
SYSTEMWIDE POWER MANAGEMENT TARGETING EARLY HARDWARE

OVERPROVISIONED HIGH PERFORMANCE COMPUTERS

by

DANIEL ELLSWORTH

A DISSERTATION

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

June 2017

DISSERTATION APPROVAL PAGE

Student: Daniel Ellsworth

Title: Systemwide Power Management Targeting Early Hardware Overprovisioned
High Performance Computers

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Computer
and Information Science by:

Allen Malony Chair
Martin Schulz Core Member
Henry Childs Core Member
Reza Rejaie Core Member
Douglas Toomey Institutional Representative

and

Scott L. Pratt Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate
School.

Degree awarded June 2017

ii

c© 2017 Daniel Ellsworth

iii

DISSERTATION ABSTRACT

Daniel Ellsworth

Doctor of Philosophy

Department of Computer and Information Science

June 2017

Title: Systemwide Power Management Targeting Early Hardware Overprovisioned
High Performance Computers

High performance computing (HPC) systems are an important enabling

tool for modern scientific discovery. These large scale computing systems have,

since the 1990s, been increasing built as clusters of commodity computers. The

operational energy needs of these clusters has lead the HPC community to focus

on energy efficient hardware and programming practices. One of the major side

effects of introducing energy efficient hardware is variability in power consumption

between components within the cluster. In practice, power variability at scale has

resulted in poor power utilization and challenges for energy providers contracted

to provide the needed power. Hardware overprovisioned HPC systems have been

proposed to improve power utilization however production deployment of such a

system would compound the challenge for energy providers.

This dissertation presents foundational work on HPC power scheduling, a

technique that reduces the risks associated with operating hardware overprovisioned

HPC systems. Power scheduling is formalized using the power scheduling invariant.

Generalized application behavior, for applications running under a power cap,

are experimentally studied. Study insights are used to develop a power scheduler

iv

and a power capping cluster simulator. Comparative behavior of different power

scheduling strategies as also examined.

Utilizing the power scheduling invariant, the safety of any power scheduler

for deployment can be proven through analyzing scheduler’s algorithm and

mechanism. A general trend exists in power capped application performance that

can be related to application progress, the underlying physics of the hardware,

and expected runtime dilation. PowSched provides a proof by construction that

power scheduling can be done safely and effectively without application specific

models using a simple feedback mechanism. Experimentally, PowSched was shown

to produce a 14% improvement in throughput compared to a fair distribution of

power between cluster components. PowSim provides a proof by construction that

the generalized effects on runtime can be efficiently simulated at scale, providing

critical simulation infrastructure for researchers exploring power scheduling at

scale. Using simulation, power scheduling strategies are studied and dynamic power

scheduling appears to out perform static and reservation based techniques.

This dissertation includes previously published and unpublished co-authored

material.

v

CURRICULUM VITAE

NAME OF AUTHOR: Daniel Ellsworth

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene

DEGREES AWARDED:

Doctor of Philosophy, Computer Science, 2017, University of Oregon
Bachelor of Science, Computer Science, 2004, University of Oregon

AREAS OF SPECIAL INTEREST:

High Performance Computing
Programming Language Acquisition

PROFESSIONAL EXPERIENCE:

Graduate Teaching Fellow, University of Oregon, 2011-2017

Intern, Lawerence Livermore National Laboratory, 2014-2017

Software Developer, Electrical Geodesics Incorporated, 2013-2014

Owner, Octahedral Softworks, 2005-2011

Security Software Architect, Guident, 2010-2011

Trainer & Developer, Nortel Government Solutions, 2009-2010

Director of Application Architecture, Croix Connect, 2009

vi

GRANTS, AWARDS AND HONORS:

Don Hubbard Scholarship Award, Computer and Information Science
Department, University of Oregon, 2016

Best Graduate Teaching Fellow, Computer and Information Science
Department, University of Oregon, 2013

PUBLICATIONS:

Ellsworth, D., Patki, T., Schulz, M., Rountree, B., & Malony, A. (2016,
November). A Unified Platform for Exploring Power Management
Strategies. In Proceedings of the 4th International Workshop on Energy
Efficient Supercomputing (pp. 24-30). IEEE Press.

Ellsworth, D. (2016). Dynamic Power Management For Hardware Over-
provisioned Systems (No. LLNL-CONF-705518). Lawrence Livermore
National Laboratory (LLNL), Livermore, CA.

Ellsworth, D., Patki, T., Perarnau, S., Seo, S., Amer, A., Zounmevo, J.,
... & Schulz, M. (2016, May). Systemwide Power Management with
Argo. In Parallel and Distributed Processing Symposium Workshops,
2016 IEEE International (pp. 1118-1121). IEEE.

Ellsworth, D. (2016). Topics Toward Automated Multiobjective HPC
System Management.

Ellsworth, D. A., Malony, A. D., Rountree, B., & Schulz, M. (2015,
November). Dynamic Power Sharing for Higher Job Throughput. In
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (p. 80). ACM.

Ellsworth, D. A., Malony, A. D., Rountree, B., & Schulz, M. (2015, June).
Pow: System-wide Dynamic Reallocation of Limited Power in HPC. In
Proceedings of the 24th International Symposium on High-Performance
Parallel and Distributed Computing (pp. 145-148). ACM.

Ellsworth, D. (2013). Improving Dynamic Invariant Saliency with Static
Dataflow Analysis.

vii

ACKNOWLEDGEMENTS

Part of this work was performed under the auspices of the U.S. Department

of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-

07NA27344.

This work was supported by the U.S. Dept. of Energy, Office of Science,

Advanced Scientific Computing Research Program, under Contract DE-AC02-

06CH11357.

viii

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

Previously Published Work 7

II. BACKGROUND . 8

Energy Efficiency . 9

Power Reduction . 13

DPG Impact . 14

DVFS Impact . 15

RAPL Impact . 16

Indirect Mechanisms 17

Runtime Reduction . 18

Reflection on Energy Efficiency 19

Power Scheduling . 20

Global Power Limit Enforcement 21

Hard Enforcement 22

Soft Enforcement . 23

Schedule Time . 24

Static Techniques . 24

Reservation Techniques 25

Dynamic Techniques 25

Literature . 26

ix

Chapter Page

Naive . 26

PARM . 27

RMAP . 28

SLURM . 29

PMJPC . 30

PowSched . 31

Shifter . 32

DAPM . 33

Discussion . 33

Chapter Summary . 35

III. POWER CAPPING RUNTIME EFFECT 36

Power Monitoring . 37

Missing Capabilities . 37

PowMon Design . 39

Observation Mechanism 40

Observation Timing 41

Observation Storage 42

Startup and Shutdown 43

PowMon Performance Impact 44

Experimental Data . 44

Dynamic Response . 44

Characteristic Power Consumption 45

Decreasing Bounds . 47

Summary of Experiments 52

x

Chapter Page

Connecting Programs and Power 52

Chapter Summary . 55

IV. DYNAMIC POWER SCHEDULING 56

Design Discussion . 56

Scheduling Heuristic 60

Algorithm . 62

Hard Enforcement 65

Implementations . 67

MPI . 68

Glasgow Cache . 68

Results . 69

Overhead . 70

MPI Experimental Results 70

Window Size Sensitivity 75

Scaling Experiment . 75

Glasgow Cache Experimental Results 76

Chapter Summary . 80

V. SIMULATING POWER CAPPING 82

Modeling Power Capping 84

Model Intuitions . 84

Model Formalization . 88

Cluster Scale . 90

Implementation . 92

xi

Chapter Page

Machine - sim.py . 93

Scheduler - schedulers.py 93

Program - program.py 95

Simulator Behavior . 96

Validation . 96

Scaling Performance . 98

Simulated PowSched . 101

Cluster Simulation . 102

Anticipating Performance 102

Best Case . 103

Worst Case . 103

Middle Case . 103

Chapter Summary . 106

VI. COMPARING SCHEDULING APPROACHES 108

Experimental Comparison 109

Simulation Comparison . 111

Simulation Study . 112

Base Behavior . 113

Random Queues . 115

Chapter Summary . 118

VII. CONCLUSION . 120

xii

Chapter Page

VIII. FUTURE . 123

Power Capped Application Behavior 123

Simulation Enrichment . 124

Utility of Application Awareness 125

Degree of Overprovisioning 126

Comparison Studies . 127

REFERENCES CITED . 129

xiii

LIST OF FIGURES

Figure Page

1. A plot of the power consumption of Vulcan over approximately 16
months. Reproduced from Patki et al. (2015). 5

2. The same computation with and without GPU support. The GPU
execution is significantly more energy efficient even though more power
is required. Reproduced from Patki et al. (2016). 12

3. Consumption when power allocation is varied during execution. Sampling
at 100 ms intervals with a 1000 ms Intel’s Running Average Power Limit
(RAPL) window. 46

4. Consumption when power allocation matches the processor TDP.
Sampling at 100 ms intervals with a 1000 ms RAPL window. 48

5. Runtime effect of decreasing power bounds for 8 benchmarks and
parameters. 49

6. Consumption when power allocation matches the processor TDP.
Sampling at 100 ms intervals with a 1000 ms RAPL window. 50

7. Model relating the cluster, job scheduler, and power scheduler. Graphic
created by Allen Malony and reproduced from D. A. Ellsworth, Malony,
Rountree, and Schulz (2015a). 58

8. Workload consumption and global bound for a 128 node cluster using an
average of 70 watts per socket. 72

9. Workload consumption over time for a 128 node cluster using an average
of 70 watts per socket. 73

10. Lines represent the performance for physical node counts used from 8k
to 512 nodes in (a) and (b). Lines represent simulated node count per
physical node in (c) and (d). 77

11. Crossover between computation and communication based on physical
count. 78

12. Job consumption and global bound for a 128 node cluster using an
average of 70 watts per socket using the decoupled scheduler. 80

xiv

Figure Page

13. Runtime effect of decreasing processor power caps for a collection of
simulated programs. 97

14. Power consumption for a simulated application with high and low power
consumption phases (unbounded (left) and bounded(right)). 98

15. Wall clock time to simulate 12 hours of runtime with cluster node counts
ranging from 16 to 2048 nodes. Static (stt) and Dynamic (dyn) schedulers
are compared. 99

16. Wall clock time to simulate a cluster with 1024 nodes from 1 hour to 64
hours of simulated time. Static (stt) and Dynamic (dyn) schedulers are
compared. 100

17. Wall clock time to simulate a cluster with 1024 nodes for 1 to 64 hours of
simulated time. Different job types are compared. 101

18. Optimally time aligned consumption across jobs. 104

19. Worst case time aligned consumption across jobs. 105

20. Bad time alignment with different rates of change across jobs. 106

21. Scheduler comparison using optimally time aligned consumption across
jobs for PowSched. 114

xv

LIST OF TABLES

Table Page

1. 2010 estimate of first generation exascale system properties compared
to 2010 petascale systems. (GF: giga (109) flops; TF: tera (1012) flops;
PF: peta (1015) flops: EF: exa (1018) flops; BW: bandwidth; MW:
megawatt; GB: giga byte; TB: tera byte; PB: peta byte; MTTI: mean
time to interruption) . 3

2. Mapping between prior work and dissertation chapters containing shared
material. 7

3. Table mapping energy reduction research to the primary knob used (power
or runtime reduction) and mechanism used to actuate that knob. 11

4. Table defining the symbols used in the power scheduling invariant
(Equation 2.3). 22

5. Table relating work to enforcement and scheduling strategy 26

6. Runtimes for three High Performance Computing (HPC) benchmarks
at differing node counts with and without PowMon (Wrapped and
Unwrapped, respectively). Observed performance is well within system
jitter indicating that PowMon overheads are negligible. 45

7. Runtime and energy for AMG (configuration 2), LULESH, MiniFE, and
Nekbone under varying power caps. 51

8. Runtimes reported by the benchmarks in seconds. PowSched @115W run
forces PowSched to assign 115W per socket over the lifetime of the job.
PowSched @dyn allows PowSched to dynamically adjust the per socket
allocation with a global bound permitting 115W per socket. 70

9. 128 nodes, 16 nodes workloads per workload, 10 runs, same workload for
all runs reported with improvement percent and energy. 72

10. Benchmarks used for 8 node workloads in the 128 and 256 node
experiments. 74

11. Comparison of 1 decoupled run with averaged runs using static. 77

12. Comparison of static and decoupled with more varied workloads at 128
and 256 nodes. 79

xvi

Table Page

13. Symbols use in the simulation model 88

14. Description of the simulated jobs plotted in Fig 13. Runtime in this table
refers to the job runtime in normal time. 97

15. Simulation parameters . 102

16. Simulated runtime with random workloads. 102

17. Runtimes of the schedulers ordered by error and run duration for constant
type work. 116

18. Runtimes of the schedulers ordered error and run duration for prepost type
work. 116

19. Runtimes of the schedulers ordered by error and run duration for step type
work. 117

20. Runtimes of the reservation scheduler with constant type work for fixed
estimate errors. 118

xvii

CHAPTER I

INTRODUCTION

This chapter contains ideas and themes that have been previously published

in D. Ellsworth (2016); D. Ellsworth, Patki, Perarnau, et al. (2016); D. Ellsworth,

Patki, Schulz, Rountree, and Malony (2016); D. A. Ellsworth et al. (2015a);

D. A. Ellsworth, Malony, Rountree, and Schulz (2015b). The narrative as presented

in this chapter is my original work derived from discussions with the co-authors

of the previously published works regarding the motivation for the power capping

when the work was initiated.

High performance computing (HPC) platforms are a critical enabling

technology for modern science and engineering. Both of these disciplines

make extensive use of mathematical models to analyze observations and make

predictions. Executing the models is computationally intense due to the

mathematics and amount of data used to represent a physical system under

study. In the case of simulations, these computations must be done repeatedly

to accumulate effects as the system understudy evolves through simulated time.

The computational power provided by HPC platforms allow cost prohibitive,

impractical, or technologically impossible hypothises to be explored via simulation.

Early HPC platforms like the Cray-1, capable of 160 million (106) floating

point operations per second (FLOPS)1(Cray-1 , n.d.), were engineering marvels.

Efficent techniques for getting higher performance from shared memory computing

1Computational power, in the context of HPC, is measured in floating point operations per
second. A floating point number is a rounded representation of real number. An operation is
something like adding or multiplying. A person capable of multiplying two floating point numbers
per second would be a computer operating at 1 FLOPS.

1

were pioneered using early HPC machines. Vector processing and other technologies

common in modern consumer devices were pioneered in the HPC setting. The

market for such powerful shared memory systems was very small since few

organizations can afford the expense of these machines. Scaling (i.e., increasing

the computational power) for early HPC systems required new engineering effort

and completely replacing the machine.

Starting in the late 90s, the majority of HPC machine designs moved to

clusters. Rather than purchase an extremely expensive single computer, a cluster

is made by connecting many individual computers. Cluster computing allows

system owners to take advantage of the economies of scale when pricing and

repairing a machine. The shift brought new challenges as coordination across nodes

became a key concern (e.g., interconnection technologies, distributed programming

abstractions, etc.). As the community has improved techniques to coordinate

across cluster nodes, HPC scaling has become a problem primarily of identifying

how many nodes an organization can afford to include in the cluster. The top

cluster based HPC system in 2016, Sunway TaihuLight, is theoretically able to

complete 125 quintillion (1015) FLOPS and contains over 10 million processor

cores(November 2016 — TOP500 Supercomputer Sites , n.d.).

Around 2010, the US Department of Energy (DOE) became interested in

the procurement of an HPC system capable of roughly 1 sextillion (1018) FLOPS,

an exascale system. Table 1, common in presentations and reports produced by

the HPC community, compares 2010 petascale system attributes to the expected

first generation exascale system attributes. Of particular concern for horizontal

scaling was the power requirement, as most system attributes would increase by

two or three orders of magnitude, but power was only to increase by a single order

2

Attribute 2010 2018 Increase
System Peak 2 PF 1 EF O(1000)
Power 6 MW 20 MW O(10)
Memory 0.3 PB 32-64 PB O(100)
Node Performance 125 GF 1-10 TF O(10)−O(100)
Node Memory BW 25 GB/s .4-4 TB/s O(100)
Node Concurrency 12 1-10k O(100)−O(1000)
Total Concurrency 225 000 109 O(10000)
Total Node Interconnect BW 1.5 GB/s 200 GB/s O(100)
MTTI days 1 day −O(10)

Table 1. 2010 estimate of first generation exascale system properties compared
to 2010 petascale systems. (GF: giga (109) flops; TF: tera (1012) flops; PF: peta
(1015) flops: EF: exa (1018) flops; BW: bandwidth; MW: megawatt; GB: giga byte;
TB: tera byte; PB: peta byte; MTTI: mean time to interruption)

of magnitude2. The consensus from the community was that the horizontal scaling

approaches used for petascale systems would not be able to achieve the DOE

objectives and energy efficiency emerged as a top problem for the HPC community.

Many of the techniques for increasing computational energy efficiency make

power consumption variable. Different operations the computer can perform come

at different energy costs based on the complexity of the operation and the speed

at which the operation is performed. Energy efficiency is usually achieved by only

performing the needed operations at the minimum speed required to avoid delays.

Different programs and phases within the same program will use differing mixes

2The 20 megawatt power consumption target for first generation exascale systems is likely
motivated by cost. HPC systems are extremely expensive assets for the owning organization.
Procurement and installation of hardware are multimillion dollar capital investments. Ongoing
operational expenses from HPC systems are also significant. US wholesale power rates in 2017
are roughly estimated at one million dollars per megawatt of power purchased. The top US
computer in 2016 was Titan(November 2016 — TOP500 Supercomputer Sites, n.d.). Titan had
an estimated power cost of around 8 million dollars per year and a theoretical peak performance
of roughly 27 petaflops (1015 FLOPS). Observed performance on Titan was around 17 petaflops.
Purely horizontal scaling of Titan to support 1 exaflop at theoretical peak would result in roughly
30 million dollars per year in power costs.

3

of operations, resulting in different energy needs over time. The power variability

introduced by energy efficiency will be discussed more in Chapters II and III.

Traditionally, power for HPC systems is purchased and power distribution

infrastructure built based on the theoretical maximum power consumption of

the system, also known as worst case power provisioning. Figure 1 shows the

power consumption of a relatively energy efficient HPC system, Vulcan3. Vulcan

can consume roughly 2.4 megawatts of power at peak, resulting in roughly 2.4

megawatts of power being procured for the system. Vulcan is observed to consume

almost 2.4 megawatts on occasion, however, usually consumes about 1.5 megawatts.

This means that roughly 30% of the procured power goes unused during much of

Vulcan’s lifetime. Scaling up to a 20 megawatt exascale system, 6 megawatts would

be expected to go unused most of the time. Since the energy contracts in some

centers are based on a committed rate of power consumption, 30% of the fiscal

power budget may be spent on energy that is never used.

Hardware overprovisioning has been recently proposed (Rountree, Ahn, de

Supinski, Lowenthal, & Schulz, 2012) and aims to convert the power savings from

energy efficient computation into useful computation. A hardware overprovioned

HPC system will contain more hardware than can be run at peak consumption and

yet will be controlled to stay within the procured power. In the case of Vulcan that

would mean the ability to add 30% more nodes, making approximately 10 thousand

more cores available for users. The additional nodes can then be used to run larger

scale computations or run additional computations concurrently. Alternatively,

the owning organization could leave Vulcan with the same node count but reduce

3Vulcan is an IBM BG/Q system hosted at Lawerence Livermore National Laboratory.
Vulcan was initially deployed in 2012 and was ranked 21 on the Top500 list in 2016(Vulcan -
BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect — TOP500 Supercomputer Sites,
n.d.).

4

P
ow

er
 (

M
W

)

Fe
b

'13

Apr
 '1

3

Ju
ne

 '1
3

Aug
 '1

3

Oct
'13

Dec
 '1

3

Fe
b

'14

Apr
 '1

4

Ju
n

'14

0
0.

5
1

1.
5

2
2.

4

Provisioned Peak Power: 2.4 MW
Average Power Consumption: 1.47 MW

Total Power Consumption of the BG/Q Vulcan Supercomputer
 Feb 2013 to Jun 2014

2.3 MW, Burn−in

Figure 1. A plot of the power consumption of Vulcan over approximately 16
months. Reproduced from Patki et al. (2015).

the power procurement to something closer to 1.5 megawatts4. Applying either of

these changes would result in a system that could significantly exceed the procured

power, introducing risk to the owning organization.

A new and significant resource management challenge is introduced by

hardware overprovisioning. Power generation and consumption must remain in

balance across the larger power grid to avoid surges and brownouts that may

damage the power infrastructure. Consuming significantly more energy than

contracted for may cause the energy provider’s generation capacity to be exceeded

or have severe financial penalties. Supposing the energy provider can generate

sufficient power, the distribution infrastructure may not be able to support the

higher rate and will be damaged. Simply adding additional hardware without

changing the power infrastructure is therefore unsafe. To safely deploy hardware

4At an estimated 1 million dollars per megawatt, this would save nearly 1 million dollars per
year on power that is never used.

5

overprovisioned HPC systems, a mechanism to contain HPC system power

consumption is required.

This dissertation presents research on power scheduling, a mechanism to

contain systemwide power consumption, done to support first generation hardware

overprovisioned HPC systems. Energy and power in HPC have only recently

become topics of interest to the research community and power control mechanisms

like RAPL5 have only recently become available for experimentation. The broader

research question underlying this work is: how can power utilization be increased

in large scale computing systems when there exists a fixed upper limit on available

power. Contributions made in this dissertation may be relevant outside of the HPC

context (e.g., datacenters). An exploration of these other contexts is out of scope

for this work.

Chapter II discusses related work and introduces the power scheduling

invariant to partion solutions by the provability of power schedule enforcement.

Chapter III contributes research filling a foundational gap in the literature

regarding HPC application power consumption behavior. Chapter IV contributes

a novel power scheduler, experimentally shown to have good performance, that

requires no apriori information regarding applications running on the cluster.

Chapter V contributes the only simulator currently in the HPC community that

is able to simulate the general effects of arbitrary power bounds on application

progress at scale without extensive trace based modeling. Chapter VI contributes

5Running average power limit (RAPL) is an Intel technology that allows software to set
a target energy consumption, over a sliding window, that is enforced by hardware. Similar
technology, with different names, are available from other vendors. Experiments reported in this
dissertation were conducted only on Intel systems due to experimental platform availability but
the results are expected to be portable to other architectures. Confirmation of result portability is
out of scope for this dissertation.

6

1 2 3 4 5 6 7
D. A. Ellsworth et al. (2015a) X X X X
D. A. Ellsworth et al. (2015b) X X X X X X
D. Ellsworth (2016) X X X
D. Ellsworth, Patki, Perarnau, et al. (2016) X X X X
D. Ellsworth, Patki, Schulz, et al. (2016) X X X X X

Table 2. Mapping between prior work and dissertation chapters containing shared
material.

an approach to comparing power scheduling solutions to potentially be deployed on

a hardware overprovisioned HPC system.

Previously Published Work

Much of the core material presented in this dissertation has appeared in

other venues, however, the presentation has been altered for use in the context of

this dissertation. Table 2 summarizes the published works and chapters in which

previously published material appears.

7

CHAPTER II

BACKGROUND

This chapter contains ideas and themes that have been previously published

in D. Ellsworth (2016); D. Ellsworth, Patki, Perarnau, et al. (2016); D. Ellsworth,

Patki, Schulz, et al. (2016); D. A. Ellsworth et al. (2015a, 2015b). The narrative

as presented in this chapter is my original work summarizing existing research in

the community. The power scheduling invariant is my original work, however the

language used to express the invariant has been tuned through conversations with

my co-authors in the previously published work.

Hardware overprovisioned systems have only recently been proposed in

the HPC literature. In “Beyond DVFS: A First Look at Performance Under a

Hardware-Enforced Power Bound”, Rountree et al. (2012) observe that modern

energy efficient processors are overprovisioned with respect to power. These

processors have more circuitry than can be run at the highest clock frequency

while remaining within the processor’s thermal design power (TDP). Owners of

these processors are buying the flexibility to achieve higher concurrency through

activating more gates at lower frequency or fewer gates at a higher frequency.

Energy efficient performance is achieved, in part, through more effective utilization

of power in an overprovisioned processor. Rountree et al. (2012) suggest that a

similar approach may be applicable to HPC system design.

Classically, HPC nodes and power are provisioned with the expectation that

all nodes will operate at maximum power consumption at all times. In practice,

nodes rarely consume the maximum amount of power resulting in unutilized, yet

available power. A hardware overprovisioned system provides more nodes than

8

the provisioned power can support at maximum consumption. The extra nodes in

the cluster are available to perform useful computation when sufficient unutilized

power is available. System owners of hardware overprovisioned systems have the

flexibility to run all nodes at low power or a subset of nodes at high power based

on the needs of the running workloads. The hardware overprovisioned cluster, even

if built from homogenous nodes, is a dynamically reconfigurable and heterogenous

execution environment in the presence of variable power allocations. Both work and

power must be scheduled across a hardware overprovisioned cluster to maximize

system energy efficiency and performance.

Existing work on energy efficiency and power scheduling for HPC systems

is briefly surveyed in this chapter. First work on energy efficiency in the HPC

community will be briefly presented and categorized as using power reduction

or runtime reduction as the primary mechanism to achieve effeciency. Energy

efficiency work focuses on reducing the amount of energy expended to complete a

given computation and is necessary to utilize hardware overprovisioned systems.

Next, work on HPC power scheduling is presented and categorized based on

enforcement and when power allocation decisions are made. Power scheduling is

the major focus of this thesis and existing work will be organized based on how the

power bounding is enforced and when power allocations are adjusted.

Energy Efficiency

Power and energy are strongly related concepts that are often used

interchangeably in normal conversation, leading to confusion when these concepts

must be discussed separately1. The standard unit of power, P , is the Watt and

the standard unit of energy, E, is the Joule. Power is the rate at which energy is

1For example, the residential “power bill” should be referred to as an energy bill since the
utility is charging based on energy used rather than power. 1 kilowatt hour, kWh, is 3600 joules.

9

transfered, leading to the following standard formulas for conversion:

P =
E

t
(2.1)

E = Pt (2.2)

Equation 2.1 states the power, P , in watts is equal to the energy, E, in joules

divided by the time, t, in seconds. Similarly, equation 2.2 states that the energy,

E, is equal to the power, P , times the duration, t. The values of power and energy

are frequently related to one another by these formulas, which assume constant

power over the interval.

Energy efficient computation techniques are important supporting

technology for hardware overprovisioned systems since these provide opportunities

to shift power between jobs. The objective of energy efficient computation

techniques is to reduce the total energy required to complete a specific

computation. There are two, nonexclusive, basic ways to accomplish energy

reduction:

Power reduction Reduce the needed power without significantly increasing the

time.

Runtime reduction Reduce the computation runtime without significantly

increasing the needed power.

In some cases a significant power reduction and extended runtime may result in

higher energy efficiency, however, extending runtimes are highly undesirable in

HPC. Table 3 summarizes the works to be cited in this section.

Using either power reduction or runtime reduction, the energy per

computation is reduced. Energy efficient techniques that make use of dynamic

power gating (DPG) or dynamic voltage and frequency scaling (DVFS) are

10

Research Reduces Mechanism
Bambagini, Bertogna, Marinoni, and Buttazzo
(2013)

Power DPG, DVFS

Rountree et al. (2009) Power DVFS
Tiwari, Laurenzano, Peraza, Carrington, and
Snavely (2012)

Power DVFS

Marathe et al. (2015) Power DVFS, RAPL
Patki, Lowenthal, Rountree, Schulz, and de
Supinski (2013)

Power Indirect, RAPL

Zhang and Hoffmann (2016) Power Indirect, RAPL
Hoffmann, Maggio, Santambrogio, Leva, and
Agarwal (2013)

Power Indirect

Enos et al. (2010) Runtime GPGPU
Betkaoui, Thomas, and Luk (2010) Runtime FPGA

Table 3. Table mapping energy reduction research to the primary knob used (power
or runtime reduction) and mechanism used to actuate that knob.

generally making use of the first strategy. Due to some properties of the

computation, the processor can be slowed (i.e., clock frequency reduced) or halted,

reducing power, without impacting perceived performance. Energy efficient

techniques that make use of general purpose graphics processing unit (GPGPU)

computing are generally making use of the second strategy. GPGPUs tend to

require more energy per unit time than the processor however an overall energy

savings is realized due to much shorter runtimes when the parallelism can be

effectively utilized, see Figure 2.

The HPC community frequently uses floating point operations per second

per watt, FLOPS/W, as the metric of choice when discussing both HPC power and

energy. The metric represents the energy per floating point operation2. Supposing

the number of floating point operations was known in advance, a total energy cost

2Since both FLOPS and watts are rates, the time cancels out making the metric floating point
operations per joule, FLOP/J. Like a power bill’s use of kWh, leaving the watts in the FLOPS/W
measure is misleading since it does not represent a rate.

11

0 50 100 150 200 250

0
2

4
6

8
10

Power Swings on Titan (WL−LSMS v.3.0)
 CPU only versus GPU Enabled Power Consumption

Cray XK7 18,561 compute nodes

Time (minutes)

In
st

an
ta

ne
ou

s
P

ow
er

C

on
su

m
pt

io
n

(M
W

)

GPU Enabled
CPU Only

Figure 2. The same computation with and without GPU support. The GPU
execution is significantly more energy efficient even though more power is required.
Reproduced from Patki et al. (2016).

12

for a computation could be computed. However, the runtime and power would still

be unrecoverable. Knowing the number of parallel execution units does not resolve

the problem of recovering runtime since any computation that is not embarrassingly

parallel will involve some runtime in which some execution units are unused. Given

the loss of information regarding the computation, FLOPS/W is not useful for

comparing application energy performance and is better applied only to comparing

hardware floating point energy costs.

Power Reduction. As a by-product of their operation, processors

convert electrical energy into thermal energy. A major contributor to energy

consumption and heat generation within a computer is transistor switching. Each

transistor converts a small amount of energy to heat when changing state and that

amount depends, in part, on the voltage and switching frequency. Additionally,

some energy is lost due to leak current. A model to describe the power loss due to

switching is W = ηCV 2f(De Vogeleer, Memmi, Jouvelot, & Coelho, 2014); the

watts W lost are directly related to the square of the voltage V and the frequency

f of switching. Since voltage and frequency must be increased together, resulting in

a nonlinear relationship between watts and instruction execution speed dominated

by the V 2 term. Power lost to leak current is also related to the voltage.

Two major, processor internal, approaches to power management are power

gating and DVFS. Power gating turns off circuits not currently being used within

the processor. For the effected circuits, power gating avoids both leak and switching

losses. DVFS changes the voltage and frequency of operation within the processor.

For the effected circuits, DVFS reduces the leak and switching losses.

Three mechanisms exposed by modern processors for power control are

dynamic power gating (DPG), dynamic voltage and frequency scaling (DVFS),

13

and capping3(e.g., Intel’s Running Average Power Limit (RAPL)). DPG is used

to signal that the processor should switch to an ultra low power mode, turning off

most of the processor’s circuitry. Reasoning about the performance impact of DPG

is straight forward since the computation is effectively halted on the processor.

DVFS is used to signal that the processor should change to a specific clock

frequency and voltage. Reasoning about the performance impact of DVFS is more

complex since runtime may or may not increase4. RAPL is an Intel feature used

to signal that the processor should respect a power cap, which the processor does

primarily through DVFS but may involve other internal mechanisms. Reasoning

about the performance impact of a RAPL power cap is non-trivial since the

processor frequency is variable based on the concurrent work executing within the

processor.

Power reduction techniques are the most common energy efficiency

techniques in the HPC literature. The power reduction work is organized in this

section based on the primary mechanism used to achieve power reduction.

DPG Impact. DPG is a useful technique for embedded realtime

workloads, but is less useful for HPC workloads. The embedded realtime workload

is typified by a time driven sense-compute-act cycle5. Bambagini et al. (2013)

present an effective scheduler for realtime systems with limited preemption using

both DPG and DVFS that increases battery life. The effectiveness of the technique

3Different vendors use different names for their power capping technology. Intel’s Running
Average Power Limit (RAPL) is the only mechanism we have seen used in the power scheduling
literature.

4Reducing frequency will proportionally extend hardware instruction execution time. The
complexity in estimating effect comes from the interaction with the memory subsystem. If the
rate of progress was bound by memory latency, reducing the clock speed will have limited effect
on runtime.

5Periodically, the device reads a sensor value, performs a computation based on the sensed
value, and performs some action.

14

relies on the compute workload being predictably periodic with regular not-later-

than deadlines to complete the computation. While a specific HPC job may

internally have periodic behavior during execution, HPC jobs are typically a single

computation with all input data available at launch. Effectively halting a processor

participating in a job is risky since work allocated to the processor may be on the

critical path and halting will extend the critical path. No HPC energy efficiency

work using DPG was encountered while working on this dissertation.

DVFS Impact. The majority of work on energy efficiency in HPC is

based on DVFS, possibly due to the similarity to the established technique of

load balancing. A common technique for improving application performance in

HPC applications is to use a technique called load balancing6 to improve the time

alignment of work completion by each computing unit. DVFS makes reasonably

predictable changes to the runtime of compute intensive workloads on a node,

allowing load balancing via adjusting relative node computation speed. We

highlight two works here.

In “Adagio: Making DVS Practical for Complex HPC Applications”,

Rountree et al. (2009) look at reducing energy consumption of HPC applications

while maintaining runtime performance using DVFS. The authors use the

insight that many nodes in an HPC application spend some amount of time

waiting, causing these nodes idle while other nodes complete computations.

As the application executes, Adagio records the time spent between collective

communication and the time spent waiting within the collective. On future

iterations, Adagio adjusts the clock frequency during the computation portion of

6The load (i.e. amount of work) is the same (i.e. balanced) across all workers. Load imbalance
leads to longer runtime since heavily loaded workers will take longer than lightly loaded workers
and all workers must complete before the next iteration of the computation can begin.

15

execution to reduce the time spent waiting within the collective. Adagio runtime

and energy savings are favorable across a wider range of applications than the

comparison algorithms Rountree et al. tried.

In “Green Queue: Customized Large-scale Clock Frequency Scaling” Tiwari

et al. (2012) also investigate energy saving for HPC applications using DVFS.

The approach used by Green Queue is considerably more invasive than Adagio,

involving static analysis and traced executions prior to the execution compared

to the baseline. While the reported Green Queue results are impresive, with an

average 17% energy savings, the results are somewhat out of context since the

energy and time cost of executions needed to generate models are not considered.

For applications that have consistent power behavior and must be run repeatedly,

this energy cost for model building can be amortized though.

RAPL Impact. The runtime and energy performance impact of RAPL

is still an area of active research in the HPC community, which complicates the

application of RAPL to energy efficiency. One of the interesting and confounding

properties of RAPL is that small manufacturing differences are exposed as

noticeable performance differences when a power cap is applied (Inadomi et

al., 2015; Rountree et al., 2012). Minute variations in the power cost for each

individual transistor on a processor, summed over billions of transistors operating

at gigahertz frequencies, can result in substantial variations in power consumption.

Most HPC RAPL research focuses on execution in power limited contexts, which is

a component of the power scheduling problem to be discussed in the next section.

However energy efficiency gains can be inferred from this work.

In “A Run-Time System for Power-Constrained HPC Applications”,

Marathe et al. (2015) present Conductor. Conductor shifts power between

16

nodes within a job, decreasing the aggregate power consumption of the job. The

technique is actually hybrid, DVFS is used for load balance and estimates on the

expected power impact is used to set the updated RAPL power cap. A way to

understand Conductor in the context of energy savings is that Conductor provides

the energy benefits of DVFS techniques and provides an enforced upper bound on

job power consumption.

In “Exploring Hardware Overprovisioning in Power-Constrained, High

Performance Computing”, Patki et al. (2013) sweep node count, core count, and

processor power cap. From the results presented, the energy cost of configurations

can be computed. In many cases, the most energy efficient configuration does not

use the maximum number of nodes and cores at the highest power setting. Follow-

on work by Patki et al. (2015), discussed in the Power Scheduling section of this

chapter, used energy efficiency gains from selecting energy optimal configurations to

support power-aware job scheduling.

Indirect Mechanisms. Power consumption is a side effect of the active

computations. In the case where direct processor power control mechanisms are

not exposed, changes to the instruction stream or degree of parallelism can be used

used to effect power consumption. Memory, network, fans, and other subsystems

effect overall system power consumption as well and these subsystems rarely expose

mechanisms for direct power control. Some work exists that addresses how to

control power through only indirect means.

Hoffmann (2013) and Hoffmann et al. (2013) approach power reduction as a

multiobjective optimization problem. Rather than looking at a bound as a hard

limit, these works consider a bound as an optimization target when adjusting

other properties of the environment. Environmental controls used in the work

17

extend beyond direct power control, actions like changing the DVFS settings, to

indirect controls, like changing the work distribution across cores. Hoffmann (2013)

demonstrates an ability to reduce energy cost without performance impact for

applications where iterations faster than a realtime interval produce no benefit.

Hoffmann et al. (2013) demonstrates a online tuning system, PTRADE, that can

learn environmental settings to improve power efficiency during runtime.

The challenge with application of indirect mechanisms is the latency

required to converge to a target power cap. Zhang and Hoffmann (2016) use RAPL

in addition to indirect controls to achieve faster convergence to a power target than

indirect control alone provides. In this dissertation, only the processor contribution

to system power is considered due to the lack of a RAPL like mechanism for

most other subsystems7. The timeliness guarantees required to respond to power

allocation changes and maintain bounded consumption for safe operation of a

hardware overprovisioned HPC system cannot currently be supported through

indirect control mechanisms.

Runtime Reduction. Performance optimization, defined as minimizing

job runtime, has been the classic measure for goodness in HPC systems and

applications. Given the numerical intensity and duration of HPC jobs, even a

small percentage gain in performance can result in significantly shorter time to

solution. Compiler optimizations to maximally utilize processor, memory, and IO

subsystems to reduce runtimes have been traditional areas of HPC. Accelerator

technologies, like GPGPUs and vector units, have also been traditionally studied

with respect to their impact on job runtimes. While significant work exists on

reducing computational runtime for HPC applications and increasing hardware

7RAPL also supports power capping memory, however this feature is often disabled in the
BIOS.

18

energy efficiency, there is little work that discusses computational energy costs

directly when runtime is reduced. Two papers are mentioned here.

In “Quantifying the Impact of GPUs on Performance and Energy Efficiency

in HPC Clusters”(Enos et al., 2010), the energy cost of CPU only computation is

compared to a computation using GPU acceleration. Four HPC codes are run with

and without GPU acceleration on the test system. The authors conclude, for their

hardware, a speedup of greater than 3x is required for the GPU accelerated code to

be more energy efficient than a CPU-only code.

In “Comparing Performance and Energy Efficiency of FPGAs and GPUs

for High Productivity Computing”(Betkaoui et al., 2010), the energy costs of

CPU-only, FPGA, and GPU execution is compared. Four applications are run on

the CPU, FPGA, and GPU. Comparison of the FPGA and GPU are of primary

interest to the authors since the CPU, while having the lowest power, has the

highest energy cost for large inputs. The memory access pattern of the workload

was shown to have a major impact on the comparative efficiency of FPGA and

GPU acceleration. For applications with streaming and sequential memory access,

the GPU provided better performance. For applications with more random memory

accessed, the FPGA solution provided better performance.

Reflection on Energy Efficiency. Energy efficiency is an important

property for HPC computations and systems, but energy efficiency does not help

in bounding power consumption. Power reduction strategies for energy efficiency

reduce the power cost of a computation and enable the extra hardware within a

hardware overprovisioned HPC system to be used. Runtime reduction strategies

for energy efficiency may increase the power cost of a computation, but provide a

net benefit if sufficient power can be made available for the computation. Which

19

strategy provides the best performance is dependent on the specific hardware

and computation being optimized with respect to energy. Since improved energy

efficiency may involve either increasing or decreasing power, work on energy

efficiency alone is insufficient to safely support a hardware overprovisioned, with

respect to power, HPC system.

Energy efficient computations are necessary however for realizing

performance improvements from a hardware overprovisioned system. Job scheduling

on HPC systems typically results in several applications, each application having an

application specific power consumption, running concurrently on different partitions

of the cluster. The presence of some applications using power reduction strategies,

explicitly or due to hardware energy optimizations, and other applications using

runtime reduction strategies provide excellent opportunities to load balance power

rather than work across the cluster. An effective power scheduler will leverage these

power differences across jobs to allocate power to nodes, allowing more work to

complete per unit time, than would be possible if all node received an equal amount

of power.

Power Scheduling

Power scheduling allows the gains from energy efficiency to be converted into

improved computational performance for the same system power bound. A system

power bound may originate from an administrative concern (e.g. budgeting) or

physical concern (e.g. electrical distribution infrastructure). In either case, power

scheduling utilizes power shifting8 to redistribute the available power across cluster

nodes. Rather than attempt to reduce the total energy cost of the system, power

8Power is conceptually shifted from one set of nodes to another set of nodes for some duration.
Power shifting is also used internally by modern processors to improve performance with in the
TDP (Felter, Rajamani, Keller, & Rusu, 2005).

20

scheduling work aims at maximizing power utilization within some upper power

bound.

Two important attributes for partitioning existing power scheduling work

are, limit enforcement and schedule time. These attributes will be discussed prior

to a brief review of several power scheduling solutions in the literature. Following

the review will be brief commentary an the performance comparability issues with

the current literature.

Global Power Limit Enforcement. The environment an

overprovisioned HPC system is deployed in, will determine how rigorously a power

scheduler must maintain the system wide power bound. Exceeding the power

bound for bounds originating from physical concerns may damage the computing

or power infrastructure. In such environments, the power limit must be provably

enforced for safe operation. In many cases power bounds are likely to originate due

to administrative concerns (e.g. power is cheaper at different times of day.). For

administratively power bound systems, failure to enforce the system power bound

from time to time may be safe, but costly and therefore undesirable.

The power scheduling invariant can be used to reason about a power

scheduler’s ability to enforce the system wide power bound. Formally, the power

scheduling invariant can be written as:

∀t, L ≥
n∑

i=1

ati ≥
n∑

i=1

cti (2.3)

Stated in english, at all times the system wide power bound must be greater

than or equal to the power allocated to components within the system and each

component must consume no more than the component’s current allocation. Table

4 defines the variables used in the formalization.

21

Symbol Meaning
L Global power limit
t Time interval
n Total number of components
ati Power allocated to component i at interval t
cti Power consumed by component i at interval t

Table 4. Table defining the symbols used in the power scheduling invariant
(Equation 2.3).

An HPC power scheduler can be decomposed into algorithm and mechanism.

The algorithm determines when and how power is allocated (i.e. shifted) across

nodes in the cluster and is modelled in the power scheduling invariant by:

∀t, L ≥
n∑

i=1

ati (2.4)

Failure to provably meet the condition on the algorithm indicates that a power

scheduler may, at some point during operation, produce allocations that will exceed

the system wide power limit.

The mechanism determines how the component level power cap is

maintained and is modelled in the power scheduling invariant by:

∀t, ati ≥ cti (2.5)

Failure to provably meet the condition by the mechanism indicates that a

component, at some point during operation, may disobey the power scheduler and

exceed the allocation.

Hard Enforcement. Hard power limit enforcement matches the case

where the power scheduling invariant is provably satisfied by the power scheduler.

A scheduler capable of hard enforcement must be able to guarantee that the power

bound is never exceeded by the cluster. Providing hard enforcement requires some

hardware support due to the fine granularity of the timescale at which a power

22

bound must be maintained. In cases where physical limitations motivate the system

wide power bound, operation of the cluster without a scheduler capable of hard

enforcement may result in physical damage to the cluster.

Soft Enforcement. Soft power limit enforcement matches the case

where algorithm or mechanism cannot be proven to satisfy the power scheduling

invariant. There is an argument that power schedulers providing only soft

enforcement should be rejected as unfit for purpose. A power scheduler has a

requirement to allocate power such that a system wide power bound is maintained

and, therefore, a power scheduler providing soft enforcement does not meet the

functional requirements. On the other hand, systems without hardware support

for direct power management can never be proven to meet the power scheduling

invariant’s requirements for mechanism. Research on power schedulers providing

soft enforcement are interesting due to their ability to provide reasonable power

bound enforcement without hardware support.

Another case for schedulers only providing soft enforcement can be made

based on electricity provider contracts. Abrupt changes in power consumption

create challenges for an electricity provider since power consumption and generation

must remain balanced across the larger power grid. Some providers require large

power customers to estimate their power consumption in advance and penalize

customers for significantly going over or under the estimate. Another consideration

is that the wholesale cost of power in many markets depends on the time of day the

power is being used. A financially advantageous power schedule for an organization

may involve operating the cluster with an artificially low power bound during

times when power costs are higher. The infrastructure in these cases is capable

23

of supporting the full load of the HPC cluster but there are some benefits to

attempting to maintain bounded consumption even if the attempt fails.

Schedule Time. When power schedules are computed and applied

can also be a useful way to partition the space of power schedulers. The time and

frequency of schedule application can effect the observed level of power utilization

across the HPC system. One way to think about why schedule time should be

expected to impact power utilization is to consider that each time a schedule is

applied, there is an opportunity to adapt the power schedule to the current system

conditions. Due to the entrance, execution behavior, and exit of jobs from the HPC

system, the power needs of a cluster tend to be dynamic and evolve over time.

These major schedule times are present in the literature: static, reservation, and

dynamic.

Static Techniques. Static techniques set the power cap once at system

install time and never change the cap there after. Trivially, the static algorithm

can be shown to maintain the power scheduling invariant since there are no time

varying allocations to consider. As long as the sum of the component power caps is

less than the total system power bound at system start time the invariant will be

satisfied.

The simplicity of reasoning about static power scheduling techniques makes

them a common baseline for comparison. Current HPC systems use a degenerate

form of this technique, where the component level power cap is the TDP of the

component. Many works on hardware overprovisioned power scheduling will

compare to a system where the power per component is statically set to the average

24

power for the system. One can imagine a cluster in which different nodes have

different statically assigned power caps9.

Reservation Techniques. Reservation techniques set component power

caps at job start time to keep the system within the total power budget. Each time

a job is scheduled, the power scheduler is responsible for setting an appropriate

power cap on the nodes associated with the entering job. In relation to the power

scheduling invariant reservation based techniques group components by job and

make job level power allocations, which are then distributed across the components

assigned to the job. The invariant is satisfied if the sum of concurrent job power

allocations is less than or equal to the system power bound. Most HPC power

scheduling work to date uses this technique.

Generally, reservation techniques merge the job and power scheduling

activities. A motivation for approaching job and power scheduling together is the

ability to preserve job runtime. Since an insufficient power allocation will increase

the runtime of individual jobs, the integrated job and power scheduler should only

concurrently run jobs for which there is sufficient power available. One of the

challenges in the implementation of reservation techniques is power consumption

modeling for the jobs to be executed on the system since the component level

power caps must be set prior to job launch.

Dynamic Techniques. Dynamic techniques adjust component power

caps during job runtime such that the total power consumed remains beneath the

system wide power limit. Proof of the power scheduling invariant must be done at

the component level for systems using dynamic techniques since there may not be

9Job scheduling in such a cluster might resemble job scheduling in a cluster with both fat
and thin nodes. Users would select a partition to run their job in based in anticipated power
consumption.

25

Year Scheduler Enforcement Schedule Time
NA Naive Hard Static
2014 PARM Soft Reservation/Dynamic
2015 SLURM Soft Reservation
2015 RMAP Hard Reservation
2015 PowSched Hard Dynamic
2016 PMJPC Soft Reservation
2016 Shifter Hard Phase/Dynamic
2016 DAPM Hard Dynamic

Table 5. Table relating work to enforcement and scheduling strategy

groupings in space (i.e. nodes) or time to use to simplify the analysis. HPC power

scheduling work using dynamic techniques are currently limited.

The highest gains in system-wide power utilization are expected using fully

dynamic power scheduling techniques. In static and reservation techniques, a job

using less than the power allocated to its components has no mechanism to yield

the power to other jobs that may be able to use the power, resulting in unutilized

power. Power utilization improvements with dynamic techniques are possible since

power can be shifted between jobs based on the current phase of the concurrently

executing work. The gains in power utilization may cause application runtime

determinism to be lost since power shifted away from a component may not be

available when the component returns to a high power consumption phase.

Literature. There are many power schedulers in the literature, eight

are discussed in this section. Two common baselines are used for comparison with

hardware overprovisioned power schedulers, both of which are covered by what will

be referred to as the naive power scheduling strategy. A matrix, comparing the

schedulers based on enforcement and schedule time is in Table 5.

Naive. The naive power scheduling strategy is the only static technique

considered in this thesis. Using this strategy, power is scheduled once at the time

26

the machine is installed an never changed there after. Using technology such

as RAPL the naive strategy can provide hard enforcement of the node power

caps. Existing HPC systems can be considered to use this strategy since each

node receives a power allocation matching the node TDP. When using the naive

scheduling strategy in a hardware overprovisioned system, the system power bound

is typically divided evenly across all nodes in the HPC cluster.

Naive power scheduling, while capable of enforcing a system power bound,

tends to produce suboptimal performance. A major limitation of the naive strategy

is the lack of adaptation to the power consumption behavior of different nodes

running different applications. For a given power cap, some application runtimes

will be strongly penalized while other applications will not see an impact to

runtime (D. A. Ellsworth et al., 2015b)10. The basic performance problem with

the naive strategy is poor power utilization for applications that consume less than

the average power and poor runtime for applications that would consume more

than the average power allocation.

PARM. In “Maximizing Throughput of Overprovisioned HPC Data

Centers Under a Strict Power Budget”, Sarood, Langer, Gupta, and Kale (2014)

present a power scheduler named PARM. PARM expects power capping to be

available on the hardware and prefers jobs that support both moldability and

malleability11. When a job is queued or a job terminates, PARM attempts to

find and optimal job and power schedule to maximize job throughput. Hardware

10The relationship between power cap, consumption, and runtime is interesting and will be
covered more in chapter III

11A moldable job allows the resource scheduler to launch the job on more or less nodes than
were requested at job queue time. A malleable allows the compute resource allocation (e.g.
number of nodes) to be changed dynamically at runtime

27

power capping and job malleability enable PARM to dynamically apply the new

configurations.

The theoretical foundation formulates the problem is an integer linear

programming (ILP) problem taking into account estimated power for all possible

malleable configurations of work to be scheduled. ILP problems are NP-hard in the

general case, which makes computing the optimal solution potentially intractable

on the timelines required for online job scheduling. Sarood et al. (2014) introduce

a power aware speedup metric to reduce the number of variables to be considered

by the ILP solver, to improving scheduling time. Quantization of the power settings

per node are also used to reduce solution search space.

Like other reservation strategies, PARM requires power estimates to be

available apriori to make good scheduling decisions. The time and power costs

required to generate sufficiently good power estimates were not discussed in

“Maximizing Throughput of Overprovisioned HPC Data Centers Under a Strict

Power Budget”. Empirical evaluation of PARM was conducted using Charm++

and the baseline for performance comparison was a classically power provisioned

cluster (i.e. a cluster where all nodes are allocated TDP). Additionally, simulation

using a trace from a production system was used to evaluate PARM’s expected

performance. Results indicate a significant improvement in average job turnaround

time from the baseline. A concern from the work is the time required to compute

an updated schedule, the authors note 15 seconds were needed to compute a

schedule from a queue of 200 jobs.

RMAP. In “Practical Resource Management in Power-Constrained,

High Performance Computing”, Patki et al. (2015) present RMAP, a power-aware

backfilling scheduler. RMAP expects jobs to be moldable and to have a database

28

of job configurations that provides node count, power cap, and runtime for the job.

When scheduling work, RMAP selects the most runtime efficient configuration for

a job that fits within the available power. The job level power bound is enforced

through setting a RAPL power cap on the components at job launch time.

Evaluation of RMAP is done exclusively using simulation. The exhaustive

database of job configurations and runtime make the simulation results valid even

though the simulator has no mechanism to compute runtime increases due to power

capping12. The cost in runtime and power to generate the configuration database is

not discussed and is expected to be substantial since the database must contain

an exhaustive search of node counts, core counts, and component power caps.

Supposing such a database exists, RMAP can deliver improved job turn around

time and enforce a system power bound.

SLURM. In “Adaptive Resource and Job Management for Limited

Power Consumption”, Georgiou, Glesser, and Trystram (2015) discuss extensions

to SLURM that makes power a schedulable resource. A user is responsible for

providing a power cap with their job submission. The job scheduler uses this

information to generate job schedules that provide the requested power for all

concurrently executing jobs. Enforcement is handled through selecting a DVFS

setting for the node processors that guarantees the power cap cannot be exceeded.

In addition to changing DVFS settings, SLURM is able to power on/off nodes to

change the system power consumption. This scheduler is classified as providing soft

enforcement since the DVFS settings are software controlled based on a model of

the relation between DVFS setting and maximum power consumption, which is not

guaranteed to be correct.

12Runtime effects of different power caps can be retrieved from the configuration database
avoiding the need to compute what the performance would be at a specific power cap.

29

Evaluation is done primarily in simulation and involves replay of a job trace.

Use of DVFS as the primary power management mechanism simplifies simulation

since increasing runtime proportionally to the reduction in clock frequency is a

reasonable approximation. Comparisons are made between energy, job launches,

and CPU time during a 5 hour interval. Results show the scheduler successfully

reduces energy consumption over the evaluation interval at different power caps but

the impact on job throughput is unclear.

The solution presented by Georgiou et al. (2015) is unique in the current

HPC literature since thier solution also involves powering nodes off and on to

avoid the idle power costs associated with nodes that are on, but not actively

participating in a job. Most other work on power scheduling has ignored idle

node power costs. Idle node power consumption can have a significant impact on

a hardware overprovisioned system (Sakamoto et al., 2017) and will hopefully

became a more common consideration in work going forward. Idle node power

will make an appearance in Chapter VI as the effect on system performance can

be significant when comparing techniques.

PMJPC. In “Predictive Modeling for Job Power Consumption in HPC

Systems”, Borghesi, Bartolini, Lombardi, Milano, and Benini (2016) discuss power

scheduling using only the job scheduler. By only scheduling concurrent jobs that,

in aggregate, consume less than the system power limit there is no need for active

power capping. With no active power enforcement mechanism, the ability of the

scheduler to maintain the system wide power cap depends completely on the

quality of the job power estimates. Generating high quality estimates therefore is

the major focus of the work and makes use of machine learning techniques applied

to the job log and system power consumption history.

30

Evaluation is done using production traces from the Eurora Supercomputer.

Unlike most DOE HPC systems, the Eurora Supercomputer allows multiple jobs

to be concurrently scheduled on the same node. Thus, the processor level power

measurements used to generate estimates may have consumption contributions

from several different jobs. Borghesi et al. (2016) report an ability to predict power

consumption with a mean error of under 5%, after excluding outliers. While the

estimation quality achieved is impressive, especially given the coresidency of jobs,

the size of the training set and weakness of enforcement would be challenges to

adoption as a practical power scheduler.

PowSched. In “POW: System-wide Dynamic Reallocation of Limited

Power in HPC”, D. A. Ellsworth et al. (2015a) introduce PowSched, which will

be covered in detail in Chapter IV. D. A. Ellsworth et al. (2015a) suggest that

acceptable power scheduling performance can be achieved via a simple online

feedback mechanism that operates without job awareness or power consumption

history. At the highest conceptual level, PowSched simply gives higher allocations

to components consuming power near the current allocation and gives lower

allocations to components consuming significantly less power than the current

allocation. RAPL is used to provide hard power limit enforcement and limits are

changed at arbitrary times by the power scheduler.

Scaling and performance for PowSched is studied in “Dynamic

Power Sharing for Higher Job Throughput” (D. A. Ellsworth et al., 2015b).

D. A. Ellsworth et al. (2015a) select the naive strategy as the baseline for

comparison in their work and use a mix of three common HPC benchmark

applications (AMP, CoMD, and LULESH). In the best empirical case, PowSched

achieves a 14% improvement over the baseline and at worst produces results within

31

system jitter from the naive strategy. Plots of power consumption versus allocation

indicate that PowSched can significantly improve power utilization. Simulation

studies are also conducted to investigate in what cases PowSched can be expected

to out perform the naive strategy. Due to the limited data required and simplicity

of the power scheduling algorithm, PowSched scales well to hundreds of thousands

of components.

PowSched is unique in the literature for several reasons. At the time of

PowSched’s introduction, there were very few dynamic power schedulers and very

few power schedulers with hard enforcement. PowSched does not require any job

modeling or apriori estimates to effectively schedule power. In fact, PowSched

is completely unaware of the mapping between jobs and hardware, hence power

scheduling decisions are made exclusively through viewing the HPC cluster as flat

pool of compute components. PowSched is also completely unaware of the system

job scheduler, which is different from most other power scheduling work where

the power scheduler is deeply integrate with the job scheduler. Follow-on work

has shown that PowSched can be trivially adapted to support hierarchical power

scheduling (D. Ellsworth, Patki, Perarnau, et al., 2016).

Shifter. In “I/O Aware Power Shifting”, Savoie et al. (2016) present

Shifter, a power scheduler that is able to effectively shift power between compute

units in I/O versus compute phases. Savoie et al. (2016) note that many HPC

applications alternate between compute intensive and IO intensive phases. Shifter

assumes that the frequency and duration of an application’s IO phases are know

apriori and Shifter is able to use this knowledge to perturb application execution

in an attempt to better align IO and compute phases. During compute intensive

phases processor power consumption is significantly higher than during IO intensive

32

phases. Phase boundaries are detected in Shifter by instrumentation of the

MPI library and are used to signal that the power schedule should be adjusted.

Processor power caps are set across the participating nodes, using RAPL, as IO

boundaries are detected.

Savoie et al. (2016) evaluate Shifter empirically with three HPC codes

(LAMMPS, ParaDiS, and Cactus) via simulation. The baseline configuration for

comparison is a system using naive power scheduling with a 60W per processor

power cap. In all reported cases, Shifter is able to improve performance over the

baseline.

DAPM. In “Demand-Aware Power Management for Power-Constrained

HPC Systems”, Cao, He, and Kondo (2016) propose a demand aware power

scheduler. CPU performance monitoring counters are used to monitor and estimate

an application’s power need. A machine learning approach is used to learn a

processor variation aware model for processor power settings. Component power

caps are set dynamically during runtime using RAPL.

Evaluation is done using FIFO and backfilling job scheduler policies on a

real HPC cluster. The baseline for comparison is a non-capped cluster with the

same power bound. Three other naive strategies are also used for comparison.

Several NAS parallel benchmarks are used for the experimental workload and

performance evaluation is reported in terms of power utilization and job completion

rate. The adaptive strategy studied outperforms the naive strategies.

Discussion. One of the most discouraging gaps in the current state

of the literature for hardware overprovisioned systems and, more broadly, power

scheduling research is the lack of good comparison studies. In the cited works

different workloads and systems have been used to evaluate each system. Sakamoto

33

et al. (2017) have shown that hardware overprovided HPC performance is impacted

by the number of nodes in the cluster, system power bound, and the compute

intensity of the jobs to be executed. Without executing comparable work on

comparable clusters, the relative practical performance of the schedulers is

incomparable from the publication text. Work done using simulation is similarly

challenged in the power scheduling space as no standardized simulator exists that

supports the needs of the community. Each cited study using simulation uses a

different simulator, which will encode different assumptions about the behavior of

applications and hardware when power capped. Chapter VI discusses proposals for

how the community can fill these gaps as well as preliminary results using PowSim.

Work towards unified experimental platforms is anticipated as future work and

beyond the scope of this dissertation.

Schedulers supporting hard enforcement will be necessary for practical

deployment of hardware overprovisioned HPC systems at a large scale and in

contexts where exceeding the system wide power bound can cause physical harm.

Hard enforcement will require hardware support to satisfy the power scheduling

invariant since hardware support is the only way to guarantee that component

level power caps will be rigorously maintained. Without hard enforcement, power

procurement and infrastructure must still support the case where all components

operate at peak consumption since application behavior may diverge from the

power scheduler’s expectations.

PowSched, part of the work contributed in this thesis, is the only dynamic

power scheduler in the literature that does not require a model of job level power

consumption for operation. In Chapter IV, PowSched will be discussed in detail.

34

Chapter Summary

In this chapter we referenced Rountree et al. (2012), the initial work

proposing hardware overprovisioned HPC systems. A hardware overprovisioned

cluster has more nodes that can be powered at TDP and, hence needs external

mechanisms, to remain with a physical or administrative system wide power bound.

Hardware overprovisioning relies on energy efficiency computing to allow at least

some of the HPC nodes to operate beneath the TDP for much of the time. Power

schedulers are able to convert the energy savings, which appear as a power savings,

to additional cluster efficiency by supporting the scheduling of additional work on

the extra cluster nodes. Schedulers proving hard enforcement (i.e., can be proven

to satisfy the power scheduling invariant) are needed when physical damage can

occur from exceeding the system wide power bound since schedulers using soft

enforcement cannot guarantee an upper bound on component power consumption.

35

CHAPTER III

POWER CAPPING RUNTIME EFFECT

This chapter contains material that has been previously published in

D. A. Ellsworth et al. (2015b). The PowMon monitor, experimental setup, and

analysis of results are my original work. Co-authors assisted in the language used

to present this material in the previously published work.

PowSched (Chapter IV) and PowSim (Chapter V) both rely on an

understanding the effects of RAPL power capping on application runtimes. When

work on this disseration began in 2014, HPC systems exposing RAPL were

extremely limited in the community and the majority of research was focused on

the energy efficiency problem. Non-hardware based approaches to HPC energy

efficiency primarily use DVFS to create better time alignment between bulk

synchronous phases. As a result, very little work was available in the community

discussing observations when running applications under RAPL power caps. Of the

limited HPC work found on RAPL power caps at the time, results were primarily

energy focused and provided little insight into when or why a power cap would

impact application runtimes.

This chapter will present a power monitor constructed to support

investigating the effect of power capping on application execution. The power

monitor will be used to perform experiments and gather data and runtime effects

of power bounding on HPC benchmarks. Following presentation of these results,

there will be a discussion to connect low level physical details of processors with the

high level expression of algorithms, explaining why the observations are expected.

36

Power Monitoring

Understanding processor power consumption in relation to a power cap

over time will require observing these values at runtime1. When and how often

to make observations as well as the impact of the observation activity on the

observed system are challenges that any monitor must address. Several tools exist

for collecting observations, but were were not a good fit for this work for reasons to

be discussed later in this section. PowMon, the power monitor initially developed

to support this work, is now distributed and maintained by libmsr project2.

An ideal power monitor for this work has several desirable characteristics.

The power monitor should not require physical changes to nodes in the cluster.

The power monitor should operate at the granularity of the processor package since

power control will also occur at that granularity. The power monitor should not

require instrumentation of or interfere with the work being observed. The power

monitor should make observations periodically since power behaviors are not well

enough understood to identify other triggers. The power monitor should support

fine temporal resolution. PowMon will satisfy these characteristics.

Missing Capabilities. At the time of this work, there were three

common approaches for power observation. Performance measurement tools were

just beginning to have support for reading power. System administration tools

on some systems captured power and energy readings. Hardware monitors also

appeared frequently in the literature, however these require physical modifications.

None of these solutions to the measurement problem were a good fit for this work’s

power monitoring needs.

1If power consumption varies over time, then observations must be made periodically to
capture when these changes in consumption happen and the magnitude of the change.

2https://github.com/LLNL/libmsr

37

Performance measurement tools like PAPI and TAU have the ability to

collect power measurements. The challenge with using traditional performance

tools for power is a mismatch in granularity of measurement. Instrumentation

occurs logically, often at the level of threads, and focuses on the specific

application. Tools like PAPI go to great lengths to mask out the contribution of

computation outside of the target application to the performance counters being

read. Power, on the other hand, is shared by all CPUs in the processor package.

Thread level metrics are the wrong granularity for measurement of uncore counters.

Further, the same thread may execute on different processors at different times,

adding to the complexity of mapping power measurements in multi-socket nodes.

Given the need to understand whole system power performance rather than

individual application performance and the mismatch in granularities, existing

performance measurement tools were not suitable for the needed observations.

Systems like the IBM BlueGene/Q provide several advanced system

monitoring features, including power monitoring. These operational power

monitoring solutions are targeted at the needs of system administrators to

understand the behavior of the computer system. Power measurement intervals

are too long (i.e. in the range of seconds) for good correlation with the activity

on the host. Access to the power measurements also tends to be difficult due to

organizational security policies. Using existing system level monitoring was also not

viable for the gathering the needed observations.

Owing in part to the newness of power as a concern, few computer

components had power monitoring capabilities. Many early works looking at power

and energy required researchers to physically instrument their hardware with power

monitors. Adding physical instrumentation supports the ability to monitor several

38

different components and monitor without adding overhead to the monitored

system. Making the hardware modifications, however are time consuming and

correlating timestamps between the system and monitors adds complexity.

With the desire to use the monitoring technology to make measurements at

scale, physical instrumentation was also not a viable approach for generating

observations.

PowMon Design. The basic functional requirements of a periodic

monitor sound simple: At regular time intervals, make an observation and capture

the value to storage. Several practical challenges complicate monitor design.

Monitors, like PowMon, share hardware with observed system, creating conflicts

and resource contention between the monitor and workload. Naively, an author of

a monitor might elect to sleep for the scheduling interval between completing the

write of the last observation and generating the next observation. Implementing

the interval naively will result in long and nonuniform intervals since the amount

of wall clock time to complete the observation and write change based on clock

frequency and level of contention for processor cycles.

PowMon does not require any modification to existing software to provide

monitoring services for distributed applications and does not coordinate across

nodes at runtime. Monitored programs are started using PowMon as a wrapper.

During startup, PowMon instances on the same node use shared memory to elect

a single PowMon process to make measurements and then wait for the wrapped

process to terminate. Only the elected PowMon process runs the measurement

thread and the elected process remains running until all other PowMon processes

on the node have exited. The pseudocode for PowMon is given in Algorithm 1.

39

As a post-processing step, the data in the measurement files can be correlated by

timestamp and source node for reporting on observed power performance.

Algorithm 1 PowMon logic in psuedocode

procedure Main
Stopping flag is set to false
Detect other instances on host
if first instance then

Start measurement thread
end if
Fork and start the wrapped process
waitpid on forked process
if first instance then

Use semaphore to wait on other instances
Set stopping flag to true
Write final measurement and summary data

else
Use semaphore to indicate done

end if
Halt

end procedure
procedure Measurement Thread

while stopping flag is false do
Read MSRs
Write MSRs to disk
Sleep until next interval

end while
end procedure

Observation Mechanism. Observation mechanisms must be available

on the test platform. The target experimental platform used Intel processors, so

mechanism selection was limited to available Intel technologies. Specifically, RAPL

was used for this dissertation work. Modern Intel processors provide model specific

registers (MSRs) to expose several CPU and processor features. Among the many

features provided by modern Intel processors are the abilities to set processor

power caps and read processor energy consumption via MSRs. The MSR used to

40

count energy consumption is updated roughly every millisecond, providing energy

information with a very high temporal resolution. As a built-in hardware capability,

the Intel MSR mechanism is an ideal choice for PowMon.

Generally, access to processor MSRs requires privileged system access. For

experimentation on a production cluster, gaining privileged access is problematic

due to potential security implications. Lawrence Livermore National Laboratory

(LLNL) has produced two software components that are able to address the

operational security issue and provide safe access to MSRs for researchers. Msr-

safe3 and libmsr provide sufficient security controls to enable the power specific

MSRs to be exposed to researchers on a production cluster via regular user

accounts. Rather than access the MSRs directly, PowMon accesses the relevant

MSRs via libmsr and msr-safe.

Observation Timing. Due care is required in implementation of

observation timing for a monitor using periodic sampling. A simple monitor may

make an observation and then sleep for the full sampling interval, ∆t, before

making the next observation. Such systems produce unreliable results since

the computation takes some time, ε, making the actual interval ε + ∆t4. Since

conversion accuracy between energy and power depends on the accuracy of the time

measurement the presence of the additional ε time is undesirable.

PowMon makes use of the linux real time clock library to access a real

time clock with subsecond timing and select() to sleep for the appropriate

interval. When the monitor starts, the current clock value, T0, is captured and

3https://github.com/LLNL/msr-safe

4Each round the measurement computation takes ε seconds to make and is followed by ∆t
seconds of sleep before the next round starts. The total time for the round (e.g., time between
starting the first and second rounds) is, therefore, ε+ ∆t seconds.

41

used as the basis for all future monitor measurements. With an interval, ∆t,

the kth measurement will occur at T0 + k∆t. At the end of an observation, the

current high resolution real time is retrieved and the time remaining before the

next measurement is computed. The measurement thread then uses select() to

sleep until the next observation, resulting in near uniform sampling intervals. A

maximum temporal error between any two measurements on the same host is 2∆t,

a property provided by computing the sampling times from a fixed time in the past.

Another highly complex issue when handling time is correlating the time

at which events happen across nodes within a cluster. Each node in cluster

has an independant clock that is subject to jitter and timing anomalies. Using

very fine grain realtime clock timestamps to report events across nodes can lead

to poor conclusions since clock drift may cause events to become out of order

when only sorted by local timestamps. Before using PowMon for monitoring a

distributed appliction, the clock drift on the experimental system is investigated

using simple MPI collectives to read all of the clocks. Clock drift between nodes

on the experimental system was no more than a few milliseconds, which is much

shorter than the 100 millisecond sampling interval used in the experiments. For the

temporal granularity of this work, the effect of real time clock drift is considered to

be negligible.

Observation Storage. For monitor observations to be useful, the

observations must be captured for analysis. PowMon makes use of a standard

buffered file stream to write out the collected measurements. The operating system

controls when results are actually spooled to disk, avoiding performance impacts

from actively flushing measurements to disk. The filesystem to which writes occur

could potentially conflict with the workload being observed, since the network and

42

IO devices might be shared. Users can avoid much of this contention, if needed, by

using a local filesystem to store the file containing the measurements.

Startup and Shutdown. Many performance tools provide their service

by injecting instrumentation code into monitored code at compile or link time. An

advantage of execution via instrumentation is the ability to make use of application

startup and other facilities (e.g. MPI communicator) to bootstrap the monitoring

software as part of the monitored application. PowMon’s ultimate target use is

monitoring support for power scheduling research, which targets the power behavior

of the node rather than specific jobs that might run on the node5. Implementation

of PowMon through instrumentation of specific applications is not a good fit for the

monitoring need. Instrumentation inside of an application would also hide power

behaviors during the part of the application startup and shutdown before and after

the monitor became active.

Rather than instrument a single application or run stand alone, PowMon

operates as a wrapper around some other application. PowMon, on startup, begins

a thread to gather measurements at the sampling interval and forks a child process

for the target application. After forking the child process, the main PowMon thread

waits for the child to complete before stopping the monitoring thread and halting

the monitor6. The only challenge when starting PowMon comes from the system

MPI launcher (e.g., mpirun or srun) launching multiple instances on the same host,

which is often a desirable property for the wrapped target application. A shared

5Over the lifetime of a node many different jobs will run on the node. Additionally the node
itself has a power consumption behavior even when no job is present. The idea of idle power,
capturing the contribution of nodes in the cluster not currently executing a job, will appear in
Chapter VI.

6To collect a trace for a single application, the application is wrapped by PowMon. To collect
a trace of several different applications, PowMon wraps an application that sleeps while the
applications to be traced are run.

43

memory segment and semaphore are used to elect a single PowMon instance per

host to record measurements and signal when all of the target processes on the host

have completed execution. Using PowMon is trivial for most jobs on commodity

linux HPC clusters7 since the wrapper is completely transparent to the wrapped

application, job scheduler, and MPI library.

PowMon Performance Impact. The performance impact of PowMon

on monitored applications is negligible. Table 6 shows runtime for three HPC

benchmarks run with and without PowMon on the cab cluster at LLNL. Times

are reported in seconds, using the measurement mechanism provided by the

benchmark, and PowMon used the arbitrarily selected default sampling interval

of 100 milliseconds. Observed runtime impacts of PowMon on the monitored

applications are well within the system jitter, being well under one percent in most

cases. The largest observed impact was a speedup of 1.65%, which is unexpected if

system jitter is ignored since PowMon should be contending for resources. In the

analysis, impacts of less than 1 percent are assumed to be likely due to jitter.

Experimental Data

An initial understanding of application power behavior over time

was developed by running HPC benchmarks under various power capping

configurations. Experiments were conducted on the Cab cluster at LLNL. The plots

in this section are primarily smear plots8, produced by plotting the raw PowMon

measurements from participating processors on top of one another.

Dynamic Response. In the dynamic response experiments, the

objective was to verify that the RAPL power capping mechanism had an immediate

7Linux fork and realtime clock support must exist in the compute node linux OS.

8Differences in consumption between sockets and differences in measurement times appear in
the plots as vertical and horizontal smearing, respectively.

44

App Nodes Unwrapped Wrapped Speedup %
LU 16 119.77 119.84 -0.06
LU 4 112.39 112.92 -0.47
LU 2 118.17 118.69 -0.44

CoMD 16 107.1491 105.3836 1.65
CoMD 8 109.3181 109.2498 0.06
CoMD 4 92.4329 91.9755 0.49
CoMD 2 125.2268 125.7022 -0.38
AMG 16 102.573688 103.323772 -0.73
AMG 8 88.667316 88.173036 0.56
AMG 4 76.821048 76.763169 0.08
AMG 2 65.079914 65.436914 -0.55

Table 6. Runtimes for three HPC benchmarks at differing node counts with and
without PowMon (Wrapped and Unwrapped, respectively). Observed performance
is well within system jitter indicating that PowMon overheads are negligible.

effect on the observed power consumption for the effected processors. To conduct

this experiment, a modified version of PowMon was used to create power

allocations that produced a saw tooth pattern when plotted against time. The

PowMon measurement interval was held at 100 milliseconds and the power cap

for each processor was adjusted by 5 watts every 5 measurement intervals. Power

cap values range between 30 watts, the lowest power cap that our experiments

indicated RAPL could maintain on the hardware, and 115 watts, the processor

TDP. The traces for LULESH, CoMD, and AMG are shown in Figure 3. Power

consumption remains under the allocation, as expected when the power cap is

changed dynamically at runtime9, an important property for a power control

mechanism to be used in a power scheduler that is supposed to be capable of hard

enforcement.

Characteristic Power Consumption. Plotting applications on

effectively uncapped processors (i.e. the power cap is set to the TDP) provides

9The large spike in 3a is due to the sampling interval, 100 ms, being smaller than the RAPL
window of 1000 ms.

45

0 20 40 60 80 120

0
20

40
60

80

Time

W
at

ts

Consumed
Allocated

(a) LULESH 30-115 Watts

0 20 40 60 80 100 120
0

20
40

60
80

Time

W
at

ts

(b) CoMD 30-115 Watts

0 20 40 60 80

0
20

40
60

80

Time

W
at

ts

(c) AMG 30-115 Watts

Figure 3. Consumption when power allocation is varied during execution. Sampling
at 100 ms intervals with a 1000 ms RAPL window.

46

a plot that is stable for a given deterministic benchmark and input. Power

consumption behavior, on an uncapped processor, is referred to as the characteristic

power consumption of the application. Figure 4 shows the plots for a configuration

of LULESH, AMG, CoMD, Nekbone, and MiniFE. Due to the configuration

parameters selected, the AMG (Figure 4d) and CoMD (Figure 4c) power

consumption is lower than expected for most HPC applications. Of the benchmark

configurations plotted, LULESH has consistently high power consumption,

consuming 80 to 100 watts per socket during execution. The MiniFE plot is

perhaps the most interesting since the plot shows multiple application phases

that have different levels of power consumption. AMG also demonstrates a phased

power consumption behavior, through the difference between high and low phases is

less pronounced.

Decreasing Bounds. In the decreasing bounds experiments, the

objective was to observe the relationship between application runtime and power

consumption under progressively lower power caps. The first goal from these

experiments was to understand in what cases a RAPL power cap would impact

application performance. RAPL’s behavior was somewhat mysterious when

compared with the dominate DVFS techniques due to RAPL power caps only

impacting runtime in some cases. A secondary goal from these experiments was

to develop a characterization for the amount of runtime impact that an application

could expect to experience. The runtime impact of a power cap, extending the total

time to complete an execution, will be referred to as runtime dilation.

Figure 5 plots benchmark runtimes for different power caps. While some

benchmarks produce smoother curves than others, the smoothness of the curves are

47

0 20 40 60 80 100 120

0
20

40
60

80

Time

W
at

ts

Consumed
Allocated

(a) LULESH 115 Watts

0 50 100 150

0
20

40
60

80

Time

W
at

ts

(b) MineFE 115 Watts

0 20 40 60 80 100

0
20

40
60

80

Time

W
at

ts

(c) CoMD 115 Watts

0 20 40 60 80

0
20

40
60

80

Time

W
at

ts

(d) AMG 115 Watts, config 1

0 10 20 30 40 50 60

0
20

40
60

80

Time

W
at

ts

(e) Nekbone 115 Watts

0 50 100 150

0
20

40
60

80

Time

W
at

ts

(f) AMG 115 Watts, config 2

Figure 4. Consumption when power allocation matches the processor TDP.
Sampling at 100 ms intervals with a 1000 ms RAPL window.

48

0.
9

1.
0

1.
1

1.
2

1.
3

1.
4

1.
5

1.
6

Watts

R
el

at
iv

e
R

un
tim

e

50 55 60 65 70 75 80 85 90 95 100 105 110 115

LULESH
AMG−MPI
miniFE−MPI
MCB
Nekbone−MPI
Nekbone−OpenMP
miniFE−OpenMP
CoMD

Figure 5. Runtime effect of decreasing power bounds for 8 benchmarks and
parameters.

not studied in this work10. However a clear trend can be seen in Figure 5, a linear

reduction in power does not produce linear runtime dilation. When the power cap

is sufficiently low, runtime dilation appears to follow a polynomial curve as the

bound is further reduced.

Table 7 looks at the energy used and runtime for the AMG (Config

2), LULESH, MiniFE, and Nekbone benchmarks. The characteristic power

consumption for these benchmarks can be seen in Figure 4. An interesting

insight from the table is that runtime dilation occurs before the power cap is

reduced beneath the average power. MiniFE and Nekbone are interesting since

average power continues to be beneath the power cap even as the runtime dilation

10The non-smooth curves are speculated to occur due to non-determinism in the benchmark
that leads to different power consumption on different runs. Further investigation was not
conducted since individual application performance and characteristics are out of scope for the
work, instead this work focuses on generalized application performance trends relevant to the
power scheduling problem.

49

0 50 100 150

0
20

40
60

80
10

0

Time

W
at

ts

8.2 12.9 93 145.8

(a) MineFE 115 Watts

0 50 100 150

0
20

40
60

80
10

0

Time

W
at

ts

8.2 13.4 94.8 151.5

(b) MineFE 50 Watts

Figure 6. Consumption when power allocation matches the processor TDP.
Sampling at 100 ms intervals with a 1000 ms RAPL window.

increases. To understand application runtime behavior when power is capped, it is

necessary to look at the data as a time series rather than an aggregate energy or

average power value.

Figure 6 shows smear plots for MiniFE capped at 50 watts and effectively

uncapped, the plot also labels the time phases are entered and exited. Computing

the duration of the application phases, the runtime increases are localized to

particular application phases. Specifically, phases for which the characteristic

power consumption exceeds the power cap, runtime dilation is observed. Phases

for which the characteristic power consumption is less than the power cap do

not experience runtime dilation. Fukazawa et al. (2014) report a similar finding

in “Power Consumption Evaluation of an MHD Simulation with CPU Power

Capping” when studying a single HPC code. Average power is, hence, not a good

estimate for the power needed by HPC applications with phased behavior.

50

App Cap Used kJ Runtime Avg W Relative Time

amg

115 154.77 146.36 66.09 1.00
110 154.51 146.09 66.10 1.00
100 154.56 146.25 66.05 1.00
90 152.49 147.01 64.83 1.00
80 195.22 155.80 78.31 1.06
70 184.55 167.87 68.71 1.15
60 179.16 189.49 59.09 1.29
50 168.88 213.80 49.37 1.46

lu

115 163.79 116.47 87.89 1.00
110 163.58 116.12 88.05 1.00
100 164.18 117.00 87.71 1.00
90 165.30 122.35 84.44 1.05
80 160.93 129.91 77.42 1.12
70 152.69 139.59 68.37 1.20
60 145.70 154.68 58.87 1.33
50 138.28 175.17 49.34 1.50

minife

115 117.84 147.53 49.92 1.00
110 117.42 147.03 49.91 1.00
100 118.55 149.32 49.62 1.01
90 117.65 148.52 49.51 1.01
80 110.94 146.92 47.19 1.00
70 103.51 149.06 43.40 1.01
60 95.72 150.28 39.81 1.02
50 88.75 153.56 36.12 1.04

nek

115 94.29 62.96 93.60 1.00
110 93.86 61.26 95.77 0.97
100 81.35 61.71 82.39 0.98
90 65.58 63.82 64.23 1.01
80 61.23 66.57 57.48 1.06
70 56.69 70.10 50.54 1.11
60 52.52 75.20 43.65 1.19
50 50.05 84.88 36.86 1.35

Table 7. Runtime and energy for AMG (configuration 2), LULESH, MiniFE, and
Nekbone under varying power caps.

51

Summary of Experiments. Several useful observations can be made

from the data presented in this section regarding the behavior of applications

running on processors supporting power capping. Applications have a characteristic

power consumption associated with their execution that is application specific.

Power caps above the characteristic power consumption have no observable effect

on runtime or power consumption. Power caps beneath the characteristic power

consumption will extend application runtime. Additionally, runtime impacts are

only observed during application phases where the unbounded characteristic power

consumption would exceed the current power cap. Finally, the runtime impact of

a linearly decreasing power cap is not linear. Linearly decreasing the power cap

appears to lead to a polynomial increase in runtime that is directly related to the

difference between the characteristic power consumption and the current cap.

While less exciting from a research perspective, the dynamic response

experiment verifies that RAPL power caps can be adjusted without application

coordination and the correct bounding effect will occur. This result is of practical

importance since a power scheduler claiming hard enforcement must use a power

control mechanism capable of enforcing component level power caps. RAPL has

been shown to be such a mechanism.

Connecting Programs and Power

The results in the previous section show that a relationship must exist

between an executing program text and the power consumption of the hardware.

Considerations, such as computation correctness and time, to solution are generally

more important than how a computation is physically performed, resulting

in programmers having a better understanding of the mapping from code to

performance that the mapping from code to power or energy. Modern processors

52

are complex and the role of optimizing compilers make a detailed mapping from

program text to power intractable. Numerous simplifying assumptions will be used

in the discussion to keep the model easy to follow. Instead of making a detailed

mapping, this section develops an intuition to account for the generally observed

trends from the previous section. These intuitions will be needed to understand the

content of Chapters IV and V.

Reasoning about the power consumption of a hardware component will

starts understanding the processor as a collection of transistors. A transistor

can be thought of as a switch, turning on and off current in a circuit. Changing

the state (i.e., activation) of an individual transistor requires a small amount of

power, commonly referred to as the switching power. A small amount of power

is also lost due to leak current by transistors. The specific amount of power lost

due to leak current and switching power is related to the voltage applied, higher

voltages resulting in higher loses. Since modern processors are composed of billions

of transistors that change state up to billions of times per second, the aggregate

amount of power consumed can be substantial.

Transistors are grouped together to form logic gates. Each logic gate

implements one boolean operation (e.g., and, or, not, etc.). More complex

operations can be built by composing several logic gates into a logic unit. Logic

gates can also be used to route inputs to logic units and outputs from logic units

within the processor.

Each CPU core will be implemented using some number of logic units.

One of the units in the core will be responsible for decoding the operation to

perform. Conceptually, CPUs are generally though of as decoding and executing

53

one instruction every clock tick11. The program is experienced by the CPU as a

stream of hardware instructions that must be decoded and, based on the specific

instruction, executed using different logic units. Note that different logic units

involve differing numbers of transistors and, therefore, are expected to consume

different amounts of power. In a multi-core computer, several CPU cores will be

on a single processor and may share some logic units (e.g., memory controller, or

cache).

Computation physically occurs as the sequence of transistor activations over

time12. One can consider the algorithm to define all possible instruction sequences

for a computation, but a single executing computation will only ever use one of

the possible sequences defined by the algorithm. If the number of instructions

needed for a computation could be determined in advance, program execution

could be measured by the number of instructions executed versus the total number

needed to complete the execution. Since instructions ultimately map to transistor

activations, program execution could also be measured by the number of transistor

activations that have occurred versus the total number needed to complete the

computation. Additionally, there must be a time ordering to which transistors may

activate due to dependencies between instructions in the instruction stream.

During all phases of execution, applications on processors without a power

cap, will use as much power as the application can induce on the processor. The

low power phases represent periods where the instruction stream, due to instruction

dependencies or the logic units involved, make use of relatively few concurrent

11The reality is much more complex with hyperthreading, pipelining, out-of-order execution,
and micro-instructions all being done by the processor.

12A tempting alternative would be to claim that the computation is represented by the
algorithm. The algorithm does represent the computation to be done in the general sense however
the computation itself requires executing the algorithm.

54

transistor activations per unit time. The high power phases represent periods

where the instruction stream is able to make use of significantly more concurrent

transistor activations per unit time. Looking at the results of power capping, the

runtime dilates since the processor internally uses DVFS as a primary mechanism

to maintain the processor power limit. The specific amount of dilation is hard to

compute directly since computing the needed slowdown would involve detailed

knowledge of the concurrent transistor activations to be controlled. Though a

specific dilation is hard to compute, the general trend observed is that a polynomial

increase in runtime is observed for a linear decrease in power.

Chapter Summary

In this chapter power monitoring, observed impacts of power limits, and

proposed an intuition to understand the observations were discussed. PowMon was

needed to support this work since hardware based approaches to power monitoring

would not scale and existing tools monitored at the incorrect granularity. Using

PowMon a study was conducted on the power behavior of several HPC benchmarks

to provide insight into the behavior of power capped execution that was missing

from the HPC literature. Finally, an intuition connecting the electrical properties

of the hardware to an algorithm being executed was given and will be needed to

support Chapters IV and V.

55

CHAPTER IV

DYNAMIC POWER SCHEDULING

This chapter contains ideas and themes that have been previously published

in D. Ellsworth, Patki, Perarnau, et al. (2016); D. Ellsworth, Patki, Schulz, et al.

(2016); D. A. Ellsworth et al. (2015a, 2015b). PowSched and its analysis are my

original work. My co-authors assisted in developing the language and narrative

to describe PowSched and its analysis for the previously published work. Allen

Malony produce Figure 7 as part of the narrative development for D. A. Ellsworth

et al. (2015a).

Chapter II introduced hardware overprovisioned systems as a technique

to better utilize power; a technique that relies on energy efficiency and power

scheduling. Additionally, Chapter II presents the power scheduling invariant,

which formalizes what a power scheduler must do to guarantee system wide power

consumption remains within a given bound. Chapter III presented the technique

used for power measurement and discussed the power behavior observed in HPC

applications. In this chapter a power scheduler, PowSched, suitable for hardware

overprovisioned HPC systems and based on the ideas in the preceding chapters will

be discussed.

Design Discussion

The envisioned deployment context motivating PowSched is an HPC system

where exceeding the systemwide power bound would cause physical harm to the

computer or data center1. While individual application runtime performance is

1PowSched does not consider power limitations at finer granularity that the HPC system (e.g.
rack level power distribution limitations). Physical power distribution within a system is expected

56

still of concern in for the owning organization, the cost of a system outage is high

enough to admit power scheduling solutions that significantly degrade application

runtimes or abruptly terminate jobs running on the system. Having an application

finish late, or never finish, is clearly preferable to the computer being unavailable

for hours or weeks due to repairs.

The importance of maintaining the system power limit led to an early design

decision to separate the power and job scheduling activities in the HPC system.

Co-mingling the job and power scheduling activities creates a multi-objective

optimization problem, increasing the complexity of constructing and reasoning

about the scheduler. Instead, the PowSched system model assumes that the power

and job schedulers are completely disjoint system components. For any job schedule

the job scheduler selects, the power scheduler must be able generate a power

schedule that keeps the system within the systemwide power bound. From the

enforcement perspective separating power and job scheduling does not change the

power scheduling problem. There is an expectation that having the power scheduler

and job scheduler collaborate, rather than operating completely independently,

could result in better overall system throughput2. Even if the job and power

scheduling activities were merged into the same software, the power scheduling logic

would still need to protect the system from bad job scheduling decisions that would

cause an uncapped system to exceed the power bound. Effectively, the job and

power scheduler must separate but interacting subsystems even when merged into a

to also expected to be a challenge but this finer power control problem is out of scope for the
current work.

2Performance optimizations involving collaboration between the power scheduler and job
scheduler are not studied in this work.

57

Job

Scheduler

job submission

job
output

P
o
w
e
r

S
c
h
e
d
u
le
r

job
output

measured
power

allocated
power

job
execution

Figure 7. Model relating the cluster, job scheduler, and power scheduler. Graphic
created by Allen Malony and reproduced from D. A. Ellsworth et al. (2015a).

single program to provide hard enforcement. Figure 7 shows a highlevel diagram of

the PowSched HPC system model.

In competing power scheduling work, the job scheduler plays an active

role in power scheduling activity. When scheduling a job in these solutions, a

power estimate is used to reserve sufficient power for the job to complete without

performance impact. The system never becomes overloaded with respect to power

because the job scheduler would never knowingly start work when insufficient

power exists to service the work. When power and job scheduling are decoupled,

the power scheduler must be able to response sensibly to overload since the job

scheduler is unaware of any power constraints.

A significant portion of the work on energy efficiency and power scheduling

involves traced based models of the individual applications to be run. For a

production power scheduler, needing application trace data to make power

scheduling decisions can be problematic. The first run of any application cannot

have a valid trace based model since there has been no prior execution to observe

and build the model from. Even if the application has been run previously, the

behavior for a given input may diverge from the previously observed executions.

58

While a future work extending PowSched may be able to use application models

to good effect when available, the current work makes power scheduling for first

application runs a first class use case and eschews application specific models.

Temporal resolution of measurements and responses can be a significant

problem in a distributed system. For a 3 gigahertz processor, light in a vacuum

can only travel roughly 10cm per clock cycle. The transmission latency alone, to

move data from side of the HPC system to the other, is significant in comparison

to the rate of computation within node processors. Direct control of components

by the systemwide power scheduler at realtime operating frequencies is practically

impossible due to physics. Instead, the systemwide power scheduler must make

decisions at a relatively low frequency and leave high frequency adjustments to

the individual hardware components. PowSched assumes a hardware technology,

like RAPL, is available on each component to keep power component consumption

beneath the last received allocation.

Changing power allocations must be done carefully to avoid exceeding the

power bound due to latencies. Realtime synchronization is hard to achieve between

nodes in an HPC cluster and the latency between the systemwide power scheduler

and the components may differ by component. Naively setting new allocations

as they are computed or in a single pass may cause the systemwide power limit

to be exceeded. Power allocations, therefore, should occur in two phases. The

first phase should send the new allocations to all components receiving a smaller

allocation. After all acknowledgements from the first phase have been received, the

second phase can then send the new allocations to all components receiving a larger

allocation. Two phase allocation will be discussed more when proving PowSched

provides hard enforcement.

59

Scheduling Heuristic. The vast majority of power schedulers in the

literature use trace based application specific models to generate power allocations.

Application specific models enable the power scheduler to predict the amount of

power to be consumed and produce schedules that make that power available.

As discussed in Chapters II and III, an insufficient power allocation increases

application runtime and the power required varies by application. Unfortunately,

generation of good application model requires tracing several executions of the

application.

Rather than identify application specific behaviors, PowSched makes

scheduling decisions based on a heuristic informed by the generalized effect of

power caps on program execution (discussed in Chapter III). The following four

observations have particular relevance for the design of PowSched:

1. Each application execution has a characteristic power consumption.

2. Power consumption usually remain stable during application phases.

3. Allocating more power than the characteristic consumption does not improve

performance.

4. Allocating less power than the characteristic consumption reduces

performance nonlinearly.

PowSched can reduce the power allocated to components observed to

consume less power than the component’s current allocation. Application phases

are expected to have relatively stable power consumption, which makes the last

observed power consumption a good estimate of the power consumption expected

for the rest of the application phase. Reducing the power allocation to be near

the observed consumption is not expected to reduce application performance since

60

the characteristic consumption during the current application phase is roughly the

observed consumption.

PowSched should increase the power allocated to components where the

characteristic power consumption would be greater than the current allocation.

Without an application model, PowSched cannot directly estimate wether a

component could use more power or not. During application phases where the

characteristic power consumption would be greater than the current power

allocation, the hardware power controller will use up to the current allocation.

When confronted with consumption near the allocation, PowSched will assume

that the component would use more power if additional power was allocated.

Ideally, the HPC system will never be overloaded and all applications will

be powered at their characteristic consumption. Due to the lack of coordination

between the power and job schedulers, PowSched must be prepared to handle the

system being overloaded. PowSched attempts to resolve overload by converging

towards a fair power allocation (i.e., one in which all components are allocated

the same amount of power). Using this heuristic, in the worst case, PowSched is

expected to converge to the power allocations that a naive static systemwide power

scheduler would produce.

The heuristics used by PowSched operates on the hardware components

and is application agnostic. It is sufficient to know that an application specific

characteristic power consumption exists to derive the heuristic for increasing and

decreasing allocations, knowledge of the specific characteristic power consumption

for running applications is not necessary. Using these heuristics, PowSched is able

to operate on the hardware components without any details regarding the work

executing on them.

61

Algorithm. The highlevel algorithm used by PowSched is simple

and has three conceptual phases. In Phase 1, the current power consumption is

gathered by the power scheduler. The scheduler operates at a coarse temporal

resolution with respect to the computation and power consumption within phases

is expected to be fairly consistent, making small differences in the collection

time between nodes acceptable for making scheduling decisions. In Phase 2, the

current component power readings are compared against the last allocations and

the new power schedule (i.e., component level allocations) is generated. Only the

components receiving smaller allocations are sent new allocations during phase 2.

Phase 3 begins when the components receiving smaller allocations in Phase 2 have

acknowledged that the new lower allocations have been applied. All components

receiving larger allocations are then sent the new allocations during Phase 3.

Following Phase 3, the power scheduler waits for the reset of the scheduling

interval. Algorithm 2 provides pseudocode for the algorithm backing PowSched.

Each component subject to power scheduling is represented in PowSched

as two numbers; a consumption number collected from the component to the

scheduler and an allocation number sent from the scheduler to the component.

Phase 1 is responsible for collecting and updating the consumption numbers for

each component in the scheduler (see Algorithm 3). Phase 2 will generate the

new allocations for all components receiving smaller allocations based on the

previously discussed heuristics (see Algorithm 4). When no components can have

their allocation reduced in phase 2, power is taken from all components consuming

more than the average power. Phase 3 redistributes the power reclaimed in Phase 2

62

Algorithm 2 PowSched logic in pseudocode
q ← target wi

C stores {c0, · · · , cn−1}
A stores {a0, · · · , an−1}
M stores {m0, · · · ,mn−1}
numdown ← count of nodes yielding power
interval ← scheduling interval
reclaimfactor ← power to reserve when stealing

procedure Main
while True do

getReadings . Phase 1
allocDown . Phase 2
allocUp . Phase 3
sleep rest of interval

end while
end procedure

to all components that are consuming near the component’s current allocation (see

Algorithm 5).

Algorithm 3 PowSched phase to gather recent consumption

procedure getReadings
for all sockets do

Update ci with the current reading
end for

end procedure

A common question when discussing PowSched is the use of direct

feedback rather than proportional integral derivative (PID) controller logic when

determining allocations3. If PID logic was used, the PID control would need to

be tuned to be conservative to avoid exceeding the systemwide power cap, which

would extend the number of iterations required for convergence to a new good

allocation. Unfortunately, the systemwide power scheduler operates at a glacial

3Responding directly has the potential for flapping when a phase length is approximately the
same as the scheduling interval.

63

Algorithm 4 PowSched phase to reduce power alocations

procedure allocDown
numdown ← 0
for all sockets do

if ci < ai − q then
Update ai to max{ci + q, Amin}
numdown ← numdown + 1
Update mi to False

else
Update mi to True

end if
end for
if numdown= 0 and

∑
ai + n ≥ L then

for all sockets do
if ai >

L
n

then
ai ← ai − (ai − L

n
)× (1−reclaimfactor)

mi ← True
end if

end for
end if
for all sockets do

Set the socket to limit ai
end for

end procedure

Algorithm 5 PowSched phase to increase power alocations

procedure allocUp
u← (L−

∑
ai)

n−numdown

for all sockets do
if mi then

ai ← min{ai + u,Amax}
end if

end for
for all sockets do

Set the socket to limit ai
end for

end procedure

64

speed compared to the individual components due to the communication latencies.

Additionally, a power target is only valid until the end of an application phase

so long convergence time may also cause the majority of a phase to run with

a suboptimal power configuration. Using a mechanism like RAPL, PowSched

does not need to attempt to converge particular components to power targets.

Instead, PowSched is able to directly set a component’s power target and allow

the component to determine how to best achieve the target power.

Hard Enforcement. Power schedulers providing hard enforcement

must be able to prove satisfaction of the power scheduling invariant (Equation

2.5). As discussed in Chapter II, the power scheduling invariant has two parts

that must be addressed. First, the power scheduling mechanism must guarantee

that the power actually consumed by a component never exceeds the power

allocation. Second, the power scheduling algorithm must provably guarantee that

the aggregate power allocations never exceed the systemwide power limit. By the

manufacturer documentation and experiments in Chapter III, PowSched claims

that the RAPL mechanism provides the needed guarantee for each component.

The PowSched algorithm, however, must still be proven to provide the needed

algorithmic guarantee across components.

Proof by induction is used to show the PowSched algorithm satisfies the

algorithm component of the power scheduling invariant. Description of the power

scheduling invariant can be found in Chapter II and the symbols used are defined

in Table 4. First, the base case, a safe initial configuration, will be presented and

shown to satisfy the invariant.

A fair assumption for the algorithm is that the initial power allocations will

satisfy the power scheduling invariant. One simple way to enforce this would be for

65

the power allocation to be set evenly across all components when the system starts.

If the systemwide power limit is L and there are n components, then the initial per

component power allocation would be n
L

. Trivially, this initial condition satisfies the

requirement that L ≥
∑
ati.

In phase 1, no power allocations are made. Trivially, phase 1 does not

impact the relationship between the systemwide power limit and the aggregate

power allocations.

In phase 2, strictly smaller power allocations are made. For all components,

the previous allocation, ati, will be less than or equal to the upcoming allocation,

at+1
i . Since L ≥

∑
ati and ∀i, ati ≥ at+1

i it must be the case that L ≥
∑
at+1
i .

Additionally, at the end of Phase 2, there exists some strictly positive amount of

surplus power, S, such that L ≥ S +
∑
at+1
i and S =

∑
ati − at+1

i . Clearly, Phase 2

preserves the power scheduling invariant.

In Phase 3, strictly larger power allocations are made. The amount of power

distributed in Phase 3 is bounded by the amount of surplus power reclaimed in

Phase 2. Surplus power is evenly divided between the components receiving a larger

power allocation. If k components are receiving larger allocations in Phase 3, each

component will receive an additional allocation of S
k
. For each of the k components

receiving a larger allocation, the allocation, at+2
i , at the end of Phase 3 will be

at+1
i + S

k
. The total power allocated at the end of Phase 3 will therefore be

k S
k

+
∑
at+1
i , which matches the satisfying L ≥ S +

∑
at+1
i allocation at the end of

Phase 2.

At the beginning and ending of each phase, the PowSched algorithm

maintains the power scheduling invariant. Since Phase 1 follows Phase 3, the power

scheduling invariant is maintained throughout scheduler execution.

66

A natural question at this point would be why transmitting the allocations

computed in Phase 2 and Phase 3 must be done separately. From an algorithmic

proof perspective, the separation into two distinct transmission phases seems

unnecessary. One could logically compute the down allocations (phase 2) and the

up allocations (phase 3) and transmit all of the allocations at the same time. Due

to real world latencies and uneven delays between nodes sending all allocations at

once is unsafe. Practically, the separate phases are critical to providing a guarantee

that the systemwide power bound is never exceeded.

To highlight the danger in transmitting up and down allocations at the same

time, consider the case of a system with a power limit of 3 and two components A

and B with allocations aA and aB respectively. At time t, atA = 2 and atB = 1. The

scheduler computes the allocations for time t+ 1 as at+1
A = 1 and at+1

B = 2 and sends

the new allocations at the same time. Some unpredictable delay will be experienced

as the allocations travel from the scheduler to the components. If component B

receives and applies the allocations for time t + 1 before component A, then there

will be an interval in which the aggregate allocated power will be atA + at+1
B > L.

For this reason, PowSched implementations must receive acknowledgement

of down allocations (Phase 2) before sending up allocations (Phase 3).

Unacknowledged up allocations are safe since components using the previous

allocation can only consume less power than the new allocation would permit.

Implementations

The PowSched algorithm has been implemented several times using different

supporting technologies. PowSched performance has been primarily evaluated

using an MPI based implementation. The PowSched algorithm has also been

67

implemented using SOS4, Glasgow Cache (Cache)5, and on BEACON6. Only the

MPI and Glasgow Cache implementations will be discussed in this chapter.

MPI. The MPI implementation of PowSched is a single MPI application

and directly follows Algorithm 2. PowSched is started as a separate MPI job, with

one process per node. On startup, PowSched sets all component power caps to

a fair share allocation. Readings are collected using MPI Gather and allocations

are distributed using MPI Scatter. The timing mechanism used to maintain the

monitoring interval in PowMon (see Chapter III) is also used by PowSched to

maintain a uniform scheduling interval. The MPI implementation does not have

a mechanism for shutdown and relies on the system job scheduler to kill the

PowSched processes when the run is complete.

Glasgow Cache. To investigate if tight coupling between phases is

required, PowSched was implemented using a publish/subscribe platform with

loosely coupled applications. The Glasgow Cache implementation of PowSched is

in C and deviates from Algorithm 2 by decoupling power measurement, scheduling,

and allocation. Phase 1 is done by the power monitor in the Glasgow Cache

implementation and one monitor is started per node participating in power

scheduling. The generation of power allocations is done by the power scheduler,

which is started on a single node. Allocations are applied by the power actuator,

which is implemented, for simplicity, using MPI rather than Glasgow Cache to

signal the down allocations have been successfully applied. Coordination between

4Scalable Observation System, SOS, is an ongoing project at the University of Oregon to build
a streaming introspection platform for HPC systems. More information on SOS can be found in
Wood et al. (2016).

5Cache is a high performance publish/subscribe middleware system. More information on
Glasgow Cache can be found in Sventek and Koliousis (2012).

6BEACON is the publish/subscribe layer in the Argo ExaOS/R project. More information on
the Argo ExaOS/R projectcan be found in Backplane — (n.d.).

68

the three applications is done using only the publish/subscribe mechanism exposed

by Glasgow Cache.

Communication in the Glasgow Cache implementation uses the following

pattern: At regular and unsynchronized intervals, the power monitor on each

node publishes the current energy reading via the Glasgow Cache infrastructure.

At the scheduling interval, the power scheduler retrieves the latest readings from

the infrastructure for all of the monitors and publishes new allocations to the

infrastructure for each node. Once the complete schedule has been published, the

power scheduler publishes a message indicating the schedule is complete. The lead

power actuator subscribes to the completion message, which is received with the

new allocations for all of the nodes. MPI Scatter is then used by the lead power

actuator to set the down and up power allocations safely on all of the nodes7.

Results

A series of experiments with the MPI PowSched implementation were

conducted on the Cab system at LLNL8. Results from these experiments are

presented in this section first. Next, results from a scaling study PowSched’s

computation and communication costs, performed on the vulcan system an LLNL,

are presented. Vulcan does not support libMSR, so the PowSched implementation

stubs out reading with a random number generator and does not actual set power

caps, however new allocations are computed and transmitted based on the readings

gathered. This section concludes with results using the Glasgow Cache PowSched

7Implementing the synchronization needed could be done using Cache but was not for
simplicity. Actuators would subscribe to a set allocation event and would publish an allocation set
event after making the change. Cache automata would use the allocation set events to determine
that the down allocations completed before publishing set allocation events for the up allocations.

8Cab is a commodity Linux cluster. For more information see https://computation.llnl

.gov/computers/cab.

69

App Nodes App Only +POWmon @115W @dyn ≈ Overhead
LU 16 119.77 119.84 120.99 121.25 0.01
LU 4 112.39 112.92 112.05 113.30 0.00

CoMD 16 107.1491 105.3836 107.3378 107.0001 0.00
CoMD 8 109.3181 109.2498 109.9474 110.1558 0.01
CoMD 4 92.4329 91.9755 92.2450 92.7113 0.00
AMG 16 102.573688 103.323772 103.71112 103.71112 0.00
AMG 8 88.667316 88.173036 89.631203 90.110953 0.01
AMG 4 76.821048 76.763169 77.002957 76.873345 0.00

Table 8. Runtimes reported by the benchmarks in seconds. PowSched @115W run
forces PowSched to assign 115W per socket over the lifetime of the job. PowSched
@dyn allows PowSched to dynamically adjust the per socket allocation with a
global bound permitting 115W per socket.

implementation to show that tight coupling of the power reading and setting

mechanisms may not be required.

Overhead. PowSched shares resources with the applications running on

the cluster and may contend with the applications running on the controlled nodes,

reducing application performance. A first experiment for PowSched is to measure

the impact of running PowSched and PowMon versus running an application

alone on the test machine. Table 8 presents the runtimes, as reported by three

CORAL benchmarks, for invocations on 2, 4, 8, and 16 nodes with different modes

of monitoring and scheduling enabled. Runtimes were perturbed by less than 0.1%

compared to application running alone. PowMon and PowSched together appear to

interfere negligibly with applications.

MPI Experimental Results. The first set of the experiments used

128 Cab nodes. Logically, the 128 nodes can be thought of as being partitioned

into 8 enclaves, each containing 16 nodes (32 sockets with 8 cores each). During

each experiment, all enclaves will run simultaneously and each enclave will run

a workload of two benchmark apps in sequence, with a 10 second sleep between

70

benchmark apps. Workloads of this form are chosen to ensure a window of

unevenness in the maximum power consumption, per node, during the experiment

run. The sleep also simulates the window of time expected between completion of

one job and the system job scheduler starting another job on the nodes. Workloads

with fixed node counts per workload are used rather than individual jobs due to

complexities of running and tracking concurrent subjobs in existing job schedulers.

Figures 8, 9 and Table 9 use workloads with three application benchmarks

(AMG, LULESH, and CoMD). For experiment control, each workload was run

with each socket receiving the maximum power allocation, 115 watts. 115 watts

is expected to result in the shortest possible runtime. Experiments where also

run where each socket received a specific power allocation (90 watts, 70 watts,

and 50 watts), simulating the naive static power scheduling strategy. The static

runs provide a baseline for comparison between PowSched and a system where

each active socket is given an equal static allocation based on the global power

available (e.g., a system has a global power bound of 17,920 watts and 256 active

sockets, resulting in an average allocation of 70 watts per socket). The runs with a

fixed per socket allocation will be referred to as static. The experimental runs using

PowSched will be referred to as dynamic and rely on the same total system power

bound as the corresponding static run.

Figure 8 shows total power allocation across the 8 jobs for a 50 watt average

bound using static and dynamic scheduling. Table 9 shows the runtime impact

of PowSched over 10 runs at each bound with outliers removed. These results

use a scheduler interval and RAPL window of 1 second. The time to complete all

workloads with PowSched, when power is constrained, is better than the static

schedule. We also note from Table 9 that PowSched clearly is not attempting

71

Experiment Runtime dev Imp. kj Alloc dev kj Used dev
115W static 278.26 9.57 8192 282 4008 98

115W dynamic 276.24 4.84 0.7% 5475 53 3977 37
90W static 284.63 3.20 6572 73 3985 30

90W dynamic 277.13 5.04 2.6% 5339 66 3980 47
70W static 323.83 4.90 5829 87 3904 34

70W dynamic 278.02 4.97 14.1% 4638 69 3985 38
50W static 401.76 5.47 5178 73 3938 38

50W dynamic 371.92 13.23 8.7% 4562 124 4016 79

Table 9. 128 nodes, 16 nodes workloads per workload, 10 runs, same workload for
all runs reported with improvement percent and energy.

Seconds

W
at

ts

0 60 120 180 240 300 360

0
60

00
15

00
0

(a) Static

Seconds

W
at

ts

0 60 120 180 240 300 360

0
60

00
15

00
0

(b) PowSched

workload1
workload2

workload3
workload4

workload5
workload6

workload7
workload8

Figure 8. Workload consumption and global bound for a 128 node cluster using an
average of 70 watts per socket.

72

0 50 100 150 200 250 300 350

0
20

00

Seconds

W
at

ts

(a) Static

0 50 100 150 200 250 300 350

0
20

00

Seconds

W
at

ts

(b) PowSched

workload1
workload2

workload3
workload4

workload5
workload6

workload7
workload8

Figure 9. Workload consumption over time for a 128 node cluster using an average
of 70 watts per socket.

73

Benchmark Domain Processes
LULESH Shock Hydro 27
miniFE Finite Element 8
miniFE Finite Element 64
AMG Linear Solver 32
AMG Linear Solver 64
MCB Monte Carlo 32

CoMD Molecular Dynamics 32
Nekbone Science App 8

Table 10. Benchmarks used for 8 node workloads in the 128 and 256 node
experiments.

energy optimization. In all cases, roughly 4 megajoules are used to complete the

workloads. The primary effect of PowSched is on the runtime relative to static

required to complete all workloads.

Figure 9 shows per enclave allocation and consumption for the

corresponding 50 watt runs, comparing static and dynamic. What is interesting

to see is the dynamic spreading of power to workload applications that can use it,

some of which end up consuming significantly above the 1,600 watts per enclave (50

watts per socket) constraint used by the static allocation.

Unallocated power is present as a side-effect of the greedy reclamation

strategy and can be seen in Figure 8 as the space between the total allocated power

and the global limit. There is no unallocated power in the static strategy since

the full power limit is allocated across all sockets at all times. Several co-located

clusters sharing a power infrastructure could potentially make use of unallocated

power by shifting the power from one cluster to another. In such a scenario, the

global system power limit is also a dynamic policy-driven value for each HPC

cluster. Similar to shifting budget across clusters, a hierarchy of power schedulers

in a single cluster might be used to achieve extreme scales.

74

Window Size Sensitivity. The results in Table 9 use a scheduler

interval and RAPL window of 1 second. To investigate sensitivity to these settings,

the workloads were re-run 10 times at each bound with scheduling intervals of 250,

500, and 2000 milliseconds and RAPL windows of 1 millisecond and 1 second. The

small number of phases and mostly constant power consumption of the benchmark

applications provide little opportunity to gain performance improvement using

faster power scheduling response. The results obtained for varying scheduling

interval and RAPL window size were inconclusive when considering the level of

system jitter. Further investigation with different benchmarks may show sensitivity

that the study conducted in this work did not find.

Scaling Experiment. Few large HPC platforms exist for experimenting

with dynamic hardware enforced power bounding. However, there is a desire

to understand the scaling performance to determine if PowSched would still

be suitable for an extreme scale system. For this purpose, a modified version

of PowSched was deployed on the Vulcan IBM BG/Q platform at LLNL9 and

the time PowSched spent in communication and computation was measured.

Since the BG/Q platform does not support RAPL, we used random numbers for

consumptions read. Use of random numbers should not disrupt the results, since

the per node time to read from or write to the RAPL registers should remain

constant10. The performance of PowSched at scale will be dominated by the

time taken to communicate the per socket readings or the time taken to perform

computation over the socket readings.

9 Additional information on Vulcan can be found at http://computation.llnl.gov/
computers/vulcan.

10 Measurements we made on Cab show an average of 44 and 15 microseconds are required to
read and set the RAPL registers, respectively, via libmsr.

75

Each scheduler process launched represents a simulated node with 2 sockets

and for each run we use 1, 2, 4, 8, 16, 32, or 64 processes per physical BG/Q

node. BG/Q node counts from 1 to 8k are used to sweep the space from a single

simulated node to 500k simulated nodes. Linear scaling for computation and

slowly growing communication cost were observed (Figure 10). Linear scaling

for computation is expected due to the linear scans conducted by the dynamic

scheduler each interval. BG/Q’s optimized network for low-latency and high-

bandwidth MPI collectives results in slow all-gather communication time growth.

Figure 11 shows the cross over region between computation and communication

being the dominant time cost. Even at the largest number of simulated nodes, 512k

simulated nodes, scheduler communication and computation complete in under

400ms. Depending on system scale and network performance, dynamic centralized

power scheduling may be viable.

Glasgow Cache Experimental Results. The PowSched

implementation using Glasgow Cache was run on cab to compare the performance

against static power scheduling at node counts of 128 and 256 nodes. Due to

limited machine time, each configuration was run only once. Table 11 presents

the results obtained running the decoupled PowSched implementation using the

same work loads from Table 9. Table 12 represents results comparing a more

varied workload using 128 and 256 nodes. Table 10 summarizes the configuration

of workload applications for the more varied 128 and 256 node experiments.

From the data provided in Table 12, decoupled PowSched appears to have

poor performance when power is plentiful. The greedy reclamation of power

combined with the lack of measurement synchronization are likely contributors to

the performance penalty. Lack of measurement synchronization may cause sockets

76

2e
+

02
2e

+
04

Sockets

M
ic

ro
 S

ec
on

ds

512 4096 65536

(a) Physical Communication

2e
+

02
2e

+
04

Sockets

M
ic

ro
 S

ec
on

ds

512 4096 65536

(b) Physical Computation

1e
+

01
1e

+
04

Sockets

M
ic

ro
 S

ec
on

ds

1 8 128 8192

(c) Simulated Communication

1e
+

01
1e

+
04

Sockets

M
ic

ro
 S

ec
on

ds

1 8 128 8192

(d) Simulated Computation

Figure 10. Lines represent the performance for physical node counts used from 8k
to 512 nodes in (a) and (b). Lines represent simulated node count per physical
node in (c) and (d).

Experiment Runtime kj Alloc kj Used
115W static 278.26 8191.85 4007.80

115W dynamic 281.18 5662.18 3930.92
90W static 284.63 6571.76 3984.68

90W dynamic 284.49 5547.65 3961.87
70W static 323.83 5829.02 3904.29

70W dynamic 288.58 4830.906 3972.80
50W static 401.76 5178.29 3937.65

50W dynamic 381.33 4736.71 3822.73

Table 11. Comparison of 1 decoupled run with averaged runs using static.

77

20
00

40
00

60
00

80
00

10
00

0

Sockets

M
ic

ro
 S

ec
on

ds

2048 4096 8192 16384

●●● ● ●

●

●

●●
●

●

●

●

●

●

●

128 nodes comp
256 nodes comp
512 nodes comp
1k nodes comp
2k nodes comp
128 nodes comm
256 nodes comm
512 nodes comm
1k nodes comm
2k nodes comm

Figure 11. Crossover between computation and communication based on physical
count.

78

128 nodes 256 nodes
Experiment Runtime kj Alloc kj Used Runtime kj Alloc kj Used
115W static 635.28 18735.93 8423.71 638.21 38025.55 16742.65

115W dynamic 651.29 12168.17 8529.40 650.98 24311.96 17001.13
90W static 631.92 14572.81 8217.15 631.31 29175.82 16266.65

90W dynamic 645.16 11947.70 8515.70 654.49 24048.24 17101.51
70W static 686.06 12312.24 7629.02 681.91 24828.42 15168.44

70W dynamic 655.40 10825.60 8390.14 654.24 21433.79 16525.66
50W static 832.01 10656.16 7525.93 849.91 21801.45 14956.87

50W dynamic 737.56 9250.22 7573.55 759.09 18854.32 15095.90

Table 12. Comparison of static and decoupled with more varied workloads at 128
and 256 nodes.

working on the same application to provide measurements on different sides of a

phase boundary for a scheduler interval. In the case of an application entering

a high power phase, sockets reporting before the phase change will receive less

power than the sockets reporting after the phase change. The slower progress of the

sockets with low power allocations may reduce progress and power consumption on

the high power sockets, since the higher power sockets would need to wait. When

power is less plentiful, PowSched is able to increase overall performance sufficiently

to over come the penalty of asynchronous operation (i.e., the performance penalty

from static capping exceeds the performance penalties of the uncoordinated

operation).

Figure 12 show that the workloads have low power consumption and a

long tail. A significant amount of the processor time for most processors is spent

with idle consumption waiting on the longer applications to finish. Additionally,

the majority of the workload configurations have low power consumption,

reducing the opportunity for performance increases through power shifting. Better

experiments would require adding a job scheduler to keep the nodes busy. However,

79

Seconds

W
at

ts

0 60 180 300 420 540 660

0
60

00
15

00
0

(a) Static

Seconds

W
at

ts

0 60 180 300 420 540 660

0
60

00
15

00
0

(b) PowSched

workload1
workload2

workload3
workload4

workload5
workload6

workload7
workload8

Figure 12. Job consumption and global bound for a 128 node cluster using an
average of 70 watts per socket using the decoupled scheduler.

orchestrating such an experiment is difficult since the production job scheduler and

experiment job scheduler would conflict.

Chapter Summary

In this chapter, PowSched was presented. PowSched is a power scheduler

providing hard enforcement without application specific models or job scheduler

integration. Power scheduling decisions are made per component based on a simple

heuristic, provide more power to components consuming more power and less

power to components consuming less power. When power is limited, PowSched

80

is able to improve overall system performance, measured as the time to complete

all queued work. The MPI implementation shows that PowSched can produce

power schedules of roughly the same quality as an uncapped system when power

is plentiful. PowSched remains unique in the power scheduling literature due to the

lack of job scheduler integration and being application agnostic.

The studies of PowSched presented in this chapter were all conducted

experimentally using systems hosted and LLNL. Experimental work suffers

from jitter due to non-determinism within the system. The effect of jitter can

be mitigated by analyzing several runs of the same experimental configuration.

However, this involves additional machine time. HPC machine time is generally

limited and the requirements for power scheduling research (a non-trivial size

machine exposing power control to researchers) further reduces the available

resources for such experiments. In the next chapter, a simulator suitable for power

scheduling research is presented.

81

CHAPTER V

SIMULATING POWER CAPPING

This chapter contains ideas and themes that have been previously

published in D. A. Ellsworth et al. (2015b). Additionally, this chapter contains

unpublished work under submission to Cluster 2017. The PowSim motivation,

model, implementation, and analysis are my original work. Co-authors on the

publications assisted with language and narrative to present these contributions

in the previously published work.

One of the common challenges in HPC research is the cost of HPC machine

time. Power scheduling research is doubly challenged since experiments require

a machine of nontrivial scale that also exposes potentially dangerous MSRs to

research code. Simulation is a common strategy to address lack of hardware

availability and support experiments at reduced cost. Prior to this work, the HPC

community did not have a simulator capable of simulating the effect of power

capping at scale.

Several systems exist for simulating hardware near the gate level,

allowing high resolution simulated power consumption to be captured. Hardware

approaches using GPGPU (Chatterjee, DeOrio, & Bertacco, 2009), HPC clusters

(Gonsiorowski, Carothers, & Tropper, 2012), and FPGAs (D. Kim et al., 2016)

can greatly accelerate simulation performance over gate level techniques run

on CPUs. However, even with hardware acceleration, a single relatively simple

processors can only be simulated at clock speeds of a few kHz. To simulate an

HPC cluster, hundreds to thousands of processors must be simulated. Functional

architecture simulators, such as Simics (Magnusson et al., 2002), are faster than

82

gate level simulation, but are still too computationally intense for our purposes.

Due to the computational costs, existing low level simulation techniques are not

able to provide the needed performance for exploring power scheduling at scale.

The resource scheduling community has several existing simulators. While

SLURM has a simulation capability that allows a small number of nodes to act

like a much larger cluster, this is unsuitable since changing the power cap of a

virtual node will effect all work mapped to the same physical node. BSC (Lucero,

2011) and CSCS (Trofinoff, 2015) have implemented simulators on top of SLURM.

However, neither are capable of changing simulated application runtime after the

job is launched. While BatSim (Dutot, Mercier, Poquet, & Richard, 2016) provides

a model for adjusting runtime, BatSim only models DVFS, bounding clock speed,

rather than power capping, bounding power. A given DVFS setting will result

in predictable linear computation slowdown, for compute bound code, while a

given RAPL limit may or may not slow a computation. Other existing simulation

frameworks have similar challenges regarding changing runtime in response to

power cap changes made at runtime or lack an energy model. Due to the lack of

a model capturing RAPL effects or other simulator model limitations, existing

simulators for the resource scheduling community are not able to provide the

needed functionality for exploring power scheduling based on the RAPL mechanism

at scale.

In the remainder of this chapter PowSim is described and evaluated. A

model for the effect of RAPL power caps on an application and process, based

on the observations in Chapter III, is presented. Then implementation details of

a simulator using the model are given. Finally, results of simulator validation and a

small simulation study are shown before the chapter concludes.

83

Modeling Power Capping

In this section, we consider the observations motivating the PowSim

simulation model and how these are encoded. The objective of PowSim is to

observe how changing power caps on arbitrary processors at arbitrary times

impacts job throughput on a large HPC cluster. First, a generalization of the

interplay between programs, processors, and power is presented. Next, the

mathematical model used by the simulation to represent this interplay is presented.

The section concludes with a description of how the model scales to support

simulation of an HPC cluster.

Model Intuitions. Real HPC applications are generally characterized

as having alternating compute and IO phases, which would respectively have high

and low processor power consumption(Fukazawa et al., 2014). Figure 6 shows the

behavior of MiniFE, an application displaying high and low power consumption

phases, under high and low power caps. Assuming applications have constant

power consumption when studying HPC power scheduling performance is a poor

assumption.

An application specific range of processor power caps exist for which

the application runtime is identical to an uncapped processor. Figure 5 plots

the normalized runtime of several HPC benchmarks under progressively lower

power caps, showing runtime dilation starts at different power caps for different

applications. Plots were also shown in Chapter III highlighting that even when

power caps are high, the maximum power consumption remains bounded by

the characteristic power consumption. Additionally, Figure 6 indicates that

applications with phased behaviors only experience runtime dilation during the

phase that would consume more power than the current cap. The key observation

84

is that an application’s instruction stream, on a given processor, is able to induce

some maximum power consumption. All power caps greater than or equal to the

characteristic power consumption result in the same application runtime, within

system jitter.

From these observations, the performance of a power capped application

will always be limited by the instruction stream, program bound, or the power cap,

processor bound. When program bound, the dependencies between instructions in

the program’s instruction stream on the processor produce an upper bound on

power consumption and rate of instruction eviction. Program bound execution

yields the characteristic power consumption and runtime of the program will be

considered the normal time. When processor bound, the processor likely used DVFS

to reduce the clock frequency or DPG to halt the processor so power consumption

remains within bound, changing the rate of instruction eviction per wall clock unit

time. Processor bound execution experiences time dilation, that is, the wall clock

time for the program to make the same amount of progress increases.

An application can be modeled as a function from instantaneous normal

time to instantaneous power consumption. The program starts execution at time

0 and completes execution at the last instantaneous time for which the power

consumption is non-zero. In program bound regions, application progress proceeds

at the same rate as simulated wall clock time. Processor bound regions of execution

can be trivially found by identifying where the function value exceeds the processor

cap. The challenge for a simulator is to estimate the runtime dilation experienced

during the periods of processor bound execution.

Figure 5 shows the runtime of several benchmarks under progressively lower

power caps, normalized against the uncapped runtime. Runtime dilation starts

85

at a different power cap for each of the plotted benchmarks. However, all of the

benchmarks exhibit a polynomial shaped curve. A linear reduction in the power

cap, beneath the characteristic consumption, results in a polynomial increase in

runtime. The key observation is that during processor bound phases, the difference

between the uncapped power consumption and current power cap is related to the

amount of runtime dilation.

Power measures the rate at which work is done and energy is the standard

unit of work. Physically, the work of computation within the processor is done

using transistor state changes and power is often modeled with the following

formula P = ACV 2f + V Ileak (N. S. Kim et al., 2003). The formula states that

the power consumed is related to the active transistors (A), the total capacitance

(C), the input voltage (V), the activation frequency (f), and the leak current

(Ileak). Terms C and Ileak are physical properties of the processor. A is determined

by the executing instruction stream1. The remaining terms V and f may be

controlled by the processor, but a relationship between the values of V and f must

be maintained for stable operation. A 10% reduction in supply voltage results in a

greater than 10% reduction in frequency (N. S. Kim et al., 2003).

Mapping an application to hardware instructions to circuit activation is

extremely complex on modern architectures and would require at least gate level

simulation, which will not scale for simulation at the scale of an HPC cluster.

Rather than work directly with hardware instructions, circuitry details, and

electrical energy, instruction work is introduced as a simplifying abstraction.

Over an interval, a processor is able to service some maximum amount of

1One can imagine processor architectures where the processor dynamically selects different
implementations for the same hardware instruction, which would allow the processor some control
over the number of active transistors per unit time required to complete a particular instruction.

86

instruction work, which represents some number of processor transistor activations

corresponding to hardware instructions and energy consumption over the interval.

Given an interval in program normal time, a certain amount of instruction work is

induced by an executing program, abstractly representing the active circuits and

corresponding energy consumption over the interval.

Processor power consumption is expected to fall within a fixed range

of values. The upper bound on processor power consumption is assumed to be

the TDP. TDP is given in the processor specification and is usually used as the

maximum power consumption for the processor when designing a system. There is

also a lower bound on processor power consumption that occurs due to leak current

and other background activity, including the operating system. The idle power,

power consumed for background activity, is assumed to not do useful computation

work for an application. Observed power consumption for a processor running a

computation is expected to fall between the idle power and TDP.

The following core ideas shape how runtime dilation is estimated:

1. The amount of dilation is related to the difference between what the

uncapped power consumption would be and the current power cap

2. TDP occurs when the maximum amount of instruction work possible is being

done by an uncapped processor

3. Idle power occurs when no application work is done by the processor

As this subsection concludes, note that we have sketched a relationship

from program logic through hardware instructions to physical activity within

a processor. Power consumption and runtime have a strong relationship with

program text, compiler output, and the hardware used to execute the program.

87

Iproc Socket instruction work possible
Iprog Program instruction work
Es Socket energy allocated
Ep Program energy consumed
W(t) Program power consumption at time t
s Interval start time wallclock time
e Interval end time wallclock time
s′ Interval start time in normal time
e′ Interval end in normal time
Scap Socket power bound
Sidle “Idle” socket power consumption
STDP Maximum socket power consumption
Amin Minimum power allocation
Amax Maximum power allocation

Table 13. Symbols use in the simulation model

Real life consumption values observed for a specific application code may differ

based on the compiler used due to differences in the binary produced. Even for the

same binary, consumption observed on one hardware platform may not be portable

to other hardware platforms due to differing instruction implementations within the

processors. It is important to note that the general nonlinear relationship between

power capping and application runtime is still expected to be preserved across

hardware since it follows from the electrical properties of transistors, although the

specific shape of the curve will likely depend on numerous details of the actual

fabrication process. Tight alignment of the simulator to actual applications is

unnecessary for exploring the general behavior of power scheduling.

Model Formalization. In this subsection the formal description of

the power simulator model is given. The model describes both an application

execution and a processor. Using instruction work, the model is able to estimate

program progress during processor bound execution and produce reasonable

runtime dilation. Table 13 summarizes the symbols used for the simulator model.

88

A processor’s power consumption ranges between a minimum value, Sidle,

and maximum value STDP. Sidle represents the power consumption of the processor

when no application work is being done, the case when no program is running

or a running program is blocked. STDP represents the power consumption of the

processor when the most application work is being done. The power cap, Scap, or

power allocation of a processor may be set to a value in a range specified by the

manufacturer, Amin to Amax. The range of valid allocations should relate to the

power characteristics of the processor, Sidle < Amin and STDP = Amax. For an

uncapped processor, the power cap can be considered to be STDP.

A program running on a processor changes the power consumption of a

processor and will be modeled as a function, W(t), that maps from normal time,

t, to the observed power consumption on an uncapped processor. A program starts

at time ts = 0 and ends at time te in normal time. The values of W(t) may range

from Sidle to STDP. Program progress can be measured as the percentage of normal

runtime elapsed. For a wall clock time intervals in which W(t) < Scap, the wall clock

time and program time progress at the same rate. Computing program progress

when W(t) > Scap is less straight forward.

Instruction work is used in the model to address challenge of computing

progress when W(t) > Scap. Recall that instruction work does not directly represent

a count of transistors or a count of hardware instructions, even though the metric

tries to abstractly encapsulate both ideas. The rate of energy consumption is

related to the rate of instruction work done which should allow convertion from

the modeled watt values to a measure of instruction work. Over a wall clock time

interval from s to e, a power capped processor will be able to complete a finite

amount of instruction work, Iproc. Over a normal time interval from s′ to e′, a

89

program will be able to induce a finite amount of instruction work, Iprog, on an

uncapped processor. It must be the case that Iprog ≤ Iproc since the processor

cannot do more work than the program can induce. Additionally, e − s ≥ e′ − s′

since a normal time interval may induce more work than the walk clock interval

will support, leading to some instruction work being deferred to the next interval.

Computing time dilated program progress involves finding e′ such that Iproc = Iprog

for the wall clock interval s to e.

Equation 5.2 is models the work that could be done by a processor over a

wall clock interval and Equation 5.1 is models the work induced by a program over

a normal time interval. Instantaneous instruction work values are normalized to a

range between 0 and 1. Observed power, Scap or W(t) for processor and program

respectively, less than Sidle are nonsensical since consumption must be greater

than idle power for any program progress to occur. The maximum progress should

occur when the program’s power consumption is equal to the processor’s TDP.

Doubling power does not double the rate at which instruction work is done, even

for programs able to fully utilize the additional power. For simplicity, a square root

is used to get the desired behavior. Changing the formula adjusts the shape of the

runtime dilation under progressively lower caps.

Iproc =

∫ e

s

√
Scap − Sidle

STDP − Sidle

dt (5.1)

Iprog =

∫ e′

s′

√
W(t) − Sidle

STDP − Sidle

dt (5.2)

Cluster Scale. A cluster can be abstractly modeled as a collection of

processors that programs run on. Clusters are partitioned into nodes and each node

has some number of processors. A job is a unit of work within the cluster and, for

simplicity, maps to a program to be run across some number of nodes. The job

90

scheduler assigns a job to some number of nodes, which starts the program on all of

nodes associated with the job. Other resource schedulers, such as power schedulers,

may periodically make adjustments to the resource configuration of the nodes in

the cluster.

Cluster scale simulation follows directly from the description of clusters and

jobs. A number of processors are simulated corresponding to the size of the cluster

and, for convenience, are grouped into nodes. A job is defined by the associated

program function, W(t). When a job is assigned to a set of nodes, the program is

simulated as running in parallel across the processors associated with those nodes.

Processors in the cluster not running any job consume energy at the idle rate, Sidle.

A simulated running program has a program function, W(t), and a progress

counter to indicate the normal time the program is currently at. Each step of the

simulation, the progress counter of each program on each processor is updated to

reflect the progress made during the simulation step. When the progress counter

reaches the normal time runtime of the program, the program has completed

execution and the processor can return to the idle state.

Algorithm 6 outlines the core simulation loop. The simulation step size

impacts the accuracy of the simulation since the instruction work integral hides

when during the interval consumption might be high or low. Using the simulation

loop outlined, a job will make uniform progress across processors if the power is set

uniformly across the processors. The lack of a model for communication between

processors in the core simulation loop is a limitation of the current solution and

future work can address this limitation by introducing, at a minimum, a model for

barriers. Until a communication model is integrated, power schedulers must set

all processors within a job to the same cap so that progress is uniform. Adding

91

Algorithm 6 Core simulation algorithm

1: for all wall clock time intervals s to e do
2: Run the job scheduler to place jobs
3: Run the power scheduler to set caps
4: for all processors do
5: if No program is assigned to the processor then
6: Consume

∫ e

s
Sidle joules

7: Advance program progress e− s
8: else
9: if Program Bound then

10: Consume
∫ e′

s′
W(t) joules

11: Advance program progress e− s
12: else

13: Solve
∫ e

s

√
Scap−Sidle

STDP−Sidle
dt =

∫ e′

s′

√
W(t)−Sidle

STDP−Sidle
dt

for e′

14: Consume
∫ e

s
Scap joules

15: Advance program progress e′ − s′
16: end if
17: end if
18: end for
19: end for

a communication model would also support modeling a job as several programs,

potentially with different consumption behaviors, and allow for simulating jobs with

load imbalance.

Implementation

The design of a simulator using the model in the previous section is

described here. Implementation is done in python and uses an object oriented

approach. Code for the simulator is contained primarily in three files, which

loosely align with physical, scheduling, and program concerns. An experiment

using the simulator is expressed as a python program that configures a cluster,

some schedulers, and some number of jobs to simulate before calling the run sim

function. The run sim function will step through the simulation timewise, giving all

92

registered schedulers a chance to interact with the cluster at each time step, until

both the registered job scheduler and cluster indicate all work is done.

Machine - sim.py. The machine is implemented with objects

corresponding to the physical model of the machine. A Cluster instance has

many Node instances and each Node instance has one or more Socket instances.

A Cluster can be told to launch a Job instance using the launch job method. The

launch job call is expected to be made from a Scheduler instance. If sufficient nodes

are available to launch the job, the Cluster will call the distribute method in the

Job with the set of Nodes that should execute the job. At the time distribute is

called, the Job is responsible for providing each Socket instance with the Program

instance to run.

Job objects bridge between the logical program to be run and the hardware

jobs are run on. A Job is able distribute work across an allocation of nodes and can

determine if the job has completed execution on the assigned nodes. Job classes

have been implemented for four basic power consumption behaviors. SawJob

and StepJob have regular periodic behavior which is interesting but likely do not

align closely with real application traces. StaticJob and PrePostJob are more

representative of HPC benchmork behaviors, where an application has a low power

preamble, followed by a high power compute phase, and ending with a low power

IO phase. Jobs only distribute Program instances to Sockets, the consumption

functions are implemented in the Program class hierarchy.

Scheduler - schedulers.py. Scheduler-like logical functionality is

implemented using Scheduler instances. At each time step, the simulation will

give the registered schedulers a chance to act by calling the schedule method with

93

the length of the wall clock step interval. The three basic scheduler functions

considered are job scheduling, monitoring, and power scheduling.

The current implementation has only a basic first-come first-served

(FCFS) job scheduler, FIFOScheduler. Jobs are added using the addJob method,

which wraps a Job instance and some other data in a Task instance. When

the job scheduler’s schedule method is called, the scheduler attempts to place

additional work on the cluster until no more work can be scheduled. Having a clean

abstraction for job schedulers enables more advanced schedulers to be easily added

to the simulator later.

Monitoring type schedulers gather and output during simulation

experiments. By default, the simulator does not provide output regarding the

simulation state. The PowMon monitor provides the same information in the same

format as the PowMon executable discussed in chapter III, allowing the analysis to

be done uniformly between real and simulated experiments. Each time the schedule

method is called the current energy counter and power cap for each simulated

processor are spooled to disk. For large scale simulations, this results in too many

open file handles, so BulkPOWmon was introduced to write all data to a single file.

Power schedulers also have a clean abstraction, enabling easy introduction

and experimentation with additional power scheduling strategies. PowerScheduler

subclasses each implement a single power scheduling strategy. A PowerScheduler

schedule call provides an opportunity for the power scheduler to adjust the

power setting of all Socket instances in the cluster. Small scale results using

StaticPowerScheduler and DynamicPowerScheduler appear in D. A. Ellsworth et

al. (2015b).

94

Program - program.py. Program instances encapsulate a program’s

progress and the effects of time dilation during processor bound execution. The

advance with bound method determines if the execution is program or processor

bound for the current simulation step and updates the program progress counter for

the step. IdleProgram is executed on sockets when no other program is running and

all other programs inherit from PartedProgram. The IdleProgram’s consumption

function is constant, W(t) = Sidle, making evaluation of the instruction work and

energy integrals trivial. The PartedProgram instances support discontinuous power

consumption, such as the phases observed in power traces on real hardware. In

these cases, the continuous regions can be integrated separately.

Four basic Program implementations have been written so far. These

Programs implement correspond to the basic Programs. StaticProgram implements

a program with constant power consumptions. PrePostProgram implements

a program with startup, computation, and shutdown phases. SawProgram

implements a program with sawtooth shaped power consumption. StepProgram

implements a program with squarewave shaped power consumption. Internally,

each program is a sequence of one or more continuous Parts.

A Part encapsulates the continuous function for a phase of application

execution and how to compute the instruction work and energy values over that

function. Most of the time ConstantPart is used since it provides a constant

power consumption over the interval, matching with the step shape changes in

consumption generally observed in HPC benchmarks. UpPart and DownPart

model linear changes in power consumption and are used to implement sawtooth

95

shaped power consumption2. Any continuous function could be implemented as a

Part and used to support implementation of a new type of PartedProgram.

Simulator Behavior

The development of the model and the corresponding implementation should

result in simulated executions with properties similar to real application execution.

Overfitting to a real hardware platform or application is undesirable due to the

interplay of the myriad low level details of program execution. Generalized behavior

is sufficient since simulation is intended to be used for exploration of general power

scheduler properties. Additionally, the simulator is expected to operate at scale so

the scaling behavior of the simulator should also be explored.

Validation. Initial validation of the simulator involves producing curves

of a similar shape to the real runtimes of applications as the power cap is steadily

decreased. Additionally, applications with high and low phase behavior should only

see runtime increases for the phases where consumption would be over the power

cap.

Figure 13 shows the normalized runtimes for small mix of jobs under

progressively lower power caps. The general shape and runtime trends from the

simulator are consistent with experimental data and can be compared with Figure 5

and Table 14 provides information on the configuration of each simulated job.

Figure 14 shows the power traces for runs of the same simulated application

under different power caps. The figure is annotated with time and show dilation

and non-dilation in phases similar to a phased application trace (see Figure 6). As

the simulator aims to match generalized behavior for comparing different strategies

2The Nekbone characteristic consumption (figure 4e) appears to have a slight incline. While
uncommon, consumption ramp up and ramp down should probably be considered in addition to
stepwise changes.

96

0.
9

1.
1

1.
3

1.
5

Watts

R
el

at
iv

e
R

un
tim

e

50 60 70 80 90 100 110

app0
app1
app2
app3
app4
app5
app6
app7

Figure 13. Runtime effect of decreasing processor power caps for a collection of
simulated programs.

Job Type Min(W) Max(W) Runtime Period
app0 Static 115 115 15 min
app1 Static 115 115 30 min
app2 Step 60 90 10 min 15 sec
app3 Step 60 90 15 min 5 min
app4 Static 70 70 15 min
app5 Static 65 65 15 min
app6 Saw 50 80 15 min 225 sec
app7 Saw 50 80 20 min 5 min

Table 14. Description of the simulated jobs plotted in Fig 13. Runtime in this table
refers to the job runtime in normal time.

97

0 20 40 60 80

0
20

40
60

80

Time

W
at

ts

0 15 30 45 60

Consumed
Allocated

0 20 40 60 80

0
20

40
60

80

Time

W
at

ts

0 23 38 61 71

Consumed
Allocated

Figure 14. Power consumption for a simulated application with high and low power
consumption phases (unbounded (left) and bounded(right)).

rather than tightly fit a real system, this limited validation against generally

observed trends is sufficient.

Scaling Performance. To study the performance of the simulator, the

simulator is run in several configurations and the wall clock runtime is recorded.

Cluster size and simulated steps are individually expected to have linear impacts

on simulation runtime. Job type may have an effect on simulator performance since

some programs may be easier to compute than others. The power scheduler used

may also impact runtime performance.

All experiments in this section are run on a 4.0 GHz Intel i7-4770 with

32 GB of RAM. The simulated cluster has a power cap of 80 watts per socket.

Python, due to the global interpreter lock (GIL), is effectively single threaded

and only able to effectively use one core per experiment. To better utilize the

system, and reduce the time required to generate the complete results, the python

multiprocess module is use to run one experiment per core (8 experiments run

concurrently). The effects of memory contention are not expected to change the

asymptotic behavior of the simulation and are not studied in this paper.

98

●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●

10

100

1000

32 128 512 2048

Simulated Cluster Size (nodes)

W
al

l T
im

e
(s

ec
)

sched
●

●

dyn

stt

Figure 15. Wall clock time to simulate 12 hours of runtime with cluster node
counts ranging from 16 to 2048 nodes. Static (stt) and Dynamic (dyn) schedulers
are compared.

The first scaling study investigates the performance as the number of

nodes are increased in the simulated cluster. Node counts range from 16 to 2048

and runtimes are plotted in Figure 15 on a log-log scale. All jobs are of the step

job type and simulation runs for 12 simulated hours. Each experiment is run 10

times and the average across all 10 runs is plotted for both the static and dynamic

scheduler algorithms. As expected, the size of the simulated cluster has a linear

impact on the wall clock runtime of the simulation.

The second scaling study investigates the performance as the number of

simulated time steps are increased. Simulated durations range from 1 hour to 128

hours and wall clock runtimes are plotted in Figure 16. All jobs are of the step

job type and run on a simulated 1024 node cluster. Each experiment is run 10

times and the average across all 10 runs is plotted for both the static and dynamic

99

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

10

100

2 8 32 128

Simulated Time (hours)

W
al

l T
im

e
(s

ec
)

sched
●

●

dyn

stt

Figure 16. Wall clock time to simulate a cluster with 1024 nodes from 1 hour to 64
hours of simulated time. Static (stt) and Dynamic (dyn) schedulers are compared.

scheduler algorithms. As expected, the simulated duration has a linear impact on

the wall clock runtime of the simulation.

To investigate the impact of job type, the cluster size is fixed and job type is

varied. Static, Step, and Saw job types are compared using the static and dynamic

schedulers. Static jobs were run with a consumption of 100 watts, ostatic, and

50 watts, ustatic. The Step job has a period of 60 simulated seconds and ranges

from 50 watts to 90 watts. The Saw job has a period of 60 simulated seconds and

ranges from 50 watts to 90 watts. Each experiment is run 10 times and the average

across all 10 runs is plotted. Figure 17 plots the results for the static scheduler and

indicates that job type has a roughly constant cost on simulation runtime. The

dynamic scheduler produces a similar plot.

In all of the experiments, the static scheduler operates faster than the

dynamic scheduler, which is expected. The static scheduler does no work at each

scheduling interval since the power caps are set only once during static scheduler

100

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●

10

100

1000

1 2 4 8 16 32 64 128

Simulated Time (hours)

W
al

l T
im

e
(s

ec
)

sched
●

●

●

●

stt_ostatic

stt_saw

stt_step

stt_ustatic

Figure 17. Wall clock time to simulate a cluster with 1024 nodes for 1 to 64 hours
of simulated time. Different job types are compared.

initialization. The dynamic scheduler must process the cluster state, generate a

schedule, and apply new caps to the cluster at each scheduling interval. Dynamic

scheduler work is linear with the number of nodes and must be done each simulated

time step. The performance difference between the dynamic and static schedulers is

accounted for by the additional work that the dynamic scheduler must complete.

Simulated PowSched

Having verified that PowSim produces the expected trends in runtime

dilation and is suitable for scale, the simulator is next used to explore PowSched.

Exploration using simulation avoids the challenges of getting HPC machine time,

system jitter, and introduction of a research job scheduler. The simulator should be

able to reproduce the performance behavior similar to the experimental results in

Table 9. An experiment is also conducted to highlight the relationship between

concurrently running work needed to achieve performance improvements using

PowSched, the lack of jitter will make power shifting easier to observe.

101

Parameter Min Max

Job Nodes 8 clustersize
4

Job Runtime (seconds) 10 6000
Phase 1 Watts 85 115
Phase 2 Watts 30 115

Phase Period 30 600

Table 15. Simulation parameters

Nodes Bound Static Dynamic %
1k

115W 40567 40581 -0.0
70W 44541 43287 2.8
50W 53249 54955 -3.2

8k

115W 43801 43825 -0.0
70W 51652 51081 1.1
50W 63085 65545 -3.9

16
k

115W 44414 44429 -0.0
70W 52656 51873 1.5
50W 64097 66054 -3.1

Table 16. Simulated runtime with random workloads.

Cluster Simulation. Using PowSim we simulate the use of PowSched

on clusters of 1k, 8k, and 16k nodes. For each node count a random mix of 100

jobs is generated, the same mix is used for each run at that particular node count.

Each job is one of the three simulated functions with a random runtime, period,

and consumption. Table 15 shows the parameter ranges used. All jobs in the

run are queued in the job scheduler before the first time step executes. Table 16

shows the time taken to complete all queued jobs. Simulation results are consistent

with the experimental results on random workloads – little effect at 115 watts,

improvement around 70 watts, and reduced performance at 50 watts when power

is overly constrained.

Anticipating Performance. While an experimental result indicating

performance improvements occur when using PowSched are encouraging a more

102

useful outcome would be understanding the circumstances that would result in

performance improvement. A set of experiments, leveraging the lack of jitter,

highlight the behavior of a system running PowSched with different concurrent

workloads. The power needs of concurrently executing work and the system power

limit, unsurprisingly, impact the system performance.

In these experiments, 4 concurrent jobs are executed using the naive static

and PowSched power schedulers. For all simulated jobs power consumption ranges

from 30 to 100 watts. Step and saw functions are used to represent the simulated

jobs. The system power limit provides an average power per socket of 75 watts.

Best Case. Figure 18 shows the ideal case for PowSched. In this

configuration the power consumption of the applications is time aligned such

that the aggregate power consumption is less than the system limit. An increase

in consumption by one job is offset in the same time step by a decrease in

consumption of another job, maximizing the opportunity for power shifting.

Performance using PowSched with the power cap is extremely similar to the

uncapped execution.

Worst Case. Figure 19 shows the worst case for PowSched. In this

configuration the power consumption of the applications is time aligned such

that the aggregate power consumption changes by the same amount in the same

direction at each time step. Power shifting is not possible since all jobs become

power bound at the same time and release power at the same time. Performance is

the same between naive static and PowSched power schedulers.

Middle Case. The previous cases are extremely unlikely to occur on real

systems. Constructing real applications to have perfectly time synchronized power

consumption behavior would be extremely difficult. A more likely case to occur

103

Seconds

W
at

ts

0 60 180

0
18

00
42

00

(a) PowSched

Seconds

W
at

ts

0 60 180

0
18

00
42

00

(b) Static Naive

idle consumption
idle waste
job0 consumption
job0 waste

job1 consumption
job1 waste
job2 consumption
job2 waste

job3 consumption
job3 waste
unallocated

Figure 18. Optimally time aligned consumption across jobs.

104

Seconds

W
at

ts

0 60 180

0
18

00
42

00

(a) PowSched

Seconds

W
at

ts

0 60 180

0
18

00
42

00

(b) Static Naive

idle consumption
idle waste
job0 consumption
job0 waste

job1 consumption
job1 waste
job2 consumption
job2 waste

job3 consumption
job3 waste
unallocated

Figure 19. Worst case time aligned consumption across jobs.

105

Seconds

W
at

ts

0 60 180

0
18

00
42

00

(a) PowSched

Seconds

W
at

ts

0 60 180

0
18

00
42

00

(b) Static Naive

idle consumption
idle waste
job0 consumption
job0 waste

job1 consumption
job1 waste
job2 consumption
job2 waste

job3 consumption
job3 waste
unallocated

Figure 20. Bad time alignment with different rates of change across jobs.

in a real system would be several applications increasing and decreasing power

consumption, at different rates, near the same time. Figure 20 attempts to show

this case by mixing step and saw functions. PowSched is able to take advantage of

power shifting to reduce runtime when compared with naive static scheduling.

Chapter Summary

A novel simulator to support power scheduling research, PowSim, was

presented in this chapter. PowSim is the only simulator currently able to simulate

the runtime dilation that occurs when power caps are changed during application

execution and scale to thousands of simulated nodes an modest hardware. The

simulation model used by PowSim connects program progress and the physical

construction and attributes of modern processors. Simulators from the job

scheduling community, like the one useds by Savoie et al. (2016) and Patki et al.

106

(2015), require extensive modeling of real application executions and do not track

computation progress. Simulators from the hardware architecture community,

like D. Kim et al. (2016) and Gonsiorowski et al. (2012), cannot scale due to the

computational requirements of simulated instruction execution. In addition to

enabling power scheduler research at scale, PowSim’s deterministic behavior and

analytic model simplify exploration of why a power scheduling strategy produces a

particular result.

107

CHAPTER VI

COMPARING SCHEDULING APPROACHES

This chapter contains ideas and themes that have been previously published

in D. Ellsworth, Patki, Schulz, et al. (2016). Additionally, this chapter contains

unpublished work under submission to Cluster 2017. Comparison experiments

and analysis are my orignal work. Co-authors on the publications assisted with

language and narrative to present these contributions in the previously published

work.

A direct comparison of power scheduling solutions available in the

literature is currently not possible, but is sorely needed to make practical system

implementation decisions. Each project has developed their own experimental

harness and has conduct their experiments on different platforms with different

measurement approaches and capabilities. Different researchers have also selected

different benchmarks and run them in different configurations. Evaluation of

PowSched using simulation in Chapter V highlights that details of the workload

and system impact the performance of a particular power scheduling strategy.

Even for a single researcher working on a single system, system upgrades and

other platform changes that occur between experimental runs create challenges and

impact the quality of comparative observations1. Going forward, power scheduling

researchers should try to converge on a single experimental platfrom and single

1Several times during this research msrsafe, libmsr, and OS upgrades required changes be made
to codes when rerunning experiments on the same machine. System configuration changes can
also impact the background activity and behavior of an HPC system. In general these changes
are expected to have little effect but call into question the accuracy of direct comparisons of
experiments by even the same research group separated in time.

108

simulation platform so that experiments can be easily conducted comparing

solutions from different researchers.

Experimental Comparison

As mentioned in Chapter II, groups producing experimental results on power

scheduling are doing so using independently developed research platforms. The

lack of a unified experimental platform creates two practical barriers for production

deployment. First, research platforms do not have sufficient feature richness or

security for use on production systems. Due to the lack of such features, any

research solution requires costly reimplementation to productize. Second, research

platforms are inconsistent in configuration and requirements. For organizations

wishing to evaluate power scheduling solutions via comparison, the inability to use

the same infrastructure for job submission, scheduling, execution, and measurement

creates barriers for idenpendent testing.

To address these challenges, the power scheduling community should move

to a standard implementation platform. In “A Unified Platform for Exploring

Power Management Strategies”, D. Ellsworth, Patki, Schulz, et al. (2016) argue for

SLURM2 (Jette, Yoo, & Grondona, 2002) to be the base platform for experimental

power scheduling implementations. Sakamoto et al. (2017) also base their work

on SLURM and introduce a power abstraction layer to make power schedulers

easier to implement. Unification of experimental solutions, where independently

proposed solutions are delivered as SLURM plugins, will effectively remove the

reimplementation barrier for solution adoption. Additionally, the plugin mechanism

standardizes the implementation of advanced scheduling features (e.g., backfilling)

and supports evaluation of proposed solutions in the presence of advanced features

2SLURM is a production resource manager with a flexible plugin architecture used on many of
the top HPC systems.

109

that would be too costly for reimplementation in research code. Finally, using a

single research management platform allows the evaluation harness to be cleanly

decoupled from the power control strategy which helps to eliminate evaluation bias

due to differences in measurement locations and approach.

While standardization of the platform will resolve a set of problems for

comparison across power scheduling solutions, some significant challenges will

remain. The foremost challenge will be in finding HPC systems of nontrivial size

that support deployment of an alternative resource manager. It is hoped that by

basing the research platform on a trusted production scheduler there will be less

opposition from systems administrators regarding deployment. Going forward, if

hardware overprovisioning is widely adopted, platforms for experimentation may

actually become more difficult since a buggy research plugin may not provide the

hard enforcement required for a deployment on a hardware overprovisioned HPC

system. In the event that the systems allowing experimentation become plentiful,

getting sufficient machine time is likely to always be challenging due to competing

scientific work using the HPC cluster.

Experimental comparison work using a unified experimental platform

is ongoing work. Getting mindshare around the need for standardizing the

experimental platform is hindered by the extra implementation work required.

A secondary challenge is that the number of systems supporting replacement of

the system resource manager is extremely limited. It is hoped that the interface

suggested by Sakamoto et al. (2017) will be adopted by other researchers and that

more HPC systems will support deployment of research SLURM modules in the

future.

110

Simulation Comparison

As mentioned in Chapter II, groups producing simulation based results tend

to use their own simulation platforms. The incomparability of these simulation

results is much higher than the incomparability of the experimental results. In

addition to differences in system and work attributes, the simulator adds additional

assumptions regarding behaviors of both the system and the workload that may not

be grounded in real behaviors. Development of PowSim, the subject of Chapter V,

was necessary since the existing simulators in the community do not have a model

for runtime dilation that respects characteristic power consumption. Unification of

simulation platform, or at least the interface between the platform and scheduling

algorithm, would allow for better comparison studies in the community.

Even without a unified simulation environment, there are advantages to

comparison via simulation rather than experimentation. The foremost advantage

is the ability to run simulation on arbitrary hardware, reducing cost and increasing

the number of experiments that can be done. Reimplementation effort of another

researcher’s algorithm is also likely to be simplified by the simulator since several

real life opperational details are abstracted away by the simulation framework.

Simulators are also convenient for providing better explanations for why different

approaches provide different results since many of the nondeterministic and chaotic

performance effects that occur in real executions can be better controlled in

simulation.

Comparison using a single simulation platform is ongoing work. Ideally the

interface between scheduling algorithms and simulators would be standardized

allowing for direct reuse. Since direct reuse is not currently an option and

most simulators do not model progress and time dilation, reimplementation of

111

various algorithms for PowSim is required. Initial comparative simulation work

is comparing gross strategies, with more specific scheduler implementations

being reserved for future work. Additionally, advanced job scheduling features

(e.g., backfilling) are out of scope for the work presented here. Existing simulation

results will be discussed in the remainder of this chapter.

Simulation Study

Comparison by schedule time seems like a natural axis for studying general

scheduler behavior. The naive, reservation, range, and dynamic schedulers capture

the schedule time classes found in the power scheduling literature (discussed in

chapter II). Naive is the power scheduling strategy in which the component power

allocations are set to the average of the system power limit at install time and

never changed. Reservation is the power scheduling strategy in which jobs are

submitted with a power estimate, the job scheduler only starts work that will not

exceed the system power limit, and the power allocations are made only at job

launch time. Range is the power scheduling strategy in which jobs are submitted

with upper and lower bound power estimates, the job scheduler only starts work

where all concurrent work can be serviced at the work’s low estimate, and the

power allocations are changed when any new job launches. Dynamic is the power

scheduling strategy where allocations may be changed at arbitrary times, PowSched

is used.

Comparison by job awareness (i.e., how much information the power

scheduler has about the job) would also be an interesting axis for studying

generalized scheduler behavior. There are several job attributes that might

be of interest for job and power scheduling, however the correct scheduling

decision depends on organization specific policies, making generalized scheduler

112

implementation and experiments difficult. A job aware variant of the dynamic

scheduler has been implemented that gives preference to the highest priority job

when allocating power, priority. Exploration of comparative scheduler behavior

along the job awareness axis is left for future work.

Base Behavior. A short simulation experiment, suitable for plotting

consumption and allocation, is shown in figure 21 to build an intuition regarding

each simulation strategy. The job mix from figure 18 is run with the reservation

and priority schedulers in addition to the dynamic and naive. As expected,

dynamic shows the best performance on the job mix best suited for PowSched.

The priority scheduler successfully finishes the highest priority job first, however

perturbation of the other jobs leads the priority order to be violated (figure 21b).

Reservation scheduling had the worst performance, effectively doubling the time

required to complete all work in the queue (figure 21d).

Given the amount of work in the community using reservation like

approaches to power scheduling, the comparative badness of the reservation

strategy was surprising. Even though the jobs individually have the shortest

runtime using the reservation strategy twice as much time is required to complete

all of the queued work. Idle node power and unutilized but reserved power limit

the reservation strategy to scheduling only two of the jobs concurrently; if another

job was placed the total power reservations plus the idle power for unused nodes

would exceed the system limit. Evaluating power scheduler performance based

on individual job runtimes is likely a poor choice since the actual time to solution

involves the time a job remains in queue.

The poor performance of the reservation based job scheduler could also be a

side effect of the size of the simulated cluster and the consumption characteristic

113

Seconds

W
at

ts

0 60 120 180 240 300 360 420 480

0
24

00

(a) Dynamic

Seconds

W
at

ts

0 60 120 180 240 300 360 420 480

0
24

00

(b) Priority

Seconds

W
at

ts

0 60 120 180 240 300 360 420 480

0
24

00

(c) Naive

Seconds

W
at

ts

0 60 120 180 240 300 360 420 480

0
24

00

(d) Reservation

Figure 21. Scheduler comparison using optimally time aligned consumption across
jobs for PowSched.

114

of the jobs. An ideal case for a reservation based power scheduler should be a

workload where jobs have constant power consumption that matches the estimated

power consumption. A queue of waiting work, having varied node counts, may also

help to enable additional jobs to run.

Random Queues. A larger simulation study is conducted to test the

predictions made in the previous section. The simulated cluster has 128 nodes

with a systemwide power limit of 20480 watts (i.e., 80 watts per socket). Naive,

reservation, range, and dynamic power schedulers are run with a first come first

served (FCFS) job scheduling discipline. Three job queues, each with 200 jobs,

are used; a job queue containing jobs with constant power consumption, a job

queue containing jobs with startup and shutdown consumption differing from the

main computation power consumption, and a job queue containing jobs with high

consumption and low consumption phases. On a worst case provisioned cluster,

each of the simulated jobs would take between 5 and 60 minutes to run. Each job

uses a power of two number of nodes, ranging from 1 to 128 nodes of the simulated

cluster. Additionally, since reservation and range performance are impacted by the

estimates provided at job submission time, the experiments are run with estimation

errors between 0 and 15 percent. Sweeping this space results in 48 experiment runs,

tables 17-19 show the raw results.

Unexpectedly, the job type and error appears to have little effect on the

relative ordering of the power scheduling strategies. In order from most performant

to least performant: dynamic, naive, range, and reservation. Dynamic an naive

strategies do not make use of the job power estimates and the runtime as the

amount of estimated error changes remains the same. Range and reservation

schedulers are impacted by error, however the direction of impact is unclear.

115

Strategy Job Type Error ± % Runtime Slowdown %
dynamic const 0 58623 0.00

static const 0 60121 0.03
range const 0 65917 0.12

reservation const 0 65917 0.12
dynamic const 5 58623 0.00

static const 5 60121 0.03
range const 5 65669 0.12

reservation const 5 67354 0.15
dynamic const 10 58623 0.00

static const 10 60121 0.03
range const 10 64617 0.10

reservation const 10 70533 0.20
dynamic const 15 58623 0.00

static const 15 60121 0.03
range const 15 63688 0.09

reservation const 15 71468 0.22

Table 17. Runtimes of the schedulers ordered by error and run duration for
constant type work.

Strategy Job Type Error ± % Runtime Slowdown %
dynamic prepost 0 58838 0.00

static prepost 0 59495 0.01
range prepost 0 72283 0.23

reservation prepost 0 72283 0.23
dynamic prepost 5 58838 0.00

static prepost 5 59495 0.01
range prepost 5 68904 0.17

reservation prepost 5 71267 0.21
dynamic prepost 10 58838 0.00

static prepost 10 59495 0.01
range prepost 10 67839 0.15

reservation prepost 10 73772 0.25
dynamic prepost 15 58838 0.00

static prepost 15 59495 0.01
range prepost 15 67091 0.14

reservation prepost 15 74622 0.27

Table 18. Runtimes of the schedulers ordered error and run duration for prepost
type work.

116

Strategy Job Type Error ± % Runtime Slowdown %
dynamic step 0 47382 0.00

static step 0 49545 0.05
range step 0 50157 0.06

reservation step 0 69639 0.47
dynamic step 5 47382 0.00

static step 5 49545 0.05
range step 5 50750 0.07

reservation step 5 70701 0.49
dynamic step 10 47382 0.00

static step 10 49545 0.05
range step 10 51460 0.09

reservation step 10 71593 0.51
dynamic step 15 47382 0.00

static step 15 49545 0.05
range step 15 51869 0.09

reservation step 15 71370 0.51

Table 19. Runtimes of the schedulers ordered by error and run duration for step
type work.

The expected ideal case for the reservation scheduler should occur when

the power consumption is constant and the estimate has no error. In these cases,

all of the reserved power will be utilized and no extra power will be allocated to

the job. Unfortunately, the simulation data indicates that reservation based power

scheduling has relatively poor performance even when used in what should be the

best configuration.

Poor performance is likely due to the fixation the reservation and range

based approaches place on individual job performance. Reservation and range

strategies only allow a job to start if the estimated power is available, in all other

cases the job start is delayed. Non-reservation strategies allow a job to be started

when insufficient power is available, allowing the job to start but extending the

job duration. Table 20 shows simulation results for the reservation scheduler run

with constant work an fixed estimate error. Negative error (i.e., underestimation)

117

Strategy Job Type Error % Runtime
Reservation const -15 42940
Reservation const -10 46708
Reservation const -5 47016
Reservation const 0 65917
Reservation const 5 73703
Reservation const 10 79798
Reservation const 15 84425

Table 20. Runtimes of the reservation scheduler with constant type work for fixed
estimate errors.

appears to improve reservation scheduling, likely by allowing jobs to run that would

have been held back if the estimates were more accurate. The turnaround time

penalty of waiting for sufficient power to be available appears to exceed the penalty

of runtime dilation.

Chapter Summary

One of the major gaps in the existing power scheduling research is the

lack of comparability. Power capping has complex effects that have broad and

complicated interactions, making the diversity of hardware and workloads

problematic for comparison using just the literature. Direct experimental

comparison of strategies by individual researchers are complicated by machine

and machine time availability as well as configuration of each of the solutions. For

experimental work, the community should move towards a standardized platform

to simplify configuration. Direct comparison of strategies using simulation is less

complex but currently requires reimplementation.

A major area of concern for the power scheduling community moving

forward should be the impact of idle power. Much of the existing power scheduling

work uses the job scheduler to reserve power at job launch, which makes figure 21d

unsettling. Generally production HPC codes are talked about in terms of IO and

118

compute phases which have different power characteristics, so reservation may be

the wrong general approach since reservation provides no opportunity for power

shifting across jobs. Even if it is the case that HPC applications generally use

constant power, like the LULESH benchmark, reservation based scheduling does

not appear perform well when compared to other power scheduling strategies.

119

CHAPTER VII

CONCLUSION

This chapter contains ideas and themes that have been previously published

in D. Ellsworth (2016); D. Ellsworth, Patki, Perarnau, et al. (2016); D. Ellsworth,

Patki, Schulz, et al. (2016); D. A. Ellsworth et al. (2015a, 2015b). The narrative

as presented in this chapter is my original work derived from discussions with the

co-authors of the previously published work.

Power scheduling for hardware overprovisioned HPC systems is a new

area of research. The technique is suggested by Rountree et al. (2012), and was

originally motivated by the energy concerns for building an exascale system with

a maximum power consumption of 20 MW. Even though this goal has changed,

energy efficiency is still crucial for providing a high degree of computational

performance within a bounded power budget. However, energy efficiency alone is

insufficient. Power scheduling is an additional technology needed to turn energy

savings into additional performance. In some cases, hard enforcement of the power

limit is needed and there are a limited number of power schedulers that provide

this guarantee. Much work remains for future HPC researchers looking at power

scheduling.

Power control using hardware limiters, like Intel RAPL, has a somewhat

complicated relationship with application runtime. Techniques like DVFS and

DPG have effects that are relatively simple to estimate. Hardware power limiters

are more complex since reducing the power cap may or may not impact runtime.

Observable runtime effects of RAPL power capping depend on the specific power

cap, specific application and phase, as well as the specific hardware. There are

120

general trends in the performance of power capping; a power cap above the

characteristic power will not impart runtime while a power cap beneath the

characteristic consumption will result in runtime dilation.

PowSched uses the relationship observed between power consumption and

allocation to optimize power utilization. The basic algorithm gives less power

to components consuming less than their current allocation and more power to

components consuming near their current allocation. PowSched has been observed

to improve HPC job throughput without the need for history, application specific

models, or even awareness of a mapping between work and hardware.

One of the challenges to power scheduling research is the availability of

systems and machine time for experimentation. Simulation can be used to address

the availability challenge, however simulation technology must provide a way to

simulate the effects of power capping on execution time. PowSim uses the relation

between characteristic consumption and power cap to provide a novel power

scheduling simulator.

Finally, the challenges of power scheduling strategy comparison is briefly

discussed. Suggestions for the community are made, including unification for the

experimental and simulation platforms used by researchers in the community.

Preliminary simulation based power scheduler comparison results show that

dynamic power scheduling out performs other power scheduling strategies in all

cases. Ongoing work aims to provide better understandings of comparative power

scheduler behavior so that appropriate power schedulers can be selected for a given

HPC system and workload.

The newness of hardware overprovisioned HPC systems has presented

the community with several open questions regard how to best manage power.

121

While this dissertation does not provide definitive answers, several important

contributions are made regarding how these questions should be approached and

understood. Researchers should be looking at power as a time series rather than a

constant attribute of HPC applications (Chapter III). Application modeling should

not be assumed to be required for power scheduling (Chapter IV). Simulation

models for power scheduling research should take into account the phased behavior

of applications and the nonlinear behavior of hardware power capping (Chapter

V). Researchers should be including meaningful comparisons between techniques

and provide explanation for when and why one solution out performs another

(Chapter VI). Now is an exciting time as the research community works toward

development and adoption of systemwide power management for first generation

hardware overprovisioned high performance computers.

122

CHAPTER VIII

FUTURE

At the time this dissertation work was conducted, power scheduling was

a new area of research for the HPC community. Due to the lack of preexisting

research, the solutions developed in this disseration may better be understood as

a baseline for future work than the optimal solution. Many of the system behaviors

under power scheduling and techniques for power scheduling have yet to be studied

in depth. Additionally, the standard measures for comparative evaluation of power

schedulers have yet to be converged on by the HPC community. In this chapter

some near term work to support power scheduling is suggested based on the

experience of developing this thesis.

Power Capped Application Behavior

Very little work has been done to understand the general behavior of

applications under RAPL style power caps. Fukazawa et al. (2014), looking at

an MHD code under several power caps, was the only work encountered when

preparing this dissertation The study associated with this dissertation was done

with a limited interest and background in the applications being power capped.

Poor benchmark configurations likely explain the poor power consumption of

the AMG and CoMD executions shown in figure 4. Additionally, the study was

conducted using only benchmarks which are known to have a different behavior

than full scientific applications. A well respected study is needed in the HPC

literature to understand how, when, and why power caping changes application

performance.

123

Simulation Enrichment

PowSim, presented in Chapter V, simulates the generalized effect of power

capping but many features still need to be added to investigate interesting work

configurations. A communications model and an ability to replay real power

consumption traces are the two most requested features.

The lack of a communications model in PowSim creates severe limitations

on the workloads that can be explored using PowSim. Without a communication

model, all jobs executions are as if the job was embarrassingly parallel (i.e., there

is no way to encode a dependency between the computation on components). Care

was taken in the design of the simulated power schedulers to result in the same

power cap across all components participating in a job since power imbalance would

result in incorrect simulated termination times. More interesting simulated jobs

would support load imbalance, which is expected to result in power consumption

imbalance as well. Minimally, a network model allowing job wide barriers to be

represented would be required to simulate the synchronization between the high

and low load workers. Scientific workflows would also be interesting to observe in

simulation but would need a network model to express the synchronization points

between workflow components.

Trace replay would be a useful feature for stronger verification of the

PowSim model and model tuning. As the first simulator able to model the

generalized behavior of power capped applications at a cluster scale, the desired

model fit was modest and done visually. A common criticism of the work on

PowSim is that the applications used for verification are synthetic and a stronger

validation would involve replaying experimental traces and getting matched results.

The program models used are very clean since no program progress measures

124

were captured from benchmark runs and simulating coordinated computation

progress between components is impossible without a communication model. The

processor model selected for the simulator was the simpest function that produced

the expected shape for runtime dilation rather than tightly fitting the observed

performance of a real processor. Stronger simulator work for power scheduling will

likely require generation of a tool to convert an observed characteristic power trace

into a program function and generation of an autotuner to modify the processor

function to better fit the observations.

Utility of Application Awareness

PowSched, as presented in Chapter IV is completely unaware of the

applications and jobs being run on the HPC cluster. The decision to completely

ignore applications was largely due to implementation simplicity and the lack of

research results on power capped application behavior. There is reason to believe

that adding some degree of application awareness to a dynamic power scheduler like

PowSched may improve power scheduler performance.

One of the unexplored concerns with PowSched is the impact of busy

waiting on power scheduling performance. Busy waiting is a common technique

used to increase responsiveness when one thread must wait for data in another

thread or from an IO device. During a busy wait, many instructions are executed

that do not aid in computation progress which may cause a component’s power

consumption to be artificially high. Adding information from the application or

network to identify busy waiting might allow PowSched to make better power

scheduling decisions.

Fairness is a common concern in the resource scheduling community that

was ignored during the development of PowSched. Performance improvement when

125

using a power scheduler that shifts power is due in large part to the unfairness

of the power allocations (i.e., large performance improvements depend on some

components receiving much less power than others). A fairness constraint of

interest for a power scheduler might be fairness in runtime dilation. To enforce

fair runtime dilation a power scheduler would need to estimate the expected effect

of a power cap on specific running jobs.

Good scaling performance for PowSched is due in part to the small amount

of data needed to support the scheduling algorithm. Adding application awareness

will likely increase the computational cost of making the power scheduling decision

and communication cost since additional data will need to be transfered to the

power scheduler. An interesting question to consider for practical power scheduler

deployment is how to balance the cost of the application awareness with the scaling

and performance impact to the power scheduler.

Degree of Overprovisioning

The relationship between cluster size, systemwide power cap, and workload

consumption needs additional study. Reducing the cluster size while maintaining

the same systemwide power cap reduces the degree of hardware overprovisioning,

making the theoretical peak power consumption closer to the systemwide power

limit. Intuitively an HPC system running primarily low power jobs should be

operated with a higher degree of overprovisioning than an HPC system running

primarily high power jobs. What specifically the degree of overprovisioning should

be or how to estimate the overprovisioning is an open question. Results from

researching the degree of overprovisioning will be needed for system owners to make

good purchasing and operational decisions.

126

In Chapter IV the 70 watt case performed well however that result may

not be portable to workloads composed of different applications and inputs. The

most performant setting is likely due to the differences in consumption between

jobs as well as the aggregate characteristic power averaging to roughly 70 watts

per socket. Had different benchmark applications and configurations been used, the

most performant power limit would likely have been different. Power infrastructure

is part of the upfront capital cost associated with the computer and decisions need

to be made at that time regarding cabling. An open question is how to tune the

systemwide power limit prior to deployment of an HPC system.

In Chapter VI one of the suggested reasons for the poor performance of

reservation based scheduling was the contribution of idle power to the power

budget. By adjusting the cluster size or the systemwide power limit the power

utilization of reservation based scheduling approaches could be tuned. Work is

needed to understand the impact of dynamically scaling the cluster, via powering

on and off nodes, with respect to power scheduler performance.

Comparison Studies

Some basic comparison of high level power scheduling strategies was

conducted in Chapter VI using simulation. Limitations of the simulator, job

scheduler, and simulated workloads limit the applicability of the results. More in

depth comparison studies are needed for the HPC power scheduling community to

better understand relative performance across power scheduler solutions.

Using more robust simulators, additional simulation studies should be

conducted. Rather than looking at general classes of power scheduling strategy,

these studies should implement specific power schedulers proposed in the literature

and compare behaviors. For these studies workload characteristics should better

127

model real applications (e.g., load imbalances). Communication delays for the

power schedulers should also be introduced to better understand differences in

relative latency sensitivity.

Experimental comparison studies are also sorely needed in the community.

Each power scheduler in the existing literature, that includes experimental

results from real hardware, uses different and likely non-comparable workloads

for evaluation. Identification of the best power scheduler for adoption in an

environment cannot be determined from the existing literature. To address this

challenge, a valuable research output would be a study comparing several different

power schedulers on the same hardware with the same workload.

128

REFERENCES CITED

Backplane —. (n.d.). Retrieved 2017-05-04, from
http://www.argo-osr.org/overview/backplane/

Bambagini, M., Bertogna, M., Marinoni, M., & Buttazzo, G. (2013). An
energy-aware algorithm exploiting limited preemptive scheduling under fixed
priorities. In Industrial embedded systems (sies), 2013 8th ieee international
symposium on (pp. 3–12).

Betkaoui, B., Thomas, D. B., & Luk, W. (2010). Comparing performance and
energy efficiency of fpgas and gpus for high productivity computing. In
Field-programmable technology (fpt), 2010 international conference on (pp.
94–101).

Borghesi, A., Bartolini, A., Lombardi, M., Milano, M., & Benini, L. (2016).
Predictive modeling for job power consumption in hpc systems. In
International conference on high performance computing (pp. 181–199).

Cao, T., He, Y., & Kondo, M. (2016). Demand-aware power management for
power-constrained hpc systems. In Cluster, cloud and grid computing
(ccgrid), 2016 16th ieee/acm international symposium on (pp. 21–31).

Chatterjee, D., DeOrio, A., & Bertacco, V. (2009). Gcs: high-performance
gate-level simulation with gp-gpus. In Proceedings of the conference on
design, automation and test in europe (pp. 1332–1337).

Cray-1. (n.d.). Retrieved 2017-05-04, from
https://en.wikipedia.org/wiki/Cray-1

De Vogeleer, K., Memmi, G., Jouvelot, P., & Coelho, F. (2014). The
energy/frequency convexity rule: Modeling and experimental validation on
mobile devices. In Parallel processing and applied mathematics (pp.
793–803). Springer.

Dutot, P.-F., Mercier, M., Poquet, M., & Richard, O. (2016). Batsim: a realistic
language-independent resources and jobs management systems simulator. In
20th workshop on job scheduling strategies for parallel processing.

Ellsworth, D. (2016). Topics toward automated multiobjective hpc system
management. Available at
http://www.cs.uoregon.edu/Reports/ORAL-201603-Ellsworth.pdf
(2017/04/12). Eugene OR: University of Oregon, Computer and Information
Sciences Department. (Oral Comprehensive Exam)

129

Ellsworth, D., Patki, T., Perarnau, S., Seo, S., Amer, A., Zounmevo, J., . . . others
(2016). Systemwide power management with argo. In Parallel and
distributed processing symposium workshops, 2016 ieee international (pp.
1118–1121).

Ellsworth, D., Patki, T., Schulz, M., Rountree, B., & Malony, A. (2016). A unified
platform for exploring power management strategies. In Proceedings of the
4th international workshop on energy efficient supercomputing (pp. 24–30).

Ellsworth, D. A., Malony, A. D., Rountree, B., & Schulz, M. (2015a). pow:
System-wide dynamic reallocation of limited power in hpc. In Proceedings of
the 24th international symposium on high-performance parallel and
distributed computing. New York, NY, USA: ACM. Retrieved from
http://doi.acm.org/10.1145/2749246.2749277 doi:
10.1145/2749246.2749277

Ellsworth, D. A., Malony, A. D., Rountree, B., & Schulz, M. (2015b). dynamic
power sharing for higher job throughput. In Proceedings of the international
conference for high performance computing, networking, storage and analysis
(p. 80).

Enos, J., Steffen, C., Fullop, J., Showerman, M., Shi, G., Esler, K., . . . Phillips,
J. C. (2010). Quantifying the impact of gpus on performance and energy
efficiency in hpc clusters. In Green computing conference, 2010 international
(pp. 317–324).

Felter, W., Rajamani, K., Keller, T., & Rusu, C. (2005). A performance-conserving
approach for reducing peak power consumption in server systems. In
Proceedings of the 19th annual international conference on supercomputing
(pp. 293–302). New York, NY, USA: ACM. Retrieved from
http://doi.acm.org/10.1145/1088149.1088188 doi:
10.1145/1088149.1088188

Fukazawa, K., Ueda, M., Aoyagi, M., Tsuhata, T., Yoshida, K., Uehara, A., . . .
Inoue, K. (2014). Power consumption evaluation of an mhd simulation with
cpu power capping. In Cluster, cloud and grid computing (ccgrid), 2014 14th
ieee/acm international symposium on (pp. 612–617).

Georgiou, Y., Glesser, D., & Trystram, D. (2015). Adaptive resource and job
management for limited power consumption. In Parallel and distributed
processing symposium workshop (ipdpsw), 2015 ieee international (pp.
863–870).

130

Gonsiorowski, E., Carothers, C., & Tropper, C. (2012). Modeling large scale
circuits using massively parallel discrete-event simulation. In 2012 ieee 20th
international symposium on modeling, analysis and simulation of computer
and telecommunication systems (pp. 127–133).

Hoffmann, H. (2013). Racing and pacing to idle: an evaluation of heuristics for
energy-aware resource allocation. In Proceedings of the workshop on
power-aware computing and systems (p. 13).

Hoffmann, H., Maggio, M., Santambrogio, M. D., Leva, A., & Agarwal, A. (2013).
A generalized software framework for accurate and efficient management of
performance goals. In Embedded software (emsoft), 2013 proceedings of the
international conference on (pp. 1–10).

Inadomi, Y., Patki, T., Inoue, K., Aoyagi, M., Rountree, B., Schulz, M., . . . others
(2015). Analyzing and mitigating the impact of manufacturing variability in
power-constrained supercomputing. In Proceedings of the international
conference for high performance computing, networking, storage and analysis
(p. 78).

Jette, M. A., Yoo, A. B., & Grondona, M. (2002). SLURM: Simple Linux Utility
for Resource Management. In In lecture notes in computer science:
Proceedings of job scheduling strategies for parallel processing (jsspp) 2003
(pp. 44–60). Springer-Verlag.

Kim, D., Izraelevitz, A., Celio, C., Kim, H., Zimmer, B., Lee, Y., . . . Asanović, K.
(2016). Strober: fast and accurate sample-based energy simulation for
arbitrary rtl. In Proceedings of the 43rd international symposium on
computer architecture (pp. 128–139).

Kim, N. S., Austin, T., Baauw, D., Mudge, T., Flautner, K., Hu, J. S., . . .
Narayanan, V. (2003). Leakage current: Moore’s law meets static power.
computer , 36 (12), 68–75.

Lucero, A. (2011). Simulation of batch scheduling using real production-ready
software tools. Proceedings of the 5th IBERGRID .

Magnusson, P. S., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, G.,
Hogberg, J., . . . Werner, B. (2002). Simics: A full system simulation
platform. Computer , 35 (2), 50–58.

Marathe, A., Bailey, P. E., Lowenthal, D. K., Rountree, B., Schulz, M., & de
Supinski, B. R. (2015). A run-time system for power-constrained hpc
applications. In International conference on high performance computing
(pp. 394–408).

131

November 2016 — top500 supercomputer sites. (n.d.). Retrieved 2017-05-04, from
https://www.top500.org/lists/2016/11/

Patki, T., Bates, N., Ghatikar, G., Clausen, A., Klingert, S., Abdulla, G., &
Sheikhalishahi, M. (2016). Supercomputing centers and electricity service
providers: a geographically distributed perspective on demand management
in europe and the united states. In International conference on high
performance computing (pp. 243–260).

Patki, T., Lowenthal, D. K., Rountree, B., Schulz, M., & de Supinski, B. R. (2013).
Exploring hardware overprovisioning in power-constrained, high performance
computing. In Proceedings of the 27th international acm conference on
international conference on supercomputing (pp. 173–182).

Patki, T., Lowenthal, D. K., Sasidharan, A., Maiterth, M., Rountree, B. L., Schulz,
M., & de Supinski, B. R. (2015). Practical resource management in
power-constrained, high performance computing. In Proceedings of the 24th
international symposium on high-performance parallel and distributed
computing (pp. 121–132). New York, NY, USA: ACM. Retrieved from
http://doi.acm.org/10.1145/2749246.2749262 doi:
10.1145/2749246.2749262

Rountree, B., Ahn, D. H., de Supinski, B. R., Lowenthal, D. K., & Schulz, M.
(2012). Beyond DVFS: A First Look at Performance Under a
Hardware-Enforced Power Bound. In Parallel and distributed processing
symposium workshops & phd forum (ipdpsw), 2012 ieee 26th international
(pp. 947–953).

Rountree, B., Lownenthal, D. K., De Supinski, B. R., Schulz, M., Freeh, V. W., &
Bletsch, T. (2009). Adagio: making dvs practical for complex hpc
applications. In Proceedings of the 23rd international conference on
supercomputing (pp. 460–469).

Sakamoto, R., Cao, T., Knoda, M., Inoue, K., Ueda, M., Patki, T., . . . Schulz, M.
(2017). Production hardware overprovisioning: Real-world performance
optimization using an extensible power-aware resource management
framework. In Proceedings of the 31st internation parallel and distributed
processing symposium.

Sarood, O., Langer, A., Gupta, A., & Kale, L. (2014). Maximizing throughput of
overprovisioned hpc data centers under a strict power budget. In Proceedings
of the international conference for high performance computing, networking,
storage and analysis (pp. 807–818).

132

Savoie, L., Lowenthal, D. K., d. Supinski, B. R., Islam, T., Mohror, K., Rountree,
B., & Schulz, M. (2016, May). I/O Aware Power Shifting. In 2016 ieee
international parallel and distributed processing symposium (ipdps)
(p. 740-749). doi: 10.1109/IPDPS.2016.15

Sventek, J., & Koliousis, A. (2012). Unification of publish/subscribe systems and
stream databases: the impact on complex event processing. In Proceedings
of the 13th international middleware conference (pp. 292–311).

Tiwari, A., Laurenzano, M., Peraza, J., Carrington, L., & Snavely, A. (2012).
Green queue: Customized large-scale clock frequency scaling. In Cloud and
green computing (cgc), 2012 second international conference on (pp.
260–267).

Trofinoff, S. (2015). Using and Modifying the BSC Slurm Workload Simulator.
Slurm User Group Meeting .

Vulcan - bluegene/q, power bqc 16c 1.600ghz, custom interconnect — top500
supercomputer sites. (n.d.). Retrieved 2017-05-04, from
https://www.top500.org/system/177732

Wood, C., Sane, S., Ellsworth, D., Gimenez, A., Huck, K., Gamblin, T., & Malony,
A. (2016). A scalable observation system for introspection and in situ
analytics. In Proceedings of the 5th workshop on extreme-scale programming
tools (pp. 42–49).

Zhang, H., & Hoffmann, H. (2016). Maximizing performance under a power cap: A
comparison of hardware, software, and hybrid techniques. ACM SIGPLAN
Notices , 51 (4), 545–559.

133

	 Introduction
	Previously Published Work

	 Background
	Energy Efficiency
	Power Reduction
	DPG Impact
	DVFS Impact
	RAPL Impact
	Indirect Mechanisms

	Runtime Reduction
	Reflection on Energy Efficiency

	Power Scheduling
	Global Power Limit Enforcement
	Hard Enforcement
	Soft Enforcement

	Schedule Time
	Static Techniques
	Reservation Techniques
	Dynamic Techniques

	Literature
	Naive
	PARM
	RMAP
	SLURM
	PMJPC
	PowSched
	Shifter
	DAPM

	Discussion

	Chapter Summary

	 Power Capping Runtime Effect
	Power Monitoring
	Missing Capabilities
	PowMon Design
	Observation Mechanism
	Observation Timing
	Observation Storage
	Startup and Shutdown

	PowMon Performance Impact

	Experimental Data
	Dynamic Response
	Characteristic Power Consumption
	Decreasing Bounds
	Summary of Experiments

	Connecting Programs and Power
	Chapter Summary

	 Dynamic Power Scheduling
	Design Discussion
	Scheduling Heuristic
	Algorithm
	Hard Enforcement

	Implementations
	MPI
	Glasgow Cache

	Results
	Overhead
	MPI Experimental Results
	Window Size Sensitivity
	Scaling Experiment
	Glasgow Cache Experimental Results

	Chapter Summary

	 Simulating Power Capping
	Modeling Power Capping
	Model Intuitions
	Model Formalization
	Cluster Scale

	Implementation
	Machine - sim.py
	Scheduler - schedulers.py
	Program - program.py

	Simulator Behavior
	Validation
	Scaling Performance

	Simulated PowSched
	Cluster Simulation
	Anticipating Performance
	Best Case
	Worst Case
	Middle Case

	Chapter Summary

	 Comparing Scheduling Approaches
	Experimental Comparison
	Simulation Comparison
	Simulation Study
	Base Behavior
	Random Queues

	Chapter Summary

	 Conclusion
	 Future
	Power Capped Application Behavior
	Simulation Enrichment
	Utility of Application Awareness
	Degree of Overprovisioning
	Comparison Studies

	REFERENCES CITED

