
ACCELERATING MACHINE LEARNING VIA MULTI-OBJECTIVE

OPTIMIZATION

by

ROBERT LIM

A DISSERTATION

Presented to the Department of Computer and Information Science
and the Division of Graduate Studies of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

September 2021



DISSERTATION APPROVAL PAGE

Student: Robert Lim

Title: Accelerating Machine Learning via Multi-Objective Optimization

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Computer
and Information Science by:

Allen Malony Chair
Boyana Norris Core Member
Dejing Dou Core Member
Camille Coti Core Member
William Cresko Institutional Representative

and

Andy Karduna Interim Vice Provost for Graduate Studies

Original approval signatures are on file with the University of Oregon Division of
Graduate Studies.

Degree awarded September 2021

ii



c© 2021 Robert Lim
All rights reserved.

iii



DISSERTATION ABSTRACT

Robert Lim

Doctor of Philosophy

Department of Computer and Information Science

September 2021

Title: Accelerating Machine Learning via Multi-Objective Optimization

This dissertation work presents various approaches toward accelerating

training of deep neural networks with the use of high-performance computing

resources, while balancing learning and systems utilization objectives. Acceleration

of machine learning is formulated as a multi-objective optimization problem

that seeks to satisfy multiple objectives, based on its respective constraints. In

machine learning, the objective is to strive for a model that has high accuracy,

while eliminating false positives and generalizing beyond the training set. For

systems execution performance, maximizing utilization of the underlying hardware

resources within compute and power budgets are constraints that bound the

problem. In both scenarios, the search space is combinatorial and contains multiple

local minima that in many cases satisfies the global optimum. This dissertation

work addresses the search of solutions in both performance tuning and neural

network training. Specifically, subgraph matching is proposed to bound the

search problem and provide heuristics that guide the solver toward the optimal

solution. Mixed precision operations is also proposed for solving systems of linear

equations and for training neural networks for image classification for evaluating

the stability and robustness of the operations. Use cases are presented with CUDA

performance tuning and neural network training, demonstrating the effectiveness
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of the proposed technique. The experiments were carried out on single and multi-

node GPU clusters, and reveals opportunities for further exploration in this critical

hardware/software co-design space of accelerated machine learning.
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CHAPTER I

INTRODUCTION

Overview

This dissertation work presents various approaches toward accelerating

training of deep neural networks with the use of high-performance computing

(HPC) resources, while balancing learning and systems utilization objectives.

Acceleration of machine learning (ML) is formulated as a multi-objective

optimization problem, which seeks to jointly optimize performance and learning

objectives, based on its respective constraints. Within each scope, the solver seeks

an optimal solution. In machine learning, the solver optimizes a prediction function

h : X → Y from an input space X to an output space Y , for x ∈ X , such

that ŷ = Fh(x) accurately predicts the output and minimizes its empirical risk,

defined as the expectation, R(Fh) = E[L(F (h(x)), y)] =
∫
L(h(x), y) dP (x, y),

for some loss function L(ŷ, y) estimating ŷ from y, and the goal is to find F ∗h =

arg minFh∈FR(Fh), or a prediction function F ∗h ∈ F where R(Fh) is minimal.

When optimizing for execution performance, the solver seeks to minimize a cost

function g : X → Y by selecting the combination of compute resources a ∈ A

and transformation options o ∈ O, X (A,O), which yield minimal execution time

while maximizing utilization of hardware resources, or F ∗g = arg minFg∈FR(Fg),

where R(Fg) = E[F (g(x)), y)] =
∫
L(g(x), y) dP (x, y). Joint optimization of

machine learning and high performance computing, discussed in Sec. II, is defined

as minFg∈F minFh∈FR(F), for Fg, Fh ∈ F, where F represents a vector of objective

functions satisfying constraints for its respective domains.
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Organization of Dissertation

This section outlines the dissertation format and provides an overview for

each chapter.

Background Information. Accelerating machine learning and

multi-objective optimization are presented in Chapter II, which motivates the

discussion and provides the background information for the dissertation. The

subject matter is on the intersection of high-performance computing and machine

learning, specifically how the innovations of heterogeneous parallel programming

and methods for analyzing massive amounts of data has transformed industries and

society, making this an important field to investigate. Performance optimization

depends on numerous elements involved in the computation, including both

hardware and software. Thus, the computer architectures, the algorithms, and

numerical methods related to machine learning are briefly covered in this chapter.

In the chapters that follow, several approaches are presented for optimizing

performance and learning by accelerating the computation kernels used by the

machine learning algorithms, by tuning the hyper-parameters of these algorithms,

and by understanding the numerical representation of the data handled by these

algorithms. The next subsections provide a brief overview and the research

questions raised for each chapter.

Optimizing Code Generation. Chapter III discusses the work where

we proposed metrics for automatic performance tuning of GPU applications. This

work seeks to address the following questions:

1. Given the difficult requirements by the user in writing CUDA code, where

the user is forced to set threads, blocks, shared memory, and writing efficient
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parallel programs, could we automatically come up with ways that discover

optimal parameter settings?

2. What metrics can we define statically, such as occupancy, that capture the

performance requirements of a computational kernel, and can we use those to

help improve our search during automatic performance tuning?

GPU Subgraph Matching. Chapter IV proposes several techniques

for performing subgraph matching with GPU kernels. The proposed techniques

incorporate the shape and traversal of the graph, its transition probabilities, and

hardware information such as the GPU the graph was generated in and instruction

mixes. The following questions are proposed:

1. Can we come up with compact ways of representing execution performance

information of GPU kernels that captures the essence of runtime information,

but at the same time, enable us to reason about an unseen kernel’s behavior?

2. Can we define a similarity metric that enables us to match graphs with one

another? This similarity metric needs to be GPU architecture independent,

provide a correct measure when measuring with itself, and can match graphs

of arbitrary shapes and sizes.

Hyper-Parameter Optimization. Chapter V optimizes hyper-

parameters for a neural machine translation system. The hyper-parameters

explored varies and the study accounts for training stability, trajectories and speed.

Other statistics include words processed per second and time to convergence. In

this work, we address the following questions:

1. Can we identify which hyper-parameters contribute the most to a model’s

learning trajectory, while accounting for stability, quality, and speed?
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2. Can we identify which hyper-parameters matter most, in terms of system

execution performance?

Numerical Representation. Chapter VI examines the numerical

requirements when training deep neural networks. In particular, mixed precision

operations is proposed that enables users to set the precision and range sizes during

training run. The questions raised in this research are the following:

1. What are the precision requirements during various iterations of the phase

when training deep neural networks?

2. Can we propose a dynamic mixed-precision approach toward training neural

networks, where the precision sizes can be set during the phase of the training

run?

Summary and Future Work. Chapter VII closes by summarizing

the work that was discussed in previous chapters and presents areas to pursue for

future work.

Conclusion

An overview of multi-objective optimization and the dissertation format was

presented. Next, motivation and background information relating to accelerated

machine learning are presented.
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CHAPTER II

BACKGROUND

This chapter provides motivation for the dissertation work and covers the

basic concepts needed to be discussed further in the dissertation.

Motivation

Deep Learning Application Domains. The U.S. Department of

Energy has outlined the artifical intelligence (AI) objectives to couple machine

learning methods with HPC workloads in its concurrent quest for building the

first Exaflop supercomputing machine Stevens et al. (2020). The report identifies

areas where ML could augment existing scientific workflows, including chemistry,

materials and nanoscience; earth and environmental sciences; biology and life

sciences; high energy physics and nuclear physics, amongst others. The nascent

social media industry, which provides free services to millions of users, has made

billions of dollars deploying deep neural networks to analyze petaflops of user data

on-line and off-line for its own use of recommendation systems, computer vision,

and language comprehension Park et al. (2018). What makes this innovation

possible is both the advancement in AI and the compute infrastructure that

delivers instantaneous results to users on their end devices.

ML HPC Architectures. This subsection discusses various computer

architectures and accelerators that have been developed for machine learning

purposes. Because the majority of operations during machine learning are matrix

vector products, much effort has been made to fabricate parallel matrix multipliers

to accelerate machine learning. Also referred to as neural processors Neural

Processor (2020), these architectures include GPUs, CPUs, and custom ASICs, such

as tensor processing units (TPU). Not discussed in this dissertation but also part of
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CPU GPU TPU

Skylake Cas Lake Volta Ampere v2 v3

Processor

Cores 28 56 80 96 512 2048

Freq (MHz) 2500 2600 1328 1328 700 940

Peak Perf 2T 3.2T 125T 312T 180T 420T

Memory

Type DDR4 DDR4 HBM2 HBM2 HBM HBM

Off-chip (GB) 120 140 16 40 32 40

BW (GB/s) 16.6 23.4 900 1555 2400 3600

Hardware

TDP 205 400 300 450 280 450

MXU n/a n/a 4× 4 (8) 4× 4 (4) 128×128
(1)

128×128
(2)

Table 1. Comparing ML computer processors and accelerators.

neural processors are neuromorphic chips, such as IBM True North Modha (2017)

and Intel Loihi Davies et al. (2018), and field programmable gate arrays (FPGA).

Table 1, drawn from Wang, Wei, and Brooks (2019); Intel Sky Lake (2017); Intel

Cascade Lake (2019), displays a general comparison of CPUs, GPUs and TPUs.

Graphic Processing Units. NVIDIA GPUs, which dominate the

market share of accelerators for machine learning due to the proven use of GPUs

and the CUDA Deep Neural Network (cuDNN) library, has been aggressively

introducing new hardware capabilities for fused operations and reduced precision.

Designed originally for real-time graphics rendering using fixed-function pipelines

with each pixel performing independent operations in parallel, CUDA debuted

as a parallel computing platform in 2007 that enabled user defined programs

called shaders that combined the vertex and fragment operations, which is the

foundation of the data parallel programming units that run on GPUs and currently
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Figure 1. Tensor processing unit (image source Cloud TPU (2019)).

powers some of the world’s fastest supercomputers. NVIDIA Volta V100 marks the

release of hardware support for tensor cores in 2017 that are capable of executing

4×4 matrices in 16-bit, which uses warps of 32 parallel threads. The NVIDIA

Ampere A100, released in 2020, adds the tensorfloat32 instruction set TF32

(2019a), which utilizes 8 bits for the exponent and 10 bits for the mantissa, and

is essentially a 19 bit format in a 32 bit register. Software frameworks such as

PyTorch, TensorFlow and MxNet rely on the cuDNN library for acceleration. The

library can be downloaded for free with a registered NVIDIA account.

Tensor Processing Unit. The tensor processing unit (TPU), created

by Google in 2016, is a high-performance, application-specific integrated chip

(ASIC) designed for neural network training with 64 GB high-bandwidth memory

and 180 teraflops (TFLOPS) peak performance Cloud TPU (2019). Figure 1

displays a schematic representation of the TPUs for v1 and v2. Organized as
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a systolic array of 65536 8-bit matrix multiplier units (MXU) with hardwired

activation units and a 24 MB unified buffer, inputs are read once and reused, in

contrast to the current approach that loads and stores each value TF32 (2019b).

Values are further quantized to 8-bits to increase throughput of the instructions.

The TPU performs well for training deep neural networks with large batch sizes

and is capable of low latency inferencing.

Scalable CPUs. Intel, known traditionally as a CPU manufacturer, has

also been agressively wedging in the market share of high-performance computing

and machine learning. The CPU’s ability for multi-processing with mixed-mode

accelerators can be advantageous for AI models, such as reinforcement learning

and agent-based modeling. Intel also open sourced the Math Kernel Library Deep

Neural Network (MKL-DNN) in 2019 as part of the oneAPI initiative, a unified

programming model that targets all Intel devices, including CPUs, GPUs, and

FPGAs.

The Intel Xeon Scalable processors enable multi-node multi-socket

connection, with 8-bit multiplies and 32-bit accumulates with instructions, such

as 8 bit operations accumulated in 16-bit registers (VPMADDUBSW), 16-bit to 32-bit

broadcasts (VPMADDWD), and neural network instructions (AVX512 VNNI), which are

512-bit vectorized intrinsics that perform 8-bit integer operations and accumulates

the results to 32-bit registers. Other product lines that Intel provide for AI include

Xe GPU accelerators, Arrix FPGAs, and high-performance memory subsystems

such as X-point.

Mixed Precision Numerical Methods. Mixed precision algorithms

have been successful in providing performance execution benefits, such as increased

instruction throughput, less memory footprint and savings in energy. Figure 2
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Figure 2. Quantizing multiply-add-accumulate operation.

illustrates how the precision of the output of the activation is reduced to N

bits (image source: Sze, Chen, Yang, and Emer (2017)). Reduced precision is

commonplace on modern microprocessors and accelerators, such as TPUs that have

8-bit integer arithmetic and GPUs that have mixed precision execution modes,

including the Pascal (8-, 16-bit to 32-bit) and the Turing (1-, 4-, 8-, 16-bit to 32-

bit) models.

AI and HPC. The advancement of AI has been driven by the

algorithmic innovations, massive training sets, and compute capabilities AI and

Compute (2018). Figure 3 shows the total amount of compute, in petaflop/s-days,

used to train selected AI models. Although one may criticize that the shortcomings

of current AI aproaches are exposed with the massive compute requirements, the

amount of compute availability often facilitates in algorithmic advances, as seen in

the evolving AI approaches, from neural networks to reinforcement learning, and

the types of problems being solved, including image classification and competitive

gaming.

Background Information

This section covers the prerequisite information needed for discussing the

dissertation topics. The topics include multi-objective optimization, machine

learning terminology, optimization in machine learning, and stochastic gradient

descent.
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Figure 3. AI training runs, showing 3-4 month doubling time of petaflops. Image
source AI and Compute (2018).

Multi-Objective Optimization. Multi-objective optimization seeks

to optimize multiple criteria, leveraging overlapping objectives while balancing

trade-offs associated with such choices. For accelerating machine learning, multi-

objective optimization seeks to achieve quality model learning while leveraging

high-performance computing resources.

Multi-objective optimization is formulated as follows. Taken from Miettinen

(2012), let k represent the number of objective functions with m inequality

constraints and e equality constraints. Let x ∈ En be a vector of decision variables

with n independent variables, xi, and F(x) ∈ Ek be a vector of objective functions,

Fi(x) : En → E1, where E1 represents the criteria, or the cost, of the objective.
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Multi-objective optimization is defined as follows:

min
x

F(x) = [F1(x), F2(x), ..., Fk(x)]T

subject to

gj(x) ≤ 0, j = 1, 2, ...,m,

hl(x) = 0, l = 1, 2..., e.

(2.1)

The gradient of Fi(x) is ∇xFi(x) ∈ En, where x∗i is a point that minimizes

the objective function, Fi(x). The feasible design space X, or the decision space, is

defined as the set {x | gj(x) ≤ 0, j = 1, 2, ...,m;hi(x) = 0, i = 1, 2, ..., e}, whereas

the feasible criterion space Z, or the attainable set, is defined as {F(x) | x ∈ X}.

Feasiblilty implies that no constraints are involved, whereas attainability implies

that a point in the criterion space Z maps to the decision space X. The Pareto

optimal is defined as a point x∗ ∈ X, if and only if there does not exist another

point, such that F(x) ≤ F(x∗), and Fi(x) < Fi(x
∗) for at least one criterion.

ML Terminology. Machine learning is a subcategory of artificial

intelligence, and neural networks are a subcategory of machine learning that takes a

brain-inspired approach toward learning.

Optimization in Machine Learning. Optimization is a

mathematical procedure for finding a maximum or a minimum value of a function

of several variables, subject to a set of constraints, as in linear programming or

systems analysis Chong and Zak (2013). Decision making, where optimization plays

a central role, entails selecting the best option amongst a set of alternatives. An

objective function, or performance index, provides a “goodness” measure, where the

optimization procedure selects the best alternative in light of the given objective

function.
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Table 2. Selected optimization methods targeting machine learning and high
performance computing.

Algorithmic Solver Search Compilation Node Distributed

SVM SGD Random Loop
Transforms

GPU Thread
Block

Multi-
GPU

Neural
Nets

Adam Grid Vector-
/SIMD

Memory
Hierarchy

Cluster
Parallelism

Least-squares Adagrad Bayesian IR Intrinsics Block
Partition

KNN FFT MCTS Mixed
Precision

Operator
Fusion

Lazy/Eager

Reinforcement
Learning

Newton Heuristic Kernel
Fusion

Rounding BFGS,
Downpour

Table 2 lists the objectives to optimize for accelerating machine learning.

The methods are categorized according to the level of the software stack. Note that

this is not an exhaustive list, but a subset that incorporates both ML and HPC.

Note, also, that there may be overlaps and that each optimization target may fall

under several categories. This dissertation attempts to address the areas that are

highlighted.

Algorithmic optimization involves selecting the ML classifier for the task

at hand, whether supervised or unsupervised, and its complexity, such as the

number of learned parameters. Examples of machine learning algorithms include

support vector machines (SVM), neural networks, least-squares methods, K-

nearest neighbors (KNN), and reinforcement learning. The solver is the iterative

method that provides a performance index during the learning process, and

includes stochastic gradient descent (SGD) and its variants, such as AdaGrad and

Adam, and second-order methods such as Newton’s method, and transformative

approaches such as Fast Fourier transform (FFT). Search optimization is concerned

with the identification of the maximum or minimum of values. Techniques to
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perform search include random, grid, Bayesian, Monte Carlo tree search, and

heuristics-based search.

Once the weights have been trained for the model, compilation attempts to

optimize the code for execution performance. Code transformations that exploit

data locality include loop transformations, vectorization and SIMD approaches,

source-to-source translation, reduced precision, and kernel fusion. Single-node

optimization targets features available at the computer architecture level, and

includes memory hierarchy, intrinsics, and stochastic rounding. Distributed

optimization makes use of multiple clusters and multiple accelerators for machine

learning, accounting for compute availability, scheduling, checkpointing and

problem partitioning. Collectively, this illustrates the complexity and tradeoffs of

the landscape when accounting for all factors in optimizing the multiple objectives

in machine learning and high-performance computing.

Stochastic Gradient Descent. Stochastic gradient descent is an

iterative method that minimizes an objective function F by estimating parameter

w for a Fi(w), for the i-th observation Stochastic Gradient Descent (2021). For

training neural networks, the weights are learned with each batch of data and

updated iteratively. Refer to Appendix A for the derivation of stochastic gradient

descent.

Algorithm 1 lists the stochastic gradient method, which performs the

following steps. A random variable Ek is generated via a Taylor expansion series,

with {Ek} representing a sequence of jointly independent random variables. Given

an iterate wk ∈ Rd and the realization of Ek, a stochastic vector g(wk, Ek) ∈ Rd

is computed. Then, given an iteration number k ∈ N, a scalar stepsize αk > 0 is

13



Algorithm 1 Stochastic gradient method.

1: Choose an initial iterate w1

2: for k = 1, 2, ... do
3: Generate a realization of the random variable Ek
4: Compute a stochastic vector g(wk, Ek)
5: Choose a step size αk > 0
6: Set the new iterate as wk+1 ← wk = αkg(wk, Ek)

computed. The stochastic gradient estimate for g with S samples is defined as

∇fSk
(wk; Ek) =

1

|Sk|
∑
i∈Sk

∇f(wk; Ek,i). (2.2)

Conclusion

This section covered the background information needed to be discussed for

the dissertation. Next, we discuss core areas of the dissertation. The core areas of

the dissertation include optimizing code generation, control flow subgraph matching,

optimizing hyper-parameters, and numerical representation.

14



CHAPTER III

OPTIMIZING CODE GENERATION

This chapter includes previously published co-authored material that was

published at the 46th International Conference on Parallel Processing Lim, Norris,

and Malony (2017). I was the primary contributor to this work in developing the

algorithm, writing the new code, and writing the paper. Dr. Boyana Norris initially

identified the need for this work and provided the application that this work was

performed in. Dr. Allen Malony assisted in editing the paper.

Abstract

Optimizing the performance of GPU kernels is challenging for both human

programmers and code generators. For example, CUDA programmers must set

thread and block parameters for a kernel, but might not have the intuition or

experience to make a good choice. Similarly, compilers can generate working code,

but may miss tuning opportunities by not targeting GPU models or performing

code transformations. Although empirical autotuning addresses some of these

challenges, it requires extensive experimentation and search for optimal code

variants. This research presents an approach for tuning CUDA kernels based on

static analysis that considers fine-grained code structure and the specific GPU

architectural features. Notably, unlike most autotuning systems, our approach does

not require any program runs in order to discover near-optimal parameter settings.

We demonstrate the applicability of our approach in enabling code autotuners such

as Orio to produce competitive code variants comparable with empirical-based

methods, without the high cost of experiments.
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Motivation

Heterogeneous computing poses several challenges to the application

developer. Identifying which parts of an application are parallelizable on a SIMD

accelerator and writing efficient data parallel code are the most difficult tasks.

For instance, CUDA programmers must set block and thread sizes for application

kernels, but might not have the intuition to make a good choice. With NVIDIA

GPUs, each streaming multiprocessor (SM) has a finite number of registers, limited

shared memory, a maximum number of allowed active blocks, and a maximum

number of allowed active threads. Variation in block and thread sizes results in

different utilization of these hardware resources. A small block size may not provide

enough warps for the scheduler for full GPU utilization, whereas a large block size

may lead to more threads competing for registers and shared memory.

Writing kernel functions require setting block and thread parameters, and

the difficulty is in deciding which settings will yield the best performance. One

procedure entails testing the kernel with block sizes suggested by the CUDA

Occupancy Calculator (OCC) CUDA Occupancy Calculator (2016). Although the

OCC takes into account the compute capability (NVIDIA virtual architecture)

when calculating block sizes and thread counts, inaccuracies may arise because

variations in runtime behavior may not be considered, which can potentially result

in suboptimal suggested hardware parameters.

How do variations in runtime behavior arise? Accelerator architectures

specialize in executing SIMD in lock-step. When branches occur, threads that do

not satisfy branch conditions are masked out. If the kernel programmer is unaware

of the code structure or the hardware underneath, it will be difficult for them to

make an effective decision about thread and block parameters.
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CUDA developers face two main challenges, which we aim to alleviate

with the approach described in this paper. First, developers must correctly select

runtime parameters as discussed above. A developer or user may not have the

expertise to decide on parameter settings that will deliver high performance. In

this case, one can seek guidance from an optimization advisor. The advisor could

consult a performance model based on static analysis of the kernel properties, or

possibly use dynamic analysis to investigate alternative configurations. A second

concern is whether the kernel implementation is not optimized yet. In this case,

advice on parameter settings could still be insufficient because what is really

required is a transformation of the kernel code itself to improve performance. For

both concerns, static and dynamic analysis techniques are applicable. However, to

address the second concern, an autotuning framework based on code transformation

is required.

This research presents our static analyzer that can be used by developers,

autotuners, and compilers for heterogeneous computing applications. Unlike most

existing analysis techniques, our approach does not require any program runs to

discover optimal parameter settings. The specific contributions described in this

paper include the following.

– A static analyzer for CUDA programs.

– Predictive modeling based on static data.

– Example use cases of the new methodology in an autotuning context.
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Figure 4. Branch divergence problem and performance loss incurred.

Background

This section briefly discusses the background for our research contributions,

including the CUDA programming model, performance measurement approaches,

and autotuning.

CUDA Programming Model and Control Flow Divergence. In

CUDA kernels, threads are organized in groups called blocks, which consist of one

or more warps (each of which has 32 threads). Each block is assigned to one of the

GPU’s streaming multiprocessors, and each SM is composed of multiple streaming

processors, or multiprocessors (MP) that execute individual threads in SIMD.

In a given execution cycle, a SM executes instructions from one of the

thread block’s warps, where threads within a warp are executed together. However,

if threads within a warp take different paths on conditional branches, execution

of those paths become serialized. In the worst case, only 1 of the 32 threads

within a warp will make progress in a cycle. Figure 4 shows how performance is

affected when branches diverge. Measuring the occupancy of a kernel execution can

determine whether branch divergence exists and suggest parameter adjustments to

the program, a subject of this current work.
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GPU Performance Tools. To date, GPU performance tools have

mainly focused on the measurement and analysis of kernel execution, reporting

time and counters associated with kernel execution. For instance, the TAU

Performance System provides scalable, profile and trace measurement and analysis

for high-performance parallel applications Shende and Malony (2006), including

support for CUDA and OpenCL codes Malony et al. (2011). Even though profile

measurements can help answer certain types of questions (e.g., how long did

foo() take?), improving performance requires more detailed information about the

program structure.

While TAU and other profiling tools provide performance measurement

Adhianto et al. (2010); ddt (2016); nvprof (2016), they do not shed much light

on the divergent branch behavior and its effects on making good decisions about

thread and block sizes. Our work introduces several static analysis techniques

that deliver fine-grained information that can be used for predictive modeling.

These techniques include the ability to analyze instruction mixes and occupancy

for estimating thread and register settings. In a complementary approach (not

discussed in this paper), we have also developed dynamic analysis techniques to

compute instruction execution frequencies and control flow information Lim, Norris,

and Malony (2016).

In the remainder of this section, we discuss how we model different

performance-relevant metrics by using primarily static analysis of CUDA binaries.

Autotuning. By themselves, performance models can produce adequate

predictions of parameter settings, but can not change the kernel to improve

performance. Autotuning systems have been important in exploring alternative

parameter choices by providing a kernel experimentation and optimization
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Figure 5. Optimization framework for GPU kernels incorporating static and
dynamic analysis, with autotuning and code transformation.

framework. For example, the open-source Orio autotuning framework Hartono,

Norris, and Sadayappan (2009) generates many code variants for each kernel

computation. The objective of the GPU portions of Orio is to accelerate

loops Chaimov, Norris, and Malony (2014); Mametjanov, Lowell, C.C. Ma, and

Norris (2012) since loops consume a large portion of program execution time.

We use the term kernels to refer to deeply nested loops that arise frequently in

a number of scientific application codes. Existing C loops are annotated with

transformation and tuning specifications. Transformations are parameterized with

respect to various performance constraints, such as block sizes, thread counts,

preferred L1 sizes and loop unroll factors. Each kernel specification generates a

family of variant translations for each parameter and each variant is measured for

its overall execution time, with the fastest chosen as the top performing autotuned

translation.

The main challenge in the optimization space search is the costly empirical

measurement of many code variants in autotuning systems. The main contribution
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of our work is to demonstrate the use of static predictive models in autotuning,

reducing the need for experimental performance testing.

Methodology

Figure 5 is a high-level depiction of our framework, which illustrates not

only the different processes involved, but also the analysis support and tradeoffs

inherent in them. For instance, providing a user with runtime parameters for

kernel launch could engage static and/or dynamic analysis, but not necessarily

code transformation. Dynamic analysis would be expected to be more costly

because experiments would be involved. Transforming the implementation allows

new variants to be explored, but these could be analyzed either statically or

dynamically, or both. However, it is in the integration of these models with an

autotuning system that can transform the kernel code where the greatest power

for delivering optimizations is found.

Static Analysis

Our static analysis approach consists of the following steps:

1. Extract kernel compilation information with nvcc’s --ptxas-options=-v

flag.

2. Disassemble CUDA binary with nvdisasm for instruction operations

executed.

The subsequent sections define metrics resulting from our static analysis

approach, including occupancy and instruction mixes. These metrics are then used

to significantly reduce or even eliminate the empirical tests in autotuning several

kernels.
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Occupancy. Threads, registers and shared memory are factors that

influence a CUDA kernel’s ability to achieve high occupancy. In this section,

we will group threads, warps, and blocks into one category for simplifying the

discussion, although each term has its own distinct meaning. Threads (T ) are the

work units performing the computation, whereas warps (W ) are the schedulable

units for the streaming multiprocessor and blocks (B) consist of groups of warps.

Each has memory local to its level. For instance, threads access private registers

(R), warps and blocks use shared memory (S ), and grids utilize global memory.

The following subsections define factors that contribute to a kernel’s

GPU occupancy. Table 16 lists the GPUs used in this research, along with

hardware features and associated notation. We adopt the naming convention where

superscripts denote the source of the variable, with subscripts as constraints of the

variable. Compute capability (cc) represents the GPU architecture family (also

listed in Tab. 16), meaning nvcc will target an architecture based on the assigned

compute capability flag (e.g. -arch=sm xx). User input (u) includes threads,

registers and shared memory parameters at compile time. Active (∗) represents

the results provided by our static analyzer tool. Occupancy is the metric we are

calculating and is defined in the next subsections.

Occupancy Calculation. The objective of the occupancy calculation is

to minimize the number of active thread blocks per multiprocessor constrained by

hardware resource ψ:

B∗mp = min {Gψ(u)} , (3.1)
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where G(·) calculates the maximum allocable blocks for each SM, and ψ =

{ψW , ψR, ψS} denotes warps, registers, and shared memory. Each Gψ will be defined

in Eqs. 3.3, 3.4, and 3.5.

Definition of Occupancy. Occupancy is defined as the ratio of active

warps on a SM to the maximum number of active warps supported for each SM:

occmp =
W ∗
mp

W cc
mp

(3.2)

where W ∗
mp = B∗mp ×WB, with B∗mp as defined in Eq. 3.1 and WB = 32 for

all GPUs (Tab. 16). Note that in an ideal world, occmp = 1. However, in practice,

occupancy rates are on average at 65-75%, and should not be used in isolation for

setting CUDA parameters Volkov (2010). Occupancy is one of several metrics we

incorporated in our static analyzer.

Theoretical Occupancy. The number of blocks which can execute

concurrently on an SM is limited by either warps, registers, or shared memory.

Warps per SM The SM has a maximum number of warps that can be active

at once. To calculate the maximum number of blocks constrained by warps GψW
,

find the minimum of blocks supported per multiprocessor and the rate of warps per

SM and warps per block:

GψW
(T u) = min

{
B cc

mp ,

⌊
Wsm

WB

⌋}
(3.3)

where Wsm = W cc
mp and WB =

⌈
T u

T ccW

⌉
, with variables as defined in Table 16.
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Registers per SM The SM has a set of registers shared by all active threads.

Deciding whether registers is limiting occupancy GψR
is described by the following

cases:

GψR
(Ru) =



0 if Ru > Rcc
W ,⌈

Rsm

RB

⌉
×
⌈
Rcc

fs

Rcc
B

⌉
if Ru > 0,

Bcc
mp otherwise.

(3.4)

where Rsm =

⌊
Rcc
B

dRu × T ccW e

⌋
and RB =

⌈
T u

T ccW

⌉
. Case 1 represents when

the user declares a register value beyond the maximum allowable per thread that is

supported for the cc, an illegal operation. Case 2 describes when the user provides

a valid register value, where we take the product of the number of registers per SM

supported over the number of registers per block and the register file size per MP

over the maximum register block supported in this architecture. Case 3 is when

the user does not provide a value, where the value is set to the thread block per

multiprocessor supported by the cc.

Shared memory per SM Shared memory per thread is defined as the sum

of static shared memory, the total size needed for all shared variables and

dynamic shared memory. If active blocks are constrained by shared memory,

reducing S per T could increase occupancy. To compute GψS
, take the ceiling of

the shared memory per multiprocessor provided by its compute capability over the

shared memory per block.
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GψS
(Su) =



0 if Su > SccB ,⌈
Scc
mp

SB

⌉
if Su > 0,

Bcc
mp otherwise.

(3.5)

where shared memory per block SB = bSuc, shared memory per SM Ssm = SccB , and

with cases following similarly to Eq. 3.4.

Instruction Mix Metrics. Instruction mix is defined as the

number of specific operations that a processor executes. Instruction mix-based

characterizations have been used in a variety of contexts, including to select

loop unrolling factors Monsifrot, Bodin, and Quiniou (2002); Stephenson and

Amarasinghe (2005), unlike hardware counters which are prone to miscounting

events Lim, Carrillo-Cisneros, Alkowaileet, and Scherson (2014). In this work, we

use instruction mixes to characterize whether a kernel is memory-bound, compute-

bound, or relatively balanced. Refer to Lim, Malony, Norris, and Chaimov (2015)

for definitions for Ofl,Omem,Octrl, and Oreg according to category type.

The intensity (magnitude) of a particular metric can suggest optimal block

and thread sizes for a kernel. Memory-intensive kernels require a high number of

registers, where a large block size consists of more registers per block. The tradeoff

with big block sizes is that fewer blocks can be scheduled on the SM. Small block

sizes will constrain the number of blocks running on the SM by the physical limit

of blocks allowed per SM. Compute-intensive kernels perform well with larger block

sizes because the threads will be using GPU cores with fewer memory latencies.

Small block sizes will result in many active blocks running on the SM in a time-

shared manner, where unnecessary switching of blocks may degrade performance.

For control-related synchronization barriers, smaller block sizes are preferred
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Table 3. Instruction throughput per number of cycles.

Category Op SM20 SM35 SM52 SM60
FPIns32 FLOPS 32 192 128 64
FPIns64 FLOPS 16 64 4 32

CompMinMax FLOPS 32 160 64 32
Shift, Extract,

Shuffle,
SumAbsDiff

FLOPS 16 32 64 32

Conv64 FLOPS 16 8 4 16
Conv32 FLOPS 16 128 32 16

LogSinCos FLOPS 4 32 32 16
IntAdd32 FLOPS 32 160 64 32

TexIns, LdStIns,
SurfIns

MEM 16 32 64 16

PredIns, CtrlIns CTRL 16 32 64 16
MoveIns CTRL 32 32 32 32

Regs REG 16 32 32 16

because many active blocks can run simultaneously on the SM to hide memory

latency.

Pipeline Utilization. Each streaming multiprocessor (SM) consists of

numerous hardware units that are specialized in performing a specific task. At the

chip level, those units provide execution pipelines to which the warp schedulers

dispatch instructions. For example, texture units provide the ability to execute

texture fetches and perform texture filtering, whereas load/store units fetch and

save data to memory. Understanding the utilization of pipelines and its relation to

peak performance on target devices helps identify performance bottlenecks in terms

of oversubscription of pipelines based on instruction type.

The NVIDIA Kepler GK100 report objdump (2012) lists instruction

operations and corresponding pipeline throughputs per cycle. Pipeline utilization

describes observed utilization for each pipeline at runtime. High pipeline utilization
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/*@ begin PerfTuning (
def performance_params {
param TC[] = range(32,1025,32);
param BC[] = range(24,193,24);
param UIF[] = range(1,6);
param PL[] = [16,48];
param SC[] = range(1,6);
param CFLAGS[] = [’’, ’-use_fast_math’];

}
...

) @*/

Figure 6. Performance autotuning specification.

would indicate that the corresponding compute resources were used heavily and

kept busy often during the execution of the kernel.

Infer Kernel Execution Time. Because the majority of CUDA

applications are accelerated loops, we hypothesize that the execution time of a

CUDA program is proportional to the input problem size N . Hence,

f (N ) = cf ·Ofl + cm ·Omem + cb ·Octrl + cr ·Oreg (3.6)

where cf , cm, cb, and cr are coefficients that represent the reciprocal of

number of instructions that can execute in a cycle, or CPI. Equation 3.6 represents

how a program will perform for input size N without running the application.

Table 4. A subset of features used for thread block classification.

Feature Size

Thread Count 32 – 1024 (with 32 increments)
Block size 1 24 – 192 (with 16 increments)
Unroll loop factor {1 – 6}
Compiler flags {‘’, ‘-use fast math’}
Instructions {FLOPS, memory, control}
Occupancy calculation {registers, threads, OCC rate, etc.}

1Block sizes are compute capability specific.
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ORIO Code Generation.

OCC Results

This section reports on the autotuning execution environment for the CUDA

kernels listed in Table 5. Results comparing our static analyzer approach with the

existing methods are also reported.

Environment. The open-source Orio autotuner was used to generate

and autotune CUDA implementations by varying the feature space listed in

Table 4. The details of CUDA code generation and autotuning with Orio

are described in Mametjanov et al. (2012). The TC parameter specifies the

number of simultaneously executing threads. BC is the number of thread blocks

(independently executing groups of threads that can be scheduled in any order

across any number of SMs) and is hardware-specific. UIF specifies how many times

loops should be unrolled; PL is the L1 cache size preference in KB.

For each code variant, the experiment was repeated ten times, and the fifth

overall trial time was selected to be displayed. The execution times were sorted

in ascending order and the ranks were split along the 50th percentile. Rank 1

represents the upper-half of the 50th percentile (good performers), while Rank 2

represents the lower portion (poor performers). On average, the combination of

parameter settings generated 5,120 code variants. The GPUs used in this work are

listed in Table 16 and include the Fermi M2050, Kepler K20, Maxwell M40, and

Pascal P100. Subsequently we will refer to the GPUs by the architecture family

name (Fermi, Kepler Maxwell, Pascal). CUDA nvcc v7.0.28 was used as the

compiler. Each of the benchmarks executed with five different input sizes, where

all benchmarks consisted of inputs {32, 64, 128, 256, 512}, except ex14FJ, which

had inputs {8, 16, 32, 64, 128}.
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Figure 7. Thread counts for Orio autotuning exhaustive search, comparing
architectures and kernels.

To demonstrate our approach, we considered the kernels described in

Table 5. Because the chosen kernels (except ex14FJ, which is application-specific)

contribute significantly to the overall execution time of many different applications,

tuning these kernels can result in significant overall application performance

improvements.

Table 5. Kernel specifications.

Kernel Category Description Operations

atax Elementary
linear algebra

Matrix transpose,
vector multiplication

y = AT (Ax)

BiCG Linear solvers Matrix transpose,
Subkernel of BiCGStab
linear solver

q = Ap,
s = AT r

ex14FJ 3-D Jacobi
computation

Stencil code kernels
F (x) = A(x)x− b = 0,
A(u)v ' −5 (κ(u)Ov)

MatVec2D Elementary
linear algebra

Matrix vector
multiplication

y = Ax

Discussion

We empirically autotuned the kernels listed in Table 5 using exhaustive

search and uncovered distinct ranges for block and thread sizes, based on ranking.

The dynamic analysis of autotuning is displayed in Figure 7, projecting thread

settings and frequency for each kernel, and comparing various architectures. In

29



0.025

0.000

0.025

M
A

E

kernel = A
T

A
X

0.0

0.1

0.2

M
A

E

kernel = m
atV

ec2D

0.025

0.000

0.025

M
A

E

kernel = B
iC

G

Order

0.975

1.000

1.025

M
A

E

kernel = ex14F
J

Execution Time from Static Instruction Mixes

arch

F
K
M
P

Figure 8. Time-to-instruction mix ratio, comparing architectures and kernels.

Table 6. Statistics for autotuned kernels for top performers (top half) and poor
performers (bottom half), comparing GPU architecture generations.

Occupancy Register Instructions Threads
Mean Std Dev Mode Mean Std Dev Allocated 25th 50th 75th

Fer 77.46 24.18 100.00 39613.1 35673.2 21 152 272 416
ATAX Kep 85.21 19.03 93.75 34833.1 30954.5 27 160 288 416

Max 90.59 11.87 93.75 104285.9 85207.1 30 160 320 448
Pas 90.86 12.24 93.75 227899.7 202120.2 30 152 272 392
Fer 60.55 15.54 75.00 35321.3 32136.6 27 160 288 416

BiCG Kep 85.14 19.05 98.44 35485.7 31535.9 28 160 288 416
Max 89.09 11.50 98.44 158963.8 135681.2 32 224 448 736
Pas 90.93 12.19 93.75 228350.6 201865.8 30 152 272 392
Fer 53.69 8.83 62.50 98418.5 45166.64 30 608 768 896

ex14FJ Kep 88.44 9.98 93.75 54345.4 47526.8 31 288 512 768
Max 89.23 9.61 98.44 4141130.6 158537.4 28 320 608 832
Pas 89.04 11.10 98.44 4335986.6 409162.6 32 192 480 768
Fer 72.21 14.17 87.50 307425.50 69330.06 23 448 640 864

matVec2D Kep 89.29 8.17 96.88 274359.93 65373.88 23 416 640 864
Max 89.53 9.22 98.43 693752.81 146799.80 18 288 576 800
Pas 88.42 9.08 90.63 1264815.81 316252.38 18 480 672 864

Fer 74.23 15.98 100.00 102946.9 58009.0 21 640 768 896
ATAX Kep 86.27 10.97 93.75 89906.9 51102.5 27 640 768 896

Max 87.04 10.09 87.50 253714.1 151973.5 30 608 736 896
Pas 86.77 9.54 87.50 605300.3 337615.5 30 640 768 896
Fer 56.12 10.73 66.67 35321.3 32136.6 27 608 768 896

BiCG Kep 86.34 10.93 93.75 89254.3 51141.2 28 608 768 896
Max 88.55 10.80 93.75 199036.3 149373.1 32 352 608 832
Pas 86.70 9.57 87.5 605169.4 338092.4 30 640 768 896
Fer 55.55 14.03 62.50 26321.5 21137.2 30 152 288 448

ex14FJ Kep 83.05 19.21 93.75 70394.6 51953.5 31 256 544 800
Max 88.40 12.50 93.75 4079589.4 120401.0 28 224 480 704
Pas 88.59 11.22 93.75 4359934.4 241618.2 32 352 544 800
Fer 68.93 21.93 87.50 210334.50 47850.90 23 160 352 672

matVec2D Kep 82.19 19.54 93.75 219636.56 57185.33 23 160 384 704
Max 88.09 12.77 93.75 645687.18 137182.93 18 224 480 736
Pas 89.22 12.89 93.75 877505.0 225900.05 18 160 320 576

30



Table 7. Error rates when estimating dynamic instruction mixes from static mixes.

Metrics
FLOPS MEM CTRL Itns

ATAX
Fer 0.07 1.69 2.01 3.4
Kep 0.11 1.75 2.20 3.4
Max 0.23 0.06 0.12 1.8

BiCG
Fer 0.03 3.68 2.40 1.8
Kep 0.02 3.80 2.67 1.8
Max 0.57 1.30 0.06 1.3

ex14FJ
Fer 0.20 0.14 0.00 12.7
Kep 1.01 0.18 0.21 12.7
Max 1.97 0.14 0.89 16.3

matVec2D
Fer 0.04 0.92 0.80 4.6
Kep 0.07 0.97 0.99 4.6
Max 0.29 0.06 0.36 7.2

general, ATAX and BiCG kernels performed well in lower thread range settings,

whereas matVec2D performed better with higher thread settings. The ex14FJ is a

more complex kernel2, and thread behavior patterns for Rank 1 were less apparent.

Table 6 reports statistics on occupancy, registers, and threads for all

benchmarks and architectures. The top half represents good performers (Rank

1), whereas the bottom half represents poor performers (Rank 2). In general,

occupancy did not seem to matter much, since the reported means were somewhat

similar for both ranks, with Fermi achieving low occ for all kernels. However,

register instructions varied considerably, with Rank 1 consisting of lower mean

and standard deviations, versus Rank 2 which had higher values. Thread behavior

patterns were apparent when comparing Rank 1 and Rank 2. For instance, one

could conclude that ATAX and BiCG prefers smaller range thread sizes, whereas

ex14FJ prefers higher ranges.

2The ex14FJ kernel is the Jacobian computation for a solid fuel ignition simulation in 3D
rectangular domain.
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Figure 8 illustrates the use of static instruction mixes to predict execution

time. Execution time was normalized and sorted in ascending order (x-axis).

The mean absolute error was used to estimate execution time based on static

instruction mixes. Equation 3.6 was used to calculate the instruction mix ratio,

which consisted of weighting instructions according to its number of achievable

executed instructions per clock cycle. In general, our model was able to estimate

the execution time within a reasonable margin of error, including ex14FJ with

MAE near 1.00, which validates instruction mixes as good indicators of kernel

execution performance.

Table 7 reports the error rates calculated, using sum of squares, when

estimating dynamic behavior of the kernel from static analysis of the instruction

mix. Intensity is also displayed in the last column and is defined as the ratio of

floating-point operations to memory operations. Although our static estimator

performed poorly for BiCG (memory, control ops), our static analysis, driven by

Equation 3.6, closely matches that of the observed dynamic behavior for the other

kernels.
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Figure 9. Improved search time over exhaustive autotuning, comparing static and
rule-based approaches.

Improved Autotuning with Static Analyzer. Finally, we wanted to

determine whether our static analyzer tool could be used to improve the efficiency

and effectiveness of Orio. We use the exhaustive empirical autotuning results from
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Table 8. Suggested parameters to achieve theoretical occupancy.

T ∗ [Ru : R∗] S∗ occ∗

AT

Fer 192, 256, 384, 512, 768 [21 : 0] 6144 1
Kep 128, 256, 512, 1024 [27 : 5] 3072 1
Max 64, 128, 256, 512, 1024 [30 : 2] 1536 1
Pas 64, 128, 256, 512, 1024 [30 : 2] 1536 1

Bi

Fer 192, 256, 384, 512, 768 [27 : 0] 8192 .75
Kep 128, 256, 512, 1024 [28 : 4] 3072 1
Max 64, 128, 256, 512, 1024 [32 : 0] 12288 .71
Pas 64, 128, 256, 512, 1024 [30 : 2] 1536 1

ex

Fer 192, 256, 384, 512, 768 [30 : 0] 24576 .71
Kep 128, 256, 512, 1024 [31 : 1] 3072 1
Max 64, 128, 256, 512, 1024 [28 : 4] 1536 1
Pas 64, 128, 256, 512, 1024 [32 : 0] 1536 1

ma

Fer 192, 256, 384, 512, 768 [20 : 1] 12288 .92
Kep 128, 256, 512, 1024 [20 : 11] 3072 1
Max 64, 128, 256, 512, 1024 [13 : 18] 1536 1
Pas 64, 128, 256, 512, 1024 [15 : 17] 1536 1

Sec. III as the baseline for validating whether our search approach could find the

optimal solution.

Table 8 reports static information for register usage and intensity for

each kernel, as well as the thread parameters suggested by our static analyzer,

comparing different architectures. T ∗ displays the suggested thread ranges for the

kernel that would yield occ∗. [Ru : R∗] displays the number of registers used and its

increase potential. S∗ displays (in KB) the amount of shared memory that could be

increased to achieve theoretical occupancy.

The basis of our contribution is that the instruction mix and occupancy

metrics from our static analyzer gets fed into the autotuner. In general, an

exhaustive autotuning consists of
∏m

i=1 Xi trials, where Xi represents a parameter,

each having m options. In the case of ATAX, five thread settings were suggested

for Fermi and Maxwell, which represents a 84% improvement, and Kepler
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representing a 87.5% improvement, with the search space reduced from 5,120

to 640. The search space could be reduced further by invoking our rule-based

heuristic. Figure 9 displays the overall results of the improved search module.

The first set displays how the static based method improves near 87.5%. When

combining with the rule-based heuristic, the search space is further reduced, which

results in a 93.8% overall improvement. Figure 10 displays the occupancy calculator

for the ATAX kernel, comparing the current kernel and the potentially optimized

version.

The model-based search space reduction does involve generating and

compiling the code versions, but it does not require executing them. Note that

empirical testing typically involves multiple repeated executions of the same code

version, hence the time saved over exhaustive search is approximately t ∗ r, where

t is the average trial time and r is the number of repetitions. Even when not

using exhaustive search, our new technique can be used as the first stage of the

regular empirical-based autotuning process to dramatically reduce the search space,

significantly speeding up the entire process and increasing the likelihood of finding

a global optimum. Unlike runtime measurement, which requires several runs of each

test, static analysis does not suffer from the effects of noise and hence only has to

be performed once on each code version. The search space reduced through static

binary analysis can then be explored using one of the existing search methods. If

it’s feasible and desirable to determine the optimal value, then exhaustive search is

appropriate, otherwise one of the other methods such as Nelder-Mead simplex or

random can be used to strictly control the time spent autotuning.
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Related Work

Several prior efforts have attempted to discover optimal code forms and

runtime parameter settings for accelerator-based programming models, typically

by taking a domain-specific approach. For instance, Nukada and Matsuoka

demonstrated automated tuning for a CUDA-based 3-D FFT library based on

selection of optimal number of threads Nukada and Matsuoka (2015). Tomov

et al. developed the MAGMA system for dense linear algebra solvers for GPU

architectures, which incorporates a DAG representation and empirical-based

search process for modeling and optimization Tomov, Nath, Ltaief, and Dongarra

(2010). The use of autotuning systems based on program transformations, such

as Orio Hartono et al. (2009) and CHiLL CHiLL: A Framework for Composing

High-Level Loop Transformations (2008), enable optimization exploration on more

general application code and across accelerator architectures Chaimov et al. (2014).

However, the complexity of the optimization space and the cost of empirical search

is high. A recent work on autotuning GPU kernels focuses on loop scheduling

and is based on the OpenUH compiler Xu, Chandrasekaran, Tian, and Chapman

(2016). Our approach attempts to leverage more static code analysis to help better

inform an autotuning process, thereby reducing the dependence on pure dynamic

measurement and analysis to generate performance guidance.

The NVIDIA CUDA Toolkit NVIDIA (n.d.) includes occupancy calculation

functions in the runtime API that returns occupancy estimates for a given kernel.

In addition, there are occupancy-based launch configuration functions that

can advise on grid and block sizes that are expected to achieve the estimated

maximum potential occupancy for the kernel. Because these functions take as input

intended per-block dynamic shared memory usage and maximum block size (in
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Figure 10. Occupancy calculator displaying thread, register and shared memory
impact for current (top) and potential (bottom) thread optimizations for the
purposes of increasing occupancy.

addition to knowing user-defined registers per thread), it is possible to retrieve a

set of configuration choices. It is important to note that the CUDA Occupancy

Calculator/API takes into account the GPU architecture being used. Thus, we

can integrate the estimates it generates over the full range of options (e.g., letting

registers per thread to be variable) with the other static models.

A project closely related to ours is STATuner R. Gupta et al. (2015), which

identifies a feature set of static metrics that characterize a CUDA kernel code and

uses machine learning to build a classifier model trained on a CUDA benchmark

suite. Kernel codes are compiled in LLVM and static analysis of the generated

binary code and IR provide metrics for instruction mix, loops, register usage,

shared memory per block, and thread synchronization. The classifier model inputs

these metric features for a new kernel to predict which block size would give the

best performance. STATuner is shown to give smaller average error compared to

NVIDIA’s CUDA Occupancy Calculator/API. Only a single block size is predicted

by STATuner, whereas the Occupancy Calculator/API offers block size choices

36



given user input about registers per thread and per-block shared memory. Our

approach differs in several respects. First, static analysis is done on the PTX code

generated by the NVIDIA nvcc compiler, rather that on the upper level source code

(as seen in LLVM). While there are some benefits in incorporating higher-level code

information, nvcc produces different PTX code for different GPU architectures,

allowing hardware-specific code effects to be seen. Furthermore, our static analysis

extracts metrics similar to STATuner, but also builds a CFG to help understand

flow divergence Lim et al. (2016). Second, our prediction models are based on

estimating performance given the instruction mix, control flow, and problem size.

They are not based on learned classifiers. Third, the objective of our work is to

integrate predictive models in an autotuning framework, beyond just giving a single

block size result to the user.

Milepost GCC Fursin (2011) is a publicly-available open-source machine

learning-based compiler for C (but not CUDA) that extracts program features

and exchanges optimization data with the cTuning.org open public repository.

It automatically adapts the internal optimization heuristic at function-level

granularity to improve execution time, code size and compilation time of a new

program on a given architecture.

The Oxbow toolkit Sreepathi et al. (2014) is a collection of tools to

empirically characterize (primarily CPU) application behaviors, including

computation, communication, memory capacity and access patterns. The eventual

goal is to build a repository that users can upload and access their datasets, and

can provide analysis, plots, suggested parameters, etc.
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Discussion

Getting the most performance out of applications is important for code

generators and end users, but the process in making the best settings is often

convoluted (for humans) and time-consuming (for empirical autotuners). With

our static analyzer tool, we show its accuracy in estimating the runtime behavior

of a kernel without the high costs of running experiments. Using our tool, we’ve

identified the computational intensity of a kernel, constructed a control flow graph,

estimated the occupancy of the multiprocessors, and suggested optimizations in

terms of threads and register usage. Finally, we’ve shown how the integration of

our static analyzer in the Orio autotuning framework improved the performance in

narrowing the search space for exploring parameter settings.

The field of heterogeneous accelerated computing is rapidly changing, and

we expect several disruptions to take place with the introduction of 3D-memory

subsystems, point-to-point communication, and more registers per computational

cores. Traditional approaches to measuring performance may no longer be sufficient

to understand the behavior of the underlying system. Our static analyzer approach

can facilitate optimizations in a variety of contexts through the automatic discovery

of parameter settings that improve performance.

Future Work

The optimization spectrum is a continuum from purely static-based methods

to ones that incorporate empirical search across an optimization landscape.

In general, the objective of our work is on exploring the tradeoffs involving

optimization accuracy and cost over this spectrum, with a specific focus on how

well purely static methods perform as a guide for autotuning. While static analysis

side-steps the need for empirical testing, it is not to say that static models can not
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be informed by prior benchmarking and knowledge discovery. We will investigate

several avenues for enhancing our static models, including algorithm-specific

optimizations and machine learning for code classification.

Furthermore, we regard the methodology we have developed as a knowledge

discovery framework where the degree of empirical testing can be “dialed in”

during the autotuning process, depending on what the user accepts. By recording

the decisions and code variants at each step, it is also possible to replay tuning

with empirical testing for purpose of validation. In this way, the framework can

continually evaluate the static models and refine their predictive power. We will

further develop this capability.

While our static analysis tools will working with any CUDA kernel code, the

real power of our approach is in the ability to transform the code in Orio. However,

this requires the source to be in a particular input form. We are exploring source

analysis technology de Oliveira Castro, Akel, Petit, Popov, and Jalby (2015) to

translate kernel code to the input required by Orio, thereby allowing any kernel to

be a candidate for CUDA autotuning.

Conclusion

This chapter defined the metrics necessary for optimizing the performance

of GPU kernels. Specifically, threads, registers and shared memory, as well as

architectural factors were included in the metrics definition. This research revealed

that certain computation patterns, whether memory, compute or control bound,

have an influence on the parameter settings of a CUDA application. A static

model was proposed, based on the instruction mixes, that was able to predict the

performance of an execution kernel with a mean absolute error near 1.00. The next
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chapter builds on these approaches and defines a similarity measure for matching

control flow graphs.
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CHAPTER IV

CONTROL FLOW SUBGRAPH MATCHING

This chapter includes previously published co-authored material from a

NVIDIA GPU Technology Conference poster Lim et al. (2016) and a workshop

paper at the 31st International Workshop on Languages and Compilers for Parallel

Computing Lim, Norris, and Malony (2019). I was the primary contributor to this

work in developing the algorithm, writing the new code, and writing the paper.

Dr. Boyana Norris initially identified the need for this work and provided the

application that this work was performed in. Dr. Allen Malony assisted in editing

the paper.

Abstract

Accelerator architectures specialize in executing SIMD (single instruction,

multiple data) in lockstep. Because the majority of CUDA applications are

parallelized loops, control flow information can provide an in-depth characterization

of a kernel. CUDAflow is a tool that statically separates CUDA binaries into

basic block regions and dynamically measures instruction and basic block

frequencies. CUDAflow captures this information in a control flow graph (CFG)

and performs subgraph matching across various kernel’s CFGs to gain insights

into an application’s resource requirements, based on the shape and traversal

of the graph, instruction operations executed and registers allocated, among

other information. The utility of CUDAflow is demonstrated with SHOC and

Rodinia application case studies on a variety of GPU architectures, revealing novel

control flow characteristics that facilitate end users, autotuners, and compilers in

generating high performing code.
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Motivation

Structured programming consists of base constructs that represent how

programs are written Böhm and Jacopini (1966); Williams and Ossher (1978).

When optimizing programs, compilers typically operate on the intermediate

representation (IR) of a control flow graph (CFG), which is derived from program

source code analysis and represents basic blocks of instructions (nodes) and control

flow paths (edges) in the graph. Thus, the overall program structure is captured

in the CFG and the IR abstracts machine-specific intrinsics that the compiler

ultimately translates to machine code. The IR/CFG allows the compiler to reason

more efficiently about optimization opportunities and apply transformations. In

particular, compilers can benefit from prior knowledge of optimizations that may be

effective for specific CFG structures.

In the case of accelerated architectures that are programmed for SIMD

parallelism, control divergence encountered by threads of execution presents

a major challenge for applications because it can severely reduce SIMD

computational efficiency. It stands to reason that by identifying the structural

patterns of a CFG from an accelerator (SIMD) program, insight on the branch

divergence problem Sabne, Sakdhnagool, and Eigenmann (2016) might be gained

to help in their optimization. Current profiling approaches to understanding thread

divergence behavior (e.g., ddt (2016); nvprof (2016); Shende and Malony (2006))

do not map performance information to critical execution paths in the CFG. While

accelerator devices (e.g., GPUs) offer hardware performance counters for measuring

computational performance, it is more difficult to apply them to capture divergence

behavior Lim et al. (2015).
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Our research focuses on improving the detail and accuracy of control

flow graph information in accelerator (GPU) programs. We study the extent

to which CFG data can provide sufficient context for understanding a GPU

kernel’s execution performance. Furthermore, we want to investigate how effective

knowledge of CFG shapes (patterns) could be in enabling optimizing compilers and

autotuners to infer execution characteristics without having to resort to running

execution experiments. To this end, we present CUDAflow, a scalable toolkit

for heterogeneous computing applications. Specifically, CUDAflow provides a

new methodology for characterizing CUDA kernels using control flow graphs and

instruction operations executed. It performs novel kernel subgraph matching to

gain insights into an application’s resource requirements. To the knowledge of the

authors, this work is a first attempt at employing subgraph matching for revealing

control flow behavior and generating efficient code.

Contributions described in this paper include the following.

– Systematic process to construct control flow graphs for GPU kernels.

– Techniques to perform subgraph matching on various kernel CFGs and GPUs.

– Approaches to reveal control flow behavior based on CFG properties.

Prior Work

Control flow divergence in heterogeneous computing applications is a well

known and difficult problem, due to the lockstep nature of the GPU execution

paradigm. Current efforts to address branch divergence in GPUs draw from

several fields, including profiling techniques in CPUs, and software and hardware

architectural support in GPUs. For instance, Sarkar demonstrated that the overall

execution time of a program can be estimated by deriving the variances of basic
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block regions Sarkar (1989). Control flow graphs for flow and context sensitive

profiling were discussed in Ammons, Ball, and Larus (1997); Ball and Larus

(1994), where instrumentation probes were inserted at selected edges in the CFG,

which reduced the overall profiling overhead with minimal loss of information.

Hammock graphs were constructed Zhang and D’Hollander (2004) that mapped

unstructured control flow on a GPU Diamos et al. (2011); H. Wu, Diamos, Li,

and Yalamanchili (2011). By creating thread frontiers to identify early thread

reconvergence opportunities, dynamic instruction counts were reduced by as much

as 633.2%.

Lynx Farooqui, Kerr, Eisenhauer, Schwan, and Yalamanchili (2012) creates

an internal representation of a program based on PTX and then emulates it, which

determines the memory, control flow and parallelism of the application. This work

closely resembles ours but differs in that we perform workload characterization on

actual hardware during execution. Other performance measurement tools, such as

HPCToolkit Adhianto et al. (2010) and DynInst Miller et al. (1995), provide a way

for users to construct control flow graphs from CUDA binaries, but do not analyze

the results further. The MIAMI toolkit Marin, Dongarra, and Terpstra (2014) is an

instrumentation framework for studying an application’s dynamic instruction mix

and control flow but does not support GPUs.

Subgraph matching has been explored in a variety of contexts. For instance,

the DeltaCon framework matched arbitrary subgraphs based on similarity scores

Koutra, Vogelstein, and Faloutsos (n.d.), which exploited the properties of the

graph (e.g., clique, cycle, star, barbell) to support the graph matching. Similarly,

frequent subgraph mining was performed on molecular fragments for drug discovery

Borgelt and Berthold (2002), whereas document clustering was formalized in a
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Figure 11. Overview of our proposed CUDAflow methodology.

graph database context Huan, Wang, and Prins (2003). The IsoRank authors

consider the problem of matching protein-protein interaction networks between

distinct species Singh, Xu, and Berger (2007). The goal was to leverage knowledge

about the proteins from an extensively studied species, such as a mouse, which

when combined with a matching between mouse proteins and human proteins can

be used to hypothesize about possible functions of proteins in humans. However,

none of these approaches apply frequent subgraph matching for understanding

performance behavior of GPU applications.

Background

Our CUDAflow approach shown in Figure 11 works in association with

the current nvcc toolchain. Control flow graphs are constructed from static

code analysis and program execution statistics are gathered dynamically through

program counter sampling. This measurement collects counts of executed

instructions and corresponding source code locations, among other information.

In this way, the CUDAflow methodology provides a more accurate characterization
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Figure 12. Control flow graphs generated for each CUDA kernel, comparing
architecture families (Kepler, Maxwell, Pascal).

of the application kernel, versus hardware performance counters alone, which lack

the ability to correlate performance with source line information and are prone to

miscounting events Lim et al. (2014). In particular, it gives a way to understand

the control flow behavior during execution.

Kernel Control Flow Graphs. One of the more complex parameters

used to characterize SIMD thread divergence is by using a control flow graph

(CFG) representation of the computation. A CFG is constructed for each GPU

kernel computation in program order and can be represented as a directed acyclic

graph G = (N,E, s), where (N,E) is a finite directed graph, and a path exists

from the START node s ∈ N to every other node. A unique STOP node is also

assumed in the CFG. A node in the graph represents a basic block (a straight line

of code without jumps or jump targets), whereas directed edges represent jumps in

the control flow.
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Each basic block region is incremented with the number of times the node

is visited. Upon sampling the program counter, the PC address is referenced

internally to determine to which basic block region the instruction corresponds to.

.L_41:

/*04a0*/ DSETP.LE.AND P0,PT,|R6|,+INF,PT;

/*04a8*/ @P0 BRA ‘(.L_43);

/*04b0*/ LOP32I.OR R5, R7, 0x80000;

/*04b8*/ MOV R4, R6;

/*04c8*/ BRA ‘(.L_42);

Example control flow graphs for selected SHOC (top) Danalis et al.

(2010) and Rodinia (bottom) Che et al. (2009) GPU benchmarks are displayed

in Figure 12. Different GPU architecture types will result in the nvcc compiler

producing different code and possibly control flow, as seen in the CFGs from

Figure 12 for Kepler, Maxwell and Pascal architectures. Section III discusses the

differences in GPU architectures. The CFG differences for each architecture are

due in part to the architecture layout of the GPU and its compute capability

(NVIDIA virtual architecture). The Maxwell generally uses fewer nodes for its

CFGs, as evident in kernel warp. Our approach can expose these important

architecture-specific effects on the CFGs. Also, note that similarities in structure

exist with several CFGs, including csr scalar and sum kernel. Part of the

goal of this research is to predict the required resources for the application by

inferring performance through CFG subgraph matching, with the subgraphs serving

as building blocks for more nested and complex GPU kernels. For this purpose, we

introduce several metrics that build on this CFG representation.
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Figure 13. Transition probability matrices for Pathfinder (dynproc kernel)
application, comparing Kepler (left) and Maxwell (right) versions.

Transition Probability. Transition probabilities represent frequencies

of an edge to a vertex, or branches to code regions, which describes the application

in a way that gets misconstrued in a flat profile. A stochastic matrix could also

facilitate in eliminating dead code, where states with 0 transition probabilities

represent node regions that will never be visited. Kernels employing structures like

loops and control flow increase the complexity analysis, and knowledge of transition

probabilities of kernels could help during code generation.

A canonical adjacency matrix M represents a graph G such that every

diagonal entry of M is filled with the label of the corresponding node and every off-

diagonal entry is filled with the label of the corresponding edge, or zero if no edge

exists Yan and Han (2002). The adjacency matrix describes the transition from Ni

to Nj. If the probability of moving from i to j in one time step is Pr(j|i) = mi,j,

the adjacency matrix is given by mi,j as the ith row and the jth column element.

Since the total transition probability from a state i to all other states must be 1,

this matrix is a right stochastic matrix, so that
∑

j Pi,j = 1.

Figure 13 illustrates transition probability matrices for a kernel from

the Pathfinder application (Tab. 12, bottom-rt.), comparing Kepler (left) and

Maxwell (right) versions. Note that the Pascal version was the same as Maxwell,
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as evident in Fig. 16, lower-right, and was left out intentionally. The entries of the

transition probability matrix were calculated by normalizing over the total number

of observations for each observed node transition i to j. Although the matrices

differ in size, observe that a majority of the transitions take place in the upper-left

triangle, with a few transitions in the bottom-right, for all matrices. The task is

to match graphs of arbitrary sizes based on its transition probability matrix and

instruction operations executed, among other information.

Hybrid Static and Dynamic Analysis. We statically collect

instruction mixes and source code locations from generated code and map the

instruction mixes to the source locator activity as the program is being run Lim et

al. (2015). The static analysis of CUDA binaries produces an objdump file, which

provides assembly information, including instructions, program counter offsets,

and source line information. The CFG structure is stored in iGraph format Csardi

and Nepusz (n.d.). We attribute the static analysis from the objdump file to the

profiles collected from the source code activity to provide runtime characterization

of the GPU as it is being executed on the architecture. This mapping of static

and dynamic profiles provides a rich understanding of the behavior of the kernel

application with respect to the underlying architecture.

Methodology

Based on the kernel CFG and transition probability analysis, the core of

the CUDAflow methodology focuses on the problem of subgraph matching. In

order to perform subgraph matching, we first scale the matrices to the same size

by taking for graphs G1 and G2 the maximal proper submatrix, constructed by

B(Gi) = max(|V1|, |V2|) for a given Gi = min(|V1|, |V2|) using spline interpolation.

The similarities in the shapes of the control flow graphs, the variants generated for
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Table 9. Distance measures considered in this paper.

Abbrev Name Result

Euc Euclidean
√∑n

i=1 |xi − yi|2
Iso IsoRank (I− αQ×P)x

Man Manhattan
∑n

i=1 |xi − yi|
Min Minkowski p

√∑n
i=1 |xi − yi|p

Jac Jaccard
∑n

i=1(xi−yi)2∑n
i=1 x

2
i +

∑n
i=1 y

2
i−

∑n
i=1 xiyi

Cos Cosine 1−
∑n

i=1 xiyi√∑n
i=1 x

2
i

√∑n
i=1 y

2
i

each GPU (Table 12) and the activity regions in the transition probability matrices

(Fig. 13) provided motivation for this approach. In our case, the dense hotspots in

the transition matrix should align with their counterparts if the matrices are similar

enough.

Bilinear Interpolation. To scale the transition matrix before

performing the pairwise comparison, we employ a spline interpolation procedure.

Spline interpolation is general form of linear interpolation for functions of n-order

polynomial, such as bilinear and cubic. For instance, a spline on a two-order

polynomial performs bilinear interpolation on a rectilinear 2D grid (e.g. x and y)

Gonzales and Woods (1993). The idea is to perform linear interpolation in both

the vertical and horizontal directions. Interpolation works by using known data

to estimate values at unknown points. Refer to Appendix B for the derivation of

bilinear interpolation.

Pairwise Comparison. Once the matrix is interpolated, the affinity

scores (S1 and S2 for graphs G′1 and G′2, respectively) are matched via a distance

measure, which includes the Euclidean distance, the IsoRank solution Singh et

al. (2007), Manhattan distance, Minkowski metric, Jaccard similarity, and Cosine

similarity. The distance measures considered in this work are listed in Table 9.
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By definition, sim(Gi, Gj) = 0 when i = j, with the similarity measure placing

progressively higher scores for objects that are further apart.

CFG Results

Applications. The Rodinia and SHOC application suite are a class of

GPU applications that cover a wide range of computational patterns typically seen

in parallel computing. Table 10 describes the applications used in this experiment

along with source code statistics, including the number of kernel functions, the

number of associated files and the total lines of code.

Rodinia. Rodinia is a benchmark suite for heterogeneous computing

which includes applications and kernels that target multi-core CPU and GPU

platforms Che et al. (2009). Rodinia covers a wide range of parallel communication

patterns, synchronization techniques, and power consumption, and has led to

architectural insights such as memory-bandwidth limitations and the consequent

importance of data layout.

SHOC Benchmark Suite. The Scalable HeterOgeneous Computing

(SHOC) application suite is a collection of benchmark programs testing the

performance and stability of systems using computing devices with non-traditional

architectures for general purpose computing Danalis et al. (2010). SHOC provides

implementations for CUDA, OpenCL, and Intel MIC, and supports both sequential

and MPI-parallel execution.

Analysis

To illustrate our new methodology, we analyzed the SHOC and Rodinia

applications at different granularities.

Application Level. Figure 14 projects goodness as a function of

efficiency, which displays the similarities and differences of the benchmark
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Table 10. Description of SHOC (top) and Rodinia (bottom) benchmarks studied.

Name Ker File Ln Description

S
H

O
C

FFT 9 4 970 Forward and reverse 1D fast Fourier transform.
MD 2 2 717 Compute the Lennard-Jones potential from

molecular dynamics.
MD5Hash 1 1 720 Computate many small MD5 digests, heavily

dependent on bitwise operations.
Reduction 2 5 785 Reduction operation on an array of single or

double precision floating point values.
Scan 6 6 1035 Scan (parallel prefix sum) on an array of single

or double precision floating point values.
SPMV 8 2 830 Sparse matrix-vector multiplcation.

Stencil2D 2 12 1487 A 9-point stencil operation applied to a 2D
dataset.

R
o
d

in
ia

Backprop 2 7 945 Trains weights of connecting nodes on a layered
neural network.

BFS 2 3 971 Breadth-first search, a common graph traversal.
Gaussian 2 1 1564 Gaussian elimination for a system of linear

equations.
Heartwall 1 4 6017 Tracks changing shape of walls of a mouse heart

over a sequence of ultrasound images.
Hotspot 1 1 1199 Estimate processor temperature based on floor

plan and simulated power measurements.
Nearest Neighbor 1 2 385 Finds k-nearest neighbors from unstructured

data set using Euclidean distance.
Needleman-Wunsch 2 3 1878 Global optimization method for DNA sequence

alignment.
Particle Filter 4 2 7211 Estimate location of target object given noisy

measurements in a Bayesian framework.
Pathfinder 1 1 707 Scan (parallel prefix sum) on an array of single

or double precision floating point values.
SRAD v1 6 12 3691 Diffusion method for ultrasonic and radar

imaging applications based on PDEs.
SRAD v2 2 3 2021 ...

applications. The size of bubble represents the number of operations executed,

whereas the shade represents the GPU type. Efficiency describes how gainfully

employed the GPU floating-point units remained, or FLOPs per second:

efficiency =
opfp+opint + opsimd + opconv

timeexec

· callsn (4.1)

The goodness metric describes the intensity of the floating-point and memory

operation arithmetic intensity:

goodness =
∑
j∈J

opj · callsn (4.2)
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the dynamic efficiency metric (Eq. B.1). The color represents the architecture
and the size of bubbles represents the number of operations. Right: Differences in
vertices between two graphs, as a function of Euclidean metric for all GPU kernel
combinations. Color represents intensity.

Note that efficiency is measured via runtime, whereas goodness is measured

statically. Figure 14 (left) shows a positive correlation between the two measures,

where the efficiency of an application increases along with its goodness. Static

metrics, such as goodness, can be used to derive dynamic behavior of an

application. This figure also demonstrates that merely counting the number of

executed operations is not sufficient to characterize applications because operation

counts do not fully reveal control flow, which is a source of bottlenecks in large-

scale programs.

CFG Subgraph Matching.

Distribution of Matched Pairs. Figure 14 (right) projects the

distribution of differences in vertices |V | for all 162 CFG kernel pairs (Table 10,

2nd col. + 3 GPUs) as a function of the Euclidean measure (application,

architecture, kernel), with shade representing the frequency of the score. Note that

most matched CFGs had a similarity score of 1.5 to 2.2 and had size differences
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Figure 15. Error rates when estimating instruction mixes statically from runtime
observations for selected matched kernels (x-axis), with IsoRank scores near 1.30.

under 10 vertices. Figure 14 (right) also shows that as the differences in vertices

increase, similarity matching becomes degraded due to the loss of quality when

interpolating missing information, which is expected. Another observation is that

strong similarity results when node differences of the matched kernel pairs were at a

minimum, between 0 and 8 nodes.

Error Rates from Instruction Mixes. Here, we wanted to see how

far off our instruction mix estimations were from our matched subgraphs. Figure 15

displays instruction mix estimation error rates, calculated using mean squared

error, for MD, Backprop, and SPMV kernels as a function of matched kernels (x-

axis) with IsoRank scores between 1.00 to 1.30. Naming convention for each kernel

is as follows: 〈gpu arch.suite.app.kernel〉. In general, CUDAflow is able to provide

subgraph matching for arbitrary kernels through the IsoRank score in addition to

instruction mixes within a 8% margin of error. Note that since relative dynamic
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Figure 16. Similarity measures for Euclidean, IsoRank and Cosine distances for 12
arbitarily selected kernels.
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Figure 17. Similarity measures for Jaccard, Minkowski and Manhattan distances
for 12 arbitarily selected kernels.

performance is being estimated from static information, the error rates will always

be high.

Pairwise Matching of Kernels. Figure 16 shows pairwise

comparisons for 12 arbitrary selected kernels, comparing Euclidean (top), IsoRank

(middle), and Cosine distance (bottom) matching strategies, and GPU architectures

(rows). Figure 17 shows comparisons for the Jaccard measure, Minkowski, and

Manhattan distances for the same 12 kernels. Note that the distance scores were

scaled to 0 and 1, where 0 indicates strong similarity and 1 denotes weak similarity.

In general, all similarity measures, with the exeception of IsoRank, is able to match
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Figure 18. Dendrogram of clusters for 26 kernels, comparing Maxwell (left) and
Pascal (right) GPUs.

against itself, as evident in the dark diagonal entries in the plots. However, this

demonstrates that using similarity measures in isolation alone is not sufficient for

performing subgraph matching for CUDA kernels.

Clustering of Kernels. We wanted to identify classes of kernels,

based on characteristics such as instruction mixes, graph structures and distance

measures. The Ward variance minimization algorithm minimizes the total within-

cluster variance by finding a pair of clusters that leads to a minimum increase in

a weighted squared distances. The initial cluster distances in Ward’s minimum

variance method is defined as the squared Euclidean distance between points:

dij = d({Xi}, {Xj}) = ||Xi − Xj||2. Figure 18 shows a dendrogram of clusters for

26 kernels calculated with Ward’s method all matched with Rodinia Particlefilter

sum kernel, comparing the Maxwell (left) and Pascal (right) GPUs, which both

have 4 edges and 2 vertices in their CFGs. sum kernel performs a scan operation

and is slightly memory intensive (∼26% on GPUs). As shown, our tool is able to
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categorize kernels by grouping features, such as instruction mixes, graph structures,

and distance measures that show strong similarity. This figure also demonstrates

that different clusters can be formed on different GPUs for the same kernel, where

the hardware architecture may result in different cluster of kernel classes.

Finally, we wanted to see if our technique could identify the same kernels

running on a different GPU. Figure 19 shows distance measures when comparing

three kernels across three GPUs, for a total of 9 comparisons, whereas Figure 20

shows pairwise comparisons for the same three kernels across 3 GPUs, for a total

of 27 comparisons (x-axis), considering pairwise comparisons in both directions

(e.g. sim(G1, G2) and sim(G2, G1)). Figure 19 displays patches of dark regions in

distance measures corresponding to the same kernel when compared across different

GPUs. As shown in Figure 20, our tool not only is able to group the same kernel

that was executed on different GPUs, as evident in the three general categories

of clusters, but also kernels that exhibited similar characteristics when running

on a particular architecture, such as instructions executed, graph structures, and

distance measures.

Discussion.

These metrics can be used both for guiding manual optimizations and

by compilers or autotuners. For example, human optimization effort can focus

on the code fragments that are ranked high by kernel impact, but low by the

goodness metric. An autotuner can also use metrics such as the goodness metric to

explore the space of optimization parameters more efficiently, such as by excluding

cases where we can predict a low value of the goodness metric without having to

execute and time the actual generated code. A benefit to end users (not included

in paper, due to space purposes) would be providing the ability to compare an
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Figure 19. Dendrogram of clusters for pairwise comparison for 3 kernels across 3
GPUs (9 total).
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Figure 20. Dendrogram of clusters for pairwise comparison for 3 kernels across 3
GPUs (27 total).

59



implementation against a highly optimized kernel. By making use of subgraph

matching strategy as well as instruction operations executed, CUDAflow is able

to provide a mechanism to characterize unseen kernels.

We have presented CUDAflow, a control-flow-based methodology for

analyzing the performance of CUDA applications. We combined static binary

analysis with dynamic profiling to produce a set of metrics that not only

characterizes the kernel by its computation requirements (memory or compute

bound), but also provides detailed insights into application performance.

Specifically, we provide an intuitive visualization and metrics display, and correlate

performance hotspots with source line and file information, effectively guiding the

end user to locations of interest and revealing potentially effective optimizations by

identifying similarities of new implementations to known, autotuned computations

through subgraph matching. We implemented this new methodology and

demonstrated its capabilities on SHOC and Rodinia applications.

Future work includes incorporating memory reuse distance statistics

of a kernel to characterize and help optimize the memory subsystem and

compute/memory overlaps on the GPU. In addition, we want to generate robust

models that will discover optimal block and thread sizes for CUDA kernels for

specific input sizes without executing the application Lim et al. (2017). Last,

we are in the process of developing an online web portal cknowledge (n.d.);

Sreepathi et al. (2014) that will archive a collection of control flow graphs for all

known GPU applications. For instance, the web portal would be able to make

on-the-fly comparisons across various hardware resources, as well as other GPU

kernels, without burdening the end user with hardware requirements or software
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package installations, and will enable more feature rich capabilities when reporting

performance metrics.

Conclusion

This chapter developed pattern matching techniques that captured runtime

information of a GPU program that could be used by compilers and autotuners

for optimization, which eliminates unnecessary experimentation runs. The next

chapter is in the domain where the optimization landscape is vast. In particular we

survey how to tune hyper-parameters for neural networks for a machine translation

system. We identify which hyper-parameters matter most, in terms of systems

execution performance, and what the cost of tuning that hyper-parameter is.
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CHAPTER V

OPTIMIZING HYPER-PARAMETERS FOR NEURAL NETWORKS

This chapter includes previously published co-authored material from a

presentation at the 2nd Workshop on Naval Applications of Machine Learning Lim,

Heafield, Hoang, Briers, and Malony (2018). This work was performed while I was

an intern at The Alan Turing Institute. Dr. Kenneth Heafield supervised me and

provided the initial problem to solve. Dr. Hieu Hoang assisted in software install

issues, and preprocessing of the datasets, as well as answering questions related to

machine translation. Dr. Mark Briers partly supervised me as an intern. Dr. Allen

Malony assisted in editing the paper.

Abstract

Neural machine translation (NMT) has been accelerated by deep learning

neural networks over statistical-based approaches, due to the plethora and

programmability of commodity heterogeneous computing architectures such

as FPGAs and GPUs and the massive amount of training corpuses generated

from news outlets, government agencies and social media. Training a learning

classifier for neural networks entails tuning hyper-parameters that would yield

the best performance. Unfortunately, the number of parameters for machine

translation include discrete categories as well as continuous options, which makes

for a combinatorial explosive problem. This research explores optimizing hyper-

parameters when training deep learning neural networks for machine translation.

Specifically, our work investigates training a language model with Marian NMT.

Results compare NMT under various hyper-parameter settings across a variety

of modern GPU architecture generations in single node and multi-node settings,
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revealing insights on which hyper-parameters matter most in terms of performance,

such as words processed per second, convergence rates, and translation accuracy,

and provides insights on how to best achieve high-performing NMT systems.

Motivation

The rapid adoption of neural network (NN) based approaches to machine

translation (MT) has been attributed to the massive amounts of datasets, the

affordability of high-performing commodity computers, and the accelerated progress

in fields such as image recognition, computational systems biology and unmanned

vehicles. Research activity in NN-based machine translation has been taking place

since the 1990s, but statistical machine translation (SMT) soared along with

the successes of machine learning. SMT incorporates a rule-based, data driven

approach, and includes language models such as word based (n-grams), phrased-

based, syntax-based and hierarchical based approaches. Neural machine translation

(NMT), on the other hand, does not require predefined rules, but learns lingusitic

rules from statistical models, sequences and occurences from large corpuses. Models

trained using NNs produce even higher accuracy than existing SMT approaches,

but training time can take anywhere from days to weeks to complete. Suboptimal

strategies are often difficult to find, given the dimensionality and its effect on

parameter exploration.

One of the main difficulties of training neural networks is the millions

of parameters that need to be estimated. These parameters are estimated by

optimization methods, such as stochastic gradient descent, where the solver

seeks to identify the global optima. Due to the combinatorial search space,

local optimization in many cases is sufficent to generalize beyond the training
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set Goodfellow, Bengio, and Courville (2016) (Ch. 8). Thus, the tuning of hyper-

parameters is paramount in accelerating training of neural networks.

In neural machine translation, modeling and training are crucial in achieving

high performing systems. A combination of hyper-parameter optimization methods

to train a NMT system is investigated in this work. Specifically, this work examines

the stability of different optimization parameters in discovering local minima, and

how a combination of hyper-parameters can lead to faster convergence.

The following contributions are made in this work:

– We identify which hyper-parameters matter most in contributing to the

learning trajectory of NMT systems.

– We analyze our findings for translation performance, training stability,

convergence speed, and tuning cost.

– We tie in systems execution performance with hyper-parameters.

Related Work

Hyper-parameter optimization has been an unsolved problem since the

inception of machine learning, and becomes even more crucial in training the

millions of parameters in neural networks. The past work has investigated

techniques for hyper-parameter tuning and search strategies, such as Bergstra, et.

al., concluding that random search outperforms grid search Bergstra, Bardenet,

Bengio, and Kégl (2011). Likewise, the authors in Shahriari, Swersky, Wang,

Adams, and De Freitas (2016); Snoek, Larochelle, and Adams (2012) take a

Bayesian approach toward parameter estimation and optimization. However, these

efforts apply their strategies on image classfication tasks.
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In relation to NMT, Britz, et. al. massively analyze neural network

architectures and its variants Britz, Goldie, Luong, and Le (2017). Their approach

incorporates a 2-layer bidirectional encoder/decoder with a multiplicative attention

mechanism as a baseline architecture, with a 512-unit GRU and a dropout of 0.2

probability. Their model parameters remained fixed and the studies varied the

architecture, including depth layer, unidirectional vs bidirectional encoder/decoder,

attention mechanism size, and beam search strategies. Likewise, Bahar et. al.

compare various optimization strategies for NMT by switching to a different

optimizer after 10k iterations, and found that Adam combined with other

optimizers, such as SGD or annealing, increased the BLEU score by 2.4 Bahar,

Alkhouli, Peter, Brix, and Ney (2017). However, these approaches study a standard

NMT system. In addition, Wu, et. al. Y. Wu et al. (2016) utilized the combination

of Adam and SGD, where Adam ran for a fixed number of iterations with a 0.0002

learning rate, and switched to SGD with a 0.5 learning decay rate to slow down

training, but did not perform hyper-parameter optimization.

To the best of our knowledge, there has not been any work comparing

different hyper-parameter optimization strategies for NMT. Moreover, our

optimization strategies are demonstrated on a production-ready NMT system and

explores parameter selection tradeoffs, in terms of performance and stability.

Background

Machine translation involves model design and model training. In general,

learning algorithms are viewed as a combination of selecting a model criterion,

defined as a family of functions, training, defined as parameterization, and a

procedure for appropriately optimizing this criterion. The next subsections
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Figure 21. RNN encoder-decoder, illustrating a sentence translation from English
to French. The architecture includes a word embedding space, a 1-of-K coding and
a recurrent state on both ends.1

discuss how sentences are represented with a neural network and the optimization

objectives used for training a model for a translation system.

Machine Translation. This subsection discusses how neural networks

can model language translation from a source to a target sequence.

Recurrent Neural Networks. Recurrent neural networks (RNN) are

typically employed for neural machine translation because of its ability to handle

variable length sequences. RNNs capture unbounded context dependencies typical

in natural language comprehension and speech recognition systems. For inputs xt

and yt, connection weight matrices Wih, Whh, Who, indicating input-to-hidden,

hidden-to-hidden and hidden-to-output, respectively, and activation function f , the

1https://devblogs.nvidia.com/introduction-neural-machine-translation-gpus-part-2/
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recurrent neural network can be described as follows:

ht = fH(Wihxt + Whhht−1) (5.1)

yt = fO(Whoht). (5.2)

RNNs learn a probability distribution over a sequence by being trained to predict

the next symbol in a sequence. The output at each timestep t is the conditional

probability distribution p(xt|xt−1, ..., x1).

RNN Encoder-Decoder. A RNN encoder-decoder (pictured in Fig. 21)

encodes a variable-length sequence into a fixed vector representation, and decodes

the fixed vector representation into a variable-length sequence Cho et al. (2014).

The RNN encoder-decoder are two separate neural networks that are jointly trained

to maximize the conditional log-likelihood, defined as

arg max
θ

1

N

N∑
n=1

log pθ(tn|sn), (5.3)

where θ represents the set of model parameters, each sn, tn is a pair of input and

output sequences from a parallel text corpus training set, and the output of the

decoder from the encoder is differentiable. A trained RNN encoder-decoder can

generate a target sequence given an input sequence.

Neural Machine Translation. Neural machine translation is defined

as maximizing the conditional probability, arg maxt p(t|s) ∝ p(s|t)p(t), for a source

s and target t sequence, where p(s|t) represents the translation model, and p(t)

represents the language model Bahdanau, Cho, and Bengio (2014); Sutskever,

Vinyals, and Le (2014). Taking the log linear of p(t|s) yields,

log p(t|s) =
N∑
n=1

wntn(t, s) + logλ(s), (5.4)
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Table 11. Stochastic gradient descent and its variants.

Optimizer Operations Description

SGD
gt ←5θtJ(θt)
θt+1 ← θt − ηgt

gt - gradient cost function,
η - learning rate, θ
parameters

AdaGrad

gt ←5θtJ(θt)
ηt ← ηt−1 + g2

t

θt+1 ← θt − η√
ηt+ε

gt
Divides η by previous
gradients, handles sparse
data well

Adam

gt ←5θtJ(θt)
ηt ← γηt−1 + (1− γ)g2

t

η̂ ← ηt
1−γt

mt ← µmt−1 + (1− µ)gt
m̂← mt

1−µt

θt+1 ← θt − η√
η̂t+ε

m̂t

mt - decay mean of past
gradients, m̂t, n̂t - biased
corrected terms that avoids
zero initialization, γ = 0.9,
µ = 0.999, ε = 108

where tn and wn are the nth feature and weight, and λ(s) is a normalization

constant. The BLEU score provides a measure for optimizing weights during

training.

Optimization Objectives. The following subsections describe the

tuning of hyper-parameters that affect the performance of training a NMT system.

In particular, this work focuses on the optimizers, activation functions, and

dropout.

SGD Optimizers. Stochastic gradient descent (SGD), commonly

used to train neural networks, updates a set of parameters θ, where η is the

learning rate and gt represents the gradient cost function, J(·). Adagrad is an

adaptive-based gradient method, where η is divided by the square of all previous

gradients, ηt, plus ε, a smoothing term to avoid dividing by zero. As a result,

larger gradients have less frequent updates, whereas smaller gradients have more

frequent updates. Adagrad handles sparse data well and does not require manual
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Table 12. Activation units for RNN.

Activation Operations Description

tanh st ← (ex − e−x)/(ex + e−x) hyperbolic tangent

LSTM

i← σ(xtU
i + st−1W

i)
f ← σ(xtU

f + st−1W
f )

o← σ(xtU
o + st−1W

o)
g← tanh(xtU

g + st−1W
g)

ct ← ct−1 ◦ f + g ◦ i
st ← tanh(ct) ◦ o

3 gates, c - internal
memory, o output, 2
tanh

GRU

z← σ(xtU
z + st−1W

z)
r← σ(xtU

r + st−1W
r)

h← tanh(xtU
h + (st−1 ◦ r)Wh)

st ← (1− z) ◦ h + z ◦ st−1

2 gates, no internal
memory, no output
gates, 1 tanh

tuning of η. Adaptive moment estimation (Adam) accumulates the decaying mean

of past gradients, mt, and the decaying average of past squared gradients, ηt,

referred to as the first and second moments, respectively. The moments, m̂t, n̂t are

biased corrected terms that avoids initializing to zero. γ is usually set to 0.9, with

µ = 0.999, and ε = 108. Table 11 displays SGD, AdaGrad and Adam optimizers.

Activation Functions. Activation functions serve as logic gates

for recurrent neural networks that computes the hidden states, and include the

hyperbolic tangent, long short term memory (LSTM) Hochreiter and Schmidhuber

(1997), and gated recurrent unit (GRU) Cho et al. (2014). Table 12 displays the

hyperbolic tangent, LSTM and GRU activation functions.

To address the vanishing gradients problem associated with learning long-

term dependencies in RNNs, LSTMs and GRUs employ a gating mechanism when

computing the hidden states. For LSTM s, note that the input i, forget f and

hidden h gates are the same equations except with different parameter matrices. g

is a hidden state, based on the current input and previous hidden state. ct serves

as the internal memory, which is a combination of the previous memory, ct−1,
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Table 13. Dropout versus a standard update function.

Optimizer Operations Description

Update
z

(l+1)
i ← w

(l+1)
i yl + b

(l+1)
i

y
(l+1)
i ← f(z

(l+1)
i )

Standard update

Dropout

r
(l)
j ∼ Bernoulli(p)

ŷ(l) ← r(l) ∗ y(l)

z
(l+1)
i ← w

(l+1)
i ŷl + b

(l+1)
i

y
(l+1)
i ← f(z

(l+1)
i )

r - Bernoulli rv, p -
dropout param

multiplied by the input gate. The hidden state, st, is calculated by multiplying

ct and the output gate. On the other hand, a GRU employs a reset gate r and an

update gate u. The reset gate r determines how to combine the new input with

the previous memory, whereas the update gate u defines how much of the previous

memory to retain. If the reset gates were set to 1’s and the update gates to 0’s, this

would result in a vanilla RNN.

The differences between the two approaches to compute hidden units are

that GRUs have 2 gates, whereas LSTMs have 3 gates. GRUs do not have an

internal memory and output gates, compared with LSTM which uses c as its

internal memory and o as an output gate. The GRU input and forget gates are

coupled by an update gate z, and the reset gate r is applied directly to the previous

hidden state. Also, GRUs do not have a 2nd non-linearity operation, compared to

LSTMs, which uses two hyperbolic tangents.

Dropout. In a fully-connected, feed-forward neural network, dropout

randomly retains connections within hidden layers while discarding others

Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov (2014). Table 13

displays a standard hidden update function on the top, whereas a version that

decides whether to retain a connection is displayed on the bottom. ŷ(l) is the
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thinned output layer, and retaining a network connection is decided by a Bernoulli

random variable r(l) with probability p(·) = 1.

Combination of Optimizers. Since the learning trajectory

significantly affects the training process, it is required to select and tune the proper

types of hyper-parameters to yield good performance. The construction of the RNN

cell with activation functions, the optimizer and its learning rate, and the dropout

rates all have an affect on how the training progresses, and whether good accuracy

can be achieved.

Marian NMT

Marian Junczys-Dowmunt et al. (2018) is an efficient NMT framework

written in C++, with support for multi-node and multi-GPU training and

CPU/GPU translation capabilities. Marian is currently being developed and

deployed by the Microsoft Translator team. Table 14 displays parameters involved

with tuning a neural machine translation system, categorized by model, training

and validation, with values and types in brackets, and its default value, if any. The

types of models in Marian include RNNs and Transformers Vaswani et al. (2017).

The translation system evaluated in this study is a sequence-to-sequence

model with single layer RNNs for both the encoder and decoder. The RNN in

the encoder is bi-directional and the decoder is sequence-to-sequence. Depth, also

referred to as deep transitions Koehn (2017), is achieved by stacking activation

blocks, resulting in tall RNN cells for every recurrent step. The encoder consists

of four activation blocks per cell, whereas the decoder consists of eight activation

blocks, with an attention mechanism placed between the first and second block.

Word embedding sizes were set at 512, the RNN state size was set to 1024, and
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layer normalization was applied inside the activation blocks and the attention

mechanism.

Experiments

The experiments were carried out on the WMT 2016 Junczys-Dowmunt and

Grundkiewicz (2016) translation tasks for the Romanian and German languages in

four directions: EN → RO, RO → EN, EN → DE, and DE → EN. The datasets

and its characteristics used in the experiments are listed in Table 15, with number

of sentence examples in parenthesis. Table 15 shows that for WMT 2016 EN →

RO and RO → EN, the training data consisted of 2.6M English and Romanian

sentence pairs, whereas for WMT 2016 EN → DE and DE → EN, the training

corpus consisted of approximately 4.5M German and English sentence pairs.

Validation was performed on 1000 sentences of the newsdev2016 corpus for RO,

and on the newstest2014 corpus for DE. The newstest2016 corpus consisted of

1999 sentences for RO and 2999 sentences for DE, and was used as the test set. We

evaluated and saved the models every 10K iterations and stopped training after

500K iterations.

All experiments used bilingual data without additional monolingual data.

We used the joint byte precision encoding (BPE) approach Sennrich, Haddow, and

Birch (2015) in both the source and target sets, which converts words to a sequence

of subwords. For all four tasks, the number of joint-BPE operations were 20K. All

words were projected on a 512-dimensional embedding space, with vocabulary

dimensions of 66000 × 50000. The mini-batch size was determined automatically

based on the sentence length that was able to fit in GPU global memory, set at

13000 MB for each GPU.
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Table 14. Marian hyper-parameters, with options in brackets.

dimensions vocab [vect]
embed [int]

RNN dim [int]
type [bi-dir, bi-unidir, s2s]
cell: type [gru, lstm, tanh], depth [1, 2, ...],
transition cells [1, 2, ...]
skip [bool]

M
o
d

el layer norm [bool]
tied embeddings [src, trg, all]
dropout [float]

transformer heads [int]
no projection
tied layers [vector]
guided alignment layer
preproc, postproc, post-emb [dr, add, norm]
dropout [float]

cost [ce-mean, ce-mean, words, ce-sum, perplexity]
after-epochs [∞]
max length [int=50]
system GPUs, threads
mini-batch size, words, fit, fit-step [int, int, bool, uint]
optimizer [sgd, adgrad, adam]

T
ra

in
in

g learn rate decay: strategy [epochs, stalled, epoch + batches,
ep+stalled], start, frequency, repeat warmup, inverse
sqrt, warmup

label smoothing [bool]
clip norm [float=1]
exponential
smoothing

[float=0]

guided alignment cost [ce, mean, mult], weight [float=0.1]
data weighting type [sentence, word]
embedding vectors, norm, fix-src, fix-trg

frequency
metrics [ce, ce-words, perplexity, valid-script, translation,

bleu, bleu-detok]

V
al

id
at

io
n early stopping [int=10]

beam size [int=12]
normalize [float=0]
max-length-factor [float=3]
word penalty [float]
mini-batch [int=32]
max length [int=1000]
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Table 15. Datasets used in experiments.

RO→EN, EN→RO DE→EN, EN→DE

Train corpus.bpe (2603030) corpus.bpe (4497879)
Valid newsdev2016.bpe (1999) newstest2014.bpe (3003)
Test newstest2016.bpe (1999) newstest2016.bpe (2999)

Beam search was used for decoding, with the beam size set to 12. The

translation portion consisted of recasing and detokenizing the translated BPE

chunks. The trained models compared different hyper-parameter strategies,

including the type of optimizer, the activation function, and the amount of dropout

applied, as discussed in Section V. The number of parameters were initialized with

the same random seed. The systems were evaluated using the case-sensitive BLEU

score computed by Moses SMT Koehn et al. (2007).

We compared models trained on two different types of GPUs (P100 Pascal,

V100 Volta), listed on Table 16. The corresponding CPUs are listed on Table 17.

Each ran with four GPUs. The dataset was partitioned across 4 GPUs, and a copy

of the model was executed on each GPU.

Analysis

This section analyzes the results of the evaluated NMT systems in terms of

translation quality, training stability, convergence speed and tuning cost.

Translation Quality. Table 18 shows BLEU scores calculated for four

translation directions for the validation sets (top) and the test sets (bottom),

comparing learning rates, activation functions and GPUs. Note that entries with

n/a means that no results were available, whereas entries with dnf indicates

training time that did not complete within 24 hours. For the validation sets,

LSTMs were able to achieve higher accuracy rates, whereas in the test set GRUs

and LSTMs were about the same. Also, note that the best performing learning
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Table 16. Graphical processors used in this experiment.

P100 V100

CUDA capability 6.0 7.0
Global memory (MB) 16276 16152
Multiprocessors (MP) 56 80
CUDA cores per MP 64 64

CUDA cores 3584 5120
GPU clock rate (MHz) 405 1380

Memory clock rate (MHz) 715 877
L2 cache size (MB) 4.194 6.291

Constant memory (bytes) 65536 65536
Shared mem blk (bytes) 49152 49152

Registers per block 65536 65536
Warp size 32 32

Max threads per MP 2048 2048
Max threads per block 1024 1024

CPU (Intel) Ivy Bridge Haswell

Architecture family Pascal Volta

rates were usually at a lower value (e.g. 1e-3). The type of hidden unit mechanism

(e.g LSTM vs GRU) and the learning rate can affect the overall accuracy achieved,

as demonstrated by Table 18.

Table 19 displays various dropout rates applied for two translation directions

RO → EN and DE → EN, comparing hidden units, GPUs and overall training

time. The learning rate was evaluated at 0.001, the rate that achieved the highest

Table 17. Hardware and execution environment information.

Architecture Haswell Ivy Bridge

Model E5-2698 v3 Xeon X5650
Clock speed 2.30 GHz 2.67 GHz
Node count 4, 14 6

GPUs 4 × V100 4 × P100
Memory 256 GB 50 GB

Linux kernel 3.10.0-229.14.1 2.6.32-642.4.2

Compiler CUDA v9.0.67
Flags {‘g’, ‘lineinfo’, ‘arch=sm cc’}
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Table 18. BLEU scores for validation (top) and test (bottom) datasets.

ro→en en→ro de→en en→de
cell learn-rt P100 V100 P100 V100 P100 V100 P100 V100

GRU 1e-3 35.53 35.43 19.19 19.28 28.00 27.84 20.43 20.61
5e-3 34.37 34.05 19.07 19.16 26.05 22.16 n/a 19.01
1e-4 35.47 35.46 19.45 19.49 27.37 27.81 dnf 21.41

LSTM 1e-3 34.27 35.61 19.29 19.64 28.62 28.83 21.70 21.69
5e-3 35.05 34.99 19.48 19.43 n/a 24.36 18.53 18.01
1e-4 35.41 35.28 19.43 19.48 n/a 28.50 dnf dnf

GRU 1e-3 34.22 34.17 19.42 19.43 33.03 32.55 26.55 26.85
5e-3 33.13 32.74 19.31 18.97 31.04 26.76 n/a 26.02
1e-4 33.67 34.44 18.98 19.69 33.15 33.12 dnf 28.43

LSTM 1e-3 33.10 33.95 19.56 19.08 33.10 33.89 28.79 28.84
5e-3 33.10 33.52 19.13 19.51 n/a 29.16 24.12 24.12
1e-4 33.29 32.92 19.14 19.23 n/a 33.44 dnf dnf

Table 19. Dropout rates, BLEU scores and total training time for test set,
comparing systems.

ro→en de→en
cell dropout P100 t V100 t P100 t V100 t

GRU 0.0 34.47 6:29 34.47 4:43 32.29 9:48 31.61 6:15
0.2 35.53 8:48 35.43 6:21 33.03 18:47 32.55 19:40
0.3 35.36 12.21 35.15 7:28 31.36 10:14 31.50 9:33
0.5 34.50 12:20 34.67 17:18 29.64 11:09 30.21 11:09

LSTM 0.0 34.84 6:29 34.65 4:46 32.84 12:17 32.88 7:37
0.2 34.27 8:10 35.61 6:34 33.10 16:33 33.89 13:39
0.3 35.67 9:56 35.37 11:29 33.45 20.02 33.51 15:51
0.5 34.50 15:13 34.33 12:45 32.67 20:02 32.20 13:03
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BLEU score as evident in Table 18. Generally speaking, increasing the dropout

rates also increased training time. This may be the result of losing network

connections when applying the dropout mechanism, but at the added benefit

of avoiding overfitting. This is evident in Table 19, where applying some form

of dropout will result in a trained model achieving higher accuracies. The best

performance can be seen when the dropout rate was set at 0.2 to 0.3. This confirms

that some form of skip connection mechanism is necessary to prevent the overfitting

of models under training.

Figure 23 shows BLEU score results as a function of training time,

comparing GPUs, activation units, learning rates and translation directions. Note

that in most cases a learning rate of 0.001 achieves the higher accuracy in most

cases, at the cost of higher training time. Also, note the correlation between longer

training time and higher BLEU scores in most cases. In some cases, the models

were able to converge at a faster rate (e.g. Fig. 23 upper left, RO→EN, GRU with

learning rate of 0.005 vs 0.001).

Training Stability. Figure 24 shows the cross-entropy scores for

the RO → EN and EN → RO translation tasks, comparing different activation

functions (GRU vs. LSTM), with learning rates at 0.001. Note the training

stability patterns that emerge from this plot, which is highly correlated with the

translation direction. The activation function (GRU vs LSTM) during validation

also performed similarly across GPUs and was also highly correlated with the

translation direction. Cross-entropy scores for the EN → RO translation direction

were more or less the same. However, for RO → EN, a LSTM that executed on a

P100 converged the earliest by one iteration.
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Figure 22. BLEU scores as a function of training time (seconds), comparing GPUs
(color), activation units (sub-columns), learning rates and translation directions.
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Figure 23. BLEU scores as a function of training time (seconds), comparing GPUs
(color), activation units (sub-columns), learning rates and translation directions.
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Figure 24. Cross entropy over the number of epochs for RO → EN and EN → RO,
comparing activation functions and GPUs.
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comparing activation functions and GPUs.
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Figure 26. Average words-per-second for the RO → EN translation task, comparing
systems.

Figure 25 shows the same comparison of cross-entropy scores over epochs

for DE → EN and EN → DE translation tasks. Note that the behavior for this

translation task was wildly different for all systems. Not only did it take more

epochs to converge compared to Fig 24, but also how well the system progressed

also varied, as evident in the cross-entropy scores during validation. When

comparing hidden units, LSTMs outperformed GRUs in all cases. When comparing

GPUs, the V100 performed better than the P100 in terms of cross-entropy, but

took longer to converge in some cases (e.g. v100-deen-lstm, v100-ende-lstm). Also,

note that the behavior of the translation task EN → DE for a GRU hidden unit

never stabilized, as evident in both the high cross-entropy scores and the peaks

toward the end. The LSTM was able to achieve a better cross-entropy score overall,

with nearly a 8 point difference for DE → EN, compared with the GRU.

Convergence Speed. Figure 26 shows the average words-per-second for

the RO → EN translation task, comparing systems. The average words-per-second
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Table 20. Words-per-second (average) and number of epochs, comparing activation
units, learning rates and GPUs.

words-per-sec validation words-per-sec validation
cell learn-rt P100 V100 P100 V100 P100 V100 P100 V100

ro→en en→ro
GRU 1e-3 33009.23 45762.54 18000 18000 29969.14 42746.15 15000 15000

5e-3 32965.23 24253.14 19000 8000 30223.89 23144.62 17000 10000
1e-4 32828.61 24341.96 44000 16000 29959.34 23277.51 25000 14000

LSTM 1e-3 29412.87 40534.06 15000 16000 27282.54 38131.13 14000 14000
5e-3 29536.65 40598.24 16000 16000 27245.42 37384.46 19000 21000
1e-4 29478.51 41441.37 40000 35000 27002.60 38118.79 25000 25000

de→en en→de
GRU 1e-3 28279.53 38026.87 20000 28000 28367.91 39995.48 10000 10000

5e-3 28215.40 19819.59 25000 4000 n/a 39944.10 n/a 16000
1e-4 28367.54 33218.70 26000 32000 dnf 39993.89 dnf 36000

LSTM 1e-3 24995.64 33507.31 16000 17000 25245.67 35122.54 13000 17000
5e-3 25210.15 33740.92 14000 7000 25049.21 33649.20 9000 6000
1e-4 dnf 34529.58 dnf 31000 dnf dnf dnf dnf

executed remained consistent across epochs. The system that was able to achieve

the most words-per-second was v100-roen-gru-0.001, whereas the one that achieved

the least words-per-second was the v100-roen-gru-0.005. Surprisingly, the best and

worst performer was the v100-roen-gru, depending on its learning rate, with the

sweet spot at 0.001. This confirms 0.001 as the best learn rate that can execute a

decent number of words-per-second and achieve a fairly high accuracy, as evident in

previous studies, across all systems.

Table 20 also displays words-per-second and validation, comparing activation

units, learning rates and GPUs. When fixing learning rate, the V100 was able to

execute more words-per-second than the P100, and was able to converge at an

earlier iteration. When comparing hidden units, GRUs were able to execute higher

words per second on a GPU and converge at a reasonable rate (at 18000 iterations)

for most learning rates, except for 5e-3. When looking at LSTMs, words-per-second

executed on a V100 was similar, although at a higher learning rate it was able to

converge at 42000 iterations, but at the cost of longer training time and slower

convergence (35000 iterations).
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Table 21. Total training time for four translation directions, comparing systems.

ro→en en→ro de→en en→de
cell learn-rt P100 V100 P100 V100 P100 V100 P100 V100

GRU 1e-3 8:48 6:21 7:47 5:26 18:47 19:40 9:26 6:41
5e-3 9:41 4:52 8:38 6:02 23:57 4:36 n/a 10:56
1e-4 21:58 9:43 12:33 8:59 23:50 21:09 dnf 23:58

LSTM 1e-3 8:10 6:34 7:49 5:36 16:33 13:39 13:50 12:24
5e-3 9:02 6:34 10:44 8:32 n/a 5:12 9:37 4:35
1e-4 22:29 14:05 13:46 9:45 n/a 23:57 dnf dnf

Table 21 shows the corresponding total training time for the four translation

directions, comparing GPUs, activation units, and learning rates. The dropout

rate was set at 0.2, which was the best performer in most cases (Tab 19). Table 21

shows that the training time increased as the learning rates were decreased. In

general, Romanian took a fraction of the time to complete training (usually under

10 hours), whereas German took 18-22 hours to complete training.

Cost of Tuning a Hyper-Parameter. Table 22 displays the average

time spent per epoch for the Romanian ↔ English translation task, and Table 23

displays the average time spent per epoch for the German ↔ English translation

task, comparing learning rates, activation cells, and GPUs. The mean is displayed

in each cell, with the standard deviation in parenthesis and the number of epochs

executed in brackets. For both tasks, dropout was set to 0.2. Surprisingly, GRUs

take longer on the V100 on average with larger learning rates (5e-3, 1e-4) vs the

P100, whereas for LSTMs, the V100s clearly speeds up execution per epoch. Note

also that the learning rate does not have a significant change in the average time

spent per epoch, except for the case with GRUs executing on the V100 with large

learning rates. The learning rate does have an effect on the number of epochs

executed, as seen in brackets as the learning rate increases. Table 23 reports on

the German ↔ English translation tasks. The same observation can be made for
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Table 22. Average time spent per iteration for RO → EN and EN → RO
translation directions, comparing systems, with standard deviation in parenthesis
and epochs in brackets.

ro→en en→ro
cell learn-rt P100 V100 P100 V100

GRU 1e-3 1807.362941
(142.43) [17]

1304.076471
(102.67) [17]

1829.790714
(166.06) [14]

1278.770714
(117.63) [14]

5e-3 1814.640556
(140.01) [18]

2472.531429
(11.16) [7]

1816.642500
(165.40) [16]

2385.243333
(15.08) [9]

1e-4 1823.828837
(129.08) [43]

2466.306429
(11.29) [14]

1839.624583
(167.28) [24]

2369.436923
(13.79) [23]

LSTM 1e-3 2032.362857
(155.58) [14]

1470.278
(108.79) [15]

2010.199231
(146.74) [13]

1438.945385
(107.76) [13]

5e-3 2018.048
(148.21) [15]

1469.054
(110.05) [15]

2014.716667
(144.41) [18]

1474.787500
(100.57) [20]

1e-4 2026.976154
(147.46) [39]

1445.585882
(106.30) [34]

2037.517083
(140.28) [24]

1443.758333
(99.68) [24]

this task, where GRUs spend less time per epoch compared to LSTMs, and that

the average time spent per epoch remains fixed as the learnignrate increases.

Summarize Findings

This work reveals the following, with respect to tuning hyper-parameters:

– Dropout is neccessary to avoid overfitting. The recommended probability rate

is 0.2 to 0.3.

– LSTMs take longer than GRUs per epoch, but achieves better accuracy.

– Although the average time spent per epoch remains fixed as learning rates

increase, the total number of epochs executed per training run increases as

the learning rates increase.

– Tensor core GPUs, particularly the V100, provide more words that can be

processed per second, compared to non-tensor core GPUs, such as the Pascal

P100.
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Table 23. Average time spent per iteration for DE → EN and EN → DE
translation directions, comparing systems, with standard deviation in parenthesis
and epochs in brackets.

de→en en→de
cell learn-rt P100 V100 P100 V100

GRU 1e-3 3430.330526
(124.58) [19]

2555.738148
(95.76) [27]

3432.534444
(128.70) [9]

2535.11
(88.61) [9]

5e-3 3450.174167
(133.13) [24]

4898.036667
(47.79) [3]

n/a 2432.112000
(87.91) [15]

1e-4 3425.231600
(129.98) [25]

4907.070667
(51.24) [15]

n/a 2434.452000
(90.02) [35]

LSTM 1e-3 3887.889333
(164.183) [15]

2898.554375
(129.37) [16]

3840.552500
(162.85) [12]

2761.088125
(116.41) [16]

5e-3 3855.21
(162.27) [13]

2852.335
(121.95) [6]

3859.903750
(167.48) [8]

2886.194
(122.26) [5]

1e-4 n/a 2814.689000
(118.66) [30]

n/a n/a

Discussion

The variation in the results, in terms of language translation, hyper-

parameters, words-per-second executed and BLEU scores, in addition to the

hardware the training was executed on demonstrates the complexity in learning

the grammatical structure between the two languages. In particular, the learning

rate set for training, the hidden unit selected for the activation function, the

optimization criterion and the amount of dropout applied to the hidden connections

all have a drastic effect on overall accuracy and training time. Specifically, we

found that a lower learning rate achieved the best performance in terms of

convergence speed and BLEU score. Also, we found that the V100 was able to

execute more words-per-second than the P100 in all cases. When looking at

accuracy as a whole, LSTM hidden units outperformed GRUs in all cases. Lastly,

the amount of dropout applied on a network in all cases prevented the model from

overfitting and achieve a higher accuracy.
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The multidimensionality of hyper-parameter optimization poses a challenge

in selecting the architecture design for training NN models, as illustrated by the

varying degrees of behavior across systems and its performance outcome. This

work investigated how the varying design decisions can affect training outcome

and provides neural network designers how to best look at which parameters affect

performance, whether accuracy, words processed per second, and convergence

expectation. Coupled with massive datasets for parallel text corpuses and

commodity heterogenous GPU architectures, the models trained were able to

achieve WMT grade accuracy with the proper selection of hyper-parameter tuning.

We analyzed the performance of various hyper-parameters for training a

NMT, including the optimization strategy, the learning rate, the activation cell,

and the GPU across various systems for the WMT 2016 translation task in four

translation directions. Results demonstrated that a proper learning rate and a

minimal amount of dropout is able to prevent overfitting as well as achieve high

training accuracy.

Future work includes developing optimization methods to evaluate how to

best select hyper-parameters. By statically analyzing the computational graph that

represents a NN in terms of instruction operations executed and resource allocation

constraints, one could derive execution performance for a given dataset without

running experiments.

Conclusion

This chapter addresses the following questions when training neural

networks. Specifically, neural machine translation was evaluated during training

for stability, convergence, speed, and cost. Questions that were addressed include

how much a hyper-parameter update costed, as well as which hyper-parameters
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contributed to learning. The next chapter attempts to combine techniques from the

previous chapters for identifying the precision requirements for classifying image

applications.
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CHAPTER VI

NUMERICAL REPRESENTATION

This chapter includes both previously pubished and unpublished co-

authored material. The work includes a poster presentation that was accepted

at the 5th Workshop on Naval Applications of Machine Learning Lim, Castro,

Coti, Jalby, and Malony (2021), and work in progress involving Dr. Camille Coti,

Dr. William Jalby, Dr. Allen Malony and Dr. Pablo Oliveira that started when

I was a Chateaubriand Fellow at the University of Versailles. I am the primary

contributor to this work in developing the algorithm, writing the new code, and

writing the paper. Dr. Coti initially identified the need for this work and provided

the application that this work was performed in. Dr. Jalby supervised me while

I was interning in Versailles. Dr. Allen Malony assisted in editing the paper. Dr.

Oliveira introduced the foundation of numerical representation.

Abstract

This paper investigates training deep neural networks with varying precision

lengths while providing the user with guidance on how to best set the precision

requirements of a floating point operation. Our approach intercepts floating point

operations at the LLVM intermediate representation layer and applies rounding at

varying precision lengths. We demonstrate our approach with PyTorch C++ Vision

models on the CalTech 101 dataset. Our results are presented in the following

manner. We break down the precision requirements per iteration and overall for the

training session and compare across various hyper-parameters, including learning

rates, mini-batch sizes, and convolution filters. Our results demonstrate that mixed

precision is stable in earlier parts of the training phase, whereas reduced precision
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Figure 27. Comparison of floating point representations (image source TF32
(2019a)).

becomes unstable near convergence. Our approach is novel in that it ties in the

network architecture and hyper-parameters with variable length floating point

precision and enables exploration of precision bounds of an operation.

Motivation

Due to the lengthy amount of time it takes to train machine learning

models, increasing floating-point operations per clock cycle can be attained with

reduced precision operations, which trades off accuracy with instruction throughput

and low latency. Since machine learning involves repeated matrix-vector operations

during the forward, backward and update passes, counting multiply-add-accumulate

(MAC) operations provide a way to estimate performance of a training run for a

given model. Figure 27 displays a comparison of floating point representations,

including tensorfloat32, bfloat16, float and half types. This motivates the

discussion to investigate whether more operations can be executed per clock cycle,

while maintaining accuracy and correctness of a program using reduced precision.
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Modern microprocessors, accelerators and embedded devices provide

hardware units for executing reduced precision operations. For instance, NVIDIA

Volta and Turing GPUs have hardware capability for executing mixed precision

operations since CUDA 8 Mixed Precision Programming (2016), where Volta

tensor cores have FP16/FP16 and FP16/FP32 modes, and Turing tensor cores

have INT8/INT32, INT4/INT32 and INT1/INT32 execution modes Tensor

Core Performance (2019). Intel Cascade Lake provides vectorized intrinsics,

AVX512 VNNI, for accelerating convolutional neural networks, which performs 8-

bit multiplies (VPMADDWD) and 32-bit accumulates (VPADDD) in one clock cycle

using Port 0 and Port 5 simultaneously for a theoretical 4× increase in instruction

throughput Intel Cascade Lake (2019).

Floating-Point Numbers in Machine Learning

Numerical portions of machine learning include inputs, model, gradients,

activation units and weights De Sa, Feldman, Ré, and Olukotun (2017). Weights

and activation units, which represent signals of the gradient when computing

backpropagation with SGD, are typical candidates for quantization Intel Low

Precision (2018), Mixed Precision Programming (2016), Micikevicius et al. (2017).

Floating point representation includes fixed-point computation that truncates the

floating-point into a fix sized format and custom quantization points that varies the

length of the precision and range of a floating-point number.

Mixed precision operations incur accuracy loss, depending on the method,

and the solution can be improved with iterative refinement. For instance, the

authors demonstrated that the inner generalized minimal residual method

(GMRES) loop, an iterative method for solving a system of non-linear equations,

was computed in 32-bit and the outer GMRES loop was computed in 64-bit with
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Table 24. IEEE-754 Numbers and exceptions.

Outcome Description

Zeroes +0 and −0 Sign determines behavior when
dividing by nonzero (e.g. −∞ or
+∞)

N
u

m
b

er
s Infinities +∞ or −∞ Div-by-zero, overflow

NaNs Not a Number (+∞)− (+∞), 0/0,
√
−1

Normal Normalized Most common nonzero
representable reals

Subnormal Denormalized Values very close to zero, issues
regarding rounding errors

Invalid operation NaN produced NaN conditions, as above
Overflow Operation result Number too large in magnitude to

be represented in data type

E
x
ce

p
ti

on
s Division by zero x

±0 , x 6= 0 Produce ±∞ depending on sign of
x and ±0

Underflow Result too small Generally harmless, but error
bounds will differ from normal
computations

Inexact Real result can’t be
represented

Rounding (default), care needed
for sound analysis

minimal loss in accuracy Baboulin et al. (2009), and more recently with GPUs in

8-bit / 32-bit mixed precision modes Haidar, Wu, Tomov, and Dongarra (2017).

Concerns relating to deep learning with limited numerical precision

include overflow and underflow of values, and not-a-number (NaN) resulting

from undefined operations, such as adding or subtracting infinite variables, or

√
−1 Goodfellow et al. (2016) (Chapter 4). Table 24 displays floating point

numbers and exceptions defined by the IEEE-754 standard. A numerical value

can result in zeroes, infinities, NaN, normal, or subnormal. Representing numbers

in fixed-point registers require handing exceptional cases. Exceptions result in

undefined behavior, either due to the resulting procedure or invalid mathematical

definitions, and includes overflow, division by zero, underflow, and inexact.
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Figure 28. Verificarlo workflow.

Workflow

This subsection covers the workflow of instrumenting deep learning

applications with reduced precision. Our methodology of instrumenting floating

point operations at reduced precision was implemented at the LLVM intermediate

representation (IR) level.

Verificarlo Modes. Verificarlo is a toolkit for assessing and

reproducing floating point operations Denis, Castro, and Petit (2015). The reduced

precision is emulated in the IEEE-754 format for 32-bit and 64-bit operations,

where the exponent and mantissa sizes can be set at arbitrary lengths for each

floating point operation or at the function level. The error bounds are where

the precision is truncated and can also be set. Figure 28 illustrates the overall

Verificarlo workflow. Verificarlo takes in C or C++ code, performs source-to-

source translation, where the operations are replaced with its reduced floating point

counterpart in the LLVM IR level, and produces a binary executable. The control

flow is the same as the original program with the ability of assessing operations

as they take place in the program. The code is instrumented and program results

are available (both the original and the reduced FP precision) and allows further

analysis to take place.
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Table 25. Verificarlo backends and options.

Backend Description Options

IEEE No effect on output debug, debug-binary, print-new-
line, print-subnormal-normalized,
no-backend-name

Monte Carlo (MCA) MCA on variable,
quad type on doubles,
double type on floats

mode {ieee, mca, pb †, rr ‡},
precision-binary32, precision-
binary64, error-mode {rel§, abs ‖,
all}, max-abs-error-exponent, daz *,
ftz #, seed

MCA-MPFR MCA using GNU
MPFR library

same as MCA

Bitmask First order model of
noise, sets t mantissa
bits to 0, 1, rand

mode {ieee, mca, pb, rr}, operator
{zero, one, rand}, precision-
binary32, precision-binary64, daz,
ftz, seed

Cancellation Cancels out bits
arbitrarly

seed, tolerance, warning

Virtual precision Sets length for both
exponent (range) and
mantissa (precision)

mode {ieee, mca, pb, rr}, precision-
binary32, precision-binary64, range-
binary32, range-binary64, error-
mode {rel, abs, all}, daz, ftz

* denormals are zero, [†] precision bound, [‡] random round, [§] relative, [‖] absolute, [#] flush to
zero

Table 25 lists the various backend modes supported, which include Monte

Carlo arithmetic (MCA), bitmask, cancellation, and virtual precision. The backend

modes can be applied at the variable level for inputs, outputs or both, at the

operand level, or both the variable and operand levels. MCA utilizes quadruple

types (128 bits) for double variables and double types on floating-point variables.

The bitmask backend sets t mantissa bits to 0, 1 or MCA randomization. The

cancellation backend automatically detects a cancellation, and if detected, noise is

applied on the cancelled part with MCA. Virtual precision, the study of this work,

enables setting of mantissa and exponent at arbitrary lengths, and other options

can be applied such as stochastic rounding, denormalization, and flush to zero.
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Figure 29. Virtual precision in Verificarlo, showing r = 5 and p = 10, simulating a
binary16 embedded inside a binary 32.

Algorithm 2 Instrumenting functions with Verificarlo.

1: Data: X inputs, Y outputs, F : X → Y
2: Result: F ′ instrumented
3: procedure func inst(F,X, Y )
4: for f i ∈ F do
5: Count Nfloat, Ndouble

6: Allocate Nfloat +Ndouble space in heap

7: for xi ∈ X do
8: Add xitype, x

i
size, x

i
name, x

i
address for vfc enter

9: Create callback to vfc enter

10: Load xi rounded values
11: Call hooked function with xi

12: for yj ∈ Y do
13: Add yjtype, y

j
size, y

j
name, y

j
address for vfc exit

14: Call vfc exit

15: Load yj rounded values
16: Return yj, if needed

Figure 29 illustrates how the virtual precision mode is applied on a floating-point

variable, with r = 5 and p = 10 (image source: Chatelain, Petit, de Oliveira Castro,

Lartigue, and Defour (2019)).

Primitive Types from Composite Types. To instrument derived

types, a mechanism to infer primitive types, such as floats and doubles, from

composite types was added in Verificarlo. Algorithm 2 describes the procedure

for instrumenting functions with Verificarlo, whereas Algorithm 3 describes the

steps to infer floats from composite types. The routine takes as input a struct type.
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Algorithm 3 Infer floating-point types from derived types in Verificarlo.

1: Input: Type is a Struct type
2: Output: Number of floats and doubles for derived type T
3: procedure DERIVED TYPE(Type T)
4: S ← <Type S>T . type cast to struct
5: for ∀s ∈ S do . s are members of S
6: T ← getType(s)
7: if Tptr then . T is a pointer
8: T ← getElemPointedTo(Tptr) . get callee until primitive type

reached
9: if Tfl then float++ . float
10: else if Tdbl then double++
11: else if Tarr or Tvec then
12: if Tdbl then double+= Narr

13: else if Tfl then float+= Narr

14: else if Tstruct then
15: DERIVED TYPE(Type T)

16: else if Tfl then float++
17: else if Tdbl then double++
18: else if Tarr or Tvec then
19: if Tdbl then double+= Narr

20: else if Tfl then float+= Narr

21: else if Tstruct then
22: DERIVED TYPE(Type T)

For each member of the struct, the type is checked. If it is a float, a double, or

a pointer to such type, the address is logged and the algorithm continues until

all members have been examined. Algorithm 3 takes place during Algorithm 2,

specifically in Lines 4 to 6, 7 to 8, and 12 to 13.

Rounding. When each float or double is intercepted in Verificarlo,

stochastic rounding is applied, which returns a modified version of that value. For

instance, D. Stott Parker defines stochastic rounding as the probability of rounding

x to bxc proportional to the proximity of x to bxc Parker (1997).
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Figure 30. Search for precision and range settings during training.

Round(x) =

 bxc with probability 1− x−bxc
E

bxc+ E with probability x−bxc
E ,

(6.1)

where E ∈ R represents a random error, uniformly distributed on (−1
2
, 1

2
).

Multi-Objective Optimization. We pose the problem of training deep

neural networks with reduced precision as a multi-objective optimization problem

that seeks to satisfy accuracy and execution speed objectives. Our approach is

novel in that it performs training in real time to measure the speed to convergence,

as opposed to counting operations. Our approach also provides an ability for

models to dynamically set precision and range sizes during training run.

The approach is formulated as follows. Given a precision p, let Facc(p)

denote the achieved accuracy on a training run, and let Fexec(p) denote the

measured execution speed of model m on hardware h, and T be the bounded
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execution time. Multi-objective optimization is formulated as

max
p
Facc(p)

subject to Fexec(p) ≤ T

(6.2)

Given this formulation, we are interested in the Pareto optimal, defined in

Sec. II as a point in the criterion space that satisfies multiple objectives. In this

scenario, the Pareto optimal is a model that achieves high accuracy with minimal

execution time, or a model that does not decrease its accuracy while maintaining

minimal execution time.

Figure 30 displays an overview of the proposed search framework, which

consists of an agent that interacts with its environment in a feedback manner. The

agent performs search by sampling the precision and range sizes of a floating point

operation, evaluates the performance of the model under that setting, and updates

the model parameters accordingly. The environment includes the training process,

accounting for compute resources, that measures the time spent per epoch. For a

value function Vπ(S), with states S following a sequence of actions a = 1 : π, where

the actions represent a model’s accuracy under a specified precision setting, and θ

represents the learned model, the goal is to maximize the expected criterion:

Va;θ(s) = E[R], (6.3)

where R is the reward function, as defined in Equation 6.2. This process of

sampling, evaluating and updating is repeated until θ is reached with a desired

number of steps.

Experimental Results

This section reports on instrumenting various neural network models in

PyTorch C++ with Verificarlo.
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Table 26. Neural networks for image classification evaluated in this study.

Properties AlexNet VGG ResNet SqueezeNet ShuffleNet MNASNet

Top-5 79.6 90.4 93.5 80.6 81.7 91.5

Input Size 227×227 224×224 224×224 224×224 224×224 224×224

Conv Layers 5 13 53 8(×3)+1 13(×3) 4+6(×3)
Filter Size 3, 5, 11 3 1, 3, 7 1,3,7,13 1, 3 1, 3, 5

# Channels 3-256 3-512 3-2048 3-512 24-1024 32-320
# Filters 96-384 64-512 64-2048 16-96 12-512 32-1600

FC Layers 3 3 1 1 1 1
# Channels 256-4096 512-4096 2048 512 24-1024 1280

# Filters 1K-4096 1K-4096 1000 1 12-512 1280

Weights 61M 138M 25.5M 1.24M 7.39M 6.28M
MACs 724M 15.5G 3.9G 0.35G 0.60G 0.53G

Applications and Execution Environment. CalTech 101 is a

standard image dataset that includes 101 image categories, ranging from helicopter,

chair to camera. There are about 40 to 800 images per category, with most

categories with about 50 images.

The applications that were instrumented were PyTorch Vision image

classification models, including AlexNet Krizhevsky (2014), MNASNet Tan et al.

(2019), ResNet He, Zhang, Ren, and Sun (2016), ShuffleNet Ma, Zhang, Zheng, and

Sun (2018), SqueezeNet Iandola et al. (2016) and VGG Simonyan and Zisserman

(2014). Table 26, adapted from Sze et al. (2017), displays a summary of the neural

network architectures evaluated in this study. Note the trend in compressing

models, as evident in the decreased number of weights and MACs in more recent

models.

We evaluated each of the models in Torchvision C++. Note that AlexNet,

ResNet and VGG models follow the standard convolutional architecture setup, but

varies in the number of layers, filter sizes, and channels. SqueezeNet consists of

8 fire modules, each of which consists of 3 convolutional layers (1×1, 3×3, 7×7,

13×13). MNASNet consists of 6 inverted residuals, each of which consists of 3
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Table 27. Intel Xeon Platinum hardware and execution environment information.

Model 8176 (×2) 8180M (×24)

Clock Speed 2.50 GHz 2.10 GHz
Cores 28 28

Threads 56 56
TDP 165W 205W

L2 28 MiB 28 MiB
L3 38.5 MiB 38.5 MiB

Max Mem 768 GiB 1536 GiB

convolutional layers (1×1, 3×3, 5×5). ShuffleNet includes 3 stages, each of which

consists of 3 (1×1, 3×3) convolutional layers.

The experiments ran on an Intel Skylake with a S2600WF motherboard,

which consists of 24 Xeon Platinum 8180M CPUs @ 2.50 GHz, and 2 Xeon

Platinum 8176 CPUs @ 2.10GHz. The memory size was 768GB RAM, EDR IB,

Intel P4500 1TB NVMe SSD, and Intel P4800X 375GB NVMe Optane SSD.

Table 27 lists the hardware specifications for the Xeon Platinum 8180M and 8176

CPUs.

Two sets of experiments were carried out. One set trained the neural

networks for 10 epochs, and the second set trained the networks for 30 epochs. For

all networks, the mini-batch size for the train set was set to 64 and the mini-batch

size for the test set was set to 1000. The learning rate was set to 0.001. The data

set was cross validated with a 80/20 split of train and test data. The total train

data set size was 7281, and the total test size was 1865.

Results. This subsection discusses the results from this work. First,

we analyze the learning trajectories with varying precision lengths. Figure 31

plots the trajectory of accuracy at each epoch, comparing vision models and the

precision sizes. The top row represents inbound, or inputs, and the bottom row

represents outbound. In general, lowering the precision to 1 bit compared to the
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Figure 31. Accuracy per epoch, comparing vision models.

full precision run affected accuracy. What is notable is that lowering the precision

to half type had the same effect as running it in full precision mode. This could be

related to the recent push of training neural networks in half precision mode, which

demonstrates the stability of neural networks in lower precision.

Table 28 breaks down statistics for the first ten epochs, comparing precision

sizes, models, and the resulting accuracy and loss. The time reported is in seconds.

Note that in some cases, the total time executed in the lower bit precision is faster

than the full precision version, such as AlexNet and ResNet34. Note also that

in most cases, the half precision types match the accuracy and loss of the full

precision types with lower execution times.

Figure 32 plots the change in difference in values, comparing 1-bit and 26-

bit mantissa with the full precision as the baseline for AlexNet, MNASNet and

VGG. The same observation can be made for the half type that maintains near
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Table 28. Statistics for first ten epochs of training, comparing precision sizes and
models.

Inbound Outbound
Time Loss Accuracy Time Loss Accuracy

1 801 0.2500 0.5000 762 0.2500 0.500
Alexnet 26 744 1.9195 0.5100 797 1.9195 0.5100

51 793 1.9195 0.5100 796 1.9195 0.5100

1 1650 0.1250 0.7500 1605 0.2500 0.7500
MNASNet 26 1745 0.7954 0.7613 1602 0.7954 0.7613

51 1744 0.7954 0.7613 1608 0.7954 0.7613

1 1119 0.1250 0.7500 1020 0.1250 0.7500
ResNet18 26 990 0.6752 0.8193 1014 0.6752 0.8193

51 1017 0.6752 0.8193 1049 0.6752 0.8193

1 1536 0.1250 0.7500 1405 0.1875 0.7500
ResNet34 26 1457 0.9195 0.7363 1534 0.9195 0.7363

51 1452 0.9195 0.7363 1415 0.9195 0.7363

1 1258 0.0625 0.7500 1343 0.1250 0.7500
ShuffleNet 26 1278 0.4439 0.8662 1210 0.4439 0.8662

51 1237 0.4439 0.8662 1309 0.4439 0.8662

1 896 0.5000 0.2500 823 0.5000 0.3750
SqueezeNet 26 793 2.9584 0.3365 809 2.9584 0.3365

51 828 2.9540 0.3365 798 2.9584 0.3365

1 3536 0.2500 0.5000 3667 0.2500 0.5000
VGG 26 3424 1.4977 0.6161 3461 1.4977 0.6161

51 3588 1.4977 0.6161 3566 1.4977 0.6161
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Table 29. Displaying multi-objective results when accounting for accuracy and
average time spent per epoch.

Accuracy Convergence

AlexNet-1 51.0 801
AlexNet-half 51.0 744

ResNet18-1 75.0 1119
ResNet18-half 81.9 990

ResNet34-1 75.0 1536
ResNet34-half 73.6 1457

zero change in difference in the values, whereas in the 1-bit case, the change varies

drastically.

Figure 33, top, displays accuracy as a function of execution time. Observe

that in some networks, such as SqueezeNet, ResNet18 and ResNet34, the accuracy

of 1 bit is actually on par with the full precision version. Figure 33, bottom,

displays loss as a function of time. Loss is defined as −
∑M

c=1 yo,clog(po,c), where

M is the number of classes, y is the binary indicator if class label c is the correct

classification for observation o, and p is the predicted probability that observation

o is of class c. In general, the loss for the 1-bit precision is lower than that of the

26-bit and the full bit precision.

Table 29 displays a summarized version of multi-objective optimization when

accounting for accuracy and average time spent per epoch. As seen, the precision

settings vary depending on the model and size.

Discussion

The techniques evaluated image classification on a variety of neural

network models on the CalTech 101 data set. It would be interesting to make a

wider comparison with other data sets, such as ImageNet, as well as with neural

machine translation, and other scientific applications. The study was contained

to image classification with PyTorch C++ models. A limitation of this study is
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that the precision settings were made globally for the whole program. This study

did not evaluate mixed precision at the variable level. We leave that as future

work. Another limitation of this work is that we did not exhaustively explore the

precision settings between half and 1 bit. The purpose of this work was to present

a proof-of-concept with the tool capabilities that was added in Verificarlo and the

types of analysis that can be performed with reduced precision during machine

learning.

Prior Work

Techniques to reduce numerical precision have been used for compression,

custom quantization points, computing convolutional operations in the logarithmic

domain, and stochastic rounding. Deep compression Han, Mao, and Dally (2015)

proposes a three-stage compression pipeline that prunes redundant weight

connections, quantizes multiple connections to share the same weight, and applies

Huffman coding in the fully connected layers to biased effective weights. For the

AlexNet neural network, the 256 shared weights were quantized to 8-bits for each

convolution layer, and the 32 shared weights were quantized to 5-bits in the fully

connected layers without loss in accuracy. They observed that for the last fully-

connected layer, most quantized weights were distributed around two peaks. Thus,

Huffman coding was used to non-uniformly distribute values, which saved 20-30%

in network storage space.

This paper Alistarh, Grubic, Li, Tomioka, and Vojnovic (2017) proposes

an approach for quantizing gradients in distributed training of SGD, particularly

neural networks. The approach partitions the problem amongst available

processors, where each processor broadcasts its unquantized gradients. Then, each

processor aggregates the gradients, performs local training with quantized gradients
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and, with a uniformly random integer broadcasts the quantized update vector.

Their approach compared various neural network models with 1-16 K80 GPUs and

found that parallelization decreased epoch time but led to more communication.

Their results also compared 4 bit and 8 bit and found that 8 bit quantization

was able to maintain the accuracy of the gradients compared to the full precision

version, and that 4 bits loses 0.57% for Top-5 accuracy and 0.68% for Top-1

accuracy.

The weights and activations were encoded in a base-2 logarithmic

representation Miyashita, Lee, and Murmann (2016), since weights and activations

have a non-uniform distribution. Their approach proposed computing the

convolution operation in logarithmic domain, where either the individual operands

or the operation is converted to the log domain and quantized. Their experiments

compared quantization in the linear and log domains. They trained CIFAR-

10 with 5-bits weights and 4-bit activations resulting in minimal performance

degradation. They also noted that for 3-bits, the log domain tolerated a larger

dynamic full-scale range, where AlexNet performed 0.2% worse in the log domain

compared to the linear domain, but VGG, a higher capacity network, performed

6.2% better in the log domain and maintained its Top-5 accuracy.

This work evaluated fixed-point representation of 16 bits with round-to-

nearest and stochastic rounding modes for training neural networks S. Gupta,

Agrawal, Gopalakrishnan, and Narayanan (2015). The weights W l and biases

Bl were quantized to 16-bits and compared with round-to-nearest and stochastic

rounding. Aggressive reduced precision may result in loss of gradient information, if

updates are significantly smaller than ε. In round-to-nearest, any parameter update

in the range of (− ε
2
, ε

2
) is always rounded to zero, whereas stochastic rounding
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maintains a non-zero probability of small parameter updates to ±ε. Experiments

compared MNIST and CIFAR10 datasets and found that, in general, stochastic

rounding maintained accuracy compared to round-to-nearest mode.

Automatic mixed precision (AMP) in PyTorch consists of autocast and

GradScalar as modules for executing in low precision PyTorch Mixed Precision

(2019). autocast will automatically typecast certain operations to half, such as

convolution and matrix multiplication, whereas other operations will be executed

in float32, such as softmax and point-wise operations, based on their predefined

operation eligibility. The model is converted to float16 where possible, and

a copy of the master weights is kept in float32 to accumulate per-iteration

weight updates. Loss scaling is applied, using the master weights, to preserve

small gradient values. The TensorFlow mixed precision, provided by the Keras

high-level API TensorFlow Mixed Precision (2021), takes a similar approach

toward quantizing variables. However, these approaches perform mixed precision

automatically with predefined rules and do not provide a mechanism for the user to

specify the precision requirements.

Conclusion

This chapter discusses the precision requirements when training neural

networks. Specifically, the chapter seeks to understand how stable the numerical

representation is when changing the precision and range sizes. We implemented

our work on the LLVM intermediate representation layer and evaluated our work

on various PyTorch C++ image applications. We demonstrate our capabilities and

were able to identify where in the training phase that the precision is stable, and

where it becomes unstable.
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The follow-up work that builds upon this work can lead in several directions.

For instance, mixed-precision remains fixed throughout the program run. What

would be interesting is whether the precision can change throughout the duration of

the training run. One approach would be to utilize just-in-time (JIT) compilation

of various precision sizes during program execution. This would enable a more

dynamic effect of numerical representation and is not limited to machine learning.

Another area of exploration is error analysis of accuracy in fault tolerant settings.

For instance, the resiliency of the classification models becomes important,

especially since it is being incorporated into our daily lives. The security of the

models and weeding out false positives become even more urgent.
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CHAPTER VII

SUMMARY AND FUTURE DIRECTIONS

The findings of this dissertation are summarized in this chapter. In addtion,

directions for future work are also discussed.

Summary

In order to optimize for performance and accuracy, a clear understanding

of the optimization landscape is needed. This dissertation work outlines where

the potentional opportunites are for optimizing performance while maintaining

the learning trajectory curves. Specifically, we evaluated automatic performance

tuning for GPUs and developed search heuristics that worked in the static analysis

case, which improved our search space by 92%. Next, we evaluated subgraph

matching for representing performance profiles for GPU execution. In that study,

we were able to define an architecture independent way for matching control flow

graphs, and demonstrated that capability with various CUDA programs. Next,

we evaluated machine translation and the hyper-parameters that are entailed for

tuning a translation system. In that work, we noted that certain hyper-parameters

took longer than others. Finally, we investigated reduced precision for increasing

exeuction performance for image classification.

Future Work

This section discusses several research directions that can be pursued for the

various topics that were covered in this dissertation.

Optimizing Code Generation. In optimizing CUDA code generation,

this work Lim et al. (2017) optimized performance, and accounted for threads,

blocks, and shared memory. The work did not account for memory behavior
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on GPUs, specifically where communication vs. computation optimization

opportunities may lie. A more in-depth analysis of loop transformations, such as

tiling, fusion, and mixed-precision, could be pursued. Also, pattern matching could

be directly employed during Orio automatic performace tuning.

GPU Subgraph Matching. This work Lim et al. (2019) defined the

necessary decision support boundaries that characterizes the runtime behavior of a

GPU application in the form of a control flow graph, which aides in matching with

other unseen GPU kernels. Some areas that need further work include formally

providing provable guarantees that pattern matching will always the lead solver to

an optimum. In addition, subgraph matching could also be utilized in optimizing

hyper-parameters.

Hyper-Parameter Optimization. This work Lim et al. (2018)

explored optimizing hyper-parameters for neural machine translation. This work

performed grid search when setting hyper-parameters. An area of exploration

would be to incorporate a cost metric associated with search methods. Since it is

known that machine learning training can take hours to weeks to complete, are

there methods that can formally model the whole hyper-parameter training from

end-to-end, with adaptive model tuning and checkpointing in-between, without

training the network? Also, an area worth investigating is the cost of a hyper-

parameter update in relation to hardware counter metrics.

Numerical Representation. Since the recent work on numerical

representation Lim et al. (2021) revealed that precision may matter more in certain

phases of the training run versus others, this warrants more investigative work

on whether dynamic mixed precision could be employed during machine learning

training. Several ways of doing that would include JIT-compiling code for certain
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precision sizes and running the appropriate precision size. This would provide a

more dynamic approach toward numerical representation, versus the approach of

fixed sized precision throughout the training run. Another area worth exploring is

evaluating the resiliency of applications with mixed precision via fault injection

methods. For example, could machine learning models withstand noise and if

so, how much noise and at what phases, and how much noise before the overall

application is affected?

111



APPENDIX A

THE FIRST APPENDIX

Stochastic Gradient Descent

A one dimension update of gradient descent involves the following:

W (t+ 1) = W (t)− ηdE(W )

dW
(A.1)

The optimal learning rate ηopt, or one that gives the fastest convergence, can

be derived by a Taylor series expansion on E about current weight Wc

E(W ) = E(Wc) + (W −Wc)
dE(Wc)

dW
+

1

2
(W −Wc)

2d
2E(Wc)

dW 2
(A.2)

with dE(Wc)
dW

≡ dE
dW
|W=Wc . Differentiating both sides with respect to W gives

dE(W )

dW
=
dE(Wc)

dW
+ (W −Wc)

d2E(Wc)

dW 2
(A.3)

Set W = Wmin. Note that dE(Wmin)/dW = 0, and after rearranging

Wmin = Wc −
(
d2E(Wc)

dW 2

)−1
dE(Wc)

dW
(A.4)

Compare with W (t+ 1) update function, can reach min in one step if

ηopt =

(
d2E(Wc)

dW 2

)−1

Fig A.1 plots gradient E as function of W . When E is quadratic, the

gradient is simply a straight line with value zero at minimum and ∂E(Wc)
∂W

at current

weight Wc. ∂
2E/∂2W is the slope of line, and can be solved in the following way:
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Figure A.1. Gradient descent for different learning rates.

∂2E/∂2W =
∂E(Wc)/∂W − 0

Wc −Wmin
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APPENDIX B

THE SECOND APPENDIX

Bilinear Interpolation

Let A represent the canonical adjacency matrix for G1 and B for G2, with

A = N × N , B = M × M , and M ≥ N . In other words, we want to scale up

A from N to M , which requires constructing interpolated points for every Bij. To

find the coordinates for each x and y for a given B(i,j)-th element to interpolate, we

calculate:

x = i× M − 1

N − 1
, y = j × M − 1

N − 1

where the x + 1 and y + 1 components are given by the floor and ceiling as

appropriate, yielding four components: {x1, y1, x2, y2}. Note that upon calculating

the components, A{x1,y1}, A{x1,y2}, A{x2,y1}, A{x2,y2} are known points, referenced by

the original matrix A.

The solution to the interpolation problem is

f(x, y) ≈ ω0 + ω1 x+ ω2 y + ω3 x · y.

Solving the linear system gives the coefficients:

1 x1 y1 x1y1

1 x1 y2 x1y2

1 x2 y1 x2y1

1 x2 y2 x2y2





ω0

ω1

ω2

ω3


=



A{x1,y1}

A{x1,y2}

A{x2,y1}

A{x2,y2}


,
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yielding the result:

ω0 =
A{x1,y1} · x2 · y2

(x1 − x2)(y1 − y2)
+

A{x1,y2} · x2 · y1

(x1 − x2)(y2 − y1)

+
A{x2,y1} · x1 · y2

(x1 − x2)(y2 − y1)
+

A{x2,y2} · x1 · y1

(x1 − x2)(y1 − y2)
,

ω1 =
A{x1,y1} · y2

(x1 − x2)(y2 − y1)
+

A{x1,y2} · y1

(x1 − x2)(y1 − y2)

+
A{x2,y1} · y2

(x1 − x2)(y1 − y2)
+

A{x2,y2} · y1

(x1 − x2)(y2 − y1)
,

ω2 =
A{x1,y1} · x2

(x1 − x2)(y2 − y1)
+

A{x1,y2} · x2

(x1 − x2)(y1 − y2)

+
A{x2,y1} · y2

(x1 − x2)(y1 − y2)
+

A{x2,y2} · x1

(x1 − x2)(y2 − y1)
,

ω3 =
A{x1,y1}

(x1 − x2)(y1 − y2)
+

A{x1,y2}
(x1 − x2)(y2 − y1)

+
A{x2,y1}

(x1 − x2)(y2 − y1)
+

A{x2,y2}
(x1 − x2)(y1 − y2)

.

This step is carried out for every {i, j}th element of B, where 0 ≤ i, j < M .

Efficiency and Goodness

Efficiency describes how gainfully employed the GPU floating-point units

remained, or FLOPs per second:

efficiency =
opfp+opint + opsimd + opconv

timeexec

· callsn (B.1)

The goodness metric describes the intensity of the floating-point and memory

operation arithmetic intensity:

goodness =
∑
j∈J

opj · callsn (B.2)
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