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DISSERTATION ABSTRACT

Kanika Sood

Doctor of Philosophy

Department of Computer and Information Science

June 2019

Title: Iterative Solver Selection Techniques for Sparse Linear Systems

Scientific and engineering applications are dominated by linear algebra

and depend on scalable solutions of sparse linear systems. For large problems,

preconditioned iterative methods are a popular choice. High-performance numerical

libraries offer a variety of preconditioned Newton-Krylov methods for solving sparse

problems. However, the selection of a well-performing Krylov method remains

to be the user’s responsibility. This research presents the technique for choosing

well-performing parallel sparse linear solver methods, based on the problem

characteristics and the amount of communication involved in the Krylov methods.

This dissertation includes previously published (unpublished) co-authored

material.
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CHAPTER I

INTRODUCTION

Linear systems of equations are commonly used to represent problems from

a vast variety of domains, including, but not limited to tomography, computational

fluid dynamics, thermodynamics, statistics, electric circuits, quantum mechanics,

astrophysics and fossil fuels. These linear systems can be symbolized as Ax = b,

where A is the coefficient matrix, x is the unknown vector, b is the known right-

hand side solution vector. Linear systems are widespread across different areas

of scientific research [91, 90], therefore providing accurate and efficient solution

methods is an important capability for scientists in these domains. In particular,

large sparse linear systems arise in many computational problems in science and

engineering.

Over the last several decades, applied mathematicians and computer

scientists have developed multiple approaches for solving such linear systems.

The traditional approach involves using a single solver, possibly combined with a

preconditioner to get the solution. Preconditioning is a technique to modify the

existing linear system into a similar system with the same solution yet easier to

be solved by the numerical solver methods. The numerical solver can be chosen

from a number of available options which fall into two main categories: (1) Direct

solvers [30] tend to provide a solution in finite number of steps and (2) Iterative

solvers [77] start with an initial guess and tend to improve the solution iteratively

and generate successive approximations to the solution. Direct solvers can be

computationally more expensive than iterative solvers. Therefore, iterative solvers

are a preferable choice for sparse linear systems. Direct solvers and iterative solvers

are described in detail in the next chapter.
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Narrowing down the solver categories and selecting iterative solvers for

sparse systems are not the only decisions to make. Now, the challenge is to identify

which solver to use among the numerous iterative solvers available. In addition,

the preconditioner to be used in combination with the solver technique is yet

another choice that the user has to make. Lastly, the preconditioners have various

parameter configurations that can be tuned to change their behavior. As a result,

the number of possible options available for solvers and preconditioners that can be

used to solve the linear system are further increased.

Selecting a quasi-optimal1 solver and preconditioner is nontrivial even

for experts. Despite the background knowledge, domain expertise, programming

skills, grasp of documentation and information about the linear system properties,

selecting a quasi-optimal solver-preconditioner pair for any given linear system may

not be possible. The main reason is that the best solution is not consistent for a

variety of problems occurring in different domains or even different problems from

the same domain. In addition, with the development of new numerical libraries,

solver techniques and preconditioning schemes, the pool of available solvers and

preconditioners is further expanding.

Designing a model that can select a well-performing solver-preconditioner

choice for a given linear system can dramatically improve the time to solve the

system. A challenge in using a model that generates a single solver suggestion is

the reliability of getting a solution from the sole recommendation. For example,

consider the situation where the chosen solver technique fails to provide a solution,

which defeats the purpose of using a model to ensure better performance. These

1quasi-optimal refers to “almost optimal". In Italian quasi means “almost".
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problems motivate a different methodology of solving the given problem, namely, an

approach that generates multiple suggestions for solving the given linear system.

1.1 Motivation

This research focuses on linear systems of the form Ax = b, where

A = [aij] is an n × n matrix and b is a given right-hand-side vector. Solutions

for these systems are the one of the most expensive (time-consuming) part of the

computation and obtaining an efficient solution method is even more challenging.

This becomes more crucial when the problem size becomes enormous and the

solution requires parallel computation resources. Despite the domain knowledge,

programming skills, numerical methods background the scientists (library users)

may have, it can be difficult or impossible to choose an optimal solution method for

a given problem.

New numerical libraries are continuously being developed, adding to

the existing pool of linear solver algorithms and implementations. With the

advancement and expansion of high-performance computing libraries, they are

becoming better in handling more complex problems than their predecessors.

However, selecting an appropriate library and using it efficiently are non-trivial

tasks. The decision cannot be made based on the algorithms’ complexity analysis

alone as many Krylov methods may have the same complexity but perform very

differently for the same problem. Hence the need to provide better support for the

selection of linear system solutions is consistently increasing.

1.2 Research Goals and Approaches

This work proposes techniques to recommend optimal solver methods and

preconditioners with their parameter configurations for the users. Since one of

the most expensive stages in scientific computations is obtaining the linear system
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solution, a good technique would be to skip solving the system altogether and make

a decision based on prior learning. The first phase of this dissertation suggests such

a technique to select solution methods effectively, without the need for solving a

new incoming system for relatively small-scale problems. The approach involves

training a machine learning (ML) model on small to medium-sized problems and

make suggestions based on problem characteristics alone. This work demonstrates

that performance of various solver techniques can be modeled using a small set of

structural and numerical properties of the linear systems.

One limitation of the ML-based approach is its applicability to relatively

large-scale problems. The ML model requires training data collection for different

processor counts. However, a collection of separate training data sets for different

processor counts can get extremely expensive or infeasible in most cases. The

second phase of this dissertation focuses on identifying an accurate and efficient

solution method by modeling the convergence behavior and the communication

overhead for parallel Krylov methods for large scale problems. The communication

overhead is captured by an analytical parallel scalability model which compares the

communication overhead of parallel preconditioned Krylov methods. For sufficiently

large linear systems that require high levels of parallelism, the communication-

based analytical model gives a scalability ranking of the solvers. The consolidation

of the ML model and the communication model enables solver recommendations at

different scales of parallelism.

With these approaches, we enable a user to choose a solver-preconditioner

pair that will perform well for the given problem, which is otherwise a very

challenging task. This dissertation focuses on applying these techniques for

suggesting optimal Krylov methods for sparse linear systems arising from
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different domains. This work uses the PETSc [4] toolkit which offers a variety of

scalable solver methods and preconditioners that can be used for solving scientific

applications modeled by partial differential equations.

1.3 Co-Authored Material

This dissertation includes work from previously published co-authored

material. This section lists the chapters with the publications and their authors.

The beginning of each chapter provides the details on individual contributions.

– Chapter III is based on collaboration work [51, 86] between Elizabeth Jessup

(CU-Boulder), Pate Motter (CU-Boulder), Boyana Norris (UO), and myself.

– Chapter IV, V are based on a collaboration [87] between Elizabeth Jessup

(CU-Boulder), Boyana Norris (UO), and myself.

– Chapter VI is based on work-in-progress collaboration work between Boyana

Norris (UO), Ben O’Neill (RNET Technologies Inc.), Elizabeth Jessup (CU-

Boulder) and myself.

1.4 Dissertation Outline

This document is organized as follows. The next chapter presents

background useful for understanding the rest of this dissertation. The next

chapter describes various techniques for solving linear systems. Chapter III

describes the convergence model that uses machine learning techniques to classify

different Krylov methods based on their computation time. Chapter IV discusses

the communication model we develop for modeling the performance of parallel

preconditioned Krylov methods. In Chapter V results obtained by using the

convergence model in conjunction with the scalability model are presented.

Chapter VI showcases the approaches used for feature computations using Anamod,
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PETSc and finally the matrix-free approach. Chapter VII demonstrates our

workflow for classifying arbitrary sparse linear systems using different-sized feature

sets for a completely new multi-physics application domain– MOOSE. The last

chapter delivers the conclusions and future work of this research.

The rest of this chapter briefly describes the main contributions of this

research: (1) Convergence model (2) Communication model (3) Matrix-free feature

computation (4) Domain-specific use case - MOOSE application.

1.4.1 Convergence model. The performance of different Krylov

methods can be modeled using an ML model based on the convergence behavior of

the solver methods. We use matrices from the SuiteSparse Matrix Collection [24],

formerly known as the University of Florida Sparse Matrix Collection, for training

the convergence model. The linear systems obtained from this collection belong to

different domains. These systems are solved with multiple solver-preconditioner

combinations and are used to train the ML model. The next step involves

computing various properties of these systems. These features are the structural,

numerical and spectral properties of the input linear system, such as the number

of rows, number of non-zeros per row and row variance. All these features together

constitute the full feature set.

Feature computation is the most expensive stage in the entire process.

To reduce the overall cost of the process, a feature reduction technique is

applied where a small number of features, referred to as the reduced feature

sets are selected from the full feature set. Once the features are computed, the

linear systems are solved and their convergence time is recorded. Based on the

convergence time of all the solver-preconditioner pairs, for each linear system, a

binary labeling scheme is used to identify “good” and “bad” solvers. Next, the data
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set is prepared for performing classification by combining the feature values, class

label and a unique solver id, which together serve as the input for the ML-based

convergence model. The convergence model is described in detail in ChapterIII.

1.4.2 Communication Model. An analytical communication-

based approach is proposed for problems that require high levels of parallelism (

>1000 cores). The communication model is useful for capturing the performance

of parallel preconditioned Krylov methods. The performance modeling is achieved

by modeling the parallel overhead based on analytical communication estimates

for various Krylov methods. To rank these methods based on scalability alone, the

communication-based approach analyzes the differences in the amount and type

of communications in each of the methods, when solving the same problem on the

same number of processors. The model generates a scalability ranking of the solver

techniques and preconditioners by identifying the matrix-vector operations that

are communication-intensive. These operations are analyzed for identifying their

communication cost and counting the number of times these operations have been

performed in solver and preconditioner implementation.

The number of matrix-vector operations, together with each operation’s

communication cost gives the total cost of communication for each solver-

preconditioner pair, which can then be compared with every other solver-

preconditioner pair to generate a comparative scalability ranking. The

communication model does not capture the convergence behavior and only models

the communication behavior of the solver techniques. The communication model

is described in detail in Chapter IV. The convergence behavior can be modeled by

combining this analytical scaling technique with the supervised machine learning

approach. The two models when used together can enable solver recommendations
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at different scales of parallelism. The combined model approach is described in

further detail in Chapter V.

1.4.3 Matrix-free Feature Computation. The machine learning

approach uses the linear system properties in addition to the binary label, and a

unique solver id as input. These properties are referred to as matrix features in the

rest of this document. There are multiple approaches to compute matrix features.

In the first phase of this research, the features were computed using an open source

software package, Anamod [32]. In the second phase, feature computation was

achieved with PETSc in C, to eliminate the use of the external library Anamod.

In the final phase, the features are computed using a matrix-free approach.

Sparse systems have an advantage over the dense systems because of their

nature, i.e. most of the elements are zero in a sparse system. This property is

exploited to store only the non-zero elements of the sparse systems. A conventional

way of storing these systems is in the form of a 2D structure, where each non-zero

matrix element is represented by an element in the 2D structure. The elements are

accessed by their row and column indices. When all the elements of the matrix

stored and available at any given time, various properties of the matrix can be

computed, such as matrix norm, diagonal of the matrix inverse, trace, and others.

For an extremely large matrix, storing it and performing matrix operations

can be very expensive due to memory cost and computation time respectively.

When the coefficient matrix is not available, a contemporary approach involves

accessing the matrix by computing matrix-vector products. In this technique, the

coefficient matrix is not assembled explicitly. For the past few years, this approach

has been used for computing the properties such as trace, diagonal of the matrix

inverse and norm. However, to the best of our knowledge, properties such as row

8



and column variance, infinity norm, column variability (maxj log10 |
maxi |aij |
mini |aij | where

i is the row and j is the column index), have not been computed in the past.

Therefore, an approach that does not require explicit storage of the coefficient

matrix, would support even larger problems, which otherwise have high storage

costs and cause challenges for matrix operations.

1.4.4 Domain-Specific Use Case. The ML-based approach for

small-scale is tested on a set of use cases based on a single framework, the Multi-

Physics Object-Oriented Simulation Environment (MOOSE) [46], which is a finite-

element, multi-physics framework that leverages other toolkits, notably PETSc.

MOOSE aims to make predictive modeling accessible and scalable. MOOSE

simulations include problems from computational fluid dynamics, high energy

physics, computational biology, and computational finance.

The focus is primarily on iterative Krylov methods and preconditioners to

solve the sparse linear systems obtained from the MOOSE matrices. The dataset

consists of problems from a single domain and is generated using the sample

applications in MOOSE. We instrumented the MOOSE code to save the matrices

(linear systems) that are being solved with KSP solvers in PETSc. For expanding

the data set, we varied the size of the MOOSE example problems and auto-

generated bigger problems. We enlarged the mesh and run in parallel to produce

more realistic use cases. As a result, we have up to three- dimensional meshes,

80,802 rows and 11,826,432 number of non-zeros.

In this work, we provide a new set of features of the linear systems which

are comparatively less expensive and compute them using the PETSc toolkit. We

use PETSc to compute features, which removes the dependence on an external

library for feature computation. This work also includes automated input scaling
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and generation from the MOOSE test suite. To our knowledge, this work is the first

attempt at automated solver selection in this domain.

For feature selection, in applications with dynamic mesh adaptation, such

as the Finite Element Multiphysics domain, we consider the structure of the mesh

changes at run time and therefore the best solver method could depend on physical

and geometric properties of the mesh. Such properties become the basis of the

kind of features we compute for these problems. The full feature set contains

features which belong to different categories namely, simple or norm-like quantities,

variability and structural. As using all the features of a linear system makes it

expensive to solve an incoming linear system, we perform feature reduction as

mentioned earlier in this document.

The solver selection capabilities of our approach are particularly useful to

the target MOOSE users, who are scientists who do not have in-depth knowledge

of computer science and would like to develop an application by leveraging the

"plug and play" component organization of the MOOSE simulation platform. This

work provides a demonstration of an accurate, generalizable, machine learning-

based workflow for classifying arbitrary sparse linear systems using different-sized

feature sets for a completely new application domain. The classification approach

is applied to a set of examples in the MOOSE framework, achieving high accuracy

when targeting problems in the more limited domain of finite element multi-physics

applications.

1.5 Summary

This research enables iterative solver recommendations for sparse linear

systems by modeling the convergence behavior and the parallel overhead for parallel

preconditioned Krylov methods. This document describes our ML-based model
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to capture the computation aspect and the analytical approach that captures

the parallel overhead of various Krylov methods. The ML-based model generates

a set of “good” solvers for a linear system and the communication-based model

generates a scalability-based ranking for different Krylov methods. We suggest

the recommendations made by the ML model for cases where computation aspect

is enough to make the decision. For cases where modeling both computation and

communication is useful, we combine the ML suggestions by finding the top-ranked

methods within that set of solvers. With this approach, both aspects of parallel

Krylov method can be modeled: convergence behavior and parallel overhead. The

communication-based ranking is validated by comparison with empirical results on

a numerical simulation of driven fluid flow in a cavity. The suggested ML-based

approach when combined with the comparative performance modeling approach,

improves the quality of the recommendations, resulting in improved performance at

different scales.
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CHAPTER II

LINEAR SYSTEM SOLUTION SCHEMES

Linear systems can be categorized as either sparse or dense systems. The

linear systems with majority of the matrix elements as zero are known as sparse

linear systems. The systems with most of the elements as non-zero are referred to

as dense systems. A common approach of storing sparse matrices involves storing

only the non-zero elements, along with their row and column indexes. For dense

systems, all elements need to be stored, including the zero elements. Problems from

various application evolve continuously in time and can be well represented by large

sparse linear systems. Therefore, in this dissertation, the main focus is on sparse

linear systems.

This chapter describes the two main categories of solvers: direct and

iterative and presents some popular solver techniques which include (1) single-

method solver schemes, where only one solver is applied for solving the system, (2)

multi-method solver schemes, where more than one solvers are used during different

solve stages.

2.1 Motivation

The solution of large sparse linear systems of the form Ax = b, where

A = [aij] is an n × n matrix and b is a given right-hand-side vector, is an

elementary problem in scientific computing. Advancements in domains such as

multi-physics, aerodynamics, and others, where the problems can be formulated

as partial differential equations, rely heavily on the efficient solution of the linear

systems. Frequently, the total time in such formulations is predominated by the

time taken to solve the linear systems.
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Figure 1. Solver hierarchy showing the different solving strategies.
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The general strategy for solving a sparse linear system of the form Ax = b,

involves transforming the system, A into a similar system which has the same

solution, x and that is easier to solve. Such a transformation is applied by using

various preconditioners. Preconditioners are discussed in more detail in Section 2.4.

There are two popular techniques for solving the systems, namely, direct and

iterative solving strategies. Direct solvers have high numerical accuracy and work

even for sparse matrices with irregular patterns. Iterative solvers use an initial

guess to get an approximation of the solution. For a given approximation solution

xk−1, the solution, xk, at the next iteration is expected to be better. Iterative

solvers keep updating the solution until it gets close enough to the actual solution.

Figure 1 shows the hierarchy of the sparse linear solvers, which are discussed in

detail in the later sections.

2.2 Direct Solvers

For linear systems Ax = b, where A is the coefficient matrix, x is the

unknown vector and b is the right-hand side vector, direct solvers [30, 23] provide

an exact solution, x = A−1b for the linear system and are more robust than

the second category of solvers– iterative solvers. Direct solvers are preferable for

small matrices and in cases where an exact solution is possible and preferred.

However, they are less desirable for very large matrices because of their high costs,

because the memory requirement for direct solvers can be huge, as direct solvers

need the entire matrix to be in memory. For the work presented throughout this

dissertation, we focus on sparse matrices. For sparse matrices, most of the elements

are zero, therefore storing the entire matrix can be avoided and is rather expensive.
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2.3 Iterative Solvers

The second class of solvers is known as iterative solvers. Iterative solvers

provide an approximation of the solution. An iterative solver approach starts with

an initial guess and generates successive approximations to the solution. In cases of

large linear systems, iterative methods are often preferable for two reasons. First,

an exact solution for the systems may be too expensive and second, recurrently,

a solution approximation is acceptable. The traditional approach of solving large

sparse linear systems involves using a solver combined with a preconditioner. There

are many solver techniques that have been in existence for solving large sparse

linear systems of the form Ax = b where A is the sparse matrix, x is the solution

vector and b is the right-hand side vector (known vector). The residual vector r,

can be given as r = b − Ax. The aim of iterative solvers is to reduce the residual

vector as much as possible.

One of the popular class of iterative numerical solvers is the Krylov subspace

methods. Krylov subspace methods start with an initial guess and generate a

sequence of approximate solutions, which tend to improve with the progression

of iterations. Krylov methods form a sequence, called the Krylov sequence shown

below:

Kk(A, b0) = span{b0, Ab0, A2b0, . . . , A
k−1b0}

Here A is a n × n matrix, b is a vector of dimension n, k is the order of

the subspace, b0 is an initial vector of successive matrix power times the initial

residual (the Krylov sequence). The subspace is the successive powers of the matrix

A starting from 0 to k − 1 applied to the residual form. The approximations to

the solution are then formed by minimizing the residual over the subspace formed.
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Figure 2. Flow control for a PETSc application. [Source: PETSc tutorial
https://www.mcs.anl.gov/petsc/documentation/tutorials]

They are considered to be desirable for solving linear and non-linear systems

because of their efficiency and reliability.

2.4 Preconditioning

The general strategy of solving a linear system involves transforming the

system into another system which is easier to be solved and has the same solution x

as the original system. The transformation process is known as preconditioning [6].

Preconditioning is applied by combining a solver method with a preconditioner.

One such transformation is pre-multiplying a linear system with a non-singular

matrix. In other words, multiplying the left-hand side and the right-hand side with

a non-singular matrix P . The multiplication process leaves the system unaffected.

The system transformation is shown below:

Ax = b

PAx = Pb
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x = (PA)−1Pb = A−1P−1Pb = A−1b

For a given linear system of the form Ax = b, the rate of convergence of a

Krylov subspace method depends on the condition number of the matrix A. The

matrix P has a smaller conditioner number than the original matrix A, therefore,

it is expected that the solver method will converge faster for the preconditioned

system. Preconditioning in iterative solution of linear systems can be applied

in the form of left preconditioning or right preconditioning. In the case of left

preconditioning, the preconditioned system is shown below:

P−1Ax = P−1b

In case of right preconditioning, the system can be shown as:

AP−1u = b,where x = P−1u

As shown above, the system of equation changes from Ax = b, to P−1Ax =

P−1b. The transformed systems can be more easily solved because of the change in

the condition number. The original matrix A, had a higher condition number than

the transformed system P−1A. A system with a higher condition number is more

ill-conditioned than a system with a lower condition number. The convergence

rate of iterative solvers increases with a decrease in condition number. Therefore,

selecting a suitable preconditioner is equally important as selecting a suitable

solver.

This dissertation focuses on using solvers and preconditioners offered by

PETSc [4]. Portable Extensible Toolkit for Scientific Computing (PETSc) is a

widely used toolkit for linear systems, developed at Argonne National Laboratory.
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Table 1. Subset of PETSc solvers and preconditioners.

KSP Methods Preconditioners
GMRES [75] Cholesky [78]

Flexible GMRES(FGMRES) [74] ASM (0,1,2,3) [18]
PipeFGMRES [80] GASM (0,1,2,3) [29]

LGMRES [3] SVD [55]
DGMRES (Deflated GMRES) [36] Jacobi [92]

Conjugate Gradient [50] Block Jacobi [84]
Flexible Conjugate Gradient (FCG) [62] SOR [48]

PipeFCG [81] LU [78]
LCD (Left Conjugate Direction) [99] ILU (0,1,2,3) [31]

Hypre [38] ICC [19]
GCR [35]

TFQMR [43]
Richardson [72]
Chebyshev [47]

PETSc is a collection of data structures and functions for the scalable (parallel)

solution of scientific applications and offers solver techniques and preconditioners

for linear and non-linear equations. PETSc can run on different architectures,

various operating systems and is portable to any parallel system that supports

MPI. PETSc is widely used for modeling small-scale and large-scale applications

and is considered to be a highly efficient toolkit. PETSc offers scalable solutions

for scientific applications ranging from brain surgery [40], cancer treatment [45],

earthquakes [95], ocean dynamics [53], among many others. Figure 2 shows the

flow control for a PETSc application. Table 1 enumerates the subset of solvers and

preconditioners offered by PETSc, that are used in the work presented throughout

this dissertation.

2.5 Single-Method Solver Systems

In this approach, only one method [30, 65, 64, 50, 75, 93, 47, 74, 60, 94]

is used to solve the given linear system. If the applied method fails to solve the
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system, there is no other solving technique used to solve the system. Depending

on the problem, either direct or iterative methods can be used in the Single-

Method solver scheme. Iterative solvers can be used accordingly for small and

large problems. As the problems tend to grow, iterative solvers become a preferable

choice. However, in some large-scale applications, direct solvers are used because of

non-familiarity with the iterative solvers.

A single-method solver scheme is useful in situations where the solver

technique to be used is pre-established or decided based on prior information or

experience. One of the disadvantages of using a single solver is that the numerical

properties of a system can change during the course of the nonlinear iterations

and the single-method solver scheme does not take that into consideration. On

the other hand, a multi-method solver (explained in more detail in Section 2.6),

uses multiple solvers instead of using a single solver for solving the system. The

multi-method approach, makes it complex as the number of decisions to be made

are more, for instance, which set of solvers should be used as base methods, when

should a new solver be applied, which solver should be applied next, when can a

solver be eliminated from the list of base methods.

In a single solver scheme, the choice of the solver method is made by

experts or resources available for a selection. However, in many cases, there is

often no single solver that is consistently better, even for problems from a single

application domain. There is also no guarantee that the solver technique used to

solve the system will eventually converge. These challenges generated the idea of

a solving strategy that involved more than one solver algorithm. The earliest work

[71, 69] which suggested that the efficiency of a system is expected to improve with

polyalgorithm solvers, used three basic solvers. The work presented in [69] provides
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the design details of a polyalgorithm for automated solution of the equation

F (x) = 0.

2.6 Multi-method Solver Systems

The second approach for solving a given system involves using multiple

solvers (a composite of suitable solvers) [9, 88, 79, 33], instead of a single solver.

If two or more solvers are used instead of one, the chances of getting to a solution

increase. Further, there are different techniques of using multiple solvers for solving

sparse linear systems: composite solvers, adaptive solvers and poly-iterative solvers.

These techniques are discussed in detail later in this section. In this section, we talk

about these different types of multi-method solvers approaches namely composite

solvers, poly-iterative solvers and adaptive solvers. Multi-method linear systems

include a variety of techniques like composite solvers, iterative solvers and adaptive

solvers.

2.6.1 Composite Solvers. In a composite solver approach, basic

solver methods are sequenced in an ordered fashion. The first choice for solving

the system is the first solver method in the sequence. If the method fails, then

the next method in the sequence is invoked. Switching to the next solver in

the sequence continues until the linear system is solved successfully. Since the

composite algorithms [8, 11, 12, 13, 1] use multiple solver methods for obtaining

the solution, the probability of solving the systems increases, thereby making the

approach more efficient and robust. The research presented in [8] uses multiple

preconditioned iterative methods in sequence to provide a solution. The solution

obtained by this strategy is believed to be reliable and have a good performance in

parallel.
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The work presented in [1, 8], mention that the reliability of a solver scheme

can be given as ri = 1 - fi, where fi refers to the failure rate of the solver. The run

time of the composite scheme depends on the sequence of the solver methods. The

worst case time scenario (Tπ) for the composite scheme occurs when all the solver

techniques in the given sequence have to attempt to solve the system. With the

base methods S1, S2, S3 . . . Sn, the total time required in this scenario can be given

as follows:

Tπ = tπ(1) + fπ(1).tπ(2) + fπ(2).tπ(3) + ....(fπ(1)...fπ(n−1))tπ(n).

Here, fπ(1), fπ(2), . . . fπ(n) are given as To have minimum worst-case running

time among all the possible combinations possible, the base methods are arranged

in the sequence in the increasing order of their utility ratio, ui which is given by

the ratio ti/ri. For computing this ratio, ri is substituted as shown below and using

estimates of ti with some sampling technique: ri = 1 - fi. The composite solver

technique uses the knowledge obtained in the past, which enables using domain-

specific knowledge for the selection of solvers. The system maintains the past

performance history and allows monitoring system performance. The solvers are

then arranged in the increasing order of their utility ratio, ui. They use a simple

sampling technique for the optimal composite by computing this ratio from running

all the solver methods in the sequence on a small dataset and obtaining the mean

of the time taken per iteration by the solvers and the failure rates.

The software architecture that supports this strategy is shown in Figure 3.

The architecture diagram has the following components: solver proxy, non-linear

solvers, linear solvers, ordering agent, and application driver. The proxy linear

solver method acts as an intermediate between the non-linear solver algorithm and

linear algorithm. The proxy, linear solvers and non-linear solvers have the same
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Figure 3. Software architecture for multi-method scheme.

solver interface to make it easy to use multiple solvers. The proxy interacts with

the ordering agent to choose the linear solvers based on the ordering strategy. The

proxy is used with Newton-Krylov solver. The following four set of base solution

methods are used: (1) GMRES(30), restricted additive Schwarz method (RASM)(1)

with Jacobi subdomain solver (2) GMRES(30), RASM(1), with SOR subdomain

solver (3) TFQMR, RASM(3) with no-fill ILU subdomain solver and (4) TFQMR,

RASM(4) with no- fill ILU subdomain solver. The numbers in brackets denote the

degree of overlap.

2.6.2 Adaptive Solvers. In this approach [58, 25, 26, 10, 34]

only one solver is used by selecting the most suitable solver dynamically, based

on the match of the solver with the characteristics of the linear system under

consideration. The technique adapts the solver method during a simulation, based

on the changing attributes of the problem. The advantage this approach has over
22



the composite solve approach is that it uses only one base solver for each linear

system.

Numerical properties for a system change at each iteration of solving

simulation and so does the choice of the solver and the selection criteria. In [58],

linear solvers are selected at each iteration based on the characteristics of the

problem emerging at each level and given the nature of the problem at that stage,

the decision of the best-suited solver is taken at each stage. The solver strategy

presented in [58] applies a different preconditioner during different simulation

stages while maintaining a low overall time for finding the solution. With this

approach, the chances of getting a solution are increased, as there are robust

methods involved and also the total time for the solution is acceptable as well. The

authors use GMRES(10) with a point-block ILU(1) preconditioner in their work.

The work described in [10] is an extension of the previous work, to solve

a more complex parallel application to demonstrate that the adaptive poly-

algorithmic approach is parallelizable and scalable. The four linear solvers used

are as follows:

– GMRES with a block Jacobi preconditioner and SOR as a subdomain solver,

called GMRES-SOR.

– Bi-Conjugate Gradient-Squared (BCGS) with a Block Jacobi preconditioner

and no-fill incomplete factorization (ILU(0)) as a subdomain solver, called

BCGS-ILU(0).

– Flexible GMRES (FGMRES) with a Block Jacobi preconditioner with ILU(0)

as a subdomain solver, designated as FGMRES-ILU(0).
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– FGMRES with a Block Jacobi preconditioner that uses ILU(1) as a

subdomain solver, called FGMRES-ILU(1).

The transition of solvers is made based on the following two indicators:

– The nonlinear residual norm is calculated and assigned to the following four

categories: (a) ||f(u)|| ≥ 10−2, (b) 10−4 ≤ ||f(u)|| < 10−2, (c) 10−10 ≤

||f(u)|| < 10−4, and (d) ||f(u)|| < 10−10. A new solver is chosen when the

simulation moves from one category to another and at that point, the solver

method is moved up or down accordingly.

– Average time per nonlinear iteration: The base solver methods are arranged

in increasing order of their corresponding average time per nonlinear iteration

values.

On the other hand, the research [25] has a different approach. It uses statistical

data modeling for making the solver choice automatically. They combine different

solver techniques with different preconditioners and different parameters as well.

2.6.3 Poly-iterative Solvers. Poly-iterative solver approach uses

multiple solvers applied simultaneously to the system so that the chances of getting

a solution increase. If one solver fails, one of the other solvers from the system

can provide a solution. One of the earliest suggestions made in [71] for poly-

iterative solver strategy was made in the late 1960’s. The Poly-iterative solver

strategy is based on selecting the solver based on the problem size and the user’s

specifications about the problem and the accuracy level expected from the system.

If no information is specified by the user, then the size is used to pick the solver. If

it is a small matrix, with less than 15 rows and 15 columns, the solver chosen is LU

decomposition. If the LU decomposition method fails, then the solution obtained
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just before the failure is taken as the initial guess for SOR. If the SOR method also

fails, the user is provided with the summary and prompted for further instructions

to solve. The user may lower the accuracy level to accept somewhat less acceptable

solution or allow longer computations for solving the systems.

For problems of large size (considered large in that decade), more than 80

rows and columns, SOR is applied. If SOR fails, SOR is applied again but this time

on the product of matrix transpose and the original matrix. If this strategy fails

then the user is asked for further instructions similar to the small matrix scheme.

For problems with intermediate size, properties namely bandedness, diagonal

nature is investigated and if either of these properties is valid for the problem in

consideration, SOR is applied. If SOR fails, then LU decomposition is tried. If

LU fails as well, then the system relies on the user feedback for accepting lower

accuracy level or allowing longer computations.

In the work presented in [5], the authors mention the advantages of using

a poly-iterative approach [71, 70, 37] in parallel. Firstly, the approach has an

increased probability of finding a solution. Secondly, an increased performance

resulting from an efficient matrix-vector product can be obtained. In addition, once

any one of the solver methods has converged, the process can be terminated. Their

algorithm uses three solver techniques, namely QMR, CGS, and BiCGSTAB. These

methods start computing the inner product, then perform the vector updates and

finally a preconditioner solve. All these methods are applied simultaneously and

as soon as one of them converges, the iteration is stopped for all other methods.

The cost per iteration can be given as the sum of the cost of the three methods.

In case if a method fails, it is removed from the iterative scheme. Although the

poly-iterative strategy takes more time than the best method, the strategy is
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preferred as it has a higher probability of finding the solution. Another situation in

which this method incurs higher cost is when one of the methods is comparatively

more expensive than the others and it is not the first method to converge nor it

fails. However, this strategy is more beneficial in parallel implementation as this

approach aligns the mathematical operations of the solver methods and combines

the communication stages to make it more efficient. Figure 4 shows the sequence of

operations and how communication is combined.

Figure 4. Sequence of operations in the poly-iterative scheme with three solvers:
CGS, BiCGStab and QMR.
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2.6.4 Self Adapting Solvers Large-Scale Solver Architecture

(SALSA) Solvers. SALSA [27] is a self-adapting solver technique which has

several levels on which the computational choices for the application scientist

is automated. The choice of solver technique can be made based on the nature

of data and on the efficiency of the available kernels on the architecture under

consideration to facilitate tuned high-performance kernels. One of the advantages

of the scheme is that it is expected to increase its intelligence gradually. SALSA

remembers the results of the runs and learns over time. There are three levels of

adaptivity:

1. Kernel level: It can be done in a one-time installation and is independent of

the data given by the user.

2. Network level: Some level of interaction with user data.

3. Algorithm level: At this level, analysis is done dynamically based on the user

data.

2.6.5 Linear System Analyzer Solvers. The Linear System

Analyzer(LSA) [15] is a component-based problem-solving environment for large

sparse linear systems. The components LSA provides are broadly categorized into

four categories: IO, Filter, Solver, and Information. IO is for feeding the problem

into the system and getting the solution out of the system. The user also feeds

various parameters and settings for solving, such as the relaxation for solving and

which solver to be used. Although this system takes a lot of input from the user

apart from the problem to be fed as input, it provides settings to choose default

parameters for the various solving techniques and other settings shown on the

interface. Figure 5 shows a sample LSA session. The ’filter’ is for providing filtering
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of data or system manipulation in other words, such as scaling, eliminating entries

based on the size. The ’solver’ is for actually getting the system solved. LSA offers

for choices to the users to use for solving. They are as follows:

1. Banded: A matrix has a banded structure if its rows and columns can be

permuted such that the non-zero entries form a diagonal band, more like

exhibiting a staircase pattern of overlapping rows. It converts the system to

banded structure and solves the system, with the new data structure and uses

LINPACK [28] routines for solving. LINPACK, LINear algebra PACKage is

a Fortran package developed in the 1970’s. It uses BLAS as the underlying

routine.

2. Dense: It converts the system into a dense 2D array data structure and

then solves it using Lapack [2] routines. system to a dense 2D array data

structure.

3. SuperLU: SuperLU [57] is a solver library for getting direct solutions for

large, sparse, non-symmetric systems of linear equations.

4. SPLIB: They use preconditioned iterative solvers offered by SPLIB

library [16]. The library had 13 solvers and 7 preconditioners when this

research was performed.

Figure 6 shows the LSA architecture with the four components namely,

user control, manager, communication subsystem, and information subsystem.

This approach provides parallelism between components, which supports solving

large problems by simultaneously using the computational resources of multiple

machines. The system allows comparisons of different solver methods and support

to facilitate practical solution strategies.
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Figure 5. Sample LSA Session.

Figure 6. Linear System Analyzer Solver Scheme Architecture.
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A new system is fed as input in the first component in the module and in

the meanwhile, the matrix is scaled and reordered, both simultaneously on different

machines. The input feeding and matrix operations are performed through the user

control module, which also has options for choosing parameters for all the modules

in the interface. The scaled problem is sent to SuperLU and the reordered version

is sent to SPLIB where SuperLU and SPLIB are the two component subinterfaces.

LSA has the option of running multiple solvers on a single system in order to

compare these techniques and use them for research purposes.

The LSA manager collaborates control and resource management. It

establishes a component network to facilitate multiple user control systems with

a single LSA session. It also assigns unique identifiers and maintains the database

of various machines and components. The next module is the communication

subsystem, Nexus [42], which is a cross-platform system for facilitating parallel

applications and distributed computing. Nexus provides the bridge between the

different languages used in LSA. LSA uses a bunch of libraries for solvers and

preconditioners that are written in different programming languages and therefore

there is a need for a module that handles this and makes it robust as a mixed

language system.

The Information subsystem module provides any information that the

user may want about the solving process except the undesirable information. The

results are shown in the form of a summary with the performance metrics for that

scenario. There is a small description provided, along with the details whether the

event was successful or failure or there was a warning. The user is also redirected to

more information, in case if she wants more details.
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Figure 7. Domain decomposition and splitting of multipliers and cluster formation
in FETI.

2.6.6 Finite Element Tearing and Interconnecting and its

parallel solution algorithm(FETI). Direct solvers are more suitable for

small problems and iterative solvers become preferable in bigger problems. FETI

uses a hybrid approach of using iterative solver and then breaks the problem into

sub-problems and applies direct solvers on them. The algorithm [39, 73] uses a

domain decomposition approach for solving the given linear system for the finite

element solution in a parallel fashion. The main problem domain is partitioned into

non-overlapping sub-domains. These sub-domains are fully-independent, which

makes FETI suitable for parallel computing. Each one of these sub-domains is

assigned to a separate processor. These sub-domains are connected later on by

using Lagrange multipliers on neighboring sub-domains. Each of the sub-domain

is solved by applying a direct solver to solve the unknowns present in that domain.

The solution of the sub-domain problems is then parallelized. Such an approach

improves the chances of convergence for a given overall. In Figure 7, the first stage

31



shows the decomposition into four sub-domains and the second stage shows the

splitting of Lagrange multipliers and forming clusters.

2.7 Accuracy of Solutions

Either direct solvers of iterative solver techniques can be used to get a

solution or an approximation of the solution. The solution of a given system can

be verified using different metrics. In this section, we discuss two of the popular

metrics used for solution validation:

1. Residual of a solution: In order to check the validity of a solution, the

easiest way is to plug it in the equation and compare how close the left

and right sides of the equation are to each other. The residual vector of a

computed solution x′ for the linear system Ax = b can be given as:

r = b− Ax′

A large residual implies a large error in the solution. For direct solutions, we

want the error E to be equal to zero, which is given by the equation shown

below.

E = ||x′ − x|| = 0

For iterative solutions, the computed solution is an approximation of the

actual solution, therefore we want the error to be as close to zero as possible.

2. Estimation with the condition number: Conditioning is a characteristic

of a system given by the formula cond(A) = |A|.|A−1|. The condition number

can determine the possible relative change in the solution for relative changes

in the entries of the matrix. Therefore, it can give an estimate of the error
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in the computed solution. In other words, changes in the input, i.e., A and b

of the equation Ax = b, get multiplied by the condition number to produce

changes in the output, i.e. x in Ax = b. This means small errors in the input

operations can cause large errors in the solution of the system. Hence a very

large value for condition number for a matrix denotes that the matrix is ill-

conditioned. On the other hand, a smaller value implies a well-conditioned

matrix.

2.8 Summary

This chapter presents the two categories of solvers, direct and iterative, that

can be used for solving large sparse linear systems. Figure 8 shows the various

solver techniques discussed in this chapter. Single-method solver technique uses

a single solver (direct) throughout the process. This chapter also describes the

various multi-method solver techniques. In an adaptive solver scheme, many solver

methods are used, although at a time only one solver is applied. The solver scheme

changes the solver based on the switching criteria. It runs one solver and then

applies the switching check which involves some calculations, such as convergence

rate and increase in the number of iterations. The solver switching is applied

multiple times, each time the system decides either to use the same solver or switch

to a different solving technique. In a poly-iterative approach multiple solvers are

applied simultaneously and whichever converges the fastest, terminates the solving

process. In the composite solver scheme, the solvers are sequenced in order and

everything is preassembled. If the first solver fails, the system switches to the

second solver in the order.
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Figure 8. Comparison of various solve schemes
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CHAPTER III

CONVERGENCE MODEL FOR SPARSE LINEAR SOLVER CLASSIFICATION

This chapter is based on collaboration [51, 86] among Elizabeth Jessup

(CU Boulder), Pate Motter (CU Boulder), Boyana Norris (UO), and myself.

For the collaboration [51], Boyana Norris and Elizabeth Jessup provided the

strategy to evaluate the performance of the solvers for PETSc and Trilinos. For the

collaboration: [51], I created and prepared the dataset for solver classification and

extracted the features for PETSc. Elizabeth Jessup and Boyana Norris provided

thorough edits for the approach and experimental results sections. I analyzed the

features to form the reduced feature sets used for solver classification, performed

the solver classification and executed the performance evaluation of the solver

classification for PETSc. For the collaboration [86], Elizabeth Jessup conducted

the evaluation for the Lighthouse project at the University of Colorado Boulder.

I collected the dataset, prepared it for classification, computed the features,

performed the classification and validated the performance of the machine-learning

models.

This chapter describes our machine learning-based classification technique

to select solvers offered by PETSc for sparse linear systems. In this chapter, we

present the application of popular machine-learning classification techniques for

generating a solver classification model and perform a comparative analysis of

the solver classification results for a multi-domain set of linear problems. We

investigate feature selection and provide a technique to recommend sparse solvers

based on the convergence time of solvers. The technique creates a comprehensive

machine-learning based workflow for automated classification of sparse solvers.
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3.1 Motivation

With the advancement of time, the volume of data is multiplying manifold.

New data is generated by humans, computers, and almost every device that uses

technology. Traditionally, humans analyzed data and adapted to the changes in

data patterns by writing new rules to the system manually. As the volume of data

starts to grow, updating the system becomes excessively difficult. With the increase

in the volume of data, there came the need for a technique where the system can

learn automatically from the data and adapt accordingly. Machine learning is a

class of algorithms that offers the tools and technology that can be used to predict

outcomes by using statistical analysis. Typical machine-learning algorithms receive

input data, learn from the data and generally improve over time as new data

patterns are observed.

Current high-performance linear algebra software is based on years of

research and expertise. Using machine learning for automated algorithm selection

has been an intensive research topic in many application domains [41, 7, 96, 97].

Solver selection is a non-trivial process and hence requires techniques that can

enable users to make a quasi-optimal selection. For automating the solver selection

process for Krylov methods, we employ supervised machine learning techniques

to classify solvers based on their performance. Machine learning algorithms are

trained by providing input characteristics to the model and then used for making

predictions. Supervised learning uses pre-classified data for training and needs class

labels, unlike unsupervised learning. This chapter presents the machine learning

techniques used throughout the rest of this dissertation.

36



3.2 Dataset

The dataset consists of thousands of linear systems of the form Ax = b

arising from different applications. These systems are chosen from the SuiteSparse

matrix collection [24]. The collection contains a variety of sparse matrices that

are formed in real applications. It is a widely acceptable collection for testing

the performance of solver techniques and offers matrices in MATLAB, Matrix-

market and Rutherford Boeing format. We use the matrix-market format, which is

converted to the PETSc format for convenience. A set of 1, 015 input matrices from

the SuiteSparse collection is used and each of them is solved with 154 combinations

of solver-preconditioner configurations offered by PETSc. The dataset is split into

training and testing sets with a split of 66%−34% training-testing set. The training

set is used to build the classifier and then tested on the test set which has not

been seen by the classifier before to ensure fair classification performance. We use

supervised learning for building the ML model, which is explained in detail in the

next section.

3.3 Supervised Learning

Machine learning techniques can be categorized into two categories, namely

supervised and unsupervised learning. Supervised learning approach analyzes the

data to determine the mapping function, which establishes a relationship between

the input variables and the target variable y. Supervised learning techniques

can be further categorized as classification and regression techniques. Regression

techniques are used when the dependent output variable has continuous values, for

example, stock prices or temperature. When the dependent output variable has

categorical values, with limited possible values, for example, days of the week or the

blood type of a person. Unsupervised learning technique does not require the label
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for the output variable y for training, and rather explores the structure of the data

to derive inferences based on the independent variables and dependent variable.

Since supervised learning relies on the pre-classified data for training,

we provide the class label for attribute y by solving each of the systems with

multiple solver-preconditioner combinations. We use machine learning classification

techniques to classify solver techniques as “good” or “bad” for any given system.

Machine learning techniques analyze input data to learn and train the model

to make predictions in the future. The data comprises one or more independent

variables x1, x2, . . . xn, referred to as the input attributes and one dependent output

variable y called the labeled class attribute or the target variable. For this work,

we primarily use supervised learning techniques by applying different classification

based machine learning techniques, described in detail in the next section.

3.4 Machine learning classification techniques

There are many machine learning techniques available for classification

problems. In general, a classification technique has a class variable y, and attribute

variables x1, x2, x3 . . . xn. The attribute variables are the independent variables and

the class variable is the dependent variable. A classifier c : x− > y is a mapping

function that maps an instance of the attribute variables to a value of the class

variable, based on the training performed on a dataset.

We use binary and tertiary classification for the solver selection process.

With binary labeling, we label solvers as “good” or “bad” based on the convergence

time. With tertiary labeling, we assign labels “good”, “fair” and “bad”. We use some

of the popular supervised machine learning techniques for classification, which are

described below:
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3.4.1 BayeNet. Bayesian networks are a probabilistic model that

computes probability using Bayesian inference. The edges in Bayesian networks

represent conditional dependencies in a directed graph. The nodes are the attribute

variables and have a probability distribution given their parents in the directed

graph. The goal of the BayesNet classifier is to find a mapping function for

associating the attribute variables with the class variable. The BayesNet classifier

offered by Weka uses the K2 hill climbing algorithm, [20], for searching network

structures.

3.4.2 SVM. SVM is a machine learning algorithm which performs

classification by generating a decision boundary, commonly referred to as the

hyperplane. To find the optimal hyperplane for classification, the objective function

identifies the plane that has the maximum distance between the distinct classes.

The dimension of the hyperplane is decided by the number of attributes in the

data.

3.4.3 k-nearest neighbor. k-nearest neighbor is a classification

algorithm where k denotes the number of neighbors to be used for classification.

The technique assigns the class based on a voting system. The neighbors of the

data point are assigned using Euclidean distance estimation. Euclidean distance

between any two points x and y is computed as the |y − x|. Each neighbor votes for

the class for the new test instance and based on the class that gets the majority of

the votes is assigned to the test instance.

3.4.4 ADT. Decision Trees are a popular supervised machine learning

algorithm method for classification and regression problems. A decision tree

is a flowchart-based algorithm, where the root node is and each internal node

represents an attribute or feature. There are two kinds of nodes: decision nodes
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and prediction nodes. The leaf nodes represent the class label and each has a

numeric value associated with it. The value of the leaf node is the likelihood

of that class, provided the values of the attribute variables. The input variable

values are represented by the path from the root node to the leaf node. Decision

trees implicitly apply feature selection for performing classification by analyzing

each attribute and making the best possible inference. The algorithm uses these

attributes to split the data into subsets. For a new test point, the algorithm

identifies the subset to which the test point belongs, based on its attribute values

and the subsets in the decision tree. It assigns the dominant class of that subset to

the new test instance.

An Alternate decision tree is a variant of decision tree and is used mainly for

classification problems. ADT has alternate layers of prediction node and decision

nodes in the tree structure. The root node and the leaf nodes of the tree structure

are prediction nodes. The main difference between ADT and Decision tree is the

approach to compute the class of the new test instance. In ADT the classification

of a new test instance is obtained by including all the paths for which all the

decision nodes are true and adding all those predictions along the path that holds

true.

3.4.5 Random Forest. Random Forest is a popular classification

technique which uses sampling for classifying the data. This technique develops

multiple decision trees based on the random selection of data and attribute

variables. The class of the dependent variable y is decided by forming multiple

trees using a random subset of data and attribute variables. Random forest is a

collection of multiple random trees, hence the name Random forest. Each of these

trees votes for the most popular class for the input and the class with the majority
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of the votes is assigned as the class for the new dependent variable. With the use

of multiple decision trees, the probability of correct classification usually improves

over other classification techniques.

3.4.6 J48. J48 often referred to as the C4.5 algorithm, is an extension

of the ID3 algorithm, used for classification. C4.5 and ID3 techniques using

information entropy for generating a decision tree. For each node in the tree, the

algorithm picks the attribute variable with the most information gain to make

the decision for the subtree. The subtree is formed by using the value that the

attribute can have as a descendant node and splitting further down in the same

way. The data is sorted based on their values for the attribute. The main difference

between ID3 and C4.5 is that the latter uses gain ratio instead of information

gain. Gain ratio is the ratio of information gain and split information value. Split

information value can be computed as follows:

SplitInfoA(D) = −
∑
j=1

|Dj|
|D|
× log2(

|Dj|
|D|

) (3.1)

Using information gain ratio over information gain helps in reducing the bias

towards attributes with large number of values.

3.5 Solver Selection as a Classification Problem

Solver selection can be represented as a binary/tertiary classification

problem. Consider a set of linear systems, represented by the matrix A and the

right-hand vector b. For finding the solution for the set of linear systems, say M ,

there are N possible solvers. Ideally, solving each linear system with each solver

from the set S would represent an exhaustive dataset for a classification system.

Given M input matrices, and N possible solvers, the dataset size would be M × N

data points, which can be prohibitively large, therefore we construct the training

set by computing a smaller number of randomly selected points, Pi,j, jε{1,M}.
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For analyzing the classification performance of various ML algorithms, we

use Weka [49] to compare the performance accuracy for predicting “good” solvers.

We use all the machine learning techniques described in Section 3.4 as we wanted

to observe the behavior of each of these algorithms on our dataset. Figure 9 shows

the Weka knowledge flow components we defined and used to generate the results

presented in this chapter.

Figure 9. Weka workflow for various classifiers for full feature set and reduced
feature sets.

3.6 Feature Computation

Once the linear systems and solvers are chosen from the matrix collection

and the numerical library (PETSc in this case) respectively, the next step involves

computing various properties of these systems. For the first phase of this research,

Anamod [32] was used to compute properties of the linear systems, referred to

as the features. Anamod is a library of modules that use PETSc functions for

computing 68 matrix features. These features include several categories, including

simple (norm-like quantities), variance (heuristics estimating how different matrix
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Feature names
avgnnzprow right-bandwidth
avgdistfromdiag symmetry
n-dummy-rows blocksize
max-nnzeros-per-row diag-definite
lambda-max-by-magnitude-im lambda-max-by-magnitude-re
ellipse-cy nnzup
ruhe75-bound avg-diag-dist
nnz left-bandwidth
lambda-min-by-magnitude-im lambda-min-by-magnitude-re
norm1 sigma-min
upband n-struct-unsymm
colours diagonal-average
diagonal-dominance dummy-rows
ritz-values-r symmetry-snorm
symmetry-fanorm symmetry-fsnorm
lambda-max-by-real-part-im lambda-max-by-real-part-re
lambda-max-by-im-part-re lambda-max-by-im-part-im
col-variability trace-abs
ritz-values-c nnzeros
diag-zerostart loband
positive-fraction trace
min-nnzeros-per-row diagonal-sign
row-variability nrows
colour-offsets n-colours
relsymm diagonal-variance
departure nnzlow
n-nonzero-diags sigma-max
dummy-rows-kind kappa
n-ritz-values colour-set-sizes
sigma-diag-dist symmetry-anorm
ellipse-ax ellipse-ay
ellipse-cx lee95-bound
normInf normF
nnzdia trace-asquared

Table 2. Full feature set comprising of 68 features computed using Anamod [32].
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elements are), normality (estimates of the departure from normality), structure

(nonzero structure properties), and spectrum (eigenvalue and singular value

estimates produced using SLEPc). Figure 2 shows the complete list of all the

features extracted using Anamod.

– Simple (norm-like) properties: This category includes properties that provide

estimates of departure from normality. The computation time depends on

the number of nonzeros of the matrix. All norms of the matrix belong to this

category, for instance, 1-norm, infinity-norm, frobenius norm among others.

– Structural properties: This class of property involves properties that provide

the nonzero structure of the matrix. Since these properties only describe the

sparsity structure, they will most likely remain the same during a nonlinear

solve. Some examples of these properties include the average number of

nonzeros per row, the number of nonzeros in the diagonal and many more.

– Spectral properties: Spectral properties are the various estimates of the

coefficient matrix spectrum, i.e. eigenvalues and singular values. These

properties are believed to be very informative and also most expensive to

compute as they may take up to hours or more for computation. Since

they are very hard to compute, an estimation of these properties is mostly

acceptable. Therefore, in this research, estimates of spectral properties are

used.

– Variability properties: This class of properties includes measurements of

matrix element variance. These properties describe how different are various

elements in the matrix. Some examples of, variability properties are row

variability, column variability and diagonal average.
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– JPL properties: These properties describe the Jones-Plassman multi-colouring

structure of a matrix. Examples of JPL properties include the number of

colors computed, zero-based locations of the color sets in the colors array.

The next section, Section 3.10 describes the features that will be used in the

reduced feature sets throughout the thesis.

3.7 Solving the linear systems

Table 3. PETSc Krylov iterative solvers and preconditioners.

Capability Algorithms
Preconditioners

Diagonal, block Jacobi*, point block Jacobi, block Jacobi*,
additive Schwarz*

Incomplete factorization ILU*, ICC*
Matrix-free infrastructure
Multigrid infrastructure, geometric (DMDA for

structured grid), geometric/algebraic,
structured geometric, classical algebraic
(BoomerAMG/hypre), classical algebraic
(ML/Trilinos), unstructured geometric and
smoothed aggregation

Physics-based splitting relaxation and Schur-complement, least
squares commutator

Substructuring balancing Neumann-Neumann, BDDC
Krylov methods

Richardson, Chebyshev*, conjugate
gradient*, GMRES*, transpose-free
QMR*, TCQMR*, conjugate residual,
conjugate gradient squared, bi-conjugate
gradient (BiCG), BiCG-stab*, improved
BiCG-stab*, MINRES, flexible GMRES*,
LSQR*, SYMMLQ, LGMRES*, GCR,
conjugate gradient on the normal equations

Once the features are computed, the next stage involves solving the linear

systems with multiple solver-preconditioner combinations to generate the training

and test datasets. In this work, the focus is on Krylov methods offered by PETSc.
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We choose a subset of solvers and preconditioners available with PETSc, as

mentioned in the previous chapter. The preconditioner-solver configurations used

in this work are shown in Table 3, marked with an asterisk, with a unit right-hand-

side vector. Each linear system is solved and its convergence time is captured,

which is used to label the solver-preconditioner combination as “good” or “bad”

based on the time.

The solver performance information was collected with PETSc version 3.5.3

on two supercomputers: Blue Gene/Q at Argonne National Laboratory and the

ACISS cluster at the University of Oregon consisting of nodes containing two hex-

core 2.66GHz Intel Westmere (X5650) processors and 72 GB of RAM. A single

node was used for all the matrices as the University of Florida matrices are not

very large. PETSc offers a collection of direct methods, iterative methods and

preconditioner that can be used for application codes in C, C++, Python and

Fortran. For the entirety of this thesis work, we use a set of the iterative methods,

and preconditioners provided by PETSc. There are more than 300 valid options

for solvers, preconditioners and their parameter configurations available in PETSc

with all right-hand side elements set to one. We use a subset of these options

and include 154 pairs of solvers and preconditioners. Below is a list of solvers

and preconditioners used throughout this work. All these Krylov methods and

preconditioners are described in more detail in Section II.

3.8 Solver classification

For classifying the solver-preconditioner pairs, supervised learning is used

to train the machine learning model. For preparing the training dataset, each

solver-preconditioner pair is assigned a binary/tertiary label (“good”, “fair”, “bad”)

for all the linear systems. For binary labeling, each datapoint Pi,j is labeled as
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“good” or “bad” or for tertiary labeling as “good”, “fair” or “bad”, based on the

performance of the solver Si, in terms of convergence time on matrix Mj. The

solver-preconditioner with the least solve time was used as a threshold for the rest

of the solver-preconditioner combinations that solved the system. If a combination

failed to converge, it was timed out and labeled as “bad”. For assigning the “good”

label, a threshold parameter b was chosen in the range 0, 1 based on how close a

solver Si’s performance is to the known best-performing method. For instance, for

binary labeling, when b = 25, solvers whose performance for a given problem is

within 25% of the best timing were labeled as “good”, while all other solvers were

labeled as “bad”. For tertiary labeling, a threshold parameter r in the range b, 1 was

considered in addition to the parameter b for labeling solvers as “fair”.

The rest of the section describes the PETSc Krylov methods and

preconditioners used for the solver classification with the Suite Sparse [24] dataset.

3.8.1 PETSc Solvers. Using PETSc solvers is fairly easy compared

to other linear algebra libraries. PETSc can be downloaded and installed in

three ways: (1) by using GitHub (2) by installing the PETSc Debian package or

(3) by using the PETSc web download link and instructions. Krylov methods

have parameter configurations that can be varied. For this research, only default

parameters were considered. After a successful installation for PETSc by any

other three methods mentioned, the next step is to configure and build it. PETSc

offers very easy to understand, step-by-step instructions via online documentation

and tutorials. PETSc comes in with its prerequisites with automatic download,

configure, build and installation with no additional work for the user. There are

many PETSc examples available online along with the command line options to be
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used to enable using different solvers offered by PETSc. Below is a brief description

of the subset of solvers used in the research presented in this chapter.

1. Generalized minimal residual method (GMRES): This method

approximates the solution by the vector in a Krylov subspace with minimal

residual. The Arnoldi iteration is used to find this vector.

2. The Flexible Generalized minimal residual method (FGMRES): It

is a generalization of GMRES that allows larger flexibility in the choice of

solution subspace than GMRES.

3. LGMRES: It augments the standard GMRES approximation space with

approximations to the error from previous restart cycles.

4. Conjugate gradient method (CG): This method starts with an initial

guess of the solution, with an initial residual and with an initial search

direction.

5. Biconjugate Gradient Method (BICG): Implements the Biconjugate

gradient method, similar to running the conjugate gradient on the normal

equations.

6. Biconjugate gradient stabilized method (BCGStab): It is a stabilized

version of BiConjugate Gradient Squared method.

7. Improved Stabilized version of BiConjugate Gradient Squared

(IBCGS): It is an improved stabilized version of BiConjugate Gradient

Squared method.
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8. Transpose-Free Quasi-Minimal Residual Method (TFQMR): It is a

quasi-minimal residual version of CGS. It retains the desirable convergence

features of CGS and corrects its erratic behavior.

9. TCQMR: It is a variant of quasi-minimal residual provided by Tony Chan.

10. LSQR: This is an algorithm for sparse linear equations and sparse least

squares.

11. Chebyshev: This method requires enough knowledge about the spectrum

of the matrix, which is an upper estimate for the upper eigenvalue and lower

estimate for the lower eigenvalue. Chebyshev iteration method avoids the

computation of inner products as is necessary for the other methods.

3.8.2 PETSc Preconditioners. Preconditioning refers to the process

of applying a transformation on the original problem and brings it into a form

that is more suitable for the solving methods. The main idea behind applying a

preconditioner is that, instead of solving Ax = b, solve M−1Ax = M−1b using a

nonsingular m×m preconditioner M , which has the same solution x.

Similar to using the PETSc solvers, different preconditioners can be used

combined with the PETSc solvers using command line options. The PETSc

documentation and tutorials also describe the different parameters that can

be configured for the preconditioners. This part of the section lists the various

preconditioners that were considered and the subset of parameters used for them.

The preconditioners are as follows:

1. Incomplete factorization preconditioners (ILU): ILU is an

approximation of the LU (Lower Upper) factorization. LU factorization

factors a matrix as the product of the lower and the upper triangular matrix.
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Parameters: Factor levels which are the number of levels of fill for ILU.

Parameter values: 0, 1, 2 and 3.

2. Additive Schwarz method (ASM): Solves an equation approximately by

splitting it into boundary value problems and adds the results.

Parameter considered: The amount of overlap between sub-domains.

Parameter values: 0, 1, 2 and 3.

3. Jacobi or diagonal: One of the simplest forms of preconditioning in which

the preconditioner is the diagonal of the matrix as shown below.

M = diag(A) for M−1Ax =M−1 b.

4. Block Jacobi: It is similar to Jacobi, except that in this case, instead of the

diagonal, the block-diagonal is chosen as the preconditioner (M).

5. Incomplete Cholesky factorization (ICC): It is a sparse approximation

of the Cholesky factorization. The Cholesky factorization A is A = LL∗

where L is a lower triangular matrix. An incomplete Cholesky factorization

is given by a sparse lower triangular matrix K that is very close to L. The

corresponding preconditioner is KK∗. Parameter considered: Factor levels

which are the number of levels of fill for ICC. Parameter values: 0, 1, 2 and

3.

3.9 Cost Reduction

One of the goals when building a classification model is to reduce the overall

cost of solving the system. Cost reduction can be achieved in two stages: (1) at

the time of training the model and (2) while making predictions. If the number

of features to be used for building the model can be reduced, substantial cost
50



reduction can be accomplished. Feature reduction is performed by selecting features

that are significant and contribute the most towards the classification process.

Random selection of features would not be suitable as there may be significant

features that get removed by this selection process.

The computation time of each feature varies depending on the category it

belongs to as some features are more expensive to compute than the others. The

reduced feature set contains features that are cheaper to compute than some of the

other properties in the full feature set. In other words, the top significant features

to be chosen is a good strategy.

Selecting the significant features was achieved in two ways. First, the feature

set is reduced to eliminate features that do not contribute significantly to the

classification process. Feature elimination involves removing those features which

have either more than 99% or nearly 0% variance. Second, we apply multiple

attribute evaluators with different search methods. The evaluator applies a strategy

to assign a weight to each feature. The search method determines the search

technique would be performed. The evaluators rank the features, which helps in

identifying the features that do not contribute much to the classification.

Feature elimination and relevant feature selection generate a subset of the

full feature set, which includes only spectral and structural properties. The dataset

comprises these features combined with the solver-preconditioner pair ids and the

class label. Each solver-preconditioner pair is assigned a unique id, which is one of

the attributes of the data set. The class label for the training set is assigned based

on the computation time of the Krylov methods. Each linear system is solved with

multiple Krylov solvers and preconditioners. The best performing solver (the fastest

solver) timing serves as the threshold for the other solvers that solve the same
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linear system. The solvers with solve time within the threshold value are labeled

as “good” and all others are labeled as “bad”. This combination of attributes serves

as the input for the ML model.

3.10 Feature Set

The full feature set comprises 68 features that are computed using Anamod.

These features belong to the five categories as described in Section 3.6. This

section presents the candidates for the various reduced feature sets that are used

throughout the thesis. Table 4 shows the list of features in the reduced sets used

for the work presented in this chapter. Below is a brief description of the features

that are used as reduced features in the research presented in the rest of the thesis.

– Dimension: This represents the number of rows and columns. For any

square matrix, the number of rows and number of columns is equal.

– Nonzeros: This value represents the total number of non-zeros in the matrix.

– Maximum, minimum, and average nonzeros per row: These features

represent the row-based nonzero value statistics, i.e. maximum, minimum and

average nonzeros per row.

– Dummy rows: This feature counts the number of rows that have only one

nonzero element.

– Dummy rows kind: There are three possible outputs for the feature, which

are based on the value of the dummy row elements. Either every dummy row

of the matrix contains a 1 along the diagonal of the matrix or every dummy

row has a nonzero entry or at least one dummy rowâĂŹs entry is on a non-

diagonal position.
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– Absolute non-zero sum: Sum of the absolute values of all the nonzero

elements.

– Numeric Value SymmetryV1: This checks for the numerical symmetry of

the matrix. If the matrix is symmetric then the property of this value is one,

else zero. The symmetry of a matrix can be checked by A = AT where AT is

the transpose of the matrix A.

– Non-Zero Pattern SymmetryV1: This property checks the nonzero

pattern symmetry of the matrix, if it is symmetric then the value of this

property is 1 else 0. The matrix can be checked for being symmetric by

finding out if A and AT have the same nonzero pattern. In other words, if

for every nonzero entry ai,j of A, AT has a nonzero entry ai,j, then the value

of this property is 1.

– Numeric Value SymmetryV2: This property checks the numerical

symmetry of the matrix. The value of this property is a percentage, computed

by v = 1− (1
2

∑m
i=1

∑m
j=1 |si,j|/

∑m
i=1

∑m
j=1 |ai,j|), where S = (si,j) is 1

2
(A−AT ),

the antisymmetric part of A.

– Nonzero Pattern Symmetry V2: The nonzero pattern symmetry of the

matrix, which can be given as the ratio between nonzeros ai,j in A for which

no entry aj,i in A exists and the total number of nonzeros in A.

– Trace: This feature computes the sum of the diagonal elements of the

matrix. Mathematically it can be represented as follows:

c

m

∑
ai∈Ss

(ai)i
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– Absolute Trace: The sum of the absolute values of all the diagonal entries

of the matrix.

– One Norm: The feature provides the maximum absolute column sum of the

matrix, which can be shown as follows:
√∑m

i=1

∑m
j=1 a

2
i,j.

– Infinity Norm: Infinity norm is the maximum absolute row sum of the

matrix. It can be given as follows: max
1≤i≤m

(
∑m

j=1 |ai,j|)

– Frobenius Norm: Frobenius norm is computed as the square root of the

sum of all elements squared, which can be written as:
√∑m

i=1

∑m
j=1 a

2
i,j.

– Symmetric Infinity Norm: The infinity norm of the symmetric part of the

matrix is computed as follows:

||A||∞ ≈
c

m
max
i∈[0,r]

 ∑
j∈[0,m]

|(aj)i)|


– Symmetric Frobenius Norm: The Frobenius norm of the symmetric part

of the matrix.

– Anti-Symmetric Infinity Norm: The infinity norm of the antisymmetric

part of the matrix.

– Anti-Symmetric Frobenius Norm: The Frobenius norm of the

antisymmetric part of the matrix.

– Row Diagonal Dominance: For any row of the matrix, if the absolute

value of the diagonal entry in a row is smaller than the sum of the absolute

values of the non-diagonal entries then the value for this property is 0. That

is, |ai,i| <
∑

j 6=i |ai,j| for all j. The value for this property is 1, if |ai,i| =
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∑
j 6=i |ai,j| for all j. The value for this property is 2, if |ai,i| >

∑
j 6=i |ai,j| for

all j.

– Column Diagonal Dominance: For any column of the matrix, if the

absolute value of the diagonal entry in a column is smaller than the sum

of the absolute values of the non-diagonal entries then the value for this

property is 0. That is, |aj,j| <
∑

i 6=j |ai,j| for all i. The value for this

property is 1 if |aj,j| =
∑

i 6=j |ai,j| for all i. The value for this property is 2

if |aj,j| >
∑

i 6=j |ai,j| for all i.

– Row Variability: The row variance of the matrix can be given as the

maximum ratio between a rowâĂŹs minimum and maximum entries. Row

variance of any row, say, i is computed by 1
m

∑m
j=1(ai,j − µ)2, where µ =

1
m

∑m
j=1 ai,j.

Row variability : maxi log
maxj|aij|
minj|aij|

(3.2)

– Column Variability: The maximum column variance of the matrix can

be given as the maximum ratio between a columnâĂŹs minimum and

maximum entries. Column variance of any column, say, j is computed by j

is 1
m

∑m
i=1(ai,j − µ)2, where µ = 1

m

∑m
i=1 ai,j. Column variability are computed

as follows:

Column variability : maxj log
maxi|aij|
mini|aij|

(3.3)

– Diagonal Average: The arithmetic mean of the absolute values of the

diagonal entries of the matrix. It cane be computed by 1
m

∑m
i=1 |ai,i|.

– Diagonal Variance: The variance of the diagonal elements of the matrix,

which can be computed by 1
m

∑m
i=j=1(ai,j − µ)2, where µ = 1

m

∑m
i=1 ai,i.
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– Diagonal Sign: It is used to represent the pattern of the diagonal sign.

There are six possible values for this feature:

∗ 3, if some of the diagonal elements of the matrix are negative and some

are positive and some or none of them are zeros.

∗ 2, if all the diagonal elements of the matrix are positive.

∗ 1, if all the diagonal elements of the matrix are either positive or zeros.

∗ 0, if all the diagonal elements of the matrix are zeros.

∗ -1, if all the diagonal elements of the matrix are either negative or zeros.

∗ -2, if all the diagonal elements of the matrix are negative.

– Diagonal Nonzeros: The number of non-zero elements present in the

diagonal. The number of diagonal non-zeros is estimated as

dnz(A) =
c

m

∑
ai∈Ss

δ((ai)i)

– Lower Bandwidth: The smallest number k where ai,j = 0 when j <i + k

and k >0.

– Upper Bandwidth: The smallest number k where ai,j = 0 when j >i + k

and k >0.

– Row Log Value Spread: This feature represents the spread of log values in

rows: maxi log10
maxj |aij |
minj |aij |

– Column Log Value Spread: The feature computes the spread of log values

in columns: maxj log10
maxi |aij |
mini |aij |

– Symmetry: The feature holds a boolean value; if the matrix is symmetric or

Hermitian, the value is true (1) and if it is non-symmetric, the value is false.
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We use the full feature set and the reduced feature sets to compare the

accuracy achieved by the ML models. We then select the algorithm that performs

the best and classifies solver performance most effectively. The last stages involve

testing the classifiers on the test data set and observe the performance. There on,

we use the best performing classifier to make predictions for the good-performing

preconditioner-solver pairs for incoming problems arising in different domains. We

examine Bayes Net [14], k-nearest neighbor [22], Alternate Decision Trees [44],

multiclass extension of Alternating Decision Trees [63], Random Forests [17],

J48 [68] and Support Vector Machines [21]. We illustrate this approach on the

Conjugate Gradient [83], GMRES [76], Flexible GMRES [74], TFQMR [43],

BiCG [85], iBCGS [59] and BCGS [98] solvers with ASM [18], Jacobi [92] and Block

Jacobi [84] preconditioners.

3.11 Performance Evaluation

To test the performance of the machine learning techniques described in

Section , we use the “good” solver accuracy and the overall accuracy of the ML

technique. The confusion matrix provides statistics for how many “good” solver

were classified as “good” and how many “bad” solvers were described as “bad”.

These are referred to as the sensitivity and specificity of the models. Sensitivity

is computed as follows:

TPR = TP/P = TP/(TP + FN), (3.4)

where P is the actual number of “good” instances, TP are the number of “good”

solvers correctly labeled as “good”. FN denotes the number of “good” solvers that

were misclassified as “bad” by the classifier. Specificity of a model is given as:

TPR = TN/N = TN/(TN + FP ) (3.5)
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Here, N is the actual number of “bad” instances, TN are the number

of “bad” instances correctly labeled as “bad”. FN denotes the number of “bad”

instances predicted as “good” by the classifier. The focus is on the “good” solver

accuracy throughout this dissertation as which solvers performed “bad” is likely to

be unexciting for the users. For validation, we use the following two techniques for

the full-feature dataset and the reduced sets:

– Train-test split: While training a model, the goal is to feed the data to that

model so that it can recognize patterns and use the information to make

predictions for new data points. One challenge that may arise during training

a model is overfitting. Overfitting arises when the model learns the training

data and has 100% accuracy on the training data. Such models perform

poorly on data other than the training data. To avoid overfitting, the data

is usually split into two sets: train and test. Training data is used to train the

model and test set is used to validate the model. A popular train-test split

ratio is 66 − 34%, where two-thirds of the data is used for training and the

rest is used for validating the model.

– N-fold cross-validation: N-fold cross-validation technique evaluates the model

by splitting the data randomly into N sized subsamples. All the subsamples

except 1, N − 1 subsamples are used to train the model and one of the N

subsamples is used for testing the model. The subsampling process is carried

out N times, with different subsamples every time. The advantage of this

technique over the train-test split is that it uses 100% of the data for training

and testing and is extremely useful especially in scenarios where the dataset

has small (<10,000) number of datapoints.
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Figure 10. The overall workflow of the linear system solver selection process with
the convergence (ML) model.

3.12 Experimental Results

The performance of 154 solver-preconditioner pairs is evaluated with PETSc

3.5.3 on the Blue Gene/Q supercomputer for more than 1, 000 matrices from the

SuiteSparse collection resulting in a total of 4, 648 data-points consisting of matrix

features computed using Anamod. The data-size is particularly interesting because

usually, a machine learning modeling technique requires at least a sufficiently large

dataset. With less than 5, 000 data-points the convergence modeling produced the

best accuracy of 87.6% with the full feature set that includes 68 input features from

BayesNet classifier. Based on the feature reduction, as discussed in Section 3.9,

we reduce the number of feature to a set, RS1, of 8 features. For the reduced

set, RS1, which comprises eight features alone, an accuracy of 86.9% is achieved

with BayesNet classifier. With RS2, that consists of only six features achieves

an accuracy of 86.5% with the BayesNet classifier. Table 4 shows the list of

features that comprise the reduced feature sets RS1 and RS2. Figure 12 shows
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Figure 11. Machine learning classifier accuracy comparison for full feature set and
reduced feature sets.

Figure 12. Time taken (seconds) to construct the classifier for machine learning
classification.
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Table 4. Reduced feature sets (RS1 and RS2) used for classification

Feature name Reduced Feature Set 1 (RS1) Reduced Feature Set 2 (RS2)
avg-diag-dist X X

nnz X
norm1 X X

col-variability X X
min-nnzeros-per-row X X

row-variability X X
n-nonzero-diags X

kappa X X

the classification accuracy for all the machine learning classifiers used in this work.

Figure 11 shows the time taken to build each of the classifiers. A classifier with

the highest accuracy and least build time is preferable. Classifier accuracy is of

maximal importance in this work because the ultimate goal of this research is to

make solver recommendations that are quasi-optimal. Although the cost of building

the machine learning classifier is a one-time cost, classifiers with comparatively

large build time were not the preferred choice for classification.

3.13 Summary

To summarize, the entire workflow of the ML model is shown in Figure 10.

The first stage in the workflow involves obtaining the linear system in the right

format. SuiteSparse matrix collection offers matrix market format. For convenience,

the matrices are converted into PETSc format. The next stage involves extracting

the features of these linear systems. A subset of PETSc solvers and preconditioners

are used to solve these systems. Before performing the linear solve, a unique solver

identifier is assigned to each pair of specific Krylov method and preconditioner.

The next stage involves solving each of these linear systems with multiple solver-

preconditioner pairs and capturing the solve time. Based on the solver time, the

solver-preconditioner pairs are categorized as “good” or “bad”.
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The next step is to build the data for the classification model. For the

dataset, each data-point is composed of the matrix properties, unique solver

id and the class label (“good” or “bad”) for each linear system. Since multiple

solver-preconditioner pairs solve the same linear system, only the unique solver

id changes whereas the matrix properties are the same for all these data points.

The class label may be “good” or “bad” depending on the time taken by the solver-

preconditioner pair to solve the system. All such data points together constitute

the dataset for supervised machine learning. The dataset is written in Comma-

Separated Values (CSV) and Attribute-Relation File Format (Arff). The next

steps involve applying various machine learning classification techniques on the

full feature set and the reduced feature set. The output of this scheme is (1) Top 10

most used solvers for the entire dataset and (2) solver-preconditioner combination

suggestions, in the form of an unranked list, for an unknown linear system.

The second most expensive step in the workflow is the actual solve of the

linear systems. Since we need to solve the systems only once for the model training,

it can be considered as a one-time cost. The most expensive step in the workflow

is the property computation step because some properties are more expensive

computationally than others. For instance, the spectral properties like eigenvalues

are much more expensive than structural properties like the number of rows or the

maximum number of nonzeros per row. To reduce the overall cost of the system, we

reduce the number of features to be computed for an incoming system to less than

eight features. These features mostly include structural and size-based features and

therefore are comparatively cheap to compute.
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CHAPTER IV

COMMUNICATION MODEL FOR SPARSE LINEAR SOLVER SELECTION

This chapter is based on the collaboration [87] between Boyana Norris

(UO), Elizabeth Jessup (CU Boulder), and myself. Boyana Norris and I designed

the analytical model for ranking a subset of the parallel solvers offered by

PETSc. I studied the Krylov method evaluations and analyzed the inter-process

communication to compare the scalability of various parallel solvers. I generated

the communication-based ranking, which was meticulously verified by Boyana

Norris. I performed the case by case comparison of communication costs of

matrix-vector operations and Boyana Norris provided guidance on conducting the

comparison in an efficient manner. Throughout this research, Elizabeth Jessup

verified the various matrix-vector operation costs, our understanding of the Krylov

method behaviors and provided significant feedback.

This chapter presents our communication-based performance model for

comparing the scalability of several parallel preconditioned Krylov methods from

PETSc without extensive empirical measurements. We generate a scalability

ranking for the preconditioned solvers based on an analytical communication

model. The communication model provides an extension to the convergence model

presented in chapter III, to handle large scale problems and recommend solvers at

different parallelism scales. The next chapter presents how the model is validated

by evaluating it on a numerical simulation of driven fluid flow in a two-dimensional

cavity. With the association of the convergence model with the communication

model, the approach enables capturing both the convergence behavior and the

parallel overhead of the Krylov methods.
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4.1 Motivation

Iterative solvers are very popular for providing sparse system solutions on

parallel architectures for two reasons. First, iterative solver techniques are expected

to scale well as they use factorization of the coefficient matrix into invertible

matrices. Second, often an exact solution is not required, for instance, the methods

that solve a system of equations in which there is a new system to be solved at each

iteration. In such cases, an approximation of the solution is sufficient. For solving

large sparse linear systems, iterative solvers are usually paired with preconditioners

to improve their robustness. There are many open-source numerical packages

for the iterative solution of sparse linear systems that are derived from partial

differential equation problems such as PETSc and Trilinos. Given the number

of pre-existing numerical libraries and further addition of new solution methods,

selecting an “well-performing” solution technique is very challenging. Therefore we

propose the communication-based technique to enable solver recommendations at

different parallelism scales.

4.2 Communication Cost of Preconditioned Krylov Methods

For any given solver technique, there are two types of costs affiliated:

communication cost and computation cost. The computation cost is the cost of

the iterative solution of a linear algebraic system Ax = b. The computation cost is

associated with the convergence time and memory requirements. Communication

cost in iterative solvers is given by the number of arithmetic operations for the

individual steps in solving the system until the computation is stopped. These

arithmetic operations include various operations such as global reductions, matrix-

vector operations, and scatter-gather operations. For small-scale problems, the

convergence model described in Chapter III is preferable for many reasons: (1) it
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Table 5. Number of calls of communication-relevant functions per iteration of
various Krylov methods.

Operations Parameter Count
Conjugate Gradient

VecTDot q 2
VecNorm q 2
PCApply cpc 2
MatMult m 2

GMRES
VecMDot_MPI q ∗ r(r + 1)/2 1

VecNorm q 2
PCApply cpc 2
MatMult m 2

Flexible GMRES
VecMDot_MPI q ∗ r(r + 1)/2 1

VecNorm q 2
PCApply cpc 1
MatMult m 2

BCGS
VecDot q 2
VecNorm q 2

VecDotNorm2 q 1
PCApply cpc 3
MatMult m 3

iBCGS
VecDot q 2
VecNorm q 1

MatMultTranspose m 1
PCApply cpc 5
MatMult m 3

MPIU_AllReduce w 2
TFQMR

VecDot q 3
VecNorm q 2
PCApply cpc 4
MatMult m 4

BiCG
VecDot q 2
VecNorm q 2
PCApply cpc 3

PCApplyTranspose cpc 2
MatMult m 2

MatMultTranspose m 165



captures the convergence behavior of Krylov methods successfully (2) it involves

only a handful of features to be computed for any system (3) the model building

and training cost are affordable.

To compare the performance of various Krylov methods with

preconditioning, this work presents an analytical communication-based model

which generates a scalability ranking for the Krylov methods. A subset of Krylov

methods and preconditioners were considered, with seven parallel Krylov methods

and seven preconditioners from PETSc. The subset includes a non-preconditioned

case for all the Krylov methods making a total of 49 cases. Each of these solver

and preconditioner implementations provided in PETSc is thoroughly analyzed for

the communication model. For computing the scalability ranking, we compare the

communication occurring in different Krylov method implementations.

Table 6. Matrix-vector operations with communication

Operation Description Cost Variable
MatMult Computes matrix-vector product: y = Ax m

MatMultTranspose Computes matrix transpose times a vector y = A′x m
VecNorm Computes norm of the vector: r = ||x|| q
VecDot Computes the dot product of the vectors x and y q
VecMDot Computes one or more vector dot products. q

VecMDot_MPI Computes vector multiple dot products and performs reductions q ∗ k(k + 1)/2
VecTDot Computes indefinite vector dot product: yHx, where yH denotes the conjugate transpose of vector y q

VecDotNorm2 Computes the inner product of two vectors and the 2-norm squared of the second vector q
PCApply Performs the preconditioning on the vector cpc

PCApplyTranspose Applies the transpose of preconditioner to a vector cpc
VecScatterBegin Performs a scatter from one vector to another v
MPIU_Allreduce Determines if the call from all the MPI processes occur from the same location in the code. w

4.3 Building the Analytical Communication Model

For analyzing each Krylov method implementation, primarily the inter-

process communication is evaluated by identifying the communication-causing

operations, cost of these operations and the number of times these operations have

been called per iteration. The analysis is done for Krylov solver iteration alone

excluding the initial setup function, I/O functions and the common operations for

all the implementations. Since the total number of iterations for each solver vary,
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we normalize calls per iteration so that the raw counts for the number of times

operations have been called do not lead towards a bias for solver techniques with

less operation count and more iterations.

4.3.1 Identify operations with communication. While analyzing

the Krylov method implementations, all matrix-vector operations were inspected

for communication. Figure 13 shows the matrix and vector operations in

Krylov methods offered by PETSc. Table 6 shows all the operations that have

communication. Throughout the analysis of the solver implementations, the goal

is to identify the communication happening within each iteration. Here, the focus

is on high-level communication primitives and excludes low-level communication

functions. The computation aspect is not included in the analytical modeling as

on a large scale the communication cost is expected to be more dominant. The

next chapter of the dissertation describes how the computation and communication

aspect can be captured together with our approach of using the convergence model

in combination with this analytical model. The operations of interest include global

reduction operations such as the vector norms, one or more vector dot products, or

the matrix multiplication and its transpose, or the matrix-vector products, nearest-

neighbor scatter and gather operations.

4.3.2 Matrix-vector product. There are two operations namely

MatMult and MatMultTranspose that perform matrix-vector product. Let

the cost of each such product be represented by variable m and the number of

nonzeros per row for each processor be n and the number of processors be p. Each

processor sends its nonzeros per row values to all other p− 1 processors and receives

partial sum contributions to its vector elements. The amount of communication

per processor includes sending n values to p − 1 processors and receiving n values
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Figure 13. Matrix and Vector operations in PETSc.
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from all other processors. Therefore the communication cost per processor for each

matrix-vector operation can be written as m = 2 ∗ n ∗ (p− 1).

Scatter gather vector operations: There is one operation that performs

a scatter from one vector to another, namely V ecScatterBegin. Let the cost of

the nearest neighbor scatter gather vector operation be represented by variable v.

Tau Performance system toolkit [82] was used to trace the parallel Krylov method

implementations offered by PETSc. The cost of this operation is constant involving

small amounts of data (≤ 32 bytes or 4 double-precision scalar values) and does

not depend on the number of processors or the size of the problem (number of

nonzeros).

4.3.3 Reduction operations. The operations that reduce an array

of values into a single scalar value are known as the reduction operations. There

are seven operations in this category, namely V ecDot, V ecTDot, V ecMDot,

V ecMDotMPI, V ecDotNorm2, V ecNorm, and MPIUAllreduce. Let the cost

of a reduction operation be denoted by the variable q. The dot product of two

vectors, V ecDot or the transpose of a vector with another vector, V ecTDot or

a combination of norm/dot product, V ecDotNorm2 all use at least one global

reduction operation. The communication cost of the reduction operation can be

given by log p [89]. The operation V ecMDot performs one or more dot products

and V ecMDot_MPI performs reductions in addition to the dot products.

V ecMDot_MPI exists only in GMRES, FGMRES implementations, with k as

the restart parameter value. The cost of dot products as mentioned before, is log p

and for reducing x data items, where x ranges from 1, 2, . . . k and the sum of the

cost of all the x items can be computed by the sum of the series 1 + 2 + 3 + · · · + k

formula: k(k + 1)/2. Now, the total communication cost is qk(k + 1)/2. The last
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operation, MPIU_Allreduce combines the values from all the processors and sends

back the result to all of the processors. The cost of this operations, let’s denote it

by w, involves a constant amount of data as it does not depend on the processor

count of the number of nonzeros. The cost can be given as fixed data size: <96

bytes or 12 precision values.

4.3.4 Application of Preconditioners. There are two operations,

PCApply and PCApplyTranspose, which perform the preconditioning on the

vector and the transpose of a preconditioner on the vector respectively. The cost

of preconditioner application is denoted by cpc, where the subscript represents

which preconditioner was applied, i.e. Jacobi, Block Jacobi or ASM(0) / ASM(1) /

ASM(2). For ASM, the integer value in the bracket represents the overlap between

a pair of subdomains for the preconditioner. In the case of no preconditioning, the

cost of this operation is naturally zero.

4.3.5 Assign cost to operations with communication. Based on

the description, here we describe the cost assigned to all the communication-causing

operations in terms of the number of processors p, processor’s average number of

nonzeros per row n, restart parameter for GMRES and FGMRES k. The cost for

the matrix-vector multiplication is denoted by the variable m and can be given as

2 ∗ n ∗ (p − 1). The cost of the reduction operation is denoted by q and can be

given as log p. The cost for the MPIU_Allreduce which is represented by w, can

be assigned a constant cost of ≤ 96 bytes or 12 double precision values. The cost

for the V ecScatterBegin operation can be denoted by v and given as ≤ 32 bytes

or 4 double precision values. The cost of V ecMDot_MPI operation is equal to

q∗k(k+1)/2. To estimate the communication cost for different Krylov methods, the

communication cost for a single iteration in all implementations. The computation
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cost is excluded from this analytical modeling because it can be captured with the

convergence model described in the previous chapter. Table 5 shows the number of

calls made to the operations with communication for each Krylov method that is

analyzed.

4.4 Compare Communication Cost across Krylov Method

Implementations

There are 49 combinations of parallel preconditioned Krylov methods

analyzed in this work. The goal is to identify the differences in the communication

cost in a single iteration by considering normalized calls per iteration. The cost of

communication for each Krylov method is described with respect to the number

of calls to underlying communication intensive kernels and the cost of the matrix-

vector operations. Each pair of solver-preconditioner is compared with every other

pair by computing the difference in their communication costs. Let us consider

a pair of preconditioned Krylov methods, say Sa, Sb. There are three possible

values: if the difference in the communication cost of Sa and Sb is (1) greater

than zero then the communication cost of Sa is more than the communication

cost of Sb (2) less than zero, then the communication cost of Sb is more than the

communication cost of Sa and (3) equal to zero, then the communication cost

of Sb and Sa is the same. These pairs of Krylov methods may involve different

operations due to which an exact comparison of the amount of communication in

each of the 49 cases is not necessary. In a few cases, basic matrix-vector operations

are considered and in some cases, simply identifying which Krylov method pair has

more communication is enough to perform the communication-cost comparison.

Rest of the sub-section presents a case by case comparison of communication costs

for various preconditioned Krylov methods.
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4.4.1 GMRES and Conjugate Gradient:. Let the communication

cost of Conjugate Gradient be represented as CCG and cost of GMRES be CGMRES.

Conjugate Gradient involves two matrix-vector products (2m), two vector norm

computations (2q) and two vector dot products (2q). Now, the total communication

cost is 2m + 2q + 2q, i.e. CCG = 2m + 4q. GMRES computes two vector norm

computations 2q, and two matrix-vector products (2m) and one vector multiple dot

product q ∗ k(k+1)/2, so the total communication cost is CGMRES = 2m+2q+ (q ∗

k(k + 1)/2). The difference in the costs for GMRES and Conjugate Gradient can be

given as follows:

CGMRES − CCG = 2m+ 2q + (q ∗ k(k + 1)/2)− (2m+ 4q) (4.1)

The above equation on simplification becomes:

CGMRES − CCG = (q ∗ k(k + 1)/2)− 2q = (k(k + 1)/2− 4)q > 0 for all k > 2 (4.2)

Therefore, the communication cost of GMRES(k) is more than the

communication cost of Conjugate Gradient for all k > 2.

4.4.2 Flexible GMRES (FGMRES) and Conjugate Gradient:.

FGMRES includes two vector norm computations (2q), two matrix-vector products

(2m) and one VecMDot_MPI operation. As shown in the previous case, CCG =

4q + 2m. The communication cost of FGMRES and Conjugate Gradient can be

shown as:

CFGMRES − CCG = 2m+ 2q + q ∗ k(k + 1)/2− (2m+ 4q) (4.3)

This can be further simplified as:

CFGMRES − CCG = (k(k + 1)/2− 4)q > 0 for all k > 2. (4.4)

Therefore the communication cost for FGMRES is more than Conjugate

Gradients for all value of k > 2. The communication cost of FGMRES shown in
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this case and the cost for GMRES, as shown in the previous case, are the same.

Thus the comparison of Conjugate Gradient with FGMRES method is the same

as that of GMRES. Therefore the communication cost of FGMRES is the same as

GMRES and more than the communication cost for Conjugate Gradient.

4.4.3 TQFMR and Conjugate Gradient:. TFQMR has two

vector norm computations (2q), three vector dot products (3q), four matrix-vector

products (4m). The difference CTFQMR − CCG = 5q + 4m − (4q + 2m) =

q + 2m > 0 for all q,m > 0. Therefore, TFQMR always has more communication

than Conjugate Gradient.

4.4.4 BiCG and Conjugate Gradient:. BiCG has two vector norm

computations (2q), two vector dot products (2q) and three matrix-vector products

(3m). For comparing the communication costs of BiCG and Conjugate Gradient,

their difference can be given as:

CBiCG − CCG = 4q + 3m− (4q + 2m) = m > 0 for all m > 0. (4.5)

This shows that BiCG will always have higher communication cost than

Conjugate Gradient.

4.4.5 BCGS and Conjugate Gradient, BCGS and BiCG:.

BCGS has the following communication-causing operations: two vector norm

computations (2q), two vector dot products (2q), one VecDotNorm operation q

and three matrix-vector products (3m). Therefore the total communication cost for

BCGS can be given as 5q + 3m. The difference in the communication costs of the

two solvers can be given as:

CBCGS − CCG = 5q + 3m− (4q + 2m) = q +m > 0 for all q,m > 0. (4.6)
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This shows that the communication cost for BCGS is more than that of

Conjugate Gradient. Also, because BiCG’s communication cost is more than that

of Conjugate Gradient, BCGS has more communication than BiCG as well.

4.4.6 BCGS and TFQMR:. The difference in the communication

cost of TFQMR and BCGS can be given as follows:

CTFQMR − CBCGS = 5q + 4m− (5q + 3m) = m > 0 for all m > 0. (4.7)

Therefore, TFQMR has more communication than BCGS in all scenarios.

4.4.7 BCGS and GMRES:. The communication cost for CBCGS is

5q + 3m and the cost of CGMRES is 2m+ 2q + q ∗ k(k + 1)/2, the difference in their

communication costs can be given as follows:

CBCGS − CGMRES = (5q + 3m)− (2m+ 2q + q ∗ k(k + 1)/2) (4.8)

The above equation can be simplified as :

CBCGS − CGMRES = 3q +m− (q ∗ k(k + 1)/2) (4.9)

For all the cases so far, the exact communication cost for various operations

was not required to compare the communication cost of the solver pairs. For this

comparison, although different operations involved are known in these solver

implementations, the value of m and q cost variables are required. As described

earlier in this section, m = 2 ∗ n ∗ (p − 1) and q = log p. On substituting these

values and given the default value of the restart parameter k in GMRES, k = 30

and the average number of nonzeros per row (n) for the problem are 5. On further

substitution of the k and n values in the above equation gives:

CBCGS − CGMRES = −462 ∗ log p+ 10(p− 1) > 0 for all p > 257. (4.10)
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Refer Figure 14 for function plot. The curve below 0 shows that GMRES

has more communication than BiCG. For the curve above 0 shows the cost is more

for BiCG when p >= 258.

Therefore, the communication cost for BCGS is more than the cost for

GMRES for all p > 257, given p is the number of processors.

Figure 14. Function plot for communication cost comparison for (1) BCGS and
GMRES and (2) TFQMR and GMRES.

4.4.8 BCGS and iBCGS:. Communication in iBCGS involves

3 MatMult (3q), 2 VecDot(2q), 1 VecNorm(q) and 1 MatMultTranspose(m)

operations resulting in a total number of operations to be 3q + 4m. As described

earlier, the cost for BCGS can be given as CBCGS = 5q + 3m. The difference in the

communication cost of BCGS and iBCGS can be shown as:

CiBCGS − CBCGS = 3q + 4m− (5q + 3m) > 0 for all q,m > 0 (4.11)

After substituting the values of m and q, the above equation can be

simplified as:

10 ∗ (p− 1)− log p > 0 for all p > 1 (4.12)

This shows that the cost of iBCGS is more than BCGS for all p > 1.
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4.4.9 iBCGS and GMRES:. iBCGS can be compared with GMRES

as follows:

CiBCGS − CGMRES = (3q + 4m)− (2m+ 2q + qk(k + 1)/2) (4.13)

Substituting the values, k = 30, m = 2n(p − 1), n = 5 and q = log p, the

difference in communication costs can be given as follows:

CiBCGS − CGMRES = log p+ 20(p− 1)− 465 log p > 0 for all p > 110 (4.14)

Therefore, iBCGS has more communication than GMRES for p > 110.

4.4.10 BiCG and GMRES:. For comparing the cost of BiCG and

GMRES, the comparison can be made as follows

CBiCG − CGMRES = (4q + 3m)− (2q + 2m+ qk(k + 1)/2) (4.15)

On substituting the values of k, m, q and n i.e. k = 30, m = 2 ∗ n(p − 1),

n = 5 and q = log p:

log p ∗ k(k + 1)/2− (2 log p+ 2n(p− 1)) = 2 ∗ n ∗ (p− 1)− 463 log p (4.16)

BiCG has more communication than GMRES for p > 258.

4.4.11 GMRES and TFQMR. : To compare GMRES with TFQMR

the difference in communication cost is observed as follows:

CTFQMR − CGMRES = 5q + 4m− (2q + 2m+ qk(k + 1)/2) (4.17)

Substituting the values for m, q and n, the above equation can be simplified

as:

20(p− 1)− 462 log p > 0 for all p > 109 (4.18)

Therefore, the communication for TFQMR is more than that for GMRES

for cases where p > 109.
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Table 7. Operations with communication in ASM.

Krylov method Operations
Conjugate Gradient 7q + 2m + 4v

GMRES 5q + 2m + qr(r+1)/2 + 4v
Flexible GMRES 4q + 2m + qr(r+1)/2 + 4v

BCGS 10q + 3m + 4v
TFQMR 9q + 3m + 4v
BiCG 7q + 3m + 4v
iBCGS 9q + 4m + 4v

4.5 Compare Communication Cost for Preconditioner Implementations

For comparing the communication cost of the preconditioners used in this

work, the preconditioners were applied with the solvers discussed above. This

sub-section presents the communication cost arising from the preconditioner

implementations offered by PETSC. ASM, Jacobi and Block Jacobi with four

variations of the ASM preconditioner are observed.

Jacobi preconditioner is a diagonal scaling preconditioner, i.e. it uses the

matrix diagonal diag(A) as the preconditioner. Block Jacobi preconditioner is a

block-diagonal matrix, i.e. it is the block version of the Jacobi preconditioner. So

the matrix is divided into blocks and each block is solved using the Jacobi method.

ASM preconditioner solves the linear system by dividing it further into

smaller domains. The preconditioner has a parameter known as the overlap, which

can be varied with values such as an overlap of zero, one, two, three or more. They

are represented as ASM(0), ASM(1), ASM(2) and ASM(3) from here on. The

overlap value refers to the data that is present between a pair of sub-domains.

ASM has an additional cost because of the communication required for the

overlapping data among the sub-domains. The overlapping data has to be sent to

one of the neighboring processors. Therefore the communication cost for ASM can

be computed as cASM = amount of overlap ∗ transfer cost. The transfer cost can
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Table 8. Operations for analytical measurements

Operations NoPC, Jacobi, BJacobi ASM(0) ASM(1) ASM(2) ASM(3)
CG 4q+2m 6q+2m+4v 7q+2m+4v 8q+2m+4v 9q+2m+4v

GMRES 2q+2m+qr(r+1)/2 4q+2m+qr(r+1)/2+4v 5q+2m+qr(r+1)/2+4v 6q+2m+qr(r+1)/2+4v 7q+2m+qr(r+1)/2+4v
FGMRES 2q+2m+qr(r+1)/2 3q+2m+qr(r+1)/2+4v 4q+2m+qr(r+1)/2+4v 5q+2m+qr(r+1)/2+4v 6q+2m+qr(r+1)/2+4v
BCGS 5q+3m 9q+3m+4v 10q+3m+4v 11q+3m+4v 12q+3m+4v

TFQMR 5q+4m 9q+4m+4v 10q+4m+4v 11q+4m+4v 12q+4m+4v
BiCG 4q+3m 6q+3m+4v 7q+3m+4v 8q+3m+4v 9q+3m+4v

Table 9. Communication-based ranking of solvers for p > 258.

Ranking NoPC ASM(0) ASM(1) ASM(2) ASM(3) Jacobi BJacobi
CG 1 4 5 6 7 1 1

GMRES 8 14 17 19 21 8 8
FGMRES 8 14 16 18 19 8 8
BCGS 26 29 31 34 35 26 26

TFQMR 39 42 47 48 49 39 39
BiCG 22 25 30 31 33 22 22
iBCGS 36 43 44 45 46 36 36

be given as 0 for ASM(0), q for ASM(1), 2q for ASM(2) and 3q for ASM(3). On the

other hand, Jacobi and Block Jacobi do not have any additional costs associated in

the PCApply operations, therefore cJacobi = 0 and cBJacobi = 0. This also suggests

that solvers preconditioned with Jacobi and Block Jacobi will have the same cost of

communication as the case of the absence of preconditioning.

Due to a transfer cost introduced in ASM due to the overlap, the

communication cost for all the Krylov methods needs to be compared for the case

where they are preconditioned with ASM. Table 7 shows the operations for all

Krylov methods when applied with ASM. By substituting the values of the cost

variables, it can be derived that Conjugate Gradient has the least communication,

and Flexible GMRES has the most communication.

4.6 Generate Communication-based Ranking

With the pair-wise comparison and the preconditioner communication cost

computation, the solvers can be ranked based on the number of operations and
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the cost of each operation. Based on this approach, all the solver-preconditioner

pairs can be ranked on the overall communication cost. There are a total of 49 such

pairs, so the ranking starts from one till forty-nine. A lower rank would mean less

communication for the solver-preconditioner pair, and the pair with the highest

rank depicts the most communication. Pairs with the same cost of communication

share the same rank. Table 9 shows the communication-based solver ranking from

1 to 49 in order of increasing communication costs. The rows in the table represent

the Krylov method and the columns in the table denote the preconditioning options

used along with the no preconditioning options. The next chapter describes the

empirical evaluation used to test this model-based ranking with empirical results

collected for numerical simulation of driven fluid flow in a cavity.

4.7 Summary

The chapter presents the modeling strategy for comparing the scalability of

parallel Krylov methods for different input properties, without requiring extensive

empirical measurements. We consider the PETSc implementations of Newton-

Krylov methods to produce scalability rankings based on our new comparative

modeling approach. The analytical modeling examines seven Krylov Method

implementations and six preconditioner implementations. We provide the solver

ranking for each Krylov methods, including no preconditioning by analyzing and

providing a ranking for a total of 49 solver-preconditioner implementations offered

by PETSc.
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CHAPTER V

COMBINING THE CONVERGENCE AND COMMUNICATION MODELS

This chapter is based on the collaboration [87] among Boyana Norris (UO),

Elizabeth Jessup (CU Boulder), and myself. Boyana Norris and I designed the

analytical model for ranking a subset of the parallel solvers offered by PETSc. I

applied the convergence model and the communication model together to enable

solver recommendation techniques for large scale problems. For validating the

model, Boyana Norris and I tested the approach on a driven cavity application.

This chapter presents the validation of the communication model presented

in Chapter IV by evaluating the model on a numerical simulation of driven

fluid flow in a two-dimensional cavity. With the association of the convergence

model and the communication model, the approach enables capturing both the

convergence behavior and the parallel overhead of the Krylov methods. Combining

the two models allows modeling both aspects of Krylov methods: convergence and

communication, which facilitates solver recommendations at different parallelism

scales.

5.1 Motivation

The machine-learning based approach successfully captures the convergence

behavior of the Krylov methods for small-scale problems. The convergence model

depends on a training dataset that is collected by solving the linear systems with

multiple combinations of solvers and preconditioners. However for problems that

require larger processor counts, collecting the training dataset becomes rather

expensive and therefore undesirable, as each linear system has to be solved with

multiple solver-preconditioner combinations. The communication-based ranking

model described in the previous chapter generates the solver ranking which can be
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used for making solver predictions for large scale problems (problems that require

more than 10, 000 processors.

5.2 Modeling Computation and Communication for Krylov Methods

The convergence model and the communication model, when used in

conjunction can build a stronger recommendation system than either of the

models as a standalone approach. Using the two models in combination enables

capturing the convergence behavior and communication behavior of the parallel

preconditioned Krylov methods. This chapter describes how the two models can be

used in combination and also presents the evaluation performed on a cavity driven

fluid flow application.

The first step involves using the convergence approach to build the machine

learning model and classifying Krylov methods based on their convergence

behavior. More than 1, 800 matrices from the SuiteSparse matrix collection are

used to form the training dataset. The training dataset is collected over a small

number of processors, 72, in this case. On applying the supervised machine learning

technique, we can identify the “good” preconditioned Krylov methods for each

linear system. The training dataset for supervised learning comprises the matrix

features, unique solver id and binary class label (“good” or “bad”). The full feature

set contains 34 features. We perform the feature reduction technique as described

in Chapter III and generate a reduced set with only six features. These features

are inexpensive matrix properties which can help in reducing the overall cost of

the system. The reduced feature set contains six features, namely Row Variability,

Lower Bandwidth, Upper Bandwidth, Diagonal Sign, Diagonal NNZ and Numeric

Value Symmetry2. These features have been described in detail in Section 3.6.
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A set of eleven solvers and five preconditioners from PETSc along with

some parameter configurations for the preconditioners are considered. Each solver-

preconditioner pair is assigned a binary class label (“good” or “bad”) based on a

threshold parameter. The threshold parameter value is a threshold for deciding

whether a solver should be labeled as “good” or not, based on the comparison with

the best solver timing, i.e. the solver that solved that system in the least time. A

threshold value of 0.45 was chosen by varying the parameter value between [0, 1].

Once all the data points are labeled as “good” or “bad”, the next step is to

perform the binary classification. The classification model is analyzed by the True

Positive Rate (TPR) accuracy and the overall accuracy. TPR is the ratio of the

true positive instances identified correctly by the model and the actual number

of positive instances. The overall accuracy considers the model’s capability to

correctly identify “good” solvers as “good” and “bad” solvers as “bad”. Main focus is

on the TPR accuracy, as identifying the “good” solvers correctly is more interesting

than correctly identifying the “bad” solvers. For 10-fold cross validation, out of all

the classifiers (BayesNet, LibSVM, k-nearest neighbor, ADT, J48) tested, Random

Forest classifier achieved the best overall accuracy of 98.8% and TPR accuracy of

98.4%. With a train-test split of 66−34%, the overall accuracy achieved by Random

Forest is 98.6% and the TPR accuracy of 98.1%.

To further validate the model, the approach was applied on a driven cavity

flow simulation, which includes solving a nonlinear PDE discretized on a 100 ×

100 grid. Five different physical configurations were considered by varying Grashof

numbers of 1, 10, 100, 1, 000 and 10, 000. During each simulation, multiple sparse

linear systems (order 4, 000, 000 with nearly 80, 000, 000) are solved at each non

linear iteration. The driven cavity simulation is selected because the simulation
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resembles the properties of many large-scale nonlinear PDE-based applications from

domains like astrophysics and aerodynamics. As known, the most expensive part

of the simulation is the solution of large, sparse linear systems of equations. For

modeling the scalability of Krylov methods, the analytical ranking is generated by

comparing the amount of communication involved in these methods. For small-scale

problems, the convergence model is sufficient to make solver recommendations. For

large scale problems, which need high levels of parallelism, first the convergence

model generates a list of “good” solvers. Second, the analytical solver ranking is

used and the intersection of the convergence model and the analytical model is used

to select the top-ranked solver-preconditioner configuration which is suggested by

the convergence model and also highly ranked by the analytical scalability model.

The driven cavity model used for evaluating the model, is a combination

of lid-driven flow and buoyancy-driven flow in a 2D rectangular cavity. The lid

moves with a steady and spatially uniform velocity and sets a principal vortex

by viscous forces. The differentially heated lateral walls of the cavity invoke a

buoyant vortex flow, opposing the principal lid-driven vortex. The nonlinear

system can be expressed in the form f(u) = 0, where f : Rn− > Rn. For

empirical measurements, five regular grids on a uniform Cartesian mesh are solved,

which generate square linear systems with up to 4, 000, 000 rows and columns and

approximately 80, 000, 000 nonzeros. There are four unknowns per mesh point, 2D

velocity, viscosity and temperature. The linear system is solved in parallel with all

the preconditioned and non-preconditioned Krylov methods, using PETSc 3.8, the

current version at the time of this research.

83



5.3 Empirical Evaluation

Using the convergence model in conjunction with the communication model

recommends the Krylov methods that are suggested by the convergence model

and are also highly ranked by the communication model. This section presents

the empirical measurements collected on the NERSC Edison supercomputer for

problems of upto 80 million nonzeros solved on up to 12, 288 processors. The

problem configuration was chosen specifically because it is feasible and requires a

nontrivial amount of time on larger processor counts. The initial configuration was

not changed in any form during the validation.

5.3.1 Results for a 1, 000 × 1, 000 mesh with a Grashof 100. Our

first set of experiments use a 1, 000 × 1, 000 mesh with a Grashof number of 100.

Table 10 shows the Krylov methods that are labeled “good” by the Random Forest

classifier and their ranking from the analytical communication model for driven

cavity simulation on a 1000 × 1000 mesh with a Grashof 100. Figure 16 shows

the ratio with respect to the average time per solve for different processor counts,

12, 288, 6, 144 and 1, 536. The data is sorted by the average time per solve for all

the solvers that finished the computation in time. Other solver-preconditioners

either failed or were timed out as they were taking too long.

The results are shown in Tables 11, 12, and 13 for different number of

MPI tasks used to solve the problem with a GrashOf of 100. The tables are sorted

based on the measured average linear system solution time in increasing order.

Each row shows the performance of a Krylov method and its comparison with the

solver with the best execution time along with the speedup with respect to the

default solver/preconditioner combination for PETSc (GMRES/Block Jacobi). The
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Table 10. Combining ML-based predictions with the analytical model ranking for
systems arising in the driven cavity application (1000×1000 grid) for a Grashof 100.

Grashof=100
Rank Krylov method
14 FGMRES/ASM(0)
21 GMRES/ASM(3)
30 BiCG/ASM(1)
31 BiCG/ASM(2)
34 BCGS/ASM(2)
44 iBCGS/ASM(1)
47 TFQMR/ASM(1)
49 TFQMR/ASM(3)

predicted solver configuration, highlighted in bold, is the highest-ranked (based on

communication) Krylov method that is also suggested by the convergence model.

The information represented in the tables 11, 12 and 13 for the driven

cavity problem on a 1, 000 × 1, 000 grid with Grashof = 100 can be graphically

represented for different processor counts in terms of the average time per solver

and the speedup with respect to the default PETSc solver-preconditioner pair–

GMRES with Block Jacobi.

5.3.2 Results for a 1, 000 × 1, 000 mesh with a Grashof 1, 000.

The second set of experiments use a 1, 000 × 1, 000 mesh with a Grashof number of

1000. Table 14 shows the Krylov methods that are labeled “good” by the Random

Forest classifier and their ranking from the analytical communication model for

driven cavity simulation on a 1000 × 1000 mesh with a Grashof 1, 000. Figure 17

shows the ratio with respect to the average time per solve for different processor

counts, 12, 288, 6, 144 and 1, 536 for a Grashof number of 1, 000. A higher Grashof

number reflects a more complex problem. The data is sorted by the average time

per solve for all the solvers that finished the computation in time. Other solver-

preconditioners either failed or were timed out as they were taking too long.
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Table 11. Solver prediction for the driven cavity problem on a 1000×1000 grid with
Grashof = 100 for 1, 536 MPI tasks.

Comm. Krylov Avg. Time Ratio Speedup #
Rank Method per Solve w.r.t. Best w.r.t. Def Its

1,536 MPI tasks:
35 BCGS/ASM(3) 0.70 1.00 2.90 3
34 BCGS/ASM(2) 0.73 1.05 2.77 3
29 BCGS/ASM(0) 0.73 1.05 2.77 3
44 iBCGS/ASM(1) 0.73 1.05 2.77 3
42 TFQMR/ASM(0) 0.77 1.10 2.65 3
46 iBCGS/ASM(3) 0.77 1.10 2.65 3
45 iBCGS/ASM(2) 0.80 1.14 2.54 3
36 iBCGS/Block Jacobi 0.87 1.24 2.35 3
26 BCGS/Block Jacobi 0.87 1.24 2.35 3
47 TFQMR/ASM(1) 0.90 1.29 2.26 3
43 iBCGS/ASM(0) 0.90 1.29 2.26 3
26 BCGS/Jacobi 0.93 1.33 2.18 3
39 TFQMR/Block Jacobi 1.03 1.48 1.97 3
49 TFQMR/ASM(3) 1.15 1.64 1.77 4
48 TFQMR/ASM(2) 1.33 1.90 1.53 3
31 BCGS/ASM(1) 1.87 2.67 1.09 3
8 GMRES/Block Jacobi 2.03 2.90 1.00 2
14 GMRES/ASM(0) 2.03 2.90 1.00 2
21 GMRES/ASM(3) 2.03 2.90 1.00 3
8 FGMRES/Block Jacobi 2.07 2.95 0.98 2
16 FGMRES/ASM(1) 2.07 2.95 0.98 3
17 GMRES/ASM(1) 2.30 3.29 0.88 2
19 FGMRES/ASM(3) 2.40 3.43 0.85 3
18 FGMRES/ASM(2) 3.13 4.48 0.65 3
19 GMRES/ASM(2) 3.17 4.52 0.64 3
14 FGMRES/ASM(0) 3.20 4.57 0.64 2
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Table 12. Solver prediction for the driven cavity problem on a 1000×1000 grid with
Grashof = 100 for 6, 144 MPI tasks.

Comm. Krylov Avg. Time Ratio Speedup #
Rank Method per Solve w.r.t. Best w.r.t. Def Its

6,144 MPI tasks:
19 FGMRES/ASM(3) 0.33 1.00 3.90 2
39 TFQMR/Block Jacobi 0.55 1.65 2.36 4
35 BCGS/ASM(3) 0.60 1.80 2.17 3
26 BCGS/Block Jacobi 0.73 2.20 1.77 3
31 BCGS/ASM(1) 0.83 2.50 1.56 3
42 TFQMR/ASM(0) 0.93 2.78 1.41 4
48 TFQMR/ASM(2) 0.97 2.90 1.34 3
47 TFQMR/ASM(1) 1.00 3.00 1.30 3
26 BCGS/Jacobi 1.00 3.00 1.30 3
34 BCGS/ASM(2) 1.07 3.20 1.22 3
8 GMRES/Block Jacobi 1.30 3.90 1.00 2
29 BCGS/ASM(0) 1.40 4.20 0.93 3
8 FGMRES/Block Jacobi 1.47 4.40 0.89 2
49 TFQMR/ASM(3) 1.50 4.50 0.87 3
14 GMRES/ASM(0) 1.57 4.70 0.83 2
16 FGMRES/ASM(1) 1.63 4.90 0.80 2
21 GMRES/ASM(3) 1.73 5.20 0.75 3
18 FGMRES/ASM(2) 1.90 5.70 0.68 3
17 GMRES/ASM(1) 1.93 5.80 0.67 2
19 GMRES/ASM(2) 2.43 7.30 0.53 3
14 FGMRES/ASM(0) 2.47 7.40 0.53 2
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Figure 15. Speedup w.r.t. default solver-preconditioner for 12, 288, 6, 144 and 1, 536
MPI processor counts respectively for the driven cavity problem on a 1, 000 × 1, 000
grid with Grashof= 100.
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Figure 16. Ratio w.r.t. average time/solve for 12, 288, 6, 144 and 1, 536 MPI
processor counts respectively sorted by average time per solve for the driven cavity
problem on a 1000× 1000 grid with Grashof= 100.
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Table 13. Solver prediction for the driven cavity problem on a 1000×1000 grid with
Grashof = 100 for 12, 288 MPI tasks.

Comm. Krylov Avg. Time Ratio Speedup #
Rank Method per Solve w.r.t. Best w.r.t. Def Its

12,288 MPI tasks:
14 FGMRES/ASM(0) 0.33 1.00 7.40 2
19 GMRES/ASM(2) 0.33 1.00 7.40 3
14 GMRES/ASM(0) 0.43 1.30 5.69 2
44 iBCGS/ASM(1) 0.60 1.80 4.11 3
45 iBCGS/ASM(2) 0.70 2.10 3.52 3
46 iBCGS/ASM(3) 0.73 2.20 3.36 3
36 iBCGS/Block Jacobi 0.87 2.60 2.85 2
43 iBCGS/ASM(0) 0.90 2.70 2.74 3
29 BCGS/ASM(0) 0.93 2.80 2.64 2
39 TFQMR/Block Jacobi 0.93 2.80 2.64 3
35 BCGS/ASM(3) 0.97 2.90 2.55 3
26 BCGS/Block Jacobi 1.00 3.00 2.47 2
42 TFQMR/ASM(0) 1.13 3.40 2.18 3
34 BCGS/ASM(2) 1.17 3.50 2.11 3
48 TFQMR/ASM(2) 1.23 3.70 2.00 3
31 BCGS/ASM(1) 1.40 4.20 1.76 3
8 FGMRES/Block Jacobi 1.43 4.30 1.72 2
18 FGMRES/ASM(2) 2.00 6.00 1.23 2
26 BCGS/Jacobi 2.10 6.30 1.17 3
17 GMRES/ASM(1) 2.13 6.40 1.16 2
16 FGMRES/ASM(1) 2.30 6.90 1.07 2
21 GMRES/ASM(3) 2.43 7.30 1.01 3
8 GMRES/Block Jacobi 2.47 7.40 1.00 2
19 FGMRES/ASM(3) 2.90 8.70 0.85 2
47 TFQMR/ASM(1) 3.60 10.80 0.69 1
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Table 14. Combining ML-based predictions with the analytical model ranking for
systems arising in the driven cavity application (1000×1000 grid) for a Grashof
1, 000.

Grashof=1,000
Rank Krylov method
14 FGMRES/ASM(0)
36 iBCGS/Block Jacobi
43 iBCGS/ASM(0)
49 TFQMR/ASM(3)

The results are shown in Tables 15, 16, and 17 for different number of

MPI tasks used to solve the problem with a GrashOf of 1, 000. The tables are

sorted based on the measured average linear system solution time in increasing

order. Each row shows the performance of a Krylov method and its comparison

with the solver with the best execution time along with the speedup with respect to

the default solver/preconditioner combination for PETSc(GMRES/Block Jacobi).

The predicted solver configuration, highlighted in bold, is the highest-ranked (based

on communication) Krylov method that is also suggested by the convergence

model. The information represented in the tables 15, 16, and 17 for the driven

cavity problem on a 1, 000 × 1, 000 grid with Grashof = 1, 000 can be graphically

represented for different processor counts in terms of the average time per solver

and the speedup with respect to the default solver-preconditioner pair– GMRES

with Block Jacobi.

5.3.3 Findings. Figure 15 and 18 show the speedup with respect

to the default solver/preconditioner pair, sorted based on their communication

ranking. The communication-based ranking is the most effective at 12, 288 count

for the driven cavity problem with Grashof = 100. On the larger driven cavity

problem, with Grashof = 1, 000, this trend is not necessarily visible, because

the amount of computation increases with the increase in the complexity of the
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Figure 17. Ratio w.r.t. average time/solve for 12, 288, 6, 144 and 1, 536 MPI
processor counts respectively sorted by average time per solve for the driven cavity
problem on a 1000× 1000 grid with Grashof= 1, 000.
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Figure 18. Speedup w.r.t. default solver-preconditioner for 12, 288, 6, 144 and 1, 536
MPI processor counts respectively for the driven cavity problem on a 1, 000 × 1, 000
grid with Grashof= 1, 000.
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Table 15. Solver prediction for the driven cavity problem on a 1000×1000 grid with
Grashof = 1, 000 for 1, 536 MPI tasks.

Comm. Krylov Avg. Time Ratio Speedup #
Rank Method per Solve w.r.t. Best w.r.t. Def Its

1,536 MPI tasks:
31 BCGS/ASM(1) 0.50 1.00 4.30 4
34 BCGS/ASM(2) 0.73 1.45 2.97 4
36 iBCGS/Block Jacobi 0.85 1.70 2.53 3
45 iBCGS/ASM(2) 0.88 1.75 2.46 4
26 BCGS/None 0.90 1.80 2.39 3
35 BCGS/ASM(3) 0.90 1.80 2.39 4
26 BCGS/Jacobi 0.93 1.85 2.32 3
46 iBCGS/ASM(3) 0.93 1.85 2.32 4
48 TFQMR/ASM(2) 1.00 2.00 2.15 4
47 TFQMR/ASM(1) 1.10 2.20 1.95 4
49 TFQMR/ASM(3) 1.18 2.36 1.82 4
8 GMRES/Block Jacobi 2.15 4.30 1.00 1
14 FGMRES/ASM(0) 2.20 4.40 0.98 1
8 FGMRES/Block Jacobi 2.20 4.40 0.98 1
14 GMRES/ASM(0) 2.25 4.50 0.96 1
17 GMRES/ASM(1) 2.30 4.60 0.93 1
16 FGMRES/ASM(1) 2.40 4.80 0.90 1
19 GMRES/ASM(2) 2.50 5.00 0.86 1
18 FGMRES/ASM(2) 2.65 5.30 0.81 1
21 GMRES/ASM(3) 2.90 5.80 0.74 1
19 FGMRES/ASM(3) 3.00 6.00 0.72 1
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Table 16. Solver prediction for the driven cavity problem on a 1000×1000 grid with
Grashof = 1, 000 for 6, 144 MPI tasks.

Comm. Krylov Avg. Time Ratio Speedup #
Rank Method per Solve w.r.t. Best w.r.t. Def Its

6,144 MPI tasks:
26 BCGS/Block Jacobi 0.55 1.00 2.91 1
29 BCGS/ASM(0) 0.65 1.18 2.46 1
34 BCGS/ASM(2) 0.70 1.27 2.29 4
35 BCGS/ASM(3) 0.70 1.27 2.29 4
26 BCGS/None 0.90 1.64 1.78 3
31 BCGS/ASM(1) 0.98 1.77 1.64 4
48 TFQMR/ASM(2) 1.23 2.24 1.30 4
49 TFQMR/ASM(3) 1.53 2.78 1.05 4
8 GMRES/Block Jacobi 1.60 2.91 1.00 1
47 TFQMR/ASM(1) 1.60 2.91 1.00 4
14 GMRES/ASM(0) 1.80 3.27 0.89 1
16 FGMRES/ASM(1) 1.90 3.45 0.84 1
17 GMRES/ASM(1) 2.20 4.00 0.73 1
21 GMRES/ASM(3) 2.20 4.00 0.73 1
18 FGMRES/ASM(2) 2.60 4.73 0.62 1
19 FGMRES/ASM(3) 2.75 5.00 0.58 1
19 GMRES/ASM(2) 3.40 6.18 0.47 1
14 FGMRES/ASM(0) 3.45 6.27 0.46 1
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Table 17. Solver prediction for the driven cavity problem on a 1000×1000 grid with
Grashof = 1, 000 for 12, 288 MPI tasks.

Comm. Krylov Avg. Time Ratio Speedup #
Rank Method per Solve w.r.t. Best w.r.t. Def Its

12,288 MPI tasks:
26 BCGS/Jacobi 0.25 1.00 6.00 4
45 iBCGS/ASM(2) 0.65 2.60 2.31 4
44 iBCGS/ASM(1) 0.68 2.70 2.22 4
46 iBCGS/ASM(3) 0.70 2.80 2.14 4
47 TFQMR/ASM(1) 0.80 3.20 1.88 4
48 TFQMR/ASM(2) 0.90 3.60 1.67 4
36 iBCGS/Block Jacobi 0.93 3.70 1.62 4
35 BCGS/ASM(3) 1.03 4.12 1.46 3
34 BCGS/ASM(2) 1.15 4.60 1.30 4
31 BCGS/ASM(1) 1.20 4.80 1.25 4
14 FGMRES/ASM(0) 1.45 5.80 1.03 1
8 GMRES/Block Jacobi 1.50 6.00 1.00 1
18 FGMRES/ASM(2) 1.65 6.60 0.91 1
19 FGMRES/ASM(3) 1.65 6.60 0.91 1
21 GMRES/ASM(3) 1.80 7.20 0.83 1
26 BCGS/None 1.85 7.40 0.81 4
8 FGMRES/Block Jacobi 2.20 8.80 0.68 1
19 GMRES/ASM(2) 2.40 9.60 0.63 1
49 TFQMR/ASM(3) 2.53 10.12 0.59 2
14 GMRES/ASM(0) 2.55 10.20 0.59 1
17 GMRES/ASM(1) 3.85 15.40 0.39 1
16 FGMRES/ASM(1) 4.30 17.20 0.35 1
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problem. If the amount of computation is greater or almost comparable to the

amount of communication, computation becomes the dominant factor. Therefore,

with the technique proposed in this chapter, a solver suggestion is based on

the convergence model and the communication model together, because either

of the models as a standalone, does not capture both, the computation and

communication aspects.

The selection based on communication overhead ranking is expected to be

more effective at larger processor counts, where communication plays a bigger

role. While several of the ML-suggested solvers achieve significant speedups over

the default solver-preconditioner configuration, selecting a solver technique among

them based on the communication overhead does not always improve performance

for smaller processor counts. To improve the quality of the convergence model

predictions, other convergence methods can be investigated that allow ranking

based on convergence instead of simple two-label classification.

5.4 Summary

To conclude, using the ML-based convergence and analytical communication

models together can be used to estimate the performance of parallel preconditioned

Krylov methods. This chapter illustrates the approach for 49 solver-preconditioner

pairs including the non-preconditioned cases. The scalability ranking is more

effective at larger processor counts. For evaluating the combined approach and

using the convergence model and communication model together, on numerical

cavity driven fluid flow speedups of up to 7.4 over the default solver configuration

are achieved on 12, 288 processor counts. For these results, the convergence

model uses training data collected on 72 processor counts alone to make solver

recommendations up to 12, 288 processor counts.
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CHAPTER VI

MATRIX-FREE FEATURE COMPUTATION

This chapter is based on an on-going collaboration between Boyana Norris

(UO), Ben O’Neill (RNET Technologies Inc.), Elizabeth Jessup (CU Boulder)

and myself. Ben O’Neill constructed the SS-lite library for matrix-free feature

extraction. Boyana Norris constantly provided guidance for the matrix-free

implementation, application, and testing. I constructed the training dataset,

ML model, reduced feature set and extracted features using SS-lite library. I

performed the machine learning classification performance, evaluation with

MOOSE/SuiteSparse data, testing with run-time applications. In this chapter, we

present results using estimates of the matrix, based on a matrix-free approximation

for inexpensive simple and structural features such as Frobenius norm, and diagonal

mean.

6.1 Motivation

Traditional sparse matrix data representations involve storing each

nonzero element by using data structures, such as compressed sparse row/column,

coordinate, diagonal, or hybrid dense/sparse representations. For certain types of

computations, such as nonlinear PDE solution via finite-difference Newton-Krylov

methods, where the memory requirements of explicitly storing the sparse matrix

exceed available capacity, matrix-free approaches can be used [54]. The Krylov

solution of the linearized system is computed by using approximations of matrix-

vector products based only on the function computing the current discretized

solution approximation at each grid point. Because the matrix is not stored

explicitly, it is impossible to compute most of the features used in our ML-based
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solver selection. Hence, a different set of features must be defined and computed for

matrix-free approaches.

We consider the case of large matrices where the memory requirements

exceed the available capacity and present a matrix-free feature computation

approach for Krylov method selection. The matrix-free routines, implemented

directly in PETSc, rely only on approximate matrix-vector multiplication to

compute matrix features. They reduce storage by using a small sample of the

matrix columns to inform estimates of overall matrix features. We present results

using features based on matrix-free eigenvalue approximation, infinity norm, and

structural problem features.

6.2 Multiphysics Simulations

Our approach has been demonstrated with multi-domains in [86, 51]. This

research focuses on a single domain in which the problems come from a finite-

element, multi-physics domain. The matrices used for training and testing of the

system both belong to this category. Multi-physics problems are those simulations

in which there are multiple physics phenomena involved simultaneously, for

instance, thermal effect, fluid forces, and others. Multiphysics problems are of great

interest to us because many problems in the field involve multiple physics forces,

which generate a set of problems involving a different combination of these physics

phenomena. For instance, the Terzaghi’s problem of consolidation of a drained

medium and the Mandel’s problem of consolidation, which are described in detail

in Chapter VII, Section 7.2.

6.3 Feature Computation

The primary goal of the machine learning model is to inform algorithm

selection at run-time in advanced numerical simulations, thereby reducing overall

99



run-times and allowing for the efficient usage of our computational resources. To

achieve this, it is important that we extract an informative, discriminating and

independent set of features capable of inferring the performance of a linear solver

routine on a given matrix.

Let tFE represent the time taken to extract the features, let tP represent the

time required to predict the quasi-optimal solver using the convergence model, let

tS be the time required to solve the linear system using the quasi-optimal solver as

predicted by the model and let tdef represent the time required to solve the linear

system using a statically defined default solver. Then, the overall speedup that can

be obtained at run-time using our model is:

speedup =
tdef

tFE + tP + tS
(6.1)

The solve times for the quasi-optimal (tS) and default (tdef ) solvers are

domain and implementation dependent, therefore cannot be optimized in a general

setting. Previous research has shown that the time required for model prediction is

negligible when compared to the cost of a linear solve. Therefore, the optimization

of the feature extraction algorithms is the only avenue towards the optimization

of our convergence model. This section presents the two mechanisms used for

improving the total time for solving a new linear system.

6.3.1 Reduced Feature Set. Ideally, we would like to compute

all features for the incoming linear systems. However, some of the features,

such as the eigenvalues, have high computation cost compared to others. Past

research [51] has also shown that, in many cases, removing irrelevant features

tends to improve the performance and accuracy of the convergence model. To

reduce the overall system cost, we reduce the number of features that have to be

computed for a new incoming system. Feature reduction stage involves applying
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multiple attribute evaluators with different search methods to select the features

that are significant and contribute the most towards the classification process. In

particular, CfsSubsetEval with BestFirst search method, Gain Ratio, Info Gain,

Principle Components evaluators with Ranker search method offered by Weka [49]

were used. These attribute evaluators apply different techniques to assess the

contribution of each feature. To generate a ranking, the evaluators assign a weight

to each feature. The weight determines the contribution of the feature, with a

higher weight signaling a higher contribution. Feature reduction is performed

by collecting the features that are ranked highly by all or most of the attribute

evaluators and removing the lowest ranked features. These highly ranked features

form the Reduced feature set 1 (RS1), with only seven features for MOOSE and

SuiteSparse datasets. The reduced features are shown in Table 18 and are described

in Chapter III, Section 3.10 .

Table 18. Reduced Feature for MOOSE and SuiteSparse Datasets

Reduced feature set for MOOSE Reduced feature set for SuiteSpare
Absolute Trace Absolute Trace

Dimension Dimension
One Norm Column Diagonal Dominance

Symmetric Infinity Norm Frobenius Norm
Trace Trace

Diagonal Mean Diagonal Mean
Diagonal Non Zeros Absolute Non Zero Sum

6.3.2 Sample Based Feature Extraction - Efficient and

Practical. In our previous research [52], the matrix features were calculated

independently using an external feature calculation library called Anamod [32]

and/or directly inside PETSc using built-in PETSc function calls. There are two

concerns with this approach. Firstly, the features are computed independently,
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thereby demanding the matrix elements to be read into the memory each time

a new feature is calculated. Secondly, the overall cost of accessing every matrix

coefficient grows with problem size and will likely not scale well for larger systems.

To address these issues, we develop a sampling-based approach for

extracting features, using a small O(1) sample of the matrix columns, to provide

estimates of overall matrix features. The principle behind the approach is that

at a low level the machine learning models can provide informed estimates of the

solve performance on a given matrix. Because they are estimates, features used by

the machine learning model need not be exact. Rather, the feature set represents

a collection of informative, discriminating and independent features capable of

informing smart decisions with regards to the overall run-time of the given matrix-

vector system.

The sampling-based feature extraction approach emerged from the need

to extract features with a cost-effective technique. Instead of directly accessing

the matrix coefficients, the matrix-free technique utilizes only matrix-vector

multiplications to find the matrix inverse for feature computation. The memory

requirements of the overall solve are reduced by not storing the matrix values

explicitly, enabling the solution of larger systems that would otherwise not fit in

the memory. The sole drawback of the approach is that the matrix elements cannot

be accessed directly, which further accentuates the relevance of feature selection.

To summarize, the sample based feature extraction algorithm presented in

this chapter represents a cheap, efficient algorithm capable of extracting features

utilizing only the matrix-vector multiplications. However, there is no algorithmic

difference in using the sample based feature extraction techniques on a matrix in

which the matrix elements are known, and in a matrix-free system where only the
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action of the matrix on a vector is available. For the results presented throughout

this chapter, matrix-vector multiplications are used in all cases to extract the values

of the sample columns from the given matrix.

Column Extraction with matrix-vector Multiplication Let us consider an

n× n matrix A with columns aj such that

A =


| |

a1 . . . an

| |

 ,
The vector aj can be extracted through a single matrix-vector multiplication

with the jth Euclidean basis vector. The matrix-vector multiplication can be

represented as follows:

aj = Aej

Here ej = {0, 0, . . . , 1, 0 . . . } represents the jth standard basis vector. The set

S = {aj : j ∈ [0, n]} can be formed in a matrix-free environment where the only

interaction with the matrix is through the matrix-vector multiplications. In theory,

the entire matrix, A, can be built using n matrix-vector multiplications, however,

in a practical setting using this technique for building up A is extremely expensive.

Rather, the sampling-based approach estimates the feature values using a subset of

the matrix columns, Ss ∪ S, such that m � n, where m is the number of elements

in Ss.

For the matrices that use grid-based PDE methods, each column of A can

be roughly attributed to a node in the computational grid. In these cases, physical

features such as boundary conditions can dramatically effect the size and number of

elements in rows. Thus, when dealing with PDE-based matrices, it is favorable

to select a sample that includes a good mix of columns linked to interior and
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boundary based grid points. In fact, our testing has shown that it is beneficial

to pick and choose the sample columns that are used in each feature calculation.

For example, due to the effects of boundary conditions on the contents of some

columns, it is best to use columns that translate to interior mesh points to estimate

the number of non-zeros in the matrix, whereas for features such as the minimum

number of non zeros per row, it is best to only inspect rows related to boundary

values. Various other features make similar decisions, using different subsets of the

overall sample data to calculate the final value.

One consideration that must be made is the notion of the symmetry of

the matrix, A. Symmetry can be very important as some of the solver techniques

do not converge for asymmetric matrices, for example, unmodified Conjugate

Gradient method. In fact, Conjugate Gradient requires matrices to be symmetric

positive definite. A feature such as symmetry cannot be confidently determined

via sampling O(1) columns of the matrix A and ideally would be known a priori.

Additionally, many feature calculations become easier (or trivial) for a symmetric

matrix, so our preliminary calculations take in “is symmetric” as an optional

argument.

Where appropriate, all features calculated are scaled by the ratio n/m to

ensure that the feature calculations reflect estimates of the overall matrix rather

than just the sample set. Some features, such as those including maximums or

minimums, do not use scaling but instead assume that the value calculated using

the sample set is representative of the entire matrix.

Let Ss be a set of sample columns of size m, obtained from a matrix A

with r rows and c columns, let Bs represent the subset of Ss whereby we estimate

that the columns represent boundary terms in the computational grid and let Is
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represent the subset of Ss where the columns represent interior grid points. Let

Aji = (ai)j represent the ith component in the ith column vector of A and let δ(x)

be a function such that

δ(x) =

 0 x = 0

1 x 6= 0
.

Below is a mathematical representation of feature calculation for some of the

features in the sample based reduced feature set:

– Symmetric Infinity norm: The infinity norm of the symmetric part of the

matrix is computed as follows:

||A||∞ ≈
c

m
max
i∈[0,r]

 ∑
j∈[0,m]

|(aj)i)|


– Diagonal non-zeros: The number of diagonal non-zeros is estimated as

dnz(A) =
c

m

∑
ai∈Ss

δ((ai)i)

– Trace: The trace of the matrix is given by the sum of the diagonal elements of

the matrix. Mathematically it can be represented as follows:

c

m

∑
ai∈Ss

(ai)i

– Absolute Trace: The absolute trace is given as the absolute value of the trace.

– One norm: This feature is the absolute sum of column for all the samples.

– Minimum non-zeros per row: Based on in depth testing, the minimum

number of non zeros was calculated using the set of boundary samples, Bs

as follows:

MNPR(A) ≈ c

m
min
ai∈Bs

 ∑
j∈[0,r]

δ((ai)j)


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– Lower bandwidth: The lower bandwidth is calculated using the entire sample

set as:

LB(A) ≈ max
ai∈Ss

[
max

j∈[i+1,r]
(j − i) ∗ δ((ai)j)

]
– Upper bandwidth: The upper bandwidth is calculated in the same way as the

lower bandwidth.

– Column variance: The column variance is defined to be the average variance

in the elements of each column, across all columns in the sample set. The

variance in a sample column is calculated using the standard formula for

variance:

var(ai) =
1

r

∑
i∈[0,r]

((ai)j − µ)2

where µ is the mean of the elements in ai.

– Nonzero pattern symmetry: A matrix is determined to have nonzero pattern

symmetry if (ai)j = (aj)i for all ai ∈ Ss (see above for a discussion on the

risks of estimating symmetry using a sample based approach).

– Number of non-zeros: The number of non-zeros is calculated as

nnz(A) ≈ c

m

∑
ai∈Ss

 ∑
j∈[0,r]

δ((ai)j)


In an effort to maximize efficiency, the sampling-based feature extraction

routine has been implemented directly in PETSc using a single loop where, for

each column in the sample set, a single matrix-vector multiplication, followed by

a single loop through the values of the column is completed. If multiple cores are

used, the feature extraction is completed in parallel. In the parallel setting, the

only communication between processors is completed during the matrix-vector
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multiplication, as required by PETSc. A single MPIReduce call is made at the

completion of the feature extraction stage, at which point the root processor

completes the final collation and calculation of the matrix-free features. In a

practical setting, the root processor then feeds those features into the machine

learning algorithm before scattering back the details of the quasi-optimal solver

to the remaining processors.

Although this computation-then-communication pattern is extremely

efficient in terms of latency, it is somewhat bandwidth heavy. For example, the

entire square dataset, with m number of samples and m2 elements, must be sent

to the root process so that the symmetric features can be calculated. Given that

we require m to be small, we do not foresee a problem because, in cases where the

need for a large m arises, the cost of the m matrix-vector multiplications performed

by the KSP method, both in terms of time and memory, will likely dominate any

costs associated with the high bandwidth MPIReduce call.

6.4 Machine Learning Classification Performance

Machine learning has been a popular choice for supervised learning because

of its capability to improve its performance on its own, without any instructions

from humans. Another reason why machine learning is widely accepted is its ability

to learn well, very quickly. Some of the applications of machine learning include

face recognition, fraud detection, email spam, and others. In our work, we use

machine learning to capture the convergence behavior of solver configurations.

We apply supervised machine learning algorithms to classify solvers as “good” or

“bad”, based on their solve time. We test and compare the accuracy results for

BayesNet [14], k-nearest neighbor [22], Alternate Decision Trees [44], Random

Forest [17] and J48 [68] algorithms.
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For each input matrix, we compute the features (as described in the previous

section) and combine them with the unique solver-preconditioner id based on

the solver-preconditioner combination that was used to solve the system. Once

the system is solved, we assign a binary (“good” or “bad”) label to each data

point, based on the time taken to solve the system. The label is assigned using

a threshold parameter. The value of this parameter is varied from {0, 0.5} and

how close the solver time of a given solver-preconditioner is, in comparison to the

best-performing solver method. If the new solver time is within the threshold,

then the data point is labeled as “good” and otherwise “bad”. The matrix features,

unique solver-preconditioner id, and class label are combined and fed as input to

the convergence model.

Next, we perform supervised learning with the class label as the output.

With our full feature set and the reduced sets, we train the convergence model

and test it on our test data set to measure the accuracy of the model for correctly

identifying the “good” solvers. The accuracy of the model is measured by the true

positive rate (TPR) which is the probability that the classifier predicts a “good”

entry as “good”. It is computed as follows:

TPR = TP /P = TP /(TP +FN ), where P is the actual number of positive

instances, i.e., solvers labeled as good, TP are the number of true positives and

FN are the number of false negatives. For testing the model, we perform two types

of tests: 10-fold cross-validation and 66-34 % train-test data split. The dataset

is comprised of data points which are obtained by solving the matrices from the

MOOSE and SuiteSparse datasets, with various preconditioned Krylov methods

from PETSc. Various ML algorithms are used for classifying the solvers namely

BayesNet, Random Forests, J48, k-nearest neighbor with 10 neighbors, Random
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Table 19. Convergence model accuracy and build time for 10 -fold cross-validation
with RS1 set for SuiteSparse dataset.

Method Good Accuracy (%) Overall accuracy (%) Build time (secs)
BayesNet 61.3 89.2 1.3
RF(100) 77.3 93.8 125.70
ADT 22.70 86.3 7.99

knn(10) 52.5 88.6 0.08
J48 75.5 93.3 10.52

Table 20. Convergence model accuracy and build time for 66 − 34% train-test split
with RS1 set for SuiteSparse dataset.

Method Good Accuracy (%) Overall accuracy (%) Build time (secs)
BayesNet 59.2 89.0 1.46
RF(100) 75.4 93.4 101.31
ADT 22.4 86.2 9.61

knn(10) 49.6 88.0 0.02
J48 73.8 92.9 10.27

Forest with 100 trees and Alternate Decision Trees. Classifying with different ML

techniques enables us to compare and choose the best-performing ML method.

To perform the classification analyses, two sets of features are used for both the

datasets. The first set consists of the full feature set and the other set includes the

reduced feature set. In each evaluation, we perform 10-fold cross-validation and 66-

34 % train-test split, to ensure that the ML methods are evaluated with different

rearrangements of the dataset.

6.4.1 Classification evaluation on SuiteSparse dataset. The best

results for the full feature set and reduced feature sets are obtained from Random

Forest. Due to the high cost of feature computation for all the features, using all

features for classification is not preferable. In this work, we present results obtained

with the reduced feature set used for ML classification. The solver timings were
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computed using 38 processors on our Arya server, which is an 18-core Intel server

with 256 GB DDR4 RAM, with two Intel Xeon E5-2699 v3 CPUs.

After performing data cleaning, We have a total of 110, 709 data points,

out of which 16, 782 are labeled as “good” and the rest of them as “bad” using 38

processors. Table 19 and 20 show the accuracy for all these ML methods for the

reduced set (RS1). For 10-fold cross-validation, for the reduced set (RS1)), Random

Forest, with a total of 100 trees, achieved a “good” solver accuracy of 77.3% and

overall accuracy of 93.8%. J48 achieved an accuracy of 75.5%, as the “good” solver

accuracy and overall accuracy of 93.3%. The build time for Random Forest and J48

are as 125.7 seconds and 10.52 seconds respectively. For 66 − 34% train-test split,

Random Forest performed slightly better than J48 by achieving a “good” solver

accuracy of 75.4% as compared to 73.8% as achieved by J48.

6.4.2 Classification evaluation on MOOSE dataset. The best

results for the full feature set and reduced feature sets are obtained from the

J48 classifier. Since using all features for building the classification model is not

preferable, we focus on the reduced set classification accuracy. After data cleaning,

we have a total of 62, 702 data points, out of which 7, 710 are labeled as “good” and

54, 992 as “bad”. The solver timings were computed using a single processor on the

Artemis cluster at the University of Oregon. Table 21 and 22 show the accuracy

for these ML methods for the reduced set (RS1).

6.4.3 Observations based on classification evaluations. In

our previous work [87], we observed that Random Forest was a good classifier

selector because of its high accuracy, with J48 slightly less accurate. Based on

the classification evaluations performed in this work, we make two observations.

First, for the SuiteSparse dataset, Random Forest performed the best, achieving
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Table 21. Convergence model accuracy and build time for 10-fold cross-validation
with RS1 set for MOOSE dataset.

Method Good Accuracy (%) Overall accuracy (%) Build time
BayesNet 74.3 93.0 0.56
RF(100) 72.6 93.3 30.58
ADT 97.1 95.2 5.05

knn(10) 97.2 96.3 0.04
J48 98.5 96.5 0.72

Table 22. Convergence model accuracy and build time for 66 − 34% train-test split
with RS1 set for MOOSE dataset.

Method Good Accuracy (%) Overall accuracy (%) Build time
BayesNet 67.0 92.7 0.38
RF(100) 74.7 93.9 24.42
ADT 97.0 95.4 4.21

knn(10) 95.9 96.3 0.01
J48 98.6 96.6 0.44

an accuracy of 77.3% and J48 was the second best at around 75.5% for 10-fold

cross-validation. For 66 − 34% train-test split, Random Forest was at 75.4%,

whereas J48 was at 73.8%. Overall, there wasn’t much difference between the

two classifiers in both the scenarios. For the MOOSE dataset J48 outperformed

Random Forest by achieving an accuracy of 98.50% for 10-fold cross-validation

and Random Forest achieved an accuracy of 72.60%. For 66-34% train-test split,

J48 correctly identified 98.60% of the “good” solvers, outranking Random Forest

(74.70%) by a substantial difference. Secondly, the build time is substantially less

for J48 classifier as compared to Random Forest. For these two reasons, we decided

to use the most recent C implementation [66] of C5.0 algorithm (an equivalent of

the J48 algorithm in Java).
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6.4.4 Classification evaluation with C5.0 algorithm. C5.0 is

the latest implementation of the J48 algorithm that uses information gain to build

decision trees. At each level, entropy/ information gain is computed to identify

the class in the training set. The attribute with the highest information gain

is selected and that attribute becomes the root node for the decision tree. The

process is repeated until all the attributes have been used. The attributes can be

used multiple times in the decision tree to make the decision.

Table 23. Classification model “good” accuracy comparison for C5.0 and J48 for
SuiteSparse and MOOSE dataset

Dataset SuiteSparse MOOSE
Test C5.0 (%) J48 (%) C5.0 (%) J48 (%)

10-fold cross-validation 73.7 75.5 98.0 98.5
66− 34% train-test split 71.3 73.8 97.9 98.6

We use the C5.0 algorithm for classification for the MOOSE dataset with

the reduced feature set. With the reduced set (RS1), with only 7 features, it

achieved an accuracy of 98% for both validations: 10-fold cross validation and

train-test split. For the SuiteSparse dataset, with the reduced set the accuracy was

73.7% and 71.3% respectively. Table 23 shows the “good” accuracy for C5.0 and

J48 implementations. We prefer switching from Java to C mainly because C offers

the most recent implementation of the C5.0 algorithm.

To validate the usability of C5.0, we also performed prediction analysis,

where we train the classifier with 80% of the dataset and test it on the rest 20%

of the dataset. For the RS1 MOOSE test set, there were 1, 525 “good” instances

in the test set, out of which 1, 501 were correctly classified establishing a “good”

solver accuracy of 98.42%. In the RS1 SuiteSparse test set, there were 3, 348 “good”

instances, out of which 2, 488 were correctly classified, thus achieving a “good”
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solver accuracy of 74.31%. Tables 24, 25 show the solver configurations that were

most likely to perform well among all the configurations we tested and lists the

most-frequently used solver preconditioner combination for our experiments for

both the datasets. The numbers in the configuration denote the overlap value for

ASM, GASM and the preconditioner factor level for ICC preconditioner.

Table 24. Top 5 solvers that were labeled as “good” as a percentage of all the
“good” solvers for MOOSE dataset.

Occurrence (%) Solver-PC configuration
28.04 iBCGS,ASM(3)
25.84 iBCGS,ASM(1)
19.65 FGMRES,ASM(1)
12.85 FGMRES,ICC(1)
12.12 FGMRES,ICC(3)

Table 25. Top 5 solvers that were labeled as “good” as a percentage of all the
“good” solvers for SuiteSparse dataset.

Occurrence (%) Solver-PC configuration
3.93 DGMRES, GASM(0)
3.21 FGMRES GASM(0)
2.97 Chebyshev,GASM(0)
2.97 GMRES,GASM(0)
2.73 GMRES,GASM(3)

6.4.5 Solver ranking and validation. With the ML model, we

generate a list of “good” solvers for new linear systems. The “good” solvers list is

an unordered list of solver and preconditioner combinations. In this work, we also

implement a prediction model which predicts the run time of solver-preconditioner

combinations. It is done by using the Ridge regression technique offered by Scikit-
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learn [67]. Once the model is trained, we predict the solver time and sort the list of

solvers based on the predicted times to obtain a ranking.

With this scheme, we obtain ranks for all the “good” solvers for each matrix.

We also performed a comparison of the solver timing for the solvers that were

ranked number 1 by this system and the baselines used by PETSc. The baseline

(default) solver-preconditioner used by PETSc for sequential runs is GMRES with

ILU, with a factor level of 0. The default solver configuration for parallel runs is

GMRES with Block Jacobi. We obtain speedups from using the default solver

versus the solver ranked number 1 by this ranking scheme. The speedup can be

given as

Speedup =
Time taken by the default PETSc solver
Time taken by the top solver (rank 1)

For the MOOSE dataset, the minimum, maximum, mean and standard

deviation of speedups obtained are 1.0, 875.37, 7.58 and 36.21 respectively. For

the SuiteSparse dataset, the minimum, maximum, mean and standard deviation

of speedups obtained are 1.14, 92464.56, 747.16 and 4962.50. For the majority of

the cases, the top-ranked solver was indeed the solver with the best time. For the

outliers, they were ranked second and third best out of more than thirty solvers,

but without much speed loss relative to the top-ranked solver and definitely a

speedup relative to the baseline.

We applied the solver ranking technique to predict “good” solvers for the

dataset. The MOOSE dataset has substantially more “bad” solver data points

as compared to the “good” solver data points. This is because we chose a tight

threshold of 0.3 (for MOOSE dataset) and 0.4 (for SuiteSparse dataset), which

allows only those solvers to be labeled as “good” that have a solve time of 1.3 times
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of the best solver (fastest solver) timing for MOOSE dataset and a solve time of 1.4

times of the best solver (fastest solver) timing for the SuiteSparse dataset. Despite

the uneven split of “good” and “bad” instances, the solver ranking technique does

not rank any actual “bad” solvers as the best solver (rank: 1). This ensures that the

best solver obtained from this ranking technique always returns a solver within an

acceptable range of solver timing.

6.5 Testing in Run Time Applications

Once the convergence model has been tested for classification performance,

the next step involves testing it in runtime applications. As stated earlier, the

primary run-time cost of the machine learning models is feature extraction. For

smaller matrices, the costs associated with feature extraction often outweighs

any performance benefits that can be achieved through the models. However, for

matrices where the number of non-zeros is larger, the cost of feature extraction is

often small in comparison to the solve time. This is a good result, as the primary

goal of the proposed models is to speed up the solution of the large sparse systems

that arise in high fidelity numerical simulations.

To test the models in a runtime application, we developed a new PETSc

KSP solver that can be used in existing PETSc based simulations using a simple

command line parameter. The new KSP solver handles all aspects of using these

smart algorithm selection models at runtime, including loading the pre-built

serialized machine learning model and extracting the features from the matrix we

are looking to solve. Once a quasi-optimal solver has been determined, the new

KSP solver sets up the quasi-optimal solver as another internal KSP solver and uses

that to solve the original system. In this way, we can support automatic runtime

solver selection in most PETSc based applications.
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For testing the automatic solver selection, we use the pre-built classification

model in a transient nonlinear driven cavity in two dimensions, provided by

PETSc. The two-dimensional driven cavity problem is solved in a velocity-vorticity

formulation. The flow can be driven with the lid or with buoyancy or both. The

lid velocity represents the dimensionless velocity of the lid. The grashof represents

the dimensionless temperature gradient and the prandtl shows the dimensionless

thermal/momentum diffusity ratio. The problem is modeled by the PDE systems

in the unit square, which is uniformly discretized in each of x and y in the simple

encoding, as shown below:

−Lap(U)−Grady(Omega) = 0

−Lap(V )−Gradx(Omega) = 0

Omegat − Lap(Omega) +Div([U ∗Omega, V ∗Omega])−GR ∗Gradx(T ) = 0

Tt − Lap(T ) + PR ∗Div([U ∗ T, V ∗ T ]) = 0

We apply the convergence model based on the sampling-based approach,

on the driven cavity flow simulation, which involves the solution of a nonlinear

PDE discretized on a regular 100 × 100 grid and a 128 × 128 grid. We consider

two different physical configurations with varying lid velocity to be 0.1 and 1.0, a

constant Grashof number of 100, and a constant Prandtl value set to 1. Different

lid velocities result in different numerical properties of the resulting linear system.

During each simulation, at each nonlinear iteration, multiple sparse linear systems

are solved.
116



We use our matrix-free feature selection approach for generating solver

suggestions for the driven cavity application. For our column sample, we use 20

edge columns and 10% of the total columns as the number of 10 interior columns.

PETSc allows using the explicit-matrix and matrix-free setting by providing a

command line argument −snes_mf for the matrix-free setting. We obtain and

compare the results for both these settings on 24 processor count on Arya cluster at

the University of Oregon.

6.5.1 Driven cavity problem 100 × 100 grid. The results discussed

in this part of the section employ a 100 × 100 grid with the following non-

linearity parameters: Grashof of 100, lid velocity of 0.1, prandtl of 1. The solver

suggestion by our convergence modeling approach based on the matrix-free feature

computation is LGMRES with the GASM(0) preconditioner, where 0 is the overlap

parameter which is used to extend the local subdomains. With the explicit-matrix

setting in PETSc, the speedup obtained for 24 processor count is 1.00. In the

matrix-free setting, the speedup obtained is 1.25, with respect to the PETSc default

solver-preconditioner for parallel runs. The number of matrix-vector products saved

as a result of applying the matrix-free technique in the explicit-matrix setting in

PETSc are 99 and with the matrix-free setting are 360. Table 26 shows the speedup

and matrix-vector multiplication reduction for all cases, with the values, rounded

off to two decimal places.

6.5.2 Driven cavity problem 128 × 128 grid. The results discussed

in this part of the section employ a 128 × 128 grid with the following non-

linearity parameters: Grashof of 100, lid velocity of 1, prandtl of 1. The solver

suggestion made by the convergence modeling approach with the matrix-free

feature computation is the LGMRES with GASM(0) preconditioner. The speedup
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Setup Grid Grashof Lid velocity Speedup w.r.t default solver time MatMult reduction
Explicit-matrix 100× 100 100 0.1 1.00 99
Explicit-matrix 128× 128 100 1.0 1.03 958
Matrix-free 100× 100 100 0.1 1.25 360
Matrix-free 128× 128 100 1.0 1.81 133,702

Table 26. Speedup w.r.t default solver time and number of MatMult operations
saved.

obtained for 24 processor count (shown in Table 26 ) is 1.03, with respect to the

default solver-preconditioner in the explicit-matrix setting. For the matrix-free

setting with PETSc, a speedup of 1.81, with respect to the PETSc default solver-

preconditioner is obtained, by using the solver recommended by our convergence

model. The number of matrix-vector products saved as a result of applying the

matrix-free technique is 958 and 133, 702 in the explicit-matrix and matrix-free

setting respectively.

6.6 Summary

In this work, we introduce a matrix-free approach for computing matrix

properties and demonstrate an ML approach for selecting well-performing methods.

We present our results for the convergence model using the reduced sets which

have seven inexpensive matrix features. We apply our technique to real-world

applications for validation and developed a new KSP solver to automate runtime

solver selection for a wide variety of PETSc applications. With the matrix-free

setting, we were able to achieve a speedup of up to 1.81 with respect to the default

solver time and were able to reduce up to 133, 702 matrix-vector products.

In the future, we will test our matrix-free approach on large real applications

and include parallel runs for the ML model training for the MOOSE dataset. We

will also explore building a dataset with only matrix-free applications. Another

aspect of our future work includes expanding our solver-preconditioner subset to

include other solvers including direct solvers.
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CHAPTER VII

SOLVER SELECTION IN FINITE-ELEMENT MULTIPHYSICS SIMULATIONS

The work presented in Chapters III, IV, V is part of our Lighthouse

project [61], which focuses on providing support for sparse linear solver selection

based on specific problem features and solver performance on a given architecture.

The solver selection in Lighthouse relies on classifying solvers based on their

performance and the features of the input matrix and then predicting the best-

performing solver configuration when solving new problems. As shown previously,

we build models using the SuiteSparse matrix collection, which contains matrices

from a wide variety of domains. However, it is limited to mostly small-scale

problems. This chapter focuses on a set of use cases based on a single framework,

the multiphysics object-oriented simulation environment (MOOSE) [46], which

is a finite-element, multiphysics framework that leverages other toolkits, notably

PETSc. MOOSE aims to make predictive modeling accessible and scalable,

especially in the field of multiphysics framework by allowing fuels and materials

scientists to develop numerous applications that predict the behavior of fuels and

materials under operating and accident conditions.

The contributions of this work include the definition of a new set of linear

system properties, which are used as the features in the machine learning problem

specification. We then apply the classification to a set of examples in the MOOSE

framework, achieving high accuracy when targeting problems in the more limited

domain of finite element multiphysics applications.

7.1 Motivation

Our approach has been demonstrated with multi-domains in [86, 51]. The

research focuses on a single-domain in which the problems come from finite-
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element, multiphysics domain. The automated solver selection capabilities of

Lighthouse are particularly useful to the target MOOSE users, who are scientists

who don’t have in-depth knowledge of computer science and would like to develop

an application by leveraging the "plug and play" component organization of the

MOOSE simulation platform. Automatic solver selection can improve the execution

time and reliability of multiphysics simulation systems. The goal is to choose a

solver that is appropriate for the sub-problem and is also efficient. In the past, we

have used our approach for linear systems from multiple domains. This chapter

focuses specifically on solving non-linear systems from a single domain.

7.2 MOOSE framework

Advanced modeling and simulation presently include multiphysics

simulations, computational fluid dynamics, high energy physics, computational

biology, and computational finance. In addition, numerical simulations are

applicable across many other disciplines such as modeling and simulating aircraft,

spacecraft, rocket, and propulsion systems. In physical sciences, non-linear systems

are more interesting to scientists as most systems in these fields are nonlinear in

nature. Nonlinear systems are more complicated, sophisticated and unpredictable

than linear systems which make a good dataset for testing our approach with

nonlinear systems.

Multiphysics problems are those simulations in which there are multiple

physics phenomena involved simultaneously, for instance, thermal effect, fluid

forces, and others. These physics forces impact the performance of the products

and materials in use. Many problems involve coupled systems as well. Coupled

systems are the problems in which the two systems under consideration, interact

with each other simultaneously. For instance, the application of pore pressure with
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mechanical forces to observe volume expansion is Poro mechanics coupling. In this

section, we talk about the various physics forces involved in the simulation and the

materials in use for the problems used in our experiments.

The matrices we consider are from the following modules: chemical

reactions, phase field, tensor mechanics, Richard’s and solid mechanics. The

matrices used for training and testing the solver suggestion technique, both belong

to the multiphysics domain. These are randomly selected among all test modules

that explicitly form the non-linear system and/or preconditioner. Each of these

modules describes the partial differential equations to be solved.

Figure 19 shows the MOOSE architecture mentioned in [46]. As shown in

the figure, MOOSE leverages PETSc libraries through a massively parallel finite-

element framework called libMesh. The heavy dependency of MOOSE on the

PETSc library provides huge flexibility for MOOSE developers and users. The data

types and function calls in PETSc can be directly used in MOOSE source code.

MOOSE

Physics

Thermal Solid Contact Reaction 
Diffusion

Framework 
(Mesh, I/O, 

Library)
PETSc 
(SNES, KSP)

Libraries

Solver Interface

Figure 19. MOOSE Architecture

Multiphysics problems involve multiple physics forces, which generate a set

of problems involving a different combination of these physics phenomena. For

example, one of the problems we solve is Terzaghi’s problem of consolidation of a

drained medium. Figure 20 shows the visual representation of the consolidation

problem. As per Terzaghi’s Principle, when a solid material is subjected to stress,
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it is opposed by the fluid pressure of pores in the rock. Terzaghi’s problem involves

a sample of saturated soil placed in a bath of water constrained on the sides and

the bottom, leaving only the top open. The constrained sides and bottom are also

impermeable. Initially, when pressure is applied, it is unstressed. After some more

stress applied on the soil’s top, it leads to slow compression of the soil squeezing

the water out from the soil from the top. The situation involves the following

physics phenomena: fluid displacement, fluid mobility, pore pressure, consolidation

degree, poromechanics coupling, stress divergence tensors.

Another instance of a multiphysics problem in the problems set we consider

is the Mandel’s problem of consolidation. Mandel’s problem involves a drained

medium in which the porepressure within the sample is monitored. The sample

is in plane strain. It is squashed with constant force by frictionless, impermeable

plattens on its top and bottom surfaces. The fluid is allowed to leak out from

the sides. Porepressure, velocity, fluid mobility, stress, force, and displacement

are the physics phenomena involved in this problem. Mandel’s problem is a two-

dimensional problem that involves diffusion and time-derivate phenomenon for its

simulation.

MOOSE supports predictive modeling by allowing fuels and materials

scientists to develop applications that predict the behavior of fuels and materials,

some of the problems focus on learning about the properties of the materials

under consideration. For instance, conducting a test for identifying the default

material interface in Derivative Material Interface. The test should pass only if

the construction order of the materials using this interface does not influence the

outcome. A comparatively simpler check would be conducting a test that validates

the application of the chain rule correctly to coupled material properties within
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Figure 20. Terzaghi’s problem of consolidation.

derivative parsed materials. Problems from the multiphysics domain involve physics

forces namely, fluid displacement, fluid mobility, pore pressure, consolidation

degree, poromechanics coupling, and stress divergence tensors. A one-dimensional

problem would comprise investigating pressure pulse in one dimension with two
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phases: steady and transient. A one-dimensional problem is not necessarily easier

to solve than a higher dimensional problem. It rather depends on the physics of the

problem that makes it easy or hard in comparison to other problems. Multiphysics

problems, for instance, are harder than single physics problems. The other modules

that the problem set belongs to are as follows:

1. Chemical reaction: The process that involves the rearrangement of the

molecular or ionic structure of a substance is known as a chemical reaction.

Examples of this module in MOOSE includes problems involving desorption

and adsorption of fluids between a material and its porespace. These are

general advection-dispersion-reaction equations.

2. Tensor mechanics: This module involves tensor equations of materials. A

material changes its shape due to stress. The change in shape when compared

with the original shape is called deformation or displacement. The ratio of

deformation to original shape is called strain. To determine the deformed

shape and the stress, an equation is solved to evaluate the displacement

vector. Therefore the three tensors that are involved in a MOOSE tensor

mechanics problem are elasticity tensor, strain, and stress.

3. Multiphase flow through porous media: This module involves highly diverse

phenomenon. The module consists of problems that contain fluid flow through

porous materials equations which involve fluid density, porosity, and fluid

pressure. For example, a problem that belongs to this category ranges from

the motion of immiscible fluids, through interaction with the medium through

the heat exchange.

124



7.3 Classification Model

This section briefly describes the features that are computed for training

the machine-learning model. The set of features has not been used previously

for classifying linear solvers. Unlike Anamod, which is no longer updated or

maintained, these features are leveraging the newest PETSc capabilities, reducing

the feature computation overhead. Moreover, the new implementation was

validated manually or by using MATLAB to ensure correctness. Section 3.10

describes the features that are used in the reduced feature sets throughout the

thesis.

7.3.1 Feature Selection. In applications with dynamic mesh

adaptation, such as the domain we consider, the structure of the mesh changes

at run-time and therefore the best solver method may depend on the physical and

geometric properties of the mesh. The dependency of a solver performance on the

properties of the mesh becomes the basis of the types of features we compute for

these problems. The full feature set contains 32 features which belong to different

categories namely, simple or norm-like quantities, variability and structural. As

using all the features of a linear system makes it expensive to solve an incoming

linear system, the computation cost of each feature adds to the overall cost of the

system. The computation time of each feature varies depending on its category, as

the cost of computing certain features is relatively higher than others.

7.3.2 Feature Reduction. For reducing the overall cost, we reduce

the number of features to participate in the classification process. Random selection

of features may remove significant features. Therefore, we need a way to choose

features that are significant and contribute the most to the classification process.

First, we reduce the number of features by using Weka’s RemoveUseless filter.
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The filter removes the features for which the values are either constant or vary

too much, having more than 99% variance. With this filter, we could remove two

features out of the total 34 features, with 0% drop in accuracy.

We complete the selection with Weka by combining five attribute evaluators

with two search methods. An evaluator has a mechanism to assign a weight to

each subset of features. The search method determines what style of search is

to be performed. These evaluators rank the features, giving a list of the features

with ranking based on the algorithm that the evaluator follows. Using multiple

evaluators ensure the selection of those features which are highly ranked by all or

majority of the evaluators. The evaluators we use [56] are Gain Ratio, ChiSquared,

CfsSubset, Information Gain, and Principle Component Analysis and the search

methods we chose were Greedy Stepwise and Ranker. We generated two reduced

feature sets for PETSc solvers, one of which is a subset of the other set. The top

best features are most likely to remain the same with other problems from the same

domain we considered an extensive set of data and high accuracy supports this

statement.

7.3.3 Solvers and Preconditioners. PETSc has a collection of

parallel algorithms for direct solvers, Krylov iterative methods, and preconditioners

that can be used in application codes written in C, C++, Fortran and Python. We

focus primarily on iterative Krylov methods and preconditioners to solve the sparse

linear systems obtained from the MOOSE matrices. A total of 154 preconditioner-

solver configurations were chosen from the options provided by PETSc (methods

marked with asterisk in Table 3), with a unit right-hand-side vector. For the ILU

and ICC preconditioners, the fill parameter is varied between 0 and 3 and for ASM

the overlap is varied between subdomains parameter between 0 and 3.
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As mentioned before, preconditioning is done to mainly make a linear

system more suitable to be solved by a numerical solver method. The main

idea behind applying a preconditioner is that, instead of solving Ax = b, solve

M−1Ax = M−1b using a non-singular matrix preconditioner M , which has the same

solution as x.

7.3.4 Solver Classification. In machine learning, classification is

the technique of predicting the class of the new instance from a set of categories.

The class prediction is made on the basis of the training dataset that is used to

train the classifier. We classify solvers based on the features of a linear system and

select the solver configuration that performs best on similar systems during our

system training. We use Weka to compare the performance of several classification

algorithms. As mentioned in the previous chapters, Weka allows us to choose

different classifiers. In this work, we examine Bayesian networks, Alternating

Decision Trees(ADT) (with 50 boosting iterations), K-nearest neighbor, Random

Forests, J48 and Support Vector Machines(SVM).

7.4 Experiments

We collected solver performance data with PETSc version 3.5.3 on two

supercomputers: a Blue Gene/Q at Argonne National Laboratory and the Aciss

cluster at the University of Oregon, which has nodes containing 2 hex-core 2.66GHz

Intel Westmere (X5650) processors and 72 GB of RAM. Each experiment used a

single node. We performed binary labeling(‘good’ and ‘bad’ labels) for the PETSc

solvers. We decide whether a solver is ‘good’ or ‘bad’ for a given problem based on

the time the solver takes to solve the system in comparison with the fastest solver

for that problem. We choose a threshold value of b by varying it from a range of 0.0

- 0.5. For our experiments, we chose the value of b as 0.3, based on trying different

127



values and then choosing the one which performed the best. In order to assign a

label to the solver for a problem, if the solve time of the solver in consideration

is less than solve time of the best solver multiplied by the b value it is labeled as

‘good’, otherwise labeled as ‘bad’. In other words:

If solve-time ≤ 1.30 ∗ b, then label: ‘good’

Else label: ‘bad’

Predicting the best solver for any given problem is not possible by using a

purely analytical approach. Hence, we adopted the empirical approach described

here. The accuracy of the classifier is determined by measuring true positives (TP )

and false negatives (FN). We focus on the true positive rate (TPR) because the

goal is to identify solution methods that are likely to perform well. Therefore, the

accuracy measures presented in the next Section are computed using the usual true

positive rate formula which can be defined as:

TPR = TP/P = TP/(TP + FN)

Here P is the actual number of positive instances, i.e., solvers labeled as

‘good’. Some of the solvers have substantially more data points than others because

of the random selection method we used for the solvers. In order to balance the

amount of data for different solvers in the complete dataset, some of the data

points (i.e., the solvers for which fewer than 10 timing results are available) are

removed. The operation of removing such datapoints, leaves us with a total of

30, 151 datapoints, out of which 2, 026 datapoints are “good” and 28, 125 are labeled

as “bad”. The data is further split into training and test subsets in the two types

of the validation described next. We used 10-fold cross-validation and 66%-34%

train-test split for validating the classification results of the dataset. We used

various machine-learning algorithms to do the classification which is described in
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the previous section and chose the one which was the most accurate in making the

solver predictions based on the accuracy.

7.4.1 Data Collection. Our dataset consists of problems from a

single domain and is generated using the sample applications in MOOSE [46].

We instrumented the MOOSE code to save the matrices (non-linear systems) that

are being solved with KSP solvers in PETSc. The MOOSE matrices we have are

very small, with only a few matrices with more than thousand non-zeroes. In

most cases, the default solver converges in a single iteration. For expanding our

dataset, we varied the size of the MOOSE example problems and auto-generated

bigger problems. We enlarged the mesh and executed in parallel to produce more

realistic use cases. The number of processors and threads for these meshes are 1

and 12 respectively. As a result, we have up to three-dimensional meshes, with

up to 643, 204 rows and columns and 23, 232, 048 number of non-zeros. The larger

matrices we use, have been generated by scaling the original 157 matrices with a

factor of 1, 000. The minimum number of non-zero elements is set to 10, 000 to

ensure the matrices are more realistic. MOOSE input files are hierarchical, block-

structured files with a customizable syntax. Each block can have any number of

name-value pairs. A simple problem uses around six blocks. The basic blocks of a

MOOSE file are:

1. Mesh: The mesh block has information about the block, like dimensions,

number of elements in the X, Y, Z direction. The mesh has two categories,

file mesh, and generated mesh. File mesh can read any normal mesh format

from a file. Generated mesh type can read the automatically generated mesh

files. For our experiments, all files had generated mesh type.
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2. Variables: The variables block declares the variables that will be solved along

with their meta data. The meta data includes the order and family of the

variables.

3. Kernels: The kernels block declares the operators that will be operated on the

variables along with the type and variable name.

4. Boundary condition: The boundary condition block declares the boundary

conditions that will be used in the simulation and the type of the condition.

5. Executioner: The executioner block declares the executioner for the

simulation and the type of the executioner.

6. Output: Lastly, the output block declares the various output styles, like for

file and console.
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Table 27. Dimensions for original MOOSE matrices.

Matrix name Dimensionality

AC_mobility_derivative_test, bl20, bl20_lumped,

bl20_lumped_fu, cinterfaceposition_test, direct,

direct_order4_test, direct_order6_test, direct_order8_test,

direct_temp, gh01, gh02, gh03, gh04, gh05, gh06, gh07, gh08,

gh09, gh10, gh11, gh12, gh13, gh14, gh15, gh16, gh17, gh18,

gh20, gh21, gh22, gh23, gh_fu_01, gh_fu_02, gh_fu_03,

gh_fu_04, gh_fu_05, gh_fu_06, gh_fu_09, gh_fu_10,

gh_fu_11, gh_fu_12, gh_fu_17, gh_fu_18, gh_fu_20,

gh_fu_22, gh_lumped_07, gh_lumped_08, gh_lumped_17,

gh_lumped_18, langmuir_desorption, mass_lumping,

mass_lumping_jacobian, mollified_langmuir_desorption,

pp, pp01, pp02, pp21, pp22, pp_fu_01, pp_fu_02,

pp_fu_21, pp_fu_22, pp_fu_lumped_22, pp_lumped_02,

pp_lumped_22, split, split_order4_test, split_order6_test,

split_order8_test, split_temp

One
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Table 27 – continued from previous page

Matrix name Dimensionality

AC_mobility_derivative_coupled_test,

applied_strain_test, bw02, bw_lumped_02,

CH_BndingBoxIC_test, CH_CircleIC_test,

CH_CrossIC_test, CH_RndBndingBoxIC_test,

CH_RndCircleIC_test, CHParsed_test, ConstructionOrder,

DerivativeSumMaterial, derivativetwophasematerial,

diffusion, GBEvolution_mob_test,

GBEvolution_test, gradientcomponent,

GrGr_boundingbox_test, GrGr_OffDiag_test,

GrGr_particle_test, GrGr_test, GrGr_test_explicit,

GrGr_thumb_test, GrGr_wTGrad_test, kobayashi,

latticesmoothcircleIC_small_invalue_test, matdiffusion,

material, MathEBFreeEnergy_test, MathFreeEnergy_test,

matproptest, mobility_derivative_direct_coupled_test,

mobility_derivative_direct_test,

mobility_derivative_split_coupled_test,

mobility_derivative_test, multiphasestress, nonsplit,

nonsplit_gradderiv, nonsplit_gradderiv_action, rsc02,

rsc_fu_01, rsc_fu_02, s01, s02, s03, s04, s05, s_fu_01,

s_fu_03, s_fu_04, split_math_test, SplitCHParsed_test,

thermal_expansion_test, TotalFreeEnergy_2var_test,

TotalFreeEnergy_test, twophasestress, variable,

variable_finite, wli02

Two
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Table 27 – continued from previous page

Matrix name Dimensionality

bh02, bh03, bh04, bh05, bh_fu_02,

bh_fu_03, bh_fu_04, bh_fu_05,

bulk_modulus_shear_modulus_test, cosserat_shear,

cosserat_tension, lambda_shear_modulus_test,

mandel, material_tensor_on_line_test,

pp_generation, pp_generation_unconfined,

pp_generation_unconfined_action,

SmoothCircleIC_3D_test, ss, st01, terzaghi,

unconsolidated_undrained, undrained_oedometer,

uni_axial1_small_strain, vol_expansion,

vol_expansion_action, youngs_modulus_poissons_ratio_test

Three

7.5 Results

Table 28 shows the set of features we chose as reduced feature sets. The

first reduced feature set (RS1), consists of 6 features and the second reduced

feature set (RS2) has only 4 features. RS2 is a subset of RS1 which is generated by

further reducing the first reduced set. Table 29 summarizes the most-frequently

used solvers and preconditioners along with their configurations that were

most likely to perform well among all the configurations we tested during our

experiments. The first column of the table shows their occurrence frequency.

7.5.1 Construction timing of each classifier. Table 30 shows

the time that was taken to build each classifier. Most of the classifiers chosen are

relatively fast except LibSVM, which takes substantially more time as compared to
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Table 28. Reduced feature set for MOOSE dataset.

Feature name Reduced Feature Reduced Feature
Set 1 (RS1) Set 2 (RS2)

RowVariance X X
AntiSymmetricFrobeniusNorm X
InfinityNorm X X
AvgNNZperRow X X
ColLogValSpread X
Symmetric X X

Table 29. Top 10 good solvers for PETSc with their occurrence percentage in the
dataset.

Occurrence Krylov
Method

Preconditioner

10.56% FGMRES ICC(3)
10.56% FGMRES ICC(0)
10.51% FGMRES ICC(1)
5.75% FGMRES ILU(1)
5.75% FGMRES ILU(0)
5.75% FGMRES ASM(1)
5.75% FGMRES ASM(0)
5.75% FGMRES ASM(3)
5.75% FGMRES ASM(2)
5.70% FGMRES ILU(3)
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Table 30. Time taken (in seconds) for constructing each classifier method using all
features TAll and two different reduced feature sets TRS1 and TRS2.

Method TAll TRS1 TRS2

RF 20.02 9.33 7.73
BayesNet 0.49 0.15 0.16
knn 0.001 0.001 0.001
ADT 6.95 1.02 0.8
J48 0.91 0.16 0.12

Table 31. Prediction accuracy of each classifier method using full feature set

Method 10 CV Train-test 66-34%
split

Overall
Accuracy

“Good”
Solver
accuracy
(TPR)

Overall
Accuracy

“Good”
Solver
accuracy
(TPR)

RF 99.6 97.6 99.7 97.8
BayesNet 72.8 64.7 75.1 64.4
knn(k=10) 99.2 92.6 99.2 94.3
ADT 96.4 52.6 96.4 52.3
J48 99.7 99.3 99.7 99.9

other classifiers. The reason we prefer to exclude it is because our results indicate

that most of the time other classifiers superseded this classifier.

7.5.2 Prediction accuracy of each classifier. For 10-fold cross-

validation (10CV) of the classification, using the full feature set, containing all

the 32 features computed by PETSc, the J48 classifier had the best true positive

rate (TPR) of 99.2% (Table 31). The best TPR of 99.4% was delivered again by

J48 when we redid the classification with the 6 features of Reduced Feature Set

1 (RS1) shown in the Table 32. The reduced sets are shown in the Table 28. The

best accuracy for Reduced Set 2 with 4 features was delivered by J48 classifier with

an accuracy of 99.5%. For Reduced Set 2, LibSVM also had an accuracy of more

than 99%. However, we do not consider this accuracy as it appears that LibSVM
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Table 32. Prediction accuracy of each classifier method using Reduced Set 1
features

Method 10CV Train-test
66-34% split

Overall
Accuracy

“Good”
Solver
accuracy
(TPR)

Overall
Accuracy

“Good”
Solver
accuracy
(TPR)

RF 99.6 97.1 99.7 98.1
BayesNet 95.9 65.1 95.7 65.3
knn(k=10) 99.6 97.5 99.7 98.1
ADT 96.4 52.6 96.4 52.3
J48 99.7 99.5 99.7 99.9

Table 33. Prediction accuracy of each classifier method using Reduced Set 2
features

Method 10CV Train-test
66-34% split

Overall
Accuracy

“Good”
Solver
accuracy
(TPR)

Overall
Accuracy

“Good”
Solver
accuracy
(TPR)

RF 99.6 97.8 99.7 98.0
BayesNet 95.8 62.8 95.8 62.9
knn(k=10) 99.6 99.5 99.5 99.9
ADT 96.9 60.9 97.0 63.8
J48 99.7 99.5 99.7 99.9
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Table 34. Validation with 10-fold cross-validation train-test data split for the
dataset with the best classifier J48.

Class
Labels

All
Features

Reduced
Feature
Set 1

Reduced
Feature
Set 2

Predicted
Label

good bad good bad good bad

True label
(good)

2011 15 2016 10 2015 11

True label
(bad)

62 28063 62 28063 59 28066

classifier classifies most of the data as a single class, i.e. either all of them are

classified as “good” or all of them are classified as “bad”, which makes the reliability

of this classifier questionable. The confusion matrix for the best classifiers in all

cases can be seen in 34.

For 66-34% train-test split classification, using all 32 features computed by

PETSc, J48 classifier had the best true positive rate (TPR) of 99.9% (Table 31).

The best TPR of again 99.9% was delivered by J48 when we redid the classification

with the 6 features in Reduced Feature Set 1 (RS1)shown in the Table 28. The

best accuracy for Reduced Set 2 with 4 features was delivered by Random Forests

classifier with an accuracy of 99.9%. The confusion matrix for the best classifier

can be seen in 35

7.6 Summary

The matrix features presented in this chapter are computed by using

PETSc instead of Anamod, which was used for the initial work presented in

Section 3.12 and by many other researchers. Firstly, Anamod computes each

feature individually, which results in high computation time for computing a

large number of features. Secondly, using Anamod creates a dependency on an
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Table 35. Validation with 66%-34% train-test data split for the dataset with the
best classifier J48.

Class
Labels

All
Features

Reduced
Feature
Set 1

Reduced
Feature
Set 2

Predicted
Label

good bad good bad good bad

True label
(good)

684 1 684 1 684 1

True label
(bad)

25 9541 21 9545 25 9541

external library. For both these reasons, we eliminated using Anamod for this

work. The results indicate the benefits of the application of machine-learning based

classification model on a domain-specific dataset. This chapter illustrates that high

accuracy can be achieved in single domain problems due to the fact that problems

from the same domain are highly similar, thus causing the classification model to

train well on problems from the domain. The classification accuracy obtained in

this work indicates promising results for problems coming from any single domain.
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CHAPTER VIII

CONCLUSION AND FUTURE WORK

8.1 Conclusion

In many applications, the solution of large sparse linear systems is a key

computation whose performance dominates the overall solution time. For example,

applications that solve nonlinear partial differential equations through numerical

approximations such as the Newton-Krylov family of methods, spend most of their

time in the iterative linear system solution, which can be performed by any of

the many preconditioned Krylov methods available. While they are functionally

equivalent and have the same asymptotic complexity, their performance (how fast a

solution is found) varies greatly depending on the characteristics of the input linear

system. The proliferation of available solution methods makes the task of selecting

a specific algorithm that performs well extremely challenging.

For solving large sparse linear systems, solvers are used in combination with

preconditioners. There is a variety of solvers and preconditioners that are offered

by different libraries, for instance PETSc alone offers more than three hundred

pairings of Krylov methods and preconditioners shown in Table 3. Many solvers

and preconditioners have parameters that can be varied and as a result, the number

of possible solver-preconditioner combinations further increase. In addition, with

the advancement of time, more solver techniques and preconditioners are getting

developed to support more complex problems than ever before. Although the

addition of new solving techniques enhances the power of the numerical libraries

to handle complex problems better, it also grows the perplexity for a user to choose

which combination of solver and preconditioner with which configuration, should

be used for a given problem. The drawback of having numerous options is that
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it becomes extremely hard for the user to make a sound choice as the decision

requires expertise in high-performance computing, numerical analysis and domain

knowledge. The challenge is where a recommendation system becomes a relief.

These problems promote the need for a system, which reduces the task of the

user to simply provide his problem as input and get a result from the system,

a recommendation of what solver and preconditioner with which parameter

configurations is the most suitable, depending on the characteristics of her problem.

This thesis explores that the performance of different solver techniques at

small scales can be modeled using a small number of features based on structural

and numerical properties of the input linear system. The results for the SuiteSparse

dataset demonstrate that an efficient model can be built, despite the small size of

the dataset. The top ranking features include average diagonal distance, number of

nonzeros, norm1, column variability, minimum number of nonzeros, row variability

and number of diagonal nonzeros, and kappa.

The research presented in this thesis illustrates the application of machine

learning for selecting a “well-performing” preconditioned solver technique built on

the validation from computational fluid dynamics applications and multiphysics

simulation. As a matter of fact, machine learning classification techniques can

identify quasi-optimal solvers efficiently for new problems, based on the model

learning from the training data. During the training, the model observes the

convergence behavior of various Krylov methods and preconditioners and utilizes

that information for making new predictions. Since the solution time of the linear

systems often prevails the overall scientific simulation time, reducing the solve time

can significantly transform the use of machine learning for making such non-trivial

decisions.
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Although machine learning facilitates the predictions of quasi-optimal

solver-preconditioner pairs, it is considerably dependant on the training data for

learning the behavior of the solver techniques and preconditioners on different

linear systems. Further, there is a training cost associated with the application

of machine-learning, and using an ML-based approach for solver recommendations

on large scale problems may incur an inordinate cost, which maybe prohibitively

large and undesirable. Consequently, we present the communication-based

scalability model that captures the parallel overhead of solving large sparse

systems by quantifying the differences in inter-process communication for all the

Krylov methods inspected. The preconditioned Krylov methods are ranked by

computing and comparing the number of matrix-vector operations that perform

communication, across the Krylov methods.

We combine the application of the convergence model and the scalability

model in conjunction, to enable solver recommendations at different scales of

parallelism. The model-based ranking is validated by comparison with empirical

results on a numerical simulation of driven fluid flow in a cavity. This dissertation

shows that the scalability model captures the communication overhead sufficiently

well and can be used in combination with the machine-learning model. In general,

this research shows the comparison of the performance achieved by different

machine learning classification techniques for solver selection. As discussed,

there are numerous solver techniques, numerical libraries, so are the number of

machine learning algorithms that can be deployed. Therefore, exploring other

solver techniques, numerical libraries and machine learning algorithms has immense

potential in supporting the application of machine learning for solver selection

further.
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The conventional way of computing features involves storing a entire matrix

explicitly. Our approach is rather different than the traditional way of computing

features where we use a small sample of the matrix columns to get informed

estimates of overall matrix features. Earlier, by using an external library like

Anamod, which was used for our prior work and by many other researchers. To

reduce the overall cost further, we present the sampling-based feature extraction

approach for Krylov method selection, by using the matrix features using estimates

of matrix properties. These estimates are based on matrix-free approximation for

inexpensive, simple and structural features. The results indicate that the machine-

learning based classification technique, which uses the matrix features estimates,

can be used for suggesting solver techniques for problems from different domains

and a domain-specific use case (MOOSE). The results point towards promising

results for problems arising from any single domain or from a collection of variety

of domains.

For reducing the overall cost of the system, we reduce the feature set by

eliminating features that negatively impact the learning process and the features

that do not contribute towards the model. Although we drastically reduce the

number of total features to be computed for a new system, to a handful of

comparatively inexpensive features, choosing a good set of features is one of the

most relevant tasks while constructing a classifier. The feature set tends to change

for different datasets, hence exploring an automated feature selection strategy can

be extremely useful in overcoming this deficiency.

To conclude, this dissertation demonstrates that it is possible to select

preconditioned solvers techniques, based on the convergence behavior and the

parallel overhead of preconditioned Krylov methods. The machine-learning model
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captures the convergence behavior of solvers and preconditioners. For modeling

the parallel overhead, the analytical approach generates a scalability-based ranking

for the preconditioned Krylov methods. Combining the convergence model with

the communication model, enables more accurate solver recommendations at

different parallelism scales. On the whole, this dissertation contributes towards

the advancement of new modeling techniques for application from a wide variety of

domains.

8.2 Future Work

In the future, this research presented can be expanded in several directions.

So far, most of the linear systems are used for the SuiteSparse matrix collection and

the MOOSE application. Although the SuiteSparse collection includes problems

from a variety of domains, and the matrix sizes are sufficiently large, the real-

world problems may be comparatively larger. Therefore, one of the expansions of

this work can involve using training matrices bigger than the matrices offered by

SuiteSparse collection. Linear systems used in this research from the multiphysics-

domain (MOOSE) are varied by enlarging the mesh size, testing applications from

other domains that generate more realist use cases is another future aspect of this

work.

While the convergence model is largely automated, the analytical ranking

used for comparing the amount of communication across different preconditioned

Krylov methods still involves manual effort. Currently for generating the solver

ranking, each Krylov method and preconditioner is individually analyzed to identify

the number of matrix-vector operations that perform communication. Therefore,

another aspect of this work that can be explored in the future involves investigating

techniques to automate the solver ranking when given specific input features.
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Machine learning is a fast-evolving field. When new techniques are

developed, they may outperform the existing methods at the time of this writing.

Therefore, in the future, including the new techniques to verify and update

the technique would be useful. Although this thesis explores using a variety of

classification techniques, due to time constraints, Neural networks was mostly

excluded from the convergence model, which is yet another aspect of this work that

can be analyzed.

For the matrix-free feature selection, explicit matrices were used for training.

For testing the modeling technique, matrix-free applications offered by PETSc were

used. Due to time restraints, building the training set on matrix-free applications

was eliminated. However, a strong recommendation to enhance the sampling-

based approach is to train on matrix-free applications and test on matrix-free

applications. Therefore, it is important to research the matrix-free approach

with a sufficiently large training dataset completely composed of matrix-free

applications.

.3 Appendix

1. Diagonal matrix: A matrix in which the non-diagonal elements are 0. For

instance, the matrix below is diagonally dominant, as the only non-zero

elements are present at the diagonal locations.

1 0 0 0

0 4 0 0

0 0 −6 0

0 0 0 2


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2. Diagonally dominant matrix: A matrix is diagonally dominant if for each row,

the magnitude of the diagonal entry in that row is larger than or equal to the

sum of the magnitudes of all the other non-diagonal entries in that row.

3. Order of a matrix: The number of rows and columns of a matrix are referred

to as the order of the matrix. For instance, a matrix with 4 rows and 5

columns has an order of 4x5.

4. Singular matrix: A matrix whose determinant is zero. For instance, the

matrix given below has a determinant 0, which makes it singular matrix.2 4

4 8


The determinant of the matrix can be given by the Laplace formula:

determinant(A) =
∑

σ∈Sn
−1N(σ)

∏n
i=1 ai,σi .

det(A) =
∑

σ∈Sn
sgn(σ)

∏n
i=1 ai,σi .

5. Triangular matrix: A square matrix with the following special characteristics:

Lower triangular matrix: The square matrix in which all the elements above

the diagonal are zero. Upper triangular matrix: The square matrix in which

all the elements below the diagonal are zero.

6. Square matrix: A matrix with the same number of rows and columns.

7. Symmetric matrix: A square matrix that is equal to its transpose, so A = AT .

An example of a symmetric matrix is shown below:
1 2 4

2 −3 8

4 8 −9


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8. Factorization: Original matrix is decomposed into multiple smaller matrices.

The original matrix can be obtained by the product of the smaller matrices.

9. Ill conditioned matrices: Matrices, which have a very large condition number,

are called as Ill conditioned matrices. Matrices with a small condition number

are referred to as well-conditioned matrices.

10. Bidiagonalization: The process of converting a matrix into a bidiagonal

matrix, which is, a matrix in which the non-zero elements are along the

main diagonal of the matrix and either the diagonal below or above the main

diagonal. For example, the matrix shown below is bidiagonal.

1 0 0 0

2 4 0 0

0 1 −6 0

0 0 3 2


11. Tridiagonal matrix: A matrix in which the non-zero elements are along the

main diagonal of the matrix and along the diagonal below and above the

main diagonal. For example, the matrix shown below:

1 5 0 0

2 4 4 0

0 1 −6 1

0 0 3 2


12. Orthogonalization: The process of finding a set of orthogonal vectors in a

given subspace.
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13. Symmetric positive definite matrix: A matrix is symmetric positive definite if

A = AT , A−1 exists, all its Eigenvalues are positive and all elements of A are

greater than zero.
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