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DISSERTATION ABSTRACT

Jacob B. Lambert

Doctor of Philosophy

Department of Computer and Information Science

June 2021

Title: Accelerating Science with Directive-Based Programming on Heterogeneous Machines and
Future Technologies

Accelerator-based heterogeneous computing has become the de facto standard in

contemporary high-performance machines, including upcoming exascale machines. These

heterogeneous platforms have been instrumental to the development of computation-based

science over the past several years. However, this specialization of hardware has also led to

a specialization of associated heterogeneous programming models that are often intimidating

to scientific programmers and that may not be portable or transferable between different

platforms. Directive-based programming offers one high-level alternative to specialized code,

but also introduces its own set of challenges. Many accelerators, like FPGAs, may not support

a directive-based approach, and others like GPUs and CPUs may selectively support standards.

In this dissertation we perform the necessary research required to further enable directive-based

computing to consistently accelerate science on heterogeneous platforms. This research takes the

form of three major projects: (1) an OpenACC-to-FPGA framework developed to bring FPGAs

under the umbrella of directive-based computing, (2) an OpenACC and OpenMP interoperable

framework designed to improve the portability and performance of directive-based standards

across different platforms, and (3) an exploration of exascale-intended platforms with directive-

based applications. This dissertation includes previously published and co-authored material, as

well as unpublished co-authored material.
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CHAPTER I

INTRODUCTION, BACKGROUND, AND MOTIVATION

Heterogeneous computing has undoubtedly become a permanent resident in the high-

performance computing (HPC) landscape. The idea of using a diversity of hardware devices or

systems together to solve a single problem is already a reality in today’s leading supercomputer

systems [1, 2]. The upcoming exascale systems, the largest and most powerful computing

machines ever built, all depend innately on heterogeneous design [3, 4, 5]. As we approach

the physical limitations of CPU-based fabrics, advancement in computational system design

will require specialization not just in terms of processors and accelerators, but also memory

hierarchies, storage, and more. While this era of extreme heterogeneity [6] will certainly give

rise to interesting and powerful machines, it will also give rise to significant challenges. Below,

we lay out the most significant and universal challenges in today’s and tomorrow’s heterogeneous

programming and computing landscape, and describe how this dissertation’s contributions move

us one step closer to a solution.

A - Diversity of Hardware: In this dissertation, we discuss projects involving

both GPU and FPGA accelerators. However, for upcoming and future systems, other types

of accelerators besides GPUs and FPGAs are being explored as hardware accelerators. More

exotic, customized, and specialized hardware accelerators are being explored as viable options

in heterogeneous systems. Machine learning accelerators, neuromorphic chips, and quantum

accelerators promise to bring incredible performance to science, but also incredible challenges. As

we see in this dissertation, the introduction of GPU and FPGA accelerators has already created

hurdles for efficient heterogeneous computing.

B - Diversity of Programming Models: The diversity of heterogeneous hardware has

already led to a diversity of high-performance programming models. This will undoubtedly be

exacerbated as we transition toward extreme heterogeneity. While this diversity of models may

appear necessary to support the wide range of devices, it leaves classes of devices inaccessible to

classes of application developers.

C - Abstraction Level for Scientific Computing: Another point of contention in

contemporary heterogeneous programming is the appropriate abstraction level for programming

models. While computer scientists and professional programmers may prefer lower-level models
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Table 1. Summary of heterogeneous computing challenges addressed in each chapter.
A - Diversity of Hardware,
B - Diversity of Programming Models,
C - Abstraction Level for Scientific Computing,
D - Balance Between Open-Source and Proprietary

Chapter I Introduction
Chapter II A, C
Chapter III A, B
Chapter IV A, B, C, D
Chapter V Conclusion

that provide opportunities to fine-tune applications to specific devices, domain scientists may

prefer a higher-level model that allows for portability between ecosystems. This can again lead

to divergent programming models. DSLs like Tensorflow [7] may provide an optimal high-level

approach, and these DSLs can be built using generalized low-level approaches. However, this has

stranded the programmer looking for a high-level heterogeneous programming approach for an

application outside the popular DSL frameworks.

D - Balance Between Open-Source and Proprietary: Another significant trade-off

is the balance between open-source and proprietary frameworks. Nvidia’s CUDA Toolkit [8] has

been extremely successful as a frontier of GPU-CPU heterogeneous computing. Because of the

toolkit’s proprietary nature, Nvidia has been financially motivated to maintain, update, document,

and market its tools, which has led to widespread adoption and longevity. However, the successes

of a proprietary framework are less likely to extend to an extremely heterogeneous environment.

An alternative could be open source solutions and standards like OpenMP, but these solutions

may experience less streamlined development. For example, the OpenMP offloading standard was

first released in 2013, but the first fully functional implementations were very recently released.

Working Toward Solutions - This Dissertation: In this dissertation, we push

directive-based programming forward as one solution to the challenges above. In Table 1, we list

the specific challenges addressed in each chapter of this dissertation. Our main research question

is as follows: Can an open-source, high-level, directive-based programming approach

deliver specialized performance on the diversity of contemporary heterogeneous

accelerators and exascale hardware?

This question is directly related to each of the challenges mentioned above. (A) Because

of its high-level nature, a directive-based solution can more easily incorporate new heterogeneous
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device families without significant restructuring of a language or standard. In contrast, a lower-

level approach may need to be significantly extended or specialized to support a new device. (B)

A single directive-based approach with implementations across systems can circumvent the issue

of branching programming models designed for specific devices. (C ) The abstraction level of

directive-based models can be more palatable for scientists from different domains compared

to lower-level languages. And finally, (D) an open-source directive-based standard allows for

wide adoption across ecosystems, even if implementations on specific platforms internally rely

on proprietary backends.

We now present an outline of this dissertation. In Chapter I, we introduce the history of

heterogeneous computing, and the contemporary programming models and compiler frameworks

most commonly featured in heterogeneous computing-related research and science. We also

discuss the available benchmark suites designed to evaluate heterogeneous platforms. The material

in this chapter is unpublished with no co-authorship, although revision suggestions were given by

Seyong Lee and the dissertation committee (Allen Malony, Hank Childs, Boyana Norris) as part of

an Area Exam submission.

In Chapter II, we address the diversity of hardware by presenting an OpenACC-to-FGPA

framework that encapsulates FPGAs under the umbrella of directive-based acceleration. Using

this framework, a single application written using OpenACC can be run on a CPU, GPU, and

FPGA. Within the framework, device-specific compiler optimizations produce low-level code

specific to the targeted hardware. This framework is also one solution to the abstraction level

for scientific computing, as it provides a palatable programming abstraction level for a very

specialized device. Chapter II contains previously published material with co-authors from ICS

2018 [9], AsHES 2020 [10], PARCO 2021 [11], and IWOCL 2021 [12].

In Chapter III, we introduce an OpenACC and OpenMP interoperable framework that

addresses the diversity of programming models between the two most widely used directive-

based standards. This framework also addresses the diversity of hardware by allowing a single

application written in one standard to execute on any device supporting either standard. Chapter

III contains previously published material with co-authors from HeteroPar 2019 [13] and SC

2020 [14].
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In Chapter IV we present an exploration of exascale-intended platforms using applications

written in a single programming model, OpenACC. Each OpenACC application is then source-

to-source translated and compiled to several different platforms. This addresses all four problems

above: (A and B - diversity of hardware and programming models) we target multiple different

hardware accelerators using not only a single programming model, but a single source code

without modification, (C - abstraction level for scientific computing) we assess a single high-

level directive-based abstraction model for several specialized platforms, and (D - balance between

open-source and proprietary) our evaluated applications are written using a single open-source

standard, and source-to-source translated using an open-source compiler into several proprietary

low-level programming models, allowing us to take advantage of both ownership approaches.

Chapter IV contains unpublished material with co-authors.

Finally, in Chapter V we make a high-level assessment of contemporary heterogeneous

computing, summarize the research in this dissertation, and discuss avenues for future research.

Chapter IV contains unpublished material.

CUDA

Intel Xe (GPU)

Intel HLS OpenCL

Intel Stratix/Arria (FPGA)

Nvidia Tesla (GPU) AMD Instinct (GPU) 

Intel Xeon (CPU)

OpenACC OpenMP

IBM Power (CPU)

HIP OpenCL

Directive-Based Model

Low-level Model

Accelerator

Figure 1. Summary of the state of heterogeneous programming and computing.

In Figure 1, we see a summary, albeit simplified, of the current state of heterogeneous

computing. We see directive-based programming models, low-level models, and accelerators.

The solid lines here means a mainstream implementation supports compilation of a model on

an accelerator or device, while a dotted line indicates supports with extra steps. While there is

some overlap between models on many platforms, even in these cases, the code written in the
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same standard may not be directly portable between the platforms. Furthermore, for devices with

support for multiple programming models, the associated implementations may be significantly

more mature for a single model or subset of the technically supported models. Figure 1 succinctly

exposes the challenges mentioned above.

Intel Stratix/Arria 10

  

OpenACC OpenMP

Intel HLS OpenCL

Chapter II
OpenACC-to-FPGA

Chapter III
OpenACC and 
OpenMP 
Interoperable 
Framework

  
Intel XeonIBM Power 9

Nvidia P100/V100

Chapter IV
Exascale Platform 
Evaluation

CUDA

Nvidia A100

HIP

Intel Xe Max 

OpenCL

AMD MI50

Directive-Based Model

Low-level Model

Accelerator

Figure 2. Re-evaluation of the state heterogeneous programming and computing after including
this dissertation’s contributions.

In Figure 2, we see a re-imagined landscape for heterogeneous computing as a result

of the research in this dissertation. Because of the contributions in Chapter III, we can now

encapsulate OpenACC and OpenMP as an interchangeable, high-level, front-end programming

model. The contributions of Chapter II allow us to include Intel FPGAs into this encapsulation,

instead of relying on Intel-specific OpenCL. Finally, due to the contributions of Chapter IV, we

see the diversity of low-level models and devices that can be evaluated using a single directive-

based frontend and a sufficiently optimized source-to-source compiler. Throughout the rest of this

dissertation, we take an extended dive into these three projects, and examine how the performed

research motivates Figure 2.

This dissertation includes prose, figures, and tables from previously published conference,

workshop, and journal proceedings.

1.1 History of Heterogeneous Computing

Heterogeneous computing is paramount to today’s high-performance systems. The top

and next generation of supercomputers all employ heterogeneity, and even desktop workstations
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can be configured to utilize heterogeneous execution. The explosion of activity and interest

in heterogeneous computing, as well as the exploration and development of heterogeneous

programming approaches, may seem like a recent trend. However, heterogeneous programming

has been a topic of research and discussion for nearly four decades. Many of the issues faced by

contemporary heterogeneous programming approach designers have long histories, and have many

connections with now antiquated projects, ideas, and technologies.

In this section, we explore the evolution and history of heterogeneous computing,

with a focus on the development of heterogeneous programming approaches. In Section 1.1.1,

we do a deep dive into the field of distributed heterogeneous programming, the first major

application of hardware heterogeneity in computing. We also briefly explore the phasing-out of

distributed heterogeneous systems and approaches, and discuss the transitional period for the

field of heterogeneous computing. In Section 1.1.2, we provide an exploration into contemporary

accelerator-based heterogeneous computing, specifically analyzing the different programming

approaches developed and employed across different accelerator architectures.

1.1.1 Distributed Heterogeneous Systems. Even 40 years ago, computer

scientists realized heterogeneity was needed due to diminishing returns in the homogeneous

systems. In the literature, the first references to the term “heterogeneous computing” referenced

the distinction between single instruction, multiple data (SIMD) and multiple instruction, multiple

data (MIMD) machines in a distributed computing environment.

Several machines dating back to the 1980s were created and advertised as heterogeneous

computers. Although these machines were conceptually different than today’s heterogeneous

machines, they still were created to address the same challenges: using optimized hardware to

execute specific algorithmic patterns.

The Partitionable SIMD/MIMD (PASM) [15] machine developed at Purdue University in

1981 was initially developed for image processing and pattern recognition applications. PASM was

unique in that it could be dynamically reconfigured into either a SIMD or MIMD machine, or a

combination thereof. The goal was to create a machine that could be optimized for different image

processing and pattern recognition tasks, configuring either more SIMD or MIMD capabilities

depending on the requirements of the application.
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However, like many early heterogeneous computing systems, programmability was not

the primary concern. The programming environment for PASM required the design of a new

procedure-based structured language similar to TRANQUIL [16], the development of a custom

compiler, and even the development of a custom operating system.

Another early heterogeneous system was TRAC, the Texas Reconfigurable Array

Computer [17], built in 1980. Like PASM, TRAC could weave between SIMD and MIMD

execution modes. But also like PASM, programmability was not a primary or common concern

with the TRAC machine, as it relied on now-arcane Job Control Languages and APL source code

[18].

The lack of focus on programming approaches for early heterogeneous systems is

evident in some ways by the difficulty in finding information on how the machines were typically

programmed. However, as the availability of heterogeneous computing environments increased

throughout the 1990s, so did the research and development of programming environments.

Although the first heterogeneous machines consisted of mixed-mode machines like PASM

and TRAC, mixed-machine heterogeneous systems became the more popular and accessible

option throughout the 1990s. Instead of a single machine with the ability to switch between a

synchronous SIMD mode and an asynchronous MIMD mode, mixed-machine systems contained

a variety of different processing machines connected by a high-speed interconnect. Throughout

the 80s and early 90s, this environment expanded to include vector processors, scalar processors,

graphics machines, etc.

Examples of machines used in mixed-machine systems include graphics and rendering-

specific machines like the Pixel Planes 5, Silicon Graphics 340 VGX, SIMD and vector machines

like the MasPar MP-series and the CM 200/2000, and coarse-grained MIMD machines like the

CM-5, Vista, and Sequent machines.

It was well understood that different classes of machines (SIMD, MIMD, vector, graphics,

sequential) excelled at different tasks (parallel computation, statistical analysis, rendering,

display), and that these machines could be networked together in a single system. However,

coordinating these distributed systems to execute a single application presented significant

challenges.
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The 1988 work by Ercegovac [19], Heterogeneity in Supercomputer Architectures,

represents one of the first published works specifically surveying the state of high performance

heterogeneous computing. They define heterogeneity as the combination of different architectures

and system design styles into one system or machine, and their motivation for heterogeneous

systems is summed up well by the following direct quote:

Heterogeneity in the design (of supercomputers) needs to be considered when a point

of diminishing returns in a homogeneous architecture is reached.

As we see throughout this work, this drive for specialization to counter diminishing

returns from existing hardware repeatedly resurfaces, and this motivation for heterogeneous

systems is very much relevant today.

At the time of Ercegovac’s work, there existed three primary homogeneous processing

approaches in high-performance computing: (1) vector pipeline and array processors, (2)

multiprocessors and multi-computers following the MIMD model, and (3) attached SIMD

processors. These approaches were ubiquitous across all the early surveyed works related

to distributed heterogeneous computing, and they heavily influenced the construction of

heterogeneous systems and the development of heterogeneous software and programming

approaches.

A later survey was published in 1995: Goals of and Open Problems in High-Performance

Heterogeneous Computing by Siegel et al. [20]. Siegel was very involved in the early development

of distributed heterogeneous computing, including the outline of the PASM system mentioned

above. The authors presented the following goal for heterogeneous computing:

To support computationally intensive applications with diverse computing

requirements. Ideally presented to the user in an invisible way.

Looking to the future, this survey by Siegel et al. introduced a conceptual model for an

end-to-end heterogeneous programming and computing approach, recreated for this dissertation in

Figure 3. Although the model is conceptual, as no complete implementation existed at the time,

the model and derivations of it appear frequently in the subsequent heterogeneous computing

literature. The concepts of 1) automated machine and algorithm classification, 2) automated task

profiling and analytical benchmarking, and 3) automated scheduling and assignment of sub-tasks
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Heterogeneous Computing: Conceptual Model

generation of parameters that are represented 
as general characteristics of computational 
requirements and general characteristics of 

machine capabilities

matching and scheduling of subtasks to 
machines based on cost metric

execution of the given application on the 
heterogeneous suite of machines

task profiling 

for a given application

analytical benchmarking for the 
machines in the heterogeneous 

suite

applications machines in the 
heterogeneous suite

general characteristics of 

computational requirements

general characteristics of 

machine requirements

current loading/status of 
machines and network

specific 
characteristics of machines and 
inter-machine communication 

overhead

specific characteristics of each 
subtask of the application

assignment of subtasks to 
machines in the heterogeneous suite

Stage 1

Stage 2 Stage 2

Stage 3

Stage 4

information

action

Figure 3. Re-creation of conceptual model of heterogeneous computing by Siegel et al. [20]

to heterogeneous components were open questions at the time, and largely remain open questions

today.

While most parallel computing research at the time focused on computational models,

algorithms, or machine architectures, the PVM project [21], started at Oak Ridge National

Laboratory, was an early attempt to provide a unified programming model for both homogeneous

and heterogeneous distributed environments. The overarching goal of PVM was to allow a diverse

and scalable set of heterogeneous computer systems to be programmed as a single parallel virtual

machine. Essentially, PVM was designed as a programming environment for interacting but

independent components. Other early heterogeneous programming languages included HeNCE
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[22, 23, 24], an extension to PVM, the p4 project [25] from Argonne National Laboratory, and the

Mentat Language [26, 27], developed as extensions to C++.

Thirty years later, many of the visions of the developers of early distributed

heterogeneous systems are still just that—visions. As we see in the later chapters and sections

of this dissertation, most modern heterogeneous programming approaches still require some

manual management of data transfers, communication, and synchronization, although typically

with more user-friendly programming approaches than those of early systems like Mentat. Much

of the research and discussion today in heterogeneous computing revolves around finding the

appropriate abstraction level, as previously mentioned.

The diversity of processors in these early heterogeneous distributed systems seems small

relative to today’s array of co-processors (GPUs, FPGAs, TPUs, etc.). These early processors

would all typically fall into the “traditional CPU” in today’s categorization.

However, the diversity in supporting hardware and software was far greater in early

heterogeneous ecosystems than today’s typical cluster and supercomputer environments. Because

the sub-components were typically completely separate machines, they experienced heterogeneity

in the network architecture, the connection latencies, and the different communication bandwidths

for different machines. On the software side, different machines had different operating systems,

different process support and inter-process communications, varied compiler and language

support, and multiple file systems. Unlike today’s cluster and supercomputing environments with

mostly homogeneous software environments, early distributed heterogeneous system approaches

required masking these network and software diversities. However, as we transition into an era of

extreme heterogeneity, many of these early considerations are likely to resurface.

Around the turn of the century, the keywords and terminology surrounding heterogeneous

distributed systems research began to shift. The next realization of heterogeneous computing

systems began to be referred to as Metasystems, or referenced in the context of Metacomputing,

and Grid Computing. This shift in perspective reflected a more universal or global outlook on

heterogeneous computing. Distributed heterogeneous computing, coincident with the rapid and

impressive growth of the internet and web-based computing, expanded into Metacomputing, Grid

Computing, and eventually set up the backbone for the monolith that is today’s cloud-based

computing.
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The goals of Meta and Grid computing were to create infinitely scaling systems by

harnessing the power of remotely connected heterogeneous systems. While some projects tackled

this, these ideas were ultimately re-purposed for commercial success under the umbrella of cloud

computing. Additionally, with respect to scientific endeavors, the construction of large-scale

homogeneous clusters and supercomputers beckoned a shift from distributed heterogeneous

machines. At the same time, the growth of MPI, without a major focus on heterogeneous

interoperability, overshadowed projects like PVM and p4 that targeted heterogeneous systems.

Finally, the very things that made early machines heterogeneous began to be integrated

into single homogeneous processors. Unlike mixed-mode machines like PASM with distinct

SIMD and MIMD processing, many new multi-core vectorizing processors seamlessly integrate

both SIMD and MIMD capabilities, which forgoes the need for a heterogeneous programming

environment. Similarly, as we previously discussed, early distributed heterogeneous systems

contained separate processors for visualization, statistics, and data processing. However, with

the expansion of x86 and inclusion of specialized and vector instructions on general purpose

CPU processors, the problems these early heterogeneous systems tackled could now be solved

by homogeneous systems.

The shift into cloud computing, the ubiquity of MPI, and the continuous consolidation

into x86 CPUs in many ways signaled the end of heterogeneous computing as it was originally

imagined. However, as we see in the next section (Section 1.1.2), the rebirth of heterogeneous

computing, and reinvention of many of the ideas previously mentioned, was sparked by the

introduction of accelerator-based heterogeneous systems.

1.1.2 Multicore, Manycore, and Accelerator-based Heterogeneous Systems.

Hardware processing chips evolved from a single core, to multi-core and manycore chips, which

then developed into hardware accelerators. These developments revolutionized the architectures

of nearly all high-performance machines, and effectively re-birthed the field of heterogeneous

computing.

The construction of large homogeneous machines marked the end of the 2000s decade and

the end of heterogeneous distributed systems like we saw in the 1980s and 1990s. Jaguar [28],

built around 2009 at Oak Ridge National Laboratory, was a Cray XT5 system, consisting of

224,256 x86-based AMD CPU cores, and was listed as the world’s fastest machine in 2009 and
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2010. Kraken [29], another Cray Xt5 system built in 2009, was listed as the world’s fastest

academic machine at the time. These homogeneous machines dominated the domain of HPC

for several years. Likewise, HPC software support, programming approaches, and compiler

infrastructure developed during this time was also largely homogeneous. However, at the same

time, scientific programmers began experimenting with programming using Graphics Processing

Units, or GPUs, a trend that would eventually revolutionize the HPC field.

In 2000, Toshiba, Sony, and IBM collaborated on the Cell Project [30]. This project

culminated in the release of the Cell Processor in 2006. While not strictly a GPU, the Cell

Processor was one of the first architectures to apply accelerator-based heterogeneity to multi-

media and general purpose applications. The Cell Processor’s first major commercial application

was inside the Sony PlayStation 3 gaming console. In 2008, IBM and Los Alamos National

Laboratory (LANL) released the Roadrunner supercomputer, which consisted of a hybrid design

with 12,960 IBM PowerXCell and 6,480 AMD Opteron dual-core processors [31]. The IBM

PowerXCell processors absorbed the original Cell processor design.

While the Cell processor generated excitement and a new interest in a different type

of heterogeneous computing, it was only efficient for certain computations, and the overhead

of manually transferring memory to and from the device was a performance bottleneck due

to the small memory size of the Cell architecture. Although GPUs and other heterogeneous

accelerators suffer from these same issues, they evolved and developed to meet the demand of

scientific computing.

The scientific community began evaluating GPUs for general purpose processing well

before their use became mainstream. In 2001, researchers evaluated general purpose matrix

multiplication, and in 2005 LU decomposition on a GPU was shown to outperform a CPU

implementation [32]. Interest in utilizing GPUs in scientific computing continued to grow, but

was inhibited by the complex programming approaches for GPUs, which typically required a

low-level graphics interface and dealing with shaders and graphics-related APIs data structures.

However, with the release and development of programming models and frameworks mentioned

in subsequent sections, GPU programming, and the whole field of scientific heterogeneous

programming including other types of accelerators, became the norm in high-performance
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computing. Throughout the rest of this dissertation, references to “heterogeneous computing”

typically imply the contemporary accelerator-based flavor.

Since the initial release of CUDA in 2006, GPGPUs have been the dominant driving force

for accelerator-based heterogeneous computing. The concept of offloading computationally intense

regions of code to a heterogeneous hardware accelerator has become commonplace in scientific

computing, and for the past decade, heterogeneous computing has almost exclusively referred to

GPGPU offloading. However, FPGAs have recently emerged as a potential competitor to GPU

accelerators, both in terms of computing power and power efficiency.

Field Programmable Gate Arrays (FPGAs) have been designed and developed for nearly

40 years. Altera, a major FPGA manufacturer, was founded in 1983, and released the first FPGA

in 1984. Xilinx, the main competitor to Altera for several decades, was founded in 1984 and

released their first FPGA in 1985. These devices have been promoted as potential architectures

for high performance computing for decades, but until very recently, have not seen much adoption.

The real revolution for FPGAs, and their adoption as a heterogeneous accelerator, has stemmed

from the introduction of new FPGA programming approaches. Creating a high-level programming

approach for high-performance FPGA accelerators is the main motivation for Chapter II.

1.2 Heterogeneous Programming Models

In this section, we first discuss the accelerator-based heterogeneous programming models

most heavily featured in this dissertation’s research results. We then discuss several other relevant

contemporary heterogeneous programming models.

1.2.1 CUDA. Nvidia was formed in 1993, but first gained major recognition by

winning the contract to develop the graphics hardware for the Microsoft Xbox gaming console in

2000. Nvidia continued to grow and increase its claim in the GPU market with the release of the

GeForce line, in direct competition with AMD’s Radeon line. However, these devices were still

targeted toward graphics processing.

As the interest in scientific computing using GPUs continued to grow, Nvidia first

recognized the potential financial advantages of supporting this community. In 2007, Nvidia

launched the Tesla GPU, aimed at supporting general purpose computing, and the CUDA

(Compute Unified Device Architecture) API and programming platform [8].
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Listing 1.1 Example CUDA C Application

1 #include <stdio.h>
2
3 global
4 void saxpy(int n, float a, float ∗x, float ∗y)
5 {
6 int i = blockIdx.x∗blockDim.x + threadIdx.x;
7 if (i < n) y[i] = a∗x[i] + y[i];
8 }
9

10 int main(void)
11 {
12 int N = 1<<20;
13 float ∗x, ∗y, ∗d x, ∗d y;
14 x = (float∗)malloc(N∗sizeof(float));
15 y = (float∗)malloc(N∗sizeof(float));
16
17 cudaMalloc(&d x, N∗sizeof(float));
18 cudaMalloc(&d y, N∗sizeof(float));
19
20 for (int i = 0; i < N; i++) {
21 x[i] = 1.0f;
22 y[i] = 2.0f;
23 }
24
25 cudaMemcpy(d x, x, N∗sizeof(float), cudaMemcpyHostToDevice);
26 cudaMemcpy(d y, y, N∗sizeof(float), cudaMemcpyHostToDevice);
27
28 // Perform SAXPY on 1M elements
29 saxpy<<<(N+255)/256, 256>>>(N, 2.0f, d x, d y);
30
31 cudaMemcpy(y, d y, N∗sizeof(float), cudaMemcpyDeviceToHost);
32
33 cudaFree(d x);
34 cudaFree(d y);
35 free(x);
36 free(y);
37 }

The CUDA programming platform abstracted programming GPU hardware into an

API that was more consumable by scientific programmers and other programmers without

extensive graphics programming experience. The CUDA programming model essentially presents

a hierarchical multi-threading layout, where threads are executed as a 32- or 64-thread warp,

warps are mapped onto thread-blocks, and thread-blocks are mapped onto a grid and grid blocks.

These abstractions fit quite naturally with the nested loop structure of most scientific software.

Listing 1.1 shows an example CUDA application, sourced from Nvidia’s website [33].

As the popularity of CUDA and GPGPU programming grew, several large

supercomputers began including both host CPUs and GPU accelerators. In 2010, China’s

Tianhe-1A machine launched, containing 14,336 Xeon X5670 processors and 7,168 Nvidia

Tesla M2050 general purpose GPUs [34]. This heterogeneous machine overtook the previously

mentioned Jaguar machine from Oak Ridge National Laboratory (ORNL) as the “world’s fastest

supercomputer”. ORNL’s Titan supercomputer, a successor Jaguar, launched in 2013 and
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consisted of 18,688 AMD Opteron CPUs, each with an attached Nvidia Tesla (K20x) GPU [35].

This machine also secured the top spot as the world’s fastest machine.

More recently, Nvidia GPUs and CUDA programming were employed in ORNL’s Summit

Supercomputer [1], another machine that briefly held the title as the world’s fastest. Summit

was launched in 2018 and contains 4,608 nodes each with 6 Nvidia Tesla V100 GPUs. Similarly,

Lawrence Livermore National Laboratory (LLNL) launched the Sierra Supercomputer [2] in 2018,

containing 4,320 nodes each with 4 Nvidia Tesla V100 GPUs.

Much of CUDA’s success in scientific programming can be attributed to Nvidia’s

continued investment in and focus on CUDA training. Online and in-person training workshops,

and a surplus of available training materials, made Nvidia and CUDA an attractive GPGPU

option compared to other vendors. This focus on training and CUDA’s success should provide a

model for future heterogeneous programming approaches. Some newer approaches like OpenACC

(also supported by Nvidia, and discussed in detail in Section 1.2.4) have also adopted this

strategy, frequently hosting learning-focused hackathons and generating significant training

materials [36].

In this dissertation, CUDA is employed as a backend programming model in Chapter IV.

1.2.2 OpenCL. CUDA’s dependence on Nvidia devices spawned efforts to create an

open-source alternative. OpenCL was developed as one alternative[37]. As we see in the remainder

of this dissertation, OpenCL has become a staple of accelerator-based heterogeneous programming

approaches, both as a stand-alone approach and as an intermediate representation or backend for

higher-level approaches.

OpenCL (Open Computing Language) was originally developed by Apple as a GPGPU

option under the OSX umbrella. In early 2008, Apple submitted a proposal to the Khronos

Group for creation and management of an OpenCL standard [37]. On November 18, 2008 the

OpenCL 1.0 technical specification was released. By the end of 2008, AMD, Nvidia, and IBM had

all incorporated OpenCL support into their vendor toolchains.

Like CUDA, the OpenCL programming approach separates an application into host code

and device code. The abstraction level for the OpenCL device code is very similar to CUDA, but

the host code abstractions are arguably more verbose. Like CUDA, GPU cores are abstracted

into a tiered parallelism. In OpenCL, work-items are executed as part of a work-group, and
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Table 2. Comparison of CUDA and OpenCL GPGPU abstractions

CUDA OpenCL

Grid NDRange
Thread Block Work group

Thread Work item
Thread ID Global ID
Block index Block ID

Thread index Local ID

work-groups are organized inside an ND range (Table 2). Listing 1.2 demonstrates and example

vector addition application in OpenCL. From the line count alone, we can see that OpenCL

requires a significant amount of low-level and boilerplate code, although this functionality is

typically encapsulated in routines and libraries by frequent OpenCL programmers. However, each

programmer creating a personalized set of routines to abstract OpenCL API calls creates issues

with code portability and interpretability.

Although OpenCL does provide an open-source alternative to CUDA that is supported

across several different device vendors (Nvidia, Intel, IBM, AMD), it has not become the de facto

standard for heterogeneous GPGPU computing. First, the widespread success of CUDA and

Nvidia’s dominance in the GPGPU market has allowed scientific programmers to safely choose

a non-portable option. Second, the abstraction level, especially the verbosity of the host code,

has led many GPGPU developers to seek higher-level abstractions, as we see in the following

section. However, as we discuss later, although OpenCL has not seen widespread adoption as

a programming approach, many frameworks and compilers target OpenCL as a backend API

(OneAPI [38], OpenARC [39], TVM [40], etc.)

The OpenCL programming model is a critical component of this dissertation, and is

featured as a backend programming target in Chapters II and IV.

1.2.3 HIP. Nvidia’s main competitor in the GPU market, traditionally in the

consumer market but more recently also in the high-performance and scientific community, is

AMD. Unlike Nvidia, AMD has not developed a proprietary programming approach and vendor

compiler for heterogeneous computing. Instead, to support its GPU architectures AMD has

developed the open-source ROCm (Radeon Open Compute) suite [41]. ROCm is a collection

of APIs, drivers, and development tools that support heterogeneous execution on both AMD

GPUs, but also other architectures like Nvidia GPUs. The actual programming model developed
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Listing 1.2 Example OpenCL C Application

1 #include <stdlib.h>
2 #include <CL/cl.h>
3
4 const char∗ programSource =
5 "__kernel                   \n"
6 "void vecadd(__global int *A, __global int *B, __global int *C) \n"
7 "{                                              \n"
8 "   int idx = get_global_id(0);                 \n"
9 "   C[idx] = A[idx] + B[idx];                   \n"

10 "}                                              \n"
11 ;
12
13 int main() {
14 int ∗A = NULL; int ∗B = NULL; int ∗C = NULL;
15
16 const int elements = 2048;
17 size t datasize = sizeof(int)∗elements;
18 A = (int∗)malloc(datasize); B = (int∗)malloc(datasize); C = (int∗)malloc(datasize);
19 B = (int∗)malloc(datasize);
20 C = (int∗)malloc(datasize);
21 for(int i = 0; i < elements; i++) {
22 A[i] = i; B[i] = i;
23 }
24
25 cl uint numPlatforms = 0;
26 cl int status = clGetPlatformIDs(0, NULL, &numPlatforms);
27 cl platform id ∗platforms =
28 (cl platform id∗)malloc(numPlatforms∗sizeof(cl platform id));
29 status = clGetPlatformIDs(numPlatforms, platforms, NULL);
30
31 cl uint numDevices = 0;
32 cl device id ∗devices = NULL;
33 status = clGetDeviceIDs(platforms[0], CL DEVICE TYPE ALL, 0, NULL, &numDevices);
34 devices = (cl device id∗)malloc(numDevices∗sizeof(cl device id));
35 status = clGetDeviceIDs(platforms[0], CL DEVICE TYPE ALL, numDevices, devices, NULL);
36
37 cl context context = clCreateContext(NULL, numDevices, devices, NULL, NULL, &status);
38 cl command queue cmdQueue = clCreateCommandQueue(context, devices[0], 0, &status);
39
40 cl mem bufferA = clCreateBuffer(context, CL MEM READ ONLY, datasize, NULL, &status);
41 cl mem bufferB = clCreateBuffer(context, CL MEM READ ONLY, datasize, NULL, &status);
42 cl mem bufferC = clCreateBuffer(context, CL MEM WRITE ONLY, datasize, NULL, &status);
43 status = clEnqueueWriteBuffer(cmdQueue, bufferA, CL FALSE, 0, datasize, A, 0, NULL, NULL);
44 status = clEnqueueWriteBuffer(cmdQueue, bufferB, CL FALSE, 0, datasize, B, 0, NULL, NULL);
45
46 cl program program = clCreateProgramWithSource(context, 1, (const char∗∗)&programSource, NULL, &status);
47 status = clBuildProgram(program, numDevices, devices, NULL, NULL, NULL);
48 cl kernel kernel = NULL;
49 status = clSetKernelArg(kernel, 0, sizeof(cl mem), &bufferA);
50 status |= clSetKernelArg(kernel, 1, sizeof(cl mem), &bufferB);
51 status |= clSetKernelArg(kernel, 2, sizeof(cl mem), &bufferC);
52
53 size t globalWorkSize[1];
54 globalWorkSize[0] = elements;
55 status = clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL, globalWorkSize, NULL, 0, NULL, NULL);
56 clEnqueueReadBuffer(cmdQueue, bufferC, CL TRUE, 0, datasize, C, 0, NULL, NULL);
57
58 clReleaseKernel(kernel);
59 clReleaseProgram(program);
60 clReleaseCommandQueue(cmdQueue);
61 clReleaseMemObject(bufferA);
62 clReleaseMemObject(bufferB);
63 clReleaseMemObject(bufferC);
64 clReleaseContext(context);
65
66 free(A); free(B); free(C); free(platforms);free(devices);
67 }

as part of ROCm is HIP, another low-level approach with a similar abstraction level to CUDA

and OpenCL. However, the ROCm toolkit and associated compilers also support OpenMP and
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OpenCL applications. The compilers, libraries, and debuggers for ROCm are available from

the open-source github [42]. Although the current generation of top supercomputers like Sierra

and Summit employ Nvidia GPUs, future systems like ORNL’s Frontier [3], expected to launch

in 2021, will employ AMD GPUs. This transition could herald a shift away from CUDA, and

increase the use of ROCm and HIP across all of scientific computing.

In this dissertation, HIP is employed as a backend programming model in Chapter IV.

1.2.4 OpenACC. OpenACC (originally short for Open Accelerators) is one of

this first high-level (as opposed to low-level approaches like HIP, OpenCL, and CUDA) GPGPU

programming approaches that still supports a significant user base today (as of 2021). OpenACC

was first released in 2012 as a collaboration between Cray, NVIDIA, and the Portland Group in

order to support the users of ORNL’s Titan, one of the first large heterogeneous supercomputers.

As previously mentioned, Titan was a Cray machine with Nvidia devices. The Portland Group

was involved because OpenACC was inspired by the high-level directive approach used in in the

PGI-Accelerator model, and the first OpenACC compiler provided by PGI was developed as an

extension to the PGI-Accelerator compiler [43, 44].

The dream of OpenACC was to create an open, directive-based standard for GPU-

computing as an analog and counterpart to the then de facto standard for parallel processing

on multi-core CPUs, OpenMP. In the same way that a small number of OpenMP pragmas can

be used to parallelize an existing application, OpenACC intended to provide a minimal set of

directives that application developers could apply to accelerate an existing CPU-based scientific

application on a GPU. This contrasted with the existing lower-level programming approaches like

CUDA and OpenCL, which required a significant amount of code restructuring and rewriting for

GPU acceleration.

The ideology of OpenACC is to allow users to expose and identify parallelism in an

application using descriptive directives, and to leave the more complicated task of mapping

parallelism to GPU devices in the hands of the OpenACC compiler. This deviates from the

OpenMP model, which traditionally employed a very moderated and prescriptive application of

directives.

This high burden of effort tasked to OpenACC compilers in some ways has prevented

OpenACC from reaching the popularity and monopoly status of its OpenMP analog. Although
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Listing 1.3 Example OpenACC C Application

1 int main() {
2
3 int SIZE = 1024;
4
5 float ∗a, ∗b;
6 a = malloc(sizeof(float) ∗ SIZE);
7 b = malloc(sizeof(float) ∗ SIZE);
8
9 for (int i = 0; i = < SIZE; ++i) {

10 a[i] = 0;
11 b[i] = // some initial value
12 }
13
14 // Data Directives
15 #pragma acc data copyin(b[0:SIZE]) copyout(a[0:SIZE])
16
17 // Compute Directive
18 #pragma acc parallel loop collapse(2)
19 for (int i = 1; i <= SIZE; i++)
20 for (int j = 1; j <= SIZE; j++)
21 a[i][j] = (b[i − 1][j] + b[i + 1][j] + b[i][j − 1] + b[i][j + 1]) / 4.0f;
22 }

OpenACC is intended for general-purpose GPU computing across different vendors, for most of

its history, the PGI OpenACC compiler has been the only available production-level option, and

was restricted to Nvidia devices. Now, nearly a decade later, other implementations have more

fully adopted the OpenACC standard and implemented more functional support. We discuss these

compilers in more detail in Section 1.3.

An OpenACC annotated application typically contains a combination of data and

compute directives centered around a computationally intense region of code or loop nest. In

Listing 1.3, we see a small C program annotated with two OpenACC directives, a data directive

(line 16) and a compute directive (line 19). Replicating this high-level programming approach in

a low-level approach like CUDA or OpenCL would require significantly more code, several source

files, and multiple compilations.

OpenACC is featured heavily in this dissertation’s research results, most often as the

primary source code language for evaluations in Chapters II, III, and IV.

1.2.5 OpenMP. OpenMP reigned as the de facto standard for directive-based

homogeneous multi-core CPU computing throughout the early 2000s, at least in the scientific

computing domain. As the demand for high-level programming approaches for GPGPU

computing increased in the early 2010s, there was a push for OpenMP to support accelerator-

based heterogeneous computing in addition to the homogeneous multi-core computing. Although
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the previously-mentioned OpenACC was developed to address this demand, motivation for

OpenMP prevailed for several reasons:

1. OpenACC and OpenACC compilers have been too-tightly bundled to Nvidia devices,

especially since PGI (the primary OpenACC compiler) was acquired by Nvidia in 2013.

2. Most high-performance-oriented scientific programmers were already familiar with basic

OpenMP directives and OpenMP programming styles.

3. Many scientific applications already employed OpenMP for homogeneous CPU-based

computing, lightening the burden of developing a new accelerator-based implementation.

As a result, in 2013, a year after the launch of OpenACC, the OpenMP standards

committee released OpenMP 4.0, which included new directives for offloading to GPU

accelerators. In 2018, the standards committee released OpenMP 5.0, which expanded support

for accelerators and included additional directives for tasking and auto-parallelism. Even before

the official inclusion of offloading directives in OpenMP, several research-oriented compilers had

been prototyping support for GPU offloading for OpenMP [45, 46].

Initially in their development, OpenACC and OpenMP differed in their programming

approach philosophy. As mentioned, OpenACC employed a more descriptive approach, where

users expose parallelism and compilers map that parallelism to devices. In OpenMP, the directives

supplied by users are taken more literally and prescriptively, in that the user directly controls how

the parallelism is mapped to a device. However, the two standards have recently become more

aligned due to the loop directive introduced in OpenMP 5.0, which mimics the behavior of the

descriptive OpenACC directives. The relationship between OpenMP and OpenACC has been

somewhat contentious at times. However, both standards are still currently being maintained as a

high-level programming approach for heterogeneous computing.

Although OpenACC has been limited due to its ties to Nvidia devices, the availability

of the production-level PGI OpenACC compiler throughout its history has certainly been an

advantage. In contrast, although OpenMP 4.0 originally was approved in 2013, compilers fully

supporting the standard have been slow in coming. Only very recently have mature compilers

successfully supported the entire standard, and many mainstream compilers are still under
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Listing 1.4 Example OpenMP C Application

1
2 int main() {
3
4 int SIZE = 1024;
5
6 float ∗a, ∗b;
7 a = malloc(sizeof(float) ∗ SIZE);
8 b = malloc(sizeof(float) ∗ SIZE);
9

10 for (int i = 0; i = < SIZE; ++i) {
11 a[i] = 0;
12 b[i] = // some initial value
13 }
14
15 // Data Directives
16 #pragma omp target data map(to:b[0:SIZE], from:a[0:SIZE])
17
18 // Compute Directive
19 #pragma omp teams parallel for collapse(2)
20 for (int i = 1; i <= SIZE; i++)
21 for (int j = 1; j <= SIZE; j++)
22 a[i][j] = (b[i − 1][j] + b[i + 1][j] + b[i][j − 1] + b[i][j + 1]) / 4.0f;
23 }

development for the OpenMP 4.0 standard and especially the OpenMP 5.0 updates. We discuss

this further in Section 1.3.

In Listing 1.4, we show the same application as the previous listing, now annotated with

OpenMP directives. Although this short example trivially highlights the use of OpenMP, the

example still demonstrates how OpenMP greatly simplifies heterogeneous computing compared to

CUDA and OpenCL.

1.2.6 Other Modern Programming Models. Although the previous sections

describe the programming models targeted in the research results of this dissertation, for the

sake of completeness we briefly describe several other contemporary heterogeneous programming

models.

1.2.6.1 Kokkos. In 2012, around the same time as the release of OpenACC and

OpenMP 4.0, H.C. Edwards and a team at Sandia National Laboratory developed the Kokkos

portability layer [47, 48, 49].

Kokkos is implemented as a performance portability layer. Unlike OpenACC and

OpenMP that rely on directives, Kokkos is implemented as a C++ template library on top of

OpenMP, CUDA, HPX [50] (discussed below), or Pthreads [51]. Essentially, the goal is to allow

programmers to implement the Kokkos abstraction layer once in their application, which can then

be executed across a diversity of hardware architectures. The C++ templating abstraction is an

21



attractive model for heterogeneous programming, as it allows the same API calls to have multiple

backend implementations.

Kokkos has been a popular option within the scientific community, and is supported

by several national labs, including Sandia and Argonne National Laboratories. Compared to

OpenMP and OpenACC, the Kokkos abstractions do require more in-depth knowledge of C++

including concepts like templates and functors, compared to the directive-based approaches.

However, the integration with C++ also provides a powerful programming abstraction compared

to the directive-based approaches that require kernels to use minimal C++ features.

1.2.6.2 Raja. Like Kokkos, Raja is a C++-based GPGPU programming approached

developed by a major US national laboratory, Lawrence Livermore National Lab (LLNL) [52,

53]. Raja was first released in 2014, shortly after Kokkos, OpenACC, and OpenMP 4.0. Raja is

essentially another collection of C++ abstractions intended to provide architecture portability for

HPC systems, specifically those with GPGPU architectures.

A 2015 Supercomputing poster compared Raja and Kokkos using the TeaLeaf

application [54]. While Kokkos relied on the C++ template metaprogramming approach, Raja

instead relies on the C++11 lambda features. They also found that porting an application to

Raja was relatively intuitive, on a similar level to an OpenMP port. Conversely, porting the

application to Kokkos required extensive architectural changes. Like Kokkos, Raja relies on

OpenMP and CUDA internally to target CPUs and GPUs, respectively.

1.2.6.3 SYCL, DPC++, and OneAPI. The SYCL standard is yet another

C++-based heterogeneous programming approach [55]. First released in 2014, SYCL originally

aimed to be a programmer-productivity oriented abstraction layer on top of OpenCL. However,

later implementations targeted other intermediate representations, like AMD HIP and CUDA.

We discuss this further in Section 1.3. Although SYCL is several years old, it has seen limited

uptake in the scientific community, until its recent involvement with DPC++ and Intel’s OneAPI

initiative.

DPC++ [56], launched in 2019, is a SYCL implementation developed and managed

by Intel, that integrates the SYCL and OpenCL standards with additional extensions. These

extensions are often championed for inclusion in the SYCL standard itself, analogous to how

several of the heterogeneous and parallelism features of SYCL are then pushed for inclusion into
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the C++ standard. Examples of features in SYCL that originated in DPC++ include unified

shared memory, group algorithms, and sub-groups.

Intel’s OneAPI Library [38, 57] attempts to encapsulate several of the technologies and

programming approaches discussed in the section under a single umbrella. OneAPI consists of

several APIs based on DPC++, SYCL, C++ Parallel STL, and Boost.Compute, including:

– oneAPI DPC++ Library

– oneAPI Math Kernel Library

– oneAPI Data Analytics Library

– oneAPI Threading Building Blocks

– oneAPI Video Processing Library

– Collective Communications Library

– oneAPI DNN Library

– Integrated Performance Primitives

1.2.6.4 Legion. The Legion Project [58, 59, 60] originates from Stanford University,

and was first published in 2012. Legion, a portmanteau of logical regions, is unique from many

of the other high-level approaches in this section in that it aims to support both distributed and

accelerator-based heterogeneous computing.

Like many of the other frameworks, a main goal of Legion is to abstract or decouple the

algorithm design from the mapping or execution on heterogeneous architectures. For Legion,

this concept extends to distributed heterogeneous machines. Legion specifically focuses on data

movement and management abstractions, primarily by introducing the abstraction of logical

regions. By partitioning data into logical regions and sub-regions, programmers can indicate

data locality and independence, which can be used by the underlying framework components

to facilitate communication and parallelism.

Legion remains relevant today, and regular software releases address bugs, performance

issues, features and extensions, and additional system support. Furthermore, the Legion project is

supported and funded by the DOE Exascale Computing project [61].
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1.2.6.5 HPX. HPX, short for High Performance ParalleX, is another distributed

computing focused framework, developed by Louisiana State University and first published in

2014 [50, 62, 63]. Like Legion, HPX aims to provide a unified programming approach, allowing

both single-node and distributed parallelism from a single API. HPX is strongly connected to

C++, and depends heavily on the Boost C++ libraries. Although HPX has traditionally focused

on CPU-based distributed and single-node parallelization, more recently, efforts have been made

to support heterogeneous computation with HPX, either through integration with OpenCL

(HPXCL [64]), development of a SYCL backend [65], or other approaches.

1.2.6.6 C++. While Raja and Kokkos are two of the most popular C++-based

high-level GPGPU programming approaches, especially in scientific computing, several other C++

libraries and extensions have been developed to support heterogeneous computation. AMP [66],

Boost.Compute [67, 68], Thrust [69], Bolt [70], and VexCL [71] are all either extensions to C++

or C++-based libraries that aim to enable heterogeneous computing.

All of the other programming approaches in this section refer to libraries and extensions

not incorporated in the C++ standard. However, newer versions of C++ have begun to

incorporate different types of CPU parallelism directly into the standard. For example, C++17

has increased SIMD support for parallel loops. Furthermore, there is a push with the C++

community to add support for heterogeneous computing in future releases. The major drawback

is the slow timeline for C++ releases and the significant burden of defending inclusions into the

already massive C++ standard.

1.2.6.7 Domain Specific Languages. Both the high-level and low-level general-

purpose GPU programming approaches allow developers to create heterogeneous applications for

a huge diversity of application domains. However, many domain and computational scientists

spend the entirety of their programming efforts within a very specific field or area. To combat the

issues with the general purpose approaches, such as the complexity of the low-level approaches

and inconsistency and performance issues with the high-level approaches, a multitude of domain-

specific GPU programming approaches have been developed. More specifically, libraries or

domain-specific languages (DSLs) targeting a single application space or area were developed

to meet the very specific needs of a smaller user-base.
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Linear Algebra: Linear and matrix algebra algorithms have consistently been some of

the most important but also most computationally demanding components of scientific computing.

It is no surprise then, that several heterogeneous libraries and frameworks have been developed

specifically for this domain. Several linear algebra libraries have been developed by Nvidia as

part of the CUDA Toolkit, including cuBLAS [72], cuSparse [73], and cuFFT [74]. Some open-

source counterparts have also been built, including clBLAS [75], MAGMA [76, 77], Eigen [78],

Odient [79, 80], and SPIRAL [81, 82]. Interestingly, Odient has been used as recently as 2020 to

model the spread of the Covid-19 virus [83, 84, 85].

Graph Processing: The Halide programming language was developed in 2013 as a

collaboration between MIT’s CSAIL laboratory and Adobe [86, 87, 88]. Halide is a DSL targeted

for image processing and graph algorithms. Like many of the other programming approaches

in this section, Halide is embedded in C++, with a dedicated Halide C++ API. More recently,

Halide has also developed python bindings. Halide supports a wide array of architectures,

including x86, ARM, PowerPC, and other CPU architectures and CUDA, OpenCL, OpenGL,

and DirectX enabled GPUs. Halide is used internally in Adobe Photoshop, and in projects related

to Google’s Tensorflow.

Machine Learning: The explosion of machine learning, undoubtedly the fastest-growing

field in computer science, has led to the development of several heterogeneous programming

approaches targeted specifically toward the machine learning domain. Nvidia has contributed

to the machine learning domain with the development of their cuDNN library [89]. Although the

cuDNN (CUDA Deep Neural Network) library can be programmed directly, similarly to cuBLAS,

more typically cuDNN is used as a backend to one of the widely used deep learning front end

frameworks, including MxNet [90], Tensorflow [7], Keras [91], Pytorch [92], Chainer [93], and

Caffe [94]. AMD has also developed an OpenCL-based analog to cuDNN, named MIOpen [95, 96].

Recently released in 2019, MIOpen is provided as part of the ROCm suite, and based on a

software stack including both OpenCL and HIP. Although MIOpen is currently not as popular

as cuDNN, and lacks integration into the major front-end frameworks and tools, it could become

popular in the near future with new AMD systems like ORNL’s Frontier supercomputer [3],

projected release in 2021 with four AMD GPUs on each node.
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Scientific Visualization: A very natural domain for heterogeneous programming

is scientific visualization. Visualization applications typically already heavily rely on GPU

architectures for image and video rendering and display, typically through low-level APIs like

OpenGL or OpenCV. Development of domain-specific heterogeneous programming approaches

for scientific computing is a natural extension. One approach involves in-situ visualization, where

the computation and visualization are tightly coupled, without requiring offloading to the host

device. VTK-m [97] is an example of a heterogeneous scientific visualization approach. Like many

other approaches, VTK-m relies on C++ template metaprogramming. The VTK-m programming

abstraction is based on “data-parallel primitives”, high-level algorithmic API calls that are then

executed on the accelerator device. Another example is the Alpine framework [98], which builds

on the VTK-m framework and ideas. Alpine is focused on supporting modern supercomputing

architectures, a flyweight infrastructure, and interoperability with software like R and VTK-m.

Alpine was designed to accelerate scientific visualization codes using Nvidia GPUs and Intel Xeon

Phis.

Climate and Weather: Due to the high number of computational resources required to

model climate and weather at scale, climate and weather simulations represent a large fraction of

most HPC system workloads. Unsurprisingly, DSLs have also been created to ease the creation of

climate-based HPC applications. One example, the CLAW project [99, 100] developed in 2018 at

ETH Zurich, is a FOTRAN-based DSL that aims to provide performance portability for column-

and point-wise weather and climate computations.

1.3 Heterogeneous Compiler Frameworks

Development of new heterogeneous programming approaches, APIs, libraries, and

frameworks is important for advancing the field of heterogeneous computing. However, even

the world’s best-designed programming approach is rendered useless without an effective

implementation, typically in the form of a compiler. Much of the success of different programming

approaches hinges on the availability and usability of compilers for said approaches. In this

section, we discuss different tiers of compilers, from vendor supported production-level to

academic, each of which plays a crucial role in the life cycle of heterogeneous programming

approaches.
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1.3.1 Vendor-supported Compilers. We first discuss vendor compilers. These

typically refer to a language implementation, in the form of a compiler, developed by a major

accelerator manufacturer, such as Nvidia, AMD, IBM, Intel, etc. We briefly highlight some major

advantages and disadvantages of the vendor compiler model for heterogeneous programming

approaches, and then discuss several vendor compilers in detail.

Advantages: Compilers developed and maintained by hardware accelerator vendors are

typically very consistent and reliable for a small set of supported devices. The documentation and

user guides are often detailed, thorough, and updated. These companies are financially motivated

for success with their devices, which results in many of the advantages listed. These compilers also

have somewhat of a guarantee of longevity, at least compared to the independent and open-source

projects.

Disadvantages: Vendor compilers, for obvious reasons, are limited to only compile

code for devices produced by the vendor. This leads to replication of efforts for each different

manufacturer. Furthermore, vendor compilers often introduce extensions to otherwise portable

programming approaches that optimize the performance for their specific devices. These

extensions break the original language intentions, and result in code that is no longer portable

across an array of different accelerators. The vendor compilers also typically have a slower release

cycle, are slower to incorporate updates to programming approaches, and are more conservative

for the implementation of new language features and the release of updated language versions.

1.3.1.1 NVCC. Arguably the most popular, and dominant, vendor compiler in all of

heterogeneous computing is nvcc, Nvidia’s core CUDA compiler [101]. Released in 2006 along with

Nvidia’s CUDA toolkit, nvcc is based on the LLVM compiler toolchain [102], which is discussed

later in this section. The nvcc compiler is implemented as a compiler driver; nvcc invokes the

needed tools to perform a given compilation. Typically in a C CUDA application, the host code is

compiled with gcc, and the device code is compiled using cudacc. In this case, nvcc would invoke

gcc and cudacc, generating a C-code host binary and PTX device code respectively. PTX, or

NVPTX, is a low-level instruction set architecture used by CUDA-enabled GPUs.

The nvcc compiler is used in every subsequent chapter in this dissertation: in Chapter II

to compare FPGA and GPU performance, in Chapter III as part of OpenARC’s OpenACC

compilation, and in IV as a backend programming model.
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1.3.1.2 PGI. The PGI OpenACC compilers, pgcc and pgft, have been the de facto

standard for OpenACC compilation since its inception in 2012 [44, 44]. The PGI (Portland Group

Inc.) company was founded in 1989, and originally developed parallel computing compilers for x86

architectures. PGI especially specialized in high-performance FORTRAN compilers. Because

of this specialization, in 2009 PGI was contracted by Nvidia for the development of the first

FORTRAN-based CUDA compiler.

PGI also worked with Nvidia to develop the PGI-Accelerator programming model, which

we briefly mentioned in Section 1.2.4. As mentioned, the PGI-Accelerator compiler was eventually

extended to develop the first OpenACC compiler. In 2013 PGI was acquired by Nvidia, redefining

it as a “vendor compiler”, at least for the purposes of this dissertation. Interestingly, in 2013 PGI

also developed an OpenCL compiler for ARM cores [103], but this was removed after the Nvidia

acquisition.

Since then, PGI has continued to develop compilers for Nvidia devices for OpenACC C

and OpenACC FORTRAN, and has been very involved in the promotion and development of

OpenACC itself. Although PGI compilers have existed independently from the CUDA toolkit in

the past, as of August 2020 pgcc and pgft have now been fully absorbed into Nvidia, and are now

re-branded as part of the Nvidia HPC SDK (NVHPC) [104, 105].

The PGI compiler and its predecessor, NVHPC, are featured in Chapters III and IV.

1.3.1.3 AMD. The other major GPU manufacturer after Nvidia, at least in the

context of scientific computing, is AMD. Unlike Nvidia, AMD has not developed a proprietary

programming approach and vendor compiler for heterogeneous computing. AMD has developed a

C/C++ optimizing vendor compiler, aocc, for its CPU Ryzen devices [106], but for their Radeon

GPU devices, AMD has opted for an open-source solution.

In order to support its GPU architectures, AMD has developed the open-source ROCm

(Radeon Open Compute) suite [41]. ROCm is a collection of APIs, drivers, and development

tools that support heterogeneous execution on both AMD GPUs, but also other architectures like

CUDA GPUs. ROCm supports the AMD HIP representation, but can also process OpenMP and

OpenCL applications. The compilers, libraries, and debuggers for ROCm are available from the

open-source GitHub [42].

AMD’s compilers are featured and discussed in more detail in Chapter IV.
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1.3.1.4 Intel. Intel has long been at the frontier of high-performance compilers for

their optimizing and parallelizing CPU compilers, enabling SIMD and multi-threaded parallelism

for their homogeneous Intel Xeon CPU devices. Intel’s first foray into heterogeneous compilation

came in 2010 with the introduction of the Intel Xeon Phi coprocessor chip [107]. These chips

followed a similar offload model and architecture as the contemporary GPU models.

Intel’s acquisition of the FPGA-manufacturer Altera has also resulted in the release of a

vendor-specific Intel-based OpenCL compiler for FPGAs [108]. However, this compiler framework

suffers from many of the vendor-specific extensions and optimizations mentioned in the above

“disadvantages” discussion, rendering the resulting OpenCL not portable to other devices. We

discuss this further in Chapter II.

Finally, with the release of the Xe GPGPU, Intel has also released an Intel-based GPU-

specific vendor compiler [57]. This compiler currently supports OpenMP, OpenCL, SYCL, and

DPC++ for GPU compilation, and is discussed in more detail in Chapter IV.

1.3.2 Open-source Compilers. The main alternative to heterogeneous proprietary

vendor compilers are production-level open-source heterogeneous compilers. These compilers

and compiler toolchains are typically maintained by steering committees, which can consist of

representatives from accelerator vendors, scientific institutions, and independent companies. We

discuss the advantages, disadvantages, and some examples of open-source heterogeneous compilers.

Advantages Unlike the vendor compilers, open-source compilers are often more

community driven. That is, the direction and implementation of the compiler is not completely

motivated and driven by device manufactures, although device manufactures are often involved.

Also, most of the open-source compiler frameworks support a variety of accelerators and

architectures. More generally, open-source compilers benefit from all of the same advantages of

open-source software as a whole, including transparency, flexibility, and independence. Specific

to heterogeneous programming approaches, open-source compilers can more quickly adapt new

standards and features and the rapidly evolving array of architectures. Also, because the same

compiler can be used across several architectures, the input programming approach used is

inherently more portable. Most open-source projects are managed through git or subversion,

and hosted on a popular git repository hosting site like GitHub.
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Disadvantages open-source compiler projects, especially the smaller ones, may not have

the financial security of the vendor compilers. They also may not have the secured longevity. For

example, if the main contributors to an open-source compiler projects change positions or careers,

continued maintenance on the project may terminate. Also, the open-source compilers may

not have access to low-level architecture details that the vendor compilers use to get increased

performance on their specific devices. However, the large open-source compiler projects, like

LLVM and GCC, typically have no issues with longevity and closely tail vendor compilers in terms

of performance.

1.3.2.1 LLVM, Clang, and MLIR. LLVM, originally an abbreviation for Low-

Level Virtual Machine, has become one of the most important compiler toolchains, not just in

heterogeneous compilation, but in all of computing [102, 109, 110]. As previously mentioned, the

LLVM backend intermediate representation and compilation tools form the backbone of many of

the other compilers, including the vendor compilers like nvcc.

First developed in 2000 by Chris Lattner at the University of Illinois at Urbana

Champaign, LLVM has grow significantly from its initial role as a virtual machine processor.

Originally designed for C/C++, LLVM now provides an internal representation and compile time,

runtime, and idle time optimization for a multitude other languages. In 2005, Apple began to

manage and maintain LLVM for use in their internal projects, but LLVM was later re-licensed

under Apache.

LLVM exists as a main project, LLVM-core, and a number of sub-projects, including three

specifically relevant to heterogeneous programming approaches, Clang, OpenMP, and MLIR.

First released in 2008, clang is LLVM’s own front end compiler for C and C++ [109, 111].

The clang compiler processes C and C++ code and generates LLVM IR, which is then optimized

and processed by LLVM. LLVM’s OpenMP sub-project implements OpenMP functionality

into the LLVM clang compiler. Through the clang and OpenMP sub-projects, LLVM supports

heterogeneous computing by compiling C and C++ applications with OpenMP offloading

directives.

Though not yet an official LLVM sub-project, OpenACC support is also being developed

for LLVM as part of the Clacc (Clang OpenACC) project [112]. Clacc builds on the LLVM

OpenMP infrastructure. Clacc accepts C-based OpenACC as input, internally translates to
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OpenMP, and then generates LLVM intermediate representation using the existing LLVM

OpenMP infrastructure.

MLIR (multi-level intermediate representation) is another LLVM project with significant

implications for heterogeneous programming [113, 114]. The MLIR project adopts a layered

compilation and optimization model, with different MLIR layers, or dialects, that have distinct

abstraction levels and areas of focused. These layers can be combined and lowered, from higher

abstraction dialects to lower abstraction dialects. Essentially, MLIR offers a reusable abstraction

toolbox. A main goal of MLIR is to prevent software fragmentation and improve support for

heterogeneous hardware, as the concept of dialects maps well to the ideas of different accelerators.

MLIR also aims to provide support for the development of domain-specific programming

approaches, which has a straightforward mapping to MLIR dialects and the progressive conversion

and lowering structure of MLIR. The previously discussed Tensorflow framework relies on MLIR,

and has been a major motivation for the development of the project [115]. Additionally, the

Flang project (a FORTRAN-based front-end for LLVM) and Flang’s OpenACC support rely

on MLIR [116].

LLVM and the clang compiler are featured heavily in this project’s research results.

In Chapter II, we indirectly rely on LLVM, as the Intel OpenCL SDK for FPGAs uses LLVM

internally. In Chapter III, we use clang directly to compile OpenMP applications for several

different GPU targets. Finally, in Chapter IV, clang is used to evaluate both OpenMP and

OpenCL backends across several exascale-intended platforms, and LLVM is used indirectly during

the evaluation of the Intel and AMD OpenMP compilers.

1.3.2.2 GNU C/C++. The GNU Compiler Collection, commonly referred to

as just GCC, is undoubtedly the longest-living and most widespread open-source compiler

framework [117] (although Perl is a close second on longevity). It is no surprise then that GCC

also plays a role in heterogeneous compilation.

GCC was first released in 1987 as the GNU C Compiler, but has since expanded to

incorporate other languages such as C++ and FORTRAN. More recently GCC has worked to

develop support for OpenACC [118] and OpenMP offloading models [119]. However, GCC’s

implementations are not as mature as PGI’s OpenACC implementation and LLVM’s OpenMP

implementation.
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1.3.3 Academic, Research, and Custom Compilers. The last category of

heterogeneous compilers we cover are academic project compilers. These projects are typically

source-to-source translation compilers, or pre-compilers, that build on or extend existing

production-level compiler projects. However, they play a crucial role in the development cycle

of heterogeneous programming approaches. We briefly discuss the advantages and disadvantages

of research-based compilers, and list a few notable examples.

Advantages Academic compilers are great for prototyping and experimentation of new

language features. A production level compiler, either vendor or open source, may take months

to push through new features and require several stages of approval. Conversely, an academic

compiler is usually owned by a small group of researchers, and new features can be implemented

and launched in a few days. Often, new language features are first evaluated in academic compiler

settings, and only later re-implemented, or trickled down, into more production-setting compilers.

Most academic compilers also host open-source code on major code repositories.

Disadvantages Academic compilers often struggle with adoption and longevity. Because

the projects are owned by a small number of people, small shifts in personnel can have disastrous

effects on maintenance of a framework. Also, the compiler frameworks are typically funded by

larger projects and grants, and therefore may be dependent on renewal of funding. Finally,

because these compilers may be targeting a specific problem area for the research group, they

often implement only a subset of the target programming language or approach.

1.3.3.1 ROSE. The ROSE compiler framework is an open-source, research-based,

source-to-source transformation compiler developed at LNLL [120, 121]. First published in 1999,

ROSE has not suffered from longevity issues, and is still cited frequently in 2020. In 2013, ROSE

was used in one of the first initial implementations and evaluations of the OpenMP offloading

model, OpenMP specification 4.0 [122].

1.3.3.2 OpenUH. The OpenUH project was managed by the HPCTools

group at the University of Houston [123, 124]. OpenUH was based on the Open64 compiler

framework [125], and was originally developed as an OpenMP and FORTRAN Coarray compiler.

OpenUH did begin support for OpenMP offloading directives for heterogeneous programming,

and experimental support for OpenACC on Nvidia and AMD GPUs, but as of 2020 the compiler

framework does not seem to be under active development.

32



1.3.3.3 Omni. The Omni compiler project is maintained and developed by

researches at the University of Tsukuba and the RIKEN Center for Computational Science,

both in Japan [126, 127]. First released in 1999, the Omni OpenMP compiler represented one

of the first research-oriented implementations of the OpenMP standard. Over time, Omni

has shifted to focus on cluster-based OpenMP computing. In 2010, an extension to the Omni

project, XacalabeMP [45] integrated a PGAS-model distributed memory approach to OpenMP

compilation. Also in 2010, the OMPCUDA project extended the Omni compiler to support

compilation of OpenMP code for CUDA GPUs. Later in 2013, initial OpenACC support was

added, shortly after the release of the OpenACC standard [128]. The next year, 2014, the

XaclableMP and OpenACC extensions were combined to create the XalableACC extension [129],

a PGAS-based heterogeneous distributed framework based on OpenACC.

The Omni compiler and its extensions are still under active development. In 2019 and

2020, extensions were made to include FPGA support [130, 131], although this support is still a

work in progress.

Although we do not use the Omni compiler in this dissertation, the extensions to support

FPGAs are very closely related to the work presented in Chapter II.

1.3.3.4 OmpSs. The OmpSs project, first published in 2011, aimed to support

CUDA- and OpenCL-enabled GPUs with OpenMP input[46, 132]. OmpSs is developed and

maintained by the Barcelona Supercomputing Center, BCS.

Because OmpSs pre-dated the OpenMP offloading directives, the developers created

custom extensions to OpenMP for handling data, based on the StarSs framework [133]. OmpSs

was evaluated and extended by a multitude of other works and projects [134, 135, 136], including

one comparing OmpSs, OpenMPC, OpenACC, and OpenMP. OmpSs has also been explored for

FPGA-based heterogeneous computing [137, 138, 139].

As is obvious from the numerous publications, OmpSs is still undergoing active

development and still being used as part of the toolchain for a number of other projects.

1.3.3.5 OpenARC. The OpenARC compiler framework, first published in

2014, is maintained and developed by Oak Ridge National Laboratory [39]. OpenARC is

an extension of the OpenMPC framework [140], and like OpenMPC, is built on the Cetus

compiler toolchain [141]. OpenARC was originally designed to be the first open-source option for
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OpenACC compilation, acting as an source-to-source translator that consumes OpenACC C input

and generates C and CUDA output. More recently, OpenARC has evolved to accept OpenMP

offloading directives as additional inputs, and can generate OpenCL and AMD HIP as output

sources, in addition to CUDA.

OpenARC also acts as the core framework for other heterogeneous programming projects.

The Compass framework [142] relies on OpenARC to generate ASPEN performance models [143]

of heterogeneous applications driven by user annotations and directives. The Iris runtime library,

also integrated into OpenARC, is a work in progress that aims to allow multiple accelerators, even

with different architectures, to collaborate together to execute a single application.

Figure 4 highlights the various components of the OpenARC compiler.
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Figure 4. Overview of OpenARC compiler framework

OpenARC is a core component of every subsequent chapter in this dissertation. In

Chapter II, we discuss how OpenARC was extended to support OpenACC-to-FPGA compilation

[144, 9, 10]. In Chapter III, we discuss the OpenARC extension CCAMP, developed to provide

an interoperable optimization environment for OpenMP and OpenACC compilation. Finally,
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in Chapter IV we discuss how OpenARC was used to perform an exploration and evaluation of

exascale-intended hardware and software platforms.

1.3.3.6 HPVM. HPVM (Heterogeneous Parallel Virtual Machine) [145, 146, 146]

is a research project first published in 2018 originating from the University of Illinois at

Urbana-Champaign. On the surface, HPVM is an extension to LLVM with direct support for

heterogeneous computation, simplifying the intermediate representation that many of the LLVM-

dependent heterogeneous programming approaches rely on.

The HPVM project aims to develop a uniform representation that can capture an array of

different heterogeneous architectures, including GPUs, multi-core CPUs, FPGAs, and more. The

main components of HPVM include: (1) a dataflow graph-based parallel program representation

to capture task and data parallelism, (2) a heterogeneous compiler intermediate representation

that supports optimizations commonly employed on GPU devices, like tiling and loop fusion, and

(3) a heterogeneous virtual ISA supporting GPUs, SIMD vectorization, and multicore CPUs.

HPVM is implemented on top of the LLVM project, and aims to provide a valuable new

asset, a heterogeneity-focused extension, to the LLVM community.

1.4 Heterogeneous Benchmark Suites

When evaluating heterogeneous programming approaches, typically performance is king.

However, measurements of performance are relative, and difficult to compare across different

projects, frameworks, or standards. The one control that makes performance comparisons possible

are standard benchmarks. In this section, we review several different benchmark suites designed

specifically for heterogeneous programming approaches.

1.4.1 Rodinia. First released in 2009, the Rodinia benchmark suite [147] is the

oldest among the benchmark sets discussed in this section. Rodinia first released with CUDA

and OpenMP versions of computational kernels from several different scientific domains. OpenCL

kernels were added next, and after the release of the OpenACC standard, OpenACC versions

of several of the kernels were included. The OpenMP kernels were updated to use some of the

offloading directives, although they only annotated using directives specific to the Intel Xeon Phi

devices, not general GPUs.

The Rodinia benchmarks form the basis of the evaluations in Chapter II.
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1.4.2 SPEC Accel. The SPEC Accel [148] benchmark suite was released in 2014.

SPEC (Standard Performance Evaluation Corporation) is a non-profit specifically focused on

developing and maintaining high-quality benchmarks. As a result, the SPEC Accel benchmarks

are very well organized and documented, and have a robust set of scripts for executing and

recording application information. However, the SPEC benchmarks are not open source, and

require either a paid commercial license or a free academic licence.

The SPEC Accel benchmark suite is prominently featured in this dissertation’s research

results, specifically in Chapters III and IV.

1.4.3 Other Heterogeneous Benchmark Suites. In 2010, ORNL released

the SHOC (Salable Heterogeneous Computing) benchmark suite [149]. The SHOC benchmarks

released with both CUDA and OpenCL versions of several kernels. Unlike Rodinia, SHOC was

designed to test applications at scale, not just on a single node.

The Parboil benchmarks [150] were developed by the University of Illinois at Urbana-

Champaign and released in 2012. Like the other benchmark suites, Pairboil contains both CUDA

and OpenCL code versions. One unique aspect with Parboil is that several different versions of

each application are provided with different levels of optimizations. These versions can be used to

measure the effectiveness of an automated optimizing compiler.

Also released in 2012, the OpenCL 13 Dwarfs benchmark suite [151] is a realization

of Berkely’s 13 computational dwarfs in OpenCL [152], where a dwarf is essentially a core

computational or communication method or action.

In 2013, EPCC, the Edinburgh Parallel Computing Center, a supercomputing center

associated with the University of Edinburgh, released a suite of OpenACC benchmarks [153, 154].

The suite contains low-level operations intended to test and measure the performance of hardware

and compilers. The suite also contains a set of software kernels intended to replicate operations

most commonly seen in scientific applications. Although the EPCC Benchmarks also contain

OpenMP implementations, these versions are based on non-offloading OpenMP standards, 3.0 and

earlier.

Interestingly, the oldest benchmark suite, Rodinia, seems to be the most popular, with

nearly an order of magnitude more citations than any of the other benchmark suites. This could

be just an artifact of being released first, or from the Rodinia kernels more closely resembling
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desired scientific applications. However, the Rodinia benchmarks themselves are infrequently

updated and fail to capture many of the new language features. This often requires each research

project using Rodinia to develop their own updates to the benchmarks. The other benchmark

suites face a similar challenge. Several newer benchmark suites have been presented, but all have

faced issues with adoption. Moving forward, development, adoption, and maintenance of high-

quality benchmark suites could significantly improve the productivity of developers.
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CHAPTER II

DIRECTIVE-BASED PROGRAMMING AND OPTIMIZATIONS FOR HIGH-PERFORMANCE

COMPUTING WITH FPGAS

This chapter contains previously published material with co-authorship. All of the

presented research in this chapter was conducted as a collaboration between the University

of Oregon and Oak Ridge National Laboratory. Sections 2.1- 2.5 describe work related to the

OpenACC-to-FPGA framework that was presented at ICS 2018 [9], AsHES 2020 [10], and in

PARCO 2021 [11]. The material from these publications was reorganized in this dissertation

for a more fluid presentation. For all three publications, Seyong Lee was instrumental in the

conceptualization of the projects and provided continued support, suggestions, and advice

throughout the projects with weekly meetings. Dr. Lee also assisted with revisions to the

documents, and sometimes portions of the writing, typically in the introductions and conclusions.

Allen Malony and Jeffrey Vetter both provided high-level guidance and advice during all three

projects. They both also assisted with revisions, and contributed information for the introduction

and conclusions sections. Jungwon Kim assisted with the related works section in the ICS

2018 [9] publication. I researched, designed, and implemented the optimizations for the ICS 2018

submission. I also collected all data, performed all experiments, and did the bulk of writing for all

three publications.

Section 2.5 describes an FPGA portability study presented at IWOCL 2021 [12]. I was

a secondary author on this publication. Anthony Cabrera led this project and organized several

meetings with all co-authors. Dr. Cabrera was also responsible for writing the first draft of most

of the publication, although Aaron Young was responsible for writing materials related to the

CFD benchmark. I was responsible for evaluating the SRAD and Hotspot benchmarks, and

writing the corresponding sections in the document. I also proofread the entire document, and

contributed to the related works sections. The material in Section 2.5 has been reduced from

the original IWOCL publication to primarily focus on the areas of the project where I directly

contributed and sections that I either wrote or heavily revised.

2.1 Background on FPGAs as Heterogeneous Accelerators

As discussed in Chapter I, accelerator-based heterogeneous computing, which typically

employs devices such as GPUs and many-core processors, has become a mainstream approach
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in high-performance computing (HPC) to solve performance, power efficiency, reliability, and

cost issues caused by increasing power densities in conventional von-Neumann architectures.

More recently, reconfigurable computing that uses FPGAs and coarse-grained reconfigurable

devices has received renewed interest due to the unique combination of performance and energy

efficiency through flexible hardware customizations. FPGAs’ reconfigurable nature allows these

architectures to be customized to match the needs of a given application and achieve much higher

energy efficiency and/or performance gains compared with conventional CPUs and GPUs. As a

result, FPGAs have been deployed in various application domains, such as finance [155], database

systems [156], machine learning [157], image processing [158], graph analysis algorithms [159], and

others. Moreover, recent trends in FPGA technologies—such as supporting hardened floating-

point data signal processing blocks and integrating CPUs, GPUs, and FPGAs as a new system-on-

chip devices—make FPGA-based high-performance reconfigurable computing more attractive for

serious exploration in scientific simulation and data analytics.

2.1.1 FPGA Hardware. FPGAs are composed of digital signal processing (DSP)

blocks, registers, adaptive look-up tables (ALUTs), and other specialized hardware components.

At runtime, the FPGA is configured to use a subset of these hardware components using

programmable interconnects. This runtime-configuration property provides several advantages

for FPGAs compared to other accelerators. First, specific resources can be allocated to meet the

needs of specific applications, leading to performance improvements. Additionally, because only

crucial components are configured, FPGAs can maintain a low-power state. However, configuring

the FPGA for specific applications has traditionally required programming in HDLs at the

register-transfer level (RTL).

Figure 5 shows an example layout. While this layout is actually an abstraction layer

pre-programmed to the device as part of the Intel OpenCL SDK for OpenCL (discussed in

Section 2.1.3.1 below), it does highlight the hardware features accessible when using an FPGA

in the context of this dissertation.

2.1.2 Traditional FPGA Programming Approaches. Despite a huge potential

to achieve high performance and flexibility with limited power consumption, FPGAs have not

been widely used in HPC [160]. The most significant obstacle to realizing their potential is the

lack of high-level programming models that hide implementation details. Programming FPGAs
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Figure 5. FPGA hardware components available through Intel OpenCL SDK for FPGAs

normally requires substantial knowledge about the underlying hardware design and use of low-

level hardware description languages (HDLs) such as VHDL and Verilog.

RTL FPGA programming in VHDL or Verilog is inaccessible to most application

programmers because it requires in-depth knowledge of the FPGA, such as cycle-by-cycle

descriptions of hardware, and hardware-clock timing considerations. It also requires scientific

application developers who may have limited expertise on hardware architectures to design

algorithms at the register transfer level (RTL) by describing them using state machines, data

paths, clock management, device-specific interfaces to external memory, buffering, and so on.

2.1.3 Contemporary FPGA Programming Models. In this section we provide

an overview to two high-level programming approaches for scientific computing with FPGAs:

OpenCL, and as a result of the framework described in this chapter, OpenACC.

2.1.3.1 OpenCL. To alleviate the programmability concern in FPGA computing,

several high-level synthesis (HLS) programming models have been proposed [161, 162, 163, 164,

165, 166]. OpenCL (Open Computing Language), introduced in Chapter I Section 1.2.2, is the

first standard programming model that is functionally portable across diverse heterogeneous

architectures and has been adopted by major FPGA vendors [37]. Two leading FPGA

manufacturers, Intel/Altera [108] and Xilinx [167], have provided an OpenCL-based SDK for
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their FPGA devices. The source-level portability of OpenCL in theory allows programmers to

write applications once and run them on any OpenCL-compliant hardware accelerators, such as

CPUs, GPUs, Xeon Phis, DSPs, and FPGAs.

Despite its potential to offer better programmability and portability than other HLS

approaches, programming and optimizing FPGAs with OpenCL is still considered to be very

complex and difficult due to the semantic gap between the OpenCL abstraction and the low-

level hardware design. For example, the current OpenCL abstraction does not provide a

straightforward method for programmers to express specific hardware features, such as shift

registers, hardware channels, and pipeline delays. Instead, the underlying OpenCL compiler

implicitly derives and synthesizes all hardware logic from an input program, and there are many

practical limits in compilation for finding optimal hardware designs. Consequently, existing FPGA

OpenCL compilers can be very sensitive to specific code patterns. One way to solve this problem

is to lower the programming abstraction level offered by OpenCL to expose the low-level hardware

design to the programmers. However, lowering the programming abstraction would sacrifice the

portability benefits of OpenCL and negatively affect its programmability. In summary, OpenCL is

too high-level for ideal performance, while at the same time being too low-level for ideal scientific

programming.

As an aside, compilation times using the Intel SDK are significantly longer than

traditional CPU or GPU compilation times, often taking several hours. This is generally true

of all HLS tools. However, the Intel SDK does provide a significant amount of information about

the application and how it will be mapped to hardware before attempting a full compilation. The

estimated resource usages and design layout, which are neatly presented in HTML format, were

very useful for guiding optimizations, even when working at the OpenACC level.

2.1.3.2 OpenACC. OpenACC [168, 169] addresses these challenges faced by

OpenCL FPGA SDKs. OpenACC (discussed in Chapter I, Section 1.2.4) is a directive-based,

portable, parallel programming model for a wide variety of hardware accelerators. The model

outsources device-specific implementation details to the compiler to reduce the required

programming effort and increase performance portability. The OpenACC API—which consists

of compiler directives, library routines, and environment variables—allows programmers to

augment applications with information, exposing available parallelism within an application. A
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core OpenACC facility is to offload the burden of mapping parallelism directly to devices from

the user to the underlying compiler. Because of its simplistic API, maintainability, usability, and

portability, OpenACC is often considered as an alternative to lower level accelerator programming

models.

An example of the OpenACC API in practice is shown in Chapter I, Section 1.2.4.

Typically, a compute directive such as #pragma acc parallel annotates a for loop or other kernel

region intended to be offloaded to a device. Additional clauses can be appended to this directive

to apply specific types of parallelism or optimizations. Other common OpenACC directives

include #pragma acc data for specifying data that should be transferred to and from a device.

To address the problems caused by the aforementioned semantic gap, a directive-based,

high-level programming and optimization framework for efficient FPGA computing is presented

in this chapter. This framework takes a standard, portable OpenACC program as input and

generates an output OpenCL code, which the underlying OpenCL compiler further compiles into

an FPGA hardware configuration file. The proposed framework solves the semantic-gap issue

using directive-based, high-level FPGA-specific optimizations in which programmers provide

important characteristics of the input program via a set of directives. The framework then

generates specific OpenCL code patterns in such a way that the underlying back-end OpenCL

compiler can infer known FPGA programming paradigms, including shift registers, hardware

pipelines, and sliding windows. The proposed OpenACC-to-FPGA translation framework offers

enough abstraction over low-level hardware designs and complex OpenCL programming syntax

and also provides high-level control over various FPGA-specific optimizations. As a result, the

programmer can specify FPGA optimizations with user-friendly, high-level OpenACC directives

and keywords and will leave the lower-level error-prone OpenCL FPGA-specific syntax generation

to the compiler. The implementation details of the OpenACC-to-FPGA framework are presented

in the following section (Chapter II, Section 2.2).

2.2 The OpenACC-to-FPGA Framework

OpenACC-to-FPGA is a directive-based, high-level FPGA-specific optimization

framework, which consists of directive extensions and corresponding compiler optimizations to

generate more efficient FPGA hardware configuration files from a high-level OpenACC input

code. The proposed directives are designed for programmers either to provide key information
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necessary for the compiler to automatically generate output OpenCL code that enables FPGA-

specific optimizations, or to control important tuning parameters of those optimizations.

We want to clarify how we use the term optimization. There is a distinction between

manually-written OpenCL optimizations (like the shift-register reduction pattern and the sliding

window pattern) and compiler optimizations implemented in OpenARC (like the reduction

transformation and window transformation). In the Intel FPGA SDK for OpenCL [108],

programmers can use FPGA-specific features like shift registers and sliding windows by

programming in OpenCL using very specific patterns. These programming patterns are non-

intuitive for most OpenCL programmers and can be error-prone. Currently, the OpenCL compiler

does not offer a directive- or compiler-based approach to generate these programming patterns. A

primary goal of the research presented in this chapter is to create transformations in OpenARC

that automatically generate these non-intuitive programming patterns from OpenACC directives.

Doing so greatly simplifies the implementation of FPGA-specific features, and allows programmers

without knowledge of shift registers and sliding windows to create more efficient FPGA designs.

The following optimizations were inspired by the Intel OpenCL SDK documentation [108].

We primarily chose to implement in OpenARC optimizations that potentially apply to a wide

range of applications; for example, loop collapsing, scalar reduction, and branch-variant code

motion optimizations are generally beneficial when they are applicable, whereas the sliding

window optimization can benefit applications with stencil patterns.

This section provides a high-level overview and categorical classification of the different

optimizations developed by Lee et al. [144] and by Lambert et. al [9]. The optimizations are

divided into three primary categories: (1) automatically applied optimizations requiring no user

intervention, (2) re-purposed directives in which existing OpenACC directives are re-implemented

in an FPGA-specific way, and (3) directive extensions in which FPGA-specific directives are

developed outside the established OpenACC standard.

We do note that all of the FPGA-specific optimizations are applied in the context of

compute directives, and that the OpenACC data directives for a standard OpenACC applications

are typically sufficient for an FPGA execution. The one exception is the pipe clause used as part

of the channels optimization described below, which could be considered a data directive and

would replace the analogous OpenACC copyin and copyout clauses.
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Before discussing the OpenACC-to-FPGA framework’s optimizations, we first briefly

discuss the implementation of the framework itself.

2.2.1 Implementation in OpenARC. The OpenACC-to-FPGA translation

framework discussed in this work is built inside the OpenARC compiler framework [39]. As

discussed in Chapter I, Section 1.3.3.5, OpenARC is a research-oriented OpenACC compiler

that specializes in rapidly prototyping new optimizations, API features, and device-support for

emerging technologies. This makes OpenARC an ideal platform for the initial implementation of

OpenACC-to-FPGA translation, which was first introduced by Lee et al. [144].

OpenARC takes an input C program that is annotated with OpenACC directives,

performs several optimization and translation passes, and generates an optimized output host and

kernel code in CUDA or OpenCL. The CUDA or OpenCL output is then further compiled using

a low-level device compiler, such as NVCC or Intel’s OpenCL compiler. In the context of the

OpenACC-to-FPGA framework covered in this chapter, OpenARC is used to generate OpenCL

specific to Intel FPGAs and to apply FPGA-specific optimizations.

The original baseline translation for the OpenACC-to-FPGA framework is not part of this

dissertation’s research, as it was developed independently by the primary OpenARC developer

Seyong Lee, in the work by Lee et al. [144]. Furthermore, some of the optimizations presented

in the following sections were also developed independently from this dissertation’s research, and

they are cited appropriately (again Lee et al. [144]) in the corresponding sections. However, the

bulk of optimizations present in the OpenACC-to-FPGA framework were developed as part of this

dissertation, and are cited respectively as Lambert et al. [9].

2.2.2 Automatic Optimizations. The first class of optimizations in the

OpenACC-to-FPGA framework represents optimizations for which no user intervention is

required. These optimizations can be safely applied any time the compiler encounters specific

constructs and are applied independently from any user-supplied directives.

2.2.2.1 Dynamic Memory Transfer Alignment. In a typical FPGA-based

heterogeneous system, an FPGA is attached to the host CPU via PCIe bus as a discrete device

with a separate memory. Therefore, for a device kernel to access the host data and vice versa,

data should be explicitly transferred between the host and device memory. Existing FPGA

OpenCL runtimes, such as Intel OpenCL runtime, use direct memory access (DMA) for higher
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throughput and lower latency. To exploit DMA, the host-side buffer and device-side buffer should

be aligned. Although device buffers are automatically allocated in an aligned way, host buffers

should be allocated with special memory allocators (e.g., posix memalign() in Linux). Even if

both host and device buffers are allocated in an aligned way, the transfer of partial arrays might

not exploit DMA if at least one of the start addresses is not aligned. The OpenACC-to-FPGA

framework runtime dynamically analyzes memory alignment and employs temporary buffers to

satisfy alignments without user interference, as described in Lee et al. [144].

The dynamic memory transfer alignment optimization was designed and implemented by

Lee et al. [144]. However, the optimization is used in this dissertation’s research to evaluate the

OpenACC-to-FPGA framework on different FPGA architectures, specifically in Lambert et al. [9]

and Lambert et al. [11].

2.2.2.2 Boundary Check Elimination. When an OpenACC compute region

is translated into a device kernel, each iteration in a work-sharing loop will be mapped to a

device thread (work-item in OpenCL) according to the OpenACC execution model. If the total

number of device threads is not the same as the number of corresponding loop iterations, then

the device kernel should be executed so that only device threads with valid mapping execute

the loop body, which is usually implemented using control statements. Generally, control flow

divergence by control statements is less of an issue in FPGA computing than in GPU computing

because the reconfigurability in FPGA can completely eliminate the diverging control paths of

thread executions by using hardware predicates if the conditional structure is simple enough.

However, if the device kernel has complex control structures such as thread-dependent backward

branching, then the underlying OpenCL compiler cannot flatten the control structures, which can

significant degrade performance by disallowing various advanced compiler optimizations, such as

kernel vectorization. To alleviate the burden for the underlying OpenCL compiler to flatten the

control structure, a compiler pass was developed that uses built-in symbolic analysis tools to check

and eliminate unnecessary loop-boundary check code at compile time.

The boundary check elimination optimization was designed and implemented by Lee

et al. [144]. However, the optimization is used in this dissertation’s research to evaluate the

OpenACC-to-FPGA framework on different FPGA architectures, specifically in Lambert et al. [9]

and Lambert et al. [11].
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2.2.2.3 Branch-Variant Code Motion Optimization. Among devices used

as hardware accelerators, the concept of directly managing hardware logic generation at the

programming level is unique to FPGAs. Because programming logic is mapped directly to FPGA

hardware, programming patterns and coding styles that may only affect source code length on

devices like GPUs or CPUs can make concrete differences in FPGA resource usage.

Loop-invariant code motion is a common computation-reduction optimization applied

across all hardware devices. In the same fashion, we can apply branch-invariant code motion.

This optimization normally would not lead to a performance benefit for more traditional devices

like CPUs and GPUs because the number of operations executed remains unchanged. However,

when compiling for FPGAs, logic from both branches is required to be implemented in hardware,

leading to increased resource usage from the redundant code. Therefore, factoring out branch-

invariant code can reduce the overall resources required to implement the hardware logic, and thus

the Intel OpenCL compiler supports the branch-invariant code motion optimization.

To reduce the resource usage further, we propose a branch-variant code motion

optimization, which transforms branch-variant codes and factors out codes with the same

computation patterns. Listing 2.1, Listing 2.2, and Listing 2.3 illustrate how the proposed

optimization works: Listing 2.1 shows an input code that contains branch-variant codes, so

the traditional branch-invariant code motion optimization cannot be applied. However, if we

transform the code into a form in Listing 2.2, codes with common computation patterns can

be hoisted out of the conditional, as shown in Listing 2.3. The key part of this optimization

is identifiying a common computation pattern, which is an expression that exists in all branch

bodies and performs the same sequence of computations with branch-variant operands. For

example, in assignment expressions, a common computation pattern could be statements whose

lvalues (i.e., an object that appears on the left side of the expression) is branch-invariant, whereas

the right side of the expression is branch-variant. To identify these patterns, the compiler can

transform the input conditional code into a form where non-constant operands in expressions

within branch bodies, except for the left sides of the assignment expressions, which are replaced

with temporary variables, even though variable assignments should be done in a specific order

(Listing 2.2). Then, common computation patterns existing in all branch bodies are factored

out of the conditional (Listing 2.3). If the left-hand side of an assignment statement is used as
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an input to a subsequent statement within the branch bodies, the assignment statement and

subsequent statement can be factored out only if both statements are common computation

patterns. Otherwise, the conditional should split into multiple conditionals. If the conditional

itself is dependant on the common statement, the code motion optimization does not apply.

We can see that the number of addition and multiplication operations that require hardware

implementation is halved in Listing 2.3, compared to Listing 2.1, resulting in lower FPGA

resource usage.

Listing 2.1 Code Motion:

Input conditional

if (condition) {

output += A[i] ∗ B[i];

} else {

output += A[i−1] ∗ B[i−1];

}

Listing 2.2 Code Motion:

Modified conditional

if (condition) {

t1 = A[i]; t2 = B[i];

output += t1 ∗ t2;

} else {

t1 = A[i−1]; t2 = B[i−1];

output += t1 ∗ t2;

}

Listing 2.3 Code Motion:

After code motion

if (condition) {

t1 = A[i]; t2 = B[i];

} else {

t1 = A[i−1]; t2 = B[i−1];

}

output += t1 ∗ t2;

FPGA resource usage can indirectly impact runtime performance in several ways. High

resource usage can cause the hardware design to suffer from routing congestion, negatively

affecting performance. Also, applications with higher base resource usage benefit less from loop

unrolling techniques because they quickly exhaust FPGA resources even with small unroll factors.

Section 2.4.5 presents an example of this behavior.

The Intel OpenCL SDK compiler automatically performs simple branch-invariant code

optimizations like the one in the listing above. However, in more complicated code like the

HotSpot application, the optimization is not automatically applied by the OpenCL compiler.

In these more complicated examples, OpenARC’s high-level IR allows us to perform these kinds

of optimizations automatically. OpenARC can apply branch-invariant whenever the compiler can

guarantee invariance, as long as the motion takes place within an enclosing compute region.

The branch-variant code motion optimization was designed as part of this dissertation’s

research, referenced in Lambert et al. [9]. However, this optimization was never fully implemented

in OpenARC. Although this optimization led to significant performance improvements for

HotSpot (as we see later in this chapter), other evaluated applications did not benefit directly

from this optimization, making it a low priority for actual implementation.
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2.2.3 Re-purposed Directives. The second class of optimizations in the

OpenACC-to-FPGA framework represents optimizations that users can optionally apply using

existing OpenACC directives and clauses. Many clauses are typically implemented by compilers in

a specific way to optimize GPU performance. In the OpenACC-to-FPGA framework, these clauses

were re-implemented to optimize FPGA performance without changing their syntax or context

from a programming perspective.

2.2.3.1 Single Work-Item Optimization. A common approach in general CPU-

and GPU-based computing is to develop massively parallel applications that can be partitioned

across multiple computation units. Although this approach can be effective when targeting

FPGAs, FPGAs alternatively offer a single-threaded approach, which is generally preferred for

efficient FPGA computing. Because FPGAs can leverage deeply pipelined execution, single-

threaded pipeline-parallel implementations can outperform their multi-threaded counterparts in

many situations. This contrasts with GPU execution, which explicitly relies on multi-threaded

execution. Because OpenACC was primarily developed with a focus on GPU execution, the

default execution model assumes multi-threaded parallelism using multiple gangs, workers, and/or

vectors, which can be configured using OpenACC directive clauses.

In OpenCL terminology, the massively parallel or multiple work-item approach is known

as an NDRange kernel, and the single-threaded approach is referred to as a single work-item

kernel [108]. Although OpenACC currently supports directives for sequential execution, it does

not currently have a specific directive for single work-item execution. However, by using existing

OpenACC directives created for controlling the number of threads, we can allow a user to indicate

that a region should execute in a single work-item fashion without introducing an additional

directive.

We can see two examples of these directives in Listing 2.4, one using the parallel

annotation (lines 1-2), and another with the kernels annotation (5-6). We have modified

OpenARC to ensure that the presence of these directives leads to single work-item executions.

To execute an OpenACC compute region in a single work-item fashion, the numbers of gangs,

workers, and vectors should be explicitly set to 1, respectively. The latest OpenACC standard

(V2.6) [169] introduces a new serial construct, which indicates a code region should be executed

in a single-threaded manner. Although the pipeline-parallel execution of FPGA single work-item
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kernels is not strictly single-threaded, we have extended the OpenACC-to-FPGA framework to

also accept the serial clause (lines 3-4, 7-8 in Listing 2.4) to indicate a single work-item kernel. By

setting the num gangs, num workers, and vector length clauses of an OpenACC parallel directive

to 1, or by using the OpenACC serial directive, OpenARC can generate the appropriate OpenCL

code for the underlying back-end compiler to correctly infer a pipeline parallel execution.

Some applications, like embarrassingly parallel algorithms, are well-suited to NDRange

execution. For other algorithms with data dependency or data reuse across work-items, the simple

single work-item optimization alone may increase performance when executing on an FPGA.

In addition to the stand-alone benefits, this optimization is notable because it is a prerequisite

for the following optimizations (also discussed in this section): the collapse optimization

(Section 2.2.3.2), reduction optimization (Section 2.2.3.3), and sliding window optimization

(Section 2.2.4.4).

The single work-item optimization was designed and implemented as part of this

dissertation’s research, first referenced in Lambert et al. [9] and later updated in Lambert et

al. [11].

Listing 2.4 OpenACC Single work-item directives

1 #pragma acc parallel num gangs(1) num workers(1) vector length(1)
2 { ... }
3 #pragma acc parallel serial
4 { ... }
5 #pragma acc kernels loop gang(1) worker(1) vector(1)
6 { ... }
7 #pragma acc kernels loop serial
8 { ... }

2.2.3.2 Collapse Optimization. In a massively parallel computing approach, a

loop collapse optimization is commonly used either to increase the amount of computations to

be parallelized or to change the mapping of iterations to processing units. Loop collapsing is a

common optimization used across several directive-based languages, including OpenMP [170] and

OpenACC. In this optimization a compiler combines two tightly nested loops into a single loop,

which typically requires the original iteration variables to be recalculated at each iteration. In

a multi-threaded context, this recalculation can be done using division and modulus operations,

deriving the old iteration index values from the collapsed iteration index value.

Loop collapsing is already a part of the OpenACC standard, and OpenARC supports

the collapse clause. In Listing 2.5, we see a pair of perfectly nested loops with a collapse clause
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Listing 2.5 OpenACC nested loops with collapse clause

1 #pragma acc parallel loop num gangs(1) num workers(1) vector length(1) collapse(2)
2 for (i = 0; i < M; i++)
3 for (j = 0; j < N; j++) { ... }

Listing 2.6 OpenACC loop after collapse transformation

1 // Traditional transformation
2 #pragma acc parallel loop num gangs(1) num workers(1) vector length(1)
3 for (iter = 0; iter < M∗N; iter++)
4 { i = iter / N; j = iter % N;
5 ...
6 }
7
8 // FPGA−specific transformation
9 i = 0; j = 0;

10 #pragma acc parallel loop num gangs(1) num workers(1) vector length(1) firstprivate(i,j)
11 for (iter = 0; iter < M∗N; iter++)
12 { ...
13 j++; if (j == N) { j = 0; i++; }
14 }

and single work-item directives. In the standard OpenARC implementation (V0.11), collapsing of

perfectly nested loops is achieved by creating a new loop expression with a newly defined iteration

variable. OpenARC recalculates the values of the original iteration variables at each iteration

using division and modulus operators.

In an FPGA context, these division and modulus operations are relatively expensive in

terms of execution time and resource usage. However, in a single work-item context, recalculating

at each iteration is unnecessary. If the given kernel is executed in the single work-item context,

the OpenACC-to-FPGA framework extensions to OpenARC generate a row and column counter

approach when encountering collapse clauses instead of using the costly division and modulus

approach. These row and column counters are implemented as integers, one representing each

loop that was collapsed, and incremented each iteration using relatively inexpensive integer

additions. We can see the resulting OpenACC code after applying the OpenACC-to-FPGA

collapse optimization in Listing 2.6.

The FPGA-specific collapse optimization can be automatically applied any time loop

collapsing occurs within a single work-item execution context. Because the row and column

counters create dependencies within the loop, in multi-threaded contexts we revert to the

traditional collapse transformation. We support application of the collapse optimization

in conjunction with our reduction (Section 2.2.3.3) and sliding window (Section 2.2.4.4)

optimizations. Integrating these optimizations allows application of the reduction (Section 2.2.3.3)
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and sliding window (Section 2.2.4.4) optimizations to a wider variety of benchmarks containing

nested loops, without the performance penalty from OpenARC’s traditional collapse

transformation.

The collapse optimization was designed and implemented as part of this dissertation’s

research, referenced in Lambert et al. [9].

2.2.3.3 Reduction Optimization. Scalar reductions are common patterns used

in many algorithms, such as Rodinia’s SRAD [147], to compute averages, find maximum values,

and so on. Because of their popularity in applications, scalar reductions represent an operation

commonly optimized by compilers. For implementations that target multi-threaded CPUs or

GPUs, this optimization is typically a tree-based approach. The leaves represent the array

of values, and the roots represent the combination of those values by some scalar operation.

This tree-based implementation can also be used in an FPGA context and may outperform a

straightforward serialized approach.

However, because a pipeline-parallel approach is often more efficient than a massively

parallel approach when executing on an FPGA, an alternate FPGA-specific strategy to the scalar

reduction is required. In this approach, partial sums are accumulated in a shift register, and then

a final value is computed by doing a traditional reduction over the partial sums. We next describe

the code transformations to realize shift-register-based reductions in the OpenACC-to-FPGA

framework.

Our reduction optimization compiler technique allows users to utilize single work-item

kernels and shift registers in OpenACC using only previously existing directives. When using

OpenACC to target an FPGA device, the user must first indicate a single work-item execution

(Section 2.2.3.1). Within a single work-item compute region, the user can then annotate any

loop with the OpenACC reduction directive and a supported reduction operation. Finally, to

increase the performance the user can also append an optional unroll annotation, at the cost of

additional FPGA resources. Under these circumstances, we can safely and efficiently apply our

reduction optimization to implement the FPGA-specific shift-register based reduction. We can

see an application of the OpenACC FPGA-specific sum reduction in Listing 2.7, with N referring

to the desired level of replication. OpenARC currently supports addition, multiplication, and

maximum and minimum value operations for FPGA-specific reductions.
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Listing 2.7 OpenACC sum reduction

1 #pragma acc parallel loop num gangs(1) num workers(1) vector length(1) reduction(+:sum)
2 #pragma unroll N
3 for (int i = 0; i < SIZE; ++i)
4 { sum += input[i]; }

For FPGA execution, scalar reductions are an example of programming patterns where

the single work-item optimization (Section 2.2.3.1) alone does not increase performance relative

to the traditional NDRange implementation. Because most floating point operations on an FPGA

require multiple clock cycles, traditionally programmed scalar reductions perform poorly in the

pipeline parallel model or single work-item approach (Section 2.2.3.1). This results from the

pipeline stalling each iteration until the dependency on the reduction variable is resolved.

These pipeline stalls during loop execution are formalized in the Intel FPGA SDK

documentation by the term initiation interval, or II [108]. The initiation interval specifically

refers to the number of FPGA clock cycles that a pipeline is stalled to launch each successive

iteration of a loop execution. A loop with several loop-carried dependencies, like scalar reduction,

may have a high II, while a loop without dependencies may have a lower II. When executing in

a loop-pipeplined single work-item approach, an II of 1 leads to optimal performance, indicating

that successive iterations are launched every clock cycle.

The stand-alone single work-item approach does not outperform the multi-threaded tree-

based method for scalar reductions on an FPGA. However, a sufficiently sized shift register in

addition to this approach can significantly improve performance. In the shift-register approach

to scalar reductions, we use the shift register to accumulate partial results as we iterate over the

input array. This is followed by a standard reduction over the much smaller shift-register array.

This approach increases the reduction variable dependence distance, relaxing the loop-carried

dependency on the reduction variable. As a result, the reduction loop attains the desired II of 1.

The exact shift-register size or depth required depends on the data type, reduction operation, and

unrolling or replication factor.

Fortunately, the underlying Intel OpenCL compiler provides information about

loop initiation intervals at compile time that can be used to determine an appropriate shift-

register depth. With this information, we performed a number of tests with different reduction

configurations, and made some general observations about the relationships between the data

type, reduction operation, unrolling factor, and their effects on the shift register depth required
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to attain the desired II of 1. For example, on the Stratix V FPGA, we observe that without

shift registers or loop unrolling, scalar reduction using single precision floating point addition

leads to an II of 8 cycles, while using double-precision floating point multiplication leads to an

II of 16 cycles. We also observe that loop unrolling acts as a multiplier to the initiation interval.

For example, an unroll factor of 4 in the previous example leads to an II of 32 and 64 cycles,

respectively. From these observations, we expect the following to be valid:

register depth ≈ (operator latency) ∗ (unroll factor) (2.1)

In the equation above, register depth refers to the expected size of the shift registers

required to attain an II of 1, and operator latency refers to the device-specific cost of the data

type and operation used. This equation along with pre-calculated operator costs are used in

the reduction optimization to calculate efficient shift register depths. However, after compiling

reduction codes with different configurations, we find that the following unexpected equation holds

true:

register depth ≈ (operator latency) ∗ (unroll factor)

2
(2.2)

That is, by halving the expected minimum register depth required for an II of 1, we still

attain an II of 1.

Because of the significant performance advantages of launching successive iterations every

cycle and attaining an II of 1, under certain situations the underlying compiler can force an II

of 1 by intentionally throttling or reducing the maximum FPGA circuit frequency for the entire

offloaded kernel [108]. That is, to reduce the number of cycles stalled each iteration, the compiler

can increase the amount of time per cycle. Although the ability to successfully launch iterations

every cycle may benefit a specific loop, reducing the maximum circuit frequency can negatively

affect performance in other regions of the offloaded kernel. Therefore, by default in the Reduction

Optimization, we use the original equation without halving (Equation 2.1) to calculate the register

depth. We currently hard-code operator latencies specific to the Stratix V, but these can easily

be reconfigured for other devices. In Listing 2.8, we see the OpenCL code generated by applying

the reduction optimization to the OpenACC scalar reduction code from Listing 2.7, targeting a

Stratix V FPGA. We see the OpenARC-calculated shift register depth is appropriately set to 8∗N

for floating point addition and an unroll factor of N (line 1). We next declare and initialize the
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Listing 2.8 OpenCL generated from OpenARC’s FPGA-specific reduction transformation

1 #define REGISTER DEPTH (8 ∗ N) // OpenARC calculated shift−register depth
2
3 float shift reg[REGISTER DEPTH + 1] = {0}; //Create and initialize shift registers.
4
5 #pragma unroll N
6 for (int i = 0; i < SIZE; ++i) {
7 shift reg[REGISTER DEPTH] = shift reg[0] + input[i]; //Perform partial reduction.
8
9 for (int j = 0; j < REGISTER DEPTH; ++j)

10 { shift reg[j] = shift reg[j + 1]; } //Shift values in shift registers.
11 }
12
13 #pragma unroll
14 for (int i = 0; i < REGISTER DEPTH; ++i)
15 { sum += shift reg[i]; } //Perform final reduction on shift registers.

shift registers, used for storing the accumulated partial sums (line 3). In the main loop, we now

add each successive value to the oldest partial sum present in the shift registers (line 7), followed

by a shift of the entire shift register array (lines 9–10). In this execution pattern, an assigned

partial result is not accessed until it has been shifted through the entire register array, which

relaxes the loop-carried dependency. After accumulating partial results over the entire array, we

perform a final sequential reduction over the partial results in the shift registers (lines 13–15).

The OpenCL programming patterns generated by OpenARC (Listing 2.8) direct the

underlying Intel OpenCL compiler to implement scalar reduction using single work-item execution

and shift registers. With the FPGA-specific reduction optimization compiler transformation, we

allow users to use existing OpenACC directives to generate these non-intuitive code patterns

without specialized knowledge of shift registers, initiation intervals, and operator latencies.

The reduction optimization was developed an implemented as part of this dissertation’s

research and originally published by Lambert et al. [9].

2.2.4 Directive Extensions. While many FPGA-specific optimizations in

the OpenACC-to-FPGA framework can be either automatically applied or applied through

an alternative implementation of existing OpenACC directives, for some FPGA-specific

optimizations, automatic application by the compiler is difficult. Also, there might not be a

straightforward mapping to existing directives that programmers could use to optionally apply

the optimizations since these optimizations might not be relevant in GPU or multi-threaded CPU

contexts.
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In these cases, novel directive extensions are developed that can be recognized by the

OpenARC compiler framework. The goal of these extensions is to allow programmers with limited

FPGA knowledge to leverage FPGA-specific optimizations that could largely affect performance.

2.2.4.1 Kernel Vectorization Directive. In the Intel FPGA OpenCL

programming, kernel vectorization allows multiple work items (device threads) in an OpenCL

work group to execute in a single instruction multiple data (SIMD) fashion, which is implemented

by replicating the kernel data paths while sharing control logic across each SIMD vector

lane. Kernel vectorization is usually beneficial, but its additional resource requirement could

contend with other optimizations. Although the OpenACC vector clause has similar effects, the

vectorization behavior in the OpenACC execution model is not the same as that of the Intel

OpenCL kernel vectorization. In OpenACC, vector lanes execute only in a SIMD manner if a

kernel is in vector-partitioned mode and might not execute in a lockstep manner. In contrast,

OpenCL kernel vectorization exercises a strict lockstep vectorization.

The kernel vectorization optimization was designed and implemented by Lee et al. [144].

However, the optimization is used in this dissertation’s research to evaluate the OpenACC-to-

FPGA framework on different FPGA architectures, specifically in Lambert et al. [9] and Lambert

et al. [11].

2.2.4.2 Compute Unit Replication Directive. The reconfigurable nature of

FPGAs allows multiple compute units to be generated for each kernel so that the hardware

controller in FPGA can distribute work groups to available compute units in addition to running

multiple work groups in a pipeline of a compute unit. Increasing the number of compute units

can achieve higher throughput, but it also increases bandwidth pressure to the global memory and

requires more hardware resources, whose optimal number should be carefully tuned.

The compute unit replication optimization was designed and implemented by Lee

et al. [144]. However, the optimization is used in this dissertation’s research to evaluate the

OpenACC-to-FPGA framework on different FPGA architectures, specifically in Lambert et al. [9]

and Lambert et al. [11].

2.2.4.3 Channels Directive. In the current OpenACC execution model, there

is no mechanism to allow fine-grained synchronization between actively running device kernels,

and the device kernels can communicate with each other only through the device global memory.
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Therefore, both kernels require reading from and writing to the global memory to communicate,

and the communication is serialized due to kernel communication. Moreover, the limited

bandwidth and long latency of the global memory could become another performance-limiting

factor. To address these issues, the underlying Intel OpenCL provides a hardware mechanism

called channel, which two concurrently running kernels can use to communicate with each other

in a fine-grained manner without using the expensive global memory. If two or more OpenACC

kernels execute in a sequential order and communicate with each other using temporary device

buffers, then these kernels might be able use the channel mechanism when running on an FPGA.

However, for the kernels to use this mechanism without breaking the original execution semantics,

these kernels should communicate in specific patterns, which are not easy for the compiler

to detect automatically. Furthermore, the channel mechanism can only be safely applied to

applications where the dependencies between kernels are iteration-specific (i.e., iteration x of a

kernel only depends on the results of iteration x of a previous kernel). To enable the channel

mechanism in OpenACC, a set of new backward-compatible OpenACC data clauses were proposed

with the existing OpenACC data clauses that will preserve functional portability across FPGAs

and non-FPGA devices.

The channels directive was designed and implemented by Lee et al. [144]. However, the

optimization is used in this dissertation’s research to evaluate the OpenACC-to-FPGA framework

on different FPGA architectures, specifically in Lambert et al. [9] and Lambert et al. [11].

2.2.4.4 Sliding Window Directive. Applications relying on stencil computations

are common in scientific computing. Many algorithms operating on a grid or matrix apply a

stencil pattern at each input location, relying on neighboring locations. These patterns and

operations can result in redundant, expensive memory operations on devices such as GPUs and

FPGAs.

However, in an FPGA single work-item context, redundant memory accesses across

iterations can be mitigated by using a shift-register based sliding window approach. In the sliding

window approach, we maintain the required neighborhood of relevant data in shift registers,

shifting a new value in and an old value out each time an iteration begins. This approach allows

us to efficiently forward data across iterations, allowing for data reuse. This also significantly
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reduces the number of memory operations required each iteration because we are able to access

the neighboring values stored in the sliding window without pipeline delays.

Basic Sliding Window Optimization

In this section we propose an OpenARC directive extension implementing the sliding

window approach to address this performance issue. The window directive can be applied to

loops within an OpenACC compute region, specifically where the loop reads from an input array,

performs computations, and writes to an output array. However, only certain types of loops can

benefit from application of the window directive, such as loops where each iteration contains

several non-contiguous input array accesses, and loops where the same memory locations are

redundantly accessed across different loop iterations. These programming patterns are common in

stencil-based scientific codes.

The window directive imposes several restrictions for safe and efficient application. The

optimization requires the neighborhood of cells accessed each iteration to be a fixed size. This

fixed size is used to determine the size of the sliding window. The optimization also requires

that the neighbor cells (array elements) accessed each iteration have constant offsets relative

to the current iteration. For example, a loop that accesses a random assortment of neighbors

each iteration would not be appropriate. Finally, in the current version of the sliding window

optimization, the loop iteration variable must increase monotonically and have a step size of 1.

These requirements ensure that the underlying OpenCL compiler can successfully and effectively

infer and implement a sliding window approach using shift registers. OpenARC enforces these

requirements by analyzing the loop control statement and requiring the index expressions of the

input array to be affine, where the coefficient of the index variable is either 1 or -1. Violations of

these requirements cause OpenARC to issue errors or warnings, depending on the offense.

In Listing 2.9, we show an example of a simple OpenACC stencil code with the window

directive applied, where each iteration in a loop contains multiple non-contiguous input array

accesses. Also, each element in the input array is accessed several times over multiple iterations.

Because this example code meets the requirements mentioned above, it is safe to apply the

window directive.

Using only the code provided in Listing 2.9, OpenARC can analyze the input array

index expressions to calculate the following values needed to implement the sliding window
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Listing 2.9 OpenACC with window directive

1 #define ROWS ...
2 #define COLS ...
3
4 #pragma acc parallel loop serial
5 #pragma openarc transform window (input, output)
6 for (int index = 0; index < ROWS∗COLS; ++index) {
7 float N = input[index − COLS];
8 float S = input[index + COLS];
9 float E = input[index + 1];

10 float W = input[index − 1];
11 output[index] = input[index] + N + S + E + W;
12 }

transformation: neighborhood size (NBD SIZE ), window offset (SW OFFSET ), and reading

offset (READ OFFSET ). The neighborhood size refers to the smallest number of contiguous

array elements needed to encapsulate the neighbors required to compute one iteration. The

window offset refers to the difference between the current value of the iteration variable and the

minimum index value of neighbor cells for a given iteration. This offset is used when replacing

input array accesses with accesses to the sliding window. Finally, the reading offset refers to

difference between the maximum index of the current neighbors and the current index. This offset

determines the index used to read from the input array each iteration and to calculate the number

of initialization iterations required. These offsets are calculated internally using the following

equations, where index refers to the index of a given iteration, and max index and min index refer

to the largest and smallest values used to access the input array for that same iteration.

NBD SIZE = max index−min index+ 1 (2.3)

SW OFFSET = index−min index (2.4)

READ OFFSET = max index− index (2.5)

In the proposed sliding window optimization, calculating the above three equations is

key; for this, we exploit the built-in symbolic analysis tools in OpenARC. If the target loop body

does not contain inner loops, the compiler symbolically calculates the differences between any

two index expressions used for the input array accesses and derives the min index and max index

expressions by symbolically comparing those differences. If the target loop body contains inner

loops, the OpenARC compiler applies a symbolic range analysis, which computes integer variables’

value ranges at each program point to find the symbolic ranges of index variables of the inner
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loops. The calculated symbolic ranges are used to calculate the symbolic differences between two

index expressions for the input array accesses.

Once the above three values (neighborhood size, window offset, and reading offset) are

calculated and determined to be constant, the remaining step is to transform the target loop into

a specific programming pattern so that the underlying OpenCL compiler is able to generate the

hardware logic required for efficient sliding window execution.

In Listing 2.10, we show the resulting OpenCL code after the proposed sliding window

optimization has been applied. We first see the results of OpenARC’s calculations using the above

equations (lines 5–7), followed by a declaration for the sliding window array (line 9). The initial

value of the loop iteration variable is offset by the read offset (line 11). This allows for additional

iterations to properly initialize the sliding window array, ensuring that the necessary neighborhood

of values is present in the sliding window for the first non-initialization iteration. Within the loop,

we first shift the sliding window each iteration (lines 12–13). Although this programming pattern

is inefficient on non-FPGA platforms, it is required by the underlying OpenCL compiler to infer

a shift register implementation of the intended sliding window array. We next read one value

from the designated input array into the sliding window array, using the pre-calculated read offset

(lines 16–17). Finally, for every non-initialization iteration, we perform the calculations from the

original loop (lines 20–24). We see that each read from the original input array has been replaced

with one read from the sliding window array, and in the sliding window array index expressions,

the iteration variable has been replaced with the window offset.

By using OpenARC to generate these specific programming patterns, as outlined in the

Intel OpenCL SDK Best Practices documentation, the back-end compiler is able to generate the

hardware logic required for efficient sliding window execution. Although Listing 2.9 provides an

ideal case for the window directive, the sliding window compiler transformation is robust enough

to handle more complex indexing expressions, including expressions within nested loops containing

multiple iteration variables. Also, algorithms without a separate output array that write

computation results back to the original input array, like the Rodinia Benchmark NW [147], are

handled by the compiler transformation using special-case code. The OpenARC window directive

exemplifies the need for high-level programming constructs to enable widespread adoption of

FPGA programming for HPC. This OpenACC directive extension enables programmers to use
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Listing 2.10 Transformed OpenCL sliding window code

1 #define ROWS ...
2 #define COLS ...
3
4 // OpenARC calculated values
5 #define NBD SIZE (2∗COLS + 1) // Neighborhood size
6 #define SW OFFSET (COLS) // Window offset
7 #define READ OFFSET (COLS) // Read offset
8
9 float sw[NBD SIZE]; //Create a sliding window array.

10
11 for (int index = −(READ OFFSET); index < ROWS∗COLS; ++index) {
12 for (int i = 0; i < NBD SIZE − 1; ++i)
13 { sw[i] = sw[i + 1]; } //Shift values in the sliding window array.
14
15 //Load an input array element into the sliding window array.
16 if (index + READ OFFSET < ROWS∗COLS)
17 { sw[NBD SIZE − 1] = input[index + READ OFFSET]; }
18
19 if (index >= 0) { //Main computation body which uses sliding window
20 float N = sw[SW OFFSET − COLS];
21 float S = sw[SW OFFSET + COLS];
22 float E = sw[SW OFFSET + 1];
23 float W = sw[SW OFFSET − 1];
24 output[index] = sw[SW OFFSET] + N + S + E + W;
25 }
26 }

the performance-critical sliding window pattern on an FPGA without specific knowledge of shift

registers, neighborhood sizes, and non-intuitive OpenCL programming patterns.

Sliding Window Optimization with Loop Unrolling Like the reduction

optimization (Section 2.2.3.3), we can increase the performance of the shift-register–based sliding

window optimization by applying loop unrolling. This unrolling can effectively increase the

pipeline depth, allowing for a higher degree of pipeline parallelism and reducing the number of

iterations required. This can decrease overall runtime but at the cost of increased FPGA resource

usage. For applications with a low base resource usage, loop unrolling can be used to utilize

unused resources while improving performance.

To enable loop unrolling in conjunction with the sliding window approach, users can

add an additional #pragma unroll UNROLL FACTOR annotation to any loop annotated

with a window directive. Here UNROLL FACTOR refers to the degree of unrolling and the

number of times the sliding window logic should be replicated. We have integrated the sliding

window approach with loop unrolling by creating an extension to the sliding window compiler

transformation. Although we could simply lower the unroll directive to the underlying OpenCL

compiler, we can further optimize this approach by separating the shift register and memory

operations from the primary computation operations. This separation allows us to reduce the

number of sliding window shifts and perform coalesced memory reads and writes, while only
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replicating code used in the primary computation. This models the approach used in the Intel

OpenCL SKD FD3D design example [108].

We see the resulting OpenCL code generated from applying an optional loop unroll

pragma along with the window directive in Listing 2.11. In this transformation, the size of the

sliding window is dictated by a new compile-time constant SW SIZE (line 8). The increased

size of the sliding window is needed to accommodate the additional operations from loop

unrolling. Because we now process multiple values each iteration, the loop step size is increased

to UNROLL FACTOR (line 12). Instead of shifting the sliding window one position each

iteration, we now shift UNROLL FACTOR positions (lines 13–14), thus reducing the overall

number of shifts required. We then perform a coalesced read of UNROLL FACTOR values from

the input array (lines 16–19). We declare a statically sized array to temporarily store output

values (line 21). The primary computation is then replicated by the enclosing fully unrolled loop

(lines 23–33), with each access to the sliding window offset by the unrolled loop iteration index.

Finally, we perform a coalesced write from the temporary array to the output array (lines 35–38).

The loop unrolling pragma can be applied to any loop optimized with the window

directive as long as the unroll factor evenly divides the iteration space of the original main

loop. For example, in Listing 2.11, the user-provided unroll factor must divide ROWS ∗ COLS.

Violation of this restriction results in an OpenARC compiler error.

The window directive was designed and implemented as part of this dissertation’s

research, referenced in Lambert et al. [9].

2.3 Experimental Setup for FPGA Platforms

In this section we discuss the benchmarks, hardware, and software platforms used

in this dissertation’s research to evaluate the OpenACC-to-FPGA framework and developed

optimizations discussed in Section 2.2, and in the study exploring the performance portability

of OpenCL between Intel and Xilinx devices (Section 2.6).

2.3.1 Benchmarks. We use multiple benchmarks to test the viability, correctness,

and performance of our FPGA-specific optimizations. Table 3 provides a summary of the

benchmarks and their properties.

The Sobel and FD3D benchmarks are taken from the Intel High-Performance Computing

Platform Examples [108], and the HotSpot, SRAD, and NW benchmarks originate from the
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Listing 2.11 Transformed OpenCL sliding window code with loop unrolling

1 #define ROWS ...
2 #define COLS ...
3
4 // OpenARC calculated values
5 #define NBD SIZE (2∗COLS + 1) // Neighborhood size
6 #define SW OFFSET (COLS) // Window offset
7 #define READ OFFSET (COLS) // Read offset
8 #define SW SIZE (NBD SIZE + UNROLL FACTOR − 1)
9

10 float sw[SW SIZE]; //Create a sliding window array.
11
12 for (int index = −(READ OFFSET); index < ROWS∗COLS; index += UNROLL FACTOR) {
13 for (int i = 0; i < NBD SIZE − 1; ++i)
14 { sw[i] = sw[i + UNROLL FACTOR]; } //Shift UNROLL FACTOR positions.
15 //Load UNROLL FACTOR values to the sliding window.
16 for (int ss = 0; ss < UNROLL FACTOR; ++ss) {
17 if (index + READ OFFSET + ss < ROWS∗COLS)
18 { sw[NBD SIZE − 1 + ss] = input[index + READ OFFSET + ss]; }
19 }
20
21 float value[UNROLL FACTOR]; //Temporary array storing outputs.
22 //Main body replicated by UNROLL FACTOR
23 #pragma unroll
24 for (int ss = 0; ss < UNROLL FACTOR; ++ss) {
25 if (index + ss >= 0) {
26 float N = sw[SW OFFSET+ss − COLS];
27 float S = sw[SW OFFSET+ss + COLS];
28 float E = sw[SW OFFSET+ss + 1];
29 float W = sw[SW OFFSET+ss − 1];
30 output[index] = sw[SW OFFSET+ss] + N + S + E + W;
31 value[ss] = sw[SW OFFSET+ss] + N + S + E + W;
32 }
33 }
34 //Store temporary outputs to the output array.
35 for (int ss = 0; ss < UNROLL FACTOR; ++ss) {
36 if (index + ss >= 0)
37 { output[index + ss] = value[ss]; }
38 }
39 }

Rodinia Benchmark Suite 3.1 [147]. NW can be classified as a dynamic programming algorithm,

but the rest can be classified as structured grid algorithms. We use the same input sizes and

input parameters as the original Intel or Rodinia source codes, with the exception of FD3D. The

original FD3D OpenCL code from Intel supports an input size of 504 × 504 × 504 points by

dividing the input into 64 × 64 × 504 blocks. This blocking is necessary to meet FPGA resource

usage requirements. However, because OpenARC does not currently support this type of custom

blocking with OpenACC directives, we use an input size of 64 × 64 × 64 single-precision floating-

point values.

Base OpenACC versions of the Intel OpenCL SDK design examples were created

directly from the OpenCL code by replacing the low-level OpenCL constructs with their high-

level OpenACC counterparts and removing any FPGA-specific optimizations. A primary goal

of this chapter in the dissertation is to reintroduce these optimizations using directives. Base

OpenACC versions of the Rodinia benchmarks were sourced from the OpenARC repository. These
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Table 3. OpenACC and OpenCL benchmarks evaluated using FPGAs

Application Source Description Input Size Data Type

Sobel Intel Image edge detection algorithm 1,920 × 1,080 integer

FD3D Intel 3D finite difference computation 64 × 64 × 64 floating-point

HotSpot Rodinia Compact thermal modeling 1,024 × 1,024 floating-point

SRAD Rodinia Speckle reducing diffusion 4,096 × 4,096 floating-point

NW Rodinia Needleman–Wunsch algorithm 4,096 × 4,096 integer

Pathfinder Rodinia Dynamic programming search. 1,000,000 × 1,000 integer

CFD Rodinia Computational Fluid Dynamics 1,024 × 1,024 floating-point

Jacobi OpenARC Jacobi kernel 8192 × 8192 floating-point

Matmul OpenARC Matrix mulitplication kernel 2048 × 2048 floating-point

LULESH LLNL Lagrangian explicit hydrodynamics 45 × 45 × 45 floating-point

benchmarks were adapted from the Rodinia 1.0 OpenMP benchmarks [39], although in this study

we update them with any changes in Rodinia 3.1.

The OpenCL benchmarks evaluated in Section 2.4.6 are sourced directly from [108] and

[160] without modification. The OpenCL benchmarks evaluated in Section 2.6 are modified from

the original versions developed in [160] in order to execute in the Xilinx environment.

The OpenMP benchmarks evaluated in Section 2.4.7 come from the Rodinia

repository [147].

For the sake of generality, while conducting research for this dissertation in Lambert et

al. [10] and Lambert et al. [11] the OpenACC-to-FPGA framework is evaluated using two core

algorithms, Jacobi and Matmul, and the real-world proxy application LULESH [171].

The holistic evaluation of the numerous optimizations in the OpenACC-to-FPGA

framework required many executions with different combinations of threading models,

optimizations, kernel vectorization and compute unit replication factors, unrolling factors,

and more. This process was manually guided, but it was also restricted by the applicability of

optimizations to each algorithm and device resource limitations. The optimization process for each

benchmark was greatly simplified by the directive-based approach because code changes between

versions were very minimal. However, the large optimization search space also exposed the dire

need for a more automated optimization process.

We now briefly summarize each benchmark used in this dissertation’s evaluation of the

OpenACC-to-FPGA framework.

2.3.1.1 Sobel. The Sobel filter, or Sobel operator, is a popular image processing

method used for edge detection in image data. The method uniformly applies gradient
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calculations across the input image, a structured grid. Each calculation depends on a 3x3

neighborhood of cells. We use a 1920x1080 8-bit image as input, and compute one iteration.

2.3.1.2 FD3D. The 3-Dimensional Finite Difference Computation is a numerical

method used in solving differential equations. FD3D iterates over a structured 3D grid and

computes a difference calculation using RADIUS * 6 neighboring cells. We use a RADIUS of

3, resulting in a 19-point 3D stencil. The original OpenCL code from Intel supports an input size

of 504x504x504 points by dividing the input into 64x64x504 blocks. This blocking is necessary to

meet FPGA resource usage requirements. However, because OpenARC does not currently support

this type of custom blocking with OpenACC directives, we use an input size of 64x64x64 single-

precision floating-point values in all experiments.

2.3.1.3 HotSpot. The HotSpot application is used to simulate the thermal

properties of a processor, given information about the processor’s architecture and power

measurements. The application takes a 2D grid of initial values and power measurements and

outputs simulated thermal values after a specified number of iterations. Each iteration, all values

in the 2D grid are updated based on 4 neighboring cells: north, east, south, and west. We use a

1024x1024 sized 2D grid of single-precision floating-point values as input in our experiments, and

perform 10,000 iterations.

2.3.1.4 SRAD. Speckle Reducing Anisotropic Diffusion is an iterative image

processing algorithm, used in applications such as medical and ultrasonic imaging. Like HotSpot,

SRAD operates over a 2D structured grid. SRAD first performs a scalar reduction over the

input array each iteration. Subsequently, SRAD performs a 5-point stencil computation similar

to HotSpot. We use a 4096x4096 image as input, where each pixel is cast to a single-precision

floating-point value, and compute 100 iterations.

2.3.1.5 NW. Needleman–Wunch is a dynamic programming optimization algorithm

used to perform DNA sequence alignment. The input to NW is a 2D matrix, and the computation

begins at the top-left corner, finishing at the bottom right corner. Each value is updated using

three neighboring cells: north, northwest, and west. We use a 4096x4096 integer array as input,

and compute one iteration.

2.3.1.6 Pathfinder. The goal of the Pathfinder application is to find the value of a

minimum-weight path from the top row of a 2D grid to the bottom row. This computation uses
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a dynamic programming approach. Each element in the 2D grid is populated with a nonnegative

integer weight. The path to a given element, elt, is determined by the taking the minimum value

from the northwest, north, or northeast element relative to elt. The program terminates when

the last row of the 2D grid has been visited.

2.3.1.7 CFD. The Computational Fluid Dynamics (CFD) application is an

unstructured grid benchmark that solves 3D Euler equations for compressible flow. This

application comprises three kernels: compute step factor, compute flux, and time steps. The

kernels are highly compute-intensive with many single-precision floating point operations,

including addition, multiplication, division, and square root. The most expensive computation

is in the compute flux kernel, which calculates the artificial viscosity and accumulates flux

contributions across each face.

2.3.1.8 Jacobi. The Jacobi method is an iterative solver commonly used for solving

systems of linear equations in many scientific domains.

2.3.1.9 Matmul. Matrix multiplication, the cornerstone of linear algebra, is a

fundamental core kernel used in applications in nearly every domain.

2.3.1.10 LULESH. The Livermore Unstructured Lagrangian Explicit Shock

Hydrodynamics is widely studied proxy application and co-design effort in high-performance and

exascale computing. To evaluate the OpenACC-to-FPGA framework, we target the LULESH 2.0

OpenACC implementation. Because the original application is written using C++, we target a

C-based OpenACC port available in the OpenARC repository. However, because LULESH 2.0

contains few C++-specific constructs, the C and C++ versions are comparable.

2.3.2 FPGA Hardware Platforms. We use three different generations of Intel

FPGAs in this dissertation: a Stratix V, an Arria 10, and a Stratix 10. The Stratix V was

originally designed and released by Altera, while the other two FPGAs were formally released

by Intel (with an apparant disdain for Roman numerals), after Intel’s acquisition of Altera.

Details about the hardware resources available in each FPGA is presented in Table 4. We can

see that each new FPGA release comes with increased availability of hardware resources. The

benefits of this increased size are shown in Section 2.5 of this chapter, as we are able to apply

more aggressive optimizations and replication.
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On the Intel FPGAs, power usage estimations using the Quartus Power Analyzer [108]

on fully compiled and routed applications. For a fair comparison with GPU and CPU power

calculations, we add 2.34 W to the power estimations to account for the FPGA memory modules,

as in [160]. We calculate energy (J) as runtime (s) × power (watts). Resource usage percentages

are provided by the backend Intel OpenCL compiler.

For the Xilinx-based evaluations in Section 2.6, we used a Xilinx Alveo U250 Data Center

accelerator card, which includes an XCU250 FPGA of the Xilinx UltraScale+ architecture, a Gen3

x16 PCIe interface, and 64 GB of DDR4, off-chip memory.

Although multi-core CPUs were used as host processors, all of the host code in the

evaluations was executed using a single core.

Table 4. Intel and Xilinx Hardware Resource Features

FPGA name Board model ALMs DSP blocks RAM blocks Host CPU
Stratix V nallatech 385 172k 1,590 2,014 Intel Xeon E5520
Arria 10 p510t sch ax115 427K 1,518 2,713 Intel Xeon E5-2683 v4

Stratix 10 p520 max sg280h 933K 5,760 11,721 Intel Xeon E5-2660 v4
Alveo U250 XCU250 1,341K 11,508 12,240* Intel Xeon E5-2683 v4
*The Alveo board contains 2,000 “36 Kb Block RAMs” and 1,280 “288 kb Ultra Block RAMs”, which is roughly

analogous to 12,240 RAM blocks (when comparing to Intel devices).

2.3.3 FPGA Software Platforms. On all platforms, input OpenACC code is

compiled using OpenARC V0.11 as the front end, although the specific git commit used changed

frequently, especially as we continually updated OpenARC’s OpenACC-to-FPGA support.

For evaluations on the Stratix V, we use the Intel FPGA SDK for OpenCL Offline

Compiler V16.1.0 as the primary compiler and the back end runtime for OpenCL code.

For evaluations on the Arria 10, The back-end OpenCL code is compiled using the Intel

FPGA SDK for OpenCL v17.1.0 (aocl). The software stack is built on CentOS Linux 7 (Core).

For the Stratix 10 devices, the back-end OpenCL code is compiled using the Intel FPGA

SDK for OpenCL v19.4.0 (aocl). The software stack is built on Red Hat Enterprise Linux 7.

For all three devices, runtime measurements are recorded using C API calls, specifically

clock gettime(). Several Python scripts were also built to automate batch build, compilation,

and execution processes for the FPGA. These scripts also extract resource usage and other

compilation information reported by the aocl compiler and notify users via text message/email

upon compilation completion.
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Runtimes reported are the average of five executions (Stratix V) or three executions

(Arria 10, Stratix 10). For the Stratix V executions, the runtime variance was below 1.5% of

the mean runtime for all applications, with most variances falling below 0.1%. Similar variances

were observed on the Arria 10 and Stratix 10 devices.

For our Xilinx-based experiments in Section 2.6, we used the 2020.1 version of the Vitis

Core Development Kit, and the associated compiler v++.

Both Intel and Xilinx hardware compilers generate interactive reports that can be used to

provide insight into kernel performance and opportunities for optimization. Information provided

in these reports includes FPGA resource utilization and the analysis of loops within a kernel. Intel

generates this report by constructing an .html file that can be opened in a browser, and Xilinx

generates summaries that can be navigated by using the vitis analyzer graphical user interface

(GUI) application.

2.3.4 GPU and CPU Comparison Platforms. For the GPU comparisons in

Section 2.4.7, we use an NVIDIA Tesla K40c GPU. The OpenACC code relies on the NVIDIA

CUDA compiler V8.0 as the back end (the OpenACC input code is translated into CUDA by the

OpenARC compiler). We calculate energy consumption using NVIDIA NVML to sample power

usage every 10 ms.

For the CPU comparisons in Section 2.4.7, we use a 16-core Intel(R) Xeon(R) E5-2683

v4 CPU with 2-way hardware multi-threading. We compile the OpenMP benchmarks using

GCC 4.8.5 with the -O2 flag, and execute them using 32 OpenMP threads. We collect CPU

energy usage information using the Intel Running Average Power Limit (RAPL) interface.

2.4 Intel Stratix V Evaluations

In Section 2.2, we discussed various FPGA-specific optimizations, many of which were

developed as part of this dissertation’s research in Lambert et. al [9]. In the following three

sections, we discuss the rigorous evaluations performed across three different FPGA platforms

in order to asses the performance of the OpenACC-to-FPGA framework. These evaluations span

three separate publications (all included as part of this dissertation) and roughly three categories:

(1) an evaluation of each developed optimization in isolation [9], (2) a holistic evaluation of

combinations of developed optimizations on new platforms [10, 11], (3) evaluations of FPGA-

specific considerations and behaviors in the context of the OpenACC-to-FPGA framework [9, 11].
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In this section, we discuss evaluations performed using the Stratix V platform that were originally

published in Lambert et al. [9].

2.4.1 Single Work-Item Evaluation. By using directives to dictate a single

work-item execution context, we can transform a traditional multi-threaded approach into an

FPGA-specific pipeline-parallel single-work item approach. We evaluate the effectiveness of the

single-work item approach by comparing it to the multi-threaded approach. Both approaches were

programmed using OpenACC and executed on the Stratix V FPGA. Figure 6 shows the FPGA

performance of the two approaches across each benchmark. In this figure, the multi-threaded

approach (NDRange) is used as a baseline, and the single work-item approach is compared in

terms of speedup. We can see that for two applications (Sobel and HotSpot), applying the single

work-item alone improves runtime performance. For the other applications (FD3D, SRAD, and

NW) this optimization can actually degrade performance. However, in both cases the single work-

item optimization enables us to apply the more advanced collapse, reduction, and sliding window

optimizations, ultimately leading to higher performance than the multi-threaded approach for all

benchmarks on the Stratix V platform.
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Figure 6. OpenACC-to-FPGA multi-threaded and pipeline-parallel approaches (Stratix V).

2.4.2 Collapse Evaluation. The FD3D, HotSpot, SRAD, and NW benchmarks

all contain nested loops inside their main computation kernels. As a result of restrictions from the

underlying OpenCL compiler (the Intel OpenCL SDK for FPGAs), to apply the sliding window
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and unrolling optimizations, we first need to apply loop collapsing to remove the nested loops.

Traditional loop collapsing techniques can be used to remove the nested loops; however, because

the sliding window and other optimizations require a single work-item context, we can apply the

single work-item FPGA-specific loop collapse optimization, replacing the division and modulus

operations with more efficient addition operations along with row and column counters. Table 5

demonstrates the modest performance and resource usage improvements realized when applying

the FPGA-specific collapse optimization in single work-item executions.

Table 5. FPGA-specific collapse clause performance comparison (Stratix V)

Application Collapse Type Runtime Resource Usage (%)

FD3D Standard 190.935 (ms) 39
FD3D FPGA-specific 180.149 (ms) 36

HotSpot Standard 47.882 (s) 32
HotSpot FPGA-specific 47.371 (s) 30

2.4.3 Reduction Evaluation. We use the SRAD benchmark to experimentally

verify the observations in Section 2.2.3.3. First, we evaluate the relationships between different

programmable parameters in the FPGA-specific single-work item scalar reduction. We isolate

the reduction in SRAD, removing other computations in the benchmark. This results in a single-

precision floating-point sum reduction over an input array of size 4096 × 4096. Removing the non-

reduction code allows us to better observe the relationships between shift register depth, initiation

interval, resource usage, and runtime. In the initial experiment, we use a constant unroll factor of

8 and manually vary the shift register depth. In Figure 7, we see that increasing the shift register

depth reduces the initiation interval, at the cost of increased resource usage. This reinforces

observations about relationship between shift register depth and initiation interval introduced

by Equation 2.1. As we increase the shift register depth, for certain depth values we observe

an unexpected decrease in circuit frequency and a corresponding unexpected decrease in the

initiation interval. These specific values indicate instances where the compiler has intentionally

sacrificed or throttled the circuit frequency to attain a lower initiation interval. For example, in

Figure 7, at register depths 16 and 32 we notice a decrease in II and a corresponding significant

drop in circuit frequency. As the shift register depth continues to increase, the circuit frequency

re-stabilizes, steadily increasing while the initiation interval remains unchanged.
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FPGA Variable Relationships
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Figure 7. Initialization interval (II), circuit frequency, runtime, resource usage, and shift-register
depth relationships. SRAD reduction kernel (Stratix V).
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In the second experiment, we evaluate the performance improvements by applying the

single work-item FPGA-specific reduction optimization, compared to traditional approaches to

scalar reduction. For this experiment we use the entire SRAD benchmark, as changes in the

reduction implementation can also affect execution in other code regions. We compare three

different approaches to scalar reduction: (1) a tree-based reduction, (2) a basic single work-item

reduction, (3) and the FPGA-specific shift register reduction.

In Table 6, we see the basic single-threaded approach performs poorly compared to the

hardware-agnostic multi-threaded tree-based reduction. Consequently, scalar reduction represents

a code pattern where the single work-item optimization alone does not lead to improvements

in performance. However, by combining the single work-item approach with the FPGA-specific

shift-register based optimization, we can significantly outperform the other approaches to scalar

reduction, but this performance comes at the cost of increased resource usage.

Table 6. SRAD FPGA reduction performance comparison (Stratix V).

Reduction Type Runtime (s) Resource Usage (%)
Multi-threaded Tree-based 31.053 45

Single Work-item 78.307 38
Single Work-item Shift Register 23.239 50

2.4.4 Sliding Window Evaluation. In this section, we first evaluate the baseline

sliding window optimization, and then evaluate the sliding window optimization with replication

incorporated via customized loop unrolling.

2.4.4.1 Basic Sliding Window. The sliding window optimization (Section 2.2.4.4)

can safely be applied to non-nested loops in a single work-item execution context. Therefore,

by first applying the single work-item optimization (Section 2.2.3.1) and, when appropriate, the

collapse optimization (Section 2.2.3.2), we can then apply the sliding window optimization to all

five benchmarks.

We evaluate the effectiveness of the sliding window optimization for each benchmark by

comparing a massively parallel multi-threaded approach, a basic pipeline-parallel single work-

item approach, and a pipeline-parallel single work-item approach using a sliding window. We see

significant performance improvements across all benchmarks when applying the sliding window

optimization. The results of the sliding window evaluation are presented in Figure 8. The runtime

for the OpenACC implementation with only the single work-item optimization applied is used
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as a baseline, and the performance of the same OpenACC implementation with both the single

work-item and sliding window optimizations applied is compared in terms of speedup.
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Figure 8. Comparison of a single work-item and a single work-item with shift-register sliding
window approach (Stratix V)

We see that the performance of the NW benchmark improves exceptionally after applying

the sliding window optimization. Unlike the other applications, NW reads from and writes to

the same array, instead of writing to a separate output array. When executing in a single work-

item context, this creates a memory dependency on the load and store operations to and from

this array. This memory dependency causes successive iterations to be launched only once every

328 cycles, severely degrading performance, as we see in NW’s basic single work-item approach.

Applying the sliding window optimization to the single work-item implementation of NW shifts

the memory dependency to a local data dependency. The sliding window allows successive

iterations to be launched every cycle, significantly improving performance. Additionally, the

expensive load operations for neighboring array elements are replaced with sliding window, or

shift register, accesses.

We can also conjecture that the degree of speedup when applying the sliding window

optimization is proportional to the size of the stencil computation. For example, the Sobel (9-
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point stencil) and FD3D (19-point stencil) realize a greater speedup than HotSpot and SRAD

(4-point stencils).

2.4.4.2 Sliding Window with Loop Unrolling. We evaluate the effectiveness of

using loop unrolling in conjunction with the sliding window optimization (Section 2.2.4.4) in each

benchmark by comparing the performance of the single work-item sliding window approach with

various degrees of loop unrolling applied.

The results of this evaluation are presented Figure 9. For each benchmark, the runtime of

the application with the sliding window optimization without unrolling (Section 2.2.4.4) is used as

a baseline. These times are annotated with a 1 above the bar. We compare each baseline to the

same benchmark with different unrolling factors applied, visible over each bar. In general, we see

that we can utilize previously unused FPGA resources to increase runtime performance. We can

also see that performance improvements diminish with high unroll factors, as resources become

scarce.
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Figure 9. Sliding window optimization with different unroll factors applied (Stratix V)
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We see in Figure 9 that the Sobel benchmark is an ideal candidate for loop unrolling.

Because of the benchmark’s low base resource usage, we can apply a high unrolling factor without

exhausting FPGA resources. In contrast, applying loop unrolling to the NW benchmark actually

degrades performance. As previously mentioned, the NW benchmark is unique in that the

same array is used for both input and output values. This creates a dependency between loop

iterations. We see performance benefits by using the sliding window optimization because of the

replacement of expensive memory operations with shift register operations. However, we cannot

increase the level of pipeline parallelism by unrolling the inner loop because the operations are

serialized due to the loop dependency.

2.4.5 Branch-Variant Code Motion Evaluation. We use the HotSpot

benchmark to measure the performance and resource usage effects of the branch-variant code

motion optimization. In this benchmark, a nine-way conditional is used to determine if the

current index is an edge, corner, or neither. Several common operations occur within each

branch of this conditional, including several multiplication and addition operations, and an

expensive load operation. These common operations result in a relatively high base resource

usage for the application. By applying branch-variant code motion, we can factor or hoist the

common computation code from each branch, significantly reducing the number of multiplications,

additions, and loads required to be mapped to the hardware logic. This results in a lower base

resource usage.

Table 7 shows the results of executing HotSpot with the sliding window applied and

different loop unroll factors with and without branch-variant code motion. We see that applying

the resource usage reduction optimization does not directly or significantly affect runtime.

However, as we unroll the inner loop, the version with the common operations in each branch

of the conditional quickly encounters performance degradation due to resource exhaustion, while

the optimized version with the hoisted code continues to see performance improvements.

2.4.6 OpenACC and OpenCL Performance Comparison. To explore the

viability of using a high-level language like OpenACC for FPGA programming, we compare the

performance of all five benchmarks to the performance of those same benchmarks implemented

directly in OpenCL. The OpenCL versions manually implement several of the same optimizations

generated by the OpenARC compiler, but they also contain other FPGA-specific optimizations
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Table 7. HotSpot code motion performance evaluation (Stratix V)

Base Hoisted

Unroll Factor
Resource

Usage (%)
Runtime (s)

Resource
Usage (%)

Runtime (s)

1 28 36.842 26 35.622
2 31 24.656 28 25.796
4 39 16.625 32 12.106
8 54 29.442 40 8.770
16 84 50.702 56 7.953

not currently supported by OpenARC, such as blocking and halo regions with sliding window

arrays.

We can see the comparison between the best-performing OpenACC implementation

and the manual OpenCL implementations in Figure 10. In this figure, the OpenACC runtimes

are used as baselines, and the OpenCL runtimes are compared in terms of speedup. We can see

that the OpenACC applications FD3D, HotSpot, and SRAD perform comparably to the manual

OpenCL versions, with performances varying by less than a factor of 2.
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Figure 10. OpenACC and OpenCL with FPGA-specific optimizations (Stratix V).
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The OpenACC version of the NW benchmark is roughly 10 times slower than the

OpenCL version. This is because Rodinia’s OpenCL version of NW, on which the FPGA-specific

OpenCL version in is based, employs a significantly different programming pattern than the

straightforward serial version of NW used to develop our OpenACC version. These patterns are

not currently reproducible using our OpenACC directives for FPGA-specific optimizations, so NW

represents a class of applications where our current FPGA-specific optimizations fail to realize the

performance of manually tuned OpenCL. In contrast, the OpenACC version of the Sobel Filter

actually outperforms the OpenCL version from the Intel SDK design examples. Although the

manual code also uses a sliding window approach, it does not perform loop unrolling, resulting in

the performance differences observed.

2.4.7 Performance and Power Comparisons of FPGAs, GPUs, and CPUs.

To evaluate the viability of OpenACC FPGA programming, we compare OpenMP programs

executed on a CPU and OpenACC programs executed on a GPU (Section 2.3.4) against

OpenACC programs executed on an FPGA (Section 2.3.2). The results of this evaluation are

shown in Figure 11. In this figure we compare runtimes, measured in terms of speedup from the

CPU baseline, and energy consumption, measured in Joules and normalized to a CPU baseline of

1.

The NW benchmark performs relatively poorly both in terms of runtime and power usage

on the FPGA. This stems from the same algorithmic differences mentioned in Section 2.4.6.

However, for every other benchmark, the FPGA outperforms at least one of the other newer

devices in either runtime or power usage when programmed using high-level frameworks.

2.5 Intel Arria 10 and Stratix 10 Evaluations

In Section 2.4, we evaluated each optimization individually. In this section, we evaluate

each application individually on two new FPGA platforms and one new benchmark, holistically

applying optimizations from both Lambert et al. [9] and Lee et al. [144]. We then discuss

evaluations exploring FPGA resource usages, compilation times, and performance portability.

The evaluations in this section were originally performed in Lambert et al. [10] and Lambert et

al. [11].

To evaluate each individual benchmark, first only the multi-threaded and single work-

item implementations of each kernel were evaluated. Then, optimization directives and clauses
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CPU, GPU, and FPGA Comparison
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Figure 11. Comparison of OpenMP CPU (Xeon x32) executions, OpenACC GPU (K40c)
executions, and OpenACC FPGA (Stratix V).

77



were incrementally applied to each version where possible. Finally, different replication factors

were tested when possible by varying the number of compute units and SIMD parallelism in the

multi-threaded kernels and by varying the reduction and sliding window unrolling factors in the

single work-item kernels. In Subsections 2.5.1-2.5.4, we explore the Sobel, SRAD, Jacobi, and

Matmul benchmarks, while LULESH is explored separately in Subsection 2.5.8. In Figures 12–16,

the version name is a concatenation of the applied optimizations:

– nd: multi-threaded kernel

– numcX: number of compute units (X: replication factor)

– simdX: vectorization (X: replication factor)

– elim: kernel boundary elimination optimization

– coll collapse optimization

– swi: single work-item kernel

– redX: reduction optimization (X: unroll factor)

– swX: sliding window optimization (X: unroll factor)

– hoist: code motion optimization

– flat: 2D arrays manually flattened to 1D array.

2.5.1 Sobel Holistic Evaluation. The Sobel benchmark iterates over a 1D

image array and performs a stencil operation. Sobel is unique among the evaluated benchmarks

because it relies on integer operations, which can be implemented very efficiently in FPGA logic.

In Figure 12, on the Arria 10 the baseline nd implementation outperforms the baseline swi

implementation. However, if the replication factors are scaled using simd and numc in the multi-

threaded version, then the performance degrades significantly. This is most likely due to the high

cost of the memory operations for the 9-point stencil, relative to the cheap cost of integer and bit

arithmetic. On the Stratix 10, some multi-threaded replication improves performance, but again

excessive replication degrades performance (nd simd32).

Conversely, applying additional optimizations and replication to the single work item

significantly improves performance on both devices. Applying the sliding window pattern

effectively reduces the ratio of memory operations to computation, and applying loop unrolling

significantly increases the parallelism.
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Figure 12. Runtime performance (in seconds) of Sobel with different FPGA-specific optimizations
applied (Arria 10 and Stratix 10). Blue bars indicate the multi-threaded approach, and purple
bars indicate the single work-item approach (smaller is better).
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On the Arria 10, Sobel represents a unique but critical example in which the multi-

threaded kernel initially outperforms the single work-item kernel until applying sufficient

optimization results in a performance reversal. This example exposes a pitfall of manual intuition-

guided optimization and further motivates an automated analytical optimization solution.

One major difference between the Arria 10 and Stratix 10 implementations is the

effectiveness of simd replication. This could be a result of the newer compiler version (v17.1

compared to v19.4) used on the Stratix 10 and its abilities to apply simd replication successfully.
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Figure 13. Runtime performance (in seconds) of HotSpot with different FPGA-specific
optimizations applied (Arria 10 and Stratix 10). Blue bars indicate the multi-threaded approach,
and purple bars indicate the single work-item approach (smaller is better).

2.5.1.1 HotSpot. Like Sobel, HotSpot also consists of a stencil operation, although

HotSpot relies on a 5-point stencil instead of a 9-point stencil and uses floating-point values

instead of integer values.

As shown in Fig. 13, HotSpot experiences a significant performance imporvment if the

collapse optimization is applied on both the Arria 10 and Stratix 10. This result contradicts
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previous results on the Stratix V [9] in which the collapse optimization achieved only modest

performance. This could be attributed to the difference in FPGAs, but it is more likely an artifact

of the different compiler versions and how v17.1 and v19.4 of the SDK interpret the nested loops.

In the multi-threaded kernels on the Arria 10, HotSpot does not respond well to kernel

vectorization, likely due to the high degree of branching and numerous conditionals. However,

HotSpot does experience modest performance improvement from compute unit replication (41.49 s

vs. 29.97 s).

However on the Stratix 10, like the Sobel application, we see much better performance

improvements from multi-threaded replication, especially simd.

If only the collapse optimization is applied, the single work-item kernels perform very

similarly to the multi-threaded kernels. Only with significantly more optimization (collapse,

code motion, sliding window, and unrolling) does the single work-item approach achieve a lower

runtime (18.87 s vs. 29.97 s on Arria 10). As with the Stratix V device evaluations in Lambert

et al. [9], no performance improvements were seen from the window optimization with replication

unless the common operation hoisting optimization (code motion) was also applied.

2.5.2 SRAD Holistic Evaluation. The SRAD algorithm consists of three

separate kernels: one large reduction, and two 5-point stencil loops. In Figure 14, the device

and host keywords for the multi-threaded kernels indicate whether the reduction is performed on

the FPGA device or on the host (and are updated via a #pragma acc update directive). For the

single work-item kernels, the reduction is always performed on the FPGA device. The distinct

sliding window unrolling factors for the first and second stencil loops are separated by the x. For

example, in the nd host simd8 version, the reduction is performed on the host CPU and the

results that are copied to the device, and the two stencil loops are vectorized with a simd factor

of 8. In the swi r4 sw 8x4, the first kernel is optimized using the reduction optimization with

an unroll factor of 4, and the second and third kernels are optimized using the sliding window

approach with unroll factors of 8 and 4, respectively.

Unlike HotSpot and Sobel, SRAD multi-threaded kernels respond well to compute unit

replication and kernel vectorization. Also, the performance patterns are very similar for both the

Arria 10 and Stratix 10.
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Figure 14. Runtime performance (in seconds) of SRAD with different FPGA-specific
optimizations applied (Arria 10 and Stratix 10). Blue bars indicate the multi-threaded approach,
and purple bars indicate the single work-item approach (smaller is better).
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The vectorized multi-threaded kernels outperform many single-threaded kernels, even

after applying the sliding window and unrolling optimizations to the second two loops. However,

after applying a combination of sliding window and reduction optimizations, the single-threaded

kernel performance significantly surpassed the multi-threaded counterpart. Again, we see a trend

where sufficiently optimized single-threaded kernels outperform multi-threaded kernels.
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Figure 15. Runtime performance (in seconds) of MatMul with different FPGA-specific
optimizations applied (Arria 10 and Stratix 10). Blue bars indicate the multi-threaded approach,
and purple bars indicate the single work-item approach (smaller is better) .

2.5.3 MatMul Holistic Evaluation. Compared to the other evaluated

benchmarks, MatMul is the simplest and has no conditionals, limited arithmetic, and few memory

operations.

As shown in Figure 15, there is little opportunity for optimization in the single-threaded

approach because only the collapse optimization can be applied with no significant difference in

performance.

As a result of the simplicity, MatMul responds very well to kernel vectorization and

compute unit replication. MatMul is the only example in which the multi-threaded kernels
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significantly outperform the single work-item counterparts. We evaluated fewer versions on the

Stratix 10, focusing only on the versions with more aggressive replication.

Matmul could be an example in which the OpenACC-to-FPGA contains insufficient single

work-item optimizations. Including more advanced optimizations that are not yet supported by

the framework (e.g., blocking, tiling, local memory buffering) could improve performance.
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Figure 16. Runtime performance (in seconds) of Jacobi with different FPGA-specific
optimizations applied (Arria 10 and Stratix 10). Blue bars indicate the multi-threaded approach,
purple bars indicate the single work-item approach, and green bars indicate a hybrid multi-
threaded+single work-item approach (smaller is better).

2.5.4 Jacobi Holistic Evaluation. Jacobi consists of two kernels: one 5-point

stencil operation with very little arithmetic (floating point), and an array-copy kernel.

In Figure 16, there are three different groupings of performance measurements. The top

grouping represents versions in which a multi-threaded approach was used for both kernels by

applying the same optimizations to each kernel.
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The second grouping conversely represents versions in which the single-threaded or single

work-item approach was used for both kernels. The x separates the optimizations applied to the

first and second kernels. This distinction was made because the window optimization applies only

to the first stencil-based loop. The flat keyword represents versions in which the original 2D

array is replaced with a 1D array, and the indices are adjusted accordingly. Currently, the window

optimization supports only 1D arrays, so this manual code modification was needed even though

manually modifying code is generally avoided and only directives are applied.

The third grouping represents a novel hybrid approach in which a single work-item

approach is used for the first kernel and a multi-threaded approach is used for the second kernel.

Although the flat keyword is omitted, these versions also revert to a 1D array to apply the

window optimization.

As shown in Figure 16, the best-performing hybrid approach (0.72 s Arria 10, 0.53 s

Stratix 10) outperforms the best-performing multi-threaded kernel approach (2.8 s Arria 10, 0.58

s Stratix 10) and the best-performing single work-item kernel approach (3.55 s Arria 10, 2.65 s

Stratix 10). These results further complicate the manual optimization process because different

threading models can lead to optimal performance, even within a single application. Fortunately,

using the high-level directives in the OpenACC-to-FPGA framework to switch between threading

models requires modifying only two clauses in the enclosing OpenACC directive, as compared with

OpenCL, which requires modifying the host and device code.

In the above benchmark optimization sections, we evaluated the runtime performance of

the five applications after applying different FPGA-specific optimizations. We show that both the

Arria 10 and Stratix 10 executions benefit from these optimizations, with the Stratix 10 device

allowing for higher replication factors and generally achieving lower runtimes. We also see that

both multi-threaded and single-threaded kernels can perform well, but that if applicable, single-

threaded optimizations generally result in the best performance.

2.5.5 Resource Usage Evaluation. This section evaluates the relationship

between the reported resource usages and kernel frequency (fmax) and runtime performance using

the two benchmarks with the highest variety of code versions, SRAD and Jacobi.

2.5.5.1 SRAD Resource Evaluation. In the SRAD multi-threaded kernels,

increasing the replication factors scaled the resources used. Conventional logic suggests that
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Table 8. SRAD benchmark resource usage data (Arria 10)

Model Version DSPs RAMs fmax Runtime (s)
multi nd reduce 88 594 247 61.13
multi nd reduce simd4 271 1025 229 24.7
multi nd update 58 537 258 27.09
multi nd update simd4 193 898 227 20.76
multi nd update simd8 373 1441 214 30.73

swi swi sw 59 545 257 39.44
swi swi r4 sw 129 516 252 15.2
swi swi r4 sw4x4 264 601 285 6.94
swi swi r4 sw4x8 284 643 257 7.83
swi swi r4 sw8x4 424 695 287 6.67
swi swi r4 sw8x8 444 737 270 7.51
swi swi r4 sw16x16 804 1064 245 7.98

Table 9. SRAD benchmark resource usage data (Stratix 10)

Model Version DSPs RAMs fmax Runtime (s)
multi nd device 68 1151 264 55.81
multi nd device numc4 272 2147 205 25.24
multi nd device numc8 544 3475 172 16.21
multi nd device simd4 217 1565 221 16.42
multi nd device simd8 415 1923 216 9.58
multi nd host 46 1062 256 22.28
multi nd host numc4 184 1791 234 17.11
multi nd host numc8 368 2763 183 13.26
multi nd host simd4 153 1310 250 9.73
multi nd host simd8 295 1469 234 8.27

swi swi sw 51 984 282 42.67
swi swi sw4x4 158 1200 258 37.41
swi swi sw4x8 178 1196 240 39.11
swi swi sw8x4 284 1404 224 44.29
swi swi 8x8 304 1400 227 42.79
swi swi r4 sw 121 1110 256 15.56
swi swi r4 sw4x4 228 1426 231 6.56
swi swi r4 sw4x8 248 1429 237 5.58
swi swi r4 sw8x4 354 1689 255 6.35
swi swi r4 sw8x8 374 1692 241 5.64
swi swi r4 sw16x16 666 2244 222 7.83
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using more of the FPGA resources would result in higher performance, and this is often the

case. However, scaling the replication factors—and thus the degree of parallelism—also lowers

the operating fmax, which typically degrades performance. Therefore, there is often a trade-

off between resource usage and operating frequencies, and the goal is often to achieve a balance

between increasing parallelism and maintaining a high fmax. The effects of this relationship are

shown in Tables 8 and 9. On the Arria 10, the lowest runtime multi-threaded version employed a

sufficient degree of 4-way simd parallelism while still maintaining a high fmax relative to the other

versions at 226.8 MHz. On the larger Stratix 10, 8-way SIMD parallelism performed well with an

fmax of 216.91 MHz.

In the single work-item kernels, a similar behavior was observed. Although replication

generally increases performance, with higher degrees of unrolling the trade-offs between

parallelism and fmax are relevant. On the Arria 10, the best-performing kernel achieved a balance

between a high degree of parallelism (replication factors of 4, 8, and 4) and a high fmax (286.69

MHz). On the larger Stratix 10 slightly higher replication factors (4, 8, 8) performed optimally.

Table 10. Jacobi benchmark resource usage data (Arria 10)

Model Version DSPs RAMs fmax Runtime (s)
multi nd 3 416 290 16.32
multi nd coll 3 409 279 16.07
multi nd coll elim 3 403 285 4.85
multi nd coll elim numc4 12 634 262 1.58
multi nd coll elim numc16 48 1558 210 1.44

swi swi x swi 3 544 267 5.17
swi swi coll x swi coll 3 407 311 4.48
swi swi sw x swi flat coll 3 421 287 5.02
swi swi sw16 x swi flat coll 768 852 208 3.55

hybrid swi sw16 x nd numc4 768 914 217 1.49
hybrid swi sw16 x nd numc16 768 1154 212 0.77
hybrid swi sw16 x nd numc32 768 1474 196 0.72
hybrid swi sw16 x nd simd16 768 854 220 4.07

2.5.5.2 Jacobi Resource Evaluation. By using the multi-threaded kernel

approach in the Jacobi kernel (Tables 10 and 11), applying the collapse and kernel boundary

elimination optimizations significantly improved performance without significantly changing

resource use. On both the Arria 10 and Stratix 10, as we apply multi-threaded replication, the

resource usage increases, and the fmax decreases. In this case, the trade off does result in lower

overall runtimes.
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Table 11. Jacobi benchmark resource usage data (Stratix 10)

Model Version DSPs RAMs fmax Runtime (s)
multi nd 3 754 298 14.34
multi nd coll 3 790 297 4.60
multi nd coll 3 789 285 4.79
multi nd coll elim numc4 12 1323 271 1.32
multi nd coll elim numc16 48 2835 211 0.65
multi nd coll elim numc24 72 3843 226 0.58
multi nd coll elim simd4 12 1276 257 1.50
multi nd coll elim simd16 48 2834 213 1.02

swi swi x swi 3 790 299 4.61
swi swi coll x swi coll 3 788 309 4.44
swi swi sw x swi flat coll 3 645 329 4.18
swi swi sw16 x swi flat coll 768 1479 278 2.65

hybrid swi sw16 x nd numc4 768 1218 269 0.98
hybrid swi sw16 x nd numc16 768 1638 231 0.54

In the single work-item approach, on the Arria 10 the window optimization and aggressive

unrolling significantly decreased the fmax. However, as with the multi-threaded case, the large

increase in parallelism more than offsets the decrease in fmax, which resulted in a lower overall

runtime. Also, applying the window and unrolling optimizations significantly increased the DSP

usage, which is a powerful resource in the Arria 10 and Stratix 10 FPGAs that generally improves

performance when used fully [172].

In the hybrid-threading approach, on both the Arria 10 and Stratix 10 devices, the

window optimization still uses a significant number of DSPs. However, the multi-threaded nature

of the array copy kernel also consumes a significant portion of RAM blocks. Using these resources

resulted in the lowest overall runtime, even with a lower fmax.

In this section we explored the relationships between FPGA resources and performance

for two of the studied benchmarks. In general, we see that both a high resource utilization and a

high operating frequency are desirable for performance, but that these two quantities are inversely

correlated. The best-performing version for both benchmarks strikes a balance between these two

metrics.

2.5.6 Compilation Times. In this section, we briefly investigate the effect of

different performance optimizations on the compilation time, and trade-offs between performance

and higher compilation costs.
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In Figure 17 we highlight a specific application, SRAD compiled on the Stratix 10 device,

to explore the effects of compilation time. Generally, we see that as more advanced optimizations

and loop unrolling are applied, the compilation time increases. As a result, there is generally an

inverse relationship between runtime performance and compilation time. This is not unexpected,

as the replication optimizations utilize more FPGA resources, which increases the placing and

routing demands, a main factor contributing to the compilation times.

Not every optimization equally contributes to increases in compilation time. With the

first three bars of Figure 17, we see that increasing the compute unit replication (numc4, numc8)

improves the performance, but significantly increases the compilation time as well. Alternatively,

we see that applying simd parallelization also increases performance, but has a much smaller effect

on compilation time. As a result, simd parallelization may be a more attractive optimization

option if compilation time is a concern.

The figure also shows that many of the single work-item optimizations do not significantly

contribute to the compilation time until aggressive sliding window replication is applied (see the

final set of bars in Figure 17). This provides another motivation for application developers to

target single work-item instead of multi work-item kernels for a lower time-investment option.

2.5.7 Performance Portability. In this section we briefly investigate the

performance portability between the Arria 10 and Stratix 10 devices.

In Figure 18, on the left we compare the best-performing Arria kernel with the best-

performing Stratix kernel, all executed on the Arria 10 device. Essentially we evaluate how

well the Stratix 10 codes port to the Arria 10. We see the converse evaluation on the right of

Figure 18, evaluating how well the Arria 10 codes port to the Stratix 10.

The hotspot multi and jacobi multi Stratix 10 kernels failed to compile for the Arria

10 device, primarily due to the differences in resource availability across the two devices. As

expected, the best-performing Stratix 10 kernels generally utilize more hardware resources than

the best-performing Arria 10 kernels.

In Figure 19, we quantify the performance portability as an averaged fraction of peak

performance across the two devices. The Arria 10 kernels typically perform well on the Stratix

10 device (averaging 89%), as they just slightly under-utilize the larger device. The Stratix 10
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Figure 17. SRAD Runtime performance (in seconds) compared to compilation time (in hours)
(Stratix 10)
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kernels, when successfully built, achieve lower performance on the Arria 10 device (averaging

70%), as they typically challenge the resource limitations.

Stratix 10 and Arria 10 Performance Portability
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Figure 18. A performance portability evaluation of the best-performing Stratix 10 and Arria 10
versions run on the Arria 10 (left), and the best-performing Stratix 10 and Arria 10 versions run
on the Stratix 10 (right). Runtimes are normalized such that the best-performing version across
both devices is represented as 1.

2.5.8 LULESH Initial Evaluation. In this section, we explore an initial

evaluation of the LULESH 2.0 proxy application [171] on the Stratix 10 FPGA. During the

evaluation, we first targeted the entire LULESH application for offloading to the Stratix 10 device.

However, due to the significant number of kernels (95) in the application, the FPGA resources

were quickly exhausted (see row 1 of Table 12). Executing the entire application on a single

FPGA would require re-flashing the device mid execution. This behavior is currently not possible

with the OpenACC-to-FPGA framework, but is an interesting direction for future works targeting

real-world applications.
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Figure 19. The average percentage of peak performance achieved when executing program
versions optimized for each device across the two different devices.

We next focused on a single routine in the LULESH application, EvalEOSForElems.

This same kernel was targeted by Jin et al. [173] in their evaluation of the LULESH OpenCL

version for FPGAs, as it is representative of the range of kernels found in LULESH and does not

immediately exhaust the FPGA resources. As we see in Table 12, this single function successfully

compiles on the Stratix 10 device if the replication factors (simd for multi-threaded kernels and

standard loop unrolling for the single-threaded kernels), are small.

Table 12. LULESH benchmark resource usage data (Stratix 10)

Version Total Logic DSPs RAMs Compiled
LULESH 650% 91% 415% No
EvalEOS nd 47% 4% 27% Yes
EvalEOS nd simd2 64% 9% 35% Yes
EvalEOS nd simd4 96% 36% 79% No
EvalEOS swi 48% 4% 27% Yes
EvalEOS swi fused 46% 4% 25% Yes
EvalEOS swi fused2 63% 9% 32% Yes
EvalEOS swi fused4 94% 36% 86% No

In Table 12 and Figure 20 we refer to several different versions of the EvalEOSForElems

kernel (abbreviated as EvalEOS ). Like the previous applications, the nd keyword refers to multi-

threaded kernels and the simdX keyword refers to simd replication with a replication factor of

X. The swi keyword refers to single-work-item executions. The fusedX keyword is specific to

LULESH. In these code versions, instead of using separate OpenACC parallel regions for each

loop in the EvalEOS function, we combine all loops into a single parallel region. This avoids
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multiple kernel launches by the underling Intel FPGA SDK for OpenCL. Finally, the X in fusedX

refers to the degree of unrolling applied to each loop (via #pragma unroll X ).

LULESH Initial Results

0.0 0.5 1.0 1.5 2.0
Runtime (ms)

nd

nd_simd4

swi

swi_fused

swi_fused2

Stratix 10

Figure 20. Runtime performance (in ms) of LULESH proxy application with different FPGA-
specific optimizations applied (Stratix 10 and Arria 10). Blue bars indicate the multi-threaded
approach, and purple bars indicate the single work-item approach (smaller is better).

Figure 20 shows the runtime performance of the different kernels using an input size

of 453. Like many of the other applications evaluated, the baseline multi-threaded and single-

threaded EvalEOS executions perform similarly. We see modest performance improvements when

using simd replication, and significant performance improvements when using the fused kernel.

This is most likely due to reducing the overhead of launching several smaller kernels. Surprisingly,

we do not see a performance improvement when applying loop unrolling to the single-work item

kernel, which warrants further investigation. Because EvalEOSForElems contains no nested loops,

reduction variables, or stencil patterns, the more advanced single work-item optimizations could

not be applied.

2.6 Intel and Xilinx OpenCL Portability Study

Since Intel’s acquisition of Altera in 2013, Intel and Xilinx have been the two most

dominant FPGA device manufacturers. In this Section, we discuss a study exploring the

performance portability of applications executing on Xilinx FPGA architectures that were

originally written for Intel FPGA architectures. Although both vendors support the OpenCL

standard and incorporate FPGA-specific programming patterns like shift registers, it is unclear

how similar these OpenCL implementations are, as each implementation contains vendor-specific

extensions. Although this study does not directly involve directive-based programming, it has
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major implications for the incorporation of Xilinx FPGAs into the OpenCL-based OpenACC-to-

FPGA framework evaluated previously in this dissertation.

Because of OpenCL’s portability, an OpenCL kernel that is authored for an Intel FPGA

should, in theory, be synthesizable for a Xilinx FPGA and vice versa. However, in practice,

although many HLS-based application kernels exist for Xilinx and Intel hardware, little has

been reported about the actual portability of HLS kernels between these two device families.

Even if one kernel can be compiled to run correctly on both platforms, performance portability

between platforms is far from guaranteed. Therefore, understanding the commonalities between

Intel and Xilinx HLS tools and the quirks peculiar to each is a worthwhile topic for investigation.

If performance portability between these FPGA families can be achieved, then it would enable

application designers to confidently author their kernels once in OpenCL C and achieve high

performance with each family by using its respective HLS tools.

This section presents an initial evaluation of portability and performance of OpenCL C

kernels that were originally written for an Intel FPGA and then reconfigured for a Xilinx FPGA.

We use the Intel FPGA implementations from Zohouri et al. [160] of the Rodinia benchmark

suite [147] as a baseline and investigate the process and impact of porting these implementations

to a Xilinx FPGA. The research in this section was performed as a co-authored collaboration,

Cabrera et al [12].

2.6.1 Porting Intel Applications to Xilinx Hardware. Table 13 lists the

particular kernel versions of each benchmark that we used and ported in our evaluation. The

version numbering follows that of Zohouri et al. [160] in which odd-numbered kernels use the

single work-item execution model.

Table 13. List of kernels ported from Intel OpenCL to Xilinx OpenCL

Application Baseline Best

Pathfinder v1 v5
CFD v1 v5
SRAD v1 v5
HotSpot v1 v5

For each application examined, we ported the both baseline and the best performing

kernels (Baseline and Best, respectively, in Table 13). The baseline versions are single work-

item kernels in which there are no FPGA optimizations supplied as hints to the hardware
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compiler aside from use of the single work-item model itself. The best performing kernels are the

versions that were reported to give the best performance among all kernel versions for each tested

application in the original work by Zohouri et al. (i.e., the best evaluated kernel when targeting

Intel-based Stratix V and Arria 10 FPGAs).

We evaluated the portability and performance of these kernels by performing the

minimum modifications required to port the annotated hardware optimizations for each kernel

from the Intel specification to the Xilinx specification. Although using OpenCL C gives us a

foundation for porting kernels between the two platforms, the way in which optimizations are

specified between the Xilinx and Intel platforms is different. Intel uses a combination of specific

programming patterns, #pragmas and attributes , to provide guidance to the hardware

compiler, whereas Xilinx uses only attributes . Additionally, although there is sometimes

a one-to-one mapping of kernel optimizations between platforms, this is not always the case. The

following sections detail the loop unrolling and shift register FPGA optimizations at the OpenCL

level, how they are expressed for an Intel platform, and the changes we made to express that same

construct on a Xilinx platform. We note that both of these optimizations at the OpenCL level are

exactly those abstracted by the OpenACC-to-FPGA framework discussed in Section 2.2.

2.6.1.1 Loop Unrolling. As previously discussed in Section 2.2, loop unrolling is a

common optimization in FPGA programming. In both the Intel and Xilinx tools, loop unrolling

hints allow the hardware compiler to use additional resources to replicate the loop body. In a

single-work item execution context, this allows for more deeply nested pipelines, higher FPGA

resource utilization, and typically better overall performance. Intel and Xilinx support unrolling

loops through compiler hints. For Intel OpenCL kernels, a loop is preceded with

#pragma unroll N.

For Xilinx, the previous pragma is replaced with

attribute ((opencl unroll hint(N))).

In both cases, N is the loop unrolling factor. Therefore, the mapping between loop unrolling for

Intel and Xilinx OpenCL is straightforward. The hardware compiler will determine whether it is

possible to unroll the loop given available resources of the target FPGA. Also, the Intel and Xilinx

compilers will both attempt to analyze and automatically unroll non-annotated loops, but in our
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experience, manually applying the directives and attributes results in more consistent compilations

and performance.

2.6.1.2 Shift Registers. Also discussed in Section 2.2, shift registers are an FPGA

construct that aid in efficient pipelining of loop iterations by storing data to satisfy inter-loop

dependencies and avoiding redundant loads from global FPGA memory. How these shift registers

are constructed in OpenCL depends on the vendor. Both vendors support using registers within

the FPGA fabric. Depending on the size, the Intel hardware compiler might try to synthesize a

shift register from user-supplied programming patterns by using on-chip memories. Xilinx supplies

a header file that allows the shift register to be synthesized by configuring lookup tables in the

FPGA fabric to act as a RAM-based shift register. Unlike the case for loop unrolling, there is not

a one-to-one mapping for inferring shift registers between vendors.

We show a minimal example of how to infer a shift register for Intel and Xilinx in

Listings2.12. For Intel, a private buffer is declared (line 1), and the size of this buffer is a compile-

time constant. Shift register shifting is orchestrated in the inner loop (line 5). For the hardware

compiler to infer a shift operation, the inner loop must be unrolled by prepending a pragma, as

described above. The Xilinx code example is similar. Again, a private buffer must be declared,

but an additional attribute (line 2) must be appended to this buffer. This attribute is a hint to

the hardware compiler that the kernel designer wants to completely decompose the buffer into

a collection of registers. The complete keyword indicates that the buffer must be completely

decomposed into a collection of registers, and the 0 argument implies that we are performing this

decomposition among all dimensions of the buffer. The inner loop that orchestrates the shifting

(line 6) is then unrolled, as described above, by appending an attribute (line 5).

Listing 2.12 Inferring a shift register using the Intel and Xilinx platforms.

// Intel OpenCL SDK for FPGAs example

int shift reg[SR SIZE]; // where SR SIZE is a compile time constant

for (int n = 0; n < N; n++) {

shift reg[SR SIZE − 1] = input arr[n];

#pragma unroll SR SIZE − 1

for(int i = 0; i < SR SIZE − 1; i++)

shift reg[i] = shift reg[i + 1];

}

// Xilinx Vitis example
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int shift reg[SR SIZE]

attribute ((xcl array partition(complete,0)));

for (int n = 0; n < N; n++) {

shift reg[SR SIZE − 1] = input arr[n];

attribute ((opencl unroll hint(SR SIZE − 1))

for(int i = 0; i < SR SIZE − 1; i++)

shift reg[i] = shift reg[i + 1];

}

2.6.2 Minimum Modification Porting Evaluation. Figure 21 shows the

results of porting the baseline best performing (on the original Intel hardware) kernel versions,

as detailed in Section 2.6.1. The following sections detail the process of porting each kernel to

the Xilinx platform. In this section, we only evaluate a minimally modified kernel ported from

Intel OpenCL to Xilinx OpenCL. Cabrera et al. [12] also present a more in-depth evaluation using

the Pathfinder application, but that evaluation was done independently from this dissertation’s

research, and is not included in this document.
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Figure 21. Each application’s performance on the Xilinx platform for the port of their respective
baseline kernel and the port with minimum modification of the best performing kernel when
targeting the Intel platform. The performance is reported as speedup relative to the Xilinx
baseline result.

2.6.2.1 Pathfinder Porting and Evaluation. The pathfinder kernel version v1

was straightforward to port because there were no vendor-specific compiler optimizations to port.

For pathfinder kernel version v5, we set two marcos at compile time when building the kernel:

BSIZE and SSIZE. We describe these two macros below.

Because the pathfinder kernel performs a stencil operation, an FPGA-specific shift

register or sliding window can be used to reduce redundant memory accesses, as mentioned in
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Section 2.6.1.2. The minimum size of the shift register is constrained by the smallest number

of contiguous array elements required to encapsulate a single iteration of the stencil operation.

In the pathfinder application, this equates to one complete row of the input array plus one

additional element. For large input data sizes, even one row of the input dataset can be too large

for implementation in a single shift register. The BSIZE macro controls this column size and thus

indirectly controls the resulting shift register size.

Although one output array element is assigned each iteration by default, the second

macro SSIZE allows multiple stencil operations per iteration. By allowing multiple operations

per iteration, we can reduce the total number of iterations and increase the FPGA utilization.

Increasing SSIZE can significantly improve performance if the FPGA has enough resources to

support the hardware needed to perform multiple stencil operations and the hardware compiler

does not have to increase the loop initiation interval or decrease the compute unit operating

frequency.

In our initial port, we used the best performing macro values listed from Zohouri et

al. [160], which sets BSIZE = 32, 768 and SSIZE = 32. However, we found that the kernel using

this parameterization is not synthesizable immediately when building on Xilinx; the hardware

compiler only allows a buffer to be partitioned 1,024 times. Therefore, it is not possible for us to

infer a shift register by using the original parameterization. To use the given parameters, then, we

do not partition the array. We next replace the Intel loop unrolling construct with the Xilinx one,

as detailed in Section 2.6.1.1. At this point, the kernel was successfully built and executed on the

Xilinx FPGA.

The best performing Pathfinder kernel on Intel is 43 times slower than the baseline

version when both kernels are ported to the Xilinx FPGA. Performance was expected to decrease

because, with the given information, the Xilinx compiler was not able to infer a shift register.

Also, the output logs generated by the Xilinx hardware compiler reported that the main loop of

computation in this kernel was not successfully pipelined.

2.6.2.2 CFD Porting and Evaluation. The version v1 kernel of CFD is a

straightforward single work-item port of the kernel used in the GPU OpenCL kernel available

in the original Rodinia [147] benchmark suite. Because the v1 version did not have any Intel-

specific pragmas in the kernel, no changes were made to the v1 kernel to target the Xilinx FPGA.

98



The version v5 CFD kernel was the best performing on the Intel Stratix V FPGA, according to

Zohouri et al. This kernel had various optimizations, including adding the restrict qualifier to the

input arrays and using a shift register-based reduction to accumulate the flux contribution (both

optimizations that were automated by the OpenACC-to-FPGA framework in Section 2.2). The v5

version also had an unroll pragma, which was re-written using the Xilinx unroll hint attribute.

The generated compiler information for version v1 reported that the Xilinx compiler was

unable to flatten the main computation loop because the outer loop was not a perfectly nested

loop. It also reported that there was a data dependency in the loop, which greatly reduced the

loop iteration interval. The build reports generated by the Xilinx compiler for version v5 showed

a lower loop initiation interval than the v1 kernel. However, the main iteration loop was still

unable to be flattened because the the outer loop had nontrivial logic in the loop latch. Despite

the reported lower initiation interval, the two kernels took essentially about the same amount of

time to execute; the v5 kernel executed slightly faster with a 0.23% reduction in kernel execution

time.

Overall, the performance of directly porting CFD kernels from Intel to Xilinx FPGAs

was quite poor, with a 70× increase in kernel execution time compared with Zohouri et al.’s

work [160]. The performance degradation is not surprising when looking at the large loop latencies

and initiation intervals reported in the Xilinx build reports, which indicates further Xilinx specific

optimizations and compiler hints are needed.

2.6.2.3 SRAD Porting and Evaluation. Because the SRAD application also

implements an iterative stencil algorithm, it shares many of the same FPGA-specific optimizations

and tuning parameters with the Pathfinder application. The SRAD v1 kernel implements a

straightforward approach that extends the source Rodinia OpenCL kernel with restrict keywords

on input array variables and creates single work-item kernels. The highest performing kernel

on the Intel platform version v5 combines the five separate kernels into a single kernel and

implements a shift register-based reduction and shift register-based sliding window.

We make several changes for the minimally modified Xilinx analog kernel of the Intel-

based v5. We replaced an Intel-specific attribute applied to the entire kernel,

attribute ((max global work dim(0)))),

with an analogous one recognized by the Xilinx platform,
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attribute ((reqd work group size(1, 1, 1))).

We also replaced instances of #pragma unroll with the previously mentioned Xilinx-

specific attribute and annotated the shift register with the following Xilinx-specific attribute:

attribute ((xcl array partition(complete, 0)))

For this application, we were able to completely partition the array used for the shift

register operation and were not required to do a block or cyclic partition. The Xilinx platform’s

restrictions on the size of the shift register array are not necessarily a limitation. Although

the Intel platform successfully compiles with larger shift register sizes, the larger arrays can

significantly degrade performance, which is why the manual partitioning via the BSIZE variable

and logic is present, even in the Intel-optimized code. Finally, we left the SSIZE replication factor

at it’s default value of 2.

As shown in Figure 21, the SRAD v5 kernel represents the only example in which directly

porting an Intel-optimized kernel to use analogous Xilinx constructs improves performance

over a more platform-agnostic baseline. This application demonstrates that directly translating

constructs can improve performance over a baseline in some cases, although we do note that the

absolute performance of the baseline and v5 SRAD underperform their Intel counterparts. That

is, there is still a significant amount of room for Xilinx-specific improvement in these kernels.

2.6.2.4 HotSpot Porting and Evaluation. Like Pathfinder and SRAD, the

HotSpot application implements an iterative stencil. Again, the v1 version of the kernel is directly

adapted from the original OpenCL, only adding restrict keywords and switching to a single work-

item kernel. In the v5 version, we again replaced the Intel-specific loop unrolling, kernel dimension

attributes, and directives with Xilinx-specific attributes. Like Pathfinder, the default BSIZE value

results in a shift register that is slightly too large for complete partitioning by the Xilinx compiler

with a size of 1,032 elements against the restriction of 1,024. However, instead of defaulting to a

blocking or cyclic partition scheme—which typically leads to poor performance, as shown in the

following section—for the results presented in Figure 21, we instead reduced the value of BSIZE,

which allowed full compilation with complete partitioning on the shift register array. Like SRAD,

we again maintain the default SSIZE replication factor, which is 16 for the HotSpot application.

Figure 21 shows that, as with the Pathfinder application, directly translating the Intel-

specific optimizations to their Xilinx counterparts in the v5 version degrades performance
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compared with a more agnostic, less-optimized baseline. HotSpot represents another example

in which one-to-one kernel optimization ports do not lead to portable performance.

2.7 Directive-based FPGA Programming: Related Works

Watanabe et al. [131] presented preliminary results on a very closely related project and

targeted OpenACC using the OmpSs compiler [174, 46], which, like OpenARC, can generate

output OpenCL. However, instead of developing optimizations inside the OpenACC to OpenCL

translation, they generate SPD code for SPGen (Stream Processing Generator) alongside

OpenCL. The separation program designator (SPD) code bypasses the OpenCL abstraction

layer, translating directly into HDL. This seems to be a promising project to complement the

OpenACC-to-FPGA framework, as it performs a similar function but uses a very different

software stack not reliant on the Intel FPGA SDK for OpenCL, which has both advantages and

disadvantages.

Sommer et al. [175] presented a fully functional implementation of the OpenMP

device offloading for Xilinx FPGAs. The work integrated a custom compiler toolflow into the

LLVM/Clang OpenMP offloading infrastructure. The input program contains one or more

OpenMP target directives. The compiler generates a complete FPGA design, including a

ThreadPoolComposer device software executable, Vivado HLS input file, and kernel description.

In the prototype, the FPGA offloaded versions show slower performance than one 4-core CPU.

The Scalable Parallel Computing Laboratory (SPCL) at ETH Zurich is also developing

several tools for high-level FPGA programming, although their approach is very different from

the OpenACC-to-FPGA framework. One work done by de Fine Licht and Hoefler incorporates

software engineering design principles into HLS development [176]. These works are somewhat

similar to our work in that they try to account for differences when targeting an Intel or Xilinx

FPGA through a C++ library they developed called hlslib. In contrast, our work focused on

using OpenCL C for Intel and Xilinx FPGA kernels to evaluate the portability and performance

of starting from a kernel optimized for an Intel platform and then porting that specification to a

Xilinx platform.

Another work from SPCL, the DataCentric (DaCe) project [177] recently integrated

FPGA support. DaCe relied on Python and a graphical user interface-based dataflow diagram to

map computations to hardware. Although this abstraction level is significantly different from that
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of traditional HPC applications, it could map well to dataflow architecture of FPGAs for certain

applications. DaCe might be an interesting option for new FPGA-centric applications, but it

would require significant code restructuring and algorithm modifications to existing applications.

2.8 Directive-based FPGA Programming: Conclusions

This chapter presents a directive-based, high-level FPGA-specific optimization framework,

consisting of a set of user directives and corresponding compiler optimizations, for more efficient

FPGA computing. The proposed framework enables directive-based interactive programming

by allowing users to provide important information to the compiler using directives. These

directives instruct the compiler to automate FPGA-specific optimizations and allow control of

important tuning options at a high level. We have developed several FPGA-specific optimizations

in the OpenARC compiler framework, such as a reduction optimization to exploit shift registers,

sliding window optimizations to enable more efficient pipelining, and branch-variant code motion

optimization to reduce overall resource usage.

We first evaluate the proposed framework by porting five OpenACC benchmarks and

comparing them against manually optimized OpenCL versions on an Intel Stratix V FPGA.

The results show that the directive-based, semi-automatic optimizations can successfully realize

performance comparable to the hand-written, low-level codes in many cases, and that OpenACC

FPGA programs can have performance benefits over OpenACC GPU programs and OpenMP

CPU programs in terms of runtime and power usage.

Next, these optimizations were holistically evaluated against a set of representative

benchmarks using Arria 10 and Stratix 10 FPGAs. The experimental results show that

multi-threaded and single-threaded kernels can perform well on FPGAs, depending on which

optimizations can be applied to a specific application. For example, most applications that allow

for advanced single-threaded optimizations outperform their multi-threaded counterparts. In

contrast, applications in which these single-threaded optimizations do not apply might perform

best using multi-threaded compute unit or SIMD replication.

The relationship between resource usage and runtime performance was also explored. In

general, higher resource usage indicates better utilization that typically results from replication,

which leads to better performance. However, there are also several exceptions to this trend. In

some cases, if two benchmark versions employ the same degree of parallelism, then higher resource
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usage can indicate less-efficient routing and could hurt performance. In other cases, if additional

logic is implemented that results in higher resource usage and sacrifices the kernel fmax, then

performance can suffer. Finally, even if more logic were implemented without sacrificing the fmax,

lower performance is still observed if the initiation interval is increased.

The impact of optimizations on compilation time is mostly straightforward; as more

aggressive optimizations are applied, compilation times increase. However, some optimizations

have a smaller impact on compilation times, such as SIMD replication for multi work-item kernels

and non-replicating optimizations for single work-item kernels. When investigating performance

portability between the two devices, we see that the Arria 10-optimized kernels typically perform

well on the newer devices, but the Stratix 10-optimized kernels may not be portable to the older

device, or may perform poorly.

Additionally, an initial evaluation on the LULESH 2.0 proxy application was discussed.

We showed that, while the entire application cannot be mapped to the Stratix 10 FPGA, we could

map and execute a representative kernel, and apply OpenACC-based optimizations to improve

performance.

A study comparing the performance portability of Intel-FPGA-specific and Xilinx-

FPGA-specific OpenCL was discussed. We saw that even though OpenCL is a portable standard,

applications typically could not be ported between the two devices without minimal modifications,

and that these minimal modifications are far from sufficient for portable performance. These

evaluations further motivate the need for a higher-level abstraction for general scientific FPGA

programming, for example the OpenACC-to-FPGA framework.

We plan to aggressively extend the OpenACC-to-FPGA framework in the future.

An immediate target is to integrate the Aspen performance modeling tool [143, 142] into the

OpenACC-to-FPGA translation to automate the optimization process, including threading-model

selection and lower level tuning of replication and unrolling factors.

We also aim to support Xilinx devices in the near future. Developing hlslib [176] and

other cross-platform tools at the OpenCL level can greatly simplify multidevice support in the

OpenACC-to-FPGA framework. Also, the work presented in Section 2.6.1 is a major step toward

supporting Xilinx hardware.
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Although the presented directive-based framework has exclusively relied on OpenACC as

the front-end programming model, we envision supporting OpenACC and OpenMP within this

framework due to the introduction and increased popularity of the OpenMP offloading model.

By employing tools such as CCAMP [13, 14] (the main subject of Chapter III) for OpenMP

to OpenACC translation and developing an analogous FPGA-specific API for OpenMP, the

OpenACC-to-FPGA framework can be extended to support OpenMP offloading models.

Finally, with the introduction of the OneAPI framework, Intel’s FPGA support is

projected to shift from OpenCL to OneAPI’s SYCL/DPC++ implementation. Likewise, our

long-term goal is to migrate the OpenACC-to-FPGA framework to use these newer intermediate

representations.
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CHAPTER III

AN INTEGRATED TRANSLATION AND OPTIMIZATION FRAMEWORK FOR OPENMP

AND OPENACC

This chapter contains previously published material with co-authorship. All of the

presented research in this chapter was conducted as a collaboration between the University

of Oregon and Oak Ridge National Laboratory. The original translation passes (Sections 3.3,

3.5.2) and evaluation were presented at HeteroPar 2019 [13]. The rest of the work in this chapter

was presented at SC 2020 [14]. For both publications, Seyong Lee was instrumental in the

conceptualization of the projects, and provided continued support, suggestions, and advice

throughout the projects with weekly meetings. Dr. Lee was also responsible for writing the

original OpenARC translation pass for the OpenMP to OpenACC direction, and for translating

several algorithms and pseudocode into concrete OpenARC compiler passes for the device-specific

optimizations. Finally, Dr. Lee assisted with revisions to the documents, and sometimes portions

of the writing, typically in the introductions and conclusions. Allen Malony and Jeffrey Vetter

both provided high-level guidance and advice during all three projects. They both also assisted

with revisions, and contributed information for the introduction and conclusions sections. I

researched, designed, and, with help from Dr. Lee as mentioned above, implemented the compiler

passes for works published at HeteroPar 2019 and SC 2020. I also collected all data, performed all

experiments, and did the bulk of writing for both publications.

3.1 OpenMP and OpenACC Interoperable Framework: Introduction

Recent trends toward the end of Dennard scaling and Moore’s law indicate that future

computing systems will become more specialized and comprise more complex architectures in

terms of processors, accelerators, memory hierarchies, on-chip interconnection networks, storage,

and so on; this trend has been broadly labeled as extreme heterogeneity [6]. Heterogeneous

systems that contain more than one type of device (e.g., multicore CPUs, GPUs, field-

programmable gate arrays [FPGAs], digital signal processors) have already been observed as

the new norm in high-performance computing (HPC), machine learning, and embedded computing

communities [178, 179]. Heterogeneous computing allows programmers from different application

domains to accelerate their applications by mapping computations to workload-specific devices.

However, exploiting these devices often requires low-level, heterogeneous programming models
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such as CUDA and OpenCL, which often require expertise in the underlying hardware and force

programmers to adapt their applications specifically to unique devices, incurring programmability

and performance portability issues [180].

Directive-based, high-level programming models, such as OpenMP [170] and

OpenACC [168], have evolved to alleviate these programming challenges in heterogeneous

computing. These directive-based approaches allow programmers to provide the compilers with

important application characteristics (e.g., parallelism and data sharing) via a set of directives to

transfer much of the low-level programming and optimization burdens to the compilers. However,

as shown in the following sections, device-specific implementations and varying levels of language

support and maturity across compilers make it difficult for the existing directive solutions to

achieve the ideal performance and portability promised by these standards.

To address these issues, in this chapter we propose CCAMP, an integrated translation and

optimization framework for OpenACC and OpenMP. CCAMP is built on top of OpenARC [39],

and performs: (1) automatic translations between the two directive models to enable better

performance portability by letting programmers choose more mature programming solutions

preferred by the target device and (2) automatic optimizations to better map computations to

the target device in a way preferred by the back-end compilers on the given device.

OpenARC uses a high-level intermediate representation and is equipped with various

built-in compiler analysis and transformation passes, including OpenMP directive parsing

capabilities. The proposed CCAMP framework is built on top of the existing OpenARC and

leverages OpenARC’s OpenMP and OpenACC parsers, initial lexical analysis, and abstract

syntax tree generation. However, the CCAMP translation and optimization layers are novel

contributions in this project, as well as modifications of the OpenARC parsers to accommodate

directive extensions.

The main contributions of this chapter include:

– the design and implementation of CCAMP Translation, an automatic framework that

transforms OpenMP 4+ to OpenACC and vice versa;

– the design and implementation of CCAMP Optimization, a general optimization strategy to

map computations to devices in a way preferred by the back-end compilers;
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– an evaluation of the proposed framework across an array of devices (e.g., Intel Xeon CPU,

IBM Power 9, Nvidia P100, V100) and compilers (e.g., clang, PGI, XLC, GCC) by using the

SPEC Accel Benchmark Suite, two kernel benchmarks, and LULESH 2.0; and

– the comparison and evaluation of OpenMP 4+ and OpenACC performance variability.

3.2 CCAMP: Background

3.2.1 OpenACC and OpenMP. As discussed in Chapter I, Section 1.2,

OpenACC and OpenMP are two popular programming models for directive-based high-level

heterogeneous computing. Although OpenACC was originally developed as a high-level alternative

to CUDA for GPU programming, because OpenACC was designed with accelerator-based

heterogeneous computing in mind, it has been adopted for various accelerators, such as FPGAs

(Chapter II), Xeon Phis [181], and custom CPUs, such as those in the Sunway TaihuLight

supercomputer [182, 183].

In contrast, OpenMP has been used for decades as an essential tool for thread-based

parallel programming on shared memory systems, such as multicore CPUs. However, from

version 4 onward, OpenMP has adopted offloading constructs [184]. OpenMP 4+ and OpenACC

share the common goal of providing programmers with a high-level approach to heterogeneous

programming. However, there are several important issues and setbacks to using these standards.

One primary issue is that existing directive solutions might not provide portability

across diverse architectures. Although OpenACC and OpenMP seek to offer a portable, high-

performance, cross-platform solution, they are often at the mercy of vendor-specific compiler

implementations. Many devices achieve high performance when using the vendor compiler tied to

the device, which often only supports either OpenACC or OpenMP, but not both.

However, even among compilers that prefer specific directive standards, the level

of language support, implementation quality, and strategies for the same standard can vary

greatly. This discrepancy is partially caused by the fact that the level of parallelisms that

OpenACC and OpenMP offer might be different from those in the target devices. For example,

although OpenACC and OpenMP offer three levels of parallelism—gangs, workers, and vectors in

OpenACC and teams, threads, and vectors in OpenMP—typical GPUs and CPUs offer only two

levels of parallelism: threadblocks and threads in Nvidia GPUs and threads and single instruction,

107



multiple data (SIMD) in Intel CPUs. Therefore, different compilers can choose different mapping

strategies.

As a result of these issues, existing OpenACC and OpenMP 4+ implementations

do not achieve the goal of being portable for heterogeneous systems. A primary goal of the

CCAMP framework is to allow programmers to fully use the existing OpenMP and OpenACC

implementations to achieve performance portability across heterogeneous devices.

3.2.2 OpenARC. As described in Chapter I, Section 1.3, OpenARC [39]

is an open-source OpenACC compiler built on top of the Cetus compiler framework [141],

which performs source-to-source translations of an input OpenACC program into an output

CUDA/OpenCL program, depending on target devices (e.g., Nvidia/AMD GPUs, Intel Xeon

Phis, Intel FPGAs). OpenARC uses a high-level intermediate representation and is equipped with

various built-in compiler analysis and transformation passes, including OpenMP directive parsing

capabilities.

The proposed CCAMP framework is built on top of the existing OpenARC and leverages

OpenARC’s OpenMP and OpenACC parsers, initial lexical analysis, and abstract syntax tree

generation. However, the CCAMP translation and optimization layers are novel contributions

in this chapter, as well as modifications of the OpenARC parsers to accommodate directive

extensions.

3.3 CCAMP: Automated Translation between OpenMP and OpenACC

As mentioned previously, CCAMP consists of two primary functions: (1) automated

translation between OpenMP 4+ and OpenACC and (2) automated optimization within OpenMP

4+ and OpenACC. This section discusses the rationale and implementation details for the

translation function.

Because we preserve the semantics of the original application and host code, features such

as MPI support, CUDA memory management, other low-level optimizations of legacy OpenACC

applications, and asynchronous and concurrent kernels are fully supported and unaffected by

CCAMP’s optimization and translation passes.

CCAMP’s Translation facilities includes two primary translation passes:

– OpenMP 4+ to OpenACC and

– OpenACC to OpenMP 4+.
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CCAMP translation can be leveraged to migrate codes to systems with different software

support or target devices—for example, those supporting only either OpenACC or OpenMP,

which is common among current accelerators and compilers. The translation pass can be used

alone or in combination with the CCAMP Optimization passes, as shown in Section 3.4.

Generally, the translations were developed by analyzing how relative parallelism is

expressed in the two different standards and by carefully reviewing the intentions and restrictions

of the individual directives in the OpenMP 4+ and OpenACC standards’ documentations.

Although CCAMP does not support the entire OpenACC and OpenMP standards, many

unsupported constructs are also not supported by underlying back-end compilers, especially when

offloading to accelerator devices. By omitting these constructs and focusing on the directives and

clauses most commonly used by programmers and implemented by back-end compiler writers,

optimized and translated codes can be more confidently generated across different ecosystems.

Even with these unsupported constructs, CCAMP still generates functionally correct output

programs by serializing or ignoring them, similar to current back-end compilers.

A significant portion of the OpenMP 4+ and OpenACC standards are interchangeable

and can be directly substituted by using a pattern-matching approach or simple sed script.

Table 14 gives an example of many of these analogous directives, clauses, and API calls. However,

there are several situations and constructs that require more than direct substitution.

3.3.1 OpenMP 4+ to OpenACC. Of the two primary translations, OpenMP

4+ to OpenACC is the more straightforward direction. In a traditional view, OpenMP is a

prescriptive set of directives in which users explicitly define the intended parallelism, variable

scoping, and so on. Thus, most of the information necessary for translating to OpenACC is user-

provided and requires no additional analysis. However, the prescriptive nature of OpenMP is

shifting with the introduction of new OpenMP 5 features, as discussed in Chapter I, Section 1.2.

A key exception is the OpenMP critical region. By design, OpenACC does not contain an

analogous directive for creating critical regions or regions to be executed in a mutually exclusive

manner. Because OpenACC’s initial intended use and primary current use involve offloading

code to GPU accelerators, the standard designers intentionally omitted a directive for creating

mutually exclusive code regions since these types of approaches typically perform very poorly on

GPUs. Instead, the designers encouraged algorithm writers to rethink their designs.
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Table 14. Examples of straightforward directive translations implemented in CCAMP.

OpenACC OpenMP 4+

Data
#pragma acc data #pragma omp target data

directives
#pragma acc data enter #pragma omp target enter data
#pragma acc data exit #pragma omp target exit data

Data

create alloc

clauses

copyin to
copyout from

copy tofrom
present assert(omp target is present())

Parallel #pragma acc parallel loop
#pragma omp target teams

directives #pragma acc kernels loop

Parallel

gang
distribute

clauses

distribute parallel for
worker parallel for

vector
simd

parallel for simd
Parallel num gangs num teams

size num workers num threads
clauses vector length simdlen

Other

collapse collapse

clauses

if if
private private

reduction reduction

API

acc set device num omp set default device

calls

acc get device num omp get default device
acc on device !omp is initial device

acc malloc omp target alloc
acc free omp target free
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However, one special case of OpenMP critical regions can be appropriately translated by

CCAMP. Critical regions in OpenMP are commonly used to express array reductions. By using

OpenARC’s auto-reduction analysis, CCAMP can determine whether a critical region is used

for an array reduction and instead generate appropriate OpenACC reduction statements. For

other non-reduction instances of OpenMP critical regions, CCAMP cannot translate the code and

reports this to the user.

Another incompatibility when translating OpenMP 4+ involves the recently introduced

OpenMP tasking directives. CCAMP currently serializes these directives, which is semantically

correct but inefficient. The authors aim to address this in future works.

3.3.2 OpenACC to OpenMP 4+. Translating OpenACC into OpenMP 4+

represents a greater challenge than the converse direction. Unlike OpenMP, OpenACC at its

core is a descriptive set of directives. OpenACC programmers can often elect to shift the burden

of mapping parallelism to hardware to the underlying compiler. As a result, perfectly valid

OpenACC programs might omit a significant amount of information that would typically be

required in an analogous OpenMP program. Translation between the two standards requires an

analysis of loop constructs, available parallelism, vectorization considerations, variable scoping and

memory access, and other information typically omitted in OpenACC to generate the necessary

information.

For example, in Table 14, OpenACC “gang” and “worker” are equated with OpenMP

4+ “teams distribute” and “parallel for,” respectively. However, OpenACC programmers

can omit these directives, often without consequence. Omission in OpenMP would result in

a serial execution. Therefore, before translating, CCAMP attempts to supply any missing

parallelization clauses (e.g., gang, worker, and vector) by using a combination of the provided

OpenACC directives and OpenARC’s auto-parallelization pass [141]. Analyzed loops are marked

as independent or sequential and then annotated with an appropriate parallelization clause before

being translated into OpenMP 4+. This is very similar to the process performed in the initial

stage of the CCAMP Optimization pass, as described in Section 3.4.

Besides generating necessary clauses, other issues resulting from OpenACC’s descriptive

nature must be addressed. In OpenACC, reduction statements for shared variables in a nested

loop can be placed on the nested loop or the outermost loop. However, OpenMP requires
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the reduction clause to be placed with the teams directive. Therefore, CCAMP migrates any

reduction clauses before the final translation. Similarly, clauses in OpenACC specifying thread

counts and work group sizes (num gangs, num workers, vector length) are typically placed with

the initial parallel directive, whereas the OpenMP analogs (num teams, num threads, simdlen)

are required to reside with the nested parallelism directives. Again, the CCAMP translation pass

automatically migrates these clauses before direct translation.

3.4 CCAMP: Automated Optimization of OpenMP and OpenACC

Section 3.3 focuses on the legality of translation and adhering to the standard. However,

generating translated code that satisfies the corresponding standard does not guarantee

performance portability. Different compilers have varying levels of language support and

implementation maturity, and the popular compilers differ in their preferred mapping strategies

between parallelism defined by the standard and parallelism available in target devices.

As a result, no single translation strategy achieves the best available performance in all

device + compiler combinations. To address this, this section discusses a generalized optimization

strategy, which was implemented as a compiler pass within the CCAMP framework. These

optimizations can be applied in conjunction with CCAMP Translation or independently for

applications that do not require translation. CCAMP’s optimization strategy first employs a

generalized parallelism identification pass, followed by a language- and device-specific optimization

pass. Although psuedocode algorithms are provided for the optimization passes, several details

and corner cases are omitted for brevity and readability.

3.4.1 Extracting Parallelism. Algorithm 1, which is implemented in the

CCAMP framework, is applied regardless of the input language and target device. The CCAMP

Optimization pass first identifies user-defined loop independence, parallelism, and vector status

via OpenMP or OpenACC loop-related clauses, and then it appropriately marks loops by using

internal notation. This internal notation is used in additional passes to reapply parallelism

directives for specific target devices. Although the OpenMP and OpenACC standards do not

strictly require loops annotated with parallelization clauses to be independent, this is typically

the intention of programmers; thus, CCAMP provides an option to assume that these loops are

sequentially independent. However, for programmers that require a more strict adherence to the

standards, CCAMP also provides an alternative option that performs OpenARC analysis, even
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on loops annotated by users with parallelism directives, and emits any inconsistencies as compiler

warnings.

After marking user-annotated loops with internal annotation, CCAMP performs a second

sweep to automatically categorize any unmarked loops not explicitly annotated by the user. Loop

independence and viability for parallelism are analyzed by using OpenARC’s auto-parallelization

analysis pass. Viability for vectorization can also be automatically determined in many cases.

However, because many underlying compilers are very conservative when applying vectorization

and often ignore user-supplied vectorization clauses, CCAMP also conservatively marks loops for

vectorization by using a vector-friendly analysis with the following criteria. The loop: (1) is either

parallelizable or vectorizable from a strictly theoretical sense without breaking program semantics,

(2) has compile-time constant loop bounds, and (3) does not have control flow divergence,

irregular array accesses, function calls, or inner loops, which might not disqualify a loop from

being strictly parallelizable or vectorizable but could have significant performance disadvantages.

Although most compilers ignore superfluous vectorization directives, these directives can inhibit

opportunities for aggressive loop collapsing. CCAMP reports loops marked by compiler analysis to

the user, providing the user with an opportunity to overwrite the compiler’s behavior by manually

applying additional directives.

The final loop in Algorithm 1 performs a loop nesting analysis, automatically determining

which loops are tightly nested and suitable for loop collapsing. For a pair of collapsible loops, only

the inner loop is marked with the internal notation, which allows the collapse clause to percolate

up through parent loops as the internal notation is consumed.

3.4.2 OpenMP Mapping on CPUs. Because of the large disparity in thread

count and clock speeds between CPUs and GPUs, OpenMP directives must be configured

differently for the two devices to optimize performance. CCAMP’s CPU-specific OpenMP

Optimization, outlined in Algorithm 2, first focuses on applying SIMD parallelism. CPU compilers

have mature vector parallelization facilities, and exploiting SIMD parallelism significantly affects

CPU performance.

Specifically, CCAMP annotates the innermost loop marked as vector-friendly (by

OpenARC vector-friendly analysis or by the user) with an OpenMP SIMD directive. CCAMP

then prioritizes loop collapsing, which is generally beneficial in the evaluated benchmarks. Finally,
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Algorithm 1 Extract Parallelism and Tightly-Nested Loops

function arc analysis(Loop L)
Perform loop auto-parallelization analysis and mark L
with arc loop para if parallelizable

Perform loop vector-friendly analysis and mark L
with arc loop vectfrd if vector-friendly

for loops L in OpenMP regions
if L annotated with teams distribute or parallel for

Mark L with arc loop para

if L annotated with simd
Mark L with arc loop vect

for loops L in OpenACC regions
if L annotated with loop independent, gang, or worker

Mark L with arc loop para

if L annotated with loop vector
Mark L with arc loop vect

for loops L in OpenMP/OpenACC regions
Call arc analysis(L)
if L tightly nested in enclosing loop

Mark L with arc loop tnest

CCAMP applies a single parallelization directive, #pragma openmp teams distribute parallel for,

to the outermost loop marked as parallelizable. Although this single directive could be separated

and applied to the loops in a nested fashion, because of the coarse granularity and lower core

count of CPUs, the performance on evaluated applications was typically higher with the conjoined

directive.

Algorithm 2 CCAMP OpenMP CPU Optimization

for each OpenMP loop nest N
for each loop L (innermost to outermost)

if L marked with arc loop vectfrd

Annotate L with #pragma omp simd
Remove arc loop tnest mark
Break

for each loop L (outermost to innermost)
if L marked with arc loop para

Let n be the nesting level of tightly-nested
parallel loops with arc loop para

starting from L
Annotate L with #pragma omp teams

distribute parallel for
Annotate L with collapse(n) if n > 1
Break
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3.4.3 OpenMP Mapping on GPUs. Instead of prioritizing SIMD use, CCAMP’s

OpenMP GPU Optimization focuses on maximizing thread counts through loop collapsing and

nested parallelism. In the evaluated applications, LLVM clang and IBM XLC, two OpenMP

compilers with offloading support, largely ignored SIMD clauses when targeting GPUs. Therefore,

in Algorithm 3, CCAMP first collapses all tightly nested loops based on the analysis in the

parallelism extraction phase. CCAMP then applies parallelism directives at the two outermost

tightly nested parellelizable loops: #pragma omp teams distribute at the outermost nested loops

and #pragma omp parallel for at the second outermost nested loops. Unlike the CPU case

in which these clauses were applied in a single conjoined directive, when targeting GPUs, the

additional parallelism from the nested approach leads to higher GPU utilization and performance.

As shown in Section 3.5.4.1, unlike clang and XLC, GCC SIMD clauses are critical when targeting

the GPU. In future iterations of CCAMP, this behavior must be incorporated or compiler-specific

variants must be created.

Algorithm 3 CCAMP OpenMP GPU Optimization

for each OpenMP loop nest N
for each loop L (outermost to innermost)

if L marked with arc loop para

Let n be the nesting level of tightly-nested
parallel loops with arc loop para

starting from L
Annotate L with collapse(n) if n > 1
Break

for each tightly-nested loops M with arc loop para

if M is the outermost nested loop
Annotate M with #pragma omp teams distribute
if M has immediate inner nested parallel loops

with arc loop para, K
Annotate K with #pragma omp parallel for

else Annotate M with #pragma omp parallel for

3.4.4 OpenACC Mapping. Although the OpenMP optimizations required

separate mappings for GPUs and CPUs, the same mapping is employed for both devices with

OpenACC. A single set of generalized directives seem to perform well across devices with the

same source code.

In contrast to the OpenMP SIMD clause, the OpenACC vector clause is recognized by

the PGI compiler on GPU and CPU devices. However, due to looser restrictions in OpenACC,

it might not map threads directly to vector units. Because of this, CCAMP’s OpenACC
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Optimization, outlined in Algorithm 4, first applies a vector directive to the innermost vector-

friendly loop, if present. CCAMP then collapses all nested parallelizable loops. Finally, all loops

marked as parallel are annotated with a #pragma acc loop independent directive. Although

additional clauses (i.e., gang, worker) could be appended for specificity, this did not significantly

affect performance with PGI in the evaluated benchmarks.

Algorithm 4 CCAMP OpenACC CPU and GPU Optimization

for each OpenACC loop nest N
for each loop L (innermost to outermost)

if L marked with arc loop vectfrd

Annotate L with #pragma acc loop vector
Remove arc loop tnest mark
Break

for each loop L (outermost to innermost)
if L marked with arc loop para

Annotate L with #pragma acc loop independent
Let n be the nesting level of tightly-nested parallel loops with arc loop para starting

from L
Annotate L with collapse(n) if n > 1
Break

3.4.5 Optimization Code Examples. Listing 3.1 demonstrates CCAMP’s

optimization algorithms executed on a simple example application. This application, along with a

similarly coded Matmul application, is the basis of the fundamental kernel used in the evaluation

described in Section 3.5.1.3, although many details are omitted, such as data movement directives

and variable initialization.

Listing 3.1 contains four versions of the OpenMP Jacobi application: (1) unmodified

input program, (2) code with internal annotations after applying parallelism extraction, (3)

CPU-optimized code after applying Algorithm 2, and (4) GPU-optimized code after applying

Algorithm 3.

Lines 14–29 of Listing 3.1 show how CCAMP’s parallelism extraction internally annotates

loops by using user-supplied directives, auto-parallelizaion and vector-friendliness analyses,

and loop-nesting analysis. For the CPU optimization (lines 31–42), CCAMP prioritizes SIMD

parallelism, and for the GPU optimization (lines 44–53), CCAMP prioritizes loop collapsing.

Listing 3.2 contains three versions of the OpenACC Matmul application: unmodified

input, code with internal annotations, and optimized code after applying Algorithm 4.
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Listing 3.1 Naive OpenMP Jacobi CCAMP Optimization

1 // Naive OpenMP Jacobi
2 #pragma omp target teams distribute
3 for (i = 1; i <= SIZE; i++)
4 #pragma omp parallel for
5 for (j = 1; j <= SIZE; j++)
6 a[i][j] = (b[i − 1][j] + b[i + 1][j] + b[i][j − 1] + b[i][j + 1]) / 4.0f;
7
8 #pragma omp target teams distribute
9 for (i = 1; i <= SIZE; i++)

10 #pragma omp parallel for
11 for (j = 1; j <= SIZE; j++)
12 b[i][j] = a[i][j];
13
14 // CCAMP Parallelism Extraction and Loop Nesting
15 #pragma arc loop para
16 for (i = 1; i <= SIZE; i++)
17 #pragma arc loop para
18 #pragma arc loop vectfrd
19 #pragma arc loop tnest
20 for (j = 1; j <= SIZE; j++)
21 a[i][j] = (b[i − 1][j] + b[i + 1][j] + b[i][j − 1] + b[i][j + 1]) / 4.0f;
22
23 #pragma arc loop para
24 for (i = 1; i <= SIZE; i++)
25 #pragma arc loop para
26 #pragma arc loop vectfrd
27 #pragma arc loop tnest
28 for (j = 1; j <= SIZE; j++)
29 b[i][j] = a[i][j];
30
31 // CCAMP CPU Optimization
32 #pragma omp teams distribute parallel for
33 for (i = 1; i <= SIZE; i++)
34 #pragma omp simd
35 for (j = 1; j <= SIZE; j++)
36 a[i][j] = (b[i − 1][j] + b[i + 1][j] + b[i][j − 1] + b[i][j + 1]) / 4.0f;
37
38 #pragma omp teams distribute parallel for
39 for (i = 1; i <= SIZE; i++)
40 #pragma omp simd
41 for (j = 1; j <= SIZE; j++)
42 b[i][j] = a[i][j];
43
44 // CCAMP GPU Optimization
45 #pragma omp teams distribute parallel for collapse(2)
46 for (i = 1; i <= SIZE; i++)
47 for (j = 1; j <= SIZE; j++)
48 a[i][j] = (b[i − 1][j] + b[i + 1][j] + b[i][j − 1] + b[i][j + 1]) / 4.0f;
49
50 #pragma omp teams distribute parallel for collapse(2)
51 for (i = 1; i <= SIZE; i++)
52 for (j = 1; j <= SIZE; j++)
53 b[i][j] = a[i][j];

Lines 12-24 show the resulting internal annotations after CCAMP extracts parallelism

and tightly nested loops. Lines 26-36 show the resulting parallelism mapping after optimizing with

Algorithm 4. The loop lines 6-7 fails to meet the criteria for CCAMP’s vector-friendly analysis,

and so is annotated with a sequential clause. When targeting the CPU with the PGI compiler,

inclusion or exclusion of a vectorization directive for this loop does not affect performance.

However, annotating the loop with an OpenACC vector directive when targeting GPU devices

significantly degrades performance. Essentially, the PGI compiler maps the vectorization clause
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Listing 3.2 Naive OpenACC Matmul Optimization

1 // Naive OpenACC Matmul
2 #pragma acc parallel loop
3 for (i=0; i<M; i++) {
4 for (j=0; j<N; j++) {
5 float sum = 0.0F;
6 for (k=0; k<P; k++)
7 sum += b[i∗P+k]∗c[k∗N+j];
8 a[i∗N+j] = sum ;
9 }

10 }
11
12 // CCAMP Parallelism Extraction and Loop Nesting
13 #pragma arc loop para
14 for (i=0; i<M; i++) {
15 #pragma arc loop para
16 #pragma arc loop tnest
17 for (j=0; j<N; j++) {
18 float sum = 0.0F;
19 #pragma arc loop vect
20 for (k=0; k<P; k++)
21 sum += b[i∗P+k]∗c[k∗N+j];
22 a[i∗N+j] = sum ;
23 }
24 }
25
26 // CCAMP Optimization
27 #pragma acc loop collapse(2)
28 for (i=0; i<M; i++) {
29 for (j=0; j<N; j++) {
30 float sum = 0.0F;
31 #pragma acc loop seq
32 for (k=0; k<P; k++)
33 sum += b[i∗P+k]∗c[k∗N+j];
34 a[i∗N+j] = sum ;
35 }
36 }

to thread-level parallelism. Omitting the vector clause in this instance allows the compiler to map

thread-level parallelism to the parent collapsed loops, leading to higher overall utilization.

These code examples represent simple applications in which these optimizations can be

easily applied manually. However, large code bases (e.g., several of the applications evaluated

in this work) can contain hundreds of directives and far more complicated loop interactions and

relationships, making manual optimization application tedious and error-prone. This project

addresses this issue with automatic applications of the aforementioned algorithms implemented in

the CCAMP framework.

3.5 Evaluation of CCAMP Framework

3.5.1 Experimental Setup of Intel, IBM, and Nvidia Platforms.

3.5.1.1 Devices. CCAMP was evaluated by using four multithreaded devices: two

multicore CPUs and two manycore GPUs. These four devices are contained within two separate

nodes. The first is an Intel-based cluster node with attached Nvidia GPUs (P100). The second is
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an IBM-based node with an attached Nvidia GPU (V100), modeled after the nodes of the Summit

supercomputer.

Intel Cluster:

– Xeon CPU: Intel(R) Xeon(R) CPU E5-2683 v4 @

– P100 GPU: Nvidia Tesla P100-PCIE-12GB (Pascal)

Summit Node:

– Power9: IBM POWER9, altivec supported, 176 CPUs, 4 threads per core, 22 cores per

socket, 2 sockets

– V100: Nvidia Tesla V100 SXM2 16GB (Volta)

Each device is typically coupled with a vendor-supplied compiler that strongly prefers either

OpenACC or OpenMP 4+. This preference is one of the main motivations for finding a fluid

way to translate between the standards.

3.5.1.2 Compilers. Along with the devices mentioned, three compiler frameworks

were used in the evaluation: two specific to device vendors (i.e., PGI, XLC) and one open-source

solution (i.e., clang). The PGI compiler recognizes both OpenACC and OpenMP 4+ directives,

although it does not yet support offloading for OpenMP 4+, only host execution. Currently, we

use the latest-released community edition of the compiler, PGI 19.4-0 (LLVM 64-bit for the Intel

node and Linuxpower target for the IBM node). Each compilation includes the following flags:

“-V19.4 -Mllvm -fast -acc -mp -Mnouniform.” A device-specific flag for each target architecture

was also included: “-ta=multicore” for the Xeon CPU and Power9, “-ta=tesla:cc60” for the P100,

and “-ta=tesla:cc70” for the V100.

The IBM XLC compiler only recognizes OpenMP 4+ directives, although it does support

offloading. This compiler is only available on the IBM node (Power9/V100 devices), whereas

the clang and PGI compilers are available on both evaluated nodes. We specifically use IBM

XL C/C++ for Linux, V16.1.1 (Community Edition), the most recently released version. The

flags “-O3 -qarch=pwr9 -qsmp=omp -qnooffload” are used on the Power9 and “-O3 -qsmp=omp

-qoffload” are used on the V100.

The LLVM project, including clang, is an open-source project that is not tied to a

specific vendor. As a result, clang is easily installed on both evaluated nodes and supports all
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the evaluated devices. However, the current version of clang still supports only the OpenMP 4+

directives, not OpenACC. LLVM version 9.0.0 (git tag llvmorg-9.0.0-rc6) is used. For each device,

the “-fopenmp” flag is used, and “-fopenmp-targets” is set to a device-triple flag specific to each

architecture: “x86 64-unknown-linux-gnu” for the Xeon CPU, “nvptx64-nvidia-cuda” for the

V100 and P100, and “ppc64le-unknown-linux-gnu” for the Power9. We also include “–cuda-gpu-

arch=sm 60” and “–cuda-gpu-arch=sm 70” for the P100 and V100, respectively.

Finally, an initial evaluation is included by using the GNU GCC compiler, version

10.1, installed via spack with nvptx-none support for OpenACC and OpenMP. Details on

specific compiler versions and optimization flags used across different devices are found in the

accompanying artifact description. Applications are built with GCC using the “-foffload=-lm”

flag, and “-fopenacc” and “-fopenmp” for OpenACC and OpenMP, respectively.

3.5.1.3 Benchmarks. The SPEC Accel Benchmark suite, first introdcued in

Chapter I, Section 1.4 was used to evaluate CCAMP primarily because SPEC Accel is one of

the few benchmark suites with both OpenACC and OpenMP 4+ versions of several benchmarks.

This was required to directly evaluate the performance of CCAMP-translated codes against hand-

coded applications. The authors evaluated the OpenMP and OpenACC SPEC Accel benchmarks

written in C because CCAMP does not support Fortran.

– X03 ostencil (303 for OpenACC and 503 for OpenMP), a thermodynamics stencil kernel

(also referred to as os).

– X14 omriq, a convolution-based Hessian multiplication.

– X52 ep, an embarrassingly parallel application.

– X54 cg, a conjugate gradient kernel.

– X57 csp, a scalar penta-diagonal solver.

– X70 bt, a block tridiagonal solver for 3D PDEs.

Within the 503.ostencil, 557.sp, and 570.bt benchmarks, two different sets of OpenMP

4+ directives are included, distinguished by the SPEC INNER SIMD macro. These are treated as

separate benchmarks in the evaluations and are denoted by an asterisk suffix (X03*, X57*, X70*).
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CCAMP was also evaluated by using standard Jacobi and Matmul kernels adopted from

implementations available in the OpenARC repository[39]. The Jacobi kernel was parallelized

by using a “naive” OpenMP 4+ approach, and the Matmul kernel was parallelized by using a

“naive” OpenACC approach. The goal was to recreate what a beginner OpenACC or OpenMP

user might find as a reasonable implementation after reviewing the standards and introductory

documentation.

For the naive Jacobi kernel shown in Listing 3.1, OpenMP 4+’s two levels of parallelism

were applied in a nested way because there was a pair of nested loops. An even simpler approach

was taken for the naive Matmul kernel in Listing 3.2; only an OpenACC parallelism directive was

applied to the outermost loop. Although this seems overly naive, a “less is more” approach often

results in good performance for OpenACC applications due to the descriptive nature of OpenACC

and the maturity of the PGI OpenACC compiler.

Finally, with the goal of targeting a more realistic application, the authors include an

evaluation that uses the LULESH 2.0 proxy application [171]. LULESH (Livermore Unstructured

Lagrangian Explicit Shock Hydrodynamics) is a widely studied application related to codesign

efforts for exascale computing. Because LULESH is written in C++, it must be ported to C for

evaluation with CCAMP. However, because LULESH 2.0 contained few C++ constructs, the port

was relatively straightforward.

To express the scope and size of the different SPEC benchmarks and LULESH,

Table 15 lists several different attributes of each SPEC benchmark. Using grep, wc, and manual

observations, the authors recorded the total number of C-code lines (“Lines of C”), OpenACC

(“ACC”) and OpenMP directives (“OMP”), compute kernels or parallel regions (“Kernels”),

compute kernels with nested loops (“Nests”), and the number of vector-friendly clauses added

for semi-automated compilation (“VF”). Only kernels, nests, and vector-friendly clauses were

recorded once because their numbers are consistent between the OpenACC and OpenMP versions.

3.5.2 Evaluation of CCAMP Translation. As mentioned previously, the

SPEC benchmark suite contains OpenMP 4+ and OpenACC versions of the same applications,

which were leveraged to develop and evaluate CCAMP’s translation facility. After translating a

SPEC OpenACC application to OpenMP 4+, the new OpenMP code and run time performance

can be directly compared with the corresponding SPEC OpenMP 4+ application, provided
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Table 15. SPEC Accel Benchmark Attributes

Lines of C ACC OMP Kernels Nests VF
X03 1,245 13 6 1 1 1
X14 1,179 4 4 2 1 0
X52 957 11 23 5 3 0
X54 1,457 34 43 24 2 1
X57 3,586 78 285 66 65 0
X70 7,773 61 126 43 43 0

LULESH 8,594 95 31 2 0

that input data, iteration count, and other application-specific inputs are carefully accounted

for. Similarly, the SPEC OpenACC applications can be used to evaluate the OpenMP 4+ to

OpenACC translation.

Figure 22 shows the results of an evaluation performed by using the clang and PGI

compilers on Intel Xeon and Nvidia P100 devices. First, manually coded OpenMP 4+ applications

unmodified from the SPEC benchmark suite were compared with the code automatically

generated by CCAMP Translation, which originated from the corresponding SPEC OpenACC

application. The performance evaluation of the OpenACC to OpenMP 4+ translation is

shown in the top row of Fig. 22. The bottom row represents the performance evaluation of

CCAMP’s OpenMP 4+ to OpenACC translation and compares manually coded OpenACC and

automatically generated OpenACC.

As shown in Fig. 22, no single mapping or translation can consistently provide high

performance across different architectures, especially for the more prescriptive OpenMP 4+

standard. This further motivates the need for the device-specific optimization presented in this

section.

However, there could be instances in which users want to apply CCAMP Translation but

not CCAMP Optimization. One current limitation of the CCAMP Optimization passes is their

omission of clauses that specify thread and work group sizes: “num teams, num threads, simdlen”

for OpenMP 4+ and “num gangs, num workers, vector length” for OpenACC. If an application’s

directives are already optimized for a specific device in one standard, then translation alone might

be enough to generate optimized code in the counterpart standard. The CCAMP Optimization

passes generate code specific to a class of devices (i.e., GPU-friendly or CPU-friendly) but do not

generate code for a specific device model. As mentioned in Section 3.7, one future goal of CCAMP
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CCAMP Translation
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Figure 22. Run time performance comparison of manually coded applications (blue) and CCAMP-
translated applications (orange) using CCAMP’s OpenACC to OpenMP 4+ (acc2omp) and
OpenMP 4+ to OpenACC (omp2acc) translation.
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is to improve device-specific optimization by scraping system information on thread limits and

core counts.

3.5.3 Evaluation of CCAMP Optimization. CCAMP’s Optimization passes

are independently evaluated for different device+compiler combinations. The results from three

experiments with OpenMP 4+ (i.e., Clang, PGI, XLC) and one experiment with OpenACC (i.e.,

PGI), are shown using the aforementioned SPEC benchmarks.

3.5.3.1 OpenMP 4+ Optimization with Clang. In Fig. 23, there is a stark

difference in performance for X03 on the CPU and for X03* on the GPUs. The SPEC benchmark

developers noticed these distinctions and implemented two different parallelization strategies,

likely intending users to choose X03 on GPU-like devices and X03* on CPU-like devices.

However, these differences immediately illuminate the advantages of using a framework such as

CCAMP. CCAMP aims to optimize performance across all devices with the same source code,

whereas the manually coded SPEC benchmarks require two separate source codes.

There are modest performance improvements for the X52 and X54 benchmarks on the

GPU devices. The manually coded SEPC applications place all the parallelism clauses on the

outermost loops, whereas CCAMP Optimization employs a nested parallelism approach when

targeting GPUs.

The large X57, X57*, X70, and X70* demonstrate modest performance improvements

on the CPU devices and significant improvements on the GPU devices when comparing CCAMP-

optimized versions with baseline unmodified versions. These applications highlight the advantages

of CCAMP since manually modifying the hundreds of kernels across the applications would be

extremely error prone and time consuming.

Finally, X14 represents an outlier in which CCAMP Optimization either fails to complete

(CPUs) or actually leads to a slight performance degradation (GPUs), indicating CCAMP still

has room for improvement.

3.5.3.2 OpenMP 4+ Optimization with PGI. When evaluating CCAMP’s

Optimization with OpenMP 4+ and the PGI compiler, the evaluation is restricted to CPU devices

since PGI does not support OpenMP 4+ offloading. As with clang, significant performance

improvements are seen when optimizing the X03 and X03* applications (Fig. 24). Compared with

clang, PGI-compiled binaries typically result in lower overall run times. This could indicate that
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CCAMP Optimization: Clang + OpenMP
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Figure 23. Clang + OpenMP. Run time comparison of SPEC hand-optimized (blue) and CCAMP
automated optimization (orange). (Smaller is better.)
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clang’s OpenMP 4+ development is focused on GPU optimization, whereas PGI is still limited

to CPU executions. This could also be an artifact of different optimization levels between the

compilers: “-fast” for PGI and “-O3” for clang.

CCAMP Optimization: PGI + OpenMP
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Figure 24. PGI + OpenMP. Run time comparison of SPEC hand-optimized (blue) and CCAMP
automated optimization (orange). (Smaller is better.)

3.5.3.3 OpenMP 4+ Optimization with XLC. When evaluating OpenMP

with the IBM compiler, efforts are restricted to the IBM node devices, the Power9, and V100.

Figure 25 shows a similar performance pattern with X03 on the Power9 and X03* on the V100.

On the V100, CCAMP Optimization significantly outperforms the manual baselines for most

applications.

XLC demonstrates more erratic behavior than the other compilers. For some applications,

XLC significantly outperforms clang and PGI on the Power9 (X52 ) and the V100 (X03, X54 )

devices. This suggests that XLC could take advantage of IBM-specific architecture features.

For other applications, such as X54 on the Power9, XLC experiences relatively catastrophic

performance execution (run time was extrapolated from three iterations). This most likely results

from XLC’s failure to vectorize OpenMP SIMD loops, even though the loops are identified

as vectorizable by OpenARC analysis and the other compiler frameworks. Generally, across

all compilers on CPU devices, recognizing and successfully vectorizing OpenMP SIMD loops

significantly affects performance.
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CCAMP Optimization: XLC + OpenMP
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Figure 25. XLC + OpenMP. Run time comparison of SPEC hand-optimized (blue) and CCAMP
automated optimization (orange). (Smaller is better.)

3.5.3.4 OpenACC Optimization with PGI. Because the authors are still in the

initial stages of GCC OpenACC evaluation, only the PGI compiler is used to evaluate CCAMP’s

OpenACC optimization on the SPEC Accel benchmarks (Fig. 26). For most applications and

devices, there was, at most, a modest performance improvement over the manually coded

applications. As shown in Section 3.5.4.3, OpenACC performance is typically much less sensitive

to the specific directive configuration, leaving fewer opportunities and a smaller need for

optimization.

For most applications, the manual and CCAMP-optimized OpenACC versions perform

similarly to the CCAMP-optimized OpenMP 4+ version. However, there are several exceptions.

OpenMP 4+ X03 and X52 on Power9 + XLC significantly outperform the OpenACC Power9 +

PGI counterpart. Conversely, the OpenACC X54 implementation on P100 + PGI significantly

outperforms the CCAMP-optimized OpenMP 4+ version compiled with clang. The SPEC

developers mention that the OpenMP 4+ and OpenACC versions cannot always be directly

compared for run time performance, which could result in the differences observed previously,

although the authors did verify that the same input data and host code were used in both

versions. Otherwise, this might be a motivation to translate between standards not just for

portability but also for performance, especially if tools exist to automate the translation, such

as CCAMP.
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CCAMP Optimization: PGI + OpenACC
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Figure 26. PGI + OpenACC. Run time comparison of SPEC hand-optimized (blue) and CCAMP
automated optimization (orange). (Smaller is better.)

3.5.3.5 Putting it Together: CCAMP Translation and Optimization. This

section demonstrates how general programmers can use CCAMP’s Translation and Optimization

facilities in tandem to develop optimized and portable OpenACC and OpenMP 4+ applications.

Table 16 shows the performance of the naive Jacobi OpenMP 4+ implementation, which is

described in Section 4.3, across different device + compiler combinations and the resulting

performance after applying CCAMP’s Optimization and Translation passes.

Using language translation enables two new device + compiler combinations—

PGI + P100 and PGI + V100—to be targeted by using OpenACC. Significant performance

improvements are also seen across the different CPU devices since CCAMP avoids applying nested

parallelism on CPU devices, which can lead to very poor performance. The naive OpenMP 4+

implementation could have been designed to be more CPU-friendly instead of GPU-friendly, which

would have resulted in more significant CCAMP improvements for the GPU code instead of the

CPU code.

Modest improvements are seen on the GPU devices primarily because the CCAMP

Optimization applies loop collapsing. Table 16 also shows the performance of the naive Matmul
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Table 16. Naive Jacobi and Matmul OpenMP 4+ Run Times Optimized with CCAMP. Average
of three executions. CCAMP Translation indicates OpenMP 4+ to OpenACC translation was
applied.

Naive Jacobi Jacobi Tr. Jacobi Opt. Naive Matmul Matmul Tr. Matmul Opt.

pgi+xeon 13.523 - 3.707 26.22 - 24.979
pgi+P9 149.095 - 2.269 5.981 - 5.621

pgi+p100 - Yes 2.339 15.440 - 1.817
pgi+v100 - Yes 0.931 2.514 - 0.678

clang+xeon 13.558 - 4.210 - Yes 7.195
clang+P9 25.727 - 2.740 - Yes 25.169

clang+p100 1.646 - 1.448 - Yes 1.103
clang+v100 1.008 - 0.578 - Yes 0.406

xl+P9 2.178 - 2.186 - Yes 7.169
xl+v100 0.863 - 0.601 - Yes 0.463

OpenACC implementation. Modest performance improvements are seen for the device + PGI

combinations, again primarily due to CCAMP’s automated loop collapsing function. However,

there is a significant increase in code portability when using CCAMP’s translation mechanism,

enabling significantly more device + compiler combinations.

The translated and optimized OpenMP 4+ versions compiled with clang outperform the

optimized OpenACC version on the V100 and P100 devices. This could indicate that CCAMP’s

OpenACC optimization needs further improvement, or it could indicate that clang is better able

to optimize this specific application over the “more mature” PGI compiler, motivating the need

for code to be portable between compilers.

3.5.4 Additional CCAMP Evaluations.

3.5.4.1 GCC: Initial Evaluation. An initial performance evaluation was

performed by using the GNU GCC compiler. Although the support could be immature relative

to PGI and clang, GCC is unique in that it supports offloading in both standards.

Figure 27 highlights performance comparisons between manual and CCAMP-optimized

SPEC applications, although X57 and X70 are excluded due to compilation failures.

In OpenMP, reasonable performance is achieved for the manual versions and modest

speedups when applying CCAMP Optimization. Interestingly, unlike clang and XLC, GCC

recognizes and even depends on SIMD clauses when offloading to GPUs. Because of this,

CCAMP’s CPU-specific optimizations were applied to achieve the reported performance numbers.

This suggests that CCAMP might need to implement compiler-specific optimizations or further

generalize the existing GPU and CPU-specific optimizations to incorporate GCC moving forward.
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Besides X03, which performs well, the OpenACC evaluations performed very poorly or

failed to compile. This could be due to SPEC’s frequent use of and GCC’s relative lack of support

for the OpenACC kernels directive, although further investigation is needed.
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Figure 27. (Left) Performance of OpenACC manual (blue) and CCAMP optimized (orange).
(Right) Performance of OpenMP manual (blue) and CCAMP optimized (orange).

3.5.4.2 LULESH 2.0. To assess CCAMP’s performance on a more realistic

application, an evaluation was performed by using the OpenACC LULESH 2.0 application on

the Xeon CPU and Nvidia P100 GPU. For the OpenACC evaluations, the authors evaluated with

the manual unmodifed code (blue bars) and after applying CCAMP’s OpenACC Optimization.

For the OpenMP evaluations, the CCAMP-translated code (blue bars) and CCAMP-translated

and optimized code (orange bars) were evaluated.

Figure 28 shows the results of the LULESH performance evaluations. The extremely

high run time was immediately noted when targeting the CPU with PGI (extrapolated from

one iteration), resulting from a vector clause placed on the outermost loop of one kernel. It is

assumed that the OpenACC LULESH implementation was not intended to be run on the CPU.

The CCAMP-optimized version performs significantly better. Also, relatively strong performance

was achieved with the OpenMP translated versions, and clang-compiled versions achieved a faster

run time than their OpenACC + PGI counterparts on the CPU and competitive performance on

the GPU. Finally, poor performance was seen across the board with GCC, which required small

modifications to successfully compile, as described in the artifact description. This could be a
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reflection of the level of support in GCC and the need for more compatibility between CCAMP

and GCC.
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Figure 28. (Top) Performance of OpenACC manual (blue) and CCAMP optimized (orange).
(Bottom) Performance of OpenMP translated (blue) and OpenMP translated + optimized
(orange).

3.5.4.3 Performance Variability. This experiment highlights the performance

variability for different directive configurations across the two standards: OpenMP 4+ and

OpenACC. This was quantified by using the SPEC Accel X03 benchmark, which comprises

a single kernel with a triply nested loop, allowing for a large degree of variation in directive

placement.

Figure 29 compares different versions of X03 OpenMP that were compiled by using the

clang compiler for the Xeon CPU (top left) and Nvidia P100 (top right) with different versions of

X03 OpenACC compiled by using the PGI compiler targeting the Xeon CPU (bottom left) and

Nvidia P100 (bottom right).

The OpenMP 4+ version numbers (VX ) refer to directive placements as follows, in which

(outer) refers to the outermost loop, (middle) refers to the first nested loop, and (inner) refers to

the innermost nested loop. The abbreviated “parfor” represents the OpenMP “parallel for” clause,

and “coll” represents the “collapse” clause.
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OpenACC and OpenMP 4+ Performance Variability
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Figure 29. Comparison of performance variability with different sets of directives between
OpenMP (top) and OpenACC (bottom) by using the SPEC X03 (ostencil) Benchmark.

– V0: (outer) teams distribute parfor coll(3) SIMD.

– V1: (outer) teams distribute parfor coll(2) (inner) SIMD.

– V2: (outer) teams distribute parfor coll(2) .

– V3: (outer) teams distribute (middle) parfor coll(2).

– V4: (outer) teams distribute (middle) parfor (inner) SIMD.

The OpenACC version numbers refer to the following directive placements:

– V0: (outer) parallel gang coll(2) (inner) vector.

– V1: (outer) parallel gang worker vector coll(3).

– V2: (outer) parallel gang (middle) worker vector coll(2).

– V3: (outer) parallel gang (middle) worker (inner) vector.
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The OpenMP 4+ versions demonstrate a much higher performance variance than the

OpenACC versions: OpenMP 4+ and Xeon CPU σ = 52, 000, OpenMP 4+ and P100 σ = 14, 000,

OpenACC and Xeon CPU σ = 1.4, and OpenACC and P100 σ = 40.

These performance differences might not be direct artifacts of the standards themselves

but of the relative maturity of the underlying compilers. The PGI OpenACC compiler actually

predates the OpenACC standard since PGI adopted its previous directive-based parallel compiler

to handle OpenACC directives. By comparison, clang’s OpenMP 4+ offload support is relatively

new and is undergoing active development.

However, these results also are not entirely surprising given the fundamental differences in

standard design; OpenACC is more descriptive, and OpenMP is more prescriptive. The OpenACC

compiler retains more liberty to optimize as it sees fit, independent of exactly how a user specifies

directives. Conversely, the OpenMP 4+ compiler is more strictly bound by the standard to adhere

to the directives specified by the user, even when ill-advised.

With the more novel features introduced in OpenMP 5, the standard has shifted to also

allow a more descriptive approach, similar to the abstraction level of OpenACC. For example, the

OpenMP loop directive is a highly descriptive directive that outsources much of the management

to the underlying compiler. Additionally, the OpenMP metadirectives mirror some of the

functionalities and goals present in CCAMP, although in a less automated way because they

require programmers to manually provide alternative options for each device type per compute

region. As compilers work to implement these features, a shift in how the results vary between the

two standards might occur, and the mapping strategies within CCAMP might need to be adjusted

accordingly.

3.6 OpenMP and OpenACC Interoperable Framework: Related Work

Several previous works explore the performance and portability of directive-based

approaches across heterogeneous systems. Vergara et al. [185] evaluates OpenMP applications

on IBM Power8 and Nvidia Tesla devices by using IBM and LLVM clang compilers. Lopez et al.

[186] experiments with OpenACC and OpenMP implementations of core computational kernels,

including Daxpy, Dgemv, Jacobi, and HACCmk. Lopez et al. evaluates the performance of these

implementations by using Cray, Intel, and PGI compilers on Nvidia GPU and Intel Xeon Phi

devices. Gayatri et al. [187] implements a material science kernel and evaluates OpenMP 3.0,
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OpenMP 4.0, OpenACC, and CUDA implementations on Xeon CPUs, Xeon Phis, Nvidia P100s,

and Nvidia V100s. Gayatri et al. also discusses experiences with different compilers—including

PGI, Intel, IBM, and GCC compilers—and the then-current status of the work’s directive-based

language support. These works all highlight the high performance variability of directive-based

approaches across different compiler and device combinations, which help motivate the utility of

frameworks such as CCAMP.

Several previous works researched the potential of an OpenACC and OpenMP translation

framework. Wolfe [188] explores this idea and discusses some obvious and some subtler challenges

that would arise if implementing such a framework. Wolfe also discusses motivations and the

significance of developing such a framework, which are in line with the motivations presented

here. Sultana et al.[189] presents a prototype OpenACC to OpenMP translation scheme, which

consists of a combination of automated directive translation performed by using the Eclipse user

interface and manual user-performed code restructuring. This work represents a promising first

attempt to develop an automated translation framework, although it evaluates only a single

benchmark and supports only a subset of the OpenACC standard. Pino et al. [190] describes

a mapping between the most common directives of OpenACC and OpenMP and compares the

performance between the two different sets of directives on several SHOC and (The Scalable

HeterOgeneous Computing (SHOC) Benchmark Suite) NAS Parallel (developed and maintained

by the NASA Advanced Supercomputing (NAS) Division) benchmarks. However, Pino et al. does

not propose any automated scheme or framework to perform the actual translation. Denny et

al. [112] presents an ongoing work to develop an OpenACC to OpenMP 4.5 translator (Clacc)

within the clang compiler to allow clang to support OpenACC. Clacc represents a rigorous effort

to develop a translation scheme that supports the full OpenACC standard, which accomplishes

the goal of the OpenACC to OpenMP 4.5 baseline translation. However, Clacc is constrained by

the clang compiler, preventing it from using the maturity of device-specific back-end compilers.

3.7 OpenMP and OpenACC Interoperable Framework: Conclusions

As systems become more exotic and specialized, the HPC community has experienced

an increased demand for high-level portable programming solutions. Although directive-

based standards and approaches aim to provide a solution, they fail to realize this goal due to

competition between vendor compilers and inconsistent levels of standard support.
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This chapter presents the CCAMP framework, with the goal of allowing programmers to

seamlessly flow between different directive sets and eventually select the directive set best-suited

to a target device. Automatic translation and optimization passes are introduced and shown to

generate output code across different directive contexts that perform competitively with hand-

coded programs.

Although some OpenACC and most OpenMP 4+ compilers are still somewhat immature,

these tools are already being used to develop current and future high-performance systems.

Additionally, support for directive-based offloading in the exisiting tools is constantly improving;

for example, each new clang release significantly improves offloading support. CCAMP can help

application developers port their applications with the OpenMP 4+/OpenACC compilers by

enhancing their performance with the CCAMP optimizer. Moving forward, the authors hope

that the CCAMP translation capabilities can be used to help migrate large code bases to future

systems; for example, CCAMP can be used to help port large OpenACC applications developed

for the current GPU-based systems (e.g., Summit at Oak Ridge National Laboratory) to future

OpenMP-only systems (e.g., upcoming exascale systems, such as Aurora at Argonne National

Laboratory).

In the future, we plan to develop and extend CCAMP in several ways. One primary

goal is to develop more device-specific and algorithm-specific optimizations that can produce

not only generalized directive sets in different languages but also directive sets specifically

catered toward an indented target device. We also plan to improve the presentation of CCAMP’s

compilation output on loop analysis and incorporate suggestions for performance to increase user-

friendliness for programmers interested in a more semi-automated optimization approach. We plan

to incorporate other compilers (e.g., Intel, Clacc) and other devices (e.g., FPGAs). We want to

expand CCAMP to cover more of the OpenMP and OpenACC standards, especially the OpenMP

5-specific features, such as tasking, the loop directive, and metadirectives. As support for these

features improves across compilers and applications begin to leverage them, it will be critical for

CCAMP to incorporate these features in the translation and optimization passes.
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CHAPTER IV

EXPLORING HETEROGENEOUS PROGRAMMING FOR FUTURE DIVERSE EXASCALE

PLATFORMS

This chapter contains unpublished material with co-authorship. All of the presented

research in this chapter was conducted as a collaboration between the University of Oregon and

Oak Ridge National Laboratory. Seyong Lee was instrumental in the conceptualization of the

projects, and provided continued support, suggestions, and advice throughout the projects with

weekly meetings. Allen Malony and Jeffrey Vetter both provided high-level guidance and advice

during this project. Allen Malony also wrote the introduction section. Sameer Shende provided

guidance and support related to the TAU performance system, and Mohammad Alaul Haque

Monil assisted with the other profiling tools and evaluations related to profiling. I performed all

of the non-profiling experiments, collected all of the non-profiling data, and did the bulk of the

writing besides the introduction for this project.

4.1 Exploration of Exascale Platforms: Introduction

In the last 10 years, there has been a steady transition in high-performance computing

(HPC) from homogeneous systems, where node-level architectures utilizes general purpose

processors (i.e., CPUs), towards heterogeneous systems, where different processor devices

(e.g., CPU, GPU, FPGA) are used together. The tremendous computing power of manycore

devices, exemplified by GPU SIMT architectures, could not be ignored in HPC platforms and

heterogeneous systems are now the status quo for high-end supercomputing.

However, the potential for heterogeneous machines can only be realized if it is possible

to program them. Herein lies the rub. Heterogeneous processors are more complex to program

because their architectures require different programming models, and the interaction between

processing devices is critical to achieving performance. That interaction must be programmed as

well. The standard parallel programming methods for homogeneous computing are insufficient

for these purposes. The key challenge for heterogeneous programming integrating the parallel

execution capabilities found in the heterogeneous processors under a unified programming

umbrella. While research may be trending in this direction, the reality is that there is a variety

of programming techniques covering sparsely a growing space of accelerator technologies.
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A productive near-term focus to address programming and performance portability could

concentrate on compiler-based translation and coupling of parallel programming models.

In this chapter, we explore and evaluate the diversity of programming models likely to be

featured in upcoming exascale machines. This chapter makes the following contributions.

– A survey of exascale platforms and discussion of experimental pre-exascale systems,

– An evaluation of the aforementioned pre-exascale systems, using a single source code and a

source-to-source translator to efficiently target each platform

4.2 Exascale Platforms and Programming Models

Before exploring the upcoming exascale programming models, we should first quickly

discuss the upcoming exascale machines themselves. By definition, an exascale machine is a

machine capable of executing 1018 floating point operations per second. Although the 1 exaflop

cutoff is somewhat arbitrary, the exascale designation represents a class of next-generation

machines that will have significant impacts and contributions to science as a whole.

Three major exascale systems have been announced, with delivery dates as early as late

2021. All three machines are currently being developed by the US Department of Energy and US

National Nuclear and Security Administration.

– ANL Aurora: Developed by Cray, Intel, and Argonne National Lab, the ANL Auora

machine [4] is slated to release in 2021. Aurora will contain over 9000 nodes, each containing

two Intel Xeon “Sapphire Rapids” CPUs and six Intel Xe “Ponte Vecchio” GPUs (the HPC

counterpart to the Intel Xe Max evaluated in this work). The per-node performance is

expected to be 130 double-precision TFLOPs, which puts the performance of the entire

functioning machine at just over 1 exaflop.

– ORNL Frontier: Developed by Cray, AMD, and Oak Ridge National Lab, the ORNL

Frontier machine [3] is also slated to release in 2021. Each Frontier Node will contain one

HPC and AI oriented AMD EPYC CPU and four “purpose-built” AMD Radeon Instinct

GPUs, likely to be similar to the Radeon Instinct GPUs evaluated in this project. The

entire Frontier system is expected to achieve over 1.5 exaflops.

– LLNL El Capitan: Also developed by Cray and AMD, Lawerence Livermore National

Lab’s El Capitan machine [5] is scheduled to deploy in 2023. This machine will likely feature
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similar hardware to Frontier, albeit upgraded, and is expected to achieve over 2 double-

precision exaflops.

Other exascale machines are certain to follow, likely candidates including China’s

Tianhe-3 machine, a machine developed by the European High-Performance Computing Joint

Undertaking, and many others.

4.2.1 Exascale Programming Models. Although the proposed machines

above are undeniably significant feats of human engineering, the actual utility of these systems

is dependent on the availability, performance, maintainability, and robustness of associated

programming models and software stacks. In this section we survey several programming models

likely to be featured during the early days of exascale machines. These are also precisely the

languages used in this project’s evaluations. Although these models are discussed in Chapter I,

Section 1.2, we briefly reintroduce them here in the context of this chapter.

4.2.1.1 OpenMP. The OpenMP programming standard [170] unquestionably has

the most illustrious past of models explored in this project. Although OpenMP began as a multi-

core shared-memory CPU programming standard, with the introduction of offloading directives in

versions 4.0 and later OpenMP has evolved to encompass heterogeneous GPU-based computing.

As a directive-based standard, application programmers can annotate an existing C, C++, or

FORTRAN application with parallelization directives without major changes to the underlying

source code. Additionally, because of the prevalence of OpenMP in HPC ecosystems, OpenMP

support is present in nearly all compilers evaluated in this project, although the degree of support

varies between implementations, especially in terms of performance. Nevertheless, OpenMP is

certain to be a primary target on all upcoming exascale systems.

4.2.1.2 OpenACC. Before the release of OpenMP offloading directives, OpenACC

stood alone as the sole directive-based standard for heterogeneous computing. OpenACC was

originally constructed as a high-level alternative to lower level heterogeneous programming

approaches like CUDA and OpenCL (discussed in subsequent sections), and offered an approach

palatable to programmers accustomed to directive-based CPU parallelization approaches

like OpenMP. Although OpenMP offloading directives were introduced shortly after the first

installation of the OpenACC standard, OpenACC has remained relevant in HPC largely due

to the availability of the mature production-level compiler developed and managed first by
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the Portland Group as the PGI compiler [43], and now by Nvidia as part of the NVHPC

Toolkit [105]. Furthermore, several applications, including LULESH [171], the evaluated SPEC

Accel benchmarks, and several large DOE applications are written in OpenACC, and as a result

OpenACC is very likely to be featured on upcoming exascale systems alongside OpenMP.

4.2.1.3 CUDA. The Nvidia CUDA programming model [8] has been immensely

successful since its inception in 2007. CUDA can be considered a low-level programming

model, as it requires specific knowledge of GPU devices, and significant rewriting of the most

computationally intensive portions of an application. Despite 1) CUDA’s low-level nature,

which can be a significant barrier for scientific application developers interested in heterogeneous

computing, and 2) the development of numerous high-level alternatives including directive-based

standards like OpenMP and OpenACC, many programmers still choose to program directly using

CUDA. CUDA’s success can be partially attributed to the robustness of the proprietary CUDA

software stack, including compilers, debugging and profiling tools, and professional training.

Although Nvidia GPUs and CUDA are currently absent in the ecosystems of announced

exascale machines, several of the current leading supercomputers, including ORNL’s Summit [1]

and LLNL’s Sierra [2] are built using these hardware and software stacks. It is no stretch then to

assume that future machines, including future exascale machines, will likely feature the CUDA

programming model.

4.2.1.4 OpenCL. While the proprietary, and well-funded, nature of CUDA

certainly attributed to its success, it also limited the CUDA’s heterogeneous landscape to Nvidia-

developed devices. Shortly after the release of CUDA, an open-source alternative was introduced.

OpenCL [37], first managed by Apple and now by Khronos, shares a similar low-level nature with

CUDA, but is intended to run on any device with a sufficient OpenCL implementation. While

OpenCL’s adoption and uptake has not experienced the same degree of success as CUDA, the

cross-platform and portable potential of OpenCL has made it an attractive option for upcoming

exascale systems, both as a front-end programming model and as a backend intermediate

representation for higher level models like SYCL, as discussed below.

4.2.1.5 HIP/ROCm. Nvidia’s main competitor in the GPU market, traditionally

in the consumer market but more recently also in the high-performance and scientific community,

is AMD. Unlike Nvidia, AMD has not developed a proprietary programming approach and vendor
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compiler for heterogeneous computing. Instead, to support its GPU architectures, AMD has

developed the open-source ROCm (Radeon Open Compute) suite [41]. ROCm is a collection

of APIs, drivers, and development tools that support heterogeneous execution on AMD GPUs,

but also other architectures like Nvidia GPUs. The actual programming model developed as

part of ROCm is HIP, another low-level approach with a similar abstraction level to CUDA

and OpenCL. However, the ROCm toolkit and associated compilers also support OpenMP and

OpenCL applications. The compilers, libraries, and debuggers for ROCm are available from the

open source github [42].

Table 17 lists the programming models and associated implementations, where available,

used as part of this project.

4.2.1.6 Other Notable Models. Of course programming models likely to be

featured on future exascale systems are not limited to the above list. Especially in the distant

future, new or existing programming models are likely to be adopted on exascale systems to

meet the demands of new applications. In the near-future, some programming models likely to

be featured at exascale include general languages like SYCL [55], Kokkos [47], and Raja [52] and

domain specific approaches (DSLs) like Tensorflow [7] and Keras [91]. SYCL, and by extension

DPC++, is already a staple of the Intel OneAPI [38] programming ecosystem, and therefore

intended to be a prominent approach on the Intel-based Aurora machine. While SYCL was

originally developed as an OpenCL abstraction layer, more recently it has been promoted as

stand-alone product that can target other backends besides OpenCL. Kokkos and Raja are high-

level alternative to the low-level approaches like OpenCL and CUDA, and attractive options for

scientific programmers. Finally, with the ubiquity of deep learning, DSLs like Tensorflow and

Keras implementations and support will be necessary for exascale systems. Although these models

will certainly be relevant in Exascale systems, they are omitted from this project to limit the

scope of the study. However, we do suggest exploration of some these models during Section 4.6’s

discussion of future works.

4.3 Exploration of Exascale Platforms: Experimental Setup

In this section we detail the specific compilers, compiler versions, software platforms, and

hardware platforms targeted in this project. We also briefly discuss the benchmarks used in the

following evaluations.
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Table 17. Exascale Programming Models and Implementations Explored

Nvidia A100
CUDA nvcc (CUDA Toolkit)

HIP nvcc detail header (ROCm) + nvcc (CUDA Toolkit)

OpenCL
nvcc (CUDA Toolkit)

clang (LLVM)

OpenMP
nvc (Nvidia HPC Toolkit)

clang (LLVM)

OpenACC nvc (Nvidia HPC Toolkit)

AMD Instinct
CUDA hipify-perl (ROCm) + hipcc (ROCm)

HIP hipcc (ROCm)

OpenCL hipcc (ROCm)

OpenMP hipcc (ROCm)

OpenACC NA2

Intel Xe
CUDA NA

HIP NA

OpenCL icpx (Intel OneAPI)

OpenMP icpx (Intel OneAPI)

OpenACC NA
1Partial support available through the ECP Clacc project, a fork of LLVM, but not evaluated in this project
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4.3.1 AMD Platform. The specific AMD GPU evaluated in this work is a Radeon

Instinct MI50 Accelerator (gfx906). Officially released in November 2018, the MI50 is based on

the AMD Vega 20 architecture. This 7nm device advertises a peak throughput of 13.3 single-

precision TFLOPs (FP32) and 6.6 double-precision TFLOPs (FP64).

The host processor attached to this accelerator is an AMD EPYC 7402 24-Core processor,

although all host code in the evaluations is executed using a single thread. The platform operating

system is CentOS Linux 8.

As previously mentioned, OpenACC is used as the front-end programming model in

all of this project’s evaluations. At this time, no major compiler fully supports OpenACC

compilation for AMD GPUs, although partial support is being developed as part of the ECP

clacc project [112]. However, using OpenARC source-to-source translation, the input OpenACC

applications can be used to generate code that is supported by major AMD GPU compilers,

including OpenMP, OpenCL, HIP, and CUDA.

For the backend compilation of these supported languages (after lowering from

OpenACC), we rely on a system-installed ROCm 3.9.0. For the OpenMP, OpenCL, and HIP

backends, we use hipcc (HIP version: 3.9.20412-6d111f85). The ROCm hipcc utility is a compiler

driver that internally invokes either AMD’s HCC compiler or the AMD branch of the LLVM clang

compiler, in this case built on top of LLVM version 12.0.0. Relevant flags to hipcc for OpenMP

compilation include “-target x86 64-pc-linux-gpu -fopenmp -fopenmp-targets=amdgcn-amd-

amdhsa -Xopenmp-target=amdgcn-amd-amdhsa -march=gfx906”.

For the CUDA backend, we first run hipify-perl (included in ROCm 3.9.0) to translate

the CUDA code into an analogous HIP code, and then run hipcc similar to the other backends.

Although ROCm also provides a more robust translation tool, hipify-clang, the hipify-perl tool

successfully translated all the applications evaluated in this project, while the LLVM-based tool

encountered several errors.

4.3.2 Nvidia Platform. In this project we evaluate the Nvidia Ampere (A100-

PCIE-40GB) GPU, code-named GA100, which was officially released in September 2020. This

7nm micro-architecture claims a peak throughput of 19.5 single-precision TFLOPs (FP32) and 9.7

double-precision TFLOPs (FP64). The host processor attached to this accelerator is also an AMD

EPYC processor, identical to the one described in the AMD GPU Platform section above.
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Unlike the AMD environment, Nvidia devices do have major compiler support for

OpenACC. Previously known as the PGI compiler, the re-branded Nvidia High Performance

Computing SDK (NVHPC) supports OpenACC compilation through its associated compiler, nvc.

When targeting OpenACC as the backend programming model, for consistency when comparing

with other programming models we still run the input OpenACC application through OpenARC

source-to-source translation. Although both the input source and output source are OpenACC,

OpenARC does apply a series of compiler passes that can result in small changes in the output

code. For this project, we use NVHPC version 20.11, installed via spack [191] with package

“nvhpc@20.11”. We also use this specific NVHPC and associated nvc to evaluate NVHPC’s

OpenMP support in Section 4.4.5.

To compile OpenARC-generated CUDA and OpenCL for the A100 device, we use the

NVIDIA CUDA Toolkit directly, in this case version 11.0.194, also installed via spack. This

installation contains both CUDA and OpenCL headers and runtime libraries. To execute HIP

applications on the A100, we use hipcc and the nvcc detail header files, included in ROCm 3.9.0.

These header files effectively redefine HIP API calls as thin wrappers over CUDA API calls, and

hipcc subsequently calls a present CUDA installation internally, in this case the same version

11.0.194. When compiling CUDA, we include the “-03” and “-lcuda” flags. When compiling

OpenCL, notable flags include “-03”, “-lstdc++”, and “-lOpenCL”.

We also compile OpenARC-generated OpenCL and OpenMP using LLVM clang, directly

built from source (llvmorg-11.1.0-rc2). In Section 4.4.5 we compare the LLVM-based open-source

implementations of OpenMP and OpenCL against the Nvidia-owned NVHPC SDK and CUDA

Toolkit implementations.

4.3.3 Intel Platform. Finally, we evaluate the Intel Iris Xe Max GPU (0x4905),

also known as a DG1 card, which launched in quarter four of 2020. The Xe Max is built using

10nm semiconductor technology, and claims a peak throughput of 2.46 single-precision TFLOPs.

Unlike the AMD and Nvidia cards evaluated, this Intel GPU is not HPC oriented, and instead

is intended to ship with smaller portable laptops. However, the programming models and other

software artifacts relevant to the Xe Max are very likely to also be relevant in upcoming Intel

GPU releases, including those likely to be featured in the upcoming Aurora supercomputer [4].

The host processor on the Intel Platform is a 56-core Intel Xeon CPU E5-2680 v4 @ 2.40GHz.
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Because of the novelty of Intel GPUs as a whole, the programming model and compiler

availability is relatively limited when compared to options for AMD and Nvidia devices. In

this project, we evaluate only two OpenARC-generated backend programming models for the

Intel GPU Platform: OpenMP and OpenCL. Both programming models are compiled using the

proprietary Intel compiler icpx, available as part of the Intel oneAPI Toolkit. Specifically we

target a system-installed Intel oneAPI DPC++ Compiler 2021.1.2 (2020.10.0.1214).

4.3.4 Benchmarks. The SPEC Accel Benchmarks are ideal candidates for this

project’s evaluation because they 1) contain C-based OpenACC implementations of several

applications, 2) represent applications from several different scientific domains, and 3) are

professionally maintained and updated by The Standard Performance Evaluation Corporation

(SPEC). In this project, we specifically use SPEC Accel v1.3. From the selection of benchmarks

available in SPEC Accel, our evaluations in this chapter focused on the following benchmarks (the

same applications targeted in Chapter III):

– 303 ostencil, a thermodynamics stencil kernel (also referred to as os).

– 314 omriq, a convolution-based Hessian multiplication.

– 352 ep, an embarrassingly parallel application.

– 354 cg, a conjugate gradient kernel.

– 357 csp, a scalar penta-diagonal solver.

– 370 bt, a block tridiagonal solver for 3D PDEs.

4.4 Evaluation of Heterogeneous Platforms with OpenACC, OpenARC, and

CCAMP

As previously mentioned, OpenARC and the SPEC Accel benchmarks create an

ideal sandbox in which we can explore and evaluate a diversity of different exascale-bound

programming models. In each of the following evaluations, we have used OpenARC source-to-

source translation to translate a single set of OpenACC SPEC applications in to a variety of

different backends. We then evaluate these backends, exploring different aspects of performance,

and highlighting interesting patterns and discrepancies.
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Figure 30. Relative runtime comparison (lower is better) of programming models (generated
from OpenACC source code via OpenARC) across devices (distinguished by bar color). Relative
runtime is estimated as absolute runtime (s) multiplied by theoretical peak performance (FP32
TFLOPS) for each device. Missing bars indicate an unsupported programming model or a failed
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145



4.4.1 Relative Performance of Each Programming Model Across Devices.

Given an application written using a specific programming model, it is reasonable to ask which

hardware platform would be most appropriate to target. That is, which hardware platforms

are more likely to approach peak performance for a given model. Similarly, we may ask which

hardware platforms have mature implementations of a specific programming model. For vendor-

specific programming models like HIP and CUDA, the obvious choice would be the corresponding

hardware platform developed by the vendor. For other portable models like OpenMP, OpenACC,

and OpenCL, the situation is less clear.

In Figure 30, we compare the relative performance of programming models (subplots)

for each device (bar colors). Although we could directly compare the absolute runtime of each

application on each device, this comparison would be inherently biased because the devices have

different release dates, different semi-conductor fabrics, and different peak performances. Directly

comparing runtimes may not accurately represent 1) the eventual suitability of programming

models for each device family and 2) the maturity of the compiler implementations.

Therefore in Figure 30 the y-axis is an estimation of relative performance, calculated by

multiplying the runtime achieved for each specific benchmark on each platform by the theoretical

peak performance reported for that platform (lower is better). As mentioned in the previous

section, the reported peak performance in single-precision TFLOPs is 13.3 for the Instinct device,

19.5 for the A100, and 2.46 for the Xe Max. For example, the Xe GPU (Xe Max 0x4905), used

in this evaluation is intended for low-power ecosystems and has limited double-precision support,

while the Xe GPUs intended for Aurora will have more advanced FP64 support and fewer power

constraints. Below, we briefly break down each subplot in Figure 30

CUDA Subplot: In Subplot 1, for the A100 device CUDA is compiled using nvcc

(CUDA Toolkit), and for the Instinct device compilation is done using hipify-perl and hipcc.

Unsurprisingly, the A100 achieves the best relative performance for the CUDA programming

model for 4 of 6 benchmarks, although the AMD device achieves comparable performance for the

remaining two applications (354.ct and 357.csp). Because no CUDA implementation exists for the

Xe platform, those measurements are absent in this figure.

HIP Subplot: Interestingly, the A100 also achieves the best relative performance for 4

of 6 benchmarks when targeting the HIP backend (generated from OpenACC using OpenARC).
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Furthermore, the first two subplots (CUDA and HIP) are nearly identical. This is a testament

to the success and efficiency of the nvcc detail header file used to execute HIP applications on

Nvidia hardware (orange bars in Subplot 2), and the hipify-perl tool used to execute the CUDA

applications on the AMD hardware (blue bars in Subplot 1). Both nvcc detail and hipify-perl are

maintained by AMD and released as part of ROCm. Although a single portable programming

model is the ideal solution to create an application that can be run across several platforms,

robust translation tools and compatibility libraries like those for CUDA and HIP can provide

an alternative solution.

However, the library and translation solutions for portability also have downsides.

Internal translation can make it more difficult for tools that have expectations about the runtime

execution of an application. For example, in this project OpenARC had to be extended to support

the nvcc detail execution header because of the unexpected presence of CUDA constructs in a

HIP execution context. Also, it may be more difficult for profiling tools to provide relate runtime

information to the original source code.

OpenCL Subplot: In the third subplot, nvcc is used to compile OpenCL for the

A100, hipcc is used for the Instinct device, and icpx is used for the Xe Max. The hipcc

implementation targeting the Instinct device (blue bars) performed comparably to the other

OpenCL implementations for most benchmarks, and actually achieved the lowest relative runtime

for two applications, 357.csp and 370.bt. However, the hipcc driver failed to successfully execute

the 354.cg benchmark, reporting a memory access fault.

The Intel implementation (green bars) also failed to successfully execute one of the SPEC

Accel applications, 357.cp, and experienced unusually poor performance for the 352.ep application.

However, for those applications that executed successfully, the relative performance of the Intel

implementation on the Xe Max GPU was comparable to the AMD and Nvidia devices, and even

achieved the lowest relative runtime in the case of 354.cg.

Unlike the Intel and Nvidia implementations, the Nvidia implementation (nvcc)

successfully compiled and executed each OpenCL application for the A100 device. The relative

runtime of the nvcc executions (orange bars) is comparable for most applications, and lowest

across the evaluated devices for 303.ost, 314.omr, and 352.ep.
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We do note that, although OpenCL may not be the most popular programming model, it

does achieve the best coverage in terms of successful executions across all devices, covering 15/18

of the potential device and compiler combinations evaluated in for this figure.

OpenMP Subplot: In the fourth subplot, hipcc and icpx are again used for the

Instinct and Xe Max devices. However, for OpenMP, we use the LLVM clang implementation

when targeting the Nvidia 100. Although Nvidia also supports an OpenMP implementation as

part of the NVHPC SDK, the LLVM-based implementation currently achieves more consistent

performance (we explore this further in Section 4.4.5). To generate OpenMP from the input

OpenACC codes, OpenARC’s CCAMP translation was applied, including the optimization

passes. The best performing mapping is evaluated in this figure. Performance differences between

OpenMP mappings is explored further in Section 4.4.3.

For the single application where icpx successfully compiles and executes for the Xe Max,

303.ost, the relative runtime (blue bar) is very promising, significantly outperforming the relative

runtime of the hipcc implementation on Instinct and performing comparably with the clang

implementation on the A100. However, for the other 5 of 6 benchmarks, the OpenMP experiences

runtime execution errors, most often segmentation faults, likely due to the relative immaturity of

the OpenMP offloading features of icpx, 2) the lack of double-precision support, required for the

352.ep, 354.cg, 357.cp, and 370.bt benchmarks. In order to successfully compile the benchmarks,

double-precision emulation was required, enabled via the OverrideDefaultFP64Settings and

IGC EnableDPEmulation environment variables. Future releases of icpx and next generation

Xe GPUs are likely to address these issues.

The hipcc implementation for the Instinct device (orange bars) performs relatively poorly

compared to the LLVM implementation for the A100, even though when targeting OpenMP the

hipcc compiler-driver internally relies on LLVM. This likely indicates that the LLVM OpenMP

implementation has previously focused on offloading specifically to Nvidia devices, which not

surprising given Nvidia’s prevalence in contemporary systems, including the supercomputers

Summit and Sierra. However, with the transition to AMD devices in many of the upcoming

exascale machines, performance improvements in LLVM’s, and indirectly hipcc’s, OpenMP

implementations when targeting the AMD devices families will be essential.
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OpenACC Subplot: In the final subplot, instead of investigating other programming

models generated from OpenACC via OpenARC, we asses OpenACC directly. The only evaluated

implementation that supports OpenACC compilation directly is nvc from the NVHPC SDK,

and thus only bars for the A100 are visible. However, the Clacc Project [112], currently under

development as part of the ECP project, promises to bring OpenACC support to LLVM, building

off of LLVM’s OpenMP implementation. Clacc will bring OpenACC support for AMD devices,

likely performing similarly to the LLVM-based OpenMP implementations from the previous

subplot.
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from OpenACC source code via OpenARC) on each device. Missing bars indicate an unsupported
programming model or a failed compilation/execution.
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4.4.2 Absolute Performance of Programming Models on Each Device.

Although the relative performance and runtime metrics used the previous section are useful

for directly comparing performance between devices and assessing relative maturity of

implementations between devices, we are also interested in exploring the absolute performance

of available implementations on a single device. That is, instead of starting with an application

and choosing an appropriate device, we want to explore the hypothetical of starting with a device

and choosing a programming model likely to perform optimally.

In Figure 31, we begin with the same data set used in the previous figure, but present the

data in a new way (without normalizing by peak FLOPs) in order to explore different patterns

and discrepancies. Again, absent bars represent either unsupported backends by the evaluated

implementations or compilation or runtime failures that prevented collection of an accurate

runtime. Runtimes that are reported were verified over multiple executions.

Instinct Subplot: In the first subplot, we evaluate the performance of all supported

programming models on the AMD Instinct device. We first notice that the OpenCL model,

compiled via hipcc (green bars) performs either comparably or significantly better than

other programming models for all applications except 354.cg, where we experience a runtime

error related to a memory access fault. As previously mentioned, CUDA and HIP, compiled

with hipcc and hipify-perl perform similarly for each application. Although they lag slightly

behind the OpenCL in terms of performance for some applications, the hipcc CUDA and HIP

implementations are able to successfully compile and execute all applications. The OpenMP

model, again compiled by hipcc, also successfully compiles every application. However, OpenMP’s

runtime performance is significantly slower than other the implementations for all applications

except 370.bt, where it is surprisingly faster than the HIP and CUDA implementation but still

slower than the OpenCL implementation. As previously mentioned, OpenACC as a backend is not

evaluated for the AMD device.

A100 Subplot: The first things we notice in the A100 subplot are the consistently low

runtimes for all applications and programming models compared to the other subplots. Although

the A100 is a newer device with a higher peak throughput, this also evidence of the relative

maturity of programming model implementations when targeting Nvidia devices, a predictable

150



outcome given Nvidia’s dominance in high-performance heterogeneous computing over the last

decade.

Interestingly OpenCL, compiled with nvcc (green bars), has the longest runtime of

all programming models for 4 of 6 applications, contrasting significantly from the OpenCL

implementation on the AMD platform.

It is probably safe to assume that a sufficiently hand-optimized CUDA implementation

would likely outperform other programming models for all applications on the A100 device.

However, the OpenARC-generated CUDA (blue bars), while still optimized via OpenARC

compiler passes, results in the lowest runtime for only 3 of 6 applications. OpenACC, compiled

via nvc (pink bars) claims that position for two other applications, and OpenMP compiled with

clang actually achieves the lowest runtime for the 357.csp application. In general, clang-compiled

OpenMP performance is consistent with the other programming models on the A100 device.

Again, HIP executions, compiled using hipcc and the nvcc detail header file (orange bars), perform

nearly identically to CUDA.

Xe Max Subplot: The first thing we notice about the Xe Max subplot is that it is

sparsely populated compared to the other subplots. Only the 303.ost application was successfully

executed with the OpenMP programming model, and neither the generated OpenMP or generated

OpenCL codes, both compiled with icpx, successfully executed the 357.csp application. As

previosuly mentioned, this lack of success is likely due to the relative immaturity of GPU

compilation from the icpx implementation and the emulation of double-precision support.

However, the relative inexperience of the authors with this platform is also likely a contributing

factor. However, with the imminent release of Aurora, significant efforts are being made to

develop support for the Xe family of devices, including support for the SYCL and DPC++

programming models not evaluated in this work.

4.4.3 OpenMP Mappings. In this section, we briefly explore the performance

of the different OpenMP codes generated from the input OpenACC applications after applying

OpenARC’s CCAMP translation and optimization. As described in Section 1.3.3.5, the three

different mappings of OpenMP directives generated include 1) literal translation from OpenACC

directives with the intent to maintain the same level of parallelism and computation patterns

as the original application (“default” in Figure 32), 2) optimization of the generated OpenMP
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Figure 32. Runtime performance comparison of different CCAMP OpenMP mappings across
different architectures.
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directives specifically tailored for GPU devices (“gpu-friendly”) and 3) optimization of the

generated OpenMP directives tailored for CPU executions (“cpu-friendly”).

In Figure 32, we see the runtime performance results from executing each mapping across

each device and application. The Instinct executions (Subplot 1) were compiled with hipcc, which

as previously mentioned relies on LLVM internally. The A100 executions were compiled with

LLVM directly via clang. The Xe Max executions were compiled using icpx.

For all benchmarks, applying device-specific optimizations led to either comparable or

improved performance over a more literal translation from OpenACC. For 5 of 6 benchmarks, the

“gpu-friendly” translation performed either similarly or much better than the other mappings,

which is consistent with the intent of the device-specific optimizations. The lone outlier, 314.omr,

performs best with the “cpu-friendly” mapping on both the Instinct and A100 device. This is

consistent with the results in the original CCAMP project [14] (Chapter III of this dissertation).

In 314.omr, a reduction and small loop trip count on an inner loop of a computationally intensive

kernel causes the nested parallelism of the “gpu-friendly” approach to perform more poorly than

the outer-loop parallelism focused “cpu-friendly” approach.

Overall, this evaluation demonstrates that OpenMP directive configuration still plays

a huge role in OpenMP performance on these exascale-similar hardware platforms, and further

motivates the need for device-specific optimization, preferably automated, as CCAMP’s distinct

mappings can be configured using a single command-line argument. However, improvements are

needed to tools like OpenARC’s CCAMP for more consistent performance across a wide array of

applications.

4.4.4 Intel icpx and Intermediate Representations for OpenMP. In this

section we briefly explore the two different intermediate representations generated during Intel

icpx compilation of OpenMP when targeting the Xe Max GPU. During the compilation of an

OpenMP application, the OpenMP application is lowered by icpx to either Level0 or OpenCL.

Level0 is an intermediate representation developed as part of the Intel oneAPI framework.

The goal of Level0 is to provide a driver-level API in order to interface between the different

programming models supported under the oneAPI umbrella and the different hardware devices

developed by Intel, including Intel GPUs, AI chips, and FPGAs. By default when compiling

OpenMP the Level0 API is targeted. However, this can be reconfigured at runtime to target
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OpenCL via the “LIBOMPTARGET PLUGIN” environment variable. We initially experimented

with this variable in an attempt to successfully execute more OpenMP applications on the Xe

Max device, but even with “LIBOMPTARGET PLUGIN=OPENCL” we only successfully

executed the 303.ostencil application.

Table 18 shows the runtime performance of the 303.ostencil application, with the three

different OpenMP “mappings” generated by OpenARC and CCAMP from the OpenACC source

code. In the second column, the OpenMP codes were lowered by icpx to the Level0 API, while in

the third column the OpenCL alternative internal API is targeted. We see that the performance is

nearly identical for two of the three “mappings”, but that for the “CPU-friendly” mapping we see

a nearly 25% difference in performance, with the Level0 backend being more efficient. However, to

adequately establish patterns in performance more evaluations need to be performed with either

an updated implementation of the Intel OpenMP compiler, a next-generation Intel Xe GPU, or a

different benchmark set with fewer double-precision applications.

Table 18. Runtime performance comparison of Level0 and OpenCL backends for icpx OpenMP
compilations (303.ostencil)

Mapping Level0 OpenCL

Default 193.91 (s) 192.52 (s)

GPU-friendly 111.65 (s) 139.19 (s)

CPU-friendly 365.36 (s) 365.68 (s)

4.4.5 LLVM and Nvidia Implementation Comparison for OpenCL and

OpenMP. Few devices have multiple implementations available for a single programming

model. For example, CUDA, OpenACC, and HIP each have one implementation on supported

devices (ignoring the translation tools nvcc detail, hipify, and OpenARC). Furthermore, on

the Intel Xe GPU only a single implementation is evaluated in this work for both supported

programming models.

However, for the Nvidia A100 device we explored two implementations for two different

programming models; both the CUDA Toolkit’s nvc and LLVM’s clang for OpenCL, and both

the NVHPC SDK’s nvc and LLVM’s clang for OpenMP. In this section we briefly compare and

contrast these implementations.

Figure 33 shows the runtime performance differences between the two evaluated

implementations for OpenCL (Subplot 1) and OpenMP (Subplot 2). For OpenCL, Nvidia’s
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nvcc outperforms LLVM clang for each applications, in some cases significantly. Not only does

clang perform more poorly than nvcc, but clang also fails to successfully execute 354.cg due to

a memory error. However, nearly the exact converse is true for the OpenMP implementations.

LLVM clang outperforms NVHPC nvc for nearly every every application, significantly so for

352.ep. In order to compile several of the applications with nvc, the linear() clause needed to be

manually removed, as the current version of nvc does not yet support this clause. Even after

removing unsupported clauses, nvc still failed to successfully compile the 354.cg and 357.csp

applications due to internal compiler errors. However, OpenMP support in NVHPC’s nvc is still

relatively novel, being recently adapted from the implementation of the Nvidia-acquired PGI

OpenACC compiler.

4.5 Exploration of Exascale Platforms: Related Work

In 2012, shortly after the release of the Exascale Software Project Roadmap [192], Lee

et al. [193] performed an early evaluation of directive-based GPU programming models for

productive exascale computing. They surveyed the then-current programming models, including

OpenACC, HMPP, OpenMPC [140], and Rstream, and compared performance with CUDA

applications. These models have developed significantly over the past decade (OpenACC), or

in other cases become deprecated (HMPP, OpenMPC), but the authors do identify several

considerations that are still relevant for today’s exascale programming models: functionality,

scalability, tunabilty, and debugability.

In a more recent work (2018), Gayatari et al. [187] explore the performance of a single

application (GPP) with OpenMP 4.5, OpenACC, and CUDA. They find that OpenMP and

OpenACC initially fail to match the performance of the CUDA implementation, but after

sufficient optimization the performances are similar. They also find that the GPU-intended

OpenMP implementation performs poorly on the CPU device, an observation that we confirm

and address with the CCAMP OpenMP optimizations in our evaluations.

A recent work (2020) by Davis et al. [194] assesses the performance of different OpenMP

compilers on the Nvidia V100 device. The evaluate the Cray, IBM, Nvidia, and LLVM clang

OpenMP compilers on several different benchmarks, and observe general programming patterns.

Their results are consistent with the OpenMP backend results we experience in this work,
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although they are limited to a single OpenMP mapping without an automated mapping strategy

like CCAMP.

Also in 2020, Usha et al. [195] compare the performance OpenACC and OpenMP 4.5

for Nvidia GPUs, specifically P100 and V100 devices., on several generic benchmarks, including

matrix multiplication, Jacboi kernels, and Monte-Carlo simulations. They experience more

success with OpenACC on the Nvidia devices, and have difficulties optimizing the OpenMP

implementations.

Finally, in 2020 Bertoni et al. [196] perform a performance portability evaluation of

OpenCL benchmarks across Intel and Nvidia Platforms. Specifically, they evaluate using an Intel

Integrated (G9) GPU, an Intel SkyLake CPU, and an Nvidia V100 GPU. Their project focuses

on developing a metric for and measuring the performance-portability of OpenCL applications

between platforms, and they conclude that a significant effort is needed to realistically achieve

sufficient performance portability with OpenCL. In the meantime, this motivates tools like

OpenARC that can generate several specialized output codes using a single portable input

programming model.

All of the works discussed in this section complement and confirm the results of this

project. However they all address either a single programming model, experiment with a single or

small number of benchmarks, evaluate specific limited device families, or rely on now outdated

hardware and software platforms. In contrast, in this project we explore a wide diversity of

programming models, several different bleeding-edge hardware and software platforms, and an

extensive set of benchmark applications for a more comprehensive overview of the state of exascale

programming approaches.

4.6 Exploration of Exascale Platforms: Conclusions

The rapidly approaching horizon of exascale machines promise to deliver incredible

performance, but inevitably create incredible challenges, including the availability,

implementations, and performance of programming approaches. In this work we explore several

programming approaches guaranteed to occupy a spot in the exascale landscape. We investigate

both the individual performance of these approaches on exascale-intended hardware, and the

feasibility of generating these specialized approaches using a single source code and source-to-

source translation.
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First, this work is only made possible by the availability of quality OpenACC benchmarks

from SPEC Accel and the source-to-source capabilities of OpenARC. The idea of developing and

maintaining separate OpenACC, OpenMP, OpenCL, CUDA, and HIP implementations of an

array of applications is intimidating at best, if not impossible. Furthermore, different devices

may prefer different code versions even within a single backend programming model, as we see

with OpenMP. An automated compilation framework is critical to comprehensively explore and

evaluate this diversity of programming models across several different platforms.

Our evaluations highlight several important considerations for exascale-intended

platforms. When comparing programming models across platforms, we immediately see that

the engineering of the Nvidia GPU and maturity of the CUDA implementations outclass the other

platforms and programming approaches. The Nvidia-focused evaluations achieved consistently

low performance on all benchmarks, a testament to the focus the HPC and heterogeneous

computing communities have granted Nvidia over the past decade. Even the LLVM-based

OpenMP implementations are mature when targeting Nvidia devices, but lag significantly behind

for AMD and Intel GPUs. However, we also see significant successes with the other platforms.

AMD, with ROCm and HIP, have developed a mature open-source environment for

compilation and execution on their platforms. They have also developed high-quality tools and

header files for interaction with Nvidia software and platforms, effectively allowing them to

leverage work done by Nvidia and CUDA developers instead of re-inventing the wheel.

Furthermore, OpenCL, while not the most popular choice for developers, was the most

functionally portable programming model evaluated, followed by OpenMP. OpenACC is still

largely limited to Nvidia devices, but the Clacc [112] framework may make OpenACC available on

a wide variety of platforms that support LLVM OpenMP implementations. On that note, we also

observe that LLVM is a core technology in nearly every evaluated programming approach, either

directly via clang, indirectly as part of a compiler-driver, or internally as a compiler builder.

Finally, we observe that Intel’s Xe platform requires a significant amount of effort

to match the performance of the other platforms, at least with the evaluated programming

models. Failed compilations and executions, both with OpenMP and OpenCL, and a lack of

support for double-precision made evaluating the Xe platform with the SPEC Accel benchmarks

challenging. This is concerning with the imminent release of Aurora. However, it is possible that
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the Xe platform experiences more success with the OneAPI, SYCL, and DPC++ programming

approaches which were not evaluated in this work.

To that end, a relevant future work involves creating a SYCL backend for OpenARC. We

also hope to extend CCAMP to support device-specific optimizations for other programming

models (OpenCL, HIP, etc.). We also hope to extend our evaluations of OpenACC by

incorporating the Clacc framework.

159



CHAPTER V

CONCLUSION

Since their first conceptualization with the PASM and TRAC machines in the early

80s, heterogeneous computing and heterogeneous programming approaches have shifted in and

out of vogue. In Chapter I, we recounted how distributed heterogeneous computing rose with

the promise of robust diverse and distributed systems. We also saw how these systems were

eventually eclipsed by homogeneous supercomputers, homogeneous cloud servers, and CPU-chip

advancements. We explored the rebirth of heterogeneous computing through accelerator-based

computing, as well as the explosion of GPU-based computing.

Although the contexts are distinct, the challenges faced by distributed heterogeneous

systems and contemporary accelerator-based systems are not so different. Many of the challenges

early developers faced are being constantly revived and re-imagined, especially in the face of the

extreme heterogeneity of next-generation systems. Many of the conceptual models, theoretical

road maps, programming approaches, technical requirements and restrictions, and strategies for

success from distributed heterogeneous research apply directly to accelerator-based systems. The

original Figure 3, first published in 1995, would look right at home in a 2021 publication exploring

extreme heterogeneity, albeit with improved graphics.

In Chapter I, we introduced several significant challenges related to current and next-

generation heterogeneous programming and computing: the diversity of hardware and of

programming models, finding the appropriate abstraction level for different types of science, and

the balance between different types of funding for programming platform development. Although

we present these concepts as challenges, in reality, they are also indications of progress. Any claim

to solve these challenges in totality would be less a scientific achievement and more an indication

of stagnation in computational development.

However, working toward solutions is important and necessary. Creating portable,

automated, and optimized programming solutions for extremely heterogeneous environments is

crucial as we encounter increasingly diverse and specialized accelerators. The research in this

dissertation makes an adventurous step closer to addressing the challenges of contemporary

heterogeneous computing.
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In Chapter II, we introduce a high-level directive-based framework designed to bring

FPGAs, previously an outcast, under the umbrella of high-performance computing. We develop

automated and compiler-based optimizations, empowering scientific programmers to both write

palatable applications and produce highly specialized code, effectively bridging the semantic gap

between hardware-level, low-level, and high-level FPGA programming.

In Chapter III, we present an interoperable framework integrating the two most common

directive-based standards in high-performance computing. By conceptually merging the two

standards, we stretch the capabilities, contexts, and ultimately the performance of applications

written in either standard. Finally, in Chapter IV we present an exploration and evaluation

of exascale-intended programming approaches. Exascale systems, the near-term pinnacle of

the heterogeneous timeline, are far from immune to the challenges outlined above, and will

feature a diverse set of hardware and programming models. In Chapter IV, we leverage a single

programming model to explore this diversity, again relying on automated compiler optimizations

and code generation.

Heterogeneity in computing is fated to an endless cycle of divergence and specialization,

encapsulation and integration. In the future, these intertwined notions may result in more exotic

hardware like quantum or neuromorphic accelerators, and more evolved software concepts like

AI-inspired compilation and machine programming—and these advances will require the very

same incremental steps presented in this dissertation: the development of high-level, portable

programming approaches that can deliver specialized performance.
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X. Martorell, E. Ayguadé, and J. Labarta, “Application acceleration on fpgas with
ompss@ fpga,” in 2018 International Conference on Field-Programmable Technology
(FPT). IEEE, 2018, pp. 70–77.

[140] S. Lee and R. Eigenmann, “OpenMPC: Extended OpenMP programming and tuning for
GPUs,” in Proceedings of the 2010 ACM/IEEE International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE Computer Society,
2010, pp. 1–11.

[141] C. Dave, H. Bae, S.-J. Min, S. Lee, R. Eigenmann, and S. Midkiff, “Cetus: A
Source-to-Source Compiler Infrastructure for Multicores,” IEEE Computer, vol. 42, no. 12,
pp. 36–42, 2009, publisher: IEEE. [Online]. Available:
http://www.ecn.purdue.edu/ParaMount/publications/ieeecomputer-Cetus-09.pdf

170

http://www.ecn.purdue.edu/ParaMount/publications/ieeecomputer-Cetus-09.pdf


[142] S. Lee, J. S. Meredith, and J. S. Vetter, “Compass: A framework for automated performance
modeling and prediction,” in Proceedings of the 29th ACM on International Conference on
Supercomputing, 2015, pp. 405–414.

[143] K. L. Spafford and J. S. Vetter, “Aspen: A domain specific language for performance
modeling,” in SC’12: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. IEEE, 2012, pp. 1–11.

[144] S. Lee, J. Kim, and J. S. Vetter, “OpenACC to FPGA: A Framework for Directive-based
High-Performance Reconfigurable Computing,” in IEEE International Parallel and
Distributed Processing Symposium (IPDPS), May 2016.

[145] M. Kotsifakou, P. Srivastava, M. D. Sinclair, R. Komuravelli, V. Adve, and S. Adve, “Hpvm:
Heterogeneous parallel virtual machine,” in Proceedings of the 23rd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2018, pp. 68–80.

[146] HPVM Online Portal. Heterogeneous Parallel Virtual Machine. [Online]. Available:
https://publish.illinois.edu/hpvm-project/

[147] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-h. Lee, and K. Skadron, “Rodinia: A
Benchmark Suite for Heterogeneous Computing,” in Proceedings of the IEEE International
Symposium on Workload Characterization (IISWC), 2009.

[148] G. Juckeland, W. Brantley, S. Chandrasekaran, B. Chapman, S. Che, M. Colgrove, H. Feng,
A. Grund, R. Henschel, W.-M. W. Hwu, and others, “Spec accel: A standard application
suite for measuring hardware accelerator performance,” in International Workshop on
Performance Modeling, Benchmarking and Simulation of High Performance Computer
Systems. Springer, 2014, pp. 46–67.

[149] A. Danalis, G. Marin, C. McCurdy, J. S. Meredith, P. C. Roth, K. Spafford, V. Tipparaju,
and J. S. Vetter, “The scalable heterogeneous computing (SHOC) benchmark suite,” in
Proceedings of the 3rd Workshop on General-Purpose Computation on Graphics
Processing Units. ACM, 2010, pp. 63–74.

[150] J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari, G. D. Liu, and
W.-m. W. Hwu, “Parboil: A revised benchmark suite for scientific and commercial
throughput computing,” Center for Reliable and High-Performance Computing, vol. 127,
2012.

[151] W. Feng, H. Lin, T. Scogland, and J. Zhang, “OpenCL and the 13 dwarfs: a work in
progress,” in Proceedings of the 3rd acm/spec international conference on performance
engineering, 2012, pp. 291–294.

[152] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer, D. A.
Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and others, “The landscape of parallel
computing research: A view from berkeley,” 2006, publisher: eScholarship, University of
California.

[153] EPCC OpenACC Benchmarks. EPCC. [Online]. Available:
https://www.epcc.ed.ac.uk/research/computing/
performance-characterisation-and-benchmarking/epcc-openacc-benchmark-suite

[154] EPCC Online Repository. EPCC. [Online]. Available:
https://github.com/EPCCed/epcc-openacc-benchmarks

171

https://publish.illinois.edu/hpvm-project/
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openacc-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openacc-benchmark-suite
https://github.com/EPCCed/epcc-openacc-benchmarks


[155] Q. Tang, L. Jiang, M. Su, and Q. Dai, “A pipelined market data processing architecture to
overcome financial data dependency,” in 2016 IEEE 35th International Performance
Computing and Communications Conference (IPCCC), Dec. 2016, pp. 1–8.

[156] B. Sukhwani, H. Min, M. Thoennes, P. Dube, B. Iyer, B. Brezzo, D. Dillenberger, and
S. Asaad, “Database Analytics Acceleration Using FPGAs,” in Proceedings of the 21st
International Conference on Parallel Architectures and Compilation Techniques, ser.
PACT ’12. New York, NY, USA: ACM, 2012, pp. 411–420. [Online]. Available:
http://doi.acm.org/10.1145/2370816.2370874

[157] K. Kara, D. Alistarh, G. Alonso, O. Mutlu, and C. Zhang, “FPGA-Accelerated Dense Linear
Machine Learning: A Precision-Convergence Trade-Off,” in 2017 IEEE 25th Annual
International Symposium on Field-Programmable Custom Computing Machines (FCCM),
Apr. 2017, pp. 160–167.

[158] Y. Kim, S. Jadhav, and C. S. Gloster, “Dataflow to Hardware Synthesis Framework on
FPGAs,” in 2016 International Symposium on Computer Architecture and High
Performance Computing Workshops (SBAC-PADW), Oct. 2016, pp. 91–96.

[159] B. Betkaoui, D. B. Thomas, W. Luk, and N. Przulj, “A framework for FPGA acceleration of
large graph problems: Graphlet counting case study,” in 2011 International Conference on
Field-Programmable Technology, Dec. 2011, pp. 1–8.

[160] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda, and S. Matsuoka, “Evaluating and
Optimizing OpenCL Kernels for High Performance Computing with FPGAs,” in
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’16, 2016, pp. 35:1–35:12.

[161] Mentor SDK Design Suite. Handle-C. [Online]. Available:
https://www.mentor.com/products/fpga/handel-c/dk-design-suite/

[162] The Vitis software development platform. Xilinx. [Online]. Available:
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html

[163] M. Aubury, I. Page, G. Randall, J. Saul, and R. Watts, Handel-C language reference guide,
1996.

[164] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson, S. Brown, and
T. Czajkowski, “LegUp: High-level Synthesis for FPGA-based Processor/Accelerator
Systems,” in Proceedings of the 19th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, ser. FPGA ’11, 2011, pp. 33–36.

[165] P. R. Panda, “SystemC: A Modeling Platform Supporting Multiple Design Abstractions,” in
Proceedings of the 14th International Symposium on Systems Synthesis, ser. ISSS ’01,
2001, pp. 75–80.

[166] M. C. Smith, J. S. Vetter, and X. Liang, “Accelerating Scientific Applications with the SRC-6
Reconfigurable Computer: Methodologies and Analysis,” in 19th IEEE International
Parallel and Distributed Processing Symposium, ser. IPDPS ’05, 2005.

[167] The SDAccel software development platform. Xilinx. [Online]. Available:
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html

[168] OpenACC, “OpenACC: Directives for Accelerators,” 2011, published: [Online]. Available:
http://www.openacc.org.

[169] OpenACC Online Portal. OpenACC. [Online]. Available: https://www.openacc.org/

172

http://doi.acm.org/10.1145/2370816.2370874
https://www.mentor.com/products/fpga/handel-c/dk-design-suite/
https://www.xilinx.com/products/design-tools/vitis/vitis-platform.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.openacc.org/


[170] “OpenMP Reference,” 1999, OpenMP Standards Organization.

[171] I. Karlin, J. Keasler, and R. Neely, “LULESH 2.0 Updates and Changes,” Livermore, CA,
Tech. Rep. LLNL-TR-641973, Aug. 2013.

[172] B. Veenboer and J. W. Romein, “Radio-Astronomical Imaging: FPGAs vs GPUs,” in
European Conference on Parallel Processing. Springer, 2019, pp. 509–521.

[173] Z. Jin and H. Finkel, “Evaluating LULESH kernels on opencl FPGA,” in International
Symposium on Applied Reconfigurable Computing. Springer, 2019, pp. 199–213.

[174] The OmpSs Programming Model. [Online]. Available: https://pm.bsc.es/ompss

[175] L. Sommer, J. Korinth, and A. Koch, “OpenMP device offloading to FPGA accelerators,” in
2017 IEEE 28th International Conference on Application-specific Systems, Architectures
and Processors (ASAP), Jul. 2017, pp. 201–205.

[176] J. de Fine Licht and T. Hoefler, “hlslib: Software engineering for hardware design,” arXiv
preprint arXiv:1910.04436, 2019.

[177] T. Ben-Nun, J. de Fine Licht, A. N. Ziogas, T. Schneider, and T. Hoefler, “Stateful Dataflow
Multigraphs: A data-centric model for performance portability on heterogeneous
architectures,” in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019, pp. 1–14.

[178] M. J. Schulte, M. Ignatowski, G. H. Loh, B. M. Beckmann, W. C. Brantley, S. Gurumurthi,
N. Jayasena, I. Paul, S. K. Reinhardt, and G. Rodgers, “Achieving exascale capabilities
through heterogeneous computing,” Micro, IEEE, vol. 35, no. 4, pp. 26–36, 2015.

[179] Y. LeCun, “Deep learning hardware: Past, present, and future,” in 2019 IEEE International
Solid- State Circuits Conference - (ISSCC), 2019, pp. 12–19.

[180] S. J. Pennycook, J. D. Sewall, and V. W. Lee, “Implications of a metric for performance
portability,” Future Generation Computer Systems, vol. 92, pp. 947–958, 2019.

[181] A. Sabne, P. Sakdhnagool, S. Lee, and J. S. Vetter, “Evaluating Performance Portability of
OpenACC,” in Languages and Compilers for Parallel Computing, 2015, pp. 51–66.

[182] L. Cai, Y. Wang, W. Tang, B. Wang, S. Ethier, Z. Liu, and J. Lin, “OpenACC vs the Native
Programming on Sunway TaihuLight: A Case Study with GTC-P,” in 2018 IEEE
International Conference on Cluster Computing (CLUSTER), 2018, pp. 88–97.

[183] J. Lin, Z. Xu, L. Cai, A. Nukada, and S. Matsuoka, “Evaluating the SW26010 Many-core
Processor with a Micro-benchmark Suite for Performance Optimizations,” Parallel
Computing, vol. 77, pp. 128 – 143, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167819118301820

[184] B. R. d. Supinski, T. R. W. Scogland, A. Duran, M. Klemm, S. M. Bellido, S. L. Olivier,
C. Terboven, and T. G. Mattson, “The Ongoing Evolution of OpenMP,” Proceedings of
the IEEE, vol. 106, no. 11, pp. 2004–2019, 2018.

[185] V. V. Larrea, W. Joubert, M. G. Lopez, and O. Hernandez, “Early Experiences Writing
Performance Portable OpenMP 4 Codes,” in Proc. Cray User Group Meeting, London,
England, 2016.

173

https://pm.bsc.es/ompss
http://www.sciencedirect.com/science/article/pii/S0167819118301820


[186] M. G. Lopez, V. V. Larrea, W. Joubert, O. Hernandez, A. Haidar, S. Tomov, and
J. Dongarra, “Towards Achieving Performance Portability Using Directives for
Accelerators,” in 2016 Third Workshop on Accelerator Programming Using Directives
(WACCPD). IEEE, 2016, pp. 13–24.

[187] R. Gayatri, C. Yang, T. Kurth, and J. Deslippe, “A Case Study for Performance Portability
Using OpenMP 4.5,” in International Workshop on Accelerator Programming Using
Directives. Springer, 2018, pp. 75–95.

[188] M. Wolfe, Compilers and More: OpenACC to OpenMP (and Back Again), hpcwire.com, Ed.,
Jun. 2016.

[189] G. Arnold, A. Calvert, J. Overbey, and N. Sultana, “From OpenACC to OpenMP 4: Toward
Automatic Translation,” XCEDE16, Miami, FL, 2016.

[190] S. Pino, L. Pollock, and S. Chandrasekaran, “Exploring Translation of OpenMP to OpenACC
2.5: Lessons Learned,” in 2017 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, 2017, pp. 673–682.

[191] T. Gamblin, M. LeGendre, M. R. Collette, G. L. Lee, A. Moody, B. R. de Supinski, and
S. Futral, “The Spack Package Manager: Bringing Order to HPC Software Chaos,” in
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’15. New York, NY, USA: Association for
Computing Machinery, 2015, event-place: Austin, Texas. [Online]. Available:
https://doi.org/10.1145/2807591.2807623

[192] J. Dongarra, P. Beckman, T. Moore, P. Aerts, G. Aloisio, J.-C. Andre, D. Barkai, J.-Y.
Berthou, T. Boku, B. Braunschweig et al., “The international exascale software project
roadmap,” The international journal of high performance computing applications, vol. 25,
no. 1, pp. 3–60, 2011.

[193] S. Lee and J. S. Vetter, “Early evaluation of directive-based GPU programming models for
productive exascale computing,” in SC’12: Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis. IEEE, 2012, pp. 1–11.

[194] J. H. Davis, C. Daley, S. Pophale, T. Huber, S. Chandrasekaran, and N. J. Wright,
“Performance Assessment of OpenMP Compilers Targeting NVIDIA V100 GPUs,” arXiv
preprint arXiv:2010.09454, 2020.

[195] R. Usha, P. Pandey, and N. Mangala, “A Comprehensive Comparison and Analysis of
OpenACC and OpenMP 4.5 for NVIDIA GPUs,” in 2020 IEEE High Performance
Extreme Computing Conference (HPEC). IEEE, 2020, pp. 1–6.

[196] C. Bertoni, J. Kwack, T. Applencourt, Y. Ghadar, B. Homerding, C. Knight, B. Videau,
H. Zheng, V. Morozov, and S. Parker, “Performance Portability Evaluation of OpenCL
Benchmarks across Intel and NVIDIA Platforms,” in 2020 IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW). IEEE, 2020, pp. 330–339.

174

https://doi.org/10.1145/2807591.2807623

	 Introduction, Background, and Motivation 
	History of Heterogeneous Computing
	Distributed Heterogeneous Systems
	Multicore, Manycore, and Accelerator-based Heterogeneous Systems

	Heterogeneous Programming Models
	CUDA
	OpenCL
	HIP
	OpenACC
	OpenMP
	Other Modern Programming Models
	Kokkos
	Raja
	SYCL, DPC++, and OneAPI
	Legion
	HPX
	C++
	Domain Specific Languages


	Heterogeneous Compiler Frameworks
	Vendor-supported Compilers
	NVCC
	PGI
	AMD
	Intel

	Open-source Compilers
	LLVM, Clang, and MLIR
	GNU C/C++

	Academic, Research, and Custom Compilers
	ROSE
	OpenUH
	Omni
	OmpSs
	OpenARC
	HPVM


	Heterogeneous Benchmark Suites
	Rodinia
	SPEC Accel
	Other Heterogeneous Benchmark Suites


	 Directive-Based Programming and Optimizations for High-Performance Computing with FPGAs 
	Background on FPGAs as Heterogeneous Accelerators
	FPGA Hardware
	Traditional FPGA Programming Approaches
	Contemporary FPGA Programming Models
	OpenCL
	OpenACC


	The OpenACC-to-FPGA Framework
	Implementation in OpenARC
	Automatic Optimizations
	Dynamic Memory Transfer Alignment
	Boundary Check Elimination
	Branch-Variant Code Motion Optimization

	Re-purposed Directives
	Single Work-Item Optimization
	Collapse Optimization
	Reduction Optimization

	Directive Extensions
	Kernel Vectorization Directive
	Compute Unit Replication Directive
	Channels Directive
	Sliding Window Directive


	Experimental Setup for FPGA Platforms
	Benchmarks
	Sobel
	FD3D
	HotSpot
	SRAD
	NW
	Pathfinder
	CFD
	Jacobi
	Matmul
	LULESH

	FPGA Hardware Platforms
	FPGA Software Platforms
	GPU and CPU Comparison Platforms

	Intel Stratix V Evaluations
	Single Work-Item Evaluation
	Collapse Evaluation
	Reduction Evaluation
	Sliding Window Evaluation
	Basic Sliding Window
	Sliding Window with Loop Unrolling

	Branch-Variant Code Motion Evaluation
	OpenACC and OpenCL Performance Comparison
	Performance and Power Comparisons of FPGAs, GPUs, and CPUs

	Intel Arria 10 and Stratix 10 Evaluations
	Sobel Holistic Evaluation
	HotSpot

	SRAD Holistic Evaluation
	MatMul Holistic Evaluation
	Jacobi Holistic Evaluation
	Resource Usage Evaluation
	SRAD Resource Evaluation
	Jacobi Resource Evaluation

	Compilation Times
	Performance Portability
	LULESH Initial Evaluation

	Intel and Xilinx OpenCL Portability Study
	Porting Intel Applications to Xilinx Hardware
	Loop Unrolling
	Shift Registers

	Minimum Modification Porting Evaluation
	Pathfinder Porting and Evaluation
	CFD Porting and Evaluation
	SRAD Porting and Evaluation
	HotSpot Porting and Evaluation


	Directive-based FPGA Programming: Related Works
	Directive-based FPGA Programming: Conclusions

	 An Integrated Translation and Optimization Framework for OpenMP and OpenACC 
	OpenMP and OpenACC Interoperable Framework: Introduction
	CCAMP: Background
	OpenACC and OpenMP
	OpenARC

	CCAMP: Automated Translation between OpenMP and OpenACC
	OpenMP 4+ to OpenACC
	OpenACC to OpenMP 4+

	CCAMP: Automated Optimization of OpenMP and OpenACC
	Extracting Parallelism
	OpenMP Mapping on CPUs
	OpenMP Mapping on GPUs
	OpenACC Mapping
	Optimization Code Examples

	Evaluation of CCAMP Framework
	Experimental Setup of Intel, IBM, and Nvidia Platforms
	Devices
	Compilers
	Benchmarks

	Evaluation of CCAMP Translation
	Evaluation of CCAMP Optimization
	OpenMP 4+ Optimization with Clang
	OpenMP 4+ Optimization with PGI
	OpenMP 4+ Optimization with XLC
	OpenACC Optimization with PGI
	Putting it Together: CCAMP Translation and Optimization

	Additional CCAMP Evaluations
	GCC: Initial Evaluation
	LULESH 2.0
	Performance Variability


	OpenMP and OpenACC Interoperable Framework: Related Work
	OpenMP and OpenACC Interoperable Framework: Conclusions

	 Exploring Heterogeneous Programming for Future Diverse Exascale Platforms 
	Exploration of Exascale Platforms: Introduction
	Exascale Platforms and Programming Models
	Exascale Programming Models
	OpenMP
	OpenACC
	CUDA
	OpenCL
	HIP/ROCm
	Other Notable Models


	Exploration of Exascale Platforms: Experimental Setup
	AMD Platform
	Nvidia Platform
	Intel Platform
	Benchmarks

	Evaluation of Heterogeneous Platforms with OpenACC, OpenARC, and CCAMP
	Relative Performance of Each Programming Model Across Devices
	Absolute Performance of Programming Models on Each Device
	OpenMP Mappings
	Intel icpx and Intermediate Representations for OpenMP
	LLVM and Nvidia Implementation Comparison for OpenCL and OpenMP

	Exploration of Exascale Platforms: Related Work
	Exploration of Exascale Platforms: Conclusions

	 Conclusion 
	REFERENCES CITED

