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DISSERTATION ABSTRACT

Brenton John Lessley

Doctor of Philosophy

Department of Computer and Information Science

June 2019

Title: Index-Based Search Techniques for Visualization and Data Analysis Algorithms on
Many-Core Systems

Sorting and hashing are canonical index-based methods to perform searching,

and are often sub-routines in many visualization and analysis algorithms. With the

emergence of many-core architectures, these algorithms must be rethought to exploit the

increased available thread-level parallelism and data-parallelism. Data-parallel primitives

(DPP) provide an efficient way to design an algorithm for scalable, platform-portable

parallelism. This dissertation considers the following question: What are the best index-

based search techniques for visualization and analysis algorithms on diverse many-core

systems? To answer this question, we develop new DPP-based techniques, and evaluate

their performance against existing techniques for data-intensive visualization and analysis

algorithms across different many-core platforms. Then, we synthesize our findings into

a collection of best practices and recommended usage. As a result of these efforts, we

were able to conclude that our techniques demonstrate viability and leading platform-

portable performance for several different search-based use cases. This dissertation is a

culmination of previously-published co-authored material.
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CHAPTER I

INTRODUCTION

Within the scientific visualization and data analysis domains, a large body of

algorithms are built upon search-based subroutines, in which one or more elements are

queried within a larger set of elements. Canonical methods to perform this search task

are primarily based on sorting, hashing, and spatial partitioning [66], each using an

implementation-specific data structure to efficiently facilitate the searching operation.

These data structures can be as simple as a sorted (ordered) variant of the original

unordered elements, a hash table, or a tree-based partitioning of the elements (e.g., with

a kd-tree, octree, or binary search tree). In searching via sorting and hashing, the sorted

array and hash table can be considered index-based data structures, since elements are

logically stored and indexed within a linear array.

The evolution of hardware architectures over the past two decades have informed

the research directions for index-based search techniques. With the emergence of

multi-processor CPU architectures and thread-based programming, significant research

initially focused on the design of lock-free, parallel index-based search techniques for

single-node, shared memory [101, 134, 45]. Subsequently, studies began to investigate

external-memory (off-chip) and multi-node, distributed-memory parallel techniques that

could accommodate the oncoming shift towards large-scale data processing [15, 22].

Over the past decade, computational platforms have advanced from nodes containing

small numbers of CPU cores to nodes containing many-core GPU accelerators with

massive threading and memory bandwidth capabilities. With this increase in available

parallelism comes the ability to process larger workloads and data in parallel [95, 54].

By explicitly parallelizing fine-grained computations that operate on this data, scalable

data-parallelism can be attained, whereby a single instruction is performed over multiple
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data elements (SIMD) in parallel (e.g., via a vector instruction), as opposed to over single

scalar data values (SISD).

Traditional single-threaded (non-parallel) and multi-threaded index-based

search designs, however, do not demonstrate node-level scalability for the massive

number of concurrent threads and data-parallelism offered by emerging many-core

architectures, particularly GPU accelerators. Hardware differences in on-chip caching,

shared memory, instruction execution (e.g., vectorization and branch prediction), and

threading models require new code implementations to achieve optimal performance on

these emerging architectures. Additionally, algorithms that use these search techniques

are not structurally designed to exploit increased available parallelism, e.g., due to

significant non-parallel code and an insufficient amount of parallel work.

For software developers and projects, this has led to a significant change.

Algorithms cannot simply be ported over to a new architecture or platform while retaining

optimal performance, and they may need to be supported on multiple architectures

simultaneously. One approach to this problem is to maintain a different algorithm

implementation for each different architecture. For example, developers can provide

an efficient NVIDIA CUDA implementation [115] for NVIDIA GPUs and an efficient

Intel TBB implementation [53] for Intel CPUs (or N×M separate implementations for N

algorithms and M architectures). However, this approach has drawbacks, as it increases

software development time and is neither adaptable nor future-proof to new processor

architectures, and also would require separate algorithm implementations.

A more preferred approach is to re-think an algorithm in terms of data-parallel

primitives (DPPs), which are highly-optimized “building block” operations that are

combined together to compose a larger algorithm. To qualify as a DPP, an operation

must execute in O(logN) time on an array of size N, given the availability of N or more
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processing units (e.g., parallel hardware threads or cores) [11]. Well-known operations,

such as map, reduce, gather, scatter, scan (prefix sum), and sort all meet this property, and

are some of the most commonly-used DPPs. By providing efficient implementations of

each DPP for each different platform architecture, a single algorithm composed of DPPs

can be executed efficiently across multiple platforms. The DPP paradigm thus provides a

way to explicitly design and program an algorithm for scalable, platform-portable data-

parallelism, as increases in processing units and data enable unrestricted increases in

speedup.

In this dissertation work, we answer the following dissertation question: What

are the best index-based search techniques for visualization and analysis algorithms

on diverse many-core systems? To answer this question, we needed to develop a

novel hashing-based search technique that is designed entirely in terms of DPPs.

Additionally, we propose novel methods of using existing sorting- and hashing-based

search techniques. We introduce these techniques in two phases:

1. Design sorting- and hashing-based techniques for the search of duplicate elements.

2. Expand the hashing-based technique to a general-purpose hash table data structure.

Then, we consider three data-intensive visualization and/or analysis algorithms, each of

which has a search-oriented procedure as part of the algorithm. In each case, our first step

is to re-think these algorithms in terms of these techniques and other DPPs. Finally, we

look for patterns and commonalities across these solutions, and synthesize our findings

with a set of best practices and a decision tree flowchart that guides the selection of a

most-suitable search technique.

The culmination of this work answers our dissertation question, i.e., identifying

the best index-based search techniques for visualization and analysis algorithms on

diverse many-core systems. This question is the subject of this dissertation.
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1.1 Dissertation Outline

This dissertation is organized into the following three parts:

1. Techniques: Chapters II through IV.

2. Applications: Chapters V through VIII.

3. Best Practices: Chapters IX and X.

Part I surveys existing index-based search techniques and then introduces new

data-parallel index-based search techniques. Part II incorporates the techniques of Part I

into the design of data-parallel algorithms for different scientific visualization and data

analysis algorithms. Part III synthesizes the findings and best practices of Parts I and II.

In particular, the content of the individual dissertation chapters is as follows.

Chapter II provides a background data-parallelism and existing index-based search

techniques. Chapter III introduces new data-parallel sorting- and hashing-based

techniques for duplicate element searching. Chapter IV expands the hashing-based

techniques of Chapter III to a general-purpose hash table data structure. Chapter V

applies the techniques of Chapter III to the scientific visualization algorithm of external

facelist calculation (EFC). Chapter VI applies the techniques of Chapter IV to the task of

hashing unsigned integers. Chapter VII applies the techniques of Chapter III to the graph

algorithm of maximal clique enumeration (MCE). Chapter VIII applies the techniques

of Chapter III to graph-based image segmentation using Markov random fields (MRF).

Chapter IX identifies specific test configurations and use cases that lead to the best

performance for the duplicate element searching task of Chapters III and V. Chapter X

concludes this dissertation by synthesizing the findings and best practices of the previous

chapters and offering recommendations for future research.
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1.2 Co-Authored Material

A significant portion of the content in this dissertation is adopted from

collaborative research work and manuscripts that I have completed, as lead author,

during my PhD program. Each manuscript has been either already published or is

currently under submission at a journal. The content of each manuscript includes the text,

figures, and experimental results, all of which are primarily composed by myself. The

following listing indicates the chapters that contain manuscript content and the authors

that contributed to the manuscript (i.e., myself and co-authors); note that a detailed

division of labor for each manuscript is provided at the beginning of its corresponding

chapter.

– Chapter II is mainly based on an under-submission journal publication, and is a

collaboration between Hank Childs and myself.

– Chapters III and V are mainly based on an accepted conference publication, and is a

collaboration between Roba Binyahib, Robert Maynard, Hank Childs, and myself.

The content of this publication is divided between the two chapters, without any

overlap.

– Chapters IV and VI are mainly based on an under-submission journal publication,

and is a collaboration between Samuel Li, Hank Childs, and myself. The content of

this publication is divided between the two chapters, without any overlap.

– Chapter VII is mainly based on an accepted conference publication, and is a

collaboration between Talita Perciano, Manish Mathai, Hank Childs, Wes Bethel,

and myself.

– Chapter VIII is mainly based on an accepted conference publication, and is a

collaboration between Talita Perciano, Colleen Heinemann, David Camp, Hank

Childs, Wes Bethel, and myself.
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– Chapter IX is mainly based on an accepted conference publication, and is a

collaboration between Kenneth Moreland, Matthew Larsen, Hank Childs, and

myself.
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Part I

Techniques
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In this part of the dissertation, we provide a background on data-parallelism and

index-based searching, and then introduce our collection of DPP-based search techniques

for duplicate element detection and hashing.
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CHAPTER II

BACKGROUND

The task of searching for elements in an indexed array is a well-studied problem

in computer science. Canonical methods for this task are primarily based on sorting

and hashing [66]. This chapter provides the necessary background to understand these

methods and the work of this dissertation. Specifically, the following concepts are

covered in sequence, each in their own section:

1. Parallel Computing and Data-Parallelism

2. Data-Parallel Primitives

3. General Purpose GPU Computing

4. Index-Based Searching

5. Data-Parallel Hashing Techniques

The material in this chapter is primarily adopted from a collaborative survey

manuscript completed by myself and Hank Childs [80]. As lead author of this manuscript,

I contributed the majority of the literature review and paper writing. Hank Childs

provided significant guidance towards optimizing the scope of the survey, improving

the message of our contributions, and editing the final submission. This manuscript is

currently in preparation for a journal submission and is based on the work of my Ph.D.

area exam.

2.1 Parallel Computing & Data-Parallelism

Lamport [73] defines concurrency as the decomposition of a process into

independently-executing events (subprograms or instructions) that do not causally affect

each other. Parallelism occurs when these events are all executed at the same time and

perform roughly the same work. According to Amdahl [4], a program contains both non-

parallelizable, or serial, work and parallelizable work. Given P processors (e.g., hardware
9



cores or threads) available to perform parallelizable work, Amdahl’s Law defines the

speedup SP of a program as SP ≤ T1/TP, where T1 and TP are the times to complete the

program with a single processor and P processors, respectively. As P → ∞, S∞ ≤ 1
f ,

where f is the fraction of serial work in the program. So, the speedup, or scalability, of

a program is limited by its inherent serial work, as the number of processors increases.

Ideally, a linear speedup is desired, such that P processors achieve a speedup of P; a

speedup proportional to P is said to be scalable.

Often a programmer writes and executes a program without explicit design for

parallelism, assuming that the underlying hardware and compiler will automatically

deliver a speedup via greater processor cores and transistors, instruction pipelining,

vectorization, memory caching, etc [54]. While these automatic improvements may

benefit perfectly parallelizable work, they are not guaranteed to address imperfectly

parallelizable work that contains data dependencies, synchronization, high latency

cache misses, etc [95]. To make this work perfectly parallelizable, the program must

be refactored, or redesigned, to expose more explicit parallelism that can increase

the speedup (SP). Brent [16] shows that this explicit parallelism should first seek to

minimize the span of the program, which is the longest chain of tasks that must be

executed sequentially in order. Defining T1 as the total serial work and T∞ as the span,

Brent’s Lemma relates the work and span as TP ≤ (T1 − T∞)/P + T∞. This lemma

reveals that the perfectly parallelizable work T1 − T∞ is scalable with P, while the

imperfectly parallelizable span takes time T∞ regardless of P and is the limiting factor

of the scalability of TP.

A common factor affecting imperfectly parallelizable work and scalability is

memory dependencies between parallel (or concurrent) tasks. For example, in a race

condition, tasks contend for exclusive write access to a single memory location and must
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synchronize their reads to ensure correctness [95]. While some dependencies can be

refactored into a perfectly parallelizable form, others still require synchronization (e.g.,

locks and mutexes) or hardware atomic primitives to prevent non-deterministic output.

The key to enabling scalability in this scenario is to avoid high contention at any given

memory location and prevent blocking of tasks, whereby tasks remains idle (sometimes

deadlocked) until they can access a lock resource. To enable lock-free progress of work

among tasks, fine-grained atomic primitives are commonly used to efficiently check and

increment values at memory locations [52, 31]. For example, the compare-and-swap

(CAS) primitive atomically compares the value read at a location to an expected value. If

the values are equal, then a new value is set at the location; otherwise, the value doesn’t

change.

Moreover, programs that have a high ratio of memory accesses to arithmetic

computations can incur significant memory latency, which is the number of clock or

instruction cycles needed to complete a single memory access [121]. During this latency

period, processors should perform a sufficient amount of parallel work to hide the latency

and avoid being idle. Given the bandwidth, or instructions completed per cycle, of each

processor, Little’s Law specifies the number of parallel instructions needed to hide latency

as the bandwidth multiplied by latency [88]. While emerging many-core and massively-

threaded architectures provide more available parallelism and higher bandwidth rates, the

memory latency rate remains stagnant due to physical limitations [95]. Thus, to exploit

this greater throughput and instruction-level parallelism (ILP), a program should ideally

be decomposed into fine-grained units of computation that perform parallelizable work

(fine-grained parallelism).

Furthermore, the increase in available parallelism provided by emerging

architectures also enables larger workloads and data to be processed in parallel [95, 54].
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Gustafson [47] noted that as a problem size grows, the amount of parallel work increases

much faster than the amount of serial work. Thus, a speedup can be achieved by

decreasing the serial fraction of the total work. By explicitly parallelizing fine-grained

computations that operate on this data, scalable data-parallelism can be attained, whereby

a single instruction is performed over multiple data elements (SIMD) in parallel (e.g., via

a vector instruction), as opposed to over a single scalar data values (SISD). This differs

from task-parallelism, in which multiple tasks of a program conduct multiple instructions

in parallel over the same data elements (MIMD) [121]. Task-parallelism only permits

a constant speedup and induces coarse-grained parallelism, whereby all tasks work in

parallel but an individual task could still be executing serial work. By performing inner

fine-grained parallelism within outer course-grained parallel tasks, a nested parallelism is

attained [12]. Many recursive and segmented problems (e.g., quicksort and closest pair)

can often be refactored into nested-parallel versions [11]. Flynn [39] introduces SIMD,

SISD, and MIMD as part of a taxonomy of computer instruction set architectures.

2.2 Data Parallel Primitives

The redesign of serial algorithms for scalable data-parallelism offers platform

portability, as increases in processing units and data are accompanied by unrestricted

increases in speedup. Data-parallel primitives (DPPs) provide a way to explicitly design

and program an algorithm for this scalable, platform-portable data-parallelism. DPPs

are highly-optimized building blocks that are combined together to compose a larger

algorithm. The traditional design of an algorithm is thus refactored in terms of DPPs. By

providing highly-optimized implementations of each DPP for each platform architecture,

an algorithm composed of DPPs can be executed efficiently across multiple platforms.

This use of DPPs eliminates the combinatorial (cross-product) programming issue of

having to implement a different version of the algorithm for each different architecture.
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The early work on DPPs was set forth by Blelloch [11], who proposed a scan

vector model for parallel computing. In this model, a vector-RAM (V-RAM) machine

architecture is composed of a vector memory and a parallel vector processor. The

processor executes vector instructions, or primitives, that operate on one or more

arbitrarily-long vectors of atomic data elements, which are stored in the vector memory.

This is equivalent to having as many independent, parallel processors as there are data

elements to be processed. Each primitive is classified as either scan or segmented (per-

segment parallel instruction), and must possess a parallel, or step, time complexity of

O(logn) and a serial, or element, time complexity of O(n), in terms of n data elements;

the element complexity is the time needed to simulate the primitive on a serial random

access machine (RAM). Several canonical primitives are then introduced and used as

building blocks to refactor a variety of data structures and algorithms into data-parallel

forms.

The following are examples of DPPs that are commonly-used as building blocks

to construct data-parallel algorithms:

– Map: Applies an operation on all elements of the input array, storing the result in an

output array of the same size, at the same index;

– Reduce: Applies an aggregate binary operation (e.g., summation or maximum) on

all elements of an input array, yielding a single output value. ReduceByKey is a

variation that performs segmented Reduce on the input array based on unique key,

yielding an output value for each key;

– Gather: Given an input array of values, reads values into an output array according

to an array of indices;

– Scan: Calculates partial aggregates, or a prefix sum, for all values in an input array

and stores them in an output array of the same size;
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– Scatter: Writes each value of an input data array into an index in an output array, as

specified in the array of indices;

– Compact: Applies a unary predicate (e.g., if an input element is greater than zero)

on all values in an input array, filtering out all the values which do not satisfy the

predicate. Only the remaining elements are copied into an output array of an equal

or smaller size;

– SortByKey: conducts an in-place segmented Sort on the input array, with segments

based on a key or unique data value in the input array;

– Unique: Ignores duplicate values which are adjacent to each other, copying only

unique values from the input array to the output array of the same or lesser size; and

– Zip: Binds two arrays of the same size into an output array of pairs, with the first

and second components of a pair equal to array values at a given index.

Several other DPPs exist, each meeting the required step and element complexities

specified by Blelloch [11]. Cross-platform implementations of a wide variety of DPPs

form the basis of several notable open-source libraries.

The Many-Core Visualization Toolkit (VTK-m) [109] is a platform-portable

library that provides a growing set of DPPs and DPP-based algorithms [148]. With a

single code base, back-end code generation and runtime support are provided for use

on GPUs and CPUs. Currently, each GPU-based DPP is a modified variant from the

Nvidia CUDA Thrust library [117], and each CPU-based DPP is adopted from the

Intel Thread Building Blocks (TBB) library [53]. VTK-m also provides the flexibility

to implement DPPs for new architectures or parallel programming languages as they

become available. A single VTK-m algorithm code base can be executed on one of

several devices at runtime. The choice of device is either specified at compile-time by

the user, or automatically selected by VTK-m. VTK-m, Thrust, and TBB all employ
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a generic programming model that provides C++ Standard Template Library (STL)-

like interfaces to DPPs and algorithms [125]. Templated arrays form the primitive data

structures over which elements are parallelized and operated on by DPPs. Many of these

array types provide additional functionality on top of underlying vector iterators that are

inspired by those in the Boost Iterator Library [13].

The CUDA Data Parallel Primitives Library (CUDPP) [27] is a library of

fundamental DPPs and algorithms written in Nvidia CUDA C [115] and designed for

high-performance execution on CUDA-compatible GPUs. Each DPP and algorithm

incorporated into the library is considered best-in-class and typically published in

peer-reviewed literature (e.g., radix sort [100, 6], mergesort [128, 29], and cuckoo

hashing [2, 3]). Thus, its data-parallel implementations are constantly updated to reflect

the state-of-the-art.

2.3 General-Purpose GPU Computing

A graphical processing unit (GPU) is a special-purpose architecture that is

designed specifically for high-throughput, data-parallel computations that possess a high

arithmetic intensity—the ratio of arithmetic operations to memory operations [121].

Traditionally used and hard-wired for accelerating computer graphics and image

processing calculations, modern GPUs contain many times more execution cores and

available instruction-level parallelism (ILP) than a CPU of comparable size [115]. This

inherent ILP is provided by a group of processors, each of which performs SIMD-like

instructions over thousands of independent, parallel threads. These stream processors

operate on sets of data, or streams, that require similar computation and exhibit the

following characteristics [60]:
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– High Arithmetic Intensity: High number of arithmetic instructions per memory

instruction. The stream processing should be largely compute-bound as opposed to

memory bandwidth-bound.

– High Data-Parallelism: At each time step, a single instruction can be applied to a

large number of streams, and each stream is not dependent on the results of other

streams.

– High Locality of Reference: As many streams as possible in a set should align

their memory accesses to the same segment of memory, minimizing the number

of memory transactions to service the streams.

General-purpose GPU (GPGPU) computing leverages the massively-parallel

hardware capabilities of the GPU for solving general-purpose problems that are

traditionally computed on the CPU (i.e., non-graphics-related calculations). These

problems should feature large data sets that can be processed in parallel and satisfy

the characteristics of stream processing outlined above. Accordingly, algorithms for

solving these problems should be redesigned and optimized for the data-parallel GPU

architecture, which has significantly different hardware features and performance goals

than a modern CPU architecture [114].

Modern GPGPUs with dedicated memory are most-commonly packaged as

discrete, programmable devices that can be added onto the motherboard of a compute

system and programmed to configure and execute parallel functions [121]. The primary

market leaders in the design of discrete GPGPUs are Nvidia and Advanced Micro

Devices (AMD), with their GeForce and Radeon family of generational devices,

respectively. Developed by Nvidia, the CUDA parallel programming library provides

an interface to design algorithms for execution on an Nvidia GPU and configure hardware

elements [115]. For the remainder of this survey, all references to a GPU will be with
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respect to a modern Nvidia CUDA-enabled GPU, as it is used prevalently in most of the

GPU hashing studies.

The following subsections review important features of the GPU architecture and

discuss criteria for optimal GPU performance.

2.3.1 SIMT Architecture. A GPU is designed specifically for Single-

Instruction, Multiple Threads (SIMT) execution, which is a combination of SIMD and

simultaneous multi-threading (SMT) execution that was introduced by Nvidia in 2006

as part of the Tesla micro-architecture [116]. On the host CPU, a program, or kernel

function, is written in CUDA C and invoked for execution on the GPU. The kernel is

executed N times in parallel by N different CUDA threads, which are dispatched as

equally-sized thread blocks. The total number of threads is equal to the number of thread

blocks times the number of threads per block, both of which are user-defined in the

kernel. Thread blocks are required to be independent and can be scheduled in any order to

be executed in parallel on one of several independent streaming multi-processors (SMs).

The number of blocks is typically based on the number of data elements being processed

by the kernel or the number of available SMs [115]. Since each SM has limited memory

resources available for resident thread blocks, there is a limit to the number of threads

per block—typically 1024 threads. Given these memory constraints, all SMs may be

occupied at once and some thread blocks will be left inactive. As thread blocks terminate,

a dedicated GPU scheduling unit launches new thread blocks onto the vacant SMs.

Each SM chip contains hundreds of ALU (arithmetic logic unit) and SFU (special

function unit) compute cores and an interconnection network that provides k-way access

to any of the k partitions of off-chip, high-bandwidth global DRAM memory. Memory

requests first query a global L2 cache and then only proceed to global memory upon a

cache miss. Additionally, a read-only texture memory space is provided to cache global
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memory data and enable fast loads. On-chip thread management and scheduling units

pack each thread block on the SM into one or more smaller logical processing groups

known as warps—typically 32 threads per warp; these warps compose a cooperative

thread array (CTA). The thread manager ensures that each CTA is allocated sufficient

shared memory space and per-thread registers (user-specified in kernel program). This

on-chip shared memory is designed to be low-latency near the compute cores and can

be programmed to serve as L1 cache or different ratios thereof (newer generations now

include these as separate memory spaces) [48].

Finally, each time an instruction is issued, the SM instruction scheduler selects a

warp that is ready to execute the next SIMT scalar (register-based) instruction, which is

executed independently and in parallel by each active thread in the warp. In particular, the

scheduler applies an active mask to the warp to ensure that only active threads issue the

instruction; individual threads in a warp may be inactive due to independent branching

in the program. A synchronization barrier detects when all threads (and warps) of a CTA

have exited and then frees the warp resources and informs the scheduler that these warps

are now ready to process new instructions, much like context switching on the CPU.

Unlike a CPU, the SM does not perform any branch prediction or speculative execution

(e.g., prefetching memory) among warp threads [121].

SIMT execution is similar to SIMD, but differs in that SIMT applies one

instruction to multiple independent warp threads in parallel, instead of to multiple data

lanes. In SIMT, scalar instructions control individual threads, whereas in SIMD, vector

instructions control the entire set of data lanes. This detachment from the vector-based

processing enables threads of a warp to conduct a form of SMT execution, where each

thread behaves more like a heavier-weight CPU thread [121]. Each thread has its own

set of registers, addressable memory requests, and control flow. Warp threads may take
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divergent paths to complete an instruction (e.g., via conditional statements) and contribute

to starvation as faster-completing threads wait for the slower threads to finish.

The two-level GPU hierarchy of warps within SMs offers massive nested

parallelism over data [121]. At the outer, SM level of granularity, coarse-grained

parallelism is attained by distributing thread blocks onto independent, parallel SMs

for execution. Then at the inner, warp level of granularity, fine-grained data and thread

parallelism is achieved via the SIMT execution of an instruction among parallel warp

threads, each of which operates on an individual data element. The massive data-

parallelism and available compute cores are provided specifically for high-throughput,

arithmetically-intense tasks with large amounts of data to be independently processed.

If a high-latency memory load is made, then it is expected that the remaining warps and

processors will simultaneously perform sufficient work to hide this latency; otherwise,

hardware resources remain unused and yield a lower aggregate throughput [146]. The

GPU design trades-off lower memory latency and larger cache sizes (such as on a CPU)

for increased instruction throughput via the massive parallel multi-threading [121].

This architecture description is based on the Nvidia Maxwell micro-architecture,

which was released in 2015 [48]. While certain quantities of components (e.g., SMs,

compute cores, memory sizes, and thread block sizes) change with each new generational

release of the Nvidia GPU, the general architectural design and execution model

remain constant [115]. The CUDA C Programming Guide [115] and Nvidia PTX ISA

documentation [116] contain further details on the GPU architecture, execution and

memory models, and CUDA programming.

2.3.2 Optimal Performance Criteria. The following performance strategies

are critical for maximizing utilization, memory throughput, and instruction throughput on

the GPU [114].
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Sufficient parallelism: Sufficient instruction-level and thread-level parallelism

should be attained to fully hide arithmetic and memory latencies. According to Little’s

Law, the number of parallel instructions needed to hide a latency (number of cycles

needed to perform an instruction) is roughly the latency times the throughput (number

of instructions performed per cycle) [88]. During this latency period, threads that are

dependent on the output data of other currently-executing threads in a warp (or thread

block) are stalled. Thus, this latency can be hidden either by having these threads

simultaneously perform additional, non-dependent SIMT instructions in parallel

(instruction-level parallelism), or by increasing the number of concurrently running warps

and warp threads (thread-level parallelism) [146].

Since each SM has limited memory resources for threads, the number of

concurrent warps possible on an SM is a function of several configurable components:

allocated shared memory, number of registers per thread, and number of threads per

thread block [115]. Based on these parameters, the number of parallel thread blocks

and warps on an SM can be calculated and used to compute the occupancy, or ratio of

the number of active warps to the maximum number of warps. In terms of Little’s Law,

sufficient parallel work can be exploited with either a high occupancy or low occupancy,

depending on the amount of work per thread. Based on the specific demands for SM

resources, such as shared memory or register usage, by the kernel program, the number

of available warps will vary accordingly. Higher occupancy, usually past 50 percent, does

not always translate into improved performance [114]. For example, a lower occupancy

kernel will have more registers available per thread than a higher occupancy kernel,

allowing low-latency access to local variables and minimizing register spilling into high-

latency local memory.
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Memory coalescing: When a warp executes an instruction that accesses global

memory, it coalesces the memory accesses of the threads within the warp into one or

more memory transactions, or cache lines, depending on the size of the word accessed by

each thread and the spatial coherency of the requested memory addresses. To minimize

transactions and maximize memory throughput, threads within a warp should coherently

access memory addresses that fit within the same cache line or transaction. Otherwise,

memory divergence occurs and multiple lines of memory are fetched, each containing

many unused words. In the worst case alignment, each of the 32 warp threads accesses

successive memory addresses that are multiples of the cache line size, prompting 32

successive load transactions [114].

The shared memory available to each thread block can help coalesce or eliminate

redundant accesses to global memory [121]. The threads of the block (and associated

warp) can share their data and coordinate memory accesses to save significant global

memory bandwidth. However, it also can act as a constraint on SM occupancy—

particularly limiting the number of available registers per thread and warps—and is prone

to bank conflicts, which occur when two or more threads in a warp access an address in

the same bank, or partition, of shared memory [115]. Since an SM only contains one

hardware bus to each bank, multiple requests to a bank must be serialized. Thus, optimal

use of shared memory necessitates that warp threads arrange their accesses to different

banks [115]. Finally, the read-only texture memory of an SM can be used by a warp

to perform fast, non-coalesced lookups of cached global memory, usually in smaller

transaction widths.

Control flow: Control flow instructions (e.g., if, switch, do, for, while) can

significantly affect instruction throughput by causing threads of the same warp to diverge

and follow different execution paths, or branches. Optimal control flow is realized when
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all the threads within a warp follow the same execution path [114]. This scenario enables

SIMD-like processing, whereby all threads complete an instruction simultaneously

in lock-step. During branch divergence in a warp, the different executions paths, or

branches, must be serialized, increasing the total number of instructions executed for

the warp. Additionally, the use of atomics and synchronization primitives can also require

additional serialized instructions and thread starvation within a warp, particularly during

high contention for updating a particular memory location [138].

2.4 Index-Based Searching

Let U = {i}0≤i<u be the universe for some arbitrary positive integer u. Then let

S ⊂ U be an unordered array of n = |S| elements, or keys, belonging to U . The search

problem seeks an answer to the query: “Is key k a member of S?” If k ∈ S, then we return

its corresponding value, which is either k itself or a different value. A data structure

is built or constructed over S to efficiently facilitate the searching operation. The data

structure is implementation-specific and can be as simple as a sorted (ordered) variant of

the original array, a hash table, or a tree-based partitioning of the elements.

A generalization of the search task is the dictionary problem, which seeks to

both modify and query key-value pairs (k,v) in S. A canonical dictionary data structure

supports insert(k,v), delete(k,v), query(k), range(k1,k2) (returns {k|k1 ≤ k ≤ k2}), and

count(k1,k2) (returns |range(k1,k2)|). To support these operations, the dictionary must be

dynamic and accommodate incremental or batch updates after construction; this contrasts

to a static data structure, which either does not support updates after a one-time build or

must be rebuilt after each update. In multi-threaded environments, these structures must

also provide concurrency and ensure correctness among mixed, parallel operations that

may access the same elements simultaneously.
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An extensive body of work has embarked on the redesign of data structures for

construction and general computation on the GPU [119]. Within the context of searching,

these acceleration structures include sorted arrays [2, 129, 3, 57, 79, 81, 7] and linked

lists [152], hash tables (see section 2.5), spatial-partitioning trees (e.g., k-d trees [156, 62,

150], octrees [155, 62], bounding volume hierarchies (BVH) [76, 62], R-trees [91], and

binary indexing trees [65, 131]), spatial-partitioning grids (e.g., uniform [71, 59, 43] and

two-level [58]), skiplists [111], and queues (e.g., binary heap priority [51] and FIFO [20,

133]).

Due to significant architectural differences between the CPU and GPU, search

structures cannot simply be “ported” from the CPU to the GPU and maintain optimal

performance. On the CPU, these structures can be designed to fit within larger caches,

perform recursion, and employ heavier-weight synchronization or hardware atomics.

However, during queries, the occurrence of varying paths of pointers (pointer chasing)

and dependencies between different phases or levels of the structure can limit the

parallel throughput on the GPU. If the pointers are scattered randomly in memory, then

memory accesses may be uncoalesced and induce additional global memory transactions

(cache line loads). These attributes are particularly important to real-time, interactive

applications, such as surface reconstruction and rendering, that make frequent updates and

queries to the acceleration structure.

Spatial-partitioning or tree-based search structures are particularly vulnerable

to these portable performance issues. For example, a canonical method of searching

within a spatial domain involves explicitly computing a bounding box over the domain

and then recursively subdividing it into smaller and smaller regions, or cells. Each cell

contains a subset of elements, such as points coordinates or integers within an interval.

This subdivision hierarchy can then be represented by a grid (e.g., uniform and two-level)
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or tree (e.g., k-d tree, octree, or bounding volume hierarchy) data structure that conducts

a query operation by traversing a path through the hierarchy until the queried element

is found. While these search structures are designed for fast, highly-parallel usage, they

typically do not exhibit fast reconstruction rates due to complex spatial hierarchies, and

may contain deep tree structures that are conducive to thread branch divergence during

parallel query traversals.

For searching an unordered array of elements on the GPU, two canonical,

spatially-linear data structures exist: the sorted array and the hash table. Both of these

data structures are amenable to data-parallel design patterns [7] and, thus, avoid most

of the portable-performance design challenges faced by tree-based search structures. In

this dissertation, we focus exclusively on data-parallel sorting- and hashing-based search

techniques. A background on both of these approaches is presented as follows.

2.4.1 Searching Via Sorting. Given a set of n unordered elements,

a canonical searching approach is to first sort the elements in ascending order and

then conduct a binary or k-nary search for the query element. This search requires a

logarithmic number of comparisons in the worst-case, but is not as amenable to caching

as consecutive comparisons are not spatially close in memory for large n. Moreover, on

the GPU, an ordered query pattern by threads in a warp can enable memory coalescing

during comparisons.

The current version of the CUDA Thrust library [117] provides fast and high-

throughput data-parallel implementations of mergesort [128] and radix sort [100] for

arrays of custom (e.g., comparator function) or numerical (i.e., integers and floats) data

types, respectively. Similarly, the latest version of the CUDPP library [27] includes best-

in-class data-parallel algorithms for mergesort [128, 29] and radix sort [100, 6], each of
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which are adapted from published work. Singh et al. [136] survey and compare the large

body of recent GPU-based sorting techniques.

A few studies have investigated various factors that affect the performance of

data-parallel sort methods within the context of searching [2, 3, 81]. Kaldewey and Blas

introduce a GPU-based p-ary search that first uses p parallel threads to locate a query

key within one of p larger segments of a sorted array, and then iteratively repeats the

procedure over p smaller segments within the larger segment. This search achieves high

memory throughput and is amenable to memory coalescing among the threads [57].

Moreover, the algorithm was also ported to the CPU to leverage the SIMD vector

instructions in a fashion similar to the k-ary search introduced by Schlegel et al. [129].

However, the fixed vector width restricts the degree of parallelism and value of p, which

is significantly higher on the GPU.

Inserting or deleting elements into a sorted array is generally not supported and

requires inefficient approaches such as appending/removing new elements and re-sorting

the larger/smaller array, or first sorting the batch of new insertions and then merging

them into the existing sorted array. Ashkiani et al. [7] present these approaches and the

resulting performance for a dynamic sorting-based dictionary data structure, along with

setting forth the current challenges of designing dynamic data structures on the GPU.

2.4.2 Searching Via Hashing. Instead of maintaining elements in sorted

order and performing a logarithmic number of lookups per query, hash tables compactly

reorganize the elements such that only a constant number of direct, random-access

lookups are needed on average [26]. More formally, given a universe U of possible

keys and an unordered set S ⊆ U of n keys (not necessarily distinct), a hash function,

h : U 7→ H, maps the keys from S to the range H = { j}0≤ j<m for some arbitrary positive

integer m ≥ n. Defining a memory space over this range of size m specifies a hash table,
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into which keys are inserted and queried. Thus, the hash table is addressable by the hash

function. During an insertion or query operation for a key q, the hash function computes

an address h(q) = r into H. If the location H[r] is empty, then q is either inserted into

H[r] (for an insertion) or does not exist in H (for a query). If H[r] contains the key q

(for a query), then either q or an associated value of q is returned1, indicating success.

Otherwise, if multiple distinct keys q′ ̸= q are hashed to the same address h(q′) = r, then

a situation known as a hash collision occurs. These collisions are typically resolved via

separate chaining (i.e., employing linked lists to store multiple keys at a single address)

or open-addressing (e.g., when an address is occupied, then store the key at the next

empty address).

The occurrence of collisions deteriorates the query performance, as each of

the collided keys must be iteratively inspected and compared against the query key.

According to the birthday paradox, with a discrete uniform distribution hash function

that outputs a value between 1 and 365 for any key, the probability that two random keys

hash to the same address in a hash table of size 23 is 50 percent [140]. More generally, for

n hash values and a table size of m, the probability p(n,m) of a collision is

p(n,m) =


1−

n−1

∏
k=1

(
1− k

m

)
n≤ m

1 n > m

≈ 1−
(

m−1
m

) n(n−1)
2

.

Thus, for a large number of keys (n) and small hash table (m), hash collisions are

inevitable.

1In practice, the values should be easily stored and accessible within an auxiliary array or via a custom
arrangement within the hash table.
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In order to minimize collisions, an initial approach is to use a good quality hash

function that is both efficient to compute and distributes keys as evenly as possible

throughout the hash table [26]. One such family of functions are randomly-generated,

parameterized functions of the form h(k) = (a · k+ b) mod p mod |H|, where p is a large

prime number and a and b are randomly-generated constants that bias h from outputting

duplicate values [3]. However, the effectiveness of h also depends on the hash table size,

|H|. If |H| is too small, then not even the best of hash functions can avoid an increase in

collisions. Given the table size, the load factor α of the table is defined as α = n/|H|,

or the percentage of occupied addresses in the hash table, which |H| is typically larger

than n. If new keys are inserted into the table and α reaches a maximum threshold, then

typically the table is allocated to a larger size and all the keys are rehashed into the table.

To avoid collision resolution altogether, a perfect hash function can be constructed

to hash keys into a hash table without collisions. Each key is mapped to a distinct address

in the table. However, composing such a perfect hashing scheme is known to be difficult

in general [78]. The probability of attaining a perfect hash for n keys in a large table of

size m (m≫ n) is defined as

p(n,m) = (1) ·
(

1− 1
m

)
·
(

1− 2
m

)
· · ·

(
1− n−1

m

)
≈ e

−n2
2m ,

which is very small for a large n or small m.

In practice, a perfect hash function can be described as an imperfect hash function

that is then iteratively corrected into a perfect form. One approach to doing this is to

construct one or more auxiliary lookup tables that perturb the hash table addresses of

collided keys into non-colliding addresses. These tables are typically significantly more

compact than the hash table. Another foundational approach, introduced by Fredman et
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al. [41], is the use of a multi-level hash table that hashes keys into smaller and smaller

buckets—each with a separate hash function—until each key is addressed to a bucket

of its own, yielding a collision-free, perfect hash table with constant worst-case lookup

time. Lefebvre and Hoppe [78] introduce a perfect spatial hashing (PSH) approach that

is also the first GPU-specific perfect hashing approach. In PSH, a minimal perfect hash

function and table are constructed over a sparse set of multi-dimensional spatial data,

while simultaneously ensuring locality of reference and coherence among hashed points.

Thus, on the GPU, spatially-close points are queried coherently, in parallel, by threads

within the same warp. In order to maximize memory coalescing among these threads,

points are also coherently accessed within the hash table, as opposed to via a random

access pattern, which can necessitate multiple memory load instructions.

A hash table is static if it does not support modification after being constructed;

that is, the table is only constructed to handle query operations. Thus, a static hash

table also does not support mixed operations and the initial batch of insertions used to

construct the table (bulk build) must be completed before the batch of query operations.

A hash table that can be updated, or mutated, via insertion and deletion operations post-

construction is considered dynamic. Denoting the query, insert, and delete operations as q,

i, and d, respectively, the operation distribution Γ = (q, i,d),q+ i+ d = 1 specifies the

percentage of each operation that are conducted concurrently in a hashing workload [5].

For example, Γ = (0.7,0.15,0.15) represents a query-heavy workload that performs 70%

queries and 30% updates. Additionally, the percentage q can be split into queried keys

that exist in the hash table and those that do not. Often, queries for non-existent keys

can present worst-case scenarios for many hash techniques, as a maximum number of

searches are conducted until failure [5].
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As general data structures, hash tables do not place any special emphasis on the

key access patterns over time [25]. However, the patterns that appear in various real-world

applications do possess observable structure. For example, geometric tasks may query

spatially-close keys in a sequential or coherent pattern, and database tasks may query

certain subsets of keys more frequently than others, whereby the hash table serves as

a working set or most-recently-used (MRU) table for cache-like accesses [3, 126, 25].

Moreover, dynamic hash tables do not place special emphasis on the mixture Γ, or

pattern, of query and update operations. However, execution time performance may be

better or worse for some hashing techniques, depending on the specific Γ, such as query-

heavy for key-value stores [153] or update-heavy for real-time, interactive spatial hash

tables [78, 2, 44, 112].

Finally, hash tables offer compact storage for sparse spatial data that contains

repeated elements or empty elements that don’t need to be computed. For example,

instead of storing an entire, mostly-empty voxelized 3D grid, the non-empty voxels can

be hashed into a dense hash table [78]. Then, every voxel can be queried to determine

whether it should be rendered or not, returning a negative result for the empty voxels.

Furthermore, a hash table does not have to be one-dimensional. Instead, the data structure

can consist of multiple hash tables or bucketed partitions that are each addressed by a

different hash function.

While collision resolution is straightforward to implement in a serial CPU setting,

it does not easily translate to a parallel setting, particularly on massively-threaded, data-

parallel GPU architectures. GPU-based hashing presents several notable challenges:

– Hashing is a memory-bound problem that is not as amenable to the compute-bound

and limited-caching design of the GPU, which hides memory latencies via a large

arithmetic throughput.
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– The random-access nature of hashing can lead to disparate writes and reads by

parallel-cooperating threads on the GPU, which performs best when memory

accesses are coalesced or spatially coherent.

– The limited memory available on a GPU puts restrictions on the maximum hash

table size and number of tables that can reside on device.

– Collision resolution schemes handle varying numbers of keys that are hashed and

chained to the same address (separate chaining), or varying numbers of attempts

to place a new, collided key into an empty table location (open-addressing). This

variance causes some insert and query operations to require more work than others.

On a GPU, threads work in groups to execute the same operation on keys in a data-

parallel fashion. Thus, a performance bottleneck arises when faster, non-colliding

threads wait for slower, colliding threads to finish. Moreover, some threads may

insert colliding keys that are unable to find an empty table location, leading to

failure during construction of the table.

Searching via the construction and usage of a hash table on the GPU has recently

received a breadth of new research, with a variety of different parallel designs and

applications, ranging from collision detection to surface rendering to nearest neighbor

approximation. The next section covers these GPU-based parallel hashing techniques.

2.5 Data-Parallel Hashing Techniques

This section reviews existing parallel hashing techniques that employ one of

the following two forms of collision-handling: open-addressing and separate chaining.

Both forms of collision-handling motivate the need for data-parallel hashing approaches

for optimal performance, particularly on GPU devices. Moreover, open-addressing

is the foundation upon which this dissertation work and contributed techniques are

based. A complete survey of data-parallel hashing techniques and additional collision-
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handling methods can be found in my area exam paper [80]; only a subset of this survey

is presented in this section.

2.5.1 Open-addressing Probing. In open-addressing, a key is inserted into

the hash table by probing, or searching, through alternate table locations—the probe

sequence—until a location is found to place the element [26]. The determination of

where to place the element varies by probing scheme: some schemes probe for the first

unused location (empty slot), whereas others evict the currently-residing key at the probe

location (i.e., a collision) and swap in the new key. Each probe location is specified by a

hash function unique to the probing scheme. Thus, some probe sequences may be more

compact or greater in length than others, depending on the probing method. For a query

operation, the locations of the probe sequence are computed and followed to search for

the queried key in the table.

Each probing method trades-off different measures of performance, particularly

with respect to GPU-based hashing. A critical influence on performance is the load factor,

which is the percentage of occupied locations in the hash table (subsection 2.4.2). As the

load factor increases towards 100 percent, the number of probes needed to insert or query

a key increases greatly. Once the table becomes full, probing sequences may continue

indefinitely, unless bounded, and lead to insertion failure and possibly a hashing restart,

whereby the hash table is reconstructed with different hash functions and parameters.

Moreover, for threads within a warp on the GPU, variability in the number of probes per

thread can induce branch divergence and inefficient SIMD parallelism, as all the threads

will need to wait for the worst-case number of probes to execute the next instruction.

The following subsections review research on open-addressing probing for

hashing, distinguishing each study by its general probing scheme: linear probing, cuckoo

hashing, double hashing, multi-level or bucketized probing, and robin hood hashing.
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2.5.1.1 Linear Probing-based Hashing. Linear probing is the most basic

method of open-addressing. In this method, a key k first hashes to location h(k) in

the hash table. Then, if the location is already occupied, k linearly searches locations

h(k) + 1,h(k) + 2, . . .etc. until an empty slot (insertion) or k itself (query) is found. If

h(k) is empty, then k is inserted immediately, without probing; otherwise, a worst-case

O(n) probes will need to be made to locate k or an empty slot, where n is the size of

the hash table. While simple in design, linear probing suffers from primary clustering,

whereby a cluster, or contiguous block, of locations following h(k) are occupied by

keys, reducing nearby empty slots. This occurs because colliding keys at h(k) each

successively probe for the next available empty slot after h(k) and insert themselves

into it. An improved variant of linear probing is quadratic probing, which replaces the

linear probe sequence starting at h(k) with successive values of an arbitrary quadratic

polynomial: h(k) + 12,h(k) + 22, . . .etc. This avoids primary clustering, but also

introduces a secondary clustering effect as a result. For a more than half-full table, both

of these probing methods can incur a long probe sequence to find an empty slot, possibly

resulting in failure during an insert.

Bordawekar [14] develops an open-addressing approach based on multi-level

bounded linear probing, where the hash table has multiple levels to reduce the number of

lookups during linear probing. In the first level hash table, each key hashes to a location

h1(k) and then looks for an empty location, via linear probing, within a bounded probe

region P1 = [h1(k),h1(k) + ( j− 1)], where j is the size of the region. If an empty

location is not found, then the key must be inserted into the second-level hash table,

which is accomplished by hashing to location h2(k) and linear probing within another, yet

larger, probe region P2. This procedure continues for each level, until an empty location

is found. In this work, only 2-level and 3-level hash tables are considered; thus, a thread
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must perform bounded probing on a key for at most three rounds, before declaring failure.

To query a key, a thread completes the same hashing and probing procedure. In a data-

parallel fashion, each thread within a warp is assigned a key from the bounded probe

region and compares this key with the query key, using warp-level voting to communicate

success or failure. This continues across warps, for each hash table level.

The initial design goal of this multi-level approach was to bound and reduce the

average number of probes per insertion and query, while enabling memory coalescing and

cache line coherency among threads (or lanes) within a warp. By using a small, constant

number of hash tables and functions, the load factor could be increased beyond the 70

percent of Alcantara et al.’s cuckoo hashing (subsection 2.5.1.2), without sacrificing

performance. However, experimental results reveal that this approach, with both two

and three levels (and hash functions), does not perform as fast as cuckoo hashing for

the largest batches of key-value pairs (hundreds of millions); for smaller batches, the

multi-level approaches are the best performers. This finding is particularly noticeable

for querying the keys, suggesting that improved probing and memory coalescing are

likely not achieved. Additional details are needed to ascertain whether the ordering of

the keys—spatial or random—affect this multi-level approach, or specific reasons why the

expected warp-level memory coalescing is not being realized.

2.5.1.2 Cuckoo-based Hashing. In cuckoo hashing, each key is assigned two

locations in the hash table, as specified by primary and secondary hash functions [120].

When inserting a new key, its first location is probed with the primary function and the

contents of the location are inspected. If the slot is empty, then the key is inserted and

the probe sequence ends. Otherwise, a collided key already occupies the slot and the

cuckoo eviction procedure begins. First, the occupying key is evicted and hashed to the

location specified by its secondary function, where its contents are probed as before.
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This eviction chain continues until either the evicted key is successfully inserted or a

maximum chain length is reached. If the eviction is successful, then the new key is finally

inserted at its primary location (first probe). Numerous follow-up studies to this canonical

approach have introduced cuckoo hashing approaches with more than two hash functions

(probes) per key, a separate hash table for each hash function, and other optimizations for

concurrent, mixed operations (e.g., simultaneous inserts and queries) on the GPU. These

studies are surveyed in this subsection.

Alcantara et al. [2] introduce a data-parallel, dynamic hashing technique based

on perfect hashing and cuckoo hashing that supports both hash table construction and

querying at real-time, interactive rates. The querying performance of this technique is

compared against that of the perfect hashing technique of Lefebvre and Hoppe [78] and a

standard data-parallel sort plus binary search approach. In this work, a two-phase hashing

routine is conducted to insert and query elements, with the goal of maximizing shared-

memory usage during cuckoo hashing.

First, elements are hashed into bucket regions within the hash table, following the

perfect hashing approach of Fredman et al. [41]. The maximum occupancy of each bucket

is the number of threads in a thread block (e.g., 512), such that the entire bucket can fit

within shared memory. The hash function aims to coherently map elements into buckets

such that:

– Each bucket, on average, maintains a load factor of 80%, and

– Spatially-nearby elements are located within the same bucket, enabling coalescing

of memory among threads during queries.

If more than 512 elements hash to a given bucket, then a new hash function is generated

and this phase is repeated. Then, within each bucket, cuckoo hashing is performed to

insert or query an element, using i = 3 different hash functions hi (i.e., the multiple
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choices), each corresponding to a sub-table Ti. During construction, each element

simultaneously hashes to its location h1 in T1, in a winner-takes-all fashion. If multiple

threads hash to the same location, then the winning thread (i.e., the last thread to write)

remains and the other threads proceed to hash into location h2 in T2. This continues for

T3, after which any remaining unplaced elements cycle back to the beginning and hash

into h1 in T1 again. At this point, if a collision occurs at h1, then the current residing

element is evicted and added to the batch of unplaced elements. This cuckoo hashing

procedure continues until all elements are successfully placed into a sub-table Ti or a

maximum number of cycles have occurred.

An observation of this construction routine is that restarts can occur during both

phases if either a bucket overflows or the cuckoo hashing reaches the maximum number

of cycles within a bucket. While this reconstruction may be viewed as a disadvantage of

probing techniques in general, the authors maintain that the occurrence of these restarts

are reasonable in practice and fast to compute on massively-parallel GPU architectures.

Moreover, this technique makes extensive use of thread atomics to increment and

check values in both global and shared memory. While only a fixed number of atomic

operations are made each phase, they are still serialized and must handle varying levels of

thread contention, both of which are known to degrade performance.

After construction, a query operation is performed by hashing once into a bucket,

and then making at most d = 3 hashing probes to locate the element within one of the

sub-tables Ti of the bucket. Insertions and queries are all conducted in a data-parallel,

SIMD fashion. Since each thread warp assigned to a bucket has its own dedicated block

of shared memory, the probing and shuffling of elements in the cuckoo hashing can be

performed faster locally, as opposed to accessing global memory.

Experimental results for this technique reveal the following:
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– For querying elements (voxels in a 3D grid) in a randomized order, this hashing

approach outperforms the perfect hashing approach of Lefebvre et al. [78] and

the data-parallel binary search of radix-sorted elements of Satish et al. [128],

particularly above 5 million elements. After this point, the binary searches used

in both methods do not scale and become time-prohibitive.

– For querying in a sequential order, the data-parallel binary search demonstrates

better performance than this hashing technique, due to more favorable thread

branch divergence and memory coalescing among the sorted elements.

– Constructing the hash table of elements in this approach is comparably-fast to

radix sorting the elements, with noticeable slowdowns due to more non-coalesced

write operations. Moreover, for large numbers of insertions, both approaches are

magnitudes faster than constructing the perfect spatial hash table of [78], which is

initially built on the CPU, rather than the GPU (onto which the table is copied for

subsequent querying).

Alcantara et al. [3] improved upon their original work [2] by introducing a

generalized parallel variant of cuckoo hashing that can vary in the number of hash

functions, hash table size, and maximum length of a probe-and-eviction sequence. In [2],

the authors hypothesized that parallel cuckoo hashing within GPU global memory would

encounter performance bottlenecks due to the shuffling of elements each iteration and

use of global synchronization primitives; thus, shared memory was used extensively

in the two-level hashing scheme. However, in this follow-up work, a single-level hash

table is constructed entirely in global memory and addressed directly with the cuckoo

hash functions, without the first-level bucket hash. The cuckoo hashing dynamics remain

the same, except that the probing and evicting of elements occurs over the entire global

memory hash table, as opposed to the shared-memory buckets of the two-level approach.
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To construct a hash table of N elements, approximately N threads will operate

in SIMD parallel fashion to place their elements into empty slots in the global table.

A given thread block will not complete until all of its threads have successfully placed

their elements; a smaller block size helps minimize the completion time, as the block will

likely contain fewer threads with long eviction chains.

The construction (insertion) and query performance of the single-level hash

approach is compared against that of Merril’s radix sort plus binary search [100] and

the authors’ previous two-level cuckoo hashing approach. Experimental results reveal the

following:

– Insertions. For large numbers of insertions, radix sort [100] becomes increasingly

faster than both hashing methods, with a much higher throughput of insertions-

per-second. For the same size hash table, the single-level hash table is constructed

significantly faster than the two-level table, due to shorter eviction chains on

average, over all insertion input sizes (the two-level table uses a fixed 1.42N space,

while the single-level table is variable-sized). Radix sort achieves an upper bound

of 775 million memory accesses (read and write) per second, while the single-level

hashing only attains 670 million accesses per second. This higher throughput by

radix sort is due to its more-localized memory access patterns that enable excellent

memory coalescing among threads sharing a memory-bound instruction (up to 70%

of the theoretical maximum pin bandwidth on the tested Nvidia GTX 480 GPU,

versus 6% of the single-level hashing).

– Queries: Binary Search vs. Hashing. For random, unordered queries, binary search

probing of the radix sorted elements is much slower than cuckoo hash probing

of the elements. This arises from uncoalesced global memory reads and branch

divergence for many of the threads, which use the maximum O(logN) probes. Both
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cuckoo hashing approaches lookup elements in a worst-case constant number of

probes and, thus, perform significantly better than binary searching, despite these

probes being largely uncoalesced.

– Queries: Two-Level vs. Single-Level. When all queried elements exist in the hash

table, the single-level cuckoo hashing makes a smaller average number of probes

per query than the two-level approach, leading to faster completion times. However,

when a large percentage of the queried elements do not exist in the hash table, the

two-level hashing needs fewer worst-case probes before declaring the element

as not found. This is because the single-level hashing uses four hash functions,

or probes, to lookup an element, whereas the two-level hashing only uses three

functions. By setting the number of hash functions to three in the single-level

hashing, the authors observe comparable querying performance between the two

approaches.

A notable performance observation in this work is that only randomized queries

are considered. The authors indicate, as a limitation of their work, that if the elements to

be queried are instead ordered (sorted), then binary searching the radix-sorted elements

should yield improved thread branch divergence and memory coalescing. This work has

since been incorporated into the CUDPP library [27] as a best-in-class GPU hash table

data structure.

2.5.1.3 Double Hashing. Double hashing first hashes a key k to location

h(k) in the hash table and then, if the location is already occupied, computes another

independent hash h′(k) that defines the step size to the next probing location [26]. Thus,

the second probe location is h(k)+ i · h′(k), where i is the current i-th probe in the probe

sequence. This hashing and probing continues until an empty slot (insertion) or k itself

(query) is found. Similar to linear and quadratic probing, if h(k) is empty, then k is
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inserted immediately, without probing. The choice of the second hash function has a

large impact on performance, as it dictates the locality of consecutive probes and, thus,

the opportunity for memory coalescing among threads on the GPU.

Khorasani et al. [64] introduce a stadium hashing (Stash) technique that builds and

stores the hash table in out-of-core host memory, and resolves insert collisions via double

hashing until an empty slot is found. In GPU global memory, a compact auxiliary ticket-

board data structure is maintained to grant read and write accesses to the hash table. For

each hash table location, the ticket board maintains a ticket, which consists of a single

availability bit and small number of optional info bits. The availability bit indicates

whether the location is empty (set to 1) or occupied by a key (set to 0), while the info

bits are a small generated signature of the key to help identify the key prior to accessing

its value. Within individual thread warps, a shared-memory, collaborative lanes (clStash)

load-balancing scheme is used to ensure that, during insertions, all threads are kept busy,

preventing starvation by unsuccessful threads.

Stadium hashing is meant to address three limitations of previous GPU parallel

hashing techniques, specifically in regard to the cuckoo hashing approach of Alcantara et

al. [3]:

1. Support for concurrent, mixed insert and query operations. Without proper

synchronization, cuckoo hashing encounters a race condition whereby a query

probe fails at a location because a concurrently-inserted key hashes to the location

and evicts the queried key, yielding a false negative lookup. Stadium hashing avoids

this issue by using eviction-free double hashing and granting atomic access to a

location via a ticket board ticket with the availability bit set to 1.

2. Reduce host-to-device memory requests for large hash table sizes. In cuckoo

hashing, CAS atomics are used to retrieve the content of a memory location,
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compare the content with a given value, and swap in a new value, if necessary.

When a hash table is stored in host memory, the large number of parallel retrieval

requests from thousands of GPU threads will turn the hashing into a PCIe

bandwidth-bound problem and degrade performance. Stadium hashing uses the

GPU ticket board data structure to minimize retrieval requests to the host memory

hash table.

3. Efficient use of SIMD hardware. During a cuckoo hashing operation, a thread

failing to insert or query a key can cause starvation among the other threads in

the thread warp, as they all perform the same instruction in lock-step. Thus, if

the other threads complete their operation early, then they will remain idle and

contribute to work imbalance. Stadium hashing uses the clStash load-balancing

routine to maintain a warp-wide, shared memory store of pending operations that

early-completing threads can claim to remain busy.

For an out-of-core hash table, the ticket-board with larger ticket sizes (more info

bits per key) helps improve the number of operations per second by reducing the number

of expensive host memory accesses over the PCIe bus. This improvement is especially

significant for unnecessary queries of elements which do not actually reside in the host

hash table. In this case, the PCIe bandwidth from GPU to CPU memory is the primary

performance bottleneck. However, when the hash table resides in GPU memory, the

underutilization of SIMD thread warps becomes the primary bottleneck on performance

for low load factors (fewer collisions). The efficiency of warps is shown to improve by

using the collaborative lanes clStash scheme in combination with the Stash hashing.

Regarding the experiments and findings in this work, the cuckoo hashing approach

of [3] is specifically designed for hash table construction and querying within GPU

memory. Thus, the use of this technique in out-of-core memory should not necessarily
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be expected to perform optimally, and should be kept in mind when comparing against the

out-of-core performance of stadium hashing.

2.5.1.4 Robin Hood-based Hashing. Robin Hood hashing [21] is an open-

addressing technique that resolves hash collisions based on the age of the collided keys.

The age of a key is the length of the probe sequence, h1(k),h2(k), . . . , needed to insert

the key into an empty slot in the hash table. During a collision at a probe location, the

key with the youngest age is evicted and the older key inserted into that location. The

evicted key is then robin hood hashed again until it is placed in a new empty location,

incrementing its age along the new probe sequence. The idea of this approach is to

prevent long probe sequences by favoring keys that are difficult to place. Even in a full

table with high load factor, this eviction policy guarantees an expected maximum age

of Θ(logn) for an insert or query key. However, the worst-case maximum age M may

still be higher and worse than the maximum probe sequence length of cuckoo hashing,

prompting a table reconstruction in some cases. These maximum M probes will be

required during queries for empty keys (those which do not exist in the hash table), unless

they are detected and rejected early.

Garcia et al. [44] introduce a data-parallel robin hood hashing scheme that

maintains coherency among thread memory accesses in the hash table. Neighboring

threads in a warp are assigned neighboring keys to insert or query from a spatial domain

(e.g., pixels in an image or voxels in a volume). By specifying a coherent hash function,

both keys will be hashed near each other in the hash table and the threads can access

memory in a coalesced fashion, i.e., as part of the same memory transaction. Thus, the

sequence of probes for groups of threads will likely also be conducted in a coherent

manner, as nearby keys of a young age are evicted and replaced by nearby keys of an

older age.
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The insertion and query performance of this techniqie is evaluated on both

randomly- and spatially-ordered key sets from a 2D image and 3D volume. For all load

factor settings, the existence of coherence in the keys and probe sequences results in

significant improvements in construction and querying performance (millions of keys

processed per second), as compared to the use of randomly-ordered keys. Moreover,

coherent hashing achieves greater throughput than the cuckoo hashing of Alcantara et

al. [3], which employs four hash functions for a maximum probe sequence of length four.

For load factors above 0.7, coherent hashing maintains superior performance without

failure (hash table reconstruction) during insertions, whereas the cuckoo hashing exhibits

an increase in failures.

In absence of coherence in the access patterns, coherent hashing brings little to

no benefit compared to the random access robin hood and cuckoo hashing. Thus, this

approach is of particular use for applications with spatial coherence in the data. In one

of the spatially-coherent experiments, the task is to insert a sparse subset of pixels from

an image (e.g., all the non-white pixels) into the hash table, and then query every pixel

to reconstruct the image. Since only non-white pixels are hashed, there will be empty

queries for the white pixel keys. Spatial and coherent ordering of keys is attained by

applying either a linear row-major, Morton, or bit-reversal function to the spatial location

of elements; a non-coherent, randomized order is attained by shuffling the keys.

Coherent hashing has some notable design characteristics that can affect GPU

performance. First, upon completing an insert or query operation, a thread sits idle until

all threads in its warp have finished as well. The number of threads per warp (192 in this

work) and amount of branch divergence due to incoherent ordering of keys are primary

factors affecting the warp load balancing. Second, while inserting a key, the hash table

is reconstructed if the age, or probe sequence length, of the key exceeds a threshold
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maximum (15 in this work). Moreover, the hash table is not fully dynamic and is designed

to process queries after an initial build phase. Thus, if new keys are inserted after the

build phase, then the table is reconstructed entirely, with a larger table size or load factor

if necessary.

2.5.2 Separate Chaining. Separate chaining is a classic collision resolution

technique that uses a linked list or node-based data structure to store multiple collided

keys at a single hash table entry. Each hash table entry contains a pointer, or memory

address, to a head node of a linked list, or chain. Each node in the linked list consists

of a key, associated value (optional), and a pointer to the next node in the list, if any. If

a single key hashes to an entry, then the linked list consists of a single node with a null

pointer to the non-existent next node. Otherwise, if multiple keys collide and hash to

the same location, then the linked list forms a chain of these keys, each represented by a

separate node in the list. During a query operation, a key hashes to an entry in the table

and then iterates through each of the nodes of the chain referenced at the entry, searching

for a matching key. This iterative search is similar in nature to open-addressing linear

probing (refer to subsection 2.5.1.1), where a key hashes to an initial table entry and then

probes each subsequent entry until a matching key is found. Both techniques can result in

degenerate, worst-case queries that require a non-constant number of probes.

Unlike separate chaining, linear probing is prone to primary clustering of collided

keys and performs lazy deletion of keys that renders unoccupied table entries heavily

fragmented and may require re-hashing or compaction. However, linear probing is more

amenable to caching, as probes are conducted within a contiguous block of memory,

instead of over the scattered memory of linked list nodes.

Moreover, separate chaining is a form of open hashing in which keys and values

are stored in allocated linked lists outside of the hash table and then referenced by head
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node pointers that are stored inside the table. Contrarily, open addressing collision

resolution follows closed hashing, whereby each hashed key (and value) is inserted

directly into the hash table.

In the context of parallel hashing, separate chaining must synchronize collisions

during key insertions to ensure that the linked list data structures are properly allocated

and constructed. Moreover, a dynamic memory allocation scheme must ensure that

concurrent threads conducting insert operations properly synchronize their requests

for new available blocks of memory. Similar design challenges exist for the deletion of

keys, and the simultaneous execution of queries by threads must avoid reader-writer race

conditions that result in faulty memory accesses to incorrect or deallocated nodes (keys).

A large body of research has investigated concurrent hash tables for separate

chaining on multi- and many-core CPU systems [46, 101, 122, 134, 45]. Each of these

hash tables is designed to support dynamic2 updates and resizing with lock-based

methods (e.g., mutexes or spin-locks) or lock-free (non-blocking) hardware atomics,

such as compare-and-swap (CAS). Since the majority of these hash tables are linked list-

based data structures, they are not designed for scalable, high-performance on massively-

parallel GPU architectures. In particular, when ported to the GPU, the performance of

these approaches may degrade due to several reasons:

– Lock-based methods induce substantial thread contention during blocking

operations for shared resources and are not scalable with increasing numbers of

concurrent threads. This contention creates starvation for blocked threads and

warp under-utilization, since each thread must wait for its other warp threads to

finish acquiring and releasing the lock. Moreover, lock-free hardware atomic

2Some implementations are aware of future insertions at compile-time and preallocate sufficiently-
large additional memory. These hash tables are semi-dynamic since they do not dynamically allocate new
memory at runtime for unknown insertions.
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primitives prevent deadlock, but still neglect the sensitivity of GPUs to global

memory accesses and thread branch divergence.

– Lack of coalescing among memory accesses due to the scattering of linked list node

pointers in memory and random addressing of keys by threads within the same

warp, which can lead to additional global memory transactions (cache line loads).

– Dynamic memory management and pointer chasing required for the linked lists on

the GPU is challenging for traditional CPU-based synchronization schemes, due to

the massive thread parallelism. This performance challenge is similarly observed in

pointer-heavy spatial search tree structures that are ported to the GPU.

The following studies introduce GPU-based separate chaining hashing approaches that

attempt to address these performance challenges.

Moazeni and Sarrafzadeh [105] and Misra and Chaudhuri [103] deploy some

of the earliest lock-free, separate chaining-based hash tables on a GPU architecture.

Using CUDA atomic CAS operations (atomicCAS and atomicInc), both approaches

support batches of concurrent query and insert operations, with only [103] also supporting

delete operations. [105] achieves a significant execution time speedup for queries over

counterpart lock-based and OpenMP-based CPU implementations. However, the lock-

free table only attains significantly higher throughput (operations per second) than

the OpenMP implementation for query-heavy batches (80% queries and 20% inserts).

Additionally, this work does not focus on larger, scalable batch sizes and provides little

analysis regarding thread- or warp-level performance. [103] demonstrates that a GPU

lock-free hash table leverages a much higher degree of concurrency and throughput

than a CPU implementation for both query-heavy and update-heavy workload batches.

This performance increase is largely due to spreading the thread contention and atomic
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comparisons over multiple different hash locations, as threads work in SIMT data-parallel

fashion to conduct mixed operations at random locations.

Stuart and Owens [138] and newer versions of the Nvidia CUDA C library [115]

both introduce new efficient synchronization and atomic primitives (e.g., warp-level

and share memory atomics) for CUDA-compatible GPUs. These primitives likely

satisfy the inefficiencies of atomics for pointer-based data structures cited in Misra and

Chaudhuri [103].

Ashkiani et al. [5] propose a dynamic slab hash table on the GPU that is built

upon an array of linked-lists, or slab lists, each of which represent a chain of one or

more slabs, or memory units, that store collided keys. Each slab of memory is roughly

the size of a warp memory transaction width (128 bytes), or the number of warp threads

(32) times the size of a key (4 bytes). Thus, each warp is aligned to perform operations

over the keys stored in a single slab. As part of a novel work-cooperative work sharing

(WCWS) strategy, each warp maintains a work queue that stores all the arbitrary

operations assigned to the different threads in the warp. In a round-robin fashion, each

batch of the same operation type in the queue is fully and cooperatively executed by the

threads. For a given operation type, all threads perform a warp-wide ballot instruction

to denote the active threads that were assigned this operation. For each active thread,

the entire warp cooperates to execute the active thread’s operation and its corresponding

key. If the operation is a query for a key q, then the warp hashes q to a slab list bi = h(q)

in the slab hash table H. The first warp-sized slab, bi0, of the slab list at H[bi] is loaded

from global memory via a single memory transaction. This slab memory unit contains

the same number of keys as threads in the warp. So, each warp thread then compares

its corresponding key k with the query key q. If any thread has k = q, then a successful

result is returned. Otherwise, the warp follows a next pointer stored in bi0 to load the next
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connected slab bi1, in which q is cooperatively searched again. This search ends when

either q is found or the last slab in bi has been searched.

An insert operation proceeds similarly, except the threads search for an empty slab

spot into which a new key can be atomically inserted. If no empty spot is found in any of

the slabs of the slab list, then a new slab must be atomically and dynamically allocated

(since other warps may also be trying to allocate). This allocation is efficiently performed

via a novel warp-synchronous SlabAlloc allocator (see [5] for further details).

This warp-cooperative approach differs from previous GPU separate chaining in

which the threads of a warp execute a SIMT query or update operation for different keys,

each of which likely require a random, uncoalesced memory access. WCWS ensures

memory coalescing for each operation by perfectly aligning the threads of a warp with

the keys of a slab, both of the same size. Thus, the same block of cache-aligned global

memory is loaded in a single transaction for every operation by the warp, exposing

increased throughput (millions of operations per second). Moreover, while being inserted,

keys are always stored at contiguous addresses within a slab memory unit. This contrasts

with traditional linked list storage in which keys are inserted as new nodes at random

memory locations.

The performance of the dynamic slab hash table is compared to the static cuckoo

hash table of Alcantara et al. [2]—which must be rebuilt upon updates—and the semi-

dynamic lock-free hash table of Misra and Chaudhuri [103]. For static bulk builds,

cuckoo hashing consistently achieves a higher throughput of insertions per second, while

slab hashing achieves higher query throughput only when the average number of slabs per

slab list is less than 1 (i.e., approximately a single “node” list). Over all configurations,

cuckoo hashing attains the better query throughput. In the best case scenario, it only

makes a single atomic comparison for an insertion and a single random memory access
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for a query; contrarily, in the best case, slab hashing requires both a memory access

(to load a slab) and an atomic comparison for an insertion. For dynamic updates, slab

hashing significantly outperforms cuckoo hashing, in terms of execution time, as the

number of inserted keys increases. This is due to the rebuilding of the static cuckoo

hash table each time a new batch is inserted. Additionally, slab hashing significantly

outperforms lock-free hashing across different distributions of mixture operations and

increasing numbers of slab lists (i.e., the size of the hash table).

2.6 Conclusion

This chapter provides a comprehensive background and survey on the major

topics of this dissertation: data-parallelism, index-based searching, and index-based

search techniques for diverse many-core systems. This background material serves as a

primer for the upcoming chapters, each of which help inform the dissertation question

regarding the best index-based search techniques for visualization and analysis algorithms

on diverse many-core systems.
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CHAPTER III

DATA-PARALLEL SEARCHING FOR DUPLICATE ELEMENTS

Searching for duplicate elements arises in multiple scientific visualization and

data analysis contexts, such as identifying the overlapping interior regions of a mesh solid

or detecting the integers that occur more than once in an array. There are two canonical

index-based approaches for identifying these duplicate elements:

1. Sort all elements and search for identical neighbors.

2. Hash all elements and search for collisions.

In this chapter, we introduce a new hashing-based technique and propose a new method

that uses an existing sorting-based technique. Both of these contributions are designed

entirely in terms of DPP for platform-portable data parallelism.

The work of this chapter is adopted primarily from a collaborative paper that was

published at a conference and composed by myself, Roba Binyahib, Robert Maynard,

and Hank Childs [79]. As lead author, I developed and implemented the contributed

techniques, and wrote the majority of the text contained in this chapter. Hank Childs

provided valuable guidance towards the motivation and application of this work. Robert

Maynard contributed significant feedback and insight into the data-parallel design

patterns used in our techniques. Roba Binyahib helped conduct the experimentation of

our techniques and contributed to the writing of the experimental overview text, which is

contained in Chapter V.

3.1 Sorting-Based Algorithm

This approach uses sorting to identify duplicate elements. First, elements

are placed in an array and sorted. Then, the array can be searched for duplicates in

consecutive entries. The sorting operation requires a way of comparing two elements (i.e.,

a “less-than" test); e.g., for integer vectors, we order the integers within a vector, and then
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compare the integers with the lowest index, proceeding to subsequent indices in cases of

ties.

Algorithm 1: Pseudocode for the sorting-based technique for identifying
duplicate elements of a comparable type T. N is the total number of elements,
U is the number of unique elements, and L is the number of elements with a
frequency count of 1.
1 template <typename T>
2 /*Input*/
3 Array: T elements[N]
4 /*Output*/
5 Array: T nonDuplicates[L]
6 Array: T uniqueElements[L≤U ≤ N]
7 Array: int elementCounts[L≤U ≤ N]
8 /*Local Object*/
9 ArrayConstant: int ones[N]

10 elements←Sort(elements);
11 if count duplicates then
12 (uniqueElements, elementCounts)← ReduceByKey(elements, ones);
13 if remove elements with count > 1 then
14 nonDuplicates←CopyIf(uniqueElements, elementCounts);
15 return nonDuplicates;
16 end
17 else
18 uniqueElements← Unique(elements);
19 end
20 return (uniqueElements, elementCounts);

The pseudocode for our sorting-based algorithm is presented in Algorithm 1.

First, the array of elements is data-parallel sorted in ascending order (line 10) so that all

duplicate elements will be contiguous to each other within the array. If a frequency count

of the number of duplicates per unique element is needed, then a ReduceByKey DPP

(line 12) can be applied to the sorted array of elements. All elements with a count greater

than 1 are considered duplicate. If only non-duplicate elements need to be returned from

the algorithm, then a CopyIf, or compaction, DPP can be applied to the array of unique
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elements (line 14); the resulting array of non-duplicates is returned as output (line 15).

Finally, if frequency counts of duplicates are not necessary, then a Unique DPP can

simply be applied to the sorted array of elements (line 18)). The resulting array of unique

elements is returned as output, along with the frequency count array (line 20); for the case

that does not require frequency counts, the count array will just be returned in its original

form.

3.2 Hashing-Based Algorithm

Collisions are a key aspect of hashing. Typically, these collisions are handled with

either chaining (i.e., employing linked lists to store multiple entries at a single address)

or open addressing (i.e., when an address is occupied, storing an entry at the next open

address). While these strategies are straight-forward to implement in a serial setting, they

do not directly translate to a data-parallel setting. For example, in a GPU setting where

each thread is executing the same program, the variable number of operations resulting

from chaining or open-addressing can lead to divergence (while non-collided threads

wait for a collided thread to finish), and thus a performance bottleneck. Additionally, if

multiple threads map to the same hash entry at the same time, then the behavior may be

erratic, unless atomic operations are employed.

To address the problem of collisions in a data-parallel setting, we devise a

modified hashing scheme that uses multiple iterations. In our scheme, no care is taken

to detect collisions, making atomic operations unnecessary. Instead, every element is

written directly to the hash table, possibly overwriting previously-hashed elements. The

final hash table will then contain the winners of this “last one in" approach. However,

our next step is to check, for each element, whether it was actually placed in the hash

table. If so, the element is included for calculations during that iteration. If not, then

the element is saved for future iterations. All elements are eventually processed, with
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the number of iterations equal to the maximum number of elements hashed to a single

index. Throughout this iterative process, a binary indicator array keeps track of whether

or not an element has been declared a duplicate element, as a result of a hash collision

with another equal-valued element. The final output indicator array contains 1 values for

non-duplicate elements and 0 values for duplicate elements. For search tasks that seek to

remove all duplicate elements (i.e., those with a binary value of 0), the indicator array can

then be used in conjunction with a CopyIf DPP to copy only the non-duplicate elements

to a new, smaller output array.

In terms of hashing specifics, our hash function takes an element as input and

produces an unsigned integer as output. For example, for triangular faces of a mesh cell,

the hash function maps the three point indices of a face to an unsigned integer as output.

This integer value, modulo the size of the hash table, is the hash index for the element.

The hash function is important, as good function choices help minimize collisions,

while poor choices create more collisions and, thus, more iterations. We experimented

with multiple hash functions and used the best performing, FNV-1a, for our study (see

Chapters V and IX for details).

3.2.1 Algorithm Details. The pseudocode for our DPP-based hashing

algorithm is listed in Algorithm 2, and the following subsections complement this

pseudocode with descriptions. We refer to this hashing-based algorithm as Hashing

throughout this chapter.

The algorithm begins by computing an unsigned integer hash value for each

element using a custom Map DPP that we denote ComputeHash (line 17). After this, the

algorithm applies an iterative process to identify duplicate elements (lines 18–29). Within

an iteration, some elements will not be successfully placed into the hash table because a

collision with another element will displace it. These “lost" elements are identified and
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Algorithm 2: Pseudocode for the hashing-based technique for identifying
duplicate elements of a comparable type T. N is the total number of input
elements, A is the number of active elements, and L is the number of non-duplicate
elements. The constant c is a multiplier, or load factor, for the hash table size.
1 /*Input*/
2 template <typename T>
3 Array: T elements[N]
4 /*Output*/
5 Array: T nonDuplicates[L]
6 Array: int isNonDup[N]
7 /*Local Objects*/
8 Array: int hashes[N], elementIds[N], winningElementIds[A], hashTable[cA],

isActive[N]
9 Array: T winningElements[A], activeElements[A]

10 /*Initialize variables and allocate arrays*/
11 F = |elements|;
12 A← F ;
13 hashTable← 0⃗;
14 elementIds← <0, . . . ,A−1>;
15 isActive← 1⃗;
16 isNonDup← 1⃗;
17 hashes←ComputeHash(elements);
18 while A > 0 do
19 hashTable←Scatter(hashes, elementIds, isActive, hashTable);
20 winningElementIds←Gather(hashes, hashTable);
21 winningElements←Gather(winningElementIds, elements);
22 (isActive, isNonDup)← CheckForMatches(winningElements, elements,

winningElementIds, isActive, isNonDup);
23 elementIds←CopyIf(elementIds, isActive);
24 isActive←CopyIf(isActive, isActive);
25 A←Reduce(isActive); // new sum of active elements
26 hashTable←Shrink(hashTable); // new smaller size cA
27 activeElements←Gather(elementIds, elements);
28 hashes←ComputeHash(activeElements);
29 end
30 if remove duplicate elements then // isNonDup[i] = 0
31 nonDuplicates←CopyIf(elements, isNonDup);
32 return nonDuplicates;
33 end
34 return isNonDup;
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considered again in subsequent iterations. The algorithm terminates when every element

has been considered, meaning that they had all been successfully placed into the hash

table and classified as either a duplicate or non-duplicate. We refer to the set of elements

that still need to be considered as “active elements," and the algorithm begins with every

element as an active face (line 15).

The specifics of an iteration are as follows:

1. Write the unique Ids of all active elements into the hash table, via a Scatter DPP

(line 19). The hash table destinations of the scatter are the hash indices, and it is

this scatter process that results in collisions. The results of this operation are non-

deterministic: elements with the same hash index displace (overwrite) each other,

meaning only a subset of the active elements actually remain in the hash table at the

end of the scatter.

2. For each hash index, retrieve the last element Id that was written into that hash

table index, via a Gather DPP (line 20). Each of these elements (and their Ids) is

denoted as a “winning" element, since it won the last-one-in “hash fight" among

other possible colliding elements at the same hash index.

3. With the winning element Ids as reverse indices, gather the elements corresponding

to the Ids, using another Gather DPP (line 21).

4. Detect whether any of the winning elements are duplicate elements, via a custom

Map DPP that we denote CheckForMatches (lines 22). Each active element

compares itself to the winning element residing at its hash location. Given the

possibility of hashing collisions, multiple active elements may be compared to the

winning element at a given location. If an active element and winning element

are equal but have different Ids, then the elements are considered duplicates;

however, if the elements are not equal, then a hashing collision has occurred at
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this hash table location. If the elements are equal and share the same Ids, then the

active element resides in the hash table (i.e, it is a winning key) and is considered

non-duplicate unless it satisfies the duplicate element criteria with another active

element (different Id). After being designated as either duplicate or non-duplicate,

an active element becomes “inactive."

5. Using a CopyIf DPP (lines 23–24), compact the element Ids array to only those Ids

that are still active, and correspondingly compact the isActive array.

6. Using a Reduce DPP, sum the number of 1-values in the isActive array (line 25).

The resulting summation is the updated number of active elements remaining in the

search.

7. Shrink the hash table to a constant load-factor c of the new number of active

elements (line 26). Since the table is non-persistent, or refreshed, from iteration

to iteration, the portion of the table that is removed is no longer needed. This

change in hash table size will affect the output of the hash function (specifically,

the modulus value) and the element hash indices.

8. Using the updated element Ids, gather the new set of active elements (line 27), and

rehash them into the now-smaller hash table (line 28).

This iterative process continues until every element becomes inactive and has

been considered as either duplicate or non-duplicate. If the maximum number of distinct

elements (different values and Ids) that hash to a given hash table location is K, then

at most K iterations will be performed. Since an active element that “collides" with

a winning element does not immediately become inactive, it must wait to become the

winning element (i.e., reside in the hash table) before becoming inactive and considered

a duplicate or non-duplicate element. If K− 1 other elements hash to the same location,

then up to K iterations may be necessary for this element to become a winning element.
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Finally, if the search task requires all of the duplicate elements to be removed

from the final output array of elements, then a CopyIf DPP is applied to the array (line

31); a duplicate element has a binary value of 0 in the isNonDup array. The resulting

array of non-duplicate elements is returned as output (line 32). However, if duplicate

elements do not need to be removed, then the isNonDup array is returned as output (line

34). Note that our sorting-based algorithm should be used for search tasks that require

counting the frequency of duplicates for each unique element, or returning the set of

unique elements.

3.3 Dissertation Question

This chapter proposes a novel index-based search technique, HashFight, for

identifying duplicate elements in an array. This technique is based on hashing and

performs collision-handling in an iterative fashion without the use of hardware atomics or

locking mechanisms. We also present a sorting-based technique for identifying duplicate

elements. Both techniques are designed in terms of DPPs, which offers platform-

portability across many-core systems. The hashing-based technique will be expanded

into a general-purpose hash table data structure in Chapter IV, and both the sorting- and

hashing-based techniques will be applied to a data-intensive visualization algorithm in

Chapters V and IX. The experimental findings from this visualization application will

help answer the dissertation question regarding the best index-based search techniques for

visualization and analysis algorithms on diverse many-core systems.
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CHAPTER IV

HASHFIGHT: DATA-PARALLEL HASH TABLE

In this chapter, we expand upon the collision-handling technique of Chapter III

and introduce a new hash table data structure, which we refer to as HashFight. The

operations of HashFight are composed entirely of DPPs and scale to billions of key-

value pairs on both older and modern GPU and CPU platforms (single node, on-device

memory), using only a single code base. Similar to the hashing-based technique of

Chapter III, HashFight does not use any locking mechanisms or hardware atomics (e.g.,

compare-and-swap) to synchronize hash collisions that occur at the same hash table

address. Instead, the occurrence of race conditions and “last one in" writes by parallel

threads are fundamental features of our technique. Moreover, HashFight maintains a

competitive peak memory footprint compared to best-in-class GPU implementations,

and is not dependent on power-of-two table sizes, which are common in CPU-based

implementations.

The content of this chapter is adopted primarily from a collaborative journal

manuscript composed by myself, Shaomeng Li, and Hank Childs. As lead author, I

designed and implemented the algorithms, and wrote the manuscript text. Shaomeng

Li contributed significantly to the design and analysis of the corresponding experiments,

which are discussed in Chapter VI as applied to unsigned integer hashing. Hank Childs

provided valuable guidance and feedback towards the motivation and contributions of the

work, and edited the manuscript text.

4.1 Design

The following section introduces our HashFight hash table and collision-handling

approach. In this approach, keys are inserted into and queried from a multi-level hash

table via an iterative scatter and gather routine that is based off the hashing routine of
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Chapter III. During hash collisions at table locations, no explicit synchronization or

hardware atomics are used. Instead, all colliding keys are inserted into the location in a

winner-takes-all fashion, with the winner of the hash fight being the last key written into

the location. Then, after all hash fights have completed, each thread checks its hash table

location to see its key is currently residing in the table; that is, whether the key was the

winner of its hash fight. All winning keys are marked as inactive and the remaining non-

winning keys proceed to the next round, or iteration, where they’ll hash fight again, but

into a smaller smaller hash table. The size of the hash table at each iteration is equal to

the number of active keys times the pre-specified hash table load factor. As in the first

iteration, all active keys attempt to insert themselves into the subtable, and then check

to see whether they’ve won the fight into the table or need to remain active for another

iteration of hash fighting.

The hash fighting routine continues until a specified number, or threshold, of

keys have become inactive and are successfully placed into a location in one of the

subtables. After this threshold, the remaining active key-value pairs are sorted and

then contiguously inserted into a buffer region at the end of the hash table. Since the

hash table size decreases each iteration, new sets of colliding keys may arise at hash

locations, leading to a variable number of iterations necessary to insert all keys. In all

of our experimental configurations, particularly those with a small hash table load factor,

the number of iterations rarely exceeds 6 and never reaches 10 (note that only the first

quarter or so of the total iterations account for most of the overall runtime).

For querying keys within the hash subtables, hash fighting is performed in a

similar fashion to the insertion phase. Each iteration, all active keys hash to their location

in the current subtable and then read the key-value pair residing in that location. If the

residing key is equal to the query key, then the value is returned and the query key is set to
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inactive. If not equal, then the key remains active and performs a query again within the

subtable of the subsequent iteration. Since each table location is initially populated with

an “empty" key-value pair prior to the insertion phase, the residing key will remain empty

if no input pairs were hashed and inserted into that location. For this latter case, a query

key immediately returns an empty value and is set to inactive. As in the insertion phase,

the querying continues until a minimum threshold of active keys is reached, after which

the remaining active keys each binary search for their query matches within the ending

buffer region of the hash table. This region contains the keys from the insertion phase that

were sorted and contiguously inserted.

HashFight is particularly designed and tested for static hashing in which key-value

pairs are first inserted into a table, followed by subsequent querying, without inter-mixed

modifications (e.g., deleting pairs or changing the values of keys). If entries in the hash

table must be deleted or new entries inserted, then the hash table must be reconstructed.

Due to its data-parallel processing, HashFight is best-suited to perform insertions

and queries in large batches of keys, with each key being assigned to one of many threads.

Thus, the execution of HashFight on small, or even individual, workloads of keys can

result in sub-optimal performance, as the overhead time of the DPP kernel invocations

exceeds the time needed to perform the actual hash table operation.

Listings 1 through 5 provide algorithm pseudocode for the HashFight insertion

and query phases, along with the scatter and gather subroutines that compose the majority

of the overall computation. These phases are discussed in more detail as follows.

4.1.1 Insertion Phase. In the Insert function, keys are hashed to

random locations in the hash table and then inserted as pairs with their accompanying

values (Listing 1). Given an array of 32-bit unsigned integer keys and an array of 32-

bit unsigned integer values (the arguments in lines 1 and 2), each value is appended to
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1 void Insert(const uint32 *keys,
2 const uint32 *vals,
3 HashTable &ht,
4 uint32 numKeys)
5 {
6 //All keys start active
7 uint32 activeKeys = numKeys;
8 uint8 *isActive[numKeys] = {1};
9 //Hash into subtables

10 uint32 tableStart = 0;
11 uint32 tableSize =
12 activeKeys*ht.loadFactor;
13
14 //Hash until a lower limit
15 //of active keys is reached.
16 while (activeKeys > HASHING_LIMIT)
17 {
18 ht.subTableSizes.push_back(tableSize);
19 //Active keys hash into subtable
20 Fight(keys,vals, ht.entries,
21 isActive, tableStart,
22 tableSize);
23 //Active keys check if they won.
24 //If a winner, a key is deactived.
25 CheckWinner(keys, ht.entries,
26 isActive, tableStart,
27 tableSize);
28 tableStart = tableSize;
29 activeKeys = Reduce(isActive);
30 tableSize = activeKeys*ht.loadFactor;
31 }
32 //Sort remaining active keys and
33 //insert them into end of table.
34 uint32 *tempKeys, tempVals;
35 CopyIf(keys, isActive, tempKeys);
36 CopyIf(vals, isActive, tempVals);
37 SortByKey(tempKeys, tempVals);
38 CopyToTable(tempKeys, tempVals,
39 ht.entries, tableStart,
40 HASHING_LIMIT);
41 }

Listing 1 Pseudocode for the HashFight Insert function.
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its corresponding key to form a 64-bit unsigned integer pair. The hash table structure

(line 3) is pre-allocated sufficient memory to store these pairs, and each location in the

table is initialized to an “empty" key-value pair UINT_MAX « 32. Initially, all keys

are considered “active" (line 7) and marked as such with an isActive array of bit

indicators (line 8).

Next, the hash fighting routine begins, consisting of multiple iterations (line 17).

Each iteration is assigned a separate contiguous partition, or sub-table, of the larger hash

table, into which the currently-active keys are hashed and inserted. This sub-table is

specified by a start location (line 11) and a size (line 12), the latter of which is equal to

the number of active keys times a pre-specified hash table load factor. As the number of

active keys decreases each iteration, the sub-table sizes decrease proportionally.

Given a sub-table, the active keys proceed to insert, or fight, themselves into the

sub-table.

In the Fight kernel (Listing 2), a thread is assigned to each key (line 10), and

only threads with active keys (line 12) perform computation. Each thread computes the

hash value of its assigned key (line 18) and takes the modulo of the sub-table size to

determine the write location (line 19). We use a randomly-generated, non-cryptographic

hash function that is a variant of the MurmurHash, which is efficient to compute and

maintains strong hash properties to minimize collisions between 32-bit unsigned integers.

Then, the threads concurrently write their key-value entries into the sub-table (line 22).

During this scatter process, no locking mechanism or hardware atomics are used to

synchronize simultaneous writes. Instead, race conditions are a fundamental and non-

detrimental feature of handling hash collisions. Multiple threads may contend for the

same location and overwrite each other (one after the other), but the final thread to write

its pair into the location is declared the “winner" of the hash fight.
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1 void Fight(const uint32 *keys,
2 const uint32 *vals,
3 const uint8 *isActive,
4 uint64 *entries,
5 uint32 tableStart,
6 uint32 tableSize)
7 {
8 //Thread index
9 uint32 tid = getGlobalIndex();

10
11 if (isActive[tid])
12 {
13 uint32 key = keys[tid];
14 uint32 value = vals[tid];
15 uint64 entry =
16 ((uint64)(key) << 32)+value;
17 uint32 hash = Hash(key);
18 hash = (hash%tableSize)+tableStart;
19 //Non-atomic write
20 entries[hash] = entry;
21 }
22 }

Listing 2 Pseudocode for the HashFight Fight function.

After all threads have finished hash fighting their keys, they return to the Insert

function and proceed to determine whether they have “won" the fight, or successfully

inserted the keys into the sub-table (Listing 1, line 26). In the CheckWinner kernel

(Listing 3), each thread re-computes the hash location of its assigned (and active) key

(line 13) and reads the currently-residing, or “winning,” key-value pair at the location

in the sub-table (line 14). If the thread’s key is equal to the winning key (line 17), then

the thread won the hash fight and marks the key as inactive (line 18). Otherwise, the key

remains active and another thread will attempt to insert the key again in the next iteration

of the insertion phase.
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1 void CheckWinner(const uint32 *keys,
2 const uint64 *entries,
3 uint8 *isActive,
4 uint32 tableStart,
5 uint32 tableSize)
6 {
7 //Thread index
8 uint32 tid = getGlobalIndex();
9

10 if (isActive[tid])
11 {
12 uint32 hash = Hash(keys[tid]);
13 hash = (hash%tableSize)+tableStart;
14 uint64 entry = entries[hash];
15 uint32 winningKey =
16 (uint32)(entry >> 32);
17 if (winningKey == keys[tid])
18 isActive[tid] = 0;
19 }
20 }

Listing 3 Pseudocode for the HashFight CheckWinner function.

Finally, the threads return to the insertion function and the local function variables

are updated for the next iteration (lines 30 through 33), including a Reduce data-parallel

operation that counts and updates the number of active keys (or set bits).

The hash fighting continues until a minimum number of active keys remain;

in this work, we used a minimum of 1 million keys (line 17). After this point, all the

active key-value pairs are sorted in ascending order by key (lines 38 through 41) and

then contiguously written into a new sub-table, or buffer region (line 42). This ending

sort and write procedure is meant to be faster and simpler to perform than hash fighting a

small number of active keys into smaller-sized sub-tables. With a small number of active

keys, new collisions arise and induce extra hash fight iterations and overhead of kernel

invocations.
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1 void Query(const uint32 *queryKeys,
2 const HashTable &ht,
3 uint32 *queryVals,
4 uint32 numKeys)
5 {
6 //All query keys start active
7 uint32 activeKeys = numKeys;
8 uint8 *isActive[numKeys] = {1};
9 //Hash into subtables

10 int iter = 0;
11 int numTables = ht.subTableSizes.size();
12 uint32 tableStart = 0;
13 uint32 tableSize = ht.subTableSizes[0];
14
15 //Query each subtable
16 while (iter < numTables)
17 {
18 //Probe the sub-table for the
19 //active query keys.
20 Probe(queryKeys, ht.entries,
21 queryVals, isActive,
22 tableStart, tableSize);
23
24 tableStart = tableSize;
25 tableSize = ht.subTableSizes[iter++];
26 }
27 //Binary search the end of hash table
28 //for remaining active query keys.
29 BinarySearch(queryKeys, queryVals,
30 isActive, ht.entries,
31 tableStart, HASHING_LIMIT);
32 }

Listing 4 Pseudocode for the HashFight Query function.

4.1.2 Query Phase. In the Query function (Listing 4), a batch of input

query keys (line 1) is looked-up within the multiple sub-tables of a hash table (line 2),

which was previously constructed in the insertion phase (Listing 1). The result of this

function is an output array of values (line 3) corresponding to the query keys. Since the

query keys are independent from the keys inserted into the hash table, a certain percentage
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1 void Probe(const uint32 *keys,
2 const uint64 *entries,
3 uint32 *vals,
4 uint8 *isActive,
5 uint32 tableStart,
6 uint32 tableSize)
7 {
8 //Thread index
9 uint32 tid = getGlobalIndex();

10
11 if (isActive[tid])
12 {
13 uint32 queryKey = keys[tid];
14 uint32 hash = Hash(queryKey);
15 hash = (hash%tableSize)+tableStart;
16 uint64 entry = entries[hash];
17 uint32 residingKey =
18 (uint32)(entry >> 32);
19
20 bool isEqual = queryKey==residingKey;
21 bool isEmpty = residingKey==UINT_MAX;
22 //If keys match or residing key is
23 //empty, then deactivate query key.
24 if (isEqual || isEmpty)
25 isActive[tid] = 0;
26 //Query is successful, so return
27 //the residing value.
28 if (isEqual)
29 vals[tid] = (uint32)entry;
30 }
31 }

Listing 5 Pseudocode for the HashFight Probe function.

of the query keys may not exist within any of the sub-tables, prompting an “empty," or

failed, query value to be returned. Initially, all query values are set to an empty value of

UINT_MAX, which is the largest 32-bit unsigned integer value.

Similar to the Insert function, all input query keys are marked as active (lines 7

and 8) and local parameters are initialized to record the start index and size of a sub-table

(lines 11 through 14). Then, numTables iterations of querying are conducted, with each
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iteration searching for active query keys within a different sub-table (line 18). A data-

parallel Probe kernel is invoked (line 23) to look-up, or probe, the query keys within the

sub-table. Within this kernel (Listing 5), each query key is assigned to a thread (line 9),

which computes the hash table location of the key (if active) and reads the residing key-

value pair at that location (lines 14 through 16). If the query key is equal to residing key,

then the residing value is returned as the query value and the query key is marked inactive

(lines 26 and 31). If the table location contains the empty key-value pair, then no key was

ever hashed to that location, and the query key is marked inactive (line 25). Since the

query value is set to empty by default, a query value does not need to be returned. Finally,

if the residing key is neither empty nor equal to the query key, then the query key may

exist within another sub-table and, thus, remains active.

After all probing has completed, the threads return to the Query function, and

local parameter values are updated for the next iteration of querying (lines 27 and 28).

Once all sub-tables have been searched via hashing, any remaining active query keys are

binary-searched (line 33) within the sorted buffer region of keys that were inserted at the

end of the hash table during the insertion phase (Listing 1, line 42). This binary search is

performed in data-parallel fashion by threads assigned to the remaining query keys. As in

the Probe kernel, if the query key is not found, then an empty query value is returned;

otherwise, the residing value in the table is returned.

4.1.3 Peak Memory Footprint. Assuming 4-byte (32-bit) keys and values,

and 8-byte (64-bit) hash table entries, the peak CPU memory allocation (in bytes)

required for both the insertion and querying phases is approximated by the following

equation:

memcpu = (9+ 12.6 f )|K|+ 8|Q|+ 8|B|, (4.1)
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where f is the hash table load factor, |K| is the number of input keys, |Q| is the number

of query keys, and |B| << |K| is the number of active keys that are sorted and copied

directly into the buffer region B at the end of the hash table (Listing 1, line 40).

On GPU devices, the memory allocated on-device is released following the

completion of each phase and kernel, except for the hash table. Since copies of the keys

and values are inserted into the hash table as pairs, the original arrays can be released

from GPU memory following the insertion phase. Then, during the querying phase,

the query keys and values arrays must be transferred into GPU memory. Due to the

isActive, tempKeys, and tempVals arrays (Listing 1), the insertion phase induces

the peak GPU memory usage (in bytes):

memgpu = (9+ 12.6 f )|K|+ 8|B|, (4.2)

which is similar to memcpu minus the allocation for the query keys and values arrays.

4.2 Dissertation Question

This chapter proposes a novel general-purpose hash table data structure that is

based upon the HashFight collision-handling technique introduced in Chapter III. This

hash table supports batch insertions and queries of key-value pairs, and performs these

operations using the iterative, atomics-free HashFight approach. All operations and index-

based search techniques are designed in terms of DPP, which enables the hash table to be

constructed and queried on diverse many-core platforms with a single implementation. In

Chapter VI, we will assess the performance of the our hash table on large sets of unsigned

integer key-value pairs, comparing the resulting insertion and query throughput against

that of benchmark implementations from leading parallel libraries. The experimental

findings from this data analysis application will help inform the dissertation question

regarding the best index-based search techniques for visualization and analysis algorithms

on diverse many-core systems.
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Part II

Applications
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In this part of the dissertation, we apply the DPP design patterns and index-based

search techniques of Part I to a collection of problems in the scientific visualization and

data analysis domains. In particular, we introduce new DPP-based algorithms for the

following four applications:

1. External facelist calculation (EFC)

2. Hashing integer key-value pairs

3. Maximal clique enumeration (MCE)

4. Graph-based image segmentation

Each of these applications are data-intensive and require non-trivial reformulations into a

DPP-form.
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CHAPTER V

EXTERNAL FACELIST CALCULATION

This chapter applies the duplicate element search techniques of Chapter III to

the scientific visualization task of external facelist calculation (EFC). The following

content is adopted primarily from a collaborative paper that was published at a conference

and composed by myself, Roba Binyahib, Robert Maynard, and Hank Childs. As lead

author, I developed the contributed techniques, wrote the majority of the manuscript

text, and conducted a significant portion of the experiments CPU and GPU experiments.

Roba Binyahib helped me conduct the experiments and contributed to the writing of the

experimental overview text. Hank Childs acquired the datasets for the experiments and

helped review the text. Robert Maynard helped interpret the experimental results and

ensure accuracy of the algorithm implementations.

The remainder of this chapter proceeds as follows. Sections 1 and 2 offer a high-

level overview of EFC, with a description of the design challenges facing DPP-based

EFC. Section 3 provides a thorough background of EFC techniques and related work.

Section 4 documents the modifications needed to perform duplicate element searching

for EFC, using the techniques of Chapter III. Section 5 reviews our experimental

configurations and implementation details. Section 6 presents the results of a set of

CPU and GPU experiments for our DPP-based algorithms. Section 7 compares the

performance of our DPP-based algorithms to that of existing serial implementations for

EFC. Finally, Section 8 summarizes our findings for the dissertation question.

5.1 External Facelist Calculation

Scientific visualization algorithms vary regarding the topology of their input and

output meshes. When working with three-dimensional volumes as input, algorithms such

as isosurfacing and slicing produce outputs (typically triangles and quadrilaterals) that can
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be rendered via traditional surface rendering techniques, e.g., rasterization via OpenGL.

Algorithms such as volume rendering operate directly on three-dimensional volumes,

and use a combination of color and transparency to produce images that represent data

both on the exterior of the volume and in the interior of the volume. However, some

scientific visualization algorithms take three-dimensional volumes as input and produce

three-dimensional volumes as output. While these three-dimensional volume outputs

could be rendered with volume rendering or serve as inputs to other algorithms such as

isosurfacing, users often want direct renderings of these algorithms’ outputs using surface

rendering. With this work, we consider this latter case, and consider the approach where

geometric primitives are extracted from a volumetric unstructured mesh, in order to use

traditional surface rendering techniques.

Given, for example, an unstructured mesh of N connected tetrahedrons to render, a

naïve solution would be to extract the four faces that bound each tetrahedron, and render

the corresponding 4× N triangles. This naïve solution would be straight-forward to

implement and would fit well with existing rendering approaches. However, many of

the 4×N triangles this algorithm would produce are contained within the interior of

the volume, and thus not useful. The primary downside to the naïve approach, then, is

efficiency. For a data set with N tetrahedrons, only O(N
2
3 ) of the faces would actually lie

on the exterior, meaning the large majority of the 4×N faces produced are unwanted,

taking up memory to store and slowing down rendering times. If N was one million, then

the expected number of external faces would be approximately 10,000, where the naïve

algorithm would calculate four million faces, i.e., 400X too many. A second downside to

these triangles is that they can create rendering artifacts. If the faces are rendered using

transparency, then internal faces become visible, which is typically not the effect the user

wants when they opt to use surface rendering on a three dimensional volume.
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A better algorithm, then, is to produce only the faces that lie on the exterior of

the mesh, so called external facelist calculation (EFC). EFC is a mainstay in scientific

visualization packages, specifically to handle the case of rendering the exteriors of three-

dimensional volumes via surface-rendering techniques.

5.2 Combination and Challenges

The challenges with EFC and DPP are two-fold. One, serial EFC is traditionally

done with hashing, which is non-trivial to implement with DPP. As a result, we needed to

construct new, hashing-inspired algorithms that sidestep the problems with traditional

hashing within DPP. And, although DPP has been shown to be efficient with more

traditional scientific visualization algorithms that iterate over cells or pixels, EFC is

essentially a search problem, and so it is unclear if DPP will perform well. On this

front, we demonstrate that DPP does indeed perform well and again does provide good

performance on this class of scientific visualization problem.

The contribution of this chapter, then, is to illuminate the best techniques to

execute EFC with DPP. We adopt the sorting- and hashing-based search algorithms

of Chapter III to introduce two novel DPP-based algorithms for performing EFC.

We then conduct a performance study that assesses the runtime performance of our

algorithms across multiple data sets and architectures. Our findings demonstrate that

our hashing-inspired algorithm is the best approach for EFC on multi-core and many-core

architectures using DPP.

5.3 Related Work

EFC comes up surprisingly often in scientific visualization. For example, many

engineering applications, such as bridge and building design, use the external faces of

their model as their default visualization, often to look at displacements. Further, clipping

and interval volumes are also commonly used with external facelist calculation. In these
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algorithms, a filter removes a portion of the volume (based on either spatial selection or

data selection); if no further operations are performed then EFC is needed to view the

clipped region. As a final example, some material interface reconstructions approaches,

like that by Meredith et al. [99], take three-dimensional volumes and create multiple

three-dimensional volumes, each one corresponding to a pure material. In this case, when

users remove one or more materials, EFC is needed to view the material boundaries.

While not an active area of research, implementations of EFC can be found on the

internet, for example with VTK’s vtkUnstructuredGridGeometryFilter [147]

and VisIt’s avtFacelistFilter [145]. The basic idea behind these filters is to count

how many times a face is encountered. If it is encountered twice, then it is internal,

since the face is incident to two different cells, and so it is between them. If a face is

encountered a single time, then it is external, since there is no neighboring cell to provide

a second abutment.

In both implementations readily available on the internet, the “face count" is

calculated through hashing. That is, in the first phase, every face is hashed (with the hash

index derived from the point indices that define the face) into a large hash table. Then, in

the second phase, the hash table is traversed. If a face was hashed into a hash table index

two times, then it is internal and discarded. But if it was hashed into a hash table index

only a single time, then it is external, and the face is added to the output.

Niessner et al. [112] employ a DPP-based hashing approach on the GPU to

perform scalable, real-time 3D scene reconstruction of live captures from a depth camera.

This work uses a speed-efficient hash table data structure to insert, retrieve, and delete

voxel blocks, each of which store sensor data for a uniform subregion of the perceived

world. While the hashing routines are data-parallel, they, however, depend on atomic

operations to avoid race conditions and collisions that can arise when inserting hash
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entries in parallel. Our proposed DPP-based hashing algorithms for EFC do not depend

on this restriction and resolve collisions via an iterative, non-blocking process. Moreover,

the work of [112] does not apply data-parallel hashing to the EFC task, which is the

focus of our work.

5.4 Algorithms

This section modifies the sorting- and hashing-based algorithms of Chapter III to

operate on the triangular faces of tetrahedral cells in an unstructured mesh. In Chapter III,

these algorithms for searching for duplicate elements are defined over elements of an

arbitrary comparable type. In this chapter, duplicate element searching is performed over

three-dimensional point vectors, each of which store the indices of the three points of a

triangular cell face. The input to each algorithm is an array of cell faces that may contain

multiple pairs of duplicate faces (i.e., abutting cells have faces that overlap each other).

Our strategy is to first identify all duplicate, or internal, faces via modified variants of the

duplicate element searching algorithms, and then remove all of the internal faces. The

resulting compacted array contains only the non-duplicate, or external, faces, which are

returned as output.

The EFC algorithms remain the same as those in Chapter III, except for the

following differences:

– The comparison operator for equality of faces consists of two parts. First, the three

point Ids of a three-dimensional face point vector are compared in order with those

of another point vector. Second, the unique integer face Ids of the two faces are

compared for equality. A decision is then made as to whether the faces are distinct

or duplicates.

– The hash function in the hashing-based technique maps the three point Ids of a face

into a single unsigned integer value. This value, modulo the size of the hash table,
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becomes the hash table index into which the face is hashed. However, the point

vector of the face itself is not written to this index. Instead, the unique integer Id

of the face is written into the table, while the point vector is stored in a separate

auxiliary array. Thus, each face has an associated key-value pair, where the unique

Id is the key and the point vector is the value. During a pairwise comparison

between faces, the Id is used to gather the point vector from the auxiliary array,

and then both the Id and vector are used in the comparison. We experimented with

multiple hash functions and used the best performing, FNV-1a, for this study; refer

to Chapter IX for a performance comparison of different hash functions.

Note that we refer to duplicate elements as duplicate faces within the context of EFC,

since the elements under consideration are cell faces. The reader is referred to Chapter III

for the pseudocode of our DPP-based algorithms for duplicate element searching.

5.5 Experiment Overview

In this section, we discuss our experimental setup and the different configurations

that are tested.

5.5.1 Factors. This study varies the following four factors:

1. Data set: Since the choice of data set may affect algorithm performance, we varied

the data over both size and layout.

2. Hardware platform: In order to evaluate platform-portable performance, we test

our implementation on both a CPU and GPU platform. For the CPU, we also

consider the effect of concurrency on runtime performance, by varying the number

of hardware cores.

3. Algorithm implementation: We assess the variation in performance for two

different DPP-based algorithms for EFC.

75



Figure 1. Visualizations of two of the 3D data sets used in the EFC experiments. The
Enzo-10M data set is on the left and Nek-50M is on the right.

4. Hash table size: For the hashing-based algorithms, we vary the starting size of the

hash table, and observe its effect on performance.

5.5.2 Software Implementation. Both of our EFC algorithms are

implemented using the VTK-m toolkit. With VTK-m, a developer chooses DPP to

employ for algorithm design and then customizes them with functors of C++-compliant

code. This code is then used to create platform-specific code for platforms of interest,

such as CUDA code for NVIDIA GPUs and Threading Building Blocks (TBB) code for

Intel CPUs. In our experiments, both the TBB and CUDA configurations of VTK-m are

compiled with the gcc compiler, and the VTK-m index integer (vtkm::Id) size was set to

32 bits.

5.5.3 Configurations. Next, we vary the four factors over a sequence of five

phases, resulting in 420 total test configurations. The number of options per factor is as

follows:

– Data set (6 options)

– Hardware architecture (7 options)

– Algorithm (2 options)

– Hash table size (5 options)

These configurations are discussed in the following subsections. Section 5.4

provides a discussion on the two EFC algorithms and their implementation.
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5.5.3.1 Data Sets. We applied our test cases to six data sets, four of which

were derived from two primary data sets. Figure 1 contains renderings for these two data

sets.

– Enzo-10M: A cosmology data set from the Enzo [118] simulation code. The data

set was originally on a 1283 rectilinear grid, but was mapped to a 10.2M tetrahedral

grid. The data set contains approximately 20M unique faces, of which 194K are

external.

– Enzo-80M: An 83.9M tetrahedron version of Enzo-10 M, with approximately

166M unique faces, of which 780.3K are external.

– Nek-50M: An unstructured mesh that contains 50M tetrahedrons from a Nek5000

thermal hydraulics simulation [38]. The data set contains approximately 100M

unique faces, of which 550K are external.

– Re-Enzo-10M, Re-Enzo-80M, Re-Nek-50M: Versions of our previous three data

sets where the point lists were randomized. Especially for the Enzo data sets, the

regular layout of the data leads to cache coherency — by randomizing the point list,

each tetrahedron touches more memory. Specifically, each individual tetrahedron in

the mesh occupies the same spatial location as its non-randomized predecessor, but

the four points that define the tetrahedron no longer occupy consecutive or nearby

points in the point list.

Finally, while we reference the data sources, we note the only important aspect for

evaluating EFC performance is the mesh and mesh connectivity.

5.5.3.2 Hardware Platforms. We ran our tests on the following two platforms:

1. CPU: A 16-core machine running 2 nodes, each with a 2.60 GHz Intel Xeon(R) E5-

2650 v2 CPU with 8 cores and 16 threads. Each CPU has a base frequency of 2.6
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GHz, memory bandwidth of 59.7 GB/s, and 64GB shared memory. We also vary

the number of cores: 1, 2, 4, 8, 12 and 16. Each concurrency uses the Intel TBB

library for multi-core data-parallelism.

2. GPU: An NVIDIA Tesla K40 Accelerator with 2880 processor cores, 12 GB

memory, and 288 GB/sec memory bandwidth. Each core has a base frequency of

745 MHz, while the GDDR5 memory runs at a base frequency of 3 GHz. All GPU

experiments use NVIDIA CUDA V6.5.

5.5.3.3 Hash Table Size. For our hashing-based EFC algorithm, we assess

the runtime performance as the hash table size changes. The table size is set at various

multiples of the total number of faces in the data set. In this study, we considered five

options: 0.5X, 1X, 2X, 4X, and 8X.

The 0.5X option underscores the difference between regular hashing and our

hashing variant. With regular hashing and a chaining approach, the size of the hash table

must be at least as large as the number of elements to hash, and preferably much larger.

With our variant, the table size can be decreased, with the only penalty being that there

will be more iterations, as the maximum number of faces hashed to a single index will (on

average) increase proportionally. In this way, the memory allocated to the hash table can

be reduced, but at the cost of increased execution time.

5.6 Results

Our study consists of five phases. The first phase examines one case in depth

(“base case") and the remaining four phases each examine the impact of different

parameters on performance: hash table size, architecture, data sets, and concurrency. In

this section, we present and analyze the results of these different phases. We refer to the

sorting-based EFC algorithm as Sorting and the hashing-based algorithm as Hashing.

78



Time Sorting Hashing

Main
Computation 0.5 0.6
Total Time 0.9 0.9

Table 1. Comparison of overall CPU execution times (sec) for the Sorting and Hashing
EFC algorithms. Total Time represents the time for both the Main Computation and
Initialization.

Phase CPU Time

Initialization 0.2
Sort 0.3

ReduceByKey 0.2
CopyIf 0.02

Overhead 0.2
Total time 0.9

Table 2. Individual CPU phase times (sec) for the Sorting EFC algorithm.

5.6.1 Phase 1: Base Case. Our base case assesses the performance of

Sorting and Hashing with the following configuration of factors:

Configuration: (CPU, 16 cores, Enzo-10M, hash table factor 2 for Hashing) × 2

algorithms.

For each algorithm, we measured the total execution time, along with the sub-

times for the primary data-parallel operations and routines. Additionally, we measured the

overhead time for memory allocations and de-allocations. The results of the Sorting and

Hashing CPU-based experiments are presented in Tables 1 through 3.

As seen in Tables 1 and 2, Sorting completed the experiment in 0.9 seconds, with

the Sort and Reduction operations—the main computation—accounting for 56% of the

total time. From Tables 1 and 3, Hashing performed comparably with Sorting, with the

main hashing operations contributing 67% of the 0.9-second total runtime.

5.6.2 Phase 2: Hash Table Size. In this phase, we study the effect of the

hash table size on the performance of the Hashing algorithm, using the following set of

factors:
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Phase CPU Time

Initialization 0.2
Scatter 0.1

CheckForMatches 0.3
CopyIf 0.1

ComputeHash 0.05
Overhead 0.1
Total time 0.9

Table 3. Individual CPU phase times (sec) for select DPP operations of the Hashing EFC
algorithm.

Multiplier 0.5X 1X 2X 4X 8X

Total Time 1.0 0.9 0.9 0.8 0.8

Table 4. CPU execution time (sec) of the Hashing EFC algorithm as a function of the
hash table size multiplier.

Time Sorting Hashing

Main
Computation 0.5 0.2
Total Time 0.7 0.4

Table 5. GPU execution time (sec) for the main computation of the Sorting and Hashing
EFC algorithms.

Configuration: (CPU, 16 cores, Enzo-10M) × 5 different hash table proportions.

For each multiplier c, the initial hash table size is computed as c ∗F , where F is

the total number of non-unique faces (F ≈ 40 million for the Enzo-10M data set).

The results in Table 4 show that Hashing is only modestly affected by the hash

table multiplier. This primarily occurs because the hash values are recomputed each

iteration, leading to a slower decrease in collisions, which results in a more-stable number

of hashing iterations. Moreover, in memory-poor environments, lower multipliers can be

used with only a modest slowdown in execution time.

5.6.3 Phase 3: Architecture. In this phase, we assess the performance of the

algorithms on a GPU architecture with the Enzo-10M data set.

Configuration: (GPU, Enzo-10M) × 2 algorithms.
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Phase GPU Time

Initialization 0.1
Sort 0.5

ReduceByKey 4.0e-02
CopyIf 4.5e-03

Overhead 0.1
Total time 0.7

Table 6. Individual GPU phase times (sec) for the Sorting EFC algorithm.

Phase GPU Time

GetFacePoints 0.1
Scatter 0.1

CheckForMatches 0.1
StreamCompact 4.1e-02

ComputeFaceHash 8.0e-03
Overhead 0.1
Total time 0.4

Table 7. Individual GPU phase times (sec) for the Hashing EFC algorithm.

From Table 5, we observe that Hashing achieves a faster runtime than Sorting.

Moreover, Hashing devotes only half of its total execution time to main computation,

which, for hashing, is the cumulative time spent in the hashing while-loop. Contrarily,

Sorting spends more than 70% of its total runtime on the CUDA Thrust Sort operation,

which, along with the ReduceByKey operation, comprises the main computation; see

Table 6 for GPU sub-times of the Sorting algorithm. Table 7 shows that the Scatter and

CheckForMatches DPP account for at least half of the work for Hashing. This contrasts

slightly from the equivalent CPU findings of Phase 1. The results of Table 7 indicate that

the GPU significantly reduced the runtime of these DPP operations.

5.6.4 Phase 4: Data Sets. This phase explores the effects of data set, by

looking at six different data sets, which vary over data size and memory locality. The

study also varies platform (CPU and GPU) and algorithm (Sorting and Hashing).

Configuration: (CPU, 16 cores, GPU) × 6 data sets × 2 algorithms.
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CPU GPU
Data set Sorting Hashing Sorting Hashing

Enzo-10M 0.9 0.9 0.7 0.4
Nek-50M 4.3 4.3 3.3 2.1
Enzo-80M 7.4 7.3 7.4 7.3

Re-Enzo-10M 1.2 0.9 1.0 0.4
Re-Nek-50M 5.5 4.5 5.3 2.2
Re-Enzo-80M 9.2 7.7 10.1 6.5

Table 8. CPU and GPU execution times (sec) for different EFC data set/algorithm pairs.

Table 8 displays the execution times on the CPU platform using 16 cores. These

results show that Sorting is affected by the locality of the cells within a mesh, as evident

from the increase in runtime between the pairs of regular and restructured data sets.

Further corroborating this observation, Table 8 also shows that Sorting realizes a nearly

1.5–time speedup in total runtime when presented with the restructured version of a

data set on the GPU architecture. Contrarily, Hashing maintains stable execution times

regardless of the cell locality in data sets.

With respect to execution time on both the CPU and GPU, Hashing consistently

achieves comparable CPU performance to Sorting for the regular data sets and

significantly better CPU and GPU performance for the restructured data sets. These

findings indicate that Hashing is superior for GPU-based execution and for data sets with

poor memory locality (both CPU and GPU).

5.6.5 Phase 5: Concurrency. In this phase, we investigate the CPU runtime

performance of both Sorting and Hashing using different numbers of hardware cores with

the base case Enzo-10M data set and its corresponding Re-Enzo-10M data set.

Configuration: (CPU) × 6 different concurrency levels × 2 data sets × 2

algorithms.

Tables 9 and 10 show that, although Sorting performs better than Hashing on

configurations of 8 cores or fewer, Hashing provides stable performance regardless of

82



Method 1 2 4 8 12 16

Sorting 8.0 4.3 2.3 1.7 1.1 0.9
Hashing 10.8 5.6 3.9 1.9 1.1 0.9

Table 9. Impact of the number of CPU cores on the execution time (sec) for the Sorting
and Hashing EFC algorithms using the Enzo-10M data set.

Method 1 2 4 8 12 16

Sorting 9.6 5.1 2.9 1.9 1.3 1.1
Hashing 11.2 5.8 3.1 1.9 1.1 0.9

Table 10. Impact of the number of CPU cores on the execution time (sec) for the Sorting
and Hashing EFC algorithms using the Re-Enzo-10M data set.

memory locality; this confirms our findings from the previous phases. Additionally, the

results indicate that with 1 CPU core, there is nearly a 10-time increase in runtime over

the 16-core experiment, for both Sorting and Hashing. This observation demonstrates

clear parallelism; however, the speedup is sub-linear.

A review of Hashing over both Enzo-10M datasets indicates that only the

initialization, ComputeHash, and CheckForMatches DPP operations achieve near-

linear speedup from 1 core to 16 cores. The remaining operations (e.g., Scatter and

CopyIf ) achieve sub-linear speedup, contributing to the overall sub-linear speedup. For

a majority of the individual operations, the smallest runtime speedup from a doubling of

the hardware cores occurs in the switch from 8 to 16 cores. These findings suggest that,

on up to 8 cores (a single CPU node), scalable parallelism is achieved, whereas from 8

to 16 cores (two CPU nodes with shared memory) parallelism does not scale optimally,

possibly due to hardware and multi-threading limitations.

5.7 Comparing to Existing Serial Implementations

In Section 5.6.5, Hashing demonstrated a nearly 10-time increase in runtime

over the base 16-core configuration, when executed on 1 CPU core. This single-

core experiment simulates a serial execution of Hashing and motivates a comparison

with the serial EFC implementations of community scientific visualization packages.
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Data set VTK VisIt Hashing

Enzo-10M 6.2 1.4 10.8
Nek-50M 33.1 5.2 60.9
Enzo-80M 51.7 9.1 102.6

Re-Enzo-10M 9.9 2.1 8.2
Re-Nek-50M 59.1 10.3 41.5
Re-Enzo-80M 84.4 17.7 109.1

Table 11. Single-core (serial) CPU execution time (sec) for different EFC data
set/algorithm pairs.

This section compares the runtime of serial Hashing (1-core) with that of the VTK

vtkUnstructuredGridGeometryFilter and VisIt avtFacelistFilter,

both of which are serial, single-threaded algorithms for EFC.

In Table 11, we observe that the VisIt algorithm outperforms both the VTK and

Hashing algorithms on all of the data sets from Section 5.6.4, while Hashing performs

comparably with the VTK implementation. The overall weak performance of Hashing

is to be expected, since the DPP-based implementation is optimized for use in parallel

environments. When compiled in VTK-m serial mode, the DPP functions are resolved

into backend, sequential loop operations that iterate through large arrays without the

benefit of multi-threading. Thus, Hashing is neither optimized nor designed for 1-core

execution. In particular, it introduces extra instructions to resolve hash collisions that are

unnecessary in this setting. Contrarily, both VisIt and VTK are optimized specifically for

single-core, non-parallel environments, leading to better runtimes than Hashing on the

majority of the datasets. However, in a parallel setting, both Sorting and Hashing achieve

better runtime performance than the serial algorithms

5.8 Conclusion

This chapter contributes two novel DPP-based algorithms for the EFC

visualization application, both of which use index-based search techniques. Both

algorithms—one based on sorting and the other based on hashing—are designed in terms
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of DPPs and tested on both CPU and GPU devices, demonstrating platform-portability

across many-core systems. These algorithms are thought to be the first shared-memory,

parallel algorithms for EFC.

Within each algorithm, the search task involves identifying duplicate, overlapping

cell faces, which accounts for the majority of the computational work in the algorithm. In

particular, the hashing-based technique is a specialization of the HashFight technique for

duplicate element searching that was introduced in Chapter III. For the EFC application,

the HashFight approach demonstrates superior CPU and GPU runtime performance

compared to the sorting-based approach, particularly on larger and more-complex 3D

unstructured mesh datasets. Moreover, the both approaches realize improved CPU

runtime performance as concurrency increases. Based on these findings, we believe that

our hashing-based solution is the best index-based search technique for this particular

EFC visualization algorithm on diverse many-core systems. These findings inform our

dissertation question and will be further synthesized in Chapter X.
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CHAPTER VI

HASHING INTEGER KEY-VALUE PAIRS

This chapter applies the HashFight hash table from Chapter IV to the analysis task

of hashing and querying large sets of unsigned integer key-value pairs. We compare the

insertion and query performance of HashFight to that of state-of-the-art CPU- and GPU-

based hash table implementations from open-source parallel computing libraries.

The content presented here is adopted primarily from a collaborative journal

publication composed by myself, Samuel Li, and Hank Childs. As lead author, I wrote the

majority of the text contained in this chapter, and collaborated with Samuel Li to conduct

and analyze the CPU and GPU experiments. Hank Childs provided valuable feedback on

the experimental design and findings, and final presentation of the manuscript.

The remainder of this chapter proceeds as follows. Section 1 summarizes current

parallel-hashing research relevant to this study, including a review of our comparator

hash tables. Section 2 presents an overview of the suite of hashing experiments and

configurations. Section 3 documents and analyzes the results of these experiments.

Section 4 summarizes our findings for the dissertation question. Refer to Chapter IV for a

detailed account and review of the HashFight operations and collision-handling routine.

6.1 Background

The following section summarizes the state-of-the-art hash tables and techniques

that we compare against in this study.

6.1.1 Parallel Hashing. Since the emergence of multi- and many-core CPUs

and general-purpose computing on GPUs, a large body of research has investigated

the design of parallel hashing techniques [80]. In this parallel setting, multiple threads

each simultaneously perform one or more hash table operations, with one operation per

assigned key. Typically, operations are performed in batches to maintain work balance
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among threads and saturate available parallelism. Further, for dynamic hash tables,

each batch may consist of mixed operations in any order, defining a distribution of

insertions, updates, queries, and deletions; static hash tables are built with an initial batch

of insertions, followed by a batch of queries. Each concurrent operation at a hash table

location must be synchronized to handle hash collisions and prevent reader-writer race

conditions. For instance, queries may attempt to read recently-deleted keys or access a

location before a desired key is inserted, resulting in a false failure. Moreover, if multiple

concurrent insertions prompt the hash table to reach maximum occupancy, then only one

request should be granted access to extend the capacity of the table, creating a need for

synchronized memory allocation.

6.1.1.1 CPU-based Techniques. Single-node, CPU-based approaches have

primarily focused on the design of dynamic, concurrent hash tables within shared

memory [46, 101, 122, 134, 45]. These tables synchronize concurrent operations with

either lock-based methods (e.g., mutexes or spin-locks) or lock-free hardware atomics

(e.g., compare-and-swap (CAS)). Many of these tables are implemented as linked list data

structures to support extensibility (or resizing) and separate-chaining collision-resolution.

This form of collision handling requires careful synchronization of colliding key-value

pairs during concurrent insertions, as each new key at a table location needs to have a

new node allocated and appended to the linked list. For lock-based tables, a performance

bottleneck may arise when there is high contention at any given hash table location. For

example, when expanding a linked list to include several new colliding keys (insertions),

concurrent queries remain blocked until access is granted to probe the list.

Notable open-source library implementations of CPU-based concurrent hash

tables are provided within the Intel Thread Building Blocks (TBB) library and the

Microsoft Parallel Patterns Library (PPL) [53, 102]. Both libraries include a concurrent
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unordered map hash table that supports lock-free (non-blocking) insertions, queries, and

updates, using an underlying linked list, with CAS atomics over nodes [101, 134]. These

unordered maps are extensible and hash key-value pairs into buckets, or segments of the

linked list, similar to the unordered map provided by the C++ Standard Library. However,

both maps do not support concurrent-safe deletions and the hash table size is expected to

be a power of 2, which may affect the choice of hash function used.

6.1.1.2 GPU-based Techniques. Single-node, GPU-based hashing techniques

have become an active area of research, spurred by the massive available thread-

and instruction-level parallelism offered on modern GPU architectures [80]. GPUs

are specifically designed for data-parallel processing, whereby a single instruction

is performed over multiple data elements (SIMD) in parallel, such as via a vector

instruction1. This contrasts with performing a single instruction over a single scalar data

value (SISD), which is common on CPU architectures. In particular, the execution and

threading model of the GPU presents various design challenges for parallel hashing:

– Threads works in small logical processing groups, or warps, to execute the same

instruction over different data elements in parallel. For a memory load or store

instruction, each thread makes its own addressable memory request and the warp

services as many memory transactions as necessary to satisfy all requests. The

greater the number of transactions, the longer the latency to complete the work of

the warp. Thus, warp throughput is optimized when threads coalesce their memory

requests within the same memory transaction or cache line.

– Threads also possess their own control flow and may take divergent branches

or paths to complete a warp instruction, such as a conditional statement, atomic

1NVIDIA Tesla-generation compute GPUs employ single-instruction, multiple threads (SIMT)
execution, which is a combination of SIMD and simultaneous multi-threading (SMT) execution.
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operation, or spin-lock mutex. If one branch requires more instructions to complete

than another branch, then the faster-completing threads will wait idle for the slower

threads to finish, causing starvation and serialization of the control flow. Thus, warp

throughput is optimized when threads follow the same branch.

– CPU-based hashing leverages large on-chip caching and shared (global) memory

to service random-access memory requests quickly. On the GPU, the translation-

lookaside buffer (TLB) and data caches are limited in size, which can induce more

cache misses and expensive global memory transactions. Moreover, the limited

global memory on the GPU restricts the maximum size of the hash table and input

data that can fit on-device.

In traditional data-parallel hashing, threads in a warp are each assigned one or

more key-value pairs and together execute the same operation, such as an insertion or

query. Modern NVIDIA GPUs specify 32 threads per warp and multiple warps fit within

a thread block (maximum 1024 threads), which contains register and shared memory

space for the resident threads. Multiple blocks are dispatched in parallel on one of several

streaming multiprocessors (SMs) that contain hundreds of compute and warp-scheduling

units. The set of SMs can dispatch a large number of threads in parallel overall, creating

an ideal platform for large amounts of key-value pairs to be hashed and queried in a

data-parallel fashion. However, since hashing is a memory-bound problem designed

for random-access memory insertions and queries, the occurrence of cache misses and

uncoalesced memory requests among warp threads is inevitable. With the limited-caching

design of the GPU, these requests are likely to result in high-latency global memory loads

and stores. Depending on the number of hash collisions and collision-handling approach,

warp branch divergence may arise when faster, non-colliding threads immediately insert

their pairs and wait for the slower, colliding threads to finish.
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Chapter II surveyed and categorized a large body of research on data-parallel

GPU hashing techniques, and identified performance challenges affecting the design of

such techniques. Due to these challenges, many of the most-successful GPU hashing

techniques maintain a static, on-device hash table with open-addressing collision-

handling. These tables are efficient to construct and use fine-grained, hardware atomic

primitives to synchronize table accesses and modifications.

The best-in-class open-source library implementation of GPU parallel hashing

is based on cuckoo hashing and is packaged within the CUDA Data Parallel Primitives

Library (CUDPP) [27], which contains top-performing algorithms and data structures

written in NVIDIA CUDA. Introduced by Alcantara et al. [3], this general-purpose,

cuckoo hash table supports a variable number of hash functions, hash table size, and

maximum length of a probing sequence. The hash table resides in global memory and is

constructed in parallel by threads each inserting key-value pairs into locations specified

by the cuckoo hash functions. Insertions and evictions are synchronized using CAS

atomic primitives, and each thread manages the re-insertion of any key-value pair that

it evicts along the eviction chain, until a pair is finally placed in an empty table location.

Since this is a static hash table, queries are performed after insertions and, thus, do not

require an atomic primitive for each probe. If new key-value pairs need to be inserted

into the table post-construction, then the table is constructed again. Also, the table is

reconstructed if a thread exceeds it’s maximum eviction, or probe, chain length during the

insertion phase.

The CUDA Thrust library of data-parallel algorithms and data structures [117]

provides fast and high-throughput data-parallel implementations of mergesort [128] and

radix sort [100] for arrays of custom or numerical data types, respectively. Additionally,

Thrust includes a data-parallel, vectorized binary search primitive to efficiently search
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within a sorted array. The combination of sorting an array and searching within it has

been widely-used as a benchmark for search-based tasks, particularly hashing [3, 6]. As

a platform-portable library, Thrust also provides implementations of these algorithms and

data structures in TBB and OpenMP for CPU execution.

6.2 Experimental Overview

In this section, we assess the performance of HashFight across several different

factors, comparing its performance to that of best-in-class comparator implementations.

Our primary measure of hashing performance is the throughput of insertions and queries,

which is calculated as the number of key-value pairs inserted or queried per second. The

different experimental factors are outlined as follows, each factor consisting of multiple

options.

– Algorithm (5 options)

– Platform (3 options)

– Dataset size (29 options)

– Hash table load factor (10 options)

– Query failure rate (10 options)

Since some of the configurations are not compatible together, We do not test the

cross product of all configurations. For example, some algorithms cannot be executed

on a CPU platform, and several dataset size and load factor combinations would exceed

available on-device memory of certain GPU platforms. The details of each factor and

configuration are discussed in the following subsections.

6.2.1 Algorithms. We compare the performance of HashFight with that of

four different parallel hashing and search-based implementations from well-known open-

source libraries:
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– HashFight (CPU+GPU): Data parallel primitive based implementation with a

single code base for both CPU and GPU platforms.

– Thrust-Sort/Search (CPU): Quick sort and vectorized binary search

implementations written in TBB and contained within the Thrust library.

– CUDPP (GPU): Cuckoo hash table implementation written in CUDA and packaged

within the CUDPP library (see Section 6.1.1).

– Thrust-Sort/Search (GPU): Radix sort and vectorized binary search

implementations written in CUDA and provided in the Thrust library

(Section 6.1.1).

– TBB-Map (CPU): Lock-free, concurrent unordered map hash table written in TBB

and packaged within the TBB library of parallel algorithms (see Section 6.1.1).

HashFight is written with the open-source VTK-m library (v1.2), which is C++-

11/14 compliant and provides a set of generic data-parallel primitives (e.g., Reduce, Sort,

Scan, Copy, and LowerBounds) that can be invoked on both GPU and CPU devices with

a single algorithm code base. For NVIDIA GPU execution, primitives from the CUDA

Thrust library are invoked; for CPU execution, primitives from the Intel TBB parallel

algorithms library are invoked. Thus, HashFight can be mapped to either CUDA- or TBB-

compliant code, via the back-end implementations of the primitives inside of VTK-m.

The Thrust Sort and Search comparators are meant to provide a baseline measure

of throughput performance for a search-based task such as hashing. The combination of

sorting key-value pairs and then querying them via binary search is a canonical alternative

to constructing and querying a hash table.

6.2.2 Platforms. To assess the cross-platform performance of HashFight,

we conduct experiments on the following two GPU devices and one CPU device, each

residing on a single node:
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– K40 GPU: NVIDIA Tesla K40 accelerator with 11.4 GB on-board memory.

– V100 GPU: NVIDIA Tesla V100 accelerator with 32.5 GB on-board memory.

– Xeon Gold CPU: 2.3 GHz Intel Xeon Gold 6140 (Skylake generation) CPU with

36 physical cores (72 logical) and 370 GB DDR4 memory.

All CPU code was compiled using GCC with flags for -03 optimization and

the C++-11 standard. Additionally, the TBB scalable allocator was used for dynamic

memory allocation with the TBB concurrent unordered map, which resizes itself as new

key-value pairs are inserted. All GPU code was compiled using NVCC with GCC as the

host compiler.

6.2.3 Dataset Sizes. In this study we focus on the task of hashing unique,

unsigned 32-bit integer key-value pairs into the hash table. Each key and value is

randomly-generated by the Mersenne Twister pseudo-random generator, using a state

size of 19937 bits (mt19937). Any duplicate keys are removed, and the remaining

unique keys are shuffled. To construct a hash table, a batch of k unsigned integer keys

and k corresponding unsigned integer values are provided as input from two separate

datasets. To query the hash table, a batch of k randomly-generated, unsigned integer keys

is provided as input from a separate dataset. These query keys may contain duplicates and

are not necessarily equal to any of the keys previously inserted into the table.

Among the four tested GPU and CPU platforms, we generate and experiment

with datasets containing between 50 million and 1.45 billion unsigned integers (k), in

increments of 50 million. This results in 29 different sizes of the number of key-value

pairs and query keys. The maximum size that can be executed on a given platform is

a function of the maximum on-device memory of the platform and the hash table load

factor (see Equations 1 and 2). Thus, holding the load factor constant, on devices with

larger available memory, we are able to insert and query larger sets of key-value pairs.
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6.2.4 Hash Table Load Factors. We measure the effect of the insertion

and query throughput as the hash table load factor, f , is varied between 1.03 and 2.0,

inclusive. Overall, 10 different values of f are tested: 1.03, 1.10, 1.15, 1.25, 1.40, 1.50,

1.60, 1.75, 1.90, 2.0. A load factor of 1.03 was selected as the minimum value because

the CUDPP cuckoo hash table implementation is only designed and tested for load factors

of at least this value. Traditionally, a load factor of 2.0 has served as the conservative

upper-bound for constructing a hash table [26]. The smaller load factors reduce the

memory footprint of the hash table, but at the expense of an increase in the number of

hash collisions.

6.2.5 Query Failure Rates. For a dataset size of k query keys, we randomly-

generate 10 different sets of k query keys, each with a different percentage of keys that

are not contained within the hash table; that is, “failed" queries that return empty query

values. The rate of failure of query keys is varied, in increments of 10 percent, from 0

percent (all query keys exist in the table) up to 90 percent. This failure rate factor is meant

to assess the worst-case querying ability of hash table implementations.

6.3 Results

In this section, we present and analyze the findings of our GPU and CPU hashing

experiments. For each experiment, we assess the insertion and query throughput of three

search-based techniques (HashFight compared to a benchmark hash table and sorting-

based technique) as the dataset size, load factor, and query failure rate are varied. Each

configuration, or data point, is run 10 trials, with each trial using a different randomly-

generated data set of unique, 32-bit unsigned integer keys and values. The result of each

configuration is reported as the average throughput of the 10 different runs, with the

operation being an insertion or query. For a given configuration, the same 10 data sets

are used by each hashing implementation, in order to provide a fair comparison.
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Figure 2. GPU insertion and query throughput as the number of key-value pairs is varied
on the K40 and V100 devices. For both HashFight and CUDPP, hash table load factors of
1.03 and 1.50 are presented separately.

6.3.1 GPU Experiments. We conduct three different GPU experiments,

each run on both the K40 and V100 NVIDIA GPU devices. The results and analysis of

these experiments are as follows.

6.3.1.1 Vary Data Size. Our first GPU experiment assesses the throughput

performance of each hash table as the number of key-value pairs is increased and the load

factor is held constant. We display results for constant load factors of 1.03 and 1.50, since

they reveal the performance of both higher-capacity and lower-capacity hash tables.
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Figure 2 displays the results for both the K40 and V100 GPUs, each testing a

different maximum number of key-value pairs due to on-device memory limitations.

From these results, we observe that HashFight achieves scalable and leading query

throughput for the largest numbers of key-value pairs on both GPU devices, while

remaining within a factor of 1.5 of the CUDPP cuckoo hash table for all other data

sizes. For insertions, both hash table approaches maintain comparable throughput, with

HashFight demonstrating more-stable throughput for both of the tested load factors, and

CUDPP performing its best for the 1.50 factor. Overall, both HashFight and CUDPP

achieve higher throughput for queries than for insertions, which is a desirable property

for hash tables that are used primarily as look-up structures, particularly in real-time

applications.

With the 1.03 load factor, HashFight attains a consistently-higher insertion and

query throughput than CUDPP on both devices, and matches the query throughput of

CUDPP for the smallest and largest data set sizes on the V100 device. With the 1.50 load

factor, CUDPP sees an increase in query throughput and outperforms HashFight within a

factor of 1.5 until 950 million key-value pairs. However, when the number of key-value

pairs exceeds 1 billion, CUDPP experiences a drop in throughput and nearly matches the

throughput of HashFight at 1.45 billion pairs. This trend can also be observed for CUDPP

queries on the K40 device at both 150 million key-value pairs (1.03 load factor) and 250

million pairs (1.50 load factor).

A further analysis reveals that these dropoff points directly coincide with the

points at which the total memory of the hash table exceeds the size, or coverage, of the

translation lookaside buffer (TLB) of the last-level cache (L3 cache on K40 and L2 cache

on V100). According to the micro benchmarking of Jia et al., the V100 and K40 have

TLB sizes of approximately 8.2 GB and 2 GB, respectively [55]. On the K40 and V100,
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these last-level caches use physical memory addresses and so the virtual addresses of

thread read and write requests must first be translated into physical addresses via one

of the page tables cached in the TLB. Once the pages tables of the TLB are full, TLB

misses induce page faults (or swaps) that increase the latency of memory transactions,

regardless of whether the memory requests hit or miss the last-level cache. Recently,

Karnagel et al. microbenchmarked a suite of modern NVIDIA GPUs and discovered that

irregular memory accesses for data sets larger than 2 GB on the K40 result in latency

increases, due to inefficient accesses to the L3 TLB [61]. Lai et al. expand upon this

finding by modeling a multi-pass scatter and gather scheme that splits a batch of TLB-

exceeding memory accesses into smaller chunks of accesses that each fit within the size

of the TLB [72].

HashFight draws from these findings and performs the Fight, CheckWinner,

and Probe kernels (Listings 2, 3, and 5) in a multi-pass fashion that, as seen in Figure

1, does not suffer a drop in throughput after the TLB size is exceeded. Once the hash

table memory size reaches the TLB size, the hash table is logically broken into chunks

of locations, each of roughly equal size and smaller than the TLB size. Then, a kernel

is invoked for each chunk in order, and only the threads with memory accesses into

the current chunk are allowed to insert or query their key. The minimization of TLB

page faults more than offsets the overhead of invoking each kernel multiple times per

HashFight iteration, resulting in more stable throughput than CUDPP for large data sizes

and hash tables. This multi-pass feature maintains platform-portability, since TLB-

specific constant values are only used when HashFight is compiled in GPU (CUDA)

mode.

On the V100 GPU device, both tables realize a considerable improvement in

insertion and query throughput, reaching approximately 1 billion pairs per second for
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Figure 3. GPU insertion and query throughput as the hash table load factor, or capacity, is
varied on the K40 and V100 devices. The number of key-value pairs inserted and queried
is set equal to the maximum number that can satisfy on-device memory constraints for all
load factors.

insertions and at least 2 billion pairs per second for queries. This increase in throughput

can be attributed to several hardware improvements over the older-generation K40:

– Increase in measured global memory bandwidth from 183 GB per second to 736

GB per second. This improvement is particularly beneficial to the random-access

nature of hashing, which is highly-dependent on global memory accesses due to

cache misses.
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– Increase in the L2 instruction and data cache size from 1.57 MB to 6.14 MB.

– Increase in the L2 load bandwidth from 340 GB per second to 2.16 TB per second.

– Decrease in latency, or the number of clock cycles, for global memory atomic

instructions, particularly during high thread contention. This improvement is due

to the introduction of hardware atomics (as opposed to software emulation) in post-

K40 devices.

Each of these factors play a role in the absolute throughput differences observed between

the devices, as CUDPP uses CAS atomic operations during insertions and both CUDPP

and HashFight resolve a very high percentage of their memory transactions from global

memory.

Finally, Figure 1 reveals that, for both K40 and V100, sorting the input key-value

pairs with the Thrust radix sort is significantly faster than inserting the pairs into either of

the two hash tables. However, this comes with a tradeoff of significantly slower queries

via the Thrust binary search, which suffers from uncoalesced and random-access query

patterns into the sorted array. The hash tables enable each query to complete within a

constant fixed number of uncoalesced probes through the hash table, whereas the binary

search must make a logarithmic number of probes in the worst case.

6.3.1.2 Vary Load Factor. Our second GPU experiment measures the

performance of the hash table approaches as the load factor is varied between 1.03

and 2.0, and the number of key-value pairs is held constant. We hold 300 million and

900 million pairs constant for the K40 and V100 devices, respectively, as these are the

maximum numbers for which all load factors can be tested within on-device memory

limits. We also plot the throughput of the Thrust radix sort and binary search for both

of the tested number of key-value pairs; since the load factor is hash table-specific, the

Thrust performance does not vary.
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From Figure 3 we see that HashFight maintains very stable throughput

performance across all load factors, never deviating by more than 200 million pairs

per second. CUDPP, as an open-addressing method, achieves faster insertions, as the

load factor and hash table capacity increase, particularly on the V100 GPU. On the K40

GPU, CUDPP fails to increase it’s insertion throughput for 300 million pairs beyond a

load factor of 1.10. At this point, the hash table memory usage reaches the maximum

L3 TLB capacity of the K40 and, as noted before, CUDPP is unable to further increase

it’s insertion throughput due to excessive TLB page faults. Also, as seen in Figure 2,

HashFight performs comparably or better than CUDPP for the smallest load factors and

highest-capacity hash table sizes.

6.3.1.3 Vary Query Failure Rate. Our third and final GPU experiment

assesses the query throughput of HashFight and CUDPP as the percentage of failed, or

unsuccessful, query keys is varied between 0 and 90 percent, while holding the number of

query keys and load factor (1.03 and 1.50) constant.

Figure 4 reveals that CUDPP and HashFight are modestly affected by an increase

in unsuccessful queries on both the K40 and V100. On the V100, CUDPP begins with

a slightly higher query throughput than HashFight for the 1.50 load factor, but then sees

a 43 percent decrease in throughput until it nearly matches the throughput of HashFight

at the 90 percent failure rate. A similar pattern appears for the 1.03 load factor. On the

K40, both hash table approaches realize slightly larger decreases in query throughput as

compared to the V100 runs. For the 90 percent query failure rate and 1.50 load factor,

HashFight and CUDPP realize decreases in throughput by 33 and 43 percent, respectively.

For the 1.03 load factor, HashFight and CUDPP observe decreases in throughput by

48 and 47 percent, respectively, until the 90 percent failure rate, at which point the

throughput of both tables is equivalent.
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Figure 4. GPU query throughput as the percentage of failed, or unsuccessful, queries is
varied on the K40 and V100 devices. For both HashFight and CUDPP, separate plots
are presented for hash table load factors of 1.03 and 1.50, which are queried with the
maximum number of query keys (millions) permitted within on-device memory limits.
The Thrust binary search throughput is plotted for the same number of query keys.

The K40 findings can be largely explained by the TLB caching limit and

HashFight’s TLB-oblivious design, as observed in the previous experiments, whereas the

V100 findings are more indicative of algorthmic properties, such as increase in worst-case

probes per thread and memory load transactions per warp. As an optimized cuckoo hash

table, CUDPP only requires at most h lookup probes per query, where h is the number

of cuckoo hash functions or possible table locations for a key to be inserted. Since this

value is typically small (4 in this study), CUDPP does not have to perform too many extra

global memory loads to determine that a query key does not exist within the hash table.

HashFight is even less affected by the failed queries, as most threads can determine in the
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Figure 5. CPU insertion and query throughput as the number of key-value pairs is varied
on the Xeon Gold device. For both HashFight and the TBB unordered map, hash table
load factors of 1.03 and 1.50 are presented separately.

first iteration whether their active query key resides in the table, and rarely will need to

exceed 6 iterations to determine failure.

6.3.2 CPU Experiments. We conduct three different experiments on the

Intel Xeon Gold CPU, comparing the throughput of HashFight with that of the TBB

concurrent unordered map (TBB-Map) and the Thrust sort and binary search primitives.

HashFight and Thrust are compiled and run in TBB mode, without any code changes

from the equivalent GPU experiments. The results and analysis of the CPU experiments

are presented as follows.
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Figure 5 shows that HashFight achieves a significantly higher throughput than

the TBB-Map for both insertions and queries across all data sizes. In particular, for

the largest batch of key-value pairs, 1.45 billion, and smallest load factor, 1.03, the

throughput of HashFight exceeds that of TBB-Map by approximately 30X and 3X for

insertions and queries, respectively. From Figure 6, as the load factor, or table capacity,

is increased from 1.03 up to 2.0, HashFight continues to increase its insertion and query

throughput by 1.3X and 1.4X, respectively. However, TBB-Map maintains relatively

the same throughput for insertions (8.5 million pairs/sec) and queries (137.5 million

pairs/sec) until a load factor of 1.60. After this point, TBB-Map realizes a noticeable 6.3X

decrease in insertion throughput and a 1.35X decrease in query throughput, instead of

expected increases. Also, the aggregate runtime of performing a Thrust sort followed by

a vectorized binary search is actually faster than that of TBB-Map, yet still considerably

slower than the aggregate runtime of HashFight.

The significantly lower insertion throughput of TBB-Map is largely due to the

underlying linked list design of the hash table and its construction under large magnitudes

of key-value pairs, such as those tested in this experiment. As an extensible hash table,

TBB-Map must frequently resize and allocate new memory segments as more and more

key-value pairs are inserted in an unordered fashion [134]. Each insertion of a key-value

pair has to follow multiple layers of pointer indirection to access a segment bucket, and

the insertion must be synchronized via a lock-free atomic primitive, which adds additional

overhead above that of HashFight.

Moreover, the slight drop in throughput for TBB-Map above a load factor

of 1.50 is a combination of excessive TLB cache thrashing and the use of separate-

chaining for collision resolution. A hash table with a load factor of 1.50 requires at least

16GB of memory to insert 1.45 billion pairs. This memory footprint just exceeds the
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Figure 6. CPU insertion and query throughput as the hash table load factor is varied on
the Xeon Gold device.

aggregate coverage of the L1 and L2 TLBs on the Xeon Gold CPU, and, since page

entries are of smaller 4KB and 2MB sizes, pages are frequently swapped in and out of

a TLB by concurrent threads during random-access insertions. As observed in our GPU

experiments, memory latency increases and insert throughput decreases as more hash

table address mappings reside outside of the TLB. HashFight obviates this issue by means

of its multi-pass gather and scatter procedure, and its use of open-addressing collision

resolution, whereby the number of memory accesses typically decreases as the hash table

size increases. However, TBB-Map is vulnerable to TLB memory limitations and does

not benefit as well from a larger hash table due to multiple layers of pointer indirection
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and linear probing within buckets. A possible direction towards alleviating the TLB

issue is to use huge 1GB page entries. This permits more virtual-to-physical memory

mappings in a single TLB access, but requires modifying the system configuration with

root permission; due to the latter reason, we were unable to perform this experiment.

In order to validate the results of TBB-Map, we also tested the same CPU

experiments with the TBB concurrent hash map, which is based on an underlying array

structure as opposed to a linked-list. The concurrent hash map produced nearly identical

insertion and query throughput as the concurrent unordered map. Additionally, by

conducting multiple trials per configuration (10), we verified that the resulting runtimes

were not affected by “cold" threads, whereby some threads are not yet active and need a

warmup phase.

Finally, we conducted the third experiment of varying the query failure rate and

observed that, unlike in the GPU experiments, the query throughput of HashFight and

TBB-Map is only marginally decreased as the rate is increased. Since there are many

buckets in the TBB-Map hash table and a relatively light load per bucket, the cost of

performing an unnecessary or failed query is non-increasing, contrary to extra probing

required by CUDPP cuckoo hashing for failed queries on the GPU.

6.4 Conclusion

This chapter applies the HashFight hash table of Chapter IV to the task of hashing

and querying large datasets of unsigned integer key-value pairs. We demonstrate the

viability of HashFight as a general-purpose hashing approach via a suite of experiments.

HashFight achieves higher insertion and query throughput rates than best-in-class GPU-

and CPU-based implementations across a wide variety of experimental configurations. In

particular, on different GPU devices, HashFight attains competitive to leading insertion

and query throughput as the number of pairs tested grows large towards billions of
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pairs. On CPU devices, HashFight achieves leading throughput performance across all

configurations tested, demonstrating platform-portable performance of the DPP-based

design. For both GPU and CPU experiments, the throughput of HashFight is robust to

different hash table sizes and query access patterns.

Based on these findings, we believe that our HashFight hash table solution is the

best index-based search technique for this particular data analysis application on diverse

many-core systems. These findings inform our dissertation question and will be further

synthesized in Chapter X.
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CHAPTER VII

MAXIMAL CLIQUE ENUMERATION

In this chapter, we assess the viability of DPP-based design patterns for a data-

and memory-intensive graph algorithm that consists of index-based search routines.

Specifically, we contribute a new data-parallel approach for the task of maximal clique

enumeration (MCE) within undirected graphs, and demonstrate single-node, platform-

portable runtime performance that exceeds that of state-of-the-art MCE approaches for

graphs with a high ratio of maximal cliques to total cliques. Our MCE algorithms are

used in Chapter VIII as a preprocessing phase for an image processing application, which

requires maximal cliques and also aims to support platform-portable execution. The

content of this chapter is adopted primarily from a collaborative conference-accepted

publication composed by myself, Talita Perciano, Manish Mathai, Wes Bethel, and Hank

Childs [83]. As lead author, I designed and implemented the algorithm, and wrote the

majority of the manuscript text. Manish Mathai helped me conduct the experiments, write

the background section text, and fine-tune our experimental setup. Talita Perciano, Wes

Bethel, and Hank Childs all provided very helpful guidance towards motivating the work,

analyzing the experimental results, and editing the final manuscript.

The remainder of this chapter proceeds as follows. Section 1 provides a

background on MCE and documents related work. Section 2 introduces our DPP-based

MCE algorithm. Section 3 reviews our experimental setup. Section 4 presents the results

of our suite of MCE experiments. Section 5 summarizes our findings for the dissertation

question

7.1 Background and Related Work

This section defines the MCE problem and reviews existing approaches for

performing MCE.
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7.1.1 Maximal Clique Enumeration. A graph G consists of a set of

vertices V , some pairs of which are joined to form a set of edges E. A subset of vertices

C ⊆ V is a clique, or complete subgraph, if each vertex in C is connected to every other

vertex in C via an edge. C is a maximal clique if its vertices are not all contained within

any other larger clique in G. The size of a clique can range from zero—if there are no

edges in G—to the number of vertices in V , if every vertex is connected to every other

vertex (i.e., G is a complete graph). The maximum clique is the clique of largest size

within G, and is itself maximal, since it cannot be contained within any larger-sized

clique. The task of finding all maximal cliques in a graph is known as maximal clique

enumeration (MCE). Figure 7 illustrates a graph with 6 vertices and 9 undirected edges.

An application of MCE on this graph would search through 15 total cliques, of which

only 3 are maximal.

The maximum number of maximal cliques possible in G is exponential in size;

thus, MCE is considered an NP-Hard problem for general graphs in the worst case [106].

However, for certain sparse graph families that are encountered in practice (e.g., bipartite

and planar), G typically contains only a polynomial number of cliques, and numerous

algorithms have been introduced to efficiently perform MCE on real-world graphs. A

brief survey of prior MCE research, including the algorithms we compare against in our

study, is provided later in this section.

7.1.2 Related Work.

7.1.2.1 Visualization and Data Parallel Primitives. While we are considering

the DPP approach for a graph algorithm, there have been several similar studies for

scientific visualization. In each case, they have studied a specific visualization algorithm:

Maynard et al. for thresholding [94], Larsen et al. for ray-tracing [75] and unstructured

volume rendering [74], Schroots and Ma for cell-projected volume rendering [132],
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1 2

0 5

3 4

Figure 7. Undirected graph with 6 vertices and 9 edges. This graph consists of 15 total
cliques, 3 of which are maximal cliques. The maximal cliques are 2-5, 1-2-4, and 0-1-3-4,
the latter of which is the largest-sized clique in the graph. This maximum clique is
denoted with dotted edges.

Lessley et al. for external facelist calculation [79], Lo et al. for isosurface generation [89],

Widanagamaachchi et al. and Harrison et al. for connected component finding [150, 49],

Carr et al. for contour tree computation [19], and Li et al. for wavelet compression [87].

Moreover, several DPP-based algorithms have been introduced for the construction of

spatial search structures in the visualization domain (e.g., ray tracing), particularly for

real-time use on graphics hardware. These include k-d trees, uniform grids, two-level

grids, bounding volume hierarchies (BVH), and octrees [89, 156, 62, 59, 58, 71, 76].

Finally, our experiments make use of the VTK-m framework [109], which is

the same framework used in several of these scientific visualization studies. VTK-m

is effectively the unification of three predecessor visualization libraries—DAX [107],

EAVL [98], and PISTON [89]—each of which were constructed on DPP with an aim to

achieve portable performance across multiple many-core architectures.

7.1.2.2 Maximal Clique Enumeration. Several studies have introduced

algorithms for MCE. These algorithms can be categorized along two dimensions:

traversal order of clique enumeration and whether it is serial or parallel.

Serial depth-first MCE uses a backtracking search technique to recursively

expand partial cliques with candidate vertices until maximal cliques are discovered. This

process represents a search forest in which the set of vertices along a path from a root
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to a child constitutes a clique, and a path from a root to a leaf vertex forms a maximal

clique. Upon discovering a maximal clique, the algorithm backtracks to the previous

partial clique and branches into a recursive expand operation with another candidate

vertex. This approach limits the size of the search space by only exploring search paths

that will lead to a maximal clique.

The works in [1, 17] introduce two of the earliest serial backtracking-based

algorithms for MCE; the implementation of the algorithm in [17] attained more

prominence due to its simplicity and effective performance for most practical graphs. The

algorithms proposed in [56, 67, 144, 77, 23, 93] build upon [17] and devise similar depth-

first, tree-based search algorithms. Tomita et al. [142] optimize the clique expansion

(pivoting) strategy of [17] to prune unnecessary subtrees of the search forest, make fewer

recursive calls, and demonstrate very fast execution times in practice, as compared to

[17, 144, 23, 93]. Eppstein et al. [36, 37] develop a variant of [17] that uses a degeneracy

ordering of candidate vertices to order the sequence of recursive calls made at the top-

most level of recursion. Then, during the inner levels of recursion, the improved pivoting

strategy described in [142] is used to recurse on candidate vertices. [37] also introduces

two variants of their algorithm, and propose a memory-efficient version of [142] using

adjacency lists. Experimental results indicate that [37] is highly competitive with the

memory-optimized [142] on large sparse graphs, and within a small constant factor on

other graphs.

Distributed-memory, depth-first MCE research has also been conducted. Du

et al. [35] present an approach that assigns each parallel process a disjoint subgraph of

vertices and then conducts serial depth-first MCE on a subgraph; the union of outputs

from each process represents the complete set of maximal cliques. Schmidt et al. [130]

introduce a parallel variant of [17] that improves the process load balancing of [35] via a
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dynamic work-stealing scheme. In this approach, the search tree is explored in parallel

among compute nodes, with unexplored search subtrees dynamically reassigned to

underutilized nodes. Lu et al. [90] and Wu et al. [151] both introduce distributed parallel

algorithms that first enumerate maximal, duplicate, and non-maximal cliques, then

perform a post-processing phase to remove all the duplicate and non-maximal cliques.

Dasari et al. [28] expand the work of [37] to a distributed, MapReduce environment,

and study the performance impact of various vertex-ordering strategies, using a memory-

efficient partial bit adjacency matrix to represent vertex connectivity within a partitioned

subgraph. Svendsen et al. [141] present a distributed MCE algorithm that uses an

enhanced load balancing scheme based on a carefully chosen ordering of vertices. In

experiments with large graphs, this algorithm significantly outperformed the algorithm

of [151].

Serial breadth-first MCE iteratively expands all k-cliques into (k + 1) cliques,

enumerating maximal cliques in increasing order of size. The number of iterations is

typically equal to the size of the largest maximal clique. Kose et al. [70] and Zhang

et al. [154] introduce algorithms based on this approach. However, due to the large

memory requirements of these algorithms, depth-first-based algorithms have attained

more prevalence in recent MCE studies [130, 141].

Shared-memory breadth-first MCE on a single node has not been actively

researched to the best of our knowledge. In this study, we introduce a breadth-first

approach that is designed in terms of data-parallel primitives. These primitives

enable MCE to be conducted in a massively-parallel fashion on shared-memory

architectures, including GPU accelerators, which are designed to perform this data-

parallel computation. We compare the performance of our algorithm against that

of Tomita et al. [142], Eppstein et al. [37] and Svendsen et al. [141]. These studies
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provide suitable benchmark comparisons because they each introduce the leading MCE

implementations in their respective categories: Tomita et al. and Eppstein et al. for serial

depth-first MCE and Svendsen et al. for distributed-memory, depth-first MCE.

7.2 Algorithm

This section presents our new DPP-based MCE algorithm, which consists of an

initialization procedure followed by the main computational algorithm. The goal of the

initialization procedure is to represent the graph data in a compact format that fits within

shared memory. The main computational algorithm enumerates all of the maximal cliques

within this graph. The implementation of this algorithm is available online [149], for

reference and reproducibility.

7.2.1 Initialization. In this phase, we construct a compact graph data

structure that consists of the following four component vectors:

– I: List of vertex Ids. The contents of the list are the lower-value vertex Ids of each

edge;

– C: List containing the number of edges per vertex in I;

– E: Segmented list in which each segment corresponds to a vertex v in I, and each

vertex Id within a segment corresponds to an edge of v. The length of a segment is

equal to the number of edges incident to its vertex;

– V : List of indices into the edge list, E, for each vertex in I. Each index specifies the

start of the vertex’s segment of edges.

This data structure is known as a v-graph [11] and it is constructed using only data-

parallel operations. The compressed form of the v-graph in turn enables efficient data-

parallel operations for our MCE algorithms.

We construct the v-graph as follows. Refer to algorithm 3 for pseudocode of these

steps and Figure 8 for an illustration of the input and output.
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(0,1)
(0,3)
(1,0)
(1,2)
(1,3)
(1,4)
(2,4)
(2,5)
(4,0)
(4,1)
(4,3)

Input

(0,1)
(0,3)
(0,1)
(1,2)
(1,3)
(1,4)
(2,4)
(2,5)
(0,4)
(1,4)
(3,4)

Reorder

(0,1)
(0,1)
(0,3)
(0,4)
(1,2)
(1,3)
(1,4)
(1,4)
(2,4)
(2,5)
(3,4)

Sort

(0,1)
(0,3)
(0,4)
(1,2)
(1,3)
(1,4)
(2,4)
(2,5)
(3,4)

Unique

I = [0 1 2 3]
C = [3 3 2 1]
V = [0 3 6 8]
E = [1 3 4

V0

2 3 4
V1

4 5
V2

4
V3

]

Output: v-graph

Figure 8. Initialization process to obtain a v-graph representation of an undirected graph.
Starting with an unordered set of (possibly) directed edges, we first reorder the two
vertices in each edge to ascending Id order. Second, all edges are sorted in ascending
order. Third, all duplicate edges are removed, leaving unique undirected edges. These
edges are then further processed to construct the output v-graph.

1. Reorder: Accept either an undirected or directed graph file as input; if the graph

is directed, then it will be converted into an undirected form. We re-order an edge

(b,a) to (a,b) if b > a. This maintains the ascending vertex order that is needed in

our algorithms;

2. Sort: Invoke a data-parallel Sort primitive to arrange all edge pairs in ascending

order (line 9 of algorithm 3). The input edges in Figure 8 provide an example of

this sorted order;

3. Unique: Call the Unique data-parallel primitive to remove all duplicate edges (line

10 of algorithm 3). This step is necessary for directed graphs, which may contain

bi-directional edges (a,b) and (b,a);

4. Unzip: Use the Unzip data-parallel primitive to separate the edge pairs (ai,ei) into

two arrays, A and E, such that all of the first-index vertices, ai, are in A and all of
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Algorithm 3: Pseudocode for the construction of the v-graph data structure used
in our MCE algorithm. This graph structure consists of vertex Ids (I), segmented
edges (E), per-vertex indices into the edge list (V), and per-vertex edge counts (C).
M is the number of input edges, Nedges is the number of output edges, and Nverts is
the number of output vertices.
1 /*Input*/
2 Array: int edgesIn[M]
3 /*Output*/
4 Array: int C[Nverts], E[Nedges], I[Nverts], V[Nverts]
5 /*Local Objects*/
6 Array: int edgesOrdered[M], edgesSorted[M], edgesUndirected[Nedges],

A[Nedges]
7 Int: Nedges, Nverts

8 edgesOrdered←Reorder(edgesIn)
9 edgesSorted←Sort(edgesOrdered)

10 edgesUndirected←Unique(edgesSorted)
11 A, E←Unzip(edgesUndirected)
12 Nedges← |E|
13 C, I←ReduceByKey(A, 1⃗)
14 Nverts← |I|
15 V←ExclusiveScan(C)
16 //Continue with Algorithm 4 after returning.
17 return (C, E, I, V)

the second-index vertices, ei, are in E (line 11 of algorithm 3). For example, using

the edges from Figure 8, we can create the following A and E arrays:

[
0
1

0
3

0
4

1
2

1
3

1
4

2
4

2
5

3
4

]
Unzip−−−→

A :
[

0 0 0 1 1 1 2 2 3

]

E :
[

1 3 4 2 3 4 4 5 4

]
The array E represents the edge list in our v-graph structure;

5. Reduce: Use the ReduceByKey data-parallel primitive to compute the edge count

for each vertex (line 13 of algorithm 3). Using the arrays A and E from step 3, this

operation counts the number of adjacent edges from E that are associated with each

unique vertex in A. The resulting output arrays represent the lists I and C in our
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v-graph structure:

I :
[

0 1 2 3

]

C :
[

3 3 2 1

]
6. Scan: Run the ExclusiveScan data-parallel operation on the edge counts

array, C, to obtain indices into the edge list, E, for each entry in I (line 15

of algorithm 3). This list of indices represents the list V in our v-graph

(see Figure 8). In our running example, vertex 0 has 3 edges and vertex 1

has 3 edges, representing index segments 0-2 and 3-5 in E, respectively.

Thus, vertex 0 and vertex 1 will have index values of 0 and 3, respectively:

C : [3 3 2 1] ExclusiveScan−−−−−−−−→V : [0 3 6 8]

7.2.2 Hashing-Based Algorithm. We now describe our hashing-

based algorithm to perform maximal clique enumeration, which comprises the main

computational work. This algorithm takes the v-graph from the initialization phase as

input. In the following subsections we provide an overview of the algorithm, along with a

more detailed, step-by-step account of the primary data-parallel operations.

7.2.2.1 Algorithm Overview. We perform MCE via a bottom-up scheme

that uses multiple iterations, each consisting of a sequence of data-parallel operations.

During the first iteration, all 2-cliques(edges) are expanded into zero or more 3-cliques

and then tested for maximality. During the second iteration, all of these new 3-cliques are

expanded into zero or more 4-cliques and then tested for maximality, so on and so forth

until there are no newly-expanded cliques. The number of iterations is equal to the size of

the maximum clique, which itself is maximal and cannot be expanded into a larger clique.

Figure 9 presents the progression of clique expansion for the example graph in Figure 7.
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2-cliques: 0-1 0-3 0-4 1-2 1-3 1-4 2-4 2-5 3-4
3-cliques: 0-1-3 0-1-4 0-3-4 1-2-4 1-3-4
4-cliques: 0-1-3-4

Figure 9. Clique expansion process for an example undirected graph. In the first iteration,
only 2-cliques (edge pairs) are considered. Then, these cliques are expanded into larger 3-
cliques. The 4-clique in the final iteration cannot be expanded further since it is maximal;
this clique also cannot be expanded further because it is the maximum-sized clique. All
maximal cliques are denoted in boxes with bold font.

0

3 4

1

(a) 3-cliques: 0-3-4, 1-3-4

0

3 4

1

(b) 4-clique: 0-1-3-4

Figure 10. Example of clique expansion. As shown in (a), the set of four vertices,
0-1-3-4, is composed of two 3-cliques, 0-3-4 and 1-3-4. Both of these cliques share a
common 2-clique, 3-4, which is highlighted in bold. If (0,1) is an edge in the graph
(dotted line), as shown in (b), then 0-1-3-4 is a 4-clique.

During this process, we assess whether a given k-clique is a subset of one or more

larger (k+1)-cliques. If so, then the k-clique is marked as non-maximal and the new (k+

1)-cliques are stored for the next iteration; otherwise, the k-clique is marked as maximal

and discarded from further computation.

In order to determine whether a k-clique is contained within a larger clique, we

use a hashing scheme that searches through a hash table of cliques for another k-clique

with the same hash value. These matching cliques share common vertices and can be

merged into a larger clique if certain criteria are met. Thus, hashing is an important

element to our algorithm. Figure 10 illustrates the clique merging process between two

different k-cliques.
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7.2.2.2 Algorithm Details. Within each iteration, our MCE algorithm

consists of three phases: dynamic hash table construction, clique expansion, and clique

maximality testing. These phases are conducted in a sequence and invoke only data-

parallel operations; refer to algorithm 4 for pseudocode of these phases and operations.

In the following description, the 3-cliques from Figure 9 are used as a running example.

We start from iteration 3 with the linear array

cliques = [0-1-4 0-3-4 1-2-4 1-3-4 0-1-3].

of length (k = 3)× (numCliques = 5) = 15.

Dynamic Hash Table Construction: Our algorithm uses both sorting and

hashing as integral index-based search components. We discuss the following operations

that are used to construct a non-persistent hash table into which the cliques are hashed and

queried.

First, each clique is hashed to an integer (line 21 of algorithm 4). This is done

using the FNV-1a hash function [40], h, and taking the result modulo the number of

cliques. Further, only the clique’s last k− 1 vertex indices are hashed. Only the last

(k−1) vertices are hashed because we just need to search (via a hash table) for matching

(k− 1)-cliques to form a new (k+ 1)-clique. For example, cliques 0-3-4 and 1-3-4 both

hash their last two vertices to a common index, i.e., h(3-4), and can combine to form

0-1-3-4, since leading vertices 0 and 1 are connected (see Figure 10).

Next, we allocate an array, hashTable, of the same size as cliques, into which the

cliques will be rearranged (permuted) in order of hash value. In our example, there are

5 cliques, each with an Id in cliqueIds = [0 1 2 3 4]. After applying the hash operation,

these cliques have the hash values, hashes = [1 0 4 0 1]. Sorting cliqueIds in order of hash

value (hashes), we obtain sortedIds = [1 3 0 4 2] and sortedHashes = [0 0 1 1 4] (line

22 of algorithm 4). A ReduceByKey operation (line 24 of algorithm 4) computes a count
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for each unique hash value in hashes: unique = [0 1 4] and count = [2 2 1]. A series of

Scan, Map, and Scatter primitives are then employed on cliqueIds and counts to construct

offset index arrays (of length numCliques) into hashTable, denoted as cliqueStarts and

chainStarts, respectively (lines 26 and 27 algorithm 4). Permuting cliques by sortedIds

(line 23 of algorithm 4), we obtain

hashTable = [0-3-4 1-3-4︸ ︷︷ ︸
Chain0

0-1-4 0-1-3︸ ︷︷ ︸
Chain1

1-2-4︸ ︷︷ ︸
Chain2

]

tableIndex = [ 0 1 2︸︷︷︸
Clique0

3 4 5︸︷︷︸
Clique1

6 7 8︸︷︷︸
Clique2

9 10 11︸ ︷︷ ︸
Clique3

12 13 14︸ ︷︷ ︸
Clique4

]

cliqueIds = [0 1 2 3 4]

chainIds = [0 0 1 1 2]

cliqueStarts = [0 3 6 9 12]

chainStarts = [0 0 6 6 12],

with three chains of contiguous cliques, each sharing the same hash value. Since the

cliques within a chain are not necessarily in sorted order, the chain must be probed

sequentially using a constant number of lookups to find the clique of interest.

This probing is also necessary since different cliques may possess the same hash

value, resulting in collisions in the chain. For instance, cliques 0-1-3 and 0-1-4 both hash

to index h(1-3) = h(1-4) = 1, creating a collision in Chain1. Thus, the hash function is

important, as good function choices help minimize collisions, while poor choices create

more collisions and, thus, more sequential lookups.

This combined sorting- and hashing-based search technique effectively simulates

a hash table, since colliding cliques with the same hash value are grouped, or bucketed,

together and traditional open-addressing querying is supported via linear probing within a

bucket.

118



Clique Expansion: Next, a two-step routine is performed to identify and retrieve

all valid (k + 1)-cliques for each k-clique in hashTable. The first step focuses on

determining the sizes of output arrays and the second step focuses on allocating and

populating these arrays.

In the first step, a Map primitive computes and returns the number of (k + 1)-

cliques into which a k-clique can be expanded (line 29 of algorithm 4). The first step

works as follows. For a given k-clique, i, at cliqueStarts[i], we locate its chain at

chainStarts[i] and iterate through the chain, searching for another k-clique, j, with

(a) a larger leading vertex Id and (b) the same ending (k − 1) vertices; these two

criteria are needed to generate a larger clique and avoid duplicates (see Theorem A.0.1

and Theorem A.0.3). For each matching clique j in the chain, we perform a binary

search over the adjacent edges of i in the v-graph edge list E to determine whether

Algorithm 4: Pseudocode for our DPP-based MCE algorithm.
1 /*Input from Algorithm 3*/
2 v-graph: int C[Nverts], E[Nedges], I[Nverts], V[Nverts]
3 /*Output*/
4 Array: int[Nmaximal×NmaximalVerts]: maxCliques
5 /*Local Objects*/
6 int: Ncliques, NnewCliques, Nchains, Nmaximal , NmaximalVerts, iter
7 Array: int[Ncliques]: cliqueStarts, cliqueSizes, cliqueIds, sortedCliqueIds,

newCliqueCounts, scanNew, writeLocations
8 Array: float[Ncliques]: hashes, sortedHashes
9 Array: int[NnewCliques]: newCliqueStarts

10 Array: int[Ncliques× (iter+ 1)]: newCliques
11 Array: int[Ncliques× iter]: cliques, isMaximal, hashTable
12 Array: int[NnewCliques× (iter−1)]: repCliqueIds, repCliqueStarts, localIndices,

vertToOmit
13 Array: int[Nchains]: uniqueHashes, chainStarts, chainSizes, scanChainSizes

14 iter← 2
15 cliques←Get2-Cliques(E)
16 Ncliques← Nedges
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17 while Ncliques > 0 do
18 cliqueStarts← [iter× i], 0≤ i < Ncliques;
19 cliqueSizes← [iteri], 0≤ i < Ncliques;
20 cliqueIds← [i], 0≤ i < Ncliques;
21 hashes←ComputeHash(cliques, cliqueStarts, cliqueSizes);
22 sortedHashes, sortedIds←SortByKey(hashes, cliqueIds);
23 hashTable←Permute(sortedIds, cliques);
24 uniqueHashes, chainSizes←ReduceByKey(sortedHashes, 1⃗);
25 Nchains← |uniqueHashes|;
26 scanChainSizes←ScanExclusive(chainSizes);
27 chainStarts← [scanChainSizes[i]× iter];
28 isMaximal← 1⃗;
29 newCliqueCounts, isMaximal←FindCliques(v-graph, iter, cliqueStarts,

chainStarts, chainSizes, hashTable, isMaximal);
30 NnewCliques, scanNew←ScanExclusive(newCliqueCounts);
31 writeLocations←Multiply(scanNew, iter+ 1);
32 newCliques← 0⃗;
33 newCliques←GetCliques(v-graph, iter, writeLocations, chainStarts,

chainSizes, hashTable, newCliques);
34 repCliqueIds← [i0 . . . iiter−2], 0≤ i < NnewCliques;
35 newCliqueStarts← [iter× i], 0≤ i < NnewCliques;
36 repCliqueStarts←Gather(repCliqueIds, newCliqueStarts);
37 localIndices, vertToOmit←Modulus(iter−1, repCliqueIds);
38 isMaximal←TestForMaximal(repCliqueIds, repCliqueStarts, iter−1,

localIndices, vertToOmit, chainStarts, chainSizes, hashTable, isMaximal,
newCliques);

39 maxCliques = maxCliques + Compact(hashTable, isMaximal, IsIntValue(1));
40 Ncliques← NnewCliques;
41 iter← iter+ 1;
42 end
43 return (maxCliques)

the leading vertices of i and j are connected. If so, then, by Theorem A.0.1, cliques

i and j can be expanded into a larger (k + 1)-clique consisting of the two leading

vertices and the shared (k − 1) vertices, in ascending order. The total number of

expanded cliques for i is returned. In our example, this routine returns a counts array,
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newCliqueCounts = [1 0 0 0 0], indicating that only clique 0-3-4 could be expanded into a

new 4-clique; Figure 10 illustrates the generation of this 4-clique.

In the second step, an inclusive Scan primitive is invoked on newCliqueCounts

to compute the sum of the clique counts, numNewCliques (line 30 of algorithm 4). The

second step works as follows. This sum is used to allocate a new array, cliques, of size

numNewcliques · (k + 1) to store all of the (k + 1)-cliques, along with a new offset

index array with increments of (k + 1). With these arrays, we invoke a data-parallel

Map operation that is identical to the Map operation of the first step, except that, upon

discovery of a new (k+ 1)-clique, we write the clique out to its location in cliques (using

the offset array), instead of incrementing a newCliques counter (line 32 of algorithm 4).

For the running example, the new cliques array consists of the single 4-clique, 0-1-3-4.

Clique Maximality Test: Finally, we assess whether each k-clique is maximal

or not. Prior to Clique Expansion, a bit array, isMaximal, of length numCliques, is

initialized with all 1s. During the first step of Clique Expansion, if a clique i merged

with one or more cliques j, then they all are encompassed by a larger clique and are

not maximal; thus, we set isMaximal[i] = isMaximal[ j] = 0, for all j. Since each

(k+ 1)-clique includes (k+ 1) distinct k-cliques—two of which are the ones that formed

the (k + 1)-clique—we must ensure that the remaining k− 1 k-cliques are marked as

non-maximal with a value of 0 in isMaximal. In our example, the 4-clique 0-1-3-4 is

composed of 4 different 3-cliques: 1-3-4, 0-3-4, 0-1-4, and 0-1-3. The first two were

already marked as non-maximal, but the remaining two are non-maximal as well, and

need to be marked as so in this phase. Our approach for marking these remaining cliques

as non-maximal is as follows.

First, we use a custom modulus map operator (line 34 of algorithm 4) to construct,

in parallel, an array of length numNewCliques× (k− 1), with (k− 1) local indices per
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new (k+ 1)-clique: [20 . . .k0 . . .2numCliques−1 . . .knumCliques−1]. Then, we parallelize over

this index array via a Map operation (line 35 of algorithm 4) that, given an index 2≤ i≤ k

and corresponding clique 0≤ t ≤ numCliques−1, determines whether the k-clique formed

by omitting vertex t[i] is maximal or not. If the k-clique is discovered in hashTable (using

the same hashing approach as in Clique Expansion), then it is marked as 0 in isMaximal.

A Compact primitive then removes all k-cliques in hashTable that have isMaximal =

0, leaving only the maximal cliques, which are appended in an auxiliary array (line 36

of algorithm 4).

The algorithm terminates when numNewCliques = 0 (line 17 of algorithm 4).

The generated cliques array of new (k + 1)-cliques becomes the starting array (line 37

of algorithm 4) for the next iteration (line 38 of algorithm 4), if the termination condition

is not met.

7.3 Experimental Overview

We assess the performance of our MCE algorithm in two phases, using a

collection of benchmark input graphs and both CPU and GPU systems. In the first

phase, we run our algorithm–denoted as Hashing—on a CPU platform and compare its

performance with three state-of-the-art MCE algorithms—Tomita [142], E ppstein [37],

and Svendsen [141]. In the second phase, we evaluate portable performance by testing

Hashing on a GPU platform and comparing the runtime performance with that of the

CPU platform, using a common set of benchmark graphs. The following subsections

describe our software implementation, hardware platforms, and input graph datasets.

7.3.1 Software Implementation. Both of our MCE algorithms are

implemented using the platform-portable VTK-m toolkit [149], which supports fine-

grained concurrency for data analysis and scientific visualization algorithms. With

VTK-m, a developer chooses data parallel primitives to employ, and then customizes
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Graph Collection V E Maxsize Cliquesmax Cliquesall Maxratio
amazon0601 Stanford 403,394 3,387,388 11 1,023,572 18,043,744 0.06
cit-Patents Stanford 3,774,768 16,518,947 11 14,787,032 36,180,638 0.41
email-Enron Stanford 36,692 183,831 20 226,859 107,218,609 < 0.01
loc-Gowalla Stanford 196,591 950,327 29 1,212,679 1,732,143,035 ≪ 0.01
soc-wiki-
Vote

Stanford 7,115 103,689 17 459,002 41,792,503 0.01

roadNet-CA Stanford 1,965,206 2,766,607 4 2,537,996 2,887,325 0.88

brock200-2 DIMACS 200 9,876 12 431,586 6,292,399 0.07
hamming6-4 DIMACS 64 704 4 464 1,904 0.24
MANNa9 DIMACS 45 918 16 590,887 160,252,675 < 0.01
p_hat300-1 DIMACS 300 10,933 8 58,176 367,022 0.16
UG100k.003 DIMACS 100,000 14,997,901 4 10,589,956 19,506,096 0.54

Table 12. Statistics for a subset of the test graphs used in this MCE study. Graphs are
either from the Stanford Large Network Dataset Collection [137] or the DIMACS
Challenge data set [32]. V is the number of graph vertices, E is the number of edges,
Maxsize is the size of the largest clique, Cliquesmax is the number of maximal cliques,
Cliquesall is the total number of cliques, and Maxratio is the ratio of Cliquesmax to
Cliquesall .

those primitives with functors of C++-compliant code. This code is then used to create

architecture-specific code for architectures of interest, i.e., CUDA code for NVIDIA

GPUs and Threading Building Blocks (TBB) code for Intel CPUs. Thus, by refactoring

an algorithm to be composed of VTK-m data-parallel primitives, it only needs to be

written once to work efficiently on multiple platforms. In our experiments, the TBB

configuration of VTK-m was compiled using the gcc compiler, the CUDA configuration

using the nvcc compiler, and the VTK-m index integer (vtkm::Id) size was set to 64

bits. The implementation of this algorithm is available online [149], for reference and

reproducibility.

7.3.2 Test Platforms. We conducted our experiments on the following two

CPU and GPU platforms:

– CPU: A 16-core machine running 2 nodes, each with a 3.2 GHz Intel Xeon(R) E5-

2667v3 CPU with 8 cores. This machine contains 256GB DDR4 RAM memory.
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All the CPU experiments use the Intel TBB multi-threading library for many-core

parallelism.

– GPU: An NVIDIA Tesla K40 Accelerator with 2880 processor cores, 12 GB

memory, and 288 GB/sec memory bandwidth. Each core has a base frequency of

745 MHz, while the GDDR5 memory runs at a base frequency of 3 GHz. All GPU

experiments use NVIDIA CUDA V6.5.

7.3.3 Test Data Sets. We applied our algorithm to a selected set of

benchmark and real-world graphs from the DIMACS Challenge [32] and Stanford Large

Network Dataset collections [137]. Table 12 lists a subset of these test graphs, along

with their statistics pertaining to topology and clique enumeration. For each graph, we

specify the number of vertices (V ), edges (E), maximum clique size (Maxsize), number of

maximal cliques (Cliquesmax), number of total cliques (Cliquesall), and ratio of maximal

cliques to total cliques (Maxratio). The DIMACS Challenge data set includes a variety

of benchmark instances of randomly-generated and topologically-challenging graphs,

ranging in size and connectivity. The Stanford Large Network Data Collection contains

a broad array of real-world directed and undirected graphs from social networks, web

graphs, road networks, and autonomous systems, to name a few.

7.4 Results

In this section, we present the results of our set of MCE experiments, which

consists of two phases: CPU and GPU.

7.4.1 Phase 1: CPU. This phase assesses the performance of our Hashing

algorithm on a CPU architecture with the set of graphs listed in Table 13 and Table 14.

For each graph in Table 13, the total runtime (in seconds) of Hashing is compared

with that of Tomita and E ppstein, two serial algorithms that have demonstrated state-

of-the-art performance for MCE. The set of graphs used for comparison was adopted
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Graph Tomita Eppstein Hashing
amazon0601 ** 3.59 1.69
cit-Patents ** 28.56 3.27
email-EuAll ** 1.25 2.24
email-Enron 31.96 0.90 17.91
roadNet-CA ** 2.00 0.27
roadNet-PA ** 1.09 0.16
roadNet-TX ** 1.35 0.19
brock200-2 0.55 1.22 0.71
hamming6-4 < 0.01 < 0.01 < 0.01
johnson8-4-4 0.13 0.24 0.50
johnson16-2-4 5.97 12.17 5.10
MANNa9 0.44 0.53 27.74
p_hat300-1 0.07 0.15 0.07
soc-wiki-Vote 0.96 1.14 6.14
keller4 5.98 11.53 7.22

Table 13. Total CPU execution times (sec) for our Hashing MCE algorithm, as compared
to the serial Tomita and E ppstein algorithms, over a set of common test graphs. Results
with double asterisk symbols indicate that the graph could not be processed due to
memory limitations. Results in bold indicate that Hashing achieved the fastest execution
time for that particular graph.

Graph Svendsen Hashing
cit-Patents 109 3.27
loc-Gowalla 112 545.25
UG100k.003 353 5.39
UG1k.30 129 11.10

Table 14. Total CPU execution times (sec) for our Hashing MCE algorithm, as compared
to the distributed-memory Svendsen algorithm, over a set of common test graphs. Results
in bold indicate that Hashing achieved the fastest execution time for that particular graph.

from the paper of Eppstein et. al [37], which compared the CPU results of three newly-

introduced MCE algorithms with that of the Tomita algorithm. In this phase, we report

the best total runtime among these three algorithms as E ppstein. Moreover, we only

test on those graphs from [37] that are contained with the DIMACS Challenge and

Stanford Large Network Data collections. Among these graphs, 9 were omitted from

the comparison because our Hashing algorithm exceeded available shared memory on
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our single-node CPU system (approximately 256GB). Each of these graphs has a very

large number of non-maximal cliques relative to maximal cliques. Thus, most of these

non-maximal cliques are progressively expanded and passed on to the next iteration of our

algorithm, increasing the computational workload and storage requirements. Reducing

our memory needs and formalizing the graph properties that lead to a high memory

consumption by our algorithm will be investigated in future work.

From Table 13, we observe that Hashing performed comparably or better on more

than half—8 out of 15—of the test graphs. Using the graph statistics from Table 12, it is

apparent that our algorithm performs best on graphs with a high ratio of maximal cliques

to total cliques, Maxratio. This is due to the fact that, upon identification, maximal cliques

are discarded from further computation in our algorithm. So, the larger the number of

maximal cliques, the smaller the amount of computation and memory accesses that will

need to be performed. Tomita and E ppstein do not perform as well on these types of

graphs due to the extra sequential recursive branching and storage of intermediary cliques

that is needed to discover a large number of maximal cliques. From Table 13 we see that

Tomita exceeded the available shared memory of its CPU system (approximately 3GB)

for the majority of the graphs on which we possess the faster runtime.

Next, we compare Hashing to the CPU-based distributed-memory MCE algorithm

of Svendsen et al. [141], which we refer to as Svendsen. We use the set of 12 test graphs

from [141], 10 of which are from the Stanford Large Network Data Collection and 2

of which are from the DIMACS Challenge collection. As can be seen in Table 14, we

attain significantly better total runtimes for 3 of the graphs. Each of these graphs have

high values of Maxratio, corroborating the findings from the CPU experiment of Table 13.

For the remaining 9 graphs, one completed in a very slow runtime (loc-Gowalla) and

8 exceeded available shared memory. We do not report the graphs that failed to finish
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Graph Tomita-
E ppstein

Hashing-
CPU

Hashing-
GPU

amazon0601 3.59 1.69 0.86
email-Enron 0.90 17.91 15.56
email-EuAll 1.25 2.24 1.52
roadNet-CA 2.00 0.27 0.17
roadNet-PA 1.09 0.16 0.11
roadNet-TX 1.35 0.19 0.13
brock200-2 0.55 0.71 0.45
p_hat300-1 0.07 0.07 0.09
soc-wiki-Vote 0.96 6.14 4.78

Table 15. Total GPU execution times (sec) for our Hashing MCE algorithm over a set
of test graphs. For comparison, the best execution time between Tomita and E ppstein
is listed, along with the CPU execution time of Hashing. Results in bold indicate that
Hashing-GPU attained the fastest execution time for that particular graph.

processing due to insufficient memory; each of these graphs have low values of Maxratio.

The loc-Gowalla graph just fits within available device memory, but possesses a low

Maxratio (see Table 12), leading to the significantly slower runtime than Svendsen.

7.4.2 Phase 2: GPU. Next, we demonstrate and assess the portable

performance of Hashing by running it on a GPU architecture, using the graphs

from Table 15. Each GPU time is compared to both the Hashing CPU time and the best

time between the Tomita and E ppstein algorithms. From Table 15 we observe that, for 8

of the 9 graphs, Hashing GPU achieves a speedup over the CPU. Further, for 5 of these

8 graphs, Hashing GPU performs better than both Hashing CPU and Tomita/E ppstein.

These speedups demonstrate the ability of a GPU architecture to utilize the highly-parallel

design of our algorithm, which consists of many fine-grained and compute-heavy data-

parallel operations. Moreover, this experiment demonstrates the portable performance of

our algorithm, as we achieved improved execution times without having to write custom,

optimized GPU functions within our algorithm; the same high-level algorithm was used

for both the CPU and GPU experiments.
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7.5 Conclusion

This chapter contributes a novel DPP-based algorithm for the MCE graph analysis

application. As a major component of this algorithm, we develop an index-based search

solution to a sub-routine that finds pairs of (k− 1)-cliques to merge into larger (k + 1)-

cliques. Our solution for this routine involves a combined sorting- and hashing-based

technique that simulates a non-persistent hash table for looking up matching (k− 1)-

cliques. While this technique is not one of the hashing-based techniques introduced

in Chapters III and IV, we discovered that it was necessary in order to obtain best

performance for the iterative merging routine, as neither sorting nor hashing can solve

the routine alone. Sorting the cliques into buckets in order of hash function value avoids

building a new hash table of cliques each algorithm iteration, which, for hundreds of

millions of integer values, was shown in Chapter VI to be a slower operation than sorting.

The organization of cliques into hash table-like buckets then enables a direct query lookup

into a bucket for a matching clique entry.

Our MCE algorithm is designed entirely in terms of DPP and tested on both

CPU and GPU devices, demonstrating platform-portability across many-core systems.

Compared to state-of-the-art MCE implementations, our algorithm achieves competitive

to leading runtime performance on large real-world benchmark graphs with a high ratio of

maximal cliques to total cliques. Based on these findings, we believe that our combined

sorting- and hashing-based solution is the best index-based search technique for this

particular MCE analysis algorithm on diverse many-core systems. These findings inform

our dissertation question and will be further synthesized in Chapter X.
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CHAPTER VIII

GRAPH-BASED IMAGE SEGMENTATION

In this chapter, we assess the viability of DPP-based design patterns for a graph-

based image processing task that consists of index-based search routines, including our

DPP-based MCE algorithm from Chapter VII. In particular, we develop a new data-

parallel algorithm, DPP-PMRF, for performing image segmentation using Markov

Random Fields (MRFs), which are a form of probabilistic graphical model (PGM). For

a collection of geological image data, we demonstrate single-node, platform-portable

image segmentation runtime performance that exceeds that of a state-of-the-art reference

algorithm.

The content of this chapter is adopted primarily from a collaborative conference-

accepted publication composed by myself, Talita Perciano, Colleen Heinemann, David

Camp, Wes Bethel, and Hank Childs [82]. As lead author, I designed and implemented

our algorithm and wrote a significant portion of the manuscript text. Colleen Heinemann

conducted experiments for the reference algorithm, generated plots for the experimental

results, and contributed to the text for the experimental overview. Talita Perciano and Wes

Bethel contributed text related to the motivation, background, image data descriptions,

and concluding remarks. Talita also performed the verification tests for our segmentation

output and composed the section text related to this. David Camp and Hank Childs both

provided valuable guidance towards motivating the work and designing our experiments.

The remainder of this chapter proceeds as follows. Section 1 provides a

background and survey of related work on MRF-based image segmentation. Section

2 introduces our DPP-PMRF algorithm. Section 3 reviews our experimental setup and

presents the results and analysis of the experiments. Section 4 summarizes our findings

for the dissertation question
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8.1 Background

In this section, we first provide a background on image segmentation and its

existing graph-based approaches using MRFs. Then, we summarize related work towards

data-parallelism and platform-portable performance in graph-based methods.

8.1.1 MRF-based Image Segmentation. Image segmentation is a compute-

intensive task, and is a key component of multi-stage scientific analysis pipelines,

particularly those that work with large-scale image-based data obtained by experiments

and advanced instruments, such as the X-ray imaging devices located at the Advanced

Light Source at the Lawrence Berkeley National Lab. As such instruments continually

update in spatial and spectral resolution, there is an increasing need for high-throughput

processing of large collections of 2D and 3D image data for use in time-critical activities

such as experiment optimization and tuning [10]. Our work here is motivated by the need

for image analysis tools that perform well on modern platforms, and that are expected to

be portable to next-generation hardware.

The process of segmenting an image involves separating various phases or

components from the picture using photometric information and/or relationships between

pixels/regions representing a scene. This essential step in an image analysis pipeline has

been given great attention recently when studying experimental data [123]. There are

several different types of image segmentation algorithms, which can be divided into

categories such as: threshold-based, region-based, edge-based, clustering-based, graph-

based and learning-based techniques. Of these, the graph- and learning-based methods

tend to present the highest accuracy, but also the highest computational cost.

Graph-based methods are well-suited for image segmentation tasks due to

their ability to use contextual information contained in the image, i.e., relationships

among pixels and/or regions. The probabilistic graphical model (PGM) known as a
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Markov Random Field (MRF) [86] is an example of one such method. MRFs represent

discrete data by modeling neighborhood relationships, thereby consolidating structure

representation for image analysis [85].

An image segmentation problem can be formulated using an MRF model on a

graph G, where the segmented image is obtained through an optimization process to find

the best labeling of the graph. The graph G(V ,E) is constructed from an input image,

where V is the set of nodes and E is the set of edges. Each node Vi represents a region

(set of pixels) and two nodes, Vi and Vj, are connected by an edge if their corresponding

regions share a boundary.

In an MRF model, the optimization process uses a global energy function to

find the best solution to a similarity problem, such as the best pixel space partition. This

energy function consists of a data term and a smoothness term. For image segmentation,

we use the mean of the intensity values of a region as the data term. The smoothness term

takes into account the similarity between regions. The goal is to find the best labeling for

the regions, so that the similarity between two regions with the same labels is optimal for

all pixels [92].

Given an image represented by y = (y1, . . . ,yN), where each yi is a region, we

want a configuration of labels x = (x1, . . . ,xN) where xi ∈ L and L is the set of all possible

labels, L= {0,1,2, . . . ,M}. The MAP criterion [86] states that one wants to find a labeling

x∗ that satisfies x∗ = argmax
x
{P(y|x,Θ)P(x)}, which can be rewritten in terms of the

energies [86] as x∗ = argmin
x
{U(y|x,Θ) +U(x)} (please refer to [124] for details

regarding the prior and likelihood energies used in our approach).

Despite their high accuracy, MRF optimization algorithms have high

computational complexity (NP-hard). Strategies for overcoming the complexity, such

as graph-cut techniques, are often restricted to specific types of models (first-order
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MRFs) [69] and energy functions (regular or submodular) [69]. In order to circumvent

such drawbacks, recent works [96, 97] have proposed theoretical foundations for

distributed parameter estimation in MRF. These approaches make use of a composite

likelihood, which enables parallel solutions to sub problems. Under general conditions

on the composite likelihood factorizations, the distributed estimators are proven to

be consistent. The Linear and Parallel (LAP) [104] algorithm parallelizes naturally

over cliques and, for graphs of bounded degree, its complexity is linear in the number

of cliques. It is fully parallel and, for log-linear models, it is also data efficient. It

requires only the local statistics of the data, i.e., considering only pixel values of local

neighborhoods, to estimate parameters.

Perciano et al. [124] describe a graph-based model, referred to as Parallel Markov

Random Fields (PMRF), which exploits MRFs to segment images. Both the optimization

and parameter estimation processes are parallelized using the LAP method. In the work

we present here, we use an OpenMP-based PMRF implementation as the “reference

implementation,” and reformulate this method using DPPs. We study the viability of

using DPPs as an alternative way to formulate an implementation to this challenging

graph-based optimization problem, and compare shared-memory scalability of the DPP

and reference implementation.

8.1.2 Performance and Portability in Graph-based Methods. The

idea of formulating algorithms as sequences of highly optimized kernels, or motifs, is

not new: this approach has formed the basis for nearly all numerical library and high

performance simulation work going back almost 40 years, to the early implementations

of LINPACK [34]. Over the years, several different highly optimized and parallel-capable

linear algebra libraries have emerged, which serve as the basis for constructing a diverse

collection of scientific computing applications. Such libraries include ScaLAPACK [24],
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BLASFEO (Basic Linear Algebra Subroutines for Embedded Optimization) [42] and

MAGMA (Matrix Algebra on GPU and Multicore Architectures) [143], to name a few.

The concept of using combinations of highly optimized building blocks has

served as guiding design principle for many works focusing on high performance graph

processing tools. The Boost Graph Library (BGL) [135] is a seminal implementation of

data structures and methods for operating on graphs. The Multi-thread Graph Library

(MTGL) [9] adapts and focuses BGL design principles for use on multithreaded

architectures, where latencies associated with irregular memory access are accommodated

by increasing the thread count to fully utilize memory bandwidth. More recent works,

such as CombBLAS [18] and GraphBLAS [63], provide the means to implement graph-

based algorithms as sequences of linear algebra operations, with special attention to

the irregular access patterns of sparse vector and matrix operations, and on distributed-

memory platforms. GraphMat [139] provides the means to write vertex programs and

map them to generalized sparse matrix vector multiplication operations that are highly

optimized for multi-core processors. The STAPL parallel graph library [50] focuses

more on the data structures and infrastructure for supporting distributed computations that

implement computational patterns (e.g., map-reduce) for user-written graph algorithms.

Like many of these previous works, we are also examining the concept of platform

portable graph algorithm construction using optimized building blocks. Compared

to these previous works, our focus is narrower in terms of graph algorithm (MRF

optimization) and building block (DPP). An open question, which is outside the scope

of this work, is whether or not the MRF optimization problem can be recast in a way that

leverages platform-portable and parallel implementations such as GraphBLAS [18, 63],

which accelerates graph operations by recasting computations as sparse linear algebra

problems. Unlike many graph problems, the MRF optimization problem here is not a
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Algorithm 5: Pseudocode of the benchmark Parallel MRF (PMRF) algorithm for
performing graph-based image segmentation using Markov Random Fields.
1 Require: Original image, oversegmentation, number of output labels
2 Ensure: Segmented image and estimated parameters
3 Initialize parameters and labels randomly
4 Create graph from oversegmentation
5 Calculate and initialize k-neighborhoods from graph
6 for each EM iteration do
7 for each neighborhood of the subgraph do
8 Compute MAP estimation
9 Update parameters

10 end
11 end
12 Update labels
13 return (Segment labels, Label Parameters)

sparse-data problem: as part of the problem setup, the graphical model is represented

internally, in the reference implementation, in dense array form, and then the energy

optimization computations are performed on densely packed arrays. Our DPP-PMRF

implementation recasts these dense-memory computations using DPPs, which are

highly amenable to vectorization. A focal point of this study is to better understand the

performance comparison and characterization between a reference implementation and

one derived from DPPs.

8.2 Algorithm Design

This section introduces our new DPP-based PMRF image segmentation algorithm,

which we refer to as DPP-PMRF. We first review the foundational PMRF approach upon

which our work is based, and then present our reformulation of this approach using DPP.

8.2.1 Parallel MRF. The parallel MRF algorithm (PMRF) proposed by

Perciano et al. [124] is shown in Algorithm 5. It consists of a one-time initialization

phase, followed by a compute-intensive, primary parameter estimation optimization

phase. The output is a segmented image.
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The goal of the initialization phase is the construction of an undirected graph

of pixel regions. The graph is built based on an oversegmented version of the original

input image. An oversegmentation is a partition of the image into non-overlapping

regions (superpixels), each with statistically similar grayscale intensities among member

pixels [113]. The partitioning of the image we are using in this work is irregular, i.e.

the non-overlapping regions can have different sizes and shapes. Each vertex V of the

graph represents a region in the oversegmented image (i.e., a spatially connected region

of pixels having similar intensity), and each edge E indicates spatial adjacency between

regions. Given the irregular nature of the oversegmentation, the topological structure of

the graph varies accordingly.

Next, in the main computational phase, we define an MRF model over the set

of vertices, which includes an energy function representing contextual information

of the image. In particular, this model specifies a probability distribution over the k-

neighborhoods of the graph. Each k-neighborhood consists of the vertices of a maximal

clique, along with all neighbor vertices that are within k edges (or hops) from any of

the clique vertices; in this study, we use k = 1. Using OpenMP, the PMRF algorithm

performs energy function optimization, in parallel, over the neighborhoods, each of which

is stored as a single row in a ragged array. This optimization consists of an iterative

invocation of the expectation-maximization (EM) algorithm, which performs parameter

estimation using the maximum a posteriori (MAP) inference algorithm [68]. The goal of

the optimization routine is to converge on the most-likely (minimum-energy) assignment

of labels for the vertices in the graph; the mapping of the vertex labels back to pixels

yields the output image segmentation.

Our proposed DPP-based algorithm overcomes several important problems

encountered in the PMRF implementation such as non-parallelized steps of the algorithm
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(e.g., partitioning of the graph and MAP estimation computation), and platform

portability. In particular, the OpenMP design of the PMRF conducts outer-parallelism

over the MRF neighborhoods, but does not perform inner-parallelism of the optimization

phase for each neighborhood (e.g., the energy function computations and parameter

updates). Thus, the ability to attain fine-grained concurrency and greater parallelism is

limited by the non-parallel computations within each outer-parallel optimization task.

Finally, for the construction of MRF neighborhoods, our new method makes use of our

DPP-based maximal clique enumeration (MCE) algorithm from Chapter VII.

8.2.2 DPP Formulation of PMRF. We now describe our DPP-based PMRF

algorithm (DPP-PMRF) to perform image segmentation. Our algorithm redesigns PMRF

in terms of DPPs to realize outer-level parallelism over MRF neighborhoods, and inner-

level parallelism within the optimization routine for the vertices of each neighborhood.

This data-parallel approach consists of an initialization phase followed by the main MRF

optimization phase; refer to Algorithm 6 for the primary data-parallel steps.

8.2.2.1 Initialization. In this initial phase, we first construct an undirected

graph G representing the connectivity among oversegmented pixel regions in the input

image; refer to Section 8.2.1; Then, we enumerate all of the maximal cliques within

G, yielding a set of complete subgraphs that form the basis of the MRF neighborhood

structure.

Our initialization procedure is similar to that of the reference PMRF, but differs in

the following ways. First, all of our initialization operations and algorithms are designed

in terms of DPP, exposing high levels of data-parallelism throughout the entire image

segmentation pipeline. Second, we represent G in a compressed, sparse row (CSR)

format that fits compactly within shared memory; see Chapter VII for details on the DPP

construction of this graph format.
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Algorithm 6: Pseudocode of our DPP-based DPP-PMRF algorithm for
performing graph-based image segmentation using Markov Random Fields.
1 Require: Original image, oversegmentation, number of output labels
2 Ensure: Segmented image and estimated parameters
3 Create graph from oversegmentation in parallel
4 Enumerate maximal cliques of graph in parallel
5 Initialize parameters and labels randomly
6 Construct k-neighborhoods from maximal cliques in parallel
7 Replicate neighborhoods by label in parallel
8 for each EM iteration do
9 Gather replicated parameters and labels in parallel

10 for each vertex of each neighborhood do
11 MAP estimation computed in parallel
12 Compute MAP estimation
13 end
14 end
15 Update labels and parameters in parallel
16 return (Segment labels, Label Parameters)

8.2.2.2 Optimization. Given the graph G and its set of maximal cliques from

the initialization, we proceed to the optimization phase, which consists of the following

two primary data-parallel tasks: construction of neighborhoods over the maximal cliques

and EM parameter estimation, the latter of which comprises the main computational work

in this phase. Prior to constructing the neighborhoods, the mean and standard deviation

parameters, µ and σ , of each label are randomly initialized to values between 0 and

255, representing the 8-bit grayscale intensity spectrum; in this study we focus on binary

image segmentation with two labels of 0 and 1. Additionally, the label for each vertex of

G is randomly initialized to either 0 or 1.

Construction of Neighborhoods: In the PMRF algorithm, 1-neighborhoods

are serially constructed from maximal cliques during the initialization process of the

algorithm. Our approach constructs the 1-neighborhoods before the parameter estimation
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phase and consists of the following data-parallel steps that operate on individual vertices,

as opposed to entire maximal cliques, exposing more inner, fine-grained parallelism.

1. Find Neighbors: Invoke a data-parallel Map primitive to obtain, for each vertex, a

count of the number of neighbors that are within 1 edge from the vertex and not a

member of the vertex’s maximal clique.

2. Count Neighbors: Call a Scan primitive to add the neighbor counts, the sum of

which is used to allocate a neighborhoods array.

3. Get Neighbors: In a second pass to a Map primitive, populate the neighborhoods

array with the neighbors, parallelizing over vertices as before.

4. Remove Duplicate Neighbors: Since multiple vertices within the same maximal

clique may output common 1-neighbors in the neighborhoods array, successively

invoke SortByKey and Unique primitives to remove the duplicate neighbors. The

SortByKey primitive contiguously arranges vertices in the array in ascending order

of their vertex Id and clique Id pairs. Then, the Unique primitive removes these

duplicate, adjacent vertices, leaving a final neighborhoods array in which each set

of neighbors is arranged in order of vertex Id.

EM Parameter Estimation: We formulate the EM parameter estimation via the

following data-parallel steps.

1. Replicate Neighborhoods By Label: Next, each neighborhood is replicated for

each of the two class output labels. With a sequence of Map, Scan, and Gather

DPPs, we obtain a set of expanded indexing arrays, each of size 2× |hoods|. The

testLabel array indicates which replication of the neighborhood a given element

belongs to; e.g., vertex element 2 belongs to the first copy of its neighborhood,

denoted by a 0 label. The hoodId array gives the Id of the neighborhood to which
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element belongs, and the oldIndex array contains back-indices into the original

hoods array, for each replicated element.

hoods = [0 1 2 5 1 3 4]

testLabel = [0 0 0 0 1 1 1 1 0 0 0 1 1 1]

oldIndex = [0 1 2 3 0 1 2 3 4 5 6 4 5 6]

hoodId = [0 0 0 0 0 0 0 0 1 1 1 1 1 1]

repHoods = [0 1 2 5︸ ︷︷ ︸
Hood0
Label0

0 1 2 5︸ ︷︷ ︸
Hood0
Label1

1 3 4 1 3 4]

The replication of the hoods array, repHoods, is not allocated in memory, but is

simulated on-the-fly with a memory-free Gather DPP using oldIndex.

2. For each EM iteration i:

– Compute Energy Function: Using the array of back-indices (oldIndex) into

the neighborhoods array (hoods), we invoke a set of Gather DPP to create

replicated data arrays of size 2×|hoods|:

vertLabel = [1 1 0 1 1 1 0 1 1 0 1 1 0 1]

vertMu = [40 20 55 25 40 20 55 25 20 65 35 20 65 35]

labelMu = [30 30 60 30 30 30 60 30 30 60 30 30 60 30]

We then invoke a Map DPP to compute an energy function value for each

of the replicated neighborhood vertices. This operation parallelizes over the

data arrays and calculates, for each vertex of a neighborhood, the energy, or

deviation, between its actual grayscale intensity value (vertMu) and that of the

label mean parameter (labelMu).

– Compute Minimum Vertex and Label Energies: Within the array of

computed energy function values, each vertex of a given neighborhood is
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associated with two values, one for each of the labels. In order to determine

the minimum energy value between these labels, we invoke a SortByKey DPP,

which makes each pair of energy values contiguous in memory. Then, we call

consecutive ReduceByKey⟨Min⟩ DPP on the sorted energy values to obtain the

minimum energy value for each vertex:

– Compute Neighborhood Energy Sums: Given the minimum energies

values, we call a ReduceByKey⟨Add⟩ DPP to compute the sum of the values

for each neighborhood.

– MAP Convergence Check: We maintain an array that stores the energy

sum of each neighborhood at the end of every EM iteration. Using a Map

DPP, we measure the amount of change in neighborhood energy sums from

the previous L iterations (L = 3 in this study), and mark a neighborhood as

converged if this change falls below a constant threshold of 1.0×10−4. Once

all neighborhoods have converged—assessed via a Scan DPP primitive—we

end the EM optimization.

3. Update Output Labels: Invoke a Scatter DPP to write the minimum-energy label

of each neighborhood vertex to its corresponding location in the global vertex label

array.

4. Update Parameters: Use a sequence of Map, ReduceByKey, Gather, and Scatter

DPP, to update the parameters of each label (µ and σ ) as a function of a) the

intensity values of the vertices assigned to the labels (i.e., minimum energy labels),

and b) the sum of the per-label and per-vertex energy function values.

5. EM Convergence Check: We maintain an array that stores, for each EM iteration,

the total sum of the neighborhood energy value sums after the final MAP iteration.

Calling a Scan DPP on these neighborhood sums yields this total EM sum. Similar
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to the MAP convergence check, we assess, via a Map DPP, the variation in EM

sums over the previous L iterations.

During our experimentation, we find that most invocations of the EM optimization

converge within 20 iterations; thus, we use that number of iterations in this study. Finally,

we return the estimated parameters and assignment of labels to vertices as output. These

labels can be mapped back to pixel regions of the vertices to produce the final segmented

image.

8.3 Results

The experimental results in this section serve to answer two primary questions.

First, in Section 8.3.2, we examine the question of correctness: is the new DPP-

PMRF algorithm producing correct results? Second, in Section 8.3.3, we are interested

in understanding how well the DPP-PMRF implementation performs on different

modern CPU and GPU platforms: does DPP-PMRF demonstrate platform-portable

performance? Because these experiments examine different questions, each uses a

different methodology, which we present in conjunction with the experiment results.

Section 8.3.1 describes the source datasets and the computational platforms that we use

in both sets of experiments.

8.3.1 Source Data, Reference Implementation, and Computational

Platforms.

8.3.1.1 Datasets. We test the DPP-PMRF implementation using two types

of image-based datasets: one is synthetic and the other is output from a scientific

experiment. The former is used to verify the accuracy of the proposed algorithm against

a known benchmark that offers a ground-truth basis of comparison. The latter shows how

DPP-PMRF performs on a real-world problem.
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Synthetic data. We selected the synthetic dataset from the 3D benchmark made

available by the Network Generation Comparison Forum (NGCF) 1. The NGCF datasets

are a global, recognized standard to support the study of 3D tomographic data of porous

media. The datasets provided are binary representations of a 3D porous media. For the

purposes of this analysis, we corrupted the original stack by noise (salt-and-pepper) and

additive Gaussian with σ = 100. Additionally, we also simulate ringing artifacts [123]

into the sample to closer resemble real-world results. For the segmentation algorithm

analysis, the corrupted data serves as the “original data” and the binary stack as the

ground-truth. A full synthetic dataset is 268 MB in size, and consists of 512 image slices

of dimensions 512×512. The chosen dataset emulates a very porous fossiliferous outcrop

carbonate, namely Mt. Gambier limestone from South Australia. Because of the more

homogeneous characteristic of this dataset, its related graph contains a larger number of

smaller-sized neighborhoods.

Experimental data. This dataset contains cross-sections of a geological sample

and conveys information regarding the x-ray attenuation and density of the scanned

material as a gray scale value. This data was generated by the Lawrence Berkeley

National Laboratory Advanced Light Source X-ray beamline 8.3.2 2 [33]. The scanned

samples are pre-processed using a separate software that provides reconstruction of the

parallel beam projection data into a 3 GB stack of 500 image slices with dimensions of

1813×1830. This dataset contains a very different and more complex set of structures to

be segmented. Consequently, compared to the synthetic data, this experimental data leads

to a denser graph with many more neighborhoods of higher complexity.

1http://people.physics.anu.edu.au/~aps110/network_comparison

2microct.lbl.gov
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8.3.1.2 Hardware Platforms. Our verification and performance tests were

run on two different multi-core platforms maintained by the National Energy Research

Scientific Computing Center (NERSC). For each platform, all tests were run on a single

node (among many available). Specifications for these two platforms are as follows:

1. Cori.nersc.gov (KNL): Cray XC40 system with a partition of 9,688 nodes,

each containing a single-socket 68-core 1.4 GHz Intel Xeon Phi 7250 (Knights

Landing (KNL)) processor and 96 GB DDR4 2400 GHz memory. With hyper-

threading, each node contains a total of 272 logical cores (4 hyper-threads per

core)3.

2. Edison.nersc.gov (Edison): Cray XC30 system comprised of 5586 nodes,

each containing two 12-core 2.4 GHz Intel Ivy Bridge processors (two sockets) and

64 GB DDR3 1866 MHz memory. With hyper-threading, each node contains a total

of 48 logical cores (24 logical cores per socket of a node)4

The intention of running on the KNL and Edison systems is to create an opportunity for

revealing architecture-specific performance characteristics.

Performance tests were also conducted on a general-purpose GPU platform:

1. K40: NVIDIA Tesla K40 Accelerator with 2880 processor cores, 12 GB memory,

and 288 GB/sec memory bandwidth. Each core has a base frequency of 745 MHz,

while the GDDR5 memory runs at a base frequency of 3 GHz.

For both the experimental and synthetic image datasets, the peak memory usage of

DPP-PMRF is well within the maximum available memory of the tested CPU (between

3Cori configuration page: http://www.nersc.gov/users/computational-systems/
cori/configuration/

4Edison configuration page: http://www.nersc.gov/users/computational-systems/
edison/configuration/

143

http://www.nersc.gov/users/computational-systems/cori/configuration/
http://www.nersc.gov/users/computational-systems/cori/configuration/
http://www.nersc.gov/users/computational-systems/edison/configuration/
http://www.nersc.gov/users/computational-systems/edison/configuration/


(a) Original (b) Ground-truth (c) DPP-PMRF
result

(d) Simple
threshold

(e) 3D rendering
of the original
data

(f) 3D rendering
of the DPP-PMRF
result

Figure 11. Results of applying DPP-PMRF image segmentation to the synthetic image
dataset. (a) Region of interest from the noisy data; (b) Ground-truth; (c) Result obtained
by DPP-PMRF; (d) Result obtained by using a simple threshold; (e) 3D rendering of the
original noisy image dataset; (f) 3D rendering of the result obtained by DPP-PMRF.

64 GB and 96 GB) and GPU (12 GB) platforms. The execution of DPP-PMRF results in

a maximum memory footprint of between 300 MB to 2 GB for the experimental images

and between 100 MB and 400 MB for the synthetic images.

8.3.1.3 Software Environment. Our DPP-PMRF algorithm is implemented

using the platform-portable VTK-m toolkit [148]. With VTK-m, a developer chooses the

DPPs to employ, and then customizes those primitives with functors of C++-compliant

code. This code then invokes back-end, architecture-specific code for the architecture of

execution (enabled at compile-time), e.g., CUDA Thrust code for NVIDIA GPUs and

Threading Building Blocks (TBB) code for Intel CPUs.

In our CPU-based experiments, VTK-m was compiled with TBB enabled (version

17.0.2.174) using the following C++11 compilers: GNU GCC 7.1.0 on Edison and Intel

ICC 18.0.1 on KNL. In our GPU-based experiments, VTK-m was compiled with CUDA
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(a) Original (b) Reference
result

(c) DPP-PMRF
result

(d) Simple
threshold

(e) 3D rendering
of the original data

(f) 3D rendering
of the DPP-PMRF
result

Figure 12. Results of applying DPP-PMRF image segmentation to the experimental
image dataset. (a) Region of interest from the original data; (b) Reference result; (c)
Result obtained by DPP-PMRF; (d) Result obtained by using a simple threshold; (e)
3D rendering of the original image dataset; (f) 3D rendering of the result obtained by
DPP-PMRF.

enabled (version 8.0.61) using the NVIDIA CUDA NVCC compiler. For all experiments,

version 1.2.0 of VTK-m was used.

With TBB enabled in VTK-m, each invocation of a DPP executes the underlying

TBB parallel algorithm implementation for the primitive. The basic input to each of

these parallel algorithms is a linear array of data elements, a functor specifying the DPP

operation, and a task size that sets the number of contiguous elements a single thread

can operate on. A partitioning unit invokes threads to recursively split, or divides in half,

the array into smaller and smaller chunks. During a split of a chunk, the splitting thread

remains assigned to the left segment, while another ready thread is assigned to the right

segment. When a thread obtains a chunk the size of a task, it executes the DPP functor

operation on the elements of the chunk and writes the results into an output array. Then,
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the thread is ready to be scheduled, or re-assigned, to another chunk that needs to be split

further. This work-stealing scheduling procedure is designed to improve load balancing

among parallel threads, while minimizing cache misses and cross-thread communication.

8.3.1.4 Reference Implementation of PMRF. In this study, we compare

the performance and correctness of the new DPP-PMRF implementation with the

PMRF reference implementation developed with OpenMP 4.5, which is described in

Section 8.2.1. We take advantage of OpenMP loop parallelism constructs to achieve

outer-parallelism over MRF neighborhoods, and make use of OpenMP’s dynamic

scheduling algorithm in the performance studies (see Section 8.3.3.3 for details).

The OpenMP-based implementation was built with the following C++11

compilers (same as for the DPP-based version): GNU GCC 7.1.0 on Edison and Intel

ICC 18.0.1 on KNL.

8.3.2 Verification of Correctness. The following subsections present a set

of tests aimed at verifying that DPP-PMRF computes the correct, ground-truth image

segmentation output.

8.3.2.1 Methodology: Evaluation Metrics. In order to determine the precision

of the segmentation results we use the metrics precision = T P
T P+FP , recall = T P

T P+FN , and

accuracy = T P+T N
T P+T N+FP+FN , where T P stands for True Positives, T N for True Negatives,

FP for False Positives, and FN for False Negatives.

In addition, we also use the porosity (ratio between void space and total volume),

or ρ = Vv
Vt

,, where Vv is the volume of the void space and Vt is the total volume of the void

space and solid material combined.

8.3.2.2 Verification Results. Figure 11 shows the results of applying DPP-

PMRF to the synthetic data. Figure 11(a) presents a 2D region of interest from the

corrupted data, Figures 11(b-d) show the ground-truth, the result from DPP-PMRF
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and the result using a simple threshold, respectively, and Figures 11(e-f) shows the 3D

renderings of both the corrupted data and the DPP-PMRF result. We observe a high

similarity between the DPP-PMRF result and the ground-truth, indicating a high precision

when compared to the simple threshold result. For this synthetic dataset, the verification

metrics obtained are a precision of 99.3%, a recall of 98.3%, and an accuracy of 98.6%.

Following the same methodology, we present the results using the experimental

dataset in Figure 12. Figures 12(a-d) shows regions of interest from the original data, the

result from the reference implementation, the DPP-PMRF result, and a simple threshold

result, respectively. Much like the results using the synthetic data, we observe a close

similarity between the DPP-PMRF result and the reference result. The differences

observed between the results are usually among the very small regions in the image,

where small variations of labeling of the graph could lead to the same minimum energy

value. For this dataset the verification metrics obtained are a precision of 97.2%, a recall

of 95.2% and an accuracy of 96.8%.

8.3.3 Performance and Scalability Studies. The next subsections present

a set of studies aimed at verifying the performance, scalability, and platform-portability

of DPP-PMRF, as compared to a OpenMP-parallel reference implementation and serial

baseline.

8.3.3.1 Methodology. The objectives for our performance study are as follows.

First, we are interested in comparing the absolute runtime performance of the OpenMP

and DPP-PMRF shared-memory parallel implementations on modern multi-core CPU

platforms. Second, we wish to compare and contrast their scalability characteristics, and

do so using a strong-scaling study, where we hold the problem size constant and increase

concurrency. Finally, we assess the platform-portable performance of DPP-PMRF by

executing the algorithm on a general-purpose GPU platform and comparing the runtime
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Figure 13. Comparison of absolute image segmentation runtimes of the DPP and
OpenMP implementations at varying concurrency, on both platforms, and both sample
datasets. The horizontal axis is concurrency level, or the number of physical cores used
on a single node. Each bar represents the ratio of runtimes of the DPP-PMRF to the
OpenMP code. The vertical axis measures how much faster the DPP-PMRF code is than
the OpenMP code for a given dataset, on a given platform, and a given concurrency. A bar
height of 1.0 means both codes have the same runtime; a bar height of 2.0 means the DPP
code ran in half the time of the OpenMP code.

performance to a serial (non-parallel) baseline and the CPU execution from the strong-

scaling study.

To obtain elapsed runtime, we run these two implementations in a way where we

iterate over 2D images of each 3D volume (synthetic data, experimental data). We report

a single runtime number, which is the average of elapsed runtime for each 2D image

in the 3D volume. The runtime takes into account only the optimization process of the

algorithm as this is the portion of the algorithm that is most computationally intensive.

From runtime measurements, we report results using charts that show time vs.

concurrency, which are often known as “speedup” charts. Moreland and Oldfield [108]

suggest that such traditional performance metrics may not be effective for large-scale

studies for problem sizes that cannot fit on a single node. Since our problems all fit within

a single node, and are of modest scale, we are showing traditional speedup charts.
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Speedup is defined as S(n, p) = T ∗(n)
T (n,p) where T(n,p) is the time it takes to run the

parallel algorithm on p processes with an input size of n, and T*(n) is the time for the best

serial algorithm on the same input.

8.3.3.2 CPU Runtime Comparison: OpenMP vs. DPP-PMRF. The first

performance study question we examine is a comparison of runtimes between the

OpenMP and DPP-PMRF implementations. We executed both codes at varying levels

of concurrency on the Cori and Edison CPU platforms, using the two different datasets

as input. Each concurrency level represents the number of physical cores used within a

single node. Hyper-threading was active in each experiment, resulting in more logical

(virtual) cores than physical cores being utilized per node (see Section 8.3.1.2 for

hardware configuration details). The runtimes for this battery of tests are presented in

Fig. 13 in a way that is intended to show the degree to which DPP-PMRF is faster, or

slower, than the OpenMP version.

In Fig. 13, each bar is computed as the quotient of the OpenMP runtime and the

DPP runtime. A bar height of 1.0 means both codes have the same runtime; a bar height

of 2.0 means DPP-PMRF ran in half the time of the OpenMP code. A bar height of less

than 1.0 would mean that the OpenMP code ran faster than DPP-PMRF. These results

reveal that DPP-PMRF significantly outperforms the OpenMP code, by amounts ranging

from 2X to 7X , depending upon the platform and concurrency level.

The primary factor leading to this significant performance difference is the

fact that the DPP formulation makes better use of the memory hierarchy. Whereas the

OpenMP code operates in parallel over rows of a ragged array, DPP-PMRF recasts the

problem as a series of atomic data parallel operations. To do so, it creates 1D arrays,

which are then partitioned at runtime across a thread pool. Such a formulation is much

more amenable to vectorization, and results in significantly more uniform and predictable
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Figure 14. Image segmentation runtime speedup of synthetic and experimental image
datasets on the Edison and Cori CPU platforms.

memory access patterns. The size of these partitions, or chunks, is determined by TBB in

a way to best match the cache characteristics and available parallelism of the underlying

platform (see Section 8.3.1.3 for details). In contrast, the OpenMP code “chunk size”

is the size of the given graph neighborhood being processed. There is a significant

performance difference that results when using a consistent and well chosen “blocking

factor,” which results in better use of locality, in both space and time [30]. Our results are

consistent with previous literature, which suggest one key factor to high performance on

contemporary architectures is through code vectorization ([84]).

At higher levels of concurrency on the KNL platform, we see a significant

performance decrease in DPP-PMRF, which is unexpected. At 64 cores, the runtime for

DPP-PMRF actually increases compared to the runtime for 32 cores. Examination of

detailed per-DPP timing indicates the runtime for two specific data parallel primitives,

SortByKey and ReduceByKey, are the specific operations whose runtime increases

going from 32 to 64 cores. These data parallel primitives rely on an underlying vendor

implementation in VTK-m with TBB as the back-end. Further investigation is needed to

better understand why these underlying vendor implementations decrease in performance

going from 32 to 64 cores.
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8.3.3.3 Strong Scaling Results. The second performance study question we

examine is the degree to which the OpenMP and DPP-PMRF implementations speed up

with increasing concurrency. Holding the problem size fixed, we vary the concurrency

on each platform, for each of the two image datasets. Concurrency ranges from 1 to N,

where N is the maximum number of cores on a node of each of the two platforms.

Results from this study are shown in Fig. 14, which show speedup curves for

both implementations, on both platforms, at varying concurrency. Looking at these

results, the discussion that follows centers around two main themes. First, how well are

these codes scaling, and what might be the limits to scalability? Second, how do scaling

characteristics change with increasing concurrency, platform, and dataset?

In terms of how well these codes are scaling, the ideal rate of speedup would be

equal to the number of cores: speedup of 2 on 2 cores, speedup of 4 on 4 cores, and so

forth. The first observation is the both codes exhibit less than ideal scaling. The OpenMP

code shows the best scaling on the synthetic dataset on both platforms, even though its

absolute runtime is less than DPP-PMRF (except for one configuration, at 64 cores on the

KNL platform). The reasons for why these codes exhibit less than ideal scaling differ for

each of the codes.

The OpenMP code, which uses loop-level parallelism over the neighborhoods of

the graph, has as critical section that serializes access by all threads. This critical section

is associated with a thread writing its results into an output buffer: each thread is updating

a row of a ragged array. We encountered what appears to be unexpected behavior with the

C++ compiler on both platforms in which the output results were incorrect, unless this

operation was serialized (see Section 8.3.1.4 for compilation details). Future work will

focus on eliminating this serial section of the code to improve scalability.
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The DPP-PMRF code, which is a sequence of data parallel operations, depends

upon an underlying vendor-provided implementation of key methods. In these studies,

an analysis of runtime results looking at individual runtime for each of the DPP

methods (detail not shown in Fig. 14), indicates that two specific DPP operations are

limited in their scalability. These two operations, a SortByKey and ReduceByKey,

exhibit a maximum of about 5X speedup going from 1 to 24 cores on Edison, and

about 11X speedup going from 1 to 64 cores on Cori. As a result, the vendor-supplied

implementation of the underlying DPP is in this case the limit to scalability. We have

observed in other studies looking at scalability of methods that use these same DPP on

GPUs [81], that the vendor-provided DPP implementation does not exhibit the same

limit to scalability. In that study, the sort was being performed on arrays of integers. In

the present study, we are sorting pairs of integers, which results in greater amounts of

memory access and movement, more integer comparisons, as well as additional overhead

to set up the arrays and work buffers for both those methods.

On Edison, both codes show a tail-off in speedup going from 12 to 24 cores. A

significant difference between these platforms is processor and memory speed: Edison

has faster processors and slower memory; Cori has slower processors and faster memory.

The tail-off on Edison, for both codes, is most likely due to increasing memory pressure,

as more cores are issuing an increasing number of memory operations.

For the OpenMP code on both platforms, we see a noticeable difference in

speedup curves for each of the two different datasets. On both platforms, the OpenMP

code scales better for the synthetic dataset. Since the algorithm performance is a function

of the complexity of the underlying data, specifically neighborhood size, we observe

that these two datasets have vastly different demographics of neighborhood complexity

(not shown due to space limitations). In brief, the synthetic dataset has a larger number
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Platform /
Dataset

ExperimentalSynthetic

Serial CPU 284.51 44.63
DPP-PMRF
CPU

22.77 7.09

DPP-PMRF
GPU

6.55 1.71

Speedup-CPU 13X 7X
Speedup-GPU 44X 27X

Table 16. GPU image segmentation runtimes (sec) for DPP-PMRF over the experimental
and synthetic image datasets, as compared to both serial and parallel CPU executions
of DPP-PMRF on the KNL platform. The GPU speedup for a dataset is the serial CPU
runtime divided by the DPP-PMRF GPU runtime. The CPU speedup is the DPP-PMRF
CPU runtime divided by the DPP-PMRF GPU runtime.

of smaller-sized neighborhoods and the histogram indicates bell-shaped distribution. In

contrast, the experimental dataset has many more neighborhoods of higher complexity,

and the distribution is very irregular. Because the OpenMP code parallelizes over

individual neighborhoods, it is not possible to construct a workload distribution that

attempts to create groups of neighborhoods that result in an even distribution of work

across threads. We are relying on OpenMP’s dynamic scheduling to achieve good load

balance in the presence of an irregular workload distribution. In this case, the result is the

more irregular workload results in lower level of speedup for the OpenMP code on both

platforms. In contrast, the DPP code reformulates this problem in a way that avoids this

limitation.

8.3.3.4 Platform Portability: GPU Results. The final performance study

question we examine is an assessment of the platform-portable performance of DPP-

PMRF. We ran the algorithm on an NVIDIA Tesla K40 GPU accelerator, using the

experimental and synthetic image datasets as input. The average GPU runtime for each

dataset is compared to the average KNL CPU runtimes of both a serial (single core,
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hyper-threading disabled) execution of DPP-PMRF and the parallel execution of DPP-

PMRF at maximum concurrency (68 cores, hyper-threading enabled; see Section 8.3.3.3).

From Table 16 we observe that, for both of the image datasets, DPP-PMRF

achieves a significant speedup on the GPU over the serial version, with a maximum

speedup of 44X on the experimental images. Further, for both datasets, DPP-PMRF

attains greater runtime performance on the GPU (maximum speedup of 13X on the

experimental images), as compared to its execution on the KNL CPU platform. These

speedups demonstrate the ability of a GPU architecture to utilize the highly-parallel

design of our algorithm, which consists of many fine-grained and compute-heavy data-

parallel operations. Moreover, this experiment demonstrates the portable performance

of DPP-PMRF, as we achieved improved runtimes without having to write custom,

optimized NVIDIA CUDA GPU code within our algorithm; the same high-level

algorithm was used for both the CPU and GPU experiments.

8.4 Conclusion

This chapter contributes a new DPP-based algorithm, DPP-PMRF, for a graph-

based image segmentation application, using Markov Random Fields (MRF). DPP-

PMRF is comprised of an iterative optimization routine that performs several aggegrate

(e.g., summation and maximum) calculations to arrive at the most-probable segment

labels for each vertex in an image graph. This optimization routine operates on possibly-

overlapping subgraphs and, thus, distinct vertices may appear multiple times within the

optimization. We deploy a sorting- and reduction-based search technique to aggregate the

values of duplicate vertices and use these aggregate values to inform the parameters for

the next iteration of the optimization. We found this technique to be the more-appropriate

than a hashing-based technique for this particular analysis algorithm and optimization
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routine, since the performance of sorting and reducing basic numerical values each

iteration exceeded that of building and probing a hash table structure.

DPP-PMRF is designed entirely in terms of DPP and tested on both CPU and

GPU devices, demonstrating platform-portability across many-core systems. Compared

to a state-of-the-art, CPU-based reference implementation, DPP-PMRF achieves

competitive to leading segmentation runtime performance on large stacks of 2D real-

world geological images. Moreover, DPP-PMRF attained a runtime speedup on a GPU

device, as compared to that on a CPU device. Based on these findings, we believe that

our sorting- and reduction-based solution is the best index-based search technique for this

particular graph-based image analysis algorithm on diverse many-core systems. These

findings inform our dissertation question and will be further synthesized in Chapter X.
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Part III

Best Practices
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In this part of the dissertation, we discover, synthesize, and recommend a set

of best practices for attaining best platform-portable performance with the index-based

search techniques of Parts I and II.
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CHAPTER IX

BEST PRACTICES FOR DUPLICATE ELEMENT SEARCHING

This chapter presents best practices for the duplicate element index-based search

techniques of Chapters III, using EFC as the experimental application (V). We discovered

that the performance of these techniques can vary unexpectedly with certain combinations

of hash function, architecture, and data set. In this chapter, we investigate several different

test configurations, in an effort to better understand anomalous behavior. Using various

metrics, we are able to understand the causes of unusual performance and specify

recommendations for choices that will perform well over a variety of configurations.

The content of this chapter is primarily adopted from a collaborative conference

publication completed by myself, Kenneth Moreland, Matthew Larsen, and Hank

Childs [81]. As lead author of this publication, I contributed the majority of the software

development, experimental analysis, and paper writing. Kenneth Moreland and Matthew

Larsen helped me conduct experiments on different compute platforms, formulate the

final experimental design, generate plots, and analyze the experimental results. Hank

Childs provided valuable guidance towards the motivation of the work and editing the

final submission.

9.1 Introduction

Searching for duplicate elements comes up in multiple scientific visualization

contexts, most notably in EFC (see Chapter V). There are two main index-based

approaches for identifying duplicates: (1) sorting all elements and looking for identical

neighbors, and (2) hashing all elements and looking for collisions. Data-parallel variants

of these approaches were introduced in Chapter III and then used in Chapter V for

the EFC task. However, the performance of the algorithm can vary unexpectedly

with certain combinations of hash function, architecture, and data set. In this chapter,
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we investigate several different test configurations, in an effort to better understand

anomalous behavior. Using various metrics, we are able to understand the causes of

unusual performance. We believe the contributions of this chapter are two-fold. First,

we contribute a better understanding of platform portable algorithms for identifying

duplicates and their pitfalls, and specify recommendations for choices that will perform

well over a variety of configurations. Second, we believe the result is useful in identifying

potential performance issues with DPP algorithms.

9.2 Experiment Overview

To better understand the behavior of EFC with respect to algorithm design

choices, particularly for that of hash functions, we conducted experiments that varied

three factors:

– Algorithm (7 options)

– Hardware architecture (3 options)

– Data set (34 options)

We did run the cross-product of tests (714 = 7 × 3 × 34), but our results section

presents the relevant subset that capture the underlying behavior.

9.2.1 Algorithm. We studied three types of algorithms, which we refer

to as SortyById, Sort, and Hash-Fight in this chapter (note that Hash-Fight is not

the same as our HashFight hash table of Chapters IV and VI, but refers to the “hash-

fighting" approach used in our hashing-based EFC). Sort and Hash-Fight each need to

be coupled with a hashing function. We considered three different hashing functions:

XOR, FNV1a, and Morton. In total, we considered seven algorithms: Sort+FNV1a,

Sort+XOR, Sort+Morton, Hash-Fight+FNV1a, Hash-Fight+XOR, Hash-Fight+Morton,

and SortByID. We provide a review of the three algorithms and three hash functions in
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the following subsections. Refer to Chapters III and V for additional details regarding

SortById and Hash-Fight.

9.2.1.1 Algorithms. SortById: The idea behind this approach is to use sorting

to identify duplicate faces. First, faces are placed in an array and sorted. Each face is

identified by its indices. The sorting operation requires a way of comparing two faces

(i.e., a “less-than” test); we order the vertices within a face, and then compare the vertices

with the lowest index, proceeding to the next indices in cases of ties. The array can then

be searched for duplicates in consecutive entries. Faces that repeat in consecutive entries

are internal, and the rest are external.

SortById is likely not optimal, in that it requires storage for each index in the

face (e.g., three locations for each point in a triangular face of a tetrahedron), resulting

in a penalty for sorting extra memory. This motivates the next approach, which is to use

hashing functions to reduce the amount of memory for each face in the sort.

Sort: We denote the algorithm that modifies SortById to sort hash values rather

than indices. For each face, the three vertex indices are hashed, and the resulting integer

value is used to represent the face. However, this creates additional work. The presence

of collisions forces us to add a step to the algorithm that verifies whether matching hash

values actually belong to the same face. In this study, we explore the tradeoff between

sorting multiple values per face versus resolving collisions. Further, the specific choice of

hash function may affect performance, and we explore this issue as well.

Hash-Fight: Traditionally, hash collisions are handled via a chaining or open-

addressing approach. While these approaches are straight-forward to implement in a

serial setting, they do not directly translate to a parallel setting. For example, if multiple

threads on a GPU map to the same hash entry at the same time, then the behavior may be

non-deterministic, unless atomics are employed.
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In Chapter III, hash collisions are addressed in a data-parallel setting via a hashing

scheme that uses multiple iterations. In this scheme, which we denote as Hash-Fight for

this chapter, no care is taken to detect collisions or prevent race conditions via atomics.

Instead, every face is simultaneously written to the hash table, possibly overwriting

previously-hashed faces. The final hash table will then contain the winners of this “last

one in" approach. However, our next step is to check, for each face, whether it was

actually placed in the hash table. If so, the face is included for calculations during that

iteration. If not, then the face is saved for future iterations. All faces are eventually

processed, with the number of iterations equal to the maximum number of faces hashed to

a single index.

9.2.1.2 Hash Function. The following hash functions are considered in our

study, each returning a hash value in the form of a 32-bit unsigned integer.

XOR: The XOR hashing function is a very simple bitwise exclusive-or operation on

all the indices of a face. The XOR hash is very fast to compute but makes little effort

to avoid collisions.

FNV1a: FNV1a hashing [40] starts with an offset value (2166136261 for this study)

and then iteratively multiplies the current hash by a prime number (16777619 for this

study) and performs an exclusive-or with the vertex index. The addition of the offset

and prime number pseudo-randomize the hash values, which helps reduce collisions.

However, FNV1a takes longer to compute because of its additional calculations.

Morton: The Morton z-order function maps a multi-dimensional point coordinate

to a single Morton code value. It does this by interleaving and combining the binary

representations of the coordinate values, while preserving the spatial locality of the

points [110]. In this study, we compute a separate Morton code for each of the three
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vertex indices of a triangular cell face, and then add the three Morton codes together to

form a hash value.

9.2.2 Hardware Architecture. We ran our tests on the following three

architectures:

1. Haswell: Dual Intel Xeon Haswell E5-2698 v3, each with 16 cores running at 2.30

GHz and 2 SMT hardware threads and a total of 512 GB of DDR4 memory.

2. Knights Landing: An Intel Knights Landing Self Hosting Xeon Phi CPU with

72 cores, running in quadrant cluster mode and flat memory node. Each core

has 4 threads and runs at a base clock frequency of 1.5 GHz. This processor also

maintains 16 KB of on-package MCDRAM memory and 96 GB of DDR4 memory.

3. Tesla: An NVIDIA Tesla P100 Accelerator with 3,584 processor cores, 16 GB

memory, and 732 GB/sec memory bandwidth. Each core has a base frequency of

1,328 MHz, and a boost clock frequency of 1480 MHz.

9.2.3 Data set. For all of our experiments, we used variants of an

unstructured tetrahedral mesh derived by tetrahedralizing a uniform grid. We considered

17 different data set sizes ranging from 4 million to 667 million cells, which translates to

a range of 16 million to 2.6 billion faces. Additionally, we considered two types of mesh

connectivity indexing schemes:

1. Regular indexing: mesh connectivity was left unaltered. Mesh coordinates that are

spatially close were generally located nearby in memory.

2. Randomized indexing: mesh connectivity was randomized, i.e., mesh coordinates

were scattered randomly in memory.

We considered randomized indexing to study the behavior of the different algorithms and

hashing functions with different types of memory access patterns. We viewed these two
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patterns as ends of a spectrum (coherent access versus incoherent access), and we believe

real world data sets will fall within these two extremes. Between the 17 data set sizes and

two indexing schemes, there were 34 total data sets used in the study.

To obtain our randomized indexing, we randomized the location of the vertices

and cells in the regular data sets and adjusted the cell indices to match the new locations

of the vertices. The randomized topology has the following two effects. First, indices are

no longer near one another. For example, a tetrahedral cell in the regular topology might

have indices 14, 21, 16 and 25, while, with the randomized topology, the same cell might

have indices 512, 1, 73, and 1024. Second, accessing the vertices of a cell will exhibit

poor memory access patterns since each point vertex is likely on a different cache line.

9.3 Results

Our study contains three phases, each of which assesses the impact of different

factors on performance: hash function, architecture, and data set regularity. In this

section, we present and analyze the results of these phases.

9.3.1 Phase 1: Hash Functions. This phase examines the choice of hash

function, and considers the performance over our 7 combinations of algorithm type and

hash function. We also vary the data set size, specifically looking at all 17 regularly-

indexed data sets. The only architecture considered in this phase is the Intel Haswell

CPU, although we vary the architecture in subsequent phases.

We first analyze the performance of the Hash-Fight algorithm. From Figure 15,

we observe that Hash-Fight+FNV1a is consistently the fastest algorithm across the entire

range of data set sizes. Hash-Fight+Morton is a close second, up until large data set sizes.

When the data set size jumps from 530 million cells to 670 million cells, its execution

time more than doubles. This jump in execution time is partially attributed to an increase

in the number of hash-fight iterations, from 18 to 24. This increase in iterations is the
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Figure 15. EFC runtime comparison of all algorithm types and all hash functions on
Intel’s Haswell architecture with regularly-indexed 3D data sets. 10 trials were conducted
per algorithm for each data set, and each trial is represented by a dot. The trendlines plot
the average times of these trials.

result of the number of hash collisions tripling from 619 million to 1.9 billion, as seen

in Figure 16 (Morton regular plot). We believe that the large increase in hash collisions

occurred because the spatial locality of the Morton z-order curve deteriorates as the cell

count significantly increases, due to the additive property of the Morton hash function.

This increase in collisions was also seen with Sort+Morton.

Additionally, Hash-Fight coupled with the XOR hash function tends to perform

poorly compared to the couplings with FNV1a and Morton. From Figure 16 (XOR

regular plot), Hash-Fight+XOR consistently yields the largest number of hash collisions,

by a wide margin, among the Hash-Fight algorithms. Overall, the trends for collisions in

Figure 2 closely match the trends for Hash-Fight execution times in Figure 1.
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Figure 16. A comparison of the number of collisions produced by the 3 hash functions
considered in this study, over both regular and random indexed 3D data sets for EFC. The
Morton and FNV1a functions have little variation in collisions between data set type and,
thus, have overlapping plots.

Operation SortBy
Id

Sort
XOR

Sort
FNV1a

Sort
Morton

prepInputFaces 0.88 0.86 0.86 0.87
hashFaces 2.05 1.03 1.04 1.13
hashSortReduce 25.37 9.41 23.59 10.82
findInternalFaces 0.17 5.72 4.89 1.89
prepOutputFaces 0.56 0.29 0.46 0.41
Total Time 29.03 17.31 30.84 15.12

Table 17. Intel Haswell CPU runtimes (sec) for each of the primary data-parallel
operations of the Sort algorithms for EFC. Each time is the average of the 10 trials
conducted on the 4003 grid data set with approximately 318 million input cells.

We now consider the performance of the Sort algorithm. Although Hash-Fight

generally performs better with FNV1a and worse with XOR, the opposite outcome tends

to occur with Sort.
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From Figure 15, we observe that Sort+XOR begins to significantly outperform

Sort+FNV1a as the number of input cells increases. Although the XOR hash function

produces many collisions, which increases the time to find internal faces, it also results

in a markedly faster sort time (see the hashSortReduce row in Table 17). We discovered

that the XOR hash function happens to create hash values that are already close to being

in sorted order for these data set structures. The parallel sort algorithm, which comes

from the TBB library [127], is a parallel version of quicksort, and this algorithm runs

much faster on data that is pre-sorted or close to being sorted. The benefits from the faster

sorting outweigh the extra time needed to resolve collisions.

Finally, the performance of SortById confirms our hypothesis from Section 9.2.1.1

that the cost of sorting multiple values per face (3 points per triangular face) is larger than

the cost of resolving collisions from hashing the face. As Table 17 indicates, SortById

consumes most of its total runtime ordering the 3 face points (hashFaces operation) and

then sorting and reducing the faces (hashSortReduce operation).

9.3.2 Phase 2: Architectures. In this phase, we conduct the same set of

experiments from Phase 1 on two additional architectures—Intel Knights Landing (KNL)

CPU and Nvidia Tesla P100 GPU—and compare the results to that of the Intel Haswell

CPU experiments from Phase 1. Figures 17 and 18 present the results of the KNL and

Tesla experiments, respectively. Note that, due to machine memory restrictions, only the

11 datasets up to 213 million cells (3503 grid) are considered for KNL, and only the 5

datasets up to 40 million cells (2003 grid) are considered for Tesla.

Figures 17 and 18 reveal that the Sort and Hash-Fight algorithm types almost

always run the fastest when coupled with the FNV1a or Morton hash functions on both

the KNL and Tesla. Additionally, Hash-Fight+FNV1a and Hash-Fight+Morton are

consistently the highest-performing algorithms for both architectures. From Phase 1, we
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Figure 17. EFC runtime comparison of all algorithms and all hashing functions on
Intel’s Knights Landing architecture with regularly indexed 3D data sets. 10 trials were
conducted per algorithm for each data set, and each trial is represented by a dot. The
trendlines plot the average times of these trials.

discovered that the performance of an algorithm deteriorated for larger numbers of input

cells with the Morton function and Haswell architecture. The analysis revealed that this

lower performance was due to an increase in hash collisions. On the KNL and Tesla, this

increase in collisions still occurs, but does not negatively affect the performance as it did

on Haswell, at least for the size of data sets that fit within these architectures’ memory.

This finding may also be due to architecturally-specific traits in the memory hierarchies

(e.g., NUMA, cache infrastructure, etc.); we will investigate this further in future work.

Similar to the findings of Phase 1 on Haswell, the Sort algorithm type performs

very well on KNL when coupled with the XOR function. However, Sort+XOR is the

worst-performing algorithm, along with SortById, on the Tesla architecture. This reversal

in performance of Sort+XOR on the Tesla can be attributed to the sub-routine that finds
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Figure 18. EFC runtime comparison of all algorithms and all hashing functions on
NVIDIA’s Tesla P100 GPU with regularly indexed 3D data sets. 10 trials were conducted
per algorithm for each data set, and each trial is represented by a dot. The trendlines plot
the average times of these trials.

all internal faces. From Table 18, we observe that XOR, FNV1a, and Morton all take

approximately the same amount of time (0.15 seconds) to sort and reduce the hash values,

but differ greatly in the time needed to find internal faces, with XOR requiring almost

a whole second longer to complete. This is because XOR yielded a substantially larger

number of hash collisions, which generated more neighbor searches to resolve collisions

and find the internal faces. This matches the finding from Phase 1. However, unlike in

Phase 1, the XOR algorithm did not yield a significantly faster sort time to compensate

for the increase in time caused by the added collisions. This is because the GPU’s parallel

sort algorithm, which comes from the Thrust library [8, 117], is based on radix sorting,

which is both faster in general and much less sensitive to initial ordering than quicksort.
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Operation Sort
XOR

Sort
FNV1a

Sort
Morton

prepInputFaces 0.02 0.02 0.02
hashFaces 0.01 0.01 0.01
hashSortReduce 0.13 0.15 0.15
findInternalFaces 1.09 0.13 0.11
prepOutputFaces 0.03 0.02 0.01
Total Time 1.28 0.33 0.30

Table 18. EFC runtimes (sec) for each of the primary data-parallel operations of the
Sort algoritms on an Nvidia Tesla P100 GPU. Each time is the average of the 10 trials
conducted on the 2003 grid data set with approximately 40 million input cells.

Contrarily, Sort+FNV1a and Sort+Morton perform very well on the Tesla because

the majority of the work involves sorting operations, which are very suitable for massive

thread and data-parallelism. Using the CUDA Thrust radix sort, the runtime needed

to sort the larger arrays of unique hash values for Sort+FNV1a and Sort+Morton was

significantly faster than that of Intel TBB quicksort, which is used in our Haswell and

KNL experiments. Replacing the Thrust radix sort with a known-to-be slower Thrust

merge sort revealed the same sorting pattern from Phase 1, in which Sort+FNV1A takes

longer to perform the hash value sorting than Sort+XOR and Sort+Morton. This indicates

that the choice of the sort algorithm matters a lot, with the radix sort being faster in

general.

9.3.3 Phase 3: Irregular Data Sets. In this phase of the study, we evaluate

the performance of the algorithms when using data sets with randomized, irregular

topologies. Figures 19, 20, and 21 compare algorithm runtimes of regular and randomized

topologies on the Haswell, KNL, and Tesla architectures, respectively.

The XOR and FVN1a hash functions are both based on creating an index-based

hash and, for CPU architectures, SortById, Sort+XOR, and Hash-Fight+XOR pay

significant penalties with the randomized topology. For SortById and Sort+XOR, the

initial positions of the keys are much closer to their sorted positions with the regular
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Algorithm Mesh
SortByID regular 42.7s
SortByID random 68.3s

Sort+XOR regular 25.1s
Sort+XOR random 47.8s

Sort+FNV1a regular 43.0s
Sort+FNV1a random 46.0s

Sort+Morton regular 21.8s
Sort+Morton random 35.8s

Hash-Fight+XOR regular 43.0s
Hash-Fight+XOR random 88.4s

Hash-Fight+FNV1a regular 16.3s
Hash-Fight+FNV1a random 24.4s

Hash-Fight+Morton regular 16.6s
Hash-Fight+Morton random 28.9s

Time (seconds)

Figure 19. A comparison of the EFC runtime performance between regular indexing and
randomized indices on Haswell with 3D data sets of 453 million tetrahedral cells (4503

grid).

topologies than with the randomized versions. Thus, the sorting algorithm has to perform

more work, leading to increased randomized topology runtimes. On the GPU, the VTK-

m thrust back-end uses an optimized radix sort when keys are single 32-bit values and

a merge sort for all other value types. Consequently, Sort+XOR with a randomized

topology pays far less of a penalty as compared to the CPU version, while SortById

actually pays a higher penalty. Conversely, the hashing properties of FNV1a distribute

keys evenly with both regular and randomized topologies, leading to better performance

on the KNL architecture using the randomized topology.

As seen in Figure 16 (XOR random plot), XOR has the largest number of

collisions since it is a poor hash function, and the number of collisions increases linearly
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Algorithm Mesh
SortByID regular 26.5s
SortByID random 48.0s

Sort+XOR regular 11.3s
Sort+XOR random 25.4s

Sort+FNV1a regular 26.2s
Sort+FNV1a random 23.9s

Sort+Morton regular 13.4s
Sort+Morton random 19.9s

Hash-Fight+XOR regular 16.6s
Hash-Fight+XOR random 25.6s

Hash-Fight+FNV1a regular 5.7s
Hash-Fight+FNV1a random 7.2s

Hash-Fight+Morton regular 6.1s
Hash-Fight+Morton random 8.2s

Time (seconds)

Figure 20. A comparison of the EFC runtime performance between regular indexing and
randomized indices on KNL with 3D data sets of 134 million tetrahedral cells (3003 grid).

with the size of the data set. FNV1a and Morton perform much better as the data set size

increases, as the increase in the number of duplicates is less than linear. With Morton,

the number of collisions increased significantly for the largest data set. For all three

hash functions, there is no significant difference in the number of collisions between the

regular and random meshes.

9.4 Conclusion

We summarize our findings and best practices by phase. From Phase 1, we

conclude the following:

– Use the Hash-Fight+FNV1a algorithm for consistently-optimal performance for

regularly-indexed data sets.
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Algorithm Mesh
SortByID regular 0.75s
SortByID random 1.88s

Sort+XOR regular 0.73s
Sort+XOR random 0.97s

Sort+FNV1a regular 0.22s
Sort+FNV1a random 0.24s

Sort+Morton regular 0.22s
Sort+Morton random 0.28s

Hash-Fight+XOR regular 0.39s
Hash-Fight+XOR random 0.91s

Hash-Fight+FNV1a regular 0.18s
Hash-Fight+FNV1a random 0.26s

Hash-Fight+Morton regular 0.20s
Hash-Fight+Morton random 0.33s

Time (seconds)

Figure 21. A comparison of the EFC runtime performance between regular indexing and
randomized indices on Tesla with 3D data sets of 26 million tetrahedral cells (1753 grid).

– Avoid the Morton hash function for large data set sizes, as it does not demonstrate

robustness to hash collisions.

From Phase 2, we conclude the following:

– Use the Hash-Fight+FNV1a algorithm for optimal portable performance across

varying architectures.

– Avoid the use of Sort+XOR on a GPU architecture; instead, use either Sort+FNV1a

or Sort+Morton, in combination with the CUDA Thrust radix sort.

From Phase 3, we conclude the following:
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– Both Sort and Hash-Fight perform best with the FNV1a hash function, which

is robust to both regular and randomized mesh topologies across multiple

architectures.

– Radix sort performs best overall, while quicksort performs poorly with heavily

shuffled input. Further, the best-performing hash functions produce heavily shuffled

input.

Overall, we believe these findings inform best practices for searching for duplicate

elements with the context of DPP. The Hash-Fight+FNV1a algorithm consistently

performed as a top choice in all configurations; all other algorithms suffered slowdowns

in at least some configurations. The fact that the Hash-Fight configurations often beat

the more traditional sorting-based algorithm is particularly interesting considering that it

intentionally invokes write after write hazards. Although writing to the same or nearby

memory locations from multiple threads can degrade cache performance, Hash-Fight still

performs efficiently.

Overall, we believe that the best practices identified in this chapter help

further address the dissertation question of the best index-based search techniques for

visualization algorithms, as they pertain to duplicate element searching and EFC.
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CHAPTER X

SUMMARY, FINDINGS & RECOMMENDATIONS

The overarching goal of this dissertation work is to investigate and address the

dissertation question: What are the best index-based search techniques for visualization

and analysis applications on diverse many-core systems? This concluding chapter

addresses the dissertation question by synthesizing the findings and best practices of the

previous chapters and offering recommendations for further research. This synthesis

is provided in the form of a decision tree analysis that reflects lessons learned from

studying the visualization and analysis applications of Part II. This decision tree helps

guide the selection of a most-suitable index-based search technique for a given algorithm

that requires a search subroutine. The choice of technique is determined by different

properties related to the algorithm and search routine. This decision tree is meant to be

adaptable as additional search-based visualization and analysis algorithms, techniques,

parallel libraries, and many-core systems are identified or become available.

The remainder of this chapter proceeds as follows. Section 1 summarizes

the contents of each dissertation chapter. Section 2 synthesizes the findings of this

dissertation with guidance on selecting an index-based search technique for best

platform-portable algorithm performance. Section 3 concludes the dissertation with

recommendations for future work.

10.1 Summary

This dissertation consisted of nine chapters, each based primarily on previously-

published, or under-submission, original research by myself and various co-authors. The

content of each chapter is summarized as follows.

Chapter 1 introduced and motivated the dissertation question, as well outlining

the contents of the dissertation. Chapter 2 reviewed fundamental concepts and related
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work for the different topical areas of this dissertation, including index-based searching,

DPP-based algorithm design, and platform-portable performance. Chapter 3 introduced

new DPP-based techniques for duplicate element searching. Chapter 4 presented a

new DPP-based hash table and collision-resolution technique that is inspired from the

hashing-based technique in Chapter 3. Chapter 5 applied the techniques of Chapter 3 to

the EFC scientific visualization task, which identifies all duplicate mesh cell faces and

then removes them to yield only the external, or non-duplicate faces. Chapter 6 applied

the hash table technique of Chapter 4 to the task of hashing and querying hundreds of

millions to billions of unsigned integer values. Chapter 7 used DPP-based sorting and

hashing techniques for the search of maximal cliques within large real-world undirected

graphs. Chapter 8 used DPP-based sorting and reduction techniques for the computation

of the most-probable labels to assign to vertices within a graph-based image segmentation

task. Finally, Chapter 9 presented a collection of best usage practices for duplicate

element searching, as applied to EFC.

10.2 Synthesis of Findings

This section synthesizes the findings of this dissertation to provide insight into the

dissertation question. Figures 20 and 21 present this synthesis in the form of a decision

tree flowchart that guides the selection of a search technique for use within a DPP-based

algorithm. We enumerate this step-by-step selection process as follows.

10.2.1 Decision: Search Routine. Given an algorithm that is to be designed

in terms of DPP, the first question that must be answered is whether the algorithm

contains any inherent searching routines or operations (see Figure 20). If searching is

not needed, then the algorithm can be designed in terms of non-search DPP, without

the search techniques introduced in this dissertation. If searching is necessary, then we

proceed to the next decision, which attempts to specialize the type of search routine.
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Figure 22. Decision tree flowchart that guides the selection of the most-suitable index-
based search technique for a given DPP-based algorithm. This figure contains the full
decision sub-tree for duplicate element search techniques.

10.2.2 Decision: Duplicate Element Search. An important decision

regarding the choice of search technique is whether or not the search routine involves a

search for duplicate elements. If the search routine can be recast as a search for duplicate
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elements of key-value pairs, then the techniques of either Chapter 3 or Chapter 8 can be

used for achieving platform-portable search performance.

In particular, if the goal of the search routine is to only detect and indicate

duplicate keys (e.g., point coordinates or unique integer IDs), without concern for the

corresponding values, then either the sorting- or hashing-based techniques of Chapter

3 should be used. If the search routine requires all duplicates to be removed, leaving

only keys with a frequency of one, then the hash-based technique should be used. In

this technique, a binary indicator array is used to mark whether a key is a duplicate or

not. The duplicate pairs can be removed by applying a CopyIf DPP over the indicator and

key-value pair arrays. Chapters 5 and 9 provide application-specific guidance towards

implementing this technique, with respect to the EFC scientific visualization problem,

which is only concerned with non-duplicate keys. Otherwise, if all unique keys must be

returned (e.g., to emulate a set data structure), then the key-value pairs should first be

sorted in ascending order of key, followed by the application of the Unique DPP to yield

only the unique keys. Likewise, if the search routine requires a frequency count for each

unique key (i.e., a key that appears only once), then the key-value pairs should be sorted

in ascending order of key, followed by the application of a ReduceByKey DPP. This latter

technique follows the sorting-based approach that is introduced in Chapter 3 and applied

in Chapters 5 and 9.

Contrarily, if the goal of the search routine is to operate over the values of

duplicate keys, then the technique from Chapter 8 should be used. In Chapter 8, the

key-value pairs are sorted in ascending order of key using a SortByKey DPP to group

all duplicate, or equal, keys together. Then, an aggregate operator, such as summation, is

applied over the values of groups of duplicate keys using a ReduceByKey DPP, resulting

in a single aggregate value for each unique key (group of duplicate keys).
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If the search routine does not involve duplicate element detection, but is instead a

standard look-up routine for arbitrary key-value pairs (duplicate or not), then the use of a

index-based data structure for storing and querying the pairs should be considered. The

choice of a suitable index-based data structure is discussed as follows and is illustrated in

Figure 21.

10.2.3 Decision: Index-Based Data Structure. The first decision towards

selecting an index-based data structure is whether or not the search routine involves

dynamically inserting new key-value pairs and/or deleting pairs. If dynamic insert and

delete operations are necessary, then the SlabHash dynamic hash table from Chapter 2

should be used; a review of SlabHash is provided in Chapter 2 as part of the background

on previous data-parallel hashing techniques. If key-value pairs only need to be inserted

into a search structure in a single batch, without subsequent deletions, then a static, open-

addressing-based hash table should be considered. This choice of using a static hash

table depends on whether the general pattern of key queries is expected to be ordered,

or nearly-sorted with respect to key. If an ordered query pattern is expected, then the

findings of Chapter 5 suggest that better performance may be achieved by first sorting

the key-value pairs by key (SortByKey DPP), and then subsequently querying for keys

via a data-parallel binary search. However, if random or unordered query patterns are

expected, then a static hash table should be used, as it provides efficient platform-portable

performance for random-access queries. The selection of a static hash table is discussed

in the following subsection.

10.2.4 Decision: Static Hash Table. A static hash table can exist either as

a persistent data structure of size f N (1 < f ≤ 2) that is pre-allocated and constructed

only once with a batch of N key-value pair insertions, or as a temporary, non-persistent

look-up structure of size N that is re-constructed for a new batch of N pairs as needed
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Figure 23. Continuation of the decision tree flowchart. This figure contains the decision
sub-tree for the selection of the most-suitable index-based search structure, such as a hash
table.

(this temporary structure differs from a dynamic hash table in that it does not support

deletions or individual insertions and queries). If the search routine consists of multiple

iterations, each of which can leverage a non-persistent look-up structure, then the sorting-

and hashing-based technique for clique merging in Chapter VII should be used to perform

queries. This technique simulates a hash table, since colliding keys with the same hash
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value are grouped, or bucketed, together and traditional querying is supported via linear

probing within a bucket.

However, if the search routine requires a persistent static hash table, then either

the HashFight or CUDPP cuckoo hashing hash tables of Chapter 6 should be used,

depending on the platforms of execution, expected batch size of insertions and queries,

and the existence of non-unique keys. The CUDPP hash table is designed exclusively

for GPU execution and should be used when the batch sizes are less than hundreds

of millions. Above this size, TLB caching and global on-device memory limitations

deteriorate the performance of CUDPP, as compared to that of HashFight. For platform-

portable execution on both CPUs and GPUs, and large batch sizes in the hundreds

of millions to billions of pairs, the HashFight table should be used. As presented in

Chapter 4 and applied in Chapter 6, HashFight demonstrates robustness to GPU memory

bottlenecks and achieves leading insertion and query throughput on both CPU and GPU

platforms.

10.3 Recommendations for Future Study

This concluding section presents our recommendations for future study that

would build upon and further substantiate the work presented in this dissertation. These

recommendations are enumerated as follows:

1. Future studies should reassess the performance of our index-based search

techniques on emerging compute platforms and data-parallel coding libraries.

Each technique is implemented with the open-source, platform-portable VTK-m

library. As this library continues to mature, additional back-end code support for

new accelerators (e.g., FPGA or new GPUs) and DPP-based libraries will be added

to maintain platform-portability across algorithms.
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2. The usage of 64-bit unsigned integer keys and values is prevalent and should

be made available for use in the HashFight hash table, with subsequent

experimentation against 64-bit variants of the CUDPP cuckoo hash table or any

emerging state-of-the-art hash tables. In its current form, HashFight supports 32-bit

unsigned keys and values.

3. Future studies should analyze whether the performance of our duplicate element

index-based search techniques is affected by the percentage of duplicate elements

in a dataset. Some datasets may have a large number of duplicates to detect—with

a large number of hash collisions—while other datasets may only have a small

number duplicates.

4. Additional research could focus on collecting and analyzing hardware performance

counters to gain a deeper understanding of the memory utilization characteristics of

our index-based search techniques.

5. Future studies should assess the performance of HashFight with spatial point-

coordinate keys and the Morton curve hash function, which seeks to map spatially-

close points to similar-valued unsigned integer values. In this case, the hash values

would be nearby indices in the hash table, and could offer coalesced memory loads

when queried in an ordered fashion.

6. The adaptable decision tree should be periodically revisited to re-evaluate the

performance of our index-based search techniques on emerging compute platforms,

visualization and analysis applications, and data-parallel coding libraries, as they

become available. This will assure the usability of our analysis and corroborate

the “future-proof” platform-portable performance that is offered by DPP-based

algorithm design.

181



APPENDIX

LEMMAS AND THEOREMS

The following lemmas and theorem relate to properties that are used within

Chapter VII for the design of a DPP-based algorithm for maximal clique enumeration

(MCE).

Lemma A.0.1. For k ≥ 2, a (k+ 1)-clique is comprised of two k-cliques that both share

(k−1) vertices.

Proof. Please refer to [70]. Figure 10 demonstrates this property by creating a 4-clique,

0-1-3-4, from two 3-cliques, 0-3-4 and 1-3-4, both of which share the 2-clique 3-4.

Effectively, once two k-cliques with matching (and trailing) (k− 1) vertices are found,

we only need to test whether the leading vertices are connected; if so, the two k-cliques

can be merged into a new (k+ 1)-clique.

Lemma A.0.2. An expanded (k+ 1)-clique maintains the ascending vertex order.

Proof. In our algorithm, a k-clique is only matched with another k-clique that that a

higher leading vertex Id. Both of the leading vertices of these two k-cliques have lower

Ids and are distinct from the vertices of the matching (k− 1)-clique. By induction, this

(k− 1)-clique must also be in ascending vertex order. Thus, the expanded (k+ 1)-clique

must possess an ascending vertex Id order.

Theorem A.0.3. During iteration k, there are no duplicate k-cliques.

Proof. We will prove by induction on the size k.

– Base case of k = 2. The starting set of 2-cliques are the edges from the v-graph

edge list, all of which are unique, since duplicate edges were removed in the

initialization routine.
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– Induction hypothesis. There are no duplicate k-cliques in iteration k.

– Inductive step. No duplicate (k+ 1)-cliques exist in iteration k+ 1. In the previous

iteration k, a (k + 1)-clique was produced via a merging between two k-cliques

that shared a trailing (k−1)-clique (see Theorem A.0.1). If duplicate copies of this

(k+ 1)-clique existed, then duplicate pairs of the k-cliques must have also existed,

since any two k-cliques can only produce one new (k+ 1)-clique in our algorithm

(see proof of Theorem A.0.2). However, by the induction hypothesis, there are no

duplicate k-cliques. Thus, by contradiction, a (k+ 1)-clique cannot have duplicates.
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