
INSIGHTFUL PERFORMANCE ANALYSIS OF MANY-TASK RUNTIMES

THROUGH TOOL-RUNTIME INTEGRATION

by

NICHOLAS A. CHAIMOV

A DISSERTATION

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

June 2017

DISSERTATION APPROVAL PAGE

Student: Nicholas A. Chaimov

Title: Insightful Performance Analysis of Many-Task Runtimes through Tool-Runtime
Integration

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Computer and
Information Science by:

Allen D. Malony Chair
Boyana R. Norris Core Member
Hank R. Childs Core Member
Gregory Bothun Institutional Representative

and

Scott L. Pratt Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate
School.

Degree awarded June 2017

ii

© 2017 Nicholas A. Chaimov

iii

DISSERTATION ABSTRACT

Nicholas A. Chaimov

Doctor of Philosophy

Department of Computer and Information Science

June 2017

Title: Insightful Performance Analysis of Many-Task Runtimes through Tool-Runtime
Integration

Future supercomputers will require application developers to expose much more

parallelism than current applications expose. In order to assist application developers in

structuring their applications such that this is possible, new programming models and

libraries are emerging, the many-task runtimes, to allow for the expression of orders of

magnitude more parallelism than currently existing models.

This dissertation describes the challenges that these emerging many-task

runtimes will place on performance analysis, and proposes deep integration between

runtimes and performance tools as a means of producing correct, insightful, and

actionable performance results. I show how tool-runtime integration can be used to

aid programmer understanding of performance characteristics and to provide online

performance feedback to the runtime for Unified Parallel C (UPC), High Performance

ParalleX (HPX), Apache Spark, the Open Community Runtime, and the OpenMP

runtime.

This dissertation includes previously published co-authored material.

iv

CURRICULUM VITAE

NAME OF AUTHOR: Nicholas A. Chaimov

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, OR
Portland State University, Portland, OR
Reed College, Portland, OR

DEGREES AWARDED:

Doctor of Philosophy, Computer and Information Science, 2017, University of
Oregon

Master of Science, Computer and Information Science, 2012, University of
Oregon

Bachelor of Science, Computer and Information Science, 2010, University of
Oregon

Bachelor of Science, Biology, 2007, University of Oregon

AREAS OF SPECIAL INTEREST:

High-Performance Computing
Scientific Computing
Performance Monitoring

PROFESSIONAL EXPERIENCE:

Graduate Research Fellow, Computer and Information Science, University of
Oregon, 2010-2017

Software Engineering Intern, Intel Federal LLC, Summer 2016

Research Assistant, Lawrence Berkeley National Lab, Summer 2015

Research Assistant, Lawrence Berkeley National Lab, Summer 2014

v

GRANTS, AWARDS AND HONORS:

Gurdeep Pall Graduate Student Fellowship, University of Oregon, 2016

Student Travel Grant, High Performance Distributed Computing (HPDC),
2016

Member of 1st Place Graduate Team, Eugene Luks Programming Competition,
University of Oregon, 2015

Member of 1st Place Graduate Team, Eugene Luks Programming Competition,
University of Oregon, 2012

Member, Upsilon Pi Epsilon International Honor Society for the Computing
and Information Disciplines, 2010-Present

PUBLICATIONS:

Nicholas Chaimov, Allen Malony, Shane Canon, Costin Iancu, Khaled Z
Ibrahim, and Jay Srinivasan. “Scaling Spark on HPC Systems.” International
Symposium on High-Performance Parallel and Distributed Computing (HPDC).
2016.

Nicholas Chaimov, Allen Malony, Costin Iancu, and Khaled Ibrahim. “Scaling
Spark on Lustre.” Workshop On Performance and Scalability of Storage Systems.
2016.

Nicholas Chaimov, Allen Malony, Khaled Ibrahim, Costin Iancu, Shane
Canon, and Jay Srinivasan. “Performance Evaluation of Apache Spark on
Cray XC Systems.” Cray Users Group. 2016.

Md Abdullah Shahneous Bari, Nicholas Chaimov, Abid M Malik, Kevin
A Huck, Barbara Chapman, Allen D. Malony, Osman Sarood. “ARCS:
Adaptive Runtime Configuration Selection for Power-Constrained
OpenMP Applications.” IEEE International Conference on Cluster Computing
(CLUSTER). 2016.

vi

Nicholas Chaimov, Khaled Ibrahim, Sam Williams and Costin Iancu.
“Reaching Bandwidth Saturation Using Transparent Injection
Parallelization.” International Journal of High Performance Computing
Applications. 2016.

Kevin Huck, Allan Porterfield, Nicholas Chaimov, Hartmut Kaiser, Allen D.
Malony, Thomas Sterling, and Rob Fowler. “An Autonomic Performance
Environment for Exascale.” Supercomputing Frontiers and Innovation 2, no. 3
(2015): 49-66.

Robert Lim, Allen Malony, Boyana Norris, and Nicholas Chaimov.
“Identifying Optimization Opportunities Within Kernel Execution in GPU
Codes.” Euro-Par 2015: Parallel Processing Workshops, pp. 185-196. 2015.

Nicholas Chaimov, Khaled Ibrahim, Sam Williams and Costin Iancu.
“Exploiting Communication Concurrency on High Performance
Computing Systems.” International Workshop on Programming Models and
Applications for Multicores and Manycores (PMAM). 2015.

Nicholas Chaimov, Boyana Norris, and Allen D. Malony. “Toward
Multi-target Autotuning for Accelerators.” International Conference on Parallel
and Distributed Systems (ICPADS). 2014.

Nicholas Chaimov, Boyana Norris, and Allen D. Malony. “Integration and
Synthesis for Automated Performance Tuning: the SYNAPT Project.”
International Workshop on Automatic Performance Tuning (iWAPT). 2014.

Nicholas Chaimov, Scott Biersdorff, and Allen D. Malony. “Tools for
machine-learning-based empirical autotuning and specialization.”
International Journal of High Performance Computing Applications 27.4 (2013):
403-411.

vii

ACKNOWLEDGEMENTS

I thank my advisor, Prof. Allen Malony, for his help with research, with

identifying research areas, with securing interesting and useful internships, and, most

of all, for convincing me to pursue a PhD. I also thank Prof. Hank Childs and Prof.

Boyana Norris for their help with my research, as well as Sameer Shende and Kevin

Huck of the Performance Research Lab. I thank my collaborators at Lawrence Berkeley

National Lab: Costin Iancu, Khaled Ibrahim, and Sam Williams; and my collaborators

at Intel: Bala Seshasayee, Romain Cledat, Bryan Pawlowski, and Nick Pepperling.

Parts of this document were supported by the DOE Office of Advanced

Scientific Computing Research (contract number DE-AC02-05CH11231). Parts

of this document are based upon work supported by the Department of Energy

Office of Science under Award Number DE-SC0008717. Support for this work was

provided through the Scientific Discovery through Advanced Computing (SciDAC)

program funded by U.S. Department of Energy, Office of Science, Advanced Scientific

Computing Research (and Basic Energy Sciences/Biological and Environmental

Research/High Energy Physics/Fusion Energy Sciences/Nuclear Physics) under

award numbers DE-SC0008638, DE-SC0008704, DE-FG02-11ER26050 and

DE-SC0006925. This research used resources of the National Energy Research

Scientific Computing Center, a DOE Office of Science User Facility supported

by the Office of Science of the U.S. Department of Energy under Contract No.

viii

DE-AC02-05CH11231. This research used resources of the Oak Ridge Leadership

Computing Facility at the Oak Ridge National Laboratory, which is supported

by the Office of Science of the U.S. Department of Energy under Contract No.

DE-AC05-00OR22725. This work was partially supported by the Intel Parallel

Computing Center at Lawrence Berkeley National Laboratory - Lustre .

ix

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

1.1. Thesis Statement . 2

1.2. Dissertation Outline . 5

1.3. Coauthored Material . 11

II. BACKGROUND AND RELATED WORK 12

2.1. Current Programming Models . 13

2.2. Capturing Performance Data . 23

2.3. Autotuning . 26

2.4. Performance Modeling . 37

2.5. Performance Diagnosis . 43

2.6. Exascale Computing and Future Programming Models 53

2.7. Conclusion . 69

III. ONLINE COMMUNICATIONS ADAPTATION IN UPC 72

3.1. Introduction . 72

3.2. Maximizing Message Concurrency 73

3.3. Communication and Concurrency 76

3.4. Runtime Design . 79

3.5. Network Performance and Saturation 85

3.6. Parallelizing Injection in Applications 95

3.7. Discussion . 105

3.8. Other Related Work . 107

3.9. Conclusion . 108

x

Chapter Page

3.10. Bridge . 109

IV. PERFORMANCE MEASUREMENT AND ONLINE
ADAPTATION IN HPX . 112

4.1. Introduction . 112

4.2. APEX Design . 113

4.3. Experimental Results . 119

4.4. Tuning with a Global View . 123

4.5. Conclusion . 124

4.6. Bridge . 125

V. STORAGE OPTIMIZATION AND VARIABILITY IN SPARK 127

5.1. Introduction . 127

5.2. Motivation . 128

5.3. Spark Architecture . 132

5.4. Experimental Setup . 139

5.5. Single Node Performance . 142

5.6. Scaling Concerns . 143

5.7. Improving Shuffle Scalability With Better Block Management 159

5.8. Spark-Perf Benchmark on Lustre 162

5.9. Localizing Metadata Operations with Shifter 165

5.10. Input Disk I/O versus Shuffle Disk I/O 166

5.11. Localizing JVM and Spark Runtime Metadata Accesses 168

5.12. Xeon Phi and the Effect of Straggler Tasks 169

5.13. Network Latency . 170

5.14. Discussion . 171

5.15. Related Work . 174

5.16. Conclusion . 175
xi

Chapter Page

5.17. Bridge . 176

VI. STRAGGLER ANALYSIS IN OCR . 194

6.1. Introduction . 194

6.2. APEX-OCR Integration . 195

6.3. Task Eligibility . 200

6.4. Tracing OCR Applications . 200

6.5. Blame Analysis . 203

6.6. Load Balancing . 205

6.7. Conclusion . 206

6.8. Bridge . 208

VII. OPTIMIZING SCHEDULING IN OPENMP 209

7.1. Introduction . 209

7.2. Motivation . 210

7.3. Framework . 214

7.4. Experiment Design . 218

7.5. Related Work . 236

7.6. Conclusions . 238

7.7. Bridge . 239

VIII. CONCLUSIONS . 240

REFERENCES CITED . 242

xii

LIST OF FIGURES

Figure Page

1. Comparison of fork-join and task parallelism. 2

2. The fork-join model as used in OpenMP. 14

3. The Communicating Sequential Processes model as used in MPI. 16

4. Architecture of the NVIDIA Fermi GPU family. 19

5. Architecture of the AMD Radeon 7000 GPU family. 20

6. Architecture of the Intel Xeon Phi Knights Corner family. 22

7. Hypothetical architecture for a unified autotuning system. 27

8. Architecture of Orio. 31

9. Architecture of an autotuning system using ROSE. 33

10. Architecture of the Periscope Tuning Framework. 34

11. Architecture of Prophesy. 39

12. Architecture of the Brainy data structure selection system. 42

13. Examples of the Paradyn “why” and “when” hierarchies. 45

14. Architecture of the PERISCOPE system. 47

15. Symptom and cause hierarchies. 50

16. Methodology of DECAN. 52

17. Architecture of the Charm++ load balancer. 57

18. Decision procedure used by PICS. 58

19. DAG for an OCR Fibonacci code. 64

20. Computational model of HPX. 68

21. Runtime architecture of THOR. 80

22. Cray Aries network saturation. 85
xiii

Figure Page

23. Cray Gemini network saturation. 86

24. InfiniBand network saturation. 86

25. Speedup with parallel injection for an all-to-all microbenchmark. 94

26. The exchange boundary communication phase. 97

27. Fraction of time spent communicating in miniGMG. 97

28. Performance of UPC miniGMG with parallelization relative to
without parallelization. 99

29. Performance of UPC miniGMG with selective parallelization relative
to without parallelization. 99

30. Performance of UPC miniGMG with communication servers relative
to without parallelization. 100

31. Performance of UPC+CUDA miniGMG with communication servers. 102

32. Aggregate bandwidth achieved with one-sided Put and Get operations. 110

33. Performance of the UPC-FT benchmark. 110

34. Overall trends comparing hybrid setup. 111

35. Design of the APEX introspection system. 113

36. Performance behavior of HPX 1D Stencil under different throttling policies. . 121

37. HPX miniGhost strong scaling. 122

38. Energy usage of HPX miniGhost under different throttling policies. 123

39. Local and global tuning sessions of HPX 1D stencil. 124

40. Decomposition of a Spark job into stages and tasks. 133

41. Data movement in Spark. 133

42. Architecture of the Lustre filesystem. 134

43. Node architecture of the Cori Burst Buffer. 135

44. Network topology of the Cori Burst Buffer. 135

45. Big Data Benchmark single node performance. 142

xiv

Figure Page

46. Distribution of file I/O on Lustre vs. ext4 local disk. 144

47. Time for map and reduce phases of GroupBy. 148

48. Average time for open, read, and write operations. 149

49. Performance improvements from amortizing file opens. 151

50. GroupBy and PageRank performance on Cori. 153

51. GroupBy weak scaling on Cori. 154

52. PageRank and Big Data Benchmark scaling on Cori. 155

53. GroupBy at large scale on Cori on Lustre. 158

54. GroupBy at large scale on Cori on Lustremount. 158

55. PageRank perfomrance on Edison. 160

56. I/O behavior of PageRank on Edison. 160

57. Number of partitions read during shuffe for PageRank. 177

58. GroupBy performance on Lustre or RAMdisk. 178

59. GroupBy performance on Lustre or local SSD. 178

60. Slowdown of Spark Core benchmarks on Comet. 179

61. Slowdown from open-per-read rather than single-open. 179

62. Slowdown of MLLib on Comet. 180

63. Architecture of Shifter. 181

64. GroupBy benchmark on Lustre, RAMdisk, or per-node loopback filesystem. . . 181

65. Slowdown of Spark Core on Cori with Lustre instead of loopback filesystem. . 182

66. Slowdown of MLLib on Cori with Lustre instead of loopback filesystem. . . . 183

67. Weak scaling for MLLib on loopback filesystems and local SSDs. 184

68. Weak Scaling results for Mini TeraSort. 185

69. Weak Scaling results for Big Data Benchmark. 185

70. Weak Scaling results for Power Iteration Clustering. 186

xv

Figure Page

71. Weak Scaling results for Spearman Correlation. 186

72. Weak Scaling results for Pearson Correlation. 187

73. Weak Scaling results for GroupBy on Xeon Phi. 187

74. Weak Scaling results for GroupBy on Xeon Phi in Cache vs Flat
MCDRAM mode. 188

75. Time spent in garbage collection for GroupBy on Xeon Phi. 188

76. Execution traces of GroupBy on Haswell and Xeon Phi. 189

77. Hypothetical execution time of GroupBy after removing stragglers. 189

78. Weak scaling for the first block MLLib benchmarks for Comet IPoIB,
Comet RDMA, and Cori. 190

79. Weak scaling for the second block MLLib benchmarks for Comet
IPoIB, Comet RDMA, and Cori. 191

80. Weak scaling for the third block MLLib benchmarks for Comet
IPoIB, Comet RDMA, and Cori. 192

81. Bandwidth by message size for UDP and native RDMA on Comet
and Cori. 192

82. Injection CPU overhead by message size for UDP and native RDMA
on Comet and Cori. 193

83. End-to-end latency by message size for UDP and native RDMA on
Comet and Cori. 193

84. Design of the OCR-APEX interface. 196

85. Task creation graph of the HPCG miniapp. 198

86. Concurrency visualization of the Stencil2D benchmark. 199

87. Concurrency visualization of the HPCG miniapp. 199

88. Task eligibility visualization of the HPCG miniapp. 201

89. User interface of the APEX Trace Viewer. 202

90. Process for assigning blame for idle regions. 204

91. OCR MiniAMR with and without load balancing policy. 207

xvi

Figure Page

92. Execution time for compute_rhs using different OpenMP runtime
configurations. 212

93. Feature comparison between the default and ARCS-Offline strategy. 226

94. Execution time and package energy comparison among the default
and ARCS strategies in SP . 227

95. Execution time and energy consumption comparison of ARCS
strategies and the default strategy in data set C of SP. 228

96. Feature comparison between the default and ARCS-Offline strategy at
TDP power level for compute_rhs region of BT. 230

97. Application level execution time and package energy comparison
among the default and ARCS strategies in BT with data set B. 232

98. Application level execution time and package energy comparison
among the default and ARCS strategies in LULESH. 234

99. OpenMP events data for top 5 time consuming regions from LULESH. 235

100. Feature comparison among default and ARCS strategies on
CalcFBHourglassForceForElems_1 region. 236

xvii

LIST OF TABLES

Table Page

1. Sizes of messages sent by UPC+CUDA miniGMG. 102

2. Messages sent in MLLib pic benchmark. 167

3. Per-parallel-region parameter settings with best performance for NAS
OpenMP benchmarks. 211

4. Set of ARCS search parameters for OpenMP parallel regions. 217

5. Optimal configuration chosen by ARCS-Offline strategy for SP regions. 224

xviii

CHAPTER I

INTRODUCTION

Current supercomputers are equipped with O(10,000) nodes, each with

within-node concurrency of O(100), providing performance of tens to one hundred

petaflops [216]. Reaching exascale performance will require increases in both

within-node concurrency to O(1,000) and in the number of nodes to O(100,000),

with the effect that in order to make use of the available resources, programs will need

to expose multi-billion-way concurrency [6]. The requirement to make available such

a large volume of concurrent work is driving the development of new programming

models and runtimes for those models: the many-task runtime [56].

The central idea behind task parallelism is that work is divided into discrete

chunks which carry dependency information. The runtime’s primary responsibility is

to schedule work whose dependencies have been satisfied, and to switch between tasks

with as little overhead as possible. Traditional runtimes such as MPI and OpenMP rely

on synchronization primitives such as locks and barriers to enforce correct ordering

of operations, resulting in the potential for load imbalance to severely limit utilization

of available computational resources. Task-based runtimes replace locks and barriers

with runtime awareness of dependencies, reducing idleness by allowing cores to

begin processing work as soon as it is available, rather than waiting at barriers until an

entire phase of the application has completed. They also allow for adaptation to system

variability by allowing work to migrate across nodes to address load imbalance caused

by node variability; to do this, units of work are virtualized relative to hardware. Data

is often also virtualized, so that data can be moved to work, or work can be moved to

data, depending upon whichever is cheaper [199]. Figure 1 demonstrates the advantage

of a task-based approach over a traditional fork-join approach.

1

Figure 2.1: Fork-join execution (top) versus asynchronous execution (bottom) of the same
task based linear algebra algorithm. The trace shows the execution of di↵erent tasks on
di↵erent threads as tiles of di↵erent colors, with white space meaning that a thread is idle.

provide any needed parallelism. The result of this design decision was a fork-join style

of parallelism, where single core work may be followed by highly parallel Level-3 BLAS

routines, which is then followed by a synchronization point and another serial section of

the code. When there were just a few cores available, the loss of performance due to the

synchronization was minimal. However, as the number of available cores has increased, this

opportunity cost has become substantial. Fig. 2.1 shows both the trace of a fork-join style

execution and the data driven asynchronous execution of the same task based algorithm;

the di↵erence between the execution time for the two implementations can be substantial.

Here we review the software design behind the LAPACK library for shared-memory. In

particular, we focus on three widely used factorizations used in scientific computing, i.e.,

QR, LU and Cholesky. These factorizations will be used throughout this dissertation to

guide and evaluate our research.

LAPACK provides a broad set of linear algebra operations aimed at achieving high

performance on systems equipped with memory hierarchies. The algorithms implemented

in LAPACK leverage the idea of algorithmic blocking to localize the operations to smaller

chunks of data which can be held in the faster, smaller levels of the memory hierarchy. This

limits the amount of memory bus tra�c in favor of high data reuse from the faster, higher

level memories such as L1 and L2 cache memories.

The idea of blocking revolves around an important property of Level-3 BLAS operations

(matrix-matrix operations), the surface-to-volume property, which means that for Level-3

13

Figure 1. Comparison of fork-join and task parallelism. Execution trace of the same
algorithm implemented using fork-join parallelism (top) and task-based parallelism
(bottom). The bottom version executes in less time because worker threads can
continue executing tasks as soon as the tasks’ dependencies have been satisfied. From
[244].

Application developers need performance-monitoring tools in order to

understand the performance of their application so that they can determine what

optimizations are needed to increase performance. Many such tools exist for programs

written using traditional programming models. Changing from a fork-join or bulk

synchronous programming model to a much more dynamic task-based model, in

which different runs of the same application on the same data can result in different

task schedules, and in which the assignment of both work and data to computational

and storage resources are under the control of the runtime rather than the application,

will require new tools. This document proposes new tools to aid in producing correct,

insightful, and actionable performance measurements in emerging task-based runtimes.

1.1 Thesis Statement

The central premise of the dissertation is that correct, insightful, and

actionable performance monitoring requires integration between tools and

runtimes.

Applying a performance monitoring tool designed for traditional programming

models to applications using a task-based runtime may yield results which are not

2

correct: the tool may prevent the application from running to completion, such as by

making assumptions about a maximum number of threads which are violated by the

runtime, or by introducing overheads which are acceptable for the lower levels of

concurrency exposed by traditional runtimes but which unacceptably distort timings

when a large number of short-running tasks are timed.

They may produce results which are not insightful: by being unaware of the

greater levels of abstraction found in task-based runtimes, a traditional performance

monitoring tool will provide data at the level of the runtime and not of the application.

For example, sampling the processes being executed and providing a report of the

amount of time spent in each function is unlikely to provide insight, as it is not useful

for an application developer to learn that during execution of the application, time

was spent in various scheduling and network functions internal to the runtime. The

tool must instead map runtime operations to their associated application-level task,

providing the developer with performance data at the level of the application.

Finally, they may produce results which are not actionable: the tool must make

clear, for a given performance problem, what changes could remedy the problem.

Consider an application, measurement of which reveals regions of low concurrency,

during which many workers do not have tasks assigned to them. Knowing this is not

sufficient for the developer to know what to do about it. The application developer

needs to know why no tasks are running: are there tasks whose dependencies have been

satisfied, but which are not yet executing due to scheduler overhead? If so, a different

scheduler policy may help. Are all existing tasks not yet eligible due to unsatisfied

dependencies? If so, which tasks would have to complete in order for work to be

available? Why, in turn, have those tasks not yet run? A tool for task-based runtimes

should be able to provide answers to these questions.

3

The premise applies equally to tools for online adaptation: integration with the

runtime is required.

As an example, consider the INNCABS benchmarks [213]. These are a

port of the Barcelona OpenMP Task Suite benchmarks (BOTS) [65] to the C++11

asynchronous task facility, which can run either directly on the task implementation of

the C++ compiler’s runtime library, or through HPX. These applications are structured

with a very small task granularity, and were designed with the purpose of testing the

implementation of tasks in C++11 runtimes. Attempting to measure the performance

of the INNCABS benchmarks with traditional performance monitoring tools like

TAU [192] or HPCToolkit [2] reveals the limitations of those tools when applied

to many-task runtimes. When instrumented with TAU, each of the 14 benchmarks

fails to complete due to exhausting resources within TAU, which was not designed

for applications creating millions of threads [89]. When sampled with HPCToolkit,

11 of the 14 benchmarks fail to complete due to exhaustion of tool resources. The

three benchmarks that do complete take an average of 100.59× longer to complete.

In contrast, the INNCABS benchmarks executed on the HPX using APEX for

performance monitoring (as described in Chapter IV) successfully completes and

produces performance profiles with an average overhead of 6%.

Furthermore, the performance data produced by a tool integrated with the

runtime can be designed with the correct abstractions for the runtime. Traditional

performance monitoring tools typically use function-level callpath profiling, where

what is being measured is the time spent in functions captured in terms of the call stack.

For traditional runtimes, this is an appropriate way to measure and present data, as

the runtime is relatively minimal and is primarily invoked by the application code. In

contrast, many-task runtimes incorporate a considerable amount of functionality

4

directly into the runtime, and invert the relationship between runtime and application:

application code is primarily called by the runtime. In consequence, a callpath profile

of a many-task application identifies the set of runtime functions that ultimately

invoked particular application functions, but does not capture the application level

dependencies, with user tasks instead being seen as having been separately invoked by

the runtime scheduler code. A tool integrated with the runtime can collect dependency

data from the runtime, and generally be aware of metadata associated with tasks,

thereby providing performance data at the same level of abstraction exposed by the

runtime to the application developer.

1.2 Dissertation Outline

This dissertation consists of a series of performance studies based on

tool-runtime integration for four different distributed runtimes: UPC [219],

HPX [119], Spark [248], and OCR [152]. This may result in the question: why analysis

of many different runtimes, as opposed to one? The primary reason for studying many

different runtimes is that, while they are all based on the same central abstraction

of tasks, they differ considerably along several axes related to what is abstracted by

the runtime and how explicit the developer must be in specifying dependencies

and resource allocations – or, equivalently, how much freedom the runtime has in

distributing work and data. Additionally, I show that the same techniques can also be

applied to more traditional runtimes, through a performance study with OpenMP.

UPC is a low-level runtime, providing minimal abstractions over work. The

primary abstraction is over data, with the distributed memory of a system being

presented as if it were a single global memory. HPX’s primary abstraction is over work,

with the central premise that work moves to data, rather than data moving to work,

and with dependencies expressed implicitly. OCR abstracts both work and data, and

5

expresses dependencies explicitly. Spark provides the highest level of abstraction of these

runtimes, with abstractions of both work and data, where even the format of the data

is unspecified by the developer and the entire memory hierarchy, from disk to cache, is

managed by the runtime.

These differences occur because these runtimes are themselves research projects:

we do not know which set of design decisions will maximize performance and

programmer productivity, so many different designs are being attempted. It may be

that none of the currently existing runtimes is what is eventually used on exascale

systems. By designing performance monitoring and online adaptation tools that can

work with many currently existing runtimes which have made different design choices,

however, we ensure that the tool design is general enough to be adapted to whatever

runtimes ultimately end up in wide use. Several tools have been developed for specific

runtimes, such as Legion Prof for Legion [21] and Projections for Charm++ [121], but

there has been little prior work on general, portable tools for task-based runtimes.

Background and Related Work. In Chapter 2 of the dissertation, I discuss

background material and related work in the areas necessary for understanding the

work described in this document. I describe the programming models currently

in wide use in high performance computing and the tools that exist for capturing

performance data and diagnosing performance problems in those rumtimes. I then

describe the existing task-based runtimes and emerging many-task runtimes, and

techniques and tools for performance monitoring and online adaptation for them.

Online Communications Adaptation in UPC. In Chapter 3 of the

dissertation, I describe tool-runtime integration in Unified Parallel C [219] (UPC).

UPC is a language which extends C99 [112] with support for shared pointers to a

partitioned global address space and a variety of work-sharing constructs. Shared

6

pointers allow a program to reference an address which may be either local or

remote. If the memory reference is local, this is handled as an ordinary memory

reference. If it is remote, the memory reference is transparently converted into

network operations in the form of Remote Direct Memory Access (RDMA) operations.

Remote communications are thus made implicit, allowing the runtime freedom

to reorder, coalesce, split, or otherwise manipulate communications so long as the

programmer-visible result remains unchanged.

I show how the UPC runtime can be instrumented to capture network flow

data (which nodes are communicating what volume of data with which other nodes),

how the network flow data can be mapped to the application contexts in which they

occur (corresponding to phases of computations), and how these measurements can

be used post-mortem to understand the performance of UPC applications on different

network environments (TCP vs. InfiniBand vs. Cray Gemini vs. Cray Aries), and can

be used online to dynamically adjust the level of concurrency in network injection (a

runtime parameter) based upon the size and destinations of communication requests

(which occur at the application level) in order to maximize throughput and reduce

end-to-end application time.

Performance Measurement and Online Adaptation in HPX. In Chapter

4 of the dissertation, I describe tool-runtime integration in High Performance ParalleX

(HPX). HPX is a task-based runtime and C++ library based on the concept of futures.

A future is an object representing the result of a computation which may or may

not be available yet. Task invocation in HPX returns a future. When a task attempts

to retrieve the result from a future whose result is not yet available (because the

corresponding task has not yet completed), the current task suspends and another task

is scheduled in its place; this is a form of implicit dependency specification. If the future

7

represents the result of a task which executed on a different node, necessary network

operations are automatically performed by the runtime.

I show how the HPX runtime can be instrumented to capture a variety of

different application-level and runtime-level metrics. At the application level, I capture

task metrics: time each class of tasks spends in staging, execution, and yielded states,

and the causes of yields. At the runtime level, I capture scheduler data (lengths of

queues, idle time, network flow data). I then show how these metrics can be used

to determine optimal task granularity and to generate reports and visualizations

that provide the application developer with insight into the performance of their

applications. I then show how user-configurable policies can be used to automatically

adjust task granularity during runtime. I then show how performance measurements

throughout a distributed HPX application can be made available to the runtime and to

policies, providing a global view of overall system performance.

A particularly important aspect of the HPX integration is that the monitoring

tool itself uses HPX runtime features to carry out its measurement, processing, and

communications. Processing of measurements occurs inside HPX tasks, and HPX’s

Active Global Address Space is used to access performance measurements across nodes.

Storage Optimization and Variability in Spark. In Chapter 5 of the

dissertation, I describe tool-runtime integration in Apache Spark [248]. Spark is

a data analytics framework based on a generalization of the Map-Reduce model,

found in systems such as Hadoop, to problems expressed as general data flow graphs.

Operations are carried out on resilient distributed datasets, or RDDs, which store data

across nodes and which carry sufficient information to recompute their contents.

Programs are expressed in terms of RDDs derived from transformations (of which map

is only one) applied to other RDDs and actions (of which reduce is only one). The

8

runtime breaks transformations and actions down into tasks operating on partitions of

RDDs. A notable feature of Spark is that the storage of RDDs is under control of the

runtime: results can be discarded and recomputed as needed, or cached in memory

or saved to disk. Unlike the other runtimes, Spark is designed not for special-purpose

supercomputers but for commodity clusters and cloud environments.

I show how the Spark runtime can be instrumented to capture application-level

and runtime-level metrics. I show that by measuring runtime overheads associated

with internal runtime operations with phases of the application, I can identify the

causes of increased overheads when running on supercomputer systems without local

disks in certain applications (those with substantial wide shuffling). After identifying

inefficient use of remote filesystem resources, I show how both runtime modifications

and application-level modifications can improve performance, and how this is shown

by generated reports and visualizations. The specific problem in this case is not high

average filesystem latency but high variability in filesystem latency resulting in straggler

tasks. I then perform a sensitivity analysis, showing how susceptible to variability each

stage of a Spark application is, and demonstrate an online policy which identifies and

mitigates bottleneck stages.

Straggler Analysis in OCR. In Chapter 6 of the dissertation, I describe

tool-runtime integration in the Open Community Runtime [152] (OCR). OCR

is a task-based runtime which provides abstractions for both work and data. Unlike

HPX, dependencies are specified explicitly at task creation time, and data is represented

explicitly in the task graph, alongside tasks. Among all of the runtimes I evaluate in the

dissertation, OCR thus has the greatest amount of task and datablock metadata with

which to make placement and scheduling decisions. While HPX allows tasks to execute

until they request data not yet available, OCR does not allow a task to execute at all

9

until all input data is ready; thus, once a task begins executing, it always continues to

completion without interruption.

I show how the OCR runtime can be instrumented to capture application-level

and runtime-level metrics. Uniquely to OCR, I show that since the runtime is

itself aware of all dependencies, I can incorporate dependency data into captured

performance profiles and traces. With this dependency data, I develop a tool that can

automatically diagnose the causes of idle regions, providing reports of the form: x

milliseconds of idleness occurred because no schedulable work was available. The idle

region ended at time y, when schedulable work became available; that work could not

execute earlier because it depended on task t1, which depended on task t2, which was

awaiting completion of the running task t3. Task t3 was eligible to run earlier than it

did; thus, a different schedule would have reduced the duration of the idle region. I

show how this analysis can be used to assign task priorities to minimize idleness.

I then show how a monitoring tool can distribute load information partially

by piggybacking on top of existing communications, and partially by using a gossip

protocol, to provide a low-overhead global view of load imbalance. I show how the

performance of an inherently load-imbalanced Adaptive Mesh Refinement application

can be improved through the use of online policy-based load balancing, in which the

monitoring tool provides feedback to the runtime, which it uses in placement of data

and migration of tasks.

Optimizing Scheduling in OpenMP. In Chapter 7 of the dissertation,

I describe tool-runtime integration with OpenMP, a non-distributed, traditional

runtime. Although runtime integration is not necessary in traditional runtimes, it can

nonetheless provide better insights than non-integrated monitoring tools and can

enable online adaptation. I show how integrating with OpenMP runtimes through the

10

OpenMP Tool Interface allows performance measurements to be disaggregated across

invocations of parallel regions, and how this can be used to increase the performance of

OpenMP applications by providing feedback to the runtime on how loop iterations are

scheduled.

Finally, in Chapter 8, I describe general conclusions from the tool-runtime

integrations described in this document and propose additional use cases for such

integrations.

1.3 Coauthored Material

This dissertation includes previously published co-authored material.

Chapter 3 includes co-authored material previously published in the

Proceedings of the Sixth International Workshop on Programming Models and

Applications for Multicores and Manycores (PMAM 2015) [38] and the International

Journal of High Performance Computing Applications (IJHPCA) [40].

Chapter 4 includes co-authored material previously published in

Supercomputing Frontiers [102].

Chapter 5 includes co-authored material previously published in the

Proceedings of the 25th ACM International Symposium on High-Performance

Parallel and Distributed Computing (HPDC 2016) [41], the 2016 Cray Users Group

symposium [39], and the Workshop on Performance and Scalability of Storage

Systems [42].

Chapter 7 includes co-authored material previously published in the IEEE

International Conference on Cluster Computing (CLUSTER 2016) [191].

11

CHAPTER II

BACKGROUND AND RELATED WORK

Parallel programming is difficult. Switching from sequential to parallel

programming introduces entire new classes of errors for the programmer to make,

such as deadlock and race conditions, which are difficult to debug and complicate

testing and correctness proofs [154]. Yet there are entire classes of programs with

computational demands so great that sequential solutions are infeasible. We do parallel

programming because we care about performance.

How do we know if we are getting good performance? We must observe

the execution of our programs to determine if they are making good use of the

resources available to them. Once we have made observations, how can we use those

observations to improve performance? We can use autotuning to identify variants and

parameters that give better performance than others, but this process itself is slow,

so we can attempt to synthesize performance data into empirical models to guide

the process. Alternately, we may ask not simply for better performance, but for an

explanation of performance: automated performance diagnosis. These techniques are

all well-developed for the current high-performance computing environment, but

the advent of exascale computers will be a disruptive change which will require new

techniques for performance monitoring and analysis.

In this paper, I first introduce the models of parallel programming which

are currently in wide use. I then discuss how existing systems collect performance

information. I then discuss automated systems which make use of performance data

once it has been collected: autotuning systems, which measure the performance of

many implementations of a code to identify good-performing variants; automated

modeling systems, which construct models from performance data by which the

12

performance of code can be predicted without running it; and performance diagnosis

systems, which reason about performance data to arrive at hypotheses about the

causes of bad performance. I then discuss the challenges of the coming exascale era

of high-performance computing, and discuss new parallel programming models which

are emerging to meet those challenges. Finally, I discuss problems with existing systems

for collecting and making use of performance data in the exascale era and describe the

features necessary for future such systems.

2.1 Current Programming Models

All current supercomputers consist of many nodes, each of which contain many

individual processors, which are often supplemented by accelerator devices such as

GPUs; the two fastest such systems, Tianhe-2 and Titan, contain 3.12 million spread

across 16,000 nodes and 560,640 cores spread across 18,688 nodes, respectively, with

the former equipped with Intel Xeon Phi accelerators and the latter with NVIDIA K20

GPUs [216]. Thus we need ways of exploiting available parallelism both on-node and

between nodes. By far the most popular solutions for this are OpenMP and MPI [165].

Shared Memory: OpenMP. OpenMP [171] is the most common method of

exploiting on-node parallelism. It uses the fork-join model: programs begin executing

sequentially, eventually fork into multiple threads of execution which operate in

parallel before joining back into a single, sequential thread of execution (Figure 2). It

uses a shared memory model: all threads of execution within a program share the same

address space and access the same memory. It is directive-based: parallelism is expressed

by taking what would otherwise be an ordinary, purely sequential program and

annotating it with directives indicating which parts of the program should be executed

in parallel and how access to shared memory should be managed. Thus the code

do_work();

13

can be made to run multiple times in parallel by adding an annotation

#pragma omp parallel
do_work();

causing multiple threads to be spawned, each of which execute the function do_work

before joining, with the main flow of program execution continuing sequentially once

all the threads have finished do_work.
Parallel Region Parallel Region

Figure 2. The Fork-Join model as used in OpenMP. There is ordinarily one thread of
execution, which forks to become multiple threads in parallel regions. When exiting a
parallel region, the threads join back into a single thread of execution.

When running several instances of do_work in parallel, it may happen that

the separate instances attempt to use the same memory. OpenMP provides several

annotations for controlling access to memory: #pragma omp critical marks sections

of code which only one thread should be allowed to execute at a time. #pragma omp

single marks sections which only one thread should execute at all, while #pragma

omp master marks sections which a specific thread – the one which existed when the

program started and will continue to exist after leaving the parallel region – should

execute. shared and private clauses indicate whether threads should share one copy

of a variable or should each operate on a local copy, while reduction clauses specify

how per-thread local variables should be reduced to a single value which persists in the

master thread after the end of a parallel region.

In the above example, every thread executes the exact same code, which is

almost certainly not what we want – different threads should process different data.

Threads can be distinguished by a thread number which can be retrieved with a call to
14

omp_get_thread_num, so that threads can identify which data they should be processing,

but the more common usage is to use work-sharing constructs which automatically

distribute work to threads, so that if we have a loop

for(int i = 0; i < 1000; ++i) {
do_work(x[i]);

}

we can add a directive

#pragma omp parallel for shared(x)
for(int i = 0; i < 1000; ++i) {

do_work(x[i]);
}

which causes the iterations of the loop to be automatically distributed across the

threads. Several clauses are provided which allow the programmer to customize this

distribution.

Distributed Memory: MPI. MPI [73] is the most common method of

exploiting between-node parallelism. It uses the communicating sequential processes

model: multiple instances of a program begin executing simultaneously, but each

instance executes sequentially. These processes coordinate by sending messages to

one another (Figure 3). It uses a distributed memory model: every process has its own

address space, so every process has its own copy of each variable and changing a

variable in one process does not change the value in any other process. A process

may change the state of another process only by sending it a message. It provides a

low-level API: unlike OpenMP, which provides directives which modify execution of

an otherwise sequential program, MPI programs contain explicit API calls which carry

out communication.

MPI processes all execute the same code. Processes can distinguish themselves

by calling MPI_Comm_rank to obtain their rank. Unlike OpenMP, this is the only
15

way that processes can determine that they should process different data: there is no

equivalent to OpenMP’s loop constructs, so the programmer is responsible for explicitly

partitioning work.

Messages can be point-to-point or collective. Point-to-point messages are sent

by a process through a call to MPI_Send, whose arguments specify the source, size, type

and tag of the data to be sent. A corresponding MPI_Recv call must be executed on

the destination to receive the message. Both calls are blocking; neither the sender nor

the receiver will continue executing until the communication has completed. This

limits the possibility for overlapping communication and computation and creates the

potential for deadlock when communication is cyclic, so nonblocking MPI_ISend and

MPI_IRecv versions are also provided. A set of collectives are also provided for efficient

communication between multiple ranks.

MPI also supports one-sided communication, in which data can be sent to (put)

or retrieved from (get) without an explicit call on the remote rank, using Remote

Direct Memory Access (RDMA). In this mode, memory must be pre-registered

(MPI_Win_create) to make it a valid target of subsequent MPI_Put and MPI_Get calls.

These calls are always nonblocking, and explicit synchronization (MPI_Win_fence) is

required to ensure that the operations have completed before using the values sent or

retrieved through one-sided communication.

Figure 3. The Communicating Sequential Processes model as used in MPI. There
are multiple threads of execution (black), each of which runs sequentially. They
communicate with one another by sending messages (green).

Partitioned Global Address Space: UPC. A disadvantage to MPI is lack of

orthogonality: local communication occurs through direct access to the local memory,
16

using ordinary features built in to the language, while remote communication occurs

through API calls. The Partitioned Global Address Space – or PGAS – approach uses a

common syntax for local and remote communication [245]. The address space is global

– every process can access memory in every process – but is also partitioned: every

address is owned by a particular process, and a pointer consists not only of an address

but also a tag indicating who the owner is. When a process reads or writes through

a pointer to locally-owned memory, this is translated into a local memory address as

normal. When a process reads or writes through a pointer to remotely-owned memory,

this is translated into a message sent over the network which triggers a read or write of

the address in its owning process and, in the case of a read, a reply message containing

the value stored at the address.

Unified Parallel C [219] is a language which extends C99 [112] with support

for shared pointers to a partitioned global address space and a variety of work-sharing

constructs similar to those provided by OpenMP. As in MPI, multiple copies of the

same executable are launched, and these execute the same code. In UPC, pointers and

arrays can be declared shared, making them globally available. For example,

shared double a[3*THREADS];

declares an array a of doubles with three elements per thread (a UPC thread

corresponds to an MPI rank) which is globally accessible. By default, ownership – or

affinity – of memory in an array is assigned cyclically, so that the memory located at the

address a + i is physically located on thread i % THREADS. Arrays can also be divided

into blocks of elements which are distributed cyclically, or each thread can be assigned

a contiguous block of the array.

17

Unlike MPI, UPC provides built-in support for partitioning work across

threads. The upc_forall loop, when encountered by a thread, runs only those loop

iterations which have affinity to the thread that encountered the loop. For example,

shared double x[N], y[N], z[N];
// initialize x and y
int main() {

upc_forall(int i=0; i < N; ++i; i) {
z[i] = x[i] + y[i];

}
}

resembles an ordinary C for loop with the exception of an additional parameter to the

loop. This parameter specifies the affinity, and the value of i here means that a thread

encountering the loop will run all iterations for which i % THREADS == MYTHREAD. Like

MPI, UPC provides synchronization primitives such as UPC_barrier and a variety of

collective communication operations.

Accelerators. As noted above, the current generation of top supercomputers

feature accelerators, as will the next generation of supercomputers which will be

installed in 2017 and 2018. Accelerators generally feature a larger number of cores than

general purpose CPUs, but each core is less capable than those in a CPU.

CUDA. NVIDIA GPUs are available with up to 4,096 cores, but these

cores do not have all features typical of a CPU core: notably, cores are not capable of

independently fetching and scheduling instructions. Rather, a group of cores share

fetch and schedule hardware and always execute identical instructions during the

same clock cycle, differing only in the memory addresses read and written by those

instructions. Figure 4 shows the NVIDIA architecture: all of the cores share L2 cache

and access to the memory and PCIe buses, while sets of 32 cores share L1 cache, fetch

and dispatch units, registers, load-store units and Special Function Units, while each

18

core has its own floating point and integer arithmetic units. AMD GPUs (Figure 5) use

a similar architecture.

7

 H
a

rd
w

a
re

 E
x
e

c
u

tio
n

C
U

D
A

’s h
ie

ra
rc

h
y o

f th
re

a
d

s m
a
p

s to
 a

 h
ie

ra
rc

h
y o

f p
ro

c
e
sso

rs o
n

 th
e
 G

P
U

; a
 G

P
U

 e
x
e
c
u

te
s

o
n

e
 o

r m
o

re
 k

e
rn

e
l g

rid
s; a

 stre
a
m

in
g

 m
u

ltip
ro

c
e
sso

r (S
M

) e
x
e
c
u

te
s o

n
e
 o

r m
o

re
 th

re
a
d

 b
lo

c
k
s;

a
n

d
 C

U
D

A
 c

o
re

s a
n

d
 o

th
e
r e

x
e
c
u

tio
n

 u
n

its in
 th

e
 S

M
 e

xe
c
u

te
 th

re
a
d

s. T
h

e
 S

M
 e

x
e
c
u

te
s

th
re

a
d

s in
 g

ro
u

p
s o

f 3
2

 th
re

a
d

s c
a
lle

d
 a

 w
a
rp

. W
h
ile

 p
ro

g
ra

m
m

e
rs c

a
n

 g
e
n

e
ra

lly ig
n

o
re

 w
a
rp

e
x
e
c
u

tio
n

 fo
r fu

n
c
tio

n
a
l c

o
rre

c
tn

e
ss a

n
d

 th
in

k
 o

f p
ro

g
ra

m
m

in
g

 o
n

e
 th

re
a
d

, th
e
y c

a
n

 g
re

a
tly

im
p

ro
ve

 p
e
rfo

rm
a
n

c
e
 b

y h
a
vin

g
 th

re
a
d

s in
 a

 w
a
rp

 e
x
e
c
u

te
 th

e
 sa

m
e
 c

o
d

e
 p

a
th

 a
n

d
 a

c
c
e
ss

m
e
m

o
ry in

 n
e
a
rb

y a
d

d
re

sse
s.

 A
n

 O
v
e

rv
ie

w
 o

f
A

n
 O

v
e

rv
ie

w
 o

f
A

n
 O

v
e

rv
ie

w
 o

f
A

n
 O

v
e

rv
ie

w
 o

f th
e

 F
e

rm
i A

rc
h

ite
c
tu

re
th

e
 F

e
rm

i A
rc

h
ite

c
tu

re
th

e
 F

e
rm

i A
rc

h
ite

c
tu

re
th

e
 F

e
rm

i A
rc

h
ite

c
tu

re

T
h

e
 first F

e
rm

i b
a
se

d
 G

P
U

, im
p

le
m

e
n

te
d

 w
ith

 3
.0

 b
illio

n
 tra

n
sisto

rs, fe
a
tu

re
s u

p
 to

 5
1
2

 C
U

D
A

c
o

re
s. A

 C
U

D
A

 c
o

re
 e

x
e
c
u

te
s a

 flo
a
tin

g
 p

o
in

t o
r in

te
g

e
r in

stru
c
tio

n
 p

e
r c

lo
c
k
 fo

r a
 th

re
a
d

. T
h

e

5
1
2

 C
U

D
A

 c
o

re
s a

re
 o

rg
a
n

ize
d

 in
 1

6
 S

M
s o

f 3
2

 c
o

re
s e

a
c
h

. T
h

e
 G

P
U

 h
a
s six 6

4
-b

it m
e
m

o
ry

p
a
rtitio

n
s, fo

r a
 3

8
4

-b
it m

e
m

o
ry in

te
rfa

c
e
, su

p
p

o
rtin

g
 u

p
 to

 a
 to

ta
l o

f 6
 G

B
 o

f G
D

D
R

5
 D

R
A

M

m
e
m

o
ry. A

 h
o

st in
te

rfa
c
e
 c

o
n
n

e
c
ts th

e
 G

P
U

 to
 th

e
 C

P
U

 via
 P

C
I-E

x
p

re
ss. T

h
e
 G

ig
a
T

h
re

a
d

g
lo

b
a
l sc

h
e
d

u
le

r d
istrib

u
te

s th
re

a
d

 b
lo

c
k
s to

 S
M

 th
re

a
d

 sc
h
e
d

u
le

rs.

F
e
rm

i’s
 1

6
 S

M
 a

re
 p

o
s
itio

n
e

d
 a

ro
u

n
d

 a
 c

o
m

m
o

n
 L

2
 c

a
c
h

e
. E

a
c
h

 S
M

 is
 a

 v
e

rtic
a
l

re
c

ta
n

g
u

la
r s

trip
 th

a
t c

o
n

ta
in

 a
n

 o
ra

n
g

e
 p

o
rtio

n
 (s

c
h

e
d

u
le

r a
n

d
 d

is
p

a
tc

h
), a

 g
re

e
n

 p
o

rtio
n

(e

x
e

c
u

tio
n

 u
n

its
), a

n
d

 lig
h

t b
lu

e
 p

o
rtio

n
s
 (re

g
is

te
r file

 a
n

d
 L

1
 c

a
c

h
e

).

Figure 4. Architecture of the NVIDIA Fermi GPU family.

To allow programming NVIDIA GPUs, NVIDA developed CUDA [167], C

language extensions and APIs for writing code which will execute on a GPU and for

transferring data between host and GPU memories. CUDA kernels are C functions

which are annotated __global__, indicating that they will run on a GPU but can be

invoked from the host. A kernel function differs from an ordinary function in that

many copies of the function will execute simultaneously. A given instance of the

function must examine its local copies of the blockIdx and threadIdx variables to

determine which portions of the input data it should process.

CUDA maintains separate memory spaces for the host and each device.

Running a kernel on a device then involves the host explicitly allocating memory on

the device (cudaMalloc), copying input data to the device (cudaMemcpy), specifying

19

superscalar in that execution resources can issue memory access, arithmetic and
other operations from threads running on the same core, but not necessarily the same
thread and in this sense they are throughput architectures optimizing for the through-
put of a set of threads over the latency of one.

Like the mobile GPUs on the market, the high-end AMD and NVIDIA models
comprise multiple cores. Defining a core as the closest reasonable mapping to the
equivalent in a CPU, the HD7970 has 32 cores (each with 4 vector units) and the
NVIDIA design has 16 (with two vector units and clocked at double rate). Each core
has a scratchpad memory buffer known as local memory in OpenCL which is allo-
cated on a per-workgroup basis.

In Figure 3.9 we see a rough comparison of state usage in different styles of de-
vice. It should be clear that the high-end GPU design is heavily weighted towards
thread state: allowing fast switching between multiple program instances and high
throughput.

FIGURE 3.11

The AMDHD7970 architecture. The device has 32 cores in 8 clusters. Each core consists of a
scalar execution unit, that handles branches and basic integer operations, and four SIMD
ALUs. Each of the four SIMD units may have an instruction issued per cycle and the schedule
selects a single instruction from one of the active hardware threads, or “wavefronts” to issue to
the SIMD unit, as well as a scalar operation and a memory operation.

60 CHAPTER 3 OpenCL device architectures

Figure 5. Architecture of the AMD Radeon 7000 GPU family.

20

how the input data is to be partitioned into blocks, launching the kernel, and copying

output data back onto the host.

Xeon Phi. The Intel Xeon Phi accelerator architecture features fewer cores

than are found in GPUs (61 cores and 244 hardware threads) which are considerably

more complex than GPU cores but which are still simpler than the cores typically

found in a host processor [181]. The cores are connected together by a bidirectional

ring bus, which they share with a distributed, globally coherent L2 cache (Figure 6).

Each core features four hardware threads, can dispatch two instructions per cycle, and

is required to switch between hardware threads once per cycle, which results in the

requirement that enough work be available that instructions can actually be issued

every cycle – if an insufficient number of threads are used, the issuing hardware will

remain idle every other cycle. The cores use in-order execution but feature SIMD units

with twice the width of current x86-64 chips.

Xeon Phi accelerators themselves run Linux and can be programmed through

several mechanisms, including a native mode using traditional MPI and/or OpenMP,

as well as an offload mode [166] which uses pragma annotations and/or language

keywords to specify work which should be executed on the accelerator, from which

the compiler will automatically synthesize the necessary memory copy and kernel

launch code.

Cross-architecture Programming Models. There are several projects aimed at

providing programming models which allow a single code to target multiple types

of accelerators. OpenCL [200], an industry standard maintained by the Khronos

group, is one such model. Its structure and syntax are similar to those of CUDA, but

with additional abstractions for devices, compute units, processing elements, and

private, local and global memories which a driver for a device maps onto physical

21

! Power management capabilities.
! Performance monitoring capabilities for tools like Intel VTunet Amplifier XE 2013.

Keeping the “Ninja Gap” under control
On the premise that parallel programming can require Ninja (expert) programmers, the gaps in
knowledge and experience needed between expert programmers and the rest of us have been
referred to as the “ninja gap.” Optimization for performance is never easy on any machine, but it is
possible to control the level of complexity to manageable levels to avoid a high ninja gap. To
understand more about how this ninja gap can be quantified, you might read “Can Traditional
Programming Bridge the Ninja Performance Gap for Parallel Computing Applications?” (Satish
et al. 2012). The paper shares measurements of the challenges and shows how Intel Xeon Phi
coprocessors offer the advantage of controlling the ninja gap to levels akin to general-purpose pro-
cessors. This approach is able to rely on the same industry standard methods as general-purpose
processors and the paper helps show how that benefit can be measured and shown to be similar to
general-purpose processors.

PCIe
Client
Logic

TDTD

Core

L2

Core

L2

Core

L2

Core

L2

G
D

D
R

 M
C

G
D

D
R

 M
C

G
D

D
R

 M
C

G
D

D
R

 M
C

TD TD

TD
TD

C
ore

L2

C
ore

L2

GDDR MC

GDDR MC

TD
TDC
or

e

L2

C
or

e

L2

GDDR MC

GDDR MC

FIGURE 1.9

Microarchitecture of the Entire Coprocessor.

9Keeping the “Ninja Gap” under control

microarchitecture. In practice, use of at least two threads per core is nearly always
beneficial. As such, it is much more important that applications use these multiple hardware
threads on Intel Xeon Phi coprocessors than they use hyper-threads on Intel Xeon
processors.

! Cores interconnected by a high-speed bidirectional ring.
! Cores clocked at 1 GHz or more.
! Cache coherent across the entire coprocessor.
! Each core has a 512-KB L2 cache locally with high-speed access to all other L2 caches

(making the collective L2 cache size over 25 MB).
! Caches deliver highly efficient power utilization while offering high bandwidth memory.

• Special instructions in addition to 64-bit x86:
! Uniquely wide SIMD capability via 512-bit wide vectors instead of the narrower MMXt,

Intels SSE, or Intels AVX capabilities.
! High performance support for reciprocal, square root, power, and exponent operations.
! Scatter/gather and streaming store capabilities to achieve higher effective memory

bandwidth.
• Special features:

! On package memory controller supports up to 8 GB GDDR5 (varies based on part).
! PCIe connect logic is on-chip.

x86 specific logic < 2% of core + L2 area

L2
Ctl

T0 IP
T1 IP
T2 IP
T3 IP

512KB
L2 Cache

L1 TLB and
32KB
Code
Cache

L1 TLB and 32KB
Data Cache

Pipe 0 Pipe 1

Scalar RF

Decode uCode

X87 RF

x87 ALU 0 ALU 1

TLB
Miss

Handler

VPU
512b SIMD

VPU RF

L2 TLB

H
W

P

4 Threads
In-Order

16B/Cycle (2 IPC)

Code Cache Miss

TLB Miss

Core

DCache Miss

TLB Miss

To On-Die Interconnect

FIGURE 1.8

Architecture of a Single Intels Xeon Phit Coprocessor Core.

8 CHAPTER 1 Introduction

Figure 6. The architecture of the Intel Xeon Phi Knights Corner family. Images provided
by Intel.

22

hardware. Drivers are available for many devices, including NVIDIA and AMD GPUs,

Intel Xeon Phis, Intel and AMD CPUs, as well as FPGAs [64, 55]. Since the target

hardware is not necessarily known at compile time, kernel code is stored as a string and

is provided to the device driver for compilation just prior to kernel invocation.

In addition to low-level approaches to portability, higher-level approaches also

exist. OpenACC [87] is a pragma-based model for device programming, similar to

OpenMP, in which loops are annotated to indicate that their iterations should execute

in parallel on accelerator devices. As accelerator devices have separate memory spaces

from the host, additional data directives are added to specify data to be copied and

allocated on the device. OpenMP itself is also being extended with device support

through target directives [136].

2.2 Capturing Performance Data

Once we have a parallel program – most likely written using one of the

programming models discussed in Section 2.1 – how can we determine whether

it performs well? To do this, we must first determine when events occur during

execution of the program by means of instrumentation [162].

To instrument code, we cause additional instructions to be executed which

record events and facts about those events, such as the time or number of cycles elapsed

between two events. There are several ways to accomplish this. We can use source

code instrumentation, where we modify the source code, inserting function calls at the

beginning and end of functions or around loops. In order for facts about events to

be useful, we must be able to map events back onto the source code so that we know

where changes should be made to address any performance problems found. Directly

modifying the source code allows us to most easily map events back onto source, since

each event generated by inserted code can be given a unique name. However, source

23

code instrumentation requires that we have the original source available, and that we

are able to parse the source code in order to modify it. Source code instrumentation is

supported by systems such as TAU [192] and VampirTrace [125].

Alternately, we can modify the binary, either through rewriting prior to

execution or dynamically at runtime, through libraries such as Dyninst [180] as used

by TAU, or through performance analysis tools which directly implement binary

analysis, such as HPCToolkit [2]. Such systems analyze the binary, identifying entry

and exit points for functions and inserting calls to log events. This type of approach

makes it straightforward to dynamically adjust instrumentation points at runtime

through self-modifying code, allows instrumentation of binaries for which the original

source is not available or which is written in a language for which automated source

instrumentation tools are not available, and eliminates overhead for runs in which

instrumentation is not desired (in which case the binary is run unmodified). However,

it is more difficult to map events back onto the source code, as compiler optimizations

applied in creating the binary may disrupt the relation between instructions and the

source line which caused them to be emitted.

For systems such as MPI, OpenMP, and UPC which feature runtime libraries,

instrumentation can be performed at the runtime level rather than the application

level. This can be accomplished by preloading a library which exposes the same

interface as the actual runtime which logs events before forwarding function calls

to the actual runtime. Such interposed libraries include mpiP for MPI [222] and

ompP for OpenMP [75]. Runtimes can also expose callback interfaces through

which a performance monitoring tool can register functions which will be called

by the runtime when certain events occur, such as OMPT for OpenMP [69],

24

CUPTI for CUDA [169, 144], and the OpenCL event profiling interface [110] and

GPUPerfAPI [3] for OpenCL.

Finally, we can use sampling, where we request that an interrupt be called

periodically or when a hardware performance counter reaches a certain value or

overflows. The interrupt transfers control to the performance monitoring tool, which

can record the address which was being executed prior to the interrupt. Sampling

allows fine control over the tradeoff between overhead and error: by increasing the

sampling rate, we get a more precise picture of what the program is doing and are less

likely to miss events which occur infrequently, while at the same time we increase the

proportion of time spent running the monitoring routines instead of program code. By

decreasing the sampling rate, we reduce overhead at the cost of increased likelihood of

missing infrequent events.

Any of these techniques – source-level instrumentation, binary instrumentation,

library interposition, runtime instrumentation and sampling – can be used to generate

events. When events are generated, what should the performance monitoring system

do with them? Generally, they will be used to generate either a profile or a trace [162].

In profiling, events mapped to a particular code region are used to create an aggregate

measure of performance for that code region [82]. If function-level instrumentation

is used, then, the profile might record the number of calls to the function and the

time spent in that function aggregated across all calls to it. There are different choices

to be made as to the level at which aggregation occurs. For example, in call-path

profiling [93], the performance monitoring system stores separate profiles for a function

depending on the call path through which the function was reached, so that if A() calls

Z() and B() calls Z() we would see two separate profiles for Z(). This can help account

for input-dependent behavior, as different uses of a function may use different data and

25

thus exhibit different performance characteristics. In phase-based profiling [143], separate

profiles are stored for phases of an application, such as particular algorithms or iterations

of iterative algorithms.

In tracing, events are simply separately recorded along with a timestamp [82].

In a distributed system, traces collected on separate nodes must be merged so as to

maintain ordering on systems which do not have synchronized clocks. Traces provide a

large amount of information with which to diagnose performance problems and allow

phases of program execution to be automatically discovered: given the full list of events,

we can infer causality between events. However, the volume of data generated can

be exceptionally large, particularly for runs using large portions of a supercomputer.

Traces grow both with the number of processes used (more processes each generating

events) and with the runtime of the application.

2.3 Autotuning

Once we have a mechanism to acquire performance data, how can we

use that data to improve performance? One approach is automatic performance

tuning, or autotuning [20]. Autotuning arises from the idea that the best-performing

implementation of some code is not the same everywhere: it depends on the

architecture of the processors on which the code will execute, the operating system,

networking infrastructure, and other system parameters [233], on properties of the

input data such as size [194] or the number and distribution of nonzero elements in

a sparse matrix [193], and on the interaction between system parameters and input

data. Many runtimes, such as MPI and OpenMP, also have parameters which can be

set to control scheduling of work or use of network resources [36]. In an autotuning

system, we generate code variants and/or modify runtime parameters and perform

instrumented runs, which we use to determine which variants and parameters result

26

in the best performance. The space of possible variants and parameters is very large

for all but trivial problems, so heuristic search algorithms are used to avoid exhaustive

enumeration and testing of the entire space.

Basu et al. [20] identify three categories of autotuning systems: self-tuning

libraries, in which autotuning support is built directly in to a library and is run at install

time or runtime; programmer-directed autotuning, in which the programmer of a piece of

software exposes runtime parameters to a search system; and compiler-directed autotuning,

in which a library of code variants are generated by a compiler or source-to-source

translator. They envision a system in which all of these techniques can be combined

through the use of a centralized search engine and performance database (Figure 7).

expressing code variants and optimization parameters
directly in the application, directing the compiler’s optimiza-
tion and translation process, or even developing compiler
decision algorithms and new high-level transformations. An
average user can use the power of self-tuning libraries and the
compiler-directed process to tune applications. Users can also
benefit from feedback from the autotuning system, indicating
why the compiler failed to perform specific optimizations, or
feedback from the search to further guide pruning.

The following sections expand on our view of a unified
autotuning framework. Section 3 focuses on improving
generality. In Section 4 we discuss various techniques to
manage the autotuning related overheads, and in Section
5 we describe methods to improve useability of autotuning.

3. Expanding generality

A mainstream autotuning tool should be performance por-
table across a large number of popular hardware platforms,
and also compatible with common programming lan-
guages. It needs to support programmer-directed (libraries
and applications) and compiler-directed autotuning in a
seamless way. We should expand the compiler’s capability
as much as possible; for example, to support applications
with irregular and data-dependent memory access patterns.
To provide a seamless integration, there should be mechan-
isms for the programmer to interface with the autotuning
system and guide its efforts. Although there exist a multi-
tude of autotuning systems with demonstrated success, a
unified autotuning framework that integrates all of these

features does not yet exist. In this section, we describe the
current state of the art and what sort of technological
advances are needed to achieve these goals.

3.1. State of the art: Express autotuning search space

For both programmer-directed and compiler-directed
autotuning, a key feature of a system is the manner in
which the search space is described using mechanisms for
expressing or deriving code variants and optimization
parameters. Many different approaches are used for this
purpose.

3.1.1. Library-specific and kernel-specific autotuners. The earli-
est autotuning work in PhiPAC and ATLAS focused on
deriving tuned versions of widely used dense linear algebra
library functions for different architectures (Bilmes et al.,
1997; Whaley and Whalley, 2005). Dense linear algebra
had already been retargeted by expert performance pro-
grammers to a variety of architectures for over a decade.
Using the knowledge of effective optimization strategies,
these mappings were encapsulated into kernel-specific
code generators, typically implemented in scripting lan-
guages. Subsequently, domain-specific autotuners for signal
processing, FFTW and SPIRAL, employ mathematical
transforms and autotuning to optimize for particular archi-
tectures (Frigo, 1999; Püschel et al., 2005). STAPL (Buss
et al., 2010) provides a number of parallel algorithms which
are adaptively tuned for the underlying architecture and
input data set using machine learning techniques (Thomas

Code Variants

Search Engine

Architecture Models

Parallel System

Performance Monitor

Performance
Database

Applications

Mapping Description

Generality and Useability

Managing
Overheads

Figure 1. Unified autotuning system.

Basu et al. 381

 at UNIV OF OREGON on January 26, 2016hpc.sagepub.comDownloaded from

Figure 7. A hypothetical architecture for a unified autotuning system, in which multiple
types of autotuning are present in a single application and share a search engine and
performance database. From [20]

27

ATLAS. One approach to autotuning is to build autotuning support directly

into a library. An early and widely-used such library is the linear algebra library

ATLAS [229] (Automatically Tuned Linear Algebra Software). Traditionally, hardware,

operating system and compiler vendors have generated hand-tuned linear algebra

routines for developers using their products. ATLAS represents a different approach,

shipping a variety of parameterized function implementations which are tested during

compilation. The developers of ATLAS identify four requirements for the application

of empirical optimization [228]:

– Isolation of performance-critical routines.

– A method of adapting software to differing environments.

– Robust, context-sensitive timers.

– Appropriate search heuristics.

ATLAS performs its tuning at compile time. This is beneficial in that it does

not introduce any delays at runtime due to the need to select an implementation at

that time, but this also limits the ability of ATLAS to adapt to a changing execution

environment or to the input data, which is only known at runtime (for example, to

adapt to different sizes of input matrices, if a given program tends to use matrices of

one of a few fixed sizes.)

FFTW. Another approach is that used in FFTW3 [74], a Fast Fourier

Transform library. In FFTW, the user of the library invokes the library with a

description of the problem to be solved (e.g., which discrete transform is to be

calculated) and the sizes and memory layouts of the input arrays. FFTW includes code,

called the planner, which will then test many different functions for calculating the

28

desired transform on problems of the indicated size and layout, and select and return

the best-performing one.

This technique allows FFTW to adapt to changes to its execution environment

(such as in the case of migration) and to properties of the input data. However, if

only a small number of transforms of a particular type and for particular input types

are performed, then the cost of performing the tests will outweigh the increased

performance from using tuned variants, and overall program execution time will be

slower.

SPIRAL. Spiral [177] is a general-purpose digital signal processing library

in which DSP algorithms are expressed in a domain specific language, SPL, which

is ultimately translated into C or Fortran. Optimizations can be applied at both the

DSL and target language levels and can take into consideration properties of the

domain that enable optimizations that are not generally applicable to all domains. Some

optimizations use a static cost model to determine whether they should be applied,

while others use search algorithms to explore the space of optimizations, for which

exhaustive and random search, dynamic programming, evolutionary algorithms and

hill-climbing search algorithms are provided.

The evolutionary algorithm mode is particularly interesting: genes are

represented as ruletrees, which specify the recursive structure of a transform with leaf

nodes representing particular implementations. Mutations are made by swapping

an implementation for another, while cross-breeding occurs by swapping subtrees.

Additionally, SPIRAL uses empirically-generated models by timing subtrees within a

ruletree.

OSKI. Oski [223] is a sparse linear algebra kernel library which uses a

similar approach to FFTW, performing tuning at runtime based upon known input

29

parameters. The library provides a set of functions for specifying hints about input

sizes, coefficient values, data formats, and the number of times different operations are

expected to be performed. The tuning process can then generate specialized variants,

and, because the estimated frequency of operations is provided, OSKI can determine

how much time should be spent on tuning particular operations based on whether it is

likely to be executed enough times to amortize the cost of tuning.

pOSKI [32], a system for generating optimized sparse matrix-vector

multiplication routines, combines offline autotuning with model-driven online

autotuning combined with a history database. The offline tuning, which happens when

the library is initially installed, tests combinations of storage format (CSR or BCSR),

size of register blocks, prefetching policy, and SIMDization policy for a set of likely

block sizes. At runtime, when the actual matrix is available and its sparsity therefore

known, a simple model is used to select a block size, and therefore an implementation

from among the pre-generated set of optimized implementations.

Orio. Orio [94] is an autotuning system providing pluggable code generators

and search algorithms and using an annotation-based approach to specifying code

transformations. Input code in a language such as C or Fortran is annotated with

special comments indicating that the annotated code should be replaced with code

generated by Orio according to specified transformation. A loop, then, can be

annotated with a Loop transformation specifying that a version of the loop written

in a restricted subset of C or a domain-specific language should be unrolled by some

factor and tiled by some factor.

These annotations can be left with parameters (such as tile factor) unspecified

and be wrapped in a tuning specification, which specifies the range of values valid for

each parameter, what search algorithm should be used, and how the kernel can be

30

tested in isolation: how input data can be generated, and the sizes of input data which

should be tested. Each such tuning specification then describes a set of experiments,

the output of which are tuned variants which are inserted into the source code,

replacing the original implementation. As the tuning specifications and annotations

are comments, the original source code can also be compiled unmodified to give the

original implementation. Transformations are also available to generate CUDA [145]

and OpenCL [37] code for use on accelerators.

Code (e.g., C, Fortran) with
Embedded DSL Annotations

DSL
Parser

Code
Transformations

Sequence of (Nested)
Annotated Regions

Code
Generator

Optimized Application
CUDAFortranC OpenCL

Tuning
Specification

best performing version

Run generated code versions

TAU HW
CountersTransformed

Code Search Engine

Figure 8. The architecture of Orio. From [37].

CHiLL + Active Harmony. Active Harmony [215] is a general purpose search

engine capable of rapidly exploring the parameter search space by testing multiple

hypotheses in parallel, using the Parallel Rank Ordering algorithm to evaluate potential

parameters, which is used both for online tuning of application and runtime parameters

and for offline tuning by providing parameters to an external code generator. The user

can specify parameters, ranges for the parameters, and constraints restricting the values

parameters can take on. Active Harmony runs using a client-server architecture, in

31

which a centralized Harmony server communicates with, and provides parameters to,

multiple clients running on different nodes in a cluster. Using Parallel Rank Ordering,

the system can provide different parameter values to different nodes in the cluster,

allowing it to evaluate the search space in parallel. When used with a code generator,

code servers can also be configured, which perform compilation of code variants and

distribute compiled object files to the execution nodes [98].

Active Harmony has been used with CHiLL [48], a code variant generator

which uses a “recipe” of high-level loop transformations which are applied together

to generate variants of a loop. CHiLL uses the ROSE compiler [178] internally

to parse code and applies transformations by making modifications to the ROSE

AST. It uses a polyhedral model of loop transformations, in which the order of

operations within nested loops are viewed as points inside a polyhedron, from

which semantically-equivalent loops evaluating nests in different orders can be

generated by applying geometric transformations to the polyhedron representing loop

iterations [86]. CHiLL recipes can be parameterized, and autotuning can be performed

by searching the space of parameters to available recipes. Transformations are available

for generation of CUDA code through CUDA-CHiLL [186]. The combination of

CHiLL and Active Harmony has also been used with the ROSE outliner, a system

which extracts regions of code within a function into independent functions which can

be separately tuned [214].

Periscope. The AutoTune project [159] is developing the Periscope Tuning

Framework, an extension to the earlier Periscope [22] performance analysis and

diagnosis tool, described in more detail in Section 2.5. The architecture of PTF is

shown in Figure 10. In PTF, tuning plugins are registered which interact with a set

of scenario pools. Plugins can insert new scenarios into the created scenario pool; can pull

32

7

s m g 2 0 0 0 * * s m g 2 0 0 0 * * s m g 2 0 0 0 * * s m g 2 0 0 0 * *

* D r i v e r s i n v o k e C H i L L w i t h a p p r o p r i a t e s c r i p t s t o g e n e r a t e n e w c o d e a n d c o m p i l e t h e c o d e t o . s o . a n d
l a u n c h s m g 2 0 0 0 s h o r t e x e c u t i o n

A c t i v e H a r m o n y

D r i v e r * 1 D r i v e r * 2 D r i v e r * 3 D r i v e r * N

P e r f o r m a n c e
n u m b e r s

P a r a m e t e r
C o n f i g u r a t i o n s

* * A p p l i c a t i o n i s r u n o n t h e t a r g e t a r c h i t e c t u r e . E a c h i n s t a n c e e v a l u a t e s a d i f f e r e n t . s o .

T a r g e t M a c h i n e

A U T O - T U N I N G

O u t l i n e r

W h o l e A p p l i c a t i o n

O u t l i n e d F u n c t i o n (s)

R O S E O u t l i n e r

O U T L I N I N G :
O n e t i m e p r o c e s s : O n c e p e r

 a p p l i c a t i o n

O u t l i n e d F u n c t i o n (s)

T r a n s f o r m e d C o d e

t r a n s f o r m e d . s o

C H i L L

C o m p i l e r

CODE Generation

Fig. 1. Overall workflow: SMG2000 Tuning

code transformation parameters supplied by the Active Harmony server. The code
generated on-demand is compiled into a shared library. Once the new code is ready,
the application is run on the target machine. The application dynamically loads
the transformed kernel by using the dlopen/dlsym mechanism. Once the execution
is complete, the driver collects performance measurement and sends them to the
Active Harmony server. The process continues for a specified number of iterations
or until the search algorithm converges to a point in the search space. For parallel
search algorithm, we run multiple copies of the driver. The number of copies is
determined by the number of tunable parameters and the simplex size (which is, in
turn, determined by the available resources). The use of the shared library mecha-

Figure 9. The architecture of an autotuning system using ROSE to outline functions,
CHiLL to generate code variants, and Active Harmony to direct the search process.
From [214].

33

created scenarios, process them, and insert the result into the prepared scenario pool; can

create experiments from prepared scenarios, inserting them into the experiment scenario

pool; and, once the execution engine has run an experiment from that pool and made

it available in the finished scenario pool, can pull the results and process them to create a

human-readable report.
332 R. Miceli et al.

Fig. 1. Simplified work flow of a tuning plugin

The predefined sequence has to cover all possible scenarios given the program-
ming models and parallel patterns supported for tuning, besides any preparation
steps required by the system (software and hardware) where the tool is running.
As a consequence, the full state machine is relatively complex. For illustration
purposes, a simplified version of PTF’s flow is presented in Figure 1.

All steps are involved in the creation and processing of the scenarios to be
experimented. Scenarios are stored in pools accessible by all plugins as well as
the frontend. These pools are:

– Created Scenario Pool (CSP): Scenarios created by a search algorithm;
– Prepared Scenario Pool (PSP): Scenarios already prepared for execution;
– Experiment Scenario Pool (ESP): Scenarios selected for the next experiment;
– Finished Scenario Pool (FSP): Scenarios executed.

All steps in a plugin’s workflow relate to the Tuning Plugin Interface (TPI). All
methods in this interface must be implemented by all plugins; PTF checks their
conformance at loading time. The TPI’s major methods are the following:

Initialize: This method is called when the frontend instantiates the plugin.
The plugin’s internal data structures, tuning space and search algorithms
are initialized and the tuning parameters are established.

Create Scenarios: From the defined variant space, the plugin generates the
scenarios using a search algorithm and inserts them into the CSP, so the
frontend can access them. The plugin combines the region, a variant, and
the objectives (e.g. execution time and energy consumption) to generate the
scenarios, using either a generic search algorithm (like exhaustive search)

Figure 10. Architecture of the Periscope Tuning Framework. From [159].

Insieme: Multi-Objective Optimization. The Insieme framework [90],

unlike most auto-tuning frameworks, is designed specifically for multi-objective

optimization, which allows for objectives such as “minimize execution time used subject

to constraints on the number of cores and the amount of energy used”. When multiple

objectives are present, the solution found is not a single best-performing configuration

34

but rather a Pareto frontier, a set of points for which no objective can be improved

without degrading some other objective. The best configuration given some particular

set of tradeoffs is then always found on the Pareto frontier. Genetic algorithms map

well onto the problem of finding the Pareto set [66], particularly differential evolution

techniques in which the rate of evolution for different parameters itself evolves.

Collective Tuning. An alternate approach is used by Fursin et al. in

their Collective Mind project [76]. Rather than enforcing a strict schema, they allow

the user to encode measured characteristics, choices, features and system state in JSON

format [28], which can be used without requiring that a schema be provided. When

in the course of a project a schema becomes necessary, it can be provided, also in

JSON format. The user can provide modules which mediate between Collective

Mind data and external tool. These modules are gradually composed into a workflow

which specifies the overall experiments to be done. Collective Mind encompasses the

earlier Crowdtuning [155] and Collective Tuning [77] projects, which made available a

more restrictive central repository for performance data from the MILEPOST GCC

compiler. The compiler generates a library of compiled versions of functions with

different optimizations applied. At runtime, when a function of interest is executed,

either the currently known best version or a different, proposed version is randomly

selected and profiled, with the timings being sent to the central repository.

Online Adaptation. The Abstract Data and Communication Library [78]

(ADCL) is used for runtime tuning MPI applications. A library of variant

implementations of a communication routine, called a function set, is defined either

by the library designer or the developer of the application. ADCL then uses either

brute-force search or parameter-at-a-time search to evaluate the variants. In one

case study [79], it was used to select from a set of neighborhood communication

35

routines (in which each rank communicates with six neighbors in each iteration),

which varied along three axes: the number of simultaneous communication partners

(e.g., pair-at-a-time or all-to-all), mechanism for handling messages with contents

not contiguous in memory (e.g., by packing the data into a contiguous array before

communicating, or by defining a custom data type), and the underlying data transfer

routines used (e.g, blocking vs nonblocking communication, two sided vs. one sided

communication, etc.). Different variants were selected for different architectures,

network hardware, and problem sizes. Interestingly, the best-performing variant for

some configurations was the worst-performing variant for another, demonstrating the

importance of autotuning in this case. The library includes pre-defined function sets

for the standard MPI collectives [23].

A later version of ADCL adds the ability to focus the search process using

data from previous runs [71]. The authors identify two primary obstacles to the use

of historical data: that the system may not have stored performance results for the

particular execution environment and problem now being encountered, and that

changing conditions (such as degree of congestion on the network, or the physical

location of ranks as assigned by a batch scheduler) mean that even if the system is

encountering a problem which has been encountered before, the best performing

variant as determined in the past may not be the best performing variant now. To

work around these problems, ADCL uses a distance metric to select good-performing

variants from history which are, according to that metric, most similar to the variant

now being encountered, and requires that performance be within a user-specifiable

tolerance of that recorded in the history file. If not, search is repeated.

The Open Tool for Parameter Optimization [36] (OTPO) uses search

algorithms from ADCL to tune parameters exposed by the OpenMPI runtime. In

36

OpenMPI, many runtime tasks are delegated to modules, which implement different

versions of communication algorithms (such as collectives) and map MPI operations

onto lower-level network operations (such as for TCP, InfiniBand, Cray Gemini/Aries,

etc.). These modules expose a set of tunable parameters, called MCA parameters, of

which a typical installation will have several hundred. Using search algorithms from

ADCL, OTPO searches for parameters giving the best performance, as measured by

latency or bandwidth of network operations.

OTPO finds good MCA parameter values, but requires a large number of

evaluations to do so. To reduce the number of evaluations needed, Pellegrini et

al. [174] evaluate the effect of different parameters on performance at compile-time

and use this data at runtime to tune only those parameters most likely to have large

performance effects. During installation of OpenMPI, a set of kernels, chosen to

approximate the communication patterns of typical applications, are run with

randomly-chosen parameter values. ANOVA is then used to identify which parameters

have the greatest impact on performance.

2.4 Performance Modeling

We can also use performance data to attempt to construct empirical models

which allow us to predict performance of the code on other systems or datasets. Such

models can then be used to guide autotuning or performance diagnosis.

Prophesy [208, 207, 241] is an integrated system for automatically generating

analytical performance models, comprising a source-code instrumentation

component [241], a database component [207], and a model builder component [208].

Performance data is collected at the basic block level and stored in the performance

database as a hierarchy, in which applications are made of modules, modules are made

of functions, and functions are made of basic blocks, allowing for measurements to be

37

viewed at an appropriate level of abstraction for the current task. The database stores

information on applications (name, version, etc.), executables for applications (how it is

compiled, what libraries it uses, and static analysis results such as control flow data), run

information for particular runs of applications (machine and input information), and

hierarchical performance measurements.

Prophesy then implements three modeling techniques: curve fitting,

parameterization, and composition. Curve fitting is fully automated, while

parameterization and composition require additional input from the user. Curve fitting

attempts to model the performance of the application or functions of the application

in terms of input parameters (such as size), but does not incorporate system-specific

features and therefore can only be used to evaluate intra-system scalability and not

to predict performance across systems. Parameterization incorporates coefficients

representing system-specific parameters, but requires manual annotation of kernels to

identify and count operations. Composition combines models stored in the database to

allow application performance to be represented as the composition of models for the

application’s constituent kernels. Pairs of kernels are evaluated to determine the effect

of running one kernel after another1, resulting in an coupling coefficient Cij, the effect

on the performance of kernel j when it runs after kernel i. Cij equals 1 when there is

no interaction, is less than 1 when performance of j improves (such as when running i

has resulted in data used by j being loaded into the cache), and is greater than 1 when

performance of j is degraded.

An early comparison of empirical autotuning with model-based parameter

selection was performed by Yotov et al. [246]. Looking specifically at matrix-matrix

1This is the formulation in the paper, although the same concept could also be used for two kernels
running simultaneously, such as in a task based system. Scaling the technique to many simultaneous
kernels may present problems, however.

38

 2

performance data, add performance data, or utilize the
automated instrumentation and modeling processes.

Figure 1. Prophesy framework

 In this paper we focus on the data analysis component,
in particular the model builder. Specifically, we focus on
the automation of the development of analytical models.
The modeling concepts include the automation of some
well-established techniques, such as curve fitting, and a
new technique that develops models as a composition of
other models of the core components or kernels of an
application. We present examples illustrating these
different techniques. By having the modeling process
automated, one can explore different models with ease.
 The remainder of this paper is organized as follows. In
Section 2 we discuss related work in the area of
automated models. Section 3 presents some background
of Prophesy as it relates to the automated modeling
component followed by the details of this component in
Section 4 along with examples in Section 5. The paper is
summarized in Section 6.

2. RELATED WORK
Significant work has been done in the area of automated
performance analysis, but very little work with
automating the process of developing models. While
there is a very rich body of work related to prediction
techniques, we focus on the automated methodologies for
parallel and distributed applications. Dimemas [HS99] is
a trace driven simulation that predicts the performance of
message passing programs. Dimemas uses traces
generated by VAMPIRtrace, an instrumented MPI library
and API. The target architecture is characterized by a few
parameters: the relative processor speed, linear

communication model, and a simple model of network
contention. In contrast, our focus is on the analytical
models.
 Liang and Tripathi [LT00] have developed a prediction
method that is applicable to parallel applications. The
method is based on a modified mean value analysis using
iterative approach. Farhinger [FA96] also focuses on
prediction of parallel program, with a focus on loops. His
method, P3T, counts the number of loop iterations as a
basis for estimating performance; the problem is
generalized as computing the number of integer solutions
to a set of inequalities. Davidson et. al. [AD98] have
developed a modeling technique called MACS, which
gives a lower bound on the computation time on a given
machine. The technique uses the peak floating-point
performance of a machine (M) independent of the
application, the essential operation in the compiler-
generated schedule of the application workload. One can
combine the MACS bounds with linear communication
models to derive an overall performance bound for the
application executed on a target machine. Mak and
Lundtrom [ML90] developed a method for which the
parallel computation is modeled as a directed acyclic task
graph and the system is modeled as service center in a
queuing network. Using these two models, the method
uses an iterative algorithm to develop a performance
prediction. Saavedra-Barrera and Smith [SS89] use the
time required for a set of abstract operations on a given
machine and the frequency counts of these operations in a
program to estimate performance. All of these methods
focus on predicting performance in contrast to automated
model development, which is the focus of Prophesy.

Performance analysis environments, in particular
PACE [KH96] and POEMS [PO], are being developed.
These environments focus on performance predication.
PACE represents the application, computational resource
requirement and communication patterns in their CHIP3
language. The CHIP3 scripts are compiled and evaluated
to generate a performance prediction very quickly.
POEMS evaluates the end-to-end performance of a
problem solving environment, consisting of application
software, runtime and operating system software and
hardware architecture. The analytical models with
POEMS include deterministic task graph analysis, LogP
[CK93] and LoGPC [MF98] models. These models are
generally coarse grain, representing asymptotic
performance. In contrast, the focus of our work is on
detailed, analytical model development. Further,
Prophesy complements the PACE and POEMS
environments by providing a framework for developing
models that can be added to their various libraries.

3. PROPHESY: BACKGROUND

In this section we present some details about Prophesy as
it relates to the model builder component. See [TX01,

Proceedings of the Third Annual International Workshop on Active Middleware Services (AMSí01)
0-7695-1528-2/02 $17.00 © 2002 IEEE

Figure 11. Architecture of Prophesy, from [208].

multiplication codes as generated by ATLAS, described in Section 2.3, they develop

a simplified model of how cache behavior is affected by parameters to the matrix

multiplication code generator and substitute the search module of ATLAS with the

model. On two systems (SGI and Intel) their model yields performance within 1% of

that produced by the full ATLAS search, but reduces installation time to 35% of its

original value. On a third system (Sun) the model-predicted variant has 20% worse

performance than the empirically-determined version. This demonstrates the promise

of model-driven approaches, but also its limitations: much effort went into developing

the models, which are specific to only one ATLAS routine.

Modeling can also be used in combination with autotuning, rather than

strictly as a replacement. One of the major uses of modeling in combination with

empirical autotuning is to avoid evaluating variants which a model predicts will

39

have poor performance, thereby focusing the search on variants expected to perform

well. Balaprakash et al. [18] used an active learning [190] technique customized for

autotuning on HPC systems. They observed that a major problem with existing

parallel active learning techniques was that when such an algorithm suggests multiple

points to evaluate, the result for one such point can dramatically reduce the information

gained from evaluating the remaining points in the proposed set, resulting in wasted

effort evaluating code variants corresponding to such points. They modify the

algorithm to attempt to avoid suggesting such points by 1) selecting an initial point

xi, 2) retraining the classifier assuming that the prediction for xi was correct, and 3)

selecting another point only from among those points whose informativeness was not

substantially reduced by retraining.

Sarangkar and Qasem [187] describe MATS (Model-driven Adaptive Tuning

System), an autotuning system which uses simple architectural models to constrain the

set of transformation parameters to consider. Based on static code analysis to calculate

reuse distance and models of effective data and instruction cache capacity, register set,

and TLB size, parameter values for loop tiling, fusion, fission, interchange, and unroll

are selected so as not to violate a user-specified tolerance value, which express, for

example, that number of cache misses in considered variants should be no more than

some percentage worse than the optimal value.

GROPHECY [156] predicts whether a CPU code is amenable to

implementation on GPUs using an analytical model to determine whether the code

is compute-bound or memory-bound. To do this, the user must first manually convert

the CPU code into a code skeleton which lists only loops, memory loads and stores, and

generic compute instructions. The skeleton is then converted into a set of possible

GPU skeletons parameterized by many of the same parameters used in GPU code

40

generation by autotuning frameworks. Instead of generating and running code, the

model is used to estimate memory usage patterns.

Models need not attempt to determine the absolute performance of a code.

In autotuning and runtime adaptivity, determining the expected performance of

one code relative to another is useful. Models need not be based on performance

at all. For example, Tang et al. [204] develop an empirical model of contentiousness

and sensitivity when jobs are co-scheduled on a system and thus share resources.

Contentiousness is the capacity of a program to degrade the performance of programs

with which it is co-scheduled, while sensitivity is the propensity of a program to have its

performance degraded when co-scheduled with a program of high contentiousness.

These properties are distinct because contentiousness results from mere use of a

shared resource, while sensitivity depends on a program benefiting from its use of

shared resources. A program which reads large amounts of data from memory,

processes it once, and never reuses data will make use of the caches, but will not gain a

performance benefit from cache use due to lack of reuse. Such a program is nonetheless

contentious. A program which reads a small amount of data and processes it repeatedly

benefits greatly from cache use, and is therefore highly sensitive to other programs’ use

of the cache, whether or not those other programs benefit themselves from using the

cache. The authors identify hardware performance counters (L2 and L3 cache lines

input rate) and use regression to construct architecture and application-specific models

which give relative contentiousness and sensitivity of applications. A scheduler can

then use these to schedule high-contentiousness applications only with low-sensitivity

applications.

Brainy [115] constructs architecture- and input-sensitive models for selecting

the best C++ STL data structure for a given workload. For each architecture, a set of

41

Figure 3. The framework of the data structure selection.

brary (STL) so that profiling data structures are used instead of the
original ones. The profiling data structures are inherited from the
original STL data structure, and their interface functions contain
code which records the behaviors including hardware performance
counters, and then calls the original interfaces. All the profiling
features are recorded in trace files, which are post-processed and
sorted by data structure. This sorting takes both relative execution
time and calling context into consideration, in order to provide de-
velopers with a prioritized list of which data structures are most
important to change. Once the data is sorted, the machine-learning-
based cost model provides a suggestion of what data structures
should be replaced with alternate implementations. Optionally, this
output could be fed into a code refactoring tool [18], which could
automate the implementation replacements. This type of optimiza-
tion tool can have a significant impact on the performance of real-
world applications.

4. Model Construction
Accurate model construction is essential for effective data struc-
ture selection. Brainy leverages machine learning to construct the
model for predicting the best data structure implementations. The
model must satisfy three properties to be successful. First, the
model should be accurate across many different data structure be-
haviors and usage patterns. Second, the model should be aware of
microarchitectural characteristics of the underlying system. Third,
the methodology for characterizing the performance of data struc-
tures should be automated and repeatable so that it is easy to con-
struct new models for new microarchitectures.

If these properties are not satisfied by the model, architectural
variations would easily make the predicting performance of the
model inaccurate. In this case, improving the accuracy of the model
requires re-training the model on the new microarchitecture. A
more serious problem is that the training applications/examples1

painfully-collected to cover the huge design space on the original
microarchitecture might not provide abundant learning capabilities
any longer on the new microarchitecture (See Figure 1). That is,
due to the architectural change, the original training applications
could not produce the broad spectrum of the best data structures
as before, thus failing to model various data structure behaviors.
Therefore, new training applications should be collected again to
cover the missing portion of the design space. This is extremely
time-consuming and requires enormous effort without the help of
the automated and repeatable methodology. This section describes
how these issues are addressed. It must be noted that just using
machine learning itself cannot satisfy the issues. These issues are
rather the prerequisites for the success of machine learning.

Formally, the description of the data structure selection model is
as follows: given a set of input features X and a set of data structure
implementations Y as output, the model is to find a function f: X !

1 This paper uses the terms ”training applications” and ”training examples”
interchangeably.

Y such that the predicted result y = f(x), where y 2 Y and x is a set of
features for a data structure in an application, matches the best data
structure (BestDS) of the application. The training set of the model
is comprised of many pairs of the feature set and the best data struc-
ture, i.e., (x1, BestDS1), (x2, BestDS2), ..., etc. The features include
both software features such as the number of interface invocations
and hardware features such as cache misses (Section 5.1 discusses
the both features in more detail). Thus, features capture various as-
pects of the data structure usage when an application is running.
In collecting the training set, Brainy uses an application generator
to prepare a significant quantity of applications and executes each
application through two phases of data collection: first to measure
the runtime and second to record the detailed performance metrics.
This section describes why so many applications are required, the
details of the application generator, and how it is used in the two
phases of data collection.

4.1 Training Set and Overfitting
Creating an accurate model using machine learning that represents
a vast array of different data structure behaviors requires having
a large and thorough set of training examples. If the training ex-
amples are not representative of the many varied behaviors of real
world applications, then the resulting model cannot yield accurate
predictions. Therefore, training should provide the machine learn-
ing algorithm with all critical patterns of data structures’ behaviors
in which one implementation performs much better than another.
Unfortunately, constructing such a training set is a very difficult
problem.

The main difficulty of constructing effective training example
sets is the very large design space. For example, an application
may use only a subset of interface functions, or use them with
a consistent frequency distribution (e.g., always performing twice
as many lookups as insertions). On top of that, there are many
hardware-specific characteristics, such as the size of data elements
in relation to cache-block size, that make the training example sets
constructed for one architecture potentially irrelevant for another.

Compounding the problem, each portion of the design space
must be fully represented in order to avoid overfitting the model.
Overfitting is a well-documented problem where machine learning
algorithms adjust to random features (i.e., noise) of the training
examples. Since such random features have no causal relation to
the prediction function, the resulting prediction performance on
unseen data becomes poorer while the performance on the training
examples improves [5]. Thus, overfitting misleads the resulting
model away from the optimum. This is most likely to become a
severe problem for insufficient amount of training examples, since
the noises are much more outstanding in that case, i.e., the model
is inevitably inaccurate.

Because of the immense search space and the problems from
overfitting, sample benchmarks cannot effectively train a machine
learning model for data structure selection.

89

Figure 12. Architecture of the Brainy data structure selection system, from [115]

input programs are generated, instrumented, and tested, with each input program

parameterized by the number of calls to each STL container interface function (e.g,

i insertions, j finds, k in-order traversals, etc.) This allows the training set to include

entries representative of a wide range of use cases. Timing and hardware performance

counter data are collected for each call. These data are then used to train an artificial

neural network which is used to predict the best-performing data structure for new

applications based on the number of calls each makes to the various API functions. The

architecture of Brainy is shown in Figure 12.

Rather than training a classifier based on program and system features, an

alternative approach is to use clustering to identify programs with similar variation

in performance across systems or systems with similar variation across programs. Such

an approach was used by Cammarota et al. [33], who consider only program execution

time, stored in a matrix M such that Mi,j is the execution time of program i on system j.

Having collected times for many programs on many systems, hierarchical clustering is

used to group programs and systems according to similarity.

A major challenge with machine learning-based technique is in the selection of

features. Leather et al. [132] automatically generate and test features using a genetic

algorithm approach. A set of mathematical operators and functions operating on

the compiler’s intermediate representation are provided, together with a grammar

describing how expressions using them can be formed. Every expression yields a

42

real number. Genetic algorithms are then used to create new expressions from the

existing population. Each proposed expression is tested by training a classifier using

it as a feature and determining whether, and by how much, the addition of the

feature improved the performance of the classifier. The degree of improvement is

used as fitness. To evaluate this technique, the authors considered loop unrolling,

exhaustively searching the space for a set of benchmark applications to determine the

optimal value, and using the technique to create features, which performed better than

human-selected features.

2.5 Performance Diagnosis

Autotuning, as described above, involves trying many variants or parameters,

measuring their performance, and identifying variants and/or parameters that lead

to good performance. Another approach to improving performance is automatic

performance diagnosis, in which, rather than simply test a large number of variants, we

analyze performance data from one run or a smaller set of runs and attempt to identify

the specific causes of performance problems, so that we can develop targeted solutions

to those problems.

Online Performance Diagnosis. Online performance diagnosis is the

process of identifying performance problems during the run of a program. It is most

useful for large-scale and/or long-running jobs in which collecting and making use of

traces is not feasible.

Paradyn [160] is an early online performance diagnosis system designed to

identify performance problems within a single run of a program, while minimizing

the disruption it itself causes. It is based on a process of iterative search through a

search engine called the Performance Consultant, which refines hypotheses, and on

43

dynamic instrumentation: instrumentation is added at runtime when a hypothesis is

being evaluated and, when the evaluation is done, the instrumentation is removed.

Search proceeds along three axes - “why”, “where”, and “when”. Along the

“why” axis, the system attempts to refine hypotheses; an example of a hypothesis

hierarchy is shown in Figure 13. In that example, the system will first insert

instrumentation to determine if a synchronization bottleneck is present. If not, it

moves to a sibling hypothesis. If so, it will insert more specific instrumentation to

test causes of the overall problem – are synchronization operations too frequent, or

do synchronization operations take too long, etc.. Along the “where” axis, hypotheses

are localized to resources, such as places in the program’s code, nodes, particular

synchronization objects, etc.. Search initially occurs at a high level in these hierarchies

– such as, “does the entire program suffer from synchronization bottlenecks?” If so, the

search is refined to locate parts of the program which suffer from synchronization

bottlenecks and those which do not. Along the “when” axis, the system considers

phases of execution, as performance problems may exist during some phases but not

others.

Paradyn can use information from previous runs to focus future searches on

the same code [122]. Inserting instrumentation for bottlenecks which are unlikely to

exist unnecessarily perturbs performance, so hypotheses which have been disproved in

many prior runs can be pruned from the hypothesis tree. Similarly, hypotheses which

have proved true in many prior runs can be promoted so that they are searched earlier

during program execution, allowing the most likely hypotheses to be tested even in

short runs.

The original implementation of Paradyn is somewhat limited in scalability

because the search process is centrally directed: one node is responsible for initiating

44

instrumentation on all the nodes in the system, for processing measurements from all

the nodes, evaluating hypotheses, and selecting new hypotheses to test. To increase

scalability, a Distributed Performance Consultant was developed [184]. Rather than

one central search agent, each node runs its own agent which can communicate with

other agents as necessary. In order to determine whether a hypothesis holds for the

whole application, neighboring nodes communicate to determine whether a property

holds for a local neighborhood. Graph clustering is used to identify neighborhoods

with similarly properties, and these summarized data are propagated to other nodes, in

order to eventually give an approximate representation of global behavior.

to a specific program component or machine resource.
(We use the term “resource” to mean either a machine
resource or a program component-for example, a disk
system, a synchronization variable, or a procedure.) To
identify“when” a problem occurs, we try to isolate a prob-
lem to a specific time interval during the program’s exe-
cution. Isolating a performance problem is an iterative
process of refining our answers to these three questions.
Our model treats the three questions as orthogonal axes of
a multidimensional search space.

“WHY” AXIS. The first performance question pro-
grammers ask is often “Why is my application running so
slowly?” The “why” axis represents broad problems that
can cause slow execution. Potential performance prob-
lems are represented by hypotheses and tests. Because our
model decouples the type of problem (“why”) from its
location (“where”), hypotheses encode general types of
performance problems. One hypothesis, for example,

r
1 TopLevelHypothesis 1

1 FrequentSyncOperations 1 1 HighSyncBlockingTimeI
I

HighSyncHoldingTime HighSyncContention

Figure 3. A portion of the “why” axis representing
several types of synchronization bottlenecks. The
shaded node shows the hypothesis currently being
considered.

might be that a program is synchronization bound. Since
hypotheses represent activities universal to all parallel
computation, they are independent of the program being
studied and the algorithms it uses. Hence, a small set of
hypotheses (a couple dozen), provided by the tool builder,
can cover most types of performance problems.

Hypotheses can be refined into more precise hypothe-
ses. The dependence relationships between hypotheses
define the search hierarchy for the “why” axis. These
dependencies form a directed acyclic graph, and axis
searching involves traversing this graph. Figure 3 shows
a partial “why” axis hierarchy; the current hypothesis is
HighSyncBlockingTime. This hypothesis was reached
after first concluding that a SyncBottleneck exists.

Tests are Boolean functions that evaluate the validity of
a hypothesis. Tests are expressed in terms of a threshold
and one or more metrics (for example, synchronization
blocking time is greater than 20 percent of the execution
time).

“WHERE” AXIS. The second performance question
most programmers ask is “What part of my application is
running slowly?” The “where” axis represents the differ-
ent program components and machine resources that can
be used to isolate a problem source. Searching along the
“why” axis classifies the problem, while searching along
the “where” axis pinpoints its location. For example, a
“why” search may show that a program is synchroniza-
tion bound, and a subsequent “where” search may isolate
one hot synchronization object among many thousands
in the program.

The “where” axis represents the different foci that can
be measured. Each axis hierarchy has multiple levels, with
the leaf nodes being the instances of the resources used
by the application. Isolating a performance problem to a
leaf node indicates that a specific resource instance is
responsible for the problem. Higher level nodes represent

Semaphores Messages

I\

\/Spy i”‘;‘\ / BaT(rs\

1 pp,, n ivi u
message

tags

clml ml
Individual Individual

locks barriers

Other
CPUS

Individual
semaphores

Figure 4. A sample “where” axis with three class hierarchies. The shaded nodes show the current focus. The
; oval objects are defined in the W3 search model. The triangles represent static entities based on the appli-

cation, and the rectangles represent dynamically (runtime) identified entities. The shaded nodes indicate
the current focus (all SpinLocks on CPU #I, in any procedure). The Paradyn resource hierarchies include sev-
eral other classes, such as 110, memory, and process, which are not shown.

Computer

to a specific program component or machine resource.
(We use the term “resource” to mean either a machine
resource or a program component-for example, a disk
system, a synchronization variable, or a procedure.) To
identify“when” a problem occurs, we try to isolate a prob-
lem to a specific time interval during the program’s exe-
cution. Isolating a performance problem is an iterative
process of refining our answers to these three questions.
Our model treats the three questions as orthogonal axes of
a multidimensional search space.

“WHY” AXIS. The first performance question pro-
grammers ask is often “Why is my application running so
slowly?” The “why” axis represents broad problems that
can cause slow execution. Potential performance prob-
lems are represented by hypotheses and tests. Because our
model decouples the type of problem (“why”) from its
location (“where”), hypotheses encode general types of
performance problems. One hypothesis, for example,

r
1 TopLevelHypothesis 1

1 FrequentSyncOperations 1 1 HighSyncBlockingTimeI
I

HighSyncHoldingTime HighSyncContention

Figure 3. A portion of the “why” axis representing
several types of synchronization bottlenecks. The
shaded node shows the hypothesis currently being
considered.

might be that a program is synchronization bound. Since
hypotheses represent activities universal to all parallel
computation, they are independent of the program being
studied and the algorithms it uses. Hence, a small set of
hypotheses (a couple dozen), provided by the tool builder,
can cover most types of performance problems.

Hypotheses can be refined into more precise hypothe-
ses. The dependence relationships between hypotheses
define the search hierarchy for the “why” axis. These
dependencies form a directed acyclic graph, and axis
searching involves traversing this graph. Figure 3 shows
a partial “why” axis hierarchy; the current hypothesis is
HighSyncBlockingTime. This hypothesis was reached
after first concluding that a SyncBottleneck exists.

Tests are Boolean functions that evaluate the validity of
a hypothesis. Tests are expressed in terms of a threshold
and one or more metrics (for example, synchronization
blocking time is greater than 20 percent of the execution
time).

“WHERE” AXIS. The second performance question
most programmers ask is “What part of my application is
running slowly?” The “where” axis represents the differ-
ent program components and machine resources that can
be used to isolate a problem source. Searching along the
“why” axis classifies the problem, while searching along
the “where” axis pinpoints its location. For example, a
“why” search may show that a program is synchroniza-
tion bound, and a subsequent “where” search may isolate
one hot synchronization object among many thousands
in the program.

The “where” axis represents the different foci that can
be measured. Each axis hierarchy has multiple levels, with
the leaf nodes being the instances of the resources used
by the application. Isolating a performance problem to a
leaf node indicates that a specific resource instance is
responsible for the problem. Higher level nodes represent

Semaphores Messages

I\

\/Spy i”‘;‘\ / BaT(rs\

1 pp,, n ivi u
message

tags

clml ml
Individual Individual

locks barriers

Other
CPUS

Individual
semaphores

Figure 4. A sample “where” axis with three class hierarchies. The shaded nodes show the current focus. The
; oval objects are defined in the W3 search model. The triangles represent static entities based on the appli-

cation, and the rectangles represent dynamically (runtime) identified entities. The shaded nodes indicate
the current focus (all SpinLocks on CPU #I, in any procedure). The Paradyn resource hierarchies include sev-
eral other classes, such as 110, memory, and process, which are not shown.

Computer

Figure 13. Examples of the Paradyn “why” and “when” hierarchies, from [160].

45

PERISCOPE [22] is an extensible performance diagnosis system based on a

set of interacting agents. Its architecture is shown in Figure 14. Agents consist of

several parts: the search strategy takes input from source code analysis and previous

experiments and produces candidate properties, which are properties that would hold

if the performance problem detected by the agent exists. These candidate properties

are used to formulate experiments, which, when run, result in measurement requests

being sent to the measurement system, describing what is to be measured (e.g., a set of

of PAPI counters for a particular loop). When the results of the measurement request

are available, they are stored in a performance database and the candidate property is

evaluated in light of the new data. If the property holds, it is added to a set of proven

properties, which are available to the search engine for its use in formulating new

candidates. When no more candidates can be generated, the proven properties are

analyzed to determine whether the performance problem is present or not.

Trace Based Systems. Wolf et al. [238] developed a system, KOJACK, to

automatically diagnose performance problems in MPI and OpenMP codes. Programs

are instrumented so that each process writes events to a process-specific log which are

merged at program termination. Events which are logged include MPI sends, receives,

and collectives, entry into and exit from OpenMP regions, and acquisition and release

of OpenMP locks. A library of rules is constructed specifying patterns which indicate

potential causes of performance problems. For example, one rule specifies that when a

receive event is encountered while processing the event log, the corresponding send

event should be located and the time between send and receive calculated to determine

whether a “late sender” problem occurred, where an MPI_Recv call was made prior to

the corresponding MPI_Send, resulting in the receiving process unnecessarily waiting.

These rules are applied to the merged event log.

46

2 Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt

measurements of the program’s performance and locate various bottlenecks. Bottle-
necks are places in the execution path where execution time is lost due to inefficient
resource usage. Based on the identified bottlenecks, users can do modifications to
improve the application’s runtime behavior. Since measuring performance data and
storing those data for further analysis is often done in a not very scalable approach,
most tools are limited to experiments with a small number of processors.

The traditional way of conducting performance analysis and tuning for high
performance computing has been an off-line search approach requiring strong in-
volvement of the user. This search has a potential problem with large performance
datasets and long analysis times for large-scale scientific applications. It remains a
challenge for application developers to analyze the bottlenecks of their applications
when scaling to larger parallel machines. To investigate the runtime behavior of
large experiments, performance analysis has to be done online in a distributed fash-
ion, eliminating the need to transport huge amounts of performance data through
the parallel machine’s network and to store those data in files for further analysis.

An online-based performance analysis system using expert knowledge for iden-
tifying bottlenecks in the applications, in general, follows four steps for capturing
performance properties (Fig. 1.1). As shown, the application is instrumented based

Fig. 1.1: Cyclic representation of performance analysis

on the initial hypotheses of potential performance properties. During an experiment
executing the application on the parallel system, appropriate performance data are
collected. These data are then inspected to prove which of the hypotheses hold. In
the refinement step, the found properties might be refined to identify more specific
performance problems. All four steps are executed in a cyclic fashion until no more
precise properties can be found. This cyclic approach can of course be automated
and executed in an online fashion.

Although, there are numerous performance analysis tools on the market, they
face challenges in usabiliy, scalability, and single node performance analysis.
Periscope [5] is a distributed online performance analysis tool currently under de-

6 Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt

sibling agents and forward only the combined properties. The analysis agents
are responsible for performing the automated search for performance properties.
During the search they access the monitor linked to the application processes via
the Monitoring Request Interface (MRI).

4. The MRI monitors provide an application control interface. They deal more with
hardware and software sensors to measure the performance data.

1.3.2 Agent’s Data Capture Mechanism

The agents play a vital role in the search for performance properties in the processes
or threads of the application. The agent design consists of two main parts, namely,
the agent and the monitor. The main components of the agents are the agent control,
the search strategy, and the experiment control. Figure 1.3 presents the agent design
and the sequence of operations involved in capturing performance data. In general,

Fig. 1.3: Sequence of operations performed by agents to capture performance data

any scientific application would have computational intensive iterations. The user
can mark those regions as user-region or phase-region, so that, it can be used to
perform a multistep search. In order to perform such search autonomously, agents
are involved in the following phases of the performance data capturing mechanism
in Periscope:

1. initialization phase
2. execution phase
3. data collection phase
4. evaluation phase

Figure 14. Architecture of the PERISCOPE system, from [159].

47

Scalasca [81, 80] is derived from KOJACK and addresses two problems: first,

that creating a merged log is time consuming and can result in a file too large for

some filesystems, and second, that serially scanning a merged log scales poorly as the

number of processors in the traced application increases. In Scalasca, no merging is

done; rather, each process writes its own local event log. The log is then processed

in parallel, using the same number of processors as the application being analyzed.

Rather than reducing all data to one node, the communication patterns of the original

application are replayed, so that, for example, an MPI_Send in the original application

becomes an MPI_Send in the replay with a payload indicating the parent events of the

send.

Scalasca has been subsequently extended with new analyses. One such analysis,

described by Böhme et al. [25], aims to automatically determine the causes of load

imbalance in MPI applications. A wait state can be either direct if it is caused by a

process blocking on communication from another process because that other process

has not yet completed a computation, or it can be indirect if it is waiting on a receive

because the other process is in turn waiting on a communication. The authors extend

Scalasca with a backwards replay, allowing wait states to be attributed to other wait

states or to delays in computation, thereby building a graph showing the root cause of

the delays.

Automatically Fixing Performance Problems. Of particular interest are

systems which not only automatically diagnose performance problems, but also can

suggest solutions to the problem or even automatically modify source code. Cong

et al. [49] describe a system with a structure similar to KOJACK, described above,

but which is closely integrated with IBM compilers, taking as input reports on what

optimizations were applied to blocks of input code, and able to provide optimization

48

settings to the compiler in response to diagnosed problems, as well as transformation

recipes to a polyhedral code optimization framework. Modeling or empirical testing

are used to determine whether the proposed solution actually addresses the detected

problem. Problems which cannot be addresses automatically result in suggestions to the

user.

Recent versions of the PerfExpert system also implement automatic

optimization [72], incorporating a central database which a set of modules access.

Compilation modules encapsulate procedures for compiling and running input code.

Measurement modules perform code instrumentation (which may entail cooperation

with a compilation module), binary instrumentation, or monitoring through operating

system facilities, and write measurements into the database. In this framework,

measurements are distinct from metrics: a measurement is raw data collected during

execution, while a metric has been further processed and rendered into a standard

form. Analysis modules convert measurements into metrics, storing these into the

database as well. Recommendation modules query the database, evaluating rules

expressed as SQL queries. Each row returned by the query identifies a recommendation

for an optimization and gives a ranking to that recommendation. The top-ranking

recommendation is then applied using an optimization module, which first checks to

verify that the recommendation actually applies and is valid given constraints inferred

through static analysis of the input code. The recommendation, having been applied,

results in new code which starts the process anew with a compilation module. This

process continues until no more valid recommendations remain.

Wert et al. [227] perform automated performance diagnosis in the context

of enterprise Java applications. In their system, a hierarchy of symptoms is specified,

with each symptom in turn referring to a hierarchy of causes. An example of such a

49

hierarchy is shown in Figure 15. For each symptom and cause, a detection strategy

is provided, providing steps by which an automated experiment can be performed

which will trigger the problem if the cause under consideration exists in the application

being tested. The detection strategies specify a workload to apply to the application,

measurements to be made, and a procedure for deciding whether the measurements

support the hypothesized cause.

formance engineering expertise is required for its usage. PPD
combines search techniques that narrow down the scope of
the problem based on a decision tree [12] with systematic
experiments. The combination of both allows efficiently un-
covering performance problems and their root causes that are
otherwise hard to tackle. In its current state, PPD is tailored
for the diagnosis of performance problems in Java-based three-
tier enterprise applications. For this purpose, PPD requires a
representative usage profile of the system (i.e., a load driver)
and test system that resembles the actual setup.

To validate PPD, we applied it to an established imple-
mentation of the TPC-W industry benchmark [19], a Java-
based three-tier enterprise application. We deployed the bench-
mark in two different test environments. PPD identified four
performance problems in the benchmark implementation, the
web server, the database, and the infrastructure. Solving these
problems increased the maximal throughput of the benchmark
from 1800 requests per second to more than 3500.

Overall, we make the following contributions:

1) We introduce a novel approach for performance problem
detection and root cause analysis called Performance
Problem Diagnostics. PPD systematically searches for
known performance problems (cf. [13]–[18]) in three-
tier enterprise applications. Once a problem has been
found, PPD isolates its root causes as far as possible.

2) We structure a large set of known performance prob-
lems [13]–[18] in a novel Performance Problem Hier-
archy. To guide PPD’s search, the hierarchy starts from
very general problems (or symptoms). Each further level
refines the problems down to root causes. The hierarchy
allows systematically excluding classes of problems and
focusing on the most relevant ones.

3) We define detection strategies for twelve performance
problems in the hierarchy. The strategies are based on
goal-oriented experiments tailored to trigger a specific
problem. Based on the results, heuristics can decide
if a problem is assumed to be present and refine the
search. For each performance problem, we investigated
and compared different heuristics for detecting the prob-
lems (see Section III). We chose those heuristics that
minimize false positives and false negatives.

4) We evaluated our approach in two steps. First, we
determined the detection strategies that are most likely to
find a performance problem (see Section III). For this
purpose, we evaluated the accuracy of each detection
strategy based on ten reference scenarios. Each scenario
contains different performance problems which have
been injected into a test application.
Second, we evaluated if PPD can detect performance
problems in real enterprise applications (see Sec-
tion IV). PPD successfully identified four performance
problems in the TPC-W benchmark, which significantly
limited the maximal throughput.

In the following section, we introduce the main concepts of
our approach.

II. AUTOMATIC PERFORMANCE PROBLEM DIAGNOSTICS

The core idea of our Performance Problem Diagnostics
(PPD) is based on the observations that i) particular per-
formance problems share common symptoms and ii) many
performance problems described in the literature [13]–[18]
are defined by a particular set of root causes. Based on these
observations, we create a hierarchical structure of performance
problems, their symptoms, and their root causes that simplifies
the detection and diagnostics significantly (Section II-A). The
hierarchy is based on performance antipatterns known in
the literature [13]–[18]. To detect performance problems and
diagnose their root cause, we execute a series of systematic
experiments that first test for symptoms and then search for
more specific performance problems and their root cause
(Section II-B). In the following, we introduce the idea of both
concepts. A detailed description follows in Section III.

A. Performance Problem Hierarchy
Figure 1 shows an excerpt of the hierarchical structure of

performance problems. An extended version of our perfor-
mance problem hierarchy can be found in [20]. The hierarchy
is structured in categories, symptoms, performance problems,
and root causes. The category Occurrences of High Response
Times in Figure 1(a) groups common symptoms for the per-
formance problems High Overhead, Varying Response Times,
Unbalanced Processing [13], and Dispensable Computations.
Symptoms represent the starting point for the performance
problem diagnostics. They combine common characteristics
of a set of performance problems. Each symptom is refined
by more specific performance problems that further limit the
set of possible root causes.

Occurrences of
High Response Times

High Overhead

Varying Response
Times

Unbalanced
Processing

Dispensable
Computations

(a) Symptoms of known
performance problems.

Varying Response Times

The Ramp

Dormant References

Specific Data Structure

Sisyphus DB Retrieval

Specific Methods

Traffic Jam

One Lane Bridge

Synchronization Points

Database Locks

Pools

Bottleneck Resource

(b) Performance problems causing Vary-
ing Response Times.

Fig. 1. Excerpt of our performance problem hierarchy.

Figure 1(b) shows the performance problem hierarchy for
Varying Response Times. We identified the performance an-
tipatterns The Ramp [13] and Traffic Jam [16] as potential
causes of Varying Response Times. The Ramp occurs if re-
sponse times of an application increase during operation. For
example, a request to an online shop takes 10 ms when the

553

Figure 15. Symptom and cause hierarchies as used by Wert et al., from [227]

Differential Analysis. Differential, or decremental, analysis is a technique

for automated diagnosis of performance bottlenecks, with attribution to specific

lines or operations in the original source code. First, binary analysis is performed

using MAQAO [60], which produces a series of reports on degree of vectorization,

utilization of execution units, and a series of performance estimates assuming that all

memory requests are served from L1, that all memory requests are served from L2, that

all memory requests are served from RAM, and finally a projection of performance for

a fully-vectorized code. These reports are used to determine code regions for further
50

analysis [126]. Selected loops are instrumented and run, with hardware performance

counters related to the memory system being recorded. This generates hypotheses

about the cause of performance bottlenecks. Finally, DECAN [127] performs

differential analysis to determine the specific instructions causing the bottleneck.

Given a binary executable, the instructions representing loops of interest are deleted

or replaced with other instructions so as to suppress the effect of the instructions. This

is done several times, yielding modified binaries in which certain classes of instructions

are suppressed, such as one version suppressing load/store instructions and another

suppressing floating-point instructions. These versions are then run with performance

instrumentation, and the versions are compared to determine, for example, whether

load/store (memory) or floating-point (compute) instructions are the performance

bottleneck for the loop of interest.

51

Figure 16. Methodology of DECAN, from [127]

52

2.6 Exascale Computing and Future Programming Models

All of the work described up to this point in the paper applies to existing

supercomputers running existing codes written with traditional programming models

such an MPI and OpenMP. The move to exascale, however, is likely to necessitate

moves to other programming models [6]. An exascale system is one with peak

performance of one exaflop (1018 floating point operations per second), about 30

times greater than the peak performance of Tianhe-2, currently the world’s fastest

supercomputer [216]. Yet in order for system deployment to be feasible, total power

consumption of the system must be kept below about 20 megawatts. Tianhe-2 uses

17 megawatts, so to reach exascale we must increase performance by 30 times while

holding power consumption basically constant. This will require adding substantially

more concurrency at every level of the system: nodes must have more cores, cores

must have more hardware threads, hardware threads must process SIMD instructions

over more data at a time, all of which will result in the number of threads required to

saturate the system growing from hundreds of thousands in current systems to tens

to hundreds of billions in exascale systems. Providing enough work to generate these

threads will require a different approach to programming [56].

Programming models that have been proposed for exascale systems tend to

be task based. Rather than strictly dividing work across things like loop iterations, or

partitioning work across nodes and running the same algorithms on every node on

different parts of the data, task parallelism divides work into discrete chunks which

carry dependency information. This dependency information can be expressed as

a directed acyclic graph, allowing a runtime scheduler to proceed with executing a

task as soon as its dependencies have been met. This allows task-parallel programs to

spend less time idle compared to those using fork-join parallelism and communicating

53

sequential processes, as shown in Figure 1. They also allow for easier adaptation to

system variability by allowing work to migrate to address load imbalance caused by

node variability; to do this, units of work are virtualized relative to hardware. Data

is often also virtualized, so that data can be moved to work, or work can be moved

to data, depending upon whichever is cheaper. Finally, by generating a very large

number of tasks, latency can be hidden by swapping out a task waiting on a resource

for another task [199].

In this section, I will review a number of task-based programming models.

These differ by granularity (whether tasks are lightweight, at the level of loop

iterations; medium-weight, at the level of functions; or heavy-weight, at the level

of phases or steps in a workflow); by whether parallelism is explicit or implicit; by

underlying source of parallelism (e.g, user-level threads, pthreads, systems built on top

of MPI, etc.); by technology used by communication; by whether tasks may yield; by

whether scheduling decisions are centralized or distributed; and by whether scheduling

decisions are made statically or dynamically.

There are a number of node-local task based systems. While these could be

combined with some other mechanism for inter-node parallelism, exascale systems

will likely require that intra- and inter- node parallelism be expressed using the same

model. Therefore I will not describe node-local systems in detail. These systems

include OpenMP Tasks [12], Intel Threading Building Blocks [175], Qthreads [230],

StarPU [11], Cilk Plus [182], and Concurrent Collections (CnC) [29].

Charm++. Charm++[1] is among the oldest adaptive asynchronous

task-based runtimes, first released in 1992. Its central abstraction is the chare, a special

C++ object encapsulating data and methods which can be invoked remotely by receipt

of a message. Programs do not interact with the chare directly. Rather, creation of a

54

chare yields a proxy object through which messages are sent, invoking entry methods,

which are specially designated methods with signatures defined in a domain-specific

language from which glue code is generated by a source-to-source compiler. Entry

methods are required to run to completion; the scheduler will not interrupt them.

All messages are asynchronous: upon sending a message, the sender immediately

continues executing. Any reply to a message is implemented as an additional message.

A chare’s global ID indicates a home node for the chare; however, chares are migratable:

at any time a chare may be moved to another node, with the original home node

forwarding any messages it receives and notifying senders of the new location of the

chare, which is cached by senders for future use. Application developers are encouraged

to overdecompose their applications by breaking them down into many more tasks

than there are processing units on which the tasks will run. This helps with load

balancing by keeping a pool of work available to assign to processing units as they

become available. Migratability provides additional opportunities for load balancing

by enabling the moving of work, along with its associated data, to underutilized

nodes [121].

The Charm++ runtime has built-in facilities for runtime adaptation. The

Charm++ Load Balancing framework, the architecture of which is shown in Figure 17,

is one such facility [249]. A Load Balance Manager runs on each node. During

execution, the Manager stores statistics on load and idleness into a database. When

criteria for rebalancing are met, the Manager invokes one or more Load Balancing

Strategies, which can query the database for information on the load of the local node

and remote nodes. Strategy instances are themselves chares and can communicate with

one another through message passing. Strategies inform the Load Balance Manager

55

of how chares should be migrated, which occurs through interaction with the Array

Managers.

Three types of load balancers are described in [249]: centralized, decentralized,

and hybrid. The centralized load balancers send all performance data to one node,

which processes all the data and distributes migration decisions. The simplest of these

are the Random strategy, which randomly assigns chares to processing units. The

Greedy strategy processes chares in order from longest-running to shortest-running,

assigning tasks to processors ordered from least-loaded to most-loaded. The

Refinement strategy swaps chares to adjust an existing distribution. More sophisticated

load balancing strategies take communication into consideration, attempting to place

groups of chares which communicate heavily together while still balancing load. These

operate on the communication graph and include a Recursive Bisection strategy and a

METIS [124] strategy. Variants of the above strategies are provided which consider

that an application may be composed of several phases with different performance

characteristics, which require gathering and using phase-specific load statistics.

As the size of the system increases, it becomes impractical to collect all the data

needed for load balancing onto a single node. At the same time, making good load

balancing decisions requires global information – we cannot decide to place work on

the least-loaded node unless we know which node that is. Distributed strategies include

neighborhood-based methods in which balancing occurs within a subset of nodes. This

can be combined with a work-stealing approach, in which nodes in a neighborhood

periodically send messages to one another informing them of their load, and idle nodes

send messages to nodes which according to its view are overloaded, requesting that

chares be migrated from the overloaded node to the idle node. These messages are

prioritized for immediate processing, rather than being enqueued for later processing as

56

with normal messages. The Hybrid strategy involves a tree of load balancing domains,

with different strategies being used at different levels of the tree.6.6.1 Components

LB ManagerDatabase

Charm++ RTS

Array Manager 2Array Manager 1

Object B[2]

Object B[3]Object B[1]

Object A[1]

Object A[2]

Application

LB Strategy 1 LB Strategy 2

Figure 6.3: Components and interactions in the load balancing framework

Figure 6.3 illustrates the components of the measurement-based load balancing framework on a single

processor. At the top level of the figure are the load balancing Strategies. Strategies are implemented in

CHARM++ as Chare Groups. When informed by LB Manager to perform load balancing, strategies on

each processor may retrieve information from the local LB Manager database about the current state of the

processor and the objects currently assigned to it. Depending on a specific strategy, it may communicate with

other processors to gather state information. With all information available, strategies determine when and

where to migrate object, and provide this information to the LB Manager, which supervises the movements

of the objects, informing the strategies as objects arrive. When the moves are complete, the strategies

signal the LB Manager to resume the objects. Two types of load balancing strategies are implemented in

CHARM++. One is centralized load balancing strategy (in Chapter 7) and the other is fully distributed

strategy (in Chapter 8.2).

During execution, the LB Manager monitors the load behavior on each processor. It collects background

load and idle time statistics into the LB Database, which is used by the LB Strategies for making load

balancing decisions. The LB Manager also interacts with objects through Array Managers. Array managers

77

Figure 17. Architecture of the Charm++ Load Balancer (from [249])

An adaptive runtime system called PICS [203] (Performance-analysis-based

Introspective Control System) has been implemented, which allows Charm++

applications to register control points [62]. Control points specify what effect application

parameters have on various categories of performance-effecting properties, a library

of which are provided by the system. Control points can be registered for effect types

of Degree of Parallelism, Grain Size, Priority, Memory Consumption, Cache Miss

Rate, Overhead, Number of Messages, and Message Size. Control points are registered

explicitly by the application developer and are not automatically discovered; for

example, the application can register that a variable controlling the size of a subproblem

57

will change the grain size and degree of parallelism. Based on runtime performance

measurement, the system selects a property to adjust and adjusts registered control

points according to a strategy shown in Figure 18.

Performance
s u m m a r y

CPU Utilization

 > 9 0 %

O v e r h e a d
 > 1 0 %

Idle
> 1 0 %

Sequent ia l
pe r fo rmance?

Cache Miss
 > 1 0 %

D e c r e a s e
grain s ize

Small
e n t r y m e t h o d s

Small
Bytes

p e r
m e s s a g e

Increase
grain s ize

Decomposi t ion
 problem?

Mapping
problem?

Schedul ing
problem?

Others?

Longer
en t ry

 m e t h o d

Larger
s ingle
 object

Long
critical
 p a t h

Few
objec t s
per PE

Large
communica t ion
on one objec t

D e c r e a s e
grain s ize

Load
imba lance

Large
communica t ion

on one PE

Communica t ion
 t i m e > >

 model t ime

Large
ex te rna l

communica t ion

Load
ba lance r

R e m a p
Compres s
m e s s a g e

Critical
t a s k s

a r e
d e l a y e d

Prioritize
t a s k s

Large
Bytes

p e r
m e s s a g e

Long
reduct ion
b roadcas t

Long
la tency

Increase
aggrega t ion

thresho ld

D e c r e a s e
aggrega t ion
 threshold

Collectives
Replicate

ob jec t s

Topology
a w a r e

m a p p i n g

Figure 2: Performance Analysis Decision Tree

Memory Consumption Scheduling tasks in di↵erent or-
ders can often impact the memory usage of the ap-
plication and/or system, which can have performance
ramifications.

Cache Miss Rate Often adjusting a knob will have some
impact in the cache miss rate. For example, making
the grainsize larger might increase cache misses and
thereby decrease performance.

Overhead This is anything related to the cost of running
the program, which is not a part of the computation
in the application.

Number of Messages and Message Size Proper message
size can both better utilize network bandwidth and
also overlap computation with communication. For
example, message aggregation by the runtime can be
important e↵ects.

2.2 Performance-Analysis-Guided Steering with
Control Points

The goal of the control system is to find the optimal con-
figuration of all the control points. Due to the complexity of
the runtime system and application, many control points will
be registered with PICS. This leads to a huge search space of
configurations. As a result, performing direct optimization
(such as hill climbing) can be time consuming. When we
examine control points closely, we notice that some control
points may have more impact than others. If we can de-
termine which control points have the most impact on the
overall performance, the process may be accelerated.
The approach we take is to perform automatic and com-

prehensive analysis to detect a performance deficiency. Since
the runtime system takes control of the application with
regard to scheduling and communication, it is easy to in-
strument, record, and track application behaviors. Based
on the instrumentation data, performance analysis can be
performed. When possible performance deficiencies are de-
tected, we can tune the control points whose e↵ects are re-
lated to these performance deficiencies instead of searching
all possible configurations. This significantly reduces the
search space. The other advantage is that based on the ef-
fect of control points and performance problems, the direc-

tion of performance steering is guided instead of proceeding
blindly.

2.3 Categories of Performance Problems
In order to determine application performance deficiencies

and then possible solutions, we need to identify the charac-
teristics of the program. We categorize the program charac-
teristics and problems into three main types: decomposition,
task mapping, and scheduling.
Problem decomposition is how a problem is decomposed

into smaller problems, which can be solved in parallel with
the appropriate dependencies. Problem decomposition di-
rectly determines the grain size of the computation and com-
munication and the degree of parallelism. E↵ective problem
decomposition is essential to achieve high performance. The
specific characteristics related to the problem of decomposi-
tion are shown in the Figure 2. When these characteristics
are identified, it signals a potential grain size problem.
Task mapping is how tasks are mapped to physical proces-

sors. Task mapping a↵ects the communication cost. There
is significant related work on how task mapping impacts
overall performance, including topology-aware mapping [10].
Task mapping also a↵ects the load balance. In addition, it
may also a↵ect memory usage and I/O usage. The char-
acteristics related to task mapping are illustrated the Fig-
ure 2. The corresponding solutions range from performing
topology-aware mapping, communication-aware load balanc-
ing, or compressing messages.
Scheduling is about the order in which the runtime exe-

cutes available tasks on processors. The main ramification
of deficient scheduling is that critical tasks may be delayed,
causing processors that depend on the critical tasks to be-
come idle. The other potential problem caused by scheduling
is running out of memory. If only the tasks that consume
memory are scheduled while the tasks that free the memory
are not scheduled, the program may cause an out of memory
error.
We represent the program characteristics and correspond-

ing solutions in the complete decision tree shown in Figure 2.
In this figure, starting from the performance summary data,
the decisions are made based on the performance charac-
teristics and the specific performance data collected from an
execution. The three diamonds represent the course-grained

Figure 18. Decision procedure used by PICS to decide which control points to adjust
(from [203])

A version of MPI, Adaptive MPI (AMPI), has been developed, which runs on

top of the Charm++ runtime [100]. In AMPI, MPI processes are implemented as fully

migratable Charm++ tasks, and MPI communications are implemented as Charm++

messages between tasks. The same load balancing strategies described above for native

Charm++ programs can also be used for AMPI programs [101].

Swift. Swift [232]2 is a parallel scripting language designed for the

specification of scientific workflows. Unlike general-purpose languages, Swift is

not intended for performing mathematical operations but rather for sequencing and

scheduling calls to external functions or entire executables written in other languages,

such as C, C++, or Fortran. Swift is made aware of the types of inputs and outputs to

such external computations, but they are otherwise treated as “black boxes” of which

the Swift runtime has no knowledge.

A Swift program then consists of a series of parallel constructs, such as foreach

loops, which contain external calls with specific inputs and outputs. Executions of a

2Unrelated to the language of the same name from Apple.
58

parallel construct implicitly specify tasks, so that, for example, two nested foreach

loops each over 1,000 elements result in the construction of 1,000,000 tasks. Code such

as

foreach i in [0:N-1] {
foreach j in [0:N-1] {

foreach k in [0:N-1] {
foreach m in [0:N-1] {

int r = f(i, j, k, m);
}

}
}

}

creates N tasks which run independently, while

A[0][0] = 0;
foreach i in [1:N-1] {

A[i][0] = 0;
A[0][i] = 0;

}
foreach i in [1:N-1] {

foreach j in [1:N-1] {
A[i][j] = f(A[i-1][j-1], A[i-1][j], A[i][j-1]);

}
}

creates N-1 initialization tasks which run independently and N-1 tasks, each of which

depends on predecessor tasks.

A limitation of the original Swift is that scheduling occurs only on the node

executing the driver script, limiting the scalability of scheduling. Swift/T [240] resolves

this issue by running Swift on top of a new runtime, Turbine [239]. A small subset

of the nodes in a job are reserved as control engines, which run control fragments, which

in turn schedule leaf tasks (that is, user-defined external functions or executables) on

the workers, which are those nodes not reserved as control engines. Workers and

control engines communicate through a global address space called the distributed
59

future store which manages write-once variables by which tasks return results and signal

completion.

Static dataflow analysis is used to determine dependencies between tasks, which

are made available to the scheduler, which does not schedule a task for execution until

all of its inputs are available. As tasks never execute that point, tasks do not yield during

execution, instead always running to completion before the scheduler may reuse the

resources consumed by the task. Because the scheduler must monitor dependencies

itself, scheduling overhead is higher than in dependency-unaware runtimes. Swift is

then intended for medium-granularity tasks, with fine-grained parallelism expressed in

the native language used to define leaf tasks. This is in contrast to lightweight tasking

runtimes, which are intended to support multiple task granularities.

X10. X10 [45] is a PGAS language based on Java, to which it adds the

concepts of places and asynchronous activities. Places contain data and activities run in

a place, and both data objects and activities are not independently migratable, unlike

in Charm++. However, places themselves may move: they do not directly correspond

to a node or processor. When a place migrates, all data objects and activities in that

place move with it. Activities (equivalent to tasks in other languages and runtimes)

are launched with the code async (p) S where p is a place and S is a code block. An

asynchronous activity invocation returns to the invoking process immediately. Waiting

for a code block containing asynchronous activity invocations can be accomplished

with finish S, where S is a code block. For example, in this simple implementation of

Fibonacci,

static def fib(n:Int):Int {
if(n < 2) return n;
val f1:Int;
val f2:Int;
finish {

60

async f1 = fib(n-1);
f2 = fib(n-2);

}
return f1 + f2;

}

the statement async f1 = fib(n-1) launches a new activity which executes fib(n-1)

(in the current place, since none is specified) and immediately continues to the

next statement, f2 = fib(n-2), which executes inside the current task. Since both

statements are located inside a finish clause, once the second statement finishes

the current task will wait for any subtasks launched within the block to complete

before proceeding. Activities can be suspended during execution, unlike in Swift and

Charm++.

As a PGAS language, X10 has support for arrays with elements resident

in different places. Arrays are specified by regions, which specify the number of

dimensions in the array and the extent of each dimension, and by distributions, which

assign points in an array’s region to a place. However, unlike traditional PGAS

languages such as UPC, in which any node can access any address in the global address

space, X10 restricts access to mutable (non-final) data to only the place in which it

resides. For one place to access data stored in another place, the first place must launch

an activity in the second place. If we have two arrays A and B such that A[i] and B[j]

are located in different places, and we want to carry out the assignment A[i] = B[j],

we must launch multiple activities: one in the place where B[j] resides, to read its

value, and one in the place where A[i] resides, to assign the value read from B[j], as

in this example:

finish async (B.distribution[j]) {
final int bb = B[j];
async (A.distribution[i]) {

A[i] = bb;

61

}
}

Here, the inner activity is able to read the value stored in bb because it is declared

final, and non-mutable values can be read from any place.

Dependencies are managed through futures or through an abstraction called

clocks, a version of a barrier in which an activity can be registered on an arbitrary

number of clocks and can simultaneously advance all clocks on which it is registered,

which can be used to implement producer-consumer activities. The next statement

causes the current activity to suspend until all clocks on which it depends have been

advanced by calling advance on the clocks.

Chapel. Chapel [43] is a PGAS language providing abstractions which

are very similar to those in X10, as described in Section 2.6. The statement begin S

causes the current task to launch a new task which executes the code block S, while the

current task immediately continues executing; this is equivalent to the async statement

in X10. The statement sync S executes the statements in the code block S, then blocks

until all subtasks created within S have completed; this is equivalent to finish in X10.

As in X10, arrays can have arbitrary indices and customizable assignments of points to

locales through user-definable domain maps, or dmaps. The primary difference between

Chapel and X10 is that Chapel supports access to shared objects from any locale, as in

traditional PGAS languages, while X10 restricts access to the place in which an object

resides. Chapel also supports additional constructs for task creation, such as cobegin S,

which launches a separate task for every statement in S, and coforall E in C do S,

which launches a task executing the statements in S for every element E in the iterable

collection C.

62

UPC++. UPC++ [250] is a C++ library which implements PGAS

functionality as found in UPC along with asynchronous task support, which is

not a feature of UPC. Rather than extend C++ with new keywords and types, as

UPC did with C, UPC++ adds PGAS support purely as a library through the use

of C++ templates. The UPC shared keyword applied to value types becomes the

template shared_var<underlying_type>, while shared pointers become the template

global_ptr<underlying_type>. Using a shared_var in a context in which the

underlying type is expected is transparently converted to a local or remote memory

access as needed by an implicit conversion operator. Dereferencing a global_ptr is also

transparently converted to a local or remote memory access. A local global_ptr can

also be cast to a plain pointer to reduce overhead when it is known not to be remote.

Direct support is available for allocating memory from one node which is resident in

the memory of another node, a feature not found in UPC. Multidimensional arrays are

supported similarly to X10 and Chapel.

Asynchronous tasks can be launched using future<T> f = async(place)(function,

args), where function is a callable object returning T. The returned future can be

used to retrieve the value computed by function by calling f.get(), which blocks

until the task has completed. UPC also provides a finish construct analogous to the

one in X10, and an event-based system for building a dependency DAG, in which

an async optionally takes event objects to signal completion and to hold execution

of a task until a set of events have been signaled. Unlike in Charm++ and Swift,

tasks are non-migratable. Tasks are intended to be launched only on remote nodes.

Habanero-UPC++ [129] allows both local and remote task invocation and extends the

runtime with additional work-stealing support.

63

Open Community Runtime. The Open Community Runtime [152] is an

asynchronous task-based runtime. Unlike the other systems described thus far, OCR

provides a runtime only; it is not accompanied by a user-facing language or library, and

is intended as a target for third-party languages and libraries. OCR is based on three

abstractions: Event-Driven Tasks, or EDTs, asynchronous tasks which, once started, are

required to run to completion; Data Blocks, which represent globally-accessible data,

and Events, which connect EDTs, Data Blocks, and other events together. EDTs have

input slots and output slots which may connect directly to Data Blocks or to Events. An

example DAG is shown in Figure 19 for a Fibonacci program.

mainEdt

fibIterEdt

fibIterEdt

fibIterEdt

sumEdt

doneEdt

N

N-2
N-1

Fib(N-2)Fib(N-1)

Fib(N)

EDT

Datablock Data	shared	between	EDTs

A	non-blocking	 unit	of	work.		Runnable	once	
all	pre-slots	 are	satisfied.

Creation	link:	Source	EDT	creates	destination

Event/Data	link:	Source	EDT	provides	 data	to	
the	destination

Both	creation	and	event/data	link

Figure 19. DAG for an OCR Fibonacci code (from [209]). Blue rectangles are EDTs,
purple rounded rectangles are Data Blocks, and arrows are Events.

With Data Blocks, OCR makes data an explicit part of the dependency

graph, unlike most other systems. Events linking Data Blocks to other objects

64

carry information on how they are to be accessed, allowing the runtime additional

optimization opportunities: by default, a Data Block is in read-write mode, so that

the runtime can make no assumptions about which EDTs will access the Block. Also

available are exclusive write, in which only one EDT may write to the block at a time;

read only, in which the Data Block provided by the event may not be written to by the

target EDT, and constant, in which no EDT may write to the Block.

Legion. Legion [21] is a task-based runtime with a unique data abstraction

called Logical Regions. As with OCR’s Data Blocks, Logical Regions represent data

in a global address space and associates with it access restrictions, namely privileges

(read-only, read/write, etc.) and coherence (exclusive access, atomic access, etc.). As

with arrays in X10 and Chapel, the assignment of ownership of array elements is

separate from declaration of the array extent. However, unlike in OCR, X10, or

Chapel, Legion’s Logical Regions do not impose any physical data layout, deferring

this decision until a task using the region is to be executed.

A Logical Region encodes what types of data are to be stored, but says nothing

about the physical representation of the data. Regions are then partitioned into

subregions, with partition operations being annotated as either disjoint (that is, no two

subregions of the region share data) or aliased (subregions may overlap). At runtime,

a mapper function determines the distribution of data to nodes and also the physical

layout of subregions on a node. Legion provides a default mapper with functionality

similar to distributions in X10 or domain maps in Chapel. Custom mappers can be

provided which take into account architecture-specific properties (such as choosing

structure-of-arrays vs array-of-structures depending on whether a CPU or GPU is

targeted) as well as application-specific properties (such as a graph partitioner tuned

to the properties of graphs used in an application). Different tasks can use different

65

mappers for the same regions, in which case the runtime will dynamically reformat the

physical representation.

Grappa. Grappa [164] is a task-based runtime and C++ library with

generally similar features to UPC++, providing a tasking model with a partitioned

global address space. As with X10, only the owner of a memory address is allowed to

directly access it, with remote access being performed through remote task invocation.

In most PGAS systems, such as UPC, UPC++, X10 and Chapel, memory partitions are

associated with nodes, so that if thread A and thread B are located on the same node,

and thread A accesses shared memory located in thread B, the access happens directly

and does not go through the remote memory subsystem. Grappa does not partition

memory in this way: ownership is associated with a core, not with a node. If worker A

and worker B are running on two cores of the same node, and worker A runs a task

which accesses memory owned by worker B’s core, then a task must be scheduled on

worker B to perform that access and return the result to the task on worker A. Tasks

whose only purpose is to access remote memory are called delegate tasks and are not

allowed to context switch or block. Full-fledged tasks may block, in which case they

will be suspended and another task scheduled in their place.

The high-granularity memory partitioning used in Grappa enables an approach

to global data structures with low contention, known as flat combining [99]. Instead of

acquiring a lock to access the shared data structure, per-core lists of pending requests

are maintained. When a worker attempts to access a non-local part of a global data

structure, it adds the request to the list associated with the core owning the memory

to be modified and then blocks, causing another task to be scheduled in its place.

Periodically, combining workers are scheduled on each core, which process requests

in the order in which they were received.

66

HPX. HPX [119] is an asynchronous task-based runtime and C++ library

based on the ParalleX model [117]. The distinguishing feature of HPX is its adherence

in design to C++ standards. C++11 [113] added node-local tasks to the C++ standard

library in the form of std::async to launch a task, which returns an object of type

std::future which can be used for synchronization and to retrieve the value returned

by the task. HPX makes this same model available for distributed systems, so that an

existing C++11 application making use of std::async and std::future for parallelism

can be converted to an HPX application by simply replacing them with hpx::async

and hpx::future. Remote invocation of a task is accomplished by passing an argument

to hpx::async indicating on which locality the task should run. Sending data and

work is accomplished by means of a parcel abstraction. Notably, HPX provides for

transparent task migration, meaning that tasks can migrate without stopping other

computations which are occurring on the node. During migration, any incoming

messages intended for the tasks or data being migrated will be stored for automatic

forwarding once migration is complete. The architecture of HPX is shown in

Figure 20.

HPX has recently been extended with a new mechanism for implicitly creating

tasks, known as executors [118]. With executors, parallel implementations of Standard

Template Library algorithms can allow decisions as to how to distribute work to be

deferred to external libraries such as HPX. Algorithms which support executors take

an executor object as the first argument, which in turn receives lambda functions from

which it creates tasks. The executor is free to determine how much work to assign to a

given task, and how to distribute tasks in a multi-node setting.

Spark. Spark [248] is based on a generalization of the Map-Reduce

model [58] found in systems such as Hadoop to problems expressed as general data

67

Locality N Locality 1

Process B

Process C

Process A

. . .

Thread

Suspended Thread

Local Memory Access

GAS Address Lookup

Local Action

Parcel

(a) local thread instantiation

(b) remote thread instantiation

(c) remote atomic memory operation

(d) depleted thread activation

(e) dataflow object trigger

(f) future value access

(a)

(c)

(d)

(e)

(e)

(b)

(f)

Locality

Process

Local Memory

LCO

Figure 20. Computational model of HPX.

flow graphs, relaxing the restriction that the graphs be acyclic. Operations are carried

out on resilient distributed datasets [247], or RDDs, which store data across nodes and

which carry sufficient information to recompute their contents. Programs are expressed

in terms of RDDs derived from transformations (of which map is only one) applied

to other RDDs and actions (of which reduce is only one). The application developer

can choose to request that certain RDDs be cached in memory or saved to disk. The

developer therefore has to make decisions based on tradeoffs between the costs of

storage (in memory and time) and recomputation (in time). RDDs are lazily evaluated,

which can create challenges in attributing performance to particular lines or regions of

code, as they do not execute until they are needed.

RDDs are composed of blocks, which represent data. Data storage is also

managed by the runtime: while the runtime will attempt to keep data in memory, it

is also free to evict data from memory, dropping it to disk instead, or to drop it entirely,

requiring that it be recomputed if needed again in the future.

68

2.7 Conclusion

For programs written for current-generation supercomputers and using

programming models such as MPI and OpenMP, a wide variety of performance

analysis tools are available for collecting profiles and traces, for analyzing and

visualizing profiles and traces, for offline tuning and online adaptation using automatic

performance tuning, for automatic diagnosis of performance problems, and for

construction of models from performance data. The move to exascale, however, will

require such a large number of threads that programming using MPI and OpenMP will

become difficult, and runtimes being investigated for exascale use a different structure

for specifying programs: directed acyclic graphs of light-weight or medium-weight

tasks for both intra- and inter-node parallelism. Existing techniques for collecting and

making use of performance data are not suitable for analysis of systems of billions of

light-weight tasks, so new techniques will need to be developed to go along with new

programming models, runtimes, and languages at exascale. It will not be feasible, for

example, to collect a trace of the start and stop times of many billions of tasks.

Many-tasks systems have many additional layers of abstraction over systems

like MPI, and this can cause us to lose the connection between a source line and

why it is executing, or why it is not executing. In MPI, we can observe that we are

waiting on a receive and work backwards to a cause, such as a late sender. In a DAG

based system, the cause can be far removed from its effect, or can depend instead on

scheduling policy: Why has task A not executed? Because it is waiting on data from

task B. Why has task B not executed? It is eligible to; the scheduler has simply not

scheduled it yet, as there are many tasks eligible for scheduling. What schedule yields

the best throughput? Why is this task executing instead of some other task? Why is this

worker idle now? How are hardware resources shared between worker threads? How

69

can hardware counter values be attributed to tasks when there are multiple tasks and

tasks can suspend and resume?

Because of the huge number of tasks in a system, we will need to answer these

questions without using post-mortem analysis, as this would require saving too large a

volume of data to disk, yet most existing studies of performance in task-based systems

have used post-mortem analysis of short runs or on a small number of nodes [88, 44].

Performance monitoring at exascale will require in-situ performance analysis [131]

and online adaptation [85]. This will require both node-local performance data and

decision making as well as a global view [104] on performance through which nodes

can become aware of the state of other nodes so that they can best make local decisions,

as centralized control will likely be infeasible at exascale.

No in-situ system providing online adaptation for a task-based runtime through

a global view currently exists. The adaptive load balancing system used in Charm++,

described in Section 2.6 is close, but is limited to controlling migration and does not

affect other system parameters, while Charm++’s PICS system operates on a per-node

basis. Node-local adaptation based on contention for memory controller resources

has been demonstrated for OpenMP tasks [5] and HPX [148]. A prototype in-situ

performance monitoring tool providing a global view, GTI-OTFX [224], has been

developed, but only supports traditional MPI applications.

Chapters 4, 6, and 7 of this dissertation describe tool-runtime integrations using

APEX [102]. APEX is built around the concept of a policy, which can be registered

to respond to events of interest produced by an instrumented runtime. While policies

ultimately run on a single node, they run as tasks within the task-based runtime and

have access to the same communications infrastructure as any other task; thus, in

HPX, they can communicate with one another using one-sided puts and gets in the

70

global address space. Built-in support in HPX for efficient reductions can be used

to aggregate performance data. We envision ultimately having a system in which a

small portion of localities are reserved for performance analysis and adaptation, running

analysis tasks which receive data from lighter-weight tasks which collect and forward

performance data from compute localities.

71

CHAPTER III

ONLINE COMMUNICATIONS ADAPTATION IN UPC

This chapter includes co-authored material previously published in the

Proceedings of the Sixth International Workshop on Programming Models and

Applications for Multicores and Manycores (PMAM 2015) [38] and the International

Journal of High Performance Computing Applications (IJHPCA) [40]. Those papers

were collaborations with Khaled Ibrahim, Sam Williams, and Costin Iancu. I wrote the

threaded version of THOR and ran and analyzed all experiments. Costin Iancu wrote

the original process-based version of THOR. Sam Williams wrote the MiniGMG

benchmark. Khaled Ibrahim wrote the multi-domain support in UPC’s Gemini and

Aries network drivers.

3.1 Introduction

UPC is a distributed SPMD language and runtime based on an extension of

the C memory model to encompass both local and remote memories. UPC exposes

to the application developer a partitioned global address space, wherein a pointer may

point to local memory (and be equivalent to an ordinary C pointer) or may point to

remote memory (in which case dereferencing is transparently converted into network

operations).

While traditional performance monitoring tools will provide correct results

for UPC applications, there are limitations to providing insightful and actionable

results, primarily due to the asynchronous nature of communications in UPC. In the

relaxed consistency mode, the runtime is free to reorder communications within a

block, and when one-sided communications are used, message injection occurs on a

separate thread from application code, and it is difficult to correlate the time spent in a

communication with the application code that triggered the communication without

72

runtime integration. In terms of actionability, this chapter describes a tool, THOR, or

Throughput-Oriented Runtime, which integrates with the UPC runtime and receives

and processes outgoing communications requests. Based on the sizes and patterns of

communication, the tool modifies the runtime policy for consolidating or splitting

communications, achieving speedups of up to 55% on a UPC+CUDA geometric

multigrid benchmark.

3.2 Maximizing Message Concurrency

Attaining good throughput on contemporary high performance networks

requires maximizing message concurrency. As long as flat Single Program Multiple

Data (SPMD) parallelism with one task per core has been dominant, this has not

been a problem in application settings. Developers first employ non-blocking

communication primitives and have multiple outstanding messages overlapped with

other communication or computation inside one task. By using as many SPMD tasks

as available cores, traffic is further parallelized over multiple injecting tasks within the

node.

The advent of heterogeneous systems or wide homogeneous multicore

nodes has introduced the additional challenge of tuning applications for intra-node

concurrency, as well as communication concurrency. Manually tuning or transforming

applications to provide the optimal message parallelism is difficult: 1) the right strategy

is system dependent; 2) the right strategy is programming model dependent; and 3)

parallelizing message streams may be complicated in large code bases. Furthermore,

due to the implementation limitations described throughout this chapter, to our

knowledge optimizations to parallelize communication within a task have not been

thoroughly explored.

73

We present the design of a runtime that is able to increase the instantaneous

network concurrency and provide saturation independent of the application

configuration and dynamic behavior. Our runtime alleviates the need for spatial and

temporal application level message concurrency tuning. This is achieved by providing

a “multi-threaded” runtime implementation, where dedicated communication server

tasks are instantiated at program start-up along the application level tasks. We increase

concurrency by offloading communication requests from the application level to the

multiple communication servers. The design allows for offloading communication

to dedicated cores, as well as a cooperative scheduling approach where servers share

cores with application level tasks. The communication servers provide performance

portability by using system specific performance models. This work makes the

following contributions:

– We provide a detailed analysis of the optimization principles required for

multi-threaded message injection. Our experiments on InfiniBand, Cray

Aries and Gemini networks indicate that saturation occurs differently based

on the network type, the message distribution and the number of cores active

simultaneously.

– We describe a runtime capable of maximizing communication concurrency

transparently, without involving the application developer. The main insight is

that after deciding the cores allowed to perform communication, the runtime

can maximize the interconnect performance by using message size to guide the

assignment of message processing to communicating cores.

74

– We quantify the performance benefits of parallelizing communication in

hybrid codes and identify the shortcomings of existing runtime implementation

practices.

Our implementation extends the Berkeley UPC [220, 31] runtime and

therefore we demonstrate results for Partitioned Global Address Space (PGAS)

applications and one-sided communication primitives. Experimental results indicate

that our approach can improve message throughput and bandwidth by as much as

150% for 4KB messages on InfiniBand, by as much as 120% for 4KB messages on Cray

Aries and by as much as 54% for 2KB messages on Cray Gemini. Our runtime is able

to transparently improve end-to-end performance for all-to-all collectives where we

observe as much as 30% speedup. In application settings we observe 23% speedup

on 12,288 cores for a NAS FT benchmark implemented in UPC+pthreads using

FFTW [74]. We observe as much as 76% speedup on 1,500 cores for an already heavily

optimized UPC+OpenMP geometric multigrid [236] application using point-to-point

communication. For the geometric multigrid GPU implementation in UPC+CUDA,

we observe as much as 44% speedup on 512 cores/GPUs.

We demonstrate performance benefits for hybrid programming using a PGAS

programming language by exploiting shared memory within the node and one-sided

communication. These characteristics are present in other models such as MPI 3

one-sided, as well as implementations of dynamic tasking languages such as X10 [46]

or Habanero-C [95, 47]. Besides implicit parallelization, the principles presented

apply to cases where communication is explicitly parallelized by the developer using

OpenMP or other shared memory programming models. Although this may seem

sufficient, to achieve performance portability our results argue for the transparent

scheduling of these operations inside the runtime.
75

The rest of this chapter is structured as follows. In Sections 3.3 and 3.4 we

discuss the design principles of multi-threaded message injection. In Section 3.5

we discuss network performance emphasizing the relationship between message

concurrency and bandwidth saturation. In Section 3.6 we discuss the integration of

message parallelization into existing application settings. In particular we quantify the

need for dynamic message parallelization and the impact of current core allocation

mechanisms on performance. In Section 3.7 we summarize our results, while in

Section 3.8 we present related work. We conclude the chapter in Section 3.9.

3.3 Communication and Concurrency

In order to actively manipulate message concurrency, program transformations

must address both spatial and temporal aspects.

Spatial concurrency is controlled by choosing the number of active tasks

(or cores) that perform communication operations, e.g. MPI ranks. By selecting a

particular programming model, developers effectively choose the amount of spatial

concurrency exploited within the application.

Temporal concurrency captures the insight that not all the tasks may want to

communicate at the same time and the network may be perennially under-utilized

even when a large number of messages are logically available inside a task. Messages

within a task are “serialized”, even for non-blocking communication: 1) message

injection is serialized inside the issuing task; and 2) parts of the message transmission

may be serialized by the network hardware for any task. In particular, for load

imbalanced or irregular applications, only few tasks may communicate at any given

time and the message stream within any task should be further parallelized.

SPMD programs provide spatial concurrency by running one task per core.

For well balanced applications, there usually exists communication concurrency, even

76

enough to cause congestion [138]. In this case throttling the spatial concurrency of

communication improves performance. To our knowledge temporal concerns have not

been explored for load imbalanced SPMD codes.

Hybrid parallelism [34, 153] combines SPMD with another intra-node

programming model such as OpenMP. Currently, communication is issued only from

the SPMD regions of the code. When compared to pure SPMD, these new hybrid

codes run with fewer “communication” tasks per node and consequently exhibit lower

spatial concurrency. For example, hybrid MPI+CUDA codes [153, 141, 142] tend to

use one MPI rank per GPU for programmability and performance reasons. Hybrid

MPI+OpenMP codes tend to use one MPI rank per NUMA domain for locality reasons.

Previous work [234] showed that tuning the balance between the number of MPI

ranks and OpenMP threads was essential in attaining best performance. Although

that work suggested thread-heavy configurations were ideal for those machines

(minimize data movement when a single thread can attain high MPI bandwidth),

current machines (low MPI bandwidth per thread) can make a more nuanced trade

between total inter-process data movement and total MPI bandwidth.

To our knowledge, techniques to further parallelize communication have not

yet been shown beneficial in applications. As parallelizing the communication at the

application level using OpenMP should be tractable, the main reason is the inability of

current runtime implementations to provide good performance when mixing processes

with pthreads. Communicating from OpenMP within one MPI rank requires running

in MPI_THREAD_MULTIPLE mode, which has been reported [210] to negatively affect

performance.

Applications written in programming models that support asynchronous

task parallelism [47, 46] should offer the programmer high message concurrency,

77

as every message can be performed inside an independent activity. However, this

is mostly an illusion as communication is usually serialized inside the runtimes

due to implementation constraints. For example, HCMPI [47] combines the

Habanero-C [95] dynamic tasking parallel programming model with the widely

used MPI message-passing interface. Inside the runtime there are computation and

communication workers implemented as pthreads. To work around multi-threaded

MPI’s limitations, computation workers are associated with only one communication

worker that uses MPI_THREAD_SINGLE. Thus, communication is de facto

serialized inside a HCMPI program. X10 [46] implementations running PAMI on

IBM BlueGene/Q can provide high message concurrency, but most likely serialize

communication on non-IBM hardware.

In this work we argue for transparent parallelization of one-sided

communication using a “multi-threaded” runtime implementation. We provide a

decoupled parallel communication subsystem that handles message injection and

scheduling on behalf of the application level “tasks”. As this is designed to maximize

network utilization, application level programmers need only to use non-blocking

communication primitives without worrying about scheduling optimizations. While

we show results for hybrid UPC+OpenMP and UPC+ pthreads programming, these

principles are applicable to other one-sided communication runtimes such as MPI-3

and map naturally into programming models using dynamic task parallelism such as

Habanero-C. Accelerator based programming such as MPI+CUDA is another clear

beneficiary of our approach.

From the above discussion, it is apparent that maximizing communication

parallelism in programming models beyond SPMD faces several challenges. There

is an engineering hurdle introduced by the requirement to mix processes with

78

pthreads inside the runtime implementation. As performance is poor in most pthreads

implementations1, we explore a dual parallelization strategy using either processes

or pthreads as communication servers. This approach is likely to be required for

portability in the medium term future, as fixing pthreads on a per runtime basis is

non-trivial.

Transparent optimizations are good for programmer productivity, but one may

argue that explicitly parallelizing communication using OpenMP is enough. Explicit

manual communication parallelization faces performance portability challenges. First,

performance is system dependent and it also depends on the instantaneous behavior

of the application, i.e. how many tasks are actively communicating. Second, it is

challenging to parallelize communication in an application already modified to overlap

communication with other parallel computation.

3.4 Runtime Design

Contemporary networks offer hardware support for one-sided Remote

Direct Memory Access (RDMA) Put and Get primitives. Runtime implementations

are heavily optimized to use RDMA and applications are optimized to overlap

communication with other work by using non-blocking communication primitives

of the form {init_put(); ... sync();}.

We target directly the UPC language [218], which provides a Partitioned

Global Address Space abstraction for SPMD programming, where parts of the

program heap are directly addressable using one-sided communication by any

task. Our implementation is designed to improve performance of codes using the

new UPC 1.3 non-blocking communication primitives, e.g. upc_memput_nb(),

upc_waitsync(). We modify the Berkeley UPC implementation [31], which runs

1Exceptions are PAMI on IBM BG/Q and GASNet on Cray Aries.
79

 Node

Runtime

Domain 0

Thread to Queue Mapping

...

...
T0 T1 Tn

CA

{

CA

{...

Domain 1

T0 T1 Tn

CA CA

...

Interconnect driver

Figure 21. Runtime architecture of THOR.

on top of GASNet [26]. GASNet provides a performance portable implementation of

one-sided communication primitives.

Our idea is very simple: we achieve transparent network saturation by using

a dedicated communication subsystem that spawns dedicated communication tasks,

herein referred to as servers. Any communication operation within an application level

task is forwarded to a server. Thus, we increase the parallelism of message injection by

controlling the number of servers and we can control serialization deeper inside the

network hardware by tuning the policy of message dispatch to servers.

The basic runtime abstraction is a communication domain. As shown in

Figure 21, each communication domain has associated with it a number of clients (Ti)

and a number of servers (CA). Any client can interact with any server within the same

communication domain. In practice, communication domains are abstractions that can

be instantiated to reflect the hardware hierarchy, such as NUMA domains or sockets.

Clients are the application level tasks (threads in UPC parlance).

Servers are tasks that are spawned and initialized at program startup time.

They provide message queues where clients can deposit communication requests.

A communication request is a Put or Get operation and its arguments (src, dest,

size). While active, the server tasks scan the message queues, initiate and retire any

requests encountered. In order to avoid network contention, servers can choose to

80

initiate messages subject to flow control constraints, e.g. limit the number of messages

in flight. To minimize interference with other tasks, servers are blocked on semaphores

while message queues are empty.

To implement the client-server interaction we transparently redirect the UPC

language-level communication APIs, e.g. upc_memput_nb() or upc_waitsync(), to our

runtime and redefine the upc_handle_t datatype used for message completion checks.

For any communication operation at the application level, our runtime chooses either

to issue the message directly or to deposit a descriptor in one of the server queues. Both

the order of choosing the next message queue and the number of messages deposited

consecutively in the same queue are tunable parameters.

Any non-blocking communication operation returns a handle object, used

later to check for completion. The client-server interaction occurs through messages

queues, which are lock free data structures synchronized using atomic operations. In

our implementation, application level communication calls return a value (handle)

which represents an index into the message queues. Currently, we do not dynamically

manage the message queue entries and clients have to explicitly check for message

completion before an entry is reclaimed. This translates into a constraint at the

application level that there is a static threshold for the number of calls made before

having to check for message completion.

The UPC language allows for relaxed memory consistency and full reordering

of communication operations. This is the mode used in practice by applications

and our servers do not yet attempt to maintain message ordering. Strict memory

consistency imposes order on the messages issues within a UPC thread. In our

implementation this is enforced inside the initiator task.

81

Implementation Details. Achieving performance requires avoiding

memory copies and maximizing the use of RDMA transfers, which at the

implementation level translates into: 1) having shared memory between tasks; 2)

having memory registered and pinned in all tasks; and 3) having tasks able to initiate

communication on behalf of other tasks. We provide a dual implementation where

servers are instantiated as either processes or pthreads. The underlying UPC runtime

implementation provides shared memory between tasks in either instantiation.

Previous work [24] indicates that best RDMA communication performance

in UPC is attained by process-based runtime implementations, i.e. the applications

run with one process per core. As this is still valid2 for most other runtimes on most

existing hardware, our first prototype spawned servers as stand-alone processes inside

the runtime. This required non-trivial changes to the BUPC runtime. However, as

discussed later, idiosyncrasies of existing system software determined us to provide

a pthreads-based implementation for scalability reasons. The use of shared memory

within multicore node, for instance using OpenMP, allows less replicated state [17]

and reduces the memory usage of runtime, which is critical at scale. While our

process-based implementation requires modified UPC runtime, the pthreads is written

using unmodified UPC runtime and can be distributed as a stand-alone portable library.

Furthermore, the latter implementation can take advantage off the good pthreads

performance of GASNet [108] on Cray GNI messaging library (supported on Gemini

and Aries interconnects).

Startup: RDMA requires memory to be pinned and registered with the network by

any task involved in the operation. pthreads inherit registration information from

2Except PAMI on IBM BG/Q, GASNet on Aries and Gemini.
82

their parent processes, thus servers as pthreads can be spawned at any time during

execution, including user level libraries.

Getting both shared memory and registration working together with servers

as processes required complex modifications to the Berkeley UPC runtime code.

The BUPC startup code initializes first the GASNet communication layer and then

proceeds to initialize the shared heap and the UPC language specific data structures.

As RDMA requires memory registration with the NIC, having the communication

servers as full fledged processes requires them to be spawned at job startup in order to

participate in registration.

Tasks spawned by the job spawner are captured directly by GASNet. Inside the

UPC runtime there exists an implicit assumption that any task managed by GASNet

will become a full-fledged UPC language thread. Furthermore, there is little control

over task placement and naming as enforced by the system job spawner. We had to

modify the UPC startup sequence to intercept and rename all server tasks before the

UPC specific initialization begins. This cascaded into many other unexpected changes

imposed by the BUPC software architecture. Internally, we split the UPC and server

tasks into separate GASNet teams (aka MPI communicators) and reimplement most of

the UPC runtime APIs to operate using the new task naming schema. In particular, all

UPC pointer arithmetic operations, communication primitives, collective operations

and memory allocation required modifications.

RDMA and Memory: The new UPC 1.3 language specification provides the

upc_castable primitive to allow passing of addresses between tasks within a node.

pthreads-based implementation can perform RDMA on these addresses, albeit with

performance loss. Shared addresses are not guaranteed to be legal RDMA targets when

passed between processes. GASNet registers at startup memory segments for each

83

known process. Only the process that has explicitly registered the segment can use

RDMA on that region. Thus, one solution is to use statically duplicate registration of

all application memory segments inside all servers. Another solution is to use dynamic

registration inside servers. For un-registered addresses, GASNet uses internally an

algorithm that selects between memory copies into bounce buffers for small messages

or dynamic registration for large messages. A similar approach [195] is used internally

inside MPI implementations.

Duplicate registration required breaking software encapsulation and extending

the modifications from the UPC language runtime all the way to GASNet, which aims

to be a language independent communication library. Instead, we chose to exploit

the dynamic registration mechanism in GASNet. This turned out to be a fortuitous

design decision as some underlying communication libraries (Cray uGNI) did not

allow unconstrained registration of the same memory region in multiple processes.

Synchronization: The base GASNet implementation requires that communication

operations are completed by the same task that has initiated them with the network.

This constraint necessitates special handling of non-blocking communication

primitives in our runtime. We introduced an extra synchronization step for message

completion between clients and servers. Removing this constraint will require a

significant redesign of GASNet communication infrastructure, which is not warranted

by the observed performance. Furthermore, note that achieving good performance

in practice required a careful tuning of atomic operations usage and runtime data

structures padding to avoid false sharing.

Although it appears that these restrictions and design decisions are particular to

the Berkeley UPC and GASNet implementations, most existing runtimes use similar

software engineering techniques. As recently shown [108], combining MPI with

84

pthreads still leads to performance degradation. We expect that trying to parallelize

communication over processes while preserving shared memory similar in a different

code base will encounter the same magnitude problems. Retrofitting spawning separate

processes to act as communication servers into an existing runtime is likely to require

coordinated changes across all abstraction layers.

3.5 Network Performance and Saturation

0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

1	
 3	
 5	
 7	
 9	
 11	
 13	
 15	
 17	
 19	
 21	
 23	

Pe
rce

nt
ag
e	
 o

f	
 P
ea
k	

Cores	
 per	
 Node	

Aries	
 Put	
 SaturaAon	
 -­‐	
 4	
 Nodes	

8	
 16	
 32	
 64	
 128	

256	
 512	
 1024	
 2048	
 4096	

8192	
 16384	
 32768	
 0%	

10%	

20%	

30%	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

1	
 3	
 5	
 7	
 9	
 11	
 13	
 15	
 17	
 19	
 21	
 23	

Pe
rc
en

ta
ge
	
 o
f	
 P

ea
k	

Cores	
 per	
 Node	

Aries	
 	
 Get	
 SaturaBon	
 -­‐	
 4	
 Nodes	

8	
 16	
 32	
 64	
 128	
 256	
 512	

1024	
 2048	
 4096	
 8192	
 16384	
 32768	

-­‐40%	

-­‐20%	

0%	

20%	

40%	

60%	

80%	

100%	

2	
 8	
 16	
 64	
 256	

Sp
ee
du

p	

Messages	

Cray	
 Aries	
 Put	

8	
 16	
 32	
 64	
 128	
 256	
 512	
 1024	
 2048	
 4096	
 8192	
 16384	
 32768	
 65536	
 131072	
 262144	

-­‐50%	

0%	

50%	

100%	

150%	

2	
 8	
 16	
 64	
 256	

Sp
ee
du

p	

Messages	

Cray	
 Aries	
 Get	

8	
 16	
 32	
 64	
 128	
 256	
 512	
 1024	

2048	
 4096	
 8192	
 16384	
 32768	
 65536	
 131072	
 262144	

Figure 22. Top: Cray Aries network saturation, four nodes, 24 cores per node. Bottom:
Performance improvements on Cray Aries with message size, number of messages.
Experiment uses all sockets within node, one rank per socket, two servers per socket.
Policy is round-robin of four messages to a server. Only small to medium messages
benefit from parallelization, as indicated by the saturation graph.

Performance when using non-blocking communication is determined by

the number of cores active within the node, as well as the number of outstanding

messages per core. Our microbenchmark takes measurements for different numbers

of cores active and reports the percentage of the peak bi-directional bandwidth attained

at a particular message size and messages per core. The peak attainable bandwidth

85

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15

Per
cen

tag
e4o

f4Pe
ak

Cores4per4Node

Titan4? Gemini4Put4Saturation4? 44Nodes

8 16 32 64 128
256 512 1024 2048 4096
8192 16384 32768

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 3 5 7 9 11 13 15

Per
cen

tag
e4o

f4Pe
ak

Cores4per4Node

Titan4? Gemini4Get4Saturation4? 44Nodes

8 16 32 64 128
256 512 1024 2048 4096
8192 16384 32768

!60%

!40%

!20%

0%

20%

40%

60%

80%

2 8 16 64 256

Spe
edu

p

Messages3

Cray3Gemini3Put

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144 !60%

!40%

!20%

0%

20%

40%

60%

80%

2 8 16 64 256

Spe
edu

p

Messages3

Cray3Gemini3Get

8

16

32

64

128

256

512

1024

2048

4096

8192

16384

32768

65536

131072

262144

Figure 23. Top: Cray Gemini saturation, four nodes, 8 AMD Bulldozer and 16
integer units per node. Bottom: Performance improvements on Cray Gemini with
message size, number of messages. Experiment uses one UPC process per node, three
communication servers per node. Policy is round-robin of four messages to a server.

40%	

50%	

60%	

70%	

80%	

90%	

100%	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

Pe
rce

nt
ag
e	
 o

f	
 P
ea
k	

Cores	
 per	
 Node	

IB	
 Put	
 SaturaAon	
 -­‐	
 2	
 Nodes	

8	
 16	
 32	
 64	
 128	
 256	
 512	

1024	
 2048	
 4096	
 8192	
 16384	
 32768	

40%	

50%	

60%	

70%	

80%	

90%	

100%	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

Pe
rce

nt
ag
e	
 o

f	
 P
ea
k	

Cores	
 per	
 Node	

IB	
 Get	
 SaturaBon	
 -­‐	
 2	
 Nodes	

8	
 16	
 32	
 64	
 128	
 256	
 512	

1024	
 2048	
 4096	
 8192	
 16384	
 32768	

-­‐30%	

-­‐20%	

-­‐10%	

0%	

10%	

20%	

30%	

40%	

50%	

60%	

2	
 8	
 16	
 64	
 256	

Spe
edu

p	

Messages	
 	

InfiniBand	
 Put	
 	

8	

16	

32	

64	

128	

256	

512	

1024	

2048	

4096	

8192	

16384	

32768	

65536	

131072	

262144	

-­‐50%	

0%	

50%	

100%	

150%	

2	
 8	
 16	
 64	
 256	

Spe
edu

p	

Messages	

InfiniBand	
 Get	
 	

8	

16	

32	

64	

128	

256	

512	

1024	

2048	

4096	

8192	

16384	

32768	

65536	

131072	

262144	

Figure 24. Top: InfiniBand saturation, two nodes, eight cores per node, two sockets.
Bottom: Performance improvements of InfiniBand with message size, number of
messages. All sockets active, two servers per socket. Only small to medium messages
benefit from parallelization, as indicated by the saturation graph.

86

for a message size is determined as the maximum bandwidth observed across all possible

combinations (cores, messages per core) at that size.

In Figures 22, 23 and 24 (top) we present the performance of the Berkeley

UPC [31] compiler running on the GASNet [26] communication layer. We report

results for InfiniBand and the Cray Aries/Gemini networks when each task is

instantiated as a OS level process. pthreads are omitted for brevity, they match [108]

process performance on Aries/Gemini and are significantly slower in InfiniBand.

Edison: is a Cray XC30 MPP installed at NERSC3. Each of its 5200 nodes

contains two 12-core Ivy Bridge processors running at 2.4 GHz. Each processor

includes a 20 MB L3 cache and four DDR3-1866 memory controllers which can

sustain a stream bandwidth in excess of 50 GB/s. Every four nodes are connected to

one Aries network interface chip. The Aries chips form a 3-rank dragonfly network.

Note that depending on the placement within the system, traffic can traverse either

electrical or optical links. While the attainable bandwidth is different, all other

performance trends of interest to this study are similar for both link types.

Figure 22 (top) presents the results on Edison for a four node experiment (two

NICs). Put operations are usually faster than Get operations, by as much as 25% for

medium to large messages. For small to medium messages, Put operations need more

cores than Get operations to reach saturation. For example, for 1024 byte messages,

Puts require more than eight cores, while Gets require only four cores. For large

messages, saturation is reached with only one core active. Increasing the number of

active cores determines a bandwidth decrease for large messages.

Titan: is a Cray XK7 installed at the Oak Ridge Leadership Computing

Facility [170]. It has 18,688 nodes, containing an AMD Opteron 6274 (“Interlagos”)

3National Energy Research Scientific Computing Center.
87

CPU. Each CPU exposes 16 cores, each with 16 integer units and 8 floating-point

units arranged as 8 “Bulldozer” units. There are two NUMA domains containing four

units each, which share an L3 cache. Nodes have 32GB of system memory. Pairs of

nodes are connected to one Cray Gemini network interface chip. The Gemini chips

form a 3D torus network. Additionally, each node has an NVIDIA Tesla K20X GPU

with 6GB of memory connected via PCI Express 2.0.

Figure 23 (top) shows the results on Titan for a four node experiment (two

NICs). Increasing concurrency improves throughput for small messages, reaching peak

throughput when using all cores (Put) or one less than all cores (Get). Peak throughput

for large messages occurs with only a few (Put) or one (Get) core for large messages.

In many cases, peak throughput declines when changing from using only one NUMA

domain (up to 8 cores) to using both NUMA domains (9 or more cores).

Carver: is an IBM Infiniband cluster installed at NERSC. Each of its nodes

contains two 4-core Xeon X5550 (Nehalem) processors running at 2.67 GHz. Each

processor includes a 8 MB L3 cache and three DDR3-1333 memory controllers which

can sustain a stream bandwidth of up to 17.6 GB/s. Nodes are connected via QDR

InfiniBand using a hybrid (local fat-tree/global 2D mesh) topology.

Figure 24 (top) presents the experimental results for two nodes. For small

to medium messages, Put operations are up to 8X faster than Get operations, For

“medium” messages we observe a 3X bandwidth difference for 512 byte messages.

For Put operations, it takes four or more cores to saturate the bandwidth for messages

shorter than 512 bytes. For larger messages, one or two cores can saturate the network,

as illustrated for 32KB messages. Get operations saturate the network slower than Put

operations, and it takes four or more cores to saturate for messages smaller that 8KB.

88

For both operations, increasing the number of active cores for large messages decreases

performance by up to 20% for 32KB messages.

Both networks exhibit common trends that illustrate the challenges of tuning

message concurrency:

– Put and Get operations exhibit different behavior on the same system and across

systems. Optimizations need to be specialized per operation, per system.

– For small to medium messages, bandwidth saturation occurs only when multiple

cores are active with multiple outstanding messages. Parallelization is likely to

improve performance in this case.

– For medium to large messages, bandwidth saturation occurs with few cores

per node, may degrade when increasing the number of cores per node.

Parallelization may degrade performance in this case.

Evaluation of Parallelization. We evaluate the performance of our

approach on the same microbenchmark in settings with one UPC thread per node

and with one UPC thread per NUMA domain. The former is the typical setup in

distributed applications that use GPUs. The latter is the setup used in manycore systems

when mixing distributed and shared memory programming models.

We vary the number of server tasks from one to the number of cores available

in the NUMA domain. We consider two strategies for message forwarding. In the first

approach, clients forward communication in a round-robin manner to servers and also

actively initiate some of their communication operations, similar to a hybrid SPMD+X

configuration. In the second approach clients are inactive and forward all operations

to servers in a round robin manner, similar to a dynamic tasking configuration such

as HCMPI. Another tuning parameter is the number of operations consecutively

forwarded to one server, varied from one to ten.
89

In our experiments the communication domains are confined within the

same NUMA domain as their clients. We are interested in determining the optimal

software configuration for our runtime which includes: 1) the number of servers per

communication domain and NUMA domain; 2) order of choosing a server; 3) the

message mix assigned to a server at any given time.

Cray Aries. The Cray Aries network provides two mechanisms for RDMA:

Fast Memory Access (FMA) and Block Transfer Engine (BTE). FMA is used for small

to medium transfers and works by having the processors writing directly into a FMA

window within the NIC. The granularity of the hardware request is 64 bytes. BTE is

employed for large messages. The processor writes a transfer descriptor to a hardware

queue and the Aries NIC performs the transfer asynchronously. Communication APIs

written on top of the Cray GNI or DMAPP system APIs switch between FMA and

BTE for transfers in the few KB range. For GASNet the protocol switch occurs at

4KB.

GASNet [108] has been thoroughly re-engineered recently to provide

good performance with pthreads on Cray systems. Figure 22 (bottom) shows the

performance improvements for this instantiation of our server code. Most of the

improvements of parallelization are directly correlated with the saturation graph in

the same Figure 22. We observe similar behavior when one or both sockets within the

Cray nodes are active.

Parallelization does not help much when there are fewer than eight messages

available at the application level. For longer message trains parallelization does help and

we observe speedups as high as 130%.

Medium size messages benefit most at a low degree of parallelization, smaller

messages require more servers. This is correlated with the saturation slope in Figure 22.

90

For example parallelizing with two servers 64 Gets each of size 4096 bytes yields a

120% speedup, while parallelizing 64 eight byte operations yields only a 30% speedup.

Parallelization does not yield great benefits for transfers larger than 4KB. This indicates

that for this traffic pattern BTE transfers do not benefit from it.

We omit detailed results for the process based implementation. Transfers smaller

than 8KB can be parallelized, while in our implementation larger messages are issued

directly by the clients. When pointers to messages larger than 8KB are passed to a

server process, GASNet switches to dynamic registration and the Cray uGNI library

disallows registration of the same GASNet memory region into multiple processes.

We have also experimented with using bounce buffers inside servers for large transfers

without any worthwhile performance improvements.

Overall, pthreads based parallelization works very well on Cray Aries, while

process based parallelization does not.

Cray Gemini. The Gemini interconnect is used in the Cray XE and XK series

of supercomputers. The software stack of Gemini is similar to the newer generation

Cray XC Aries, where both GNI FMA and BTE protocols are supported. On Titan,

the CPUs are connected to the Gemini NICs using HyperTransport. HyperTransport

allows lower injection latency for small transfers compared with the newer generation

Cray Aries interconnect. Tracking remote completion for Put operations on Gemini is

more complex especially with relaxed ordering of transfers [109], making Puts slower

than the Get operations by up to 20%.

Figure 23 summarizes the performance observed on Gemini interconnect. The

bottom figures show that when sufficient concurrency is available in the application,

speedups of up to 50% (Put) and 54% (Get) can be achieved on the microbenchmark

for small and medium messages using three communication servers. Unlike the results

91

for Cray Aries shown in Figure 22, which showed increasing speedup for messages up

to 4KB in size, on Cray Gemini speedup declines at 4KB.

Comparing the behavior on Gemini and Aries illustrates the fact that

parallelizing communication in software better be supported by parallel NIC hardware.

The software stack on both systems switches protocols to hardware BTE at 4KB

messages. On Gemini, we can improve performance with parallelization only when

configuring the runtime to use large (huge) pages; when using small pages hardware

resources for memory registration are exhausted. On Aries performance improves

when using small or huge pages.

The overhead of our runtime is lower in newer generation Cray XC machines

compared with the Cray XK, making the performance benefit on XC evident with

fewer outstanding transfers. Moreover, the performance benefit for Put operations

is observed for more configurations than Get operations on Gemini. The opposite

behavior is observed in newer generation Aries. Obviously, the difference between

these interconnects is better handled by a tuning runtime and needs to be abstracted

away form applications.

InfiniBand. On InfiniBand, performance is improved only by parallelization

over processes.

Figure 24 (bottom) shows performance results on the InfiniBand system when

using processes for parallelization. Overall, best performance results are obtained

for small to medium messages, up to 4KB, which require multiple cores to saturate

the network. Larger messages saturate with only a few cores and should not benefit

from parallelization. Furthermore, when passing an address between processes,

the underlying GASNet implementation chooses between RDMA using bounce

buffers for messages smaller than a page and in-place RDMA with dynamic memory

92

registration for larger transfers. Dynamic memory registration requires system calls

which serialize the large transfers. Note that this combination of bounce buffers and

dynamic registration also reduces the performance benefits of parallelization.

Parallelization provides best results for Get operations which saturate the

network slower than Puts. In the best configuration we observe as much as 150%

speedup from parallelization for 4KB messages. The technique is effective for Gets

even when very few operations (as low as two) are available. For Gets, increasing the

degree of parallelization improves performance and best performance is obtained when

using most cores within the NUMA domain.

In the case of Puts the best speedup observed is around 80% for 128 bytes

messages and the technique requires at least 32 messages per thread before showing

performance improvements when using one socket. For Puts, increasing the degree of

parallelization does not improve performance.

Again, understanding the saturation behavior is a good indicator for the benefits

of parallelization of communication.

Application Level Behavior. Clearly our technique improves message

throughput, but by introducing a level of indirection between the application and the

network hardware, it may adversely affect the latency of individual operations.

In Figure 25 we present the impact of parallelization on the latency of eight

byte messages on Cray Aries. Similar results are observed on InfiniBand and Cray

Gemini. As illustrated, for a single eight byte message, the servers increase latency from

≈ 1.2μs to ≈ 1.6μs. When multiple messages are overlapped, a single server increases

per message latency from ≈ 0.6μs to ≈ 1μs. Deploying multiple servers improves

throughput and we observe per message latency as low as ≈ 0.4μs, compared to ≈ 0.6μs

in the default case.

93

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

1800	

2000	

1	 2	 8	 16
	

32
	

64
	

12
8	 1	 2	 8	 16
	

32
	

64
	

12
8	 1	 2	 8	 16
	

32
	

64
	

12
8	 1	 2	 8	 16
	

32
	

64
	

12
8	 1	 2	 8	 16
	

32
	

64
	

12
8	

Original	 1	Server	 2	Servers	 3	Servers	 4	Servers	

Ti
m
e	
(n
s)
	

8	Byte	Latency	on	Cray	Aries	

Init	 Sync	

Figure 25. Speedup with parallel injection for an all-to-all microbenchmark on Cray
Aries (left) and InfiniBand (right).

We further distinguish between message initiation (init) and completion (sync).

This affects communication overlap at the application level, as this involves executing

independent work between the init and sync operations. The results indicate that

interposing servers improves the overlap attainable at the application level. The CPU

overhead of init for a single eight byte message is reduced from ≈ 0.5μs to ≈ 0.25μs

when using one server; we overall gained ≈ 0.25μs for extra independent work on the

application CPU. With multiple servers we observe init overheads as low as ≈ 0.1μs,

compared to ≈ 0.4μs best case for unassisted communication.

These results reinforce the fact that parallelization is beneficial only after a

minimum threshold on the number of message available at the application level. After

this (low) threshold, deploying it in application settings is likely improve both message

throughput and the amount of communication overlap attained at the application level.

Both can improve application end-to-end performance.

94

3.6 Parallelizing Injection in Applications

Although the performance improvements are certainly encouraging for regular

communication behavior, applications may exhibit instantaneous behavior which is

adversary to our approach.

In some settings the message mix may be unpredictable and there may exist

resource contention between servers and computation tasks. To handle message mixes

we have implemented a dynamic parallelization of injection using a performance

model that takes into account the expected number of messages, message size and type.

To handle core contention we experiment with both “cooperative” scheduling and

resource partitioning. All these mechanisms are exposed at the application level through

a control API.

We experiment with a UPC+OpenMP multigrid benchmark we developed

specifically for this study, as well as a 3D fast Fourier Transformation using the

multithreaded FFTW [74] library and all-to-all collective communication.

Selective Parallelization: In order to provide optimal performance we need to know

the number of messages, their size and type (Put or Get). We can then decide if

parallelization improves performance and if so, we need to decide the optimal number

of servers and message injection policy.

Based on the microbenchmark results, for any message size we determine a

threshold on the number of messages to enable parallelization. For example, on Aries

parallelization should be enabled any time there are more than four Get messages of

size smaller than 8KB. For large messages we provide a direct injection policy by client

tasks, bypassing the servers entirely. Any message larger than 8KB is directly injected

by the client in our Aries implementation. As the actual number of messages does not

matter, we provide application level APIs to simply enable and disable parallelization.

95

We also need to choose the number of servers. Based on the experimental data,

the optimal point is different for small and medium messages: small messages require

more parallelism, medium messages less. On the other hand, for a fixed number of

servers, the instantaneous message concurrency is actually determined by the injection

policy. By simply varying the number of consecutive messages assigned to a server,

we can directly control their concurrency: the larger this number, the lower the

concurrency.

In our implementation, we allow developers to specify a static concurrency for

the communication subsystem, based on core availability or application knowledge.

For a specific concurrency, we build a control model that decides how many

consecutive messages of a certain size are assigned to a server queue, e.g. we assign

every other small message to a new server and increase this threshold with message size.

Note that the required server concurrency depends whether the clients can

be active or need to be inactive, as determined by the programming model. Same

heuristics apply in both cases.

Core Management: The dedicated communication subsystem may run concurrently

with computation tasks. In this case the cores may be oversubscribed with computation

and communication tasks and performance is also determined by the core allocation.

We explore both cooperative scheduling approaches as well as partitioning approaches.

For cooperative scheduling, communication tasks in idle states are sleeping and we

provide interfaces to explicitly wind-up and wind-down these tasks. We experiment

with different strategies: 1) best-effort, no task pinning; 2) pinning the communication

tasks to core domains; 3) partitioning cores between communication and computation

tasks and parallelizing all transfers; and 4) partitioning cores between computation and

communication tasks and doing selective parallelization.

96

Process 0 Process 1

Subdomain 0

Subdomain 1

Subdomain 0

Subdomain 1 1

3 2

4

Figure 26. A 2D visualization of the
exchange boundary communication phase
among two neighboring processes each
with two sub-domains. Note, only one
direction (of 6) is shown. Only sends from
process 0 are shown.

0%#

10%#

20%#

30%#

40%#

50%#

60%#

70%#

80%#

90%#

Pe
rce

nt
#of

#To
tal

#Ti
me

#Sp
en

t#in
#Co

mm
un

ica
>o

n#

Edison#B#Time#Spent#in#Communica>on#

1#128^3#box#

8#64^3#boxes##

64#32^3#boxes#

1#64^3#box#

8#32^3#boxes#

1#32^3#box#

Figure 27. Fraction of time spent doing
communication in miniGMG on Edison is
heavily dependent on the number of boxes
per process (independent messages) rather
than total data volume.

miniGMG. Multigrid is a linear-time approach for solving elliptic PDEs

expressed as a system of linear equations (Luh = fh). That is, MG requires O(N)

operations to solve N equations with N unknowns. Nominally, MG proceeds by

iterating on V-Cycles until some convergence criterion is reached. Within each

V-Cycle, the solution is recursively expressed as a correction arising from the

solution to a smaller (simpler) problem. This recursion proceeds until one reaches

a base case (coarse grid) at which point, one uses a conventional iterative or direct

solver. Multigrid’s recursive nature states that at each successively coarser level, the

computational requirements drop by factors of 8×, but the communication volume

falls only by factors of 4×. As a result, multigrid will see a wide range of message

sizes whose performance is critical to guaranteeing multigrid’s O(N) computational

complexity translates into an O(N) time to solution.

miniGMG is a three thousand lines of C, publicly-available benchmark

developed to proxy the geometric multigrid solves within the AMR MG

applications [161, 236, 235]. Geometric multigrid (GMG) is a specialization of

multigrid in which the PDE is discretized on a structured grid. When coupled with

97

a rectahedral decomposition into sub-domains (boxes), communication becomes

simple ghost zone (halo) exchanges with a fixed number of neighbors. In miniGMG,

communication is performed by the MPI ranks, while all computation is aggressively

threaded using OpenMP or CUDA.

For this chapter, using the publicly-available MPI+OpenMP and MPI+CUDA

implementations as baselines, we developed several UPC+OpenMP and UPC+CUDA

variants using either Put or Get communication paradigms with either barrier or

point-to-point synchronization strategies. We only report results using the Get

based implementation with point-to-point synchronization as it provides the best

performance in practice. When compared to the original MPI+OpenMP version, our

UPC+OpenMP variant always provides matching or better performance.

In order to minimize the number of messages sent between any two processes,

miniGMG’s ghost zone exchange was optimized to aggregate the ghost zones

exchanges of adjacent sub-domains into a single message. Thus, as shown in Figure 26,

two sub-domains collocated on the same node will: 1) pack their data into an MPI

send buffer; 2) initiate an MPI send/recv combination; 3) attempt to perform a local

exchange while waiting for MPI; and 4) extract data from the MPI receive buffer

into each subdomains private ghost zone. In each communication round a MPI rank

exchanges only six messages with its neighbors. While this approach to communication

is common place as it amortizes any communication overheads, it runs contrary to the

need for parallelism. The UPC+x implementations use the same algorithm.

As real applications use a variety of box sizes to balance AMR and

computational efficiency with finite memory capacity and the desire to run physically

realistic simulations, we evaluate performance using box sizes of 323, 643 and 1283

distributed as one, eight or 64 boxes per UPC thread for both communication

98

strategies. Some of the larger configurations will be limited by on-node computation,

while smaller problems will be heavily communication-limited. Overall, due to varying

degrees of required parallelism, aggressive message aggregation optimizations and

different message sizes miniGMG provides a realistic and challenging benchmark to

message parallelization.

0%#

20%#

40%#

60%#

80%#

100%#

120%#

MGSolve# comm#

Pe
rfo

rm
an

ce
#Re

la8
ve
#to

#N
o#C

om
m.

#Se
rve

rs#

Edison#A#Oversubscribed#A#No#Pinning#

1#128^3#box#

8#64^3#boxes##

64#32^3#boxes#

1#64^3#box#

8#32^3#boxes#

1#32^3#box#

0%#

20%#

40%#

60%#

80%#

100%#

120%#

140%#

160%#

180%#

200%#

MGSolve# comm#
Pe

rfo
rm

an
ce
#Re

la8
ve
#to

#N
o#C

om
m.

#Se
rve

rs#

Edison#A#Par88oned#A#All#Pinned#

1#128^3#box#

8#64^3#boxes##

64#32^3#boxes#

1#64^3#box#

8#32^3#boxes#

1#32^3#box#

Figure 28. Performance of UPC miniGMG with parallelization relative to UPC
miniGMG without parallelization on Cray Aries. Left: Oversubscribed, best effort
12 OpenMP tasks, 3 servers on 12 cores. Right: partitioned, pinned, 8 OpenMP tasks, 3
servers on 12 cores. Best performance requires partitioning and explicit pinning of all
tasks. Parallelization results in performance improvements for some problem sizes.

0%#

20%#

40%#

60%#

80%#

100%#

120%#

140%#

160%#

180%#

200%#

MGSolve# comm#

Pe
rf
or
m
an

ce
#R
el
a8

ve
#t
o#
N
o#
Co

m
m
.#S
er
ve
rs
#

Edison#A#All#Pinned#A#Sta8c#Parameters#

1#128^3#box#

8#64^3#boxes##

64#32^3#boxes#

1#64^3#box#

8#32^3#boxes#

1#32^3#box#

(3,4)
(2,1)(2,2)

(3,2)

(3,1)

(2,4)

0%#

20%#

40%#

60%#

80%#

100%#

120%#

140%#

160%#

180%#

MGSolve# comm#

Pe
rf
or
m
an

ce
#R
el
a8

ve
#t
o#
N
o#
Co

m
m
.#S
er
ve
rs
#

Edison#A#Adap8ve#A#2#Servers#

1#128^3#box#

8#64^3#boxes##

64#32^3#boxes#

1#64^3#box#

8#32^3#boxes#

1#32^3#box#

0%#

20%#

40%#

60%#

80%#

100%#

120%#

140%#

160%#

180%#

MGSolve# comm#

Pe
rf
or
m
an

ce
#R
el
a8

ve
#t
o#
N
o#
Co

m
m
.#S
er
ve
rs
#

Edison#A#Adap8ve#A#3#Servers#

1#128^3#box#

8#64^3#boxes##

64#32^3#boxes#

1#64^3#box#

8#32^3#boxes#

1#32^3#box#

Figure 29. Performance of UPC miniGMG with selective parallelization relative to
UPC miniGMG without parallelization on Cray Aries. Left: optimal settings (server,
batch size) are annotated on the figure. Center and right: adaptive parallelism with two
and three servers. Allocating more cores to communication improves performance.

miniGMG UPC+OpenMP Performance: Figure 27 presents the fraction of our UPC

miniGMG solve time spent in communication for a variety of problem and box sizes.

99

0%#

20%#

40%#

60%#

80%#

100%#

120%#

140%#

160%#

180%#

200%#

MGSolve# comm#

Pe
rfo

rm
an

ce
#Re

la8
ve
#to

#N
o#C

om
m.

#Se
rve

rs#

Carver#>#InfiniBand#Get#>#1#Process#Per#Socket#

1#128^3#box#

8#64^3#boxes##

64#32^3#boxes#

1#64^3#box#

8#32^3#boxes#

1#32^3#box#

Figure 30. Performance of UPC miniGMG with communication servers relative to
UPC miniGMG without parallelization, on InfiniBand, with 2 client processes per
node (1 per socket).

As illustrated, the code can transition from computation-dominated to communication

dominated with a sufficient number of boxes per process.

Both OpenMP threads and our communication server tasks require cores to

run on. Figure 28 (left) presents the impact of using three communication threads

compared to the baseline UPC+OpenMP implementation. In both cases, there are 12

OpenMP threads, but in the latter, the operating system must schedule the resultant 15

threads on 12 cores. MGSolve records the overall speedup on the multigrid solver while

comm records the speedup in the communication operations. Inside the benchmark

we explicitly use cooperative scheduling for the communication subsystem, i.e.

communication tasks are sleeping when not needed. No thread is explicitly pinned

and we have experimented with different OpenMP static and dynamic schedules. As

illustrated, for all problem settings we observe performance degradation up to 25%.

Rather than oversubscribing the hardware and giving the scheduler full control

to destroy any cache locality or to delay message injection, we experimented with

eliminating oversubscription and pinning just the communication tasks. In this case

100

we use 8 OpenMP threads and 3 pinned communication tasks. Although superior to

oversubscription, performance is still less than the baseline. Detailed results are omitted.

Figure 28 (right) presents the speedup when hardware resources are partitioned

among 8 OpenMP threads and 3 communication threads. Both OpenMP and

communication threads are explicitly pinned to distinct cores and all communication

is parallelized. Some problems observe substantial speedups (by as much as 70%), while

some slow down by as much as 47%. On average we observe 2% slowdown and any

performance degradation is explained by slowdown in communication.

Figure 29 (left) presents the best performance attained using selective

parallelization at its optimal setting in a partitioned node. We now observe

performance improvements for all problem settings, with a maximum of 76% and

an average improvement of 40%. Figure 29 (center) shows results for selective

parallelization using the adaptive strategy with two servers. Figure 29 (right) shows

results of the adaptive strategy with three servers, giving a maximum improvement of

64% and an average improvement of 36%. As illustrated, allocating more cores to the

communication subsystem improves performance and the adaptive strategy provides

most of the possible performance gains.

For brevity we did not present detailed results on InfiniBand; they are similar

to the results presented on the Cray system. Figure 30 shows an experiment with

partitioned resources and parallelization enabled over three servers. Again we observe

application speedup up to 80%.

These results indicate that under the current OS scheduling techniques,

parallelizing communication successfully requires partitioning and pinning.

miniGMG UPC+CUDA Performance: The UPC+CUDA implementation of

miniGMG offloads all computation to GPUs. In order to affect inter-process

101

0%

20%

40%

60%

80%

100%

120%

140%

160%

180%

MGSolve comm

Pe
rfo

rm
an
ce
6Re

lat
ive

6to
6No

6Co
mm

.6S
erv

ers

Titan6? 5126nodes6? UPC+CUDA

16128^36box

8664^36boxes6

64632^36boxes

1664^36box

8632^36boxes

1632^36box

Figure 31. Performance of UPC+CUDA miniGMG with communication servers
relative to UPC+CUDA miniGMG without parallelization, on Cray Gemini, with
1 client process per node.

communication, data is packed on the GPU and copied to the host. Unlike the

MPI+CUDA version, the UPC+CUDA version can leverage the communication

servers to maximize network performance as described in section 3.6. CUDA and

GASNet have different memory alignment requirements for optimal performance;

in this case alignment is according to CUDA’s preference.

Table 1. Sizes of messages sent by UPC+CUDA miniGMG for each problem size
tested. Bold sizes are those for which performance improvement is expected from
adding concurrency on Cray Gemini

Problem Size Message Sizes (bytes)
1 × 1283 box 128, 512, 2K, 8K, 32K, 128K
8 × 643 boxes 512, 2K, 8K, 32K, 128K
64 × 323 boxes 2K, 8K, 32K, 128K
1 × 643 box 128, 512, 2K, 8K, 32K
8 × 323 boxes 512, 2K, 8K, 32K
1 × 323 box 128, 512, 2K, 8K

UPC+CUDA miniGMG experiments were run using the same sizes used in

the previously described experiments. We use one UPC thread per node and one

GPU per UPC thread. As only one CPU core is used per node and all computation

is offloaded to the GPU, there are 15 idle cores which can be tasked as servers. Table 1

102

shows the message sizes that are sent for each problem size. We use parallel injection

for message sizes shown in bold, which are the sizes for which improvement is seen

on the point-to-point communication microbenchmark. Other message sizes are sent

directly by the client. Figure 31 shows the performance with communication servers,

relative to the same problem size without communication servers, for each problem size

on 512 nodes (each with one GPU) on Titan. We observe overall speedups of up to

40% by using communication servers.

Collective Operations. Optimizing the performance of collective

operations [211, 128, 243] has seen its fair share of attention and implementations

are well tuned by system vendors. Due to their semantics, collectives are an obvious

beneficiary of our techniques in application settings as they mostly require tasks to

contribute equal amount of data to a communication pattern with a large fan-out.

In Figure 32 we show the aggregate bandwidth of an all-to-all operation

implemented using UPC one-sided Get operations4 with and without parallel injection

on 1,024 nodes of Edison, accounting for 12,288 total cores in a hybrid setting. Our

implementation initiates non-blocking communication in a loop and throttles the

number of outstanding messages to 128 for scalability with nodes. Parallelizing

injection improves performance up to 30% over the baseline UPC case for messages

smaller than 4KB.

For reference we include the performance of the Cray tuned MPI_alltoall.

This implementation selects different algorithms for small (Bruck’s algorithm) and

large (pairwise exchange) messages, while our microbenchmark uses a single algorithm

for all message sizes. Parallel injection allows our implementation to provide greater

bandwidth in the region of messages sizes where MPI and our implementation use

4Note that this implementation provides better performance than a Put based implementation.
103

similar algorithms. Performance is better than the MPI version for messages between

8B and 2KB. On a smaller (64-node) run, performance was better than MPI for

messages between 16B and 32KB.

We observe similar performance improvements up to 30% on InfiniBand,

detailed results omitted for brevity. We expect to see similar trends while parallelizing

other operations such as reductions and broadcasts.

NPB UPC-FT. This benchmark implements the NAS Parallel

Benchmarks [14] discrete 3D Fast Fourier Transform, using UPC for inter-node

transpose communication and multi-threaded FFTW [74] for intra-node

parallelization [221]. UPC-FT goes through two rounds of communication. For a

problem of size NX×NY×NZ run on a PX×PZ process grid, messages are 16 ⋅NX/PX ⋅NY/PX

bytes in the first round and 16 ⋅ NY/PZ ⋅ NX/PX bytes in the second round.

Figure 33 shows the relative performance of UPC-FT on a class A size (256 ×

256 × 128) problem on 1,536 cores of Edison, with the partitioning of the problem

across nodes varied to produce first-round message sizes from 256B to 256KB while

holding second-round message size constant at 8KB. FFTW is build with threading

support using OpenMP and configured to use 8 threads per process. OpenMP and

communication servers threads are pinned to cores. The “2 Servers” and “3 Servers”

columns show the performance effect of using that number of communication servers

and parallelizing everything, while “Adaptive” shows the performance with selective

parallelization.

Speedups of up to 49% are seen for the smallest messages, they decrease with

increasing message sizes, with speedups of 11% for 4KB messages. Incidentally, the best

original performance is obtained for the AA 32 × 4 setting. The rightmost section of

the figure shows results on a class D-1/8 size (1024 × 512 × 512) problem distributed

104

across a 128 × 8 process grid on 12,288 cores of Edison, with first-round message sizes

of 512B. A speedup of 23% is achieved on this problem used by NERSC for system

procurements.

3.7 Discussion

Figure 34 summarizes the overall performance trends uncovered by this

work. On the left hand side we compare the performance of a setting with one task

per NUMA domain (hybrid parallelism in application) with our parallel injection.

Parallelization occurs over two servers and for reference we include the peak

bandwidth attainable on the system in any combination.

For both systems parallelization is effective for small to medium messages,

up to 8KB on Aries and 32KB on InfiniBand. Parallelization does not improve the

performance for large messages. For any message size, there is a gap between the

parallelized injection and the peak attainable bandwidth. Most of this gap is accounted

by injection concurrency and not by our implementation overhead.

For small to medium messages increasing the number of servers in ’PAR’ closes

the gap between attained and peak performance. For large messages, parallelization

does not improve performance when compared to the original setting, yet there is

a noticeable difference from peak bandwidth. In this case orthogonal concurrency

throttling techniques as described by Luo [138] are required. Note that due to

decoupling the communication into a stand-alone subsystem, these techniques are

easy to implement in our architecture.

The right hand side graph in Figure 34 illustrates an intriguing opportunity.

Medium messages at high concurrency achieve similar bandwidth to the best

bandwidth achieved by large messages at any concurrency. This means that

concurrency throttling or flow control techniques for large messages may be

105

replaceable by message decomposition and parallel injection. We are currently

investigating this tradeoff.

Overall we make the case for decoupling communication management from

the application itself and transparently applying injection parallelization in conjunction

with throttling in order to maximize throughput. Having a separate communication

subsystem enables dynamic management on a node wide basis. This architecture

fits naturally in both SPMD and dynamic tasking runtimes such as Habanero-C or

HCMPI.

In our experiments, dedicating cores to communication affected only

marginally, if at all, the end-to-end benchmark performance. Furthermore, for

any problem where communication was present, its parallelization provided by

far the best performance. We believe that dedicating a small number of cores to

communication is feasible for many applications on existing systems. Of course, there

may be computationally intensive applications that perform very little communication

or synchronization.

Hardware evolutionary trends are also favorable to a decoupled parallel

communication subsystem in application settings. There is likely to be enough

core concurrency that a runtime system can instantiate a partition dedicated to

communication management. This avoids scheduling problems when cores are

oversubscribed. There also exists an expectation that in future systems the memory per

core will decrease while the number of nodes will significantly increase. This implies

that hybrid parallelism algorithms will have to use a small number of “traditional”

communication tasks per node due to memory scalability problems inside runtimes

(connection information), as well as the application levels (boundary conditions buffer

space).

106

For hybrid programming such as UPC+OpenMP, it may seem that one can just

fix pthreads and retrofit the principles we describe inside the applications themselves.

The caveat is that the requirement to have both process and pthreads-based

implementations for portability is unlikely to disappear in the foreseeable future. The

first hybrid MPI+OpenMP studies [34] were published circa 2000. Fixing pthreads

is not easy as illustrated by the performance in 2014. Furthermore, the low-level

networking APIs and system software make this distinction necessary for performance

portability, and unlikely to change.

3.8 Other Related Work

As already explained in Section 3.3, explicit communication parallelization

for hybrid SPMD+{OpenMP,CUDA} codes has not been thoroughly explored

due to implementation constraints. Rabenseifner et al [179] discuss its potential and

implications on algorithm design, without detailed performance results. Similarly,

communication parallelization has not been yet explored in dynamic tasking runtimes.

There has been work inside the MPI implementation [63, 84] to improve performance

for MPI_THREAD_MULTIPLE. These studies demonstrate improved performance

only for microbenchmarks, mostly on IBM BG/P hardware. Recent work by Luo

et al [139] describes an MPI implementation able to provide improved performance

for hybrid MPI+OpenMP parallelism on InfiniBand networks. They use multiple

endpoints for parallelism and show results for microbenchmarks and all-to-all

operations. Dinan et al [59] discuss extensions to improve MPI interoperability

with other programming models and pthreads, but no performance results are

presented. Without performance portability, developers are unlikely to adopt explicit

parallelization in their codes.

107

Multi-threading the runtime implementation has been explored for both

one-sided and two-sided communication paradigms. Recent efforts by Si et al [195]

examine multi-threading the MPI runtime implementation. This implementation

uses OpenMP multi-threading to accelerate internal runtime routines such as buffer

copying and derived datatypes, while maintaining the conventional serialized message

injection. They report a tight integration of MPICH with the Intel OpenMP runtime

and demonstrate results only for shared memory programming on a single Intel Xeon

Phi. ARMCI [168] implements a portable one-sided communication layer that runs

on most existing HPC platforms and uses pthreads for network attentiveness. While

Put/Get operations are performed by their callers, ARMCI uses one separate thread per

process for progress of accumulate operations.

The implementation of collective operations has received its fair share of

attention. Yang and Wang [242, 243] discussed algorithms for near optimal all-to-all

broadcast on meshes and tori. Kumar and Kale [128] discussed algorithms to optimize

all-to-all multicast on fat-tree networks. Thakur et al [211] discussed the scalability of

MPI collectives and described implementations that use multiple algorithms in order to

alleviate congestion in data intensive operations such as all-to-all. All these algorithms

initiate non-blocking communication with a large number of peers, thus our approach

can be transparently retrofitted.

3.9 Conclusion

In this chapter we have explored the design aspects of a dedicated parallel

communication runtime that handles message injection and scheduling on

behalf of application level tasks. Our runtime is able to increase the instantaneous

communication concurrency and provide near saturation bandwidth, independent

of the application configuration and its dynamic behavior.

108

We strive to provide performance and portability by: 1) using a dual

“parallelization” strategy where tasks dedicated to communication are instantiated

as either processes or pthreads; 2) using a selective parallelization strategy guided

by network saturation performance models; and 3) implementing either cooperative

scheduling or core partitioning schemes.

This architecture is well suited for hybrid parallelism implementations that

combine intra- and inter-node programming models, as well as dynamic tasking

programming models. We show very good performance improvements for collective

operations, as well as hybrid parallelism codes. As HPC systems with many cores per

chip are deployed, such as the 72-core Intel Knight’s Landing, core partitions dedicated

to communication become feasible. This alleviates the need for improving the load

balancing and cooperative kernel level task scheduling mechanisms.

Unfortunately, if performance portability is a goal, a dual parallelization

strategy seems to be required for the near to medium future. Furthermore, during

this work we uncovered limitations in existing system software in the area of memory

registration and job spawning. These unnecessarily complicate the implementation of

multithreaded runtimes such as ours.

3.10 Bridge

This chapter has described a tool-runtime integration with UPC, showing how

such an integration can support online adaptation of communications parameters. UPC

is a low-level language providing data abstractions but no explicit work abstractions.

The next chapter describes a similar integration with HPX, a much higher-level

library, with both data and work abstractions, and shows how the availability of work

abstractions enables runtime tuning of the partitioning of work into tasks.

109

100#

1000#

10000#

100000#

8# 16
#

32
#

64
#

12
8#

25
6#

51
2#

10
24
#

20
48
#

40
96
#

81
92
#

16
38
4#

32
76
8#

A
g
g
re
g
a
te
#B
a
n
d
w
id
th
#

Message#Size#

Edison#All?to?All#?#1024#Nodes#

UPC#Parallel#InjecGon#

UPC#Baseline#

MPI_Alltoall#

Figure 32. Aggregate bandwidth achieved with one-sided
Put and Get operations using UPC without parallel injection,
UPC with parallel injection, and MPI.

0%#

20%#

40%#

60%#

80%#

100%#

120%#

140%#

160%#

AA#64x2#
(256)#

AA#32x4#
(1024)#

AA#16x8#
(4096)#

AA#8x16#
(16384)#

AA#2x64#
(262144)#

DDE#128x8##
(512)#

Pe
rf
or
m
an

ce
#R
el
a=

ve
#to

#N
o#
Co

m
m
.#S
er
ve
rs
#

Edison#G#UPCGFT#

2#Servers#

3#Servers#

Adap=ve#

1,536&Cores 12,288&Cores

Figure 33. Performance of the UPC-FT benchmark with
Class A problem sizes on 1,536 cores of Edison for different
first-round message sizes with two or three communication
servers, relative to performance without communication
servers, and for a class D-1/8 problem size on 12,288 cores of
Edison.

110

0"

1000"

2000"

3000"

4000"

5000"

6000"

7000"

8000"

8" 128" 2048" 32768" 524288"

Ag
gre

ga
te"

Ba
nd

wi
dt
h"

Message"Size"

InfiniBand"Get">"2"Nodes">"4"Processes"

Original" Parallel"InjecFon" Peak"

8" 16"
32"

64"

128"

256"

512"

1024"

2048"
4096"

8192" 16384" 32768" 65536"131072"262144"

0"

5000"

10000"

15000"

20000"

25000"

30000"

35000"

8" 128" 2048" 32768" 524288"

Ag
gre

ga
te"

Ba
nd

wi
dt
h"

Message"Size"

Cray"Aries"Get">"4"Nodes">"8"Processes"

Original" Parallel"InjecGon" Peak"

40%	

50%	

60%	

70%	

80%	

90%	

100%	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	

Pe
rce

nt
ag
e	
 o

f	
 P
ea
k	

Cores	
 per	
 Node	

IB	
 Get	
 SaturaBon	
 -­‐	
 2	
 Nodes	

SMALL(4KB)	
 LARGE((32KB)	

Figure 34. Overall trends comparing hybrid setup with 1 task per NUMA
domain(’Original’), with parallelization (’PAR’) and peak attainable bandwidth on
the system. ’PAR’ uses only 2 servers. InfiniBand saturation with active cores for small
and large messages.

111

CHAPTER IV

PERFORMANCE MEASUREMENT AND ONLINE ADAPTATION IN HPX

This chapter includes co-authored material previously published in

Supercomputing Frontiers [102]. That paper was a collaboration with Kevin Huck,

Allen Porterfield, Hartmut Kaiser, Allen Malony, Thomas Sterling, and Rob Fowler. I

integrated APEX with HPX-3, developed the APEX policy engine, the APEX custom

tuning framework, and ran and analyzed the HPX-3 experiments. Kevin Huck is

the lead developer of APEX. Allen Porterfield and Rob Fowler developed the RCR

framework used to collect power data. Hartmut Kaiser is the lead developer of the

HPX-3 runtime. Thomas Sterling is the lead developer of HPX-5. I was minimally

involved in the portions of the paper describing HPX-5, and those portions are not

included in this document.

4.1 Introduction

The HPX runtime is a future-based many-task runtime. A task is a unit of

work which, when created, produces a future, which can be used for synchronization

and to retrieve results from the task. Data is provided to a task by passing that task a

future. When a task is executing and it requests a value from a future, either the data

is retrieved, locally or remotely, if the data is a result from a task whose execution has

already completed, or the task yields if the data is not yet available. Tasks can therefore

run for very short periods of time as they begin, request data not yet available, and

yield. HPX provides a very low overhead scheduler to handle these short-running tasks.

Dependencies between tasks are expressed implicitly at runtime, through waiting on

futures.

Using a traditional performance monitoring tool with HPX will often produce

incorrect results due to the unacceptably high overhead of profiling every task start,

112

task yield, or task completion. Results will not be insightful because the dependencies

between tasks are not captured. In this chapter, we describe the APEX performance

monitoring tool, policy engine, and tuning framework, and use it to provide runtime

feedback to the HPX runtime and HPX applications, dynamically adjusting task

granularity to minimize idleness and scheduler overhead, and keep power consumption

under a cap by dynamically adjusting the number of workers used by the runtime in

scheduling tasks.

4.2 APEX Design

Overview. APEX aims to enable autonomic behavior in software by

providing the means for applications, runtimes, and operating systems to observe

and control their performance. Autonomic behavior requires performance awareness

(introspection), and performance control/adaptation. APEX is designed around

these two main components. APEX provides introspection from both top-down

and bottom-up perspectives, including node-wide resource utilization data, energy

consumption, and health information, all accessed in real-time. The introspection

results are combined and associated with policy rules in order to provide the feedback

control mechanism.

APEX IntrospectionAPEX Introspection

Synchronous

APEX PolicyAPEX Policy

Asynchronous

Triggered Periodic

APEX StateHPXHPX

Application

RCR
Toolkit

RCR
Toolkit

events

m
et

a
ev

en
ts

. . .

Node 1 Node N

actuators

Figure 35. Design of the APEX introspection system.

113

Introspection. APEX collects top-down introspection data from a runtime

system, library, or high-level application through an event-based inspector API. The

software to be controlled is instrumented with this event API. APEX recognizes several

types of logistic events such as initialization, termination, setting a process rank (e.g.,

an MPI rank, or HPX locality ID), and creating a new thread. For measurement,

APEX has instrumented timer-start and timer-stop calls, as well as sampled counter

values (e.g., bytes transferred, queue length, idle rate). These API calls enter APEX

as events. Internally, APEX has several event listeners that perform actions based on

the types of events that are passed in to APEX. Events are either handled by listeners

immediately using synchronous code execution or are handled using asynchronous

method invocation. For the asynchronous processing, the event is stored internally

on a queue for background processing, and execution control is quickly returned to

the code that called the APEX API. Custom events are also available to trigger specific

policy engine rules. Further explanation of this behavior is presented in Section 4.2.

Bottom-up introspection data is collected from the operating system and

hardware using periodic sampling. These measurements do not use events, but

rather additional OS threads are spawned to periodically read values directly from

available sources. On Unix-like systems, the /proc virtual filesystem files provide

access to CPU, memory, network, disk, process, and operating system statistics.

Resource Centric Reflection (RCR) [146, 147] provides a user-level API to access

any counter available through PAPI, PERF_EVENTS, or a hardware instruction.

RCRdaemon runs on protection ring 0 and supplies information about hardware

resources shared by more than one core (e.g., energy consumption, Last Level Cache

events, or memory-controller usage) in a data structure that can be read at user-level.

RCRdaemon uses a self-describing hierarchical data structure in a shared memory

114

region to transmit protected counter values in an application-agnostic manner. The

power interface reads these values and can be used by any application to acquire

power/energy information. RCR calipers can be placed around any code region (up

to the entire application) to measure energy used by that region. On Cray systems

protection level 0 access is denied, but the Cray PM Counters [150] facility is available.

RCRdaemon was therefore modified to get its data from this source. The values were

then placed into the same data structure previously used. The user API was unchanged.

Updates occur at the same rate as Cray updates /proc.

Event Listeners. As mentioned in Section 4.2, APEX events are processed

by event listeners. Each listener is implemented as a C++ class, and as events pass

through APEX, each instantiated listener is given access to the event object. The

listeners implement handler methods for each event type available in the system.

Notable event listeners in APEX include the Profiling Listener, the Concurrency Listener,

the Policy Engine Listener, and the TAU Listener.

The profiling listener implements timer and counter measurement back-end

processing in APEX. The salient events processed by the profiling listener include the

timer_start, timer_stop and sample_value events. When the profiling listener gets

a timer_start event, it creates a profiler object, generates a timestamp, and returns a

handle to the profiler object. When the profiling listener gets a timer_stop event, it

takes a second timestamp, puts the profiler object in a single-producer-single-consumer

(spsc) queue for back-end processing, and returns. Each OS thread in the process

has its own spsc queue to avoid contention. Similarly, when the profiling listener

gets a sample_value event, it creates a profiler object, puts it in the spsc queue for

back-end processing, and returns. The profiling listener has a background consumer

thread that waits for a signal that indicates that data has been pushed onto one of the

115

queues. When the consumer thread has been signalled, it clears all of the spsc queues

of pending work by removing a profiler object from the queue, and updates the

per-thread and per-process statistical profile for the running application. The currently

executing profile can be queried subsequently at runtime through an introspection API.

The optional TAU listener is similar to the profiling listener, with the exception that all

processing is done synchronously through the TAU measurement library in order to

generate a detailed profile or trace for offline, post-mortem performance analysis.

The concurrency listener works as follows. The salient events processed by the

profiling listener are the timer_start and timer_stop events. When the concurrency

listener gets a timer_start event, it pushes the timer ID onto a thread-specific stack,

and returns. When the profiling listener gets a timer_stop event, it pops a timer

ID off of the thread-specific stack. The concurrency listener also has a background

consumer thread that periodically examines the top of each thread’s timer stack and

builds a histogram reporting the task currently being executed by each thread during

that time quantum. At the end of execution, the histograms are written to files on disk

and gnuplot [237] is used to visualize a concurrency graph of the application. Figures

36 through 38 are examples of concurrency graphs. The concurrency listener does not

have a role in runtime adaptation, and is instantiated only when concurrency graphs

are desired.

The Policy Engine. The most important listener component in APEX is

the Policy Engine. The policy engine provides autonomic controls to an application,

library, runtime, or operating system using the introspection measurements described

in Section 4.2. Policies are rules that decide on outcomes based on the observed state

captured by APEX. The rules are encoded as callback functions that are registered with

APEX, and are either triggered or periodic. Triggered policies are invoked by an APEX

116

event, whereas periodic policies, by definition, are executed at set intervals. The policy

rule functions have access to the APEX API in order to request profile values from any

measurement collected by APEX. Using these values to make logical decisions, the

functions can change the behavior of the application by whatever means available, such

as throttling threads, changing task granularity, or triggering data movement such

as mesh refinement or repartitioning. In this way, the policy engine enables runtime

adaptation using introspection data, engages actuators across stack layers, and can be

used to invoke online auto-tuning support.

Global Performance Views. Thus far in the discussion performance

introspection has been limited to local node observations. No performance information

from remote nodes or processes is available implicitly to the local policy functions.

However, there are situations in which global performance information is necessary

to make runtime adaptation decisions for problems such as load balancing. In those

cases, APEX provides a skeleton interface for exchanging local information in a

distributed application scenario. The global exchange of local performance data in

APEX is similar to that provided by TAUg [105], in which TAU performance data

collected by an MPI application was exchanged using MPI functions. Rather than be

tied directly to a specific communication infrastructure, APEX provides a skeleton

interface to be populated using the distributed communication library used in the

application to be controlled. Examples implemented so far include HPX-3, HPX-5

and MPI. The interface that the runtime has to implement includes two functions;

action_apex_get_value() – each node gets local data to be reduced and performs

an optional put (if implementing a push model); and action_apex_reduce() -– each

node performs an optional get (if implementing a pull model), all remote node data

is aggregated at root node, and an optional push broadcasts the aggregated result

117

back out to the non-root nodes. Ideally, puts and gets are performed using one-sided

communication such as remote distributed memory accesses (RDMA) or by using a

Global Address Space (PGAS or AGAS).

HPX Integration. APEX is integrated with operating systems, runtime

systems, libraries, and applications by instrumenting the code with calls to the APEX

introspection API, as well as by registering desired policy functions and global

communication. Because both HPX-3 and HPX-5 are task-based runtime systems, we

added the instrumentation in the respective task schedulers, placing timer start/stop

calls just before and after task functions are executed, taking special care to avoid

measuring internal lightweight tasks such as “no-op”. Sample_value() calls were

added to capture internal runtime statistics (i.e., number of yields, steals, spins, etc.) and

we added other instrumentation for initialization, thread creation and termination.

Where applicable, we wrote policy functions and added the code to register the policy

functions to perform adaptation of the runtime system. All the examples described

in Section 4.3 modify runtime behavior in the same way, by setting a cap on the

maximum number of active worker threads, so we also modified the HPX thread

scheduler loop for worker threads to check the cap value and de-activate a worker

thread if the number of active threads is greater than the thread cap. Even though we

are measuring nearly every task executed by the runtime, our measurements show that

the overhead introduced by APEX does not exceed 2%, and is usually less than 1%,

depending on the granularity of the executed tasks. We believe that this is due to our

asynchronous profile-processing combined with the small but sufficient amount of

available processing capacity headroom when executing on many-core nodes. Global

performance data is exchanged in HPX using the Active Global Address Space (AGAS).

118

4.3 Experimental Results

In order to demonstrate the features and capabilities of APEX, we integrated it

with the HPX-3 runtime. We implemented a variety of policy rules, and we present a

selection of them here, along with the applications that best demonstrate them. In this

section, we present the following examples:

– HPX-3 1-D stencil code, runtime optimized for best performance

– HPX-3 miniGhost kernel, runtime modified to stay under a user-specified power

cap

All of the experiments described below were conducted on Edison, a Cray XC30

system deployed at NERSC [212]. Edison has 5576 nodes with two 12-core Intel

“Ivy Bridge” processors operating at 2.4 GHz, with a total of 48 threads per node (24

physical cores w/hyperthreading). The network on Edison is a Cray Aries interconnect

with Dragonfly topology, with 23.7 TB/s global bandwidth. As LXK was not yet

integrated with HPX, the applications were executed on the Compute Node Linux

(CNL) operating system.

HPX-3 1-D Stencil Code. The 1D stencil code is a simple, iterative

heat-diffusion solver using a 3-point stencil, used as an example code for HPX-3,

and for which multiple versions are available with different optimizations applied.

The simplest version represents the computation for each data point as an individual

future, but the performance of this version is extremely poor as the task granularity

is far too small. The version with good performance partitions the data into a

user-configurable number of equally-sized chunks, with the computation on each

chunk being represented as a future. Within a node, performance initially increases

with an increasing number worker threads, but then decreases.

119

Figure 36a shows the runtime (blue line) of the 1D stencil code as function of

number of worker threads from 1 to 24, which is the number of physical cores available

on Edison nodes. It also shows that runtime is highly correlated with the average

thread queue length (red line), which is a counter exposed by the HPX-3 runtime

representing the number of tasks waiting to execute on worker threads. APEX can

query the thread queue length while the program is executing and adjust dynamically

the number of worker threads allocated to minimize runtime.

Figure 36b shows the concurrency graph for the execution of the 1D stencil

code run on 100,000,000 elements partitioned into 1000 chunks with 48 worker

threads, which is the number of logical cores available on an Edison node with

hyperthreading enabled. Actual concurrency is substantially lower, as many tasks

are waiting on dependencies to complete before becoming eligible to run, and there

is substantial variability in actual concurrency over time. This execution takes 138

seconds to run. Figure 36c shows the concurrency graph for an execution of the same

problem size but with 12 worker threads, which produces the shortest runtime of any

number of worker threads. That execution takes 61 seconds to run.

Figure 36d shows the concurrency graph for the same problem size and an

initial number of worker threads of 48, but using discrete hill-climbing search to

minimize the average thread queue length. This converges on 13 worker threads (vs.

the optimal value of 12) and does so quickly enough that the overall runtime is nearly

as fast (64 seconds) as starting with the optimal number.

120

53

63

73

83

93

103

113

123

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Th
re
ad

'Q
ue

ue
'Le

ng
th

Ru
nt
im

e'
(s
)

Number'of'Worker'Threads

1d_stencil

(a) 1D stencil strong scaling. This chart
shows the correlation between the execution
time (blue line) and the queue lengths (red
line) when running with different numbers of
threads on Edison.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0

 300

C
on

cu
rr

en
cy

P
ow

er

Time

partition_data
do_work_action

hpx::lcos::local::dataflow::execute
primary_namespace_bulk_service_action

primary_namespace_service_action
other

thread cap
power

(b) 1D Stencil unthrottled. This concurrency
chart shows a stacked bar chart with the
periodic (1 Hz) status of each OS thread.
The max number of threads is 48, and the
instantaneous power for each sample is the
black line.

 0

 2

 4

 6

 8

 10

 12

 0

 300

C
on

cu
rr

en
cy

P
ow

er

Time

partition_data
do_work_action

hpx::lcos::local::dataflow::execute
primary_namespace_bulk_service_action

primary_namespace_service_action
other

thread cap
power

(c) 1D Stencil with ideal number of threads.
This concurrency chart shows the periodic (1
Hz) status of each OS thread. The number of
threads is fixed at 12, and the instantaneous
power for each sample is the black line.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0

 300

C
on

cu
rr

en
cy

P
ow

er

Time

partition_data
do_work_action

hpx::lcos::local::dataflow::execute
primary_namespace_bulk_service_action

primary_namespace_service_action
other

thread cap
power

(d) 1D Stencil throttled by APEX. This
concurrency chart shows the periodic (1
Hz) status of each OS thread. The number
of active threads starts at 48, but is throttled
while APEX searches for an optimal number
of active threads to minimize execution time.
The evolving thread cap is the red line, and the
instantaneous power draw is the black line.

Figure 36. Performance behavior of HPX 1D Stencil under different throttling policies.

121

HPX-3 miniGhost kernel. MiniGhost [19], developed as part of the

Mantevo project [96], is a finite difference miniapp simulating heat diffusion over a

three-dimensional domain. The original version uses OpenMP intra-node and MPI

inter-node. It has been ported to HPX-3 [7]; this version uses HPX for both intra- and

inter-node parallelism. The HPX version provides better performance than the original

OpenMP version.

Figure 37 shows that there are diminishing returns from allocating additional

worker threads to MiniGhost. This suggests than we can throttle the application

by cutting back on the number of worker threads to reduce energy usage while

avoiding substantial performance degradation. Figure 38a shows the concurrency

with 48 worker threads, the number of logical cores on an Edison node. While not

all available worker threads are used, the application will often use slightly more than

the 24 physical cores available. With 48 worker threads, MiniGhost runs in 92 seconds

and uses about 275 Watts of power. Figure 38b shows the concurrency when the initial

number of worker threads is set to 48 but the thread cap is dynamically adjusted to

keep power at or below 200 Watts. APEX converges on a thread cap of 20, yielding

200 Watts of power usage, a 33% reduction in power, and a runtime of 103 seconds, a

12% increase in runtime.

0

20

40

60

80

100

120

140

160

180

0 5 10 15 20 25 30 35 40 45

Ru
nt
im
e
(s
)

HPX worker threads

Minighost

Figure 37. HPX miniGhost strong scaling.

122

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0

 300

C
on

cu
rr

en
cy

P
ow

er

Time

continuation::async
hpx_main

other
thread cap

power

(a) miniGhost Baseline. This concurrency
chart shows a stacked bar chart with the
periodic (1Hz) status of each thread. The
max number of threads is 48 (red line), and
the instantaneous power for each sample is the
black line.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0

 300

C
on

cu
rr

en
cy

P
ow

er

Time

continuation::async
hpx_main

other
thread cap

power

(b) miniGhost Throttled. This concurrency
chart shows a stacked bar chart with the
periodic (1Hz) status of each thread. The max
number of threads starts at 48, but is throttled
while APEX searches for an optimal number
of active threads to keep under the power cap.
The evolving thread cap is the red line and
the instantaneous power for each sample is the
black line.

Figure 38. Energy usage of HPX miniGhost under different throttling policies.

4.4 Tuning with a Global View

As part of the HPX-3 integration, APEX exposes its counters through

the HPX-3 performance counter interface, allowing nodes to share performance

information through the Active Global Address Space. This enables the opportunity to

perform a global rather than local tuning run. In the tuning runs described previously

in this chapter, the tuning is purely local: each node runs it own tuning session, which

does not communicate with other nodes.

If we expose counters globally, we can instead run a global tuning session in

which we use the Parallel Rank Ordering search strategy provided by Active Harmony

to explore multiple parameter settings simultaneously. Here, we use the 1D Stencil

version 8 benchmark, which is fully distributed, and tune over task granularity. The

“bad” regions of the search space are particularly bad, so we want to minimize time

123

spent searching them. In a local search replicated on each node, each node will explore

the “bad” regions. With a global search, locality 0 retrieves performance data for other

localities through the AGAS and reports these values to the tuning engine. The tuning

engine then proposes multiple parameter settings to evaluate simultaneously, and these

are retrieved by other localities, also over the AGAS. Figure 39 shows the evolution of

a local tuning run (left) and a global tuning run (right) on 1D Stencil version 8. The

global tuning run converges in 24% fewer overall iterations than the local tuning run,

and in 46% of the wallclock time.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0

 300

Co
nc

ur
re

nc
y

Po
we

r

Time

partition_data
do_work_action

hpx::lcos::local::dataflow::execute
primary_namespace_bulk_service_action

primary_namespace_service_action
other

thread cap
power

56

(a) Concurrency view of a 1D Stencil local
tuning session.

 0

 200

 400

 600

 800

 1000

 1200

 0

 300
Co

nc
ur

re
nc

y

Po
we

r

Time

partition_data
do_work_action

hpx::lcos::local::dataflow::execute
primary_namespace_bulk_service_action

primary_namespace_service_action
other

thread cap
power

26

(b) Concurrency view of a 1D Stencil global
tuning session

Figure 39. Local and global tuning sessions of HPX 1D stencil.

4.5 Conclusion

The quest for exascale brings fundamentally new challenges to performance

and to productivity. The solutions that will likely usher in the exascale era will require

software designers and users to embrace performance heterogeneity and variability.

We believe that any successful implementation will have to integrate performance

introspection, in situ analysis, and adaptation in an exascale system stack. The XPRESS

project has developed a prototype of APEX integrated with HPX-3 and HPX-5 for

use in OpenX. We have demonstrated APEX with several benchmark examples, and
124

we believe that the APEX framework is generally applicable to other X-stack runtime

efforts.

There is considerable work that can be done with respect to APEX. In the short

term, we would like to conduct more robust application experiments and to explore

behavior larger scales on different platforms. As more applications are developed using

HPX, we hope to have a greater opportunity to demonstrate the APEX capabilities

for runtime adaptation. With that in mind, new applications will present more and

better policy (optimization) rules, both for specific applications and to generalize

these in the operating system and runtime libraries. In particular, we are interested

in possible policy rules that address heterogeneous HPX-3 code that can be executed

on GPGPUs, as well as many-core architectures such as the Intel Phi. We plan to

develop more policy rules that specifically address the SLOWER design principles of

the ParalleX model [199]. We soon will be exploring the multi-objective optimization

opportunities available in the development branch of Active Harmony. With that

support, we can tune with respect to both performance and energy efficiency, as

well as to any other application-specific metrics. Finally, we believe that APEX has

applications outside of the XPRESS project, and that it can be successfully integrated

into other runtime systems and parallel execution models with controllable parameters,

including OpenMP, MPI, and OmpSs. It can serve as a framework for triggering

application-specific optimizations such as adaptive mesh refinement, load balancing,

and other dynamic behavior.

4.6 Bridge

This chapter has described a tool-runtime integration with HPX, showing

how such an integration can support online adaptation of work partitioning, and how

this is supported by the presence of high-level work abstractions in HPX. The next

125

chapter describes a similar integration with Spark, which provides a still higher level of

abstraction in which work is expressed declaratively, describing what is to be computed

but not how, and in which the runtime is free to move data within a storage hierarchy.

This affords additional freedom to the runtime to alter the distribution of work and

data across nodes in a distributed system.

126

CHAPTER V

STORAGE OPTIMIZATION AND VARIABILITY IN SPARK

This chapter includes co-authored material previously published in the

Proceedings of the 25th ACM International Symposium on High-Performance

Parallel and Distributed Computing (HPDC 2016) [41], the 2016 Cray Users Group

symposium [39], and the Workshop on Performance and Scalability of Storage

Systems [42]. This work was performed by myself, Costin Iancu, Khaled Ibrahim,

Shane Canon, Jay Srinivasan, and Allen Malony. I developed all the instrumentation

and analysis code and ran and analyzed all experiments. Khaled Ibrahim did the

initial port of Spark to Cray Extreme Scale Mode. Shane Canon developed the Shifter

container system. Jay Srinivasan assisted with installation of software and configuration

of computational resources at NERSC. Costin Iancu provided valuable feedback on

experimental design. I wrote the papers with Costin Iancu. Costin Iancu, Khaled

Ibrahim, and Allen Malony edited the papers.

5.1 Introduction

Spark is a data analytics framework with a declarative style of programming.

The application developer expresses operations on data without reference to parallelism.

The runtime then partitions and distributes work, as well as handling resiliency

through checkpointing and/or recomputation. A notable feature of the runtime is that

it manages data in memory as well as on disk.

A traditional performance monitoring tool will not provide useful performance

results for Spark applications largely due to the Spark runtime’s lazy evaluation and the

potential for a given partition to be computed multiple times. Without runtime-tool

integration, it is impossible to determine which line of application code is responsible

for a particular task executing at a particular time. In fact, tasks with no dependence

127

relation can have a performance influence on one another through their shared use

of the Block Manager, which is in charge of evicting data from memory and/or disk

when storage is exhausted.

In this chapter, we describe the instrumentation of the Spark runtime in a way

that allows us to correlate application-level directives with their eventual effect on the

storage hierarchy. In so doing, we discover the cause of a major scalability bottleneck

when Spark is deployed on supercomputers: the distributed filesystem. We evaluate

techniques for mitigating this bottleneck, and show that the distributed filesystem also

exacerbates other types of performance problems, such as recomputation resulting in

excessive reads from disk of the same data. We develop a policy which automatically

persists the correct partitions to disk to avoid these excessive reads.

5.2 Motivation

Frameworks such as Hadoop [231] and Spark [248] provide a productive high

level programming interface for large scale data processing and analytics. Through

specialized runtimes they attain good performance and resilience on data center systems

for a robust ecosystem of application specific libraries [83, 157, 9]. This combination

resulted in widespread adoption that continues to open new problem domains.

As multiple science fields have started to use analytics for filtering results

between coupled simulations (e.g. materials science or climate) or extracting interesting

features from high throughput observations (e.g. telescopes, particle accelerators), there

exists plenty incentive for the deployment of the existing large scale data analytics tools

on High Performance Computing systems. Yet, most solutions are ad-hoc and data

center frameworks have not gained traction in our community. In this chapter we

report our experiences porting and scaling Spark on two current very large scale Cray

128

XC systems (Edison and Cori), deployed in production at National Energy Research

Scientific Computing Center (NERSC) [163].

In a distributed data center environment disk I/O is optimized for latency by

using local disks and the network between nodes nodes is optimized primarily for

bandwidth. In contrast, HPC systems use a global parallel file system, with no local

storage: disk I/O is optimized primarily for bandwidth, while the network is optimized

for latency. Our initial expectation, was that after porting Spark to Cray, we can then

couple large scale simulations using O(104) cores, benchmark and start optimizing it

to exploit the strengths of HPC hardware: low latency networking and tightly coupled

global name spaces on disk and in memory.

We ported Spark to run on the Cray XC family in Extreme Scalability Mode

(ESM) and started by calibrating single node performance when using the Lustre [27]

global file system against that of an workstation with local SSDs: in this configuration

a Cray node performed up to 4× slower than the workstation. Unlike clouds, where

due to the presence of local disks Spark shuffle performance is dominated by the

network [183], file system metadata performance initially dominates on HPC systems.

Perhaps expected by parallel I/O experts [140], the determining performance factor

is the file system metadata latency (e.g. occurring in fopen), rather than the latency

or bandwidth of read or write operations. We found the magnitude of this problem

surprising, even at small scale. Scalability of Spark when using the back-end Lustre file

system is limited to O(102) cores.

After instrumenting Spark and the domain libraries evaluated (Spark SQL,

GraphX), the conclusion was that a solution has to handle both high level domain

libraries (e.g. Parquet data readers or application input stage) and the Spark internals.

We calibrated single node performance, then we performed strong and weak scaling

129

studies on both systems. We evaluate software techniques to alleviate the single node

performance gap in the presence of a parallel file system:

– First and most obvious configuration is to use a local file system, in main

memory or mounted to a single Lustre file, to handle the intermediate results

generated during the computation. While this configuration does not handle

the application level I/O, it improves performance during the Map and Reduce

phases and a single Cray node can match the workstation performance. This

configuration enables scaling up to 10,000 cores and beyond, for more details

see Section 5.6. We have extended and released the Shifter [114] container

framework for Cray XC with this functionality. Deploying Spark on Shifter has

unexpected benefits for the JVM performance and we observe 16% performance

improvements when running in memory on ≈ 10,000 cores.

– As the execution during both application initialization and inside Spark opens

the same file multiple times, we explore “caching” solutions to eliminate file

metadata operations. In Spark, the number of files used grows linearly with the

number of cores, while the number of file opens grows quadratically with cores.

We developed a layer to intercept and cache file metadata operations at both

levels. A single Cray node with pooling also matches workstation performance

and overall we see scalability up to 10,000 cores. Combining pooling with local

file systems also improves performance (up to 17%) by eliminating system calls

during execution.

On Cori we also evaluate a layer of non-volatile storage (BurstBuffer) that

sits between the processors’ memory and the parallel file system, specifically designed

to accelerate I/O performance. Performance when using it is better than Lustre (by

130

3.5× on 16 nodes), but slower than RAM-backed file systems (by 1.2×), for GroupBy,

a metadata-heavy benchmark. With BurstBuffer we can scale Spark only up to 1,200

cores. The improvements come from better fopen scalability, rather than read/write

latency and illustrate the principle that optimizing for the tail is important at scale:

the BurstBuffer median open latency is higher than Lustre’s, but its variance is much

smaller than on Lustre.

Besides metadata latency, file system access latency in read and write

operations may limit scalability. In our study, this became apparent when examining

iterative algorithms. As described in Section 5.7, the Spark implementation of

PageRank did not scale when solving problems that did not fit inside the node’s main

memory. The problem was the interplay between resilience mechanisms and block

management inside the shuffle stage in Spark, that generated a number of I/O requests

that increased exponentially with iterations. This overwhelmed the centralized storage

system. We fixed this particular case at the algorithmic level, but a more generic

approach is desirable to cover the space of iterative methods.

Overall, our study indicates that scaling data analytics frameworks on HPC

systems is likely to become feasible in the near future: a single HPC style architecture

can serve both scientific and data intensive workloads. The solution requires a

combination of hardware support, systems software configuration and (simple)

engineering changes to Spark and application libraries. Metadata performance is

already a concern for scientific workloads and HPC center operators are happily

throwing more hardware at the problem. Hardware to increase the node local storage

with large NVRAM will decrease both metadata and file access overhead through

better caching close to the processors. Orthogonal software techniques, such the ones

evaluated in this chapter, can further reduce metadata impact. In fact, at the time of the

131

publication, our colleagues at NERSC have demonstrated Spark runs at ≈ 50,000 cores

using Shifter with our Lustre mounted local file system configuration. An engineering

audit of the application libraries and the Spark internals will also eliminate many root

causes of performance bottlenecks.

5.3 Spark Architecture

Apache Spark [248] and Hadoop [231] are open-source data analytics

frameworks, designed to operate on datasets larger than can be processed on a

single node while automatically providing for scheduling and load-balancing. They

implement the Map-Reduce model [58] using an abstraction in which programs are

expressed as data flow graphs. The nodes in the graph are of two types: map operations,

which are purely local, and reduce operations, which can involve communication

between nodes.

The traditional MapReduce framework [58] is limited to acyclic graphs,

preventing efficient representation of iterative methods, and it uses data redundancy to

provide resiliency. Spark can handle cyclic and acyclic graphs, and provides resiliency

through resilient distributed datasets [247] (RDD), which carry sufficient information

(lineage) to recompute their contents. In particular, the ability to express iterative

algorithms accelerated Spark’s adoption.

Programs are expressed in terms of RDDs derived from transformations of other

RDDs (e.g. Map) and actions (e.g. Reduce). The application developer can choose

to request that certain RDDs be cached in memory or saved to disk. The developer

therefore has to make decisions based on tradeoffs between the costs of storage (in

memory and time) and recomputation (in time). RDDs are lazily evaluated, which

creates challenges [13] in attributing performance to particular lines or regions of code,

as they do not execute until they are needed.

132

In Spark, the Master node executes a driver program, which creates the data

flow graph by applying transformations and actions to RDDs, and partitions ownership

of data to worker nodes within the cluster. When the result of an uncomputed RDD

partition is needed, a job is created, consisting of multiple stages. Within a stage, only

intra-partition communication can occur. All inter-partition communication happens

at stage boundaries, through a process called shuffling, as shown in Figure 40. By

deferring any computation until a result is needed, the scheduler can schedule work

to compute only what is necessary to produce the result. In the event of the loss of a

partition, only that partition needs to be recomputed.

p1

p2

p3

textFile

p1

p2

p3

flatMap

p1

p2

p3

map

p1

p2

p3

reduceByKey
(local)

STAGE 0

p1

p2

p3

reduceByKey
(global)

STAGE 1

JOB 0

Figure 40. Decomposition of a Spark job into stages and tasks on partitions, with
inter-partition communication limited to stage boundaries.

Shuffle Manager Shuffle Manager

In
te

rc
on

ne
ct

io
n

 N
et

w
or

k

Block Manager

Core

Memory

Core

Core

Core
 Task Task Task

Persistent
Storage

S

L

Block Manager

 Task Task Task
Core

Memory

Core

Core

Core

Persistent
StorageR

L

Temporary
Storage

Temporary
Storage

Figure 41. Data movement in Spark and the interaction with the memory hierarchy.

133

Data Movement in Spark. Data movement is one of the performance

determining factors in any large scale system. In Spark, data is logically split into

partitions, which have an associated worker task. A partition is subdivided into blocks:

a block is the unit of data movement and execution. Figure 41 shows the interaction of

the Spark compute engine with the block and shuffle managers, which control data

movement. The BlockManager handles application level input and output data, as

well as intermediate data within the Map stages. The ShuffleManager handles runtime

intermediate results during the shuffle stage.

Figure 42. Architecture of the Lustre filesystem. (Courtesy of Intel Wiki.)

Data Objects and Naming: Spark manipulates data with global scope, as well as local

scope. Application level data (RDDs) are using a global naming space, intermediate

data blocks generated throughout execution have a local scope and naming scheme.
134

Figure 43. Node architecture of the Cori Burst Buffer. (Courtesy of NERSC.)

Figure 44. Network topology of the Cori Burst Buffer. (Courtesy of NERSC.)

135

Objects may exceed the capacity of the physical memory and need to be efficiently

moved through the storage hierarchy; the typical challenge when managing naming

schemes is mismatch with underlying system architecture. For instance, when global

object is distributed (partitioned) across multiple storage spaces a long latency naming

service may be needed to locate its physical location. Conversely, any locally named

object stored in a physically shared storage may experience undue contention while

servicing requests. A current research direction in the Spark community is providing

an efficient global naming service, which can reduce network traffic. Note that the

global file system in HPC installations provides global naming.

Vertical Data Movement: Vertical data movement refers to the movement through

the entire memory hierarchy, including persistent storage. It is needed to move input

data blocks into the memory for processing and for storing output data to the persistent

storage. To minimize vertical movement for RDDs, Spark allows persisting data in

the fast level of memory. As fast memory is capacity constrained, the Spark runtime

assigns the task of moving objects across the memory hierarchy to a block manager.

Whenever the working set size (input data or intermediate results) exceeds memory

capacity, the block manager may trigger vertical data movement. The block manager

may also decide to drop a block, in which case its later access may trigger additional

vertical data movement for recomputation. Research efforts such as Tachyon [135]

aim to reduce expensive (to storage) vertical data movement by replacing it with

horizontal (inter-node) data movement. In network-based storage systems, a critical [4,

35] component to the performance of vertical data movement is the file setup stage

(communication with the metadata servers).

Horizontal Data Movement - Block Shuffling: The horizontal data movement

refers to the shuffle communication phase between compute nodes. Spark assigns the

136

horizontal data movement to the shuffle manager and the block manager. A horizontal

data movement request of a block could trigger a vertical data movement because a

block may not be resident in memory. Optimizing the performance of horizontal data

movement has been the subject of multiple studies [226, 111, 137], in which hardware

acceleration such as RDMA is used to reduce the communication cost. The benefit of

these techniques is less profound on HPC systems with network-based storage [198]

because the performance is dominated by vertical data movement.

System Architecture and Data Movement. Data centers have local

storage attached to compute nodes. This enables fast vertical data movement and

the number of storage disks scales linearly with the number nodes involved in the

computation. Their bandwidth also scale with the number of compute nodes. The

archetypal file system for data analytics is the Hadoop Distributed File System (HDFS)

which aims to provide both fault tolerance and high throughput access to data. HDFS

implements a simple coherency for write-once-read-many file access, which fits well

the Spark and Hadoop processing models. In Spark with HDFS, global naming services

are implemented in a client-server paradigm. A request is generated for the object

owner, subject to the network latency. The owner services it, maybe subject to disk

latency (or bandwidth) and the reply is subject to network latency (or bandwidth).

Vertical data transfers access the local disk. Horizontal data are subject to network

latency/bandwidth, as well as disk latency/bandwidth.

HPC systems use dedicated I/O subsystems, where storage is attached to a

“centralized” file system controller. Each and all nodes can see the same amount of

storage, and bandwidth to storage is carefully provisioned for the system as a whole.

Given that these network file servers are shared between many concurrently scheduled

applications, the servers typically optimize for overall system throughput. As such

137

individual applications may observe increase in latency and higher variability. The

Lustre [27] architecture, presented in Figure 42 is carefully optimized for throughput

and implements a generic many-write-many-read coherency protocol. The installation

consists of clients, a Metadata service (MDS) and Object Storage service. The Metadata

service contains Metadata Servers, which handle global naming and persistence and the

Metadata Targets which provide the actual metadata storage (HDD/SSD). In Spark

with Lustre, global naming services access the metadata servers and are subject to

network latency and MDS latency. Most existing Lustre installations in production

(prior to Lustre 2.6) use a single MDS, only very recent installations [50, 52] use

multiple MDSes for improved scalability. Vertical data transfers are served by the

Object Storage service, which contains the object Storage Server (OSS) and the Object

Storage Target (OST), the HDD/SSD that stores the data. Bandwidth is provisioned in

large scale installations by adding additional OSSes.

In our quest to introduce Spark into the HPC community there are two main

questions to answer.

1. How does the differences in architecture between data centers and HPC influence

performance? Previous performance studies of Spark in data center environments [183]

indicate that its performance is dominated by the network, through careful

optimizations to minimize vertical data movement and maximize the memory resident

working set. Ousterhout et al. [172] analyzed the performance of the Big Data

Benchmark [217] on 5 Amazon EC2 nodes, for a total of 40 cores, and the TPC-DS

benchmark [176] on 20 nodes (160 cores) on EC2. These benchmarks both use Spark

SQL [9], which allows SQL queries to be performed over RDDs. By instrumenting

the Spark runtime, they were able to attribute time spent in tasks to several factors,

including network and disk I/O and computation. They found that, contrary to

138

popular wisdom about data analytics workflow, that disk I/O is not particularly

important: when all work is done on disk, the median speedup from eliminating disk

I/O entirely was only 19%, and, more importantly, when all RDDs are persisted to

memory, only a 2-5% improvement was achieved from eliminating disk I/O. Upon

introduction to HPC systems, we similarly need to understand whether access to

storage or network performance dominates within Spark.

2. What HPC specific features can we exploit to boost Spark performance? Previous

work optimizing data analytics frameworks on HPC systems [137, 111] proposes

moving away from the client-server distributed paradigm and exploiting the global file

name space already available or Remote Direct Memory Access (RDMA) functionality.

Upon introduction to HPC systems, we are interesting in evaluating the potential for

performance improvement of adopting such techniques into Spark. Besides providing

an initial guide to system researchers, we are also interested in providing configuration

guidelines to users and system operators.

We explore these questions using three benchmarks selected to cover the

performance space: 1) BigData Benchmark uses SparkSQL [9] and stresses vertical data

movement; 2) GroupBy is a core Spark benchmark designed to capture the worst case

scenario for shuffle performance, it stresses both horizontal and vertical data movement;

and 3) PageRank is an iterative algorithm from GraphX [83] and stresses vertical data

movement.

5.4 Experimental Setup

We conducted our experiments on the Edison and Cori Cray XC

supercomputers at NERSC [163], and the XSEDE Comet cluster at SDSC. Edison

contains 5,576 compute nodes, each with two 2.4 GHz 12-core Intel “Ivy Bridge”

processors. Cori contains 2,388 Haswell compute nodes, each with two 2.3 GHz

139

16-core Intel “Haswell” processors, and 9,688 “Knights Landing” compute nodes, each

with one 1.4 GHz Intel Xeon Phi 7250 (“Knights Landing”) processor. Each node of

Cori is equipped with 128 GB DDR4 2133Mhz MHz memory, and both systems use a

Cray Aries interconnect based on the Dragonfly topology.

Comet, installed at SDSC, is Dell cluster consisting of 1,944 compute nodes,

each with two 2.5 GHz 12-core Intel “Haswell” processors (Intel Xeon E5-2680 v3).

Each node of Comet is equipped with 128 GB DDR4 DRAM. Nodes are connected

using InfiniBand FDR. A Lustre filesystem is provided, and additionally each node is

equipped with a 320 GB SSD for fast scratch storage.

Cray provides a Cluster Compatibility Mode (CCM) for compute jobs

requiring specialized services, such as secure connection, etc. CCM runs Linux and

allows an easy path to configure Spark, but imposes limits on the number of nodes per

job. More importantly, it disables network transfer mechanisms accelerated by the Aries

hardware.

In this study, we ported Spark 1.5.0, 1.6.0, and 2.0 to run on the Cray Extreme

Scalability Mode (ESM) to allow better scaling of resources. In ESM, a lightweight

kernel runs on the compute nodes and the application has full access to Aries. Spark 1.6

has been subsequently released: as file I/O patterns did not change the optimizations we

describe in this chapter remain applicable to it. We use one manager per compute node,

based on YARN 2.4.1. This required additional porting efforts to allow TCP-based

services. Compared to Spark’s standalone scheduler, YARN allows better control of the

resources allocated in each node. The Mesos [97] resource manager provides similar

control as YARN, but requires administrative privilege. Job admission is done through

a resource manager on the front-end node where Spark runs as a YARN client with

exclusive access to all resources.

140

Both Edison and Cori use the Lustre file system. On Edison, the Lustre file

system is backed by a single metadata server (MDS) and a single metadata target

(MDT) per file system. On Cori, a master MDS is assisted by a 4 additional Distributed

Namespace (DNE) MDSes. The DNEs do not yet support full functionality, and for all

Spark concerns Cori performs as a single MDS system.

On Cori we also evaluate a layer of non-volatile storage (BurstBuffer) that sits

between the processors’ memory and the parallel file system, specifically designed to

accelerate I/O performance. The NERSC hardware is based on Cray DataWarp and

presented in Figures 43 and 44. The flash memory for Cray DataWarp is attached to

Burst Buffer nodes that are packaged two nodes to a blade. Each Burst Buffer node

contains a Xeon processor 64 GB of DDR3 memory, and two 3.2 TB NAND flash

SSD modules attached over two PCIe gen3 x8 interfaces. Each Burst Buffer node is

attached to a Cray Aries network interconnect over a PCIe gen3 x16 interface. Each

Burst Buffer node provides approximately 6.4 TB of usable capacity and a peak of

approximately 5.7 GB/sec of sequential read and write bandwidth. The BurstBuffer

nodes can be accessed from the compute nodes in private mode and in striped mode.

Ours is the first evaluation on such technology at scale. However, since the hardware is

new and not tuned yet for production, the BurstBuffer results are only indications of

its potential and it features; we expect them to evolve and improve.

We evaluate BigData Benchmark, GroupBy and PageRank in both weak and

strong scaling experiments. Together they provide good coverage of the important

performance factors in Spark. BigData Benchmark has inputs up to five nodes and we’ll

concentrate the node level performance discussion around it. GroupBy scales and we

evaluate it up to 10,240 cores. For PageRank we have only small inputs available and

evaluate it only up to 8 nodes. Each benchmark has been executed at least five times

141

and we report mean performance. Some BurstBuffer experiments were very noisy and

we report only the best performance.

5.5 Single Node Performance

To calibrate initial performance, we evaluated a single node of Cori and

Edison against a local workstation with fast SSDs: eight 3.5GHz Xeon i7-3770K cores

with 1TB fast SSD. Figure 45 shows the performance of queries 1-3 of the Big Data

Benchmark [217] using both on-disk and in-memory modes. The results are quite

similar on Edison and Cori. As shown, a single node of Edison when running with

eight cores and accessing the file system is roughly twice as slow than the workstation.

When data is preloaded in memory, eight cores of Edison match the workstation

performance; this is expected as the workstation contains server grade CPUs. When

scaling up the Edison node and using all 24 cores, performance is still 50% slower than

the workstation. This slowdown is entirely attributed to the file system; performance

scales with cores when running with data preloaded in memory, as illustrated when

comparing eight cores with the full node performance.

0	
1000	
2000	
3000	
4000	
5000	
6000	
7000	
8000	
9000	

Wo
rks
ta3

on	

Edi
son

	8-c
ore

	

Edi
son

	24
-co

re	

Cor
i	8-

cor
e	

Cor
i	32

-co
re	

Tim
e	(

ms
)	

Disk	 Memory	

Figure 45. BigData Benchmark performance on workstation and a single node of Edison
and Cori. Input data is pre-cached in memory or read from disk.

To quantify the difference in I/O performance, we instrumented the Hadoop

LocalFileSystem interface used by Spark to record the number of calls and the time

spent in open, read, write, and close file operations. The time spent in read, write,

142

and close operations did not significantly differ between the systems, while file open

operations were much slower, as shown in Figure 46. On the workstation the mean file

open time was 23 μs; on Edison it was 542 μs, almost 24 times greater. Some file open

operations on Edison took an extreme amount of time to complete: in the worst case

observed, a single file open operation took 324 ms.

The Big Data Benchmark illustrates the application level I/O bottlenecks.

At this stage, the number of open operations is linear in the number of partitions.

The dataset for Query 1 consists of a single directory containing one data file per

partition in Parquet format: there are 3,977 partitions/files. Each file is accompanied by

a checksum file used to verify data integrity. These all must be opened, so a minimum

of 7,954 file opens must occur to run Query 1. The data format readers are designed to

operate in series in a state-free manner. In the first step, the data and checksum files

are opened and read, the checksums are calculated are compared, and the data and

checksum files are closed, completing the first task. Then, each partition file is opened

and the footer, containing column metadata, is read, and the partition file is closed,

completing the second task. Finally, the partition file is opened again, the column

values are read, and the partition file is closed again, for a total for four file opens per

partition, or 15,908 file opens.

5.6 Scaling Concerns

On a data center system architecture with local disks, one does not expect file

open (or create) time to have a large effect on the overall time to job completion. Thus,

Spark and the associated domain libraries implement stateless operation for resilience

and elastic parallelism purposes by opening and closing the files involved in each

individual data access: file metadata operations are a scalability bottleneck on our HPC

143

Edison
Lustre

Workstation
Local
Disk

Cori
Lustre

Cori
Ramdisk

Cori
BB

Striped

Cori
BB

Private

0

1000000

2000000

3000000

4000000

5000000

Fi
le

 O
p
e
n
 T

im
e
 (

n
s)

Edison
Lustre

Workstation
Local
Disk

Cori
Lustre

Cori
Ramdisk

Cori
BB

Striped

Cori
BB

Private

0

1

2

3

4

5

6

Fi
le

 O
p
e
n
 T

im
e
 (

n
s)

1e8

Edison
Lustre

Workstation
Local
Disk

Cori
Lustre

Cori
Ramdisk

Cori
BB

Striped

Cori
BB

Private

0

500000

1000000

1500000

2000000

Fi
le

 D
a
ta

 A
cc

e
ss

 T
im

e
 (

n
s)

Edison
Lustre

Workstation
Local
Disk

Cori
Lustre

Cori
Ramdisk

Cori
BB

Striped

Cori
BB

Private

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fi
le

 D
a
ta

 A
cc

e
ss

 T
im

e
 (

n
s)

1e7

Figure 46. Distribution of file I/O on the Lustre filesystem vs. a workstation with
ext4 local disk, during the execution of Big Data. Left, median file open time is 24×
higher on Lustre. Second, range of file open time, ≈ 14,000× larger on Lustre. Third,
median of file read time for all BigData reads - latency similar between workstation
and Lustre. Right, range of file open time - Lustre exhibits much larger variability than
workstation.

144

systems. Any effort scaling Spark up and out on an HPC installation has first to address

this concern.

There are several Spark configuration alternatives that affect file I/O behavior.

We were first interested to determine if the larger number of cores in a HPC node

allows for a degree of oversubscription (partitions per core) high enough to hide the

MDS latency. We have systematically explored consolidation, speculation, varying the

number of partitions and data block sizes to no avail.

In the time honed HPC tradition, one solution is to throw bigger and better

hardware at the problem. The first aspect is to exploit the higher core concurrency

present in HPC systems. As the previous Section shows, increasing1 the number of

cores per node does improve performance, but not enough to mitigate the effects of the

file system.

For the Lustre installations evaluated, metadata performance is determined by

the MDS hardware configuration. Although Cori contains multiple MDSes, the current

Lustre 2.6 version does not exploit them well2 and performance for the Spark workload

is identical to that of a single MDS. When comparing Cori with Edison, the former

contains newer hardware and exhibits lower metadata access latency (median 270μs on

Cori vs 338μs on Edison), still when using the full node (32 and 24 cores) both are at

best 50% slower than a eight core workstation. Enabling multiple MDSes will improve

scalability but not the latency of an operation [52], thus over-provisioning the Lustre

metadata service is unlikely to provide satisfactory per node performance.

A third hardware solution is provided by the BurstBuffer I/O subsystem

installed in Cori. This large NVRAM array situated close to the CPU is designed to

1Cori Phase II will contain Intel Xeon Phi nodes with up to 256 cores per node. This will become
available circa Oct 2016 to early users.

2Supports a restricted set of operations that are not frequent in Spark.
145

improve throughput for small I/O operations and for pre-staging of data. The question

still remains if it is well suited for the access patterns performed by Spark.

Besides hardware, software techniques can alleviate some of the metadata

performance bottlenecks. The first and most obvious solution is to use a memory

mapped file system (e.g. /dev/shm) as the secondary storage target for Spark. Subject

to physical memory constraints, this will eliminate a large fraction of the traffic to the

back-end storage system. In the rest of this chapter, we will refer to this configuration

as ramdisk. Note that this is a user level technique and there are several limitations: 1)

the job crashes when memory is exhausted; and 2) since data is not written to disk it

does not provide any resilience and persistence guarantees.

HPC applications run in-memory so it may seem that ramdisk provides

a solution. For medium to large problems and long running iterative algorithms

Spark will fail during execution when using ramdisk, due to lax garbage collection

in the block and shuffle managers. To accommodate large problems we evaluate a

configuration where a local file system is mounted and backed by a Lustre file, referred

to as lustremount. This requires administrative privilege on the systems and due to

operational concerns we were initially granted access to only one node. Based on

the results of this study, this capability was added to Shifter [114], which is NERSC

developed software that enables Docker containers to be run on shared HPC systems.

To understand scaling with large problems we develop a software caching layer

for the file system metadata, described in Section 5.6. In the rest of this chapter we

refer to this configuration as filepool. This is a user level approach orthogonal to

the solutions that mount a local file system. Since data is stored on Lustre, filepool

provides resilience and persistence guarantees.

146

I/O Scaling in Spark. I/O overhead occurs due to metadata operations,

as well as proper data access read/write operations. All these operations occur in both

the application level I/O, as well as inside Spark for memory constrained problems or

during the shuffle stage.

In Section 5.5 we have illustrated the impact of fopen metadata operations on

the performance of BigData Benchmark.. There, the benchmark performed during the

application input stage a number of open operations linear in the number of partitions

O(partitions). Big Data Benchmark did not involve a large amount of shuffle data.

Because Spark allows partitions to be cached in memory, slow reading of the

initial data is not necessarily problematic, particularly in an interactive session in which

multiple queries are being performed against the same data. Assuming that the working

set fits in memory, disk access for input data can be avoided except for the first query.

In this case, the BurstBuffer can be also used for data pre-staging.

In Figure 47 we show the scalability of the GroupBy benchmark up to 16 nodes

(384 cores) on Edison for a weak scaling experiment where the problem is chosen small

enough to fit entirely in memory.

GroupBy measures worst-case shuffle performance: a wide shuffle in which

every partition must exchange data with every other partition. The benchmark

generates key-value pairs locally within each partition and then performs a shuffle

to consolidate the values for each key. The shuffle process has two parts: in the first

(map) part, each node sorts the data by key and writes the data for each partition to a

partition-specific file. This is the local task prior to the stage boundary in Figure 40. In

the second (reduce) part, each node reads locally-available data from the locally-written

shuffle files and issues network requests for non-local data. This is the global task after

the stage boundary in Figure 40.

147

0	

100	

200	

300	

400	

500	

600	

700	

1	 2	 4	 8	 16	

St
ag
e	
Ti
m
e	
(s
ec
on

ds
)	

Nodes	

GroupByTest	-	Weak	Scaling	-	Edison	

Lustre	Map	Time	 Lustre	Shuffle	Time	 SHM	Map	Time	 SHM	Shuffle	Time	

Figure 47. Time for the map and reduce phases of GroupBy on Edison for Lustre and
ramdisk as we use additional nodes to process larger datasets (weak scaling).

When running entirely in memory (ramdisk) performance scales with nodes,

while scalability is poor when using Lustre. As illustrated, the Map phase scales on

Lustre, while the Shuffle phase does not. For reference, on the workstation, mean

task duration is 1,618 ms for ramdisk and 1,636 ms for local disk. On the Edison node,

mean task duration was 1,540 ms for ramdisk and 3,228 ms for Lustre.

We instrumented Spark’s Shuffle Manager component to track file I/O

operations. During the write phase of the shuffle, a shuffle file is created for each

partition, and each shuffle file is written to as many times as there are partitions.

An index file is also written, which contains a map from keys to a shuffle file and

offset. During the read phase, for each local partition to read and each remote request

received, the index file is opened, data is read to locate the appropriate shuffle data file,

148

which is then opened, read, and closed. The number of file open operations during the

shuffle is quadratic in the number of partitions O(partitions2).

To enable load balancing, the Spark documentation suggests a default number

of partitions as 4x the number of cores. On 16 nodes of Edison, with a total of 384

cores, then, we have 1,536 partitions, giving us 1,536 shuffle data files, each of which

is opened 1,536 times during the write phase and another 1,536 times during the

read phase, resulting in 4,718,592 file open. Not only is the number of file opens is

quadratic in partitions, but the cost per file open also grows as we add nodes, as shown

in Figure 48.

As the number of file I/O operations is linear with the number of

partitions/cores during the application I/O and quadratic during the shuffle stage, in

the rest of chapter we concentrate the evaluation on the shuffle stage.

0	

2000	

4000	

6000	

8000	

10000	

12000	

1	 2	 4	 8	 16	

Ti
m
e	
Pe

r	O
pe

ra
1o

n	
(m

ic
ro
se
co
nd

s)
	

Nodes	

GroupByTest	-	I/O	Components	-	Cori		

Lustre	-	Open	 BB	Striped	-	Open	
BB	Private	-	Open	 Lustre	-	Read	
BB	Striped	-	Read	 BB	Private	-	Read	
Lustre	-	Write	 BB	Striped	-	Write	

Figure 48. Average time for a open, read, and write operation performed during the GroupBy execution
with weak scaling on Cori.

149

As for each read/write operation Spark will perform a file open, the

performance ratio of these operations is an indicator of scalability. Figure 49 shows

the performance penalty incurred by repeatedly opening a file, performing one read

of the indicated size, and closing the file, versus opening the file once, performing

many reads of the indicated size, and closing the file. Using many open-read-close

cycles on a workstation with a local disk is 6× slower for 1 KB reads than opening

once and performing many reads, while on Edison with Lustre, many open-read-close

cycles is 56× slower than opening once and reading many times. Lustre on Cori is

similar, while the Burst Buffers in striped mode reduce the penalty to as low as 16×.

All of the filesystems available on our HPC systems incur a substantial penalty from

open-per-read.

The scalability problems caused by the large number of file opens are

exacerbated by the potentially small size of each read. Many data analytics applications

have a structure in which many keys are associated with a small number of values. For

example in PageRank, most write operations are smaller than 1KB. This reflects the

structure of the data, as most websites have few incoming links. The data is structures

as key-value pairs with a site’s URL as the key and a list of incoming links as the value,

so most values are short.

Improving Metadata Performance With File Pooling. For problems small

enough to fit in the main memory, the ramdisk Spark configuration scales. However,

in our experiments many large problems ran out of memory at runtime, particularly

iterative algorithms where the block garbage collection inside the shuffle manager is

not aggressive.

In order to accommodate large problems at scale we have simply chosen

to add a layer for pooling and caching open file descriptors within Spark. All tasks

150

1

11

21

31

41

51

61

1024 4096 16384 65536 262144 1048576

Sl
ow

do
w
n	
of
	n
(O
R
C
)	v
s.
	O
(n
R
)C

Read	Size	(bytes)

Many	Open-Read-Close	 Cycles	vs.	Open-Once	Read-Many	

Edison	Lustre Workstation	Local	Disk Cori	Lustre

Cori	Striped	BB Cori	Private	BB Cori	Mounted	File

Figure 49. Performance improvements from amortizing the cost of file opens. We
compare one read per open with 100,000 reads per open.

within an Executor (node) share a descriptor pool. We redefine FileInputStream

and FileOutputStream to access the pool for open and close operations. Once a file

is opened, subsequent close operations are ignored and the descriptor is cached in

the pool. For any subsequent opens, if the descriptor is available we simply pass it to

the application. To facilitate multiple readers, if a file is requested while being used by

another task, we simply reopen it and insert it into the pool.

This descriptor cache is subject to capacity constraints as there are limits on the

number of Inodes within the node OS image, as well as site-wide Lustre limits on the

number of files open for a given job. In the current implementation, each Executor is

assigned its proportional number of entries subject to these constraints.

We evaluated a statically sized file pool using two eviction policies to solve

capacity conflicts: LIFO and FIFO. For brevity we omit detailed results and note that

LIFO provides best performance for the shuffle stage. As results indicate, this simple

implementation enables Spark to scale.
151

Further refinements are certainly possible. Application I/O files can be easily

distinguished from intermediate shuffle files and can be allocated from a smaller pool,

using FIFO. Within the shuffle, we can tailor the eviction policy based on the shuffle

manager behavior, e.g. when a block is dropped from memory the files included in its

lineage are likely to be accessed together in time during recomputation.

Running out of Inodes aborts execution so in our implementation a task blocks

when trying to open a file and the pool descriptor is filled at capacity. As this can lead

to livelock, we have audited the Spark implementation and confirmed with traces that

the implementation paradigm is to open a single file at a time, so livelock cannot occur.

Impact of Metadata Access Latency on Scalability. In Figure 50 we

show the single node performance on Cori in all configurations. As shown, using the

back-end Lustre file system is the slowest, by as much as 7× when compared to the

best configuration. Both file system configurations improve performance significantly

by reducing the overhead of calls to open files: ramdisk is up to ≈ 7.7× faster and

lustremount is ≈ 6.6× faster than Lustre.

filepool also improves performance in all cases. It is ≈ 2.2× faster than Lustre,

and interestingly enough is speeds up the other two configurations. For example,

for GroupBy where each task performs O(partitions2) file opens, adding pooling to

the “local” file system (e.g. ramdisk+filepool) improves performance by ≈ 15%.

The performance improvements are attributed to the lower number of open system

calls. For PageRank and BigData Benchmark the improvements are a more modest 1%

and 2% respectively. As it never degraded performance, this argues for running in

configurations where our filepool implementation itself or a user level file system

is interposed between Spark and any other “local” file systems used for shuffle data

management.

152

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Ti
m
e	
(m

s)

Cori	- GroupBy	- Time	to	Job	Completion

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Ti
m
e	
(m

s)

Cori	- PageRank	- Time	to	Job	Completion

Figure 50. GroupBy and PageRank performance on a single node of Cori.

For all configurations the performance improvements are proportional to the

number of file opens during the shuffle stage: GroupBy is quadratic in partitions while

in PageRank it is a function of the graph structure.

153

0

5000

10000

15000

20000

25000

Lu
st
re

Ra
m
di
sk

Lu
st
re
	+	
Po

ol
BB

	S
tr
ip
ed

BB
	P
riv

at
e

Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

Lu
st
re

Ra
m
di
sk

Lu
st
re
	+	
Po

ol
BB

	S
tr
ip
ed

BB
	P
riv

at
e

Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

Lu
st
re

Ra
m
di
sk

Lu
st
re
	+	
Po

ol
BB

	S
tr
ip
ed

BB
	P
riv

at
e

Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

Lu
st
re

Ra
m
di
sk

Lu
st
re
	+	
Po

ol
BB

	S
tr
ip
ed

BB
	P
riv

at
e

Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

Lu
st
re

Ra
m
di
sk

Lu
st
re
	+	
Po

ol
BB

	S
tr
ip
ed

BB
	P
riv

at
e

Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

1 2 4 8 16

Ti
m
e(
m
s)

Serialize Fetch App

0

5000

10000

15000

20000

25000

Lu
st
re

Ra
m
di
sk

Lu
st
re
	+	
Po

ol
BB

	S
tr
ip
ed

BB
	P
riv

at
e

Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

Lu
st
re

Ra
m
di
sk

Lu
st
re
	+	
Po

ol
BB

	S
tr
ip
ed

BB
	P
riv

at
e

Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

Lu
st
re

Ra
m
di
sk

Lu
st
re
	+	
Po

ol
BB

	S
tr
ip
ed

BB
	P
riv

at
e

Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

Lu
st
re

Ra
m
di
sk

Lu
st
re
	+	
Po

ol
BB

	S
tr
ip
ed

BB
	P
riv

at
e

Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

1 2 4 8

Ti
m
e(
m
s)

Serialize Fetch App

Figure 51. GroupBy weak scaling on Cori up to 8 nodes (256 cores). Top: with YARN.
Bottom: with the Spark standalone scheduler.

In Figure 51 we show the scalability of GroupBy up to eight nodes (256 cores).

We present the average task time and within it, distinguish between time spent in

serialization (Serialization), disk access together with network access (Fetch) and

application level computation (App). ramdisk is fastest, up to 6× when compared to

Lustre. filepool is slower than ramdisk, but still significantly faster than Lustre, up

to 4×. The performance differences between ramdisk and filepool increase with the

scale: while system call overhead is constant, metadata latency performance degrades.

When combining filepool with lustremount we observe performance improvements

ranging from 17% on one node to 2% on 16 nodes.

In Figure 52 we present scalability for PageRank (left) and BigData Benchmark

(right). As mentioned, the inputs for these benchmarks are not very large and we scale

154

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

Lu
st
re

Lu
st
re
	+	
Po

ol
Ra

m
di
sk

Ra
m
di
sk
	+
	P
oo

l
BB

	S
tr
ip
ed

BB
	S
tr
ip
ed

	+	
Po

ol
BB

	P
riv

at
e

BB
	P
riv

at
e	
+	
Po

ol
Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

Lu
st
re

Lu
st
re
	+	
Po

ol
Ra

m
di
sk

Ra
m
di
sk
	+
	P
oo

l
BB

	S
tr
ip
ed

BB
	S
tr
ip
ed

	+	
Po

ol
BB

	P
riv

at
e

BB
	P
riv

at
e	
+	
Po

ol
Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

Lu
st
re

Lu
st
re
	+	
Po

ol
Ra

m
di
sk

Ra
m
di
sk
	+
	P
oo

l
BB

	S
tr
ip
ed

BB
	S
tr
ip
ed

	+	
Po

ol
BB

	P
riv

at
e

BB
	P
riv

at
e	
+	
Po

ol
Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

Lu
st
re

Lu
st
re
	+	
Po

ol
Ra

m
di
sk

Ra
m
di
sk
	+
	P
oo

l
BB

	S
tr
ip
ed

BB
	S
tr
ip
ed

	+	
Po

ol
BB

	P
riv

at
e

BB
	P
riv

at
e	
+	
Po

ol
Lu
st
re
m
ou

nt
Lu
st
re
m
ou

nt
	+	
Po

ol

1 2 4 8

Ti
m
e(
m
s)

Cori	- PageRank	- Strong	Scaling

Running	Time

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

Lu
st
re

Lu
st
re
	+	
Po

ol

Ra
m
di
sk

Ra
m
di
sk
	+
	P
oo

l

BB
	S
tr
ip
ed

BB
	S
tr
ip
ed

	+	
Po

ol

BB
	P
riv

at
e

BB
	P
riv

at
e	
+	
Po

ol

Lu
st
re
m
ou

nt

Lu
st
re
m
ou

nt
	+	
Po

ol

Lu
st
re

Lu
st
re
	+	
Po

ol

Ra
m
di
sk

Ra
m
di
sk
	+
	P
oo

l

BB
	S
tr
ip
ed

BB
	S
tr
ip
ed

	+	
Po

ol

BB
	P
riv

at
e

BB
	P
riv

at
e	
+	
Po

ol

Lu
st
re
m
ou

nt

Lu
st
re
m
ou

nt
	+	
Po

ol

1 5

Ti
m
e(
m
s)

Cori	- BigDataBenchmark	- Weak	Scaling

Running	Time

Figure 52. PageRank and BigData Benchmark scaling on Cori, up to 8 nodes (256 cores).

up to 8 nodes. The trends for PageRank are similar to GroupBy and we observe very

good performance improvements from filepool and ramdisk. The improvements

from combining pooling with ramdisk are up to 3%. In addition, when strong scaling

PageRank the performance of ramdisk improves only slightly with scale (up to 25%),

while configurations that touch the file system (Lustre and BurstBuffer) improve by as

much as 3.5×. The gains are explained by better parallelism in the read/write operations

during shuffle.

The performance of BigData Benchmark is least affected by any of our

optimizations. This is because behavior is dominated by the initial application level

155

I/O stage, which we did not optimize. This is the case where ramdisk helps the

least and further performance improvements can be had only by applying the file

pooling optimization or lustremount. BigData Benchmark illustrates the fact that any

optimizations have to address in shuffle in conjunction with the application level I/O.

When using the Yarn resource manager we could not effectively scale Spark up

to more than 16 nodes on either Edison or Cori. The application runs but executors

are very late in joining the job and repeatedly disappear during execution. Thus the

execution while reserving the initially requested number of nodes, proceeds on far

fewer. After exhausting timeout configuration parameters, we are still investigating the

cause.

For larger scale experiments we had to use the Spark standalone scheduler,

results presented in Figure 51 right. While Yarn runs one executor (process) per node,

the Spark manager runs one executor per core. The Lustre configuration stops scaling

at 512 cores. The standalone scheduler limits the the performance impact of our file

pooling technique: with Yarn we provide a per node cache while with the standalone

scheduler we provide a per core cache. This is reflected in the results: while with

YARN filepool scales similarly to ramdisk, it now scales similarly to Lustre and we

observe speedup only as high as 30%. Note that filepool can be reimplemented for

the standalone scheduler, in which case we expect it to behave again like ramdisk.

As illustrated in Figure 53 we successfully (weak) scaled ramdisk up to 10,240

cores. Lustre does not scale past 20 nodes, where we start observing failures and job

timeouts. When running on the BurstBuffer we observe scalability up 80 nodes (2,560

cores), after which jobs abort. Note that BurstBuffer performance is highly variable at

scale and we report the best performance observed across all experiments.

156

Figure 54 compares Lustre, ramdisk and lustremount. To use lustremount on

more than one node, we run Spark inside a Shifter user-defined image. With Shifter,

each node mounts a single image containing JVM and Spark installations in read-only

mode and a per-node read/write loopback file system. Because the JVM and Spark are

stored on a file-backed filesystem in Shifter, file opens required to load shared libraries,

Java class files, and Spark configuration files are also offloaded from the metadata server,

improving performance over configurations where Spark is installed on the Lustre

filesystem. Identically configured GroupBy benchmarks running on ramdisk with

Spark running in Shifter is up to 16% faster than than with Spark itself installed on

Lustre. In addition, since the mount is private to a single node, the kernel buffer cache

and directory entry cache can safely cache metadata blocks and directory entries. This

can significantly reduce the number of metadata operations and improves performance

for small I/O operations. For the lustremount implementation in Shifter initializes a

sparse file in the Lustre file system for each node in the Spark cluster. These files are

then formatted as XFS file systems and mounted as a loop back mount during job

launch. Unlike using ramdisk, the lustremount approach is not limited to the memory

size of the node and it doesn’t take away memory resources from the application. Using

lustremount we can scale up to 10,240 cores, with time to completion only 13%

slower than ramdisk at 10,240 cores.

Impact of BurstBuffer on Scalability. The BurstBuffer hardware provides

two operating modes, private where files are stored on a single blade (device) and

striped where files are stored across multiple blades.

In Figure 46 we present the metadata latency and read operations latency for

a single node run of BigData Benchmark. As illustrated, the mean time per operation

when using the BurstBuffer is higher than the back-end Lustre in both striped

157

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%
100%

0
20000
40000
60000
80000
100000
120000
140000
160000
180000
200000

1 5 10 20 40 80 160 320

Ti
m
e	
(m

s)

Nodes

Cori	- GroupBy	- Weak	Scaling	- Time	to	Job	Completion

Ramdisk

Burst	Buffer

Slowdown

Figure 53. GroupBy at large scale on Cori, up to 320 nodes (10,240 cores). Standalone
scheduler. Series “Slowdown” shows the slowdown of BurstBuffer against ramdisk,
plotted using the secondary right axis.

0

100000

200000

300000

400000

500000

600000

700000

1 5 10 20 40 80 160 320

Ti
m
e	
(m

s)

Nodes

Cori	- GroupBy	- Weak	Scaling	- Time	to	Job	Completion

Ramdisk

Lustremount

Lustre

Figure 54. GroupBy at large scale on Cori, up to 320 nodes (10,240 cores). Standalone
scheduler. Lustre, ramdisk, and lustremount.

158

and private mode. This is expected as interposing the BurstBuffer layer between

processors and Lustre can only increase latency. On the other hand the variance is

reduced 5× compared to Lustre. When comparing striped mode with the private mode

for BigData Benchmark striped exhibits 15% lower variance than private.

Higher latency per operation affects performance at small scale and Spark single

node performance with BurstBuffer is slightly worse than going directly to Lustre.

On the other hand, lower variability translates directly in better scaling as illustrated in

Figures 48 and 51. Up to 40 nodes (1,280 cores) BurstBuffer provides performance

comparable to running in memory with ramdisk. As expected, the configuration with

lower variability (striped) exhibits better scalability than private mode. This is a direct

illustration of the need to optimize for the tail latency at scale.

5.7 Improving Shuffle Scalability With Better Block Management

Even when running using a good configuration available, e.g.

filepool+ramdisk, some algorithms may not scale due to the memory management

within the shuffle manager, which introduces excessive vertical data movement. The

behavior of the PageRank algorithm illustrates this.

In Figure 55 left we show the evolution of the algorithm for a problem that

fits entirely in main memory on one node of Edison. We plot both memory usage

and the duration of an iteration over the execution. As shown, execution proceeds at a

steady rate in both memory and time. On the right hand side of the figure, we plot the

evolution of the algorithm when the working set does not fit in the main memory. As

illustrated, each iteration becomes progressively slower and each iteration takes double

the amount of its predecessor. The same behavior is observed on the workstation, albeit

less severe.

159

0
5
10
15
20
25
30
35
40
45

0

2000

4000

6000

8000

10000

0 500 1000 1500 2000

Ite
ra

tio
n

M
em

or
y

U
se

d
(m

eg
ab

yt
es

)

Timestamp (quarter seconds since start)

 Unconstrained Memory - LiveJournal Graph - 40 iterations

memUsed iteration

0

2

4

6

8

10

0

2000

4000

6000

8000

10000

12000

-445 555 1555 2555 3555 4555 5555 6555 7555 8555 9555

Ite
ra

tio
n

M
em

or
y

U
se

d
(m

eg
ab

yt
es

) /

B
lo

ck
s

D
ro

pp
ed

Timestamp (quarter seconds since start)

Constrained Memory - LiveJournal Graph - 10 iterations - 6 GB limit

value dropped iteration

Figure 55. PageRank performance on a single node of Edison. The amount of memory
used during execution is plotted against the right hand side axis. The time taken by
each iteration is plotted against the left hand side axis. Execution under constrained
memory resources slows down with the number of iterations.

0

5E+09

1E+10

1.5E+10

2E+10

2.5E+10

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

B
yt

es

M
em

or
y

U
se

d
(m

eg
ab

yt
es

)

Timestamp (quarter seconds since start)

Unconstrained Memory – 40 Iterations

memUsed shuffleBytesWritten shuffleBytesRead

0

1E+11

2E+11

3E+11

4E+11

0

2000

4000

6000

8000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

B
yt

es

M
em

or
y

U
se

d
(m

eg
ab

yt
es

)

Timestamp (quarter seconds since start)

Constrained Memory -- 10 iterations

memUsed shuffleBytesWritten shuffleBytesRead

Figure 56. PageRank I/O behavior on a single node of Edison. The amount of memory
used during execution is plotted against the right hand side axis. The amount of bytes
read and written from disk is plotted against the left hand side axis. While memory
usage stays constant, the amount of bytes read explodes under constrained memory
resources.

160

After investigation using the instrumentation framework already developed,

we observed that during constrained execution the amount of data read from disk

grows at a rate two orders of magnitude higher than during unconstrained execution.

After further investigation, we attributed the root cause of the problem to the shuffle

block manager. Whenever running out of memory, the block manager evicts the

least recently used block. The first subsequent access to the evicted block triggers

recomputation, which evicts another block needed for the partial solution which in

turn triggers recomputation and eviction of blocks needed. This results in orders of

magnitude increases in vertical data movement, as illustrated in Figure 56.

This behavior affects the scaling of iterative algorithms on all systems and it

should be fixed. In the data center it is less pronounced as local disks are better at

latency. As shown, it is very pronounced on our HPC systems. One lesson here is

that because storage behaves differently, in particular for small requests, there exists

incentive to specifically tune the shuffle block manager for HPC.

For the PageRank algorithm we have actually an algorithmic fix which involves

marking as persistent the intermediate result RDDs from each iteration. This causes

Spark to write them to the back-end storage. Upon eviction, a persistent block is

read from storage instead of being recomputed. Figure 57 shows the performance of

the fixed PageRank algorithm and we observe performance improvements as high as

11×. Note that all the performance findings in this chapter are reported on this fixed

algorithm. The original GraphX implementation does not scale beyond a single node

on our systems.

There are two possible generic solutions to this problem. First, we could

implement a system which tracks how often shuffle data must be reread from disk and

automatically persist partitions that depend on that data when a threshold is exceeded.

161

Second, we could track the cost of recomputing and rereading the lineage of an RDD

and, rather than evicting on a least-recently-used basis, instead evict the block which

will have the lowest recompute or reread cost. We have implemented the first of these

solutions: if the same shuffle block is read three times, the corresponding map output is

marked to be persisted to disk immediately before the third read.

5.8 Spark-Perf Benchmark on Lustre

Previous work on porting Spark to the Cray platform [151] running under

Cluster Compatibility Mode revealed that performance of TeraSort and PageRank

was up to four times worse on a 43 nodes of a Cray XC system compared to an

experimental 43-node Cray Aries-based system with local SSDs, even though the

experimental system had fewer cores than the Cray XC (1,032 vs 1,376). To mitigate

this problem, the authors redirected shuffle intermediate files to an in-memory

filesystem, but noted that this limited the size of problem that could be solved, and

that the entire Spark job fails if the in-memory filesystem becomes full. Multiple shuffle

storage directories can be specified, one using the in-memory filesystem and one using

the Lustre scratch filesystem, but the Spark runtime then uses them in a round-robin

manner, so performance is still degraded.

On Cori we compare directly Lustre with in-memory execution performance.

On Comet we compare Lustre with SSD storage. To illustrate the main differences

we use the GroupBy benchmark which is a worst-case shuffle. GroupBy generates

key-value pairs with a limited number of keys across many partitions, and then groups

all values associated with a particular key into one partition. This requires all-to-all

communication, and thus maximizes the number of shuffle file operations required, as

described in Section 5.6, above.

162

Figure 58 shows the results on Cori. On a single node (32 cores), when shuffle

intermediate files are stored on Lustre, time to job completion is 6 times longer

than when shuffle intermediate files are stored on an in-memory filesystem. The

performance degradation increases as nodes are added: at 80 nodes, performance is 61

times worse on Lustre than the in-memory filesystem. Runs larger than 80 nodes using

Lustre fail.

Results on Comet are shown in Figure 59. On one node, shuffle performance

is 11 times slower on Lustre than on the SSD; however, the performance penalty does

not become worse as we add nodes. Because Comet compute nodes feature local SSDs,

there is less contention for the Lustre metadata server, as other jobs running on the

system tend to make use of the SSD for intermediate file storage.

Figure 60 shows the performance of the spark-perf benchmarks [197] on

SDSC Comet. The scheduling-throughput benchmark runs a series of empty tasks

without any disk I/O; its performance is unaffected by the choice of shuffle data

directory. The scala-agg-by-key, scala-agg-by-key-int and scala-agg-by-key-naive

benchmarks perform aggregation by key: they generate key-value pairs and then

apply functions to all values associated with the same key throughout the RDD;

this requires a shuffle to move data between partitions. The version using floating

point values (scala-agg-by-key) and the integer version (scala-agg-by-key-int) are

designed to shuffle the same number of bytes of data, so that the number of values

in the integer version is larger than for the floating point version, increasing the

number of shuffle intermediate file writes. The scala-agg-by-key-naive benchmark first

performs a groupByKey, grouping all values for each key into one partition, before

performing partition-local reductions, so that shuffles move a larger volume of data

than for the non-naive versions, giving larger shuffle writes. The three scala-agg-by-key

163

benchmarks have degraded performance when intermediate data is stored on Lustre,

which continue to degrade as more nodes are added; at 16 nodes, performance for

scala-agg-by-key-naive is 12 times worse than on SSD. The remaining benchmarks

involve little or no shuffling and so are unaffected by shuffle directory placement.

As described in Section 5.6, shuffle intermediate files are opened once for

each read or write. When shuffle intermediate files are stored on Lustre, this causes

heavy metadata server load which slows the overall process of reading or writing.

Figure 61 shows the slowdown that results from opening a file, reading it, closing it,

and repeating this process, as compared to opening a file once and performing multiple

reads. For read sizes under one megabyte, Lustre filesystems show a penalty increasing

with decreasing read size.

Spark-perf also provides a set of machine learning benchmarks implemented

using MLLib [157]. Figure 62 shows the slowdown of using Lustre storage instead

of SSD for these benchmarks. Iterative algorithms – those which perform the same

stages multiple times, and therefore have multiple rounds of shuffling – show the

worst slowdown. The lda (Latent Dirichlet allocation), pic (power iteration clustering),

summary statistics, spearman (Spearman rank correlation) and prefix-span (Prefix

Span sequential pattern mining) benchmarks all show substantial slowdown when

shuffle files are stored on Lustre rather than local SSDs. These are all iterative with the

exception of the summary statistics benchmark, which has smaller block sizes than the

other benchmarks.

These results demonstrate that shuffle performance is a major cause of

performance degradation when local disk is not available or not used for shuffle-heavy

applications.

164

5.9 Localizing Metadata Operations with Shifter

To improve the file IO performance, ideally we need to avoid propagating

metadata operations to the Lustre filesystem because these files are used solely by

individual compute nodes. On Cray XC systems, we do not have access to local

disk, and using in-memory filesystems limits the problem sizes. Our file pooling

technique, described above, maintains a pool of open file handles during shuffling to

avoid repeated opens of the same file. However, this requires modifications to the Spark

runtime, and affects only operations coming from the Spark runtime. Other sources of

redundant opens, such as high-level libraries and third-party file format readers, are not

addressed. Furthermore, each file must be opened at least once, still placing load on the

Lustre metadata server, even though the files are only needed on one node.

To keep metadata operations local, we have previously experimented with

mounting a per-node loopback filesystem, each backed by a file stored on Lustre.

This enables storage larger than available through an in-memory filesystem while still

keeping file opens of intermediate files local; only a single open operation per node

must be sent to the Lustre metadata server, to open the backing file. This approach was

not feasible, however, for ordinary use, as mounting a loopback filesystem requires root

privileges.

Shifter [114] is a lightweight container infrastructure for the Cray environment

that provides Docker-like functionality. With Shifter, the user can, when scheduling an

interactive or batch job, specify a Docker image, which will be made available on each

of the compute nodes. In order to do this, Shifter provides a mechanism for mounting

the image, stored on Lustre, as a read-only loopback filesystem on each compute node

within the job. Motivated by our work, Shifter was recently extended to optionally

allow a per-compute-node image to be mounted as a read-write loopback filesystem.

165

Using mounted files eliminates the penalty for per-read opens, as shown in

Figure 61. When we run the GroupBy benchmark on Cori with data stored in a

per-node loopback filesystem, we vastly improve scaling behavior, and performance

at 10,240 cores is only 1.6× slower than in-memory filesystem, as shown in Figure 64.

Unlike with the in-memory filesystem, we can select the size of the per-node filesystem

to be larger than the available memory, preventing job failure with large shuffles.

We have run the spark-perf benchmarks used in Section 5.8 to compare

performance between Lustre and Lustre-backed loopback file systems. Results for

the Spark Core benchmarks are shown in Figure 65. Using per-node loopback

filesystems improves performance at larger core counts for the scala-agg-by-key and

scala-agg-by-key-int benchmarks, particularly for the latter which performs a larger

number of opens. Results for the MLLib benchmarks are shown in Figure 66. The lda,

pic, spearman, chi-sq-feature and prefix-span benchmarks show substantial improvement

from the use of per-node loopback filesystems. Furthermore, they exhibit better scaling

behavior on Cori than on Comet with local disk. Figure 67 shows weak-scaling

performance with those benchmarks on Cori and Comet. Cori nodes provide more

cores (32) than Comet nodes (24), although Comet nodes run at a higher clock speed

(2.5GHz) than Cori nodes (2.3GHz).

5.10 Input Disk I/O versus Shuffle Disk I/O

The spark-perf benchmarks generate input data as tasks, with the input data

therefore being either resident in memory or stored to disk as shuffle intermediate data

prior to the start of the computation phase of the benchmark. The benchmarks also

involve a large number of small transfers. Consider the Power Iteration Clustering

(pic) benchmark. At the end of each iteration, the results for each partition are reduced

to a single number, which is then used in an all-to-all reduction. This results in

166

Table 2. Messages sent in MLLib pic benchmark.

Nodes # Msgs Avg. Msg. Size (bytes) Total KBytes
1 84 53.38 4
2 43,095 40.20 1,692
4 250,796 41.15 10,079
8 1,134,897 41.66 46,177
16 4,745,730 41.92 194,298
32 19,356,636 42.72 807,578
64 78,051,387 43.41 3,309,025

relatively minimal disk activity, with runtime dominated by a large number of very

small inter-node communications. Table 2 shows the scaling behavior of the number

of messages as the number of nodes and problem size grows: message sizes remain

around 40-50 bytes, while the number of messages grows from 84 to 78 million. Since

these benchmarks primarily stress horizontal (between-node) movement, the lack of

degradation from using a Lustre-backed mounted file instead of a SSD or RAM disk is

not strong evidence of their equivalence for other Spark workloads.

Therefore, we also analyzed the Mini TeraSort benchmark. This benchmark

sorts 1 TB of key-value pairs per node, with each key and value being 8 bytes of

randomly generated data. The data is pre-generated and written out to disk, and

the sorted results are also written to disk, so that, for each input partition, disk I/O is

required at the beginning and end of each stage, in addition to shuffle intermediate

data. Figure 68 shows weak scaling results for Mini Terasort on Cori, with 50 GB of

input data per node, so that a node’s input data will fit in the RAM disk with sufficient

space remaining for Spark. RAM disk and Lustre-backed mounted files provide

equivalent performance, while storing input data on Lustre results in large increases

in metadata access time. The usefulness of Lustre-backed mounted files thus remains for

input-heavy workloads.

167

TeraSort uses a sequential data access pattern, reading the entirety of each

partition file in order at the beginning of each benchmark. The SQL workloads

in BigDataBenchmark provide a random data access pattern, and also allow us to

examine the effects of native code generation optimizations present in Spark 2.0.

Under Spark 1.6 and earlier, SQL queries are used to generate Scala code, which

is executed by Spark tasks. In Spark 2.0 and later, an option is provided to instead

generate native code, reducing time in computation. Figure 69 shows weak scaling

results for BigDataBenchmark on 1, 5, and 20 nodes of Cori for Spark 1.6, Spark 2.0

with traditional Scala code generation, and Spark 2.0 with native code generation, and

Spark 2.0 with both native code generation and file pooling, with input data stored on

Lustre, RAM disk, or Lustre-backed mounted file. Additionally, performance is shown

with input data stored on SSDs on Comet for the combination of Spark 2.0, native

code generation, and file pooling. I/O time is comparable between the P configuration

on Cori Lustre-mount and Comet SSD.

5.11 Localizing JVM and Spark Runtime Metadata Accesses

Merely running Spark from a Shifter container improves performance; for

example, the GroupBy benchmark shows an improvement of 16% in total execution

time on 10,000 cores, even without using the Lustre-backed mounted file capability

which is the initial reason for our use of Shifter. This improvement occurs because the

JVM, Spark class files, and the shared libraries used by them are themselves stored on

a mounted disk image when Shifter is used. This localizes any metadata operations

on those files which otherwise would be handled by the Lustre metadata server.

Comparisons between runs on Cori using Shifter and runs on other systems, such as

Comet, which do not have Shifter installed, may therefore be confounded by the effects

of using a container at all.

168

While it is not possible to compare these systems with the same container

infrastructure in place, as Shifter is specific to the Cray exeuction environment, Comet

provides a different container solution, Singularity [130]. While Singularity does

not provide an equivalent to Shifter’s Lustre-backed mounted files, it does allow us

to localize metadata accesses to executable code. Figures 70, 71, and 72 show results

for the Power Iteration Clustering, Spearman Correlation, and Pearson Correlation

benchmarks from spark-perf MLLib, respectively, on Comet and Cori, both with and

without the corresponding container technology used. Shuffle intermediate data is

stored in RAM disk. On 64 nodes, the use of Shifter on Cori reduces total execution

time by 9.9%. The use of Singularity on Comet reduces total execution time by 9.5%.

5.12 Xeon Phi and the Effect of Straggler Tasks

The Cori system has recently been expanded with nodes containing socketed

Intel Xeon Phi “Knights Landing” processors. Unlike the previous generation “Knights

Corner” coprocessors, the Knights Landing is capable of running unmodified x86-64

executables. Therefore, it is possible to take the same Shifter image used in experiments

on the Haswell compute nodes and use it, unmodified, on the Xeon Phi partition of

Cori. As Spark workloads are not ordinarily floating-point-oriented, and provide little

opportunity for vectorization, we would not expect good performance from most

Spark workloads. Figure 73 shows weak scaling results for the GroupBy benchmark

on Haswell with 32 workers per node (one per core), on KNL with 32 workers per

node (same as Haswell), and on KNL with 68 workers per node (one per core).

Execution time on 32 cores of KNL per node is, on average, 3.8× that of

32 cores of Haswell per node, and 64 cores of KNL per node is, on average, 3.2×

that of 32 cores of Haswell per node. The slowdown is more pronounced for the

compute-dominated map phase (5.3×) than for the communication-dominated reduce

169

phase (2.1×). This is attributed to a combination of increased scheduler delay and task

deserialization time as seen in the execution traces shown in Figure 76 and increased

time spent in JVM garbage collection, as shown in Figure 75. The increased latency

to memory caused by the Knights Landing’s use of MCDRAM is not an issue, as

disabling MCDRAM by configuring the KNL in Flat memory mode instead of the

default Cache memory mode does not effect performance, as shown in Figure 74.

Part of the slowdown is due to an increase in straggler tasks. Straggler tasks are

tasks with take an unusually long time to complete compared to other tasks within the

same stage, resulting in workers being left idle. To evaluate the effect of straggler tasks,

we predict the performance of the benchmark if no straggler tasks were present. To

do this, we replace tasks during which more than half the available workers are idle

with tasks that take the median task time to execute for their stage and simulate their

execution, repeating the process until no stragglers are identified. Figure 77 shows

actual execution times compared to simulated execution times with no stragglers. On

Haswell, the runtimes are nearly identical, as very few stragglers were present. On

Knights Landing, the simulated execution times without stragglers are an average of

73% of the actual execution times.

5.13 Network Latency

As mentioned above and shown in Table 2, many data analytics applications

involve a large number of small communications. As a result, past work has shown

a significant benefit from optimizing for message latency through the use of RDMA

techniques, such as through InfiniBand ibverbs [137]. As the Comet system is

equipped with an InfiniBand network, we have evaluated the spark-perf MLLib

benchmark on traditional Spark and RDMA-Spark; this is shown in Figures 78, 79, and

80. RDMA-Spark is not fully compatible with all benchmarks in the suite, resulting in

170

some failed benchmarks at larger scales. However, where it functions, RDMA-Spark

provides better scaling behavior than traditional Spark running on IPoIB.

Figure 81 shows results of a bandwidth microbenchmark on Comet and Cori

for UDP packet injection and native RDMA packet injection for various packet sizes.

Figure 82 shows CPU overhead of injection (that is, the time an application program is

blocked on injection before it can handle another injection call). Figure 83 shows the

end-to-end latency. While the difference in bandwidth between UDP and RDMA is

minimal for small message sizes, end-to-end latency is 6× greater for UDP than RDMA

for small messages on Comet and 5× greater for UDP than RDMA for small messages

on Cori. Adapting RMDA-Spark for RDMA on the Cray Aries interconnect would

therefore be expected to be beneficial.

5.14 Discussion

Metadata latency and its relative lack of scalability is a problem common to

other [4, 35] parallel file systems used in HPC installations. The shuffle stage is at worst

quadratic with cores in file open operations, thus metadata latency can dominate Spark

performance. We believe our findings to be of interest to more than Cray with Lustre

HPC users and operators. While Spark requires file I/O only for the shuffle phase,

Hadoop requires file I/O for both map and reduce phases and also suffers from poor

performance when run without local storage [198]. Our techniques may therefore also

be applicable to Hadoop on HPC systems.

The hardware roadmap points towards improved performance and scalability.

Better MDS hardware improves baseline performance (per operation latency), as

illustrated by the differences between Edison and Cori. Multiple MDSes will improve

scalability. The current usage of BurstBuffer I/O acceleration on Cori, while it

degrades baseline node performance, it improves scalability up to thousands of cores.

171

Better performance from it can be expected shortly, as the next stage on the Cori

software roadmap provides a caching mode for BurstBuffer which may alleviate some

of the current latency problems. It may be the case that the BurstBuffer is too far from

the main memory, or that it is shared by too many nodes for scales beyond O(103).

The HPC node hardware evolution points towards large NVRAM deployed inside the

nodes, which should provide scalability with no capacity constraints.

As our evaluation has shown, software approaches can definitely improve

performance and scalability. Besides ours, there are several other efforts with direct

bearing. Deploying Spark on Tachyon [135] with support for hierarchical storage

will eliminate metadata operations. In fact, we have considered this option ourselves

but at the time of the writing the current release of Tachyon, 0.8.2, does not fully

support hierarchical storage (missing append). We expect its performance to fall

in between that of our configuration with a local file system backed by Lustre and

ramdisk+filepool. Note also that our findings in Section 5.7 about the necessity of

improving block management during the shuffle stage for iterative algorithms are

directly applicable to Tachyon.

The Lustre roadmap also contains a shift to object based storage with local

metadata. Meanwhile, developers [92, 198] have already started writing and tuning

HDFS emulators for Lustre. The initial results are not encouraging and Lustre is faster

than the HDFS emulator. We believe that the lustremount is the proper configuration

for scalability.

The performance improvements due to filepool when using “local” file

systems surprised us. This may come from the different kernel on the Cray compute

nodes, or it may be a common trait when running in data center settings. As HPC

workloads are not system call intensive, the compute node kernels such as Cray CNL

172

may not be fully optimized for them. Running commercial data analytics workloads on

HPC hardware may force the community to revisit this decision. It is definitely worth

investigating system calls overhead and plugging in user level services (e.g. file systems)

on commercial clouds.

Luu et al [140] discuss the performance of HPC applications based on six

years of logs obtained from three supercomputing centers, including on Edison.

Their evaluation indicates that there is commonality with the Spark behavior: HPC

applications tend to spend 40% of their I/O time in metadata operations than in data

access and they tend to use small data blocks. The magnitude of these operations in

data analytics workloads should provide even more incentive to system developers to

mitigate this overhead.

We are interested in extending this study with a comparison with Amazon EC2

to gain more quantitative insights into the performance differences between systems

with node attached storage and network attached storage. Without the optimizations

suggested in this chapter, the comparison would have favored data center architectures:

low disk latency provides better node performance and masks the deficiencies in

support for iterative algorithms. With our optimizations(filepool+lustremount),

single node HPC performance becomes comparable and we can set to answer the

question of the influence of system design and software configuration on scalability.

We believe that we may have reached close to the point where horizontal data

movement dominates in the HPC installations as well. Such a comparison can guide

both system and software designers whether throughput optimizations in large

installations need to be supplemented with latency optimization in order to support

data analytics frameworks.

173

5.15 Related Work

Optimizing data movement in Map-Reduce frameworks has been the subject

of numerous recent studies [226, 111, 137, 57]. Hadoop introduced an interface for

pluggable custom shuffle [91, 226] for system specific optimizations. InfiniBand has

been the target of most studies, due to its prevalence in both data centers and HPC

systems. HDFS emulation layers have been developed for parallel filesystems such as

PLFS [51] and PVFS [205]. These translate HDFS calls into corresponding parallel

filesystem operations, managing read-ahead buffering and the distribution (striping) of

data across servers. In Spark, only input and output data is handled through the HDFS

interface, while the intermediate shuffle data is handled through the ordinary Java file

API. Our work primarily optimizes intermediate shuffle data storage.

Optimizing the communication between compute nodes (horizontal data

movement) has been tackled through RDMA-based mechanisms [226, 111, 137]. In

these studies, optimized RDMA shows its best benefit when the data is resident in

memory. Therefore, only the last stage of the transfer is carried out using accelerated

hardware support. The client-server programming model is still employed to service

requests because data are not guaranteed to be in memory. Performance is optimized

through the use of bounded thread pool SEDA-based mechanism (to avoid overloading

compute resources) [111], or through the use of one server thread per connection [226]

when enough cores are available.

As we use network-attached storage, the bottleneck shifts to the vertical data

movement. A recent study by Cray on its XC30 system shows that an improved

inter-node communication support for horizontal movement may not yield significant

performance improvement [198]. Note that this study for Hadoop also recommends

using memory based file systems for temporary storage.

174

Optimizing vertical movement, which is one of the main motivation for the

introduction of Spark, has been addressed by the file consolidation optimization [57]

and by optimizations to persist objects in memory whenever possible. Our experiments

have been performed with consolidation. We have analyzed the benefits of extending

the optimization from per-core consolidation to per-node consolidation. As this will

reduce only the number of file creates and not the number of file opens, we have

decided against it.

5.16 Conclusion

We ported and evaluated Spark on Cray XC systems developed in production

at a large supercomputing center. Unlike data centers, where network performance

dominates, the global file system metadata overhead in fopen dominates in the default

configuration and limits scalability to O(100) cores. Configuring Spark to use “local”

file systems for the shuffle stage eliminates this problem and improves scalability to

O(10,000) cores. As local file systems pose restrictions, we develop a user level file

pooling layer that caches open files. This layer improves scalability in a similar manner

to the local file systems. When combined with the local file system, the layer improves

performance up to 15% by eliminating open system calls.

We also evaluate a configuration with SSDs attached closer to compute

nodes for I/O acceleration. This degrades single node performance but improves

out-of-the-box scalability from O(100) to O(1,000) cores. Since this is the first

appearance of such system and its software is still evolving, it remains to be seen if

orthogonal optimizations still need to be deployed with it.

Throughout our evaluation we have uncovered several problems that affect

scaling on HPC systems. Fixing the YARN resource manager and improving the block

management in the shuffle block manager will benefit performance.

175

Overall, we feel optimistic about the performance of data analytics frameworks

in HPC environments. Our results are directly translatable to others, e.g. Hadoop.

We scaled Spark up to O(10,000) cores and since, our NERSC colleagues have

adopted the Shifter lustremount implementation and demonstrated runs up to 50,000

cores. Engineering work to address the problems we identified can only improve its

performance. All that remains to be seen is if the initial performance and productivity

advantages of Spark are enough to overcome the psychological HPC barrier of

expecting bare-metal performance from any software library whatsoever.

5.17 Bridge

This chapter has described a tool-runtime integration with Spark, showing

how such an integration can enable mapping performance results between the

runtime level and user code level, and how this can enable users to understand the

performance consequences of storage and work paritioning decisions. The next chapter

describes a tool-runtime integration with OCR, a runtime which, unlike the other

runtimes described thus far, is made explicitly aware of dependencies between tasks.

The integration takes advantage of runtime dependency awareness to automatically

diagnose causes of idleness and attribute those causes back to application code.

176

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

0	 100	 200	 300	 400	 500	 600	

N
um

be
r	o

f	P
ar
66

on
s	

Ite
ra
6o

n	

Timestamp	(quarter	seconds	since	start)	

PageRank	-	LiveJournal	Graph	-	Unconstrained	Memory	-	10	itera6ons	

itera6on	 par66onsComputed	 par66onsFound	

0	

50000	

100000	

150000	

200000	

250000	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

0	 1000	 2000	 3000	 4000	 5000	 6000	 7000	 8000	 9000	

N
um

be
r	o

f	P
ar
66

on
s	

Ite
ra
6o

n	

Timestamp	(quarter	seconds	since	start)	

PageRank	-	LiveJournal	Graph	-	Constrained	Memory	-	10	itera6ons	

itera6on	

par66onsComputed	

par66onsFound	

0	

2000	

4000	

6000	

8000	

10000	

12000	

14000	

16000	

0	

1	

2	

3	

4	

5	

6	

7	

8	

9	

10	

0	 100	 200	 300	 400	 500	 600	 700	

N
um

be
r	o

f	P
ar
66

on
s	

Ite
ra
6o

n	

Timestamp	(quarter	seconds	since	start)	

PageRank	-	LiveJournal	Graph	-	Constrained	Memory	-	10	itera6ons	

itera6on	 par66onsComputed	 par66onsFound	

Figure 57. Number of partitions read during the shuffle stage for PageRank ̇Top:
execution with unconstrained memory. Middle: when memory is constrained
the number of partitions read from disk is one order of magnitude larger. Bottom:
persisting intermediate results fixes the performance problems and we see a reduction
by a order of magnitude in partitions read from disk.

177

0

100

200

300

400

500

600

700

32 160 320 640 1280 2560 5120 10240

Ti
m
e	
(s
)

Cores

Cori	- GroupBy	- Weak	Scaling	- Time	to	Job	Completion

Ramdisk Lustre

Figure 58. GroupBy benchmark performance (worst-case shuffle) on NERSC Cori,
with shuffle intermediate files stored on Lustre or RAMdisk. Number of partitions in
each case is 4 × cores

.

0

50

100

150

200

250

24 48 96 192 384 768 1536

Ti
m
e	
(s
)

Cores

Comet	- GroupBy	- Weak	Scaling	- Time	to	Job	
Completion

SSD Lustre

Figure 59. GroupBy benchmark performance (worst-case shuffle) on SDSC Comet,
with shuffle intermediate files stored on Lustre or local SSD. Number of partitions in
each case is 4 × cores

.

178

0
2
4
6
8
10
12
14

sc
he

du
lin

g-
th
ro
ug
hp

ut
sc
al
a-
ag
g-
by

-k
ey

sc
al
a-
ag
g-
by

-k
ey
-in

t
sc
al
a-
ag
g-
by

-k
ey
-n
aï
ve

sc
al
a-
so
rt
-b
y-
ke
y

sc
al
a-
so
rt
-b
y-
ke
y-
in
t

sc
al
a-
co
un

t
sc
al
a-
co
un

t-
w
-fl
tr

sc
he

du
lin

g-
th
ro
ug
hp

ut
sc
al
a-
ag
g-
by

-k
ey

sc
al
a-
ag
g-
by

-k
ey
-in

t
sc
al
a-
ag
g-
by

-k
ey
-n
aï
ve

sc
al
a-
so
rt
-b
y-
ke
y

sc
al
a-
so
rt
-b
y-
ke
y-
in
t

sc
al
a-
co
un

t
sc
al
a-
co
un

t-
w
-fl
tr

sc
he

du
lin

g-
th
ro
ug
hp

ut
sc
al
a-
ag
g-
by

-k
ey

sc
al
a-
ag
g-
by

-k
ey
-in

t
sc
al
a-
ag
g-
by

-k
ey
-n
aï
ve

sc
al
a-
so
rt
-b
y-
ke
y

sc
al
a-
so
rt
-b
y-
ke
y-
in
t

sc
al
a-
co
un

t
sc
al
a-
co
un

t-
w
-fl
tr

sc
he

du
lin

g-
th
ro
ug
hp

ut
sc
al
a-
ag
g-
by

-k
ey

sc
al
a-
ag
g-
by

-k
ey
-in

t
sc
al
a-
ag
g-
by

-k
ey
-n
aï
ve

sc
al
a-
so
rt
-b
y-
ke
y

sc
al
a-
so
rt
-b
y-
ke
y-
in
t

sc
al
a-
co
un

t
sc
al
a-
co
un

t-
w
-fl
tr

sc
he

du
lin

g-
th
ro
ug
hp

ut
sc
al
a-
ag
g-
by

-k
ey

sc
al
a-
ag
g-
by

-k
ey
-in

t
sc
al
a-
ag
g-
by

-k
ey
-n
aï
ve

sc
al
a-
so
rt
-b
y-
ke
y

sc
al
a-
so
rt
-b
y-
ke
y-
in
t

sc
al
a-
co
un

t
sc
al
a-
co
un

t-
w
-fl
tr

1 2 4 8 16

Lu
st
re
	ti
m
e	
/	S

SD
	ti
m
e

Nodes

Comet	- spark-perf	Spark	Core	- Lustre	Time	/	SSD	Time

Figure 60. Slowdown of spark-perf Spark Core benchmarks on Comet with shuffle
intermediate data stored on the Lustre filesystem instead of local SSDs.

1

11

21

31

41

51

61

1024 8192 65536 524288

Sl
o
w
d
o
w
n
	o
f	
n
(O
R
C
)	
vs
.	O

(n
R
)C

Read	Size	(bytes)

Many	Open-Read-Close	 Cycles	vs.	Open-Once	Read-Many	

Edison	Lustre Workstation	Local	Disk

Cori	Lustre Cori	Striped	BB

Cori	Private	BB Cori	Mounted	File

Comet	Lustre Comet	SSD

Figure 61. Slowdown from performing open-per-read rather than single-open
many-reads for reads of different sizes on various filesystems on Edison, Cori, Comet,
and a workstation with local disk. The penalty is highest for the Lustre filesystems.

179

02468101214161820

naive-bayes
kmeans

lda
pic
svd
pca

summary-stats
block-matrix-mult

pearson
spearman

chi-sq-feature
chi-sq-gof
chi-sq-mat
word2vec
fp-growth
prefix-span

naive-bayes
kmeans

lda
pic
svd
pca

summary-stats
block-matrix-mult

pearson
spearman

chi-sq-feature
chi-sq-gof
chi-sq-mat
word2vec
fp-growth
prefix-span

naive-bayes
kmeans

lda
pic
svd
pca

summary-stats
block-matrix-mult

pearson
spearman

chi-sq-feature
chi-sq-gof
chi-sq-mat
word2vec
fp-growth
prefix-span

naive-bayes
kmeans

lda
pic
svd
pca

summary-stats
block-matrix-mult

pearson
spearman

chi-sq-feature
chi-sq-gof
chi-sq-mat
word2vec
fp-growth
prefix-span

naive-bayes
kmeans

lda
pic
svd
pca

summary-stats
block-matrix-mult

pearson
spearman

chi-sq-feature
chi-sq-gof
chi-sq-mat
word2vec
fp-growth
prefix-span

1
2

4
8

16

Lustre	time	/	SSD	time

N
od

es

Co
m
et
	-
sp
ar
k-
pe

rf
	M

LL
ib
	-
Lu
st
re
	T
im

e	
/	
SS
D	
Ti
m
e

Fi
gu
re
62
.S

lo
w

do
w

n
of

sp
ar

k-
pe

rf
M

LL
ib

be
nc

hm
ar

ks
on

C
om

et
w

ith
sh

uffl
ei

nt
er

m
ed

iat
ed

ata
sto

re
d

on
th

eL
us

tre
fil

es
ys

te
m

in
ste

ad
of

lo
ca

lS
SD

s.

180

/udi/image1
/udi/image1/usr
/udi/image1/etc
…

Lustre Client

Lustre OST

/udi/image1.ext4

Lustre Client

Lustre OST

Process Process

ext4

Lustre
MDS

Re
m
ot
e

Lo
ca
l

Loopback	mount	can	
cache	metadata	and	

provides	 faster	
transactions	but	cannot	
be	shared	across	nodes

Figure 63. Architecture of Shifter. Shifter can mount node-local filesystems, keeping
metadata operations local but preventing cross-node access.

0

100

200

300

400

500

600

700

32 160 320 640 1280 2560 5120 10240

Ti
m
e	
(s
)

Cores

Cori	- GroupBy	- Weak	Scaling	- Time	to	Job	Completion

Ramdisk

Mounted	File

Lustre

Figure 64. GroupBy benchmark performance (worst-case shuffle) on NERSC Cori,
with shuffle intermediate files stored on Lustre, RAMdisk, or per-node loopback
filesystems backed by Lustre files. Number of partitions in each case is 4 × cores

.

181

0

5

10

15

20

25

30

sc
he

du
lin

g-
th
ro
ug
hp

ut
sc
al
a-
ag
g-
by

-k
ey

sc
al
a-
ag
g-
by

-k
ey
-in

t
sc
al
a-
ag
g-
by

-k
ey
-n
aï
ve

sc
al
a-
so
rt
-b
y-
ke
y

sc
al
a-
so
rt
-b
y-
ke
y-
in
t

sc
al
a-
co
un

t
sc
al
a-
co
un

t-
w
-fl
tr

sc
he

du
lin

g-
th
ro
ug
hp

ut
sc
al
a-
ag
g-
by

-k
ey

sc
al
a-
ag
g-
by

-k
ey
-in

t
sc
al
a-
ag
g-
by

-k
ey
-n
aï
ve

sc
al
a-
so
rt
-b
y-
ke
y

sc
al
a-
so
rt
-b
y-
ke
y-
in
t

sc
al
a-
co
un

t
sc
al
a-
co
un

t-
w
-fl
tr

sc
he

du
lin

g-
th
ro
ug
hp

ut
sc
al
a-
ag
g-
by

-k
ey

sc
al
a-
ag
g-
by

-k
ey
-in

t
sc
al
a-
ag
g-
by

-k
ey
-n
aï
ve

sc
al
a-
so
rt
-b
y-
ke
y

sc
al
a-
so
rt
-b
y-
ke
y-
in
t

sc
al
a-
co
un

t
sc
al
a-
co
un

t-
w
-fl
tr

sc
he

du
lin

g-
th
ro
ug
hp

ut
sc
al
a-
ag
g-
by

-k
ey

sc
al
a-
ag
g-
by

-k
ey
-in

t
sc
al
a-
ag
g-
by

-k
ey
-n
aï
ve

sc
al
a-
so
rt
-b
y-
ke
y

sc
al
a-
so
rt
-b
y-
ke
y-
in
t

sc
al
a-
co
un

t
sc
al
a-
co
un

t-
w
-fl
tr

sc
he

du
lin

g-
th
ro
ug
hp

ut
sc
al
a-
ag
g-
by

-k
ey

sc
al
a-
ag
g-
by

-k
ey
-in

t
sc
al
a-
ag
g-
by

-k
ey
-n
aï
ve

sc
al
a-
so
rt
-b
y-
ke
y

sc
al
a-
so
rt
-b
y-
ke
y-
in
t

sc
al
a-
co
un

t
sc
al
a-
co
un

t-
w
-fl
tr

1 2 4 8 16

Lu
st
re
	ti
m
e	
/	L

us
tr
e-
m
ou

nt
	ti
m
e

Nodes

Cori	- spark-perf	Spark	Core	- Lustre	Time	/	Lustre-mount	Time

Figure 65. Slowdown of spark-perf Spark Core benchmarks on Cori with shuffle
intermediate data stored on the Lustre filesystem instead of Lustre-backed loopback
filesystems.

182

02468101214

naive-bayes
kmeans

lda
pic
svd
pca

summary-stats
block-matrix-mult

pearson
spearman

chi-sq-feature
chi-sq-gof
chi-sq-mat
word2vec
fp-growth
prefix-span

naive-bayes
kmeans

lda
pic
svd
pca

summary-stats
block-matrix-mult

pearson
spearman

chi-sq-feature
chi-sq-gof
chi-sq-mat
word2vec
fp-growth
prefix-span

naive-bayes
kmeans

lda
pic
svd
pca

summary-stats
block-matrix-mult

pearson
spearman

chi-sq-feature
chi-sq-gof
chi-sq-mat
word2vec
fp-growth
prefix-span

naive-bayes
kmeans

lda
pic
svd
pca

summary-stats
block-matrix-mult

pearson
spearman

chi-sq-feature
chi-sq-gof
chi-sq-mat
word2vec
fp-growth
prefix-span

naive-bayes
kmeans

lda
pic
svd
pca

summary-stats
block-matrix-mult

pearson
spearman

chi-sq-feature
chi-sq-gof
chi-sq-mat
word2vec
fp-growth
prefix-span

1
2

4
8

16

Lustre	time	/	Lustre-mount	time

N
od

es

Co
ri	
-s
pa
rk
-p
er
f	M

LL
ib
	-
Lu
st
re
	Ti
m
e	
/	
Lu
st
re
-m

ou
nt
	T
im

e

Fi
gu
re
66
.S

lo
w

do
w

n
of

sp
ar

k-
pe

rf
M

LL
ib

be
nc

hm
ar

ks
on

C
or

iw
ith

sh
uffl

ei
nt

er
m

ed
iat

ed
ata

sto
re

d
on

th
eL

us
tre

fil
es

ys
te

m
in

ste
ad

of
Lu

str
e-

ba
ck

ed
lo

op
ba

ck
fil

es
ys

te
m

s.

183

0

100

200

300

400

500

600

700

1 2 4 8 16 1 2 4 8 16

Comet Cori

Ti
m
e	
(s
)

Nodes

lda	- Latent	Dirichlet	Allocation

0

20

40

60

80

100

120

1 2 4 8 16 1 2 4 8 16

Comet Cori

Ti
m
e	
(s
)

Nodes

pic	- Power	Iteration	Clustering

0
10
20
30
40
50
60
70
80

1 2 4 8 16 1 2 4 8 16

Comet Cori

Ti
m
e	
(s
)

Nodes

spearman	- Spearman	Rank	Correlation

0
2
4
6
8
10
12
14
16

1 2 4 8 16 1 2 4 8 16

Comet Cori

Ti
m
e	
(s
)

Nodes

chi-sq-feature

0
0.5
1

1.5
2

2.5
3

3.5
4

4.5

1 2 4 8 16 1 2 4 8 16

Comet Cori

Ti
m
e	
(s
)

Nodes

prefix-span	- Sequential	Pattern	Mining

Figure 67. Weak scaling for the MLLib benchmarks most sensitive to shuffle
performance on Cori with per-node loopback filesystems and on Comet with local
SSDs.

184

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

200000

1.6 2S 2N 1.6 2S 2N 1.6 2S 2N P 1.6 2S 2N 1.6 2S 2N 1.6 2S 2N P 1.6 2S 2N 1.6 2S 2N 1.6 2S 2N P

Lustre Ramdisk Mount Lustre Ramdisk Mount Lustre Ramdisk Mount

1 5 20

Ti
m
e(
m
s)

Cori	- Mini	TeraSort	- Weak	Scaling

App JVM Fetch	RW	Shuffle Fetch	Open	Shuffle Fetch	RW	Input Fetch	Open	Input

Figure 68. Weak Scaling results for Mini TeraSort on Cori, for 1, 5 and 20 nodes, with
storage on Lustre, Ramdisk, or mounted file backed by Lustre. 1.6 indicates Spark 1.6.
2S indicates Spark 2.0 with the default Scala engine. 2N indicates Spark 2.0 with native
code generation enabled, which is restricted to SQL queries. P indicates 2N with the
addition of file pooling.

0

50000

100000

150000

200000

250000

300000

350000

400000

1.6 2S 2N 1.6 2S 2N 1.6 2S 2N P Ct 1.6 2S 2N 1.6 2S 2N 1.6 2S 2N P Ct 1.6 2S 2N 1.6 2S 2N 1.6 2S 2N P Ct

Lustre Ramdisk Mount Lustre Ramdisk Mount Lustre Ramdisk Mount

1 5 20

Ti
m
e(
m
s)

Cori	- BigDataBenchmark	- Weak	Scaling

App JVM Fetch	RW	Shuffle Fetch	Open	Shuffle Fetch	RW	Input Fetch	Open	Input

Figure 69. Weak Scaling results for BigDataBenchmark on Cori, for 1, 5 and 20 nodes,
with storage on Lustre, Ramdisk, or mounted file backed by Lustre. 1.6 indicates Spark
1.6. 2S indicates Spark 2.0 with the default Scala engine. 2N indicates Spark 2.0 with
native code generation enabled, which is restricted to SQL queries. P indicates 2N with
the addition of file pooling. Ct indicates P on the Comet system rather than Cori.

185

0

100

200

300

400

500

600

700

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Comet Comet	Singularity Comet	RDMA Comet	RDMA	
Singularity

Cori Cori	Shifter

Ti
m
e	
(s
)

pic	- Power	Iteration	Clustering	- Weak	Scaling

App Fetch JVM

Figure 70. Weak Scaling results for Power Interation Clustering on Comet and Cori,
with and without Singularity on Comet and Shifter on Cori.

0

5

10

15

20

25

30

35

40

45

50

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Comet Comet	Singularity Comet	RDMA Comet	RDMA	Singularity Cori Cori	Shifter

Ti
m
e	
(s
)

Spearman	Correlation

App Fetch JVM

Figure 71. Weak Scaling results for Spearman Correlation on Comet and Cori, with
and without Singularity on Comet and Shifter on Cori.

186

0

10

20

30

40

50

60

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Comet Comet	Singularity Comet	RDMA Comet	RDMA	Singularity Cori Cori	Shifter

Ti
m
e	
(s
)

Pearson	Correlation

App Fetch JVM

Figure 72. Weak Scaling results for Pearson Correlation on Comet and Cori, with and
without Singularity on Comet and Shifter on Cori.

0

10000

20000

30000

40000

50000

60000

H32 K32 K68 H32 K32 K68 H32 K32 K68 H32 K32 K68 H32 K32 K68

1 2 4 8 16

Ru
nt
im

e	
(m

s)

GroupBy	- Cori	- Weak	Scaling Map Reduce

Figure 73. Weak Scaling results for GroupBy on Xeon Phi and Haswell nodes of Cori.

187

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

H32 K68	C K68	F H32 K68	C K68	F H32 K68	C K68	F H32 K68	C K68	F H32 K68	C K68	F

1 2 4 8 16

Ru
nt
im

e	
(m

s)
GroupBy	- Cori	- Weak	Scaling	- Cache	vs	Flat Map Reduce

Figure 74. Weak Scaling results for GroupBy on Xeon Phi in Cache vs Flat MCDRAM
mode and Haswell nodes of Cori.

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

H32 K32 K68 H32 K32 K68 H32 K32 K68 H32 K32 K68 H32 K32 K68

1 2 4 8 16

%
	T
im

e	
in
	G
ar
ba

ge
	C
ol
le
ct
io
n

GroupBy	- Cori	- Weak	Scaling	- GC	Time

GC	%

Figure 75. Time spent in garbage collection for GroupBy on Xeon Phi and Haswell
nodes of Cori.

188

�����

�����

�����

�� ����� ������ ������ ������
���������

��������������� �������������������� ������������ ������� �� �����������������

�����

�����

�����

�� ����� ������ ������ ������ ������ ������ ������
���������

��������������� �������������������� ������������ ������� �� �����������������

Figure 76. Execution traces of GroupBy on Haswell (left) and Xeon Phi (right) nodes
of Cori.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

H32 K68	C K68	F H32 K68	C K68	F H32 K68	C K68	F H32 K68	C K68	F H32 K68	C K68	F

1 2 4 8 16

Ru
nt
im

e	
(m

s)

GroupBy	- Cori	- Weak	Scaling	- Cache	vs	Flat Map Reduce

Figure 77. Hypothetical execution time of GroupBy after removing stragglers.
Straggler tasks are replaced with median execution time.

189

0

100

200

300

400

500

600

700

800

900

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Comet	Singularity Comet	RDMA	Singularity Cori	Shifter

Ti
m
e	
(s
)

Alternating	Least	Squares

App Fetch JVM

FA
IL
ED

FA
IL
ED

FA
IL
ED

FA
IL
ED

FA
IL
ED

0

100

200

300

400

500

600

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Comet	Singularity Comet	RDMA	Singularity Cori	Shifter

Ti
m
e	
(s
)

Block	Matrix	Multiplication

App Fetch JVM

FA
IL
ED

FA
IL
ED

FA
IL
ED

FA
IL
ED

FA
IL
ED

0

5

10

15

20

25

30

35

40

45

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Comet	Singularity Comet	RDMA	Singularity Cori	Shifter

Ti
m
e	
(s
)

Chi	Squared	Feature

App Fetch JVM

FA
IL
ED

FA
IL
ED

0

20

40

60

80

100

120

140

160

180

200

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Comet	Singularity Comet	RDMA	Singularity Cori	Shifter

Ti
m
e	
(s
)

Chi	Squared	GOF

App Fetch JVM

FA
IL
ED

FA
IL
ED

0

50

100

150

200

250

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Comet	Singularity Comet	RDMA	Singularity Cori	Shifter

Ti
m
e	
(s
)

Frequent	Pattern	Growth

App Fetch JVM

FA
IL
ED

FA
IL
ED

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Comet	Singularity Comet	RDMA	Singularity Cori	Shifter

Ti
m
e	
(s
)

Gaussian	Mixture	Model

App Fetch JVM

FA
IL
ED

FA
IL
ED

Figure 78. Weak scaling for the first block MLLib benchmarks for Comet IPoIB,
Comet RDMA, and Cori.

190

0

500

1000

1500

2000

2500

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Comet	Singularity Comet	RDMA	Singularity Cori	Shifter

Ti
m
e	
(s
)

Gradient	Boosted	Trees

App Fetch JVM

FA
IL
ED

FA
IL
ED

0

10

20

30

40

50

60

70

80

90

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Comet	Singularity Comet	RDMA	Singularity Cori	Shifter

Ti
m
e	
(s
)

Gaussian	Mixture	Model

App Fetch JVM

FA
IL
ED

FA
IL
ED

0

20

40

60

80

100

120

140

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Comet	Singularity Comet	RDMA	Singularity Cori	Shifter

Ti
m
e	
(s
)

Latent	Dirichlet	Allocation

App Fetch JVM

FA
IL
ED

FA
IL
ED

FA
IL
ED

0

5

10

15

20

25

30

35

40

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Comet	Singularity Comet	RDMA	Singularity Cori	Shifter

Ti
m
e	
(s
)

Principal	Component	Analysis

App Fetch JVM

FA
IL
ED

FA
IL
ED

0

1

2

3

4

5

6

7

8

9

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Comet	Singularity Comet	RDMA	Singularity Cori	Shifter

Ti
m
e	
(s
)

Prefix	Span

App Fetch JVM

FA
IL
ED

FA
IL
ED

0

50

100

150

200

250

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Comet	Singularity Comet	RDMA	Singularity Cori	Shifter

Ti
m
e	
(s
)

Random	Forest

App Fetch JVM

FA
IL
ED

Figure 79. Weak scaling for the second block MLLib benchmarks for Comet IPoIB,
Comet RDMA, and Cori.

191

-1

0

1

2

3

4

5

6

7

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Comet	Singularity Comet	RDMA	Singularity Cori	Shifter

Ti
m
e	
(s
)

Summary	Statistics

App Fetch JVM

0

50

100

150

200

250

300

350

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Comet	Singularity Comet	RDMA	Singularity Cori	Shifter

Ti
m
e	
(s
)

Singular	Value	Decomposition

App Fetch JVM

FA
IL
ED

FA
IL
ED

0

200

400

600

800

1000

1200

1400

1600

1 2 4 8 16 32 64 1 2 4 8 16 32 64 1 2 4 8 16 32 64

Comet	Singularity Comet	RDMA	Singularity Cori	Shifter

Ti
m
e	
(s
)

word2vec

App Fetch JVM

FA
IL
ED

FA
IL
ED

Figure 80. Weak scaling for the third block MLLib benchmarks for Comet IPoIB,
Comet RDMA, and Cori.

0

1

2

3

4

5

6

7

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

kB
/µ
s

Message	Size

Get	Bandwidth

UDP	Get

IBV	Get

0

1

2

3

4

5

6

7

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

kB
/µ
s

Message	Size

Put	Bandwidth

UDP	Put

IBV	Put

0

2

4

6

8

10

12

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

kB
/µ
s

Message	Size

Get	Bandwidth

UDP	Get

IBV	Get

0

1

2

3

4

5

6

7

8

9

10

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

kB
/µ
s

Message	Size

Put	Bandwidth

UDP	Put

IBV	Put

Figure 81. Bandwidth by message size for UDP and native RDMA on Comet and
Cori.

192

0

50

100

150

200

250

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

µs
/m

sg

Message	Size

Get	CPU	Overhead

UDP	Get

IBV	Get

0

20

40

60

80

100

120

140

160

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

µs
/m

sg

Message	Size

Put	CPU	Overhead

UDP	Put

IBV	Put

0

5

10

15

20

25

30

35

40

45

50

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

µs
/m

sg

Message	Size

Get	CPU	Overhead

UDP	Get

IBV	Get

0

5

10

15

20

25

30

35

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536
µs
/m

sg

Message	Size

Put	CPU	Overhead

UDP	Put

IBV	Put

Figure 82. Injection CPU overhead by message size for UDP and native RDMA on
Comet and Cori.

0

10

20

30

40

50

60

70

80

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

µs
/m

sg

Message	Size

Get	End-to-End	Latency

UDP	Get

IBV	Get

0

10

20

30

40

50

60

70

80

90

100

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

µs
/m

sg

Message	Size

Put	End-to-End	Latency

UDP	Put

IBV	Put

0

2

4

6

8

10

12

14

16

18

20

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

µs
/m

sg

Message	Size

Get	End-to-End	Latency

UDP	Get

IBV	Get

0

5

10

15

20

25

8 16 32 64 128 256 512 1024 2048 4096 8192 16384 32768 65536

µs
/m

sg

Message	Size

Put	End-to-End	Latency

UDP	Put

IBV	Put

Figure 83. End-to-end latency by message size for UDP and native RDMA on Comet
and Cori.

193

CHAPTER VI

STRAGGLER ANALYSIS IN OCR

6.1 Introduction

The Open Community Runtime (OCR) [152] is a distributed, task-based

runtime which provides abstractions for both work and data, and which represents

both explicitly. The work abstraction is called an event-driven task, or EDT, and

consists of a set of code with explicitly defined inputs and a single output, with the

restriction that no synchronization or communication can occur within the task. All

synchronization and communication is instead handled by the runtime, which is made

aware of task dependencies, and does not schedule an EDT until all its dependencies

have been computed and are available on the node on which the EDT resides. The

runtime handles data through the datablock abstraction, which is a fixed-size block of

data which can serve as input to or output from an EDT. EDTs acquire datablocks

with a certain level of access privilege specifying whether the EDT requires exclusive

access to the block of memory. Once an EDT begins executing, it runs to completion;

unlike in systems such as HPX, a task never yields during execution. The runtime

also provides events, which can be viewed as empty, or control-only, tasks, for

synchronization purposes. An OCR program is implemented as a set of library calls

to the OCR runtime, which create events, EDTs and datablocks; which connect the

input and output slots of the objects; and which satisfy dependencies.

It is possible to use traditional performance monitoring tools with OCR

applications, and correct results will be obtained. The results will not be insightful,

however. Capturing function-level profiles will provide a runtime-centric view of

application execution, which shows what tasks are running, but not why. It captures

nothing about what tasks exist, but are not running, which is essential to diagnosing

194

performance problems. It captures nothing about dependencies between tasks. Also

complicating performance analysis is OCR’s use of deferred API calls, in which an

API call within an EDT may returns as soon as possible, deferring processing by the

runtime until the end of the EDT. As such, when we observe functions executing

within the runtime, the call stack does not necessarily provide the true context of the

call, making it difficult to attribute the library time back to an application level EDT.

Tool-runtime integration with OCR can give us actionable data: as I will

show in this chapter, we can automatically diagnose several causes of idleness during

program execution, providing feedback to the user on the number of workers needed

for optimal execution and on task granularity, and providing online feedback to the

runtime for load balancing.

6.2 APEX-OCR Integration

To provide insightful and actionable performance information, we integrated

OCR with the APEX system described in Chapter IV. The basic architecture

of the integration is shown in Figure 84. The OCR runtime provides a built-in

tracing interface which records a trace of all API calls and runtime events. These

are implemented in OCR as a set of weakly-defined functions called by the

runtime, for which the default implementations write to a trace file. APEX provides

strongly-defined versions of this function, so that whenever an OCR application is

linked against APEX, APEX’s versions of the functions will override the versions built

into OCR. The APEX versions forward event data to the APEX handlers.

As APEX was originally designed for HPX, and OCR has concepts absent

from HPX, some additional event types were added to APEX. These are represent task

creation and destruction, a task becoming runnable, datablock creation and destruction,

a task or event acquiring or releasing a datablock, and dependencies being added or

195

ocrEdtCreate

traceTaskCreate(…)

System	Worker Trace	File

ocrEdtCreate

APEX
traceTaskCreate(…)

apex::new_task

Profiling	 Listener

Concurrency	
Listener

TAU	Listener

OTF2	Listener

Policy	Listener

EDT	GUID
Template	GUID
Function	Pointer

Figure 84. Design of the OCR-APEX interface. On top, the default configuration
of OCR, using its built-in tracing support. On bottom, APEX replacing the default
tracing handler and dispatching events to its various listeners.

196

satisfied. Each of these event types can occur in an API context (which represents the

site at which the application code requested that something occur) and in a runtime

context (which represents the runtime’s processing of a deferred call). The API and

runtime versions of an APEX event may occur on different nodes: for example, if an

EDT satisfies a dependency for an OCR event or EDT which resides on a different

node than the one executing the EDT making the call, the API event will occur on

the local node and the runtime event will occurs some time later on the remote node.

APEX’s task identifiers were extended to carry globally unique identifiers (GUIDs),

in addition to a name or address, in order to correlate API and runtime events and

to identify the objects in the dependency graph. These events allow APEX to create

visualizations showing the relationships between tasks. Figure 85 shows the task

creation graph for the High Performance Conjugate Gradient (HPCG) miniapp [61].

APEX’s concurrency visualization, as described in Chapter IV, is particularly

useful, as one can see at a glance whether the application is making use of all the

computational resources (workers/cores) available to it, as well as identify application

phases. Figure 86 shows a concurrency visualization of the Stencil2D benchmark

running on four nodes of the X-Stack cluster installed at Intel. There is low

concurrency during the initialization phase of the application, and it thereafter uses

45-50 of the 64 available worker cores. The worker cores are predominately executing

application tasks, with the FNC_timestep and FNC_update tasks dominating the

computation. In contrast, the concurrency visualization for the HPCG miniapp, shown

in Figure 87, shows that very few workers are executing application code, with the

vast majority of workers instead executing the processRequestEdt task. This is a task

internal to the OCR runtime which processes remote invocations.

197

Fi
gu
re
85
.T

as
k

cr
ea

tio
n

gr
ap

h
of

th
eH

PC
G

m
in

iap
p.

198

 0

 10

 20

 30

 40

 50

 60

0 440 880 1320 1760 2200 2640 3080 3520 3960
 0

 20

 40

 60

 80

 100
C

o
n
cu

rr
e
n
cy

P
o
w

e
r

Time

FNC_Tsend

FNC_Brecv

FNC_Trecv

FNC_rankMultiTimestepper

FNC_timestep

FNC_init_rankH

FNC_globalCompute_setUp

FNC_update

processRequestEdt

other

FNC_globalCompute

FNC_rankComputeSpawner

Figure 86. Concurrency visualization of the Stencil2D benchmark.

 0

 10

 20

 30

 40

 50

 60

0 440 880 1320 1760 2200 2640 3080 3520
 0

 20

 40

 60

 80

 100

C
o
n
cu

rr
e
n
cy

P
o
w

e
r

Time

packEdt

smoothEdt

spmvEdt

unpackEdt

haloExchangeEdt

mgEdt

hpcgEdt

initEdt

realMainEdt

hpcgInitEdt

reductionEdt

processRequestEdt

other

thread cap

power

Figure 87. Concurrency visualization of the HPCG miniapp.

199

6.3 Task Eligibility

To identify and understand the causes of the low user-EDT utilization in

the HPCG benchmark, we extended the concurrency visualization to show actual

concurrency (the tasks which are currently executing), as it already did, and also available

concurrency (tasks which are available for execution, but which are not executing,

usually due to a lack of resources) and unavailable concurrency (tasks which have been

created, but which are not executing, and cannot currently execute because not all of

their dependencies have been satisfied). In HPX, there is not a concept of unavailable

concurrency, as a task could execute until it requires data not yet available, at which

point it would suspend. Figure 88 shows a concurrency eligibility visualization for

a single node of the HPCG benchmark, with the bars extending above the X axis

indicating actual concurrency and the bars extending below the X axis indicating

available concurrency (dark blue) and unavailable concurrency (light blue). This

visualization omits processRequestEdt, as it is internal to the runtime and does not

represent work from the application developer’s perspective.

The zoomed-in region in Figure 88 helps show the phase structure of the

application. The application alternates between periods of full occupancy of the

workers and periods of less than full occupancy, dropping as low as one active worker.

The visualization shows that, during these regions of low occupancy, there is no

available concurrency – all the EDTs which have been created and not yet executed

are not ready to execute. The application is experiencing repeated bottlenecks.

6.4 Tracing OCR Applications

We would like to understand the causes of bottlenecks in OCR applications. To

do this, we have developed a tracing infrastructure for task-based applications and a

trace visualizer and automatic performance diagnosis tool. The tracing infrastructure

200

Running

Eligible

Created	but	
ineligible
(unsatisfied	
dependencies)

Full	Occupancy
Eligible	Tasks

Idle	Workers
No	Eligible	Tasks

Figure 88. Task eligibility visualization of the HPCG miniapp. Light blue tasks, shown
below the X-axis, are created but ineligible due to unsatisfied dependencies. Dark
blue tasks are created, and eligible to run, but have not yet begun execution. Zoomed
region shows idle regions with no eligible tasks available for scheduling.

201

is an extension of Open Trace Format 2 (OTF2) [70] with additional event record

types for task creation and destruction, datablock creation and destruction, and

dependency specification and satisfaction. For task execution, the existing Enter and

Leave records are used, so that the resultant traces are compatible with existing OTF2

visualizers such as Vampir, albeit without support for task-specific event record types.

GUIDs are stored in the otherwise unused Description field of OTF2 regions, which

are referenced by Enter and Leave event records. The existing ThreadTaskCreate,

ThreadTaskSwitch, and ThreadTaskComplete event record types are not used, as the

semantics of these types are strongly based on the OpenMP tasking model and do

not support, among other things, a distinction between a task’s creation and start of

execution, or between a task’s completion and destruction.

Figure 89. User interface of the APEX Trace Viewer.

We designed a prototype trace visualizer, the APEX Trace Viewer, shown

in Figure 89. The Trace Viewer shows a timeline view with each EDT’s execution

represented by a colored rectangle, where the color of the rectangle is determined by

the EDT template used in constructing the EDT. Selecting an EDT in the Viewer

will also show all API and runtime events involving the EDT, and lines are drawn

connecting the runtime events associated with EDT creation, dependency addition,

and dependency satisfaction.

202

6.5 Blame Analysis

With the ability to collect traces, we designed a tool to automatically identify

and diagnose idle regions such as those described in HPCG earlier in this chapter. This

occurs in the following steps:

Idle Region Detection. The trace is sampled at intervals. Idle regions are identified

as a contiguous set of samples such that the first sample in the idle region has full

occupancy (that is, every worker is running some task), subsequent contiguous

samples show decreasing occupancy down to an occupancy of one or zero, after which

occupancy returns to full.

Breaking Task Identification. Next, the breaking task is identified. This is the task

which, if it had completed earlier, would have caused the return to full occupancy

to occur earlier. It is identified by locating the first-started task at the end of the idle

region such that more than one task is running, and then following its dependencies

backwards in time to identify the task which performed the final satisfaction necessary

for it to run. The task performing the final satisfaction is the breaking task.

Initiating Task Identification. Next, the chain of last satisfactions is followed

backwards from the breaking task to the latest-occurring task in the dependency chain

which has a start time prior to the beginning of the idle region. This is the initiating

task, and represents the task which, if it had completed earlier, would have shortened

the duration of the idle region.

These stages are shown using examples in the Trace Viewer in Figure 90.

Once we have identified an initiating task, there are several possible suggestions

we can make for fixing the issue, depending on the circumstances surrounding the start

203

Decreasing	Running	+	Eligible Return	to	Full	Occupancy
0	Eligible

Breaking	Task

Earliest	task	after	idle	
region	such	that	multiple	
tasks	are	eligible	during	its	

execution

Follow	dependencies	back,	
for	each	task	taking	the	last-
satisfied	dependency,	back	

to	a	task	which	began	
execution	before the	idle	

region
Task	to	Blame

If	the	final	
satisfaction	taking	

place	during	the	task	
to	blame	had	

occurred	earlier,	the	
idle	region	would	
have	been	shorter.

Figure 90. Process for assigning blame for idle regions. First, idle regions are identified.
For each idle region, a breaking task is identified, being the earliest-occurring task
extending outside of the idle region. The chain of dependencies is then followed back
from the breaking task to the latest-occurring ancestor at least partly outside the idle
region.

204

of the initiating task. If the initiating task could have started earlier (that is, it became

eligible earlier than it actually ran), but did not start earlier because no workers were

available, then the problem can be diagnosed as a lack of computation resources: the

idle region can be shortened by adding a worker. If the initiating task could not have

started earlier than it did, we can look at other causes. If the initiating task is longer

running than other tasks which are predecessors of the breaking task, then the task is

a straggler. In this case, work is not equally divided among tasks, and repartitioning of

work or increasing task granularity is suggested.

In the case of HPCG, the blame analysis tool identifies 80 idle regions, one

for each reduction phase in the application. These are natural bottlenecks, because

data from each input task is used as input to a series of reduction tasks culminating

in a single, base-level reduction task. However, the idle regions could be shortened.

Initially, a lack of resources is identified as the issue. Providing enough resources

shortens the idle region and results in the identification of straggler tasks. These

straggler tasks, in turn, are caused by variability in the time to acquire a GUID within

tasks.

6.6 Load Balancing

Another possibility for diagnosing idle regions is poor load balancing, and this is

amenable to an online policy to correct the issue. We diagnose load balance as an issue

when a task could have started earlier than it actually did, workers were not available

on the node on which the task was resident, but workers were available on some other

node. OCR places EDTs at EDT creation time, but provides an opportunity to move

an EDT once all dependencies have been satisfied.

We developed a load-balancing policy as an APEX triggered policy which

runs when the TaskRunnable event occurs. To avoid the unacceptable overhead of

205

having a centralized scheduler, each node has its own instance of the policy, and each

policy instance maintains a local approximation of the overall load on workers, which

is updated based on a gossip protocol [158]. Load data is distributed in two ways:

first, after a configurable number of messages sent by the runtime from one node to

another the runtime sends, APEX sends, along with the runtime message, its view of

system load, which is represented by the number of created-but-ineligible, eligible,

and running tasks for each node. Each local view of system node is versioned, with a

version associated with each node’s load. When node B received load from node A,

it updates its local view of node A’s load, as well as the views of nodes other than A

and B with node A’s loads, so long as it does not already have more recent load data

from the other node. Additionally, when load information is sent, a random other node

is selected and also receives load data. This prevents underutilized nodes from being

unaware of load elsewhere on the system.

When a task becomes runnable, the task is randomly assigned to another node

with a probability inversely proportional to the load on the system, which is defined as

the number of running and eligible nodes. In naturally unbalanced applications such as

MiniAMR, this results in a substantial improvement in performance. Figure 91 shows

traces of executions of MiniAMR with tasks being scheduled as assigned at creation

time (bottom) and dynamically reassigned when eligible by APEX (top). Idle regions

are shortened by use of the APEX policy, and overall execution time is 21% faster with

the policy than without.

6.7 Conclusion

In this chapter, we have shown how the APEX performance monitoring

system can be integrated into the Open Community Runtime, producing performance

profiles, concurrency visualizations, and traces which incorporate runtime-specific

206

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

C
on

cu
rre

nc
y

mainEdt
stencilEdt
blockEdt

coalesceEdt
concensusRcvEdt

canCoarsenEdt
coarsenControlEdt

blockEdt
refineEdt

updateIntentEdt
communicateIntentEdt

willRefineEdt
refineControlEdt

wrapupEdt

 0

 200

 400

 600

 800

 1000

 1200

 1400

C
on

cu
rre

nc
y

mainEdt
stencilEdt
blockEdt

coalesceEdt
concensusRcvEdt

canCoarsenEdt
coarsenControlEdt

blockEdt
refineEdt

updateIntentEdt
communicateIntentEdt

willRefineEdt
refineControlEdt

wrapupEdt

Figure 91. OCR MiniAMR with (top) and without (bottom) load balancing policy.

207

information. Through this integration, we are able to provide automatic diagnosis of

causes of idleness in OCR applications, as well as to provide for a load balancing policy

which can mitigate idleness caused by improper load balancing.

6.8 Bridge

This chapter has described a tool-runtime integration with OCR, showing how

such an integration can enable dynamic load balancing and automatic performance

issue diagnosis. The next chapter describes a tool-runtime integration unlike the others

described thus far: it is with a traditional runtime, OpenMP, rather than a many-task

runtime. This integration is used for online adaptation of thread scheduling under

varying power constraints, and demonstrates that tool-runtime integration is useful

both inside and outside the domain of many-task runtimes.

208

CHAPTER VII

OPTIMIZING SCHEDULING IN OPENMP

This chapter includes co-authored material previously published in the IEEE

International Conference on Cluster Computing (CLUSTER 2016) [191]. That

paper was a collaboration with Md. Abdullah Shahneous Bari, Abid M Malik, Kevin

Huck, Barbara Chapman, Allen D. Malony and Osman Sarood. I wrote the APEX

tuning policy and ran and analyzed experiments on x86 with NAS BT and LULESH.

Md. Abdullah Shahneous Bari and Abid M Malik ran and analyzed experiments on

POWER 8 and modified the NAS Parallel Benchmarks to be compatible with runtime

schedule selection. Kevin Huck is the lead developer of APEX and developed the

OMPT interface for APEX. Barbara Chapman, Allen D. Malony, and Osman Sarood

edited the paper.

7.1 Introduction

OpenMP is an extremely commonly used standard for specifying intra-node

parallelism, which allows for otherwise serial code to be annotated with directive to

indicate how it is to be parallelized. Certain directives have parameters which indicate

how work is to be scheduled onto resources, which can have considerable performance

and power implications. Traditional performance tools – that is, those without

deep integration with the runtime – can collect correct and insightful performance

performance data. However, actionability is constrained not by the output of the

tool but by the limited ability for traditional tools to communicate results back to the

runtime.

Directive parameters such as number of worker threads, scheduling policy, and

chunk size are either specified at compile time – in which case they are unchangeable

without recompiling the program – or are deferred to runtime, in which case they are

209

set by the application itself or by environment variables. Setting environment variables

to configure these parameters sets them for all parallel regions in the entire application,

even though the parameter values that yield the best performance may vary between

parallel regions within an application. Table 3 shows the parameter settings which

produces the best performance for the listed parallel region. Note that the best settings

vary considerably between regions within each application.

In this chapter, we show how APEX can be integrated with the OpenMP

runtime, and design an APEX policy which performs online adaptation of work

sharing region parameters on a per-region basis. We show that this can improve

application performance, reduce power usage, or both.

The major contributions of this chapter are:

– We present an APEX framework, ARCS, that selects the best OpenMP runtime

configurations for OpenMP regions to optimize HPC applications under a

power constraint.

– To the best of our knowledge, ARCS is the first fully automatic framework that

chooses OpenMP runtime configurations with no involvement of the application

programmer.

– ARCS chooses and adapts OpenMP runtime configurations dynamically based

on OpenMP region and underlying architecture characteristics, resulting in

efficient execution on a number of applications under a power constraint across

different architectures.

7.2 Motivation

OpenMP programming model is an integral part of many important HPC

legacy codes in the form of hybrid programming models (e.g., - MPI + OpenMP).
210

Table 3. Per-parallel-region parameter settings with best performance for NAS
OpenMP benchmarks.

Kernels No. of Threads Scheduling Policy Chunk Size
BT_add_1 2 DYNAMIC 1
BT_compute_rhs_1 16 DYNAMIC 32
BT_error_norm_1 16 GUIDED 8
BT_exact_rhs_1 24 GUIDED 8
BT_initialize_1 16 DYNAMIC 1
BT_rhs_norm_1 16 STATIC 8
BT_x_solve_1 16 DYNAMIC 1
BT_y_solve_1 32 GUIDED 1
BT_z_solve_1 16 GUIDED 1
CG_conj_grad_1 8 GUIDED 8
CG_main_1 16 GUIDED 32
CG_main_2 16 STATIC 256
CG_main_3 24 STATIC 64
CG_main_4 8 STATIC 64
CG_main_5 16 STATIC 64
CG_main_6 16 STATIC 512
EP_main_1 2 DYNAMIC 512
EP_main_2 2 DYNAMIC 32
EP_main_3 32 GUIDED 1
FT_cffts1_1 16 DYNAMIC 1
FT_cffts2_1 16 DYNAMIC 1
FT_cffts3_1 16 STATIC 8
FT_checksum_1 4 STATIC 32
FT_compute_indexmap_1 16 STATIC 1
FT_compute_initial_conditions_1 24 DYNAMIC 1
FT_evolve_1 2 GUIDED 1
FT_init_ui_1 4 DYNAMIC 1
LU_erhs_1 32 GUIDED 8
LU_error_1 8 STATIC 8
LU_l2norm_1 32 GUIDED 32
LU_pintgr_1 8 STATIC 8
LU_rhs_1 16 DYNAMIC 1
LU_setbv_1 8 GUIDED 8
LU_setiv_1 24 GUIDED 1
LU_ssor_1 16 GUIDED 64
SP_add_1 2 GUIDED 32
SP_compute_rhs_1 16 GUIDED 32
SP_error_norm_1 16 DYNAMIC 8
SP_exact_rhs_1 16 GUIDED 1
SP_initialize_1 16 GUIDED 1
SP_ninvr_1 16 STATIC 32
SP_pinvr_1 16 STATIC 32
SP_rhs_norm_1 16 STATIC 8
SP_txinvr_1 32 GUIDED 32
SP_tzetar_1 24 GUIDED 32
SP_x_solve_1 8 GUIDED 1
SP_y_solve_1 16 GUIDED 8
SP_z_solve_1 8 GUIDED 1

211

Therefore, tuning an OpenMP code to get a better per node performance for a given

power budget is an important research problem. In this section, we motivate a reader

about the need of ARCS for power-constrained OpenMP applications. The need for

ARCS like framework depends on the following questions:

– Does the best configuration for a given OpenMP region remain same across different

power levels and workloads?

– Does the performance gain due to the best configuration persist across all power caps?

We took an OpenMP region from the SP benchmark application and ran

it with different power levels or power caps1 using different number of threads,

scheduling policies, and chunk sizes (150 different configurations). The region belongs

to the compute_rhs function, and has 11 different parallel loops, i.e., #pragma omp for

OpenMP directives.
3

2
, G

U
ID

ED
, 8

2
4

, D
YN

A
M

IC
, 8

2
4

, G
U

ID
ED

, 8

2
4

, G
U

ID
ED

, 8

3
2

, D
YN

A
M

IC
, 8

D
EFA

U
LT

D
EFA

U
LT

D
EFA

U
LT

D
EFA

U
LT

D
EFA

U
LT

D
EFA

U
LT (N

O
 C

A
P

)

D
EFA

U
LT (N

O
 C

A
P

)

D
EFA

U
LT (N

O
 C

A
P

)

D
EFA

U
LT (N

O
 C

A
P

)

D
EFA

U
LT (N

O
 C

A
P

)

0

5

10

15

20

25

30

35

40

55W 70W 85W 100W NO CAP

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
c)

Power Cap Level

Best Configuration Default Configuration Default Configuration Without Power Cap

Figure 92. Execution time comparison for the compute_rhs region of SP using
different OpenMP runtime configurations at different power levels. Smaller value is
better. The function was run on Intel Sandy Bridge.

1We use the two words synonymously in this paper.
212

Figure 92 shows the comparison of execution time using the optimal

configuration2 and the default configuration at different power levels. The default

configuration uses maximum number of available threads, static scheduling, and

chunk sizes calculated dynamically by dividing total number of loop iterations by

number of threads. The figure clearly shows that the optimal configuration is different

from the default configuration at all the power levels. It also shows that the optimal

configuration improves the execution time of the region up to 19% compared to

the default configuration at the same power level. Also, we can see that the optimal

configuration at a lower power level gives better execution time performance than the

default configuration with maximum power level prescribed by the manufacturer or

Thermal Design Power (TDP). For example, the optimal configuration at 70W power

cap improves execution time by 15% as compared to the default configuration at TDP

(115W in our case).

We also experimented with OpenMP regions from other NAS Parallel

benchmark applications using different runtime configurations. We observed that a

significant number of the OpenMP regions showed similar behavior. We observed

these OpenMP regions to have poor load balancing and cache behavior with the

default configuration. We also saw that these poor behaviors persist across different

power levels and workloads for these kernels with the default configuration. As a

result, irrespective of power level or workload size an optimal configuration always

shows consistent performance improvement compared to the default configuration for

these kernels. However, we observed that the optimal configurations for these kernels

change across different power levels and workloads.

2The configuration that gives the best execution time.
213

In future HPC facilities, the load of applications may change dynamically. If the

facility is working under a power constraint, the resource manager may add/remove

number of nodes and adjust their power level dynamically. To get the best per node

performance at each power level, the runtime configurations need to be changed

dynamically. Our ARCS framework can do this efficiently.

7.3 Framework

The ARCS runtime is composed of two key software components. The first

component is a modified OpenMP runtime. The second component is the APEX

instrumentation and adaptation library. APEX integrates the Active Harmony search

engine, integrated as part of the APEX library.

OpenMP runtime with OMPT. A broad group of interested parties

has been working on extending the OpenMP specification to include a formal

performance and debugging tool interface [67]. In order to provide support for both

instrumentation (event-based) and sampling based tools, OMPT includes both events

and states. The OMPT draft specification is complete and is available as a Proposed

Draft Technical Report at the OpenMP Forum website [68]. The key OMPT design

objectives are to provide low overhead observation of OpenMP applications and the

runtime in order to collect performance measurements, provide stack frame support

for sampling tools and incur minimal (near zero) overhead when not in use. OMPT

specifies support for a large set of events and states, covering the OpenMP 4.0 standard.

In addition, OMPT specifies additional insight into the OpenMP runtime in the form

of data structures populated by the runtime itself. These data structures include the

parallel region and task identifiers, wait identifiers and stack frame data. OMPT has

been integrated into performance tools such as TAU [103] for providing detailed

insight into OpenMP runtime behavior. From a tool developer perspective, the broad

214

support and large set of events and states makes OMPT an attractive approach to access

the OpenMP runtime performance state.

APEX. We have implemented a measurement and runtime adaptation

library for asynchronous multitasking runtimes called Autonomic Performance

Environment for eXascale (APEX) [107, 106]. The APEX environment supports

both introspection and policy-driven adaptation for performance and power

optimization objectives. APEX aims to enable autonomic behavior in software by

providing the means for applications, runtimes, and operating systems to observe

and control performance. Autonomic behavior requires both performance awareness

(introspection), and performance control/adaptation. APEX can provide introspection

from timers, counters, node- or machine-wide resource utilization data, energy

consumption, and system health, all accessed in real-time. The introspection results

are analyzed in order to provide the feedback control mechanism.

The most distinguishing component in APEX is the policy engine. The policy

engine provides controls to an application, library, runtime, and/or operating system

using the aforementioned introspection measurements. Policies are rules that decide

on outcomes based on the observed state captured by APEX. The rules are encoded

as callback functions that are periodic or triggered by events. The policy rules access

the APEX state in order to request profile values from any measurement collected by

APEX. The rules can change runtime behavior by whatever means available, such as

throttling threads, changing algorithms, changing task granularity, or triggering data

movement.

APEX was designed for use with runtimes based on the ParalleX [116]

programming model, such as HPX [120] or HPX-5 [8]. However, the APEX design

215

has proven to be flexible enough to be broadly applied to other thread-concurrent

runtimes such as OpenMP.

APEX integrates the auto-tuning and optimization search framework Active

Harmony [206]. In APEX, Active Harmony is directly integrated into the library to

receive APEX performance measurements and suggest new parametric options in order

to converge on an optimal configuration. Active Harmony implements several search

methods, including exhaustive search, Parallel Rank Order and Nelder-Mead. In this

work, we used the exhaustive and Nelder-Mead search algorithms. In our experiments,

the ARCS-Offline method uses an exhaustive search to find the best configuration

during one execution, then executes again with that optimal configuration. Only the

second execution with the optimal configuration is measured. The ARCS-Online

method uses the Nelder-Mead search algorithm to search for and use an optimal

configuration in the same execution.

Prior to running the examples with the framework, the NPB 3.3-OMP-C

OpenMP benchmarks were exhaustively parameterized to explore the full search space

for the OpenMP environment variables OMP_NUM_THREADS and OMP_SCHEDULE (schedule

type and chunk size). From that initial dataset, the search space was manually reduced.

Unlike the initial parameter search, ARCS can tune the settings for each OpenMP

parallel region independently. The reduced set of search parameters was used to limit

the search space that had to be explored at runtime. The final ranges explored by ARCS

are listed in Table 4.

Using the policy engine, we designed a policy to tune OpenMP thread

count, schedule, and chunk size based upon the reduced search space described

above. At program initialization, the policy registers itself with the APEX policy

engine, and receives callbacks whenever an APEX timer is started or stopped. The

216

Table 4. Set of ARCS search parameters for OpenMP parallel regions.

Parameter Set of values
Number of threads (Crill) 2, 4, 8, 16, 24, 32, default
Number of threads (Minotaur) 10, 20, 40, 80, 120, 160, default
Schedule Type dynamic, static, guided, default
Chunk Size 1, 8, 16, 32, 64, 128, 256, 512, default

OMPT interface starts a timer upon entry to an OpenMP parallel region and stops

that timer upon exit. When a timer is started for a parallel region which has not been

previously encountered, the policy starts an Active Harmony tuning session for that

parallel region. When a timer is stopped, the policy reports the time to complete

the parallel region. When a timer is started for a parallel region which has been

previously encountered, the policy sets the number of threads, schedule, and chunk

size to the next value requested by the tuning session, or, if tuning has converged,

to the converged values. When the program completes, the policy saves the best

parameters found during the search. When the same program is run again in the same

configuration in the future, the saved values can be used instead of repeating the search

process.

Overhead. The main overhead of ARCS can be characterized into three

different types.

– Configuration changing overhead: ARCS changes the runtime configuration

each time a region is executed. To change these configurations, ARCS

uses the OpenMP runtime library routine omp_set_num_threads() and

omp_set_schedule(). Time consumed during these routine calls adds some extra

overhead. We call this overhead Configuration Changing overhead. This overhead

is present in both Online and Offline strategies. In Crill, we calculated this

217

overhead to be about 0.0008 sec in each region call. If a region is large enough,

this overhead becomes insignificant. However, if the the region time is not large

enough this overhead can become a significant factor.

– APEX instrumentation overhead: Overhead incurred due to APEX runtime

instrumentation. Just like Configuration changing overhead, the impact of this

overhead is also dependent on the region execution time. It is present in both

Online and Offline strategies.

– Search overhead: In the online search strategy, finding the optimal configuration

requires ARCS to test several runtime configurations before converging.

Many of these configurations are not optimal, and as a result these sub-optimal

configurations incur extra execution time. This additional execution time can be

termed as Search overhead. This overhead is only present in the Online strategy.

It is not present in Offline strategy, because in Offline strategy ARCS does not

search for the the optimal configuration, it reads it from the history file only once

during the whole application lifetime. We observed this overhead to vary across

regions based on how fast they converge to the optimal configuration. During

our experimentation, we observed this overhead to reach as high as 10% of the

total execution time.

7.4 Experiment Design

Test System. We evaluated our framework on two different systems, Crill

and Minotaur. These systems differ in architecture, number of cores, memory size and

power consumption.

Crill is a dual socket machine with two 2.4 GHz quad-core

Intel® Xeon® E5-2665 processors (based on the Intel Sandy Bridge architecture).

218

It has a total of 16 cores (32 hyper-threaded threads) and 16 GB of memory. It runs

on OpenSUSE 13.1 and has a TDP limit of 115W. Crill is from the University of

Houston.

Our second test machine, Minotaur is hosted at the University of Oregon. It is

an IBM® S822LC system equipped with two 10-core IBM POWER8® processors

that operate at 2.92 GHz. It has support for 160 hardware threads (8 per core) and 256

GB of memory. It is running Ubuntu Linux, version 15.04.

Compiler & Libraries. We used GCC compiler version 4.9.2 with Intel

OpenMP runtime for our experimentation. We also used libmsr[188], a library that

facilitates access to MSRs via RAPL interface for energy measurement and power

capping.

Benchmarks. We used three proxy applications, LULESH 2.0, BT and SP

to evaluate ARCS. We selected these benchmarks because they exhibit performance

and load balancing behavior typical for a broad range of HPC applications.

LULESH 2.0[123] is a shock hydrodynamics computational kernel from

Lawrence Livermore National Laboratory. It approximates the hydrodynamics

equations discretely by partitioning the spatial problem domain into a collection of

volumetric elements defined by a mesh. It is built on the concept of an unstructured

hex mesh. It is one of the most used proxy applications in the HPC area, and it shows

excellent load balancing and cache behavior. We used mesh sizes of 45 and 60 for our

experimentation.

BT is a simulated CFD computational kernel that uses an implicit algorithm

to solve 3-dimensional (3-D) compressible Navier-Stokes equations. The finite

differences solution to the problem is based on an Alternating Direction Implicit (ADI)

approximate factorization that decouples the x, y and z dimensions. The resulting

219

systems are Block-Tridiagonal of 5 × 5 blocks and are solved sequentially along each

dimension. This application shows good load balancing behavior. We used data set

sizes B (102 × 102 × 102) and C (164 × 164 × 164) with custom 1000 time steps.

SP is a simulated CFD computational kernel that has a similar structure to

BT. The finite differences solution to the problem is based on a Beam-Warming

approximate factorization that decouples the x, y and z dimensions. The resulting

system has Scalar Pentadiagonal bands of linear equations that are solved sequentially

along each dimension. It shows good load balancing behavior but poor cache behavior.

For SP, we also used data set sizes B (102 × 102 × 102) and C (164 × 164 × 164) with

custom 1000 time steps.

Both BT and SP are from from NAS parallel benchmark suite[196], version

3.3-OMP-C.

Experimental Details. We carried out extensive experiments to evaluate the

impact of ARCS. We considered both the execution time and energy consumption

during the evaluation. An optimal OpenMP runtime configuration for a region

is dependent on the region’s characteristics, power cap level, workload size, and

architecture. For that reason, we designed our experiments in such a way that they

cover all these scenarios. We tested ARCS on five different power levels, two different

workloads, and two distinct architectures (Intel Sandy Bridge and IBM POWER8).

As mentioned before, our primary experimental resource Crill is equipped

with Sandy Bridge processors, and our secondary resource Minotaur with POWER8

architecture. In Crill, we had power capping privilege and access to the energy

counters. For that reason we were able to evaluate the impact of ARCS at different

power levels. We experimented on 55W, 70W, 85W, 100W and 115W (TDP for

this processor) power level. We only limited the processor power (package power).

220

A package consists of cores, caches and other internal circuitry. We used maximum

power for other components (DRAM, Network card, etc.), because we did not have

capping capability on these subsystems. We used RAPL for power capping and

collecting energy information. We tried to tackle known issues of RAPL such as

counter update frequency and the warm up period after enforcing a power cap during

the experimentation to get reliable energy readings.

As Minotaur is a relatively new resource, we did not have energy counter access

nor power capping privilege. Therefore all the experiments conducted on this machine

were using the default (TDP) power level of this machine. Also, all the evaluation

done on this machine is based on execution time only. We evaluated both Online and

Offline ARCS strategies in the above-mentioned environments.

In this section we present our experimental results. Through these results we

show the impact of ARCS on different types of OpenMP applications. As mentioned

previously, we evaluated ARCS on three different OpenMP applications. These

applications vary in scalability, load balancing, and cache behavior. LULESH is a

well-balanced application with good cache behavior. BT is also fairly well balanced

with good cache behavior. SP is well balanced but shows poor cache behavior. We

mainly concentrated on scalability, load balancing and caching because these are the

behaviors that impact OpenMP performance the most.

In an OpenMP application with loop level parallelism, these behaviors can

be controlled by the number of threads, scheduling policy and chunk sizes. The

number of threads has a significant impact on scalability while scheduling policy and

chunk sizes are very important for good load balancing and cache behavior. These

behaviors not only affect the execution time performance, but they also impact energy

221

consumption. Load balancing and cache behavior of an application are two of the main

factors that define an application’s energy profile.

Applications with bad cache behavior tend to consume more energy[201]. If

there is a cache miss, the system has to do the extra work of fetching the data from the

next level of cache or memory and in the process use I/O path which leads to extra

energy consumption.

On the other hand, load balancing affects the energy consumption in a different

way. Poor load balancing of an application leads the cores to wait in idle states in the

synchronization points (barriers). Lightly loaded threads wait for highly loaded threads

to finish their work. Even though current processors do a decent job at saving energy

by entering the sleep state while waiting, entering and exiting sleep states incurs

non-trivial overheads and can cause negative savings if the idle duration is short[10].

In OpenMP regions, the waiting time is usually short. Therefore, improving the

load balancing behavior is crucial to improving the energy profile of an OpenMP

application. Not only that but also these behaviors impact an OpenMP application’s

power profile, as power is the ratio of the energy consumption and execution time.

Moreover, cores and caches are the main power consuming components

of a processor[189]. The total power of a processor is divided between these two

components. So when a power cap is imposed on a processor, it not only affects the

performance of the cores but also impacts the cache performance. As a result, the load

balancing and cache behavior also change with the change of the power cap.

Furthermore, these behaviors vary across different regions of an application.

Therefore, choosing an optimal configuration (number of threads, scheduling policy,

and chunk sizes) for each regions separately is no trivial task. But we show through

extensive analysis that ARCS is able to do this job very proficiently.

222

In the following discussion, we analyze each application separately. We show

that ARCS can potentially improve performance across different types of applications.

We also demonstrate the effect of ARCS strategies at both application and region

level using detailed analysis of dynamic features. We show the performance behavior

across different power caps and different workload sizes. Finally, we show the ARCS

performance across different architectures.

We compare the performance of ARCS strategies with the default

configuration. The default configuration uses maximum number of available threads,

static scheduling, and chunk sizes calculated dynamically by dividing total number

of loop iterations by number of threads. We concentrate on both online and offline

strategies for ARCS. Results shown here is based on Crill, unless mentioned otherwise.

The same applies for the power cap; if nothing is mentioned, that means we are using

the highest power cap (TDP).

SP. SP is an application which shows a good load balancing behavior and

poor cache behavior with the default configuration. SP consists of 13 loop based

OpenMP regions. However, almost 75% of it’s execution time is spent on four regions

(compute_rhs, x_solve, y_solve and z_solve). Among them, compute_rhs has a poor

load balancing and cache behavior, x_solve, y_solve and z_solve regions have good

load balancing behavior but show poor cache behavior. To improve these regions’

performance, their load balancing and cache behavior has to be improved. Therefore,

we need to find configurations that improve the load balancing and cache behavior of

these regions. To find such configurations we applied ARCS on this application. Table

5 shows the optimal configuration chosen by ARCS-Offline strategy for these regions

at TDP power.

223

Table 5. Optimal configuration chosen by ARCS-Offline strategy for SP regions.

Optimal Configuration
Region (Thread, Schedule, Chunk)
compute_rhs 16, guided, 8
x_solve 16,guided, 1
y_solve 8, static, default
z_solve 4, static, 32

In Figure 93 we show the feature comparison between the default configuration

and the configurations chosen by ARCS-Offline, the best ARCS strategy. We compare

the L1 cache miss rate in Figure 93a, L2 cache miss rate in Figure 93b, L3 cache

miss rate in Figure 93c and OpenMP barrier (OMP_BARRIER) time in Figure 93d.

The L1, L2 and L3 cache miss rates show the cache behavior of these regions. The

OMP_BARRIER time shows the load balancing behavior; greater OMP_BARRIER

time is a symptom of poor load balancing. For all of these metrics, lower values indicate

better performance.

From these figures, we observe that all four regions show better cache and

load balancing behavior with the ARCS strategy. Using the configuration chosen by

ARCS, the OMP_BARRIER time is decreased by more than 50% in all four regions

compared to the default configuration, shown in Figure 93d. The best improvement,

which is more than 80% is achieved in the z_solve region while a relatively smaller

improvement (around 50%) is achieved in compute_rhs.

We also observed L1, L2 and L3 cache miss rate improvement. Although L1

and L2 cache behaviors show good improvement, the biggest improvement (up to

90%) is visible in L3 cache behavior. This is important for performance because L3

cache misses have the highest cache miss penalty. The improvement also shows that

224

these configurations enabled different cores to maximize their use of the shared L3

cache.

The above analysis shows that ARCS strategies can improve the cache behavior

and load balancing of SP regions. This leads to the question: how much do these

improvements affect the overall application’s execution time and energy consumption?

In Figure 94 we show the execution time and energy consumption comparisons

between the default and ARCS strategies (ARCS-Online and ARCS-Offline). We

show the results for five different power levels. We compare both execution time (in

Figure 94a) and energy consumption (in Figure 94b). In Figure 94a we see that all

the strategies in all five power levels outperform the default configuration by a large

margin. The improvement varies between 26-40%. We observe similar behavior in

energy consumption, shown in Figure 94b with the highest improvement touching

40% limit.

We were able to achieve so much improvement using ARCS because most of

these time-consuming regions have a slight load imbalance and poor cache behavior.

However there are applications which may have a very good load balance and cache

behavior. In those kind of applications, the improvement will likely not be that

significant, because there is very little room for ARCS to work on. In the later part

of this section, we will look into such applications as well.

We discussed in Section 7.2 that the behavior of a region changes across

different workloads. To see how efficient ARCS in choosing optimal configurations

across workloads, we used ARCS on data set C of SP. Dataset C is four times larger

than data set B. Figure 95 shows the execution time and energy consumption

improvement at TDP (highest power cap). Even in this workload, we achieve

execution time improvement of up to 40% and energy consumption improvement of

225

0

0.2

0.4

0.6

0.8

1

1.2

compute_rhs x_solve y_solve z_solve

L1
 C

ac
h

e
M

is
s

R
at

e

Kernels

DEFAULT ARCS-Offline

(a) L1 cache miss rate

0

0.2

0.4

0.6

0.8

1

1.2

compute_rhs x_solve y_solve z_solve

L2
 C

ac
h

e
M

is
s

R
at

e

Kernels

DEFAULT ARCS-Offline

(b) L2 cache miss rate

0

0.2

0.4

0.6

0.8

1

1.2

compute_rhs x_solve y_solve z_solve

L3
 C

ac
h

e
M

is
s

R
at

e

Kernels

DEFAULT ARCS-Offline

(c) L3 cache miss rate

0

0.2

0.4

0.6

0.8

1

1.2

compute_rhs x_solve y_solve z_solve

O
M

P
_B

A
R

R
IE

R
 T

im
e

Kernels

Default ARCS-Offline

(d) OMP_BARRIER time

Figure 93. Feature comparison between the default and ARCS-Offline strategy at TDP
power level. Comparison is done on four of the most time consuming regions of SP.
Y-axis shows the normalized feature value. Smaller value is better.

226

0

0.2

0.4

0.6

0.8

1

1.2

55W 70W 85W 100W TDP(115W)

Ex
ec

u
ti

o
n

 T
im

e
(N

o
rm

al
iz

ed
)

Power Limit (W)

Default ARCS-Online ARCS-Offline

(a) Execution Time

0

0.2

0.4

0.6

0.8

1

1.2

55W 70W 85W 100W TDP(115W)

Pa
ck

ag
e

En
er

gy
 (

N
o

rm
al

iz
ed

)

Power Limit (W)

Default ARCS-Online ARCS-Offline

(b) Package energy

Figure 94. Application level execution time and package energy comparison among the
default and ARCS strategies in SP at data set B. Comparison is done on five different
power levels. Smaller value is better.

227

up to 42% using ARCS strategies. It shows that ARCS can find optimal configurations

across different workloads. We also observed that the configurations of the regions

from SP differed across workloads which also proves the claim we made in Section

7.2. To validate ARCS’s consistency across different architectures, we used ARCS on a

new architecture, IBM POWER8 (Minotaur). Minotaur differs significantly compared

to Crill. Even so, when we ran SP with data set B in Minotaur, we observed 37%

execution time improvement compared to the default strategy. This result demonstrates

ARCS’s versatility across architectures.

0

0.2

0.4

0.6

0.8

1

1.2

Execution Time Package Energy

V
al

u
e

(N
o

rm
al

iz
ed

)

Performance Criteria

Default ARCS-Online ARCS-Offline

Figure 95. Execution time and energy consumption comparison of ARCS strategies and
the default strategy in data set C of SP. Smaller value is better.

BT. BT is an application with good load balancing and cache behavior. BT

is very similar to SP in structure although the approximate factorization is different.

Like SP, majority of its execution time is also dependent on four regions (compute_rhs,

x_solve, y_solve and z_solve). However, the behavior of these regions is slightly
228

different. Three of these regions (x_solve, y_solve and z_solve) show very good

load balancing and cache behavior in the default configuration. Only compute_rhs

shows poor scaling, load balancing, and cache behavior. As a result, ARCS has a limited

opportunity to improve the performance of this application. compute_rhs is the only

region where ARCS strategies can have a significant effect, as all other regions already

perform very well with the default strategy. In addition, compute_rhs is algorithmically

hard to optimize due to its long stride memory access. Specifically, the second-order

stencil operation in rhsz uses the K ± 2, K ± 1 and K elements of the solution array to

compute RHS for the z direction:

RHS(I, J,K) =A ∗U(I, J,K − 2)+

B ∗U(I, J,K − 1) +C ∗U(I, J,K)+

D ∗U(I, J,K + 1) +E ∗U(I, J,K + 2)

Such memory accesses are not cache friendly, so finding an optimal

configuration for such a region is not trivial. However, ARCS does a very good job

in finding an optimal configuration (24, guided, 1) for compute_rhs that improves

the OMP_BARRIER and cache behavior of the region. The comparison between the

ARCS-Offline and default strategy is shown in Figure 96. We compare the cache

(L1, L2 and L3 cache miss rate) and load balancing (OMP_BARRIER time) behavior.

We are only showing the result for compute_rhs region, because in other regions

the improvement is negligible. For compute_rhs, the ARCS configuration shows

a significant load balancing behavior improvement which is demonstrated by

80% OMP_BARRIER time improvement. It also shows good L3 cache miss rate

improvement indicating better cache utilization among different cores.

229

0

0.2

0.4

0.6

0.8

1

1.2

1.4

OMP_BARRIER L1 Cache miss L2 Cache miss L3 Cache miss

Fe
at

u
re

 V
al

u
e

(N
o

rm
al

iz
ed

)

Features

Default ARCS-Offline

Figure 96. Feature comparison between the default and ARCS-Offline strategy at TDP
power level for compute_rhs region of BT. Smaller value is better.

230

The impact of these behaviors is also visible in the overall application level

execution time and energy consumption comparison in Figure 97. Here, we compare

the execution time(97a) and energy consumption(97b) among the default and ARCS

strategies(ARCS-Online and ARCS-Offline). We show the results for all five power

levels. We observe that the execution time improvement is small across all power levels,

with the highest improvement recorded is 13% at 85W power cap with ARCS-Offline

strategy. In some cases ARCS actually performs worse than the default strategy (e.g.,

ARCS-Online at 85W). This is because in those cases small improvement achieved by

ARCS is offset by the overhead. Similar behavior is visible for package energy in Figure

97b.

We also observed similar trend at Power8 architecture. Only the ARCS-Offline

strategy was able to achieve an application level improvement of 18%.

LULESH 2.0. In Figure 98 we show the comparison of execution time

and energy consumption comparison between the default strategy and ARCS-Online

and ARCS-Offline strategies on both Crill and Minotaur. In Minotaur, We achieved

a 40% execution time improvement using the ARCS-Offline strategy, while with

ARCS-Online we achieved around a 4% improvement.

However, in Crill, the improvement is not evident. With ARCS-Offline

strategy, we achieved about 3% execution time improvement in the smallest (55W)

and the highest (115W) power levels. However, we lost performance on other three

power levels. We achieved energy consumption improvement in all five power levels

with maximum of 26% coming in 85W power level. As for ARCS-Online strategy,

we observed a degradation in both execution time and energy consumption for every

power levels as compared to default.

231

0

0.2

0.4

0.6

0.8

1

1.2

55W 70W 85W 100W TDP(115W)

Ex
ec

u
ti

o
n

 T
im

e
(N

o
rm

al
iz

ed
)

Power Limit (W)

Default ARCS-Online ARCS-Offline

(a) Execution Time

0

0.2

0.4

0.6

0.8

1

1.2

55W 70W 85W 100W TDP(115W)

Pa
ck

ag
e

En
er

gy
 (

N
o

rm
al

iz
ed

)

Power Limit (W)

Default ARCS-Online ARCS-Offline

(b) Package energy

Figure 97. Application level execution time and package energy comparison among
the default and ARCS strategies in BT with data set B. Comparison is done on five
different power levels. Smaller value is better.

232

To understand why ARCS is performing poorly with LULESH on Crill, we

did an extensive analysis. We used TAU [192] for our analysis. We profiled LULESH

running with the default configuration at the highest power cap. In Figure 99 we show

the top five regions based on total time (inclusive time). Through three OMPT events

we show how these regions spent their time. These OMPT events are,

– OpenMP_IMPLICIT_TASK, it reports the total time spent by an implicit task, in

other words it shows the overall execution time of the region.

– OpenMP_LOOP reports the execution time that is spent only on the loop body.

– OpenMP_BARRIER/OMP_BARRIER reports the time spent on the implicit and explicit

barriers.

We observe from Figure 99 that in terms of OpenMP_IMPLICIT_TASK the

most time consuming region is EvalEOSForElems_1. But most of its time is spent on

OpenMP_BARRIER. Only a small portion of time is spent on real computation which can

be attributed by OpenMP_LOOP time. The same applies for the CalcPressureForElems_1

region. Both of these regions have a very small execution time per region call,

EvalEOSForElems_1 with 0.000828 sec and CalcPressureForElems_1 with 0.000139

sec. And as we explained in the Overhead section, for each region run ARCS has

a Configuration changing overhead of around 0.0008 sec. For these regions this

overhead becomes a huge issue. In fact the overhead becomes almost 100% and 600%.

Combined with APEX instrumentation overhead, ARCS loses a significant amount

of performance in these tiny regions and in the process adds a fair amount of extra

execution time.

As for other three regions in Figure 99, although they have reasonable

region time (execution time per region call), CalcKinematicsForElems_1 and
233

0

0.5

1

1.5

2

2.5

55W 70W 85W 100W TDP(115W)

Ex
ec

u
ti

o
n

 T
im

e
(N

o
rm

al
iz

ed
)

Power Limit (W)

Default ARCS-Online ARCS-Offline

(a) Execution time(Crill)

0

0.5

1

1.5

2

2.5

55W 70W 85W 100W TDP(115W)

Pa
ck

ag
e

En
er

gy
 (

N
o

rm
al

iz
ed

)

Power Limit (W)

Default ARCS-Online ARCS-Offline

(b) Package energy (Crill)

0

0.2

0.4

0.6

0.8

1

1.2

Default ARCS-Online ARCS-Offline

Ex
ec

u
ti

o
n

 T
im

e
(N

o
rm

al
iz

ed
)

Strategies

(c) Execution time (Minotaur)

Figure 98. Application level execution time and package energy comparison among
the default and ARCS strategies in LULESH, for mesh size 45. It shows results in both
architectures. Smaller value is better.

234

0 20 40 60 80

EvalEOSForElems_1

CalcFBHourglassForceForElems_1

CalcKinematicsForElems_1

CalcPressureForElems_1

CalcMonotonicQGradientsForElems_1

Execution Time (Sec)

OpenMP_IMPLICIT_TASK OpenMP_LOOP OpenMP_BARRIER

Figure 99. OpenMP events data for top 5 time consuming regions from LULESH.

CalcMonotonicQGradientsForElems_1 show near perfect load balancing behavior

with only 1.8% and 0.26% of their total execution time spent in OpenMP_BARRIER. So

there is not much ARCS can do to improve these regions’ performance. However,

the CalcFBHourglassForceForElems_1 region shows slightly worse load balancing

behavior with 16% of its total execution time spent in OpenMP_BARRIER, so ARCS

can have some impact on its performance. ARCS was able to do so, which is

evident in Figure 100. The figure shows OpenMP_BARRIER, L1, L2 and L3

cache miss rate comparison between the default and ARCS-Offline strategy on

CalcFBHourglassForceForElems_1 region. From the figure we can see that the

configuration (4, guided, 32) chosen by the ARCS-Offline strategy is able make

the OpenMP_BARRIER time almost zero. It also shows that the configuration also

improved the L1 and L3 cache miss rate significantly.

But execution time improvement from just this region was not enough to offset

the overhead incurred by those tiny regions in Crill. However, these overheads are not

energy hungry computation, that’s why we still achieved overall energy improvement

in all power levels.

235

As for Minotaur, we achieved execution time improvement for the following

reason: Minotaur can support up to 160 threads without oversubscribing, which causes

a bit more load imbalance in larger regions. As a result, ARCS improvement in those

regions overcomes the overhead incurred by the smaller ones, which in turn results in

overall application level improvement.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

OMP_BARRIER L1 Cache Miss L2 Cache Miss L3 Cache Miss

Fe
at

u
re

 V
al

u
e

(N
o

rm
al

iz
ed

)

Features

Default ARCS-Offline

Figure 100. Feature comparison among default and ARCS strategies on
CalcFBHourglassForceForElems_1 region.

7.5 Related Work

The paper by Bull et al. [30] is one of the first which provides an insight into

the choices of the number of threads, scheduling policy and synchronization on an

OpenMP application’s performance. They show that selecting the best number of

runtime parameters is not a trivial task as different applications behave differently.

Suleman et al. [202] proposed a framework to dynamically control the number of

threads using run-time information. It uses Feedback-Driven Threading (FDT) to

implement Synchronization Aware Threading (SAT), which predicts the optimal

number of threads using the amount of data synchronization. However, neither of

these works consider power or energy consumption in their analysis, only execution

time.

236

As the number of threads and processor frequency have a significant impact

on performance and energy consumption of a given OpenMP application, many

researchers have studied energy efficient performance prediction models for parallel

applications. The work by Curtis-Maury et al. [53, 54] falls under this category.

They employ dynamic voltage and frequency scaling (DVFS), dynamic concurrency

throttling (DCT) and simultaneous multithreading (SMT) to implement various online

and offline configuration selection strategies for OpenMP applications. Their main

goal was to decrease energy consumption without losing execution time. However,

the work does not consider power budget. Peter Baily et al. [15] implemented an

adaptive configuration selection scheme for both homogeneous and heterogeneous

power constrained systems. It considers only two parameters – number of threads

and processor frequency. Although the system selects these parameters for a given

power budget, more than 10% of the time it violates the given power budget. The

approach is not useful for a system working under a strict power budget. Dong Li

et al. [134, 133] used DVFS and DCT to select energy efficient configurations for

threads and operating frequency for MPI/OpenMP hybrid applications. They also did

not consider a power budget. Their main target was to save energy without losing

execution time. The work by Wei et al. [225] shows the impact of optimal operating

frequency on energy consumption improvement for parallel loops. It uses different

operating frequency across different loops using frequency modulation techniques. In

contrast to these works, ours concentrates on a complete set of runtime parameters on a

strict power constrained system.

Power has become a limiting factor for large scale HPC centers. As a result,

research on over-provisioned systems with a strict power budget is gaining popularity

in the HPC community. Work by Rountree et al. [185] is one of the first to explore

237

the impact of power capping. They investigate how different power levels impact the

performance of different types of applications. Work by Patki et al. [173] explores

the impact of hardware over-provisioning on a system level performance. The main

contribution of their work was to select the number of nodes, number of cores

per node, and power cap per node. Work by Aniruddha et al. [149] and Bailey et

al. [16] consider only two parameters, DVFS and number of threads, as configuration

options. They focus on overall system level performance on a MPI/OpenMP hybrid

application. Compared to these works, our work concentrates on single node OpenMP

performance given a power budget to that node.

7.6 Conclusions

Application power budgeting with over-provisioned systems is becoming an

attractive solution to handle the power challenge in future HPC platforms. Previous

work in this area only looks at distributed programming models. However, intra-node

performance at different power levels is also important. OpenMP API is mostly used

to exploit parallelism for shared memory processors. In this paper, we presented the

ARCS framework that selects the best run-time configurations under imposed power

constraints for OpenMP applications. Our framework handles a larger configuration

search space as compared to prior work. We show that our framework is practical

with varying data sets as well as architectures. We tested ARCS using three proxy

applications, SP, BT and LULESH. We show that for a given power level, efficient

OpenMP runtime parameter selection can improve the execution time and energy

consumption of an application up to 40% and 42% respectively.

In future work, we plan to improve ARCS to enable selective tuning for

OpenMP regions to avoid overheads on the smaller regions. We also intend to account

for memory power in addition to processor power. Currently, we are not looking

238

into the DVFS (Dynamic Voltage Frequency Scaling) strategy. We plan to include

this policy in the future. We also aim to extend the power management policy of the

framework for heterogeneous nodes.

7.7 Bridge

This chapter has described a tool-runtime integration with OpenMP, showing

how such an integration can enable online tuning of thread scheduling parameters

under varying power constraints. In the final chapter, we will review the tool-runtime

integrations performed in this work and the differences between the runtimes, as well

as describe potential future integrations and integration use cases.

239

CHAPTER VIII

CONCLUSIONS

This document has described the integration of performance monitoring

tools with several runtimes, and demonstrated how this allows access to

performance-relevant information which would not be available absent the integration.

For UPC, I showed how a tool, THOR, can capture network flow data and use this to

dynamically adjust communication policies to account for different application-level

communication patterns. For HPX, I showed how its integration with APEX allows

for user-definable policies which dynamically adjust task granularity and/or keep

power below a bound. For Apache Spark, I showed how runtime-tool integration

allows understanding of the storage implications of application-level directives,

thereby allowing the diagnosis of a severe performance problem with Spark on HPC

systems, and allowing user-definable policies to handle storage decisions. For OCR,

I showed how its integration with APEX allows for automatic diagnosis of causes of

worker idleness, providing actionable suggestions to the application developer, and

how user-definable policies can be used to mitigate load imbalance in an inherently

load-imbalanced application. Finally, for OpenMP, I showed that even in traditional

runtimes, integration between the runtime and a performance tool can provide benefits,

by developing a policy for online tuning of OpenMP parallel region scheduling

parameters on a per-region basis.

While I have shown that tool-runtime integration is an extremely promising

technique for understanding the performance of emerging many-task runtimes, work

in this area is still early, and there is more to be done.

An important limitation of the work described in this document is that it

is entirely performed on microbenchmarks and mini-applications. Because full

240

applications have traditionally been designed almost exclusively with MPI, there are

very few full application codes available for many-task runtimes. HPX has only very

recently had a full application developed for it (OctoTiger), while OCR currently has

none. Apache Spark has many real applications, but these are not designed to scale to

large numbers of cores. Once scalable, full applications become available for many-task

runtimes, the results described in this dissertation will need to be revalidated on those

applications. Early results with OctoTiger suggest that APEX scales well in the context

of that application.

The many-task runtime community is still in a very experimental mode, and

it is not yet clear what combinations of features will exist in runtimes which will be in

actual use on future exascale systems. Future systems may require modifications to the

tools described in this dissertation in order to accommodate features of those runtimes.

An important example of this is Legion [21], a library and programming model which

provides a much higher degree of data abstraction than any of the runtimes evaluated

here. While we believe that APEX can be extended to support all features of Legion,

this is yet to be done.

Finally, the runtimes described in this dissertation are primarily focused on

CPUs and CPU-like accelerators such as the Xeon Phi. They do not provide special

features for task executions on GPUs, as GPU architectures which have existed up until

now have been very poorly suited to many-task runtimes, as tasks by their very nature

will not run in lockstep. Newly announced GPU architectures from NVIDIA relax the

requirement for GPU threads to run in lockstep, making tasking models much more

feasible for GPU codes. If this occurs, new techniques will need to be evaluated for

incorporating accelerators into the APEX model.

241

REFERENCES CITED

[1] Bilge Acun et al. “Parallel Programming with Migratable Objects: Charm++

in Practice”. In: Proceedings of the International Conference for High Performance

Computing, Networking, Storage and Analysis. SC ’14. New Orleans, Louisana:

IEEE Press, 2014, pp. 647–658. ISBN: 978-1-4799-5500-8. ᴅᴏI: 10.1109/SC.

2014.58. ᴜRᴌ: http://dx.doi.org/10.1109/SC.2014.58.

[2] Laksono Adhianto et al. “HPCToolkit: Tools for performance analysis of

optimized parallel programs”. In: Concurrency and Computation: Practice and

Experience 22.6 (2010), pp. 685–701.

[3] Inc. Advanced Micro Devices. AMD GPU Performance API User Guide. 2015.

ᴜRᴌ: http://developer.amd.com/wordpress/media/2013/12/GPUPerfAPI-

UserGuide-2-15.pdf.

[4] Sadaf R. Alam et al. “Parallel I/O and the metadata wall”. In: Proceedings of

the sixth workshop on Parallel Data Storage. ACM, 2011, pp. 13–18. ᴜRᴌ: http:

//dl.acm.org/citation.cfm?id=2159356 (visited on 11/11/2015).

[5] Allan Porterfield et al. Adaptive Scheduling Using Performance Introspection.

TR-12-02. RENCI, 2012. ᴜRᴌ: http : / / www . renci . org / technical -

reports/tr-12-02/ (visited on 05/01/2014).

[6] Saman Amarasinghe et al. “Exascale programming challenges”. In: Report of

the 2011 Workshop on Exascale Programming Challenges, Marina del Rey. 2011.

[7] Vinay C Amatya. “Parallel Processes in HPX: Designing an Infrastructure for

Adaptive Resource Management”. PhD thesis. Louisiana State University,

242

https://doi.org/10.1109/SC.2014.58
https://doi.org/10.1109/SC.2014.58
http://dx.doi.org/10.1109/SC.2014.58
http://developer.amd.com/wordpress/media/2013/12/GPUPerfAPI-UserGuide-2-15.pdf
http://developer.amd.com/wordpress/media/2013/12/GPUPerfAPI-UserGuide-2-15.pdf
http://dl.acm.org/citation.cfm?id=2159356
http://dl.acm.org/citation.cfm?id=2159356
http://www.renci.org/technical-reports/tr-12-02/
http://www.renci.org/technical-reports/tr-12-02/

2014. ᴜRᴌ: http:/ /etd .lsu. edu/ docs/ available/etd - 11172014 -

122205/unrestricted/amatya_dissertation_1.pdf.

[8] Matthew Anderson et al. “A dynamic execution model applied to distributed

collision detection”. In: Supercomputing. Springer. 2014, pp. 470–477.

[9] Michael Armbrust et al. “Spark SQL: Relational data processing in Spark”. In:

Proceedings of the 2015 ACM SIGMOD International Conference on Management

of Data. ACM, 2015, pp. 1383–1394. ᴜRᴌ: http://dl.acm.org/citation.

cfm?id=2742797 (visited on 06/17/2015).

[10] Manish Arora et al. “Understanding idle behavior and power gating

mechanisms in the context of modern benchmarks on CPU-GPU Integrated

systems”. In: High Performance Computer Architecture (HPCA), 2015 IEEE 21st

International Symposium on. IEEE. 2015, pp. 366–377.

[11] Cédric Augonnet et al. “StarPU: A Unified Platform for Task Scheduling on

Heterogeneous Multicore Architectures”. English. In: Euro-Par 2009 Parallel

Processing. Ed. by Henk Sips, Dick Epema, and Hai-Xiang Lin. Vol. 5704.

Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2009,

pp. 863–874. ISBN: 978-3-642-03868-6. ᴅᴏI: 10.1007/978-3-642-03869-

3_80. ᴜRᴌ: http://dx.doi.org/10.1007/978-3-642-03869-3_80.

[12] E. Ayguade et al. “The Design of OpenMP Tasks”. In: Parallel and Distributed

Systems, IEEE Transactions on 20.3 (Mar. 2009), pp. 404–418. ISSN: 1045-9219.

ᴅᴏI: 10.1109/TPDS.2008.105.

[13] Shivnath Babu and Lance Co Ting Keh. “Better Visibility into Spark

Execution for Faster Application Development”. In: Spark Summit. 2015.

243

http://etd.lsu.edu/docs/available/etd-11172014-122205/unrestricted/amatya_dissertation_1.pdf
http://etd.lsu.edu/docs/available/etd-11172014-122205/unrestricted/amatya_dissertation_1.pdf
http://dl.acm.org/citation.cfm?id=2742797
http://dl.acm.org/citation.cfm?id=2742797
https://doi.org/10.1007/978-3-642-03869-3_80
https://doi.org/10.1007/978-3-642-03869-3_80
http://dx.doi.org/10.1007/978-3-642-03869-3_80
https://doi.org/10.1109/TPDS.2008.105

[14] D. H. Bailey et al. “The NAS Parallel Benchmarks – Summary and

Preliminary Results”. In: Supercomputing. Albuquerque, New Mexico, USA:

ACM, 1991, pp. 158–165. ISBN: 0-89791-459-7. ᴅᴏI: 10.1145/125826.

125925. ᴜRᴌ: http://doi.acm.org/10.1145/125826.125925.

[15] Peter E Bailey et al. “Adaptive Configuration Selection for

Power-Constrained Heterogeneous Systems”. In: Parallel Processing (ICPP),

2014 43rd International Conference on. IEEE. 2014, pp. 371–380.

[16] Peter E Bailey et al. “Finding the limits of power-constrained application

performance”. In: Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis. ACM. 2015, p. 79.

[17] P. Balaji et al. “MPI on Millions of Cores”. In: Parallel Processing Letters (PPL)

21.1 (Mar. 2011), pp. 45–60.

[18] Prasanna Balaprakash, R. Gramacy, and S. Wild. Active-Learning-Based

Surrogate Models for Empirical Performance Tuning. 2013.

[19] Richard F Barrett, Courtenay T Vaughan, and Michael A Heroux. MiniGhost:

a miniapp for exploring boundary exchange strategies using stencil computations in

scientific parallel computing. Tech. rep. SAND2012-10431. 2011. ᴜRᴌ: http:

//prod.sandia.gov/techlib/access-control.cgi/2012/122437.pdf.

[20] Protonu Basu et al. “Towards making autotuning mainstream”. In:

International Journal of High Performance Computing Applications 27.4

(Nov. 1, 2013), pp. 379–393. ISSN: 1094-3420, 1741-2846. ᴅᴏI: 10.1177/

1094342013493644. ᴜRᴌ: http://hpc.sagepub.com/content/27/4/379

(visited on 05/01/2014).

244

https://doi.org/10.1145/125826.125925
https://doi.org/10.1145/125826.125925
http://doi.acm.org/10.1145/125826.125925
http://prod.sandia.gov/techlib/access-control.cgi/2012/122437.pdf
http://prod.sandia.gov/techlib/access-control.cgi/2012/122437.pdf
https://doi.org/10.1177/1094342013493644
https://doi.org/10.1177/1094342013493644
http://hpc.sagepub.com/content/27/4/379

[21] Michael Bauer et al. “Legion: Expressing Locality and Independence

with Logical Regions”. In: Proceedings of the International Conference on

High Performance Computing, Networking, Storage and Analysis. SC ’12. Salt

Lake City, Utah: IEEE Computer Society Press, 2012, 66:1–66:11. ISBN:

978-1-4673-0804-5. ᴜRᴌ: http://dl.acm.org/citation.cfm?id=2388996.

2389086.

[22] Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt. “Periscope:

An online-based distributed performance analysis tool”. In: Tools for High

Performance Computing 2009. Springer, 2010, pp. 1–16. ᴜRᴌ: http://link.

springer.com/chapter/10.1007/978-3-642-11261-4_1 (visited on

08/05/2015).

[23] Katharina Benkert and Edgar Gabriel. “Empirical Optimization of Collective

Communications with ADCL”. In: High Performance Computing on Vector

Systems 2010. Ed. by Michael Resch et al. Springer Berlin Heidelberg, 2010,

pp. 37–49. ISBN: 978-3-642-11850-0, 978-3-642-11851-7. ᴜRᴌ: http://link.

springer.com/chapter/10.1007/978-3-642-11851-7_3 (visited on

05/01/2014).

[24] Filip Blagojević et al. “Hybrid PGAS Runtime Support for Multicore Nodes”.

In: Conference on Partitioned Global Address Space Programming Model. PGAS

’10. 2010.

[25] D. Bohme, F. Wolf, and M. Geimer. “Characterizing Load and

Communication Imbalance in Large-Scale Parallel Applications”. In: Parallel

and Distributed Processing Symposium Workshops PhD Forum (IPDPSW), 2012

IEEE 26th International. Parallel and Distributed Processing Symposium

245

http://dl.acm.org/citation.cfm?id=2388996.2389086
http://dl.acm.org/citation.cfm?id=2388996.2389086
http://link.springer.com/chapter/10.1007/978-3-642-11261-4_1
http://link.springer.com/chapter/10.1007/978-3-642-11261-4_1
http://link.springer.com/chapter/10.1007/978-3-642-11851-7_3
http://link.springer.com/chapter/10.1007/978-3-642-11851-7_3

Workshops PhD Forum (IPDPSW), 2012 IEEE 26th International. May 2012,

pp. 2538–2541. ᴅᴏI: 10.1109/IPDPSW.2012.321.

[26] Dan Bonachea. GASNet Specification, v1.1. Tech. rep. CSD-02-1207.

University of California at Berkeley, Oct. 2002.

[27] Peter J. Braam et al. The Lustre storage architecture. 2004. ᴜRᴌ: http://idning-

paper.googlecode.com/svn/trunk/reference/Luster/The_Lustre_

Storage_Architecture.pdf (visited on 11/11/2015).

[28] Tim Bray. The JavaScript Object Notation (JSON) Data Interchange Format.

2014. ᴜRᴌ: http://tools.ietf.org/html/rfc7159.html (visited on

06/26/2015).

[29] Zoran Budimlić et al. “Concurrent collections”. In: Scientific Programming

18.3-4 (2010), pp. 203–217.

[30] J Mark Bull. “Measuring synchronisation and scheduling overheads in

OpenMP”. In: Proceedings of First European Workshop on OpenMP. Vol. 8.

1999, p. 49.

[31] Berkeley UPC. http://upc.lbl.gov.

[32] Jong-Ho Byun et al. “Autotuning sparse matrix-vector multiplication for

multicore”. In: EECS Department, University of California, Berkeley, Tech. Rep.

UCB/EECS-2012-215 (2012). ᴜRᴌ: http://digitalassets.lib.berkeley.

edu/techreports/ucb/text/EECS-2012-215.pdf (visited on 07/10/2015).

[33] Rosario Cammarota et al. “Optimizing Program Performance via Similarity,

Using a Feature-Agnostic Approach”. In: Advanced Parallel Processing

Technologies. Ed. by Chenggang Wu and Albert Cohen. Lecture Notes in

Computer Science 8299. Springer Berlin Heidelberg, 2013, pp. 199–213.
246

https://doi.org/10.1109/IPDPSW.2012.321
http://idning-paper.googlecode.com/svn/trunk/reference/Luster/The_Lustre_Storage_Architecture.pdf
http://idning-paper.googlecode.com/svn/trunk/reference/Luster/The_Lustre_Storage_Architecture.pdf
http://idning-paper.googlecode.com/svn/trunk/reference/Luster/The_Lustre_Storage_Architecture.pdf
http://tools.ietf.org/html/rfc7159.html
http://upc.lbl.gov
http://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2012-215.pdf
http://digitalassets.lib.berkeley.edu/techreports/ucb/text/EECS-2012-215.pdf

ISBN: 978-3-642-45292-5, 978-3-642-45293-2. ᴜRᴌ: http://link.springer.

com/chapter/10.1007/978-3-642-45293-2_15 (visited on 05/02/2014).

[34] F. Cappello and D. Etiemble. “MPI versus MPI+OpenMP on the IBM SP for

the NAS Benchmarks”. In: Supercomputing. Nov. 2000, pp. 12–12.

[35] P. Carns et al. “Small-file access in parallel file systems”. In: IEEE International

Symposium on Parallel Distributed Processing, 2009. IPDPS 2009. IEEE

International Symposium on Parallel Distributed Processing, 2009. IPDPS

2009. May 2009, pp. 1–11. ᴅᴏI: 10.1109/IPDPS.2009.5161029.

[36] Mohamad Chaarawi et al. “A Tool for Optimizing Runtime Parameters

of Open MPI”. In: Recent Advances in Parallel Virtual Machine and

Message Passing Interface. Ed. by Alexey Lastovetsky, Tahar Kechadi,

and Jack Dongarra. Lecture Notes in Computer Science 5205. Springer

Berlin Heidelberg, 2008, pp. 210–217. ISBN: 978-3-540-87474-4,

978-3-540-87475-1. ᴜRᴌ: http://link.springer.com/chapter/10.1007/

978-3-540-87475-1_30 (visited on 05/01/2014).

[37] Nicholas Chaimov, Boyana Norris, and Allen Davis Malony. “Toward

Multi-target Autotuning for Accelerators”. In: International Conference on

Parallel and Distributed Systems. 2014.

[38] Nicholas Chaimov et al. “Exploiting communication concurrency on high

performance computing systems”. In: Proceedings of the Sixth International

Workshop on Programming Models and Applications for Multicores and Manycores.

ACM. 2015, pp. 132–143.

[39] Nicholas Chaimov et al. “Performance Evaluation of Apache Spark on Cray

XC Systems”. In: Cray Users Group 2016. 2016.

247

http://link.springer.com/chapter/10.1007/978-3-642-45293-2_15
http://link.springer.com/chapter/10.1007/978-3-642-45293-2_15
https://doi.org/10.1109/IPDPS.2009.5161029
http://link.springer.com/chapter/10.1007/978-3-540-87475-1_30
http://link.springer.com/chapter/10.1007/978-3-540-87475-1_30

[40] Nicholas Chaimov et al. “Reaching bandwidth saturation using transparent

injection parallelization”. In: International Journal of High Performance

Computing Applications (2016), p. 1094342016672720.

[41] Nicholas Chaimov et al. “Scaling Spark on HPC Systems”. In: Proceedings

of the 25th ACM International Symposium on High-Performance Parallel and

Distributed Computing. ACM. 2016, pp. 97–110.

[42] Nicholas Chaimov et al. “Scaling Spark on Lustre”. In: International Conference

on High Performance Computing. Springer International Publishing. 2016,

pp. 649–659.

[43] B.L. Chamberlain, D. Callahan, and H.P. Zima. “Parallel Programmability

and the Chapel Language”. In: International Journal of High Performance

Computing Applications 21.3 (2007), pp. 291–312. ᴅᴏI: 10 . 1177 /

1094342007078442. eprint: http://hpc.sagepub.com/content/21/3/

291.full.pdf+html. ᴜRᴌ: http://hpc.sagepub.com/content/21/3/291.

abstract.

[44] Kavitha Chandrasekar et al. “Task characterization-driven scheduling of

multiple applications in a task-based runtime”. In: Proceedings of the First

International Workshop on Extreme Scale Programming Models and Middleware.

ACM. 2015, pp. 52–55.

[45] Philippe Charles et al. “X10: An Object-oriented Approach to Non-uniform

Cluster Computing”. In: Proceedings of the 20th Annual ACM SIGPLAN

Conference on Object-oriented Programming, Systems, Languages, and Applications.

OOPSLA ’05. San Diego, CA, USA: ACM, 2005, pp. 519–538. ISBN:

248

https://doi.org/10.1177/1094342007078442
https://doi.org/10.1177/1094342007078442
http://hpc.sagepub.com/content/21/3/291.full.pdf+html
http://hpc.sagepub.com/content/21/3/291.full.pdf+html
http://hpc.sagepub.com/content/21/3/291.abstract
http://hpc.sagepub.com/content/21/3/291.abstract

1-59593-031-0. ᴅᴏI: 10.1145/1094811.1094852. ᴜRᴌ: http://doi.acm.

org/10.1145/1094811.1094852.

[46] P. Charles, C. Donawa, K. Ebcioglu, et al. “X10: An Object-Oriented

Approach to Non-Unifrom Cluster Computing”. In: ACM SIGPLAN

Conference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA’05). Oct. 2005.

[47] Sanjay Chatterjee et al. “Integrating Asynchronous Task Parallelism with

MPI”. In: Parallel and Distributed Processing Symposium, International (IPDPS)

(2013).

[48] Chun Chen, Jacqueline Chame, and Mary Hall. CHiLL: A framework for

composing high-level loop transformations. Tech. rep. University of Utah, 2008.

[49] Guojing Cong et al. “A Systematic Approach toward Automated

Performance Analysis and Tuning”. In: IEEE Transactions on Parallel and

Distributed Systems 23.3 (Mar. 2012), pp. 426–435. ISSN: 1045-9219. ᴅᴏI:

10.1109/TPDS.2011.189.

[50] Cori Phase 1. https://www.nersc.gov/users/computational-systems/

cori/.

[51] Chuck Cranor, Milo Polte, and Garth Gibson. HPC computation on Hadoop

storage with PLFS. Tech. rep. CMU-PDL-12-115. Carnegie Mellon

University, 2012.

[52] Tom Crowe, Nathan Lavender, and Stephen Simms. “Scalability Testing of

DNE2 in Lustre 2.7”. In: Lustre Users Group. 2015.

249

https://doi.org/10.1145/1094811.1094852
http://doi.acm.org/10.1145/1094811.1094852
http://doi.acm.org/10.1145/1094811.1094852
https://doi.org/10.1109/TPDS.2011.189
https://www.nersc.gov/users/computational-systems/cori/
https://www.nersc.gov/users/computational-systems/cori/

[53] Matthew Curtis-Maury et al. “Online strategies for high-performance

power-aware thread execution on emerging multiprocessors”. In: Parallel

and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International.

IEEE. 2006, 8–pp.

[54] Matthew Curtis-Maury et al. “Prediction models for multi-dimensional

power-performance optimization on many cores”. In: Proceedings of the 17th

international conference on Parallel architectures and compilation techniques. ACM.

2008, pp. 250–259.

[55] Tomasz S Czajkowski et al. “From OpenCL to high-performance hardware

on FPGAs”. In: Field Programmable Logic and Applications (FPL), 2012 22nd

International Conference on. IEEE. 2012, pp. 531–534.

[56] Georges Da Costa et al. “Exascale Machines Require New Programming

Paradigms and Runtimes”. In: Supercomputing Frontiers and Innovations 2

(2015), pp. 6–27.

[57] Aaron Davidson and Andrew Or. Optimizing Shuffle Performance in Spark. UC

Berkeley Tech. Report.

[58] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing

on Large Clusters”. In: Commun. ACM 51.1 (2008), pp. 107–113. ISSN:

0001-0782. ᴅᴏI: 10.1145/1327452.1327492. ᴜRᴌ: http://doi.acm.org/10.

1145/1327452.1327492 (visited on 06/17/2015).

[59] James Dinan et al. “Enabling MPI Interoperability Through Flexible

Communication Endpoints”. In: Proceedings of the 20th European MPI

Users’ Group Meeting. EuroMPI ’13. Madrid, Spain, 2013, pp. 13–18. ISBN:

978-1-4503-1903-4.

250

https://doi.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492
http://doi.acm.org/10.1145/1327452.1327492

[60] Lamia Djoudi et al. “Exploring application performance: a new tool for a

static/dynamic approach”. In: Proceedings of the 6th LACSI Symposium. 2005.

ᴜRᴌ: http://www.researchgate.net/profile/William_Jalby/publication/

239735488_Exploring_Application_Performance_a_New_Tool_For_a_

StaticDynamic_Approach/links/00b4952d6f80d5e051000000.pdf (visited

on 09/14/2015).

[61] Jack Dongarra and Michael A Heroux. “Toward a new metric for ranking

high performance computing systems”. In: Sandia Report, SAND2013-4744

312 (2013).

[62] Isaac Dooley. “Intelligent Runtime Tuning of Parallel Applications With

Control Points”. http://charm.cs.uiuc.edu/papers/DooleyPhDThesis10.shtml.

PhD thesis. Dept. of Computer Science, University of Illinois, 2010.

[63] Gábor Dózsa et al. “Enabling Concurrent Multithreaded MPI

Communication on Multicore Petascale Systems”. In: European MPI Users’

Group Meeting Conference on Recent Advances in the Message Passing Interface.

EuroMPI’10. 2010.

[64] Peng Du et al. “From CUDA to OpenCL: Towards a performance-portable

solution for multi-platform GPU programming”. In: Parallel Computing 38.8

(2012), pp. 391–407.

[65] Alejandro Duran et al. “Barcelona openmp tasks suite: A set of benchmarks

targeting the exploitation of task parallelism in openmp”. In: Parallel

Processing, 2009. ICPP’09. International Conference on. IEEE. 2009, pp. 124–131.

251

http://www.researchgate.net/profile/William_Jalby/publication/239735488_Exploring_Application_Performance_a_New_Tool_For_a_StaticDynamic_Approach/links/00b4952d6f80d5e051000000.pdf
http://www.researchgate.net/profile/William_Jalby/publication/239735488_Exploring_Application_Performance_a_New_Tool_For_a_StaticDynamic_Approach/links/00b4952d6f80d5e051000000.pdf
http://www.researchgate.net/profile/William_Jalby/publication/239735488_Exploring_Application_Performance_a_New_Tool_For_a_StaticDynamic_Approach/links/00b4952d6f80d5e051000000.pdf

[66] Juan Durillo and Thomas Fahringer. “From single-to multi-objective

auto-tuning of programs: Advantages and implications”. In: Scientific

Programming 22.4 (2014), pp. 285–297.

[67] Alexandre E. Eichenberger et al. “OMPT: An OpenMP Tools Application

Programming Interface for Performance Analysis”. In: IWOMP 2013.

Vol. 8122. 2013, pp. 171–185. ISBN: 978-3-642-40697-3.

[68] Alexandre Eichenberger et al. “OMPT and OMPD: OpenMP Tools

Application Programming Interfaces for Performance Analysis and

Debugging”. (OpenMP 4.0 draft proposal). 2014.

[69] Alexandre Eichenberger et al. OMPT and OMPD: OpenMP tools application

programming interfaces for performance analysis and debugging. Tech. rep.

Technical report, 2013.

[70] Dominic Eschweiler et al. “Open Trace Format 2: The Next Generation of

Scalable Trace Formats and Support Libraries.” In: PARCO. Vol. 22. 2011,

pp. 481–490.

[71] S. Feki and E. Gabriel. “Incorporating Historic Knowledge into a

Communication Library for Self-Optimizing High Performance Computing

Applications”. In: Second IEEE International Conference on Self-Adaptive

and Self-Organizing Systems, 2008. SASO ’08. Second IEEE International

Conference on Self-Adaptive and Self-Organizing Systems, 2008. SASO ’08.

Oct. 2008, pp. 265–274. ᴅᴏI: 10.1109/SASO.2008.47.

[72] Leonardo Fialho and James Browne. “Framework and modular infrastructure

for automation of architectural adaptation and performance optimization for

252

https://doi.org/10.1109/SASO.2008.47

HPC systems”. In: (2014), pp. 261–277. ᴜRᴌ: http://link.springer.com/

chapter/10.1007/978-3-319-07518-1_17 (visited on 07/10/2015).

[73] Message Passing Interface Forum. MPI: A Message-Passing Interface Standard

Version 3.0. Sept. 2012. ᴜRᴌ: http://www.mpi- forum.org/docs/mpi-

3.0/mpi30-report.pdf.

[74] Matteo Frigo, Steven, and G. Johnson. “The design and implementation of

FFTW3”. In: Proceedings of the IEEE. 2005, pp. 216–231.

[75] Karl Fürlinger and Michael Gerndt. “ompP: A profiling tool for OpenMP”.

In: OpenMP Shared Memory Parallel Programming. Springer, 2008, pp. 15–23.

[76] Grigori Fursin. “Collective Mind: cleaning up the research and

experimentation mess in computer engineering using crowdsourcing, big

data and machine learning”. In: arXiv:1308.2410 [cs, stat] (Aug. 11, 2013).

ᴜRᴌ: http://arxiv.org/abs/1308.2410 (visited on 05/01/2014).

[77] Grigori Fursin. “Collective Tuning Initiative: automating and accelerating

development and optimization of computing systems”. In: GCC Developers’

Summit. June 8, 2009. ᴜRᴌ: http://hal.inria.fr/inria-00436029 (visited

on 05/01/2014).

[78] E. Gabriel and S. Huang. “Runtime Optimization of Application Level

Communication Patterns”. In: Parallel and Distributed Processing Symposium,

2007. IPDPS 2007. IEEE International. Parallel and Distributed Processing

Symposium, 2007. IPDPS 2007. IEEE International. Mar. 2007, pp. 1–8. ᴅᴏI:

10.1109/IPDPS.2007.370406.

[79] Edgar Gabriel et al. “Towards Performance Portability Through Runtime

Adaptation for High-performance Computing Applications”. In: Concurr.

253

http://link.springer.com/chapter/10.1007/978-3-319-07518-1_17
http://link.springer.com/chapter/10.1007/978-3-319-07518-1_17
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://arxiv.org/abs/1308.2410
http://hal.inria.fr/inria-00436029
https://doi.org/10.1109/IPDPS.2007.370406

Comput. : Pract. Exper. 22.16 (Nov. 2010), pp. 2230–2246. ISSN: 1532-0626.

ᴅᴏI: 10.1002/cpe.v22:16. ᴜRᴌ: http://dx.doi.org/10.1002/cpe.v22:16

(visited on 05/01/2014).

[80] Markus Geimer et al. “A scalable tool architecture for diagnosing wait states

in massively parallel applications”. In: Parallel Computing 35.7 (2009), pp. 375–

388. ᴜRᴌ: http://www.sciencedirect.com/science/article/pii/

S0167819109000398 (visited on 08/10/2015).

[81] Markus Geimer et al. “Scalable parallel trace-based performance analysis”.

In: Recent Advances in Parallel Virtual Machine and Message Passing Interface.

Springer, 2006, pp. 303–312. ᴜRᴌ: http://link.springer.com/chapter/10.

1007/11846802_43 (visited on 08/10/2015).

[82] Michael Gerndt. “Performance analysis tools”. In: Encyclopedia of Parallel

Computing. Springer, 2011, pp. 1515–1522.

[83] Joseph E. Gonzalez et al. “Graphx: Graph processing in a distributed dataflow

framework”. In: Proceedings of OSDI. 2014, pp. 599–613. ᴜRᴌ: https://

www.usenix.org/system/files/conference/osdi14/osdi14- paper-

gonzalez.pdf (visited on 11/11/2015).

[84] David Goodell et al. “Minimizing MPI Resource Contention in

Multithreaded Multicore Environments”. In: IEEE International Conference

on Cluster Computing. CLUSTER ’10. 2010.

[85] Georgios Goumas et al. “Adapt or Become Extinct!: The Case for a Unified

Framework for Deployment-time Optimization (Position Paper)”. In:

Proceedings of the 1st International Workshop on Adaptive Self-Tuning Computing

Systems for the Exaflop Era. EXADAPT ’11. New York, NY, USA: ACM,

254

https://doi.org/10.1002/cpe.v22:16
http://dx.doi.org/10.1002/cpe.v22:16
http://www.sciencedirect.com/science/article/pii/S0167819109000398
http://www.sciencedirect.com/science/article/pii/S0167819109000398
http://link.springer.com/chapter/10.1007/11846802_43
http://link.springer.com/chapter/10.1007/11846802_43
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-gonzalez.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-gonzalez.pdf
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-gonzalez.pdf

2011, pp. 46–51. ISBN: 978-1-4503-0708-6. ᴅᴏI: 10.1145/2000417.2000422.

ᴜRᴌ: http : / / doi . acm . org /10 .1145 /2000417 .2000422 (visited on

05/01/2014).

[86] Martin Griebl, Christian Lengauer, and Sabine Wetzel. “Code Generation

in the Polytope Model”. In: In IEEE PACT. IEEE Computer Society Press,

1998, pp. 106–111.

[87] OpenACC Working Group. The OpenACC Application Programming Interface,

Version 2.0. 2013. ᴜRᴌ: http://www.openacc.org/sites/default/files/

OpenACC%202%200.pdf.

[88] Patricia Grubel et al. “The Performance Implication of Task Size for

Applications on the HPX Runtime System”. In: Cluster Computing

(CLUSTER), 2015 IEEE International Conference on. IEEE. 2015, pp. 682–

689.

[89] Patricia Grubel et al. “Using Intrinsic Performance Counters to Assess

Efficiency in Task-Based Parallel Applications”. In: Parallel and Distributed

Processing Symposium Workshops, 2016 IEEE International. IEEE. 2016,

pp. 1692–1701.

[90] Philipp Gschwandtner, Juan J. Durillo, and Thomas Fahringer.

“Multi-Objective Auto-Tuning with Insieme: Optimization and Trade-Off

Analysis for Time, Energy and Resource Usage”. In: Euro-Par 2014 Parallel

Processing. Ed. by Fernando Silva, Inês Dutra, and Vítor Santos Costa. Lecture

Notes in Computer Science 8632. Springer International Publishing, Aug. 25,

2014, pp. 87–98. ISBN: 978-3-319-09872-2, 978-3-319-09873-9. ᴜRᴌ: http:

255

https://doi.org/10.1145/2000417.2000422
http://doi.acm.org/10.1145/2000417.2000422
http://www.openacc.org/sites/default/files/OpenACC%202%200.pdf
http://www.openacc.org/sites/default/files/OpenACC%202%200.pdf
http://link.springer.com/chapter/10.1007/978-3-319-09873-9_8
http://link.springer.com/chapter/10.1007/978-3-319-09873-9_8

//link.springer.com/chapter/10.1007/978-3-319-09873-9_8 (visited on

04/13/2015).

[91] Apache Hadoop. Pluggable Shuffle and Pluggable Sort. https : / / hadoop .

apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-

client-core/PluggableShuffleAndPluggableSort.html.

[92] J. Mario Gallegos, Zhiqi Tao, and Quy Ta- Dell. Deploying Hadoop on Lustre

Storage: Lessons learned and best practices. Lustre User Group Meeting. 2015.

[93] Robert J Hall. “Call path profiling”. In: Proceedings of the 14th international

conference on Software engineering. ACM. 1992, pp. 296–306.

[94] Albert Hartono, Boyana Norris, and Ponnuswamy Sadayappan.

“Annotation-Based Empirical Performance Tuning Using Orio”. In:

Proceedings of the 23rd IEEE International Parallel & Distributed Processing

Symposium. Rome, Italy, 2009.

[95] Habanero-C. wiki.rice.edu/confluence/display/HABANERO/Habanero-C.

[96] Michael Heroux and Richard Barrett. Mantevo Project. 2011. ᴜRᴌ: https:

//mantevo.org.

[97] Benjamin Hindman et al. “Mesos: A Platform for Fine-grained Resource

Sharing in the Data Center”. In: Proceedings of the 8th USENIX Conference

on Networked Systems Design and Implementation. NSDI’11. Boston, MA:

USENIX Association, 2011, pp. 295–308. ᴜRᴌ: http : / / dl . acm . org /

citation.cfm?id=1972457.1972488.

[98] Jeffrey Hollingsworth and Ananta Tiwari. “End-to-End Auto-Tuning with

Active Harmony”. In: Performance Tuning of Scientific Applications. CRC Press,

256

http://link.springer.com/chapter/10.1007/978-3-319-09873-9_8
https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/PluggableShuffleAndPluggableSort.html
https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/PluggableShuffleAndPluggableSort.html
https://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/PluggableShuffleAndPluggableSort.html
wiki.rice.edu/confluence/display/HABANERO/Habanero-C
https://mantevo.org
https://mantevo.org
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://dl.acm.org/citation.cfm?id=1972457.1972488

June 2010. Chap. 10, pp. 217–238. ISBN: 978-1-4398-1569-4. ᴅᴏI: doi:10.

1201/b10509-11. ᴜRᴌ: http://dx.doi.org/10.1201/b10509-11.

[99] Brandon Holt et al. “Flat Combining Synchronized Global Data Structures”.

In: 7th International Conference on PGAS Programming Models, p. 76.

[100] Chao Huang, Orion Lawlor, and Laxmikant V Kale. “Adaptive MPI”. In:

Languages and Compilers for Parallel Computing. Springer, 2004, pp. 306–322.

[101] Chao Huang, Gengbin Zheng, and Laxmikant V Kalé. “Supporting

adaptivity in MPI for dynamic parallel applications”. In: Rapport technique,

Parallel Programming Laboratory, Department of Computer Science, University of

Illinois at Urbana-Champaign (2007).

[102] Kevin A Huck et al. “An Autonomic Performance Environment for Exascale”.

In: Supercomputing frontiers and innovations 2.3 (2015), pp. 49–66.

[103] Kevin A Huck et al. “Integrated Measurement for Cross-Platform OpenMP

Performance Analysis”. In: IWOMP 2014: Using and Improving OpenMP for

Devices, Tasks, and More. Springer International Publishing, 2014, pp. 146–

160.

[104] Kevin A. Huck et al. “TAUg: Runtime Global Performance Data Access

Using MPI”. In: Recent Advances in Parallel Virtual Machine and Message

Passing Interface. Ed. by Bernd Mohr et al. Lecture Notes in Computer

Science 4192. Springer Berlin Heidelberg, 2006, pp. 313–321. ISBN:

978-3-540-39110-4, 978-3-540-39112-8. ᴜRᴌ: http://link.springer.

com/chapter/10.1007/11846802_44 (visited on 05/20/2015).

[105] Kevin A. Huck et al. “TAUg: Runtime Global Performance Data Access

Using MPI”. English. In: Recent Advances in Parallel Virtual Machine and

257

https://doi.org/doi:10.1201/b10509-11
https://doi.org/doi:10.1201/b10509-11
http://dx.doi.org/10.1201/b10509-11
http://link.springer.com/chapter/10.1007/11846802_44
http://link.springer.com/chapter/10.1007/11846802_44

Message Passing Interface. Vol. 4192. Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 2006, pp. 313–321. ISBN: 978-3-540-39110-4.

ᴅᴏI: 10.1007/11846802_44. ᴜRᴌ: http://dx.doi.org/10.1007/11846802_

44.

[106] Kevin Huck et al. “An Autonomic Performance Environment for Exascale”.

In: Supercomputing Frontiers and Innovations 2.3 (2015). ISSN: 2313-8734. ᴜRᴌ:

http://superfri.org/superfri/article/view/64.

[107] Kevin Huck et al. “An Early Prototype of an Autonomic Performance

Environment for Exascale”. In: Proceedings of the 3rd International Workshop on

Runtime and Operating Systems for Supercomputers. ROSS ’13. Eugene, Oregon:

ACM, 2013, 8:1–8:8. ISBN: 978-1-4503-2146-4. ᴅᴏI: 10.1145/2491661.

2481434. ᴜRᴌ: http://doi.acm.org/10.1145/2491661.2481434.

[108] Khaled Z. Ibrahim and Katherine A. Yelick. “On the conditions for efficient

interoperability with threads: an experience with PGAS languages using Cray

communication domains”. In: ICS. 2014.

[109] K.Z. Ibrahim et al. “An Evaluation of One-Sided and Two-Sided

Communication Paradigms on Relaxed-Ordering Interconnect”. In: Parallel

and Distributed Processing Symposium, 2014 IEEE 28th International. May 2014,

pp. 1115–1125.

[110] Intel. Intel SDK for OpenCL Applications - Performance Debugging. 2013. ᴜRᴌ:

https://software.intel.com/en-us/articles/intel-sdk-for-opencl-

applications-performance-debugging-intro.

[111] N. S. Islam et al. “High Performance RDMA-based Design of HDFS over

InfiniBand”. In: Proceedings of the International Conference on High Performance

258

https://doi.org/10.1007/11846802_44
http://dx.doi.org/10.1007/11846802_44
http://dx.doi.org/10.1007/11846802_44
http://superfri.org/superfri/article/view/64
https://doi.org/10.1145/2491661.2481434
https://doi.org/10.1145/2491661.2481434
http://doi.acm.org/10.1145/2491661.2481434
https://software.intel.com/en-us/articles/intel-sdk-for-opencl-applications-performance-debugging-intro
https://software.intel.com/en-us/articles/intel-sdk-for-opencl-applications-performance-debugging-intro

Computing, Networking, Storage and Analysis. SC ’12. Salt Lake City, Utah:

IEEE Computer Society Press, 2012, 35:1–35:35. ISBN: 978-1-4673-0804-5.

ᴜRᴌ: http://dl.acm.org/citation.cfm?id=2388996.2389044.

[112] ISO. ISO C Standard 1999. Tech. rep. ISO/IEC 9899:1999 draft. 1999. ᴜRᴌ:

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf.

[113] ISO. Standard for Programming Language C++. Geneva, Switzerland:

International Organization for Standardization, Feb. 2012, 1338 (est.) ᴜRᴌ:

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.

htm?csnumber=50372.

[114] Douglas M Jacobsen and Richard Shane Canon. “Contain This, Unleashing

Docker for HPC”. In: Proceedings of the Cray User Group (2015).

[115] Changhee Jung et al. “Brainy: Effective Selection of Data Structures”. In:

Proceedings of the 32Nd ACM SIGPLAN Conference on Programming Language

Design and Implementation. PLDI ’11. New York, NY, USA: ACM, 2011,

pp. 86–97. ISBN: 978-1-4503-0663-8. ᴅᴏI: 10.1145/1993498.1993509. ᴜRᴌ:

http://doi.acm.org/10.1145/1993498.1993509 (visited on 05/02/2014).

[116] Hartmut Kaiser, Maciej Brodowicz, and Thomas Sterling. “Parallex an

advanced parallel execution model for scaling-impaired applications”. In:

Parallel Processing Workshops, 2009. ICPPW’09. International Conference on.

IEEE. 2009, pp. 394–401.

[117] Hartmut Kaiser, Maciek Brodowicz, and Thomas Sterling. “ParalleX: An

Advanced Parallel Execution Model for Scaling-Impaired Applications”. In:

Proceedings of the 2009 International Conference on Parallel Processing Workshops.

ICPPW ’09. Washington, DC, USA: IEEE Computer Society, 2009, pp. 394–

259

http://dl.acm.org/citation.cfm?id=2388996.2389044
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1124.pdf
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
https://doi.org/10.1145/1993498.1993509
http://doi.acm.org/10.1145/1993498.1993509

401. ISBN: 978-0-7695-3803-7. ᴅᴏI: 10.1109/ICPPW.2009.14. ᴜRᴌ: http:

//dx.doi.org/10.1109/ICPPW.2009.14.

[118] Hartmut Kaiser et al. “Higher-level parallelization for local and distributed

asynchronous task-based programming”. In: Proceedings of the First

International Workshop on Extreme Scale Programming Models and Middleware.

ACM. 2015, pp. 29–37.

[119] Hartmut Kaiser et al. “HPX: A Task Based Programming Model in a Global

Address Space”. In: Proceedings of the 8th International Conference on Partitioned

Global Address Space Programming Models. PGAS ’14. Eugene, OR, USA:

ACM, 2014, 6:1–6:11. ISBN: 978-1-4503-3247-7. ᴅᴏI: 10.1145/2676870.

2676883. ᴜRᴌ: http://doi.acm.org/10.1145/2676870.2676883.

[120] Hartmut Kaiser et al. “HPX: A task based programming model in a global

address space”. In: Proceedings of the 8th International Conference on Partitioned

Global Address Space Programming Models. ACM. 2014, p. 6.

[121] Laxmikant V. Kale and Gengbin Zheng. “Charm++ and AMPI: Adaptive

Runtime Strategies via Migratable Objects”. In: Advanced Computational

Infrastructures for Parallel and Distributed Applications. Ed. by M. Parashar.

Wiley-Interscience, 2009, pp. 265–282.

[122] Karen L Karavanic and Barton P Miller. “Improving online performance

diagnosis by the use of historical performance data”. In: Supercomputing,

ACM/IEEE 1999 Conference. IEEE. 1999, pp. 42–42.

[123] Ian Karlin, Jeff Keasler, and Rob Neely. LULESH 2.0 Updates and Changes.

Tech. rep. LLNL-TR-641973. Livermore, CA, Aug. 2013, pp. 1–9.

260

https://doi.org/10.1109/ICPPW.2009.14
http://dx.doi.org/10.1109/ICPPW.2009.14
http://dx.doi.org/10.1109/ICPPW.2009.14
https://doi.org/10.1145/2676870.2676883
https://doi.org/10.1145/2676870.2676883
http://doi.acm.org/10.1145/2676870.2676883

[124] George Karypis and Vipin Kumar. “A Fast and High Quality Multilevel

Scheme for Partitioning Irregular Graphs”. In: SIAM J. Sci. Comput. 20.1 (Dec.

1998), pp. 359–392. ISSN: 1064-8275. ᴅᴏI: 10.1137/S1064827595287997.

ᴜRᴌ: http://dx.doi.org/10.1137/S1064827595287997.

[125] Andreas Knüpfer et al. “The vampir performance analysis tool-set”. In: Tools

for High Performance Computing. Springer, 2008, pp. 139–155.

[126] Souad Koliai et al. “A Balanced Approach to Application Performance

Tuning”. In: Languages and Compilers for Parallel Computing. Ed. by

Guang R. Gao et al. Lecture Notes in Computer Science 5898. Springer

Berlin Heidelberg, 2010, pp. 111–125. ISBN: 978-3-642-13373-2,

978-3-642-13374-9. ᴜRᴌ: http://link.springer.com/chapter/10.1007/

978-3-642-13374-9_8 (visited on 05/01/2014).

[127] Souad Koliaï et al. “Quantifying Performance Bottleneck Cost Through

Differential Analysis”. In: Proceedings of the 27th International ACM Conference

on International Conference on Supercomputing. ICS ’13. New York, NY, USA:

ACM, 2013, pp. 263–272. ISBN: 978-1-4503-2130-3. ᴅᴏI: 10.1145/2464996.

2465440. ᴜRᴌ: http://doi.acm.org/10.1145/2464996.2465440 (visited on

05/01/2014).

[128] Sameer Kumar and Laxmikant V. Kale. “Scaling All-to-All Multicast on

Fat-tree Networks”. In: ICPADS’04. 2004, p. 205. ISBN: 0-7695-2152-5.

[129] Vivek Kumar et al. “HabaneroUPC++: A Compiler-free PGAS Library”. In:

Proceedings of the 8th International Conference on Partitioned Global Address

Space Programming Models. PGAS ’14. New York, NY, USA: ACM, 2014,

261

https://doi.org/10.1137/S1064827595287997
http://dx.doi.org/10.1137/S1064827595287997
http://link.springer.com/chapter/10.1007/978-3-642-13374-9_8
http://link.springer.com/chapter/10.1007/978-3-642-13374-9_8
https://doi.org/10.1145/2464996.2465440
https://doi.org/10.1145/2464996.2465440
http://doi.acm.org/10.1145/2464996.2465440

5:1–5:10. ISBN: 978-1-4503-3247-7. ᴅᴏI: 10.1145/2676870.2676879. ᴜRᴌ:

http://doi.acm.org/10.1145/2676870.2676879 (visited on 05/20/2015).

[130] GM Kurtzer, V Sochat, and MW Bauer. “Singularity: Scientific containers for

mobility of compute.” In: PloS one 12.5 (2017), e0177459.

[131] Mahendra Kutare et al. “Monalytics: online monitoring and analytics for

managing large scale data centers”. In: Proceedings of the 7th international

conference on Autonomic computing. ACM. 2010, pp. 141–150.

[132] Hugh Leather, Edwin Bonilla, and Michael O’Boyle. “Automatic Feature

Generation for Machine Learning Based Optimizing Compilation”. In:

Proceedings of the 7th Annual IEEE/ACM International Symposium on Code

Generation and Optimization. CGO ’09. Washington, DC, USA: IEEE

Computer Society, 2009, pp. 81–91. ISBN: 978-0-7695-3576-0. ᴅᴏI: 10.1109/

CGO.2009.21. ᴜRᴌ: http://dx.doi.org/10.1109/CGO.2009.21 (visited on

05/01/2014).

[133] Dong Li et al. “Hybrid MPI/OpenMP power-aware computing”. In: Parallel

& Distributed Processing (IPDPS), 2010 IEEE International Symposium on. IEEE.

2010, pp. 1–12.

[134] Dong Li et al. “Strategies for energy-efficient resource management of

hybrid programming models”. In: Parallel and Distributed Systems, IEEE

Transactions on 24.1 (2013), pp. 144–157.

[135] Haoyuan Li et al. “Tachyon: Reliable, memory speed storage for cluster

computing frameworks”. In: Proceedings of the ACM Symposium on Cloud

Computing. ACM, 2014, pp. 1–15. ᴜRᴌ: http://dl.acm.org/citation.cfm?

id=2670985 (visited on 11/11/2015).

262

https://doi.org/10.1145/2676870.2676879
http://doi.acm.org/10.1145/2676870.2676879
https://doi.org/10.1109/CGO.2009.21
https://doi.org/10.1109/CGO.2009.21
http://dx.doi.org/10.1109/CGO.2009.21
http://dl.acm.org/citation.cfm?id=2670985
http://dl.acm.org/citation.cfm?id=2670985

[136] Chunhua Liao et al. “Early experiences with the openmp accelerator model”.

In: OpenMP in the Era of Low Power Devices and Accelerators. Springer, 2013,

pp. 84–98.

[137] Xiaoyi Lu et al. “Accelerating Spark with RDMA for Big Data

Processing: Early Experiences”. In: 2014 IEEE 22nd Annual Symposium on

High-Performance Interconnects (HOTI). 2014 IEEE 22nd Annual Symposium

on High-Performance Interconnects (HOTI). Aug. 2014, pp. 9–16. ᴅᴏI:

10.1109/HOTI.2014.15.

[138] Miao Luo et al. “Congestion Avoidance on Manycore High Performance

Computing Systems”. In: ICS. 2012.

[139] Miao Luo et al. “Initial Study of Multi-endpoint Runtime for MPI+OpenMP

Hybrid Programming Model on Multi-core Systems”. In: SIGPLAN Not.

49.8 (Feb. 2014).

[140] Huong Luu et al. “A Multiplatform Study of I/O Behavior on Petascale

Supercomputers”. In: Proceedings of the 24th International Symposium on

High-Performance Parallel and Distributed Computing. HPDC ’15. 2015.

[141] Kamesh Madduri et al. “Gyrokinetic particle-in-cell optimization on

emerging multi- and manycore platforms”. In: Parallel Comput. 37.9 (2011),

pp. 501–520. ISSN: 0167-8191. ᴅᴏI: 10.1016/j.parco.2011.02.001. ᴜRᴌ:

dx.doi.org/10.1016/j.parco.2011.02.001.

[142] Kamesh Madduri et al. “Gyrokinetic Toroidal Simulations on Leading Multi-

and Manycore HPC Systems”. In: International Conference for High Performance

Computing, Networking, Storage and Analysis. SC ’11. 2011, 23:1–23:12.

263

https://doi.org/10.1109/HOTI.2014.15
https://doi.org/10.1016/j.parco.2011.02.001
dx.doi.org/10.1016/j.parco.2011.02.001

[143] Allen D Malony, Sameer Shende, and Alan Morris. “Phase-Based Parallel

Performance Profiling.” In: PARCO. 2005, pp. 203–210.

[144] Allen D Malony et al. “Parallel performance measurement of heterogeneous

parallel systems with GPUs”. In: Parallel Processing (ICPP), 2011 International

Conference on. IEEE. 2011, pp. 176–185.

[145] Azamat Mametjanov et al. “Autotuning Stencil-Based Computations on

GPUs”. In: Proceedings of IEEE Cluster 2012. 2012.

[146] Anirban Mandal, Rob Fowler, and Allan Porterfield. “Modeling Memory

Concurrency for Multi-Socket Multi-Core Systems”. In: 2010 IEEE

International Symposium on Performance Analysis of Systems and Software

(ISPASS2010). IEEE. White Plains, NY, Mar. 2010, pp. 56–75.

[147] Anirban Mandal, Rob Fowler, and Allan Porterfield. “System-wide

introspection for accurate attribution of performance bottlenecks”. In: Second

International Workshop on High-perfromance Infrastruture for Scalable Tools.

2012.

[148] Anirban Mandel, Rob Fowler, and Allan Porterfield. “System-wide

introspection for accurate attribution of performance bottlenecks”. In: Second

International Workshop on High-perfromance Infrastruture for Scalable Tools.

2012.

[149] Aniruddha Marathe et al. “A Run-Time System for Power-Constrained HPC

Applications”. In: High Performance Computing: 30th International Conference,

ISC High Performance 2015, Frankfurt, Germany, July 12-16, 2015, Proceedings.

Vol. 9137. Springer. 2015, p. 394.

264

[150] Steven J. Martin and Matthew Kappel. “Cray XC30 Power Monitoring and

Management”. In: Cray User Group Conference Proceedings. 2014.

[151] Kristyn J Maschhoff and Michael F Ringenburg. “Experiences running and

optimizing the berkeley data analytics stack on cray platforms”. In: Cray Users

Group (2015).

[152] T Mattson et al. OCR: The Open Community Runtime interface version 1.1. 0.

2015.

[153] MPI Solutions for GPUs. https://developer.nvidia.com/mpi-solutions-

gpus.

[154] Paul E McKenney. “Is parallel programming hard, and, if so, what can you do

about it?” In: Linux Technology Center, IBM Beaverton (2011).

[155] Abdul Wahid Memon and Grigori Fursin. “Crowdtuning: systematizing

auto-tuning using predictive modeling and crowdsourcing”. In: PARCO

mini-symposium on ’Application Autotuning for HPC (Architectures)’.

Sept. 12, 2013. ᴜRᴌ: http://hal.inria.fr/hal- 00944513 (visited on

05/01/2014).

[156] Jiayuan Meng et al. “GROPHECY: GPU Performance Projection from CPU

Code Skeletons”. In: Proceedings of 2011 International Conference for High

Performance Computing, Networking, Storage and Analysis. SC ’11. New York,

NY, USA: ACM, 2011, 14:1–14:11. ISBN: 978-1-4503-0771-0. ᴅᴏI: 10.1145/

2063384.2063402. ᴜRᴌ: http://doi.acm.org/10.1145/2063384.2063402

(visited on 05/30/2014).

265

https://developer.nvidia.com/mpi-solutions-gpus
https://developer.nvidia.com/mpi-solutions-gpus
http://hal.inria.fr/hal-00944513
https://doi.org/10.1145/2063384.2063402
https://doi.org/10.1145/2063384.2063402
http://doi.acm.org/10.1145/2063384.2063402

[157] Xiangrui Meng et al. “MLlib: Machine Learning in Apache Spark”. In:

arXiv:1505.06807 [cs, stat] (May 26, 2015). arXiv: 1505.06807. ᴜRᴌ: http:

//arxiv.org/abs/1505.06807 (visited on 11/11/2015).

[158] Harshitha Menon and Laxmikant Kalé. “A distributed dynamic load balancer

for iterative applications”. In: High Performance Computing, Networking, Storage

and Analysis (SC), 2013 International Conference for. IEEE. 2013, pp. 1–11.

[159] Renato Miceli et al. “AutoTune: A Plugin-Driven Approach to the

Automatic Tuning of Parallel Applications”. In: Applied Parallel and Scientific

Computing. Ed. by Pekka Manninen and Per Öster. Lecture Notes in

Computer Science 7782. Springer Berlin Heidelberg, 2013, pp. 328–342.

ISBN: 978-3-642-36802-8, 978-3-642-36803-5. ᴜRᴌ: http://link.springer.

com/chapter/10.1007/978-3-642-36803-5_24 (visited on 05/01/2014).

[160] Barton P Miller et al. “The Paradyn parallel performance measurement tool”.

In: Computer 28.11 (1995), pp. 37–46.

[161] miniGMG website. http://crd.lbl.gov/groups-depts/ftg/projects/

current-projects/xtune/miniGMG.

[162] Bernd Mohr. “Scalable parallel performance measurement and analysis

tools-state-of-the-art and future challenges”. In: Supercomputing frontiers and

innovations 1.2 (2014), pp. 108–123.

[163] National Energy Research Scientific Computing Center. https://www.nersc.gov.

[164] Jacob Nelson et al. “Latency-tolerant Software Distributed Shared Memory”.

In: Proceedings of the 2015 USENIX Conference on Usenix Annual Technical

Conference. USENIX ATC ’15. Santa Clara, CA: USENIX Association, 2015,

266

http://arxiv.org/abs/1505.06807
http://arxiv.org/abs/1505.06807
http://arxiv.org/abs/1505.06807
http://link.springer.com/chapter/10.1007/978-3-642-36803-5_24
http://link.springer.com/chapter/10.1007/978-3-642-36803-5_24
http://crd.lbl.gov/groups-depts/ftg/projects/current-projects/xtune/miniGMG
http://crd.lbl.gov/groups-depts/ftg/projects/current-projects/xtune/miniGMG
https://www.nersc.gov

pp. 291–305. ISBN: 978-1-931971-225. ᴜRᴌ: http://dl.acm.org/citation.

cfm?id=2813767.2813789.

[165] NERSC User Survey. 2013. ᴜRᴌ: https : / / www . nersc . gov / news -

publications/publications-reports/user-surveys/2013/.

[166] Chris J Newburn et al. “Offload Compiler Runtime for the Intel® Xeon Phi

Coprocessor”. In: Parallel and Distributed Processing Symposium Workshops &

PhD Forum (IPDPSW), 2013 IEEE 27th International. IEEE. 2013, pp. 1213–

1225.

[167] John Nickolls et al. “Scalable Parallel Programming with CUDA”. In: Queue

6.2 (Mar. 2008), pp. 40–53. ISSN: 1542-7730. ᴅᴏI: 10 . 1145 / 1365490 .

1365500.

[168] Jarek Nieplocha and Bryan Carpenter. “ARMCI: A Portable Remote Memory

Copy Libray for Ditributed Array Libraries and Compiler Run-Time

Systems”. In: IPPS/SPDP’99 Workshops. 1999.

[169] NVIDIA. CUDA Toolkit 7.5 CUPTI API Specification. 2015. ᴜRᴌ: http://

docs.nvidia.com/cuda/cupti/.

[170] Oak Ridge Leadership Computing Facility. https://www.olcf.ornl.gov.

[171] OpenMP Architecture Review Board. OpenMP Application Program Interface

Version 4.5. Nov. 2015. ᴜRᴌ: http://www.openmp.org/mp-documents/openmp-

4.5.pdf.

[172] Kay Ousterhout et al. “Making sense of performance in data analytics

frameworks”. In: Proceedings of the 12th USENIX Symposium on Networked

Systems Design and Implementation (NSDI)(Oakland, CA. 2015, pp. 293–307.

267

http://dl.acm.org/citation.cfm?id=2813767.2813789
http://dl.acm.org/citation.cfm?id=2813767.2813789
https://www.nersc.gov/news-publications/publications-reports/user-surveys/2013/
https://www.nersc.gov/news-publications/publications-reports/user-surveys/2013/
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
http://docs.nvidia.com/cuda/cupti/
http://docs.nvidia.com/cuda/cupti/
http://www.openmp.org/mp-documents/openmp-4.5.pdf
http://www.openmp.org/mp-documents/openmp-4.5.pdf

ᴜRᴌ: https://www.usenix.org/system/files/conference/nsdi15/nsdi15-

paper-ousterhout.pdf (visited on 11/11/2015).

[173] Tapasya Patki et al. “Exploring hardware overprovisioning in

power-constrained, high performance computing”. In: Proceedings of the

27th international ACM conference on International conference on supercomputing.

ACM. 2013, pp. 173–182.

[174] S. Pellegrini, R. Prodan, and T. Fahringer. “Tuning MPI Runtime Parameter

Setting for High Performance Computing”. In: 2012 IEEE International

Conference on Cluster Computing Workshops (CLUSTER WORKSHOPS).

2012 IEEE International Conference on Cluster Computing Workshops

(CLUSTER WORKSHOPS). Sept. 2012, pp. 213–221. ᴅᴏI: 10 . 1109 /

ClusterW.2012.15.

[175] Chuck Pheatt. “Intel&Reg; Threading Building Blocks”. In: J. Comput. Sci.

Coll. 23.4 (Apr. 2008), pp. 298–298. ISSN: 1937-4771. ᴜRᴌ: http://dl.acm.

org/citation.cfm?id=1352079.1352134.

[176] Meikel Poess et al. “Tpc-ds, taking decision support benchmarking to the

next level”. In: Proceedings of the 2002 ACM SIGMOD international conference

on Management of data. ACM, 2002, pp. 582–587. ᴜRᴌ: http://dl.acm.org/

citation.cfm?id=564759 (visited on 11/11/2015).

[177] Markus Püschel et al. “SPIRAL: Code generation for DSP transforms”. In:

Proceedings of the IEEE 93.2 (2005), pp. 232–275.

[178] Dan Quinlan. “ROSE: Compiler support for object-oriented frameworks”. In:

Parallel Processing Letters 10.02n03 (2000), pp. 215–226.

268

https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-ousterhout.pdf
https://www.usenix.org/system/files/conference/nsdi15/nsdi15-paper-ousterhout.pdf
https://doi.org/10.1109/ClusterW.2012.15
https://doi.org/10.1109/ClusterW.2012.15
http://dl.acm.org/citation.cfm?id=1352079.1352134
http://dl.acm.org/citation.cfm?id=1352079.1352134
http://dl.acm.org/citation.cfm?id=564759
http://dl.acm.org/citation.cfm?id=564759

[179] R. Rabenseifner, G. Hager, and G. Jost. “Hybrid MPI/OpenMP Parallel

Programming on Clusters of Multi-Core SMP Nodes”. In: Parallel, Distributed

and Network-based Processing, 2009 17th Euromicro International Conference on.

Feb. 2009, pp. 427–436.

[180] Giridhar Ravipati et al. Toward the deconstruction of Dyninst. Tech. rep.

Technical Report, Computer Sciences Department, University of Wisconsin,

Madison (ftp://ftp. cs. wisc. edu/paradyn/papers/Ravipati07Symta bAPI. pdf),

2007.

[181] James Reinders. “An overview of programming for Intel Xeon processors and

Intel Xeon Phi coprocessors”. In: (2012). ᴜRᴌ: https://software.intel.com/

sites/default/files/article/330164/an-overview-of-programming-for-

intel-xeon-processors-and-intel-xeon-phi-coprocessors_1.pdf.

[182] Arch D. Robison. “Composable Parallel Patterns with Intel Cilk Plus”. In:

Computing in Science and Engineering 15.2 (2013), pp. 66–71, 87. ᴅᴏI: http:

//dx.doi.org/10.1109/MCSE.2013.21. ᴜRᴌ: http://scitation.aip.org/

content/aip/journal/cise/15/2/10.1109/MCSE.2013.21.

[183] Roxana-Ioana Roman et al. “Understanding Spark Performance in Hybrid

and Multi-Site Clouds”. In: 6th International Workshop on Big Data Analytics:

Challenges and Opportunities (BDAC-15). 2015.

[184] Philip C Roth and Barton P Miller. “On-line automated performance

diagnosis on thousands of processes”. In: Proceedings of the eleventh ACM

SIGPLAN symposium on Principles and practice of parallel programming. ACM.

2006, pp. 69–80.

269

https://software.intel.com/sites/default/files/article/330164/an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors_1.pdf
https://software.intel.com/sites/default/files/article/330164/an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors_1.pdf
https://software.intel.com/sites/default/files/article/330164/an-overview-of-programming-for-intel-xeon-processors-and-intel-xeon-phi-coprocessors_1.pdf
https://doi.org/http://dx.doi.org/10.1109/MCSE.2013.21
https://doi.org/http://dx.doi.org/10.1109/MCSE.2013.21
http://scitation.aip.org/content/aip/journal/cise/15/2/10.1109/MCSE.2013.21
http://scitation.aip.org/content/aip/journal/cise/15/2/10.1109/MCSE.2013.21

[185] Barry Rountree et al. “Beyond DVFS: A first look at performance under

a hardware-enforced power bound”. In: Parallel and Distributed Processing

Symposium Workshops & PhD Forum (IPDPSW). IEEE. 2012, pp. 947–953.

[186] Gabe Rudy. “CUDA-CHiLL: A Programming Language Interface for

GPGPU Optimization and Code Generation”. MA thesis. University of Utah,

2010.

[187] Santosh Sarangkar and Apan Qasem. “MATS: A Model-driven Adaptive

Tuning System for Parallel Workloads”. In: Journal of Parallel and Cloud

Computing (JPCC) 1.2 (2012), pp. 50–64.

[188] Barry Rountreee Scott Walker Kathleen Shoga and Lauren Morita. libmsr - A

Wrapper library for model-specific registers. https://github.com/LLNL/libmsr.

2014.

[189] Rathijit Sen and David A Wood. Cache Power Budgeting for Performance.

Tech. rep. 2013.

[190] Burr Settles. Active Learning Literature Survey. Computer Sciences Technical

Report 1648. University of Wisconsin–Madison, 2009.

[191] Md Abdullah Shahneous Bari et al. “ARCS: Adaptive Runtime Configuration

Selection for Power-Constrained OpenMP Applications”. In: IEEE

International Conference on Cluster Computing (CLUSTER). 2016.

[192] Sameer S Shende and Allen D Malony. “The TAU parallel performance

system”. In: International Journal of High Performance Computing Applications

20.2 (2006), pp. 287–311.

270

https://github.com/LLNL/libmsr

[193] Jaewook Shin et al. “Autotuning and specialization: Speeding up matrix

multiply for small matrices with compiler technology”. In: Software Automatic

Tuning. Springer, 2010, pp. 353–370.

[194] Jaewook Shin et al. “Speeding up Nek5000 with autotuning and

specialization”. In: Proceedings of the 24th ACM International Conference on

Supercomputing. ACM. 2010, pp. 253–262.

[195] Min Si et al. “MT-MPI: Multithreaded MPI for Many-core Environments”.

In: ICS. Munich, Germany, 2014, pp. 125–134. ISBN: 978-1-4503-2642-1.

[196] Seoul National University Center for Manycore Programming.

Implementation of NAS Parallel Benchmark Using C. http://aces.snu.ac.

kr/SNU_NPB_Suite.html. 2013.

[197] spark-perf Benchmark. https://github.com/databricks/spark-perf.

[198] Jonathan Sparks, Howard Pritchard, and Martha Dumler. “The Cray

Framework for Hadoop for the Cray XC30”. In: (). ᴜRᴌ: https://cug.org/

proceedings/cug2014_proceedings/includes/files/pap160.pdf (visited

on 11/11/2015).

[199] Thomas Sterling et al. “SLOWER: A performance model for Exascale

computing”. In: Supercomputing frontiers and innovations 1.2 (2014), pp. 42–

57.

[200] John E. Stone, David Gohara, and Guochun Shi. “OpenCL: A Parallel

Programming Standard for Heterogeneous Computing Systems”. In: IEEE

Des. Test 12.3 (May 2010), pp. 66–73. ISSN: 0740-7475. ᴅᴏI: 10.1109/MCSE.

2010.69.

271

http://aces.snu.ac.kr/SNU_NPB_Suite.html
http://aces.snu.ac.kr/SNU_NPB_Suite.html
https://github.com/databricks/spark-perf
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap160.pdf
https://cug.org/proceedings/cug2014_proceedings/includes/files/pap160.pdf
https://doi.org/10.1109/MCSE.2010.69
https://doi.org/10.1109/MCSE.2010.69

[201] Ching-Long Su and Alvin M Despain. “Cache designs for energy efficiency”.

In: System Sciences, 1995. Proceedings of the Twenty-Eighth Hawaii International

Conference on. Vol. 1. IEEE. 1995, pp. 306–315.

[202] M Aater Suleman, Moinuddin K Qureshi, and Yale N Patt. “Feedback-driven

threading: power-efficient and high-performance execution of

multi-threaded workloads on CMPs”. In: ACM Sigplan Notices 43.3 (2008),

pp. 277–286.

[203] Yanhua Sun, Jonathan Lifflander, and L. V. Kale. “PICS: A

Performance-Analysis-Based Introspective Control System to Steer Parallel

Applications”. In: Proceedings of 4th International Workshop on Runtime and

Operating Systems for Supercomputers ROSS 2014. Munich, Germany, June

2014.

[204] Lingjia Tang, Jason Mars, and Mary Lou Soffa. “Contentiousness vs.

Sensitivity: Improving Contention Aware Runtime Systems on Multicore

Architectures”. In: Proceedings of the 1st International Workshop on Adaptive

Self-Tuning Computing Systems for the Exaflop Era. EXADAPT ’11. New

York, NY, USA: ACM, 2011, pp. 12–21. ISBN: 978-1-4503-0708-6. ᴅᴏI:

10.1145/2000417.2000419. ᴜRᴌ: http://doi.acm.org/10.1145/2000417.

2000419 (visited on 05/27/2014).

[205] Wittawat Tantisiriroj et al. “On the duality of data-intensive file system

design: reconciling HDFS and PVFS”. In: Proceedings of 2011 International

Conference for High Performance Computing, Networking, Storage and Analysis.

ACM. 2011, p. 67.

272

https://doi.org/10.1145/2000417.2000419
http://doi.acm.org/10.1145/2000417.2000419
http://doi.acm.org/10.1145/2000417.2000419

[206] Cristian Ţăpuş, I-Hsin Chung, and Jeffrey K. Hollingsworth. “Active

Harmony: Towards Automated Performance Tuning”. In: 2002 ACM/IEEE

Conference on Supercomputing. SC ’02. Baltimore, Maryland: IEEE Computer

Society Press, 2002, pp. 1–11. ᴜRᴌ: http://dl.acm.org/citation.cfm?id=

762761.762771.

[207] Valerie Taylor, Xingfu Wu, and Rick Stevens. “Design and implementation

of prophesy automatic instrumentation and data entry system”. In: Proceedings

of the Parallel and Distributed Computing and Systems Conference (PDCS). 2001.

[208] V. Taylor et al. “Prophesy: automating the modeling process”. In: Third

Annual International Workshop on Active Middleware Services, 2001. Third

Annual International Workshop on Active Middleware Services, 2001. Aug.

2001, pp. 3–11. ᴅᴏI: 10.1109/AMS.2001.993715.

[209] Traileka Glacier Team. What Is OCR? June 2014. ᴜRᴌ: https://xstack.

exascale-tech.com/wiki/images/d/d3/What-is-OCR.pptx.

[210] Rajeev Thakur and William Gropp. “Test Suite for Evaluating Performance

of Multithreaded MPI Communication”. In: Parallel Comput. 35.12 (2009).

[211] Rajeev Thakur, Rolf Rabenseifner, and William Gropp. “Optimization of

Collective Communication Operations in MPICH”. In: IJHPCA (2005),

pp. 49–66.

[212] The National Energy Research Scientific Computing Center (NERSC).

“Edison”. https://www.nersc.gov/users/computational-systems/edison/.

Apr. 2015.

[213] Peter Thoman, Philipp Gschwandtner, and Thomas Fahringer. “On the

quality of implementation of the c++ 11 thread support library”. In: Parallel,

273

http://dl.acm.org/citation.cfm?id=762761.762771
http://dl.acm.org/citation.cfm?id=762761.762771
https://doi.org/10.1109/AMS.2001.993715
https://xstack.exascale-tech.com/wiki/images/d/d3/What-is-OCR.pptx
https://xstack.exascale-tech.com/wiki/images/d/d3/What-is-OCR.pptx
https://www.nersc.gov/users/computational-systems/edison/

Distributed and Network-Based Processing (PDP), 2015 23rd Euromicro

International Conference on. IEEE. 2015, pp. 94–98.

[214] Ananta Tiwari et al. “Auto-tuning full applications: A case study”. In: Int. J.

High Perform. Comput. Appl. 25.3 (Aug. 2011), pp. 286–294. ISSN: 1094-3420.

ᴅᴏI: 10.1177/1094342011414744. ᴜRᴌ: http://dx.doi.org/10.1177/

1094342011414744.

[215] Antana Tiwari. “Tuning Parallel Applications in Parallel”. PhD thesis.

University of Maryland, College Park, 2011.

[216] TOP500 List. Nov. 2015. ᴜRᴌ: http://www.top500.org/lists/2015/11/.

[217] UC Berkeley AmpLab. Big Data Benchmark. ᴜRᴌ: https://amplab.cs.

berkeley.edu/benchmark/.

[218] UPC Consortium. upc.lbl.gov/docs/user/upc_spec_1.2.pdf.

[219] UPC Consortium. UPC Language and Library Specifications, v1.3. Tech Report

LBNL-59208. Lawrence Berkeley National Lab, 2013. ᴜRᴌ: http://upc.lbl.

gov/publications/upc-spec-1.3.pdf.

[220] UPC Consortium. UPC Optional Library Specifications- version 1.3.

upc-specification.googlecode.com/files/upc-lib-optional-spec-1.3-draft-3.pdf.

Nov. 2012.

[221] UPC-FT benchmark. https://www.nersc.gov/users/computational-

systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-

rfp/nersc-8-trinity-benchmarks/npb-upc-ft/.

[222] Jeffrey Vetter and Chris Chambreau. “MPIp: Lightweight, scalable MPI

profiling”. In: (2005).

274

https://doi.org/10.1177/1094342011414744
http://dx.doi.org/10.1177/1094342011414744
http://dx.doi.org/10.1177/1094342011414744
http://www.top500.org/lists/2015/11/
https://amplab.cs.berkeley.edu/benchmark/
https://amplab.cs.berkeley.edu/benchmark/
upc.lbl.gov/docs/user/upc_spec_1.2.pdf
http://upc.lbl.gov/publications/upc-spec-1.3.pdf
http://upc.lbl.gov/publications/upc-spec-1.3.pdf
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/npb-upc-ft/
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/npb-upc-ft/
https://www.nersc.gov/users/computational-systems/nersc-8-system-cori/nersc-8-procurement/trinity-nersc-8-rfp/nersc-8-trinity-benchmarks/npb-upc-ft/

[223] Richard Vuduc, James W Demmel, and Katherine A Yelick. “OSKI: A library

of automatically tuned sparse matrix kernels”. In: Journal of Physics: Conference

Series. Vol. 16. 1. IOP Publishing. 2005, p. 521.

[224] Michael Wagner, Tobias Hilbrich, and Holger Brunst. “Online Performance

Analysis: An Event-Based Workflow Design towards Exascale”. In: High

Performance Computing and Communications, 2014 IEEE 6th Intl Symp on

Cyberspace Safety and Security, 2014 IEEE 11th Intl Conf on Embedded Software

and Syst (HPCC, CSS, ICESS), 2014 IEEE Intl Conf on. IEEE. 2014, pp. 839–

846.

[225] Wei Wang et al. “Using Per-Loop CPU Clock Modulation for Energy

Efficiency in OpenMP Applications”. In: Energy 1.1.4 (2015), pp. 1–6.

[226] Yandong Wang et al. “Hadoop Acceleration Through Network Levitated

Merge”. In: Proceedings of 2011 International Conference for High Performance

Computing, Networking, Storage and Analysis. SC ’11. New York, NY, USA:

ACM, 2011, 57:1–57:10. ISBN: 978-1-4503-0771-0. ᴅᴏI: 10.1145/2063384.

2063461. ᴜRᴌ: http://doi.acm.org/10.1145/2063384.2063461 (visited on

11/11/2015).

[227] Alexander Wert, Jens Happe, and Lucia Happe. “Supporting Swift

Reaction: Automatically Uncovering Performance Problems by Systematic

Experiments”. In: Proceedings of the 2013 International Conference on Software

Engineering. ICSE ’13. Piscataway, NJ, USA: IEEE Press, 2013, pp. 552–561.

ISBN: 978-1-4673-3076-3. ᴜRᴌ: http://dl.acm.org/citation.cfm?id=

2486788.2486861 (visited on 05/13/2014).

275

https://doi.org/10.1145/2063384.2063461
https://doi.org/10.1145/2063384.2063461
http://doi.acm.org/10.1145/2063384.2063461
http://dl.acm.org/citation.cfm?id=2486788.2486861
http://dl.acm.org/citation.cfm?id=2486788.2486861

[228] Clint Whaley, Antoine Petitet, and Jack J. Dongarra. “Automated Empirical

Optimization of Software and the ATLAS Project”. In: Parallel Computing 27

(2000), p. 2001.

[229] R. Clint Whaley and Jack J. Dongarra. “Automatically tuned linear algebra

software”. In: Proceedings of the 1998 ACM/IEEE conference on Supercomputing

(CDROM). Supercomputing ’98. San Jose, CA: IEEE Computer Society,

1998, pp. 1–27. ISBN: 0-89791-984-X. ᴜRᴌ: http://dl.acm.org/citation.

cfm?id=509058.509096.

[230] K.B. Wheeler, R.C. Murphy, and D. Thain. “Qthreads: An API for

programming with millions of lightweight threads”. In: Parallel and

Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on.

Apr. 2008, pp. 1–8. ᴅᴏI: 10.1109/IPDPS.2008.4536359.

[231] Tom White. Hadoop: The Definitive Guide. 1st. O’Reilly Media, Inc., 2009.

ISBN: 0596521979, 9780596521974.

[232] M. Wilde et al. “Swift: A Language for Distributed Parallel Scripting”. In:

Parallel Computing 37.9 (2011), pp. 633–652.

[233] Samuel Webb Williams. Auto-tuning performance on multicore computers.

ProQuest, 2008.

[234] Samuel Williams et al. “Extracting Ultra-scale Lattice Boltzmann

Performance via Hierarchical and Distributed Auto-tuning”. In: International

Conference for High Performance Computing, Networking, Storage and Analysis.

SC ’11. ACM, 2011.

276

http://dl.acm.org/citation.cfm?id=509058.509096
http://dl.acm.org/citation.cfm?id=509058.509096
https://doi.org/10.1109/IPDPS.2008.4536359

[235] Samuel Williams et al. Implementation and Optimization of miniGMG - a

Compact Geometric Multigrid Benchmark. Tech. rep. LBNL 6676E. Lawrence

Berkeley National Laboratory, Dec. 2012.

[236] Samuel Williams et al. “Optimization of geometric multigrid for emerging

multi- and manycore processors”. In: Proc. of the International Conference on

High Performance Computing, Networking, Storage and Analysis. SC ’12. IEEE

Computer Society Press, 2012.

[237] Thomas Williams and Colin Kelley. “Gnuplot Homepage”. http://www.

gnuplot.info. Apr. 2015.

[238] Felix Wolf et al. “Automatic Analysis of Inefficiency Patterns in Parallel

Applications: Research Articles”. In: Concurr. Comput. : Pract. Exper. 19.11

(Aug. 2007), pp. 1481–1496. ISSN: 1532-0626. ᴅᴏI: 10.1002/cpe.v19:11.

ᴜRᴌ: http://dx.doi.org/10.1002/cpe.v19:11 (visited on 05/01/2014).

[239] J. M. Wozniak et al. “Turbine: A Distributed-Memory Dataflow Engine

for Extreme-Scale Many-Task Applications”. In: Proceedings SWEET 2012.

Scottsdale, AZ, May 2012. ᴜRᴌ: https : / / sites . google . com / site /

sweetworkshop2012/.

[240] J.M. Wozniak et al. “Swift/T: Large-Scale Application Composition via

Distributed-Memory Dataflow Processing”. In: 2013 13th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (CCGrid).

2013 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid

Computing (CCGrid). May 2013, pp. 95–102. ᴅᴏI: 10.1109/CCGrid.2013.

99.

277

http://www.gnuplot.info
http://www.gnuplot.info
https://doi.org/10.1002/cpe.v19:11
http://dx.doi.org/10.1002/cpe.v19:11
https://sites.google.com/site/sweetworkshop2012/
https://sites.google.com/site/sweetworkshop2012/
https://doi.org/10.1109/CCGrid.2013.99
https://doi.org/10.1109/CCGrid.2013.99

[241] Xingfu Wu et al. “Design and development of Prophesy Performance

Database for distributed scientific applications”. In: 10th SIAM Conference

on Parallel Processing for Scientific Computing. 2001.

[242] Yuanyuan Yang and Jianchao Wang. “Efficient All-to-All Broadcast in

All-Port Mesh and Torus Networks”. In: International Symposium on High

Performance Computer Architecture. HPCA ’99. Washington, DC, USA: IEEE

Computer Society, 1999, pp. 290–. ISBN: 0-7695-0004-8. ᴜRᴌ: http://dl.

acm.org/citation.cfm?id=520549.822773.

[243] Yuanyuan Yang and Jianchao Wang. “Near-Optimal All-to-All Broadcast

in Multidimensional All-Port Meshes and Tori”. In: IEEE Trans. Parallel

Distrib. Syst. 13 (2 Feb. 2002), pp. 128–141. ISSN: 1045-9219. ᴅᴏI: 10.1109/

71.983941. ᴜRᴌ: http://dl.acm.org/citation.cfm?id=506358.506361.

[244] Asim YarKhan. “Dynamic task execution on shared and distributed memory

architectures”. PhD thesis. Knoxville, TN, USA: University of Tennessee,

2012. ᴜRᴌ: http://trace.tennessee.edu/utk_graddiss/1575/.

[245] Katherine Yelick et al. “Productivity and performance using partitioned

global address space languages”. In: Proceedings of the 2007 international

workshop on Parallel symbolic computation. ACM. 2007, pp. 24–32.

[246] Kamen Yotov et al. “A Comparison of Empirical and Model-driven

Optimization”. In: Proceedings of the ACM SIGPLAN 2003 Conference on

Programming Language Design and Implementation. PLDI ’03. New York, NY,

USA: ACM, 2003, pp. 63–76. ISBN: 1-58113-662-5. ᴅᴏI: 10.1145/781131.

781140. ᴜRᴌ: http://doi.acm.org/10.1145/781131.781140 (visited on

05/01/2014).

278

http://dl.acm.org/citation.cfm?id=520549.822773
http://dl.acm.org/citation.cfm?id=520549.822773
https://doi.org/10.1109/71.983941
https://doi.org/10.1109/71.983941
http://dl.acm.org/citation.cfm?id=506358.506361
http://trace.tennessee.edu/utk_graddiss/1575/
https://doi.org/10.1145/781131.781140
https://doi.org/10.1145/781131.781140
http://doi.acm.org/10.1145/781131.781140

[247] Matei Zaharia et al. “Resilient distributed datasets: A fault-tolerant abstraction

for in-memory cluster computing”. In: Proceedings of the 9th USENIX

conference on Networked Systems Design and Implementation. USENIX

Association, 2012, pp. 2–2. ᴜRᴌ: http://dl.acm.org/citation.cfm?id=

2228301 (visited on 06/17/2015).

[248] Matei Zaharia et al. “Spark: cluster computing with working sets”. In:

Proceedings of the 2nd USENIX conference on Hot topics in cloud computing.

Vol. 10. 2010, p. 10. ᴜRᴌ: http://static.usenix.org/legacy/events/

hotcloud10/tech/full_papers/Zaharia.pdf (visited on 06/17/2015).

[249] Gengbin Zheng. “Achieving high performance on extremely large

parallel machines: performance prediction and load balancing”.

PhD thesis. Department of Computer Science, University of Illinois at

Urbana-Champaign, 2005.

[250] Yili Zheng et al. “UPC++: A PGAS Extension for C++”. In: Parallel and

Distributed Processing Symposium, 2014 IEEE 28th International. Parallel and

Distributed Processing Symposium, 2014 IEEE 28th International. May 2014,

pp. 1105–1114. ᴅᴏI: 10.1109/IPDPS.2014.115.

279

http://dl.acm.org/citation.cfm?id=2228301
http://dl.acm.org/citation.cfm?id=2228301
http://static.usenix.org/legacy/events/hotcloud10/tech/full_papers/Zaharia.pdf
http://static.usenix.org/legacy/events/hotcloud10/tech/full_papers/Zaharia.pdf
https://doi.org/10.1109/IPDPS.2014.115

	 Introduction
	Thesis Statement
	Dissertation Outline
	Coauthored Material

	 Background and Related Work
	Current Programming Models
	Capturing Performance Data
	Autotuning
	Performance Modeling
	Performance Diagnosis
	Exascale Computing and Future Programming Models
	Conclusion

	 Online Communications Adaptation in UPC
	Introduction
	Maximizing Message Concurrency
	Communication and Concurrency
	Runtime Design
	Network Performance and Saturation
	Parallelizing Injection in Applications
	Discussion
	Other Related Work
	Conclusion
	Bridge

	 Performance Measurement and Online Adaptation in HPX
	Introduction
	APEX Design
	Experimental Results
	Tuning with a Global View
	Conclusion
	Bridge

	 Storage Optimization and Variability in Spark
	Introduction
	Motivation
	Spark Architecture
	Experimental Setup
	Single Node Performance
	Scaling Concerns
	Improving Shuffle Scalability With Better Block Management
	Spark-Perf Benchmark on Lustre
	Localizing Metadata Operations with Shifter
	Input Disk I/O versus Shuffle Disk I/O
	Localizing JVM and Spark Runtime Metadata Accesses
	Xeon Phi and the Effect of Straggler Tasks
	Network Latency
	Discussion
	Related Work
	Conclusion
	Bridge

	 Straggler Analysis in OCR
	Introduction
	APEX-OCR Integration
	Task Eligibility
	Tracing OCR Applications
	Blame Analysis
	Load Balancing
	Conclusion
	Bridge

	 Optimizing Scheduling in OpenMP
	Introduction
	Motivation
	Framework
	Experiment Design
	Related Work
	Conclusions
	Bridge

	 Conclusions
	REFERENCES CITED

