

unsatisfied clause and changes the truth assignment of one of the atoms in the

clause. With probability p, it selects the “best” atom that greedily maximizes

the resulting sum of satisfied formula weights, and with probability 1 − p it

selects a random atom. The mixed strategy allows the algorithm to prefer better

configurations without getting stuck in local optima. Alternatively, MPE inference

can also be reformulated as integer linear programming (ILP), and solved with its

linear programming (LP) relaxation (Riedel, 2008).

Standard probabilistic inference methods for Markov random fields such as

Gibbs sampling and belief propagation often fail in MLN because of the presence

of deterministic or nearly-deterministic formulas. MC-SAT (Poon and Domingos,

2006) is a Markov chain Monte Carlo (MCMC) algorithm that adopts a SAT solver

to jump between isolated modes of a distribution with a mixture of hard and soft

constraints which are common in MLNs. Other sampling methods that handle hard

and soft constraints include SampleSearch (Gogate and Dechter, 2011) and GiSS

(Venugopal and Gogate, 2013).

2.4.2. Scalability

Inference algorithms need to first instantiate the FOL formulas into

propositional ones, by subsituting the universally quantified logical variables

with constants in a domain. This requires memory on the order of the number of

constants raised to the number of logical variables in the clauses, which is typically

14

extremely large. Lazy inference (Singla and Domingos, 2006; Poon et al., 2008)

takes advantage of the sparseness in typical relational domains (most ground

predicates are false, and most clauses are trivially satisfied), by only putting into

memory the non-default value ground predicates and clauses. With lazy inference,

the memory cost does not scale with total number of groundings, but only with

the number of non-default value groundings. Lazy variants have been developed for

both MaxWalkSAT and MC-SAT.

For linear programming solvers, the cutting-plain method can be used to

avoid including all the constraints at the beginning, but instead adding them as

needed (Riedel, 2008).

2.4.3. Weight Learning

Supervised weight learning of Markov logic minimizes the negative conditional

likelihood

L(w|x, y) = − logPw(Y = y|X = x)

where X is the evidence and Y is the query predicates. The gradient is calculated

by

∂L(w|x, y)

∂wi

= Ew,y[ni(x, y)]− ni(x, y)

and Hessian by

∂2

∂wi∂wj

L(w|x, y) = Ew,y[ninj]− Ew,y[ni]Ew,y[nj]

where wi is the weight of the ith formula, ni is number of truth groundings for the

ith formula, and all the terms are conditioned on x. Lowd and Domingos (2007a)

discuss several first-order and second-order gradient descent optimization methods,

15

and found that scaled conjugate gradient with preconditioner (PSCG) performed

well in several datasets.

2.4.4. Applications

MLNs have been used for joint inference in information extraction. Poon and

Domingos (2007) used Markov logic, the MC-SAT algorithm, and an integrated

inference process to extract and match database records from CiteSeer text

datasets. With a joint inference, the segmentation of all records and entity

resolution are performed together. Their approach consistently improves accuracy

over non-joint inference. One of the strengths of MLNs is in performing joint

inference over a set of related, uncertain facts. For example, Singla and Domingos

(2006) perform entity resolution based on Markov logic by jointly inferring

which pairs of bibliographic entries refer to the same paper. Their approach

simultaneously infers equivalences among paper authors, titles, and venues, which

allows a small number of formulas in Markov logic to capture the essential features

of many different approaches to the entity resolution problem.

16

CHAPTER III

REFINING A KNOWLEDGE BASE WITH MARKOV LOGIC NETWORKS

This work was published in the Proceedings of the 12th IEEE International

Conference on Data Mining (ICDM 2012). I was the primary contributor to the

methodology and writing, and designed and conducted the experiments. The co-

authors contributed partly to the methodology and writing. Dejing Dou and Daniel

Lowd were the principle investigators for this work.

3.1. Introduction

The objective of information extraction (IE) is to extract information from

natural language text into machine understandable knowledge base (KB). Early

IE systems focus on a specific domain and certain types of information. For

example, an IE system might recognize and extract information regarding business

acquisitions and mergers from a set of newspaper articles, while ignoring other

types of information. The emergence of the World Wide Web provides a great

oppertunity for IE systems to leverage billions of web pages and a vast amount

of unstructured or semi-structured information, in the form of natural language, on

these web pages. Since then, many web-scale, domain-independent IE systems have

been proposed, such as WebKB (Craven et al., 1999), KnowItAll (Etzioni et al.,

2005), TextRunner (Banko et al., 2007), and NELL (Carlson et al., 2010a). Often,

the output of these systems are pairs t = (e, c) representing that an entity e is of

class c, and triples t = (s, r, o) representing a relation r between two entities s and

o.

17

In open IE systems such as KnowItAll and TextRunner, the relations are

not defined in advance, and the extraction rules are relation-independent ones

that can identify new relations directly from the texts. In other systems such as

NELL, a finite set of classes and relations is defined in advance, and an ontology

is sometimes used to guide the extraction process and organize the extracted data

instances. Such ontology-based IE (OBIE (Wimalasuriya and Dou, 2010)) systems

thus populate an ontology-based knowledge base as output.

Due to the size of the web, many of these systems adopt unsupervised or

semi-supervised learning paradigms. For example, both TextRunner and NELL

use bootstrapping approaches, which start with some seed instances (e.g., France

is a instance for country), learn extractors with them (e.g., ”countries such as

”), and use these extractors to generate more instances, and so on and so forth.

Such a bootstrapping paradigm is very sensitive to errors, which are inevitable for

automatic extraction. Once an error occurs, it would propagate and cause more

errors.

If an IE system is equipped with an ontology, the ontology can be utilized

to improve the quality of the knowledge base by identifying errors that violate the

ontological constraints. In NELL, at each iteration of its bootstrapping learning

process, only a few candidate instances can be promoted to the KB. The candidates

are not only ranked by their confidence scores from the extractors, but also filtered

for whether they violate the ontological constraints and existing instances in the

KB. The filtering process is called coupled learning (Carlson et al., 2010b). A

problem of coupled learning is that it always assumes the existing KB instances

are correct when a contradiction occurs. When NELL incorporates incorrect

instances in its knowledge base, these instances could lead it to exclude correct but

18

contradictory instances from being added later on, even if the new instances were

supported by overwhelming evidence. NELL also ignores the relationship between

the uncertainty of different candidate instances. If multiple related instances have

a modest amount of support, then they all should be likely to be true. On the

other hand, if a contradictory instance has some support, that should decrease the

probability that a given instance is true.

Statistical relational learning (SRL) techniques such as Markov logic

networks combine first-order logic with probabilistic graphical models. Since

NELL’s knowledge base is highly uncertain, and its ontology defines many

relational constraints, statistical relational learning seems like a good fit for

information extraction. For example, in related work, Poon and Domingos (2010)

simultaneously extracted KB instances and learned an ontology for biomedical text.

However, current SRL techniques, including Markov logic, do not yet reliably work

at web scale.

In order to handle both the large scale and uncertainty in the web, we

present a new method for automatically cleaning a noisy knowledge base using

Markov Logic Network. Our method performs joint probabilistic inference over

many candidate instances. Ontological constraints from the original IE system are

translated as hard constraints in the MLN, while confidence values on individual

instances are translated as soft constraints. We explore several different methods

for turning confidence values from the IE system into weights of the MLN

formulas. The simplest approach is to let the weights equal the raw confidence

values. A more sophisticated approach is to use either the system’s beliefs or

human-generated labels as training data, such that a “calibrated confidence” can

be computed for each instance. We consider both the standard MLN learning

19

algorithms and an approximate algorithm, logistic regression, for the sake of

efficiency.

Our method achieves scalability by working on an extracted knowledge base,

rather than the original text corpus, which could contain millions or billions of web

pages. Since the extracted knowledge base could still be very large, we introduce a

novel neighborhood-based grounding procedure, which selects a tractable subset of

the knowledge base to reason about. By rotating through different subsets, we can

clean a very large knowledge base without running out of memory. Different subsets

can also be run in parallel.

To evaluate this method, we apply several versions of our MLN and grounding

procedure to NELL and show that running joint inference usually leads to higher

accuracy, as measured by the area under the precision-recall curve (AUC) and F1.

Furthermore, we look at examples of specific instances and investigate how joint

reasoning helps to predict their correct values.

The rest of the chapter is organized as follows. Section 3.2. gives brief

introductions to NELL and other related work. Section 3.3. describes our MLN-

based approach in detail. Section 3.4. shows the experiments and analyzes the

results. Section 3.5. concludes and discusses some directions for future work.

3.2. Background and Related Work

3.2.1. Never Ending Language Learner

We use the Never-Ending Language Learner (NELL) system (Carlson et al.,

2010a; Mitchell et al., 2015) as a case study to explore methods for refining

automatically extracted knowledge bases. NELL is an information extraction

system proposed and implemented by a group of researchers at Carnegie Mellon

20

University. The final goal of NELL is to create an AI system that runs 24 hours per

day, 7 days per week, forever, performing two tasks each day:

– Reading task: extract information from web and populate a knowledge base

containing structured facts.

– Learning task: improve its reading ability so that it can extract more facts

from the web, more accurately.

NELL starts from a small number of “seed instances” of each category and

relation in the seed ontology. It uses natural language processing and information

extraction techniques to extract candidate instances from a large web corpus,

using the current facts in the knowledge base as training examples. The four

subcomponents that extract candidates are Pattern Learner, SEAL, Morphological

Classifier, and Rule Learner, where most candidates are extracted from the first

two subcomponents. The Pattern Learner is a free-text extractor which learns

and uses contextual patterns such as “mayor of X” and “X plays for Y” to extract

instances of categories and relations. The extraction patterns are learned using the

co-occurrence statistics between noun phrases and contextual patterns. SEAL is

a semi-structured extractor which queries the webpages with instances, and which

mines lists and tables to learn new instances of the corresponding predicate. It

is based on the assumption that the entities showing up in the same list or table

tend to belong to the same category or have the same relation. The Morphological

Classifier uses a set of binary L2-regularized logistic regression models to classify

noun phases based on various morphological features. The Rule Learner uses an

algorithm similar to FOIL to learn probabilistic Horn clauses. The learned rules are

used to infer new relation instances from the current KB.

21

After extracting candidates, NELL’s Knowledge Integrator (KI) promotes

candidate facts to beliefs when they have support from multiple extraction

components and/or a very high confidence from a single component. However,

candidate category instances are not promoted if they already belong to a mutually

exclusive category, and relation instances are not promoted unless their arguments

are at least candidates for the appropriate category types. NELL heuristically

promotes the most likely instances, updates its information extraction systems,

and repeats the process, continually expanding its knowledge base and refining

its extraction sub-systems. This bootstrap learning method takes advantage of the

tremendous redundancy in the web corpus. It does not need perfect extraction

rules, because multiple pieces of evidence for a new instance can be used to support

its correctness.

A major problem of NELL is that the accuracy of the knowledge it acquires

gradually decreases as it continues to operate. After the first month, NELL had

an estimated precision of 0.9; after two more months, precision had fallen to

0.71, nearly tripling the fraction of incorrect extractions. The underlying reason

is that the extraction patterns are not perfectly reliable, so some false instances

are extracted as well. The false instances will be used to extract more and more

unreliable extraction patterns and false instances, eventually dominating the

knowledge base. This kind of error propagation is a common problem of bootstrap

learning systems. As discussed earlier, NELL uses ontological constraints to filter

out contradictory facts, a method they refer to as coupled training (Carlson et al.,

2009, 2010b). Coupled training slows the degradation, but does not entirely prevent

it. NELL also uses periodic human supervision to remove incorrect facts. However,

human labels are often expensive to obtain.

22

Recently, Lao et al. (2011) presented an approach to combine constrained,

weighted, and random walks through the NELL knowledge base graph to reliably

infer new facts for NELL. This approach can learn to infer different target relations

by tuning the weights associated with random walks that follow different paths

through the knowledge base graph. Like our proposed method, this approach

operates on the extracted knowledge base to increases NELL’s accuracy. As we

discuss later, the two methods are largely orthogonal and could potentially be used

together to achieve even higher accuracy.

3.2.2. Probabilistic Soft Logic

Pujara et al. (2013) propose to use probabilistic soft logic (PSL) (Bröcheler

et al., 2010) to solve the task of knowledge graph identification (KGI), which

is essentially the same task as our task of knowledge base refinement. PSL is a

variant of Markov logic which handles continuous truth values in [0, 1] instead of

discrete binary values {0, 1}. In a PSL model with variables X = {xi, i = 1, ..., n},

an interpretation is a mapping I : X → [0, 1]n. The satisfiability of a formula with

respect to an interpretation I is defined with Lukasiewicz t-(co)norm:

d(x1∧̃x2; I) = max{0, I(x1) + I(x2)− 1},

d(x1∨̃x2; I) = min{I(x1) + I(x2), 1},

d(¬̃x1; I) = 1− I(x1),

and the feature of each formula in the log-linear model is defined as

φ(f) = (1− d(f ; I))p

23

where 1 − d(f ; I) is the unsatisfiability of f , and p ∈ {1, 2} is L1 or L2 norm which

controls whether completely satisfied formulas would be preferrable (when p = 1).

Pujara et al. (2013) use a similar set of formulas as ours, except that each

query fact is a continuous random variable instead a binary one. We compare the

results of their method with ours in Section 3.4..

3.2.3. Other Related Work

Our research is closely related to ontology-based information extraction

(OBIE), which combines information extraction with knowledge representation by

using ontologies to guide information extraction (Wimalasuriya and Dou, 2010).

Many OBIE systems only extract instances for classes and property values for

properties. Such OBIE systems include PANKOW (Cimiano et al., 2004) (as well

as its improved version, C-PANKOW (Cimiano et al., 2005)), SOBA (Buitelaar

and Siegel, 2006), OntoSyphon (McDowell and Cafarella, 2006), Vulcain (Todirascu

et al., 2002), and KIM (Popov et al., 2004). The Kylin system (Wu et al., 2008)

constructs an ontology based on the structure of Wikipedia infoboxes. It is

interesting to note that constructing an ontology from text and making extractions

with respect to that ontology (in the form of individuals and property values) is

similar in principle to open information extraction, where relations of interest

are automatically discovered from text. Banko et al. (2007) have developed the

“TextRunner” IE system, which discovers relations from text using machine

learning techniques. In addition, Weld et al. (2008) consider their Kylin system

to be an open information extraction system because it discovers relations from

infobox classes of Wikipedia, allowing it to discover about 50,000 relations, each

having around 10 attributes. Other potentials of OBIE include its ability to create

24

semantic contents for the Semantic web (Cimiano et al., 2004), and the ability to

use it as a mechanism of improving ontologies (Kietz et al., 2000; Maynard, 2006).

3.3. Methodology

In this section, we describe our method in detail. We begin with the Markov

logic formulas we use to represent the knowledge base and associated ontology,

followed by the extension to incorporate the extraction patterns. We then describe

how we make inference and weight learning in this task tractable. We conclude by

discussing the extensibility of our method.

3.3.1. Markov Logic Representation of the Knowledge Base and

Ontology

The NELL knowledge base has two types of predicates, namely category and

relation. For example, Athlete(Tiger Woods) means that Tiger Woods has the

category of Athlete, and TeamPlaysSports (Lakers, Basketball) means that

Lakers are related to Basketball by the relation TeamPlaysSports. The ontology

hierarchy and other constraints can be seen as axioms or rules in first-order logic.

For example, we can represent the ontological constraint that every Athlete is a

Person with the rule: Athlete(x) ⇒ Person(x). Similarly, since every bird is an

animal, Bird(x) ⇒ Animal(x), and so on.

However, rather than creating predicates in our MLNs for every category

and relation in the ontology, we use a more compact representation in which

the names of categories and relations (such as Bird, Animal, etc.) are viewed

as constants of type “category” or “relation” in the second-order predicates

Cat(x, c) (x is an entity of category c) or Rel(x, y, r) (x and y have relation r).

25

For example, our sample facts from the previous paragraph would be represented as

Cat(Tiger Words, Athlete) and Rel(Lakers, Basketball, TeamPlaysSports).

In our task, we want to infer the values of Cat(x, c) and Rel(x, y, r). The

formulas we use to capture the joint distribution of all the ground predicates are as

follows.

3.3.1.1. Ontological constraints

We represent four types of ontological constraints: subsumption among

categories and relations (e.g., every bird is an animal); mutually exclusive

categories and relations (e.g., no person is a location); inversion (for mirrored

relations like TeamHasPlayer and PlaysForTeam); and the type of the domain and

range of each predicate (e.g., the mayor of a city must be a person).

We represent the presence of these constraints using the following predicates:

Sub and RSub are the subclass relationships for categories and relations; Mut and

RMut are the mutual exclusion relationships for categories and relations; Inv is

the inversion; and Dom and Ran are the domain and range relationships.

26

The MLN formulas to enforce these constraints are as follows:

Sub(c1, c2) ∧Cat(x, c1)⇒ Cat(x, c2).

RSub(r1, r2) ∧Rel(x, y, r1)⇒ Rel(x, y, r2).

Mut(c1, c2) ∧Cat(x, c1)⇒ ¬Cat(x, c2).

RMut(r1, r2) ∧Rel(x, y, r1)⇒ ¬Rel(x, y, r2).

Inv(r1, r2) ∧Rel(x, y, r1)⇒ Rel(y, x, r2).

Domain(r, c) ∧Rel(x, y, r)⇒ Cat(x, c).

Range(r, c) ∧Rel(x, y, r)⇒ Cat(y, c).

All of these formulas are maintained as hard constraints, which is equivalent

to having an infinitely large weight.

3.3.1.2. Prior confidence of instances

Different facts extracted by an IE system often have different degrees of

confidence, based on the amount of supporting evidence available. Rather than

simply thresholding or taking the highest-confidence facts consistent with the

current knowledge base, Markov logic enables us to reason jointly over all facts in

order to select an entire set of facts that is mutually consistent and well-supported

by evidence.

In our MLN, we use the predicates CandCat(x, c, conf) and

CandRel(x, y, r, conf) to represent that x has category c with confidence conf ,

and x and y have relation r with confidence conf . The confidences are real

numbers provided by the base IE system used to extract the candidate categories

and relations. Similarly, we use PromCat(x, c, conf) and PromRel(x, y, r, conf)

27

to represent the instances actually promoted to the knowledge base, with

confidence conf .

We can incorporate the IE system’s confidence by using it as a formula weight

for the corresponding ground fact:

w1 · conf CandCat(x, c, conf)⇒ Cat(x, c) (Equation 3.1)

w2 · conf CandRel(x, y, r, conf)⇒ Rel(x, y, r) (Equation 3.2)

w3 · conf PromCat(x, c, conf)⇒ Cat(x, c) (Equation 3.3)

w4 · conf PromRel(x, y, r, conf)⇒ Rel(x, y, r) (Equation 3.4)

We can assign a weight to these formulas as well, which would effectively scale

all of the confidences by a constant value. In our experiments, we tried uniform

weighting, in which we use the original confidences, as well as learning weights

using logistic regression. In NELL, confidence values range from 0 to 1, and the

promoted confidence for a fact may be different than its candidate confidence.

We also have two formulas for representing the default prior of all the facts:

w5 Cat(x, c) (Equation 3.5)

w6 Rel(x, y, r) (Equation 3.6)

3.3.1.3. Seed instances

Seed instances used to initialize the information extraction system are known

to be true. We denote these with the SeedCat and SeedRel predicates, for

category and relation facts, respectively. For some categories and relations, there

may be negative seed examples, which are denoted as NSeedCat and NSeedRel.

28

We include the seed instances using the following hard formulas:

SeedCat(x, c)⇒ Cat(x, c).

NSeedCat(x, c)⇒ ¬Cat(x, c).

SeedRel(x, y, r)⇒ Rel(x, y, r).

NSeedRel(x, y, r)⇒ ¬Rel(x, y, r).

3.3.2. Incorporating Extraction Patterns

Many IE systems use extraction patterns or rules as a primary means to

generate knowledge (Banko et al., 2007). Extraction patterns are manually or

automatically created and may vary considerably in their effectiveness. If we know

the reliabilities of extraction patterns used to select candidate facts, then this extra

information can help us better determine the truth of candidate facts.

Here we use a simple logistic regression model to predict the truth of

candidate facts with the extraction patterns as features.

ln
P (f)

1− P (f)
= β0 +

k∑
i=1

βiCoOccur(f, pi)

where CoOccur(f, p) represents fact f and pattern p cooccur in the text. βi

roughly reflects the reliability of pattern pi in extracting facts for specific category

or relation. Logistic regression outputs the probability P (f) of each candidate fact

f being true based on what patterns cooccur with the fact. If the human labels are

available, we can use the labels to learn the logistic regression model. When labels

are unavailable, we can still use the promoted facts in the knowledge base to as

labels for learning the weights of patterns.

29

Finally the probabilities of candidate facts are incorporated into the Markov

logic by these formulas:

w7 · conf PattCat(x, c, conf)⇒ Cat(x, c) (Equation 3.7)

w8 · conf PattRel(x, y, r, conf)⇒ Rel(x, y, r) (Equation 3.8)

where PattCat(x, c, conf) and PattRel(x, y, r, conf) represent a category

fact Cat(x, c) or a relation fact Rel(x, y, r) with probability conf provided by a

logistic regression model.

3.3.3. Neighbor-Based Grounding

We used MC-SAT (Poon and Domingos, 2006) to compute the marginal

probability of each candidate category and relation fact. However, we needed to

modify our inference task in order to make it tractable, as we describe below.

The major problem we face in inference is that the scale of an information

extraction system is usually extremely large. For example, NELL extracted more

than 943,000 candidate instances by the 165th iteration. These numbers are even

larger for the later iterations since the system keeps running and generating more

and more candidates. Lazy inference (Poon et al., 2008) is a general approach to

reduce complexity for relational inference algorithms. In Markov logic, it assumes

that most atoms are false by default and most formulas true, so that it only has

to instantiate a few number of necessary atoms and formulas. However, when the

whole ground network is densely connected and many atoms are supported by

weak evidence, lazy inference still tends to instantiate all those atoms and therefore

becomes very inefficient.

30

We developed an alternate approach for making these particular MLN

inference problems tractable. First, we notice that the whole ground network

usually forms several clusters, each of which represents a domain. Most connections

between atoms are between atoms in the same cluster. Second, for each cluster,

we are mainly concerned with the values of the query atoms, which for this task

consist of the candidate categories and relations. Other unknown atoms are only

useful for their role in correctly inferring the query atoms, and therefore tolerate

more error. We treat the query atoms as well as the atoms in the initial unsatisfied

clauses as the center of the network. The close neighbors of them are also added in

to enable the joint inference, but the distant atoms and formulas are discarded. In

practice, we include 2-neighbors of the center atoms. We can safely adopt these two

reductions without sacrificing too much accuracy since most discarded groundings

are irrelevant to our query.

The idea of this grounding strategy is similar to lazy inference (Poon et al.,

2008) or cutting plane inference (Riedel, 2008). Compared to lazy inference, our

approach further reduces the complexity for large scale problems by explicitly

controlling the size of the grounded network. However, unlike lazy inference, it

is not guaranteed to produce the same result, but merely approximates it. Our

method is also similar to the expanding frontier belief propagation (EFBP) (Nath

and Domingos, 2010). But instead of dynamically calculating a set of atoms

affected by new evidence or modified evidence, we generate the set in advance of

the inference phase, and thus is more efficient and specific for the task.

31

3.3.4. Weight Learning of Formulas

In this particular problem, the only formulas that need weights are the soft

confidence formulas which relate CandCat, CandRel, PromCat, PromRel,

PattCat, and PattRel to the truth of the corresponding category and relation

facts (Equation 3.1 to Equation 3.8). So we first consider an approximate method

with logistic regression:

ln
P (f)

1− P (f)
= β0 +

k∑
i=1

βiPi(f)

where Pi(f) represents different confidence measures. Each feature also corresponds

to a formula in the Markov logic. The weight learning leverages the training labels

to automatically determine which measures are best for the specific knowledge

base. Since we do not know how a base IE system calculates the confidences, we

can add some simple transformations of the original confidences (e.g., log-odds) as

additional features.

Using logistic regression is equivalent to weight learning in an MLN with

no ontological constraints, since all facts are independent in the absence of the

hard ontology formulas. Huynh and Mooney (2008) used a similar approach of

learning weights for independent facts and adding in a hard transitivity constraint

at inference time.

Alternatively, we can use standard gradient-based methods (Lowd and

Domingos, 2007a) for Markov logic, but there are several issues we need to

consider. First, they tend to be slow because the presence of hard constraints

makes inference harder. Second, the query (i.e., non-evidence) atoms are all the

candidate facts, and we only have labels for a small portion of them. So the

32

gradient of negative log-likelihood is replaced by

∂L(w|x, y)

∂wi

= Ew,y,h[ni(x, h, y)]− Ew,hni(x, h, y)

and the Hessian is replaced by

∂2

∂wi∂wj

L(w|x, y) = (Ew,y,h[ninj]− Ew,y,h[ni]Ew,y,h[nj])

− (Ew,h[ninj]− Ew,h[ni]Ew,h[nj])

With the incomplete training dataset, the objective function is no longer convex,

and the gradient methods are not guaranteed to converge to the global minimum.

We use a method based on the diagonal Newton method presented in Lowd

and Domingos (2007a). The weights are updated by

wt+1 = wt − αH−1g

where α is the optimal step size. To speed up the method we use the persistent

contrastive divergence (Murphy, 2012), and use MCSAT as inference algorithm

with the sample size 10. Because we could have negative values on the diagonal of

Hessian, we take the absolute values of them instead. The optimial step size α is

also very difficult to estimate accurately, so we use a fixed α of 1.

3.3.5. Extensibility of Our Approach

A big advantage of our proposed model compared to other models is that it

provides a general framework to combine information from different sources, as long

as the information can be represented in first-order logic. Many ontologies are well

33

designed and properly reflects the necessary knowledge of specific domains, and all

the knowledge or constraints are in the form of first-order logic. This suggests that

our approach has very good extensibility.

For example, while the current ontology used in NELL is simple, in some

ontologies, we may have more complex rules such as:

Rel(city, country, CityCapitalOfCountry) ∧ city 6= city′ ⇒

¬Rel(city′, country, CityCapitalOfCountry).

which means there is only one capital for each country. Such formulas can easily be

added into the model.

Some current extensions of NELL and similar IE systems can also be

straightforwardly applied to our model. For instance, Lao et al. (2011) proposed

an approach to learn the chain rules in NELL such as

AthletePlaysForTeam(x, y)∧TeamPlaysInLeague(y, z)⇒ AthletePlaysInLeague(x, z)

These rules can be used to facilitate the system through inference by graph random

walks. In Markov logic, this procedure can be viewed as a typical structural

learning and MAP inference procedure. The formulas can be put into our model

as:

ChainRule(r1, r2, r3) ∧Rel(x, y, r1) ∧Rel(y, z, r2)⇒ Rel(x, z, r3)

with the evidence ChainRule(AthletePlaysForTeam, TeamPlaysInLeague,

AthletePlaysInLeague).

We did not use any of these extensions in our experiments.

34

3.4. Experiment

3.4.1. Methodology

We evaluated our approach by applying it to the knowledge base extracted by

NELL. We used the Markov logic formulas introduced in the previous sections.

NELL’s candidate instances, candidate extraction patterns, and seed instances

were treated as evidence. Since NELL is a continuously running system, we took

a snapshot for test. We used the 165th iteration as our dataset.

The instances that we chose for comparison spread over multiple predicates

on several domains. Most predicates are from the sports domain, since this domain

is widely used in NELL-related research for testing. For the comparison, we chose

13 relations and 10 categories. Each relation has about 1000-2000 instances and

each category has about 5000-10000 instances. We randomly sampled about 200

instances for each category and relation, and 4511 in total as the test set. We also

labeled 9887 instances from 5 relations and 6 categories as the training set.

Our system produces a list of all instances, ordered by marginal probability

as computed by MC-SAT. We computed the precision, recall, and F1 score of our

predictions by thresholding these probabilities, so that all facts with a probability

of at least 0.5 were considered true, and all facts with a smaller probability were

considered false. (We also explored using MaxWalkSAT for MAP inference, but

found that it produced worse results.) For NELL, we evaluated precision, recall,

and F1 score on its set of promoted facts.

Since NELL uses a semi-supervised bootstrap learning method, at each

iteration it only promotes a limited number of high confidence instances into

the KB in order to maintain high precision at the possible cost of lower recall.

35

Therefore we also compared the two methods using AUC. Our instances were

ordered by their marginal probabilities. For NELL’s result, we ordered promoted

facts by the associated confidence values, followed by the rest of the candidate facts

ordered by their associated confidences as well. This was necessary because NELL’s

confidence values for promoted and non-promoted facts are not comparable: some

promoted facts have lower confidence than some non-promoted candidates. Naively

ordering all facts by confidence value led to lower AUCs for NELL.

In order to see how the ontological constraints and pattern information help

the joint inference, we experimented on several Markov logic networks.

– LR-NP: the logistic regression model with candidate and promoted facts as

features (no extraction patterns or ontological constraints used);

– LR-NPO: LR-NP + MLN with ontological constraints for inference;

– LR-PS: LR-NP + extraction patterns confidence values trained with NELL’s

promoted facts;

– LR-PSO: LR-PS + MLN with ontological constraints for inference;

– LR-PSO*: LR-PSO with formula weights set to 1; no human labeled data is

used in this model;

– LR-PL: same as LR-PS, but using human labels instead of NELL’s promoted

facts for training;

– LR-PLO: LR-PL + MLN with ontological constraints for inference;

– MLN-NPO: similar to LR-NPO, but trained with MLN instead of LR;

– MLN-PLO: similar to LR-PLO, but trained with MLN instead of LR.

36

We compare these methods with the original promoted facts of NELL and

KGI-PSL (Pujara et al., 2013).

3.4.2. Results and Analysis

First, we show a brief comparison of the overall, all-category and all-relation

performance of all the methods in Table 3.1 and Figure 3.1.

TABLE 3.1. Comparison of different methods on the NELL dataset

Method AUC AUC-Cat AUC-Rel Prec Recall F1

NELL 0.765 0.809 0.813 0.801 0.580 0.673

LR-NP 0.804 0.804 0.813 0.726 0.939 0.819

LR-PS 0.817 0.818 0.830 0.719 0.937 0.814

LR-PL 0.823 0.843 0.811 0.833 0.809 0.821

LR-NPO 0.874 0.918 0.828 0.736 0.946 0.828

LR-PSO 0.881 0.923 0.834 0.739 0.927 0.822

LR-PLO 0.899 0.937 0.858 0.836 0.837 0.836

LR-PSO* 0.840 0.912 0.827 0.694 0.751 0.721

MLN-NPO 0.892 N/A N/A 0.784 0.893 0.835

MLN-PLO 0.866 N/A N/A 0.799 0.864 0.830

PSL-KGI 0.904 N/A N/A 0.777 0.944 0.853

 0.5

 0.6

 0.7

 0.8

 0.9

 1

AUC AUC−Cat AUC−Rel Prec Recall F1

P
e
rf

o
rm

a
n
c
e

NELL

NP

PS

PL

NPO

PSO

PLO

PSO*

FIGURE 3.1. Comparison of different methods on the NELL dataset

37

Without the ontological constraints, there is no dependencies among

instances, and our methods are equivalent to the logistic regression models. As

we can see from Table 3.1, LR-NP, LR-PS and LR-PL achieve better AUCs and F1

than naively trusting NELL’s promoted facts.

We then keep the weights learned with logistic regression, and add the

ontological constraints at inference time to leverage the dependencies among the

instances. All the three models with the ontological constraints (LR-NPO, LR-

PSO, and LR-PLO) outperform their counterparts without ontological constraints.

The comparison of LR-NPO, LR-PSO and LR-PLO’s results show that

adding pattern information as an extra feature improves the overall performance.

When the labeled training data are available, the results is even better than using

NELL’s promoted facts as the training data. However, the latter approach can be

extended to any new categories or predicates without extra labels, while the former

one needs labels in all the categories and predicates to train the pattern’s logistic

regression model.

We then evaluated the standard MLN learning methods MLN-NPO and

MLN-PLO. MLN-NPO achieves comparable results to its LR counterpart LR-

NPO, but MLN-PLO is worse than both LR-PLO and MLN-PLO. We find that the

standard gradient-based learning methods are not very robust and effective on this

task, and we will continue to investigate possible improvements on these methods

for the future work.

Finally, we compared to PSL-KGI, a method very similar to ours. We used

the results reported in Pujara et al. (2013). It has an AUC similar to LR-PLO,

and has a better F1 but worse precision. In general, it also has a competitive

performance.

38

It would also be interesting to look into the performances of individual

predicates. Due to the limitation of space, we show the detailed overall and per-

predicate performance only for NELL, LR-PSO* and LR-PLO in Table 3.2 and

Figure 3.2. LR-PSO* does not use any labeled training data so it is perfectly fair to

be compared with NELL, while LR-PLO is the best method with the training data.

 0

 0.2

 0.4

 0.6

 0.8

 1

A
ll

A
th

le
te

P
la

y
sF

o
rL

ea
g
u
e

A
th

le
te

P
la

y
sS

p
o
rt

S
ta

d
iu

m
L

o
ca

te
d
In

C
it

y

T
ea

m
H

o
m

eS
ta

d
iu

m

T
ea

m
P

la
y
sI

n
L

ea
g
u
e

T
ea

m
P

la
y
sS

p
o
rt

T
ea

m
W

o
n
T

ro
p
h
y

P
ro

d
u
ce

sP
ro

d
u
ct

A
cq

u
ir

ed

C
it

y
C

ap
ti

ca
lO

fC
o
u
n
tr

y

A
ct

o
rS

ta
rr

ed
In

M
o
v
ie

A
th

le
te

P
la

y
sF

o
rT

ea
m

T
ea

m
P

la
y
sI

n
C

it
y

S
p
o
rt

sT
ea

m

A
th

le
te

S
p
o
rt

sL
ea

g
u
e

S
ta

d
iu

m
O

rE
v
en

tV
en

u
e

A
w

ar
d
T

ro
p
h
y
T

o
u
rn

am
en

t

C
it

y

S
p
o
rt

C
o
u
n
tr

y

M
o
v
ie

V
eg

et
ab

le

F
1
−

sc
o
re

NELL
MLN−PSO*
MLN−PLO

 0

 0.2

 0.4

 0.6

 0.8

 1

A
ll

A
th

le
te

P
la

y
sF

o
rL

ea
g
u
e

A
th

le
te

P
la

y
sS

p
o
rt

S
ta

d
iu

m
L

o
ca

te
d
In

C
it

y

T
ea

m
H

o
m

eS
ta

d
iu

m

T
ea

m
P

la
y
sI

n
L

ea
g
u
e

T
ea

m
P

L
ay

sS
p
o
rt

T
ea

m
W

o
n
T

ro
p
h
y

P
ro

d
u
ce

sP
ro

d
u
ct

A
cq

u
ir

ed

C
it

y
C

ap
ti

ca
lO

fC
o
u
n
tr

y

A
ct

o
rS

ta
rr

ed
In

M
o
v
ie

A
th

le
te

P
la

y
sF

o
rT

ea
m

T
ea

m
P

la
y
sI

n
C

it
y

S
p
o
rt

sT
ea

m

A
th

le
te

S
p
o
rt

sL
ea

g
u
e

S
ta

d
iu

m
O

rE
v
en

tV
en

u
e

A
w

ar
d
T

ro
p
h
y
T

o
u
rn

am
en

t

C
it

y

S
p
o
rt

C
o
u
n
tr

y

M
o
v
ie

V
eg

et
ab

le

A
U

C

NELL
MLN−PSO*
MLN−PLO

FIGURE 3.2. Comparison of NELL, LR-PSO* and LR-PLO on the NELL dataset
by predicate based on F1 (above) and AUC (below)

As we can see from the table, LR-PLO has better F1 than NELL in 19 out of

23 predicates, and better AUCs in 16 out of 23 predicates. For the 8 relations and

4 categories that have no labeled training data, LR-PLO outperforms in 5 relations

39

TABLE 3.2. Comparison on the NELL dataset by predicate

Precision Recall F1 AUC

Predicate NELL PSO* PLO NELL PSO* PLO NELL PSO* PLO NELL PSO* PLO

All 0.801 0.745 0.836 0.580 0.696 0.837 0.673 0.719 0.836 0.765 0.840 0.899

Categories with training data

Athlete 0.967 0.968 0.978 0.978 1.000 0.989 0.973 0.984 0.984 0.954 0.993 0.999

AwardTrophyTournament 0.288 0.105 0.452 0.850 0.950 0.700 0.430 0.189 0.549 0.396 0.815 0.649

City 0.975 0.994 0.994 0.946 0.970 0.922 0.960 0.982 0.956 0.988 0.999 0.998

SportsLeague 0.583 0.615 0.929 0.389 0.444 0.722 0.467 0.516 0.812 0.597 0.541 0.843

SportsTeam 0.953 0.955 0.971 0.972 1.000 0.967 0.962 0.977 0.969 0.979 0.997 0.996

StadiumOrEventVenue 0.925 0.919 0.932 0.956 1.000 0.989 0.940 0.958 0.960 0.946 0.953 0.964

Relations with training data

AthletePlaysInLeague 0.930 0.930 0.953 0.586 0.591 0.995 0.719 0.723 0.973 0.948 0.917 0.982

AthletePlaysSport 0.961 0.940 0.946 0.560 0.983 1.000 0.708 0.961 0.972 0.939 0.947 0.983

StadiumLocatedInCity 0.780 0.780 0.649 0.281 0.281 0.325 0.413 0.413 0.433 0.668 0.610 0.669

TeamHomeStadium 1.000 1.000 0.849 0.268 0.274 0.905 0.423 0.430 0.876 0.941 0.927 0.918

TeamPlaysInLeague 0.960 0.965 0.976 0.268 0.307 0.905 0.419 0.466 0.939 0.979 0.997 0.996

Categories without training data

Country 0.247 0.353 0.800 0.477 0.409 0.364 0.326 0.379 0.500 0.346 0.462 0.614

Movie 0.561 0.616 0.698 0.372 0.895 0.349 0.448 0.730 0.465 0.534 0.670 0.690

Sport 0.644 0.637 0.641 0.744 0.899 0.829 0.691 0.746 0.723 0.717 0.697 0.708

Vegetable 0.262 0.271 0.663 0.540 0.900 0.620 0.353 0.417 0.626 0.332 0.406 0.572

Relations without training data

Acquired 0.750 0.755 0.773 0.507 0.521 0.479 0.605 0.617 0.591 0.650 0.740 0.639

ActorStarredInMovie 0.836 0.839 0.831 0.433 0.702 0.418 0.570 0.764 0.557 0.814 0.828 0.837

AthletePlaysForTeam 1.000 1.000 0.985 0.246 0.251 1.000 0.395 0.402 0.992 0.986 0.988 0.967

CityCapitalOfCountry 0.955 0.747 0.855 0.797 0.861 0.747 0.869 0.800 0.797 0.936 0.928 0.814

ProducesProduct 0.611 0.583 0.615 0.518 0.576 0.565 0.560 0.580 0.589 0.683 0.687 0.742

TeamPlaysInCity 0.862 0.871 0.438 0.269 0.290 0.871 0.410 0.435 0.583 0.718 0.654 0.467

TeamPlaysSport 0.986 0.846 0.866 0.402 0.765 0.972 0.571 0.803 0.916 0.916 0.925 0.866

TeamWonTrophy 0.689 0.581 0.612 0.597 0.840 0.941 0.640 0.687 0.742 0.721 0.733 0.826

404040

and 4 categories for F1, and in 3 relations and 3 categories for AUC. LR-PSO* does

somewhat better on the relations and categories with no labeled data, obtaining

a higher AUC than NELL for 3 out of 4 categories and 6 out of 8 relations, and

a higher F1 for all 4 categories and 7 out of 8 relations. Therefore, while both

methods are effective, LR-PSO* appears to better generalize to new categories and

relations since it does not rely on any training data.

Although the increases in precision and recall are modest, we are able to

obtain them using only the information that NELL is already using. These gains

are realized by replacing NELL’s heuristic logical inference with a sound statistical

relational approach that considers the joint uncertainty of many facts. The results

show that our use of joint probabilistic inference is effective here.

3.4.3. Discussion

We may further look at some examples to see how exactly our approach

refines the knowledge base and cleans the potential errors.

In the first example, ProducesProduct is a relation (predicate) whose domain

is Company and range is Product. (Adobe, Acrobat reader software) and (Adobe,

Acrobat reader version) are both candidate instances of ProducesProduct

and have the same initial confidence. Our approach noticed that Acrobat reader

software has a higher confidence value (thus higher probability) than Acrobat

reader version to be an instance of product. Therefore it assigned a higher

probability to the former relation instance than the latter one. NELL also uses type

checking constraints, but its logical approach only allows the true relation instance

to identify the true category instance, not vice versa. However, our Markov logic-

based probabilistic framework can infer in both directions to achieve a better result.

41

Another example is that the entity Los Angeles county is extracted as an

instance for both City and County. Although the former is wrong, it was extracted

before the latter and got promoted by NELL since it had strong supporting

evidence at that time. The latter also has supporting evidence, but it was not

promoted because it violated the mutual exclusion rule of the two categories (i.e.,

a City cannot be a County, and vice versa). In this case, NELL’s bootstrapping

method tries to use the ontology constraints to rule out the wrong instances, but

it fails when the wrong instances are promoted first. On the other hand, our joint

inference framework is able to smartly reason about contradictory instances using

all available information, rather than stubbornly enforcing earlier decisions.

3.5. Summary

We have proposed a method for cleaning an automatically extracted

knowledge base using Markov logic. Our method uses probabilistic inference to

simultaneously reason about the truth values of many related facts. This is an

improvement on systems such as NELL, which uses logical inference and heuristics

to update its knowledge base. Our proposed model is also a generic approach

that can be extended with other sources of knowledge and constraints in first-

order logic. Preliminary experiments show that our method achieves better F1

score and AUC than NELL’s knowledge base. We also developed a custom local

grounding method to make inference in this problem tractable. By learning weights

for different matched patterns, we are able to create a confidence measure that is

better calibrated than NELL’s.

42

CHAPTER IV

KNOWLEDGE AWARE ONTOLOGY MATCHING

This work was published in the Proceedings of the 26th International

Conference on Database and Expert Systems Applications (DEXA 2015). I was the

primary contributor to the methodology and writing, and designed and conducted

the experiments. The co-authors contributed partly to the methodology and

writing. Dejing Dou and Daniel Lowd were the principle investigators for this work.

4.1. Introduction

Ontology matching is the process of aligning two semantically related

ontologies. Traditionally, this task is performed by human experts from the domain

of the ontologies. Since the task is tedious and error prone, especially in large

ontologies, there has been substantial work on developing automated or semi-

automated ontology matching systems (Shvaiko and Euzenat, 2011). While some

automated matching systems make use of data instances (e.g., Doan et al. (2004)),

in this dissertation we focus on the schema-level ontology matching task, in which

no data instance is used.

Previous automatic ontology matching systems mainly use two classes of

strategies. Terminology-based strategies discover corresponding concepts with

similar names or descriptions. Structure-based strategies discover corresponding

groups of concepts with similar hierarchies. In many cases, additional information

about the relationships among the concepts is available through domain models,

such as Bayesian networks, decision trees, and association rules. A domain model

can be represented as a collection of knowledge rules, each of which denotes a

43

semantic relationship among several concepts. These relationships may be complex,

uncertain, and rely on imprecise numeric values. In this dissertation, we introduce

a new knowledge-based strategy which uses the structure of these knowledge rules as

(soft) constraints on the alignment.

As a motivating example, consider two ontologies in the basketball game

domain. One ontology has datatype properties height, weight, center, forward

and guard for players, while the other ontology has the corresponding datatype

properties h, w, and position. Terminology-based strategies may not identify these

correspondences. However, if we know that a large value of height implies center

is true in the first ontology, and the same relationship holds for h and position =

Center in the second ontology, then we tend to believe that height maps to h and

center maps to position = Center.

We use Markov logic networks (MLNs) as a probabilistic language to combine

the knowledge-based strategy with other strategies, in a formalism similar to that

of Niepert et al. (2010). In particular, we encode the knowledge-based strategy with

weighted formulas that increase the probability of alignments where corresponding

concepts have isomorphic relationships. We use an MLN inference engine to find

the most likely alignment. We name our method Knowledge-Aware Ontology

Matching (KAOM).

Our approach is also capable of identifying complex correspondences,

an extremely difficult task in ontology matching. A complex correspondence

is a correspondence between a simple concept and a complex concept (e.g.,

grad student maps to the union of PhD and Masters). This can be achieved by

constructing a set of complex concepts (e.g., unions of concepts) in each ontology,

44

subsequantly generating candidate complex correspondences, and using multiple

strategies – including the knowledge-based strategy – to find the correct ones.

The chapter is organized as follows. In Section 4.2., we define ontology

matching and review previous work. In Section 4.3., we introduce the concept of

“knowledge rules” with a definition and examples. In Section 4.4., we present the

knowledge-based strategy. In Section 4.5., we show how to incorporate complex

concepts in our method. In Section 4.6., we formalize our method with Markov

logic networks. We present experimental results in Section 4.7. and conclude in

Section 4.8..

4.2. Ontology Matching

Most existing schema-level ontology matching systems use two types of

strategies: terminology-based and structure-based. Terminology-based strategies

are based on terminological similarity, such as string-based or linguistic similarity

measures. Structure-based strategies are based on the assumption that two

matching ontologies should have similar local or global structures, where the

structure is represented by subsumption relationships of classes and properties,

and domains and ranges of properties. Advanced ontology matching systems often

combine the two types of strategies (Cotterell and Medina, 2013; Mao et al., 2010;

Melnik et al., 2002; Noy and Musen, 2000). See Shvaiko and Euzenat (2011) for a

survey of ontology matching systems and algorithms.

Recently, a probabilistic framework based on Markov logic was proposed

to combine multiple strategies (Niepert et al., 2010). In particular, it encodes

multiple strategies and heuristics into hard and soft constraints, and finds the

best matching by minimizing the weighted number of violated constraints. The

45

constraints include string similarity, the cardinality constraints which enforce that

each concept matches at most one concept, the coherence constraints which prevent

inconsistency induced by the matching, and the stability constraints which penalize

dissimilar local subsumption relationships.

Previous work has taken several different approaches to find complex

correspondences (i.e., complex matching). Dhamankar et al. (2004) construct

candidates for complex correspondences using operators for primitive classes,

such as string concatenation or arithmetic operations on numbers. Ritze et al.

(2008) summarize four patterns for building up complex correspondences based on

linguistic and structural features given a candidate one-to-one alignment: Class

by Attribute Type (CAT), Class by Inverse Attribute Type (CIAT), Class by

Attribute Value (CAV), and Property Chain pattern (PC). Finally, when aligned

or overlapping data is available, inductive logic programming (ILP) techniques can

be used as well (Hu et al., 2011; Qin et al., 2007).

Many ontology matching systems make use of data instances to some extent

(e.g., (Dhamankar et al., 2004; Doan et al., 2002; Hu et al., 2011; Qin et al., 2007)).

However, in this dissertation, we focus on the case where data are not available or

data sharing is not preferred because of communication cost or privacy concerns.

4.3. Representation of Domain Knowledge

In an OWL ontology, knowledge is represented as a set of DL axioms. These

axioms describe properties of classes or relations (e.g., a relation is functional,

symmetric, or antisymmetric, etc.), or a relationship of several classes or relations

(e.g., the relation ‘grandfather’ is the composition of the two relations ‘father’ and

‘parent’).

46

The choice of DL as the foundation of the Semantic Web ontology languages

is largely due to the trade-off between expressivity and reasoning efficiency. In tasks

such as ontology matching, reasoning does not need to be instant, so we can afford

to consider other forms of knowledge outside of a specific ontology language or

description logic.

Definition 4.1 (Knowledge Rule). A knowledge rule is a sentence R(a, b, . . . ; θ)

in a formal language which consists of a relation R, a set of entities (i.e.,

classes, attributes or relations) {a, b, . . .}, and (optionally) a set of parameters

θ. A knowledge rule carries logical or probabilistic semantics representing the

relationship among these entities. The specific semantics depend on R.

Many domain models and other types of knowledge can be represented as

sets of knowledge rules, each rule describing the relationship of a small number

of entities. The semantics of each relationship R can typically be expressed with

a formal language. Table 4.1 shows some examples of the symbols used in formal

languages such as description logic, along with their associated semantics.

TABLE 4.1. Syntax and semantics of DL axioms (top), and other non-DL
knowledge rules used in the examples (bottom)

Description Syntax Semantics
Subsumption C v D CI ⊆ DI

Equivalence C ≡ D CI = DI

Disjointness C v ¬D CI ∩DI = ∅
Precedence R ≺ S y < y′ for ∀(x, y) ∈ RI ∧ (x, y′) ∈ SI
Probabilistic rule C ⇒ D Pr(DI |CI) is close to 1

We illustrate a few forms of knowledge rules with the following examples.

For each rule, we provide a description in English, a logical representation, and

an encoding as a knowledge rule with a particular semantic relationship, Ri. We

47

define a new relationship in each example, but, in a large domain model, most

relationships would be appear many times in different rules.

Example 4.1. The submission deadline precedes the camera ready deadline:

paperDueOn ≺ manuscriptDueOn

This is represented as R1(paperDueOn, manuscriptDueOn) with R1(a, b) : a ≺ b.

Example 4.2. A basketball player taller than 81 inches and heavier than 245

pounds is likely to be a center:

h > 81 ∧ w > 245⇒ pos = Center

This rule can be viewed as a branch of a decision tree or an association rule. It can

be represented as R2(h, w, pos=Center, [81, 245]), with R2(a, b, c, θ) : a > θ1 ∧ b >

θ2 ⇒ c.

Example 4.3. A smoker’s friend is likely to be a smoker as well:

Smokes(x) ∧ Friend(x, y)⇒ Smokes(y)

Relational (i.e., first-order logic) rules such as this one describe relationships of

attributes across multiple tables, as opposed to propositional data mining rules that

are restricted to a single table. This rule can be represented as R3(Smoke, Friend)

with R3(a, b) : a(x) ∧ b(x, y) ⇒ a(y). In fact, all DL axioms are merely syntax

sugars for first-order logic rules. For example, in a previous example, the DL axiom

grandfather ≡ father ◦ parent represented in our universal knowledge rule

48

representation R3′(grandfather, father, parent) with R3′(a, b, c) : a ≡ b ◦ c is

basically a first-order rule

∃yfather(x, y) ∧ parent(y, z)⇔ grandfather(x, z).

For the remainder of this chapter, we will assume that the knowledge in both

domains is represented as knowledge rules, as described in this section.

4.4. Our New Knowledge-Based Strategy

We propose a new strategy for ontology matching that uses the similarity

of knowledge rules in the two ontologies. It is inspired by the structure-based

strategy in many ontology matching algorithms (e.g., (Melnik et al., 2002) and

(Niepert et al., 2010)). It naturally extends the subsumption relationship of entities

in structure-based strategies to other types of relationships.

We use Markov logic to combine the knowledge-based strategy with other

strategies. In particular, each strategy is represented as a set of soft constraints,

each of which assigns a score to the alignments satisfying it, and the alignment with

the highest total score is chosen as the best alignment. We now describe the soft

constraints encoding the knowledge-based strategy. Our complete Markov logic-

based approach, including the soft constraints required for the other strategies, will

be described in Section 4.6..

For each relation Rk that appears in both domains, we introduce a set of soft

constraints so that the alignments that preserve these relationships are preferred to

49

those that do not:

+wk Rk(a, b) ∧ ¬Rk(a′, b′)⇒a 6≡ a′ ∨ b 6≡ b′

+w′k Rk(a, b) ∧Rk(a′, b′)⇒a ≡ a′ ∧ b ≡ b′

∀a, b ∈ O1, a
′, b′ ∈ O2

These formulas assume Rk is a binary relation, but they trivially generalize to any

arity, e.g., Rk(a, b, c, d, e, . . .). Note that separate constraints are created for each

possible tuple of constants from the respective domains. The numbers preceding

the constraints (wk and w′k) are the weights. A larger weight represents a stronger

constraint, since alignments are ranked based on the total weights of the constraints

they satisfy. A missing weight means the constraint is a hard constraint which must

be satisfied.

Example 4.4. A reviewer of a paper cannot be the paper’s author. In the cmt 1

ontology we have R4(writePaper, readPaper) and in the confOf ontology we

have R4(write, reviews) where R4(a, b) : a v ¬b is the disjoint relationship of

properties. Applying the constraint formulas defined above, we increase the score of

all alignments containing the two correct correspondences: writePaper ≡ writes

and readPaper ≡ reviews.

Rules involving continuous numerical attributes often include parameters

(e.g., thresholds in Example 4.2) that do not match between different ontologies. In

order to apply the knowledge-based strategy to numerical attributes, we make the

assumption that corresponding numerical attributes roughly have a positive linear

1Throughout this chapter, we will use ontologies in the conference domain (cmt, confOf,
conference, edas, ekaw) and the NBA domain (nba-os, yahoo) in our examples. The
characteristics of these ontologies will be further described in Section 4.7..

50

transformation. This assumption is often true in real applications, for instance,

when an imperial measure of height matches to a metric measure of height. We

propose two methods to handle numerical attributes.

The first method is to compute a distance measure (e.g., Kullback-Leibler

divergence) between the distributions of the corresponding attributes in a candidate

alignment. Although the two distributions describe different attributes, the distance

can be computed by assuming a linear transformation between the two attributes.

The coefficients of the mapping relation can be roughly estimated using the ranges

of attribute values appearing in the knowledge rules (see Example 4.5 below).

Specifically, if the distance between rules R(a, b, . . . , θ) and R(a’, b’, . . . , θ′) is

d, then we add the constraint:

a ≡ a′ ∧ b ≡ b′ ∧ c ≡ c′

with a weight of max(d0 − d, 0) for a given threshold d0.

Example 4.5. In the nba-os ontology, we have conditional rules converted from a

decision tree, such as

h > 81 ∧ w > 245⇒ Center

Similarly, in the nbayahoo ontology, we have

h’ > 2.06 ∧ w’ > 112.5⇒ Center’

51

Here the knowledge rules represent the conditional distributions of multiple entities.

We define the distance between the two conditional distributions as

d(h, w, Center; h’, w’, Center’) =Ep(h,w)d(p(Center|h, w)||p(Center’|h’, w’))

where E(·) is expectation and d(p||p′) is a distance measure. Because Center

and Center′ are binary attributes, we simply use |p − p′| as the distance measure.

For numerical attributes, we can use the difference of two distribution histograms

as the distance measure. We assume the attribute correspondences (h and h’, w

and w’) are linear mappings, and the linear relation can be roughly estimated

(e.g., by simply matching the minimum and maximum numbers in these rules).

When computing the expectation over h and w, we apply the linear mapping

to generate corresponding values of h’ and w’, e.g., h’ = 0.025 h, w’ = 0.45 w.

The distribution of the conditional attributes p(h, w) can be roughly estimated as

independent and uniform over the ranges of the attributes.

The second method for handling continuous attributes is to discretize them,

reducing the continuous attribute problem to the discrete problem described earlier.

For example, suppose each continuous attribute x is replaced with a discrete

attribute xd, indicating the quartile of x rather than its original value. Then we

have R5(h
d, wd, Center) and R5(h’

d, w’d, Center’) with relation R5(a, b, c) : a =

4 ∧ b = 4 ⇒ c, and the discrete value of 4 indicates that both a and b are in

the top quartile. Other discretization methods are also possible, as long as the

discretization is done the same way in both domains.

Our method does not rely on the forms of knowledge rules, nor does it rely

on the algorithms used to learn these rules. As long as similar techniques or tools

52

are used on both sides of ontologies, we would always be able to find interesting

knowledge-based similarities between the two ontologies.

4.5. Finding Complex Correspondences

Our approach can also find complex correspondences, which contain complex

concepts in either or both of the ontologies. We add the complex concepts into

consideration and treat them the same way as simple concepts, and then we jointly

solve all the simple and complex correspondences by considering terminology,

structure, and knowledge-based strategies in a single probabilistic formulation.

First, because complex concepts are recursively defined and potentially

infinite, we need to select a finite subset of complex concepts and use them to

generate the candidate correspondences. We will only include the complex concepts

occurring in the ontology axioms or in the knowledge rules.

Second, we need to define a string similarity measure for each type of complex

correspondence. For example, Ritze et al. (2008) requires two conditions for a

Class by Attribute Type (CAT) matching pattern O1 : a ≡ O2 : ∃p.b (e.g., a =

Accepted Paper, p = hasDecision, b =Acceptance): a and b are terminologically

similar, and the domain of p (Paper in the example) is a superclass of a. We can

therefore define the string similarity of a and ∃p.b to be the string similarity of a

and b which coincides with the first condition, and the second condition is encoded

in the structure stability constraints. The string similarity measure of many other

types of correspondences can be defined similarly based on the heuristic method

in Ritze et al. (2008). If there does not exist a straight-forward way to define the

string similarity for a certain type of complex correspondences, we can simply set it

to 0 and rely on other strategies to identify such correspondences.

53

Lastly, we need constraints for the correspondence of two complex concepts.

The corresponding component concepts and same constructor always implies the

corresponding complex concepts, while in the other direction, it is a soft constraint.

consk(a, b) ≡ consk(a′, b′)⇐ a ≡ a′ ∧ b ≡ b′

+wc
k consk(a, b) ≡ consk(a′, b′)⇒ a ≡ a′ ∧ b ≡ b′

where consk are different constructors for complex concepts, e.g., union, ∃p.b.

Some complex correspondences are almost impossible to be identified with

traditional strategies. With the knowledge-based strategy, it becomes possible.

Example 4.6. A reviewer of a paper cannot be the paper’s author. In the cmt

ontology we have

writePaper v ¬readPaper

and in the conference ontology we have

contributes � Reviewed contribution v ¬(contributes ◦ reviews)

We first build two complex concepts contributes � Reviewed contribution and

contributes ◦ reviews. With R4(a, b) = a v ¬b (disjoint properties), the score

function would favor the correspondences

writePaper ≡ contributes � Reviewed contribution

readPaper ≡ contributes ◦ reviews

54

4.6. Knowledge Aware Ontology Matching

In this section, we present our approach, Knowledge Aware Ontology

Matching (KAOM). KAOM uses Markov logic networks to solve the ontology

matching task. The MLN formulation is similar to Niepert et al. (2010) but

incorporates the knowledge-based matching strategy and treatment of complex

correspondences.

We represent a correspondence using a binary relation, match(a1,a2),

which is true if concept a1 from the first ontology is semantically equivalent to

concept a2 from the second ontology (e.g., match(writePaper, writes) means

writePaper ≡ writes). Each possible world therefore corresponds to an alignment

of the two ontologies. We want to find the most probable possible world, which is

the configuration that maximizes the sum of weights of satisfied formulas.

We define three components of the MLN of the ontology matching problem:

constants, evidence and formulas. The constants are the entities in both ontologies,

including the simple named ones and the complex ones. The evidence includes the

complete set of OWL-supported relationships (e.g., subsumptions and disjointness)

among all concepts in each ontology, and rules represented as first-order atomic

predicates as described in the Section 4.3.. We use an OWL reasoner to create the

complete set of OWL axioms.

For the formulas, we begin with a set of formulas adapted from Niepert et al.

(2010):

1. A-priori similarity is the string similarity between all pairs of concepts:

sa,a′ match(a, a′)

55

where sa,a′ is the string similarity between a and a′, which also serves as the

weight of the formula. We use the Levenshtein measure (Levenshtein, 1966)

for simple correspondences. This atomic formula increases the probability of

matching pairs of concepts with similar strings, all other things being equal.

2. Cardinality constraints enforce one-to-one simple (or complex)

correspondences:

match(a, a′) ∧ match(a, a′′)⇒ a′ = a′′

3. Coherence constraints enforce consistency of subclass relationships:

match(a, a′) ∧ match(b, b′) ∧ a v b⇒ a′ v ¬b′

4. Stability constraints enforce consistency of the subclass relationships between

the two ontologies. They can be viewed as a special case of the knowledge-

based constraints we introduce below.

4.6.1. Knowledge-based Constraints

We now describe how we incorporate knowledge-based constraints into the

MLN formulation through new formulas relating knowledge rules to matchings. The

stability constraints in Niepert et al. (2010) consider three subclass relationships,

including a is a subclass of b (subclass), and a is a subclass or superclass of

the domain or range of a property b (domainsub, rangesub). We extend the

relationships (knowledge rule patterns) to sub-property, disjoint properties, and

user-defined relations such as ordering of dates, and non-deterministic relationships

56

such as correlation and anti-correlation:

−wk Rk(a, b, ...) ∧ ¬Rk(a′, b′, ...)⇒ match(a, a′) ∧ match(b, b′) ∧ ..., k = 1, ...,m

(Equation 4.1)

where m is the number of knowledge rule patterns. User-defined relations include

those derived from decision trees, association rules, expert systems, and other

knowledge sources outside the ontology.

Besides the stability constraints, we introduce a new group of similarity

constraints that encourage knowledge rules with the same pattern to have

corresponding concepts.

+w′k Rk(a, b, ...) ∧Rk(a′, b′, ...)⇒ match(a, a′) ∧ match(b, b′) ∧ ..., k = 1, ...,m

(Equation 4.2)

For numerical rules, we instead use MLN formulas:

d0 − d match(a, a′) ∧ match(b, b′) ∧ ..., k = 1, ...,m (Equation 4.3)

where d is a distance measure of the two rules Rk(a, b, ...) and R′k(a′, b′, ...) and d0 is

a threshold determining whether the rules are similar or not.

To handle complex correspondences, we add complex concepts that occur in

knowledge rules as constants of the MLN, and add knowledge rules that contain

these new complex concepts. We define the string similarity and enforce type

constraints between simple and complex concepts, as described in Section 4.5.. For

complex to complex correspondences, the string similarity measure is zero, but we

57

have constraints

match(a, a′) ∧ match(b, b′) ∧ ...⇒match(c, c′)

wc
k match(a, a′) ∧ match(b, b′) ∧ ...⇐match(c, c′)

where c = consk(a, b, ...), c′ = consk(a′, b′, ...) for each constructor consk.

4.7. Experiments

We test our KAOM approach on three domains: NBA, census, and

conference. The sizes of the ontologies of these domains are listed in Table 4.2.

These domains contain very different forms of ontologies and knowledge rules, so we

can examine the generality and robustness of our approach.

TABLE 4.2. Profile of the datasets, including the number of classes, object
properties, data properties and nominal values of each ontology.

domain ontology # classes # object props # data props # values

NBA
nba-os 3 3 20 3
yahoo 4 4 21 7

census
adult 1 0 15 101

income 1 0 12 97

OntoFarm

cmt 36 50 10 0
confOf 38 13 25 0

conference 60 46 18 6
edas 103 30 20 0
ekaw 78 33 0 0

We use Pellet (Sirin et al., 2007) for logical inference of the ontological axioms

and TheBeast2 (Riedel, 2008) and Rockit3 (Noessner et al., 2013) for Markov logic

inference. We ran all experiments on a machine with 24 Intel Xeon E5-2640 cores

2http://code.google.com/p/thebeast/

3https://code.google.com/p/rockit/. We use RockIt for the census domain because
TheBeast is not able to handle the large number of rules in that domain.

58

@2500 MHz and 8GB memory. We compare our system (KAOM) with three others:

KAOM without the knowledge-based strategy (MLOM), CODI (Huber et al., 2011)

(a different implementation of MLOM), and logmap2 (Jiménez-Ruiz et al., 2012), a

top performing system in OAEI 2014 4.

We manually specify the weights of the Markov logic formlas in KAOM and

MLOM. The weights of stability constraints for subclass relationships are set with

values same as the ones used in (Niepert et al., 2010), i.e., the weight for subclass

is -0.5, and those for sub-domain and range are -0.25. In KAOM, we also set the

weights for different types of similarity rules based on our assessment of their

relative importance and kept these weights fixed during the experiments.

4.7.1. NBA

The NBA domain is a simple setting that we use to demonstrate the

effectiveness of our approach. We collected data from the NBA official website and

the Yahoo NBA website. For each ontology, we used the WinMine toolkit 5 to learn

a decision tree for each attribute using the other attributes as inputs.

For each pair of conditional distributions based on decision tree with up

to three attributes, we calculate their similarity based on the distance measure

described in Example 4.5. We use the Markov logic formula (Equation 4.3) with

the threshold d0 = 0.2. To make the task more challenging, we did not use any

name similarity measures. Our method successfully identified the correspondence of

all the numerical and nominal attributes, including height, weight and positions

4http://oaei.ontologymatching.org/2014/

5http://research.microsoft.com/en-us/um/people/dmax/WinMine/Tooldoc.htm

59

(center, forward and guard) of players. In contrast, without a name similarity

measure, no other method can solve the matching problem at all.

4.7.2. Census

We consider two census datasets and their ontologies from UC Irvine data

repository6. Both datasets represent census data but are sampled and post-

processed differently. These two census ontologies are flat with a single concept but

many datatype properties and nominal values. For this domain, we use association

rules as the knowledge. We first discretize each numerical attribute into five

intervals, and then generate association rules for each ontology using the Apriori

algorithm with a minimum confidence of 0.9 and minimum support of 0.001. For

example, one generated rule is:

age=’(-inf-25.5]’ education=’11th’ hours-per-week=’(-inf-35.5]’

==> adjusted-gross-income=’<=50K’ conf:(1)

This is represented as

R6(age
d, 11th, hours-per-weekd, adjusted-gross-incomed)

where xd refers to the discretized value of x, split into one fifth percentile intervals,

and R6(a, b, c, d) : a = 1 ∧ b ∧ c = 1 ⇒ d = 1. For scalability reasons, we consider

up to three concepts in a knowledge rule, i.e., association rules with up to three

attributes. We set the weight of knowledge similarity constraints for the association

rules to 0.25.

6https://archive.ics.uci.edu/ml/datasets.html

60

In the Markov logic formulation in Niepert et al. (2010), only the

correspondences with apriori similarity measure larger than a threshold τ are

added as evidence. In the experiments, we set τ with different values from 0.50

to 0.90. When τ is large, we deliberately discard the string similarity information

for some correspondences. MLOM for this task is an extension of Niepert et al.

(2010) by adding correspondences of nominal values and their dependencies with

the related attributes. The results are shown in Figure 4.1. We can see that KAOM

always gets better recall and F1, with only a slight degradation in precision. This

means our approach fully leverages the knowledge rule information and thus does

not rely too much on the names of the concepts to determine the matching. For

example, when τ is 0.70, KAOM finds 6 out of 8 correspondences of values of

adult:workclass and income:class of worker, while MLOM finds none. The

other two systems were not designed for nominal value correspondences. CODI

only finds 7 and logmap2 only finds 3 attribute correspondences, while KAOM and

MLOM find all the 12 attribute correspondences.

4.7.3. OntoFarm

In order to show how our system can use manually created expert knowledge

bases, we use OntoFarm, a standard ontology matching benchmark for an academic

conference domain as the third domain in our experiments. As part of OAEI,

it has been widely used in the evaluation of ontology matching systems. The

process of manually knowledge rule creation is time consuming, so we only used

5 of the OntoFarm ontologies (cmt, conference, confOf, edas, ekaw). Using their

knowledge of computer science conferences and the structure of just one ontology,

two individuals listed a number of rules (e.g., Example 4.1). We then translated

61

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0.5 0.6 0.7 0.8 0.9

τ

Prec:KAOM

Recall:KAOM

F1:KAOM

Prec:MLOM

Recall:MLOM

F1:MLOM

FIGURE 4.1. Precision, recall and F1 on the census domain as a function of the
string similarity threshold τ

these rules into each of the five ontologies. Thus, the same knowledge was added

to each of the ontologies, but its representation depended on the specific ontology.

For some ontologies, some of the rules were not representable with the concepts

in them and thus had to be omitted. This manually constructed knowledge base

was developed before running any experiments and kept fixed throughout our

experiments. Among the 5 ontologies, we have 10 pairs of matching tasks in total.

We set τ to 0.70, and the weight for the knowledge similarity constraints to 1.0.

We first compare the four methods to the reference one-to-one alignment from

the benchmark (Figure 4.2). KAOM achieves similar precision and F1, and better

recall than other systems. It was able to identify correspondences in which the

concept names are very different, for instance, cmt:readPaper ≡ confOf:reviews.

Note that the similarity constraints work in concert with other constraints. For

instance, in Example 4.4, since disjointness is a symmetric knowledge rule, domain

62

and range constraints could be helpful to identify whether cmt:writePaper should

match to confOf:writes or confOf:reviews.

 0

 0.2

 0.4

 0.6

 0.8

 1

Prec Recall F1

logmap2
CODI

MLOM
KAOM

FIGURE 4.2. Precision, recall and F1 on the OntoFarm domain with only the
one-to-one correspondences

To evaluate our approach on complex correspondences, we extended the

reference alignment with hand-labeled complex correspondences (Figure 4.3).

MLOM does not perform well in this task because the complex correspondences

require a good similarity measure to become candidates (such as the linguistic

features in Ritze et al. (2008)). KAOM, however, uses the structure of the rules

to find many complex correspondences without relying on complex similarity

measures. For this task we also tried learning the weights of the formulas 7

(KAOM-learn). For each of the 10 pairs of ontologies, we used the rest 9 pairs as

training data. KAOM-learn performs slightly better than KAOM.

7We used MIRA implemented in TheBeast for weight learning.

63

 0

 0.2

 0.4

 0.6

 0.8

 1

Prec Recall F1

logmap2
CODI

MLOM
KAOM

KAOM-learn

FIGURE 4.3. Precision, recall and F1 on the OntoFarm domain with the complex
correspondences

With the hand-picked or automatically learned weights, KAOM produces

a single most-likely alignment. However, we can further tune KAOM to produce

alignments with higher recall or higher precision. We accomplish this by adding

the MLN formula match(a, a′) with weight w. When w is positive, alignments

with more matches are more likely, and when w is negative, alignments with fewer

matches are more likely (all other things being equal). We adjusted this weight to

produce the precision-recall curve shown in Figure 4.4. KAOM dominates CODI

and provides much higher recall values than logmap2, although logmap2’s best

precision remains slightly above KAOM’s.

4.8. Summary

We proposed a new ontology matching algorithm KAOM. The key component

of KAOM is the knowledge-based strategy, which is based on the intuition that

64

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0.3 0.35 0.4 0.45 0.5 0.55 0.6

P
re

c
is

io
n

Recall

KAOM
logmap2

CODI

FIGURE 4.4. Precision-recall curve on the OntoFarm domain with the complex
correspondences

ontologies about the same domain should contain similar knowledge rules, in

spite of the different terminologies they use. KAOM is also capable of discovering

complex correspondences, by treating complex concepts the same way as simple

ones. We encode the knowledge-based strategy and other strategies in Markov logic

and find the best alignment with its inference tools. Experiments on the datasets

and ontologies from three different domains show that our method effectively uses

knowledge rules of different forms to outperform several state-of-the-art ontology

matching methods.

65

CHAPTER V

A PROBABILISTIC APPROACH TO KNOWLEDGE TRANSLATION

This work is to appear in the Proceedings of the 30th AAAI Conference on

Artificial Intelligence (AAAI-16). I was the primary contributor to the methodology

and writing, and designed and conducted the experiments. The co-authors

contributed partly to the methodology and writing. Dejing Dou and Daniel Lowd

were the principle investigators for this work.

5.1. Introduction

Knowledge acquisition is a critical process for building predictive or

descriptive models for many applications. When domain expertise is available,

knowledge can be constructed manually. When enough high-quality data is

available, knowledge can be constructed automatically using data mining or

machine learning tools. Both approaches can be difficult and expensive, so we

would prefer to reuse or transfer knowledge from one application or system to

another whenever possible. However, different applications or systems often have

different representations, which makes knowledge reuse or transfer a non-trivial

task. For example, genetic databases normally use different schemas to store

genotype and phenotype data from distinct NIH model organisms. Different

EEG (electroencephalography) labs use their own terminology in spreadsheets

for recording experiments. Online bookstores may use different XML schemas to

describe commodity, transaction, and shipping information.

As a motivating example, suppose a new credit card company without

historical data wants to use the classification model mined by a partner credit card

66

company to determine whether the applicants of the new company are qualified or

not. Since the two companies may use different schemas to store their applicants’

data (e.g., in one schema, we have annual income recorded as a numerical attribute,

while in the other, we have salary as an attribute with discretized ranges), we

cannot simply reuse the old classifier. Due to privacy and scalability concerns,

we cannot translate the collaborative company’s data to the new schema either.

Finally, since the new company is new, it may not yet have any data to learn a

model under its new schema. Therefore, we want to translate the classification

model itself to the new schema, without using any data.

We propose knowledge translation (KT) as a novel solution to translate

knowledge across conceptually similar but semantically heterogeneous schemas or

ontologies. For convenience, we refer to them generically as “schemas.” We define

the knowledge translation task, propose specific methods for performing knowledge

translation, and evaluate our methods on two real-world knowledge translation

tasks. As shown in the previous example, KT is useful in situations where data

translation/transfer is problematic due to privacy or scalability concerns. Unlike

transfer learning, which uses data in the target schema or domain to refine

transferred knowledge, KT can be applied before any target data is available.

We formally define knowledge translation as the task of converting knowledge

KS in source schema S to equivalent knowledge KT in target schema T , where

the correspondence between the schemas is given by some mapping MS,T . In

general, one schema may have concepts that are more general or specific than the

other, so an exact translation may not exist. We will therefore attempt to find

the best translation, acknowledging that the best translation may still be a lossy

approximation of the source knowledge.

67

We adopt a probabilistic approach to knowledge translation, in which the

knowledge in the source schema, the mapping between the source and target

schemas, and the resulting knowledge in the target schema are all represented

as probability distributions. This gives us a consistent mathematical framework

for handling uncertainty at every step in the process. This uncertainty is clearly

necessary when the source knowledge is probabilistic, but it is also necessary when

there is no exact mapping between the schemas, or when the correct mapping is

uncertain. We propose to represent these probability distributions using Markov

random fields, for propositional (non-relational) domains, and Markov logic

networks, for relational domains. We will later discuss how different kinds of

knowledge and mappings can be represented succinctly in these representations.

Given probability distributions for both the source knowledge and the schema

mapping, we can combine them to define an implicit probability distribution in

the target schema. Our goal is to find an explicit probability distribution in the

target schema that is close to this implicit distribution. This gives us a compact

probabilistic model that represents knowledge from the source schema as well

as possible, respecting the uncertainty in both the source knowledge and the

mapping. To solve this task, we propose a method for optimizing the Kullback-

Leibler divergence between the two distributions. Our method is built on standard

learning and inference algorithms for probabilistic graphical models.

The chapter is organized as follows. In Section 5.2., we summarize related

work, such as semantic integration, distributed data mining, and transfer learning,

and discuss their connections and distinctions with KT. In Section 5.3., we show

how Markov random fields and Markov logic networks can represent knowledge

and mappings with uncertainty. In Section 5.4., we present a variant of the

68

Markov logic learning algorithm to solve the problem of knowledge translation.

In Section 5.5., we run experiments on synthetic and real datasets. Finally, we

conclude in Section 5.6..

5.2. Related Work

We compare our knowledge translation approach with some related work,

especially semantic integration, heterogeneous distributed data mining, transfer

learning, and deductive knowledge translation.

5.2.1. Semantic Integration

Semantic integration aims to resolve the semantic heterogeneity between

schemas or ontologies. Data integration and exchange is the mostly studied areas

in semantic integration. The main task of data integration and exchange is to

answer queries posed in terms of the global schema given source databases. The

standard semantics of global query answering is to return the tuples in every

possible database that is consistent with the global schema constraints and the

mapping, i.e., the set of certain answers.

In the AI and Semantic Web community, researchers focus on ontologies

and ontology mapping instead of databases and schema mapping. Kalfoglou and

Schorlemmer (2003) review several ontology mapping frameworks and Noy (2004)

discuss several formal representations of ontology mappings with different levels of

expressivity for different applications of semantic integration.

Most work addressing ontology mapping to date has actually focused on

ontology matching which defines a set of equivalence relationships between concepts

and properties (e.g., IF-Map (Kalfoglou and Schorlemmer, 2002) and ONION

69

(Mitra and Wiederhold, 2002)). DL axioms (Arenas et al., 2012; Ritze et al.,

2008) are another natural choice for representing a mapping. Some have argued

that DL axioms are not sufficient for representing many useful mappings and have

proposed more expressive languages. OISs (Calvanese et al., 2001) and Madhavan

et al. (2002) both consider mappings as queries/views in a similar way to schema

mapping. Dou et al. (2005) use first-order axioms directly to represent the mapping

in a special-purpose inference engine for ontology translation. The drawback of

introducing such an expressive language is that the task is not always solvable.

A main difference between data integration/exchange and knowledge

translation (KT) is that KT has probabilistic semantics for the translation process,

that is, it defines a distribution of possible worlds in the target schema, instead

of focusing only on the tuples that are in all the possible worlds (i.e., certain

answers). As a result, most work in data integration/exchange uses fragments of

first-order logic with built-in predicates (e.g., comparison operators) and functions

(e.g., arithmetic operators) to represent the mappings, while we can sacrifice

the capability of exact inference and use first-order logic (FOL) to represent the

mapping.

5.2.2. Distributed Data Mining

Efforts in distributed data mining (DDM) (see surveys in (Park and

Kargupta, 2002; Caragea et al., 2005)) have made considerable progress in mining

distributed data resources without putting data in a centralized location. (Caragea

et al., 2005) proposes a general DDM framework with two components: one sends

statistical queries to local data sources, and the other uses the returned statistics

to revise the current partial hypothesis and generate further queries. For each

70

data mining model and algorithm (e.g., SVMs, Naive Bayes classifiers), a statistic

with smaller size than the original data is used, which reduces the cost of data

transmission.

Heterogeneous DDM (Caragea et al., 2005) also handles the semantic

heterogeneity between the global and local schemas, in particular, those containing

attributes with different granularities called Attribute Value Taxonomy (AVT).

Heterogeneous DDM requires local data resources and their mappings to the global

schema to translate the statistics of queries. However, KT does not require data

or statistics from either the source or the target. Instead, KT uses mappings to

translate the generated/mined knowledge from the source directly.

5.2.3. Transfer Learning

Transfer learning (TL) has been a successful approach to knowledge reuse

Pan and Yang (2010). In traditional machine learning, only one domain and one

task is involved. When the amount of data is limited, it is desirable to use data

from related domains or tasks. As long as the source and target data share some

similarity (e.g., in the distribution or underlying feature representation), the

knowledge obtained from the source data can be used as a “prior” for the target

task.

Early transfer learning work focuses on the homogeneous case in which

the source and target domain have identical attributes. Recently, many other

scenarios of transfer learning are studied, including heterogeneous transfer learning

Yang et al. (2009), relational transfer learning Mihalkova et al. (2007); Davis

and Domingos (2009), network transfer learning Fang et al. (2015); Ye et al.

(2013). Some of these scenarios have similar settings as knowledge translation. For

71

example, heterogeneous transfer learning also deals with different representations of

the data. While it uses an implicit mapping of two feature spaces (e.g., texts and

images through Flickr), KT uses an explicit mapping via FOL formulas. Relational

transfer learning also involves relational domains and relational knowledge. While it

deals with two analogous domains (e.g., in movie and university domains, directors

correspond to professors), KT focuses on a single domain with merely different

representations. Moreover, relational transfer learning only handles deterministic

one-to-one matchings which can be inferred with both the source and target data,

while KT does not use any target data and relies on the provided explicit FOL

mapping.

5.2.4. Deductive Knowledge Translation

Deductive knowledge translation (Dou et al., 2011) essentially tries to solve

the same problem, but it only considers deterministic knowledge and mappings.

Our KT work can handle knowledge and mappings with uncertainty, which is more

general than the deterministic scenario deductive knowledge translation can handle.

See Table 5.1 for a summary of the similarities and differences between our

knowledge translation (KT) approach and related work.

TABLE 5.1. Comparisons between KT and related work. We consider three
aspects of a task: whether data is available, what kind of knowledge patterns are
supported, and what kind of mapping is used.

Data availability Knowledge type Mapping type

Data integration Source data Query results GLAV mappings
Heterogeneous DDM Source data Propositional AVT
Relational TL Target data SRL models Matching
Ontology exchange No data DL axioms Subsumption axioms
Deductive KT No data FOL rules FOL

KT No data SRL models FOL with uncertainty

72

5.3. Probabilistic Representations of Knowledge and Mappings

To translate knowledge from one schema to another, we must have a

representation of the knowledge and the mappings between the two schemas. Some

kinds of knowledge can be represented in propositional or first-order logic, such as

hard constraints on database attribute values (e.g., date of death cannot precede

date of birth) or ontology classes (e.g., Student is a subclass of Person). Some kinds

of mapping can be represented logically as well, such as deterministic equivalences

between attributes in the source and target schemas.

In many cases, however, knowledge and mappings are uncertain. For example,

the mined source knowledge could be a probabilistic model, such as a Bayesian

network. Mined knowledge in the form of predictive models, such as decision

trees and association rules, is also uncertain because these models may not have

perfect accuracy. Mappings between two schemas may also be uncertain, either

because a perfect alignment of the concepts does not exist, or because there is

uncertainty about which alignment is the best. Therefore, we propose a probabilistic

approach to knowledge translation. In this section, we first provide background on

probabilistic graphical models and then describe how they can be used to represent

different types of knowledge and mappings.

5.3.1. Representation of Knowledge

Our approach to knowledge translation requires that the source and target

knowledge are probability distributions represented as log-linear models. In some

cases, the source knowledge mined from the data may already be represented as

a log-linear model, such as a Bayesian network used for fault diagnosis or Markov

73

logic network modeling homophily in a social network. In other cases, we will need

to convert the knowledge into this representation.

For mined knowledge represented as rules, including association rules, rule

sets, and decision trees (which can be viewed as a special case of rule sets), we can

construct a feature for each rule, with a weight corresponding to the confidence or

probability of the rule. The rule weight has a closed-form solution based on the log

odds that the rule is correct:

wi = log
p(fi)

1− p(fi)
− log

u(fi)

1− u(fi)

where p(fi) is the probability or confidence of the ith rule or formula and u(fi) is

its probability under a uniform distribution. This allows us to convert uncertain

knowledge rules into a log-linear model. This method also supports ensembles,

including bagged decision trees, boosted decision trees, and random forests.

Relational rules in an ontology can similarly be converted to a Markov logic

network by attaching weights representing their relative strengths or confidences.

For linear classifiers, such as linear support vector machines or perceptrons,

we can substitute logistic regression, a probabilistic linear classifier. The

parameters of the logistic regression model can be tuned to make the classification

more or less confident near the decision boundary. Neural networks can also be

converted to probability distributions by introducing a random variable for each

hidden unit.

Some representations are harder to represent as log-linear models. For

example, kernelized SVMs and nearest neighbor classifiers do not have obvious

analogs as log-linear models. Applying our method to such knowledge types might

require a specialized probabilistic representation; we leave this investigation to

74

future work. For now, we focus on types of knowledge that are easy to represent

as log-linear models, which already covers most of the common types of knowledge

used in data mining.

In many cases, the knowledge we wish to translate takes the form of a

conditional probability distribution, p(Y |X), or a predictive model that can be

converted to a conditional probability distribution. This includes decision trees,

neural networks, and other classifiers used in data mining and machine learning.

The method we propose will rely on a full joint probability distribution over all

variables. We can convert a conditional distribution into a joint distribution by

assuming some prior distribution over the evidence, p(X), such as a uniform

distribution. If the source distribution p(X,Y) and target distribution p(X ′,Y ′)

are identical (and positive), then the conditional distributions p(Y |X) and

p(Y ′|X ′) are also identical. In this case, p(X) does not matter and will not affect

the accuracy of the knowledge translation! In the more common case, the target

distribution will be merely similar to the source distribution. To minimize the

expected difference between the distributions, we need to know which evidence

configurations are more likely. Thus, a good or bad choice of p(X) can have some

effect on the final translation quality.

5.3.2. Representation of Mappings

The relationships between heterogeneous schemas can be represented as a

mapping. We use probabilistic models to represent mappings. Consistent with the

probabilistic representation of knowledge in a database schema, the attributes are

considered as random variables for non-relational domains, and the attributes or

relations are considered as first-order random variables for relational domains. Let

75

us denote the variables in the source as X = {X1, ..., XN} and those in the target

as X ′ = {X ′1, ..., X ′M}. A mapping is the conditional distribution p(X ′|X).

In real cases, a mapping is often represented as a set of source-to-target

correspondences

{p(C ′i|Ci), i = 1, ..., I}

where Ci ⊂ X and C ′i ⊂ X ′ are sets of variables in the source and target

respectively. For the credit card company example, a mapping between the two

schemas may include the correspondences of “age” and “age,” “salary” and “annual

income,” etc.

In order to obtain a global mapping between the source and target schemas

using the local correspondences, we make the following two assumptions:

1. p(C ′i ∪ C ′j|X) = p(C ′i|X)p(C ′j|X), or, C ′i ⊥ C ′j|X, i.e., the target variable

sets in the correspondences are conditionally independent given the source

variables;

2. p(C ′i|X) = p(C ′i|Ci), i.e., the target variable set in each correspondence

conditional probability distribution is fully determined by its corresponding

source variable set.

From these two assumptions, it follows that:

p(X ′|X) =
∏
i

p(C ′i|X) =
∏
i

p(C ′i|Ci)

Note that these assumptions are not always correct, but they provide a good

approximation of the global mapping when it is not available. This formulation also

provides an easy way of representing the global mapping as a log-linear model: we

76

encode each correspondence as a feature using logical formulas, and then simply

combine them to obtain a log-linear model representing p(X ′|X). If the source

schema is non-relational, the log-linear model is a Markov random field; if it is

relational, the final log-linear model is a Markov logic network. This applies to

both knowledge and mappings.

The weight of each formula can be estimated with the log-odds. For example,

we define a probabilistic source-to-target correspondence as qS →p qT , where qS and

qT are queries (i.e., logical formulas) of source and target schemas or ontologies,

and →p has probabilistic semantics:

Pr(qT |qS) = p

Example 5.1 (Class correspondence). If x is a graduate student, then x is a

student and older than 24 with probability 0.9, and vise versa.

Grad(x)→0.9 Student(x) ∧ Age(x, y) ∧ (y ≥ 24)

Grad(x)←0.9 Student(x) ∧ Age(x, y) ∧ (y ≥ 24)

This can be converted to

2.2 Grad(x)→ (Student(x) ∧ Age(x, y) ∧ (y ≥ 24))

2.2 Grad(x)← (Student(x) ∧ Age(x, y) ∧ (y ≥ 24))

Note that the second formula is a target-to-source correspondence. It is equivalent

to

2.2 ¬Grad(x)→ ¬(Student(x) ∧ Age(x, y) ∧ (y ≥ 24))

77

Example 5.2 (Attribute correspondence). The list price of x follows a Gaussian

distribution parameterized by the price of x.

Price(x, y) ListPrice(x, z) ∧ (z ∼ N (1.1y, (0.05y)2))

This is a natural extension of the above formulation to continuous attribute

correspondences, which can be converted to a (hybrid) Markov logic (Wang and

Domingos, 2008) formula

−400.0 (Price(x, y) ∧ ListPrice(x, z))× (z/y − 1.1)2

Dong et al. (2007, 2009) proposed probabilistic schema mappings to handle

the uncertainty in mappings, which is similar to our representation. They define

probabilistic mapping as a triple M = (S, T ,Σ), where Σ is a set of mapping and

probability pairs

{σi,Pr(σi)}, i = 1, · · · , l

where
l∑

i=1

Pr(σi) = 1. Each mapping σi is restricted to be a one-to-one mapping,

which is a set of attribute correspondences between S and T , but it can also be

extended to other types of mappings. They discussed two semantics of probabilistic

mappings, namely by-table and by-tuple. In the by-table semantics, each mapping

can be applied to all the data in the source. In the by-tuple semantics, multiple

mappings can be applied to the subsets of tuples in the source database. Our

probabilistic representation can be viewed as a compact representation of their

work with the by-tuple semantics.

78

5.4. Knowledge Translation

In this section, we formalize the task of knowledge translation (KT) and

propose a solution to this task. We have the source knowledge represented as a

probabilistic model p(X) = p(X1, ...Xn) and a probabilistic mapping P (X ′|X).

The probabilistic model in the target schema can be computed as

p(X ′) =
∑
X

p(X,X ′) (Equation 5.1)

=
∑
X

p(X)p(X ′|X) (Equation 5.2)

=
∑
X

p(X)
∏
i

p(C ′i|Ci) (Equation 5.3)

Our goal is to find a compact probabilistic model in the target schema (i.e., the

target knowledge) without using any source variables as latent variables. This

requirement is due to both efficiency (when the knowledge is being used) and

understandability consideration.

We also use a log-linear model q(X ′) to represent this compact model. A

straight-forward objective is to minimize the Kullback-Leibler divergence

q∗ = arg min
q

DKL [p(X ′)‖q(X ′)] (Equation 5.4)

= arg min
q
−
∑
X′

p(X ′) log q(X ′) (Equation 5.5)

The joint distribution p(X,X ′) is also a log-linear model (see

Equation Equation 5.3). The weights for a local correspondence can be computed

79

as:

θ̄(Ci,C
′
i) = log p(C ′i|Ci)

= log
exp(θ(Ci,C

′
i))∑

C′
i
exp θ(Ci,C

′
i)

where θ(Ci,C
′
i) are the weights of the correspondence in the probabilistic mapping

model. The computation of p(X ′) is therefore a standard inference task of the joint

model p(X,X ′).

5.4.1. Parameter Learning

The parameters of the target log-linear model that minimizes

Equation Equation 5.5 can be computed via standard optimization algorithms.

A simple way to compute the objective is sampling: we first generate a sample from

the source p(X), and then generate a sample of X ′ from p(X ′|X) conditioned on

the source sample. In the relational domain (with Markov logic or other statistical

relational models), each sample instance is a database, and we need to first decide

the number of constants and create a set of ground variables with these constants.

5.4.2. Structure Learning

The structure of the target knowledge can also be learned via standard

structure learning algorithms for Markov random fields or Markov logic networks.

An alternative approach is to use heuristics to generate the structure first.

For deterministic one-to-one correspondences, the independences in the target

schema are the same as those in the source schema up to renaming. If the

correspondences are non-deterministic, we may have less independences in the

80

target schema, and we could have an extremely complex model with large cliques.

Nonetheless, in realistic scenarios, the correspondences in a mapping are usually

deterministic or nearly deterministic. Therefore, it is reasonable to pretend they are

deterministic while inferring the target structure. In this way we trade off between

the complexity and accuracy of the target knowledge.

First of all, for Markov logic, we use first-order cliques instead of formulas

as the source structure, so that it is consistent with the propositional case. We

show the pseudocode of the structure translation in Algorithm 1. It is considered as

a structure learning process. The first step (Line 1-8) is to remove the variables

that do not have a correspondence in the target schema. This can be done by

standard variable elimination (Koller and Friedman, 2009; Poole, 2003) without

calculating parameters. However, exact variable elimination may create very large

cliques and be very expensive, especially in Markov logic in the relational domains.

Therefore, we approximate it by only merging two cliques at a time. For relational

case, the merging involves a first-order unification operation (Russell and Norvig,

2003; Poole, 2003). When multiple most general unifiers exist, we simply include all

the resulting new cliques. In the second step (Line 9-15), we replace each variable

with the corresponding variables in the target schema. This also involves first-order

unification in the relational case. If there are many-to-many correspondences, we

may generate multiple target cliques from one source clique.

Example 5.3. Given the source Markov logic:

Grad(x)→ AgeOver25(x)

AgeOver25(x)→ GoodCredit(x)

81

Algorithm 1 Structure Translation (MRFs or MLNs)

Input: The source schema S, source structure (propositional or first-order cliques)
Φ = {φi}, and mapping M.
Output: The target structure Φ′M.

1: for each variable (or first-order predicate) P ∈ S that does not appear in M
do

2: Let ΦP denote all the cliques containing P
3: Remove ΦP from Φ
4: for each pair of cliques in ΦP do
5: Merge the two cliques and remove P
6: Insert the resulting clique back to Φ
7: end for
8: end for
9: for each clique φ ∈ Φ do
10: for each variable P in φ do
11: Let P ′M be all possible correspondences of P
12: end for
13: Let φ′M denote all possible correspondences of φ: φ′M ← Cartesian product

of P ′M
14: Add φ′M to Φ′M
15: end for

82

and the mapping:

2.2 Grad(x) ∨ Undergrad(x)↔ Student(x)

3.0 GoodCredit(x)↔ HighCreditScore(x)

We first eliminate AgeOver25(x) from the source structure because it does not

occur in the mapping, and we get a new clique

{Grad(x), GoodCredit(x)}

Then we translate the clique based on the mapping, which gives

{Student(x), HighCreditScore(x)}

5.5. Experiments

To evaluate our methods, we created two knowledge translation tasks: one

on a non-relational domain (NBA) and one on a relational domain (University). In

each knowledge translation task, we have 2 different database schemas as the source

and target schemas and a dataset for each schema. The input of a knowledge

translation system is the source knowledge and the mapping between the source

and target schema. The output of a knowledge translation system is the target

knowledge (i.e., a probabilistic model in terms of the target schema).

We obtained the source knowledge (i.e., a probabilistic model in the source)

by performing standard learning algorithms on the source datasets, and created the

probabilistic schema mappings manually. Our approach can potentially support

automatically discovered mappings (e.g., Rahm and Bernstein (2001)) as well,

83

but we use manually created mappings in the experiments for two reasons: first,

our method strongly relies on the quality of the mapping, so we want to use more

accurate mappings for a quantitative analysis of the method itself; second, we use

schemas with plenty of semantic heterogeneity to make the translation problem

non-trivial, which is a difficult scenario for automatic tools.

5.5.1. Methods and Baselines

See Table 5.2 for an overview of the methods and baselines we compare in our

experiments. Below, we describe them in more detail.

We evaluate four different versions of our proposed probabilistic knowledge

translation approach described in the previous section. All of them use the source

knowledge base and probabilistic mapping to generate a sampled approximation of

the distribution in the target schema, and all of them use these samples to learn

an explicit distribution in the target schema. The difference between them is their

approach to knowledge structure. LS-KS (“learned structure”) learns the structure

directly from the samples, which is the most flexible approach. TS-KS (“translated

structure”) uses a heuristic translation of the structure from the source knowledge

base, which may help avoid overfitting or underfitting when only a small number of

samples is used to approximate the translated distribution. Since structure learning

is often more challenging than weight learning, TS-KS also avoids a potentially

computationally intensive process. ES-KS (“empty structure”) is a simple baseline

in which the target knowledge base is limited to a marginal distribution. This

shows what can be achieved without any structure at all.

We also compare to several baselines that make use of additional data. When

there is data DS in the source schema, we can use the probabilistic mapping to

84

translate it to the target schema and learn models from the translated source data.

LS-DS and MS-DS learn models from translated source data, using learned and

manually specified structures, respectively. (The manually specified structures

are necessary for the relational domain because MLN structure learning did not

work well.) When there is data DT in the target schema, we can learn from this

data directly. LS-DT learns models from target data with learned and manually

specified structures, respectively. These methods represent an unrealistic “best

case” since they use data that is typically unavailable in knowledge translation

tasks.

TABLE 5.2. Overview of the different methods used in our experiments.

KT methods using source knowledge (KS)

LS-KS Learn struct. and weights from KS

TS-KS Translate struct., learn weights from KS

ES-KS Empty struct., learn marginals from KS

Baselines using translated source data (DS)

LS-DS Learn struct. and weights from DS

MS-DS Manually specify struct., learn weights from DS

Baselines using additional target data (DT)

LS-DT Learn struct. and weights DT

5.5.2. Evaluation Criteria

We evaluate our knowledge translation methods according to two criteria:

First, how well does the translated knowledge represent the target domain?

This is the problem we wish to solve with KT – obtain an accurate model in the

target domain without seeing any data. We measure this using the pseudo-log-

likelihood (PLL) of held-out target data. When comparing two models, the one

with the higher PLL better captures the target distribution.

85

Second, how well does the translated knowledge represent the source

distribution and mapping? Since this is what our KT methods are designed to

do, we want to know how well they do it. We measure this using the PLL of

the translated knowledge on translated held-out source data. When comparing

two models of translated knowledge, the one that more accurately captures the

relationships from the source domain should have higher PLL on data translated

from the source domain. The advantage of this second measure is that it controls

for differences between the source and target distributions. If the source and target

distributions are significantly different, then a more accurate translation of the

source knowledge could lead to a less accurate distribution in the target domain.

For relational domains, we use weighted pseudo-log-likelihood (WPLL), where

for each predicate r, the PLL of each of its groundings is weighted by the cr = 1/gr,

where gr is the number of its groundings.

5.5.3. Non-Relational Domain (NBA)

We collected information on basketball players in the National Basketball

Association (NBA) from two websites, the NBA official website nba (as the source

schema) and the Yahoo NBA website yahoo (as the target schema). The schemas

of these two datasets both have the name, height, weight, position and team of each

player. In nba, there are 3 values for a player’s position: forward, guard and center,

while in yahoo, a finer taxonomy of 7 values is used: forward, small, power, guard,

point, shooting and center.

We modified the original schemas in order to make the mapping between

them more interesting (and challenging). In our modified nba and yahoo schemas,

the height and weight are in imperial and metric units respectively. Also, in nba,

86

we discretize height and weight into 5 equal-width ranges. In yahoo, we discretize

them into 5 equal-frequency ranges.

We used the Libra Toolkit1 (Lowd and Rooshenas, 2015) for creating the

source knowledge and for performing the learning and inference subroutines

required by the different knowledge translation approaches.

We first left out 1/5 of the data instances in the source and target dataset

as the testing sets. For the remaining source dataset, we used the decision tree

structure learning (DTSL) (Lowd and Davis, 2014) to learn the source knowledge.

We used standard 4-fold cross validation to determine the parameters of the

learning algorithm. The parameters include κ, prior, and mincount for decision

tree learning, and l2 for weight learning.

The mapping is also represented as a Markov random field. For the numerical

attributes (e.g., weight and height), the correspondence is originally a unit

conversion formula

h′ = h× 39.3701

After we discretize these attributes, we can calculate the correspondence

distribution of the ranges by making a simple assumption that each value range

is uniformly distributed, e.g.,

p(h′ ∈ (− inf, 73.5]|h ∈ (1.858, 1.966]) = 0.082

p(h′ ∈ (73.5, 76.5]|h ∈ (1.858, 1.966]) = 0.706

p(h′ ∈ (76.5, 78.5]|h ∈ (1.858, 1.966]) = 0.212

p(h′ ∈ (78.5,+ inf]|h ∈ (1.858, 1.966]) = 0

1http://libra.cs.uoregon.edu/

87

These conditional distributions are then converted to weights of the Markov

random field representing the mapping.

We use Gibbs sampling implemented in Libra for the sampling algorithm in

the knowledge translation approaches. For LS-KS and TS-KS, we draw N samples

from the source knowledge probability distribution. To avoid correlations between

the samples, each sample is generated from an independent Gibbs sampling chain

with 1000 burn-in iterations. We then use the probabilistic mapping to draw 1

target sample for each source sample. For LS-DS, suppose we have NS instances in

the source dataset. We use the probabilistic mapping to draw N/NS target samples

for each source instance, such that the total number of target instances is also N .

LS-KS and TS-KS both perform weight learning with an l2 prior. For

structure translation with TS-KS, we only translate features for which the absolute

value of the weight is greater than a threshold θ. These two parameters are tuned

with cross validation over a partition of the samples.

5.5.3.1. Results

See Figures 5.1 for learning curves comparing our methods to the baselines.

Along the x axis, we vary the number of samples N used to approximate the

implicit distribution. Intuitively, performance increases with more samples but

eventually plateaus.

From Figure 5.1, we see that translated knowledge (LS-KS and TS-KS) is

more accurate on the target data than knowledge learned from translated source

data (LS-DS). This confirms that KT can be as accurate as data translation, but

with the advantage of not requiring any data. Note that the performance of LS-DS

degrades as the number of samples increases. This is because the source dataset

88

-7

-6

-5

-4

-3

-2

100 200 500 1000 2000 5000 10000 20000

P
L
L

N

ES-Ks

LS-Ks

TS-Ks

LS-Ds

LS-Dt

FIGURE 5.1. PLL for KT methods and baselines on target data in the NBA
domain

is small. When the source data are translated to the target schema, we generated

many samples for each data instance, and the resulting translated dataset would

be a mixture model of the translation of each data instance, which is different from

the real distribution. Finally, as expected, the model learned directly on the target

data (LS-DT) has the best PLL on the target data, since it could observe the target

distribution directly.

In Figure 5.2, we see that translated knowledge (LS-KS and TS-KS) is almost

as accurate on translated source data as models trained directly on translated

source data. Therefore, our methods are performing close to optimally. For this

domain, we do not see a large difference between learning the structure (LS-KS)

and heuristically translating the structure (TS-KS).

89

-7

-6

-5

-4

-3

-2

100 200 500 1000 2000 5000 10000 20000

P
L
L

N

ES-Ks

LS-Ks

TS-Ks

LS-Ds

FIGURE 5.2. PLL for KT methods and baselines on translated source data in the
NBA domain

5.5.4. Relational Domain (University)

We use the UW-CSE dataset2 (Domingos and Lowd, 2009) and the UO-CIS

dataset which we collected from the Computer and Information Science

Department of the University of Oregon. The UW-CSE dataset was introduced

by Richardson and Domingos (2006) and is widely used in statistical relational

learning research. In this University domain, we have concepts such as persons,

courses, and publications; attributes such as PhD student stage and course level;

and relations such as advise, teach, and author. The schemas of the two databases

differ in their granularities of concepts and attribute values. For example, in

UW-CSE, the professors have positions (represented as attributes) such as “faculty,”

“affiliate,” and “adjunct,” while in UO-CIS, we have concepts such as “professor,”

“associate professor,” and “assistant professor.” Also, UW-CSE graduate courses

2http://alchemy.cs.washington.edu/data/uw-cse/

90

are marked as level 500, while UO-CIS has both graduate courses at level 600 and

combined undegraduate/graduate courses at level 4/500.

Our methods in this relational domain are similar to those in the non-

relational domain. We use Alchemy 3 for learning and inference in Markov logic

networks. We obtain the source knowledge by manually creating the formulas in

the source schema and then using the source data to learn the weights.

We use MC-SAT (Poon and Domingos, 2006) as the sampling algorithm

for these experiments. As we discussed in the previous section, we first need to

decide the number of constants for each type in the domain. Since the behavior of

a Markov logic network is highly sensitive to the number of constants, we want to

keep the number of constants similar to the original dataset from which the model

is learned. In the experiments, we set the number of constants of each type to be

the average number over all training databases, multiplied by a scalar λ. Larger

values of λ increase the number of possible relationships among the objects, while

smaller values of λ make the inference procedure more efficient. We set λ = 1/2

in our experiments. We also draw N samples from the source distribution and 1

target sample from each source sample and the mapping distribution. Here N does

not have to be large, because each sample instance of a relational domain is itself a

database. We set N to 1, 2 and 5 in our experiments.

We set the l2 prior for weight learning to 10, based on cross-validation over

samples. The results are shown in Table 5.3.

3http://alchemy.cs.washington.edu/alchemy1.html

91

5.5.4.1. Results

See Tables 5.3 and 5.3 for results on target data and translated source data,

respectively. Learning MLN structure did not work well in these domains, so we use

manually specified structures when learning from translated source data (MS-DS).

From a single sample, the translated source data and manually specified structure

(MS-DS) were more effective than knowledge translation with translated structure

(TS-KS). However, as we increase the number of samples, the performance of TS-

KS improves substantially. With 5 samples, the performance of TS-KS becomes

competitive with that of MS-DS, again demonstrating that knowledge translation

can achieve comparable results to data translation but without data. When

evaluated on translated source data, TS-KS shows the same trend of improving

with the number of samples, but its performance with 5 relational samples is

slightly worse than MS-DS.

TABLE 5.3. Evaluation on the target dataset for the university domain.

Method WPLL on target WPLL on source
Samples 1 2 5 1 2 5

ES-KS -3.77 -3.76 -3.83 -3.54 -3.44 -3.39
LS-KS -12.07 -3.82 -3.48 -9.19 -3.72 -1.51
TS-KS -2.51 -2.80 -1.79 -2.05 -2.10 -0.97
LS-DS -3.70 -3.01 N/A -1.23 -1.23 N/A
MS-DS -1.94 -1.91 -1.76 -1.22 -0.93 -0.61
LS-DT -1.33
MS-DT -1.18

5.6. Summary

Knowledge translation is an important task towards knowledge reuse where

the knowledge in the source schema needs to be translated to a semantically

heterogeneous target schema. Different from data integration and transfer learning,

92

knowledge translation focuses on the scenario that the data may not be available

in both the source and target. We propose a novel probabilistic approach for

knowledge translation by combining probabilistic graphical models with schema

mappings. We have implemented an experimental knowledge translation system

and evaluated it on two real datasets for different prediction tasks. The results and

comparison with baselines show that our approach can obtain comparable accuracy

without data.

93

CHAPTER VI

CONCLUSION

We investigate three problems related to knowledge management and

manipulation. First, given an automatically extracted knowledge base, how to

leverage the dependencies among the KB instances with different degrees of

confidence to obtain a refined KB with better accuracy. Second, how to improve

ontology matching by utilizing the aligned knowledge rules contained in the two

ontologies. Third, when we apply our knowledge to a target task using a different

schema, how to effectively translate the knowledge given the mapping between the

source and target schemas.

We propose to use Markov logic networks (MLNs), a powerful statistical

relational learning model that enhances first-order logic with uncertainty, to deal

with these problems. MLNs are flexible and expressive in representing domain

knowledge, knowledge rules, knowledge bases, and schema mappings, as well

as in representing the uncertainty often presented in them. We propose MLN

formulations for these problems, and use standard MLN learning and inference

algorithms with certain adaptations to solve these problems.

The main contributions of the dissertation are summarized as follows:

1. We introduce a novel paradigm by which ontology-based information

extraction systems can be improved, in terms of the quality and quantity

of the knowledge it creates. Information from several sources, including the

generated knowledge base with confidence values for each instance and the

ontological constraints, is perfectly integrated in a unified framework with

94

Markov logic. We also propose adaptations of the existing Markov logic

algorithms to fit the extremely large size of a typical knowledge base.

2. We show how to use knowledge rules representing common types of domain

models to obtain more accurate alignments of two ontologies. Our approach

is especially effective in identifying the correspondences of numerical and

nominal datatype properties. By incorporating complex concepts, our

approach is also capable of discovering complex correspondences, which is a

very difficult scenario in the ontology matching task.

3. We formally define the problem of knowledge translation (KT), which allows

knowledge with different representations to be reused, even when data is

unavailable. We propose a novel probabilistic approach for KT by combining

probabilistic graphical models with schema mappings.

The experiments validate the effectiveness of the MLN-based methods for

these problems.

6.1. Future Work

6.1.1. Extending Markov Logic Networks

Markov logic is a powerful, expressive and easily interpretable language of

statistical relational learning. However, its representation power is still limited

in some cases. An MLN can be viewed as a ground Markov random field with

tied weights for similar features over different parts of the network (i.e., different

instantiations of the same feature template), and therefore the number of

parameters is usually much smaller than that of a MRF. As a result, An MLN

tends to underfit because the size of data is usually much larger than the number

95

of features. Also, the additivity of feature weights is sometimes not desirable

especially in complex networks. For instance, in a social network, we can use a

formula

w1 Friend(x, y)→ Popular(x),

to indicate that a person with many friends is likely to be a popular person.

This MLN not only oversimplifies this relation, but is also not accurate because

intuitively the popularity of a person should not increase linearly with the number

of his/her friends.

To overcome this problem, we can use more features. For the above example,

we can add another formula with the existential quantifier:

w2 (∃Friend(x, y))→ Popular(x)

The original definition of MLNs only supports first-order clauses as features. It is

straightforward to extends MLNs to incorporate arbitrary FOL formulas, including

the ones with existential quantification. However, the grounding of existential

quantification is extremely large (proportional to the domain size) and therefore

not scalable in practice.

There has been other efforts in extending the log-linear model of MLNs

with more powerful features other than FOL formulas. Recursive Random

Fields (RRFs) (Lowd and Domingos, 2007b) use the probabilities defined by a

nested Markov logic networks as the features. Expential Random Graph Models

(ERGMs) (Hunter and Handcock, 2006) define a curved exponential family model

that uses nonlinear parameters to represent structural properties of complex

networks. These attempts may be further extended.

96

A related issue with MLNs is that their modeling performance degrades

when the domain size changes. Notice that the above formula will effectively

adds a prior to the marginal distribution of Friend and Popular. If the domain

size keeps unchanged, we could use atomic formulas with certain weights to

offset the influence from this formula and get the marginal distributions that we

want. However, when the number of people in the domain varies, the marginal

distributions of Friend and Popular will change accordingly, in a way that we would

not expect.

Jain et al. (2007) noticed this problem and proposed to adjust the weights

when the domain size changes so that the marginal distributions keep the same.

However, sometimes we would expect the marginal distributions of some predicates

to change. For instance, we would expect the marginal distribution of Friend

decreases as the social network becomes larger.

6.1.2. Scalability of Markov Logic Networks

The ground network of an MLN is usually very large. For example, in

Chapter III, we have to use a heuristic method to restrict the size of the ground

network. With the help of parallel and distributed computing, we could make MLN

more scalable in a systematic way.

The difficulty of designing of a parallel computing system depends on the task

and algorithm. The parallel machine learning methods can be roughly categorized

into data parallelism, model parallelism, and other types of parallelism. In data

parallelism, a large dataset is partitioned into batches and used for computation

in parallel. In model parallelism, the machine learning model (e.g., a graph or

97

network) is decomposed into parts and the computations are done for each part

in parallel. Other parallelism includes running multiple Markov chains in parallel.

There has been general frameworks and APIs for parallel and distributed

machine learning, e.g., GraphLab (a.k.a. Dato), Spark. Some of these frameworks

are specific for graph-based algorithms (e.g., GraphLab, Spark GraphX) by

leveraging the graph partitioning algorithms for model parallelisms. Also, people

have developed parallel systems for specific tasks and algorithms (e.g., Loopy belief

propagation (Gonzalez et al., 2009)).

Currently, to the best knowledge of the author, there is no distributed

implementation of MLNs yet. Such systems can be developed with the distributed

machine learning toolkits, to make the learning and inference of MLNs more

scalable.

6.1.3. Knowledge Base Refinement

In the experiments for knowledge base refinement task, we recruited an

undergraduate student to label the data for training and testing. For a general

purpose knowledge base, such human labeling is usually slow, expensive, and most

importantly, error prone. We can use crowdsourcing to get the lables more easily,

economically and with higher quality. More training data means we can add more

features, for instance, different priors for different extractor components in NELL.

An even more efficient method is active learning, in which learning algorithms can

actively query the labels.

We would also like to explore doing unsupervised or semi-supervised learning,

to automatically learn the strength of these relationships without requiring many

human labels.

98

In the current method, we incorporate patterns with a standalone logistic

regression model. It would be ideal to integrate this model into the MLN. However,

it will dramatically increase the size of the ground network. In the future, if we

have a more scalable implementation of MLN, this method can be studied.

6.1.4. Knowledge Translation

Log-linear models, such as Markov random fields and Markov logic networks,

already cover most of common types of knowledge used in data mining. In the

future work, we will extend our approach to the knowledge types which are harder

to represent as log-linear models, such as SVMs, nearest neighbor classifiers, and

neural networks. It might require a specialized probabilistic representation.

We would also like to study more on translating discriminative models

p(Y |X). If we make similar independence assumptions as described in Chapter V,

we have

p(Y ′|X ′) = p(Y ′|Y)p(Y |X)p(X|X ′)

Note that here p(X|X ′) is the mapping defined in the reverse direction. Similar

to the case of generative models, we want a compact model q(Y ′|X ′) that is close

to p(Y ′|X ′). A straightforward method is to make an estimation of p(X ′), and

compute the target distribution p(X ′,Y ′), from which a discriminative model can

be learned. Alternatively, if given the forward mapping p(X ′|X), we can also make

an estimation of p(X) and follow the same procedure. Obviously, the estimation of

p(X) or p(X ′) has a great impact to the distance of the true distribution p(Y ′|X ′)

and the compact model q(Y ′|X ′).

For larger domains and knowledge related to hundreds or thousands of

concepts, manually specified probabilistic mappings seem unpractical. Our method

99

to knowledge translation supports automatically discovered mappings as well.

Moreover, it naturally supports probabilistic output of an automatic schema

mapping system. As automatic tools are not yet reliable, and the performance of

our method greatly depends on the mapping, we can also combine the automatic

tools with expert efforts to balance between the quality and cost.

Finally, a related task of knowledge integration (KI) can be studied in the

future. In KI, we have knowledge from multiple sources with different schemas,

and we would like to integrate the knowledge and represent it in a different target

schema. KI is a natural extension of KT, and it is more difficult. In KI, many

scenarios and challenges can be considered, e.g., how to represent the mappings

of multiple schemas, how to integrate different forms of source knowledge, etc.

6.2. Concluding Remarks

This dissertation presents three problems in knowledge representation,

management and manipulation, and proposes solutions based on Markov logic. This

suggests great potential of using Markov logic in knowledge management related

research.

Logic and probability theories have been two major branches of AI research.

First-order logic and description logic have been the standard theme of traditional

AI since the early years, and knowledge-based systems are one of the most

important applications. More recently, statistical and machine learning methods,

such as graphical models, SVMs, and neural networks, become hot topics of AI.

Markov logic is one of the successful methods intented to combine these branches

and provide a universal solution for the theoretical foundation of AI.

100

The lessons we learned from this dissertation are threefold. First, FOLs are

good representations for various types of knowledge. We used different kinds of

FOL encodings of knowledge for different tasks. Second, uncertainty is a desirable

feature of knowledge. Currently, the area of knowledge representation and Semantic

Web mostly focus on deterministic methods such as description logic and its

variants. It would be much more practical to consider probabilistic models such

as Markov logic as the future direction. Third, compared with heuristic methods,

such as the knowledge integrator (KI) in NELL, and the systems that combine

several strategies for ontology matching, probabilistic methods are often not only

more coherent and elegant, but also perform better.

Yet, we still face great challenges when applying Markov logic to knowledge

management tasks, as well as many other applications. The breakthrough of AI call

for a universal framework that is more expressive, more scalable, and combines the

advantages of both the logical and probabilistic approaches.

101

REFERENCES CITED

Arenas, M., Botoeva, E., Calvanese, D., Ryzhikov, V., and Sherkhonov, E. (2012).
Representability in DL-LiteR knowledge base exchange. In Kazakov, Y.,
Lembo, D., and Wolter, F., editors, Description Logics, volume 846 of CEUR
Workshop Proceedings. CEUR-WS.org.

Banko, M., Cafarella, M. J., Soderland, S., Broadhead, M., and Etzioni, O. (2007).
Open information extraction from the web. In Proceedings of the 20th
International Joint Conference on Artifical Intelligence, IJCAI’07, pages
2670–2676, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Bröcheler, M., Mihalkova, L., and Getoor, L. (2010). Probabilistic similarity logic.
In Grünwald, P. and Spirtes, P., editors, UAI 2010, Proceedings of the
Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, Catalina
Island, CA, USA, July 8-11, 2010, pages 73–82. AUAI Press.

Buitelaar, P. and Siegel, M. (2006). Ontology-based information extraction with
SOBA. In LREC, pages 2321–2324.

Calvanese, D., De Giacomo, G., and Lenzerini, M. (2001). Ontology of integration
and integration of ontologies. In Proceedings of the 2001 Description Logic
Workshop (DL 2001), pages 10–19. CEUR Electronic Workshop Proceedings.

Caragea, D., Zhang, J., Bao, J., Pathak, J., and Honavar, V. (2005). Algorithms
and software for collaborative discovery from autonomous, semantically
heterogeneous, distributed information sources. In Proceedings of the 16th
International Conference on Algorithmic Learning Theory, ALT’05, pages
13–44, Berlin, Heidelberg. Springer-Verlag.

Carlson, A., Betteridge, J., Hruschka, Jr., E. R., and Mitchell, T. M. (2009).
Coupling semi-supervised learning of categories and relations. In Proceedings
of the NAACL HLT 2009 Workskop on Semi-supervised Learning for Natural
Language Processing.

Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka, Jr., E. R., and
Mitchell, T. M. (2010a). Toward an architecture for never-ending language
learning. In Proceedings of the Twenty-Fourth Conference on Artificial
Intelligence (AAAI 2010).

Carlson, A., Betteridge, J., Wang, R. C., Hruschka, Jr., E. R., and Mitchell, T. M.
(2010b). Coupled semi-supervised learning for information extraction. In
Proceedings of the Third ACM International Conference on Web Search and
Data Mining (WSDM 2010).

102

Cimiano, P., Handschuh, S., and Staab, S. (2004). Towards the self-annotating web.
In WWW, pages 462–471.

Cimiano, P., Ladwig, G., and Staab, S. (2005). Gimme’ the context: context-driven
automatic semantic annotation with C-PANKOW. In WWW, pages 332–341.

Cotterell, M. E. and Medina, T. (2013). A Markov model for ontology alignment.
CoRR.

Craven, M., Dipasquo, D., Freitag, D., Mccallum, A., Mitchell, T., and Nigam, K.
(1999). Learning to construct knowledge bases from the world wide web.
Artificial Intelligence, 118:69–113.

Davis, J. and Domingos, P. (2009). Deep transfer via second-order Markov logic. In
Proceedings of the 26th Annual International Conference on Machine
Learning, ICML ’09, pages 217–224, New York, NY, USA. ACM.

Dhamankar, R., Lee, Y., Doan, A., Halevy, A., and Domingos, P. (2004). iMAP:
Discovering complex semantic matches between database schemas. In
Proceedings of the 2004 ACM SIGMOD International Conference on
Management of Data, pages 383–394.

Doan, A., Madhavan, J., Domingos, P., and Halevy, A. (2002). Learning to map
between ontologies on the Semantic Web. In Proceedings of the 11th
international conference on World Wide Web, pages 662–673.

Doan, A., Madhavan, J., Domingos, P., and Halevy, A. (2004). Ontology matching:
A machine learning approach. In Staab, S. and Studer, R., editors, Handbook
on Ontologies in Information Systems, pages 385–403. Springer, New York,
NY, USA.

Domingos, P. and Lowd, D. (2009). Markov Logic: An Interface Layer for Artificial
Intelligence. Synthesis Lectures on Artificial Intelligence and Machine
Learning. Morgan & Claypool.

Dong, X., Halevy, A. Y., and Yu, C. (2007). Data integration with uncertainty. In
VLDB ’07: Proceedings of the 33rd International Conference on Very Large
Data Bases, pages 687–698. VLDB Endowment.

Dong, X. L., Halevy, A., and Yu, C. (2009). Data integration with uncertainty. The
VLDB Journal, 18(2):469–500.

Dou, D., McDermott, D., and Qi, P. (2005). Ontology translation on the semantic
web. In Spaccapietra, S., Bertino, E., Jajodia, S., King, R., and McLeod, D.,
editors, Journal on Data Semantics II, pages 35–57. Springer-Verlag, Berlin,
Heidelberg.

103

Dou, D., Qin, H., and Liu, H. (2011). Semantic translation for rule-based
knowledge in data mining. In Proceedings of the 22nd International
Conference on Database and Expert Systems Applications, volume Part II of
DEXA’11, pages 74–89, Berlin, Heidelberg. Springer-Verlag.

Etzioni, O., Cafarella, M., Downey, D., Popescu, A.-M., Shaked, T., Soderland, S.,
Weld, D. S., and Yates, A. (2005). Unsupervised named-entity extraction
from the web: An experimental study. Artif. Intell., 165(1):91–134.

Euzenat, J. and Shvaiko, P. (2007). Ontology Matching. Springer-Verlag New York,
Inc., Secaucus, NJ, USA.

Fang, M., Yin, J., Zhu, X., and Zhang, C. (2015). TrGraph: Cross-network transfer
learning via common signature subgraphs. IEEE Trans. Knowl. Data Eng.,
27(9):2536–2549.

Getoor, L. and Taskar, B., editors (2007). Introduction to Statistical Relational
Learning. Adaptive Computation and Machine Learning. The MIT Press.

Gogate, V. and Dechter, R. (2011). Samplesearch: Importance sampling in presence
of determinism. Artif. Intell., 175(2):694–729.

Gonzalez, J., Low, Y., and Guestrin, C. (2009). Residual splash for optimally
parallelizing belief propagation. In Dyk, D. A. V. and Welling, M., editors,
AISTATS, volume 5 of JMLR Proceedings, pages 177–184. JMLR.org.

Hu, W., Chen, J., Zhang, H., and Qu, Y. (2011). Learning complex mappings
between ontologies. In Proceedings of Joint International Semantic Technology
Conference, pages 350–357.

Huber, J., Sztyler, T., Noessner, J., and Meilicke, C. (2011). CODI: Combinatorial
optimization for data integration–results for OAEI 2011. Ontology Matching,
page 134.

Hunter, D. R. and Handcock, M. S. (2006). Inference in curved exponential family
models for networks. Journal of Computational and Graphical Statistics,
15:565–583.

Huynh, T. and Mooney, R. (2008). Discriminative structure and parameter learning
for Markov logic networks. In Proceedings of the 25th International
Conference on Machine Learning, pages 416–423. ACM.

Jain, D., Kirchlechner, B., and Beetz, M. (2007). Extending markov logic to model
probability distributions in relational domains. In Hertzberg, J., Beetz, M.,
and Englert, R., editors, KI 2007: Advances in Artificial Intelligence, volume
4667 of Lecture Notes in Computer Science, pages 129–143. Springer Berlin
Heidelberg.

104

Jiménez-Ruiz, E., Grau, B. C., and Zhou, Y. (2012). LogMap 2.0: Towards
logic-based, scalable and interactive ontology matching. In Proceedings of the
4th International Workshop on Semantic Web Applications and Tools for the
Life Sciences, SWAT4LS ’11, pages 45–46.

Kalfoglou, Y. and Schorlemmer, M. (2002). Information-flow-based ontology
mapping. In In Proceedings of the 1st International Conference on Ontologies,
Databases and Application of Semantics, pages 1132–1151. Springer.

Kalfoglou, Y. and Schorlemmer, M. (2003). Ontology mapping: The state of the
art. Knowledge Engineering Review, 18(1):1–31.

Kietz, J., Maedche, A., and Volz, R. (2000). A method for semi-automatic ontology
acquisition from a corporate intranet. EKAW-2000 Workshop “Ontologies and
Text”.

Kindermann, R. and Snell, J. L. (1980). Markov random fields and their
applications, volume 1. American Mathematical Society Providence, RI.

Koller, D. and Friedman, N. (2009). Probabilistic Graphical Models: Principles and
Techniques. MIT Press.

Lao, N., Mitchell, T., and Cohen, W. W. (2011). Random walk inference and
learning in a large scale knowledge base. In Proceedings of the 2011
Conference on Empirical Methods in Natural Language Processing, pages
529–539, Edinburgh, Scotland, UK. Association for Computational
Linguistics.

Lenzerini, M. (2002). Data integration: A theoretical perspective. In Proceedings of
the Twenty-first ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS ’02, pages 233–246, New York, NY, USA. ACM.

Levenshtein, V. (1966). Binary codes capable of correcting deletions, insertions and
reversals. Soviet Physics Doklady, 10:707.

Lowd, D. and Davis, J. (2014). Improving markov network structure learning using
decision trees. Journal of Machine Learning Research, 15(1):501–532.

Lowd, D. and Domingos, P. (2007a). Efficient weight learning for Markov logic
networks. In In Proceedings of the Eleventh European Conference on
Principles and Practice of Knowledge Discovery in Databases, pages 200–211.

Lowd, D. and Domingos, P. (2007b). Recursive random fields. In Veloso, M. M.,
editor, IJCAI, pages 950–955.

Lowd, D. and Rooshenas, A. (2015). The libra toolkit for probabilistic models.
arXiv preprint arXiv:1504.00110.

105

Madhavan, J., Bernstein, P. A., Domingos, P., and Halevy, A. Y. (2002).
Representing and reasoning about mappings between domain models. In
Dechter, R. and Sutton, R. S., editors, AAAI/IAAI, pages 80–86. AAAI Press
/ The MIT Press.

Mao, M., Peng, Y., and Spring, M. (2010). An adaptive ontology mapping
approach with neural network based constraint satisfaction. Web Semantics,
8(1):14–25.

Maynard, D. (2006). Metrics for evaluation of ontology-based information
extraction. In In WWW 2006 Workshop on Evaluation of Ontologies for the
Web.

McDowell, L. and Cafarella, M. J. (2006). Ontology-driven information extraction
with ontosyphon. In International Semantic Web Conference, pages 428–444.

Melnik, S., Garcia-Molina, H., and Rahm, E. (2002). Similarity flooding: A
versatile graph matching algorithm. In Proceedings of Eighteenth
International Conference on Data Engineering.

Mihalkova, L., Huynh, T., and Mooney, R. J. (2007). Mapping and revising Markov
logic networks for transfer learning. In Proceedings of the 22nd National
Conference on Artificial Intelligence, volume 1 of AAAI’07, pages 608–614.
AAAI Press.

Mitchell, T., Cohen, W., Hruschka, E., Talukdar, P., Betteridge, J., Carlson, A.,
Dalvi, B., Gardner, M., Kisiel, B., Krishnamurthy, J., Lao, N., Mazaitis, K.,
Mohamed, T., Nakashole, N., Platanios, E., Ritter, A., Samadi, M., Settles,
B., Wang, R., Wijaya, D., Gupta, A., Chen, X., Saparov, A., Greaves, M.,
and Welling, J. (2015). Never-ending learning. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI-15).

Mitra, P. and Wiederhold, G. (2002). Resolving terminological heterogeneity in
ontologies. In Workshop on Ontologies and Semantic Interoperability at the
15th European Conference on Artificial Intelligence (ECAI-2002).

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. The MIT
Press.

Nath, A. and Domingos, P. (2010). Efficient belief propagation for utility
maximization and repeated inference. In AAAI.

Niepert, M., Meilicke, C., and Stuckenschmidt, H. (2010). A probabilistic-logical
framework for ontology matching. In Fox, M. and Poole, D., editors,
Proceedings of the 24th AAAI Conference on Artificial Intelligence, pages
1413–1418.

106

Noessner, J., Niepert, M., and Stuckenschmidt, H. (2013). RockIt: Exploiting
parallelism and symmetry for MAP inference in statistical relational models.
In Proceedings of the Twenty-Seventh AAAI Conference on Artificial
Intelligence.

Noy, N. F. (2004). Semantic integration: a survey of ontology-based approaches.
SIGMOD Record, 33(4):65–70.

Noy, N. F. and Musen, M. A. (2000). PROMPT: Algorithm and tool for automated
ontology merging and alignment. In Proceedings of the Seventeenth National
Conference on Artificial Intelligence and Twelfth Conference on Innovative
Applications of Artificial Intelligence, pages 450–455.

Pan, S. J. and Yang, Q. (2010). A survey on transfer learning. IEEE Transactions
on Knowledge and Data Engineering, 22(10):1345–1359.

Park, B.-H. and Kargupta, H. (2002). Distributed data mining: Algorithms,
systems, and applications. In Ye, N., editor, The Handbook of Data Mining,
pages 341–358. Lawrence Erlbaum Associates.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA.

Poole, D. (2003). First-order probabilistic inference. In Proceedings of the 18th
International Joint Conference on Artificial Intelligence, IJCAI’03, pages
985–991, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Poon, H. and Domingos, P. (2006). Sound and efficient inference with probabilistic
and deterministic dependencies. In Proceedings of the 21st National
Conference on Artificial Intelligence, volume 1 of AAAI’06, pages 458–463,
Boston, Massachusetts.

Poon, H. and Domingos, P. (2007). Joint inference in information extraction. In
AAAI, pages 913–918.

Poon, H. and Domingos, P. (2010). Unsupervised ontology induction from text. In
Proceedings of the 48th Annual Meeting of the Association for Computational
Linguistics, pages 296–305. Association for Computational Linguistics.

Poon, H., Domingos, P., and Sumner, M. (2008). A general method for reducing
the complexity of relational inference and its application to MCMC. In Fox,
D. and Gomes, C. P., editors, AAAI, pages 1075–1080. AAAI Press.

Popov, B., Kiryakov, A., Ognyanoff, D., Manov, D., and Kirilov, A. (2004). KIM –
a semantic platform for information extraction and retrieval. Nat. Lang. Eng.,
10(3-4):375–392.

107

Pujara, J., Miao, H., Getoor, L., and Cohen, W. (2013). Knowledge graph
identification. In International Semantic Web Conference (ISWC). Winner of
Best Student Paper award.

Qin, H., Dou, D., and LePendu, P. (2007). Discovering executable semantic
mappings between ontologies. In Proceedings of International Conference on
Ontologies, Databases and Applications of SEmantics (ODBASE 2007), pages
832–849.

Rahm, E. and Bernstein, P. A. (2001). A survey of approaches to automatic
schema matching. The VLDB Journal, 10(4):334–350.

Richardson, M. and Domingos, P. (2006). Markov logic networks. Machine
Learning, 62:107–136.

Riedel, S. (2008). Improving the accuracy and efficiency of MAP inference for
Markov logic. In Proceedings of the Proceedings of the 24th Conference on
Uncertainty in Artificial Intelligence (UAI-08), pages 468–475.

Ritze, D., Meilicke, C., Svb-Zamazal, O., and Stuckenschmidt, H. (2008). A
pattern-based ontology matching approach for detecting complex
correspondences. In Ontology Matching (OM-2009), volume 551.

Russell, S. J. and Norvig, P. (2003). Artificial Intelligence: A Modern Approach.
Pearson Education, 2 edition.

Shvaiko, P. and Euzenat, J. (2011). Ontology matching: State of the art and future
challenges. IEEE Transactions on Knowledge and Data Engineering, PP(99).

Singla, P. and Domingos, P. (2006). Memory-efficient inference in relational
domains. In Proceedings of the 21st National Conference on Artificial
Intelligence, volume 1 of AAAI’06, pages 488–493, Boston, Massachusetts.

Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and Katz, Y. (2007). Pellet: A
practical OWL-DL reasoner. Web Semantics, 5(2):51–53.

Todirascu, A., Romary, L., and Bekhouche, D. (2002). Vulcain - an ontology-based
information extraction system. In NLDB, pages 64–75.

Venugopal, D. and Gogate, V. (2013). Giss: Combining gibbs sampling and
samplesearch for inference in mixed probabilistic and deterministic graphical
models. In desJardins, M. and Littman, M. L., editors, AAAI. AAAI Press.

Wang, J. and Domingos, P. (2008). Hybrid Markov logic networks. In Proceedings
of the 23rd National Conference on Artificial Intelligence, volume 2 of
AAAI’08, pages 1106–1111. AAAI Press.

108

Weld, D. S., Hoffmann, R., and Wu, F. (2008). Using Wikipedia to bootstrap open
information extraction. SIGMOD Record, 37(4):62–68.

Wimalasuriya, D. C. and Dou, D. (2010). Ontology-Based Information Extraction:
An Introduction and a Survey of Current Approaches. Journal of Information
Science, 36(3):306–323.

Wu, F., Hoffmann, R., and Weld, D. S. (2008). Information extraction from
wikipedia: moving down the long tail. In KDD ’08: Proceeding of the 14th
ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 731–739, New York, NY, USA. ACM.

Yang, Q., Chen, Y., Xue, G.-R., Dai, W., and Yu, Y. (2009). Heterogeneous
transfer learning for image clustering via the social web. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the ACL and the 4th
International Joint Conference on Natural Language Processing of the
AFNLP, volume 1 of ACL ’09, pages 1–9, Stroudsburg, PA, USA. Association
for Computational Linguistics.

Ye, J., Cheng, H., Zhu, Z., and Chen, M. (2013). Predicting positive and negative
links in signed social networks by transfer learning. In Proceedings of the
22Nd International Conference on World Wide Web, WWW ’13, pages
1477–1488.

109

