
EVALUATING PARALLEL PARTICLE ADVECTION ALGORITHMS OVER

VARIOUS WORKLOADS

by

ROBA BINYAHIB

A DISSERTATION

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

March 2020

DISSERTATION APPROVAL PAGE

Student: Roba Binyahib

Title: Evaluating Parallel Particle Advection Algorithms Over Various Workloads

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Computer
and Information Science by:

Hank Childs Chair
Advisor

Allen Malony Core Member
Boyana Norris Core Member
Amanda Thomas Institutional Representative

and

Kate Mondloch Vice Provost and Dean of the Graduate School

Original approval signatures are on file with the University of Oregon Graduate
School.

Degree awarded March 2020

ii

c© 2020 Roba Binyahib
All rights reserved.

iii

DISSERTATION ABSTRACT

Roba Binyahib

Doctor of Philosophy

Department of Computer and Information Science

March 2020

Title: Evaluating Parallel Particle Advection Algorithms Over Various Workloads

We consider the problem of efficient particle advection in a distributed-

memory parallel setting, focusing on four popular parallelization algorithms. The

performance of each of these algorithms varies based on the desired workload. Our

research focuses on two important questions: (1) which parallelization techniques

perform best for a given workload?, and (2) what are the unsolved problems in

parallel particle advection? To answer these questions, we ran a “bake off” study

between the algorithms with 216 tests, going to a concurrency up to 8192 cores

and considering data sets as large as 34 billion cells with 300 million particles. We

also performed a variety of optimizations to the algorithms, including fundamental

enhancements to the “work requesting algorithm” and we introduce a new hybrid

algorithm that we call “HyLiPoD.” Our findings inform tradeoffs between the

algorithms and when domain scientists should switch between them to obtain

better performance. Finally, we consider the future of parallel particle advection,

i.e., how these algorithms will be run with in situ processing.

This dissertation includes previously published co-authored material.

iv

CURRICULUM VITAE

NAME OF AUTHOR: Roba Binyahib

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, OR, USA
King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
King Abdulaziz University, Jeddah, Saudi Arabia

DEGREES AWARDED:

Doctor of Philosophy, Computer and Information Science, 2020, University
of Oregon

Master of Science, Computer Science, 2013, King Abdullah University of
Science and Technology

Bachelor of Science, Computer Science, 2010, King Abdulaziz University

AREAS OF SPECIAL INTEREST:

Flow Visualization
High Performance Computing
Scientific Visualization

PROFESSIONAL EXPERIENCE:

Graduate Teaching Fellow, University of Oregon, 2020–Present
Graduate Research Fellow, University of Oregon, March 2019 – Dec 2019
Visualization Scientist, National Renewable Energy Laboratory, Summer

2018
Graduate Researcher, Oak Ridge National Laboratory, Summer 2017
Research Aide, Argonne National Laboratory, Summer 2016
Lab Scientist, Saudi ARAMCO, 2013–2014
Lab Technician, King Abdulaziz University, 2010–2011

GRANTS, AWARDS AND HONORS:

v

Best Paper Honorable Mention at LDAV, 2019
Area Exam Passed With Distinction, University of Oregon, 2019
J. Donald Hubbard Scholarship, University of Oregon, 2018
King Abdullah Scholarship, 2014–2019
KAUST Discovery Scholarship, 2011–2013

PUBLICATIONS:

Roba Binyahib, David Pugmire, Abhishek Yenpure, and Hank Childs.
“Parallel Particle Advection Bake-off.” (In preparation.)

Roba Binyahib, David Pugmire, and Hank Childs. “In Situ Particle
Advection via Parallelizing over Particles,” In Proceedings of the
Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis
and Visualization (ISAV), 2019.

Roba Binyahib, David Pugmire, Boyana Norris, and Hank Childs. “A
Lifeline-Based Approach for Work Requesting and Parallel Particle
Advection,” In IEEE Symposium on Large Data Analysis and
Visualization (LDAV), 2019.

Roba Binyahib, Tom Peterka, Matthew Larsen, Kwan-Liu Ma, Hank
Childs. “A Scalable Hybrid Scheme for Ray-casting of Unstructured
Volume Data,” In IEEE Transactions on Visualization and Computer
Graphics (TVCG), 2018.

Brenton Lessley, Roba Binyahib, Robert Maynard, and Hank Childs.
“External Facelist Calculation with Data-Parallel Primitives,” In
Proceedings of EuroGraphics Symposium on Parallel Graphics and
Visualization (EGPGV), 2016.

F Diaz Ledezma, Ayman Amer, Fadl Abdellatif, Ali Outa, Hassane Trigui,
Sahejad Patel, and Roba Binyahib. “A Market Survey of Offshore
Underwater Robotic Inspection Technologies for the Oil and Gas
Industry,” In SPE Saudi Arabia Section Annual Technical Symposium
and Exhibition, 2015.

vi

ACKNOWLEDGMENTS

First, I would like to thank my advisor, Dr. Hank Childs, for his continuous

support and guidance. Dr. Childs was a great advisor. He taught me how to be

a better researcher, how to review papers, how to write funding proposals, and

how to be a better programmer. He always encouraged me to learn new skills and

helped me to pursue opportunities for growth. During our first meeting, he asked

me what my professional goals are. Since then, he made sure to teach me all the

necessary skills to reach my goals. Thank you for all the time and effort. I’m very

grateful to have such a great advisor.

I would like to thank my committee members, Dr. Allen Malony, Dr.

Boyana Norris, and Dr. Amanda Thomas, for all the help and feedback.

I spent my summers working for different national labs under the

supervision of wonderful mentors. I would like to thank Dr. Tom Peterka, Dr. Dave

Pugmire, and Dr. Kenny Gruchalla for making my internship experience productive

and fun.

I would not be here today if it was not for Dr. Madhu Srinivasan. Thank

you for teaching me about scientific visualization and research. Thank you for

your patience, especially at the beginning of my research journey. I’m grateful for

everything you taught me, for the support, and for introducing me to Dr. Hank

Childs.

My time here was great thanks to my CDUX colleagues. Thank you for the

support, feedback, and friendship.

During my years in Oregon, I met friends who became family. I enjoyed

all the nights we spent studying in the library, all the adventures we have gone

vii

through together, and the holidays we celebrated as a family. Thank you for all the

joyful and memorable moments.

This research is funded in part by the King Abdullah Scholarship

represented by the Saudi Arabian Cultural Mission (SACM). This research was

supported by the Exascale Computing Project (17- SC-20-SC), a collaborative

effort of the U.S. Department of Energy Office of Science and the National

Nuclear Security Administration. This research was also supported by the

Scientific Discovery through Advanced Computing (SciDAC) program of the

U.S. Department of Energy. This research used resources of the National Energy

Research Scientific Computing Center (NERSC), a U.S. Department of Energy

Office of Science User Facility operated under Contract No. DE-AC02-05CH11231.

viii

I dedicate this dissertation to my family. Thank you for your unconditional love

and support. Thank you for always being there for me, even when we are on

different sides of the world. You taught me the value of hard work, encouraged me

to achieve my goals, and always cheered me up. I would not have been here if it

was not for you.

ix

TABLE OF CONTENTS

Chapter Page

I Foundations 1

I. INTRODUCTION . 3

1.1. Dissertation Plan . 5

1.2. Dissertation Outline . 7

1.3. Abbreviations . 8

1.4. Co-Authored Material . 9

II. BACKGROUND . 10

2.1. Scientific Visualization in a Distributed Memory Setting 11

2.2. Scalar Field Visualization 16

2.3. Supporting Infrastructure 33

III. PARALLEL PARTICLE ADVECTION ALGORITHMS 45

3.1. Foundations . 45

3.2. Studied Parallel Particle Advection Algorithms 48

3.3. Other Parallel Particle Advection Algorithms 51

II Improving Individual Parallel Particle Advection

Algorithms 60

x

Chapter Page

IV. BEST PRACTICES AND IMPROVEMENTS TO THE
PARALLEL ALGORITHMS 62

4.1. Parallel Particle Advection Best Practices 62

4.2. A Lifeline-Based Approach for Work Requesting and
Parallel Particle Advection 63

III Understanding Parallel Particle Advection Behavior

Over Various Workloads 90

V. PARALLEL PARTICLE ADVECTION BAKE-OFF 92

5.1. Motivation . 92

5.2. Experiment Overview . 92

5.3. Testing Infrastructure . 97

5.4. Results . 100

5.5. Summary of Findings . 116

VI. HYLIPOD: IMPROVED HYBRID PARALLEL PARTICLE
ADVECTION ALGORITHM 118

6.1. Motivation . 118

6.2. Algorithm . 118

6.3. Experiments Overview . 119

6.4. Results . 119

IV The Future of Parallel Particle Advection 123

xi

Chapter Page

VII. IN SITU PARALLEL PARTICLE ADVECTION 125

7.1. Motivation . 125

7.2. Related Work . 127

7.3. Algorithm . 127

7.4. Experimental Overview 129

7.5. Results . 133

7.6. Conclusion . 135

VIII. CONCLUSION AND FUTURE WORK 137

8.1. Synthesis . 137

8.2. Recommendations for Future Study 139

REFERENCES CITED . 142

xii

LIST OF FIGURES

Figure Page

1. A visualization pipeline using the data flow design. 14

2. Volume rendering via ray-casting. 17

3. Example execution of a hybrid volume rendering algorithm. 25

4. Example of structured and unstructured meshes. 27

5. Example of applying a contouring algorithm on an AMR grid. 32

6. Image compositing using the Direct Send method between
four processors. 36

7. Image compositing using the Binary Swap method between
four processors. 37

8. Image compositing using the Radix-k method between six processors. . . 38

9. The distribution of work in the two main parallel particle
advection algorithms. 47

10. Different flow visualization algorithms that use particle advection 56

11. A Lifeline graph of four nodes. 65

12. Streamline visualization of the four data sets used in the
study of the new work requesting algorithm introduced in Chapter IV. . 70

13. Performance of the four algorithms considered in the study
of the new work requesting algorithm introduced in Chapter IV. 74

14. Performance of the four algorithms considered in the
study of the new work requesting algorithm introduced
in Chapter IV using different data sets 78

15. The three main factors used in the study in Chapter V 93

16. The three seeding boxes considered in the study in Chapter V 95

17. The performance scalability of the parallelize over data
algorithm for different workloads. 102

xiii

Figure Page

18. The performance scalability of the parallelize over data
algorithm for different workloads. 103

19. The performance scalability of the parallelize over particles
algorithm for different workloads. 105

20. The performance scalability of the parallelize over particles
algorithm for different workloads. 106

21. The performance scalability of the work requesting
algorithm for different workloads. 108

22. The performance scalability of the work requesting
algorithm for different workloads. 109

23. The performance scalability of the master/worker algorithm
for different workloads. 111

24. The performance scalability of the master/worker algorithm
for different workloads. 112

25. Comparing the performance of the four algorithms for
different workloads considered in Chapter V. 114

26. The performance scalability of our hybrid parallel particle
advection algorithm (HyLiPoD) for different workloads. 120

27. Comparing the performance of the three algorithms for
different workloads considered in Chapter VI. 122

28. Streamline visualization for the two seed distributions
considered in the study in Chapter VII 132

29. Performance of the in situ implementation of the two
traditional parallel particle advection algorithms for a dense
distribution of seeds . 133

xiv

LIST OF TABLES

Table Page

1. Factors impacting the performance of parallel volume
rendering, and the best configuration for each of these
factors using different parallelization techniques. 27

2. Comparing the performance of the four algorithms
considered in the study of the new work requesting
algorithm introduced in Chapter IV 75

3. Comparing the number of advection steps and I/O
operations between the four algorithms considered in the
study of the new work requesting algorithm introduced in Chapter IV . . 76

4. Comparing the performance of the four algorithms
considered in the study of the new work requesting
algorithm introduced in Chapter IV when varying the data sets 78

5. Comparing the performance of the four algorithms
considered in the study of the new work requesting
algorithm introduced in Chapter IV when varying the
number of particles . 80

6. Comparing the performance of the four algorithms
considered in the study of the new work requesting
algorithm introduced in Chapter IV when varying the
duration of particles . 81

7. Comparing the performance of the four algorithms
considered in the study of the new work requesting
algorithm introduced in Chapter IV when varying the
number of blocks . 82

8. Comparing the performance of the four algorithms
considered in the study of the new work requesting
algorithm introduced in Chapter IV when varying the
number of cells per block . 84

9. Comparing the performance scalability of the four algorithms
considered in the study of the new work requesting
algorithm introduced in Chapter IV 85

xv

Table Page

10. Comparing the difference in workload balance between the
four algorithms considered in the study of the new work
requesting algorithm introduced in Chapter IV 85

11. The best case for each of the four algorithms considered in
the Bake-off study (Chapter V). 113

12. The best algorithm for the different seeding box sizes
considered in the Bake-off study (Chapter V). 116

13. Comparing the performance of HyLiPoD to LSM and POD (Chapter VI). 121

14. Comparing the performance and memory consumption of
the two algorithms considered in Chapter VII for a dense
particle distribution . 134

15. Comparing the performance and memory consumption of the
two algorithms considered in Chapter VII for uniform seeding 135

xvi

Part I

Foundations

1

This part of the dissertation discusses the motivation of this work, and then

provides background of scientific visualization on supercomputers.

2

CHAPTER I

INTRODUCTION

Simulations enable scientists to study complex phenomena which may have

been too difficult or expensive to study experimentally. That said, simulations

can only replace experiments if they have sufficient accuracy, and achieving this

accuracy often requires fine mesh resolution. Yet, working with such data requires

high computational power and large memory; requirements that go far beyond the

capabilities of a single machine. Supercomputers allow scientists to achieve finer

mesh resolutions by performing calculations at a massive scale. Examples of fields

that regularly use large scale simulations are high energy physics, biology, and

cosmology. Simulations in these fields, and others, produce data sets potentially

containing trillions of cells. These massive amounts of data are the key to future

discoveries and scientific breakthroughs. Further, visualization is a powerful tool to

achieve that goal, enabling scientists with ways to explore, extract, understand, and

analyze important information.

Many of these simulations generate vector data, encoding phenomena

such as the formation of wind turbine wakes, biomass pyrolysis, or efficiencies in

vehicle platooning. The behavior and patterns occurring in these vector flows can

be understood using the subset of visualization techniques dedicated to vector

data, called “flow visualization.” There are myriad flow visualization algorithms

(described in Chapter II), and these algorithms typically rely on the same operation

as a building block: particle advection. Advection is the process of displacing a

massless particle depending on the vector field. The trajectory of each particle as

it is displaced can be described by an ordinary differential equation. In practice,

this trajectory is calculated iteratively. A particle with an initial (seed) location,

3

X0, is displaced to a nearby location, X1, then displaced again to another location,

X2, and so on. Each advancement, i.e., from Xi to Xi+1, is referred to as a step.

The change in position for a given step is typically approximated using numerical

methods, such as Runge-Kutta [1]. These numerical methods require multiple

vector field evaluations at different spatial locations (and sometimes temporal

locations for time-varying flow). A flow visualization technique will then use the

computed trajectories of each particle to display its representation of features

within the flow field. The representations used by each technique are varied. Some

simply plot the position or trajectory of particles, while others create derived

quantities based on trajectory properties.

Because the different flow visualization techniques are highly varied, the

corresponding particle advection workloads are similarly highly varied. The number

of particles can be as few as one to potentially billions. Further, the number of

steps can vary as well, from under one hundred steps to hundreds of thousands

of steps, or more. As a result, some particle advection workloads have excessive

computation times — as many as trillions of steps, with each step requiring velocity

field interpolations to solve an ordinary differential equation (Runge-Kutta).

Particle advection solutions get considerably more complex in the context

of supercomputers. This setting typically adds two significant complications: (1)

data sets contain many cells and are decomposed into blocks, and (2) the number

of advection steps to calculate is so large that parallel processing is required.

Supercomputer architectures add to the complexity as well, as they are made up

of many nodes, with each node containing its own (private) memory. Ultimately,

the fundamental challenge of efficient parallel particle advection on supercomputers

is to make sure the correct particle and vector field information are together at

4

the same time so a step can occur. Unfortunately, data set sizes often preclude the

simplest method for achieving this solution — loading all vector field information

on all nodes.

The visualization community has introduced several parallel solutions

to address these challenges. However, there is no comprehensive comparison

identifying the suitable techniques for specific workloads. In this dissertation, we

evaluate and compare the most popular parallel particle advection techniques.

We implement and improve the different algorithms and conduct a comprehensive

study to answer the following questions:

– Which parallelization technique performs best for a given

workload?

– What are the unsolved problems in parallel particle advection?

Are there any workloads that are difficult to balance using existing

parallelization techniques?

1.1 Dissertation Plan

This section describes the three studies contributing to the dissertation,

which are:

– Study 1: Optimizing Performance of Each Parallelization Algorithm.

– Study 2: Comparing Behavior of the Algorithms Over Various Workloads.

– Study 3: Considering the Future of Parallel Particle Advection.

In this dissertation, we compare four of the most used parallel algorithms

(parallelize-over-data, parallelize-over-particle, work-requesting, and master-worker,

see Chapter III for more details) across various workloads. Our goals are to help

5

end users select the best parallelization algorithm for their workload, and to inform

the visualization community regarding opportunities for improvement.

1.1.1 Study 1: Optimizing Performance of Each Parallelization

Algorithm. We studied the four parallelization algorithms and their

implementations and looked for possible improvements. For all four algorithms,

we added on node parallelism using VTKm [2, 3]. We also added an improvement

to the work requesting algorithm by replacing the random scheduling method [4]

with the Lifeline scheduling method [5]. Lifeline is currently the high-performance

computing community’s preferred scheduling method for work requesting [5, 6, 7].

1.1.2 Study 2: Comparing Behavior of the Algorithms Over

Various Workloads. Our main study is a bake off that evaluates and compares

the four parallelization algorithms we consider. We created a platform that allows

the change of different factors, which helps to study different cases. From our study

of state of the art (see Chapter III), we determined three different factors that have

the highest impact on the performance. These factors are: 1) seed distribution

method, 2) number of seeds, and 3) concurrency. We test the cross product of

these factors and analyze the results to determine how these factors impact each

algorithm. In addition to this study, we also implemented a new fifth algorithm

that is a hybrid between two of the existing algorithms.

1.1.3 Study 3: Considering the Future of Parallel Particle

Advection. In situ visualization is a promising solution to reduce the cost of

I/O by visualizing the simulation as it is running, avoiding intermediate data files.

In situ visualization methods usually adopt a tightly coupled approach, where the

simulation and visualization are executed synchronously on the same computation

6

resources in a time sharing manner. One significant challenge in the situ setting is

limitations in memory usage.

While several solutions have been proposed for parallel particle advection in

a post hoc setting, in situ solutions tends to use the parallelize over data technique.

That is because this technique aligns with in situ constraints. In this study, we

explored whether other parallelization techniques are suitable for tightly-coupled

in situ processing as well. In particular, we adapted the parallelize over particles

technique to work in an situ setting and compared both methods with different

seed placements.

1.2 Dissertation Outline

This dissertation is organized into the following four parts:

– Part I – Foundations

∗ Chapter I discusses the motivation behind this work, and describes the

dissertation questions and plan.

∗ Chapter II surveys the research done on visualization techniques in a

distributed memory setting.

∗ Chapter III describes the foundations of particle advection, the parallel

particle advection algorithms that are considered in this dissertation, as

well as surveying the research done on parallel particle advection.

– Part II – Improving Individual Parallel Particle Advection Algorithms

∗ Chapter IV discusses the best practices that were adopted and

implemented from previous studies, and introduces an improvement for

the work requesting algorithm.

7

– Part III – Understanding Parallel Particle Advection Behavior Over Various

Workloads

∗ Chapter V presents our bake off study, where we test the different

parallel particle advection algorithms over different workloads.

∗ Chapter VI introduces a new hybrid algorithm that adapts its behavior

depending on the workload characteristics.

– Part IV – The Future of Parallel Particle Advection

∗ Chapter VII explores in situ parallel particle advection by studying the

two main algorithms over two different workloads.

∗ Chapter VIII concludes this dissertation and discusses the lessons

learned and suggests recommendations for future research.

1.3 Abbreviations

This is a list of the abbreviations used in this dissertation.

– POD: Parallelize-Over-Data algorithm (defined in Section 3.2.1)

– POP: Parallelize-Over-Particles algorithm (defined in Section 3.2.2)

– RSM: Work requesting algorithm using the Random Scheduling Method with

a single victim (defined in Section 4.2.1)

– RSM-N: Work requesting algorithm using the Random Scheduling Method

with multiple victims (defined in Section 4.2.1)

– LSM: Work requesting algorithm using the Lifeline Scheduling Method

(defined in Section 4.2.1)

8

– MW: Master/Worker algorithm (defined in Chapter 3.2.4)

– HyLiPoD: Our proposed Hybrid Lifeline Parallelize-Over-Data particle

advection algorithm, which is a hybrid between LSM and POD (defined in

Section 5.1)

1.4 Co-Authored Material

Most of the work in this dissertation is from previously published co-

authored research. The following is a description of the chapters with the

publications and authors that contributed to it. Additional details on the division

of work is provided at the beginning of each chapter

– Chapter I: parts of the text in this chapter comes from the introduction of [8],

which was a collaboration between David Pugmire (ORNL), Boyana Norris

(UO), Hank Childs (UO), and myself.

– Chapter II: comes from my Ph.D. Area Exam document, which was

unpublished.

– Chapter IV: parts of the text in this chapter comes from the introduction

of [8], which was a collaboration between David Pugmire (ORNL), Boyana

Norris (UO), Hank Childs (UO), and myself.

– Chapter V: comes from a Manuscript in Preparation that was a collaboration

between David Pugmire (ORNL), Abhishek Yenpure (UO), Hank Childs

(UO), and myself.

– Chapter VII: comes from [9], which was a collaboration between David

Pugmire (ORNL), Hank Childs (UO), and myself.

9

CHAPTER II

BACKGROUND

Parts of the text in this chapter came from my area exam, which received

editing suggestions from Hank Childs.

The size of the data sets produced by today’s large scale simulations make

visualization difficult for several reasons. One complication is that data transfer

is expensive, which often prevents transfers to local desktops or visualization

clusters. Another complication is in the processing of large data. Some techniques

reduce the processing costs by focusing on coarser versions of the data or on

subsets of the data. These techniques, including multiresolution techniques and

streaming, are used regularly in non-HPC environments. However, in the context

of supercomputing, the dominant processing technique is parallelism, i.e. using

the same supercomputer for not only simulation but also visualization. This

is done by distributing data or workloads across multiple nodes, where each

node visualizes its assigned portion. In most cases, the processing is done at

the native mesh resolution and storing the entire mesh in memory (although

distributed), requiring significant computational power, large memory, and I/O

bandwidth. These requirements are often acceptable, however, since performing

visualization on a supercomputer allows visualization algorithms to take advantage

of the supercomputer resources. That said, visualizing such large data on a

supercomputer (i.e., a distributed memory setting) adds new challenges. Even

though most visualization algorithms are embarrassingly parallel, others require

heavy communications and coordination. In addition, load balance must be

maintained to run these algorithms efficiently, even with embarrassingly parallel

algorithms.

10

These challenges have been the subject of various research efforts to improve

the scalability and efficiency of visualization algorithms. In this chapter, we

cover techniques for visualizing large data sets at scale with an exclusive focus

on distributed memory parallelism algorithms and their challenges. We exclude

from this chapter the research done on particle advection, since it receives special

treatment in Chapter III, as the focal point of this dissertation. The organization

of this chapter is as follows. Section 2.1 provides areas of background for scientific

visualization in a distributed memory setting. Section 2.2 discusses the research

done on visualization techniques for scalar field data. Finally, Section 2.3 discusses

supporting infrastructures used by visualization algorithms.

Explicitly, this chapter focuses on performing visualization algorithms

on supercomputers, and in particular the methods and optimizations required

to visualize large data in a distributed memory setting. Related topics to this

chapter include multiresolution processing, streaming, hybrid parallelism, and in

situ processing; while these topics are discussed when relevant to visualization on

supercomputers, they are otherwise considered out of scope.

2.1 Scientific Visualization in a Distributed Memory Setting

In this section, we cover important areas of background for scientific

visualization in a distributed memory setting. We start by discussing the impact

of I/O on the visualization pipeline (Section 2.1.1). Next, we discuss the processing

techniques for visualization algorithms (Section 2.1.2). Then, we take a look at the

framework design used in most of visualization tools (Section 2.1.3). Finally, we

discuss the parallelization design of visualization algorithms (Section 2.1.4).

2.1.1 I/O in Scientific Visualization. Computational power

is increasing tremendously, while I/O systems are not improving at nearly the

11

same pace. The main limiting factor for large scale visualization performance is

I/O [10, 11]. Several techniques have been proposed to reduce the cost of I/O

operations for visualization algorithms such as multiresolution techniques [12, 13],

subsetting [14, 15], or parallel processing. In multiresolution techniques, data sets

are stored in a hierarchical structure, and visualization is performed starting from

the coarser data up to the finer ones. Subsetting is used to read and process only

the portion of the data that will contribute to the visualization result. In parallel

processing, the visualization method use the computational power of multiple nodes

to process the data faster. Despite the presence of the first three techniques, the

supercomputing community use parallel processing.

As supercomputers are pushing toward exascale, the gap between

computation power and I/O is expected to increase even more. Consequently,

I/O constraints are an important factor to take into account when designing

visualization systems. Each one of the above mentioned techniques addresses

I/O constrains. Multiresolution and subsetting solutions reduce the required I/O.

Parallel processing increases the available I/O bandwidth.

2.1.2 Processing Technique. There are two processing techniques

for visualization algorithms: post-hoc and in situ. The traditional paradigm is

post-hoc processing, where scientists visualize their data as a post-processing

step. In this model, the simulation code saves data to disk and is either read

back later on the same computational resources or transferred to another machine

for visualization. An alternative solution to reduce the cost of I/O is to use in

situ processing [16], where the visualization is performed while the simulation is

running. The data is streamed from the simulation code to the visualization. In

situ visualization adds new challenges to both simulation codes and visualization

12

systems which must be addressed. These challenges include for instance code

modification, data flow management, synchronization between tasks, and difference

of data models between the simulation and the visualization tool. Successful

examples of in situ systems include Catalyst [17], and Libsim [18], which work

along with Paraview and VisIt respectively.

The remainder of this survey will focus on efficient parallelization techniques

regardless of their processing model.

2.1.3 Data Flow Framework. Parallel visualization frameworks have

been developed to help users visualize their data. These frameworks include VTK

[19], AVS [20], MegaMol [21], VisIt [22], and Paraview [23]. Most of these systems

implement a data flow framework. A data flow framework executes a pipeline of

modules where a module is an operation on its input data, and a link between two

modules is a data stream. A module in the pipeline can be: 1) a source, 2) a filter,

or 3) a sink. A source is a module that generates data, usually by reading data

from a file. A filter is a module that takes data as an input, applies an operation,

and produces an output. A sink is a module that receives data and produces a

final result which can be written to file or displayed on a screen. These frameworks

implement each visualization algorithm as an independent module. Figure 1 shows

an example of a visualization pipeline: the source (read operation) reads data

from a file, the filters (compute density, clip data, and compute isosurface) apply

operations on the data and generate new data, and the sink (write operation)

receives the data to produce an output.

Using a data flow framework has several advantages:

– The framework is abstract and hides the complexity from the users

13

Read Data

Compute Density

Clip Data

Isosurface

Write Data to File

Figure 1. A visualization pipeline using the data flow design.

– The framework is flexible and allows users to add new modules without

requiring to modify old modules.

– Modules of the framework can be combined to create advanced analysis.

2.1.4 Parallelization Design. The main challenge for parallel

visualization algorithms is to decompose the work into independent segments,

where processors can process their segments in parallel. These segments are usually

data blocks. Most of visualization systems use a scatter-gather design. In this

design, segments are scattered across different processors. Each processor reads

its segment and applies the visualization pipeline using data flow network. Each

processor has an identical data flow network and processors differ in the segments

they operate on. Then the results of different processors are gathered in the

rendering phase.

Visualization algorithms can be classified int two categories: 1)

embarrassingly parallel and 2) non-embarrassingly parallel. In an embarrassingly

parallel algorithm, each processor can apply visualization on its segment

independently. On the other hand, a non-embarrassingly parallel algorithm depends

14

on other processor’s computations. The majority of visualization algorithms are

embarrassingly parallel.

2.1.5 Load Balance. A major challenge when running algorithms

in parallel is maintaining load balance. Load balance is defined as the allocation

of the work of single application to processors so that the execution time of the

application is minimized [24]. Maintaining load balance is essential to achieve

good performance since the execution time is determined by the time of the

slowest processor. There are two categories of load balancing: 1) static, and 2)

dynamic. In static load balancing, the workload is distributed among processors

during the initialization phase. The workloads then remain on their computational

resources during the entire execution of the visualization. The challenge in static

load balancing is to guarantee equal workload, which can be difficult for some

visualization algorithms. In dynamic load balancing, the workload is distributed

during run time by a processor acting as the master. Dynamic load balancing can

be used when the workload is unknown before run time.

Most of the solutions in this survey focus on solving load imbalance for

different visualization algorithms. Load imbalance can be defined with the following

equation:

Load imbalance =
Ts∑

0<p<N Tp/N

Where Tp is the total non-idle execution time for processor P , and Ts is the

total non-idle execution time of the slowest processor.

Load balance is a major focus of this survey as many of the solutions and

optimizations were suggested to maintain load balance.

15

2.2 Scalar Field Visualization

2.2.1 Volume Rendering. There are two types of rendering: 1)

surface rendering, and 2) direct rendering. Surface rendering is generating an image

from a geometry that was produced by the visualization pipeline by converting the

geometry into pixels through rasterization [25], or ray tracing [26]. Direct volume

rendering is generating an image directly from the data using ray-casting [27]. This

is done by sampling and mapping samples into color and opacity using a transfer

function. In this section, we discuss direct volume rendering.

2.2.1.1 Ray Casting. Ray casting is commonly used due to its

simplicity and the quality of the results. For each pixel in the screen, a ray is cast

into the volume and samples are computed along the ray. Next, each sample is

mapped into a color and opacity (RGBA values) using the transfer function [28].

These RGBA values are accumulated to compute the final color of the pixel. The

accumulation process can be performed either in a front-to-back order or in back-

to-front order. Equation 2.1 and 2.2 presents a front-to-back and back-to-front

order accumulation, respectively.

C =
n∑

i=0

Ci

i−1∏
j=0

(1− Ai) (2.1)

Where C is the RGBA value of the pixel, Ci is the color of the current scalar

value at sample i, n is the number of samples along the ray, and Ai is the opacity

at sample i.

C =
0∑

i=n

Ci × (1− A) (2.2)

16

Where C is the RGBA value of the pixel, Ci is the color of the current

scalar value at sample i, n is the number of samples along the ray, and A is the

accumulated opacity along the ray.

Figure 2 shows an example of the ray-casting process.

Ray-casting is expensive, thus different acceleration techniques have been

used to reduce this cost. One of the most used acceleration techniques is early ray

termination [29]. Ray casting computes the color of the pixel by accumulating the

colors and opacities of the samples along the ray. If the accumulated opacity is

high, samples that are far from the camera will not contribute to the final color and

will be hidden. The idea of early termination is to stop the compositing along the

ray when the accumulated opacity is high, which reduces the total time. However,

this optimization is only possible with front-to-back compositing.

Figure 2. Volume rendering via ray-casting.

2.2.1.2 Parallelization Overview. Volume rendering is

computationally expensive, and its cost increases with the size of the data set.

Parallelizing such heavy computation is essential to visualize data in a timely

manner. However, performing parallel ray-casting introduces new challenges,

especially with respect to load balancing (Section 2.1.5). There are two main

techniques for parallel volume rendering [30]: 1) image order (sort first), and 2)

17

object order (sort last). In the image order technique, the parallelization happens

over pixels. In the object order technique, the parallelization happens over cells

(sub-volumes). In this section, we start by discussing the challenges of parallel

volume rendering. Next, we survey the different parallel solutions and categorize

them under one of three categories: 1) image order (sort first), 2) object order (sort

last), and 3) a hybrid between the first two.

The performance of ray-casting depends on two components: 1) the number

of cells, and 2) the number of samples. These two components are heavily impacted

by four factors, each of which can cause significant load imbalances and influence

the choice of parallelization method. These four factors are the following: 1)

camera position, 2) camera view is changing, 3) image size, and 4) data Set size.

– Camera Position: It impacts the performance in two points: 1) which part

of the data is visible, and 2) the number of samples per cells (cell sizes). If

the camera is zoomed in, it implies: 1) there are no empty pixels, and 2) cells

that are in the camera view have more samples (larger cells). If the camera is

zoomed out, it implies: 1) there are empty pixels, and 2) cells have a similar

number of samples (equal sizes). Image order performs well when the camera

is zoomed in since there are no empty pixels. However, it performs poorly

when the camera is zoomed out since there are parts of the image that are

empty. On the other hand, object order performs well when the camera is

zoomed out because the cells are distributed evenly among processor and

most of the cells are in the camera view. However, it can suffer from load

imbalance when the camera is inside the volume because only the processors

having visible cells (in the camera view) will do the work (larger cells).

18

– Moving Camera View : If the camera view is changing between frames,

the visible portion of the data changes between frames. The image order

technique is expensive with this configuration because it requires to

redistribute data blocks among processors for every new camera view. In

some cases, the data is replicated to avoid redistributing the blocks, but this

becomes challenging when the size of the data is large and cannot fit into a

single memory. On the other hand, object order works well for cases where

the camera view frequently changes since each processor works on its cells

independently from the camera view.

– Image Size: In order to produce the final pixel color, a processor needs

to have all the data required for that pixel. In image order, each processor

has the data required to produce its part of the image; no exchange is

needed between processors. In object order, processors need to exchange

samples (i.e., image compositing) to calculate the final color of the pixel. The

communication cost of this step is expensive and could become a bottleneck

when the size of the image is large. Thus image order works better than

object order for large image sizes.

– Data Set Size: If the data size is small enough to fit into a single memory,

data can be replicated when using image order. As the size increases, using

image order becomes difficult and could add additional costs of redistributing

data blocks. Object order offers scalability when the data size is large.

2.2.1.3 Image Order. In the image order technique, pixels are

distributed among processors in groups of consecutive pixels, also known as tiles.

Each processor is responsible for loading and sampling the cells that contribute to

19

its tile. Then, each processor generates a sub-image corresponding to its tile. The

sub-images from all the processors are then collected onto one processor to produce

the final image.

This technique allows each processor to generate its sub-image

independently, avoiding the communication cost of image compositing. Load

imbalance can occur if processors have un-equal cell distribution. This can happen

when some tiles have more cells than others, which means some processors are

performing more work than others, resulting in load imbalance. Different solutions

have been proposed to avoid load imbalance by introducing additional steps to

guarantee equal cells distribution.

Samanta et al. [31] presented a solution that reduced the probability of un-

equal cell distribution by using virtual tiles. These virtual tiles are flexible in their

shapes and size depending on the workload. Their solution maintained load balance

by assigning similar cell load to each processor.

Erol et al. [32] used a dynamic load balancing method to maintain load

balance. Their algorithm divided the workload into tiles and used the previous

rendering times to distribute the tiles among processors.

Moloney et al. [33] reduced load imbalance by introducing a bricking step.

In this step, the data is divided into bricks, and bricks outside the view frustum are

excluded. Next, the view frustum is divided between processors and each processor

sampled the bricks within its view. Using the bricking step divides the visible part

of the image among processors and eliminates assigning a processor an empty tile.

While the previous solutions maintained load balance which improved the

performance, all of these solutions needed a pre-processing step and some included

redistribution of the data. Both [31] and [32] required a pre-processing step to

20

determine the load of different tiles, and have the cost of redistributing the data.

The third solution, [33], required performing camera transformation to determine

visible data, which avoided the cost of redistributing the data.

2.2.1.4 Object Order. Object order is the most common technique

for parallel volume rendering. With the object order approach, data is divided

into blocks and distributed among processors. Each processor starts sampling the

cells of its blocks independently of the other processors. Next, samples from all

processors are composited to produce the final image.

Unlike the image order technique, this technique requires processors to

communicate with each other to do the final compositing (i.e., image compositing),

which could become a bottleneck [34]. Load imbalance can occur if processors have

un-equal samples distribution. This can happen when dealing with unstructured

data. Unstructured data have different cell sizes creating different workloads: one

processor could have large cells thus more workload. Different solutions have been

proposed to avoid load imbalance by introducing additional steps to guarantee

equal samples distribution.

Marchesin et al. [35] presented a solution to guarantee load balance by

performing an estimation step. In their solution, they divided data into blocks and

discard any blocks that were outside the camera view or blocks that were invisible.

Next, the remaining blocks were distributed among processors, and each processor

sampled its blocks. Finally, binary swap [36] was used as an image compositing

method.

Ma et al. [37] presented a solution that used round robin cells assignment

to perform interleaved cell partitioning. This assignment reduces the probability

of load imbalance since usually, cells that are spatially close have similar sizes.

21

Assigning these cells to different processors helps to avoid heavy workload for some

processors. In addition, this assignment achieved load balance when the camera is

zoomed into a region of the data. Samples from different processors are stored in

a linked list. To allow for early compositing of the samples, processors sample the

cells in the same region at the same time.

Steiner et al. [38] achieved load balance by using a work package pulling

mechanism [39]. In their solution, work was divided into equal packages and

inserted into a queue. Clients asked the server for work whenever they are done

with their assigned workload.

Muller et al. [40] used a dynamic load balancing technique. Their method

calculated the balance of each processor while sampling the cells. Data were

redistributed between processors to achieve load balance.

Most of the presented solutions focused on how to improve blocks

assignment to processors, which lead to better load balance. This is done either

through a pre-processing step or at runtime. The work presented by [35] performed

the camera transformation and had to use an estimation step to distribute the data

dynamically.

While [40] achieved load balance, the cost of redistributing the data could be

very expensive. This cost could be a bottleneck when the size of the data is large

or if the camera is zoomed into a region of the data that belongs to one processor.

This resulted in redistributing most of the data blocks in the camera view.

2.2.1.5 Hybrid Parallel Volume Rendering Solutions. Both

image order and object order techniques have limitations and often can result in

load imbalance. While several solutions have been proposed (Section 2.2.1.3, and

2.2.1.4) for both techniques to eliminate load imbalance, most of these solutions

22

have additional costs such as a preprocessing step or redistribution of the data.

Using a hybrid solution to overcome the limitations that both techniques have

individually, and can reduce load imbalance at a lower cost.

Montani et al. [41] presented a hybrid solution, where they used an image

order distribution followed by an object order. In their work, nodes are divided

into clusters, and the pixels are distributed among clusters using the image order

technique. Each cluster loads the data contributing to its pixels, and data are

distributed among nodes of the cluster using the object order technique. Their

solution reduces the potential of load imbalance compared to traditional techniques,

in addition to achieving data scalability. Load imbalance can still occur either

at the clusters level or at the nodes level. At the clusters level, load imbalance

can occur if some clusters were assigned an empty tile. At the nodes level, load

imbalance can occur if some nodes of the cluster are assigned larger cells that need

more work than others.

Childs et al. [42] presented another hybrid solution, where they used an

object order distribution followed by an image order. In their solution, data were

distributed among processors using the object order technique. Their solution

began by categorizing cells into small and large cells, depending on the number

of samples (see Section 2.2.1.2). Each processor was responsible for its own cells

and classified them by comparing the number of samples with a given threshold.

Next, each processor sampled small cells only. Then, pixels were distributed among

processors using the image order technique. Depending on the pixels assignment,

the algorithm exchanged two types of data: 1) samples that were generated from

small cells, and 2) large cells that were not sampled. Next, each processor sampled

the large cells contributing to its pixels. Then, samples from both sampling steps

23

were composited generating a sub-image. Finally, sub-images were combined to

produce the final image. As an extension for this algorithm, Binyahib et al. [43]

presented a full evaluation of [42], where they compared the hybrid solution

with traditional solutions. They also improved the original algorithm, where they

reduced the memory and communication costs. In addition, their solution used

hybrid parallelism to improve the performance and take advantage of many core

architectures.

Samanta et al. [44] presented another hybrid solution that partitioned pixels

into tiles and distributed cells into groups. Their algorithm used the camera view

to determine visible cells. Next, the algorithm partitioned the visible region along

the longest axis, assigning cells that are in the same screen space to the same

processor. This is done by having two lines at the end of each side of the longest

axis. The line moved into the opposite direction until there are N tiles, each

containing N cell. Finally, each tile was assigned to a processor. Their solution

achieved load balance by assigning N cells and N tiles to N processors. Figure 3

shows an example of the algorithm.

Garcia et al. [45] presented a hybrid algorithm, where they used an object

order distribution followed by an image order. Their algorithm classified processors

into clusters. Then data was distributed among different clusters using the object

order technique. At each cluster, pixels were distributed among processors of the

cluster using the image order technique. Next, communication happened between

the different clusters to perform the image compositing step and produce the final

image, thus reducing the communication cost. To reduce the memory requirement,

their algorithm used an interleaved loading method. Each processor loaded every

Nth row of the data, where N is the number of processors in the cluster. This

24

meant that processors only had a partial data set to sample. Next, each processor

used this sub-data to produce its part of the image, where interpolation was used

for the missing rows. While this method reduced the memory cost, it came at

the cost of image quality and accuracy. Increasing the number of processors per

cluster had a direct impact on the final image accuracy. This method could be used

to explore new data, but it would not be accurate enough to use for generating

production images. In addition, load imbalance might still occur if the camera is

focused on a region of the data that belongs to one cluster.

While the solution presented by [41] reduced the potential of load imbalance,

this algorithm might not perform well in extreme camera conditions. For example,

when the camera is inside the volume. The solution provided by [42, 43] performs

better in these conditions, but it has additional communication cost in other

camera positions such as when the camera is in the middle. The solution presented

by [44] has an idle initialization time since all servers have to wait for the client

to do the screen space transformation and then assign work to servers. While this

algorithm might work on a small scale, it could perform poorly on a large scale.

Finally, the solution presented by [45] reduces the potential of load imbalance and

reduces the cost of the image compositing step. But load imbalance might still

occur if some clusters have more work than others due to the camera view focus.

Figure 3. Example execution of the hybrid partition algorithm [44].

25

2.2.1.6 Summary. Table 1 shows a summary of the factors mentioned

in Section 2.2.1.2 and the best configuration for each of these factors using image

order and object order techniques. Each one of these factors impacts the choice

of the technique, but these factors should be all considered when choosing a

technique.

For example, [31], and [32] presented solutions to redistribute the workload

to avoid load imbalance when using image order for the zoomed out case. While

this could achieve good results when the size of the data is small, it could become

very expensive when the data size increases. Another example is [35] and [40]

solutions to reduce load imbalance for object order when the camera is inside the

volume. While their solution reduced imbalance they added an additional cost of

redistributing the data. Ma et al. [37] solution avoided this cost, but it could suffer

from load imbalance if the data has an unusual mesh, where the cell sizes differ in a

strange pattern.

As mentioned in Section 2.2.1.2 the performance depends on the number

of samples and the number of cells per processor. Load imbalance occurs when

there is an uneven distribution in one of them. The hybrid solutions combined both

image order and object order to limit the imbalance in these two factors. Thus they

can be viable alternatives to the two traditional techniques. While these solutions

improve performance and have better results, they still have some limitations or

additional costs.

2.2.1.7 Unstructured Data and Volume Rendering. An

unstructured mesh represents different cell sizes and sometimes different cell types

in an arbitrary order. Figure 4 shows an example of structured and unstructured

meshes. Unlike structured data, unstructured data does not have an implicit

26

Table 1. Factors impacting the performance of parallel volume rendering, and the
best configuration for each of these factors using image order and object order

techniques.

Image Order Object Order

Camera Position zoom in zoom out
Moving Camera View No Yes

Image Size Large Small
Data size Small-Medium Large

(a) (b)

Figure 4. Example of (a) structured and (b) unstructured meshes.

indexing approach, and thus the cell connectivity information is not available. This

increases the complexity of volume rendering.

Different solutions have been proposed to reduce this cost. Ma [46] presented

an algorithm that computed the cell connectivity in a pre-processing step so it

would not impact the performance while rendering. Each processor performed

this step to acquire the cell connectivity information. In this step, the algorithm

specified the external faces, which are faces that are not shared between cells.

Next, the algorithm stored face-node, cell-face, and cell-node relationships in a

hierarchical data structure. The algorithm excluded the cells that were outside

27

the camera view. Then, each processor sampled its data. For each ray, it entered

the volume from an external face, and the cell connectivity information was used

to determine the next cell. A ray exited the volume when it intersected a second

external face. Finally, the image compositing step was performed to exchange

samples between processors and produce the final image.

Max et al. [47] proposed an algorithm that used slicing. Three slices were

generated for each cell perpendicular to the X, Y, and Z axes. Depending on

the camera view, one of these slices was used. While sampling, the values were

computed using interpolation between the cell vertices. Next, the computed scalar

values were used as 1D texture coordinates to obtain the color. Finally, the slices

were rendered in back-to-front order, starting with slices that were furthest from

the camera. The colors of these slices were composited to produce the final color.

Larsen et al. [48] presented an algorithm where cells were sampled in

parallel using multi-threading. Cells were distributed among different processors.

Each processor created a buffer that has the size of Width × Height ×

NumberofSamplesperRay. Each processor sampled its cells in parallel and

samples were stored in the buffer. The index of each sample in the buffer was

computed depending on its screen space coordinates (x, y, z). Finally, in the image

compositing step, processors exchange samples, and samples of each ray were

composited to produce the final color.

The solution presented by Ma [46] had the additional cost of the pre-

processing step, which could become expensive when the data size is large. While

Max et al. [47] algorithm did not have this cost, their algorithm might have a

high cost at the compositing step. This is because their algorithm composited the

slices in a back-to-front order, which means they cannot use the early termination

28

technique, mentioned in Section 2.2.1.1. The algorithm introduced by Larsen et

al. [48] could take advantage of the early termination techniques if the image

compositing was done in front-to-back. But their algorithm can suffer from high

memory cost if the size of the image (Width ×Height) is large and/or the number

of samples is large.

2.2.2 Contouring. One of the most used visualization techniques

is iso-contours. An iso-contour displays a line or a surface representing a certain

scalar value. This value is represented by an isoline in the case of 2D data or an

isosurface in the case of 3D data. For example, displaying the isosurface of the

density in a molecular simulation to represent the boundaries of atoms. There are

different techniques for isosurface extraction; the most commonly used is Marching

Cubes [49]. The marching cube method extracts a surface by computing triangles

depending on a set of cases. Iso-contour extraction is composed of two steps: 1)

the search step, and 2) the generation step. In the search step, the algorithm finds

the cells containing the isovalue. In the generation step, the algorithm generate

the isosurface triangles through interpolations of the cells scalar values. The

computational cost of this method increases with the size of the data set. A parallel

solution is therefore needed to process large data sets.

Out of core solutions have been proposed to handle large data sets. While

these solutions are useful, they add additional I/O costs. Chiang et al. [50]

presented an isosurface extraction algorithm that was an extension of a previous

work [51]. The extension included parallelizing the I/O operations and isosurface

extraction. Their work introduced a concept called meta-cells. Cells that are

spatially near each other were grouped into a meta-cell. Their algorithm used

a preprocessing step that partitioned the dataset into spatially coherent meta-

29

cells. These meta-cells were similar in size. Thus the cost of reading these cells

from memory is similar. Each meta-cell had two lists: a list contained the vertices

information, and a list contained the information of the cells . For each vertex in

the first list, the algorithm stored x, y, z, and a scalar value. For each cell in the

second list, the algorithm stored pointers to the vertices of the cell. Using pointers

allowed the algorithm to avoid storing each vertex more than once for each meta-

cell. For each meta-cell, the algorithm computed meta-intervals, each meta-interval

stored min and max values. Next, the algorithm computed a binary-blocked I/O

(BBIO) interval tree, which is an indexing structure. The BBIO stored meta-

intervals and the meta-cell ID for each interval; this ID is a pointer to the meta-

cell. The algorithm stored the meta-cells and the BBIO on the disk. During run

time, the algorithm used the BBIO to find the meta-cells that intersected with

the isovalue. Next, the algorithm read meta-cells from disk one at a time and

generated the isosurface triangles. In their algorithm, they used a self-scheduling

technique [52], where one node acted as a client that assigned work to servers. The

client scanned the BBIO and determined the active meta-cells. Next, the client

maintained a queue of all active meta-cells. When servers had no more work, they

sent a request to the client to be assigned more work. Each server read meta-cells

from disk and computed isosurface triangles.

Another out of core solution was proposed by Zhang et al. [53]. Their

algorithm maintained load balance by decomposing the data depending on their

workloads. They used the contour spectrum [54] to get the workload information.

The contour spectrum is an interface that provided a workload histogram for

different isovalues. The algorithm reduced the I/O time by using a new model,

where instead of having one disk that can be accessed by different processors, each

30

processor has a local disk. Thus different processors could read data from their

local disks in parallel. When a processor needed data from a remote disk, data

were sent by the owner processor. For each local disk, the algorithm built an I/O-

optimal interval tree [55] as an indexing structure. During run time, each processor

searched its local disk for active cells and computed isosurface triangles.

Additional challenges are arising when extracting an isosurface on an

Adaptive mesh refinement (AMR) data [56]. Different regions of simulation data

need different resolutions depending on the importance of accuracy in that region.

Adaptive mesh refinement (AMR) solves this by giving a finer mesh to regions

of interest. AMR data is a hierarchy of axis-aligned rectilinear grids which is

more memory efficient than using unstructured grid since it does not require

storing connectivity information. While AMR reduces memory cost, it can create

discontinuities at boundaries when transitioning between refinement levels, thus

causing cracks in the resulting isosurface. One way to prevent the formation of

these cracks is by creating transition regions between the different refinement

levels [57]. Generating such transition region is difficult because of the difference

of resolution between two grids and the hanging nodes (or T-junctions) caused by

this difference. Hanging nodes are nodes found at the border between two grids but

which only exist in the fine grid. Weber et al. [58] presented a solution that used

dual grids [59] to remove these discontinuities. Their implementation mapped the

grid from cell-centered to vertex-centered by using the cell centers as the vertices of

the vertex-centered dual grid. This resulted in a gap between the coarse grid and

the fine grids, which they solved by generating stitch cells between coarse and fine

regions. Figure 9 shows a 2D dual grid before and after stitch cell generation. The

approach used a case table to determine how to connect vertices to form suitable

31

stitches. Performing isosurface extraction in parallel can lead to artifacts around

the boundaries of the different data blocks. This happens because a processor

does not necessarily own all the neighboring cells of its local cells. Instead, some

neighboring cells can be owned by other processors. Thus their algorithm used

ghost cells to avoid these artifacts. Since AMR data has different resolution levels,

the algorithm decomposed data into boxes, where each box had one level only.

Data was distributed among different processors and each processor performed the

iso-surface extraction and generated stitch cells for its local data.

(a) (b)

Figure 5. A Dual grid with three refinement levels. (a) Before stitch cell generation,
the original AMR grids are drawn in dashed lines and the dual grids in solid lines.

(b) After stitch cell generation [59].

The solution proposed by Chiang et al. [50] maintained load balance

by using the self-scheduling technique (one client assigns the work to all the

servers). However, this technique can become inefficient at large scale because

many servers have to communicate with a single client. This might lead to having

high communication cost. The solution proposed by Zhang et al. [53] used a pre-

processing step to guarantee load balance across processors. Despite the addition of

32

a pre-processing step, high communication cost could still happen because of block

exchanges between processors which can be expensive for large data sets.

The solution proposed by Weber et al. [58] for AMR data is efficient, but

it is dependent on the existence of ghost data. In cases where ghost data was not

generated by the simulation code, it needs to be dynamically generated, which can

increase the total execution time.

2.3 Supporting Infrastructure

In this section, we discuss different supporting algorithms that are used in

parallel visualization.

2.3.1 Image Compositing. Image compositing is the final step of

parallel volume rendering when using the object order technique (Section 2.2.1.4).

The goal of this step is to order samples in the correct depth order to compute the

final pixel color. Image compositing includes two operations: 1) communicating

samples between processors, 2) compositing these samples to produce the color of

the pixel. Image compositing is expensive and can become the bottleneck of the

object order approach [34]. Thus several solutions have been proposed to reduce

the cost of this step. In this section, we survey and compare these solutions.

2.3.1.1 Image Compositing Methods. There are three main image

compositing methods: 1) direct send, 2) binary swap, and 3) radix-k.

The most straightforward method to implement is direct send [60], where

all processors communicated with each other. In this method, image pixels were

assigned to processors, where each processor was responsible for compositing a part

of the image. Depending on this assignment, processors exchanged data. Figure

6 shows an example of a direct send compositing between four processors. While

33

direct send is easy to implement it could be inefficient with a large number of

processors since all processors are communicating with each other.

Another image compositing method is binary swap [36]. This method

required the number of processors to be a power of two. In this method, the

communication between processors happened in rounds. The algorithm performed

log2(N) rounds, where N is the number of processors. Processors communicated

in pairs, and each round the pairs were swapped. At each round, the size of the

exchanged tiles was reduced by half. Figure 7 shows an example of a binary swap

compositing between four processors. Binary swap reduced network congestion

and had good scalability [34], but it had the limitation of requiring the number

of processors to be a power of two. Thus an improved version, 2-3 swap, was

implemented by Yu et al. [61] to overcome this limitation. Their algorithm worked

with any number of processors and processors communicated in rounds. At each

round, processors were divided into groups of size two and three, and processors in

the same group communicated with each other.

This method had the flexibility in the number of processors while taking

advantage of the efficiency of the binary swap. Another improved version of binary

swap is 234 composite [62, 63]. Their solution used an elimination process named

3-2 and 2-1 [64] that was developed for optimizing reduction for a non-power of two

number of processors. The 234 compositing method divided processors into groups

of size three and four. For each round, a pair of processors exchanged half the

image. At the end of a round, all processors of the same group have communicated

and the result from each group is two halves of the image. The total number of

half images produced from all groups is a power of two. A binary swap method is

applied to collect these partial images into a full image.

34

Peterka et al. [65] proposed another image compositing method known as

radix-k. Their method also performed communication in multiple rounds. At each

round, it defined a group size ki, where i is the current round. The multiplication

of the group sizes of all rounds is equal to N , where N is the number of processors.

For this algorithm, the product of all ki must be equal to N . At each round, each

processor was responsible for 1/k of the image.

Processors within a group communicated with each other using a direct

send. Figure 8 shows an example of a radix-k compositing between six processors.

This method avoided network congestion while providing the flexibility to work

with any number of processors.

Moreland et al. [66] introduced a technique named telescoping to deal with

non power of two number of processors. This technique grouped the largest power

of two processors and defined it as the largest group. Then it took the largest

power of two processors from the remaining processors and defined it as the second

largest group. This process continued until all the processors have been assigned to

a group. In each group, processors applied a compositing method, either binary

swap or radix-k. Next, the smallest group sent its data to the second smallest

group for compositing. The second smallest group did the compositing and sent the

data to the third smallest group. This continued until all the data was sent to the

largest group. They compared binary swap and radix-k using telescoping against

the traditional methods, and their results showed overall improvement.

Direct send is flexible and easy to implement. While it has been used in

several solutions, its performance can decrease when the number of processors is

large due to the increase in the number of messages. Binary swap and radix-k solve

this by allowing groups of processors to communicate at each round. Although this

35

Figure 6. Image compositing using the Direct Send method between four
processors.

reduces the communication cost, it introduces a synchronization overhead at the

end of each round.

2.3.1.2 Image Compositing Optimization. While the previous

section focused on communication patterns for image compositing, in this section,

we discuss optimization methods that have been presented for the compositing

operation.

Active pixel encoding has been used to reduce the cost of image

compositing. When using active pixel encoding, the bounding box and opacity

information is used to mark inactive pixels. These pixels are removed to reduce the

cost of communicating and compositing. Using this technique showed improvement

in the performance in several solutions [67, 68, 69, 70, 71].

Load imbalance can increase the cost of image composing. This happens

when a part of the image contains more samples; thus the processor that owns

this part of the image has to do more work. Thus different solutions have been

proposed to reduce load imbalance. One of the methods used is interlace [30, 70],

where non-empty pixels are distributed among processors. The data pixels are

rearranged so that all processors have a similar workload. While the traditional

interlace technique has its advantage, it introduces an overhead at the final step

36

Figure 7. Image compositing using the Binary Swap method between four
processors.

to arrange the pixels into their correct order and this overhead could be expensive

when the image size increases. To reduce this cost, Moreland et al. [66] proposed an

improvement. Their solution guaranteed the slices that are created during the data

rearrangement are equal to the final image partitions created by the compositing

method (binary swap or radix-k). Thus reducing the cost of pixels arrangement by

avoiding extra copies which would have been necessary if the slices sizes did not

match the final image partitions.

2.3.1.3 Image Compositing Comparative Studies. In this

section, we discuss some of the papers that compared different image compositing

methods.

Moreland et al. [66] compared the traditional binary swap method with

different factorings of radix-k, where the group size varies. They used the Image

37

Figure 8. Image compositing using the Radix-k method between six processors and
k = [3, 2].

Composition Engine for Tiles (IceT) framework [72]. Their paper tested these

methods at scale and added an improvement that was mentioned in the previous

sections (Section 2.3.1.2). They compared binary swap and radix-k with these

improvements against the traditional implementations and their results showed

overall improvement.

Moreland [73] presented a paper where he compared different versions of

the binary swap with the IceT compositor [72], which uses telescoping and radix-

k. His paper focused on testing the performance when dealing with non-power of

two number of processors. Variations of binary swap included 2-3 swap [61], 234

swap [62, 63], telescoping [66], a naive method, and a reminder method. The first

three methods were discussed earlier in the section. The naive method finds the

largest number of processors that is a power of two. Then, the remaining processors

38

send their data to processors that are in the group and stays idle for the rest of the

communication. The reminder method applies a 3-2 reduction to the remaining

processors which is similar to the one mentioned in 234 compositing [62]. He

ran each algorithm for multiple frames and different camera configurations. His

experiments showed better performance for the telescoping and reminder methods,

while the naive method performed poorly when dealing with a non-power of two

number of processors. Finally, IceT showed better performance than all versions of

binary swap.

2.3.1.4 Summary. There are two main factors impacting the

performance of image compositing: 1) the number of processors, 2) the distribution

of non-empty pixels, which is impacted by the camera position as mentioned in

Section 2.2.1.2.

While different compositing and optimization methods have been proposed

to improve the performance, sometimes paying the additional overheads introduced

for these methods can be more expensive. When the number of processors is small

enough, using direct send might result in better performance than using binary

swap or radix-k. Since the number of processors is small, the probability of network

congestion is low and thus it avoids the synchronization overhead introduced for

more complex methods. As the number of processors increases, paying the cost

of this overhead leads to better overall performance. If the distribution of non-

empty pixels is dense in one region of the image (zoomed out camera position), this

could lead to load imbalance. Thus using the optimization techniques mentioned

in Section 2.3.1.2 and paying the additional cost can be necessary to improve the

performance. Other cases show that simple solutions can be more efficient as well.

According to [66] findings, the overhead of interlace could be larger than the gain

39

when using a small number of processors. Another example is presented in [73],

where the author showed that the reminder algorithm gives better performance

than other more complicated methods.

2.3.2 Ghost Data. Parallel visualization algorithms usually distribute

data among different processors, with each processor applying the algorithm

on its sub-data. Different visualization algorithms depend on the values of

neighboring cells, such as iso-contour extraction, and connected components.

For example, in the case of isosurface extraction, interpolating the scalar value

of a point depends on the scalar values of the neighboring cells. If a point is

located on the boundaries of the sub-data, the result of the interpolation will be

incomplete without considering the neighboring cells. Ghost data [74, 75] is used

to allow parallelization of such algorithms. Ghost data is an extra set of cells

added to the boundaries of the sub-data. These additional cells are usually only

used for computations at the boundaries but are not taken into account during

the rendering phase to avoid artifacts. For instance, in the case of iso surface

extraction, ghost cells are used to correctly interpolate scalar values on the cells at

the boundaries of the sub data, but the ghost cells themselves are not interpolated.

Different visualization tools support the use of ghost data, which has been

used in previous solutions for different visualization algorithms such as isosurfaces

[23, 22, 76, 58], particle advection [77], and connected components [78]. Ghost data

is usually generated by the simulation code and most of visualization tools do not

support the generation of the ghost data. Paraview provided a Data Decomposition

(D3) filter [79] that generated ghost data by repartitioning the data. Patchett

et al. [80] presented an algorithm to generate ghost data; this algorithm was

integrated into the Visualization Toolkit (VTK) [19]. Each processor exchanged

40

its external boundaries information with all other processors. Next, each processor

compared its external boundaries with received external boundaries from all other

processors. If the processor found an intersection, it sent the cells to the processor

owning that boundary. Biddiscombe [81] presented an algorithm for generating

ghost data, where he integrated the partitioning library Zoltan [82] with VTK

and ParaView [23]. The algorithm provided the user with a selection of ghost cell

generation options.

2.3.3 Metadata. Many visualization systems use a data flow

framework. A data flow framework executes a pipeline of operations (or modules)

with data being transmitted between modules. A pipeline usually applies different

visualization algorithms known as filters. The optimization required to achieve

good performance for visualization algorithms varies from one algorithm to

another. It is important when optimizing to take into consideration the operations

performed through the pipeline. For this reason, visualization frameworks use

metadata, which is a brief description of the data that improves algorithms

execution. There are different forms of metadata [83] including regions, and

contracts.

Regions are a description of the spatial range of the whole data domain

and the spatial bounds of different blocks. This information can be updated by

the three pipeline passes [84] depending on the filters. For example, with a select

operation, only a specific region of the data is needed. The pipeline updates the

regions metadata so that only that part of the data is read.

Contract [14] is a data structure that provides optimization by allowing

each filter to declare its impact. The data structure has data members that define

constraints and optimizations. Each filter in the pipeline modifies this data member

41

to make sure it contains its constraints and optimization requirements. Before

performing any of the filters, the contract is passed to each filter in the pipeline

starting from the last filter. After this process is done, filters are executed with

the required optimizations. Contracts can be used to specify different parameters,

such as identifying ghost data, cells to exclude, type of load balancing used by the

framework, etc. Different visualization tools used contracts in post-hoc [22] and in

situ [85, 86].

2.3.4 Delaunay tessellation. N-body simulations such as

cosmological or molecular dynamics simulations generate particles. However, it may

be necessary to derive a mesh from these particles to better analyze and visualize

certain properties. This is for instance, the case in cosmology simulation to

analyze the density of dark matter [87, 88] Delaunay tessellation [89] is a geometric

structure for creating a mesh from a set of points. Performing tessellation on large

simulations is computationally expensive and must be performed in parallel.

Peterka et al. [87, 88] presented an algorithm that performed tessellation

in parallel. Their algorithm distributed the data among different processors

which then exchanged needed neighboring points. Each processor computed

the tessellation using one of two libraries Qhull [90], or CGAL [91]. Then, each

processor wrote the results to memory. To balance the number of points per

block, a solution was proposed by Morozov et al. [92] where they used kD tree

decomposition.

2.3.5 Out of Core. Out of core algorithms [93, 94] (external-memory

algorithms) have been used to allow visualization of large data that does not fit

into the main memory. In out of core solutions, data is divided into pieces that can

fit into main memory. An out of core algorithm reads and processes one piece of

42

data at a time. This process is known as streaming. There are two paradigms of

out of core solutions [94]: 1) batched computations, and 2) on-line computations.

In the batched computation paradigm, there is no pre-processing step, and the

entire data is streamed one piece at a time. In the on-line computation paradigm, a

pre-processing step is performed, and the data is organized into a data structure to

improve the search process. Using the on-line computation paradigm is effective for

visualization since usually only a portion of the data contributes to the final result.

Different pre-processing techniques have been used to improve I/O efficiency.

These techniques include meta-cells [50], and binary-blocked I/O interval tree

(BBIO Tree) [51, 95].

The out of core model has been used in several visualization algorithms such

as particle advection [96, 97, 98], and isosurfaces [50, 53]. It is also used by many

visualization tools such as VisIt [22], VTK [19], Paraview [23], and the Insight

Toolkit (ITK) [99].

2.3.6 Usage of Visualization Systems. Modern visualization

tools such as Paraview or VisIt support three different modes. The first one is a

client-server model, where the user runs a lightweight client on a local machine

and connects to a server (supercomputer) that hosts the data. The computations

are performed on the server and visualization is streamed back (geometry or

images) to the client machine for display. The second mode executes the entire

pipeline in batch without displaying the visualization and saves images on the

supercomputer. Finally, the third mode is using the local machine of the scientist

exclusively. Data is transferred from the supercomputer to a local machine to

execute the visualization pipeline and explore data. Even though this mode might

be convenient for the end user, it is often not practical anymore due to the extreme

43

size of today’s data sets which prevent moving data outside of the supercomputer.

Additionally, a local machine or small cluster would not have the computational

power and/or memory to process data in a timely manner.

2.3.7 Hybrid Parallelism. Hybrid parallelism refers to the use of

both distributed- and shared-memory techniques. A distributed memory algorithm

runs multiple tasks across multiple nodes in parallel and tasks communicate via

the message passing interface (MPI) [100]. Multiple tasks can be running on the

same node, usually one MPI task per core. A hybrid parallel algorithm run a

fewer number of tasks per node (usually one per node) and use the remaining

cores via threading using OpenMP [101], or POSIX [102]. Threads on the same

node share the same memory, which allows for optimization. It is possible to take

advantage of multicore CPUs with MPI only by running multiple MPI tasks per

node. However, the threading programming model has proven to be more efficient.

It requires less memory footprint and performs less inter-chip communication.

Hybrid parallelism showed improved performance for volume rendering [103, 104],

and particle advection [105, 106].

44

CHAPTER III

PARALLEL PARTICLE ADVECTION ALGORITHMS

Parts of the text in this chapter came from my area exam, which received

editing suggestions from Hank Childs.

This chapter describes the foundations of particle advection (Section 3.1),

the parallel particle advection algorithms studied in this dissertation (Section 3.2),

and discusses other research done on parallel particle advection (Section 3.3).

3.1 Foundations

This section provides an overview of the particle advection technique.

Advection is the process of moving a massless particle depending on a vector

field. This results in an integral curve (IC), which represents the trajectory the

particle travels in a sequence of advection steps from the seed location to the final

particle location. Particle advection is a fundamental building block for many flow

visualization algorithms [107, 108, 109, 110, 111, 112].

3.1.1 Integration Methods. Integral curves can be calculated in an

approximated form using numerical integration methods [113]. The complete IC is

calculated on a sequence of advection steps until reaching the maximum number

of steps or exiting the data. At each step, a part of the curve is computed between

the previous particle location and the current. The vector field around the current

location is used to determine the direction of the next location.

There are different methods to calculate the next location. The Euler

method [113] is the simplest and least expensive method. It uses only the vector

field of the current location to calculate the next location. Equation 3.1 shows

the Euler method, where pi+1 is the next location of the particle, pi is the current

location of the particle, h is the length of the advection step, and v(ti, pi) is the

45

vector field value at the current location at the current time step. Runge Kutta

(RK) [1] is a higher order method that uses Euler in its steps. There are different

orders of the method; the most commonly used is the 4th order method referred

to as RK4. Using RK4 produces more accurate results than Euler, but it is more

expensive since it uses more points. Equation 3.2 shows the RK4 method, where

pi+1 is the next location of the particle, pi is the current location of the particle, h

is the advection step, and v(ti, pi) is the vector field value at the current location

at the current time step. In both methods, as the advection step size decreases the

accuracy of the trajectory increases, as well as the complexity. And as the total

number of advection steps increases, the accuracy of the trajectory increases as well

as the complexity.

pi+1 = pi + h× v(ti pi) (3.1)

pi+1 = pi +
1

6
× h× (k1 + 2k2 + 2k3 + k4)

k1 = v(ti pi)

k2 = v(ti +
h

2
+ pi +

h

2
× k1)

k3 = v(ti +
h

2
+ pi +

h

2
× k2)

k4 = v(ti + h + pi + h× k3)

(3.2)

3.1.2 Parallelization Overview. Particle advection is

computationally expensive, and this cost increases when the data size is large

and exceeds the limits of a single machine, which leads to distributing the data

across multiple nodes. To advect a particle, the algorithm needs to have the needed

data block on the same node as the particle. There are two main parallelization

46

(a) (b)

Figure 9. The distribution of work between 4 ranks using the two main parallel
particle advection algorithms, (a) parallelize over data, (b) parallelize over particles.

techniques [105]: 1) parallelizing over data (see Section 3.2.1), and 2) parallelizing

over particles (see Section 3.2.2). Figure 9 shows the distribution of work in the

two algorithms. All additional parallel particle advection algorithms proposed to

date are either an extension of one of these two or a hybrid between them. In this

section, we start by discussing the challenges of parallel particle advection.

The efficiency of the parallelization algorithm can vary based on the

characteristics of the workload and the computational resources available (number

of nodes, memory per node, etc). We identified four main factors impacting the

efficiency of these algorithms:

– Data set size: A given data set can be small enough to fit the main

memory of a node or not. If the data set is small enough, it allows data to

be replicated among nodes and favors the distribution of particles (parallelize

over particles). As the size of the data increases, distributing data becomes

necessary, thus parallelizing over data might lead to better performance.

Another consideration is the number of cells per rank. Depending on the

size of the memory, there is a limit on how many cells each rank can store.

47

The number of cells per block has to be small enough to fit into memory. But

large enough to reduce the number of disk reads.

– Total number of advection steps: When the number of total advection

steps needs to be computed is large, the computation complexity increases

and thus distributing this complexity is important. If that number is small,

then it is better to distribute the data (parallelize over data) to reduce the

I/O cost.

– Particles distribution: Particles can be located in a region of the data

(dense) or be more scattered (sparse). If the particle distribution is dense,

only a subset of the data set will be required, reducing significantly the cost

of I/O. This setup is more favorable to parallelize over particle because in

the case of parallelizing over data only a small number of nodes would work.

On the over hand, if the particles are spread out (sparse) and cover the

whole data set, the cost of I/O will become more significant. In this case,

parallelizing over data would be more favorable to limit the cost of I/O.

– Number of MPI ranks: Distributing the workload among multiple MPI

ranks increases the amount of computational power and memory available.

This can reduce the number of I/O operations necessary as more data can be

stored in memory and the number of particles per rank is reduced. However,

additional communications may also be required to better load balance the

workload.

3.2 Studied Parallel Particle Advection Algorithms

In this dissertation we study four of the most used parallel particle

advection algorithms, which are described in this section.

48

3.2.1 Parallelize-Over-Data Algorithm (POD). Parallelize over

data was introduced first by Sujudi and Haimes [114]. In this method, data is

distributed between different nodes. Each node advects the particles located at

its block until they exit the block or terminate. When a particle leaves the current

data block, the particle is communicated to the node that owns the needed data

block.

This technique reduces the cost of I/O which is more expensive than the

cost of computation. While this technique performs well for uniform vector fields

and sparse particles distribution, it can lead to load imbalance in other situations.

This technique is sensitive to particles distribution and vector field complexity.

Particles distribution can impact this method negatively in cases where the

particles are located in a certain region of the data. Thus load imbalance might

occur due to the unequal work distribution. In cases where the vector field is

circular, the communication cost can increase. Examples of both cases are discussed

in Section 3.1.2.

3.2.2 Parallelize-Over-Particles Algorithm (POP). In this

technique, particles are distributed across different nodes. Particles are sorted

spatially before distributing them to different nodes to enhance spatial locality.

Each node advects its particles and loads data blocks as needed. To minimize the

cost of I/O, a node advects all particles that belong to the loaded block until the

particles are on the boundaries of the block. This technique needs to cache blocks,

and frequently uses the least-recently used (LRU) approach. If there is not enough

space when a new block is loaded, the least recently used block is discarded. Each

node terminates when all its active particles are terminated.

49

Camp et al., [115] used an extended memory hierarchy to reduce the cost of

I/O. In their solution, data was stored in solid state drives (SSDs) and local hard

drives instead of the file system. The algorithm treats SSDs as a cache where data

blocks are loaded. Since the cache can hold a smaller amount of data than memory,

blocks are removed in a LRU mechanism when exceeding the maximum specified

number of blocks. When a data block is not found in cache, the algorithm checks

local hard drives before accessing the file system. This extended hierarchy increased

the size of the cache which leads to less disk access and thus reducing the I/O cost.

3.2.3 Work Requesting Algorithm (WOR). While the parallelize

over particles algorithm ensures having equal number of particles accross different

nodes, the workload might still be unbalanced. This is because particles might have

different advection steps (some particles terminated early) or the I/O cost of some

workloads are higher than others. To guarantee equal workload, different parallel

particle advection algorithms used dynamic load balancing methods. One of the

load balancing methods is based on a work requesting [116]. This algorithm is an

extension of the parallelize over particles algorithm. Similarly, the algorithm starts

by diving and distributing a set of seed points equally across multiple nodes. Each

node advects its particles and load data on demand. In this algorithm, when a node

has no more work, it requests particles from another node. The requesting node is

called a thief and the other node is called a victim.

3.2.4 Master/Worker Algorithm (MW). Both parallelize over

data and parallelize over particles have limitations as presented in Sections 3.2.1,

and 3.2.2. Hybrid solutions have been proposed to address these limitations and

maintain load balance while reducing additional costs.

50

Pugmire et al. [105] proposed a hybrid solution known as the

master/worker. In their algorithm, nodes were divided into groups, where each

group had a master. The algorithm partitioned the data statically and loaded

data blocks on demand. The master distributed particles between the workers

and monitored the workload to ensure load balance. When a node needed a data

block, the master followed a set of rules to decide whether the worker should load

the block or send the particle to another worker. Their algorithm showed better

performance than both traditional parallelization techniques and has been used in

the VisIt framework [22].

3.3 Other Parallel Particle Advection Algorithms

In this section, we survey other parallel particle advection solutions that we

do not study in this dissertation.

3.3.1 Extensions to the Parallelize-Over-Data Algorithm.

Different solutions have been presented to avoid load imbalance that might occur

when using the parallelize over data algorithm (see Section 3.1.2). Peterka et al.

[117] presented a solution that used round-robin block assignment to guarantee that

nodes are assigned blocks in different locations. Their solution eliminates the load

imbalance that could occur in cases where particles are located in a certain region

of the data. While their method can reduce load imbalance, it can also increase the

communication cost.

Different solutions have used a pre-processing step to maintain load balance.

Chen et al. [118] presented an algorithm that reduced communication cost. Their

solution considered the particles distribution and the vector field while partitioning

the data into blocks. Their method partitioned the data depending on the vector

field direction, thus reducing I/O cost.

51

Another solution that considered vector field was presented by Yu et al.

[119]. Their solution clustered data based on their vector field similarity. Next, the

algorithm computed a workload estimation for each cluster. This estimation was

used while distributing the data among nodes.

Nouanesengsy et al. [120] presented a method that also used a pre-

processing step. Their algorithm used a pre-processing step to estimate the

workload of each block using the advection of the initial particles. The results

from the pre-processing step were used to distribute the work among nodes. Each

node was assigned a percentage of the work of each block. Blocks are loaded to all

nodes that share the workload of the block. Their solution maintained load balance

and improved performance. While these solutions resulted in better load balance,

they introduced a new cost which is the pre-processing step. This cost can become

expensive when the data size is large.

While the round robin solution presented in [117] was simple, it did show

good results. This solution is sensitive to particles distribution and vector field

complexity. The algorithm did reduce the potential of load imbalance when the

particle distribution is dense, but it might still occur if the data size is large and

a small region of the data has all the particles. This will lead to a small group

of nodes doing all the work If the vector field is complex, such as circular, the

communication cost can become expensive, and if the vector field has a critical

point, this will lead to load imbalance.

Using a pre-processing step to distribute the workload among nodes can

improve performance. While these solutions [118, 119, 120] can lead to better

load balance, the cost of the pre-processing step might be expensive leading to

reduced overall performance. This cost increases when the data size is large, and

52

most likely the pre-processing step has to be performed by different nodes, thus

introducing additional communication cost. Paying the additional cost might not

lead to improved overall performance especially when the number of particles is

small.

3.3.2 Extensions to the Parallelize over Particles Algorithm.

Different solutions have been presented to avoid load imbalance that might

occur when using the parallelize over particles algorithm (see Section 3.1.2). One

solution used a work stealing approach [121]. In this approach, once a node is done

advecting its particles it steals particles from another busy node. The node stealing

the particles is called a thief, and the other node is called a victim. Each node

stores its particles in a queue, the thief node transfer particles from the victim’s

queue. The most common approach to choose a victim is randomly [4]. Work

stealing showed good results but it is difficult to implement.

Other solutions used k-d tree decomposition to balance the workload during

run time. Morozov et al. [92] presented a solution that used k-d tree decomposition

to redistribute workload. Their algorithm checked for active particles at regular

time intervals. Active particles are divided into groups, where all groups have the

same workload. Next, each node was assigned a group. While this method achieved

load balance, it required access to the entire data set, which can increase the I/O

and memory cost. Zhang et al. [77] proposed a solution to avoid this cost. Their

algorithm assigned a data block with ghost layers to each node before run time.

When the algorithm performed the particles decomposition, it considered the data

blocks assignment. Thus each node received particles which were in its data block.

Their results showed improved load balance while maintaining the cost of I/O.

53

Since this technique loads data on demand, the cost of I/O dominates most

of the run time. Data prefetching [122, 123] has been used to reduce this cost.

The idea of data prefetching is to load the next predicted needed data block while

advecting the current particles to hide the I/O cost. Since the performance of this

method depends on the accuracy of the prediction, the I/O access patterns are

stored. Several solutions [96, 97, 98] have computed an access dependency graph to

improve prediction accuracy. They performed a pre-processing step to compute the

graph.

The most expensive step in parallelize over particles is I/O [124]. While

several solutions [96, 97, 98] reduced this cost by using prediction to apply

prefetching, they introduced additional costs and these cost increases as the data

size and/or the number of particles increase. Camp et al., [115] reduced the I/O

cost but the algorithm can still suffer from load imbalance if the advection steps

vary between nodes. The solution suggested by [116] avoided load imbalance but

at the cost of additional communications. While dynamic load balancing [92, 77]

avoided the cost of pre-processing and it considered the change in the vector field,

it added an additional cost of redistributing particles. This cost could increase

when the number of particles is large.

3.3.3 Other Hybrid Algorithms. Hybrid solutions have been

proposed to address these limitations that both parallelize over data and parallelize

over particles have individually. DStep [125] is a hybrid solution. They used a

static round robin to assign the data blocks to nodes. Nodes were divided into

groups, where each group had workers and had a communicator node (master).

The algorithm stored particles in a queue, and the communicator assigned particles

to nodes depending on their workloads. Nodes of the same group can communicate

54

and send particles, and communicators of each group exchange particles between

different groups. Their algorithm showed scalability and has been used in several

implementations [126, 127, 128].

Lu et al. [129] presented another hybrid solution to compute stream surfaces

(Section 3.3.4). A stream surface is a union of streamlines (particles trajectories)

connected to form a surface. Their solution distributed data blocks among nodes.

Next, particles were distributed among nodes in segments, where a segment is a

part of the surface that is computed between two particles. Each nodes had a

queue that stored the assigned segments. During run time, when a node needed

a data block, it requested it from the node that owns the block. To make sure the

load is balanced if particles of a segment diverge, the segment was divided into two

segments and pushed to the node queue. When a node was idle, it acquired more

work by stealing work from other nodes. Their results showed load balance and

good scalability.

Hybrid solutions reduce load imbalance, but they are more complicated to

implement, and they introduce additional costs. The solution presented by Pugmire

et al. [105] does not require a pre-processing step, and it avoids redistributing the

data. The algorithm showed better results than traditional techniques but it could

still suffer from high I/O cost since it loads data on demand. Algorithms based

on a master/worker design [105, 125] can perform poorly when the number of

nodes is small, and the number of particles is large. This is because not all nodes

are performing computation (advection). When the number of nodes is large,

the communication between workers and masters can become a bottleneck, thus

finding the correct group size can impact the performance. DStep [125] lowered

the potential of the communication congestion between the workers and master by

55

allowing nodes of one group to communicate directly. The solution proposed by Lu

et al. [129] avoided this communication congestion, but it had the additional cost of

communicating data blocks between nodes.

t0 t1 t2 t3 t4 t5 t0 t1 t2 t3 t4 t5

t0 t1 t2 t3 t4 t5

(b) A Stream Sufrace (c) Pathlines

(d) A Streakline (e) A Timeline

(a) Streamlines

Figure 10. Different flow visualization algorithms that use particle advection.

3.3.4 Flow Visualization Algorithms. As mentioned previously,

particle advection is used in many flow visualization algorithms. In this section,

we give a brief description of some of these flow visualization algorithms, such as

streamlines, pathlines, streaklines, timelines, and stream surfaces. A streamline

[118, 106, 96, 105, 120, 117] is the trajectory of the particle from the seed

location to the final location. Streamlines are the basis of other flow visualization

algorithms. A pathline [119, 97, 98] is the trace of a particle through a period of

time. Each pathline shows the moment of a certain particle through multiple time

steps. A streakline is a line that connects the positions of different particles that

56

passed a certain point. A timeline is a time that connects adjacent particles at a

given time. A stream surface [130, 129] is a union of streamlines connected to form

a surface. Figure 10 shows these different flow visualization algorithms. The most

commonly used algorithms in scientific visualization are streamlines, pathlines, and

stream surfaces.

As mentioned before, pathlines are traces of particles over time. This means

that for each particle the algorithm is computing an additional value (three points

for position and one for time), which increases the computational cost. In time

varying data set, an additional challenge arises since particles might move from

one block to another over time. Thus the change over time has to be taken into

consideration. Yu et al. [119] presented a solution that used parallelize over data

technique. Their algorithm considered time as a fourth dimension and performed

a clustering based on the vector field similarity. Processors were assigned clusters

depending on their workload, thus guaranteeing load balance over time.

The default setup for storing time varying data is to store each time step

separately. Since a pathline algorithm computes the location of the next position

in the next time step, the algorithm will need to access a different file with every

integration step if parallelize over particles technique is used. This increases the

I/O cost and might result in poor performance.

Chen et al. [97] presented an algorithm that reordered the storing of

time varying flow data. Their algorithm used parallelize over particles technique

and used data prefetching to load data blocks. The algorithm performed a pre-

processing step to optimize the file layout and enhance the accuracy of prefetching.

They divided the data into spatial blocks depending on their spatial locality. Next,

particles that were in the same spatial block but in sequential time steps were

57

grouped into a time block. In the pre-processing step, the algorithm computed

an access dependency graph [96]. This graph was used to store time blocks and

enhance data prefetching accuracy. Another solution that used access dependency

graph to reduce I/O cost was presented by Chenet al. [98]. Their algorithm

computed this graph in a pre-processing step, and grouped particles to the same

block depending on their trajectories similarity. During run time, at each time

step, nodes advected particles in groups. They are thus reducing the number of

I/O operations.

Stream surfaces are computed using a front-advancing approach that

was introduced by Hultquist [108] and used by other serial stream surfaces

solutions [109, 110]. In this approach, the algorithm started by placing the

seeding curve, which are the initial particles. Next, these particles are advected

forming streamlines. An arc is created between adjacent pairs of streamlines; these

arcs result in a stream surface. The computation of the surface depends on the

advection of the particles at the front of the surface. New particles are inserted

or deleted depending on the divergence or convergence of the surface. There are

additional challenges when parallelizing stream surfaces. For example, when the

particles in the front of the surface diverge, new particles needs to be added. This

adds to the workload of the node owning that segment of the surface, which can

lead to load imbalance. To reduce the potential of load imbalance,

Lu et al. [129] presented an efficient solution that used work stealing

technique to balance the work between nodes. The algorithm is a hybrid between

parallelize over data and parallelize over particles. Their solution divided the

curve into segments that are distributed among nodes. Each node stored the

segments in a queue and advected the particles in its segments. When the surface

58

diverges and new particles are added, the algorithm formed new segments and

inserted them to the node queue. When a node has no segments left, it requested

segments from another node. Camp et al. [130] presented another solution for

stream surfaces. However, their solution did not apply the front-advancing

approach. Instead, their algorithm computed streamlines independently (regardless

of the parallelization technique) and created the surface between these lines

(triangulation) after advection. After the advection step, the algorithm performed

an adaptive refinement check. If the distance between adjacent streamlines was

larger than a given threshold, a new particle was inserted. This new workload was

distributed between nodes (regardless of the parallelization technique) to perform

the advection. Their algorithm reduced the potential load imbalance caused by the

additional inserted particles.

59

Part II

Improving Individual Parallel

Particle Advection Algorithms

60

This part of the dissertation discusses our improvements of current parallel

particle advection algorithms.

61

CHAPTER IV

BEST PRACTICES AND IMPROVEMENTS TO THE PARALLEL

ALGORITHMS

Parts of this chapter’s text comes from comes from [8], which was a

collaboration between David Pugmire (ORNL), Boyana Norris (UO), Hank

Childs (UO), and myself. I am the first author of this publication and I wrote the

majority of the paper, Hank Childs did significant editing, and Dave Pugmire did

some review and editing. Boyana Norris provided the idea that started this work

and provided feedback for the paper. I was the main implementer of the software

for this study, but used a code base that David Pugmire contributed to. Hank

Childs assisted in analyzing results.

This chapter describes the best practices for the individual parallel particle

advection algorithms. We studied the different parallelization algorithms and their

implementations and looked for the best practices presented in previous solutions in

addition to possible improvements (Section 4.1). We also propose an improvement

for one of the main parallel particle advection algorithms by integrating a

scheduling method that has been used successfully in the HPC community

(Section 4.2). Our results show that our proposed algorithm consistently improves

the performance compared to traditional approaches.

4.1 Parallel Particle Advection Best Practices

In this section, we describe two best practices that have helped us optimize

performance for our bake off study.

The first best practice is to incorporate shared-memory parallelism. We use

the Many-Core Visualization Toolkit (VTK-m) [2, 3] library for shared-memory

parallelism. It is a platform-portable library that provides efficient implementations

62

of data-parallel primitives (DPPs) for different platforms. Using DPPs allows

users to write a single DPP-based code for their algorithms that runs efficiently

on different platforms, eliminating the need to rewrite the same code for different

platform architecture.

The second best practice informs setting of the cache size. For all parallel

particle advection algorithms that loads data on demand, blocks are removed

from cache when the maximum number of blocks is exceeded. We adapted the

settings presented by Camp et al. [115], while taking into account the data size

and hardware differences between their study and ours. For our bake-off study, we

allow 25 blocks per node, where each block has approximately two million cells.

4.2 A Lifeline-Based Approach for Work Requesting and Parallel

Particle Advection

4.2.1 Motivation. One pitfall for POP (see Section 3.2.2) is that

it suffers from idle time when some nodes finish their calculations before others.

An important optimization for POP is to incorporate work requesting (see

Section 3.2.3.) Work requesting is designed to minimize idle time — nodes that

finish their calculations communicate with others nodes and request that they

share some of their work. Work requesting incorporates an underlying scheduling

method, and previous work has incorporated the Random Scheduling Method

(RSM) [116, 131].

With this work, we introduce a new algorithm for work requesting parallel

particle advection. Our improvement is to incorporate the Lifeline scheduling

method (LSM). LSM is currently the high-performance computing community’s

preferred scheduling method for work requesting [5, 6, 7]. Our findings show that,

for parallel particle advection, LSM is superior to RSM in all cases, and reduces

63

inefficiency by significant amounts. Finally, since we discovered that RSM has

some fundamental limitations for particle advection problems, we also introduce

an extension to RSM to request work from multiple victims, which we refer to

as RSM-N (N victims). That said, we find with our experiments that RSM-5 (5

victims) is also inferior to LSM.

4.2.2 Related Work. Previous work requesting for particle advection

solutions used random scheduling [4]. Several works in the high-performance

computing community showed improved performance over random using a Lifeline-

based scheduling method [5, 6, 7], which was introduced by Saraswat et al. [5].

In our algorithm, we replace the traditional random scheduling with the lifeline

scheduling method.

The Lifeline approach begins similarly to the random scheduling method,

in that the thief node attempts some number of random steals, w. But the lifeline

algorithm differs in how to proceed if the first w steals all fail (i.e., did not result

in work being returned from the victim, because the victim also has no work).

Instead, the node consults its lifelines (i.e., a list of compute nodes) to ask for

work. What differentiates a lifeline steal from a regular steal is that lifeline is then

engaged on behalf of the thief to find work. Each of the lifelines will store the thief

as an “incoming” lifeline. When those lifelines search for work themselves, they will

share the work with the thief.

The key to the Lifeline approach is the “Lifeline graph,” which directs a

thief node to use specific nodes as lifelines.

The lifeline graph is a fully-connected directed graph, where graph vertices

are compute nodes on the supercomputer and edges are lifelines. This graph must

guarantee that there is a path from each node with work to all other nodes. The

64

simplest way to create one lifeline for each node is to create a circular graph where

the lifeline of the rank ID p is (p + 1)%N , with N the number of ranks. This

simple method is not acceptable in practice, though, since it will result in poor

performance at scale. This is because the distance between two nodes is on average

N
2

with N the total number of nodes. This means that requesting work to a victim

would require on average N
2

communications, which is inefficient.

Instead, the Lifeline algorithm used a cyclic hypercubes graph to calculate

the lifelines. This guarantees that the graph is connected, has a low diameter, and

each vertex has a bound on the number of out edges. To calculate the lifelines of

nodes, the user has to choose a base h and a power z, with the constraint hz−1 <

N ≤ hz, where N is the number of compute nodes. Each node is represented as

a number in base h with z digits, and has an outgoing edge to every node that is

distance +1 from it in the Manhattan distance. Figure 11 shows a lifeline graph for

of four nodes, with base h = 2, and power z = 2, each node has two lifelines. Full

details on the method can be found in the paper by Saraswat et al.[5]

00 01

10 11

Figure 11. A lifeline graph of 4 nodes, with base = 2 and power = 2. Each node is
represented in a base of 2 and has two lifelines. For each node, the outgoing arrows

points to its lifelines.

65

4.2.3 Our Lifeline Algorithm. This section describes our lifeline-

based algorithm, as well as other algorithms we compare against. It is organized as

follows:

– Section 4.2.3.1 describes foundational concepts.

– Section 4.2.3.2 describes two existing algorithms — POP and RSM.

– Section 4.2.3.3 describes our LSM algorithm.

– Section 4.2.3.4 describes an extension to RSM to include more victims (RSM-

N); this algorithm allows us to evaluate lifeline better.

4.2.3.1 Foundational Algorithmic Concepts. All four algorithms

described share common elements. First, they each begin by dividing the set of P

seed points over its N compute nodes, giving each node P
N

seed points to operate

on. Each node then executes the same program, differing only in the seed points

they begin with, and the algorithm completes when all particle trajectories are

calculated. In the sections that follow, the pseudocode listed describes the program

that runs identically on each node.

The pseudocode for our four algorithms use the following building blocks:

– Particle: a data structure that contains the particle to be advected through

the flow field. This data structure contains the current location of the

particle. It can optionally hold the previous locations of the particle (i.e.,

the trajectory) .

– ParticleArray: a data structure that contains an array of Particles.

– ArrayOfParticleArrays: a data structure that contains an array of

ParticleArrays. For example, an ArrayOfParticleArrays with 10 entries would

66

contain 10 ParticleArrays, with each of the 10 ParticleArrays containing a

varying number of particles.

– SortParticleByBlock(): a function that sorts Particles by the ID of the block

that contains the particles. This generates an ArrayOfParticleArrays where

the ParticleArray at index i contains the Particles that lie within block i.

– ObtainBlock(): a function that determines the needed block and reads it from

cache or disk. The function first checks if the block is already available in

cache. If not, it loads the necessary block and places it in cache. The size of

the cache changes depending on the size of the data.

– Advect(): a function that advects the Particles of a ParticleArray until they

exit the current block or terminate. This function returns a 2-tuple — the

first element is a ParticleArray containing completed Particles and the second

element is a ParticleArray containing Particles that exited the current data

block.

– CheckForIncomingMessages(): a function that checks for incoming messages

from other nodes. These messages can be work requests from other nodes or

notifications of particle terminations.

– SendWork(): a function that sends half of its workload to the thief if it has

any work, or sends back a “no work” message.

– RequestWork(): a function that requests work from another node.

4.2.3.2 Existing Algorithms. This section describes two existing

algorithms used as comparators for our study: POP and Work Requesting using

the RSM.

67

Algorithm 1 Pseudocode for the Parallelize-Over-Particles algorithm (POP).

1: function POP-Advect(ParticleArray pv)
2: keepGoing ← true
3: ArrayOfParticleArrays pva[NUMBLOCKS]
4: pva← SortParticlesByBlock(pv)
5: allCompletedParticles← ∅
6: while keepGoing do
7: contParticles← ∅
8: for i in NUMBLOCKS do
9: if pva[i].size() > 0 then
10: Block b← ObtainBlock(i)
11: ParticleArray completed, continuing
12: (completed, continuing)← Advect(pva[i], b)
13: allCompletedParticles + = completed
14: contParticles + = continuing
15: end if
16: end for
17: if contParticles.size() > 0 then
18: pva← SortParticlesByBlock(contParticles)
19: else
20: keepGoing ← false
21: end if
22: end while
23: end function

Parallelize-Over-Particles. Algorithm 1 shows the pseudocode for POP. The

algorithm starts by sorting particles by block. Then it reads the needed data blocks

either from cache or disk. Next, the algorithm advects the particles located in the

current data block until they terminate or exit the current block. When particles

exit their current data blocks, they are stored in an array to be processed in the

next iteration.

Even though the algorithm divides seeds equally between nodes, it does

not guarantee an equal workload on each node. That is because nodes might load

different number of blocks or have different number of advection steps, due to the

nature of the vector field and placement of assigned seeds. For example, if the

68

vector field has critical points attracting the particles toward them, the workload

of the node depends on the placement of its assigned seeds. Nodes that have seeds

located near the critical points will need fewer block than particles that are far

from the critical point.

Work Requesting using the Random Scheduling Method. Algorithm 2

shows the pseudocode of RSM. The algorithm begins with each node executing the

POP algorithm as described in Section 4.2.3.2.

The algorithm is different, however, in how it proceeds when a node finishes

its work. In this case, it sends a work request to another node. Again, the node

stealing the particles is referred to as thief and the other node is referred to as

victim. RSM chooses a victim randomly [4]. If the victim has work, it sends half

of its workload to the thief. Otherwise, it sends a “no work” message to the thief.

In that case, the thief selects another victim randomly.

To optimize I/O, the algorithm sorts particles by block before sending work.

This reduces the number of blocks that need to be accessed.

4.2.3.3 Our Lifeline-Based Algorithm. This section describes our

particle advection Lifeline-Based algorithm. Algorithm 3 shows the pseudocode

of LSM. LSM shares most of the steps of RSM, with the main difference between

them being the scheduling method.

In this algorithm, the thief performs w random steals, where the victims

are chosen randomly, and w is a user specified parameter. If no work is found after

w attempts, the thief requests work from its lifelines. The lifelines are computed

using a lifeline graph following the rules mentioned in Section 4.2.2. If the victim

does not have any work, it requests work for its lifelines recursively. After the thief

requests the work from its lifelines, it remains idle.

69

(a) (d)(c)(b)

Figure 12. Streamlines visualization for the four data sets: (a) Fishtank, (b)
Fusion, (c) Astro, (d) RadialExpansion.

When a node receives work, it checks for incoming lifelines; if it has any,

then it sends work.

Similar to RSM, the algorithm sorts its particles by block before dividing

the workload among lifelines, to reduce I/O cost.

The number of lifelines for each node impacts the performance of LSM. If

the number of lifelines is small, it might lead to a higher idle time. On the other

hand, if the number of lifelines is large, it might increase the communication cost.

4.2.3.4 RSM-N: Extending RSM For Multiple Victims.

For evaluation purposes, we also made a straightforward extension to the RSM

algorithm, namely, to request work from multiple victims.

To conduct a fair comparison between the two scheduling methods, we

adapted RSM to allow the thief to request work from the same number of victims

as LSM. If no work is found, the thief chooses a new group of random victims.

4.2.4 Experiments. This section describes the details, which

compares the four algorithms described in Section 4.2.3: POP, RSM, RSM-N, and

LSM. The additional factors considered in this study are described in the following

subsection.

70

4.2.4.1 Algorithm Comparison Factors. Our study is composed of

seven phases. The first phase considers one workload in depth, comparing the four

algorithms. In the other six phases, one of six factors is varied, while holding the

other five constant. The six factors are:

– Data set (4 options)

– Number of particles (4 options)

– Maximum advection steps (i.e., duration of particle) (4 options)

– Number of blocks (5 options)

– Number of cells per block (3 options)

– Number of MPI tasks (3 options)

In total, we considered 23 (= 4 + 4 + 4 + 5 + 3 + 3) configurations. We

tested each configuration with all four algorithms, meaning 92 experiments overall.

Data Set. Since the complexity of the vector field impacts the performance, we

test the performance of our algorithms on different data sets that broadly represent

typical application scenarios. The four data sets used in this study are:

– The Fishtank data set is a thermal hydraulics simulation using the

NEK5000 [132] code. In this particular simulation, twin inlets pump water

of differing temperatures into a box. The mixing behavior and temperature

of the water at the outlet of the box are of interest. The vector field captures

the fluid flow within the box.

– The Fusion data set is a magnetically confined plasma in a tokamak device.

The simulation was performed using the NIMROD [133] code. The vector

field in this example is of the magnetic field that exists inside the plasma that

71

is a result of the magnets in the tokamak device as well as the motion of the

particles within the plasma itself.

– The Astro data set is the magnetic field surrounding a solar core collapse

resulting in a supernova. This simulation was performed with the

GenASiS [134] code, a multi-physics code for astrophysical systems involving

nuclear matter.

– The RadialExpansion data set is an artificial dataset, where the vector for

each point is measured by the distance from the location of the point to the

center. The dataset was created to test the behavior of the four algorithms in

cases where the load is highly imbalanced.

The four data sets are 3D steady data sets that were refined to a 10243 grid.

Number of Particles. With this factor, we consider the impact of the number

of particles on the inefficiency of the four algorithms. Four amounts of particles are

considered: 10K, 100K, 1M, and 10M.

Maximum Advection Steps. With this factor, we consider the impact of

the advection steps on the inefficiency of the four algorithms. Four amounts of

advection steps are considered: 100, 1K, 10K, and 100K.

Number of Blocks. With this factor, we consider the impact of the number

of blocks on the inefficiency of the four algorithms. Five numbers of blocks are

considered: 64, 128, 512, 1024, and 2048. For all five configurations, the total data

size is 10243.

72

Number of Cells per Block. With this factor, we consider the impact of

the block size (i.e., the number of cells per block) on the inefficiency of the four

algorithms. Three sizes of blocks are considered: 643, 1283, and 5123. For each of

these tests, we used 512 blocks.

Number of MPI Tasks. With this factor, we consider the scalability of our

algorithms. This includes increasing the number of MPI tasks, as well as the data

size and the number of particles. Three levels of concurrency are considered:

– Test 1: 32 MPI tasks, 5 lifelines, 1M particles, and 512 blocks.

– Test 2: 128 MPI tasks, 7 lifelines 4M particles, and 2048 blocks.

– Test 3: 512 MPI tasks, 9 lifelines 16M particles, and 8192 blocks.

4.2.4.2 Hardware Used. The study was run on Cori at Lawrence

Berkeley National Laboratory’s NERSC facility. It contains 2,388 Intel Xeon

“Haswell” processor nodes. There are 32 cores per node, and each core supports

2 hyper-threads and 128 GB of memory per node.

4.2.4.3 Algorithms Configuration. RSM-N and LSM request work

from multiple victims at each request. LSM calculates the number of victims using

the equation in Section 4.2.2. We used that equation to compute the lifeline graph

with a base equals to 2. All our tests except for the last phase use 32 MPI ranks,

and thus the number of lifelines is equal 5. For the RSM-N algorithm, we used the

same number of victims as LSM (i.e., RSM-5).

4.2.4.4 Performance Measurement. For each phase, we measure

the work time (including I/O, advection, etc.), idle time, and total time. From

these measurements, we can derive the inefficiency of the algorithm. Inefficiency

affects the performance because the execution time is determined by the time of the

73

Work Idle

(c) (d)

(a) (b)

Normalized time

M
PI

 R
an

k

Figure 13. Performance of the four algorithms (a) POP, (b) RSM, (c) RSM-5, (d)
LSM, using 32 MPI tasks to advect 1 million particles for 10 thousands steps (base

case).

slowest processor. We define inefficiency with the following equation:

Inefficiency =
Idletime

Totaltime

The idle time in our tests only measures the time that a node spends

waiting for other nodes to finish their work. It does not include the time spent

performing redundant I/O operations, which is more likely to happen with RSM,

RSM-N, and LSM. Further, as the number of steal increases, it is more likely to

perform redundant I/O. For this reason, we include in our results both total time

and inefficiency. The goal of reducing inefficiency is to reduce the total execution

time. It is important to make sure that the additional I/O and communication

operations done to reduce inefficiency do not lead to a higher total execution time.

4.2.5 Results. In this section, we present the results of our study.

74

Table 2. Comparing the performance of the four algorithms in terms of total
execution time, the time for the individual routines, the idle time, and the

inefficiency. The initialization time measures the time to initialize variables and
generate initial seeds. The I/O time measures the time to read data blocks from
disk or cache. The advection time measures the time to advect particles and to

process the advection results (e.g., terminate). The communication time measures
the time to request or send particles to other nodes and to inform other nodes of
termination. The sorting time measures the time to sort particles by block after
each round (line 18 in Pseudocode 1). The idle time measures the time where a
node is waiting for other nodes to finish or send work. The inefficiency measures

the percentage of execution time spent in idle and is computed as defined in
Section 4.2.4.4.

POP RSM RSM-
5

LSM

Total time 131s 117s 111s 107s
Initialization time 1.68s 1.60s 1.55s 1.54s

IO time 14.8s 15.3s 22.9s 20.9s
Advection time 78.4s 75.0s 74.9s 73.6s

Communication time 2.1e−4s 7e−3s 0.15s 0.04s
Sorting time 9.21s 9.05s 8.80s 8.61s

Idle time 26.5s 16.3s 2.8s 1.7s
Inefficiency 0.20 0.14 0.03 0.02

4.2.5.1 Phase 1: Base Case. In this phase, we compare the

performance of the four algorithms, using the following configuration:

– Data set: Fishtank

– Number of particles: 1M

– Maximum advection steps: 10K

– Number of blocks: 512

– Number of cells per block: 1283

– Number of MPI tasks: 32 (512 cores)

The results of this phase are presented in Table 2. The results show a

significant drop in inefficiency from 20% (POP) to 2% (LSM).

75

POP has the highest inefficiency, with 20% of the total execution time is

spent idle. This is due to the load imbalance between nodes, which can be seen in

Figure 13. Although the nodes have the same number of particles, their workload

varies, see Section 4.2.3.2 for more discussion.

Using RSM reduces the inefficiency by a factor of 1.4. While this reduction

improves the performance, idle time still takes 14% of the total execution time since

thieves request work from one victim at a time.

Using multiple victims in RSM-5 reduces the inefficiency by a factor of 6.6

over POP, and a factor of 4.6 over RSM. This is because sending multiple requests

at once allows the thief to receive work faster, and therefore reduces idle time.

LSM reduces the inefficiency by a factor of 10 over POP, a factor of 7 over

RSM, and a factor 1.5 over RSM-5. LSM reduces the inefficiency compared to

RSM-5 because the cyclic feature of the lifeline graph guarantees to always have

a path from an idle node to a busy node.

Table 3. Comparing the number of advection steps and I/O operations between the
four algorithms.

POP RSM RSM-
5

LSM

Total advection steps 9.97B9.97B 9.97B 9.97B
Min advection steps 300M 231M 222M 230M
Max advection steps 312M 373M 383M 380M

Total # disk reads 3750 4081 5491 5381
Min # disk reads 67 87 126 128
Max # disk reads 256 221 216 198

Total # cache reads 2925 3009 3545 3587
Min # cache reads 1 4 30 28
Max # cache reads 244 223 195 207

I/O cost varies between the four algorithms. POP has the lowest I/O cost

of all four algorithms, and it has the lowest number of I/O operations (disk and

76

cache) as presented in Table 3. RSM has a higher I/O cost and I/O operations

than POP. This increase is because particles are communicated between nodes

and new data blocks are needed. RSM-5 and LSM have a higher I/O cost and I/O

operations than RSM and POP. That is because more particles are communicated

between nodes.

The advection time varies between the four algorithms, even though they

are advecting the same number of particles. LSM does a better job balancing the

workload, which leads to better usage of threads. On the other hand, when using

POP the workload is not balanced, which leads to underused threads.

The communication cost varies between the three work requesting

algorithms (RSM, RSM-5, LSM) because of the difference in their communication

pattern. RSM has the lowest communication cost between the three algorithms

since thieves communicate with one victim at a time. This results in a lower

communication time at the cost of a higher idle time. Both RSM-5 and LSM

communicate with the same number of victims at a single request. However, RSM-5

has a higher communication cost than LSM. This is because, in case of failure to

receive work, LSM relies on its lifelines to receive work. RSM-5, on the other hand,

needs to perform another request to 5 new victims until it receives work.

Even though the inefficiency is improving by a factor of 10, the total time is

only improving by 20%. This is because there is a maximum improvement possible

when improving a part of the program. This improvement is limited by the time

needed to perform advection steps.

4.2.5.2 Phase 2: Data Sets. In this phase, we vary the data set

using the following configuration:

– Number of particles: 1M

77

Work Idle

(c) (d)

(a) (b)

Normalized time

M
PI

 R
an

k

Figure 14. Performance of the POP algorithm on the four data sets (a)
RadialExpansion, (b) Fishtank, (c) Astro, (d) Fusion, using 32 MPI tasks to advect

1 million particles for 10 thousands steps.

– Maximum advection steps: 10K

– Number of blocks: 512

– Number of cells per block: 1283

– Number of MPI tasks: 32 (512 cores)

Table 4. Comparing the inefficiency and time of the four algorithms when varying
the data sets.

Data set POP RSM RSM-5 LSM

Fishtank: Inefficiency 0.20 0.14 0.03 0.02
Total time 131s 117s 111s 107s

Fusion: Inefficiency 0.12 0.09 0.02 0.01
Total time 115s 109s 102s 101s

Astro: Inefficiency 0.18 0.12 0.03 0.02
Total time 126s 120s 103s 102s

RadialExpansion: Inefficiency 0.33 0.27 0.04 0.03
Total time 74.1s 73.5s 60.8s 54.9s

78

The results of this phase are presented in Table 4. The table shows that

LSM reduces the inefficiency for all four data sets and maintains low inefficiency

ratios for all cases (0.01-0.03).

For the RadialExpansion data set, the POP algorithm has a high inefficiency

ratio (30%). This is because the workload is highly imbalanced, as can be seen in

Figure 14 (a). Since vectors are moving from the center toward the boundaries of

the box, nodes that are responsible for particles located in the center of the box

have a higher workload. RSM reduces the inefficiency by only a modest factor of

1.2 over POP. RSM-5 and LSM, however, reduce the inefficiency over POP by a

factor of 8.2 and 11, respectively.

For the Fishtank data set, the POP algorithm also has a high inefficiency

ratio (20%). This is because the workload is highly imbalanced, as can be seen in

Figure 14 (b). The velocity field is moving toward a sink at one end of the box.

Nodes that are responsible for particles that are located on the opposite side of

the box have more workload. RSM reduces the inefficiency by a factor of 1.4 over

POP. RSM-5 and LSM reduce the inefficiency over POP by a factor of 6.6 and 10,

respectively.

For the Astro and Fusion data sets, the POP algorithm has a lower

inefficiency ratio compared to the previous data sets: 18% for the Astro data

set and 12% for Fusion data set. The workload of the POP algorithm is less

imbalanced for these two data sets compared to the other two (Figure 14 (c) and

(d)). This is because both data sets have a more uniform vector field. However,

using RSM-5 and LSM still reduce the inefficiency significantly.

4.2.5.3 Phase 3: Number of Particles. In this phase, we vary the

number of particles, using the following configuration:

79

– Data set: Fishtank

– Maximum advection steps: 10K

– Number of blocks: 512

– Number of cells per block: 1283

– Number of MPI tasks: 32 (512 cores)

Table 5. Comparing the inefficiency and time of the four algorithms when varying
the number of particles.

Number
of
Particles

POP RSM RSM-5 LSM

10K: Inefficiency 0.25 0.23 0.17 0.11
Total time 15.4s 14.2s 13.0s 12.1s

100K: Inefficiency 0.28 0.20 0.15 0.07
Total time 28.6s 26.6s 23.4s 22.6s

1M: Inefficiency 0.20 0.14 0.03 0.02
Total time 131s 117s 111s 107s

10M: Inefficiency 0.44 0.27 0.04 0.03
Total time 1278s 921s 501s 486s

The results of this phase are presented in Table 5. The table shows that

LSM reduces the inefficiency in all cases, with the highest improvement being a

reduction of 14.6 over POP, for 10M particles.

The table shows that the inefficiency of POP is not directly correlated to the

number of particles. At each test, the number of particles is increased by a factor

of 10, but the inefficiency does not change within the same ratio and in one case it

drops (in the case of 1M). This is because the inefficiency change is not dependent

on the total number of particles, but rather on the workload distribution per node

(Section 4.2.3.2). On the other hand, both RSM-5 and LSM are able to reduce the

inefficiency consistently.

80

4.2.5.4 Phase 4: Number of Steps. In this phase, we vary the

number of advection steps, using the following configuration:

– Data set: Fishtank

– Number of particles: 1M

– Number of blocks: 512

– Number of cells per block: 1283

– Number of MPI tasks: 32 (512 cores)

Table 6. Comparing the inefficiency and time of the four algorithms when varying
the durations of particles (maximum advection steps).

Advection
Steps

POP RSM RSM-5 LSM

100: Inefficiency 0.07 0.07 0.05 0.03
Total time 20.3s 20.4s 20.2s 18.0s

1K: Inefficiency 0.20 0.11 0.07 0.04
Total time 33.7s 31.4s 29.3s 27.1s

10K: Inefficiency 0.20 0.14 0.03 0.02
Total time 131s 117s 111s 107s

100K: Inefficiency 0.19 0.12 0.02 0.01
Total time 1080s 981s 877s 791s

The results of this phase are presented in Table 6. LSM reduces the

inefficiency in all cases, with a reduction of a factor of 19 in the case of 100K steps.

For the case of 100 advection steps, POP has an inefficiency of 7%. This is

because the number of advection steps is small, making it less likely for particles

to travel across multiple blocks or exit the domain. This reduces the probability

of imbalance between nodes. RSM has the same inefficiency ratio as POP. This is

because nodes have small workloads. Consequently, it is more difficult for a thief to

find a victim with work available.

81

However, both RSM-5 and LSM reduce the inefficiency over POP by a factor

of 1.4 and 2.3, respectively. As both methods are requesting work from five victims

at a time, they are more likely to find work and therefore reduce the inefficiency.

Increasing the number of advection steps from 100 to 1k increases the

inefficiency of POP to 20%. The table shows that the inefficiency of POP is not

directly correlated to the number of advection steps but to the distribution of

workload. On the other hand, both RSM-5 and LSM are able to consistently reduce

the inefficiency down to 2% and 1%, respectively.

4.2.5.5 Phase 5: Number of Blocks. In this phase, we vary the

number of blocks. That said, the overall data size remains constant through all

tests (10243). The other factors for this configuration are the following:

– Data set: Fishtank

– Number of particles: 1M

– Maximum advection steps: 10K

– Number of MPI tasks: 32 (512 cores)

Table 7. Comparing the inefficiency and time of the four algorithms when varying
the number of blocks.

Number
of
Blocks

POP RSM RSM-5 LSM

64: Inefficiency 0.32 0.24 0.19 0.06
Total time 89.1s 83.1s 82.7s 80.0s

128: Inefficiency 0.25 0.21 0.09 0.04
Total time 71.2s 68.9s 67.3s 65.1s

512: Inefficiency 0.20 0.14 0.03 0.02
Total time 131s 117s 111s 107s

1024: Inefficiency 0.24 0.16 0.02 0.01
Total time 168s 151s 131s 122s

2048: Inefficiency 0.30 0.16 0.01 0.01
Total time 257s 219s 174s 172s

82

The results of this phase are presented in Table 7. It can be seen that LSM

reduces inefficiency including by a factor of 30 for the largest number of blocks.

The results show that the inefficiency of the POP algorithm is not directly

impacted by the change in the number of blocks. This is because, in the POP

algorithm, nodes perform their computation independently without communicating

with other nodes. Therefore loading more blocks on each node does not affect the

overall load balance of the POP.

The inefficiency of the three other algorithms (RSM, RSM-5, LSM) reduces

as the number of blocks increases. This is because these algorithms respond faster

to work requests as the size of the block reduces. These algorithms run an iterative

loop. At the end of each iteration, the nodes check for work requests and send the

appropriate responses (Algorithm 2 line 17). Reading smaller blocks reduces the

time spent in I/O, reducing the time between requests.

4.2.5.6 Phase 6: Cells per Block. In this phase, we fix the number

of blocks to 512 and vary the size of blocks (i.e., data size), using the following

configuration:

– Data set: Fishtank

– Number of particles: 1M

– Maximum advection steps: 10K

– Number of blocks: 512

– Number of MPI tasks: 32 (512 cores)

The results of this phase are presented in Table 8. The table shows that

LSM reduces the inefficiency for the different sizes of blocks, with a factor of 22 for

the smallest size.

83

Table 8. Comparing the inefficiency and time of the four algorithms when varying
the number of cells per block with 512 blocks in total.

Cells
per
Block

POP RSM RSM-5 LSM

643: Inefficiency 0.22 0.13 0.02 0.01
Total time 131s 123s 100s 95.7s

1283: Inefficiency 0.20 0.14 0.03 0.02
Total time 131s 117s 111s 107s

2563: Inefficiency 0.36 0.23 0.05 0.04
Total time 281s 249s 222s 212s

The inefficiency of the three other algorithms (RSM, RSM-5, LSM) increases

as the size of blocks increases. When the size of the block increases, the time to

read the block from disk increases. As described previously, spending more time in

I/O increases the response time to work requests, leading to higher inefficiencies.

RSM is the most impacted, because it sends only one request at a time, whereas

RSM-5 and LSM are sending five requests at the same time. This increases the

likelihood of RSM-5 and LSM to receive work faster.

4.2.5.7 Phase 7: MPI Tasks. In this phase, we vary the number of

MPI tasks, as well as the number of particles and the data size, using the following

configuration:

– Data set: Fishtank

– Maximum advection steps: 10K

– Number of cells per block: 1283

∗ Test 1: 32 MPI tasks (512 cores), 5 lifelines, 1M particles, and 512

blocks.

∗ Test 2: 128 MPI tasks (2048 cores), 7 lifelines 4M particles, and 2048

blocks.

84

∗ Test 3: 512 MPI tasks (8192 cores), 9 lifelines 16M particles, and 8192

blocks.

Table 9. Comparing the inefficiency and time of the four algorithms when varying
the number MPI tasks, number of particles and number of blocks.

MPI
tasks

POP RSM RSM-N LSM

32: Inefficiency 0.20 0.14 0.03 0.02
Total time 131s 117s 111s 107s

128: Inefficiency 0.45 0.29 0.03 0.02
Total time 315s 252s 209s 186s

512: Inefficiency 0.54 0.36 0.06 0.05
Total time 1439s 1012s 694s 671s

Table 10. Comparing the difference in workload balance between the four
algorithms. The table shows the minimum work time, maximum work time, and

the difference for each test. The work time in this table indicates the time spent in
I/O and advection. The Diff measures the difference in time between the nodes

with the highest and the lowest workloads.

#
MPI
tasks

POP RSM RSM-N LSM

32: Min work 82.7s 82.5s 90.1s 86.1s
Max work 112s 101s 106s 100s

Diff 29.3s 18.5s 15.9s 13.9s
128: Min work 117s 112s 154s 139s

Max work 241s 204s 186s 167s
Diff 124s 92s 32s 28s

512: Min work 451s 421s 525s 513s
Max work 1209s 867s 598s 580s

Diff 758s 446s 73s 67s

The results of this phase are presented in Table 9. The table shows that

LSM reduces the inefficiency for the different test cases, with a factor of 10.8 for

the largest test case.

The POP algorithm inefficiency increases as the test size increases, reaching

54% for the largest test case. As the size of the test increases, the difference in

85

workload between the nodes increases, which can be seen in Table 10. This results

in a higher load imbalance.

The POP algorithm is the most impacted by this imbalance. Using RSM

reduces the inefficiency by a factor of 1.5 over POP in all cases. RSM still suffers

from high inefficiencies (0.36 in the worst case). This is because the work becomes

more sparse as the number of MPI task increases. Consequently, thieves are less

likely to randomly find a victim with work.

RSM-5 and LSM maintain low inefficiency ratios for all cases. Using RSM-5

reduces the inefficiency over POP by 6.6 for the first test, 15 for the second test,

and 9 for the third test. Using LSM reduces the inefficiency over POP by 10 for the

first test, 22.5 for the second test, and 10.8 for the third test. This is because both

RSM-5 and LSM can find victims with work faster by requests work from multiple

victims at a time.

4.2.5.8 Summary of Findings. The evaluation showed that the

LSM algorithm reduces inefficiency in all cases. The algorithm adapts the number

of its lifelines (victims) as the concurrency change to make sure there is a short

path from busy nodes to idle ones. Further, in our largest test case (512 ranks,

16M particles, 17B cells data sets), LSM has the lowest inefficiency of all four

algorithms.

Overall, the evaluation demonstrates that the LSM algorithm is a better

choice for particle advection work requesting. LSM would be particularly well

suited for production visualization tools. This is because the LSM algorithm can

adapt itself to better support complex cases without requiring major user inputs.

Further, production visualization tools must support a large variety of use cases,

including those that lead to load imbalance with traditional approaches.

86

4.2.6 Conclusions and Future Work. The contribution of this

section is three-fold: (1) we designed a work requesting algorithm for parallel

particle advection that uses lifeline-based scheduling (LSM) method, (2) we added

an extension to random scheduling (RSM-N) to use multiple victims, and (3)

we evaluated the efficiency of the three scheduling methods as well as POP. As

discussed in the summary of findings, our LSM algorithm improves the performance

compared to traditional approaches, especially on workloads that are prone to load

imbalance.

For future work, we plan to implement a multi-threaded version of the

algorithm with another thread for communication. Our tests in Phase 5 and 6

show that the LSM algorithm has lower inefficiency in cases where the algorithm

performed smaller work at each iteration (reading smaller blocks), which reduces

the response time to a work request. We plan to test the ideas suggested by

Sisneros and Pugmire [135] where the algorithm advects a portion of the particles

belonging to one block, to allow the algorithm to check for work requests more

frequently. We also plan to study the impact of the number of liflines (victims) on

the performance. Finally, we plan to test the algorithms at larger scale.

87

Algorithm 2 Pseudocode for the working requesting algorithm using RSM.

1: function RSM-Advect(ParticleArray pv)
2: keepGoing ← true
3: numActive← totalNumberOfParticles
4: ArrayOfParticleArrays pva[NUMBLOCKS]
5: pva← SortParticlesByBlock(pv)
6: allCompletedParticles← ∅
7: while keepGoing do
8: contParticles← ∅
9: for i in NUMBLOCKS do
10: if pva[i].size() > 0 then
11: Block b← ObtainBlock(i)
12: ParticleArray completed, continuing
13: (completed, continuing)← Advect(pva[i], b)
14: allCompletedParticles + = completed
15: contParticles + = continuing
16: end if
17: MSG← CheckForIncomingMessages()
18: if MSG = PARTICLES TERMINATED then
19: numActive -= MSG.numTerminated
20: else if MSG = NEEDWORK then
21: SendWork()
22: end if
23: end for
24: if contParticles.size() > 0 then
25: pva← SortParticlesByBlock(contParticles)
26: else if numActive > 0 & contParticles.size() = 0 then
27: randomV ictim← GetRandomV ictimID()
28: RequestWork(randomV ictim)
29: else
30: keepGoing ← false
31: end if
32: end while
33: end function

88

Algorithm 3 Pseudocode for the working requesting algorithm using Lifeline
Scheduling (LSM).

1: function LSM-Advect(ParticleArray pv)
2: keepGoing ← true
3: numActive← totalNumberOfParticles
4: ArrayOfParticleArrays pva[NUMBLOCKS]
5: pva← SortParticlesByBlock(pv)
6: allCompletedParticles← ∅
7: lifelines← CalculateLifelineGraph()
8: numRandomReq ← 0
9: while keepGoing do
10: contParticles← ∅
11: for i in NUMBLOCKS do
12: if pva[i].size() > 0 then
13: Block b← ObtainBlock(i)
14: ParticleArray completed, continuing
15: (completed, continuing)← Advect(pva[i], b)
16: allCompletedParticles + = completed
17: contParticles + = continuing
18: end if
19: MSG← CheckForIncomingMessages()
20: if MSG = PARTICLES TERMINATED then
21: numActive -= MSG.numTerminated
22: else if MSG = NEEDWORK then
23: SendWork()
24: end if
25: end for
26: if contParticles.size() > 0 then
27: pva← SortParticlesByBlock(contParticles)
28: else if numActive > 0 & contParticles.size() = 0 then
29: if numRandomReq < w then
30: randomV ictim← GetRandomV ictimID()
31: RequestWork(randomV ictim)
32: numRandomReq + +
33: else
34: RequestWork(lifelines)
35: end if
36: else
37: keepGoing ← false
38: end if
39: end while
40: end function

89

Part III

Understanding Parallel Particle

Advection Behavior Over Various

Workloads

90

This part of the dissertation is composed of two chapters. The first chapter

studies the behavior of the different parallel particle advection algorithms over

various workloads. The second chapter proposes an improved hybrid algorithm

that is able to adapt its behavior depending on the workload.

91

CHAPTER V

PARALLEL PARTICLE ADVECTION BAKE-OFF

Most of the text in this chapter comes from a manuscript in preparation

that is a collaboration between David Pugmire (ORNL), Abhishek Yenpure (UO),

Hank Childs (UO), and myself. The implementation was mainly developed by

myself with a code base that David Pugmire contributed to. Our implementation

used the particle advection modules from the VTK-m software library which were

developed by David Pugmire and Abhishek Yenpure. The experiments and study

configurations were designed by Hank Childs and myself with help from David

Pugmire.

This chapter provides a comprehensive evaluation of the most used parallel

particle advection algorithms over various workloads. This work aims to understand

the behavior of the different algorithms over various workloads. Our findings enable

identification of the most suitable algorithm given specific workload characteristics.

5.1 Motivation

Chapter III described the different parallel particles advection solutions

available in the literature. These solutions are still actively investigated and several

optimizations have been proposed by the visualization community. Each of these

solutions behaves differently depending on the characteristics of the workload,

which can lead to poor performance in some cases. Therefore it is critical for users

to select the appropriate algorithm for their particular workloads. In this chapter,

we compare four of the most used parallel particle advection algorithms over

various workloads and determine the most suitable algorithms for each workload.

5.2 Experiment Overview

This section describes the details of our study.

92

Seeding Box Size

Total #Steps

Small Medium Large

MPI Ranks

N=100
N=1K
N=10K 16

128

1024

N=100
N=1K
N=10KS

te
ps

=1
0K

S
te

ps
=1

K

Figure 15. Three axes for defining a workload: total number of steps, size of
seeding box, and number of MPI ranks.

5.2.1 Algorithm Comparison Factors. There are three main axes

to our study, presented in Figure 15:

– Total number of steps (6 options)

– Size of seeding box (3 options)

– Number of MPI ranks (3 options)

In total,we considered 54 (=6*3*3) configurations. We tested each

configuration with all four algorithms, meaning 216 (=54*4) experiments overall.

The following subsections discuss the impact of each one of these axes as well as

their configurations.

93

5.2.1.1 Total Number of Steps. The total number of steps

represents the amount of work defined as the product of the number of particles

and the maximum number of advection steps. Different flow visualization

algorithms require different representations. Some algorithms require a small

number of particles that advect for a long duration, while others require a large

number of particles that advect for a short duration.

We consider three options for the number of particles and represent it in the

form pf 1 particle for each C cells. We consider seed a particle for every 100 cells,

every 1000 cells, and every 10, 000 cells, and denote these as P/100C, P/1KC, and

P/10KC, respectively (“P/1KC” meaning 1 particle for every one thousand cells).

As the value of C decreases, the density of particles per cell increases, therefore

increasing the total number of particles. We consider 2 options for the duration of

particles (maximum advection steps), which are 1K and 10K.

Consider an example where the data set size is 1024 ∗ 1024 ∗ 512. If we

seed according to P/10KC, then we would have a particle for every 10, 000 cells.

Since the total number of cells is approximately 537M , then the number of particles

will be approximately 54K. Further, if the duration is 1000 steps, then the total

number of advection steps would be 54M (54K particles × 1000 steps per particle).

5.2.1.2 Size of Seeding Box. The size of the seeding box represents

the particle distribution. This impacts the I/O cost and can impact load balance.

If the distribution is dense i.e., all the seeds originate in a small box, only a subset

of the data set will be required, which reduces the cost of I/O. Figure 16 shows the

three different boxes considered in this study.

5.2.1.3 Number of MPI Tasks. We test the weak scalability of

the algorithms by varying the number of MPI tasks, as well as the number of data

94

(a) (b) (c)

Figure 16. The three seeding boxes considered in the study: (a) large box, (b)
medium box, and (c) small box.

blocks. The size of each data block is 1283, and three levels of concurrency are

considered:

– Concurrency1: 16 MPI tasks, 4 tasks per node, 8 cores per task (128 cores),

and 256 blocks.

– Concurrency2: 128 MPI tasks, 4 tasks per node, 8 cores per task (1024

cores), and 2,048 blocks.

– Concurrency3: 1024 MPI tasks, 4 tasks per node, 8 cores per task (8192

cores), and 16,384 blocks.

5.2.2 Data Set. We use the “Fishtank” data set for our study, which

comes from a thermal hydraulics simulation by the NEK5000 [132] code. In this

particular simulation, twin inlets pump water of differing temperatures into a box,

and the vector field captures the fluid flow within the box. The simulation’s focus is

on understanding mixing behavior, as well as temperature at the box’s outlet.

5.2.3 Algorithm Setting. Many of the algorithms have “knobs” to

optimizing their performance. In our study, we used the following values:

95

– Cache size: The cache size in our study is 25 blocks per node, where each

block has approximately two million cells (for details see Section 4.1.)

– Number of lifelines: The number of lifelines for the LSM algorithm is

computed as the following log2(#Ranks) (for details see Section 4.2.)

– Group size: The group size for the MW algorithm varies depending on the

number of MPI tasks (for details see Section 3.2.4). We tried different group

sizes and found out that the best results are when there are 4 masters:

∗ 16 Ranks: group size is 4, which means there are 4 masters.

∗ 128 Ranks: group size is 32, which means there are 4 masters.

∗ 1024 Ranks: group size is 256, which means there are 4 masters.

5.2.4 Hardware Used. The study was run on Cori at Lawrence

Berkeley National Laboratory’s NERSC facility. It contains 2,388 Intel Xeon

“Haswell” processor nodes. Each node has two 2.3 GHz 16-core processors, each

core supports 2 hyper-threads and there is 128 GB of memory per node.

5.2.5 Performance Measurement. We measure the performance of

the different algorithms by calculating the number of steps computed per rank per

second. The higher the number of steps is, the more efficient the algorithm is, since

it indicates lower execution time. Our metric works as follows. Let ST be the total

number of advection steps for the workload, T be the total execution time for the

slowest rank, and N be the number of ranks. Then we define the number of steps

per rank per second with the following equation: We define the number of steps per

rank per second with the following equation:

96

Number of steps per rank per second =
ST

(T ∗ N)

We will refer to this measurement as SPRPS in our study. We also provide

the corresponding execution time for each experiment in addition to the SPRPS.

5.3 Testing Infrastructure

This section describes the testing infrastructure of our study. It is organized

as follows: foundational algorithmic concepts (5.3.1), carrying out advection work

(5.3.2), and communication between nodes (5.3.3).

5.3.1 Foundational Algorithmic Concepts. All four algorithms

described share common elements. First, they start by generating the seeds

and distributing them among compute nodes. Then, in all four algorithms,

each node executes the main loop which is composed of a worker function and

a communication function. The worker function performs the I/O operations,

the advection, and the processing of particles after each advection round. The

communication function sends and receives data. This data can be particles or

messages. The algorithm completes when all particle trajectories are calculated.

Pseudocode 4 describes the general program that runs identically on each node for

all four algorithms.

The pseudocode uses the following building blocks:

– GenerateSeeds(): a function that generates the initial seeds.

– WorkerFunction(): a function that performs I/O operations, advection and

process the particles after advection.

– CommunicationFunction(): a function that sends and receives data (particles

or messages) between nodes.

97

Algorithm 4 Pseudocode for the general skeleton of the four algorithms.

1: numActive← TotalNumParticles
2: activeParticles← GenerateParticles()
3: while numActive > 0 do
4: if activeParticles.size() > 0 then
5: WorkerFunction(activeParticles)
6: end if
7: CommunicationFunction(activeParticles)
8: end while

The implementation for these functions varies depending on the algorithm.

5.3.2 Worker Function. The worker function is responsible for

executing three operations: 1) I/O, 2) advection, and 3) processing particles.

The I/O operation varies depending on the algorithm; it can be either a

static allocation or load on demand. If the algorithm uses static allocation, then

each node only reads the blocks assigned to it. If the algorithm uses load on

demand, then each node loads the data blocks as needed. The POD algorithm uses

static allocation, while the POP and LSM algorithms use load on demand. In the

MW algorithm, at each iteration workers load data depending the rules instructed

by the master, which can be a static allocation or load on demand.

In all four algorithms, each node passes the particles in the current data

block to the VTK-m [2, 3] routine. The VTK-m routine will perform the advection

either in serial, or using on node parallelism, depending on the setting. For our

implementation we use on node parallelism using the Intel Threading Building

Blocks [136].

Finally, each node processes the particles after advection, and this process

has similarities and some variations for different algorithms. For all four algorithms,

each node terminates the particles that reached the maximum number of advection

steps or exited the data set. Each node also notifies the other nodes of the number

98

of terminated particles. The four algorithms vary in the way they handle particles

that exited the current data block. In the POD algorithm, the node stores the

particle in a communicate queue to be sent to other nodes. In the POP and LSM

algorithms, the node stores the particle in an inActive, which will be processed

after advecting all the particles from the current block. In the MW algorithm, at

each iteration, workers either communicate particles or store the particles in an

inActive queue and load the needed data block.

5.3.3 Communication Function. The communication function is

responsible for sending and receiving data, which can be particles or messages.

We built a communication routine that uses the Message Passing

Interface [137] for communication across the nodes. The routine uses a non-

blocking communication, and can communicate messages and particles. It takes

care of serializing and de-serializing the data.

Different algorithms communicate different types of data. In the four

algorithms, each node sends a TERMINATE message to other nodes to notify

them with the number of particles it terminated. In the POD algorithm, nodes

communicate particles according to the data block assignment. The POP algorithm

does not exchange any other data except for the TERMINATE message. In the

LSM algorithm, when a node finishes its workload it sends a NEED PARTICLE

message requesting work from a victim node. In addition, nodes communicate

particles when a thief node steals work from a victim node. In the MW algorithm,

nodes exchange different types of messages. The workers can request work or a

needed data block from the master by sending the messages NEED PARTICLE

or NEED BLOCK, respectively. At the end of each iteration, the worker

updates the master with information about its status, including the block IDs

99

currently loaded and the number of particles it has. This information are used

by the master when making work assignment. The master can send two types

of messages to the worker: SEND PARTICLES, and LOAD BLOCK. The

SEND PARTICLES message instructs a worker to send particles to another

worker, while the LOAD BLOCK message instructs the worker to load a new

block.

5.4 Results

This section presents the results of our study. The section is broken into 7

sub-sections. Sub-section 5.4.1 discusses how to interpret figures, and section 5.4.2

discusses common behaviors across all algorithms. Sub-sections 5.4.3 through 5.4.6

discuss individual algorithms. Finally, sub-section 5.4.7 performs a comparative

analysis, contrasting the performance behaviors between the algorithms.

5.4.1 Figure Representation. Figures 17, 19, 21, and 23 present

per-algorithm results, each using the same format. For each Figure, the X

axis represents Particle for every C Cells * #Steps per Particle. For example,

P/10KC ∗ 1K means there is one particle for every 10K cells and the duration

for each particle is 1K advection steps. The leftmost value is the smallest number

of total advection steps and the rightmost is the largest. However, some workloads

are equal: 1) P/10KC ∗ 10K is equal to P/1KC ∗ 1K and 2) P/1KC ∗ 10K is

equal to P/100C ∗ 1K. The Y axis represents our performance metric: the number

of steps per rank per second (see Section 5.2.5).

Figures 18, 20, 22, and 24 present per-algorithm results, each using the same

format. These figures have the same X axis as the previous figures. The Y axis

represents the execution time in seconds.

100

5.4.2 Common Behaviors. The results in Figures 17, 19, 21, and

23 show some common behaviors shared by the four algorithms, which are the

following:

– For two tests that have the same number of particles (for example test1:

P/10KC ∗ 1K and test2: P/10KC ∗ 10K), the performance is better when the

duration is longer. This is because the total work done (advection step) per

particle is increased, which offsets the cost of paying the operations to handle

more particles.

– For two tests that have the same amount of work (total number of advection

steps) the performance is better when the number of particles is smaller

and the duration is larger. For example, test1: P/10KC ∗ 10K, and test2:

P/1KC ∗ 1K have the same amount of work. Yet, the performance of test1

is better than test2 and this is again due to the extra cost of adding more

particles.

– For all different workloads, the performance decreases as the scale increases.

Note that if these algorithms achieved weak scalability, then we would expect

performance to be constant. As the number of rank increases, the number

of data blocks (size of the data) and the number of particles increase (see

Section 5.2.1.3). Increasing the number of blocks often increases the need for

I/O or communication operations as particles are more likely to move from a

block to the next.

5.4.3 POD Behavior. The results presented in Figure 17 show

the performance of POD in SPRPS for the different workloads, as well as the

scalability of the algorithm. The algorithm performs well when the seeding box is

101

P/10KC * 1K P/10KC * 10K P/1KC * 1K P/1KC * 10K P/100C * 1K P/100C * 10K

50
K

10
0K

20
0K

50
0K

1M
2M

4M
8M

16
M

32
M

#Total Steps, (Particle for every C Cells * #Steps per Particle)

S
te

ps
 p

er
 R

an
k

pe
r S

ec
on

d
(lo

g
sc

al
e)

Small Box
Mid Box
Large Box
POD 16
POD 128
POD 1024

Figure 17. The performance scalability of the parallelize over data algorithm for
different workloads.

large. It obtains the best performance using 16 ranks, P/100C ∗ 10K particles,

where the algorithm reaches a performance of 14 million SPRPS for a large

seeding box workload. The performance drops as the size of the seeding box gets

smaller, where it is computing 4 million SPRPS for the middle box case, and 1

million SPRPS for the small box case. This is a reduction of 14X between the

best case and worst case. The decrease in the performance is due to the load

102

P/10KC * 1K P/10KC * 10K P/1KC * 1K P/1KC * 10K P/100C * 1K P/100C * 10K

10
10
0

10
00

10
00
0

#Total Steps, (Particle for every C Cells * #Steps per Particle)

E
xe

cu
tio

n
Ti

m
e

in
 S

ec
on

ds
 (l

og
 s

ca
le

)

Small Box
Mid Box
Large Box
POD 16
POD 128
POD 1024

Figure 18. The performance scalability of the parallelize over data algorithm for
different workloads.

imbalance in workloads between different ranks. This is because ranks that are

responsible for the data blocks inside the seeding box will be doing the work,

while other ranks will remain idle during the entire execution time. This pattern

becomes more significant at a larger scale, since the load imbalance becomes more

significant, where the performance drops down to 600 thousand SPRPS for the

103

second concurrency (128 ranks) and down to 200 thousand SPRPS for the largest

concurrency (1024 ranks).

The results presented in Figure 18 show the execution time of POD for

the different workloads, as well as the scalability of the algorithm. These results

correspond to the execution time of the experiments presented in Figure 17. The

algorithm has low execution time for large seeding box workloads, but as the size

of the box gets smaller, the execution time increases. The execution time also

increases as the scale increases. Looking at the best workload for POD, which is

the workload with the largest number of steps and large seeding box workload.

The time increases from 223 seconds to 462 seconds when scaling from the first

concurrency (16 ranks) to the second concurrency (128 ranks), which is an increase

of 2.1X. When scaling from the second concurrency (128 ranks) to the largest

concurrency (1024 ranks), the execution time increases from 462 to 679 seconds,

which is an increase of 1.5X. The scalability of the algorithm gets worse for the

small seeding box workload. The time increases from 2595 seconds to 5071 seconds

when scaling from the first concurrency (16 ranks) to the second concurrency (128

ranks), which is an increase of 2X. When scaling from the second concurrency (128

ranks) to the largest concurrency (1024 ranks), the execution time increases from

5071 to 11082 seconds, which is an increase of 2.2X.

5.4.4 POP Behavior. The results presented in Figure 19 show

the performance of POP in SPRPS for the different workloads, as well as the

scalability of the algorithm. Unlike POD, the POP algorithm performs well

for small seeding size, due to the reduction in I/O cost. It obtains the best

performance using 16 ranks, P/100C ∗ 10K particles, where the algorithm reaches

a performance of 14 million SPRPS for a small seeding box workload. As the

104

P/10KC * 1K P/10KC * 10K P/1KC * 1K P/1KC * 10K P/100C * 1K P/100C * 10K

50
K

10
0K

20
0K

50
0K

1M
2M

4M
8M

16
M

32
M

#Total Steps, (Particle for every C Cells * #Steps per Particle)

S
te

ps
 p

er
 R

an
k

pe
r S

ec
on

d
(lo

g
sc

al
e)

Small Box
Mid Box
Large Box
POP 16
POP 128
POP 1024

Figure 19. The performance scalability of the parallelize over particles algorithm
for different workloads.

size of the box increases, the performance drops because of the increase in I/O

operations, dropping down to 8 million SPRPS for the large box workload at its

worst case. This is a reduction of 1.75X between the best case and worst case. This

pattern becomes more significant at a larger scale, since the size of the data and

the number of particles increase. The performance drops to 5 million SPRPS for

105

P/10KC * 1K P/10KC * 10K P/1KC * 1K P/1KC * 10K P/100C * 1K P/100C * 10K

10
10
0

10
00

10
00
0

#Total Steps, (Particle for every C Cells * #Steps per Particle)

E
xe

cu
tio

n
Ti

m
e

in
 S

ec
on

ds
 (l

og
 s

ca
le

)

Small Box
Mid Box
Large Box
POP 16
POP 128
POP 1024

Figure 20. The performance scalability of the parallelize over particles algorithm
for different workloads.

the second concurrency (128 ranks) and down to 2 million SPRPS for the largest

concurrency (1024 ranks).

The results presented in Figure 20 show the execution time of POP for

the different workloads, as well as the scalability of the algorithm. These results

correspond to the execution time of the experiments presented in Figure 19. The

algorithm has low execution time for small seeding box workloads, but as the

106

size of the box gets larger, the execution time increases. The execution time also

increases as the scale increases. Looking at the best workload for POP, which is

the workload with the largest number of steps and small seeding box workload.

The time increases from 200 seconds to 322 seconds when scaling from the first

concurrency (16 ranks) to the second concurrency (128 ranks), which is an increase

of 1.16X. When scaling from the second concurrency (128 ranks) to the largest

concurrency (1024 ranks), the execution time increases from 322 to 432 seconds,

which is an increase of 1.5X. The scalability of the algorithm gets worse for the

large seeding box workload. The time increases from 372 seconds to 598 seconds

when scaling from the first concurrency (16 ranks) to the second concurrency (128

ranks), which is an increase of 1.6X. When scaling from the second concurrency

(128 ranks) to the largest concurrency (1024 ranks), the execution time increases

from 598 to 432 seconds, which is an increase of 1.83X.

5.4.5 LSM Behavior. The results presented in Figure 21 show

the performance of LSM in SPRPS for the different workloads, as well as the

scalability of the algorithm. Similar to POP, the LSM algorithm performs well

for small seeding box size, due the reduction in I/O cost. It obtains the best

performance using 16 ranks, P/100C ∗ 10K particles, where the algorithm reaches

a performance of 16 million SPRPS for a small seeding box workload. As the

size of the box increases, the performance drops because of the increase in I/O

operations, dropping down to 10 million SPRPS for the large box workload at its

worst case. This is a reduction of 1.6X between the best case and worst case. This

pattern becomes more significant at a larger scale, since the size of the data and

the number of particles increase. The performance drops to 6 million SPRPS for

107

P/10KC * 1K P/10KC * 10K P/1KC * 1K P/1KC * 10K P/100C * 1K P/100C * 10K

50
K

10
0K

20
0K

50
0K

1M
2M

4M
8M

16
M

32
M

#Total Steps, (Particle for every C Cells * #Steps per Particle)

S
te

ps
 p

er
 R

an
k

pe
r S

ec
on

d
(lo

g
sc

al
e)

Small Box
Mid Box
Large Box
LSM 16
LSM 128
LSM 1024

Figure 21. The performance scalability of the work requesting algorithm for
different workloads.

the second concurrency (128 ranks) and down to 2 million SPRPS for the largest

concurrency (1024 ranks).

The results presented in Figure 22 show the execution time of LSM for

the different workloads, as well as the scalability of the algorithm. These results

correspond to the execution time of the experiments presented in Figure 21. The

algorithm has low execution time for small seeding box workloads, but as the

108

P/10KC * 1K P/10KC * 10K P/1KC * 1K P/1KC * 10K P/100C * 1K P/100C * 10K

10
10
0

10
00

10
00
0

#Total Steps, (Particle for every C Cells * #Steps per Particle)

E
xe

cu
tio

n
Ti

m
e

in
 S

ec
on

ds
 (l

og
 s

ca
le

)

Small Box
Mid Box
Large Box
LSM 16
LSM 128
LSM 1024

Figure 22. The performance scalability of the work requesting algorithm for
different workloads.

size of the box gets larger, the execution time increases. The execution time also

increases as the scale increases. Looking at the best workload for LSM, which is

the workload with the largest number of steps and small seeding box workload.

The time increases from 195 seconds to 257 seconds when scaling from the first

concurrency (16 ranks) to the second concurrency (128 ranks), which is an increase

of 1.3X. When scaling from the second concurrency (128 ranks) to the largest

109

concurrency (1024 ranks), the execution time increases from 257 to 326 seconds,

which is an increase of 1.26X. The scalability of the algorithm gets worse for the

large seeding box workload. The time increases from 293 seconds to 502 seconds

when scaling from the first concurrency (16 ranks) to the second concurrency (128

ranks), which is an increase of 1.7X. When scaling from the second concurrency

(128 ranks) to the largest concurrency (1024 ranks), the execution time increases

from 502 to 432 seconds, which is an increase of 2.2X.

The LSM algorithm performs better than POP because of its ability to

balance the workload better by requesting work from other ranks (for more details,

see our study in Section 4.2). Further, its overhead to locate victims does not affect

overall performance.

5.4.6 MW Behavior. The results presented in Figure 23 show

the performance of MW in SPRPS for the different workloads, as well as the

scalability of the algorithm. The algorithm performs better for smaller box seeding

due to the decrease of I/O cost. The algorithm obtains the best performance using

16 ranks, P/100C ∗ 10K particles, where the algorithm reaches a performance of 8

million SPRPS for a small seeding box workload. As the size of the box increases,

the performance slightly drops because of the increase in I/O operations, dropping

down to 7 million SPRPS for the large box workload at its worst case. This is

a reduction of 1.1X between the best case and worst case. This pattern becomes

more significant at a larger scale, since the size of the data, the number of particles,

and number of MPI ranks increases. The performance drops to 5 million SPRPS

for the second concurrency (128 ranks) and down to 1 million SPRPS for the

largest concurrency (1024 ranks).

110

P/10KC * 1K P/10KC * 10K P/1KC * 1K P/1KC * 10K P/100C * 1K P/100C * 10K

50
K

10
0K

20
0K

50
0K

1M
2M

4M
8M

16
M

32
M

#Total Steps, (Particle for every C Cells * #Steps per Particle)

S
te

ps
 p

er
 R

an
k

pe
r S

ec
on

d
(lo

g
sc

al
e)

Small Box
Mid Box
Large Box
MW 16
MW 128
MW 1024

Figure 23. The performance scalability of the master/worker algorithm for different
workloads.

The results presented in Figure 24 show the execution time of MW for

the different workloads, as well as the scalability of the algorithm. These results

correspond to the execution time of the experiments presented in Figure 23. The

algorithm has low execution time for small seeding box workloads, but as the

size of the box gets larger, the execution time increases. The execution time also

increases as the scale increases. Looking at the best workload for MW, which is

111

P/10KC * 1K P/10KC * 10K P/1KC * 1K P/1KC * 10K P/100C * 1K P/100C * 10K

10
10
0

10
00

10
00
0

#Total Steps, (Particle for every C Cells * #Steps per Particle)

E
xe

cu
tio

n
Ti

m
e

in
 S

ec
on

ds
 (l

og
 s

ca
le

)

Small Box
Mid Box
Large Box
MW 16
MW 128
MW 1024

Figure 24. The performance scalability of the master/worker algorithm for different
workloads.

the workload with the largest number of steps and small seeding box workload.

The time increases from 396 seconds to 597 seconds when scaling from the first

concurrency (16 ranks) to the second concurrency (128 ranks), which is an increase

of 1.5X. When scaling from the second concurrency (128 ranks) to the largest

concurrency (1024 ranks), the execution time increases from 597 to 2138 seconds,

which is an increase of 3.6X. The scalability of the algorithm gets worse for the

112

large seeding box workload. The time increases from 368 seconds to 382 seconds

when scaling from the first concurrency (16 ranks) to the second concurrency (128

ranks), which is an increase of 1.03X. When scaling from the second concurrency

(128 ranks) to the largest concurrency (1024 ranks), the execution time increases

from 382 to 984 seconds, which is an increase of 2.6X.

The algorithm performs worse than the other three algorithms due to 1) the

idle time workers spend waiting for the master and 2) the extra communication

time between workers and their masters.

5.4.7 Comparative Analysis. For all four algorithms, the best

performance was achieved at the 16 Ranks, P/100C ∗ 10K. Table 11 shows the

different seeding box sizes and the performance for the best case for each of the

four algorithms. The LSM algorithm achieves the best performance overall between

all the algorithms with the case of small seeding box with 16 ranks. This is because

the algorithm is designed to balance the workload between different nodes. Both

the POD and the POP algorithm have similar performances for their best case.

Finally, the MW algorithm has the worst performance from all four algorithms.

This is caused by the additional communication cost between masters and workers

and the idle time that workers spent waiting for the master.

Table 11. This table shows the best case scenario for each of the four algorithms,
i.e., what seeding box size yielded the highest SPRPS for an algorithm, what was

that SPRPS, and their execution time.

POD POP LSM MW

Seeding box size Large Small Small Small
Performance in SPRPS 14M 14M 16M 8M
Execution time in seconds 223 218 195 368

113

16 128 1024

Sm
al

l
M

id
La

rg
e

Seeding
Box
Size

Num Ranks

POD
POP
LSM
MW

Figure 25. Comparing the performance of the four algorithms for different
workloads.

An important goal of this dissertation is to determine the best algorithm

for each workload. Table 12 shows the best algorithm for the different seeding

box sizes and the performance of that algorithm at different scales. The LSM

114

algorithm has the best performance for the small and medium box workloads. For

a medium box workload the performance drops by 1.3X when scaling from 16 to

128 ranks and drops by 2.2X when scaling from 128 to 1024 ranks. For a small box

workload the performance drops by 1.3X when scaling from 16 to 128 ranks and

drops by 1.5X when scaling from 128 to 1024 ranks. The POD algorithm has the

best performance for the large box workload. The performance of the algorithm

drops by 2.4X when scaling from 16 to 128 ranks and drops by 1.5X when scaling

from 128 to 1024 ranks. This drop is caused by the extra communication cost.

Figure 25 shows the performance of the four algorithms for different

workloads. There are two main observations that can be seen from the figure. The

first one is how these algorithms compare to each other. The results show that,

for the large seeding box, the performance of the algorithm from best to worst is

as follows: POD, LSM and POP, and then MW. The performance for medium

seeding box from best to worst is as follows: LSM, POP, MW, and then POD

(for most cases). Finally the performance for the small seeding box from best to

worst is as follows: LSM, POP, MW, and then POD. The second observation is the

reduced performance for these algorithms at larger scale. The drop down at large

scale is either because of additional I/O operations, additional communication, or

increase in load imbalance. In the case of the large box, each algorithm is impacted

negatively due to additional I/O operations, or extra communication. However,

the impact on their performance remains limited because the workload tends to be

evenly distributed with a large seeding box. On the other hand, with a medium and

small seeding box, the performance of the POD degrades considerably with scale

due to the increase of load imbalance. This shows that the negative impact of load

imbalance on the performance is larger than the impact of additional I/O. All the

115

other algorithms except POD are better equipped to load balance the workload at

larger scale and therefor suffer less as the scale increase.

Table 12. The best algorithm for the different seeding box sizes, the table shows the
best suitable algorithm and the performance of that algorithm as different scales.

Small Box Mid Box Large Box

Best algorithm LSM LSM POD
Performance in SPRPS: 16 Ranks 16M 15M 14M

128 ranks 12M 11M 6M
1024 ranks 8M 5M 4M

5.5 Summary of Findings

This section summarizes the findings from our study:

– Using POD for small box workloads leads to bad performance due to load

imbalance. As the size of the seeding box gets smaller the performance

decreases because of the increase in load imbalance.

– Using POP and LSM for small box workloads reduces I/O, which increases

the efficiency and thus reduces the execution time. As the size of the seeding

box gets smaller the performance increases because the number of I/O

operations decreases.

– The POP and LSM algorithms have similar performances.

– The smaller the box is the better the performance of MW. This is because

there is less I/O operations and the algorithm distributes the workload

between the different workers.

– The performance of MW is lower than the other algorithms because of the

additional communication time and the idle time caused by workers waiting

for the master.

116

– The cost of load imbalance is larger than the cost of I/O.

– All algorithms performs poorly for the smallest workload since there is not

enough work to offset the cost of I/O and communication.

117

CHAPTER VI

HYLIPOD: IMPROVED HYBRID PARALLEL PARTICLE ADVECTION

ALGORITHM

6.1 Motivation

The results of the bake-off study in Chapter V showed that the two

algorithms that had the best performance are POD and LSM. However, each one

of them had some workloads where they performed poorly. The MW algorithm

has the advantage of being hybrid so it can adapt its behavior. But its main

disadvantage is the idle time cause by additional communication between masters

and workers. We propose a hybrid algorithm between the POD and LSM, which

we call HyLiPod. The algorithm adapts its behavior depending on the workload

and chooses between POD and LSM to get the best possible performance. Unlike

the MW algorithm, our algorithm does not have a master/workers structure so it

avoids the extra communication and idle time that MW suffers from.

6.2 Algorithm

In the beginning of the program, the algorithm calls a function that takes

the seeding box and returns which blocks are included. This information is used to

run either as POD or LSM. Pseudocode 5 describes our algorithm.

The pseudocode uses the following building blocks:

– GetBlocksInBox(): a function that returns a list of block ids that are within

the seeding box boundaries.

– GenerateSeeds(): a function that generates the initial seeds.

– WorkerFunction(): a function that performs I/O operations, advection and

process the particles after advection.

118

Algorithm 5 Pseudocode for the HyLiPod algorithm.

1: ListBlockIdInBox← GetBlocksInBox(seedingBox)
2: blocksIncludedPercent← ListBlockIdInBox.size()/totalNumBlocks
3: if blocksIncludedPercent >= 0.7 then
4: algo← POD
5: else
6: algo← LSM
7: end if
8: numActive← TotalNumParticle
9: activeParticles← GenerateParticles(ListBlockIdInBox)
10: while numActive > 0 do
11: if activeParticles.size() > 0 then
12: WrokerFunction(activeParticles, algo)
13: end if
14: CommunicationFunction(activeParticles, algo)
15: end while

– CommunicationFunction(): a function that sends and receives data (particles

or messages) between nodes.

6.3 Experiments Overview

We used the same configurations as Chapter V but we the limited scalability

to 128 ranks as the algorithm performance is the same as either POD or LSM.

We computed the percentage of of blocks within the seeding box boundaries

to the total number of blocks. That number was used to determine the algorithm

behavior by comparing it with a given threshold. In this study, we use a threshold

we of 70%.

6.4 Results

This section discusses the results of our study.

6.4.1 HyLiPoD Behavior. The results presented in Figure 26

show the performance of HyLiPoD for the different workloads, as well as the

scalability of the algorithm. The figure is represented as described in Section 5.4.1.

The algorithm performs better for small box since there are less blocks included,

119

P/10KC * 1K P/10KC * 10K P/1KC * 1K P/1KC * 10K P/100C * 1K P/100C * 10K

20
0K

50
0K

1M
2M

4M
8M

16
M

32
M

#Total Steps, (Particle for every C Cells * #Steps per Particle)

S
te

ps
 p

er
 R

an
k

pe
r S

ec
on

d
(lo

g
sc

al
e)

Small Box
Mid Box
Large Box
HyLiPoD 16
HyLiPoD 128

Figure 26. The performance scalability of our hybrid parallel particle advection
algorithm (HyLiPoD) for different workloads.

which means less I/O operations or communication. The algorithm obtained the

best performance using 16 ranks, P/100C ∗ 10K particles, where the algorithm

reached a performance of 16 million SPRPS for a small seeding box workload. The

performance drops at larger scale since there are more blocks and particles causing

additional I/O or communication cost.

120

Table 13. Comparing the performance of the largest workload of the three
algorithms: HyLiPoD, LSM, and POD for different seeding box sizes.

Seeding box HyLiPoD LSM POD

Large: 16Ranks 14M 10M 14M
128Ranks 6M 6M 6M

Mid: 16Ranks 15M 15M 4M
128Ranks 11M 11M 8K

Small: 16Ranks 16M 16M 1M
128Ranks 12M 12M 6K

6.4.2 Comparing HyLiPoD to LSM and POD. Table 13

compares the performance of the three algorithms: HyLiPoD, LSM, and POD for

the largest workload (P/100C ∗ 10K) for the three seeding box sizes. For the large

seeding box, HyLiPoD performs similarly to POD since all the blocks are included.

For the mid and small box sizes, HyLiPoD performs similarly to LSM since the

number of blocks within the seeding box boundaries are less than 70% of the total

number of blocks.

Figure 27 compares the performance of the three algorithms for all the

different workloads. There are two observations that can be seen from the figure.

The first one is that the HyLiPoD algorithm adapts its behavior depending on the

workload. For the large seeding box workload HyLiPoD and POD have similar

performances, while LSM has lower performance because of the I/O cost. On the

other hand, for the mid and small seeding box workloads, HyLiPoD has a similar

performance to LSM and POD has a lower performance due to the load imbalance.

The second observation, is the performance drop down at large scale. The drop

down at large scale is either because of additional I/O operations, additional

communication, or increase in load imbalance. At the large box workload LSM has

a higher drop down than the other two algorithms because the cost of I/O in LSM

121

16 128

Sm
al

l
M

id
La

rg
e

Seeding
Box
Size

Num Ranks

POD
LSM
HyLiPoD

Figure 27. Comparing the performance of the three algorithms for different
workloads.

is higher than the cost of communication in POD and HyLiPoD. In the case of

mid and small box, POD has a higher drop down because the cost of the increased

imbalance is higher than the cost of the additional I/O in LSM and HyLiPoD.

122

Part IV

The Future of Parallel Particle

Advection

123

This part of the dissertation explores the furure of parallel particle

advection. The first chapter studies the performance of the two traditional

parallelization algorithms. The second chapter discusses the future work that can

be done to improve parallel particle advection.

124

CHAPTER VII

IN SITU PARALLEL PARTICLE ADVECTION

Most of the text in this chapter comes from [9], which was a collaboration

between David Pugmire (ORNL), Hank Childs (UO), and myself. This publication

was written by myself and Hank Childs, with review and edits from David

Pugmire. I was the main implementer of the software for this study, but used a

code base that David Pugmire contributed to. Hank Childs assisted in analyzing

results.

This chapter studies tightly-coupled in situ parallel particle advection

by comparing the two traditional parallelization techniques for parallel particle

advection. In a tightly-coupled in situ processing, the simulation code and

the visualization routines are running on the same machine and sharing

resources, where the simulation passes the data to the visualization routines. The

visualization community has been using one of the traditional techniques (POD)

due to its alignment with in situ constraints. This work explores whether other

parallelization techniques are suitable for tightly-coupled in situ processing as well.

Our findings demonstrate that parallelization techniques that have been used in

post hoc research may still be relevant for in situ.

7.1 Motivation

Most of the work discussed in this dissertation, and over the last two

decades on parallelizing particle advection algorithms, has come in the context of

post hoc processing. In the post hoc setting, there is typically enough available

memory for a given processing element (i.e., MPI task) to load multiple blocks, and

also to store blocks redundantly across the processing elements. Further, acquiring

125

a given block in a post hoc setting typically means reading it from disk, meaning

that all blocks acquisitions (reads) take the same amount of time.

The assumptions made by post hoc algorithms change in a “tightly-coupled”

in situ setting (i.e., where the simulation code and visualization routines share the

same memory space). First, memory is assumed to be very precious because it is

shared with the simulation code, which discourages acquiring multiple blocks and

also having redundant blocks. Second, each processing element already has one

block (i.e., the one the simulation code is operating on) and so the assumption

is that the visualization routines should also operate on that same block, to save

on memory. Finally, block acquisitions would no longer translate to reading data

from disk, but instead acquiring data from another processing element via network

communication.

Only one of the existing particle advection parallelization methods, POD

(see Section 3.2.1), aligns with in situ constraints. In the tightly-coupled in situ

setting, the block for a given processing element would be the same one the

simulation code is operating on, minimizing memory usage.

The purpose of this work is to explore whether choices aside from POD are

suitable for tightly-coupled in situ processing as well. While POD will minimize

memory usage, it may be a poor choice with respect to execution time, which is

also a very important consideration. In particular, POD performs poorly when

particles are located in a small subset of the blocks, as this condition creates load

imbalance.

To explore this theme, we introduce a straightforward variant of the POP

algorithm (see Section 3.2.2) that is appropriate for in situ processing. The key

difference between our in situ algorithm and the traditional (post hoc) POP

126

algorithm is that in our algorithm a block is acquired via network communication

from another processing element, while traditional POP acquires blocks from

disk. In our experiments, we allowed each processing element to store up to two

additional blocks (costing 40MB each), and found that runtimes improved by

10X over the POD algorithm for some workloads. While this additional memory

overhead may be prohibitive in some settings, we feel our approach is useful in the

settings where there is available memory.

Overall, we feel the main contribution of this work is to show that the wide

body of previous research on parallelizing particle advection from the post hoc

setting may still have a place in an in situ setting.

7.2 Related Work

Several works have employed particle advection techniques in situ. Most

notably, Vetter et al. [138] presented an in situ framework for large unsteady flow

data. Their solution used POD as a parallelization method. Further, an emerging

in situ data reduction approach for vector fields uses parallel particle advection to

calculate Lagrangian basis flows [139, 140, 141]. These works also use POD.

7.3 Algorithm

In this section, we present our POP implementation for an in situ context.

For ease of reference, we abbreviate the term Processing Element as “PE” in our

description. A PE equates to one MPI task. It also could equate to one compute

node, provided there is one MPI task per node.

As discussed earlier, POP distributes particles across PEs, and the needed

data blocks are acquired by each PE on demand. In a post hoc context, the data

block is acquired by reading data from disk. To adapt the algorithm to work in an

in situ framework, PEs in our algorithm acquire needed data blocks from other

127

PEs. We hypothesize that improvements in load balance will offset the cost of

communicating data blocks, which can be high. Finally, our algorithm dedicates

a separate thread for communication to hide the communication cost.

An important consideration for in situ POP is memory consumption. A PE

acquiring many data blocks runs the risk of exceeding the budget allocated by the

simulation for in situ processing. Instead, total memory needs to be controlled. Our

algorithm allows the user to set the number of data blocks allowed in memory of a

given PE. Before each data request, the algorithm checks if there is available space

to make sure not to exceed the number of allowed data blocks. If the algorithm

reached the maximum number of data blocks, it removes a block to make space for

the new block. For our experiments, we set the maximum block size at two.

Algorithm 6 shows the pseudocode for the worker thread. It uses the

following building blocks:

– Particle: a data structure that represents a particle in the vector field. The

structure contains the particle id, position, current block id, and can also

store the trajectory of the particle.

– ParticleArray: a data structure that stores an array of Particles.

– ArrayOfParticleArrays: a data structure that stores multiple elements of

ParticleArray. Each of these elements stores multiple elements of Particle.

– SortParticleByBlock(): a function that sorts Particles depending on their

current block id and returns two elements: ArrayOfParticleArrays and a

vector containing the ids of needed blocks. All Particles that belongs to block

i are stored in index i of ArrayOfParticleArrays.

– Advect(): a function that advects the Particles of a ParticleArray until they

exit the current block or terminate. This function returns two ParticleArray

128

elements: the first one contains the completed particles, and the second one

contains particles that need another data block.

– CheckForIncomingMessages(): a function that checks for incoming messages

from other PEs. These messages can be data requests from other PEs or

notifications of particle terminations.

– SendData(): a function that sends a data block to the requesting PE.

– RequestData(): a function that requests a data block from another PE.

The algorithm starts by distributing P particles across N PEs, assigning P
N

particles to each PE. Each PE then begins the process of advecting its particles.

First, each PE starts by sorting particles by block and identifying the needed

data blocks. Next, the worker thread advects the particles located in its local

data block. We use the VTK-m [2] library for particle advection within a PE,

specifically the module developed by Pugmire, et al. [3]. Simultaneous to advection,

the communication thread requests needed data blocks; this is described in

Algorithm 7. When a PE receives a requested data block, the PE’s particles located

in that data block would be advected. The algorithm completes when all particles

are terminated, either by reaching the maximum advection step or exiting the

problem domain.

An important consideration for our algorithm was the cost to send data.

When a PE’s block is requested, it employs a multi-threaded approach to serialize

the data into a byte string. It also caches this byte string to prevent repeated

serialization costs.

7.4 Experimental Overview

This section provides an overview of our experiments: experiment

configurations (7.4.1) and the metrics we use to evaluate performance (4.2.4.4).

129

Algorithm 6 Pseudocode of the worker thread for one PE.

1: function In-Situ-POP-Advect(ParticleArray pv)
2: keepGoing ← true
3: ArrayOfParticleArrays pva[NUMBLOCKS]
4: (pva, neededDataBlocks)← SortParticlesByBlock(pv)
5: allCompletedParticles← ∅
6: while keepGoing do
7: contParticles← ∅
8: for i in NUMBLOCKS do
9: if pva[i].size() > 0 then
10: ParticleArray completed, continuing
11: (completed, continuing)← Advect(pva[i], b)
12: allCompletedParticles + = completed
13: contParticles + = continuing
14: end if
15: end for
16: if contParticles.size() > 0 then
17: pva← SortParticlesByBlock(contParticles)
18: else
19: keepGoing ← false
20: end if
21: end while
22: end function

7.4.1 Experiment Configurations.

7.4.1.1 Data Set:. Our study used an astrophysics data set consisting

of 32 blocks, with each block containing 1283 cells. It came from a simulation data

of a magnetic field surrounding a solar core collapse, which results in a supernova.

The simulation was performed via the GenASiS [134] code, which is a multi-physics

code for astrophysical systems involving nuclear matter.

7.4.1.2 Level of concurrency:. We ran all experiments using

32 MPI tasks on 16 nodes of Cori, a machine at Lawrence Berkeley National

Laboratory’s NERSC facility. Cori has both Xeon Phi and Intel Xeon “Haswell”

processor nodes; our experiments were run on the Haswells. We used 16 cores

per MPI task, for a total of 512 cores in each run. We declined to use the hyper-

130

Algorithm 7 Pseudocode of the communication thread for one PE.

1: function In-Situ-POP-Communicate(int* neededDataBlocks)
2: for i in neededDataBlocks do
3: owner ← GetOwnerNode(i)
4: dataBuffer ← RequestData(owner, i)
5: end for
6: if numActive > 0 then
7: keepCommunicating ← true
8: end if
9: while keepCommunicating do
10: MSG← CheckForIncomingMessages()
11: if MSG = PARTICLES TERMINATED then
12: numActive -= MSG.numTerminated
13: else if MSG = NEED DATA then
14: SendData(MSG.blockID)
15: end if
16: if numActive < 0 then
17: keepCommunicating ← false
18: end if
19: end while
20: end function

threading feature, since it did not boost performance for the VTK-m code base we

were using. Each Haswell node on Cori has 128GB of memory.

7.4.1.3 Parallelization Techniques:. We consider both the POD

algorithm and the POP extension we introduced in this study. The POP algorithm

running on each PE was allowed to cache up to two blocks it acquired from other

PEs. While in this study we limited the cache size to two additional blocks, the

user can choose to increase the number of allowed data blocks in cache to improve

performance but at the cost of a higher memory consumption. It is important to

note that while our POP algorithm is designed for in situ, we ran in a so-called

“theoretical” in situ environment, as our algorithm was not connected to a running

simulation. Instead, before executing the algorithm, each PE acquired one block

of data from disk. From this point forward, the disk was not consulted, and data

131

(a) (b)

Figure 28. Streamlines visualization for our (a) dense and (b) uniform seed
distributions.

was exchanged via network as it would be in an in situ setting. No I/O timings are

reported, since we feel it is not relevant to our study.

7.4.1.4 Particle Workload:. We used one million particles, and

advected each particle 10K steps (or fewer in the relatively rare cases where a

particle exited the volume), for a total of approximately 10 billion advection

steps. Particles were advected using velocity. We consider two extremes of seeding

distributions: dense and uniform. In our study, the dense distribution was so

concentrated that all of the particles begin in a single block, which is very likely

to lead to load imbalance when using POD. Our uniform distribution had particles

spread evenly throughout the volume, increasing communication cost when using

POP, since more data blocks are required. Figure 28 shows a visualization of the

two distributions.

7.4.2 Performance Measurement. For each phase, we display the

execution time of the slowest PE, the maximum memory consumption needed

to store the data, and the load imbalance. The load imbalance impacts the

performance because the execution time is determined by the time of the slowest

132

Work Idle

(a) (b)

Figure 29. Performance of the two algorithms (a) POD, (b) POP, using 32 PEs to
advect 1 million particles for 10 thousands steps for a dense distribution of seeds.
The POD figure shows one task working the whole time (the task at the bottom),

while the POP figure has more PEs involved. This figure is horizontally scaled
based on run-time; POD ran for 307s, while POP ran for 26.6s.

PE. We define load imbalance with the following equation:

Load imbalance =
Ts∑

0<p<N Tp/N

where Tp is the total execution time for PE P , and Ts is the total execution time of

the slowest PE.

7.5 Results

This section presents the results of our study. We divide our analysis based

on the seed distribution: dense (7.5.1) and uniform (7.5.2).

7.5.1 Dense Distribution. The results for dense seeding are

presented in Table 3. The results show that using POP improves performance by

a factor of 11.5X over POD.

POD has a high execution time of 307s, due to the high load imbalance

between PEs. This phenomenon is plotted in Figure 29. Since all particles are

located in one data block (block0), there is one PE advecting all particles.

133

Table 14. Comparing the performance and memory consumption of the two
algorithms for a dense particle distribution. Initialization time measures the time to
initialize variables and generate initial seeds. Advection time measures the time to

advect particles and to process the advection results (e.g., terminate).
Communication time measures the time to request or send data blocks or particles

to other PEs and to inform other PEs of termination. Idle time is the difference
between total time and the sum of the other time measurements.

POD POP

Total time 307s 26.6s
Initialization time 0.97s 0.33s
Advection time 303s 16.9s
Communication time 0.18s 4.22s
Sort particle time 0.02s 0.1s
Load imbalance 30.34x 1.2x
Memory to store data 46.99MB 93.99 MB

Using POP distributes the workload and reduces the execution time to

26.6s. Even though the communication takes 4.2s, the overall execution time is

lower than POD. As discussed in Section 7.3, we took care to optimize serialization

time, which is an important component of communication time. We found that

serializing a 1283 data block took about one-eighth of a second. (Previous versions

over our code that serialized with a single core were much slower.) Figure 29 shows

that there is idle time for each PE after advecting the particles located in its block.

This idle time is the time spent waiting to receive the required data block.

Using POP increases the memory requirement needed to store the data.

This is because each PE is storing its data block and its received data blocks. In

the case of dense distribution, only one extra block was needed, meaning that

the cache of size two was only half-filled. The memory consumption presented in

the table is representing the number of MB needed to store the velocity data; if a

simulation code was calculating extra quantities (temperature, density, etc.), then

the proportional increase in memory would be lower.

134

Table 15. Comparing the performance and memory consumption of the two
algorithms for uniform seeding. The terms in this table are described in Table 1.

POD POP

Total time 23.9s 210s
Initialization time 0.65s 0.75s
Advection time 17.6s 99.7s
Communication time 4.34s 21.8s
Sort particle time 0.01s 13.9s
Load imbalance 1.19x 1.41x
Memory to store data 47.12MB 140.9MB

7.5.2 Uniform Distribution. The results for uniform seeding are

presented in Table 15. With uniform seeding, POD performs 9.9X better than

POP. This is because POP’s PEs needed to request data blocks from the other

31 PEs, since its particles are scattered across the whole data domain. This leads

to a higher communication time, in addition to idle time waiting for data blocks.

In this test, the PEs made use of both slots in its cache. This means at any

given time, each PE could store a maximum of 140.9MB of vector field data. We

anticipate that a larger cache could substantially reduce execution time. When

the size is small, a smaller number of blocks can be requested at the same time,

since our algorithm checks for available slots before each request. As a result, PEs

might need to request the same data block more than once for cases where particles

advect toward a previous data block.

7.6 Conclusion

The contribution of this chapter is an extension of the POP algorithm to

work on an in situ context. We adapt the algorithm to acquire data blocks from

other PEs instead of reading it from disk. The chapter compares between the

main particle advection parallelization methods (POD and POP), and shows that

our POP extension is superior for the workload where POD is known to perform

135

poorly. Further, the study provides evidence that other parallelization techniques

designed for post hoc processing may also be useful for in situ processing.

136

CHAPTER VIII

CONCLUSION AND FUTURE WORK

8.1 Synthesis

While there have been several solutions proposed to optimize parallel

particle advection, there is a lack of understanding on how these parallel algorithms

compare to each other. With this dissertation we gained a better understanding of

the strengths and pitfalls of the different algorithms. The main two question of this

dissertation are:

– Which parallelization technique performs best for a given

workload?

– What are the unsolved problems in parallel particle advection?

Are there any workloads that are difficult to balance using existing

parallelization techniques?

To answer these questions, we improved and adopted the best practices for

the individual algorithms. For all algorithms we added on node parallelism by using

the VTK-m library. We also implemented a cache mechanism based on a previous

research for all the algorithms loading data on demand. We improved the work

requesting algorithm by incorporating a new scheduling method (Lifeline). Our

results showed significant improvements over previous implementations. Then we

performed a parallel particle advection bake-off study (Chapter V) to understand

the behavior of these algorithms on different workloads. In this study we compared

four of the most popular parallel particle advection solutions and ran experiments

over various workloads. The results we got from our study answer our dissertation

questions.

137

– Which parallelization technique performs best for a given

workload?

Our experiments showed that the seeding box is a major consideration

when considering which algorithm to choose. For a small or medium size

seeding box, the LSM algorithm performed the best, while the POD method

performed the best for a large seeding box. These results hold true for

different number of particles, different number of maximum steps, and at

different scales.

– What are the unsolved problems in parallel particle advection?

Are there any workloads that are difficult to balance using existing

parallelization techniques?

The performance of each of these algorithms decreases as the scale increases

due to the increased number of communications, I/O operations, and more

severe load imbalance. In addition, all algorithms perform poorly for the

workload with the fewest particle advection steps since there is not enough

work to offset the cost of I/O and communication.

The results of the bake-off study showed that the two algorithms that

performed the best are POD and LSM algorithms. Each of these two algorithms

performed the best for different workloads, while still suffering poor performance

when the other algorithm performs best. To address these individual weaknesses,

we implemented a new algorithm (HyLiPod) that is a hybrid between the POD and

LSM algorithms. Our algorithm adapted its behavior depending on the workload

characteristics and applied the algorithm that achieves the best performance.

138

Traditional visualization is usually performed post hoc, meaning saving

the data and performing the visualization after the simulation is completed.

However, with the increasing gap between the computational power and I/O

capabilities, saving data to disk is becoming a bottleneck. In situ visualization

is a promising solution to reduce the cost of I/O by visualizing the simulation as

it is running, avoiding intermediate data files. Previous in situ parallel particle

advection solutions used POD. While POD aligns with in situ constrains it can lead

to load imbalance for some workloads. We adapted the POP algorithm to work in

an in situ setting and we compared the performance of POD and POP for a dense

and sparse seed distribution. Our study demonstrated that other parallel particle

advection algorithms might be suitable for in situ setting.

8.2 Recommendations for Future Study

8.2.1 A Scalable Parallel Particle Advection Algorithm. The

results of the bake-off study showed that the performance of all algorithms drops at

scale. Even though HyLiPod has the best performance since it avoids the weakness

that other algorithms have for specific workloads, it still does not scale well. This

area represents future research. One of the reasons for poor performance is the

communication cost. An interesting study would be to evaluate the impact of

adapting the application communication pattern to take into account the network

topology [142, 143].

8.2.2 Integrating Into Production Visualization Tools.

Integrating our current implementation to the VTK-h library [144] will help

visualization users to use different parallel particle advection algorithms for their

workloads and help the visualization community to continue this research. Our

implementation supports different factors, which allows the user to test several

139

workloads. It can also be extended to support new parallel particle advection

algorithms. To this end, we plan to integrate our algorithms from Chapter VII with

Ascent [144].

8.2.3 In Situ Parallel Particle Advection. Having a single

platform to study the different parallel particle advection algorithms helped to

understand the strength and weaknesses of each of these algorithms. Future work

should study these algorithms in an in situ context, since our study in Chapter VII

showed that adapting some of the other parallel algorithms to work in situ can lead

to major performance improvements for some of the workloads.

8.2.4 Architecture Related Considerations. Our bake-off

study studied showed that the most important factors impacting the different

algorithms performance are their ability to load balance the workloads and

their communication and I/O costs. While different architectures may slightly

impact the cost of communications or I/O, the overall strength and weakness

of each algorithm would remain the same. For instance, the POD algorithm

would still have the best performance for a large box workload since the cost

of communication is less than the cost of I/O The POD would still have bad

performance for a small seeding box, regardless of any architecture change, as the

load imbalance is the major factor for such performance drop. Overall, a change in

architecture would not change the way an algorithm load balance its workload or

an algorithm communication and I/O patterns. Therefore, the lessons we learned

from the bake-off study still hold true for different architectures. Regardless, a

future study of different architectures would reveal the magnitude of effects from

changes in compute and communication.

140

8.2.5 Performance Model for Parallel Particle Advection. The

lessons learned from the bake-off study helped us to determine the important

factors impacting the performance. We could use these factors to create a

performance model for each individual parallel algorithm to estimate the

performance of the algorithm. That information would assist in choosing the best

parallel algorithm for the given workload.

141

REFERENCES CITED

[1] P. Prince and J. Dormand, “High order embedded runge-kutta formulae,”
Journal of Computational and Applied Mathematics, vol. 7, no. 1, pp. 67 –
75, 1981.

[2] K. Moreland, C. Sewell, W. Usher, L. Lo, J. Meredith, D. Pugmire, J. Kress,
H. Schroots, K.-L. Ma, H. Childs, M. Larsen, C.-M. Chen, R. Maynard, and
B. Geveci, “VTK-m: Accelerating the Visualization Toolkit for Massively
Threaded Architectures,” IEEE Computer Graphics and Applications
(CG&A), vol. 36, pp. 48–58, May/June 2016.

[3] D. Pugmire, A. Yenpure, M. Kim, J. Kress, R. Maynard, H. Childs, and
B. Hentschel, “Performance-Portable Particle Advection with VTK-m,” in
Eurographics Symposium on Parallel Graphics and Visualization (H. Childs
and F. Cucchietti, eds.), The Eurographics Association, 2018.

[4] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded computations by
work stealing,” J. ACM, vol. 46, pp. 720–748, Sept. 1999.

[5] V. A. Saraswat, P. Kambadur, S. Kodali, D. Grove, and S. Krishnamoorthy,
“Lifeline-based global load balancing,” in Proceedings of the 16th ACM
Symposium on Principles and Practice of Parallel Programming, PPoPP ’11,
(New York, NY, USA), pp. 201–212, ACM, 2011.

[6] W. Zhang, O. Tardieu, D. Grove, B. Herta, T. Kamada, V. A. Saraswat, and
M. Takeuchi, “Glb: lifeline-based global load balancing library in x10,” in
PPAA@PPoPP, 2014.

[7] V. Kumar, K. Murthy, V. Sarkar, and Y. Zheng, “Optimized distributed
work-stealing,” in Proceedings of the Sixth Workshop on Irregular
Applications: Architectures and Algorithms, (Piscataway, NJ, USA),
pp. 74–77, IEEE Press, 2016.

[8] R. Binyahib, D. Pugmire, B. Norris, and H. Childs, “A lifeline-based approach
for work requesting and parallel particle advection,” in 2019 IEEE 9th
Symposium on Large Data Analysis and Visualization (LDAV), pp. 52–61,
Oct 2019.

[9] R. Binyahib, D. Pugmire, and H. Childs, “In situ particle advection via
parallelizing over particles,” in Proceedings of the Workshop on In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization, ISAV
’19, (New York, NY, USA), p. 29–33, Association for Computing Machinery,
2019.

142

[10] H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison, , G. H. Weber, and
E. W. Bethel, “Extreme scaling of production visualization software on
diverse architectures,” IEEE Computer Graphics and Applications, vol. 30,
pp. 22–31, May 2010.

[11] T. Peterka, H. Yu, R. Ross, K. Ma, and R. Latham, “End-to-end study of
parallel volume rendering on the ibm blue gene/p,” in 2009 International
Conference on Parallel Processing, pp. 566–573, Sept 2009.

[12] J. Clyne, P. D. Mininni, A. Norton, and M. Rast, “Interactive desktop analysis
of high resolution simulations : application to turbulent plume dynamics and
current sheet formation,” 2007.

[13] V. Pascucci and R. J. Frank, “Global static indexing for real-time exploration of
very large regular grids,” in SC ’01: Proceedings of the 2001 ACM/IEEE
Conference on Supercomputing, pp. 45–45, Nov 2001.

[14] H. Childs, E. Brugger, K. Bonnell, J. Meredith, M. Miller, B. Whitlock, and
N. Max, “A contract based system for large data visualization,” in VIS 05.
IEEE Visualization, 2005., pp. 191–198, Oct 2005.

[15] O. Rubel, , , H. Childs, J. Meredith, C. G. R. Geddes, E. Cormier-Michel,
S. Ahern, G. H. Weber, P. Messmer, H. Hagen, B. Hamann, and E. Wes
Bethel, “High performance multivariate visual data exploration for
extremely large data,” in SC ’08: Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, pp. 1–12, Nov 2008.

[16] A. C. Bauer, H. Abbasi, J. Ahrens, H. Childs, B. Geveci, S. Klasky,
K. Moreland, P. O’Leary, V. Vishwanath, B. Whitlock, and E. W. Bethel,
“In situ methods, infrastructures, and applications on high performance
computing platforms,” in Proceedings of the Eurographics / IEEE VGTC
Conference on Visualization: State of the Art Reports, EuroVis ’16, (Goslar
Germany, Germany), pp. 577–597, Eurographics Association, 2016.

[17] N. Fabian, K. Moreland, D. Thompson, A. C. Bauer, P. Marion, B. Gevecik,
M. Rasquin, and K. E. Jansen, “The paraview coprocessing library: A
scalable, general purpose in situ visualization library,” in 2011 IEEE
Symposium on Large Data Analysis and Visualization, pp. 89–96, Oct 2011.

[18] B. Whitlock, J. M. Favre, and J. S. Meredith, “Parallel In Situ Coupling of
Simulation with a Fully Featured Visualization System,” in Eurographics
Symposium on Parallel Graphics and Visualization (T. Kuhlen, R. Pajarola,
and K. Zhou, eds.), The Eurographics Association, 2011.

143

[19] W. J. Schroeder, K. M. Martin, and W. E. Lorensen, “The design and
implementation of an object-oriented toolkit for 3D graphics and
visualization,” in VIS ’96: Proceedings of the 7th conference on Visualization
’96, pp. 93–ff., IEEE Computer Society Press, 1996.

[20] C. Upson, T. F. Jr., D. Kamins, D. H. Laidlaw, D. Schlegel, J. Vroom,
R. Gurwitz, and A. van Dam, “The application visualization system: A
computational environment for scientific visualization,” Computer Graphics
and Applications, vol. 9, pp. 30–42, July 1989.

[21] S. Grottel, M. Krone, C. Müller, G. Reina, and T. Ertl, “Megamol: A
prototyping framework for particle-based visualization,” IEEE Transactions
on Visualization and Computer Graphics, vol. 21, pp. 201–214, Feb 2015.

[22] H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pugmire,
K. Biagas, M. Miller, C. Harrison, G. H. Weber, H. Krishnan, T. Fogal,
A. Sanderson, C. Garth, E. W. Bethel, D. Camp, O. Rübel, M. Durant,
J. M. Favre, and P. Navrátil, “VisIt: An End-User Tool For Visualizing and
Analyzing Very Large Data,” in High Performance Visualization–Enabling
Extreme-Scale Scientific Insight, pp. 357–372, Oct 2012.

[23] J. Ahrens, B. Geveci, C. Law, C. Hansen, and C. Johnson, “36-paraview: An
end-user tool for large-data visualization,” The visualization handbook,
vol. 717, 2005.

[24] B. S. Siegell and P. Steenkiste, “Automatic generation of parallel programs with
dynamic load balancing,” in Proceedings of 3rd IEEE International
Symposium on High Performance Distributed Computing, pp. 166–175, Aug
1994.

[25] M. Woo and O. A. R. Board, OpenGL Programming Guide: The Official Guide
to Learning OpenGL, Version 1.2. Graphics programming, Addison-Wesley,
1999.

[26] P. Shirley, M. Ashikhmin, and S. Marschner, Fundamentals of Computer
Graphics. Ak Peters Series, Taylor & Francis, 2005.

[27] R. A. Drebin, L. Carpenter, and P. Hanrahan, “Volume rendering,” in
Proceedings of the 15th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’88, (New York, NY, USA), pp. 65–74,
ACM, 1988.

[28] N. Max, “Optical models for direct volume rendering,” IEEE Transactions on
Visualization and Computer Graphics, vol. 1, pp. 99–108, June 1995.

144

[29] M. Hadwiger, J. M. Kniss, C. Rezk-salama, D. Weiskopf, and K. Engel,
Real-time Volume Graphics. Natick, MA, USA: A. K. Peters, Ltd., 2006.

[30] S. Molnar, M. Cox, D. Ellsworth, and H. Fuchs, “A sorting classification of
parallel rendering,” IEEE Computer Graphics and Applications, vol. 14,
pp. 23–32, July 1994.

[31] R. Samanta, J. Zheng, T. Funkhouser, K. Li, and J. P. Singh, “Load balancing
for multi-projector rendering systems,” in Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, HWWS
’99, (New York, NY, USA), pp. 107–116, ACM, 1999.

[32] F. Erol, S. Eilemann, and R. Pajarola, “Cross-Segment Load Balancing in
Parallel Rendering,” in Eurographics Symposium on Parallel Graphics and
Visualization (T. Kuhlen, R. Pajarola, and K. Zhou, eds.), The Eurographics
Association, 2011.

[33] B. Moloney, M. Ament, D. Weiskopf, and T. Moller, “Sort-first parallel volume
rendering,” IEEE Transactions on Visualization and Computer Graphics,
vol. 17, pp. 1164–1177, Aug 2011.

[34] E. W. Bethel, H. Childs, and C. Hansen, High Performance Visualization:
Enabling Extreme-Scale Scientific Insight. Chapman & Hall/CRC, 1st ed.,
2012.

[35] S. Marchesin, C. Mongenet, and J.-M. Dischler, “Dynamic load balancing for
parallel volume rendering,” in Proceedings of the 6th Eurographics
Conference on Parallel Graphics and Visualization, EGPGV ’06,
(Aire-la-Ville, Switzerland, Switzerland), pp. 43–50, Eurographics
Association, 2006.

[36] K.-L. Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh, “Parallel volume
rendering using binary-swap compositing,” IEEE Computer Graphics and
Applications, vol. 14, pp. 59–68, July 1994.

[37] K.-L. Ma and T. W. Crockett, “A scalable parallel cell-projection volume
rendering algorithm for three-dimensional unstructured data,” in In
Proceedings of 1997 Symposium on Parallel Rendering, pp. 95–104.

[38] D. Steiner, E. G. Paredes, S. Eilemann, and R. Pajarola, “Dynamic work
packages in parallel rendering,” in Proceedings of the 16th Eurographics
Symposium on Parallel Graphics and Visualization, EGPGV ’16, (Goslar
Germany, Germany), pp. 89–98, Eurographics Association, 2016.

[39] S. Eilemann, M. Makhinya, and R. Pajarola, “Equalizer: A scalable parallel
rendering framework,” IEEE Transactions on Visualization and Computer
Graphics, vol. 15, pp. 436–452, May 2009.

145

[40] C. Müller, M. Strengert, and T. Ertl, “Optimized volume raycasting for
graphics-hardware-based cluster systems,” in Proceedings of the 6th
Eurographics Conference on Parallel Graphics and Visualization, EGPGV
’06, (Aire-la-Ville, Switzerland, Switzerland), pp. 59–67, Eurographics
Association, 2006.

[41] C. Montani, R. Perego, and R. Scopigno, “Parallel rendering of volumetric data
set on distributed-memory architectures,” Concurrency: Practice and
Experience, vol. 5, no. 2, pp. 153–167, 1993.

[42] H. Childs, M. Duchaineau, and K.-L. Ma, “A scalable, hybrid scheme for
volume rendering massive data sets,” pp. 153–161, 2006.

[43] R. Binyahib, T. Peterka, M. Larsen, K. Ma, and H. Childs, “A scalable hybrid
scheme for ray-casting of unstructured volume data,” IEEE Transactions on
Visualization and Computer Graphics, pp. 1–1, 2018.

[44] R. Samanta, T. Funkhouser, K. Li, and J. P. Singh, “Hybrid sort-first and
sort-last parallel rendering with a cluster of pcs,” in Proceedings of the ACM
SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, HWWS
’00, (New York, NY, USA), pp. 97–108, ACM, 2000.

[45] A. Garcia and H.-W. Shen, “An interleaved parallel volume renderer with
pc-clusters,” in Proceedings of the Fourth Eurographics Workshop on Parallel
Graphics and Visualization, EGPGV ’02, (Aire-la-Ville, Switzerland,
Switzerland), pp. 51–59, Eurographics Association, 2002.

[46] K.-L. Ma, “Parallel volume ray-casting for unstructured-grid data on
distributed-memory architectures,” in Proceedings of the IEEE Symposium
on Parallel Rendering, PRS ’95, (New York, NY, USA), pp. 23–30, ACM,
1995.

[47] N. Max, P. Williams, C. Silva, and R. Cook, “Volume rendering for curvilinear
and unstructured grids,” in Computer Graphics International, 2003.
Proceedings, pp. 210–215, IEEE, 2003.

[48] M. Larsen, S. Labasan, P. Navrátil, J. Meredith, and H. Childs, “Volume
Rendering Via Data-Parallel Primitives,” in Proceedings of EuroGraphics
Symposium on Parallel Graphics and Visualization (EGPGV), (Cagliari,
Italy), pp. 53–62, May 2015.

[49] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d surface
construction algorithm,” in Proceedings of the 14th Annual Conference on
Computer Graphics and Interactive Techniques, SIGGRAPH ’87, (New York,
NY, USA), pp. 163–169, ACM, 1987.

146

[50] Y.-J. Chiang, R. Farias, C. T. Silva, and B. Wei, “A unified infrastructure for
parallel out-of-core isosurface extraction and volume rendering of
unstructured grids,” in Proceedings IEEE 2001 Symposium on Parallel and
Large-Data Visualization and Graphics (Cat. No.01EX520), pp. 59–151, Oct
2001.

[51] Y.-J. Chiang, C. T. Silva, and W. J. Schroeder, “Interactive out-of-core
isosurface extraction,” in Proceedings of the Conference on Visualization ’98,
VIS ’98, (Los Alamitos, CA, USA), pp. 167–174, IEEE Computer Society
Press, 1998.

[52] M. J. Quinn, Designing Efficient Algorithms for Parallel Computers. New York,
NY, USA: McGraw-Hill, Inc., 1987.

[53] X. Zhang, C. Bajaj, and W. Blanke, “Scalable isosurface visualization of
massive datasets on cots clusters,” in Proceedings of the IEEE 2001
Symposium on Parallel and Large-data Visualization and Graphics, PVG ’01,
(Piscataway, NJ, USA), pp. 51–58, IEEE Press, 2001.

[54] C. L. Bajaj, V. Pascucci, and D. R. Schikore, “The contour spectrum,” in
Proceedings. Visualization ’97 (Cat. No. 97CB36155), pp. 167–173, Oct
1997.

[55] L. Arge and J. S. Vitter, “Optimal dynamic interval management in external
memory (extended abstract),” in FOCS, 1996.

[56] M. Berger and P. Colella, “Local adaptive mesh refinement for shock
hydrodynamics,” Journal of Computational Physics, vol. 82, no. 1, pp. 64 –
84, 1989.

[57] D. C. Fang, G. H. Weber, H. Childs, E. S. Brugger, B. Hamann, and K. I. Joy,
“Extracting geometrically continuous isosurfaces from adaptive mesh
refinement data,” in Proceedings of 2004 Hawaii International Conference on
Computer Sciences, pp. 216–224, 2004.

[58] G. H. Weber, H. Childs, and J. S. Meredith, “Efficient parallel extraction of
crack-free isosurfaces from adaptive mesh refinement (amr) data,” in IEEE
Symposium on Large Data Analysis and Visualization (LDAV), pp. 31–38,
Oct 2012.

[59] G. H. Weber, O. Kreylos, T. J. Ligocki, J. Shalf, H. Hagen, B. Hamann, and
K. I. Joy, “Extraction of crack-free isosurfaces from adaptive mesh
refinement data,” in VisSym, 2001.

147

[60] S. Eilemann and R. Pajarola, “Direct send compositing for parallel sort-last
rendering,” in Proceedings of the 7th Eurographics Conference on Parallel
Graphics and Visualization, EGPGV ’07, (Aire-la-Ville, Switzerland,
Switzerland), pp. 29–36, Eurographics Association, 2007.

[61] H. Yu, C. Wang, and K.-L. Ma, “Massively parallel volume rendering using 2-3
swap image compositing,” in Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, SC ’08, (Piscataway, NJ, USA),
pp. 48:1–48:11, IEEE Press, 2008.

[62] J. Nonaka, K. Ono, and M. Fujita, “234 scheduling of 3-2 and 2-1 eliminations
for parallel image compositing using non-power-of-two number of processes,”
in 2015 International Conference on High Performance Computing
Simulation (HPCS), pp. 421–428, July 2015.

[63] J. Nonaka, K. Ono, and M. Fujita, “234compositor: A flexible parallel image
compositing framework for massively parallel visualization environments,”
Future Generation Computer Systems, vol. 82, pp. 647 – 655, 2018.

[64] R. Rabenseifner and J. L. Träff, “More efficient reduction algorithms for
non-power-of-two number of processors in message-passing parallel systems,”
in Recent Advances in Parallel Virtual Machine and Message Passing
Interface (D. Kranzlmüller, P. Kacsuk, and J. Dongarra, eds.), (Berlin,
Heidelberg), pp. 36–46, Springer Berlin Heidelberg, 2004.

[65] T. Peterka, D. Goodell, R. Ross, H. W. Shen, and R. Thakur, “A configurable
algorithm for parallel image-compositing applications,” in Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis, pp. 1–10, Nov 2009.

[66] K. Moreland, W. Kendall, T. Peterka, and J. Huang, “An image compositing
solution at scale,” in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’11, (New
York, NY, USA), pp. 25:1–25:10, ACM, 2011.

[67] J. Ahrens and J. Painter, “Efficient sort-last rendering using compression-based
image compositing,” in in Proceedings of the 2nd Eurographics Workshop on
Parallel Graphics and Visualization, pp. 145–151, 1998.

[68] K. Moreland, B. Wylie, and C. Pavlakos, “Sort-last parallel rendering for
viewing extremely large data sets on tile displays,” in Proceedings of the
IEEE 2001 Symposium on Parallel and Large-data Visualization and
Graphics, PVG ’01, (Piscataway, NJ, USA), pp. 85–92, IEEE Press, 2001.

148

[69] D.-L. Yang, J.-C. Yu, and Y.-C. Chung, “Efficient compositing methods for the
sort-last-sparse parallel volume rendering system on distributed memory
multicomputers,” in Proceedings of the 1999 International Conference on
Parallel Processing, pp. 200–207, Sep. 1999.

[70] A. Takeuchi, F. Ino, and K. Hagihara, “An improvement on binary-swap
compositing for sort-last parallel rendering,” in Proceedings of the 2003
ACM Symposium on Applied Computing, SAC ’03, (New York, NY, USA),
pp. 996–1002, ACM, 2003.

[71] W. Kendall, T. Peterka, J. Huang, H.-W. Shen, and R. Ross, “Accelerating and
benchmarking radix-k image compositing at large scale,” in Proceedings of
the 10th Eurographics Conference on Parallel Graphics and Visualization,
EG PGV’10, (Aire-la-Ville, Switzerland, Switzerland), pp. 101–110,
Eurographics Association, 2010.

[72] K. Moreland, “Icet users’ guide and reference, version 2.0. technical report
sand2010-7451, sandia national laboratories,” January 2011.

[73] K. Moreland, “Comparing binary-swap algorithms for odd factors of processes,”
in 2018 IEEE 8th Symposium on Large Data Analysis and Visualization
(LDAV), Oct 2018.

[74] M. Isenburg, P. Lindstrom, and H. Childs, “Parallel and streaming generation of
ghost data for structured grids,” IEEE Computer Graphics and Applications,
vol. 30, pp. 32–44, May 2010.

[75] F. B. Kjolstad and M. Snir, “Ghost cell pattern,” in Proceedings of the 2010
Workshop on Parallel Programming Patterns, ParaPLoP ’10, (New York,
NY, USA), pp. 4:1–4:9, ACM, 2010.

[76] C. R. Johnson, S. G. Parker, and D. Weinstein, “Large-scale computational
science applications using the scirun problem solving environment,” in In
Supercomputer, 2000.

[77] J. Zhang, H. Guo, F. Hong, X. Yuan, and T. Peterka, “Dynamic load balancing
based on constrained k-d tree decomposition for parallel particle tracing,”
IEEE Transactions on Visualization and Computer Graphics, vol. 24,
pp. 954–963, Jan 2018.

[78] C. Harrison, J. Weiler, R. Bleile, K. Gaither, and H. Childs, “A
distributed-memory algorithm for connected components labeling of
simulation data,” in Topological and Statistical Methods for Complex Data
(J. Bennett, F. Vivodtzev, and V. Pascucci, eds.), (Berlin, Heidelberg),
pp. 3–19, Springer Berlin Heidelberg, 2015.

149

[79] K. Moreland, L. Avila, and L. A. Fisk, “Parallel unstructured volume rendering
in ParaView,” in Visualization and Data Analysis 2007 (R. F. Erbacher,
J. C. Roberts, M. T. Gröhn, and K. Börner, eds.), vol. 6495, pp. 144 – 155,
International Society for Optics and Photonics, SPIE, 2007.

[80] J. M. Patchett, B. Nouanesengesy, J. Pouderoux, J. Ahrens, and H. Hagen,
“Parallel multi-layer ghost cell generation for distributed unstructured
grids,” in 2017 IEEE 7th Symposium on Large Data Analysis and
Visualization (LDAV), pp. 84–91, Oct 2017.

[81] J. Biddiscombe, “High-Performance Mesh Partitioning and Ghost Cell
Generation for Visualization Software,” in Eurographics Symposium on
Parallel Graphics and Visualization (E. Gobbetti and W. Bethel, eds.), The
Eurographics Association, 2016.

[82] E. G. Boman, U. V. Catalyurek, C. Chevalier, and K. D. Devine, “The Zoltan
and Isorropia parallel toolkits for combinatorial scientific computing:
Partitioning, ordering, and coloring,” Scientific Programming, vol. 20, no. 2,
pp. 129–150, 2012.

[83] K. Moreland, “A survey of visualization pipelines,” IEEE Transactions on
Visualization and Computer Graphics, vol. 19, pp. 367–378, March 2013.

[84] J. Ahrens, K. Brislawn, K. Martin, B. Geveci, C. C. Law, and M. Papka,
“Large-scale data visualization using parallel data streaming,” IEEE
Computer Graphics and Applications, vol. 21, pp. 34–41, July 2001.

[85] B. Whitlock, J. M. Favre, and J. S. Meredith, “Parallel in situ coupling of
simulation with a fully featured visualization system,” in Proceedings of the
11th Eurographics Conference on Parallel Graphics and Visualization,
EGPGV ’11, (Aire-la-Ville, Switzerland, Switzerland), pp. 101–109,
Eurographics Association, 2011.

[86] C. Mommessin, M. Dreher, B. Raffin, and T. Peterka, “Automatic data filtering
for in situ workflows,” in 2017 IEEE International Conference on Cluster
Computing (CLUSTER), pp. 370–378, Sep. 2017.

[87] T. Peterka, J. Kwan, A. Pope, H. Finkel, K. Heitmann, and S. Habib, “Meshing
the universe : Identifying voids in cosmological simulations through in situ
parallel voronoi tessellation,” 2012.

[88] T. Peterka, D. Morozov, and C. Phillips, “High-performance computation of
distributed-memory parallel 3d voronoi and delaunay tessellation,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’14, (Piscataway, NJ,
USA), pp. 997–1007, IEEE Press, 2014.

150

[89] L. J. Guibas, D. E. Knuth, and M. Sharir, “Randomized incremental
construction of delaunay and voronoi diagrams,” Algorithmica, vol. 7,
pp. 381–413, Jun 1992.

[90] C. B. Barber, D. P. Dobkin, D. P. Dobkin, and H. Huhdanpaa, “The quickhull
algorithm for convex hulls,” ACM Trans. Math. Softw., vol. 22, pp. 469–483,
Dec. 1996.

[91] A. Fabri and S. Pion, “Cgal - the computational geometry algorithms library,”
pp. 538–539, 01 2009.

[92] D. Morozov and T. Peterka, “Efficient delaunay tessellation through k-d tree
decomposition,” in SC ’16: Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis,
pp. 728–738, Nov 2016.

[93] A. Aggarwal and S. Vitter, Jeffrey, “The input/output complexity of sorting
and related problems,” Commun. ACM, vol. 31, pp. 1116–1127, Sept. 1988.

[94] J. S. Vitter, “External memory algorithms and data structures: Dealing with
massive data,” ACM Comput. Surv., vol. 33, pp. 209–271, June 2001.

[95] Y.-J. Chiang and C. T. Silva in External Memory Algorithms (J. M. Abello and
J. S. Vitter, eds.), ch. External Memory Techniques for Isosurface Extraction
in Scientific Visualization, pp. 247–277, Boston, MA, USA: American
Mathematical Society, 1999.

[96] C. Chen, L. Xu, T. Lee, and H. Shen, “A flow-guided file layout for out-of-core
streamline computation,” in 2011 IEEE Symposium on Large Data Analysis
and Visualization, pp. 115–116, Oct 2011.

[97] C. Chen, B. Nouanesengsy, T. Lee, and H. Shen, “Flow-guided file layout for
out-of-core pathline computation,” in IEEE Symposium on Large Data
Analysis and Visualization (LDAV), pp. 109–112, Oct 2012.

[98] C. Chen and H. Shen, “Graph-based seed scheduling for out-of-core ftle and
pathline computation,” in 2013 IEEE Symposium on Large-Scale Data
Analysis and Visualization (LDAV), pp. 15–23, Oct 2013.

[99] L. Ibanez, W. Schroeder, L. Ng, and J. Cates, “Streaming large data. in the itk
software guide,” 2005.

[100] D. Nagle, “Mpi – the complete reference, vol. 1, the mpi core, 2nd ed.,
scientific and engineering computation series, by marc snir, steve otto,
steven huss-lederman, david walker and jack dongarra,” Sci. Program.,
vol. 13, pp. 57–63, Jan. 2005.

151

[101] B. Chapman, G. Jost, R. van der Pas, and D. Kuck, Using OpenMP: Portable
Shared Memory Parallel Programming. No. v. 10 in Scientific Computation
Series, Books24x7.com, 2008.

[102] B. Nichols, D. Buttlar, J. Farrell, and J. Farrell, PThreads Programming: A
POSIX Standard for Better Multiprocessing. A POSIX standard for better
multiprocessing, O’Reilly Media, Incorporated, 1996.

[103] M. Howison, E. W. Bethel, and H. Childs, “Hybrid parallelism for volume
rendering on large-, multi-, and many-core systems,” IEEE Transactions on
Visualization and Computer Graphics, vol. 18, pp. 17–29, Jan 2012.

[104] M. Howison, E. W. Bethel, and H. Childs, “Mpi-hybrid parallelism for volume
rendering on large, multi-core systems,” in Proceedings of the 10th
Eurographics Conference on Parallel Graphics and Visualization, EG
PGV’10, (Aire-la-Ville, Switzerland, Switzerland), pp. 1–10, Eurographics
Association, 2010.

[105] D. Pugmire, H. Childs, C. Garth, S. Ahern, and G. H. Weber, “Scalable
computation of streamlines on very large datasets,” in Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis, pp. 1–12, Nov 2009.

[106] D. Camp, C. Garth, H. Childs, D. Pugmire, and K. Joy, “Streamline
integration using mpi-hybrid parallelism on a large multicore architecture,”
IEEE Transactions on Visualization and Computer Graphics, vol. 17,
pp. 1702–1713, Nov 2011.

[107] C. Garth, F. Gerhardt, X. Tricoche, and H. Hans, “Efficient computation and
visualization of coherent structures in fluid flow applications,” IEEE
Transactions on Visualization and Computer Graphics, vol. 13,
pp. 1464–1471, Nov. 2007.

[108] J. P. M. Hultquist, “Constructing stream surfaces in steady 3d vector fields,”
in Visualization, 1992. Visualization ’92, Proceedings., IEEE Conference on,
pp. 171–178, Oct 1992.

[109] C. Garth, X. Tricoche, T. Salzbrunn, T. Bobach, and G. Scheuermann,
“Surface techniques for vortex visualization,” in Proceedings of the Sixth
Joint Eurographics - IEEE TCVG Conference on Visualization, VISSYM’04,
(Aire-la-Ville, Switzerland, Switzerland), pp. 155–164, Eurographics
Association, 2004.

152

[110] T. McLoughlin, R. S. Laramee, and E. Zhang, “Easy integral surfaces: A fast,
quad-based stream and path surface algorithm,” in Proceedings of the 2009
Computer Graphics International Conference, CGI ’09, (New York, NY,
USA), pp. 73–82, ACM, 2009.

[111] H. Krishnan, C. Garth, and K. Joy, “Time and streak surfaces for flow
visualization in large time-varying data sets,” IEEE Transactions on
Visualization and Computer Graphics, vol. 15, pp. 1267–1274, Nov 2009.

[112] T. McLoughlin, R. S. Laramee, R. Peikert, F. H. Post, and M. Chen, “Over
Two Decades of Integration-Based, Geometric Flow Visualization,”
Computer Graphics Forum, 2010.

[113] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary Differential
Equations I (2Nd Revised. Ed.): Nonstiff Problems. New York, NY, USA:
Springer-Verlag New York, Inc., 1993.

[114] D. Sujudi and R. Haimes, “- integration of particle paths and streamlines in a
spatially-decomposed computation,” in Parallel Computational Fluid
Dynamics 1995 (A. Ecer, J. Periaux, N. Satdfuka, and S. Taylor, eds.),
pp. 315 – 322, Amsterdam: North-Holland, 1996.

[115] D. Camp, H. Childs, A. Chourasia, C. Garth, and K. I. Joy, “Evaluating the
benefits of an extended memory hierarchy for parallel streamline
algorithms,” in 2011 IEEE Symposium on Large Data Analysis and
Visualization, pp. 57–64, Oct 2011.

[116] C. Müller, D. Camp, B. Hentschel, and C. Garth, “Distributed parallel particle
advection using work requesting,” in 2013 IEEE Symposium on Large-Scale
Data Analysis and Visualization (LDAV), pp. 1–6, Oct 2013.

[117] T. Peterka, R. Ross, B. Nouanesengsy, T. Y. Lee, H. W. Shen, W. Kendall,
and J. Huang, “A study of parallel particle tracing for steady-state and
time-varying flow fields,” in 2011 IEEE International Parallel Distributed
Processing Symposium, pp. 580–591, May 2011.

[118] L. Chen and I. Fujishiro, “Optimizing parallel performance of streamline
visualization for large distributed flow datasets,” in 2008 IEEE Pacific
Visualization Symposium, pp. 87–94, March 2008.

[119] H. Yu, C. Wang, and K. Ma, “Parallel hierarchical visualization of large
time-varying 3d vector fields,” in SC ’07: Proceedings of the 2007
ACM/IEEE Conference on Supercomputing, pp. 1–12, Nov 2007.

[120] B. Nouanesengsy, T. Y. Lee, and H. W. Shen, “Load-balanced parallel
streamline generation on large scale vector fields,” IEEE Transactions on
Visualization and Computer Graphics, vol. 17, pp. 1785–1794, Dec 2011.

153

[121] J. Dinan, D. B. Larkins, P. Sadayappan, S. Krishnamoorthy, and J. Nieplocha,
“Scalable work stealing,” in Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis, SC ’09, (New
York, NY, USA), pp. 53:1–53:11, ACM, 2009.

[122] P. J. Rhodes, X. Tang, R. D. Bergeron, and T. M. Sparr, “Iteration aware
prefetching for large multidimensional datasets,” in Proceedings of the 17th
International Conference on Scientific and Statistical Database Management,
SSDBM’2005, (Berkeley, CA, US), pp. 45–54, Lawrence Berkeley
Laboratory, 2005.

[123] O. O. Akande and P. J. Rhodes, “Iteration aware prefetching for unstructured
grids,” in 2013 IEEE International Conference on Big Data, pp. 219–227,
Oct 2013.

[124] H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison, Prabhat, G. H.
Weber, and E. W. Bethel, “Extreme scaling of production visualization
software on diverse architectures,” IEEE Computer Graphics and
Applications, vol. 30, pp. 22–31, May 2010.

[125] W. Kendall, J. Wang, M. Allen, T. Peterka, J. Huang, and D. Erickson,
“Simplified parallel domain traversal,” in Proceedings of 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis, SC ’11, (New York, NY, USA), pp. 10:1–10:11, ACM, 2011.

[126] H. Guo, X. Yuan, J. Huang, and X. Zhu, “Coupled ensemble flow line
advection and analysis,” IEEE Transactions on Visualization and Computer
Graphics, vol. 19, pp. 2733–2742, Dec. 2013.

[127] H. Guo, F. Hong, Q. Shu, J. Zhang, J. Huang, and X. Yuan, “Scalable
lagrangian-based attribute space projection for multivariate unsteady flow
data,” in 2014 IEEE Pacific Visualization Symposium, pp. 33–40, March
2014.

[128] R. Liu, H. Guo, J. Zhang, and X. Yuan, “Comparative visualization of vector
field ensembles based on longest common subsequence,” in 2016 IEEE
Pacific Visualization Symposium (PacificVis), pp. 96–103, April 2016.

[129] K. Lu, H. Shen, and T. Peterka, “Scalable computation of stream surfaces on
large scale vector fields,” in SC ’14: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1008–1019, Nov 2014.

[130] D. Camp, H. Childs, C. Garth, D. Pugmire, and K. I. Joy, “Parallel stream
surface computation for large data sets,” in IEEE Symposium on Large Data
Analysis and Visualization (LDAV), pp. 39–47, Oct 2012.

154

[131] K. Lu, H. Shen, and T. Peterka, “Scalable computation of stream surfaces on
large scale vector fields,” in SC ’14: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, pp. 1008–1019, Nov 2014.

[132] P. F. Fischer, J. W. Lottes, and S. G. Kerkemeier, “nek5000 Web page,” 2008.
http://nek5000.mcs.anl.gov.

[133] C. Sovinec, A. Glasser, T. Gianakon, D. Barnes, R. Nebel, S. Kruger,
S. Plimpton, A. Tarditi, M. Chu, and the NIMROD Team, “Nonlinear
Magnetohydrodynamics with High-order Finite Elements,” J. Comp. Phys.,
vol. 195, p. 355, 2004.

[134] E. Endeve, C. Y. Cardall, R. D. Budiardja, and A. Mezzacappa, “Generation
of Magnetic Fields By the Stationary Accretion Shock Instability,” The
Astrophysical Journal, vol. 713, no. 2, pp. 1219–1243, 2010.

[135] R. Sisneros and D. Pugmire, “Tuned to terrible: A study of parallel particle
advection state of the practice,” in 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), pp. 1058–1067,
May 2016.

[136] Intel Corporation, “Introducing the Intel Threading Building Blocks,” May
2017. https://software.intel.com/en-us/node/506042.

[137] “Mpi: A message passing interface,” in Supercomputing ’93. Proceedings,
pp. 878–883, Nov 1993.

[138] Vetter and Olbrich, “Development and integration of an in-situ framework for
flow visualization of large-scale, unsteady phenomena in icon,” Supercomput.
Front. Innov.: Int. J., vol. 4, pp. 55–67, Sept. 2017.

[139] A. Agranovsky, D. Camp, C. Garth, E. W. Bethel, K. I. Joy, and H. Childs,
“Improved Post Hoc Flow Analysis via Lagrangian Representations,” in
Proceedings of the IEEE Symposium on Large Data Visualization and
Analysis (LDAV), pp. 67–75, Nov. 2014.

[140] S. Sane, R. Bujack, and H. Childs, “Revisiting the Evaluation of In Situ
Lagrangian Analysis,” in Eurographics Symposium on Parallel Graphics and
Visualization (EGPGV), (Brno, Czech Republic), pp. 63–67, June 2018.

[141] S. Sane, H. Childs, and R. Bujack, “An Interpolation Scheme for VDVP
Lagrangian Basis Flows,” in Eurographics Symposium on Parallel Graphics
and Visualization (EGPGV), (Porto, Portugal), pp. 109–118, June 2019.

155

https://software.intel.com/en-us/node/506042

[142] P. Balaji, R. Gupta, A. Vishnu, and P. Beckman, “Mapping communication
layouts to network hardware characteristics on massive-scale blue gene
systems,” Comput. Sci., vol. 26, p. 247–256, June 2011.

[143] T. Fujiwara, P. Malakar, K. Reda, V. Vishwanath, M. E. Papka, and K. Ma,
“A visual analytics system for optimizing communications in massively
parallel applications,” in 2017 IEEE Conference on Visual Analytics Science
and Technology (VAST), pp. 59–70, Oct 2017.

[144] M. Larsen, J. Ahrens, U. Ayachit, E. Brugger, H. Childs, B. Geveci, and
C. Harrison, “The alpine in situ infrastructure: Ascending from the ashes of
strawman,” in Proceedings of the In Situ Infrastructures on Enabling
Extreme-Scale Analysis and Visualization, ISAV’17, (New York, NY, USA),
pp. 42–46, ACM, 2017.

156

	I Foundations
	 Introduction
	Dissertation Plan
	Dissertation Outline
	Abbreviations
	Co-Authored Material

	 Background
	Scientific Visualization in a Distributed Memory Setting
	Scalar Field Visualization
	Supporting Infrastructure

	 Parallel Particle Advection Algorithms
	Foundations
	Studied Parallel Particle Advection Algorithms
	Other Parallel Particle Advection Algorithms

	II Improving Individual Parallel Particle Advection Algorithms
	 BEST PRACTICES AND IMPROVEMENTS TO THE PARALLEL ALGORITHMS
	Parallel Particle Advection Best Practices
	A Lifeline-Based Approach for Work Requesting and Parallel Particle Advection

	III Understanding Parallel Particle Advection Behavior Over Various Workloads
	 Parallel Particle Advection Bake-Off
	Motivation
	Experiment Overview
	Testing Infrastructure
	Results
	Summary of Findings

	 HyLiPoD: Improved Hybrid Parallel Particle Advection Algorithm
	Motivation
	Algorithm
	Experiments Overview
	Results

	IV The Future of Parallel Particle Advection
	 In Situ Parallel Particle Advection
	Motivation
	Related Work
	Algorithm
	Experimental Overview
	Results
	Conclusion

	 Conclusion And Future Work
	Synthesis
	Recommendations for Future Study

	REFERENCES CITED

