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DISSERTATION ABSTRACT

Amirmohammad Rooshenas

Doctor of Philosophy

Department of Computer and Information Science

March 2017

Title: Learning Tractable Graphical Models

Probabilistic graphical models have been successfully applied to a wide

variety of fields such as computer vision, natural language processing, robotics,

and many more. However, for large scale problems represented using unrestricted

probabilistic graphical models, exact inference is often intractable, which means

that the model cannot compute the correct value of a joint probability query in a

reasonable time. In general, approximate inference has been used to address this

intractability, in which the exact joint probability is approximated. An increasingly

popular alternative is tractable models. These models are constrained such that

exact inference is efficient. To offer efficient exact inference, tractable models either

benefit from graph-theoretic properties, such as bounded treewidth, or structural

properties such as local structures, determinism, or symmetry. An appealing group

of probabilistic models that capture local structures and determinism includes

arithmetic circuits (ACs) and sum-product networks (SPNs), in which marginal and

conditional queries can be answered efficiently. In this dissertation, we describe ID-

SPN, a state-of-the-art SPN learner as well as novel methods for learning tractable

graphical models in a discriminative setting, in particular through introducing

Generalized ACs, which combines ACs and neural networks. Using extensive
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experiments, we show that the proposed methods often achieves better performance

comparing to selected baselines. This dissertation includes previously published and

unpublished co-authored material.
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CHAPTER I

INTRODUCTION

Probabilistic models are important in many areas such as medicine, biology,

robotics, etc. The goal of probabilistic models is to probabilistically reason about

phenomena or events. For example, given a probabilistic model of medical records

of several patients, we are interested in inferring the risk of a particular patient

getting cancer. Suppose each record indicates whether a patient has anemia,

fatigue, dizziness, fever, pain, and leukemia. Then, we want to reason about the

probability of a patient having leukemia if we only have partial information that he

or she has anemia.

For this kind of reasoning, we may define a probabilistic model considering

one variable for each of the 6 pieces of information we have about patients, which

gives us a space of 64 different configurations.

A joint probability distributions over these variables assigns a probability to

each of these configurations. More formally, a joint probability distribution P (X )

over a set of variables X is a function from X to [0, 1] such that
∑

x∈X P (x) = 1,

where X is the set of all possible configurations. Therefore, given a probabilistic

distribution for medical records, we are interested in computing P(Leukemia =

true), which requires iterating over the space of all variables in order to compute

the corresponding value. This computation becomes intractable as the space of

possible configurations grows exponentially in the number of variables.

This kind of probabilistic reasoning is called inference, which in general

is finding the probability of an assignment to variables. If the assignment is

partial, the reasoning is called marginal inference since it runs inference on a
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FIGURE 1.1. a) Example of a Markov network over three random variables A, B,
and C. b) The potentials that describing edges A−B and B − C.

marginal probability distribution over a smaller set of variables. We can also

answer conditional probabilities using probabilities of full assignments and partial

assignments. The other important category of inference is finding the most

probable explanation (MPE) of variables, also known as maximum a posteriori

(MAP) inference. MPE or MAP inference finds the most likely state of variables

given a probability distribution.

For an exponentially large probability space, inference is intractable.

Probabilistic graphical models such Bayesian or Markov networks encode

a probability space as factorizations to reduce the complexity of inference

and representation although inference remains intractable in general. These

factorizations are based on independencies and conditional independencies among

variables.

A Markov network (MN) represents an undirected graph, in which every

variable is represented as a node, and the edges indicate direct interactions between

variables. For example, Figure 1.1..a illustrates a Markov network over three

random variables A, B, and C. The given Markov network encodes the following

interaction: A is conditionally independent of C given B, for which we have

P (A,C|B) = P (A|B)P (C|B). A probability distribution factorizes over a Markov
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network if it can be written as a normalized products of factors:

P (X ) =
1

Z

∏
c

φc(Xc) (Equation 1.1)

where each φc is a non-negative, real-valued function called a potential function,

Xc ⊂ X , and Z is a normalization constant or partition function: Z =∑
x

∏
c φc(xc). For the Markov network of Figure 1.1..a, the probability distribution

P (A,B,C) factorizes using the potentials φ1(A,B) and φ(B,C) for edges A − B

and B − C, respectively, shown in Figure 1.1..b.

We can also represent a Markov network with positive potentials as

P (X ) =
1

Z
exp(−E(X )), (Equation 1.2)

where E(X ) is a free energy function. In this notation, MAP inference is equal to

the minimization of the free energy function:

x = arg min
x

E(X ). (Equation 1.3)

This formulation is very useful since we can use optimization techniques to compute

the MAP state, or an approximation, for a particular energy function.

In addition to optimization approaches, there exists a plenty of other

algorithmic solutions for exact and approximate inference in graphical

models (Sontag et al., 2011; Wainwright and Jordan, 2008; Globerson and Jaakkola,

2007; Heskes et al., 2002; Murphy et al., 1999; Chavira and Darwiche, 2008).

Exact inference algorithms, such as variable elimination and the junction tree

algorithm can be used to compute arbitrary marginal and conditional probabilities
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in a probabilistic graphical model. However, the complexity of such methods is

exponential in the treewidth of the model. Many relatively simple structures, such

as Markov networks with pairwise interactions, may have very large treewidth,

rendering exact inference intractable in most cases. For example, a NxN grid

structure over n2 variables has a treewidth of n, which makes inference over grid

structures becomes intractable even for small values of n.

In recent years, there has been growing interest in learning tractable

probability distributions, which can perform exact inference efficiently. The most

widely explored approach is to learn a graphical model with bounded treewidth,

often called a thin junction tree. For a treewidth of one (Markov trees), the

maximum likelihood tree-structured model can be learned in polynomial time

using the Chow-Liu algorithm (Chow and Liu, 1968). A number of methods

have been proposed to learn thin junction trees with larger treewidths (Bach and

Jordan, 2001; Chechetka and Guestrin, 2008; Elidan and Gould, 2008; Shahaf et al.,

2009). In general, finding a maximum likelihood bounded treewidth structure is

NP-hard (Korhonen and Parviainen, 2013), so most algorithms only find a local

optimum or require very long running time for graphs with treewidth greater than

three.

While having bounded treewidth is a sufficient condition for tractable

inference, it is not always necessary. When additional forms of local structure

exist, such as context-specific independence (Boutilier et al., 1996) and

determinism (Chavira and Darwiche, 2008), even a model with a very large

treewidth may still admit efficient inference. Mixture models (Meila and

Jordan, 2000; Lowd and Domingos, 2005), sum-product networks (Poon and

Domingos, 2011), arithmetic circuits (Darwiche, 2003), cutset networks (Rahman
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et al., 2014a), feature trees (Gogate et al., 2010), and sentential decision

diagrams (Darwiche, 2011) are examples of representations that can exploit these

local structures and offer tractable inference.

A mixture of tractable distributions is an interesting class of tractable models.

The simplest example is a naive Bayes mixture model, in which the observed

variables are independent given the latent class variable: P (X ) =
∑

c P (C =

c)
∏

i P (Xi|C = c). This is equivalent to a tree-structured graphical model

with one additional variable, C, which is never observed in the training data.

Mixture models can be learned with the expectation maximization algorithm, which

iteratively assigns instances to clusters using the current model and then updates

the model parameters using this assignment. Naive Bayes mixture models are often

as effective as learning a Bayesian network without hidden variables (Lowd and

Domingos, 2005).

A sum-product network (SPN) (Poon and Domingos, 2011) is a deep

probabilistic model for representing a tractable probability distribution. SPNs

are attractive because exact inference is linear in the size of their networks.

They have also achieved impressive results on several computer vision problems.

An SPN consists of a rooted, directed, acyclic graph representing a probability

distribution over a set of random variables. Each leaf in the SPN graph is a

tractable distribution over a single random variable. Each interior node is either

a sum node, which computes a weighted sum of its children in the graph, or a

product node, which computes the product of its children.

An arithmetic circuit (AC) (Darwiche, 2003) is an inference representation

that is as expressive as SPNs, and can represent many other types of tractable

probability distributions, including thin junction trees and latent tree models.
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Like an SPN, an AC is a rooted, directed, acyclic graph in which interior nodes

are sums and products. The representational differences are that ACs use indicator

nodes and parameter nodes as leaves, while SPNs use univariate distributions as

leaves and attach all parameters to the outgoing edges of sum nodes. ACs have

interesting mathematical properties that make them suitable for learning tractable

probabilistic methods. For example, we can efficiently differentiate the function

represented by an AC with respect to its parameters with two passes over the

circuit, which is advantageous for gradient-based optimization algorithms.

1.1. Contributions

In this section, we briefly enumerate the main contributions of this

dissertation:

– We introduce ID-SPN, a state-of-the-art SPN learner. The main advantage

of ID-SPN over the prior algorithms for learning SPNs is considering both

direct and indirect interactions of random variables through tractable Markov

networks and mixture models, respectively. We experimentally show that ID-

SPN is better than the baselines.

– We introduce conditional ACs, which are more compact representations than

ordinary ACs for conditional distributions. We also introduce DACLearn

as the first discriminative structure learning of tractable conditional

distributions. DACLearn searches over high-order features over output and

input variables while maintaining a compact conditional AC for tractable

exact inference. DACLearn learns more accurate conditional models in

comparison to generative and discriminative baselines. We also show that

6



discriminative structure learning results in more accurate conditional models

rather than discriminative parameter learning.

– We introduce generalized ACs (GACs) to represent tractable conditional

distributions. GACs generalize the operation of ACs to include non-linear

operations, and can also represent high-dimensional discrete or continuous

input variables. We also introduce GACLearn as a method for learning the

GAC representations. GACLearn learns more accurate conditional models

comparing to DACLearn and other generative and discriminative baselines.

We also show that GACLearn achieves the state-of-the-art results on the

problem of multilable classification.

1.2. Dissertation Outline

Chapter II describes ACs and SPNs as the main background of this

dissertation. It also includes a brief introduction to other tractable representations

for probabilistic models. The introduction on ACs is from the work published by

Rooshenas and Lowd (2013), in which Lowd is the primary contributor to the

paper. Chapter III describes the ID-SPN algorithm for learning SPNs and discusses

the representational equivalence of SPNs and ACs. The work presented in this

chapter was previously published by Rooshenas and Lowd (2014), and Rooshenas is

the primary contributor to the paper. Chapter IV and Chapter V focus on learning

tractable conditional distributions. Chapter IV introduces conditional ACs, which

are more compact for representing conditional distributions rather than ACs.

In Chapter IV, we also show that how we can learn the structure of conditional

ACs from data. The work presented in Chapter IV was previously published by

Rooshenas and Lowd (2016), and Rooshenas is the primary contributor to the

7



paper. Chapter V, extends conditional ACs into generalized ACs (GACs), which

are more powerful representations for conditional distributions. We also introduce

GACLearn as a method for learning the structure of GACs. The work presented

in Chapter V is the result of collaboration between Rooshenas and Lowd, and

Rooshenas is the primary contributor to the work. Finally, Chapter VI concludes

this dissertation and addresses some potential future directions.
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CHAPTER II

BACKGROUND

The background on arithmetic circuits is from Lowd and Rooshenas (2013), in

which Lowd is the primary contributor to the paper.

It is well understood that learning tractable high-treewidth models is possible

if the models leverage local structures such as context-specific independence

(CSI) (Boutilier et al., 1996), determinism (Chavira and Darwiche, 2008)

or other structural properties such as associativity (Taskar et al., 2004) and

exchangeability (Niepert and Domingos, 2014). Exploiting CSIs and determinism

leads to the introduction of alternative model representations such as arithmetic

circuits (Darwiche, 2003), sum-product networks (Poon and Domingos, 2011), and

probabilistic decision diagrams (Kisa et al., 2014). To achieve tractable inference

through associativity or exchangeability, we do not need different representations

other than Markov networks, and benefiting from these properties, we can solve

the inference problem using a closed form solution or a tractable optimization

formulation. In this chapter, we explore arithmetic circuits and sum-product

networks as well as the alternative representations and structural properties in

more detail.

2.1. Arithmetic Circuits

An arithmetic circuit (AC) (Darwiche, 2003) is a tractable probabilistic model

over a set of discrete random variables, P (X ). An AC consists of a rooted, directed,

acyclic graph in which interior nodes are sums and products. Each leaf is either

9



a non-negative model parameter or an indicator variable that is set to one if a

particular variable can take on a particular value.

For example, consider a simple Markov network over two binary variables

with features f1 = y1 ∧ y2 and f2 = y2:

P (Y1, Y2) =
1

Z
exp(w1f1 + w2f2).

Figure 4.1. represents this probability distribution as an AC, where θ1 = ew1 and

θ2 = ew2 are parameters, and λy1 = 1(y1=1) and λy2 = 1(y2=1) are indicator variables.

In an AC, to compute the unnormalized probability of a complete

configuration P̃ (X = x), we first set the indicator variable leaves to one or zero

depending on whether they are consistent or inconsistent with the values in x.

Then we evaluate each interior node from the bottom up, computing its value as a

function of its children. The value of the root node is the unnormalized probability

of the configuration. However, the real strength of ACs is their ability to efficiently

marginalize over an exponential number of variable states. To compute the

probability of a partial configuration, set all indicator variables for the marginalized

variables to one and proceed as with a complete configuration. The normalization

constant Z can similarly be computed by setting all indicator variables to one.

Conditional probabilities can be computed as probability ratios. For example, for

the AC in Figure 4.1., we can compute the unnormalized probability P̃ (y1) by

setting λ¬y1 to zero and all others to one, and then evaluating the root. To obtain

the normalization constant, we set all indicator variables to one and again evaluate

the root.

10



FIGURE 2.1. Simple arithmetic circuit that encodes a Markov network with two
variables y1 and y2 and two features f1 = y1 ∧ y2 and f2 = y2.

However, we can compute the normalization constant using aforementioned

bottom-up evaluation only if the circuit is a valid representation for a probability

distribution, which can be expressed using the following terms Darwiche (2003):

– An AC is decomposable if the children of a product node have no common

descendant variable.

– An AC is deterministic if the children of a sum node are mutually exclusive,

meaning that at most one is non-zero for any complete configuration.

– An AC is smooth if the children of a sum node have identical descendant

variables.

An AC is a valid representation for a probability distribution if it is

decomposable and smooth. For decomposable and smooth ACs, marginal and

conditional inference is linear in the number of edges, so for compact ACs inference

is tractable. If a circuit is deterministic, exact MAP inference is also linear in the

number of edges.

11



2.1.1. Learning ACs

Two AC learning methods have been proposed. Lowd and Domingos (2008)

adapt a greedy Bayesian network structure learning algorithm by maintaining an

equivalent AC representation and penalizing structures by the number of edges in

the AC. This biases the search towards models where exact inference is tractable

without placing any a priori constraints on network structure. ACMN (Lowd and

Rooshenas, 2013) extends this idea to learning Markov networks with conjunctive

features, and find that the additional flexibility of the undirected representation

leads to slightly better likelihoods at the cost of somewhat slower learning times.

ACMN performs a greedy search through structure space, similar to the

methods of Della Pietra et al. (1997) and McCallum (2003). The initial structure is

the set of all single-variable features. The search operations are to take an existing

feature in the model, f , and combine it with another variable, V , creating two new

features: f ∧ v and f ∧ ¬v. This operation is called “split”.

Splits are scored according to their effect on the log-likelihood of the MN and

the size of the corresponding AC:

score(s) = ∆ll(s)− γ∆e(s)

Here, ∆ll is a measure of how much the split will increase the log-likelihood.

Measuring the exact effect would require jointly optimizing all model parameters

along with the parameters for the two new features. Therefore, log-likelihood gain

is measured by modifying only the weights of the two new features, keeping all

others fixed. This gives a lower bound on the actual log-likelihood gain. This gain

is computed by solving a simple two-dimensional convex optimization problem,

12



which depends only on the empirical counts of the new features in the data and

their expected counts in the model, requiring performing inference just once to

compute these expectations. A similar technique was used by Della Pietra et al.

(1997) and McCallum (2003) for efficiently computing feature gains.

∆e(s) denotes the number of edges that would be added to the AC if this

split were included. Computing this has similar time complexity to actually

performing the split. γ determines the relative weightings of the two terms. The

combined score function is equivalent to maximizing likelihood with an exponential

prior on the number of edges in the AC.

2.2. Mixture Models

When probability distributions are multi-modal, we can suppose that the

distribution can be expressed as a weighted sum (mixture) of some uni-modal

distributions. Therefore, if each mixture component represents a uni-modal

distribution P i(X ), the distribution represented by the mixture models become

as:

P (X ) =
∑
i

wiP
i(X ),

wi ≥ 0,
∑
i

wi = 1. (Equation 2.1)

However, in mixture models, P i(X ) can be described using graphical models

with different structures over the same set of variables X . Therefore, there may

not exist any graphical model (Markov network or Bayesian network) that can

represent the same distribution, which means that mixture models are more

13



FIGURE 2.2. A simple illustration of mixture of trees with two mixture
components, and four observable variables.

powerful than graphical models. Moreover, if we describe every mixture component,

P i(X ), with a tractable model, then the whole mixture model is tractable.

Many researchers introduce different tractable mixture models, and

empirically show their representation power. Mixture of trees (Meila and Jordan,

2000), mixture of arithmetic circuits (Rooshenas and Lowd, 2013), and mixture of

cutsets (Rahman et al., 2014b) are examples of tractable mixture models.

Here, we describe the learning algorithm for mixture of trees (MT) (Meila

and Jordan, 2000) since other algorithms follow more or less similar approaches

for learning mixture models, however, with different representation for mixture

components. Initially, MT randomly assigns each sample to a mixture component,

and then models the probability distribution of each component using Chow-

Liu algorithm (Chow and Liu, 1968). To learn the mixture parameters, MT uses

expectation maximization (EM), which is an iterative algorithm for learning

parameters based on maximum likelihood when some of the parameters are

not observed. In each iteration of the EM, MT distributes samples among the

mixture components by assigning each sample to the component that is most

likely to generate the sample, and updates the Chow-Liu trees for each component.

Figure 2.2. demonstrates a MT with two components. In the figure, the latent
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variable representation embeds the mixture parameters as well. Mixtures of trees

are fast and accurate in comparison to the state-of-the-art tractable graphical

models (Rooshenas and Lowd, 2014).

2.3. Sum-Product Networks

A sum-product network (SPN) (Poon and Domingos, 2011) is a deep

probabilistic model for representing a tractable probability distribution. SPNs are

attractive because they can represent many other types of tractable probability

distributions, including thin junction trees, latent tree models, and mixtures of

tractable distributions. They have also achieved impressive results on several

computer vision problems (Poon and Domingos, 2011; Gens and Domingos,

2012; Amer and Todorovic, 2012) as well as problems in speech and language

modeling (Peharz et al., 2014; Cheng et al., 2014).

SPNs are very similar to ACs. Like ACs, SPNs are rooted, directed, acyclic

graphs representing probability distributions over a set of random variables. In

SPNs, each interior node is either a sum node, which computes a weighted sum

of its children in the graph, or a product node, which computes the product of

its children. The scope of a node is defined as the set of variables appearing in

the univariate distributions of its descendants. In order to be valid, the children

of every sum node must have identical scopes, and the children of every product

node must have disjoint scopes (Gens and Domingos, 2013)1. Intuitively, sum

nodes represent mixture and product nodes represent independencies. SPNs can

also be described recursively as follows: every SPN is either a tractable univariate

1Poon and Domingos (2011) also allow for non-decomposable product nodes, but we adopt the
more restrictive definition of Gens and Domingos (2013) for simplicity.
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FIGURE 2.3. An SPN representation of a naive Bayes mixture model over two
random variables.

distribution, a weighted sum of SPNs with identical scopes, or a product of SPNs

with disjoint scopes.

The representational differences between ACs and SPNs are that ACs use

indicator nodes and parameter nodes as leaves, while SPNs use tractable univariate

distributions as leaves and attach all parameters to the outgoing edges of sum

nodes.

As we show in Chapter III, for discrete domains, every decomposable and

smooth AC can be represented as an equivalent SPN with fewer or equal nodes and

edges, and every SPN can be represented as an AC with at most a linear increase

in the number of edges.

As an example of SPNs, consider a naive Bayes mixture model (sometimes

called a mixture of Bernoullis): P (X ) =
∑

i πi
∏

j P
i(Xj). This can easily be

represented as an SPN, where the root node computes the weighted sum and its

children are products of the univariate distributions. Figure 2.3. depicts an SPN

that represents a naive Bayes mixture over two variables. SPNs can also represent

thin junction trees by introducing sum and product nodes for the different states of
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the clique and separator sets; see Poon and Domingos (2011) for a simple example.

Moreover, SPNs can represent mixtures of thin junction trees, mixture of trees,

and latent tree models. In addition, SPNs can also represent context-specific

independence and other types of finer-grained structure.

To compute the probability of a complete configuration, we have to compute

the value of each node starting at the leaves. Each leaf is a univariate distribution

which evaluates to the probability of one variable according to that distribution.

Sum and product nodes evaluate to the weighted sum and product of their

child nodes in the network, respectively. To compute the probability of a partial

configuration, we need to sum out one or more variables. In an SPN, this is done

by setting the values of all leaf distributions for those variables to 1. Conditional

probabilities can then be computed as the ratio of two partial configurations.

Thus, computing marginal and conditional probabilities can be done in linear time

with respect to the size of the SPN, while these operations are often intractable in

Bayesian and Markov networks with high treewidth.

2.3.1. Learning SPNs

Several different methods have recently been proposed for learning SPNs.

Dennis and Ventura (2012) construct a region graph by first clustering the training

instances and then repeatedly clustering the variables within each cluster to find

smaller scopes. When creating new regions, if a region with that scope already

exists, it is reused. Given the region graph, Dennis and Ventura (2012) convert

this to an SPN by introducing sum nodes to represent mixtures within each region

and product nodes to connect regions to sub-regions. Gens and Domingos (2013)

also perform a top-down clustering, but they create the SPN directly through
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recursive partitioning of variables and instances rather than building a region graph

first. The advantage of their approach is that it greedily optimizes log-likelihood;

however, the resulting SPN always has a tree structure and does not reuse model

components. Peharz et al. (2013) propose a greedy bottom-up clustering approach

for learning SPNs that merges small regions into larger regions.

2.4. Other Tractable Representations

There exists a plenty of other tractable representations such as thin junction

tree, feature trees, and cutset networks. In this section we briefly describe them.

2.4.1. Thin Junction Trees

A general approach to address the tractability is to assume a restricted

structure for the underlying network (graph) such that inference is tractable on the

structure. It is well-understood that exact inference is tractable over tree structures

(e.g. by running belief propagation), so intuitively, the degree of similarity of a

graph to a tree can determine the complexity of exact inference over the graph.

This degree is called treewidth, and inference is exponential in the treewidth of the

underlying graph. This fact leads to interest in learning the structure of graphs

with bounded treewidth.

For the class of bounded treewidth graphs, inference is also tractable, while

it is NP-hard for general graphs. This tractability motivates numerous algorithms

for learning bounded treewidth graphical models and thin-junction trees (Bach and

Jordan, 2001; Chechetka and Guestrin, 2008; Elidan and Gould, 2008).
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FIGURE 2.4. (Gogate et al., 2010) a) A simple feature tree. b) the features of
Markov network this feature tree representing. c) the corresponding junction tree
for the Markov network. The features of the Markov network are produced by
conjoining the feature nodes in all paths from the root to the leaves.

2.4.2. Feature Trees

A feature tree (graph) Gogate et al. (2010) is an AND/OR search tree

(graph) Dechter and Mateescu (2007), in which OR and AND nodes represent

features and feature assignments, respectively. The assigned features of OR nodes,

also called feature nodes (or F-nodes), have bounded length. Nevertheless, feature

trees can represent Markov networks with high treewidth. The AND nodes are

called assignment nodes, or for short, A-nodes. Feature trees exploit context-

specific independence to represent a compact model for Markov networks, and as

a result, feature trees are able to offer tractable inference and closed-form weight

learning. We can convert a feature tree to a Markov network. Conjoining the

feature assignments along every path from root to leaves represent the features of

the corresponding Markov network. Figure 2.4. shows a simple feature tree, the set

of features of a Markov network represented by the feature tree, and the equivalent

junction tree. The probability of a full variable assignment can be computed by

traversing the feature tree once from leaves to the root; see Gogate et al. (2010);

Dechter and Mateescu (2007) for more details.
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To learn a feature tree, Gogate et al. (2010) introduce an algorithm called

LEM, which searches for all features up to a feature length bound, and then finds

a set of groups of variables that are approximately independent given every feature

assignment (using the method of Chechetka and Guestrin (2008)). LEM scores the

features based on their inference complexity, and picks the best feature and the

related set of groups of variables. It adds the feature to the feature tree (creating a

new F-node), and then recurs for every assignment to the selected feature (creating

new A-nodes) and for every group of variables which is independent given the

assignment. Therefore, it builds the feature tree recursively. Gogate et al. (2010)

provide performance guarantees on the accuracy of the feature trees learned using

LEM.

2.4.3. Cutset Networks

Recently introduced cutset networks (CNs) (Rahman et al., 2014a) are

another tractable representation for probability distributions, which leverage

both context-specific independence and determinism. The cutset network is an

OR search tree (Dechter and Mateescu, 2007), in which every leaf is a Chow-Liu

tree (Chow and Liu, 1968). The fundamental idea of CNs is to select a group of

variables such that the joint probability of the remaining variables conditioned on

the assignment to the selected variables is representable using a Chow-Liu tree.

The complexity of inference is linear in the number of edges in the OR tree, which

is exponential in the size (cardinality) of cutset variables. Therefore, bounding

the size of the cutset variables leads to tractable inference given that inference is

tractable at the leaves. Figure 2.5. shows an example of a CN which represents

a probability distribution over six variables. Selecting the cutset variables is the
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FIGURE 2.5. (Rahman et al., 2014a) A simple cutset network over 6 variables.

challenging problem for learning CNs. Rahman et al. (2014a) propose to choose a

variable to be in the cutset if it maximizes the expected reduction in the average

entropy over individual variables (an approximation to the joint entropy), or in

other words, select the variable that has the highest information gain.

2.4.4. Sentential Decision Diagrams

Sentential decision diagrams (SDDs) (Darwiche, 2011) are a subset of

negation normal forms (NNFs) which fulfill both decomposability and strong

determinism. An NNF is a DAG representation of a Boolean function in which all

internal nodes are conjunctions or disjunctions and the leaves are either constants

(> : true,⊥ : false) or literals (variables or their negation). In NNFs, the negation

only applies to the input variables. If the sets of variables appearing on the left and

right subtrees of every conjunction have no variables in common, then the NNF

is decomposable. Considering a decomposable NNF (DNNF), if any assignment

to the variables only activates one child of every disjunction, then the DNNF is

deterministic. In fact, SDDs are a strict subset of deterministic decomposable
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FIGURE 2.6. (Darwiche, 2011) An SDD that represents f = (A ∧ B)(B ∧ C) ∨
(C ∧ D). The SDD respects the vtree, every decision node (circle) in the SDD are
related to one internal node in the vtree, and the variables in primes (subs) of the
decision node appear in the left (right) subtrees of the corresponding node in the
vtree.

NNFs (d-DNNFs), which themselves are a subset of DNNFs, and DNNFs are a

subset of NNFs. A vtree is a full rooted binary tree whose leaves are the set of

variables, and every variable appears exactly once in the leaves (Pipatsrisawat

and Darwiche, 2008). Figure 2.6..a demonstrates an example of a vtree for four

variables. Darwiche (2011) defines a Boolean function f(Z) over the set of variables

Z as a (X ,Y)-decomposition, if f(Z) can be written as:

f(Z) = (p1(X ) ∧ s1(Y) ∨ (p2(X ) ∧ s2(Y) ∨ · · · ∨ (pn(X ) ∧ sn(Y). (Equation 2.2)

A structured d-DNNF respects a vtree if there exists an one-to-one mapping from

d-DNNF decompositions (p1(X ) ∧ s1(Y) ∨ (p2(X ) ∧ s2(Y) ∨ · · · ∨ (pn(X ) ∧ sn(Y)

to vtree internal nodes v such that X and Y are subsets of variables in the left and

right subtrees of v, respectively.

Assuming a given vtree, an SDD is a constant, literal, or an (X ,Y)-

decomposition represented by a decision node, such that the decomposition respects
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a vtree, and p1 · · · pn, s1 · · · sn are SDDs. pis and sis are called primes and subs,

respectively, and each pair of a prime and a sub constitute an element. SDDs are

strongly deterministic, which means that pi ∧ pj = false for any i 6= j, and ∨ipi =

true. Figure 2.6..b illustrates an SDD which respects the vtree in Figure 2.6..a, and

represents the Boolean function f(A,B,C,D) = (A ∧ B) ∨ (B ∧ C) ∨ (C ∧ D).

An important feature of SDDs is that they offer tractable weighted model counting,

which can be used for inference in graphical models (Choi et al., 2013).

Probabilistic SDDs (PSDDs) (Kisa et al., 2014) are probabilistic counterparts

for SDDs, in which the logical decision nodes in SDDs have been replaced with

probabilistic decision nodes, and every outgoing edge from a decision node is

labeled with a parameter. The subs in the elements also take parameters. If

a sub element does not have any parameter, it means that the parameter is

one. Figure 2.7. shows an example of a PSDD. Parameters of PSDDs can be

learned using closed-form maximum likelihood parameter learning. Computing

the probability of an evidence configuration can be done in one bottom-up pass

of the diagram, and the computation of marginals given evidence needs two

passes (one bottom-up and one top-down). PSDDs are able to represent local

structures (context-specific independence and determinism) as well as conditional

independencies.

To show the power of PSDDs for representing the local structures, Kisa

et al. (2014) compile the disjunction of all data (including test data) as domain

constraints (logical constraints) and then compile it into a PSDD. They learn

parameters using training data and then compute the likelihood of the test data.

The result shows a significant improvement in comparison to the state-of-the-art
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FIGURE 2.7. Kisa et al. (2014) A PSDD for set of variable (L, P,A,K). Given the
PSDD, Pr(P ∧ A) = 1 ∗ 1 ∗ 0.1 + 0.25 ∗ 0.4 ∗ 0.3 + 0.9 ∗ 1 ∗ 0.6.

likelihood results for the compared datasets, although the experiments are not

sound since they use test data for creating the structure of the PSDD.

2.4.5. Restricted Interactions

For general Markov networks, tractable exact inference is achievable through

restricting the potentials. Here we discuss approaches that focus on finding the

MAP state which is equal to minimizing the free energy2.

A successful approach to minimize the free energy is graph cuts. To use the

graph cut algorithm, the free energy should have a particular graph structure, so

the graph cut based approaches assume a pairwise Markov network over a graph

of variables, G(V , E). In this case, the MAP inference reduces to minimizing the

following energy function:

E(X ) =
∑
i∈V

θi(xi) +
∑

(i,j)∈E

θij(xi, xj), (Equation 2.3)

2P (X ) = 1
Z exp(−E(X )) then maximizing P (X ) is equal to minimizing −E(X )
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where θ(.) and θ(., .) are unary and pairwise potentials, respectively. Greig et al.

(1989) show that there exists a polynomial solution for minimizing Equation 2.3

using the graph cut algorithm if the underlying network is an Ising model, for

which the variable xis are binary and xi ∈ {−1, 1}, and also the potentials have the

form of θij(xi, xj) = wijxixj, where wij is a feature weight (Koller and Friedman,

2009). Kolmogorov and Zabin (2004) extend using the graph cut approach to

minimize the free energy, Equation 2.3, with binary variables and submodular

potentials:

θij(0, 0) + θij(1, 1) ≤ θij(0, 1) + θij(1, 0). (Equation 2.4)

Ishikawa (2003) applies the graph cut approach to minimize Equation 2.3 for

multi-value variables. In their formulation, potentials have to be convex functions

of variable distances, and the variables are consecutive integer numbers. For

examples, in the pixel labeling problem, the variables are the label indexes of

pixels and potentials are convex functions of label differences. For more general

non-convex functions, the graph cut approach returns a local solution or an

approximation of the global minimum (Veksler, 2007).

Taskar et al. (2004) introduce associative Markov networks (AMNs), which

are less restricted than the models used by Kolmogorov and Zabin (2004) and

Greig et al. (1989). AMNs allow arbitrary topology with high order potentials, and

different labels (variable values) can have different strengths (in the Ising model,

different labels have the same strength), so the energy functions become:

E(X ) =
∑
i

θi(xi) +
∑
c∈C

θc(xc), (Equation 2.5)
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where C is the set of cliques in the graph, and θc(xc) is equal to a non-negative

parameter λkc when all variables agree on the label k, and zero otherwise.

Taskar et al. (2004) model the MAP inference as an integer linear

programming (ILP) problem, and approximate it using an LP relaxation. They

show that for binary variables (having only two labels), the LP formulation has

integral solutions which means the approximated solution is the optimum value.

For multi-value variables, the integral solutions are not guaranteed, but it works

well in practice (Taskar et al., 2004).

Taskar et al. (2004) also introduce a max-margin approach for learning

the parameters, in which the parameter learning is modeled as a Quadratic

programming (QP) problem, which calls the MAP inference as a component. They

show that the QP problem has an optimal solution when MAP inference is exact,

which happens when the variables are binary (network has only two labels).

2.4.6. Exchangeable Variable Models

Recently, Niepert and Van den Broeck (2014) leverage the concept of

exchangeability in statistics to introduce new tractable models. Exchangeability

can enrich graphical models which merely use the notion of independence and

conditional independence. A set of random variables is fully exchangeable if

permuting the assignment to the random variables does not change the probability

of the assignment. Similarly a set of random variables is partial exchangeable with

respect to the sufficient statistic T if for every assignment x and x′ to random

variables, T (x) = T (x′) implies that the probability of x and x′ is equal. Benefiting

from the partial exchangeability, we can express the probability distribution as a
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mixture of uniform distributions (Niepert and Domingos, 2014):

P (x) =
∑
t∈T

wtUt(x), (Equation 2.6)

where T is the possible values of sufficient statistic T , and should be finite, and

wt = P (T (x) = t), and Ut is a uniform distribution of a set of assignments that

satisfies T (x) = t.

Niepert and Domingos (2014) prove that exchangeable variable models

(EVMs) can compute the marginal probabilities and the MAP state in time

polynomial in the number of variables. They also extend EVMs to the mixture

of EVMs (MEVMs) which combine the conditional independencies with

exchangeability, and is more expressive than simple mixture models such as the

naive Bayes mixture model. MEVMs show promising results in problems that

are not linearly separable like parity and counting. They also have more accurate

models compared to tractable graphical models like Chow-Liu trees and latent

tree models (Choi et al., 2011) and show competitive performance compared to

more complex models such as SPNs (Gens and Domingos, 2013) and ACs (Lowd

and Rooshenas, 2013). Finding the correct sufficient statistics which fulfill the

assumption of partial exchangeability and incorporating EVMs in more complex

models are still open problems.
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CHAPTER III

LEARNING SUM-PRODUCT NETWORKS

The work presented in this chapter is previously published by Rooshenas and

Lowd (2014), and Rooshenas is the primary contributor to the paper.

Sum-product networks (SPNs) are a deep probabilistic representation that

allows for efficient, exact inference. SPNs generalize many other tractable models,

including thin junction trees, latent tree models, and many types of mixtures.

Previous work on learning SPN structure has mainly focused on using top-down

or bottom-up clustering to find mixtures, which capture variable interactions

indirectly through implicit latent variables. In contrast, most work on learning

graphical models, thin junction trees, and arithmetic circuits has focused on finding

direct interactions among variables. In this chapter, we present ID-SPN, a new

algorithm for learning SPN structure that unifies the two approaches.

3.1. Motivation and Background

Previous work about learning sum-product networks (SPNs) has focused

exclusively on the latent variable approach, using a complex hierarchy of mixtures

to represent all interactions among the observable variables (Gens and Domingos,

2013; Dennis and Ventura, 2012). These SPN structures can be learned from data

by recursively clustering instances and variables. Clustering over the instances

is done to create a mixture, represented with a sum node. Clustering over the

variables is done to find independencies within the cluster, represented with a

product node. We refer to this approach as creating indirect interactions among
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the variables, since all dependencies among the observable variables are mitigated

by the latent variables implicit in the mixtures.

This type of top-down clustering is good at representing clusters, but may

have difficulty with discovering direct interactions among variables. For example,

suppose the data in a domain is generated by a 6-by-6 grid-structured Markov

network (MN) with binary-valued variables. This MN can be represented as a

junction tree with treewidth 6, which is small enough to allow for exact inference.

This can also be represented as an SPN that sums out 6 variables at a time in each

sum node, representing each of the separator sets in the junction tree. However,

learning this from data requires discovering the right set of 64 (26) clusters that

happen to render the other regions of the grid independent from each other. Of all

the possible clusterings that could be found, happening to find one of the separator

sets is extremely unlikely. Learning a good structure for the next level of the SPN

is even less likely, since it consists of 64 clustering problems, each working with

1/64th of the data.

In contrast, Markov network structure learning algorithms can easily learn

a simple grid structure, but may do poorly if the data has natural clusters that

require latent variables or a mixture. For example, consider a naive Bayes mixture

model where the variables in each cluster are independent given the latent cluster

variable. Representing this as a Markov network with no latent variables would

require an exponential number of parameters.

In order to get the best of both worlds, we propose ID-SPN, a new method

for learning SPN structures that can learn both indirect and direct interactions,

including conditional and context-specific independencies. This unifies previous

work on learning SPNs through top-down clustering (Dennis and Ventura, 2012;
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FIGURE 3.1. Example of an ID-SPN model. The upper layers are shown explicitly
as sum and product nodes, while the lower layers are abbreviated with the nodes
labeled “AC.” The AC components encode graphical models over the observed
variables represented as arithmetic circuits (AC), and may involve many nodes and
edges.

Gens and Domingos, 2013) with previous work on learning tractable Markov

networks through greedy search (Lowd and Rooshenas, 2013).

ID-SPN combines top-down clustering with methods for learning tractable

Markov networks to obtain the best of both worlds: indirect interactions through

latent cluster variables in the upper levels of the SPN as well as direct interactions

through the tractable Markov networks at the lower levels of the SPN. ID-

SPN learns tractable Markov networks represented by ACs using the ACMN

algorithm (Lowd and Rooshenas, 2013); however, this could be replaced with any

algorithm that learns a tractable multivariate probability distribution that can be

represented as an AC or SPN, including any thin junction tree learner.

For learning an SPN structure, LearnSPN (Gens and Domingos, 2013)

recursively performs two operations to create a tree-structured SPN: partitioning

30



the training data to create a sum node, representing a mixture over different

clusters, or partitioning the variables to create a product node, representing groups

of independent variables within a cluster. The partitioning is chosen greedily to

maximize the (regularized) likelihood of the training data. This process continues

recursively, operating on fewer variables and examples until it reaches univariate

distributions which become the leaves.

ID-SPN performs a similar top-down search, clustering instance and

variables to create sum and product nodes, but it may stop this process before

reaching univariate distributions and instead learn an AC to represent a tractable

multivariate distribution with no latent variables. Thus, LearnSPN remains a

special case of ID-SPN when the recursive clustering proceeds all the way to

univariate distributions. ACMN is also a special case, when a tractable distribution

is learned at the root and no clustering is performed. ID-SPN uses the likelihood of

the training data to choose among these different operations.

Another way to view ID-SPN is that it learns SPNs where the leaves are

tractable multivariate distributions rather than univariate distributions. As long

as these leaf distributions can be represented as valid SPNs, the overall structure

can be represented as a valid SPN as well. For ease of description, we refer to the

structure learned by ID-SPN as a sum-product of arithmetic circuits (SPAC). A

SPAC model consists of sum nodes, product nodes, and AC nodes. Every AC node

is an encapsulation of an arithmetic circuit which itself includes many nodes and

edges. Figure 3.1. shows an example of a SPAC model.

We can also relax the condition of learning a valid SPN structure and allow

any tractable probabilistic models at the leaves. In this case, the SPAC model

generalizes to a sum-product of tractable models. Such models may not be valid
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Algorithm 1 Algorithm for learning a SPAC.

function ID-SPN(T )
input: Set of training examples, T ; set of variables V
output: Learned SPAC model
n← LearnAC(T, V ).
SPAC ← n
N ← leaves of SPAC // which includes only n
while N 6= ∅ do

n← remove a node from N
(Tji, Vj) ← set of samples and variables used for learning n
subtree ← extend(n, Tji, Vj)
SPAC’ ← replace n by subtree in SPAC
if SPAC’ has a better log-likelihood on T than SPAC then

N ← N∪ leaves of SPAC’
SPAC ← SPAC’

end if
end while
return SPAC

SPNs, but they retain the efficient inference properties that are the key advantage

of SPNs. Nevertheless, we leave this part for future exploration and continue with

SPAC, which has a valid SPN structure.

3.2. ID-SPN Algorithm

Algorithm 1 illustrates the pseudocode of ID-SPN. The ID-SPN algorithm

begins with a SPAC structure that only contains one AC node, learned using

ACMN on the complete data. In each iteration, ID-SPN attempts to extend the

model by replacing one of the AC leaf nodes with a new SPAC subtree over the

same variables. Figure 3.2. depicts the effect of such an extension on the SPAC

model. If the extension increases the log-likelihood of the SPAC model on the

training data, then ID-SPN updates the working model and adds any newly created

AC leaves to the queue.
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As described in Algorithm 2, the extend operation first attempts to partition

the variables into independent sets to create a new product node. If a good

partition exists, the subroutine learns a new sum node for each child of the product

node. If no good variable partition exists, the subroutine learns a single sum node.

Each sum node is learned by clustering instances and learning a new AC leaf node

for each data cluster. These AC nodes may be extended further in future iterations.

As a practical matter, in preliminary experiments we found that the root was

always extended to create a mixture of AC nodes. Since learning an AC over all

variables from all examples can be relatively slow, in our experiments we start by

learning a sum node over AC nodes rather than a single AC node.

Every node nji in SPAC (including sum and product nodes) represents a valid

probability distribution Pji over a subset of variables Vj. To learn nji, ID-SPN uses

a subset of the training set Tji, which is a subset of training samples Ti projected

into Vj. We call Tji the footprint of node nji on the training set, or to be more

concise, the footprint of nji.

A product node estimates the probability distribution over its scope as the

product of approximately independent probability distributions over smaller scopes:

P (V ) =
∏

j P (Vj) where V is the scope of the product node and Vjs are the scope

of its children. Therefore, to create a product node, we must partition variables

into some sets that are approximately independent. We use pairwise mutual

information,
∑

Xk,Xl∈j
C(Xk,Xl)
|Tji| log

C(Xk,Xl)·|Tji|
C(Xk)C(Xl)

where C(.) counts the occurrences of

the configuration in the footprint of the product node, to approximately measure

the dependence among different sets of variables. A good variable partition is

one where the variables within a partition have high mutual information, and the

variables in different partitions have low mutual information. Thus, we create an
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Algorithm 2 Algorithm for extending SPAC structure.

function extend(n, T , V )
input: An AC node n, set of instances T and variables V used for learning n
output: An SPAC subtree representing a distribution over V learned from T
//learns a product node
p-success ← Using T , partition V into approximately independent subsets Vj
if p-success then

for each Vj do
let Tj be the data samples projected into Vj
//learns a sum node
s-success ← partition Tj into subsets of similar instances Tji
if s-success then

for each Tji do nji ← LearnAC(Tji, Vj)
end for

else
nj ← LearnAC(Tj , Vj)

end if
end for
subtree ←

∏
j [(

∑
i
|Tji|
|Tj | · nji)|nj ]

else
//learns a sum node
s-success ← partition T into subsets of similar instances Ti
if s-success then

ni ← LearnAC(Ti, V )

subtree ←
∑

i
|Ti|
|T | · ni

else
fails the extension

end if
end if
return subtree

adjacency matrix using pairwise mutual information such that two variables are

connected if their empirical mutual information over the footprint of the product

node (not the whole training set) is larger than a predefined threshold. Then, we

find the set of connected variables in the adjacency matrix as the independent set

of variables. This operation fails if it only finds a single connected component or if

the number of variables is less than a threshold.
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A sum node represents a mixture of probability distributions with identical

scopes: P (V ) =
∑

iwiP
i(V ) where the weights wi sum to one. A sum node can

also be interpreted as a latent variable that should be summed out:
∑

c P (C =

c)P (V |C = c). To create a sum node, we partition instances by using the

expectation maximization (EM) algorithm to learn a simple naive Bayes mixture

model: P (V ) =
∑

i P (Ci)
∏

j P (Xj|Ci) where Xj is a random variable. To select

the appropriate number of clusters, we rerun EM with different numbers of clusters

and select the model that maximizes the penalized log-likelihood over the footprint

of the sum node. To avoid overfitting, we penalize the log-likelihood with an

exponential prior, P (S) ∝ e−λC|V | where C is the the number of clusters and λ is

a tunable parameter. We use the clusters of this simple mixture model to partition

the footprint, assigning each instance to its most likely cluster. We also tried using

k-means, as done by Dennis and Ventura (2012), and obtained results of similar

quality. We fail learning a sum node if the number of samples in the footprint of

the sum node is less than a threshold.

To learn leaf distributions, AC nodes, we use the ACMN algorithm (Lowd

and Rooshenas, 2013). ACMN learns a Markov network using a greedy, score-based

search, but it uses the size of the corresponding arithmetic circuit as a learning

bias. ACMN can exploit the context-specific independencies that naturally arise

from sparse feature functions to compactly learn many high-treewidth distributions.

The learned arithmetic circuit is a special case of an SPN where sum nodes

always sum over mutually exclusive sets of variable states. Thus, the learned

leaf distribution can be trivially incorporated into the overall SPN model. Other

possible choices of leaf distributions include thin junction trees and the Markov

networks learned by LEM (Gogate et al., 2010). We chose ACMN because it
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FIGURE 3.2. One iteration of ID-SPN: it tries to extends the SPAC model by
replacing an AC node with a SPAC subtree over the same scope

offers a particularly flexible representation (unlike LEM), exploits context-specific

independence (unlike thin junction trees), and learns very accurate models on a

range of structure learning benchmarks (Lowd and Rooshenas, 2013).

The specific methods for partitioning instances, partitioning variables,

and learning a leaf distribution are all flexible and can be adjusted to meet the

characteristics of a particular application domain.

3.3. Relation of SPNs and ACs

In this section, We demonstrate the equivalence of the AC and SPN

representations with the following two propositions.

Proposition 1. For discrete domains, every decomposable and smooth AC can be

represented as an equivalent SPN with fewer nodes and edges.
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Proof. We show this constructively. Given an AC, we can convert it to a valid SPN

representing the same function in four steps:

1. If the root is not a sum node, set the root to a new sum node whose single

child is the former root.

2. For each sum node, set the initial weights of all outgoing edges to 1.

3. For each parameter node, find the first sum node on each path to the root

and multiply its outgoing edge weight along that path by the parameter

value. (Do not multiply the same edge weight by any given parameter more

than once, even if that edge occurs in multiple paths to the root. We assume

that parameter nodes only occur as children of product nodes.)

4. Remove all parameter nodes from the network.

5. Replace each indicator node λXi=v with a deterministic univariate

distribution, P (Xi = v) = 1.

Because the AC was decomposable, each product in the resulting SPN must

be over disjoint scopes. Because the AC was smooth, each sum in the resulting

SPN must be over identical scopes. Therefore, the SPN is valid. Since all indicator

nodes are removed and at most one new node is added, the new SPN must have

fewer nodes and edges than the original AC.

To prove that the SPN evaluates to the same function as the original AC, we

use induction to show that each sum node evaluates to the same value as before.

Since the root node is a sum, this suffices to show that the new SPN is equivalent.

Consider each outgoing edge from the sum node to one of its children. There

are three cases to consider:
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– If the child is a leaf, then the child’s value is a deterministic distribution

which is clearly identical to the parameter node in AC. The edge weight will

be 1, since the leaf could not have had any parameter node descendants that

were removed.

– If the child is another sum node, then by the inductive hypothesis, its value

must be the same as in the AC. The weight of this edge must also be 1, since

any parameter node descendant must have at least one sum node that is

“closer,” namely the child sum node.

– If the child is a product node, then its value might be different from the AC.

Without loss of generality, consider a product node and all of its product

node children, and all of their product ndoe children, etc. together as a

single product. (This is valid because multiplication is commutative and

associative.) The elements in this product are only sum nodes and leaf nodes,

both of which have the same values as in the AC. One or more parameter

nodes could have been removed from this product when constructing the

SPN. These parameters have been incorporated into the edge weight, since

the parent sum node is the first sum node on any path from the parameters

to the root that passes through this edge. Therefore, the value of the product

node times its edge weight is equal to the value of the product node in the

AC.

Thus, each child of the sum node has the same value as in the original AC

once it has been multiplied by the edge weight, so the sum node computes the same

value as in the AC. For the base case of a sum node with no sum node descendants,

the above arguments still suffice and no longer depend on the inductive hypothesis.
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Therefore, by structural induction, every sum node computes the same value as in

the AC.

Proposition 2. For discrete domains, every SPN can be represented as an AC with

at most a linear increase in the number of edges.

Proof. We again show this constructively. Given an SPN, we can convert it to a

decomposable and smooth AC representing the same distribution in three steps:

1. Create indicator nodes for each variable/value combination.

2. Replace each univariate distribution with a sum of products of parameter and

indicator nodes. Specifically, create one parameter node for each state of the

target variable, representing the respective probability of that state. Create

one product node for each state with the corresponding indicator node and

new parameter node as children.

3. Replace each outgoing edge of each sum node with a product of the original

child and a new parameter node representing the original weight from that

edge.

Assuming the domain of each variable is bounded by a constant, each edge is

replaced by at most a constant number of edges. Therefore, the number of edges

in the resulting AC is linear in the number of edges in the original SPN.

We now use induction to show that, for each node in the SPN, there is a node

in the AC that computes the same value. We have three types of nodes to consider:

– As the base case, each leaf in the SPN is represented by a new sum node

created in the second step. By construction, this sum node clearly represents

the same value as the leaf distribution in the SPN.
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– Each product node in the SPN is unchanged in the AC conversion. Since, by

the inductive hypothesis, its children compute the same values as in the SPN,

so does the product.

– Each sum node in the SPN is represented by a similar node in the AC.

The AC node is an unweighted sum over products of the SPN edge

weights and nodes representing the corresponding SPN children. By the

inductive hypothesis, these children compute the same values as their SPN

counterparts, so the weighted sum performed by the AC node (with the help

of new product and parameter nodes) is identical to the SPN sum node.

The root of the AC represents the root of the SPN, so by induction, they

compute the same value and the two models represent the same distribution.

3.4. Experimental Results

We evaluated ID-SPN on 20 datasets illustrated in Table 3.1..a with 16 to

1556 binary-valued variables. These datasets or a subset of them also have been

used previously (Davis and Domingos, 2010; Lowd and Davis, 2010; Haaren and

Davis, 2012; Lowd and Rooshenas, 2013; Gens and Domingos, 2013). In order to

show the accuracy of ID-SPN, we compared it with the state-of-the-art learning

method for SPNs (LearnSPN) (Gens and Domingos, 2013), mixtures of trees

(MT) (Meila and Jordan, 2000), ACMN, and latent tree models (LTM) (Choi

et al., 2011). To evaluate these methods, we selected their hyper-parameters

according to their accuracy on the validation sets.

For LearnSPN, we used the same learned SPN models presented in the

original paper (Gens and Domingos, 2013). We used the WinMine toolkit

(WM) (Chickering, 2002) for learning intractable Bayesian networks.
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We slightly modified the original ACMN codes to incorporate both Gaussian

and L1 priors into the algorithm. The L1 prior forces more weights to become zero,

so the learning algorithm can prune more features from the split candidate list.

The modified version is as accurate as the original version, but it is considerably

faster. For ACMN, we used an L1 prior of 0.1, 1, and 5, and a Gaussian prior with

a standard deviation of 0.1, 0.5, and 1. We also used a split penalty of 2, 5, 10 and

maximum edge number of 2 million.

For LTM, we ran the authors’ code1 with its default EM configuration to

create the models with different provided algorithm: CLRG, CLNJ, regCLRG,

and regCLNJ. For MT, we used our own implementation and the number of

components ranged from 2 to 30 with a step size of 2. To reduce variance, we re-

ran each learning configuration 5 times.

For ID-SPN, we need specific parameters for learning each AC leaf node using

ACMN. To avoid exponential growth in the parameter space, we selected the L1

prior Cji, split penalty SP ji, and maximum edges ME ji of each AC node to be

proportional to the size of its footprint: P ji = max{P |Tji||T | ·
|Vj |
|V | , P

min} where

parameter P can be C, SP or ME . When SPAC becomes deep, Cmin and SPmin

help avoid overfiting and MEmin permits ID-SPN to learn usefull leaf distributions.

Since ID-SPN has a huge parameter setting, we used random search (Bergstra

and Bengio, 2013) instead of grid search. In order to create a configuration, we

defined a uniform distribution over a discrete parameter values, and sampled every

parameter distribution independently.

For learning AC nodes, we selected C from 1.0, 2.0, 5.0, 8.0, 10.0, 15.0 and

20.0, and SP from 5, 8, 10, 15, 20, 25, and 30. We selected the pair setting of

1http://people.csail.mit.edu/myungjin/latentTree.html
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TABLE 3.2. Statistically significance comparison. Each table cell lists the number
of datasets where the row’s algorithm obtains significantly better log-likelihoods
than the column’s algorithm

ID
-S

P
N

L
ea

rn
S

P
N

W
M

A
C

M
N

M
T

L
T

M

ID-SPN – 11 13 17 15 17

LearnSPN 0 – 0 1 2 10

WM 4 6 – 10 7 13

ACMN 3 7 7 – 9 13

MT 1 7 11 11 – 15

LTM 0 0 3 4 2 –

(Cmin, SPmin) between (0.01, 1) and (1, 2), and ME and MEmin are 2M and 200k

edges, respectively. We used similar Gaussian priors with a standard deviation of

0.1, 0.3, 0.5, 0.8, 1.0, or 2.0 for learning all AC nodes.

For learning sum nodes, the cluster penalty λ is selected from 0.1, 0.2, 0.4, 0.6

and 0.8, the number of clusters from 5, 10, and 20, and we restarted EM 5 times.

When there were fewer than 50 samples, we did not learn additional sum nodes,

and when there were fewer than 10 variables, we did not learn additional product

nodes.

Finally, we limited the number of main iteration of ID-SPNs to 5, 10, or

15, which helps avoid overfitting and controls the learning time. Learning sum

nodes and AC nodes is parallelized as much as it was possible using up to 6 cores

simultaneously.

We bounded the learning time of all methods to 24 hours, and we ran our

experiments, including learning, tuning, and testing, on an Intel(R) Xeon(R) CPU

X5650@2.67GHz.
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Table 3.1..b shows the average test set log-likelihood of every methods. We

could not learn a model using LTM for EachMovie and Ad datasets, so we excluded

these two datasets for all comparisons involving LTM. We use • to indicate that on

a dataset, the corresponding method has significantly better test set log-likelihood

than ID-SPN, and ◦ for the reverse. For significance testing, we performed a

paired t-test with p=0.05. ID-SPN has better average log-likelihood on every single

dataset than LearnSPN, and better average log-likelihood on 17 out of 20 datasets

(with 1 tie) than ACMN. Thus, ID-SPN consistently outperforms the two methods

it integrates. Table 3.2. shows the number of datasets for which a method has

significantly better test set log-likelihood than another. ID-SPN is significantly

better than WinMine on 13 datasets and significantly worse than it on only 4

datasets, which means that ID-SPN is achieving efficient exact inference without

sacrificing accuracy. ID-SPN is signficantly better than LearnSPN, ACMN, MT and

LTM on 11, 17, 15, 17 datasets, respectively.

We also evaluated the accuracy of ID-SPN and WinMine for answering

queries by computing conditional log-likelihood (CLL): logP (X = x|E = e).

For WinMine, we used the Gibbs sampler from the Libra toolkit2 with 100 burn-in

and 1000 sampling iterations. Since the Gibbs sampler can approximate marginal

probablities better then joint probablities, we also computed CMLL:
∑

i logP (Xi =

xi|E = e). For WinMine, we reported the greater of CLL and CMLL; however,

CMLL was higher for all but 12 settings. The reported values have been normalized

by the number of query variables.

We generated queries from test sets by randomly selecting the query variables,

using the rest of variables as evidence. Table 3.3. shows the C(M)LL values ranging

2http://libra.cs.uoregon.edu

45



from 10% query and 90% evidence variables to 90% query and 10% evidence

variables. The bold numbers indicate statistically significance using a paired t-test

with p=0.05. ID-SPN is significantly more accurate on 95 out of 100 settings and is

significantly worse on only 1.

We also report the per-query average time and per-query maximum time,

both in milliseconds. We computed the per-query average for each dataset, and

then reported the average and the maximum of per-query averages. For WinMine,

the per-query average time significantly varies with the number of variables. The

per-query maximum time shows that even with only 1000 iteration, Gibbs sampling

is still slower than exact inference in our ID-SPN models.

3.5. Summary

Most previous methods for learning tractable probabilistic models have

focused on representing all interactions directly or indirectly. ID-SPN demonstrates

that a combination of these two techniques is extremely effective, and can even be

more accurate than intractable models. Interestingly, the second most accurate

model in our experiments was often the mixture of trees model (MT) (Meila and

Jordan, 2000), which also contains indirect interactions (through a single mixture)

and direct interactions (through a Chow-Liu tree in each component). After ID-

SPN, MT achieved the second-largest number of significant wins against other

algorithms. ID-SPN goes well beyond MT by learning multiple layers of mixtures

and using much richer leaf distributions, but the underlying principles are similar.

Therefore, rather than focusing exclusively on mixtures or direct interaction terms,

this suggests that the most effective probabilistic models need to use a combination

of both techniques.
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CHAPTER IV

DISCRIMINATIVE LEARNING OF ARITHMETIC CIRCUITS

The work presented in this chapter is previously published by Rooshenas and

Lowd (2016), and Rooshenas is the primary contributor to the paper.

In this chapter, we introduce conditional arithmetic circuits as a compact

representation for conditional distributions, and we present the first discriminative

structure learning algorithm for arithmetic circuits (ACs), DACLearn

(Discriminative AC Learner). Like previous work on generative structure learning,

DACLearn finds a log-linear model with conjunctive features, using the size of an

equivalent AC representation as a learning bias. Unlike previous work, DACLearn

optimizes conditional likelihood, resulting in a more accurate conditional

distribution. DACLearn also learns much more compact ACs than generative

methods, since it does not need to represent a consistent distribution over the

evidence variables. To ensure efficiency, DACLearn uses novel initialization and

search heuristics to drastically reduce the number of feature evaluations required to

learn an accurate model. In experiments on 20 benchmark domains, we find that

DACLearn learns models that are more accurate and compact than other tractable

generative and discriminative methods.

4.1. Motivation and Background

Probabilistic graphical models such as Bayesian networks, Markov networks,

and conditional random fields are widely used for knowledge representation and

reasoning in computational biology, social network analysis, information extraction,

and many other fields. However, the problem of inference limits their effectiveness
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and broader applicability: in many real-world problems, exact inference is

intractable and approximate inference can be unreliable and inaccurate. This

poses difficulties for parameter and structure learning as well, since most learning

methods rely on inference.

A compelling alternative is to work with model classes where inference is

efficient, such as bounded treewidth models (Bach and Jordan, 2001; Chechetka

and Guestrin, 2008), mixtures of tractable models (Meila and Jordan, 2000;

Rahman et al., 2014a), sum-product networks (SPNs) (Poon and Domingos, 2011;

Gens and Domingos, 2013; Rooshenas and Lowd, 2014), and arithmetic circuits

(ACs) (Darwiche, 2003; Lowd and Domingos, 2008; Lowd and Rooshenas, 2013).

Previous work has demonstrated that these models can be learned from data and

that they often meet or exceed the accuracy of intractable models. However, most

of this work has focused on joint probability distributions over all variables. For

discriminative tasks, the conditional distribution of query variables given evidence,

P (Y|X ), is usually more accurate and more compact than the joint distribution

P (Y ,X ).

To the best of our knowledge, only a few algorithms address general tractable

discriminative structure learning. These include learning tree conditional random

fields (tree CRFs) (Bradley and Guestrin, 2010), learning junction trees using

graph cuts (Shahaf et al., 2009), max-margin tree predictors (Meshi et al., 2013)

and mixtures of conditional tree Bayesian networks (MCTBN) (Hong et al.,

2014). The first three methods are limited to pairwise potentials over the query

variables. MCTBN learns a mixture of trees, which is slightly more flexible but still

performed poorly in our experiments.
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In this chapter, we present DACLearn (Discriminative AC Learner), a flexible

and powerful method for learning tractable discriminative models over discrete

domains. DACLearn is built on ACs, a particularly flexible model class that

is equivalent to SPNs (Rooshenas and Lowd, 2014) and subsumes many other

tractable model classes. DACLearn performs a search through the combinatorial

space of conjunctive features, greedily selecting features that increase conditional

likelihood. In order to keep the model compact, DACLearn uses the size of the AC

as a learning bias. Since DACLearn is modeling a conditional distribution, its ACs

can condition on arbitrary evidence variables without substantially increasing the

size of the circuit, leading to much more compact models. DACLearn is similar to

previous AC learning methods (Lowd and Domingos, 2008; Rooshenas and Lowd,

2013), but it discriminatively learns a conditional distribution instead of a full joint

distribution. DACLearn also introduces new initialization and search heuristics that

improve the performance of existing generative AC learning algorithms.

4.1.1. Conditional Random Fields

Consider sets of discrete variables Y = {Y1, Y2, · · · , Yn} and X =

{X1, X2, · · · , Xm}. Conditional random fields1 (CRFs) (Lafferty et al., 2001) are

undirected graphical models that represent the conditional probability distribution

of query variables Y given the evidence variables X :

P (Y|X ) =
1

Z(X )

∏
c

φc(Dc), (Equation 4.1)

1Also known as conditional Markov networks.
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where each φc is a real-valued, non-negative function, known as a potential

function, with scope Dc ⊂ X ∪ Y . Z(X ) is a normalization function, also called the

partition function, which only depends on evidence variables X . A Markov network

can be seen as a special case of a CRF with no evidence variables, so X is empty

and the partition function Z is a constant.

If all potential functions of Equation 4.1 are positive, then we can represent

the conditional probability distribution using an equivalent log-linear formulation:

logP (Y|X ) =
∑
i

wifi(Di)− logZ(X ), (Equation 4.2)

where fi is a logical conjunction of variable states. For example, for three binary

variables X1, Y1, and Y2, we can define f1(Y1, X1) = x1 ∧ ¬y1 and f1(Y1, Y2) =

y1 ∧ y2.

4.2. Conditional ACs

Inference in probabilistic graphical models such as CRFs is typically

intractable. An appealing alternative is tractable probabilistic models, which

can efficiently answer any marginal or conditional probability query. Our focus

is on arithmetic circuits (ACs) (Darwiche, 2003), a particularly flexible tractable

representation. An arithmetic circuit (AC) is a tractable probabilistic model over

a set of discrete random variables, P (X ). An AC consists of a rooted, directed,

acyclic graph in which interior nodes are sums and products. Each leaf is either

a non-negative model parameter or an indicator variable that is set to one if a

particular variable can take on a particular value.

50



For example, consider a simple Markov network over two binary variables

with features f1 = y1 ∧ y2 and f2 = y2:

P (Y1, Y2) =
1

Z
exp(w1f1 + w2f2).

Figure 4.1. represents this probability distribution as an AC, where θ1 = ew1 and

θ2 = ew2 are parameters, and λy1 = 1(y1=1) and λy2 = 1(y2=1) are indicator variables.

In an AC, to compute the unnormalized probability of a complete

configuration P̃ (X = x), we first set the indicators variable leaves to one or zero

depending on whether they are consistent or inconsistent with the values in x.

Then we evaluate each interior node from the bottom up, computing its value as a

function of its children. The value of the root node is the unnormalized probability

of the configuration. However, the real strength of ACs is their ability to efficiently

marginalize over an exponential number of variable states. To compute the

probability of a partial configuration, set all indicator variables for the marginalized

variables to one and proceed as with a complete configuration. The normalization

constant Z can similarly be computed by setting all indicator variables to one.

Conditional probabilities can be computed as probability ratios. For example, for

the AC in Figure 4.1., we can compute the unnormalized probability P̃ (y1) by

setting λ¬y1 to zero and all others to one, and then evaluating the root. To obtain

the normalization constant, we set all indicator variables to one and again evaluate

the root.

Sum-product networks (SPNs) (Poon and Domingos, 2011) are closely related

to ACs – both represent probability distributions as a computation graph of sums

and products, and both support linear-time inference. In discrete domains, SPNs

can be efficiently converted to ACs and vice versa Rooshenas and Lowd (2014). For
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FIGURE 4.1. Simple arithmetic circuit that encodes a Markov network with two
variables y1 and y2 and two features f1 = y1 ∧ y2 and f2 = y2

representing and manipulating tractable log-linear models, ACs are a better fit,

since they represent parameters directly as parameter nodes rather than implicitly

as edge weights.

This efficient marginalization relies on two properties of ACs (Darwiche,

2003; Lowd and Domingos, 2008): 1) An AC is decomposable if the children of

a product node have no common descendant variable. 2) An AC is smooth if the

children of a sum node have identical descendant variables. We say that an AC is

valid if it satisfies both properties. Valid ACs can compactly represent probabilistic

graphical models with low tree-width, sum-product networks (Poon and Domingos,

2011; Rooshenas and Lowd, 2014), and many high tree-width models with local

structure (Chavira and Darwiche, 2005).

A valid AC can efficiently marginalize over any variables, but this comes at

a cost: converting a Bayesian or Markov network to a valid AC could lead to an

exponential blow-up in size. For discriminative tasks, however, we only need a

conditional probability distribution, P (Y|X ). In this case, we will never need to

marginalize over any variables in X , since we assume they are given as evidence.
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By relaxing the validity constraints over those variables, we can obtain a more

compact AC.

Definition 4.1. An AC over query variables Y and evidence variables X is

conditionally valid if it is smooth and decomposable over Y .

Note that replacing indicator variables for X with constants does not affect

smoothness or decomposability over Y . Therefore, after conditioning on any

evidence x (that is, assigning values to indicator variables as described earlier),

we are left with a valid AC over Y . A conditionally valid AC therefore defines

a tractable conditional probability distribution: for each configuration of evidence

variables, it defines a tractable distribution over query variables.

Relaxing the definition of validity effectively allows features to be conditioned

on arbitrary evidence without substantially increasing the complexity of inference.

This ability to add complex dependencies on the evidence is also a stated benefit

of CRFs. ACs offer the additional benefits of rich structure and tractable inference

over the query variables. See Figure 4.2. for an example of how a conditionally

valid AC can remain compact while including numerous dependencies on the

evidence.

4.3. DAClearn

Learning CRFs includes structure learning, finding the set of feature functions

f , and parameter learning, finding the optimal values for θ = ew through joint

optimization.

DACLearn builds on methods for learning tractable Markov networks, the

ACMN algorithm in particular (Lowd and Rooshenas, 2013). As with learning a

Markov network, DACLearn performs a greedy search through the combinatorial
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FIGURE 4.2. Conditional arithmetic circuit that encodes a conditional random
field over two binary query variables y1 and y2, two binary evidence variables x1
and x2, and five features f1 = y1∧y2, f2 = y2, f3 = y1∧y2∧x1, f4 = f3 = y1∧y2∧¬x1,
and f5 = ¬y2 ∧ x1 ∧ x2.

space of conjunctive features, using the size of the corresponding AC as a learning

bias. However, rather than optimizing log-likelihood, DACLearn optimizes the

conditional log-likelihood (CLL) of the training dataset D:

CLL(D) =
∑

(y,x)∈D

logP (y|x)

=
∑

(y,x)∈D

∑
j

wjfj(dj)− logZ(x) (Equation 4.3)

where dj denotes the values of y and x for the variables that are in the scope of

fj. As mentioned earlier, the partition function Z depends on evidence, so in order

to compute the CLL objective function, we need to run inference in the model for

every example. Therefore, the complexity of evaluating the CLL objective function
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is |D| times larger than the complexity of inference in the model, which increases

the importance of efficient inference.

Moreover, similar to ACMN, DACLearn updates the circuit that represents

the CRF model as it adds features to the model. However, DACLearn maintains a

conditionally valid AC to represent a conditional distribution.

These two changes allow us to learn arbitrary CRFs, where the conditional

distribution over the query variables is always tractable. As with ACMN, these

models may have high treewidth over the query variables yet remain tractable due

to context-specific independence among the features.

In the following sections, we describe our procedures for structure search,

parameter learning, and updating circuits in more detail.

4.3.1. Structure search

The goal of structure search is to find features that increase the value of the

CLL objective function, Equation 5.3, without vastly increasing the complexity

of inference in the model. Therefore, following Lowd and Domingos (2008) we

optimize a modified objective that penalizes circuits with more edges:

Score(C,D) = logP (D;C)− γne(M)− λnp(M)

where logP (D;C) is the CLL of the training data, ne is the number of edges in

the circuit, and np is the number of parameters, to help avoid overfitting. γ and λ

are hyperparameters that adjust how much additional edges and parameters are

penalized.
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The value of adding a feature can thus be determined by its effect on this

score function. However, rather than adding features individually, we have found

it to be more effective to add groups of related features at once. We define a

candidate feature group F(f, v) to be the result of extending an existing feature

f with all states of variable V :

F(f, v) =
k⋃
i=1

f ∧ vi, (Equation 4.4)

where vi denotes the ith state of some variable V with cardinality k. We score

the candidate feature group as a whole instead of scoring each candidate feature

separately:

Score(F) = ∆cll(F)− γ∆e(F)− λ|F|, (Equation 4.5)

where ∆cll and ∆e denote the change in CLL and the number of edges, respectively,

resulting from adding this set of features to the current circuit.

In order to compute the score of candidate feature group F , we need to

compute the increment in the likelihood, which requires optimizing the weight of

each candidate feature in the group. For efficiency, while scoring a feature group

we assume that the weights of the other features are fixed, an approach also used

by McCallum (2003). This leads to an approximation of the CLL gain that can

be optimized without rerunning inference in the model. Specifically, if we add a

candidate feature group F(f, v) into the model while keeping the other parameters
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fixed, we can update the partition function using the following relation:

∆ logZ(X ) =

log(
∑
i

exp(θi)P (fi|X ) + P (¬f |X )), (Equation 4.6)

where fi = f ∧ vi, and θi is the weight of fi. P is the probability distribution

represented by the current model. Using an AC, we can compute P (fi|X ) for all

fi ∈ F by running inference in the circuit: once to compute the partition function

Z(X ) and once again to compute all unnormalized P̃ (fi). These unnormalized

probabilities can be computed in parallel by differentiating the circuit (see

Darwiche (2003) for details). For each feature f , we can re-use the expectation

and partition function for candidate feature groups F (f, v) for every variable v.

To find θi, we maximize the increment in the CLL function:

∆cll(F) =∑
(y,x)∈D

(
∑
i

(θiP̃ (fi|x))−∆ logZ(x)), (Equation 4.7)

where P̃ is the empirical probability distribution. The gradient of Equation 4.7

with respect to θi becomes:

∂∆cll(F)

∂θi
=

∑
(y,x)∈D

exp(θi)P (fi|x)

exp(∆ logZ(x))
(Equation 4.8)

As a result, optimizing Equation 4.7 does not require inference in the

candidate model.

Nevertheless, fixing the existing parameters is very restrictive since adding

new features may affect the optimal weights of the current features; thus we
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have to relearn the parameters after adding each feature through joint parameter

optimization. In our experiments, we found that it sufficed to perform this

optimization incrementally, running just one step of gradient descent after adding

each feature. This works because the optimal weights for most features do not

change very much after adding one feature group, so even one step of gradient

descent is sufficient to keep weights close to their optimal values throughout

structure learning. After structure learning is complete, we fine-tune all model

parameters by running joint parameter optimization to convergence.

When we add a candidate feature group to the model, the scores of all the

other candidate feature groups become obsolete, so we have to re-score them. If we

have m candidate feature groups, we may re-score a candidate feature group O(m)

times. Therefore, if we initially generate all possible candidate feature groups we

would end up with an exponential number of candidate feature groups that makes

re-scoring become the bottleneck of the learning process. To address this problem,

we use a greedy approach, Algorithm 4, to have a small set of candidate feature

groups (candidate set) at every point of the structure search.

This heuristic is based on the idea that interesting features may have more

support in the data, a heuristic also used by Haaren and Davis (2012) to learn

Markov networks. Although this heuristic will sometimes overlook higher-scoring

feature groups, our experiments verify that, using this heuristic, the algorithm can

better explore the feature space, resulting in more accurate models.

As shown in Algorithm 3, DACLearn maintains a set of candidate feature,

groups ordered by ∆cll. Each candidate feature group that increases the model

score is added to the model. When the current set of feature groups has been

exhausted, it selects the t current features with the most support in the data and
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Algorithm 3 DACLearn

C ← AC representing initial structure. //Section 4.3.1.1.
fs ← ∅ //candidate feature group max heap.
of ← ∅ //omitted candidates max heap.
fh ← feature max heap based on feature support.
//t is feature batch size.
while fs 6= ∅ do
F ← fs.pop()
s ← ∆cll(F)− λ|F|
if s > γ∆e(F) then

Update C
Joint parameter optimization

else
of.push(F)

end if
if size of C > max size then Stop.

end while
for i=1 to t do

f ← fh.pop()
if Support of f < min support then

γ ← γ
2 //Shrink edge cost.

if γ < γmin then
Stop

else
fs ← of; of ← ∅

end if
break

else fs ← GenCandidates(f)
end if

end fornot Stop
return C

uses them to generate new candidate feature groups. Algorithm 4 shows the process

of generating candidate features groups, which consists of extending an existing

feature with all possible variables and computing the conditional likelihood gain

of each new group. Therefore, we need to optimize Equation 4.7 O(t|V |) times for

each round of candidate feature generation.

This process of adding feature groups, ordered by CLL, and generating new

features groups, ordered by feature support, continues until no feature remains with
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FIGURE 4.3. Updating circuits. Left: initial circuit, middle: circuit after a
consistent split, and right: circuit after an inconsistent split.

more than minimal support or the model’s size reaches a predefined maximum size

limit.

During structure search, we may omit some candidate feature groups because

of their edge costs. However, we may run out of good candidate feature groups

while the size of the circuit is much smaller than the maximum circuit size.

Therefore, to benefit from these candidate feature groups, we keep all the omitted

candidate feature groups in a priority heap. These candidates are pruned only

because of the complexity penalty term, so when there are no more features to

expand, we halve the edge penalty γ and re-score these candidate feature groups.

4.3.1.1. Initial Structure

As discussed before, keeping the candidate set small is important to reduce

the number of re-scores. Unfortunately, even scoring pairwise features would require

at least Ω(|V2|) calls to the score function, where V is the set of all variables.

Therefore, we begin with a pre-defined initial structure consisting of heuristically
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Algorithm 4 Candidate feature group generator

procedure GenCandidates(f)
//f is the feature used to generate candidate features.
fs ← empty candidate feature group heap
for each v in V do

k ← cardinality of variable v
F ←

⋃k
i=1 f ∧ vi

//λ is the feature penalty.
if ∆cll(F) > λ|F| then

fs.push(F)
end if

end for
return fs

end procedure

chosen pairwise features. This allows us to consider more complex features given

limited training time.

For each query variable Yi, we introduce a set of potentials φ(Yi, Xj) by

selecting evidence variables Xj with high mutual information, I(Yi, Xj) = H(Yi) −

H(Yi|Xj). Since the circuit does not have to be decomposable and smooth for the

evidence variables, we are free to pick as many evidence variables as we want. The

number of evidence variables chosen is a hyperparameter that we tune on validation

data. We apply the same idea to the query variables. However, we have tractability

constraints for query variables, so we only learn a Chow-Liu tree over the query

variables. Finally, we exactly compile the initial structure to a conditionally valid

AC that represent a CRF, and learn the weihts using convex optimization methods.

4.3.2. Parameter Learning

We jointly optimize all parameters after compiling the initial structure,

adding each feature, and after the end of the structure search. The CLL objective

function is convex with respect to feature weights, so we use the L-BFGS algorithm
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to optimize it. We compute the gradient for all feature weights by differentiating

the circuit once, which only requires two passes over the circuit (Darwiche, 2003).

The partition function of Equation 5.3 depends on evidence variables, so we have to

differentiate the circuit once for each example. This requires performing inference

in the circuit Ω(|D|) times, which highlights the expense of joint optimization and

importance of having efficient inference.

4.3.3. Updating Circuits

Our circuit update method is based on the Split algorithm from ACMN.

Given a feature f in the circuit with parameter θ and a binary variable V , the

goal is to add two features to the circuit, f ∧ v and f ∧ ¬v, with parameters θ1

and θ2, respectively. The left circuit in Figure 4.3. shows the initial circuit. Gθ

indicates the sub-circuit between the common ancestor of indicator variables λv

and λ¬v and parameter node θ. Similarly, the sub-circuits between the common

ancestor and indicator nodes λv and λ¬v are labeled Gv and G¬v, respectively. If

V is a query variable, we have to duplicate the sub-circuit Gθ into Gθ1 and Gθ2,

as shown in the middle circuit of Figure 4.3., and extend each sub-circuit using

the new parameter nodes θ1 and θ2. Parameter node θ is attached to both sub-

circuits, which ensures the decomposability and smoothness of the circuit. On the

other hand, if V is an evidence variable, we have a more compact representation

by avoiding the expensive duplication of Gθ. We refer to this as an inconsistent

split. The right circuit of Figure 4.3. indicates the result of an inconsistent split,

which is conditionally valid. For an inconsistent split, the number of new nodes and

edges added to the circuit is significantly less than the size of Gθ that we need to

duplicate for a consistent split.
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TABLE 4.1. Dataset characteristics

Dataset Var# Train Dataset Var# Train
NLTCS 16 16181 DNA 180 1600
MSNBC 17 291326 Kosarek 190 33375
KDDCup 2000 64 180092 MSWeb 294 29441
Plants 69 17412 Book 500 8700
Audio 100 15000 EachMovie 500 4524
Jester 100 9000 WebKB 839 2803
Netflix 100 15000 Reuters-52 889 6532
Accidents 111 12758 20 Newsgroup 910 11293
Retail 135 22041 BBC 1058 1670
Pumsb-star 163 12262 Ad 1556 2461

4.4. Experiments

4.4.1. Datasets

We run our experiments using 20 datasets illustrated in Table 4.1. with

16 to 1556 binary-valued variables. These datasets are drawn from a variety of

domains, including recommender systems, text analysis, census data, and plant

species distribution, and have been extensively used in previous work (Davis and

Domingos, 2010; Gens and Domingos, 2013; Rooshenas and Lowd, 2014; Rahman

et al., 2014a).

To observe the performance of discriminative structure learning in the

presence of variable number of query variables, we create two versions of these

20 datasets. In one, we label a randomly chosen 50% of the variables as evidence

variables and the other half as query variables. We create the other version of the

datasets by randomly selecting 80% of the variables as evidence variables while the

remaining 20% are query variables.
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4.4.2. Methods

For baselines, we compare to a state-of-the-art generative SPN learner,

IDSPN, and a generative AC learner, ACMN. Our proposed heuristics for structure

search can also help the generative ACMN algorithm to find a better structure.

Therefore, we incorporate those heuristics into the ACMN algorithm, which we

name efficient ACMN (EACMN). Based on our experiments on the 20 datasets,

EACMN is significantly more accurate than ACMN on 13 datasets out of 20

datasets in terms of average log-likelihood of joint probability distribution, and not

significantly different on the remaining 7 datasets. Moreover, EACMN, on average,

finds 1.7 times more features, while its circuits are 2.5 times more compact. These

comparisons show the importance of our search heuristics. See the supplementary

material for a more detailed comparison between ACMN and EACMN. By using

EACMN as a baseline, we ensure that any performance gains demonstrated by

DACLearn are attributable to discriminative learning, and are not simply an

artifact of the new structure search efficiency heuristics.

To compare the effect of discriminative parameter learning, we also take the

best models learned by EACMN, based on average log-likelihood on validation

data, and relearn their parameters to maximize CLL. We call this method

conditional ACMN (CAMCN). This idea is similar to discriminative learning of

SPNs (Gens and Domingos, 2012), which supposes a predefined SPN structure and

then applies a discriminative weight learning approach to learn the parameters.

As our last baseline, we choose MCTBN (Hong et al., 2014), which learns a

mixture of conditional tree Bayesian networks. To find each tree, MCTBN needs to

learn O(n2) logistic regression models, where n is the number of query variables,
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and each logistic regression does O(|D|) passes over training data. This makes

MCTBN less practical when the number of query variables increases2.

For all of the above methods, we learn the model using the training data and

tune the hyper-parameters using the validation data, and we report the average

CLL over the test data. To tune the hyper-parameters, we used a grid search

over the parameter space. We used the original IDSPN models learned by the

authors (Rooshenas and Lowd, 2014)3.

For EACMN, CACMN, and DACLearn, we use an L1 prior of 0.1, 0.5, 1, and

2, and a Gaussian prior with a standard deviation of 0.1 and 0.5. For EACMN,

we use feature penalties of 2, 5, and 10, an edge penalty of 0.1, a maximum circuit

size of 2M edges, and a feature batch size of 2. For DACLearn, we use the same

settings for feature penalty, edge penalty and feature batch size, but reduce the

maximum circuit size to 1M edges. We also use 1, 10, 20, 30, and 40 as the number

of initial evidence variables connected to each query variable. For MCTBN, we

run the authors’ code4, but we tune the cost hyper-parameter on validation data,

instead of using the default cross-validation. In our experiments, we found that

using the validation data helps MCTBN avoid overfitting the training data. For

the cost parameter we used values of 0.01, 0.05, 0.1, 0.5, 1, and 2. We also train

MCTBN with 1, 2, 3, and 4 mixture components.

We bounded the learning time of all methods to 24 hours, and we ran our

experiments on an Intel(R) Xeon(R) CPU X5650@2.67GHz.

2Another baseline would be learning tree CRFs (Bradley and Guestrin, 2010), however, its
implementation is not usable due to a broken library dependency.

3http://ix.cs.uoregon.edu/~pedram/ac_models.tar.gz

4https://github.com/charmgil/M-CTBN
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Our implementations of DACLearn, EACMN, CACMN, and IDSPN are all

available in the open-source Libra toolkit (Lowd and Rooshenas, 2015), available

from http://libra.cs.uoregon.edu/.

4.4.3. Results

Table 4.2. shows the average CLL comparison of DACLearn and the

other baselines on 20 datasets with 50% and 80% evidence variables5. We use

∗ to indicate that DACLearn has significantly better test set CLL than the

corresponding method on the given dataset, and • for the reverse. We also use

◦ to show that two methods are not significantly different. The bold numbers

only highlight which method out 5 has the better average CLL on the given

dataset. Wins and losses are determined by two-tailed paired t-tests (p < 0.05).

Based on the results, DACLearn is never significantly worse than MCTBN,

CACMN, and EACMN, on the 20 datasets with 80% evidence variables, and only

is significantly worse than IDSPN on two datasets. Furthermore, DACLearn has

better average CLL than the other methods on 15 datasets. As we decrease the

number of evidence variables, the benefits of discriminative learning diminish (as

expected), but DACLearn still significantly outperforms the other methods on

many datasets. MCTBN reaches the 24 hour limit without training all the needed

O(n2) logistic regressions on 3 datasets. Table 4.2. also shows that discriminative

parameter learning is no substitute for discriminative structure learning. The

performance of CACMN is much closer to EACMN than to DACLearn. This is

because DACLearn learns conditionally valid ACs, which allows DACLearn to

consider many models that EACMN and CACMN cannot compactly represent

5For more detailed results, including timing information, see the online appendix at http:
//ix.cs.uoregon.edu/~pedram/daclearn/

66



T
A

B
L

E
4.

2.
A

ve
ra

ge
co

n
d
it

io
n
al

lo
g-

li
ke

li
h
o
o
d

(C
L

L
)

co
m

p
ar

is
on

.
•

sh
ow

s
si

gn
ifi

ca
n
tl

y
b

et
te

r
C

L
L

th
an

D
A

C
L

ea
rn

,
∗

in
d
ic

at
es

si
gn

ifi
ca

n
tl

y
w

or
se

C
L

L
th

an
D

A
C

L
ea

rn
,

an
d
◦

u
se

d
w

h
en

C
L

L
is

n
ot

si
gn

ifi
ca

n
tl

y
d
iff

er
en

t.
T

h
e

b
ol

d
n
u
m

b
er

s
h
ig

h
li
gh

ts
th

e
m

et
h
o
d

th
at

h
as

th
e

b
es

t
C

L
L

on
ea

ch
d
at

as
et

.
T

h
e

la
st

ro
w

,
su

m
m

ar
iz

es
th

e
n
u
m

b
er

of
w

in
s

(W
),

ti
es

(T
),

an
d

lo
ss

es
(L

)
of

D
A

C
L

ea
rn

co
m

p
ar

in
g

to
th

e
ot

h
er

b
as

el
in

es
b
as

ed
on

th
e

si
gn

ifi
ca

n
ce

re
su

lt
s.
†

in
d
ic

at
es

th
e

ex
p

er
im

en
t

h
as

n
ot

fi
n
is

h
ed

gi
ve

n
th

e
24

h
ou

r
li
m

it
.

50
%

E
v
id

en
ce

va
ri

ab
le

s
80

%
E

v
id

en
ce

va
ri

ab
le

s
D

at
as

et
ID

S
P

N
E

A
C

M
N

C
A

C
M

N
D

A
C

L
M

C
T

B
N

ID
S
P

N
E

A
C

M
N

C
A

C
M

N
D

A
C

L
M

C
T

B
N

N
L
T

C
S

-2
.7

74
◦

-2
.7

81
∗

-2
.7

80
∗

-2
.7

7
0

-2
.7

92
∗

-1
.2

62
◦

-1
.2

65
∗

-1
.2

62
∗

-1
.2

5
5

-1
.2

63
∗

M
S
N

B
C

-2
.9

22
∗

-2
.9

25
∗

-2
.9

25
∗

-2
.9

1
8

-3
.2

53
∗

-1
.5

5
7
◦

-1
.5

60
∗

-1
.5

60
∗

-1
.5

5
7

-1
.6

14
∗

K
D

D
C

u
p

20
00

-0
.9

9
6
◦

-1
.0

01
∗

-0
.9

99
◦

-0
.9

98
-1

.0
09
∗

-0
.3

90
∗

-0
.3

87
◦

-0
.3

8
6
◦

-0
.3

8
6

-0
.3

90
∗

P
la

n
ts

-4
.7

59
∗

-4
.8

91
∗

-4
.7

94
∗

-4
.6

5
5

-4
.8

66
∗

-1
.9

15
∗

-1
.9

28
∗

-1
.8

88
∗

-1
.8

1
2

-1
.9

11
∗

A
u
d
io

-1
9.

37
2∗

19
.6

47
∗

-1
9.

51
2
∗

-1
8
.9

5
8

-1
8.

96
5◦

-6
.6

45
∗

-7
.7

77
∗

-7
.6

47
∗

-7
.3

3
7

-7
.3

43
◦

J
es

te
r

-2
5.

54
4∗

-2
5.

59
7
∗

-2
5.

47
7
∗

-2
4
.8

3
0

-2
4.

95
5
∗

-1
0.

43
7∗

-1
0.

42
2∗

-1
0.

35
1∗

-9
.9

9
8

-1
0.

00
4◦

N
et

fl
ix

-2
7.

05
1∗

-2
7.

34
8
∗

-2
7.

28
2
∗

-2
6
.2

4
5

-2
6.

30
9
∗

-1
0.

95
4∗

-1
1.

06
5∗

-1
0.

99
7∗

-1
0.

48
2

-1
0
.4

7
6
◦

A
cc

id
en

ts
-9

.5
66
•

-9
.1

85
•

-9
.1

4
3
•

-9
.7

18
-1

0.
19

8
∗

-3
.9

72
∗

-3
.7

22
∗

†
-3

.4
9
3

-3
.7

11
∗

R
et

ai
l

-4
.8

53
∗

-4
.8

45
∗

-4
.8

44
∗

-4
.8

2
5

-4
.8

40
∗

-1
.7

05
∗

-1
.6

94
◦

-1
.6

91
◦

-1
.6

87
-1

.6
8
5
◦

P
u
m

sb
-s

ta
r

-6
.4

14
◦

-6
.8

44
∗

-6
.6

53
∗

-6
.3

63
-6

.0
0
2
•

-2
.8

51
∗

-3
.2

81
∗

†
-2

.5
9
4

-2
.6

61
∗

D
N

A
-3

5.
72

7∗
-3

4.
56

1•
-3

4
.4

8
0
•

-3
4.

73
7

-3
7.

15
1
∗

-1
2.

72
7∗

-1
2.

15
9◦

-1
2
.0

9
9
◦

12
.1

16
-1

3.
11

6∗
K

os
ar

ek
-5

.0
0
0
•

-5
.0

98
∗

-5
.0

46
◦

-5
.0

53
-5

.1
44
∗

-2
.5

3
5
•

-2
.5

94
∗

-2
.5

57
◦

-2
.5

49
-2

.6
01
∗

M
S
W

eb
-5

.6
58
◦

-5
.6

82
∗

-5
.6

81
∗

-5
.6

5
3

-5
.7

88
∗

-1
.3

76
∗

-1
.3

63
∗

-1
.3

55
∗

-1
.3

3
3

-1
.3

66
∗

B
o
ok

-1
6
.5

3
0
•

-1
7.

52
8
∗

-1
7.

11
5
∗

-1
6.

80
1

-1
6.

76
4
◦

-6
.8

91
∗

7.
36

4
∗

-7
.0

47
∗

-6
.8

1
7

-6
.9

79
∗

E
ac

h
M

ov
ie

-2
5.

39
9◦

-2
7.

35
4
∗

-2
6.

56
8
∗

-2
5
.3

2
5

-2
6.

23
3
∗

-9
.5

73
◦

-1
0.

60
8∗

-1
0.

02
9∗

-9
.4

0
3

-9
.9

96
∗

W
eb

K
B

-7
4.

47
3∗

-7
6.

82
7
∗

-7
5.

84
0
∗

-7
2.

07
2

-6
6
.3

0
2
•

-2
9.

12
7∗

-3
0.

18
9∗

-2
9.

52
2∗

-2
8
.0

8
7

-2
9.

89
1∗

R
eu

te
rs

-5
2

-4
0
.2

0
9
•

-4
3.

12
9
∗

-4
2.

37
9
∗

-4
1.

54
4

†
-1

6
.8

5
3
•

-1
7.

89
5∗

-1
7.

52
9∗

-1
7.

14
3

-1
7.

25
2◦

20
N

ew
sg

ro
u
p

-7
4
.7

8
5
•

-7
8.

22
8
∗

-7
7.

83
1
∗

-7
6.

06
3

†
-2

8.
44

3∗
-2

9.
67

4∗
-2

9.
44

2∗
-2

7
.9

1
8

-2
9.

17
6∗

B
B

C
-1

21
.7

98
∗

-1
24

.5
39
∗

-1
23

.5
04
∗

-1
18

.6
84

-9
3
.1

9
2
•

-4
6.

11
6∗

-4
7.

29
8∗

-4
6.

38
1∗

-4
4
.8

1
1

44
.8

18
◦

A
d

-7
.3

49
∗

-5
.1

84
∗

-4
.6

5
8
•

-4
.8

93
†

-2
.3

41
∗

-1
.6

58
∗

-1
.5

05
∗

-1
.3

7
0

-1
.5

46
∗

W
/T

/L
10

/5
/5

18
/0

/2
15

/2
/3

N
/A

12
/2

/3
15

/3
/2

17
/3

/0
14

/4
/0

N
/A

14
/6

/0

67



as valid ACs. On two of the three datasets where CACMN is significantly better

than DACLearn, EACMN is also significantly better. DACLearn also compares

favorably to IDSPN Rooshenas and Lowd (2014), in spite of the fact that IDSPN

learns models with hidden variables and DACLearn does not.

As discussed earlier, conditionally valid ACs representing P (Y|X ) are more

compact than valid ACs representing P (Y ,X ). We verify this empirically by

measuring the size of circuits learned with each method. The average sizes of the

circuits learned by IDSPN and EACMN are 2.2M and 1.1M edges, respectively,

while the average size of the circuits learned by DACLearn is 55K edges when we

have 50% evidence variables and 22K edges when we have 80% evidence variables.

This means that inference in conditionally valid ACs is 100 times faster than

IDSPN when we have 80% evidence variables!

CACMN is actually less efficient than DACLearn overall, since it performs

weight learning on the much larger ACs learned by EACMN. As a result, it runs

out of time on two datasets. We can avoid this problem by restricting EACMN to

learn smaller models, although this sacrifices accuracy. It is also informative that

CACMN could finish learning using the same circuits when we have 50% evidence

variables, because when we have less evidence it is more likely that more examples

share the same evidence setting, and since the partition function only depends on

evidence, we need to perform inference fewer times.

4.5. Summary

Tractable probabilistic models are a promising alternative to Bayesian

networks, Markov networks, and other intractable models. DACLearn builds on

previous successful methods for learning tractable probabilistic models, extending
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them to learning conditional probability distributions. By optimizing conditional

likelihood and learning a conditionally valid AC, DACLearn obtains more accurate

and more compact ACs than previous generative approaches.

DACLearn is limited to learning conjunctive features over the observed

variables. Previous work with SPNs has shown that mixtures often lead to higher

accuracy. For example, IDSPN uses hierarchical mixtures of tractable Markov

networks to obtain consistently better results than tractable Markov networks

alone (Rooshenas and Lowd, 2014). Learning tractable conditional distributions

with latent variables remains an important open problem.
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CHAPTER V

GENERALIZED ARITHMETIC CIRCUITS

The work presented in this chapter is the result of collaboration between

Rooshenas and Lowd, and Rooshenas is the primary contributor to this work.

Recently, there has been an emerging interest in using non-linear function

estimation, especially deep neural networks, in many domains such as vision,

speech recognition, and language modeling. Deep neural networks such as

convolutional neural networks and recurrent neural networks achieve the state-

of-the-art performance in many tasks such as image classification and image

segmentation (Clevert et al., 2015; Lee et al., 2016). However, deep neural networks

cannot represent functions with structured outputs without exponential blow-up

in the size of the networks. Therefore, recently a combination of neural networks

and graphical models has been introduced (Johnson et al., 2016; Chen et al., 2015;

Zheng et al., 2015; Sohn et al., 2015). These models benefit from using graphical

models to represent interactions among the output variables, while deep neural

networks correlate input variables with the output variables. For applications

such as structured output prediction, in which only the MAP state of variables

is important, we can also learn the interaction of output variables using deep

neural networks (Belanger and McCallum, 2016; Amos et al., 2016). The main

disadvantage of these approaches is that exact inference is not tractable.

To the best of our knowledge, the combination of graphical models and neural

networks have not been studied for representing tractable conditional distributions,

which is the target of this chapter.
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5.1. Motivation and Background

Many prediction tasks such structured output prediction or multi-label

classification can be cast as inference in conditional distributions. For example,

in multi-label classification problems, we are interested in finding the set of most

relevant labels L to a given input x. Suppose we represent each label li with a

binary variable yi such that yi = 1 for all li ∈ L and yi = 0 otherwise. Then

the problem of finding the set of most relevant labels of input x is equal to finding

the MAP state of the conditional distribution that relates output variables Y

with input variables X : ymap = arg maxy P (Y |x), where x is an instantiation of

input variables. Similarly, we can represent any output prediction problem with

a fixed set of input and output variables as an inference problem in a conditional

distribution. For example, in the problem of image denoising, input and output

variables are the pixels of noisy images and denoised images, respectively.

Although training of conditional distributions using different intractable

representations has been studied (Sohn et al., 2015; Peng et al., 2009; Mnih et al.,

2012), only a few works address learning tractable representations (Hong et al.,

2014; Bradley and Guestrin, 2010; Li et al., 2016). The main problem of learning

tractable conditional distributions is the dependence of the partition function

on the input variables, which significantly increases the complexity of structure

learning. Moreover, the existing approaches do not learn or are not able to learn

a rich structure over output variables, which makes them only suitable for simpler

problems where the output variables are not highly correlated given the input.

Bradley and Guestrin (2010) introduce a method for learning tree conditional

random fields. Their method is based on finding the maximum spanning tree over

output variables given some heuristics for scoring each edge. These heuristics
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suppose a known local dependence among output variables and input variables.

Hong et al. (2014) introduce a mixture of conditional trees as a tractable

representation for conditional distributions. They use a similar approach for

learning each tree over output variables, but they approximate the score of each

edge using logistic regression. As a result, their method has to train |Y|2 logistic

regressions to learn each conditional tree. The approach by Li et al. (2016)

also adopts mixture models, but it learns a mixture of conditional Bernoullis,

which is more restricted than the mixture of conditional trees, but its learning

complexity is linear in |Y|. Although mixture models can be used to learn tractable

representations for marginal and conditional queries, answering MAP queries

remains intractable, thus requiring approximation techniques.

In the following section, we introduce generalized arithmetic circuits (GACs)

as a tractable representation for conditional distributions. GACs are able to

represent the prior work on learning tractable conditional distributions as well as

representations with more complex structure over output variables.

5.2. Definition and Properties

A generalized arithmetic circuits (GAC) is a rooted directed acyclic graph,

in which intermediate nodes are operators and leaves are indicator variables, input

variables and parameters. Operators include linear operators, sum and product, as

well as non-linear operators such as sigmoid, exponentiation, or rectified linear unit.

For a discrete variable yi, similar to ACs, an indicator variable λkyi is a binary

variable that depicts the state of variable yi in a given instantiation y of variables

Y : λkyi is one if yi = k or yi does not appear in the instantiation y; otherwise,

λkyi is zero. Therefore, we can assign values to all indicator variables given an
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instantiation of variables. We define this assignment to indicator variables using

Λy, which is a matrix1 such that Λik
y is the corresponding value of indicator λkyi

given the instantiation y of all discrete variables:

– Λ∅ is a matrix whose all entries are one.

– If all variables appear in instantiation y then ∀i,
∑

j Λij
y = 1.

So far, we understand a GAC as a function G over two sets of variables Y and

X . However, we are interested in computing conditional distributions P (Y|X ) given

an unnormalized function G. Therefore, we need to compute the normalization

constant or partition function: Z(x) =
∑

y G(Λy,x; Ω). However computing Z(x)

is intractable in general, but linear in the size of GAC given some constraints in the

graph. To establish these constraints, we have to define some terms:

Definition 5.1. The scope of an intermediate node n over variables Y , s(n,Y),

is a set of variables in Y whose corresponding indicator variables appear in the

subgraph rooted at n.

Definition 5.2. A product node is decomposable over a set of variables Y if the

scopes of its children over Y are disjoint.

Definition 5.3. A sum node is complete over a set of variables Y if the scopes of

its children over Y are the same.

Definition 5.4. A non-linear node is avoidable for a set of variables Y if its scope

over Y is empty.

Let YT ∈ Y be the set of variables that are avoidable for all non-linear nodes and

let YN = Y − YT . .

1In general, Λy is a matrix if all the variables in y have similar dimensions, which we assume
to simply the notations.
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G(Λ,X ,Ω) is a tractable representation for P (YT |YN ,X ; Ω) if:

– Every sum node is complete over YT .

– Every product node is decomposable over YT .

– Every non-linear node is avoidable for YT .

Given a tractable representation GAC G(Λ,X ; Ω) for P (YT |YN ,X ; Ω), the following

quantities can be answered exactly:

– The partition function Z(yN ,x) using a feed-forward evaluation of G, i.e.

evaluating all nodes in G from the leaves to the root:

Z(yN ,x) = G(ΛyN
,x; Ω)

– All conditional marginals P (yi|yN ,x) for all yi ∈ YT using a feed-forward2

and a back-propagation pass over G.

Nevertheless, we can also compute Z(x), but its computation is exponential in the

number of vars in YN , |YN |:

Z(x) =
∑

yN∈YN

Z(yN ,x), (Equation 5.1)

where each term Z(yN ,x) is computed by assigning one possible instantiation to

the variables YN . Therefore, we refer to YT and YN as tractable and intractable

variables, respectively.

2Feed-forward and back-propagation in GACs are similar to neural networks.
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FIGURE 5.1. An example of a generalized arithmetic circuit with two tractable
variables y1 and y2 and three input variables x1, x2, and x3.

5.2.1. Representational Power

GACs can represent different structures. GACs can represent any neural

network by unrolling the multilayer perceptron into its sum, product, or non-linear

functions. In general, the set of tractable variables of a GAC representation of any

neural network is empty. Sum-product networks and arithmetic circuits can also be

represented by GACs with no input variables, intractable variables, and non-linear

nodes.

GACs can represent more complex structures such as mixture of conditional

Bernoullis or a combination of neural networks and graphical models.

Conditional exponential families are the other models that GACs can

represent. In general, a log-linear model with conjunctive feature functions
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F (Λ(Y)) and parameter functions Φ(X,Ω) can be represented using GACs:

P (Y|X ) = exp(F (Λ)TΦ(X,Ω)− logZ(X ,Ω)), (Equation 5.2)

For example, for univariate features f1 = λ1y2 and f2 = λ0y1 , bivariate feature

f3 = λ1y1∧λ
1
y2

, parameter functions φ1(X ,W ) = σ(w1x1+w2x2+b1) and φ2(X ,W ) =

σ(w3x2 + w4x3 + b2), where σ is a sigmoid function, and constant parameter θ1, the

conditional distribution is defined by exp(f1 log φ1+f2 log φ2+f3 log θ1−logZ(X ,Ω)),

where Ω = [w1;w2;w3;w4; θ1] is the set of parameters. The GAC that represents

this distribution is depicted in Figure 5.1..

5.3. Learning

Learning GACs includes parameter learning as well as structure search.

However, the main objective of these two phases can be same. We choose to

maximize the conditional log-likelihood over the trainset D:

CLL(D) =
∑

(y,x)∈D

log P̂ (y|x)− logZ(x,Ω), (Equation 5.3)

where P̂ (y|x) = G(Λy,x,Ω) and Z is the partition function.

To reduce the complexity of structure search, our initial learning algorithms

focus on a specific subclass of GACs. We only explore GACs that represent the

following exponential family:

GAC(Λ,X ; [W ; Θ]) = exp

∑
i

|yi|∑
j=1

Λij log φij(X ,W ) + ΘTΨ(Λ)

 , (Equation 5.4)
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where Ψ is a set of multivariate conjunctive features over the indicator variables.

Moreover, we require that all the output variables are tractable. We also suppose

that φij are the outputs of a standard multilayer perceptron (MLP) parametrized

by W over input variables, unrolled as a subgraph of the GAC structure. However,

the output non-linearity should be only positive; therefore, we used a biased

sigmoid: σ(x) = ε + 1
1+exp(−x) for some ε > 0. All the other non-linearities are

smoothed rectified linear units: log(1 + exp(.)).

Therefore, the structure search reduces to finding the set of conjunctive

features Ψ(Λ). To find feature functions, we build on the DACLearn

algorithm (Rooshenas and Lowd, 2016), which discriminatively learns a conditional

AC.

5.3.1. Structure Search

The goal of structure search is to find a set of feature functions Ψ that

maximize the conditional log-likelihood Equation 5.3.

Since univariate potentials Φ and high-order features Ψ are correlated through

output variables, changing Ψ also affects Φ. Nevertheless, to simplify the structure

search we fix W and Φ throughout the structure search, and only update Θ and Ψ.

Building on DACLearn (Rooshenas and Lowd, 2016), we use a greedy search

in the space of all possible conjunctive features. We first construct a candidate

feature group for each feature in set Ψ: F(f, v) = ∪|v|i=1f ∧ vi, where v ∈ Y .

We score each candidate feature group using the increase in the conditional

log-likelihood, ∆cll, penalized by the increase in the inference complexity,∆e:

Score(F) = ∆cll(F)− γ∆e(F)− α|F|, (Equation 5.5)
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where γ is the edge penalty and α is the parameter penalty3.

After scoring all candidate features, we pick the candidate feature groups with

the highest score and update the GAC in order to represent it.

The new features are used to generate new candidate feature groups.

However, adding one candidate feature group to the model invalidates the score

of previously scored candidate feature groups. Therefore, finding the next best

candidate feature groups requires re-scoring the whole set of candidate feature

groups, which is intractable in practice. In order to increase the efficiency of this

process, we keep the candidate feature groups in a priority group ordered by their

scores and re-score candidate features groups. As long as we find a candidate

feature group such that its new score is greater than or equal to its previous score,

we add the candidate feature group to the model. This process only approximates

the greedy structure search algorithm since it is possible that the score of a

previously low-score candidate feature group increases significantly after adding

one feature, relative to other candidate feature groups. To alleviate this effect, we

periodically re-score the whole set of candidate feature groups.

Updating circuits is based on the procedure described in ACMN (Lowd and

Rooshenas, 2013).

5.4. Experiments

In this section, we discuss the properties of GACs using extensive experiments

on different problems.

3See Section 4.3 for computing ∆cll and ∆e.
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ID-SPN DACLearn MCTBN GACLearn
WebKB -29.127 -28.087 -29.891 -27.860

Reuters-52 -16.853 -17.143 -17.252 -16.841
20 Newsgroups -28.443 -27.918 -29.176 -27.399

BBC -46.116 -44.811 -44.818 -43.418

TABLE 5.1. Average conditional log-likelihood comparison of GACLearn and the
baselines.

5.4.1. Inference Complexity

We train GACs on the Jester dataset (Goldberg et al., 2001) for which we

randomly select 80% of the variables as input variables and the others as output

variables.

We train two models: one with no hidden layer and the other with one hidden

layer of 100 nodes. Figure 5.2. shows the conditional log-likelihood of two models

as we add high-order features. The GAC with no hidden layer starts with a lower

CLL compared to the model with one hidden layer, meaning that the hidden layer

helps more in the pretraining phase to learn better univariate potentials that better

describe the data. As we add more features to the model with no hidden layer, the

difference in CLL decrease since the high-order potentials model the interaction

of variables that was not captured during the pretraining phase. As illustrated by

Figure 5.2., both models finally converge to the same CLL; however, the model

with no hidden layer needs more structure over the output variables. As shown in

Figure 5.3., this causes an exponential increase in the size of the circuit without

a hidden layer. This experiment suggests that we can have more compact GAC

models if we can learn better univariate potentials.
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FIGURE 5.2. Trainset negative conditional log-likelihood versus the number of
high-order features for GACs with multilayer perceptron with no hidden layer and
one hidden layer.

FIGURE 5.3. The number of edges in the circuit versus the number of high-order
features for GACs with multilayer perceptron with no hidden layer and one hidden
layer.

5.4.2. Conditional Log-likelihood

To understand how GACLearn compares to other tractable probabilistic

models, we compare GACLearn with ID-SPN (Rooshenas and Lowd, 2014),

DACLearn (Rooshenas and Lowd, 2016) and MCTBN (Hong et al., 2014). ID-SPN

is a state-of-the-art SPN learner. DACLearn discriminatively learns the structure of

conditional arithmetic circuits, which is a special case of GACs with no non-linear

nodes and no input variables. MCTBN is another tractable model that learns a

mixture of conditional trees.
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TABLE 5.2. Comparison of structural SVM, SPEN, and GACLearn using hamming
loss on the Yeast dataset.

Exact LP LBP SPEN GACLearn
20.2± 0.5 20.5± 0.5 24.3± 0.6 20.0± 0.3 19.9 ± 0.1

We compare these algorithms on a set of text datasets: Reuters-52, 20

Newsgroups, BBC, and WebKB. In these datasets, each sample is a bag-of-words

representation of a document. We randomly choose 80% of the words to be given

as input and compare the algorithms based on the conditional log-likelihood of the

other 20% of words. Table 5.1. shows the average conditional log-likelihood of the

20% output words given the 80% input words, based on which we can conclude

that GACLearn is constantly better than the other baselines.

5.4.3. Multi-label Classification

We compare GACLearn, which learns a tractable GAC representation,

with SPEN (Belanger and McCallum, 2016) and a structural SVM with exact

and approximate inference on a multi-label classification task on the Yeast

dataset (Elisseeff and Weston, 2001), which includes 103 input features of gene

expressions with 1500 genes in the training set and 917 genes in the test set. Each

gene can be labeled with one or more of 14 possible groups, which defines a multi-

label classification problem.

The GAC structure has only one layer of 103 hidden variables.

Table 5.2. shows that GACLearn performs at least as well as a structural

SVM with exact inference. This achievement is mostly attributable to the potential

of GACLearn for learning high-order feature functions, while the structural SVM
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only benefits from univariate and pairwise features. Moreover, GACLearn is also as

good as SPEN, due to its ability to run exact inference.

5.5. Summary

Learning tractable conditional distributions is important in many real-

world problems. In this chapter, we introduced generalized arithmetic circuits

(GACs), which can represent complex structures over input and output variables,

while providing tractable exact inference. We also have introduced GACLearn

for learning GAC representations from data, and experimentally shown that

GACLearn can learn more expressive representations than tractable and intractable

baselines.
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CHAPTER VI

CONCLUSION AND FUTURE DIRECTIONS

In this dissertation, we have studied the problem of learning tractable

representations for probability distributions. These tractable models benefit from

local structures to compactly represent relations among random variables. More

specifically, we have introduced ID-SPN for learning sum-product networks (SPNs).

ID-SPNs represent direct interaction among random variables through Markov

networks represented using arithmetic circuits and represent indirect interaction

using mixture models. As we have shown the final representation is a valid SPN

that outperforms other methods for learning tractable models as well as the state-

of-the-art method for learning intractable Bayesian networks.

Discriminative structure learning is the other problem that we have discussed

in this dissertation. As we have shown, when a set of variables always appear

as evidence, then discriminatively learning conditional distributions given the

evidence set (instead of learning joint distributions over all query and evidence

variables) results in more compact representations. Therefore, we have studied the

approaches for discriminatively learning conditional distributions using tractable

representations. We have introduced two tractable representations: conditional ACs

and generalized ACs. The former is a more compact representation for conditional

tractable distributions comparing to ordinary ACs. The latter, on the other hand,

extends the operations of ACs to non-linear operations, which enables us to learn

a more expressive representation over the evidence variables while we still have a

tractable representation over query variables. We have also introduced DACLearn

and GACLearn for learning conditional ACs and generalized ACs, respectively.
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6.1. Future Directions

Despite the recent developments in algorithms for learning tractable

representation, especially arithmetic circuits and sum-product networks, there

exist many potential problems to be addressed. Here we describe some of the more

relevant future directions regarding the focus of this dissertation.

6.1.1. Max-margin Structure Learning

In many real-world problems, such as gene annotation or multi-label image

and document classification, we care about the most probable state (MAP state)

of a set of interacting labels. The models for answering such queries can be learned

from data using different formulations such as conditional random fields or max-

margin training. Max-margin training is a powerful formulation that has achieved

many state-of-the-art results in recent years. In general, max-margin training

includes minimizing a regularized hinge loss objective function, which depends on

running MAP inference over a loss-augmented dependence structure of labels and

evidence variables. However, MAP inference becomes intractable for high treewidth

structures, so finding an appropriate dependence structure that offers tractable

MAP inference is important. To the best of our knowledge, only a few works

address learning the dependence structure for max-margin training, mainly for low

treewidth structures. SPNs and ACs are able to learn high treewidth models, in

which exact MAP inference is efficient. Therefore, SPNs and ACs are reasonable

candidates to represent the loss-augmented dependence structure over variables.

In general, to find a near-optimal model, we need to generate and score candidate

structures, which are very expensive operations in a max-margin setting. Therefore,
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we could focus on exploring the structures that are beneficial for optimizing the

regularized hinge loss objective function.

6.1.2. Approximate Sum-Product Networks

Many high treewidth graphical models do not have a tractable representation

in SPNs. To represent such intractable models, we need to relax consistency and

completeness conditions of SPNs, which results in networks that are no longer valid

representations of probability distributions. For example, in a consistent SPN,

the children of every product node must have disjoint scopes, defined as the set

of variables appearing in the univariate distributions of their descendants. If we

relax this constraint and let the children of a product node have some common

variables, then it is possible that the parents of the common variables do not

agree on their beliefs over the common variables. In this situation, we need to

incorporate belief propagation into the SPN regular inference procedure, so we

can ensure that the parents agree on their beliefs over the common variables. This

relaxation is interesting since it allows SPNs to represent higher treewidth models

with more compact structures. However, we need to measure the effectiveness of

this relaxation and address its error bounds. We also need to propose an algorithm

for finding near-optimal relaxed SPN structures, which balances the approximation

error and expressiveness of the models.

6.1.3. Learning Conditional Sum-product Networks

Compared to generative models, discriminative models make fewer

independence assumption about the random variables, so they can represent

conditional distributions more compactly. However, discriminative structure
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learning is more complex than generative structure learning. Gens and Domingos

(2013) show that discriminative parameter learning of SPNs with a predefined

structure achieves notable results on real-world image datasets, but in general,

these predefined structures are not always available. Therefore, we need structure

learning algorithms to capture a near-optimal SPN structure. To learn a

conditional SPN, we can either adopt LearnSPN and substitute logistic regression

for leaf distributions, or similar to ID-SPN, learn a sum-product of conditional

ACs. However, in either case, we have fewer samples for learning nodes of the

network as we increase its depth. As a result, discriminatively learned leaf

distributions may not fit data well when the number of samples is small. Therefore,

we need to incorporate a hybrid approach of generative and discriminative learning

to address this problem. Moreover, for conditional SPNs, learning sum and product

nodes is more challenging. Each sum node represent a weighted distribution of its

children, and in a conditional setting, these weights depend on evidence variables

and must be learned generatively or discriminatively. To learn product nodes,

we need practical heuristics to find independent groups of variables, which is

more difficult in a conditional setting. For example, using mutual information to

determine independence in a generative setting is very efficient, but computing

conditional mutual information is very expensive.
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