
THE APPLICATIONS OF MACHINE LEARNING TECHNIQUES IN

NETWORKED SYSTEMS

by

SOHEIL JAMSHIDI

A DISSERTATION

Presented to the Department of Computer and Information Science
and the Graduate School of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

September 2020



DISSERTATION APPROVAL PAGE

Student: Soheil Jamshidi

Title: The Applications of Machine Learning Techniques in Networked Systems

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Computer
and Information Science by:

Prof. Reza Rejaie Chair
Prof. Ramakrishnan Durairajan Core Member
Prof. Jun Li Core Member
Prof. Daniel Lowd Core Member
Prof. Raghuveer Parthasarathy Institutional Representative

and

Kate Mondloch Interim Vice Provost and Dean of the
Graduate School

Original approval signatures are on file with the University of Oregon Graduate
School.

Degree awarded September 2020

ii



c© 2020 Soheil Jamshidi
This work is licensed under a Creative Commons

Attribution 4.0 License.

iii

http://creativecommons.org/licenses/by/4.0/


DISSERTATION ABSTRACT

Soheil Jamshidi

Doctor of Philosophy

Department of Computer and Information Science

September 2020

Title: The Applications of Machine Learning Techniques in Networked Systems

Many large networked systems ranging from the Internet to ones deployed

atop the Internet (e.g., Amazon) play critical roles in our daily lives. In these

systems, individual nodes (e.g., a computer) establish a physical or virtual

connection/relationship to form a networked system and exchange data. An

important task in these systems is the timely and accurate detection of security or

management events, e.g. a denial of service attack on campus. Machine learning

(ML) models offer a promising data-driven method to learn the “signature” of

these events from the past instances and use that to detect future events. While

ML models have been very successful in other domains (e.g., image processing),

there are clear challenges in using them for event detection in networked systems

including (i) limited availability of large scale labeled dataset, (ii) subtle and

changing signature of target event, (iii) selecting and capturing proper traffic

features for (re)training, (iv) “black-box” nature of ML models.

This dissertation presents three different applications of ML models for

event detection based on exchanged messages in networked systems that tackle the

above challenges. First, we develop an ML-based method to identify incentivized

Amazon reviews. To this end, we present a heuristic-based signature to identify

explicitly incentivized reviews (EIRs) and characterize related reviews, products,
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and reviewers. We use EIRs to train an ML model for detecting implicitly

incentivized reviews. Second, we examine how casting and training strategies of

unsupervised ML (and statistical) model affects their accuracy and overhead (and

thus feasibility) for forecasting network data streams. In particular, we study

the impact of the size, selection, and recency of the training data on accuracy

and overhead. Third, we design and evaluate anomaly detection mechanisms

based on an unsupervised ML-based method that takes input data streams from

network traffic, end-system, and application load. Furthermore, we leverage model

interpretation to identify the most important input data streams and deploy model

extraction to infer the rules that represent model behavior. Overall, these three

cases studies result in numerous insightful findings on a range of practical issues

that arise in deploying ML models for event detection in networked systems.
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CHAPTER I

INTRODUCTION

During the past two decades, we have witnessed a significant increase in

the scale and complexity of involved parties of networked systems, from online

retail networks to computer networks. In computer networks, both design and

analysis of the protocols increasingly demand capturing and understanding patterns

in large scale multi-dimensional datasets. The increase in network access speed,

the appearance of bandwidth-hungry applications (such as video streaming, and

P2P file sharing), the ISPs’ increased interest in precise user traffic profiling to

offer tailored services, and a response to the enormous growth in the number of

connected users and internet of things (IoT) devices are among the main reasons

for such a demand.

Similarly, in the online retail stores, there has been a surge in the scale

and complexity of the relationships between the involved parties including the

customers and sellers. On one hand, we have the customers’ dependence on the

online ratings that guide them through the decision-making process, and on the

other, we have the urge of sellers to improve their ranking in the retail store’s

search results to be among the top choices. This dynamic might not be constructive

in all cases and therefore, demands scalable and automated approaches to identify

misuse of the system that can affect customer’s trust and experience.

The early generation of solutions in both cases has often relied on

handcrafted, statistical techniques to identify desired patterns in different datasets

solely based on known patterns. For example, port-based filtering was used

to identify traffics related to a certain application in computer networks given

that applications are associated with pre-defined port numbers, however, this
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was misleading for applications with a dynamic port assignment, such as P2P.

Then, approaches evolve toward payload-based analysis and due to constraints of

encrypted communications, flow-level characteristics of the traffic were explored.

The scale of data and a higher level of the abstraction in the flow-level datasets

compared to port- and payload-based methods set the stage for ML methods.

Recently, the prevalence of machine learning (ML) techniques with a proper

fit for the mentioned challenges have emerged as a reasonable choice and led to

growing deployments of these methods in design and evaluation of networked

systems.

1.1 Dissertation Scope & Contributions

In this dissertation, we study the applications and challenges of utilizing

machine learning techniques in a variety of networked systems. In a broad sense,

this dissertation can be categorized into four main applications of ML techniques

for (i) detection of incentivized online reviews, (ii) forecasting network data

streams, (iii) anomaly detection based on modeling a network application behavior

and explainability of utilized ML models and their impact in understanding the

models and facilitating their practical usage. The following presents an overview of

the main contributions of this dissertation.

1.1.1 Detecting Incentivized Online Reviews. During the past

few years, online reviews have become the main source of decision making for online

shoppers. Therefore, sellers have increasingly offered discounted or free products

to selected reviewers of e-commerce platforms in exchange for their reviews.

Such incentivized (and often very positive) reviews can improve the rating of a

product which in turn sways other users’ opinions about the product. Despite their

importance, the prevalence, characteristics, and the influence of incentivized reviews

2



in a major e-commerce platform have not been systematically and quantitatively

studied. In this section, we examine the problem of detecting and characterizing

incentivized reviews in two primary categories of Amazon products. We describe a

new method to identify Explicitly Incentivized Reviews (EIRs) and then collect a

few datasets to capture an extensive collection of EIRs along with their associated

products and reviewers. We show that the key features of EIRs and normal reviews

exhibit different characteristics. Furthermore, we illustrate how the prevalence of

EIRs has evolved and been affected by Amazon’s ban. Our examination of the

temporal pattern of submitted reviews for sample products reveals promotional

campaigns by the corresponding sellers and their effectiveness in attracting other

users. We also demonstrate that a classifier that is trained by EIRs (without

explicit keywords) and normal reviews can accurately detect other EIRs as well

as implicitly incentivized reviews. Finally, we explore the current state of explicit

reviews on Amazon. Overall, this analysis sheds insightful light on the impact of

EIRs on Amazon products and users.

1.1.2 Forecasting Network Data Streams. Today’s data plane

network telemetry systems enable network operators to capture fine-grained data

streams of many different network traffic features (e.g., loss or flow arrival rate) at

line rate. This capability facilitates data-driven approaches to network management

and motivates leveraging either statistical or machine learning models (e.g., for

forecasting network data streams) for automating various network management

tasks. However, current studies on network automation-related problems are

in general not concerned with issues that arise when deploying these models in

practice (e.g., (re)training overhead).

3



In this part of the dissertation, we examine various training-related aspects

that affect the accuracy and overhead (and thus feasibility) of both LSTM and

SARIMA, two popular types of models used for forecasting real-world network

data streams in telemetry systems. In particular, we study the impact of the size,

choice, and recency of the training data on accuracy and overhead and explore

using separate models for different segments of a data stream (e.g., per-hour

models). Using two real-world data streams, we show that (i) per-hour LSTM

models exhibit high accuracy after training with only 24 hours of data, (ii) the

accuracy of LSTM models does not depend on the recency of the training data (i.e.,

no frequent (re)training is required), (iii) SARIMA models can have comparable

or lower accuracy than LSTM models, and (iv) certain segments of the data

streams are inherently more challenging to forecast than others. While the specific

findings reported in this chapter depend on the considered data streams and

specified models, we argue that irrespective of the data streams at hand, a similar

examination of training-related aspects is needed before deploying any statistical or

machine learning model in practice.

1.1.3 Modeling Network Application Behavior for Anomaly

Detection . There is a wide range of sources for anomalies in network traffic.

Mis-configuration of network devices, hardware or software failure, and adversarial

attempts. Among these sources, the distributed denial of service (DDoS) attacks

have been widely a concern due to disproportionate damage they cause compared

to the required resources to initiate the attack. As researchers attempt to detect

earlier versions of the DDoS attacks such as ICMP, UDP, and SYN flooding,

attackers adapt and utilize more sophisticated attacks in the application layer

(Y. Xie & Yu, 2008). In the application layer, the web service is considered the
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most vulnerable application (Liao, Li, Kang, & Liu, 2015). Attacking web servers

through abnormal type, rate, or sequence of requests is an example of such attacks

(Jaafar, Abdullah, & Ismail, 2019). For example, Slowloris (slowloris DDoS tool ,

n.d.) overwhelms a web server by exhaustively starting new sessions and keeping

them alive by sending sparse requests and therefore, while not sending too many

requests, prevents the server from proper handling the incoming requests.

In this work, we consider 4 types of attack, three slow HTTP attacks

(Shekyan, 2020) and a session flooding attack (BoNeSi DDoS tool , n.d.)

against Apache web server given its popularity compared to other web servers

(datanyze.com, 2020). Due to the differences in the mechanism of these attacks,

they have a different footprint on the traffic attributes. We utilize three types of

features including network, operation system, and application, to detect attacks

in an unsupervised manner to have a practical and accurate system for anomaly

detection. We further analyze the contribution of each of these feature sources

through different model training strategies and model interpretation techniques.

1.2 Dissertation Outline

The remainder of this dissertation is organized as follows. We provide a

background and overview of studies related to applications of machine learning

in each of the above areas in Chapter II. Next, in Chapter III we characterize

the incentivized online reviews and discuss how ML techniques can be utilized

to differentiate incentivized reviews from normal ones in the light of Amazon’s

reaction to this phenomenon. Chapter IV presents our work on the application

and challenges of forecasting network data streams using statistical and ML-based

techniques, as well as the advantages and shortcomings of each of these techniques.

We evaluate and characterize the performance of machine learning techniques to
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model a network application to detect anomaly in Chapter V. We conclude and

summarize our contributions in Chapter VI.
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CHAPTER II

RELATED WORK

In this chapter, we review a body of recent studies that leverage various ML

techniques for the design and characterization of networked systems. Mainly, we

group these studies by their target problem which serves as a common context

and background for them. Within each group, we further categorize based on

more specific themes when possible. For each cluster of studies, we focus on

the formulation of the techniques for data analysis, related challenges, and

opportunities. In particular, we focus on how domain knowledge has been used

to customize their solution. We select the well-received, highly cited, and peer-

reviewed papers in top tier venues.

We categorize the prior studies into 4 sub-domains as follows:

1. Online Review Analysis: We review studies that utilize machine learning

models to process online reviews in online retail networks. Ranging from

labeling the duplicate reviews as spam and using supervised learning

techniques to detect spam reviews (Jindal & Liu, 2008), detection of

behavioral abnormalities of reviewers (Lim, Nguyen, Jindal, Liu, & Lauw,

2010) and review quality and helpfulness (S.-M. Kim, Pantel, Chklovski, &

Pennacchiotti, 2006; J. Liu, Cao, Lin, Huang, & Zhou, 2007; Mudambi, 2010).

2. Network Traffic Prediction: In this section, we review studies in two

groups: we review studies that leverage time-series analysis on network

traffic data to forecast the traffic in the next time slot(s) along with studies

with new ideas to obtain improved results. In the first group, studies focus

on traffic prediction in mobile networks given their limited resources and

increasing demand using Neural network methods (Nikravesh, Ajila, Lung,
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& Ding, 2016) and unsupervised learning (Zang, Ni, Feng, Cui, & Ding,

2015). In addition, this part also includes capturing spatio-temporal dynamics

(X. Wang, Zhou, Yang, Liu, & Peng, 2017), using network traffic matrix

(Azzouni & Pujolle, 2017), considering variations of LSTM (Vinayakumar,

Soman, & Poornachandran, 2017), and predicting TCP output (Mirza,

Sommers, Barford, & Zhu, 2010). In the second group, improving LSTM by

employing a random connectivity trick (Hua et al., 2017), decomposing time-

series (Dai, Fu, Lin, Li, & Wang, 2017), analyzing the prediction uncertainty

factors (Zhu & Laptev, 2017), transforming the 1D traffic to 2D matrices and

then applying the CNN (Z. Wang & Oates, 2015a, 2015b), encoding traffic to

an image (Ma et al., 2017), and utilizing statistical methods (Hatami, Gavet,

& Debayle, 2018; Z. Wang & Oates, 2015a, 2015b) are covered.

3. Anomaly Detection: In this section, we focus on studies that leverage

machine learning-based anomaly detection for attacks in the application layer.

Anomaly detection methods have a wide range of flavors, such as detection of

anomaly without prior context (Carter, Lippmann, & Boyer, 2010), statistical

methods to detect anomalies (Himura, Fukuda, Cho, & Esaki, 2009) scaleable

anomaly detection in mobile networks (Casas & Vanerio, 2017), detection

focusing on temporal traffic (Nevat et al., 2018), anomaly detection based on

server profiling (Canini, Li, & Moore, 2009), and anomaly detection in the

scale of wide-area networks (WAN) (Aqil et al., 2017), just to name a few.

4. Model Explainability: Sommer et al. (Sommer & Paxson, 2010) consider

interpretability as one of the reasons that ML techniques are not widely

utilized in practice in networking domain. Given the needs on that end, in

addition to the above three sections, we also review the techniques for ML
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model explainability by leveraging model interpretability and extraction

techniques. We review what these techniques are and how they can be

utilized to improve the quality and practicality of models that are used in

the networked systems.

The rest of this chapter is organized as follows: We will have a separate

section for each of the aforementioned groups and we conclude this chapter in §VI

by summarizing the studies and the pros and cons of different approaches along

with open research questions that can be explored by the community.

2.1 Online Reviews Analysis

As online reviews and opinions become the main source of information

about the quality of service and products and shape the users’ shopping decisions,

legitimacy, and possible bias in the online reviews systems raised concerns.

Detection and analysis of spam reviews started in 2008 by labeling the

(near) duplicate reviews as spam and using supervised learning techniques to detect

spam reviews (Jindal & Liu, 2008). Since then, different aspects of online reviews

have been investigated such as behavioral abnormalities of reviewers (Lim et al.,

2010) and review quality and helpfulness (S.-M. Kim et al., 2006; J. Liu et al.,

2007; Mudambi, 2010). As online reviews become more popular and sophisticated,

other aspects of reviews have been examined such as detecting sarcastic sentences

on Twitter and Amazon (Davidov, Tsur, & Rappoport, 2010). they focused on

recognition of sarcastic sentences In Twitter and Amazon datasets which can

directly affect the accuracy of sentiment detection techniques.

Studies on spam detection have deployed a diverse set of techniques. Early

studies relied on unexpected class association rules (Jindal, Liu, & Lim, 2010) and

standard word and part of speech n-gram features with supervised learning (Ott,
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Choi, Cardie, & Hancock, 2011) that are later improved by using a more diverse

feature sets (F. Li, Huang, Yang, & Zhu, 2011). FraudEagle (Akoglu, Chandy,

& Faloutsos, 2013) was proposed as a scalable and unsupervised framework that

formulates opinion fraud as a network classification problem on a signed network

of software product reviews of an app store. These studies also relied on different

strategies, such as Amazon Mechanical Turk (Ott et al., 2011) or manual labeling

(F. Li et al., 2011) to create a labeled dataset for their analysis.

The effect of incentives on reviewers and quality of reviews is studied by

Qiao et al. (Qiao, Lee, Whinston, & Wei, 2017). They showed that external

incentives might implicitly shift an individual’s decision-making context from a

pro-social environment to an incentive-based environment. This could also lead to

a long-term change in the reviewer’s behavior even after the incentives disappear.

Also, a long-term change in reviewers’ behavior was reported because as a reviewer

is given some incentives, can face persistent mindset change that affects her future

behaviors, even in the absence of the incentives. They concluded that the wide

usage of incentives might be harmful to the platform in the long-term and might

discourage reviewers’ pro-social behaviors.

Wang et al. (J. Wang, Ghose, & Ipeirotis, 2012) modeled the impact of

bonus rewards, sponsorship disclosure, and choice freedom on the quality of paid

reviews. In a qualitative study, Petrescu et al. (Petrescu, O’Leary, Goldring, &

Mrad, 2017) examined the motivations behind incentivized reviews as well as

the relationship between incentivized reviews and satisfaction ratings assigned by

consumers to a product. They showed that the level of user engagement depends on

a cost-benefit analysis. Burtch et al. (Burtch, Hong, Bapna, & Griskevicius, 2017)

focused on social norms instead of financial incentives. By informing individuals
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about the volume of reviews authored by peers, they test the impact of financial,

social norms, and a combination of both incentives in motivating reviewers. The

study by Xie (Z. Xie & Zhu, 2015) unveiled the underground market for app

promotion and statistically analyzed the promotion incentives, characteristics of

promoted apps and suspicious reviewers in multiple app review services.

As mentioned, incentivized reviews can add bias to the recommendation and

online review systems. Bias in recommendation systems is studied from different

perspectives. In (Shyong, Frankowski, & Riedl, 2006) the effect of biased reviews

and recommendations on user behaviors and decision making is discussed, and

related privacy and security concerns are outlined.

In addition to external factors such as biased reviews, internal systematic

bias is also a source of concern. Australian Uber drivers accused the company

of slowly decreasing their ratings to suspend drivers and then charge higher

commissions to be reinstated (Businessinsider, 2017). The other algorithmic rating

systems such as Yelp (Journal, 2017) and Fandango (FiveThrityEight, 2017) have

faced similar criticisms. Systematic bias is investigated in different domains, such as

racial advertisements (Sandvig, Hamilton, Karahalios, & Langbort, 2014), biases of

online maps in representing international borders (Soeller, Karahalios, Sandvig,

& Wilson, 2016), gender bias in online advertising (Datta, Tschantz, & Datta,

2015), understanding the Uber surge pricing algorithm by emulating Uber accounts

(L. Chen, Mislove, & Wilson, 2015), discovering racial discrimination against Black

users on Airbnb via creating multiple accounts (Edelman, Luca, & Svirsky, 2017),

and in online hotel booking websites (Eslami, Vaccaro, Karahalios, & Hamilton,

2017).
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To the best of our knowledge, none of the prior studies have systematically

examined the prevalence of incentivized online reviews, their basic characteristics,

and their influence on the level of interest among other users to a product based on

large-scale quantitative measurements in a major e-commerce platform.

2.2 Network Traffic Prediction

In this section, we review studies that leverage time-series analysis on

network traffic data to forecast the traffic in the next time slot(s). The time-series

are defined as data points with temporal ordering. Such data points are available in

a wide range of domains such as weather (Soares, Costa Jr, Costa, & Leite, 2018),

bio-medical and bio-metrics (Ferenti, 2017), financial (stock and exchange rates)

(Moliner & Epifanio, 2019), industrial sensors (Mandal, Santhi, Sridhar, Vinolia,

& Swaminathan, 2019), and also video and music streaming (B. Kim, Chang, Heo,

& Shin, 2020), for which the time-series analysis is applicable. Time-series analysis

mainly includes prediction/forecasting, classification, and clustering techniques.

The traffic prediction can be done for two main purposes: resource

management (e.g. scaling up hardware resources when a large number of requests

are expected for example on the registration day in a campus) and monitoring (e.g.

anomaly detection to detect abnormal behavior in the network). Several methods

for traffic prediction are proposed that can be grouped into two categories: linear

and non-linear methods. For the linear methods, the most adopted method is

AutoRegression Integrated Moving Average (ARIMA) (B. Zhou, He, & Sun, 2006)

and for non-linear models Support Vector Regression (SVR) (Castro-Neto, Jeong,

Jeong, & Han, 2009) is widely used. While ARIMA is claimed to have limitations

to capture the rapid variations due to its tendency on the mean values of past

series data, SVR’s main shortcoming is the lack of the structure to select the key
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parameters of the model. That is why a new trend on Neural Networks has been

developed (Azzouni & Pujolle, 2017; Nikravesh et al., 2016).

2.2.1 Network Traffic Forecasting. Nikravesh et al. (Nikravesh et

al., 2016) focus on the importance of resource management for the mobile network

providers as the number of subscribers is increasing, and efficiency has become

a must-have quality. They apply data analysis techniques to predict the future

behavior of mobile network traffic and support network operators to maximize

resource usage; preventing both under-provisioning and over-provisioning. They

employ a real-life dataset from a commercial trial mobile network composed of a

million rows and 27 features, each row representing aggregated (per hour) traffic of

one specific cell in the network from 6K different wireless network cells. Although,

for their experiments, they only focused on one network cell with the most data

points and applied feature selection to exclude non-correlating features, ended

up using only 168 data points and 24 features. The problem was formulated as

a supervised regression. Their experiment has two folds: 1) to show if the values

of attributes can be used to predict the value of a single unknown attribute (as

target class), and 2) if prior values of each attribute can be used to predict its next

step’s value. They compare the accuracy of a fully-connected Neural network in

the prediction of future behavior of mobile networks (number of active pieces of

equipment in downlink), compare to SVM and Multi-Layer Perceptron with Weight

Decay (MLPWD). They show that MLPWD with a sliding window is the best

choice if the traffic data is uni-dimensional. Otherwise, SVM is a better option.

Nie et al. (Nie, Jiang, Yu, & Song, 2017) propose a deep belief network

and Gaussian model-based traffic prediction. The proposed method first adopts

a discrete wavelet transform to extract the low-pass component of network traffic,
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describing the long-range dependence of traffic. The low-pass component is modeled

by learning a deep belief network. The rest high-pass component that expresses the

fluctuations of network traffic, is modeled by a Gaussian model. The maximum

likelihood method is used for the estimation of the parameters of the Gaussian

model. Their dataset is not described in detail, but they use the first 2000 data

points for training and 16 data points for tests. They compare their model with two

older studies (principal component analysis (PCA) method (Soule et al., 2005) and

the Tomogravity method (Y. Zhang, Roughan, Duffield, & Greenberg, 2003)), as

well as the Sparsity Regularized Matrix Factorization method (SRMF) by Roughan

et al. (Roughan, Zhang, Willinger, & Qiu, 2012). Their proposed prediction

method outperforms three existing methods based on spatial and temporal relative

errors (SRE, TRE).

Zang et al. (Zang et al., 2015) propose a framework for cellular traffic

prediction by pre-processing the time-series using wavelet transformation. First,

they apply K-means with the Euclidean distance between base stations as the

distance metric, to identify geographically correlated base stations. Then, they

apply the wavelet transformation to obtain the low and high-frequency components.

They utilize Elman-NN to predict each of these four components and then using

them, reconstruct the predicted frequency. Their goal is to predict the next

hour’s traffic value. Real-world traffic data measurement is used to test their

framework. Having data from 358 BSs at a particular district in a metropolitan,

that each of the BSs records the volumes of GPRS flows over time (hourly).

After K-means clustering, the shape of traffic becomes a 50x168 matrix with

144 columns for training and the last 24 columns for prediction and testing. For

evaluation, Normalized Mean Square Error (NMSE), Normalized Mean Absolute
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Error (NMAE) and Mean Absolute Percentage Error (MAPE) was utilized. They

discuss the superiority of wavelength transformation over traditional methods.

In another study on cellular traffic prediction, Wang et al. (X. Wang et al.,

2017) capture the spatial-temporal dynamics of cellular traffic by in-cell and inter-

cell decomposition using a graph-based deep learning approach. For example, in

a transit station, the inter-cell traffic surges at a particular time while in other

locations the in-cell traffic can easily dominate. They employ GNN toolkit to

implement their experiments and compared the results with LSTM, ARIMA, and

NAIVE (that predicts the traffic at time t, based on the traffic at time t of the

last day). They study the characteristics of urban cellular traffic with large-scale

cellular data usage dataset covering 1.5 million users and 5,929 cell towers in a

major city of China. Their dataset has the flow-level data per user and covers the

app-ID and device-ID for 14 days. They use the first 12 days data (aggregated

every half an hour) for training and the last two days for testing. Evaluation is

performed using the Mean Absolute Error (MAE) and Mean Absolute Relative

Error (MARE). Based on their experiments, they conclude that spatial dependency

and the interaction of spatial and temporal factors play an important role in

accurate and robust prediction.

Cortez et al. (Cortez, Rio, Rocha, & Sousa, 2012) compare the time-series

methods (Holt-Winters and ARIMA) and neural network methods for Internet

traffic prediction. Their result shows that the NN methods achieve the best results

for short-term (5 minutes and hourly) traffic prediction while the Holts-Winters

methods were more accurate in predicting daily traffic.

Azzouni et al. (Azzouni & Pujolle, 2017) consider the Network Traffic

Matrix (TM) prediction to estimate the future network traffic from the
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previous network traffic data using Long Short-Term Memory (LSTM) models.

Considering the linear models such as ARMA (Autoregressive Moving Average),

ARIMA (Autoregressive Integrated Moving Average), ARAR (Autoregressive

Autoregressive) and HW (HoltWinters) algorithm, they compare the results with

nonlinear time series prediction with neural networks. They incorporate real traffic

data provided by GEANT1 backbone networks, which is the pan-European research

network. Using the 15 minutes intervals over three days, they have 309 matrices

of network traffic. Using the traffic matrix of N nodes in the network (NxN) over

time T (NxNxT ), they concatenate rows from top to bottom to create a vector

of size (NxN) per time t. A learning window is used to avoid high computational

complexity (as the total number of time slots becomes too big over time). Mean

Square Error (MSE) is their evaluation metric for the prediction accuracy. MSE

is a scale-dependent metric that quantifies the difference between the forecasted

values and the actual values. They discuss the MSE over a different number of

hidden layers and hidden units.

Given the wide usage of RNNs for traffic prediction, Vinayakumar et al.

(Vinayakumar et al., 2017) analyze the variation of Recurrent Neural Networks

(RNNs) to obtain the optimum flavor along with optimal parameters. Considering

different layer numbers, hidden units, and learning rates, on multiple flavors

of RNNs, they propose an architecture of traffic matrix with a sliding window

on layers of stacked LSTM. Choosing the parameters to be five layers with 500

units and a learning rate of 0.1. They use the GEANT public dataset for their

experiments.

1https://www.geant.org/Projects/GEANT_Project_GN4/
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In a study on prediction of TCP throughput, Mizana et al. (Mirza et al.,

2010) leverage Support Vector Regression (SVR) to predict the TCP throughput

based on basic path characteristics including available bandwidth (AB), queuing

delays (Q), and packet loss (L). They experiment with passive measurements

with the multi-configuration testbed. Comparing the accuracy of SVR to the

exponentially weighted moving average (EWMA) History-Based Predictor (HB)

reveals that for bulk transfers in heavy traffic, TCP throughput is predicted

within 10% of the actual value for 87% of the time. Overall, their results suggest

approximately a 60% improvement over history-based methods with a much lower

impact on end-to-end paths. They use the relative prediction error as evaluation

metric, which is the predicted throughput (R1) minus actual throughput (R) over

a minimum of R1 and R. They conclude that while AB feature is not necessary for

accurate prediction, a combination of queuing delays (Q), and packet loss (L) is

sufficient.

There are a large number of studies that leverage ML techniques or

statistical approaches to provide monitoring and controlling services for network

administrators. However, very small number of such methods are used in the real

world scenarios. Liu et al. (D. Liu et al., 2015) explore the root causes and report

that requiring parameter tuning in a manual and iterative way and configuration

of thresholds are among the main reasons that offered monitoring services are not

practical. This paper tackles this challenge by Opprentice (Operators’ apprentice),

that operators’ only manual work is to periodically label the anomalies in the

performance data with a convenient tool.

The Opprentice architecture is shown in Fig. 1. In this architecture, multiple

existing detectors are applied to the performance data in parallel to extract
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Figure 1. Opprentice Architecture (D. Liu et al., 2015)

anomaly features. The features and the labels are used to train a random forest

classifier to automatically select the appropriate detector-parameter combinations

and the thresholds. The system works with only 2 parameters and is robust in

existence of noise. Recall and precision are used as accuracy criteria and reported

to by above 66% for three different service KPIs in a top global search engine

including search page view (PV), slow responses of search data centers (#SR),

which is an important performance metric of the data centers, and search response

time (SRT) that has a measurable impact on the users’ search experience.

In a detailed study (Sommer & Paxson, 2010) (find slides here2) the reasons

behind the limited application of ML-based approaches for intrusion detection in

large-scale and operational environments are discussed. However, such limitation

in some cases can be applied to all of the discussed domains. They explain how the

ML approaches are not suitable for the task of intrusion detection:

– lack of training data;

2Slides: HTTP://oakland10.cs.virginia.edu/slides/anomaly-Oakland.pdf
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– a very high cost of errors;

– a semantic gap between results and their operational interpretation;

– enormous enormous variability in input data; and (v) fundamental difficulties

for conducting the sound evaluation.

They have provided examples of why ML approaches work in some

domains and why not for intrusion detection. For example, since the variation of

attacks/anomalies are known in recommender systems or spamming, there will be

enough training data on both (all) classes, therefore, ML approaches can be used

effectively in the real world.

In terms of High cost of errors, they compare with Product recommendation

systems, OCR technology, and Spam detection to make the point that in these

cases the error of false positives/negatives are not as vital as it is in the intrusion

detection domain. The semantic gap refers to the fact that in the intrusion

detection domain, operational expectations are more than what a current ML

technique can deliver. Instead of a large number of false positives that only mark

unseen behaviors (that can be legitimate or attack), it is expected that the results

be interpreted for the operators. The local and internal policies should also be

considered in addressing the semantic gap. Addressing such policies as well as

vague guidelines described by an imprecise legal language are the main issues. In

terms of Diversity of Network Traffic, as network characteristics are variable over

short time ranges (seconds to hours), it will be hard to predict them. Aggregating

network traffic (time of the day, the day of the week) can be a better solution and

work better.
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The network traffic prediction is not considered as a trivial task, hence,

various techniques (traffic matrix, spatial and temporal separation) and a

wide range of models (CNN, LSTM, NN, ARIMA, HW, SVR) are applied on

the network traffic data in order to predict the future behavior of the network

accurately. However, the effectiveness of each of these methods and specially

comparison of statistical methods and ML-based methods is not systematically

explored. In addition, the practical implications and challenges of proposed methods

are not widely investigated.

2.2.2 Ideas to Improve the Prediction. In addition to traditional

studies that address a challenge in the system by forecasting the network traffic and

explain how ML methods can lead to more accurate models, there are studies that

are inspired by tricks and concepts from other domains and their goal is to improve

the forecasting performance. In this subsection, we review such ideas.

Inspired by the idea of Convolutional Neural Networks (CNN) with a

sparse neural connection that shows comparable performance compared to the

conventional CNNs, Hau et al. (Hua et al., 2017) propose Random Connectivity

LSTM (RCLSTM) that contains fewer parameters (35% less neural connections)

and show competitive performance. In their model, they initialize a random graph,

where neurons connections are established independently in a stochastic manner

with a probability of p. The connection is established if p[i → j] ≥ T where

threshold T indicates the sparsity of neural connectivity. Their experiments are

based on GEANT backbone network traffic data from 75 workdays, normalized by

average over standard deviation. They compare the effect of the number of training

samples and length of input traffic (range of 10 to 55) on MSE and MAE accuracy

measures, reporting accurate models on larger and longer input traffic.
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De-trending is a well-known method to decompose the time series for

statistical analysis. Recently, Dai et al. (Dai et al., 2017) propose that de-trending

can improve the performance of LSTM models. Therefore, they decompose the

traffic into a trend (capturing the fixed temporal pattern) and residual (used for

prediction) series. They propose DeepTrend as a deep hierarchical neural network.

Their model has two layers: a) a fully connected NN called extraction layer and

b) an LSTM layer used to make flow prediction. To calculate the trend, they

calculate the average of the periodic traffic flow time series collected in the same

station and subtract it from the actual time-series. Their dataset is collected from

3.9K stations every 5 min in district 4 of freeway systems across California. Using

the first 12 weeks for training and four weeks for testing. They consider stations

with less than 1% loss and also normalized the data per station to be 0 mean and

1 standard deviation. Using mean square error (MSE) and mean absolute error

(MAE). DeepTrend was able to model the time-series more accurate compared to

LSTM models without detrending.

The prediction uncertainty is essential for assessing how much to trust the

forecast produced by the model and has a profound impact on anomaly detection.

Zhu and Laptev (Zhu & Laptev, 2017) focus on estimating the uncertainty in time-

series predictions using neural networks on Uber data. They mention that focusing

on Bayesian Neural Networks; the prediction uncertainty can be decomposed into

three types: model uncertainty, inherent noise, and the model misspecification.

For each, they have proposed a way for calculation for example: For the model

uncertainty, given a new input x, they compute the neural network output with

stochastic dropouts at each layer. That is, randomly dropout each hidden unit

with a certain probability p. This stochastic feed-forward is repeated B times.
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Then, the model uncertainty can be approximated by the sample variance. The

model misspecification deals with the uncertainty when predicting unseen samples

with very different patterns from the training dataset. To address that, they use

an encoder-decoder. Using the encoder, they extract the representative features

from a time series (decoder will, later on, reconstruct the time series from the

encoded space). Then, at test time they measure how close is the encoding of

the test samples to the training samples. Using the trip data from Uber on eight

representative large US cities with three years for training and the following four

months for validation and eight months for testing. They log-scales the data,

removed the first-day value from the rest (to remove the trend), and fed the data to

four models (including a two-layer stacked LSTM with 128 and 32 units and tanh

activation). They use the sliding window with 1-day step size and the Symmetric

Mean Absolute Percentage Error (SMAPE) as the performance metric.

Given the proven performance of Convolutional Neural Networks (CNNs)

in the image classification domain, researchers considered different approaches to

convert time series to images and benefit from CNNs. However, there are a small

number of studies related to this approach in the network domain.

Using the 1D time-series signals as the input of a modified CNN

architecture, transforming the 1D to 2D matrices and then applying the CNN

(Z. Wang & Oates, 2015a, 2015b), and also using multiple CNNs and using a

fully connected NN to leverage multiple features are among the most popular

approaches.

Focusing on road traffic, Ma et al. (Ma et al., 2017) present a method of

predicting network-wide traffic based on encoding a day of traffic as an image.

This encoding maps time to the x-axis, sampled network locations to the y-axis,
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and represents the traffic at a given (location, time)-point as a single-dimensional

“color" value. A convolutional neural network is then trained over previous images

and used to predict future network behavior based on past network behavior. A

comparison with other machine learning methods is performed using traffic data

collected from taxis on two subnetworks of the Beijing road system demonstrating

an improved accuracy of up to 43% within acceptable execution time.

Encoding of time-series signals to images using Gramian Angular Fields

(GAF) and Markov Transition Fields (MTF) and then using a tiled CNN is used

by Wang et al. on multiple datasets (Z. Wang & Oates, 2015a, 2015b). Hatami

et al. (Hatami et al., 2018) propose to use the Recurrence Plots (RP) to transform

the time-series into 2D texture images and then take advantage of a deep CNN

classifier (with two hidden layers followed by a fully connected layer). Results

suggest a boost in performance of Time-series classification rate.

Traffic prediction in mobile networks is necessary as the number of clients

is increasing over time and resource management becomes more challenging. We

reviewed the applications of ML methods on network traffic prediction as well as

ideas on how to improve the accuracy of utilized methods. As mentioned, network

traffic prediction is a complex question to be answered, hence, various techniques

(traffic matrix, spatial and temporal separation) and a wide range of models (CNN,

LSTM, NN, ARIMA, HW, SVR) applied on the network traffic data in order to

predict the future behavior of the network accurately. To improve the accuracy,

novel ideas from other domains, including randomized connection in LSTM, 2D

data structure, and conversion to image and benefiting from CNN models are

utilized.
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It is worth noting that the prior studies have primarily focused on the “off-

line" evaluation of forecasting method on network data streams with per-minute

(or coarser) resolution due to the limited availability of representative streams

with per-second granularity. Therefore, the characteristics of their data streams

and assumptions were very different that what the model will be exposed to in real

world. More importantly, to our knowledge, none of the prior studies have explored

the effect of the following practical issues on incorporating forecasting model into

telemetry systems using network data streams with different characteristics, (i)

the variations in characteristics of different segments of the data stream that is

often observed in network data streams, and (ii) the effect of volume, selection, and

recency of training data on different models.

2.3 Anomaly Detection

The ML techniques have a wide variety of applications in the network

security domain. In this section, the advantages of using ML methods in anomaly

detection and security of network systems is discussed.

Deviation from normal behavior can be a strong signal for detecting attacks

in networks. Different techniques have been proposed to capture the normal

behavior of a system (Rasti, Magharei, Rejaie, & Willinger, 2010). Anomalies can

also emerge as a result of routing issues or hardware failure. In all of these case,

network providers are interested in the detection of anomalies in order to minimize

the resulting damage.

Carter et al. (Carter et al., 2010) present a method of detecting anomalous

network activities without providing any historical context, using hierarchical

clustering. However, it is an O(N2) operation, meaning that it will not purely

scale to large N. This is why they operate their system on a per-service basis,
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focusing on port 80 in this study. They also used a decision tree to identify the

common theme of the detected clusters. To this aim, they labeled data for each

cluster as a positive label and all others as negative. DT was able to find the rule

mostly based on byte ratio (byte per packet), IP ratio (flow/unique source IP), and

outgoing bytes/packet. They experiment and report accurate results on a window

of 5 minutes Netflow on port 80 where the server was known to be under SYN flood

DDoS attack in that period.

As mentioned by Himura et al. (Himura et al., 2009) the modeling and

characterization of Internet traffic are essential for simulations, traffic classification,

anomaly detection, and QoS. Focusing on quantifying host-based applications, they

use a statistical method (multi-scale gamma model) to label anomalies produced

in the network in the presence of Internet worms. Using real network traffic traces,

they show that applications show consistent behavior over time, however, vary as

bandwidth changes. Applications can be characterized using statistical parameters

and be distinguished from anomalous behaviors.

Casas and Vanerio (Casas & Vanerio, 2017) leverage the big data analytics

and platforms to perform the automatic detection of anomalies in mobile networks.

Using Big-DAMA, a big data analytics framework for network monitoring, they

apply the Super-learner model (Van der Laan, Polley, & Hubbard, 2007) (a loss-

based ensemble-learning method that finds the optimal combination of a collection

of base predictors). They note and tackle two main challenges for the application

of ML in anomaly detection: 1) nearly real-time expectation 2) model selection.

The first issue is tackled using the Big-DAMA framework, which uses Spark for

batch (pre-) processing, and Cassandra for storage. The benefit of using such a

framework is that it is distributed, with no single point of failure, it will be fast
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and scalable, with the ability to handle unstructured data. To tackle the second

issue, they overview the ensemble techniques (bagging, boosting, and stacking)

and argue that ensembling can address the issue of selecting the best predictor as

we can benefit from multiple predictors. They apply Super learner as a stacking

learning algorithm and compare the results with individual ML methods such as

decision tree, naive bayes, neural network, SVM, and k-NN, showing the superiority

of ensembling models.

Nevat et al. (Nevat et al., 2018) consider the temporally correlated traffic

and apply anomaly detection methods. Their dataset is 75-minute TCP traffic of

10th December 2014 from MAWI repository. A statistical method (Markov chain)

was used for detection. Their goal is anomaly detection in temporally correlated

traffic. They formulate the problem as the optimal statistical test, known as the

Likelihood Ratio Test (LRT), using the Cross-Entropy (CE) method. As a result,

not only it finds the anomaly but also finds the subset of flows causing it.

In another study, Marnerides et al. (Marnerides, Pezaros, Kim, & Hutchison,

2009) propose a measurement-based classification framework that exploits

unsupervised learning to categorize network anomalies in specific classes accurately.

They introduce the combinatorial use of two-class and multi-class unsupervised

Support Vector Machines (SVM) to first distinguish normal from anomalous traffic

and to further classify the latter category to individual groups depending on the

nature of the anomaly, respectively. The features they have used are as follows:

– Initial flow classification is based on seven packet header characteristics;

the IP source/destination addresses, the transport protocol, the transport

source/destination ports, the mean packet inter-arrival time and the size of

the first ten packets
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– During the second stage, only four packet header features are used; the

source/destination IP addresses and transport source/destination ports.

Anomaly detection and QoS customization require to know the underlying

traffic types. Canini (Canini et al., 2009) uses flow features to create server

profiles and then identifies potential proxies within the observed servers. Their

methodology consists of four stages: 1) service identification to identify HTTP

and HTTPS services, 2) server profiling - the features are based on the packets’

inter-arrival times and payload sizes. A profile consists of the average and

standard deviation of this features-, 3) proxy identification using K-means as an

unsupervised technique, and 4) host cache management, which is a practical need

of storing, updating, and deleting service profiles. In this visionary paper, they

share preliminary results of experiments on two proxies: guardster.com and

anonymouse.org, where they recorded the traffic to browse a dozen of popular

websites using the direct connection and through the proxies, reaching a total of

81 servers. Results show that their method can profile and distinguish among these

servers accurately.

Aqil et al. (Aqil et al., 2017) consider the network intrusion detection at the

scale of a wide area network (WAN) using the ML methods. First, they focus on

creating packet summaries that are concise, but sufficient to draw highly accurate

inferences. Then, they transform traditional IDS rules to handle summaries instead

of raw packets. Using the network traces from MAWI group, they inject five

different network attacks such as SYN flooding and extensive port scans at a rate of

less than 10% of benign traffic. Showing that Jaal reduces overheads by over 65%

compared to sending raw packets while achieving a detection accuracy of over 98%

in ISP scale.
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One of the most important categories of anomalies in the network domain

is the application layer DDoS attack. Detection of such attacks is considered to be

more complex and challenging in the network security domain compare to other

types of anomalies. Hoque et al. (Hoque, Bhattacharyya, & Kalita, 2015) discuss

the followings as the main reasons: 1) obscurity as they can be performed using

a combination of TCP and UDP protocols, 2) efficiency as a small number of

connections is required to perform the attack, and 3) lethality since the attack

can overwhelm a web server immediately, regardless of the type of hardware and

its performance. Studies on the application layer and mainly HTTP DDoS attacks

can be grouped into the followings categories based on their method as Liang et al.

(Jaafar et al., 2019) suggest:

– Session/Request flooding attack. resources of a server become exhausted

when session request rates get higher than the usual expected rate. Examples

are HTTP GET/POST flooding attack that requires a botnet to be

successfully initiated. in case of request flooding attack, the attacker initiates

a large number of requests in one session. The number of requests per

session is higher than the usual number of expected requests. The HTTP

GET/POST session is an instance of attack in this category that takes

advantage of the HTTP 1.1 feature, which allows more than one request

within a single HTTP session.

– Slow Request/Response Attack. An attacker sends a high workload of

requests to initiate an attack in the form of a session. The attacker partially

sends HTTP requests that grow quickly and repeatedly. The server waits for

each request to be properly completed but the attacker updates each request

by additional requests slowly, and never closes the sessions.
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Slow request/response attacks rely on the HTTP protocol. By design,

HTTP requires requests to be completely received by the server before they are

processed. Therefore, if an HTTP request is not complete (such as Slowloris or

slow body attacks), or if the transfer rate is very low (slow read attack), then the

server keeps its resources busy waiting for the rest of the data. In this case, the

server’s resources will be obtained quickly by the attacker without demanding too

many requests to be sent, which creates a denial of service attack. There are three

categories of such attacks:

Slowloris attack. that is an example of slow request attacks. The attacker opens

many connections to the target web server and keeps the connections open by

sending an incomplete sequence of requests to the server. Therefore, the server

will keep these connections open, which will exhaust their maximum concurrent

connection pool and eventually deny additional connection attempts from clients.

Slow POST (Slow Body) attack. in which the attacker sends legitimate HTTP

POST headers to a Web server. In these headers, the sizes of the message body

that will follow are correctly specified. However, the message body is sent at a

painfully low speed. These speeds may be as slow as one byte every two minutes.

Given that the message is in legitimate form, the targeted server will follow

specified protocol rules. Therefore, the server will subsequently slow down the

response rate. When the attacker launches hundreds of Slow POST attacks at the

same time, server resources are rapidly consumed to the point that no legitimate

connection can be served by the server.

Slow Read attack. that is very similar to Slowloris and slow POST, but instead

of prolonging the request, it sends a legitimate HTTP request and reads the

response slowly.
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There is a range of tools available to generate each of these attacks. There

are attack specific tools such as Slowloris tool(slowloris DDoS tool , n.d.) that only

generates Slowloris attacks as well as frameworks to generate a range of attacks

such as slow HTTP test tool (Shekyan, 2020) that can be used to generate all

types of slow request and response attacks. The DDoS Botnet Simulator (BoNeSi

(BoNeSi DDoS tool , n.d.)) is also a widely used tool that generates ICMP, UDP,

and TCP (HTTP) flooding attacks.

While there is not a recent and publicly available dataset for different

application layer DDoS attacks (Ndibwile, Govardhan, Okada, & Kadobayashi,

2015), there is a wide range of approaches for generating (Aborujilah & Musa,

2017; Bhatia, Benno, Esteban, Lakshman, & Grogan, 2019; Cao, Nejati,

Balasubramanian, & Gandhi, 2019; Shiaeles & Papadaki, 2015), capturing (Celenk,

Conley, Graham, & Willis, 2008; Ingham & Inoue, 2007), or using existing data

sets (W. Lu & Ghorbani, 2008; Oza, Ross, Low, & Stamp, 2014) (such as DARPA

dataset that is known in the security community for its flaws). The self-captured

and -generated datasets utilized variety of tools available online, including: Web

Record and replay (Web Page Replay , n.d.), LOIC (Low Orbit Ion Cannon, n.d.),

Hulk (Hulk DoS tool , n.d.), RUDY (R U Dead Yet (RUDY) DDoS tool , n.d.),

and BoNeSi (BoNeSi DDoS tool , n.d.), and slowloris (slowloris DDoS tool , n.d.).

Publicly available web traces that can be used as normal background traffic is also

used by several studies. Datasets including WorldCup98, KDD-CUP99 (KDD

CUP 99 , n.d.), DARPA 2009 (Lippmann, Haines, Fried, Korba, & Das, 2000),

WorldCup98, ClarkNet, and NASA (Arlitt & Williamson, 1996), and CAIDA

2007 (CAIDA DDoS 2007 Attack Dataset , n.d.). Ring et al. (Ring, Wunderlich,

Scheuring, Landes, & Hotho, 2019) provides an extensive summary of these
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datasets. However, none of these datasets or tools alone can provide the types of

features or a wide range of attacks that were are looking for in our study.

In addition to common features such as number and size of packets, number

and size of flows, and the number of unique sources and destinations, researchers

have used a variety of other features including packet header (Hameed & Ali, 2018),

popularity and repetition indices (Singh, Singh, & Kumar, 2018), packet counts per

type and interval between two-page visit (Sreeram & Vuppala, 2019), packet rate

(Hoque, Kashyap, & Bhattacharyya, 2017), HTTP GET count per connection or

IP address (Johnson Singh, Thongam, & De, 2016), GeoIP, source MAC address,

and a number of user agents (Shiaeles & Papadaki, 2015). However, none have used

the combination of features from network, application, and resource usage to assess

their contribution to the detection of different anomaly types.

A wide range of methods have been proposed to detect such attacks,

Autoencoder models (Bhatia et al., 2019), reinforcement learning (Feng, Li,

& Nguyen, 2020), PCA and ant-colony optimization methods (Fernandes Jr,

Carvalho, Rodrigues, & Proença Jr, 2016), genetic Algorithm and fuzzy logic

(Hamamoto, Carvalho, Sampaio, Abrão, & Proença Jr, 2018), ARIMA and Holt-

Winter models (Jiang & Papavassiliou, 2006; Pena, de Assis, & Proença, 2013),

wavelet approximation (W. Lu & Ghorbani, 2008), adaptive Wiener filtering and

ARIMA Modeling(Celenk et al., 2008), to name a few.

These methods rely on differences in characteristics of normal and abnormal

behavior and aimed to capture the deviation by PCA analysis (Fernandes Jr et

al., 2016), relying on forecasting models and mark the deviation on the error

as anomaly (Jiang & Papavassiliou, 2006) or classification of traffic based on a

range of features into normal or attack (Feng et al., 2020). However, such models
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have practical challenges. Having an accurate forecasting model is an involved

process and depends highly on the data and the model (Jamshidi et al., 2020a),

classification relies on high quality labeled data that is not available for every

network setting (Ring et al., 2019) and given the complexity of attacks some

techniques such as PCA are known to be less effective in this domain (Brauckhoff,

Salamatian, & May, 2009). Among the neural network-based unsupervised anomaly

detection techniques, Autoencoders have received much more attention recently. As

they have shown high performance in different applications such as noise reduction

in audio (X. Lu, Tsao, Matsuda, & Hori, 2013) or images (Gondara, 2016) and

collaborative filtering (S. Li, Kawale, & Fu, 2015), researchers in networking

domain utilized the technique in IoT anomaly detection (Luo & Nagarajan, 2018),

Web application anomaly detection (Mac et al., 2018; Vartouni, Teshnehlab, &

Kashi, 2019; Yadav & Subramanian, 2016) and other network intrusion detection

systems (Sakurada & Yairi, 2014; Xu et al., 2018; C. Zhou & Paffenroth, 2017).

However, none of the prior studies have considered the wide range of

anomalies, all types of features, and assessment of feature importance on the

detection rate that we are covering in our study.

2.4 Model Explainability

There is a large body of work on applications of machine learning models

in networking, ranging from classification of traffic to forecasting and anomaly

detection (Hoque et al., 2015; Jaafar et al., 2019,?; Y. Xie & Yu, 2008). However,

the inner working logic, the effect and importance of the features for the model,

and also contribution and relation of features are not discussed and examined in

any of them. That will help to understand the models and use them in action. To

that end, model interpretability and extraction techniques have been developed.
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Sommer et al. (Sommer & Paxson, 2010) consider interpretability as one of the

reasons that ML techniques are not widely used in practice in networking domain.

Given the needs on that end, in addition to the above three sections, we also review

the techniques for ML model explainability by leveraging model interpretability

and extraction techniques. We review what are these techniques and how they

can be used to improve the quality and practicality of models that are used in the

networked systems.

2.4.1 Model Interpretation. While there is no widely accepted

definition for model interpretability, many definitions have a common concept of

understanding and predictability of the outcome (B. Kim, Khanna, & Koyejo, 2016;

Miller, 2019). Miller (Miller, 2019) defines interpretability as the degree to which

a human can understand the cause of a decision, similar to Kim et al. (B. Kim

et al., 2016) that define it as the level of predicting a model’s result consistently.

The model interpretation has been the focus of different studies since quite a

while ago. Jacobsson (Jacobsson, 2005) had the general model acquisition of a

domain (understanding the patterns in a specific domain) and improving the

model performance in mind as goals of applying model interpretation. However,

the goals have not converged over time. Lipton et al. (Lipton, 2018) define the

most important reasons models have to be interpretable as follows: 1)Trust ; it is

easier to trust a system that explains its decisions, 2)Causality ; to ensure causal

relationships are picked up by the model and it makes it easy for a human to

relate to explanations, 3)Transferability ; considering the effect of the model on

the environment, and resiliency to adversarial manipulation, 4)Informativeness ;

the explanation for decisions through shedding light on model’s inner workings,

and 5)Fair and Ethical Decision-Making ; to avoid discrimination, based on race
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or gender, using the model’s decisions. Some of these angles were also used by

Carvalho et al. (Carvalho, Pereira, & Cardoso, 2019) while they added Privacy

to ensure that sensitive information in the data is protected.

There are two main groups of interpreters (X. Zhang, Wang, Ji, Shen, &

Wang, 2018): back-propagation and perturbation based interpreters. The back-

propagation guided interpretation techniques, compute the gradient of the model

prediction with respect to a given input. These techniques use the magnitude

of the gradient as a proxy for the relevance of the feature to the prediction

(feature importance). Gradient saliency (Simonyan, Vedaldi, & Zisserman, 2013),

DeepLIFT (Shrikumar, Greenside, & Kundaje, 2017), SmoothGrad (Smilkov,

Thorat, Kim, Viégas, & Wattenberg, 2017) LRP (Bach et al., 2015) are considered

as representative examples of this group. The perturbation-based interpretation

methods rely on perturbing the input with minimum noise and observe the

variations in the model output (prediction) by measuring the increase in the

prediction error after permuting the feature’s values. A feature is considered to

be “important" if shuffling its values increases the model error because in this case,

the model relied on the feature for the prediction. First proposed by (Breiman,

2001), and then other techniques such as Shapley Value sampling (Castro, Gómez,

& Tejada, 2009), MASK (Fong & Vedaldi, 2017), Occlusion (Zeiler & Fergus,

2014), and more recently a model-agnostic version proposed by (Fisher, Rudin,

& Dominici, 2018) in this group.

2.4.2 Model Extraction. While model interpretation methods

can capture the importance of different features and facilitate visualizing the

outcome, in such efforts the interaction between different features and their relative
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contribution towards the class labels is not explored. Many efforts have been done

to overcome this limitation through model extraction.

Similar to model interpretation, model extraction is not a recent topic.

Craven (Craven, 1996) in 1996, Krishnan et al. (Krishnan, Sivakumar, &

Bhattacharya, 1999a, 1999b) in 1999 and Boz (Boz, 2002) in 2002 discussed

different aspects of extracting a model’s rules into a more understandable structure

such as a decision tree. Jacobsson (Jacobsson, 2005) surveys a group of studies

and explains how rule extraction (RE) can convert neural network models and

specifically RNN models into finite state machines, therefore, one can mimic

the model while having the advantage of being more transparent. The goals

for model/Rule extraction can be considered as follows: 1)to acquire a generic

model of the domain, as a tool in the acquisition process (data mining), 2)to

provide an explanation of the model, 3)to allow verification or validation of the

model with respect to some requirements (e.g. software testing) and thus make

new, potentially safety-critical domains possible for the model, 4)to improve on

current model architectures by pinpointing errors. In order to assess the quality

of the ruleset, different aspects are considered. The fidelity which is the accuracy

in approximation the original model as well as rule accuracy which shows the

generalization ability of the ruleset, rule consistency as a result of extracting similar

rules from models on the same task, and the Rule comprehensibility which is the

readability of rules or the size of the ruleset, are the main quality measures of

model extraction techniques.

There is a range of techniques proposed for model extraction. Zarate et al.

(Zarate, Vimieiro, & Vieira, 2006) proposed a method to extract if-then type

rules in order to further validate the RNN models by discussing the extracted
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rule by a domain expert. They test their method in the solar energy domain.

Lakkaraju et al. (Lakkaraju, Bach, & Leskovec, 2016) propose a framework for

extracting interpretable decision sets (sets of independent if-then rules) from

models focusing on accuracy and conciseness. They compare their method with

Bayesian Decision Lists (BDL) (Letham, Rudin, McCormick, & Madigan, 2015),

CN2 (Clark & Niblett, 1989), and Classification Based on Associations (CBA)

(B. Liu, Hsu, & Ma, 1998) methods. Sushil et al. (Sushil, Šuster, & Daelemans,

2018) propose a technique to induce sets of if-then-else rules that capture the

relations among features and the labels. They achieve the goal by calculating the

importance of the features in the trained network. Then weigh the original inputs

with these feature importance scores, simplify the transformed input space, and

finally fit a rule induction model (RIPPER-k (Cohen, 1995)) to explain the model

predictions. They apply their method on a multi-label classifier. DTextract by

Bastani et al. (Bastani, Kim, & Bastani, 2017b) proposed an algorithm to provide

global explanations of complex, black-box models in the form of a decision tree

(rule set) approximating the original model. They have applied the method on

classification, regression, and reinforcement tasks (in health and student grade

domains) and shown causal explanations that can be provided for the model’s

decision based on the calculated decision trees.

The inner working logic, the effect and importance of the features for the

model, and also contribution and relation of features can be used in the network

domain to illustrate the logic of trained models and gain trust for the system. That

will facilitate the practical usage of such ML-based systems. Such analyses are not

discussed and examined widely in the networking domain. Having such insights, will

help to understand the models and use them in action.
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CHAPTER III

DETECTION OF INCENTIVIZED ONLINE REVIEWS

Online retail stores are considered as a large scale network of sellers and

shoppers. Shoppers, or in some systems both sides, can provide feedback about

each other in a transaction in form of a numerical rating or textual review that

forms the most important aspect of the rating system. The rating system can

collaboratively guide the involved parties to make better decisions about who to

initiate a transaction based on the quality of their prior experiences. However, not

all opinions are provided with expected intentions. Given the large scale of such

reviews and complexity of extracting intention, in this chapter, we focus on the

application of machine learning models to detect and characterize reviews that are

incentivized by the sellers‘ promotions in two primary categories of Amazon.com

products. This work describes a new method to leverage the difference between

reviews that are explicitly incentivized and normal reviews to detect incentivized

reviews without any sign in the system. Furthermore, this chapter sheds light on

how the prevalence of EIRs has evolved and been affected by Amazon’s reaction to

this phenomenon.

The content in this chapter is derived entirely from (Jamshidi, Rejaie, & Li,

2018, 2019) as a result of collaboration with co-authors listed in the manuscript.

Soheil Jamshidi is the primary author of this work and responsible for conducting

all the presented analyses.

3.1 Introduction

As the popularity of online shopping has rapidly grown during the past

decade, the shoppers have increasingly relied on online reviews and rating provided

by other users to make more informed purchases. In response to shoppers’
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behavior, product sellers have deployed various strategies to attract more positive

reviews for their products as this could directly affect the popularity of these

products among users and thus their ability to sell more products online. Several

prior studies have examined different aspects of online reviews including fake or

spam (Akoglu et al., 2013; Jindal & Liu, 2008; Jindal et al., 2010; F. Li et al., 2011;

Lim et al., 2010; Ott et al., 2011) and also biased and paid reviews (Burtch et al.,

2017; Petrescu et al., 2017; Shyong et al., 2006; J. Wang et al., 2012; Z. Xie & Zhu,

2015) in different online shopping platforms.

The importance of online reviews has also prompted major e-commerce

sites (e.g. Amazon) to implement certain policies to ensure that the provided user

reviews and ratings are legitimate and unbiased to maintain the trust of online

shoppers. In response to these policies, seller’s strategies for boosting their product

rating have further evolved. In particular, in the past few years, some sellers have

increasingly offered discounted or free products to selected online shoppers in

exchange for their (presumably positive) reviews. We refer to these reviews as

incentivized reviews. Major e-commerce sites such as Amazon require reviewers

to disclose any financial or close personal connection to the brand or the seller of

the reviewed products (Amazon’s Community Guidelines, 2018). However, it is

unlikely that average shoppers who solely rely on product ratings notice the biased

nature of such reviews. Intuitively, the reviewers who provide incentivized reviews

may behave differently than other reviewers for the following reasons: (i) they

might feel obligated to post positive reviews as the products are provided for free

or with a considerable discount, (ii) their expectations might be lower than other

users as they do not pay the full price, and (iii) they do not often consider the

long-term usage of the product (e.g. product return or customer service) in their
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reviews. The presence of such incentivized reviews in Amazon has been reported on

(ReviewMeta.com, 2016), however, to our knowledge, the prevalence of incentivized

reviews, their characteristics, and their impact on the ecosystem of a major e-

commerce site have not been systematically and quantitatively studied. Although

Amazon has officially banned submission of incentivized reviews on October of

2016 (aboutAmazon.com, 2016), it is important to study such reviews to be able

to determine whether Amazon’s new policy solved the issue or just forced reviewers

to go undercover.

To tackle this important problem, this chapter focuses on capturing

and characterizing several aspects of incentivized reviews in the Amazon.com

environment. We leverage the hierarchical organization of Amazon products into

categories and subcategories and collect all the information for top-20 best-seller

products in all subcategories of two major categories. We then present a method to

identify explicitly incentivized reviews (EIRs) on Amazon by identifying a number

of textual patterns that indicate explicitly incentivized reviews. We carefully

capture and fine-tune these textual patterns using a regular expression. We then

use these patterns to identify a large number of EIRs along with their associated

products and reviewers. We characterize the key features of EIRs and associated

reviewers and products.

Our analysis demonstrates the effect of Amazon ban on the prevalence of

EIRs as well as the difference between the features of EIRs and normal reviews. We

also examine the temporal pattern of EIR, and non-EIR reviews that a product

receives and a reviewer produces to address two questions: (i) how the arrival

pattern of EIRs for a specific product affects the level of interest (i.e. rate of

non-EIRs and their assigned rating) among other users, and (ii) how individual
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reviewers over time become engaged in providing EIRs. Given the apparent gap

between the features of normal reviews and EIRs, we examine whether machine

learning techniques can detect these differences to identify both explicitly or

implicitly incentivized reviews. We show that such a technique can indeed detect

other explicitly and implicitly incentivized reviews. Additionally, we investigate

the current status of identified EIRs and the ability of sellers to solicit incentivized

reviews in today’s Amazon platform.

In the rest of this chapter, we describe our data collection technique and

our datasets in §3.2. Next, §3.3 presents our method for detecting EIRs. We

characterize several aspects of EIRs and their associated products and reviews

in §3.4. In §3.5 we discuss the temporal patterns of EIRs and non-EIRs that

are submitted for individual products or produced by individual reviewers.

§3.6 presents our effort for automated detection of other explicitly or implicitly

incentivized reviews using machine learning techniques. The current state of EIR

reviews is explored in §3.7. Finally, §3.8 summarizes this chapter.

3.2 Data Collection and Datasets

This section summarizes some of the key challenges with data collection

and then describes our methodology for collecting representative datasets that we

capture and use for our analysis. Amazon web site organizes different products

into categories that are further divided into smaller subcategories. Each product

is associated with a specific seller. A user who writes one (or multiple) review(s)

for any product is considered a reviewer of that product. For each entity (i.e. user,

review or product), we crawled all the available attributes on Amazon as follows:
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– Reviews’ attributes: review id, reviewer id, product id, Amazon Verified

Purchase (AVP) tag, date, rating, helpful votes, title, text, and link to

images.

– Products attributes: product id, seller id, price, category, rating, and title.

– Reviewers’ attributes: reviewer id, rank, total helpful votes, and publicly

available profile information.

In particular, AVP tag of a review indicates whether the corresponding reviewer

has purchased this product through Amazon and without deep discount or not, as

is defined on (Amazon.com, 2018).

There are a few challenges for proper collection and parsing of this

information from major online websites (Rejaie, Torkjazi, Valafar, & Willinger,

2010). First, there is a very large number of product categories where the format,

available fields for products, and tendency of users to offer reviews widely vary

across different categories. Furthermore, we need to comply with the ethical

guidelines as well as the enforced rate limits by Amazon servers for crawlers which

makes it impossible to collect the reviews for all products within a reasonable

window of time. To cope with these challenges, collecting a representative sample

can be used (Rasti et al., 2008). We collect three datasets where each one provides

representative samples of products, reviews and reviewers. We developed Python

pipelines using libraries such as Selenium. It took us more than 6 months to crawl

the datasets given the fact that we limited our crawling rate.

Sample Products (DS1): We focus on two popular categories of products,

namely Electronics and Health & Personal Care since they have a large number of

sub-categories and products that receive many reviews. To make the data collection
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Table 1. Basic Features of Our Datasets

Products

(DS1)

EIRs

(DS2)

Normal

Reviews

Reviewers

(DS3)

Reviews 3,797,575 100,086 100,086 217,000

Reviewers 2,654,048 39,886 98,809 2,627

Products 8,383 1,850 1,641 184,124

manageable and given the skewed distribution of reviews across products, we only

capture all the information for the top-20 1best seller products in each sub-category

in the above two categories from Amazon.com. While these products represent a

small fraction of all products in these two categories, the top-20 products receive

most of the attention (#reviews) from users and enable us to study incentivized

reviews. We refer to this product-centric dataset as DS1.

Sample EIRs (DS2): Using our technique for detecting Explicitly Incentivized

Reviews (EIR) that is described in §3.3, we examine all the reviews associated with

products in DS1 and identify any EIRs among them. We refer to this set of EIRs as

DS2 dataset.

Normal Reviews: After excluding EIRs, we examine the remaining reviews for

products in DS1 and consider each review as normal if it is not among EIRs and

(i) associated with an Amazon Verified Purchase, (ii) submitted on the same

set of products that received EIRs, and (iii) submitted by users who have not

submitted any EIRs. We rely on this rather conservative definition of normal

reviews to ensure that they are clearly not incentivized. We identified 1,214,893

normal reviews and then selected a random subset of them (the same number as

1https://www.amazon.com/gp/bestsellers/
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EIRs). We refer to these selected reviews as our normal review dataset that serves

as the baseline for comparison with EIRs in some of our analysis.

Incentivized Reviewers (DS3): To get a complete view of sample incentivized

reviewers, we randomly select 10% of reviewers associated with the reviews in DS2

dataset. For each selected reviewer with a public profile, we collect their profile

information and all of their available reviews. Overall, we collect this information

for 2,627 reviewers and only consider their reviews for our analysis.

The DS1, DS2, and Normal reviews datasets were collected in December

2016, and the Reviewers dataset (DS3) was collected in January 2018.

3.3 Detecting Explicit Incentivized Reviews

Automated identification (or labeling) of incentivized reviews requires

a reliable indicator in such reviews. To this end, we first focus on reviews in

which the reviewer explicitly indicates his/her intention for writing the review in

exchange for a free or discounted product. Such an indication must be provided

in the reviews since Amazon requires that reviewers disclose any incentive

they might have received from the sellers as noted on (Amazon’s Community

Guidelines, 2018). Furthermore, these reviewers also include such incentives in

their reviews to attract more sellers to offer them similar incentives in exchange

for their reviews to promote their products. Our manual inspection of a large

number of reviews revealed that many reviewers indeed explicitly state their

incentive for writing their reviews. These reviews contain some variants of the

following statements: “I received this product at a discount in exchange for my

honest/unbiased review/feedback." To capture all variants of such statements, we

select any review that matches the following regular expression in a single sentence

of the review:
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’(sent|receive|provide)[̂ \.!?] ∗

(discount|free|in− trade|in−exchange)[̂ \.!?]∗

(unbiased|honest)[̂ \.!?]∗

(review|opinion|feedback|experience)’

Among all the 3.79M reviews in the DS1 dataset, 100,086 reviews submitted

by 39,886 users on 1,850 products match some variants of the above regular

expression in one sentence. We consider these 100,086 reviews as EIRs and group

them in our DS2 dataset.

We also considered a more relaxed setting where reviews could have the

above regular expression across multiple sentences. This strategy tags 325,043

reviews from 210,198 users on 7,059 products as EIR. However, our careful

inspection of many of the newly-identified EIRs by this more flexible strategy

revealed that some of them are non-incentivized reviews that happen to match

the regular expression. To avoid any such false-positives in our EIRs, we adopt a

conservative strategy and only consider a review as EIR if the desired pattern is

detected within a single sentence.

EIR-Aware Reviews: Our extensive manual inspection of the identified EIRs

also revealed that in a tiny fraction (only 30 reviews) the reviewer simply refers to

other EIRs to complain about them, indicate his/her awareness and inform other

users of such incentivized reviews. However, these reviews are not incentivized

themselves. To exclude these reviews, we manually checked random samples of

reviews and found that these EIR-aware reviews contain one of the following

terms (who received|with the line “i received|which say they received|their so-called

“honest").
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We then exclude any identified EIR that matched these aware patterns.

After extensive manual work in this step, we found only 30 aware reviews by 26

reviewers on 29 products that are excluded from DS2. Interestingly, all these aware

reviews were collectively marked as helpful by 194 other users, indicating that many

other reviewers felt the same way about the incentivized reviews. This illustrates

how the presence of incentivized reviews could impact the trust of customers in the

authenticity of Amazon reviews.

3.4 Basic Characterizations of Amazon Reviews

In this section, we examine a few basic characterizations of EIRs and

their associated products and reviewers in order to shed some light on how these

elements interact in Amazon.com.

3.4.1 Product Characteristics. One question is what fraction of

reviews for individual products are EIRs? We use all products in dataset (DS2 ) to

examine several characteristics of products that receive at least one EIR.

Fig. 2 and Fig. 3 present the summary distribution of the fraction of

product reviews that are EIRs for different groups of products based on the total

number of reviews in each category. The red lines (and red dots) show the median

(mean) value for each box plot. The green diamonds on these figures show the

fraction of all products (per category) that are in each group using the second Y-

axis. These figures show that for products in Health and Personal Care category,

typically 10-20% of reviews are EIR regardless of the total number of reviews for

a product. However, for products in the Electronics category, the fraction of EIRs

is generally smaller and rapidly drops as the number of product reviews increases.

This suggests that the prevalence of EIRs could vary across different categories of

Amazon products.
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Figure 2. Distribution of Fraction of EIRs per Product in Electronics Category
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Figure 3. Distribution of Fraction of EIRs per Product in Health Category

Another important question is how the total number of EIR reviews and

associated products have changed over time? Fig. 4 depicts the temporal evolution

of the number of observed EIRs per day (with a red dot) as well as the cumulative

number of unique products (with the dotted line using the right Y-axis) that

received EIRs over time using our DS3 dataset. This figure reveals that while EIRs

were present in Amazon at a very low daily rate since 2012, the number of EIRs

and associated products have dramatically increased between the middle of 2015

and the middle of 2016. We can clearly observe that Amazon’s policy for banning

EIRs that was announced in October 2016 (aboutAmazon.com, 2016) have been

very effective in rapidly reducing the daily rate of EIRs and the number of affected

products within a couple of months. We note that the effect of this new policy on

the implicitly incentivized reviews is unknown.

46



2012
2013

2014
2015

2016
2017

2018

0

100

200

300

#
R

e
v
ie

w
s

EIRs

#Products

0

20

40

60

#
P
ro

d
u
ct

s 
(x

1
0
0
0
)

Figure 4. Evolution of the Daily Number of EIRs and the Total Related Products

Another issue is the price range for products that possibly motivate the

reviewers to provide EIRs. We observe that 80% (95%) of these products cost

less than $25 ($50). In essence, there is typically no significant financial gain in

providing a small number of EIRs.
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Figure 5. Distribution of the Fraction of Provided EIRs per Reviewer

3.4.2 Reviewer Characteristics. We now turn our attention to

reviewers that provided at least one EIR (i.e. reviewers in DS3) to characterize

several aspects of these reviewers. We first explore the question of what fraction of

reviews provided by individual reviewers are EIRs? This illustrates to what extent a

reviewer is engaged in writing EIRs.

Fig. 5 presents the summary distribution of the fraction of all reviews

of individual users that are EIRs across different groups of users based on their

total number of reviews. This figure also presents the number of reviewers in each

group (green diamonds) using the second Y-axis. This result illustrates that the
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fraction of EIRs for most reviewers varies between 30-40% of all their reviews.

Interestingly, as the reviewers become more active, EIRs make up a more significant

fraction of their reviews. To get a better sense of the type (i.e. demography) of

users who are likely to provide EIRs, we examined their public profile description

and identified the following most common keywords (and their frequencies): “ love"

(1.0) , “products" (0.41), “new" (0.40), “Review" (0.39), “home" (0.38), and “mom"

(0.34). Our manual inspection of these profiles confirms that around 18% of these

reviewers are moms staying at home that love to review new Amazon products.

3.4.3 Review Characteristics. We take a closer look at various

features of EIRs in comparison with normal reviews as a reference group.

Helpfulness: An essential aspect of reviews is how helpful they are to other users.

Amazon reports the total number of helpful votes (up-votes) per review. A slightly

larger fraction of normal reviews (12.68%) receive up-votes compare to the EIRs

(10.87%). Fig. 6 shows the Complementary Cumulative Distribution Function

(CCDF) of the number of up-votes for EIRs and normal reviews. This figure

reveals EIRs and normal reviews exhibit the same degree of helpfulness, but the

extreme cases for normal reviews are much more helpful.

100 101 102 103 104

#Helpful votes

10 13

10 10

10 7

10 4

10 1

Normal reviews
EIRs

Figure 6. CCDF of Helpfulness
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Review Content: We start by comparing several features of EIR content with

normal reviews. First, we observe that 13% of EIRs attach at least one image to

their reviews while this ratio is ten times smaller (1.3%) for normal reviews. We

perform sentiment analysis on both content and title of reviews using textblob

library. The sentiment is measured by a value within the range of [-1, 1] where

1 indicates positive, 0 neutral, and -1 a negative sentiment. Fig. 7 presents the

distribution of sentiment for the content of EIRs and normal reviews. We observe

that 9.5% (9,498) of normal reviews have negative sentiment, 9.1% are neutral (i.e.

their sentiment measure is zero) and the rest are positive reviews that are spread

across the whole range with some concentration around 0.5, 0.8, and 1. In contrast,

the sentiment of nearly all EIRs are positive, but more than 80% of them are

between 0 to 0.5. In essence, the sentiment of normal reviews is widespread across

the entire range while sentiments for EIRs are mostly positive but more measured.

Similarly, less than half of the normal reviews and three-quarter of EIRs have titles

with positive sentiments.

1.0 0.5 0.0 0.5 1.0
Sentiment

0.0

0.2

0.4

0.6

0.8

1.0 Normal reviews
EIRs

Figure 7. CDF of Review Sentiment

Using TextBlob library, we also analyzed the Subjectivity of reviews, which

marks the presence of opinions and evaluations rather than using objective words
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to provide factual information. Fig. 8 depicts the CDF of the subjectivity across

EIRs and normal review datasets. This figure reveals that the subjectivity for 83%

of EIRs are between 0.4 and 0.8 while the subjectivity of normal reviews is widely

spread across the whole range for normal reviews.

0.0 0.2 0.4 0.6 0.8 1.0
Subjectivity

0.0

0.2
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0.8

1.0 Normal reviews
EIRs

Figure 8. CDF of Review Subjectivity

We use the Gunning Fog index (Gunning, 1952) to measure the readability

test for English writing in each group of reviews. This index estimates the number

of years of formal education a person needs to understand the text on the first

reading. For example, a Fog index of 12 requires the reading level of a U.S. high

school senior. Fig. 9 shows the CDF of the Fog index across EIRs and normal

reviews. This result illustrates that the readability of EIRs requires at least 4 years

of education and is 1.5 years higher than normal reviews on average (7.5 vs. 6 years

of education). Also, the index exhibits much smaller variations across EIRs. In

short, the writing of EIRs is more elaborate.

Self-Similarity of User Reviews: Similarity of the content across submitted

reviews by individual users reveals whether a reviewer merely repeat the same set

of sentences across different reviews (and thus provides a generic review) or not. To

this end, we assess the level of similarity in the text of all pairs of written reviews
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Figure 9. CDF of Review Readability

by a normal reviewer and all pairs of written EIRs by EIR. We use the Jaccard

index on the uni-grams of reviews as a measure of similarity between the content of

a pair of reviews. We consider all reviewers with at least 5 EIRs (1,004 users) from

DS2 for this analysis and the same number of randomly selected normal reviewers

with the same distribution of reviews as a reference.
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Figure 10. Pair-wise similarity of the content of submitted reviews by normal and
EIR reviewers (with and without the text of disclaimer for their incentive) based on
Jaccard index

Fig. 10 depicts the CDF of pairwise similarities between normal reviews and

EIRs across normal and EIR reviewers using the log-scale for the x-axis. This figure

demonstrates a measurably higher level of self-similarity between EIRs compare to
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normal reviews. In particular, 75% (97%) of pairs of normal reviews by individual

normal reviewers exhibit zero (<5%) similarity. However, 90% (and 39%) of pairs

of reviews submitted by EIR reviewers exhibit more than 1% (5%) similarity in

their content. Interestingly, we identified 10 EIR and 14 normal reviewers who have

submitted roughly between 6 to 10 identical reviews on different products. The

presence of the regular expression in EIRs that explicitly indicates the reviewer’s

incentive could increase the level of similarity between reviews of an EIR reviewer.

To ensure that our similarity measure is not significantly affected by the explicitly

stated incentive in EIRs, the orange line (labeled EIRs-noSignature) in Fig. 10 also

presents the level of similarity between pairs of EIRs per reviewer after removing

the identified regular expression from all EIRs. Fig. 10 shows that the level of

similarity between reviews of individuals with EIRs is still much larger than reviews

of normal reviewers.

Review Submission Timeline: Another interesting question is whether the

submission timeline for EIRs vs normal reviews for individual products is different?

In particular, over which part of a product lifetime EIRs and normal reviews

are submitted. In the absence of any explicit signal, we use the time between

the first and last review of a product as an approximation of its lifetime 2 and

assign a normalized submission time that we call recency of review for all reviews

of products in DS1. For example, recency of 100% indicates that a review was

submitted very recently whereas 0% implies a review that is submitted right after

a product becomes available. Fig. 11 and 12 show the summary distribution of

2Amazon provides the date when a product becomes available for some categories of product.
However, we frequently observe cases where a product has multiple versions in the same product
page that have become available at different times but share the same pool of reviews. We use the
time between the first and last reviews across all versions of a product to deal with this ambiguity
in relating specific review to a particular version of a product.
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recency of all reviews (left Y-axis) for different groups of products based on their

age in terms of the number of months on the X-axis. Both figures show the fraction

of products in each group (right Y-axis). The bottom part of Fig. 11 also presents

the prevalence of EIRs in Amazon by showing the number of submitted EIRs in

the same window of time. Fig. 12 clearly illustrates that the submission timeline

of normal reviews is generally balanced across the life of corresponding products

regardless of their age. However, the submission timeline for EIRs exhibits broadly

two different patterns based on product age. For products that have become

available during the most recent 18-month window when EIRs were prevalent in

Amazon, a visibly larger fraction of EIRs was submitted during the first half of

product lifetime. However, for older products, the EIRs were submitted during the

more recent window since EIRs were not common on Amazon during the first half

these products lifetime. In summary, the submission of EIRs in the early part of

recent products’ lifetime indicates sellers’ effort to attract EIRs as they list a new

product on Amazon whereas the late submission for older products is simply due to

the relatively recent availability of EIRs over products’ lifetime.

Length of Reviews: The overall length of a review and its title could be viewed

as measures of its level of details. We observe that the typical (i.e. median) length

of an EIR (599 characters) is more than three times longer than a normal review

(179 characters). Interestingly, the longest normal review (14.8K character) is much

longer than the longest EIR (11K character). We observe a similar pattern for the

length of reviews based on word count. Furthermore, the title for EIRs are typically

6.6 words long which is two words longer than the title of normal reviews.

Star Rating: A critical aspect of a review is the star rating (in the range of 1 to

5 stars) that it assigns to a product. We observe that the assigned rating by EIRs
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Figure 11. The submission timeline of EIRs across lifetime of products with
different ages
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Figure 12. The submission timeline of normal reviews across lifetime of products
with different ages

is frequently more positive than normal reviews. More specifically, 95% (75%) of

EIRs associated the rating of at least 3 (5) stars while this number drops to 1 (4)

for normal reviews.

Statistical Significance: We have shown that several features of EIRs - namely

star rating, helpfulness, text and title length, readability, and sentiment - exhibit

different distributions compare to normal reviews. This raises the question that

whether the reported difference in these distributions are statistically significant.

We perform statistical test to answer this question. We observe that none of

these features follow a normal distribution as they did not pass the normal test

(d’Agostino, 1971). Therefore, we rely on Kruskal-Wallis test (Kruskal & Wallis,
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1952) to tackle this question. Kruskal-Wallis tests the null hypothesis that the

population median of all the groups are equal. If we observe a large p-value (e.g.

more than 0.01), then we cannot reject the null hypothesis. The observed that p <

0.0001 for the distributions of most of these characteristics and p=0.006 for review

helpfulness. These results suggest hat the difference between the distribution of

these features for EIRs and normal reviews are indeed statistically significant.

Reviewer-Review Mapping Per Product: A majority of reviewers (99.8%)

in our EIR dataset (DS2) have written only one EIR for each product. We only

found 73 users who have written multiple EIRs for at least one product. These

reviews add up to the total of 151 EIRs for 32 unique products. None of the users

in our user-centric dataset (DS1) writes multiple EIRs for a single product. Given

the one-to-one relationship between the absolute majority of reviewer-review pairs

per product, for the rest of our analysis, we assume each reviewer has only a single

review per product and vice versa.

Association of Reviewers with Sellers: So far we have primarily focused on

the relationship between reviewers and products through reviews. In practice,

individual sellers often offer multiple products on Amazon. This raises two

questions regarding the associations of EIR reviewers and sellers that we explore

here: The first question is whether an EIR reviewer is typically approached by

single or multiple sellers to review their products? Fig. 13 presents the CDF of the

number of unique sellers that each EIR reviewer (in DS3) has submitted at least

one EIR for their products. We observe that 75% (95%) of reviewers only submit

EIR for at most 1 (3) products of each seller.

The second question is how many products of a seller a reviewer submit

an EIR for? We examine the distribution of the number of products of a seller
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Figure 14. The distribution of number
of products of a seller that each reviewer
submits EIR for

that each reviewer in DS3 submits an EIR for. In Fig.14 we observe that the

94.5% (99%) of reviewer-seller relationships are through a single (two) reviewed

product(s). In summary, these results show that EIRs reviewers usually submit an

EIR for a single product of one or two sellers.

Crowdsource Agents: After closer examination of EIRs, we identified hundreds

of reviews in DS1 where reviewers explicitly mentioned that they received the

products from a specific agency (e.g. BuzzAgent, Influenster, and AMZ Review

Trader) in exchange to share their reviews. Our investigations revealed that these

websites are associated with crowdsourcing agents that promote a seller’s products

on different social media platforms. Once a user registers on these websites, she

receives certain free products in exchange for her reviews on different social media

platforms (e.g. Amazon, Twitter, YouTube). In essence, these websites manage

some of the promotional campaigns for selected sellers’ products (presumably) for a

fee.

Using the name of 12 identified crowdsourcing agencies, we detected 2,124

incentivized reviews from 1,991 reviewers on 237 products among all reviews in

DS1. 89.9% of these reviews assigned a strongly positive rating (4 and 5 stars) and

71% of them have a strong positive sentiment. Note that only a small fraction (116
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out of 2,124) of these reviews were EIRs. This analysis demonstrates that there are

other indirect ways for sellers to offer incentives to users for submitting positive

reviews on Amazon and other more popular social media platforms.

3.5 Temporal Analysis of Amazon Reviews

All of our previous analysis have focused on the overall characteristics of

reviews, reviewers, and products over their entire lifetime. Intuitively, product

sellers offer various incentives to attract reviewers and obtain incentivized reviews

for their specific product. Obtaining these incentivized reviews over time increases

the available information and improves the overall image (e.g. rating) of the

product. This, in turn, expands the level of interest among (ordinary) users who

may consider to buy the product and provide their own review. Examining the

temporal pattern of submitted reviews (by various reviewers) for a product or

submitted reviews by a reviewer (for any product) sheds an insightful light in

various dynamics among seller products, reviews, and reviewers.

In this section, we tackle two important issues: First, we inspect the “review

profile of sample products" to study how the temporal pattern of obtained EIRs

for a product affect the level of interest among other users. Second, we examine

the “review profile of sample reviewers" to explore how reviewers get engaged in

producing EIRs. To tackle these questions we have inspected temporal patterns for

many products and reviewers, and only present a few sample cases to illustrate our

key findings better.

In this analysis, we primarily focus on the number of EIRs, non-EIRs (i.e.

reviews that are not tagged as EIR by our method) associated with a product (or a
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reviewer) per day and their (cumulative) average rating. 3 across EIRs or non-EIRs

that a product receives or a reviewer assigns.

3.5.1 Product Reviews. We consider four different products to

examine the temporal correlations between the daily number of EIRs and the level

of interest among other users, namely the number of non-EIRs and their ratings,

for each product.

Note that a product seller can (loosely) control the arrival rate of EIRs

by offering incentives (or promotions) with a particular deadline to a specific set

of reviewers. We refer to such an event as a promotional campaign. The goal of

our analysis is to investigate whether and to what extent such a campaign affects

the number of non-EIRs and their rating for individual products. Note that a

product seller can (loosely) control the arrival rate of EIRs by offering incentives

(or promotions) with a certain deadline to a specific set of reviewers. We refer to

such an event as a promotional campaign. By specifying a deadline for the incentive

or promotion, the seller can also force interested users to write their reviews within

a specific window of time. We simply assume that any measurable, sudden increase

in the number of daily EIRs for a product is triggered, by a promotional campaign

that is initiated by its seller. The goal of our analysis is to investigate whether and

to what extent such a campaign affects the number of non-EIRs and their rating for

individual products. Each plot in Fig. 15 presents the daily number of EIRs (with

a red X), the daily number of non-EIRs (with a green diamond), the cumulative

average rating for all non-EIR (with dotted green) and EIR (with dotted red lines)

3Amazon appears to rely on some weighted averaging method (Bishop, 2015) to calculate the
overall rating of a product based on factors such as the recency of a review, its helpfulness and
whether it is associated with a verified purchase. Since the details of Amazon’s rating method is
unknown, we simply rely on a linear moving average of all ratings to determine the overall rating
of each product or reviewer over time.
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for a single product. Each plot also shows the cumulative rating of all reviews with

a solid blue line. Three rating lines on each plot are based on the right Y-axis

showing the star rating (1 to 5 scale).

06-14
11-14

04-15
09-15

02-16
07-16

0

10

20

30

40

# 
Re

vi
ew

s

a) Short - ~Effective

08-15
11-15

02-16
04-16

07-16

b) Mild - Ineffective 

10-15
12-15

02-16
04-16

06-16
08-16

c) Intense - Ineffective 

04-15
07-15

10-15
02-16

05-16
08-16

d) Mild - Effective 

3.50
3.75
4.00
4.25
4.50
4.75
5.00

Ra
te

Non-EIR EIR rate - EIR rate - All rate - nonEIR

Figure 15. Temporal Patterns of Reviews for Individual Products

Short & Moderately Effective Campaigns: Fig. 15-a shows a product that has

been consistently receiving a few daily non-EIR (and not a single EIR) reviews

over a roughly two year period. Its average product rating rather consistently

drops during 2015. A persistent daily rate of EIR suddenly starts in early 2016

and continues for a few months indicating a likely promotional campaign. The

campaign triggers a significant increase in the number of non-EIRs. Interestingly,

the average rating of EIR rapidly converges to the average rating of non-EIR (and

the overall rating) and not only prevents further dropping but also rather improves

the overall rating of this product. This appears to be a short-term (over a few

months) and moderately effective promotional campaign by the seller.

Multiple Mild but Ineffective Campaigns : Fig.15 - b presents another

product that consistently receives non-EIRs over a one year period. We can also

observe ON and OFF periods of EIRs that did not seem to seriously engage other

users with this product (i.e. no major increase in the daily rate of non-EIRs). The

assigned rating by EIRs is relatively constant, and their gap with the rating of non-
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EIRs (and overall rating) rapidly grows. Clearly, these multiple mild campaigns are

not effective in raising the ratings of the product.

Multiple Intense but Ineffective Campaigns: Fig. 15- c shows a product that

has been consistently receiving both EIR and non-EIRs over a year-long period.

However, there are two (and possibly three) distinct windows of time (each one

is a few weeks long) with pronounced peaks in the number of daily EIRs which

suggests two intense campaigns. Interestingly, the first campaign only generates

short-term interest among ordinary users (shown as a short-term increase in the

daily number of non-EIRs) while the second campaign triggers more non-EIRs. The

average rating of EIR is clearly above non-EIRs. However, the average rating of

non-EIRs (and even EIRs) continues to drop over time despite the increased level

of attention by other users after the second campaign. Therefore, these multiple

intense campaigns were not able to improve the overall rating of this product.

Multiple Mild and Effective Campaigns: Fig. 15-d shows a product with a low

and persistent daily EIR and non-EIR over a one-year period. We then observe a

couple of months with absolutely no reviews that suggest the unavailability of the

product. This is followed by a more active campaign of EIRs over a month that

continues at a lower rate. This last campaign seems to significantly increase the

level of interest among the regular users as well as their rating for this product.

In particular, the average rating by non-EIRs was relatively stable and clearly

below the rating by EIRs until the last campaign. Interestingly, the last campaign

decreases the overall rating by EIRs while enhances the overall rating by non-EIRs.

Therefore, we consider this as an effective campaign.

These examples collectively demonstrate that while a seller could loosely

control the duration and intensity of its promotional campaign for a product,
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its impact on the level of engagement by other users could be affected by many

other factors (e.g. quality of reviews, strategies of competitors, and quality of the

product) and thus widely vary across different products.

3.5.2 User Reviews. We now focus on the written EIRs and non-

EIRs by individual users over time. Similar to the temporal patterns of product

reviews, we show the number of daily EIRs (with a red X), non-EIRs (with a green

circle). We also show average assigned rating by EIRs (with red dotted line) and

non-EIRs (with green dotted line) of the reviewer over time. The three plots in

Fig. 16 present the temporal pattern of all reviews (for any product) and their

rating for three different reviewers.
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Figure 16. Temporal Patterns of Reviews for Individual Reviewers

Persistent EIR Writer: Fig. 16-a shows a user who provided a single review

in 2013 and was inactive for more than a year. Starting in April 2014, she has

been submitting a couple of EIRs and/or non-EIRs a day for 20 months, and then

her activity significantly dropped. Her average rating for EIRs and non-EIRs are

very similar. It appears that this reviewer has become active in Amazon mainly to

provide EIRs. But it is rather surprising that she stopped submitting EIR when

these types of reviews are very prevalent on Amazon (as we showed in Fig. 4).

Active EIR Writer: Fig. 16-b shows a user who has been actively writing non-

EIRs over 16 years since 2001, and her level of activity has gradually increased.
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Interestingly, she started posting EIRs from 2015 for two years and then stopped.

These two years are perfectly aligned with the period in which EIRs have become

rapidly popular in Amazon (as we showed in Fig. 4). Furthermore, the overall

assigned rating by this reviewer in non-EIRs was relatively stable over time which

was slightly lower than her assigned rating in EIR reviews. This reviewer is a

perfect example of a serious Amazon reviewer who takes advantage of offered

incentives by sellers for writing EIRs.

Casual EIR Writer: Fig. 16-c shows the temporal pattern of review submission

by a user who has been in the system since 2013. However, he became moderately

active in the middle of 2015 and provided some EIRs and mostly non-EIRs in the

past two years. The number of his EIRs are limited and mostly written over a one

year period. It is rather surprising that his rating in EIRs gradually grew over

time and was always slightly lower than his ratings for non-EIRs. Far from normal

behavior, he has written 49 non-EIRs in one day in 2016 (the green dot above the

rating lines). Overall, he appears to be a moderate reviewer who casually writes

EIRs.

In summary, our user-level temporal analysis of EIRs and non-EIRs

indicates that: Reviewers exhibit different temporal patterns in producing EIRs.

However, users are more active while incentives are offered.

3.6 Detecting Other Incentivized Reviews

So far in this chapter, we primarily focused on EIRs for our analysis since

we can reliably detect and label them as incentivized reviews. However, in practice,

there might exist a whole spectrum of explicitly or implicitly incentivized reviews

besides EIRs. An intriguing question is whether all these incentivized reviews

(regardless of their implicit and explicit nature) share some common features that
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can be leveraged to detect them in an automated fashion? To tackle this question,

we consider a number of machine learning and neural network classification

methods that are trained using a combination of basic and text features of the

reviews.

Pre-processing Reviews: We use 100K random EIRs (from the DS3

dataset) and the same number of normal reviews as our labeled data. First, we

remove the sentence that indicates the explicit incentive of a reviewer from each

EIR before using the EIRs in this analysis so that these sentences do not serve as

a prominent explicit feature. Second, we consider the following pre-processing of

text of reviews to examine their exclusive or combined effect on the accuracy of

various detection methods: (i) converting all characters to lower-case, (ii) using

the stem of each word in the review (e.g. “wait" is the stem for words “waiting",

“waits", “waited"). (iii) using only alphanumeric characters, and (iv) removing all

the stop-words using the NLTK library in python. (v) converting all the frequent

contractions such as “’ve, ’d, I’m, ’ll, n’t" to their formal form.

Classification Methods: We examine a number of classification methods

including Multi-Layer Perceptron (MLP), SVM, GaussianProcess, DecisionTree,

RandomForest, AdaBoost Classifiers. Each classifier is trained and tested in three

scenarios with a different combination of review features as follows: (i) Basic

Features: Using nine basic features of reviews, length, sentiment, subjectivity,

and readability of review text, star-rating, and helpfulness of reviews, as well as

length, sentiment, and subjectivity of title, (ii) Text Features: Using extracted

text features of the review including the word- or character-based {uni, bi, or

Tri}-grams (limited to 1500 text features), (iii) All Features: Combination of all

basic and text-based features. Individual methods are evaluated in 5 and 10-fold
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cross-validation as well as 70/30 test and training split manner. We only present

the result for the 10-fold cross-validation of the MLP method using pre-processed

reviews. The results for all other cases are available in our technical report (Soheil,

Reza, & Jun, 2016-18).

We found MLP to be considerably better regarding memory usage,

computation time, and accuracy on a 50-50% combination of EIR and normal

reviews in the training set. We use 90% of data for training and testing and 10% of

data for hyper-parameter tuning using the grid-search in SciKitLearn library. The

MLP classifier is trained using default parameters, except for alpha (the L2 penalty

regularization term) and hidden_layer_size that we set to 0.1 and (50,30,10),

respectively. Table 2 presents the accuracy, recall, precision, F1-score, Precision-

Recall Area Under Curve (P-R AUC), and the Receiver Operating Characteristic

(ROC) AUC for MLP Classifier over all runs. These results indicate that even

without the explicit acknowledgment sentence in EIRs, a classifier can accurately

detect EIRs from normal reviews using basic or text feature. The accuracy further

improves if we combine both sets of features.

Model Evaluation: We further evaluate the machine learning model by

exploring the logic behind its decision-making process. This exercise demonstrates

whether the model is trustworthy and exposes any potential problems in the model

that should be addressed. First, we assess how certain our model is in making

decisions. Fig. 17 shows the summary distribution of the prediction probability

of all test records per class for the model that uses both basic and n-gram features

along with the number of records per class (in blue). This result indicates that

our model typically exhibits high confidence (92% and 93%) for predicting EIR
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Table 2. The evaluation of MLP classifier in detecting EIRs.

Accuracy Recall Precision F1-score
Basic 0.85±0.03 0.83±0.01 0.8±0.03 0.83±0.01 (0.84,0.83)
Text 0.9±0.01 0.89±0.01 0.89±0.01 0.89±0.01 (0.89,0.89)

Basic+Text 0.93±0.02 0.92±0.01 0.92±0.03 0.92±0.01 (0.92,0.92)

C-Elect. 0.91±0.03 0.91±0.01 0.91±0.03 0.91±0.01 (0.91,0.91)
– on Health 0.8 0.87 0.76 0.81 (0.78,0.81)

C-Health 0.89±0.03 0.86±0.01 0.83±0.04 0.86±0.01 (0.86,0.86)
– on Elect. 0.85 0.89 0.83 0.86 (0.85,0.86)

Pr-Re AUC ROC AUC
Basic 0.88±0.01 0.83±0.01
Text 0.92±0.0 0.89±0.01

Basic+Text 0.94±0.01 0.92±0.01
C-Elect. 0.93±0.01 0.91±0.01
– on Health 0.85 0.8

C-Health 0.9±0.01 0.86±0.01
– on Elect. 0.89 0.85
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Figure 17. The classification probability for EIRs and normal reviews along with
the number of records in each category

and normal reviews. However, its confidence has a rather wider variation for EIR

records.

To explain how our model makes the decisions, we incorporate the LIME

(Ribeiro, Singh, & Guestrin, 2016) framework to assess the feature importance for

each of the labels. Fig. 18 and Fig. 19 depicts the summary distribution of feature

importance for the top 10 features across all testing samples on predicting EIR
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and normal reviews, respectively. Features are sorted based on their prevalence

(light blue bars). We observe that 8 out of 10 top features are the N-grams of

the review content and the other two features are basic overall characteristics of

reviews, namely their length and subjectivity. As expected, our model considers

reviews with higher subjectivity values as a candidate for EIR and lower ones as

normal, although makes this decision in combination with other features.

Category-specific classification: To asses how generally accurate our model

can be and whether we need a category specific model, we examine the ability

of a classifier for detecting EIRs in other categories. To this end, we divide EIRs

and normal reviews into two groups based on the category of their corresponding

product (i.e. Electronics and Health). We train two classifiers, called C-Health and

C-Elect. where each one only uses EIRs and normal reviews (with a combination

of basic and text features) associated with products in the corresponding category.

Finally, we test each classifier on reviews from the same (the 4th and 6th rows of

Table 2) as well as on reviews from the other category (the 5th and 7th rows of

Table 2) to assess their accuracy in detecting EIR and normal reviews. The last

four rows of Table 2 present the accuracy of MLPC for detecting EIRs within

each category and between two categories. These results show that the accuracy

of detection for EIRs within each category is around 90% and it remains above 80%

for cross-category detection of EIRs. Interestingly, the classifier that is trained with

Health reviews exhibits a higher accuracy in detecting Electronics reviews.

Next, we investigate the ability of our trained classifier using the basic

and text-based features in detecting other incentivized reviews, namely implicitly

incentivized reviews (IIRs) and other explicitly incentivized reviews that do not

contain the identified regular expressions and thus they were not detected by our
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method. We randomly select 50,000 reviews (during 2016) from the DS1 dataset

that are neither EIR nor normal reviews. After removing reviews with less than

three words in the text, we kept 49,956 reviews. We use the trained classifier to

determine whether any of these unseen reviews are classified as incentivized or

normal reviews. The classifier flags 10,693 (21.4%) of these reviews as incentivized.

Our manual inspection of the content of these reviews revealed that they can be

broadly divided into two groups as follows:

Other Explicitly Incentivized Reviews: 2,154 (20.1%) of reviews labeled as

incentivized contain a variety of different explicit patterns that was so sparse to

be captured by our regex, e.g. “I had the opportunity to get it for my review",

“received with a promotion rate".

Implicitly Incentivized Reviews (IIRs): We note that the absence of any

explicit disclosure of incentives in the remaining reviews does not imply that they

are not incentivized. We hypothesize that some of them are implicitly incentivized

reviews (IIRs). However, as there is no strong signal to confirm whether these

reviews are implicitly incentivized, we consider three different ways to verify our

hypothesis as follows:
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First, across all the remaining flagged reviews by our classifier, we consider

the pairwise relationship between review-product and review-reviewer. We check

each of these reviews against the following two conditions: (i) whether a review is

associated with a product that had received at least one other EIR, or (ii) whether

a review is provided by a user who has submitted at least one other EIR. We

observe that 2,330 (21.8%) reviews are affiliated with both EIR reviewers and

EIR products (i.e. meet both conditions) while 3,762 (35.2%) of them are only

affiliated with EIR products and 534 reviews are only affiliated with EIR reviewers.

Intuitively, meeting both conditions offers stronger evidence that a review could be

IIR. Our manual inspection of reviews in these 3 groups confirmed this intuition.

While reviews that met both conditions contain an indication of incentive (e.g. for

my honest result, promotional price), reviews related only to products contained

moderate hints (e.g. I have to thank seller).

Second, we compare the distribution of text and title length, word count,

helpfulness, sentiment, subjectivity, readability, and star-rating of 38% of reviews

that were labeled as incentivized but neither have explicit pattern nor pairwise

relationship with other EIRs. Our analysis show that the distribution of these

features for flagged reviews closely follow the corresponding distribution for EIRs,

suggesting that these IIRs are flagged correctly. We also use Kruskal-Wallis test

to verify the similarity in the distribution of these features for EIRs and flagged

reviews. We observe that p is close to 0.0 for all features, except the title length

where p = 0.19.

Third, since Amazon has warned to remove reviews that violate its

guidelines, we examine whether the reviews tagged as IIRs have been removed from

Amazon during the past two years. We noticed that 69% of these reviews have
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been removed from Amazon which indicate the problematic nature of these reviews.

We emphasize the presence of the remaining 31% of the reviews does not imply

that these are normal reviews.

3.7 The Current State of EIRs

On October of 2016, Amazon announced the “community guidelines to

prohibit incentivized reviews". As we showed in Fig. 4, the daily number of

submitted EIRs has significantly dropped after this announcement. In this section,

our goal is to examine the status of previously submitted EIRs and related product

as well as the ability of sellers to attract incentivized reviews.

We check the availability of more than half of randomly selected EIRs in

DS2 in December of 2018, more than two years after we originally collected them.

Our analysis showed that an absolute majority of these EIRs (98.5%) were removed

from Amazon. Furthermore, when we tried to submit a review for a product that

recently had a promotional campaign, we received the message shown in Fig 20

indicating the limitation to submit any reviews for this product due to unusual

reviewing activity. This suggests that Amazon has actively limited the submission

of new reviews for these problematic products.

We also inspected the content of the tiny fraction of remaining EIRs in

the system and noticed that the content of roughly 20% of them was modified.

Interestingly, half of these modified EIRs were shortened by removing the

Figure 20. Amazon limits review submission for products with suspicious review
activity
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disclaimer of explicit incentive by the reviewer. This could be the reason that they

were not removed. The other half of modified EIRs were short reviews that later

added some personal experience (e.g. what is in the box, how to use the product,

pros, and cons).

We performed the following experiment to verify whether and how Amazon

sellers might attract incentivized reviews from users. To this end, we made a

purchase on Amazon and received the product that included seller’s instructions

to contact them for receiving other products for a free or discounted price as a

VIP customer. We emailed the customer service of this (and a few other) seller(s)

indicating our interest to be a VIP customer and received a variant of the response

showed in Fig.21. This response basically provides the instructions for users to buy

a product on Amazon, submit their (incentivized) review, and then be reimbursed

for their purchase through their Paypal account, i.e. receiving a product for free.

Clearly, such an incentivized review does not need to contain any disclaimer and

would not be detectable by Amazon. This is a clear indication that incentivized

reviews still exist on Amazon but they are not explicit since exchanged information

and money between sellers and reviewers are not visible to Amazon.

3.8 Conclusion

This chapter presented an application of machine learning techniques

in a large scale networked system of sellers and shoppers to detect incentivized

online reviews that can degrade the users‘ trust in the rating system. To that

end, we detailed characterization of Explicitly Incentivized Reviews (EIRs) in

two popular categories of Amazon products. A technique to detect EIRs was

presented based on collected datasets from Amazon. We identified a large number

of EIRs in Amazon along with their associated product and reviewer information.
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Figure 21. Sample of a seller response to users who are interested in becoming a
VIP customers that provides instructions for submitting incentivized reviews.

Using this information, we compared and contrasted various features of EIRs

with reasonably normal reviews. We showed that EIRs exhibit different features

compared to normal reviews and discussed the implications of these differences.

Then, we zoomed into the temporal pattern of submitted EIR reviews for a few

specific products and submitted reviews by a few specific reviewers. These temporal

dynamics demonstrated whether/how promotional campaigns by a seller could

affect the level of interest by other users and how reviewers could get engaged

in providing EIRs. Finally, we illustrated that machine learning techniques can

identify EIRs from normal reviews with a high level of accuracy. Moreover, such

techniques can accurately identify other explicitly and implicitly incentivized

reviews. We leverage affiliation of reviews with reviewers and products to infer their

incentivized nature.
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CHAPTER IV

FORECASTING NETWORK DATA STREAMS

A wide range of functionalities of a networked system can be observed as

a data stream (time-series). Forecasting the future values of such data streams

leads to more accurate resource scheduling and more effective monitoring, which

improves the throughput of the system. However, due to the large amount of data

that should be processed, domain-specific limitations and requirements, forecasting

is not a trivial task. In this chapter, we focus on how machine learning models

can be used to forecast real-time data streams in a wide-scale campus network

and what are the potential practical challenges. Specifically, we examine various

training-related aspects that affect the accuracy and overhead (and thus feasibility)

of two popular types of models (SARIMA and LSTM models) used for forecasting

real-world network data, streams in telemetry systems. In particular, we study

the impact of the size, choice, and recency of the training data on accuracy and

overhead and explore using separate models for different segments of a data stream

(e.g., per-hour models). We discuss how these choices affect the accuracy of the

models.

The content in this chapter is derived entirely from (Jamshidi et al., 2020b)

as a result of collaboration with co-authors listed in the manuscript. Soheil Jamshidi

is the primary author of this work and responsible for conducting all the presented

analyses.

4.1 Introduction

Recent advances in the programmability of network data plane (e.g. Gupta

et al. (2018)) enable network operators to monitor their desired traffic features

at the line rate. For example, individual switches across a campus or data center

72



network can emit a per-second data stream of loss rate (Y. Li, Miao, Kim, & Yu,

2016), flow arrival rate (Z. Liu, Manousis, Vorsanger, Sekar, & Braverman, 2016)

or queue occupancy (X. Chen, Feibish, Koral, Rexford, & Rottenstreich, 2018) to a

central collector as input to a telemetry task for detecting performance or security-

related events (see § 4.2). The availability of network data streams coupled with

the increasing complexity of today’s networks motivates a data-driven approach for

network management and security that can be usually cast as a prediction (Lazaris

& Prasanna, 2019; Mirza et al., 2010; Yang, Sun, Li, Lin, & Tian, 2019) or a

classification (Michael, Valla, Neggatu, & Moore, 2017; Yamansavascilar, Guvensan,

Yavuz, & Karsligil, 2017; J. Zhang, Chen, Xiang, Zhou, & Wu, 2015) problem. In

particular, forecasting techniques are used to predict the likely future values of

a network data stream based on its past values. The impressive success of deep

learning (e.g. recurrent neural network or RNN) techniques in other fields combined

with their ability to learn short- and long-term dependencies in data streams make

them a promising candidate for forecasting network data streams. This, in turn,

has motivated several prior studies to rely on different neural networks (NNs) or

statistical models to forecast various data streams in wireless or mobile networks,

ranging from the throughput of individual TCP connections (Mei et al., 2019) and

intensity of (per user and aggregate) traffic (Azari, Papapetrou, Denic, & Peters,

2019) to aggregate traffic (Nikravesh et al., 2016) or traffic at a base station (Zang

et al., 2015). These studies typically consider a significant volume of past data

for training which is time-consuming and typically requires significant amounts

of computational resources. In addition, they evaluate the overall accuracy of a

forecasting model in an off-line manner. To the best of our knowledge, prior studies

on forecasting network data streams have not addressed the following important
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issues regarding the feasibility and deployability of the proposed models in the

context of a network telemetry system (e.g. for anomaly detection) that operates

in a streaming fashion: (i) How can the volume or selection of training data be

adjusted to reduce training overhead without degrading forecasting accuracy?

(ii) How often does a model have to be retrained to maintain a sufficient level of

accuracy? (iii) Does the accuracy of forecasting models change across different

segments of a data stream, and if so, in what manner? (iv) How do model selection

(i.e. statistical vs. NN) and model casting (i.e. generic vs. per hour) affect the

answers to the above questions?

In this chapter, we tackle the above issues regarding the feasibility

and deployability of forecasting models. In particular, we adopt the following

methodology to compare the accuracy of a type of deep learning model (i.e. long

short term memory (LSTM) models) with the accuracy of a popular statistical

forecasting technique (i.e. seasonal autoregressive integrated moving average

(SARIMA) models). We consider two network data streams, namely a per-second

flow arrival rate process for all incoming flows (RAF) and all incoming web flows

(RWF) to a campus network, respectively. These data streams represent the type

and resolution of data that is commonly captured by modern telemetry systems

(Gupta et al., 2018; Santanna et al., 2015). We show in § 4.4 that these data

streams exhibit very different characteristics and thus enable us to demonstrate

the effect of these characteristics on the forecasting accuracy. We consider both

generic and per-hour versions of both LSTM and SARIMA models for six evenly

spaced hours to assess how different characteristics of data streams affect the

accuracy of forecasting the next five seconds of data streams. For per-hour models,

we explore how the volume, selection, and recency of the training data can affect
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the accuracy of the resulting model. This, in turn, reveals opportunities to reduce

training overhead with minimal or no effect on the forecasting accuracy.

As the main contribution, we report in this chapter on a number of

empirical findings from our analyses that offer valuable insights for deploying

the considered models in practice. First, we observe that for per-hour models,

increasing the volume of training data beyond 24 hours of a recent window or

similar past instances (i.e. same hour, the same day of the week) does not improve

the accuracy of the model but linearly increases the training overhead. Second, we

find that per-hour models that are trained with a 24-hour data stream exhibit a

comparable accuracy with a generic model that is trained with 30 days of training

data. In practical terms, these findings show that we can significantly decrease

training overhead without compromising the accuracy of LSTM models. Third,

observing that changing the recency of the training data by a few weeks does

not affect the accuracy of our per-hour forecasting models suggests that LSTM

models do not require frequent (re)training. Fourth, we notice that for our RWF

data stream, the prediction accuracy of all per-hour models is lower during the

night hours and higher during day hours. This observation shows that certain

segments of the data stream are inherently more difficult to forecast than others.

Fifth, in the case of our RAF data stream, its more bursty behavior compared

to the RWF data stream tends to result in higher accuracy for LSTM models in

forecasting RWF compared to SARIMA models. Finally, all the models show wider

variations in forecasting accuracy across different samples of our RAF data stream.

It is important to note that while the reported findings depend specifically on our

considered data streams, the described methodology is applicable to any data
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stream and should be part of an in-depth assessment of the practical issues that

arise when deploying any statistical or learning models.

The rest of this chapter is organized as follows. In § 4.2, we present an

example telemetry task to illustrate two requirements for a forecasting model in

such a setting. § 4.3 provides some background on LSTM and SARIMA models.

Our empirical approach is described in § 4.4. We assess the feasibility and accuracy

of forecasting models in § 4.5. We summarize and outline future work in § 4.6.

4.2 Illustrative Example of Utilizing Forecasting Models

We present an overview of the anomaly detection (telemetry) task that

incorporates a forecasting model to illustrate the implications of task requirements

and the characteristics of network data streams on training and configuring the

model. Consider a programmable switch (e.g. Tofino (2020)) that monitors a

collection of desired traffic features at the line rate and emits a separate, fine-

grained (e.g. per second) data stream for each feature to a remote collector. The

availability of high resolution (per second or short timescale) data streams from

the data plane telemetry systems enables forecasting models not only to capture

finer variations in traffic but also to facilitate faster detection of anomalies. A

forecasting model first requires using a history of these data streams for initial

training. Then, a trained model can be deployed at the collector and uses the most

recent n values of the data stream to forecast the next h values. Then, if the gap

between the forecasted and actual h values is larger than the error in the model,

this could be viewed as an indication of an anomaly. Subsequently, the telemetry

task may trigger further examination of other traffic features and invoke proper

actions on forwarding switch pipeline (e.g. dropping or re-routing the relevant

packets) to mitigate the problem. Furthermore, depending on the characteristics
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of the captured data stream, the model may require periodic retraining such that

its forecasted values remain sufficiently accurate.

This example illustrates two important requirements for practical

deployment of learning models into a telemetry system:

– R1: Forecasting models are often trained using a large volume of past data

(a few days to weeks or months) which typically takes a long time (hours to

days). However, in telemetry systems, a long history of a data stream may

not be available and a significant training overhead may not be feasible.

To address this requirement, we explore how the training overhead can be

reduced by limiting the volume (and selection) of training data without

affecting the accuracy of the resulting model.

– R2: Since network data streams may evolve (over time), we need to

periodically re-train a forecasting model to maintain sufficiently high

accuracy. The duration of a re-training should be much shorter than the

period for refreshing the model. We examine the effect of the recency of

training data on the accuracy of forecasting models to shed light on the

required frequency of retraining and its relationship with (re)training

overhead.

4.3 Forecasting Methods: Background

This section provides a brief background on the forecasting models that we

consider in this study.

LSTM. Long short-term memory (LSTM) is a recurrent neural network (RNN)

architecture (Hochreiter & Schmidhuber, 1997) that has been widely used for

forecasting in various domains, including networking (Adebiyi, Adewumi, & Ayo,
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2014; Azzouni & Pujolle, 2017; Janardhanan & Barrett, 2017; X. Wang et al.,

2017). The key feature of the LSTM model is its ability to capture potential long-

range dependencies in the data stream. The LSTM model has several parameters

related to its architecture, optimizer, and training approach that should be properly

configured such as the number of stacked layers, number of hidden nodes, activation

function, dropout, and the number of passes over the data during training (i.e.

epochs). To train an LSTM model, the data stream X is divided into two separate

sets: M consecutive values of (X(t0 −M) to X(t0 − 1)) for the training set, and the

immediate next N values (X(t0) to X(t0+N)) for the testing set. We consider non-

overlapping training and testing sets, and further split each set into samples using

a rolling window that has been shown to be an effective strategy (Mohamed et al.,

2015; Ordóñez & Roggen, 2016; Radford, Apolonio, Trias, & Simpson, 2018; Saleh,

Hossny, & Nahavandi, 2017; Yu, Li, Shahabi, Demiryurek, & Liu, 2017). Each

window (of length (A+B) consecutive values) is considered as a sample. In each

sample, the first A values are used as history to forecast the next B values. The

LSTM output size (S), is one of the LSTM’s parameters. If the forecasting horizon

H (i.e. the number of data points we expect to forecast) is larger than S, then we

have to forecast by rolling the window H
S
times and using either the forecasted or

actual values of the data stream as history for the next S values. All samples are

divided into random and mutually exclusive batches of a certain size where each

batch is used for a separate round of training until all samples are utilized. This

training process can be repeated multiple times (epochs) to improve the accuracy of

the model.

This description reveals several training parameters for an LSTM model: the

relative size and selection of training and testing sets, window size, prediction size
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(LSTM output), window overlap, batch size, and the number of epochs. We found

optimal values for each during our tuning process.

(S)ARIMA. Auto-Regressive Integrated Moving Average (or ARIMA) is a popular

statistical technique for forecasting stationary data streams (Ariyo, Adewumi, &

Ayo, 2014; Contreras, Espinola, Nogales, & Conejo, 2003; Ediger & Akar, 2007;

Gilbert, 2005). ARIMA has several configurable/tunable components: the auto-

regressive component (p) that specifies the number of lags (past values) in the

model, the integrated component (d) that represents the degree of differencing,

a moving average component (q) that represents the error of the model as a

combination of previous error terms. Subsequently, several variants of ARIMA

were also proposed. For example, to model time series with periodic characteristics,

Seasonal ARIMA (or SARIMA) model (Box & Jenkins, 1976) was proposed.

SARIMA incorporates seasonal auto-regressive (P ), differencing (D), and moving

average (Q) components as well as a seasonal frequency (s). Given the inherently

periodic (daily, weekly) characteristics of most networking data streams, we

primarily focus on the SARIMA model in this study.

The process of training a SARIMA model is as follows: SARIMA models

assume that the input data is stationary. The stationarity of the time series can be

achieved via transformation (e.g. logarithms) to stabilize the time series variance

and differencing to eliminate the trend. Besides, the decomposition can help to

de-seasonalize the time series if necessary (Hyndman & Athanasopoulos, 2018).

We use Augmented Dickey-Fuller (ADF) test (Enders, 2008) as a unit root test to

check for deterministic trend stationarity as well as Kwiatkowski-Phillips-Schmidt-

Shin (KPSS) test (Kwiatkowski, Phillips, Schmidt, & Shin, 1992) to complement

the unit root test. On our data stream, the ADF test confirms the stationary
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nature of data with 99% confidence while KPSS test indicates that the timeseries

are not stationary. In such cases, it is suggested to apply differencing. The KPSS

test passes when applied on differenced data.

To identify the best combination of model parameters, we consider the

range of values for p, d, and q obtained from the auto-correlation function (ACF)

and the partial auto-correlation function (PACF) plots (not shown due to space

constraints). Then, we train separate SARIMA models for a different combination

of parameters in parallel and select the best model based on their performance on

the validation set.

4.4 Methodology

In this section, we discuss our methodology for exploring our motivating

questions on incorporating forecasting models into anomaly detection systems.

We start by presenting the network data streams and the selection of forecasting

models that we consider in this study as well as our training and testing strategies

for these models.

4.4.1 Network Data Streams. We focus on flow arrival rate per

second (i.e. number of unique incoming network flows that are observed in each

second) as our target data streams since it is used as the input of telemetry

tasks (e.g. Narayana et al. (2017); Santanna et al. (2015); Sutiene, Vilutis, and

Sandonavicius (2011)). To this end, we use un-sampled NetFlow data for all the

connections between the University of Oregon campus and the Internet to extract

the rate of (incoming) web flows (RWF) and rate of (incoming) all flows (RAF)

per second. Our NetFlow dataset covers a 10 month period from 1/5/2018 till

28/2/2019 where each daily segment of our dataset represents on average 8.8 TB
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of incoming traffic, associated with 200 million flows, from 3.6 million unique source

IPs with 39k unique sources (Yeganeh, Rejaie, & Willinger, 2017).

Fig. 22a and 22b present the variations of our two data streams in a typical

day (2018-09-26) and illustrate that these two data streams exhibit very different

characteristics as follows. First, RWF shows significantly smaller variations that

are dominated by a pronounced diurnal pattern compared to RAF. Therefore,

forecasting these data streams is likely to present different challenges. Second,

the RWF data stream exhibits a high, low, and moderate degree of variations

during the night (0-8), day (8-16) and evening (16-24) hours, respectively. However,

the degree of variations in the RAF data stream is very similar across all hours.

This observation motivates us to consider training a separate forecasting model for

different hours of the day could lead to a higher accuracy.
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Figure 22. Sample daily variations of our two target flows arrival rates (per
second).

To examine the (dis)similarity of both data streams across different days, we

consider 13 scale-invariant attributes of each daily segment for both data streams

(proposed by Kang, Hyndman, and Li (2019))1, apply principal component analysis

(PCA) to identify the top two principal components for each data stream. The blue

dots and orange crosses in Figure 23 present the values of the top two principal

components for RWF and RAF data streams in separate days, respectively. From

1These attributes include trend, spike, linearity, curvature, entropy, skewness, and ACF lags,
compared to scale variant attributes such as mean, median, minimum, and maximum
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this figure we make two key observations. First, while both data streams capture

flow arrival rates, RAF data stream exhibits wide variations across different

days while the characteristics of RWF data stream across different days are more

consistent. Therefore these two data streams represent very different input network

timeseries for our forecasting models. Second, the two pronounced clusters of blue

dots in Figure 23 are related to weekdays (solid black line) and weekends (dotted

red line). This evidence indicates that the RWF data streams have distinctly

different characteristics on weekdays compared to weekends.
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Figure 23. Comparison of per-second data streams using principal components.

4.4.2 Forecasting Models. To examine how the type (i.e. SARIMA

vs. LSTM), volume, and selection of training data and other inputs of a model

affect its forecasting accuracy, we consider the following four models. Using a

short forecasting horizon improves model accuracy but limits the time to react to

a detected anomaly and vice versa. To strike a balance between these two opposing

requirements, we have examined 5, 10 and 20 seconds (5, 10, 20 values) forecasting

horizons and selected 5-second forecasting horizon in all of our models.

LGW(w): This LSTM (L), generic (G) model forecasts any 5-second segment

of a data stream by using the recent (w) hours window (W) of a data stream for

training. A common practice in training an LSTM model is to use a large volume
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of a data stream for training and explore whether adding other features improve

the accuracy of the models. LGW models represent this common approach for

using LSTM models. We use a 30-day recent window of each data stream to train

LGW models (i.e. w=30*24) 2.

LHW(x,w): This per-hour (H) LSTM (L) models forecast any 5-second segment

of a data stream in a specific target hour x using the past w hours of the data

stream for training. We train a separate model for six evenly spaced target hours

(i.e. x is set to 3, 7, 11, 15, 19, 23) to explore the accuracy of our model for

forecasting different parts of the data streams. By setting w to 1, 10, 24, and 48

hours, we also examine how the volume of training data affects the accuracy of

these per-hour models. We also consider older windows of training data (from prior

weeks) to explore the effect of data recency on the model accuracy.

LHI(x, i): This LSTM (L) model forecasts any 5-second segment in a specific

target hour (H) x using the past i instances (I) of the target hour x in the data

stream for training. An instance of a specific target hour x is defined by its hour-of-

day and its day-of-week. For example, to train a model for 7am hour on a Monday,

we use the 7-8am segment of the data stream from i prior Mondays for training.

This training strategy is intuitively motivated by the repeating weekly pattern of

some network data stream, such as RWF, which suggests that the most relevant

training data is the past instances of the same hour.

SHW(x,w): This SARIMA (S) model forecasts any 5-second segment in a specific

target hour (H) x using the past w hours of the data stream for training (similar

to LHW(x,w)). By changing w, these models represent a statistical forecasting

technique with a different volume of training data. Note that SARIMA model can

2We considered other additional input features such as day-of-week and time-of-day. However,
they did not improve the accuracy of LGW models.
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only use the most recent window of data for training while LSTM can rely on any

past window of data for training.

This collection of models enables us to compare generic and per hour models

while exploring the effect of the volume, recency, and selection of training data on

the overall accuracy of forecasting models.

4.4.3 Tuning Models. We take the following steps to properly tune

each one of the selected models.

LSTM Models. We tune individual LSTM models by examining the accuracy

of the model across thousands of different configurations and training parameters

using random search on the validation data that is separate from the training

and testing set. We then select the model that exhibits the highest validation

accuracy. We leverage the sliding window approach to break both training and

testing datasets into samples using the following parameters: window size=1503,

window overlap=135 and forecasting horizons=5 values. These parameters result

in 233 samples in each hour of our data streams. The number of epochs is 300 for

all models and batch size is 300 for LGW and 150 for other LSTM models. We

use checkpoints to identify the model with the lowest validation loss. We utilize

a Keras implementation of LSTM with Tensorflow backend. Table 3 summarizes

the main hyperparameters including learning rate (LR), activation function (AF),

drop rate (DR), number of hidden layers (LY), number of hidden nodes (NHN),

and optimizer (OPT) for our tuned LSTM models.

We use mean square error (MSE = 1
n

∑n
i=1(yi − ŷi)

2) as the loss function

in our training process where n, yi and ŷi denote the forecasting horizon size, the

actual and predicted values, respectively.

3Given the selected window size (150) for our samples, having more than 300 samples/hour
results in increasing overlap between samples.
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Table 3. Hyperparameters of our LSTM models.

LR AF DR LY NHN OPT
LHW/I 0.005 tanh 0.1 5 64-32(x4) Adam

RWF
LGW 0.003 tanh 0.2 3 256 Adam
LHW/I 0.005 ReLU 0.2 4 32-16(x3) Adam

RAF
LGW 0.005 ReLU 0.2 4 64 Adam

SARIMA Models. We train a model for 2,500 different combinations of

parameters (5p ∗ 5q ∗ 5P ∗ 5Q ∗ 2d ∗ 2D = 2, 500) and perform grid search

to identify the parameters of the best model. To make sure that models capture

the patterns in the input data stream, we confirmed that the residuals follow the

normal distribution and have no auto-correlation (using Ljung-Box test (Ljung

& Box, 1978)). Table 4 presents the final configuration for the SHW models of

different hours along with their associated training time.

Table 4. Configuration and training time of SARIMA (SHW(x, 24)) models for
both data streams.

Target
hour

Data stream (p,d,q)x(P,D,Q,s)
Train time
(minute)

03 RWF (1, 0, 3)x(3, 1, 3, 15) 62.2
07 RWF (3, 0, 2)x(2, 1, 3, 15) 129.52
11 RWF (3, 1, 2)x(2, 1, 3, 15) 124.69
15 RWF (1, 1, 3)x(2, 1, 3, 15) 156.89
19 RWF (3, 0, 3)x(3, 0, 3, 15) 63.81
23 RWF (3, 1, 1)x(2, 0, 3, 15) 18.27

03 RAF (3, 1, 1)x(1, 1, 1, 6) 60.42
07 RAF (3, 1, 1)x(1, 1, 2, 6) 48.33
11 RAF (0, 1, 3)x(2, 0, 3, 6) 16.79
15 RAF (0, 1, 3)x(2, 1, 3, 6) 107.24
19 RAF (1, 0, 3)x(0, 1, 3, 6) 82.59
23 RAF (0, 1, 3)x(2, 1, 3, 6) 122.37
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4.4.4 Testing Models. For testing each model, we consider 300

randomly selected points in each test hour and use the model to forecast the next

immediate 5 seconds (i.e. our forecasting horizon) of the data stream. We use

Root Mean Square Percentage Error (RMSPE) for evaluating the accuracy of our

forecasting models across all samples as follows: RMSPE =
√

1
n

∑n
i=1

(yi−ŷi)
yi

2

where n, yi and ŷi denote the forecasting horizon, the actual and predicted values,

respectively. The normalized nature of RMSPE makes it scale-invariant and

interpretable which is more appropriate for our purpose (Hyndman & Koehler,

2006). The overall accuracy of each model is presented with the summary

distribution (box-and-whiskers plots where the box shows the quartiles while

whiskers show 5th and 95th percentiles) of RMSPE across 300 random samples

in each target hour. The variations of error for each model across different hours

reveals the effect of temporal characteristics of data streams on the model accuracy.

For each hourly LSTM model LH*(x,w), we train seven separate models

for each target hour in seven consecutive days (11/12/18 to 11/18/18)4, test

them on 300 samples in the target hour, and present the summary distribution

of RMSPE for all (7*300) samples for each target hour. For LGW model, we train

a single model but similarly test it on each target hour across 7 days to present the

summary distribution of error for that hour. Therefore, our results are not biased

towards a specific day of the week.

4.5 Assessing the Practicality of Forecasting Models

In this section, we assess the practicality of forecasting models in light of the

two requirements described in § 4.2.

4This is a regular week that school was in session.
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– Training a per-hour model with any size of the past segments of the data

stream that is at least 24 hours long leads to good forecasting accuracy. The

recency of a (sufficiently long) training dataset does not significantly affect

the accuracy of the model.

– SARIMA exhibits a wide range of accuracies: it is comparable with LSTM

only in certain times of the day.

– One can use an LSTM model that is trained for short-term horizons (e.g. 5

seconds) to forecast long-term horizons (e.g. 80 seconds) without re-anchoring

the model. In general, it works best for up to 75% of the samples; for the

remaining samples, the errors are larger.

– LSTM models can closely track sudden changes in the data stream. SARIMA,

on the other hand, cannot.

4.5.1 Impacts of Volume and Selection of Training Data. We

evaluate the effect of variations of the data stream as well as the volume, recency,

and selection of training data on the accuracy of forecasting models. The goal is to

shed light on requirement R1 mentioned in § 4.2.

Volume of Training Data. First, we explore the question of whether the volume

of the training dataset affects the accuracy of a per-hour model? Figure 24a and

24b present the summary distribution of forecasting error for RWF and RAF data

streams across different hours using LHW models. For each hour, we show the error

for four models that are trained with 1, 10, 24, and 48-hours of most recent data

stream. These two figures show the following points: First, for both data streams,

increasing the amount of training data initially improves the accuracy of forecasting

for up to 24 hours. However, increasing the training data beyond 24 hours has a
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diminishing return in the accuracy of the model for most hours (except 11 and 15

hours for RWF). Second, the accuracy of the best-trained model for RWF varies

across different hours (Figure 24a). In particular, the forecasting error during the

night hours is the highest and during the day hours is the lowest. In contrast, the

accuracy of models for RAF is very similar across all hours.
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Figure 24. Effect of the volume of training data on the accuracy of LHW(x,w)
model.

To explain the difference in the accuracy of models across different hours,

we examine the variations of both data streams during different hours of the day.

To this end, we measure the normalized directed difference (NDD) among (150)

values in each test sample that is defined as follows NDD = max(X)−min(X)
max(X)

∗

sign(argmax(X) − argmin(X)) where X is a test sample, and argmin(argmax)

denotes the index of the min and max values, indicating the order in which

min and max values are observed (i.e. the positive/negative direction of major

change between these values). The box plots in Figure 25 present the summary

distribution of NDD values across all samples in each of 6 target hours over 7 days.

To further focus on larger NDD values, we also show the fraction of samples with

positive (negative) NDD values for each hour that are larger than 0.35 with a

blue (orange) bar using the right y-axis. The plots in Figure 25 illustrate that the
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normalized changes across values of individual samples are larger in all hours of

RWF data streams compared to RAF data stream. In particular, hour 3 and 7 of

RWF exhibit the largest normalized variations. While it is not trivial to determine

which specific aspects of a data stream affects the accuracy of a forecasting model,

we believe that the larger variations in specific hours offer a plausible explanation

for lower accuracy of our models for those hours.
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Figure 25. Distribution of normalized directed difference (NDD) of test samples.

For the rest of the analysis, we consider the LHW models that are trained

with the recent 24-hour window of the data stream for these six target hours.

Selection of Training Data. Another important question is whether the selection

of training data affects the accuracy of a model? We use LHI (x, i) models for each

target hour that is trained with 1, 10, and 24 segments of data from prior instances

of the same target hour. For example, an LHI (7,10) for a Monday uses the 7-8am

segment of the data stream from 10 prior Mondays for training. Figures 26a and

26b present the accuracy of the LHI models for forecasting both data streams

across all six target hours that are trained with 1, 10, 24 past instances of the

target hour. These results show that increasing the number of past instances of
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training segments from 1 to 10 improves the accuracy of both models but adding

more training data has no measurable impact..

3 7 11 15 19 23
test hour

20

40

60

RM
SP

E

trained for
1h 10h 24h

(a) RWF

3 7 11 15 19 23
test hour

20

40

60

RM
SP

E

trained for
1h 10h 24h

(b) RAF

Figure 26. Effect of the selection of training data on the accuracy of LHI(x, i)
model.

Head-to-Head Comparison of Different Models. We now compare

the accuracy of all four models—LGW(30*24), LHW(x,24), LHI(x,24) and

SHW(x,24)— for forecasting a 5-second horizon of different target hours of RWF

and RAF data streams in Figures 27a and 27b, respectively. This figure illustrates

a few important points: First, LHI (x,24), LHW (x,24), and LGW (24*30)

exhibit a comparable accuracy across all hours of RWF data streams despite a

significantly smaller amount of training data for LHI and LHW models. Note that

the LGW model is simply a special case of the LHW model that uses 30 times

more training data. Second, the accuracy of SHW models is lower particularly for

hours that are difficult to forecast (i.e. 3, 7, and 23). Third, the relative pattern

of changes in accuracy across different hours is very similar for RWF models –

lowest accuracy in night hours, highest accuracy for day hours, and moderate

accuracy in the evening. Fourth, on RAF data stream, SHW has only a slightly

higher error compared to different LSTM models. All LSTM models have a very

similar accuracy on RAF data stream but LGW exhibits much lower variations in
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error across different samples. Note that a commonly reported measure of accuracy

(mean or median error) does not reveal this difference in the variations of accuracy.
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Figure 27. Comparison of four models on different hours of RWF and RAF data
streams.

Fifth, comparing all models across both data streams show that LSTM

models have a similar accuracy on both data streams during night (and early

morning) hours (3, 7) but higher accuracy on forecasting RWF data stream in all

other hours. Interestingly, while LSTM models show a similar accuracy for RWF

data stream at night hours and RAF data stream at all hours, SHW models have

much lower accuracy on RWF data stream at night hours than RAF data stream.

This suggests that the LSTM models are more capable to forecast RWF data

stream during the night hours (3 and 7) despite its larger variations (as we reported

in Figure 25). Later in this section, our examination of the short term pattern of

error offers more insight about this problem with the SARIMA models.

4.5.2 Impacts of Recency of Training Data and Training

Overhead. We next seek to evaluate the recency of training data and training

overheads and how they affect the accuracy of forecasting models to shed light on

R2 mentioned in § 4.2.
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Recency of Training Data. We now explore the question of whether the

recency/freshness of training data affects the accuracy of the forecasting? More

specifically, does it make any difference if we train a LHW model with different

24-hour segments of the data stream? Figures 28a and 28b depict the accuracy of

LHW (x,24) models for forecasting the six target hours of both data streams using

three different training datasets for each model: (i) the most recent 24 hours of

the data stream (labeled recent data), (ii) the same 24 hours of the data stream

from 4 weeks ago, and (ii) the same 24 hours of the data stream from 7 weeks ago.

Surprisingly, we observe that the recency of a (sufficiently long) training dataset has

a rather minor (or no) effect on the accuracy of the model for both data streams.

This finding suggests that a LHW model that is trained with 24 hours of the data

stream has observed a sufficiently rich set of variations and does not need to be

retrained frequently in the absence of any major data drift.
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Figure 28. Effect of the recency of training data on the accuracy of LHW model for
RAF data stream.

Training Overheads. Table 5 presents the total training time (with 300 epochs)

for LGW and LHW/LHI (with different volume of training data) forecasting

models of both data streams on both CPU (using two Intel Xeon Gold 5218) and

GPU (using GeForce RTX 2080 Ti with 11GB GDDR6 memory). Table 5 shows
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that (i) training time linearly increases with the volume of training data and it

is 7–26x faster on a GPU than a CPU, (ii) training a model for RWF takes 2–3x

longer than RAF data stream, and (iii) it is feasible to retrain a new LHW/LHI

model on a daily basis using GPU or CPU whereas LGW model can be retrained

only on a daily (weekly) basis using GPU (CPU). The training times for hourly

SARIMA models (i.e. SHW(x, 24)) on CPU are reported in Table 4. We observe

that the training time for both data stream varies between 16-160min across

different hours. This indicates that these model can be (re)trained on a daily basis.

Table 5. Total training time of LSTM models.

RWF training
time (minute)

RAF training
time (minute)

Model
Volume of Training

Data (hour) GPU CPU GPU CPU
LHW/I 1 0.4 10 0.25 6.5
LHW/I 10 5 50 1.2 20
LHW/I 24 10 105 5 40
LHW/I 48 20 200 11 76

LGW 30*24 667 8,550 190 3,850

Longer Forecasting Horizon. The results presented so far are based on the

forecasting horizon of 5-second horizons of the corresponding data stream by

each model. If a telemetry task requires a longer forecasting horizon, we have two

options: (i) “re-anchoring" the model every 5 seconds by using the past 150-second

values of the data stream, or (ii) “rolling over" the model to forecast multiple 5-

second intervals by feeding the forecasted values back to the model Figure 29a

presents the accuracy of the latter option, namely rolling the model over, for

forecasting longer horizons of RWF stream using the LHW model for different

target hours. Note that the range of the Y-axis for this figure is much larger

than our prior plots. Figure 29a shows that the typical accuracy of this roll-over
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strategy in all hours is clearly degraded as we increase the forecasting horizon.

To complement this result, Figure 29b shows the effect of forecasting horizon

on inference latency (prediction time). We can observe that the prediction time

linearly grows with the forecasting horizon but remains generally low, e.g. roughly

1.1 seconds to predict the next 80 seconds of the data stream.
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Figure 29. Effect of longer forecasting horizon (with roll over strategy) on model
accuracy for RWF data stream

Short Term Pattern of Error. Our analyses have primarily considered the

overall notion of error based on the RMSPE measure. In this subsection, we explore

the temporal pattern of the forecasting error by SHW and LHW models to examine

how closely it tracks sudden changes in the original data stream. Figure 30 depicts

a 120-second segment of data stream along with the forecasted values by both

LHW and SHW models (with 5-second forecasting horizon) using re-anchoring and

roll-over strategies. This figure clearly demonstrates that the LHW model generally

tracks the variations in the data stream, especially by the re-anchoring strategy.

In particular, forecasting longer horizons (beyond 20 seconds in this example) even

with the LSTM model can lead to a large error when the rolling strategy is used

to extend the forecasting horizon. The forecasted values by the SARIMA model

simply represent average values of the data stream and do not seem to track its
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Figure 30. Effect of prediction strategy on accuracy.

variations. In summary, the LSTM models coupled with re-anchoring strategy offers

the most accurate forecasting results for our data streams.

Relative importance of data points. In addition to gain insight on the

importance of data points and if the weight of input data points is equal for the

model or not, we leverage model interpretation methods, mainly the Saliency

method (Simonyan et al., 2013) that is implemented in DeepExplain framework

(Ancona, Ceolini, Öztireli, & Gross, 2017).

We use the test samples as input and the outcome is a score vector, one

value per feature per test sample. Then, we can aggregate the scores across all

cases by reporting the mean and standard deviation of importance score. This

aggregated value can be used to rank the input features per data stream. Using

this method, we calculate the importance of the past data points for the LHW

models and the results are shown in Fig 31. The figure suggests that the immediate

past 20 data points are among the most important historic data points for the

model. For the RWF data stream, there is a difference between late night (3) in

Fig 31a and evening hours (15) in Fig 31c while the importance stays similar across
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different hours for RAF (Fig 31b and 31d). Also there is a pronounce seasonality in

importance of historic data points in case of RWF signal. For RAF, the importance

of prior data points drops quickly beyond past 50 data points.
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Figure 31. Importance of past data points for model prediction

4.6 Conclusion

The sheer volume of network data stream coupled with the increasing

complexity of today’s network and innovation in switch data planes motivate

forecasting techniques as the key ingredient to automate network management and

security tasks. While great progress has been made by prior efforts in applying

AI/ML to network automation, the practicality of deploying ML models such as

training strategies (e.g. the volume, selection and recency of training data; and
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having separate models for different hours of a data stream) have not received

enough attention. To shed light on this issue, in this chapter we explore the

forecasting per-second flow arrival rate for all incoming flows and incoming web

flows using LSTM. Our results provide valuable insights into the ability of the

forecasting models for short-term forecasting of the two data streams and elucidate

the effects of training strategies, input features, among others, on the accuracy of

models.

The main limitation of our study in this chapter is its focus on two specific

network data streams from a particular campus network. While our methodology is

certainly applicable to forecasting any data stream from any network, our trained

models and findings cannot be generalized. More importantly, we argue that

such a generalization of ML models—as it is done in other domains (e.g., image

classification)—may not necessarily be feasible in networking. This observation is

motivated by the fact that network data streams are likely to exhibit diverse (short

term) characteristics across different networks. This, in turn, suggests that the

training and deployment of ML models should be customized for a specific data

stream from a particular network to ensure high accuracy. In short, any modeling

study in networking is likely to be specific to its target setting.
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CHAPTER V

NETWORK ANOMALY DETECTION USING APPLICATION BEHAVIOR

MODELING

As a part of network monitoring efforts, it is important to understand

and learn about the behavior of the system, especially when we are required to

detect anomalous behaviors. There are a large number of potential sources for

the anomaly in network operations ranging from distributed denial of service

(DDoS) attacks to misconfiguration of the hardware and software components

of the network. Given the large scale of unlabeled data in this domain and the

need to perform such monitoring tasks in an automated and scalable manner,

in this chapter we consider the application of machine learning methods in

learning the normal behavior of the network applications and detecting anomalies.

Understanding the inner working logic of such detection techniques and explaining

the underlying reasons for decisions, can help the network admins to trust the

models in the first place and then make informed decisions, however, due to

the black-box nature of ML techniques additional effort is needed. To that end,

the effect of feature selection and anomaly types are assessed and the benefit,

accuracy, and challenges of using model interpretation and extraction methods for

understanding the detected anomalies are discussed.

The content in this chapter is a result of collaboration with co-authors

and is not published yet. Soheil Jamshidi is the primary author of this work and

responsible for conducting all the presented analyses.

5.1 Introduction

Distributed Denial of Service (DDoS) attacks have been widely a concern

due to disproportionate damage they cause compared to the required resources to
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initiate the attack. As researchers attempt to detect earlier versions of the DDoS

attacks such as ICMP, UDP, and SYN flooding, attackers adapted and utilized

more sophisticated attacks in the application layer (Y. Xie & Yu, 2008). In the

application layer, the web service is considered the most vulnerable application

(Liao et al., 2015). Attacking web servers through abnormal type, rate, or sequence

of requests is an example of such attacks (Jaafar et al., 2019). More specifically,

Slowloris (slowloris DDoS tool , n.d.) overwhelms a web server by exhaustively

starting new sessions and keeping them alive by sending sparse requests and

therefore while not sending too many requests, prevent server from proper handling

the incoming requests.

There has been a wide range of techniques considered to tackle the

application-layer DDoS attacks. Most of studies rely on aggregated network

features such as the number of sources, ports, and packets while some use user

behavior related attributes such as the interval between two-page visit (Sreeram

& Vuppala, 2019), HTTP GET count per connection or IP address (Johnson Singh

et al., 2016), GeoIP, source MAC address, and the number of user agents (Shiaeles

& Papadaki, 2015). These attributes are used by different techniques to decide

whether an incoming request is an anomaly or not. Techniques such as autoencoder

models (Bhatia et al., 2019), reinforcement learning (Feng et al., 2020), PCA and

ant-colony optimization methods (Fernandes Jr et al., 2016), genetic Algorithm

and fuzzy logic (Hamamoto et al., 2018), ARIMA and Holt-Winter models

(Jiang & Papavassiliou, 2006; Pena et al., 2013) are used. However, some of the

application layer attacks, such as Slowloris, do not have an extensive footprint on

the network side, which makes it challenging to detect them solely based on the

network attributes while on the application side, they can have a unique footprint
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that allows us to distinguish them from previously seen patterns. In case of an

asymmetric attack, for example where the client requests computation-intensive

target pages, end-host resource usage information (e.g. CPU and memory usage)

can be a better indicator of attack compared to the network signals. To the best of

our knowledge, none of the prior studies have systematically compared the effect of

sources of features used for modeling on detection accuracy. We hypothesize that

the features from the network traffic (e.g. number of flows or size of packets), the

end host resource usage (e.g. CPU and memory usage), and the network application

(e.g. response status in case of a webserver) can contribute to the accuracy of

detection of different types of attacks.

In this study, we consider 4 types of attacks: three slow HTTP attacks

(Shekyan, 2020) and a session flooding attack (BoNeSi DDoS tool , n.d.) on Apache

web server given its popularity compared to other web servers (datanyze.com,

2020). Due to the differences in the mechanism of these attacks, each has a

different footprint on the traffic attributes. We utilize three types of features

including network, operation system, and application, to detect attacks in an

unsupervised manner and develop a practical and accurate system for anomaly

detection. We further analyze the contribution of each of these feature sources

through different model training strategies and model interpretation techniques.

Our analyses show that additional attributes from the application and

operating system improved the accuracy of our model. The unsupervised neural

network model is capable of differentiating among anomalies and normal behavior

of the application. Furthermore, we illustrate how interpretation methods can

facilitate the process of examining anomalies for network admins.
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The rest of this chapter is organized as follows: we explain the system

architecture that delivers the required attributes for the model in section 5.1, we

discuss the detection system components in section 5.2, the characteristics of the

data set is illustrated in section 5.5 and our model evaluation results are reported

in section 5.6. Finally, we discuss the impact and benefits of model interpretation

and extraction method in section 5.7.

5.2 System Overview

Detection of attacks requires the collaboration of many different entities

within a network. In this section, we discuss the architecture of our proposed

system. As shown in Fig 32, in our system the clients send requests to a network

application which in our case is a web server. As they send the requests, three

types of features are provided to a collector entity that determines whether the

request is legitimate or not.

Net data stream

Host
OS

Application

Switch

Collector
Model

OS data stream

App data stream

Mitigation
SDN Logic

Network
Anomaly

or Normal

Clients

Figure 32. System architecture

The collector relies on three types of input features:

– The application provides logs about its own view. In our case, the application

is a web server that provides information about the resources that have been

requested by the clients and the response it provides back to the clients
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through log files that are known as “access log". We rely on Apache webserver

given its dominance on the market compared to the other webservers with

more than 8M web servers around the world and having more than 50% of

the market share (datanyze.com, 2020). It is worth noting that other web

servers also have similar types of logs available and our methodology is not

limited to a specific web server.

– The operation system (OS) of the end host provides information about the

resources that the application uses as it serves the client requests. In our case,

the OS provides information about the CPU and memory usage of the web

server.

– In addition, the switch connecting the end host to the rest of the network

provides telemetry data about the incoming and outgoing network traffic. We

use our Cedar switch-based telemetry system to gather per-flow reports of the

listed traffic features and augment these features with aggregate features (e.g.

number of sources) computed in software.

At the core, our proposed system has a collector component that learns the

behavior of the system based on the provided signals mentioned above and detects

deviations in the behavior. The collector receives these attributes from the above

sources and performs pre-processing steps. Specifically, it needs to handle missing

values (e.g. in the absence of any request, or if the host or web server is down),

clean the data to have a unified set of values for different types of requests (e.g.

to extract target pages from the request payload) and ensure that timestamps

are synchronized across different entities. Note that each of these systems might

have different timestamp sources for their provided information. After the pre-
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processing step, the collector converts the three input data vectors into a feature

vector through the feature engineering step. We will discuss this step in detail in

the next section. Then, the collector provides the feature vector to the machine

learning model.

The granularity of the provided data determines how fast we can react to

the anomalies. We expect to monitor the system in a per-second granularity. The

coarser the granularity, the more aggregated the data will become (smoothing out

some of the variations that lead to data loss) and the more time it takes to detect

and respond to anomalies (for example in a per hour scale, after one hour we will

realize if there was an anomaly in the past hour or not).

The model indicates if the provided information is related to a normal

or anomaly case. The model outcome can be a binary label of normal/anomaly

or it can further break it down to the type of anomaly. Since the latter requires

labeled data for each type of an anomaly which is not feasible in many cases,

we consider the former here, labeling incoming vectors as normal or anomaly

and the model’s decision can activate different mitigation plans that can range

from dropping further requests form the client and blacklisting the source IP to

activation of more sophisticated plans. Such plans are enforced in the network

using the Software-defined networking (SDN)-based rules that will be defined by

the network administrators based on the enterprise policies.

5.3 Threat Model

We assume that the anomaly in server’s behavior can occur as a result

of a spike in normal behavior (e.g. an event, a promotional campaign, seasonal

effect) or as a result of an attack. In case of an attack, we assume that the goal

of the attacker is to make the web server not respond to legitimate requests either

103



with a huge footprint on network traffic (flooding attack) or without it (slow

attacks). We assume that attacker does not have access to historic traffic attributes

so can not initiate attacks based on the normal state of the server, and also we

assume that attacks will impact at least one of the application, network, or the

OS level attributes, therefore, the differences can be captured by a well trained

ML model. On the defense side, we assume the availability of the attributes from

the application, network, and operating system that based on anomaly detection

output, a mitigation plan can be activated to bring the server back to a responsive

state.

5.4 Detection System Components

In this section, we describe the components of our detection system. We

generate HTTP attacks as our anomaly cases and use our proposed anomaly

detection system to capture those cases. We explain our model selection, feature

selection, and training strategy in the following subsections.

5.4.1 Model Selection. The model is at the core of the collector

component. The type of the model (e.g. classifier or regressor, supervised or

unsupervised) determines the type of data that is required to be provided to the

collector. To address the related challenges that are mentioned earlier in chapter

II section 2.3, in this study we rely on an unsupervised neural network model, an

LSTM autoencoder. Autoencoders learn how to efficiently compress and encode

data and then learn how to reconstruct the data back from the reduced encoded

representation that is as close to the original input as possible. This approach,

enables us to detect anomalies without relying on the availability of labeled

data. Autoencoders have been shown to be accurate in similar settings (Luo &

Nagarajan, 2018; Mac et al., 2018; Vartouni et al., 2019; Yadav & Subramanian,
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2016) and can be trained and tuned with a lower overhead compared to forecasting

techniques. A representation of such models is depicted in Fig 33. Autoencoders

are made from four main parts:

– Encoder: the model learns to reduce the input (X) dimension and convert the

input to compressed representation (z).

– Code (z): that has the compressed representation of the model

– Decoder: the model learns to reconstruct an approximation of the original

input (X̂) using the compressed representation (z)

– Reconstruction error: measuring how closely the model reconstructed the

original inputs (X − X̂).

Figure 33. Autoencoder structure

A large reconstruction error shows deviation from normal behavior as the

model is trained to have a low loss on normal behavior. Therefore, Reconstruction

error can be used to determine whether the input is an anomaly or not. The

challenge here is how to set the threshold for that purpose. One approach is

to set the threshold automatically based on the model’s performance on the
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validation set. Intuitively, if the model is able to reconstruct the normal data

with reconstruction error in the range of (a, b), then any error beyond b can be

considered as an anomaly. We discuss a sensitivity analysis for the threshold in the

next section. We used Keras library implementation of LSTM with the TensorFlow

backend for our model. After extensive hyperparameter tuning, we selected a model

in a form of two hidden layers with 64 and 32 hidden nodes, L2 regularization on

the first layer, ReLU activation function, and Adam optimizer, we used MAE as

our loss function trained over 300 epochs.

5.4.2 Traffic Generation. In order to detect the anomalies, we

need to have a dataset representing the normal state of the system and a dataset

representing the attacks and anomalies. As discussed in chapter II section 2.3, to

the best of our knowledge there is no publicly available dataset that provides all

sources of data (from OS, application, and network) together or covers different

types of anomalies. Therefore, we collected our own dataset. To collect the normal

data from the mentioned three sources (OS, Application, and network) that will

be used for training our model, we replay the HTTP requests (sending them to

our server) from one month’s worth of all HTTP operations to the NASA Kennedy

Space Center web server in Florida (Arlitt & Williamson, 1996) with the exact pace

(relative timestamps) that the requests were logged. Then, we need to create our

validation set for parameter tuning and selecting the threshold required for labeling

anomalies. Given that each time step will be analyzed independently by our model,

we set aside randomly selected 10 percent of our normal data (almost 2.4 hours)

and use it as the validation set.

For the test dataset, we use publicly available tools to generate two types of

attacks: the flooding, and slow HTTP attacks. We utilize BoNeSi (BoNeSi DDoS
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tool , n.d.) tool to generate TCP (HTTP) flooding attacks. For the slow HTTP

attacks, we consider the Slow HTTP Test tool (Shekyan, 2020) and generate three

types of slow HTTP attacks including slow body, Slowloris, and slow read. We used

the default parameters provided by the tools to initiate the attacks. The primary

parameter for the BoNeSi tool is the address of the target server and the type of

flooding attack that we selected to be TCP (HTTP). For slow HTTP test tool,

there are several parameters that should be selected to reflect a specific attack.

We have listed the values for these parameters in Table 6. The parameters are as

follows:

– c: the number of connections

– i: interval between follow up data in seconds, per connection

– n: interval between read operations from receive buffer

– p: timeout to wait for HTTP response on probe connection, after which

server is considered inaccessible

– r: connection rate

– s: value of Content-Length header

– t: method

– w: start of range the advertised window size would be picked from

– x: max length of follow up data

– y: end of range the advertised window size would be picked from

– z: bytes to read from receive buffer with a single read operation.
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Table 6. Parameters of our attack cases

-c -i -n -p -r -s -t -w -x -y -z

SlowBody 300 110 - 3 200 8192 - - 10 - -

SlowLoris 300 10 - 3 200 - GET - - - -

SlowRead 300 - 5 5 200 - - 10 - 20 32

For our normal data, we replay and collect data from the NASA dataset

logs for 24 hours. We selected a Monday as the server served the most requests on

that day compared to other weekdays. For the test cases, we generate each attack

for 3 minute per each variation while replaying normal background traffic, similar

settings have been used in prior works (Hirakawa, Ogura, Bista, & Takata, 2016).

With a 3 minute pause between each, we ensure that there is no overlap between

attack variations. Given the per-second granularity of our data collection, 180

seconds will cover the range of changes in our feature set given the type of attacks.

For example, it takes some time for the slow attacks to occupy all of the server’s

resources.

We have 4 attack types each with 3∗60 = 180 seconds length. In addition, to

have normal test cases as well, we replayed normal HTTP requests for an additional

day and then, we randomly selected 180 seconds to from our normal “test" data

points. Now, for testing purposes, we assess how many of these 360 seconds (180

attacks + 180 normal) were labeled correctly as positive (attack) or negative

(normal) by our model for each of the 4 attack types.

5.4.3 Features. We have three sources that provide information for

the collector: the application (Apache webserver), network traffic, and system

resource usage, as a set of features per second. From the webserver, we can obtain

information about the HTTP request sent to the server, sender, server response
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status code (e.g. 200 for a successful response, 400 for not found target page)

(App_status_* ), and size of the response (App_size_* ). Also the server provides

the number of access request it received (AppStat_AccessCount), the number of

requests it processed (AppStat_processingRequests), and available worker pool to

serve new requests (AppStat_IdleWorkers)1.

On the network side, we capture the number of packets, size (bytes), source

and destination IP and ports, as well as protocol and TCP_flags (including ACK,

PSH, RST, SYN, and FIN ) per second for incoming and outgoing packets. On the

system side, we capture the percentage of CPU and memory usage of the webserver

process, as well as number of minor (major) memory faults made by the webserver

process (minflt and majflt) using pidstat command2 on Linux. All the above

attributes are collected per second. We expand the above attributes by calculating

their min, mean, 25, 50, 75 percentiles, and max values for numerical attributes

(such as number or size of packets, CPU and memory usage, and faults), and the

number of values per category for categorical attributes (such as server response

status code), and the number of all and number of unique values for non-numerical

and non-categorical values (such as source and destination). Altogether, we have

a vector of 58 features 3 per second that is fed into the model for assessment. The

full list of features is summarized in Table 7.

1For more information on the application features refer to the following link
https://www.elastic.co/guide/en/beats/metricbeat/current/exported-fields-apache.html

2Using the following command: pidstat 1 -rud -C apache -h
316 OS, 15 application, and 27 network-related features
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Table 7. List of features used for our modeling

OS

OS_process_count
OS_%CPU_min
OS_%CPU_mean
OS_%CPU_25
OS_%CPU_50
OS_%CPU_75
OS_%CPU_max
OS_%CPU_sum

OS_%MEM_sum
OS_minflt/s_min
OS_minflt/s_mean
OS_minflt/s_25
OS_minflt/s_50
OS_minflt/s_75
OS_minflt/s_max
OS_minflt/s_sum

Application

AppStat_AccessCount
AppStat_processingRequests
AppStat_idleWorkers
App_size_25
App_size_50
App_size_75
App_size_max
App_size_mean

App_size_min
App_size_sum
App_src_count
App_src_nunique
App_status_200_count
App_status_400_count
App_status_404_count

Network

NetIn_packets
NetIn_bytes
NetIn_sources
NetIn_min_length
NetIn_ave_length
NetIn_max_length
NetIn_min_TCPWindowSize
NetIn_ave_TCPWindowSize
NetIn_max_TCPWindowSize
NetIn_ACK_count
NetIn_PSH_count
NetIn_SYN_count
NetIn_FIN_count

NetOut_packets
NetOut_bytes
NetOut_sources
NetOut_min_length
NetOut_ave_length
NetOut_max_length
NetOut_min_TCPWindowSize
NetOut_ave_TCPWindowSize
NetOut_max_TCPWindowSize
NetOut_ACK_count
NetOut_PSH_count
NetOut_SYN_count
NetOut_FIN_count

5.5 Data Characteristics

As discussed earlier, we have a normal dataset used for training and

generated a variety of attacks for the test dataset. In this section, we discuss their

characteristics.

For the normal day dataset, we re-played 89,561 requests that were

associated with 7,336 sources on 24 hours. Basic characteristics of the normal day

data are shown in Fig. 34. As shown in Fig 34a the response size is up to 700KB

per seconds, from up to 9 sources per seconds ((Fig 35d), 70 incoming packets per

second (Fig 34c) and CPU usage up to 1% of the server’s computation capacity

(Fig 34d).
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Figure 34. Characteristics of a normal day - Normal Flow
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Figure 35. Characteristics of a normal day - Sending with no delay between
requests

Sending the requests as logged on the dataset is one of the options.

Additionally, we can send requests without any delay between them (noted as top

speed). In this case, we will put the server under more pressure. Doing so results

in having the features as shown in Fig 35. As shown, in this approach, the mean of

the response sizes per second lowers to a maximum of 200KB per seconds (Fig 35a),

with more than 400 unique sources per second (Fig 35b). The incoming packet

rate is up to more than 400 pps (Fig 35c) and CPU usage varies between 0 and 2.5

percent (Fig 35d).

Our testing dataset contains 4 different attack cases4 each for 3 minutes

(180 seconds). As shown in Fig 36 to Fig 39, while the slow tests bring down the

response size and sources to a small and steady number over the course of the

attack (by their definition they are expected to do so), the DDoS TCP flooding

43 slow attack and one HTTP flooding
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manages to keep the server busy without dramatically changing the features

compare to normal ones seen in Fig 34.
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Figure 36. Characteristics of an Attack day - SlowBody
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Figure 37. Characteristics of an Attack day - SlowLoris
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Figure 38. Characteristics of an Attack day - SlowRead
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Figure 39. Characteristics of a Attack day - Bonesi TCP
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Similar to normal data, here for the attacks, we have the option to replay

the background traffic with no delay between the requests. As shown in Fig 40 to

Fig 43, in this case, the number of sources and incoming packets changes compared

to the previous option.
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Figure 40. Characteristics of an Attack day - SlowBody - Sending background
traffic with no delay

5.6 Evaluation

In this section, we perform sensitivity analyses on our parameters and

discuss the accuracy of our model in different cases.

5.6.1 Effect of threshold on accuracy. As discussed in Sec 5.4 to

label data points as an anomaly, we should set a threshold on the reconstruction

error. If the error is larger than the threshold, the label is an anomaly. We examine

the effect of threshold choice on the model’s accuracy in terms of true positive rate

(Fig 44a) and false positive rate (Fig 44b). In these figures, we show the threshold

in a range of 1 to 100 on the x-axis. The threshold indicates the percentile of

reconstruction error on the validation data. Therefore, if we set the threshold to be

100, it means that we set the threshold to be the maximum of the validation error.

We show a box plot per threshold value that is the summary distribution of values

we see for each of the attack types (Slow and Flooding attacks). The average is

shown with a green triangle for each box plot. The receiver operating characteristic

curve, or ROC curve, based on true and false positive rates is shown in Fig 45
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Figure 41. Characteristics of an Attack day - SlowLoris - Sending background
traffic with no delay
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Figure 42. Characteristics of an Attack day - SlowRead - Sending background
traffic with no delay
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Figure 43. Characteristics of a Attack day - Bonesi TCP - Sending background
traffic with no delay

where we have shown the 95 percentile on the plots using a vertical red line. The

diagonal dashed red line indicates a random (no skill) detector. As shown, the

lower the threshold, the larger number of data points will satisfy the condition

loss > threshold which leads to high false positive (labeling all data points as an

attack). The larger the threshold, the fewer data points will be labeled as an attack

and results in a higher false-negative rate (lower true positive), where in an extreme
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case it brings the false positive to zero while only detecting 50% of attack cases on

average across all attack types.
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Figure 44. The effect of reconstruction error threshold
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Figure 45. True positive and false positive rate ROC plot

We set the threshold to be the 95 percentile of reconstruction error on the

validation set that is shown as a red line on both figures. It was shown to be a

reasonable choice based on our experiments and inline with parameter selections

in prior works (Sakurada & Yairi, 2014). Therefore, if our model is not able to

accurately reconstruct the data points with an error that is more than 95% of the

validation error, then we label it as an anomaly case.

5.6.2 Anomaly detection rate. We measure how our model is able

to catch different types of attacks out of 180 cases of anomaly and 180 cases of

normal data points, how many were labeled correctly. In order to capture that, we

report F1-score per anomaly type, where:

F1 = 2 · precision · recall
precision + recall
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F1-score presents the harmonic mean of the precision and recall and reaches

its best value at 1. We trained the model only using the network features, only

application, using both, and also using all three types of features (net, app, and

OS). Table 9 shows the result for when our normal dataset is collected with the

normal rate (as indicated in the original logs). While Table 8 shows the results

when the training data is collected by sending requests without any delay. The

results suggest that our models had higher accuracy in the detection of anomalies

for slow HTTP attacks when trained on the data that is captured with high speed

rate replay. As the differences between these cases are more pronounced. However,

when focusing only on net and app features, our model that is trained with the

normal flow rate, has higher accuracy. Overall, considering the app and OS features

have improved our detection capabilities.

Given the nature of the data in both cases and the effect of attacks on the

features that we discussed in the previous section, both cases can be explained.

First, slow HTTP attacks slow down the send and received rate, in the case of

a server with low load, the changes are not pronounced and more challenging to

be detected for the model that is trained on low load data. Training on a high

load server data, however, leads to a stronger signal. For the flooding attacks,

the scenario is on the contrary. The more load on the server in the normal state,

the less detectable will be on the attack time as features will change relatively less

compared to a low load server.

We have also considered one-class SVM (Amer, Goldstein, & Abdennadher,

2013; Erfani, Rajasegarar, Karunasekera, & Leckie, 2016; Perdisci, Gu, & Lee,

2006) and IsolationForest (Ding & Fei, 2013; S. Li, Zhang, Duan, & Kang, 2019;

F. T. Liu, Ting, & Zhou, 2008; Puggini & McLoone, 2018) as alternative models for
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anomaly detection. We considered their Scikit-learn library implementation and we

used its parameter-grid model selection for fine tuning these models. Table 10 and

Table 11 show the results for these models, respectively. Comparing with Table 9,

our auto-encoder model outperforms both models in its best performance using all

three feature sets. However, the best case for these methods is not when the model

used all three sources. For example for the one-class SVM model, the best result for

flooding attack (BonesiTCP) is obtained when using only the network features or

for isolation forest, using only the application features led to the highest accuracy

across all attack types.

Table 8. Evaluation results - train on data with no inter-request delay

Name F1_Net F1_App F1_NetApp F1_AllThree

SlowBody 0.72 0.99 0.97 0.99
SlowLORIS 0.71 0.45 0.76 0.99
SlowRead 0.67 0.40 0.74 0.99
BonesiTCP 0.34 0.40 0.71 0.99

Table 9. Evaluation results - trained on actual rate data

Name F1_Net F1_App F1_NetApp F1_AllThree

SlowBody 0.75 0.99 0.97 0.97
SlowLORIS 0.73 0.45 0.78 0.94
SlowRead 0.72 0.40 0.77 0.94
BonesiTCP 0.34 0.40 0.76 0.94

5.6.3 Additional Challenging Cases. Having a high detection

accuracy is directly related to the elaborate footprint of the DDoS attacks on the

application and OS features. Therefore, to make the test cases more challenging, we

can consider the following scenario: what if the attacks lead to a signature close to

the normal behavior of the application?
117



Table 10. One-class SVM evaluation results - trained on actual rate data

Name F1_Net F1_App F1_NetApp F1_AllThree
SlowBody 0.88 0.86 0.94 0.94
SlowLORIS 0.85 0.86 0.94 0.94
SlowRead 0.90 0.86 0.94 0.94
BonesiTCP 0.92 0.86 0.36 0.36

Table 11. IsolationForest evaluation results - trained on actual rate data

Name F1_Net F1_App F1_NetApp F1_AllThree
SlowBody 0.59 0.92 0.87 0.66
SlowLORIS 0.61 0.92 0.87 0.66
SlowRead 0.59 0.92 0.87 0.64
BonesiTCP 0.26 0.35 0.32 0.30

To perform this experiment, we considered the following cases: (i) Changing

all features with a random (0 ≤ rnd ≤ 1) fraction of standard deviation

(SD) of each feature. In this case the new feature values will be Xi_new =

Xi + rnd ∗ std(Xi). (ii) Changing all features, each with a separate random

fraction of SD: Xi_new = Xi + (rnd_i) ∗ std(Xi), and (iii) Changing fraction

of features with a probability of p (0 ≤ p ≤ 1) and therefore Xi_new =

Xi + [rnd > p][(rnd_i) ∗ std(Xi)]. We set p to be 0.1 and given the random

nature of our definitions, we have repeated the experiment for 20 times while

testing the model with only net, only app, app and net, and all features, similar

to our report in the previous section. The results are shown in Table 12 suggest

that application features are more sensitive to changes as the accuracy stays high

when only focusing on these attributes. Also randomly changing the features (the

most challenging case) had the most effect on our model’s accuracy.

5.6.4 Spike in legitimate requests. In the earlier section, we

showed that even if we change a fraction of attributes, our model is able to
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OnlyNet OnlyApp NetAndApp AllThree

(i) AllFeaturesSameRatio 0.96±0.01 1.0±0.0 0.97±0.01 0.97±0.0
(ii) ratioPerFeature 0.98±0.0 1.0±0.0 0.98±0.0 0.98±0.0
(iii) randomFeat 0.84±0.02 0.87±0.01 0.85±0.0 0.84±0.01

Table 12. Our model’s accuracy on more challenging cases

accurately detect the anomaly. The case of a spike in legitimate requests (e.g.,

sudden increased interest in the content of a web server) is an expanded version

of that idea. To evaluate it, we use randomly selected 360 seconds of data from the

normal day with no inter-request delay (top speed rate), we test if the model would

detect these inputs as an anomaly or not. With the network-only features, only

33% were labeled as anomaly while with other combinations, all were labeled as

anomaly (with threshold = 95%). So our model is marking these spikes as anomaly.

However, the more important question is how can we differentiate the attacks from

such normal events?

In such cases to determine the level of importance, we have a few options:

(i) Classification. We can train a classifier to determine the type of anomaly if

the labeled data is available. However, as discussed earlier not only labeled data is

not available in most cases, the type of attacks and normal spikes are not known

ahead of time.

(ii) Feature importance. If labels are not available, then we can use feature

importance to provide additional information for the network admin to make an

informed decision when facing these anomaly cases.

In this case, we used the 360 cases that we used to test the model against

the legitimate spike event, to calculate the feature importance. Fig 46 shows the

top 10 important features for these cases. Interestingly, in these cases, the set of
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top important features has a small overlap with the top important features for the

attacks that we earlier discussed. And uniquely, both the outgoing and incoming

features show up among top important features, suggesting a symmetric effect

on the attributes in this case. Also, our analysis shows that the number of idle

workers of the web server was lower than normal cases yet 2 times more than of the

attack cases that can be differentiating the attacks from normal spike cases. The
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NetIn_max_TCPWindowSize

Figure 46. Feature importance for normal request spike cases

important features, give the network admin areas to focus on, therefore, they can

make informed decisions.

(iii) Ranking. An advantage of our chosen model is that we can use the

reconstruction error to cast the problem as a ranking problem. Therefore, we

can focus only on most important anomalies (presumably those with higher

reconstruction error). To assess whether this approach can be considered or not,

in Fig 47 we show the summary distribution of reconstruction error for the 3 more

challenging cases that we defined in section 5.6.3, the normal spike in normal

legitimate requests, as well as the 4 types of attacks that we evaluated in section
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5.6.2. The green triangles represent the average value. Our analysis shows that

attacks lead to higher reconstruction errors on average compared to the legitimate

spikes and we can have a good distinction among different event types given

the characteristics of their reconstruction error that might further benefit from

dimension reduction techniques (such as PCA) or clustering methods.
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Figure 47. Reconstruction error for all cases

5.7 Model Explainability and Interpretation

In this section, we focus on effectiveness of standard explanation techniques

on our trained models. As if they are successful in interpreting the models, we can

gain insights that help on practicality, understanding, and improvement of our

trained models.

5.7.1 Model Interpretation Results. We utilize model

interpretation techniques to focus on trust and informativeness aspects. The

DeepExplain framework (Ancona et al., 2017) offers the implementation of a

range of interpretability methods in a unified way including backpropagation and
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perturbation methods. We use the occlusion method (Zeiler & Fergus, 2014) as a

perturbation-based attribution method to calculate the feature importance.

We leverage methods that are implemented in DeepExplain on the model

that is trained in the earlier section. We used the test cases (each one is a vector of

58 features) per attack type (e.g. Slowloris or flooding) as input and the outcome

is a score vector, one value per feature per test case. Then, we can aggregate the

scores across all cases by reporting the mean and standard deviation of importance

score. This aggregated value can be used to rank the features per attack type.

These scores will indicate which features are the most important ones for our

model when detecting specific attacks. Figure 48 shows the examples of feature

importance outcome on different attack types. As shown, The top 3 features for

slow attacks are almost the same while the TCP flooding attack has a different

set. In addition, the flooding attack seems to rely more on app and OS features

compared to the slow attacks.

Using the feature importance, we can confirm whether the model is relying

on the right set of features or not. If not, then we can debug our training step with

further investigation of our feature engineering, data, and model architecture and

hyperparameters. However, in this case we note that the features relied on by the

model correspond with our intuitions about these particular anomalies.

In addition, we can check whether training the model using a subset of

the top important features can have relatively similar accuracy as the original

model. The results are shown in Table 13 where we train our models using only

the top (1, 3, 5, 10, ..., 25) important features. Our analyses show that accuracy of

such models depends on the attack type. For some of them, with even one of our

features our models are able to obtain relatively accurate results. However, the
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Figure 48. Feature importance per attack type

effect of adding new features is not linear in all cases. Our analyses show that the

aggregated feature importance is not an accurate way to specify how the model

relies on different features and which subset of features can be used, although it

helps to identify reasons for labeling individual cases.

5.7.2 Model Extraction Results. The interpretation methods do

not capture the relation between the features and how they are contributing to

the final model’s outcome. To capture the relationships among them and gain

insight on the inner working logic of our model we leverage the DTextract method

(Bastani, Kim, & Bastani, 2017a).
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Name Top 1 Top 3 Top 5 Top 10 Top 15 Top 20 Top 25

SlowBody 0.34 0.35 0.41 0.41 0.40 0.41 0.49
SlowLORIS 0.35 0.76 0.36 0.74 0.73 0.75 0.73
SlowRead 0.33 0.35 0.38 0.41 0.34 0.37 0.37
BonesiTCP 0.97 0.96 0.94 0.42 0.33 0.42 0.42

Table 13. F1-score for models trained with top N important features

The output of DTextract method is a set of rules that approximate the

bahavior of the original model. These rules can be visualized as a decision tree.

The number of nodes in this tree is considered as a tuning parameter for the

DTextract method and can affect how well the extracted ruleset can capture

different cases, the larger the tree is the more specific (less general) the rules will

become. As mentioned, the feature importance scores in Fig 48 depict which

features are more important for the model. However, the interactions among

these features are not captured. In order to capture the features’ interactions, we

visualize the extracted rules as decision trees in Fig 49. The decision trees are

extracted based on test cases related to each of the attack types and anomaly is

indicated by a positive label (label=1). While the tree with only 7 nodes is too

simple to capture the whole logic, it shows how inner working logic of the model

can be captured by a combination of network and OS features. For example, in

Fig 49b we can consider a case as normal, only if it puts low pressure on CPU but

sends large amount of data (relative to the attacks).

While not all selected features are among the top important features we

found in earlier section, in case of flooding attack or SlowRead, 2 out of 3 features

are among top 10 important features. These trees can help network admins to

determine the underlying line of conditions that led to a decision (either anomaly

or normal) and can help to determine and trigger the proper mitigation plan.
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Figure 49. Extracted Rules

One important factor for rulesets is fidelity. That is how closely the ruleset

can approximate the original model. For that, we extract the decision rules with

different numbers of nodes per tree for different attack types and report the relative

accuracy of the resulted decision tree in labeling the normal and attack cases

compared to the original model. We extracted the ruleset with a tree of size up

to 2i − 1 for i in range 2 to 11. The fidelity results are shown in Table 14. Looking

at all attacks together, the rules were not able to approximate the model even with

the thousands of nodes. However, when extracting the ruleset per attack type, then

the model gains higher accuracy with larger node sizes.
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Challenges of model explanation. The extraction methods are expected

to be capable of capturing the models’ inner working logic, in the presence of

a large number of feature that can correlate, the resulting ruleset can be large

and therefore each rule can be relevant to a small number of cases. In such cases

understanding the ruleset itself can be challenging. Also the extraction methods

with off the shelf implementations require modifications to be applicable on

different type of problems and in our case shown low fidelity.

In the case of model interpretation, given that the test cases can capture a

wide and contradicting characteristics, feature importance methods are better to

be used on each group of test cases (in our case we applied on each of our attack

types) or even be used to explain the importance of features for individual test

cases. In these cases the results can be more clear and reliable.

Table 14. F1-score of extracted rules with a tree of maximum N nodes

Name 3 Nodes 7 Nodes 15 Nodes 31 Nodes 63 Nodes

BonesiTCP 0.20 0.34 0.34 0.17 0.25

SlowBody 0.61 0.23 0.23 0.23 0.23

SlowLORIS 0.33 0.33 0.33 0.33 0.33

SlowRead 0.05 0.05 0.32 0.33 0.33

All together 0.36 0.36 0.36 0.36 0.36

Name 127 Nodes 255 Nodes 511 Nodes 1023 Nodes 2047 Nodes

BonesiTCP 0.25 0.20 0.34 0.25 0.34

SlowBody 0.23 0.61 0.23 0.23 0.61

SlowLORIS 0.33 0.33 0.33 0.33 0.33

SlowRead 0.33 0.33 0.33 0.33 0.51

All together 0.36 0.36 0.36 0.36 0.36

126



CHAPTER VI

CONCLUSIONS & FUTURE WORK

Large scale networked systems play a critical role in today’s society e.g.

Internet infrastructure, Facebook user relationships, and Amazon product-review

relationships. As a result of information exchange or evolution of connectivity

structure, certain types of events and patterns form in these systems that are

required to be identified and managed properly. Examples of such events are fake

posts, repetitive reviews, or denial of service (DoS) attacks. However, given the

large scale of such networked systems and the dynamic nature of their evolution,

the detection of such events becomes a challenging task. In many cases, even

collecting the footprint or signature of such events is not possible as they behave

differently in various settings. Such challenges open the need for machine learning

(ML) techniques that offer promising approaches to learn the signature of an event

and detect future instances. In this dissertation, we leveraged ML techniques to

address the challenges of event detection in multiple networked systems and made

the following conclusions:

– In order to detect incentivized online reviews on Amazon, heuristics-based

labeling could be useful for training a model to identify reviews without any

explicit sign.

– Unsupervised ML models can be used for event detection and they offer

opportunities for efficient training and re-training.

– Model interpretation and extraction techniques can provide insights for the

operators. However, interpretation of such insights can be challenging due to

the complexity of resulting rules or feature dependencies.
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– A trained model should be used in its specific setting (considering the input

data streams and underlying network) and may not be useful in other similar

settings due to the variations in event features. Therefore, the models might

need re-tuning and re-training if are intended to be used in a new setting.

Specifically, we have made the following contributions in each chapter.

In Chapter III we presented a detailed characterization of Explicitly Incentivized

Reviews (EIRs) in two popular categories of Amazon products. We presented a

technique to detect EIRs, collected a few datasets from Amazon, and identified a

large number of EIRs in Amazon along with their associated product and reviewer

information. Using this information, we compared and contrasted various features

of EIRs with reasonably normal reviews. We showed that EIRs exhibit different

features compared to normal reviews and discussed the implications of these

differences.

Then, we zoomed into the temporal pattern of submitted EIR reviews for

a few specific products and submitted reviews by a few specific reviewers. These

temporal dynamics demonstrated whether/how promotional campaigns by a seller

could affect the level of interest by other users and how reviewers could get engaged

in providing EIRs. Finally, we illustrated that machine learning techniques can

identify EIRs from normal reviews with a high level of accuracy.

Moreover, such techniques can accurately identify other explicitly and

implicitly incentivized reviews. We leverage the affiliation of reviews with reviewers

and products to infer their incentivized nature. Finally, we reported the current

state of incentivized reviews on Amazon and how sellers are adapting to the new

dynamic of the system.
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In Chapter IV we shed light on the practicality of deploying ML models such

as training strategies (e.g. the volume, selection, and recency of training data; and

having separate models for different hours of a data stream) for forecasting network

data streams. We explored the forecasting per-second flow arrival rate for all

incoming flows and incoming web flows using LSTM. Our results provide valuable

insights into the ability of the forecasting models for short-term forecasting of the

two data streams and elucidate the effects of training strategies, input features,

among others, on the accuracy of models.

The main limitation of our study in this chapter was its focus on two

specific network data streams from a particular campus network. While our

methodology is certainly applicable to forecasting any data stream from any

network, our trained models and findings cannot be generalized. More importantly,

we argue that such a generalization of ML models—as it is done in other domains

(e.g., image classification)—may not necessarily be feasible in networking. This

observation is motivated by the fact that network data streams are likely to exhibit

diverse (short term) characteristics across different networks. This, in turn, suggests

that the training and deployment of ML models should be customized for a specific

data stream from a particular network to ensure high accuracy. In short, any

modeling study in networking is likely to be specific to its target setting.

In Chapter V we used ML techniques to detect anomalous events in the

behavior of a network application. We focused on a web server as our choice of

network application since web servers are a popular example and yet one of the

most vulnerable network applications. Therefore, they can serve as a representative

example. We assessed the effect of using additional attributes from the network,

operating system, and the application itself on the accuracy of our model. Using
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LSTM auto-encoder models, we showed that our model is able to detect two types

of anomalies accurately, the application layer attacks including slowbody, slowloris,

slowread, and TCP flooding attacks as well as spikes in legitimate requests.

Furthermore, we have shown improvement of up to 0.30 in F1-score when using

all possible feature sources together.

Given that the accuracy of a model is not the only factor that affects

the practical use of ML methods and understanding the inner working logic and

rationale of decisions is also important, we used two types of model explainability

techniques (interpretability and rule extraction techniques) to assess how effective

the standard explanation techniques are on our models.

6.1 Future Work

In line with the presented dissertation topics, we present several possible

directions for future work:

6.1.1 Online Reviews Analysis. Our efforts in analyzing the

incentivized online reviews can be improved by incorporating other explicit

patterns. Furthermore, we can deploy probabilistic techniques to infer the

likelihood that a review is incentivized based on its affiliation with other products

and reviewers while considering the fraction of EIRs for affiliated products or

reviewers. We can also cast the problem in a ranking setting instead of binary

classification.

6.1.2 Forecasting Network Data Streams. This project can

be further extended along with the following directions. For one, the speed-

accuracy trade-offs associated with automated inference determine how well a given

telemetry task as a whole can be performed with no human operator in the loop.

While the idea of exploiting the diversity in available compute and communication
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resources and programmability capabilities among the different hardware

components to achieve the “best case” scenario is already being explored (Gupta

et al., 2018), how to get the network to recognize such “best case” scenarios and

then operate at such “sweet spots” remains an open problem. Moreover, other open

problems include creating theoretical bounds on the time required and accuracy

desired to perform a certain network telemetry task, and architectural designs

that are needed to enable such “sweet spot-seeking” network telemetry at scale;

that is, executing hundreds or thousands of highly diverse network telemetry tasks

concurrently and as fast and accurately as possible despite the uncertainties in the

environment (e.g. traffic load, application mix, failure scenarios). In addition, the

effect of using “scheduled sampling" Bengio, Vinyals, Jaitly, and Shazeer (2015) as

a technique to improve LSTM training can be investigated, and hopefully, it can

inform those looking to build a more powerful technique based on this project’s

idea.

6.1.3 Anomaly Detection using Application Behavior Modeling.

Deployment of our proposed system can help to gain insight into the performance

and practical challenges of anomaly detection beyond the numeric accuracy of

our model and will guide us to improve our model and system architecture. Our

proposed methods can be further evaluated against similar methods from prior

studies as the baseline. The effect of more courser time granularity (e.g. per minute

or hour) can be assessed. Also, the effect of a wider range of attacks can be more

informative. The idea of choosing the threshold based on the percentile of an error

on the evaluation set can be further improved using a reinforcement learning model.

Also, the model can be used as a part of multiple models trained on data from

different parts of the network to provide input data for a meta learner model.
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Furthermore, developing a terminal software can be useful to keep track of our

model’s detection and act as a dashboard for the network admins.
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