
AUTOMATING CAMERA PLACEMENT FOR IN SITU VISUALIZATION

by

NICOLE MARSAGLIA

A DISSERTATION

Presented to the Department of Computer and Information Science
and the Division of Graduate Studies of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

March 2022

DISSERTATION APPROVAL PAGE

Student: Nicole Marsaglia

Title: Automating Camera Placement for In Situ Visualization

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Computer
and Information Science by:

Hank Childs Chair
Brittany Erickson Core Member
Michal Young Core Member
Ellen Eischen Institutional Representative

and

Krista Chronsiter Vice Provost for Graduate Studies

Original approval signatures are on file with the University of Oregon Division of
Graduate Studies.

Degree awarded March 2022

ii

© 2022 Nicole Marsaglia
This work is licensed under a Creative Commons

Attribution 4.0 International License.

iii

http://creativecommons.org/licenses/by/4.0/

DISSERTATION ABSTRACT

Nicole Marsaglia

Doctor of Philosophy

Department of Computer and Information Science

March 2022

Title: Automating Camera Placement for In Situ Visualization

Trends in high-performance computing increasingly require visualization

to be carried out using in situ processing. This processing most often occurs

without a human in the loop, meaning that the in situ software must be able

to carry out its tasks without human guidance. This dissertation explores this

topic, focusing on automating camera placement for in situ visualization when

there is no a priori knowledge of where to place the camera. We introduce a new

approach for this automation process, which depends on Viewpoint Quality (VQ)

metrics that quantify how much insight a camera position provides. This research

involves three major sub-projects: (1) performing a user survey to determine the

viewpoint preferences of scientific users as well as developing new VQ metrics that

can predict preference 68% of the time; (2) parallelizing VQ metrics and designing

search algorithms so they can be executed efficiently in situ; and (3) evaluating the

behavior of camera placement of time-varying data to determine how often a new

camera placement should be considered. In all, this dissertation shows automating

in situ camera placement for scientific simulations is possible on exascale computers

and provides insight on best practices.

iv

CURRICULUM VITAE

NAME OF AUTHOR: Nicole Marsaglia

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, OR, USA

DEGREES AWARDED:

Doctor of Philosophy, Computer and Information Science, 2022, University
of Oregon

Bachelor of Science, Mathematics, Summa Cum Laude, 2013, University of
Oregon

AREAS OF SPECIAL INTEREST:

Automatic Visualization
Scientific Visualization
High Performance Computing

PROFESSIONAL EXPERIENCE:

Graduate Research Fellow, 2014, 2016 - Present
Graduate Teaching Fellow, 2015, Spring 2020
Graduate Intern, Lawrence Berkeley National Lab, Summer 2019
Graduate Intern, Lawrence Berkeley National Lab, Summer 2018
Graduate Intern, Oak Ridge National Lab, Summer 2017

GRANTS, AWARDS AND HONORS:

Best Paper Award: “A Flexible System for In Situ Triggers.” At the
Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis
and Visualization (ISAV) 2018

Curtis Scholarship, University of Oregon, 2012

v

PUBLICATIONS:

Nicole Marsaglia, Meghanto Majumder, & Hank Childs (Jan. 2022).
Optimal Viewpoint Placement Over Time (OVPOT) for Scientific
Simulations. (In Progress)

Nicole Marsaglia, Manish Mathai, Stefan Fields, & Hank Childs (Dec.
2021). Automatic In Situ Camera Placement for Large-Scale Scientific
Simulations. (In Submission)

Nicole Marsaglia, Yuya Kawakami, Samuel D. Schwartz, Stefan Fields, &
Hank Childs (Oct. 2021). An Entropy-Based Approach for Identifying
User-Preferred Camera Positions. IEEE Symposium on Large Data
Analysis and Visualization (LDAV)

Yuya Kawakami, Nicole Marsaglia, Matthew Larsen, & Hank Childs
(Nov. 2020). Benchmarking In Situ Triggers Via Reconstruction Error.
Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis
and Visualization (ISAV)

Dave Pugmire, James Kress, Jieyang Chen, Hank Childs, Jong Choi, Dmitry
Ganyushin, Berk Geveci, Mark Kim, Scott Klasky, Xin Liang, Jeremy
Logan, Nicole Marsaglia, Kshitij Mehta, Norbert Podhorszki, Caitlin
Ross, Eric Suchyta, Nick Thompson, Steven Walton, Lipeng Wan, &
Matthew Wolf (Aug. 2020). Visualization as a Service for Scientific
Data. Smoky Mountains Computational Sciences and Engineering
Conference

Nicole Marsaglia, Samuel Li, Kristi Belcher, Matthew Larsen, & Hank
Childs (June 2019). Dynamic I/O Budget Reallocation For In Situ
Wavelet Compression. Eurographics Symposium on Parallel Graphics
and Visualization (EGPGV)

Matthew Larsen, Amy Woods, Nicole Marsaglia, Ayan Biswas, Soumya
Dutta, Cyrus Harrison, & Hank Childs (Nov. 2018). A Flexible System
for In Situ Triggers. Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization (ISAV)

vi

Samuel Li, Nicole Marsaglia, Christoph Garth, Jonathan Woodring, John
Clyne, & Hank Childs (Sept. 2018). Data Reduction Techniques for
Simulation, Visualization and Data Analysis. Computer Graphics Forum
(CGF)

Nicole Marsaglia, Samuel Li, & Hank Childs (Sept. 2018). Enabling
Explorative Visualization with Full Temporal Resolution Via In
Situ Calculation of Temporal Intervals. Lecture Notes in Computer
Science(Springer)

Samuel Li, Nicole Marsaglia, Vincent Chen, Christopher Sewell, John Clyne,
& Hank Childs (June 2017). Achieving Portable Performance for Wavelet
Compression Using Data Parallel Primitives. EuroGraphics Symposium
on Parallel Graphics and Visualization (EGPGV)

vii

ACKNOWLEDGEMENTS

First and foremost, I want to thank my advisor, Hank Childs, for his

unwavering belief in me and immense support over the years. I want to thank my

therapist, Zanne Miller, for helping me rebuild my confidence and internalize my

successes. And, lastly, I want to thank my family and partner, none of this would

have been possible without your love.

This research was supported by the Exascale Computing Project (17-SC-20-

SC), a collaborative effort of the U.S. Department of Energy Office of Science and

the National Nuclear Security Administration.

viii

To Odette and Tormund, my favorite people.

ix

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

1.1. Supercomputing Trends . 1

1.2. Supercomputing Challenge: the I/O Gap 2

1.3. In Situ Processing . 3

1.4. Challenges of Automatic Camera Placement 4

1.5. Dissertation Question . 5

1.5.1. RQ1: Expert Survey and Oracles Based on VQ Metrics . . . 6

1.5.2. RQ2: Distributed Implementation and
Performance Study 6

1.5.3. RQ3: Search Routine 7

1.5.4. RQ4: Temporal Coherence 8

II. BACKGROUND . 9

2.1. Introduction . 9

2.1.1. What Makes an Image Good? 10

2.1.2. How to Find the Best Image? 12

2.2. Viewpoint Quality (VQ) Metrics 13

2.2.1. Notation . 13

2.2.2. Geometry Based Quality Measures 14

2.2.2.1. Area . 15

2.2.2.2. Silhouette 25

2.2.2.3. Depth . 28

2.2.2.4. Stability . 31

2.2.2.5. Surface Curvature 33

x

Chapter Page

2.2.3. Data Driven Quality Measures 38

2.2.3.1. Entropy . 38

2.3. In Situ Analysis and Visualization Software 45

2.4. Use Cases . 49

2.5. Evaluation . 54

III.AN ENTROPY-BASED APPROACH FOR IDENTIFYING
USER-PREFERRED CAMERA POSITIONS 59

3.1. Introduction . 59

3.2. Our Method . 60

3.2.1. Constructing Oracles from VQ Metrics 60

3.2.2. New VQ Metrics . 63

3.2.2.1. Data Entropy 64

3.2.2.2. Depth Entropy 65

3.2.2.3. Shading Entropy 65

3.2.3. Comparators: Existing VQ Metrics 66

3.2.3.1. Number of Visible Triangles 66

3.2.3.2. Projected Area 67

3.2.3.3. PB . 67

3.2.3.4. Visibility Ratio 67

3.2.3.5. Viewpoint Entropy 68

3.2.3.6. VKL . 68

3.2.3.7. Maximum Depth 69

3.3. Corpus for Comparing Viewpoints 69

3.3.1. Generating a Database of Images 69

3.3.1.1. Data Sets 69

3.3.1.2. Choosing Isovalues 71

xi

Chapter Page

3.3.1.3. Camera Placement 71

3.3.2. User Study . 72

3.4. Evaluation Approach . 75

3.5. Results . 76

3.5.1. Single-Metric Oracles 77

3.5.2. Multi-Metric Oracles 77

3.5.3. Efficacy of Top Oracle 80

3.6. Conclusion . 83

IV.AUTOMATIC IN SITU CAMERA PLACEMENT FOR
LARGE-SCALE SCIENTIFIC SIMULATIONS 85

4.1. Introduction . 85

4.2. Our Method . 86

4.2.1. VQ Metric Parallelization 86

4.2.2. Viewpoint Search Algorithm 90

4.3. Results . 93

4.3.1. Phase 1: Parallel Performance of Individual Metrics 93

4.3.2. Phase 2: Evaluating Viewpoint Search Algorithms 93

4.3.2.1. Stability of Search Space 94

4.3.2.2. Search Algorithm Evaluation 97

4.3.3. Phase 3: In Situ Evaluation 99

4.4. Conclusion . 103

V. OPTIMAL VIEWPOINT PLACEMENT OVER TIME
(OVPOT) FOR SCIENTIFIC SIMULATIONS 105

5.1. Introduction . 105

5.2. Related Work . 106

5.2.1. Triggers . 106

xii

Chapter Page

5.2.1.1. Domain Agnostic Triggers 106

5.2.1.2. Domain Specific Triggers 106

5.2.2. Camera Placement Over Time 107

5.3. Our Method . 108

5.3.1. Phase 1: Post-hoc Analysis 110

5.3.2. Phase 2: In Situ Implementation and Evaluation 110

5.4. Experimental Overview . 111

5.4.1. Phase 1: Post-hoc Experiment 113

5.4.2. Phase 2: In Situ Experiment 114

5.5. Results . 116

5.5.1. Phase 1: Post-hoc Results 116

5.5.2. Phase 2: In Situ Results 117

5.6. Conclusion . 123

VI.CONCLUSION . 128

6.1. Research Subquestions . 128

6.1.1. Answering RQ1 . 128

6.1.2. Answering RQ2 . 128

6.1.3. Answering RQ3 . 129

6.1.4. Answering RQ4 . 129

6.2. Dissertation Question . 130

6.3. Future Work . 131

APPENDIX: BEST AND WORST IMAGES FROM
EVALUATION IN CHAPTER II 132

REFERENCES CITED . 172

xiii

LIST OF FIGURES

Figure Page

1. Example of canonical views . 11

2. Best and worst viewpoints of Stanford Bunny using Number
of Visible Triangles . 16

3. Best and worst viewpoints of Stanford Bunny using
Projected Area . 18

4. Best and worst viewpoints of Stanford Bunny using PB and VKL . . . 19

5. Best and worst viewpoints of Stanford Bunny using
Viewpoint Mutual Information 24

6. Best and worst viewpoints of Stanford Bunny using
Information I3 . 25

7. Stanford Bunny and corresponding silhouette 26

8. Best and worst viewpoints of Stanford Bunny using Depth Distribution . 30

9. The depth histogram for the Stanford Bunny 31

10. Notional example for computing Visible Saliency 35

11. Comparison of two mesh simplification methods 36

12. Viewpoint entropy distributions for Isosurface Entropies and
Interval Volume Entropies . 39

13. Example of a contour tree and respective interval volumes
associated with each branch of the tree 41

14. Viewpoint entropy distributions for Weighted Interval
Volume Entropy . 44

15. Infrastructure and workflow for the Cinema visualization tool 47

16. Infrastructure and workflow for the SENSEI in situ library 49

17. State-of-the-art in situ analysis and visualization software
and libraries . 50

xiv

Figure Page

18. Single- and multi-metric oracle workflow 62

19. Example of placing cameras using a Fibonacci Lattice 71

20. Corpus of images used for VQ metric user study 73

21. Image of website used for VQ metric user study 74

22. Diagram showing parallelization method for VQ metrics 88

23. Heatmaps of DDS Entropy values as camera position
changes, annotated by images for extreme values 96

24. Heatmaps of ten VQ metric values as camera position
changes for Asteroid data set 97

25. Heatmaps of DDS Entropy values as camera position
changes for all ten data sets . 97

26. Renderings of the Impact (log of energy) simulation over time 112

27. Renderings of the Impact (log of pressure) simulation over time 112

28. Renderings of the Ball of Fury (log of energy) simulation
over time . 112

29. Renderings of the Jetbox simulation over time 113

30. Post-Hoc results for optimal camera placement over time
using varying camera budgets 117

31. Number of in situ viewpoint changes for varying trigger
thresholds on Jetbox . 117

32. Temporal frequency of in situ viewpoint changes for varying
trigger thresholds on Jetbox . 118

33. Graph of the optimal in situ camera placement score vs. the
chosen in situ camera placement score for Jetbox 120

34. Average relative metric score of chosen camera placement
over time for Jetbox . 121

35. Number of in situ viewpoint changes for varying trigger
thresholds on Ball of Fury . 121

36. Temporal frequency of in situ viewpoint changes for varying
trigger thresholds on Ball of Fury 122

xv

Figure Page

37. Graph of the optimal in situ camera placement score vs. the
chosen in situ camera placement score for Ball of Fury 123

38. Average relative metric score of chosen camera placement
over time for Ball of Fury . 124

39. Number of in situ viewpoint changes for varying trigger
thresholds on AMR-Wind . 124

40. Temporal frequency of in situ viewpoint changes for varying
trigger thresholds on AMR-Wind 125

41. Graph of the optimal in situ camera placement score vs. the
chosen in situ camera placement score for AMR-Wind 126

42. Average relative metric score of chosen camera placement
over time for AMR-Wind . 127

A.43.Best and worst images for ExaAM at timestep #1 136

A.44.Best and worst images for ExaAM at timestep #2 141

A.45.Best and worst images for ExaAM at timestep #3 146

A.46.Best and worst images for ExaSky at timestep #1 151

A.47.Best and worst images for ExaSky at timestep #2 156

A.48.Best and worst images for ExaSky at timestep #3 161

A.49.Best and worst images for ExaConstit at timestep #1 166

A.50.Best and worst images for ExaConstit at timestep #2 171

xvi

LIST OF TABLES

Table Page

1. Mathematical notation for VQ metrics 57

2. Preliminary post-hoc execution times for fourteen
established VQ Metrics . 58

3. Notional example evaluating an oracle’s prediction success 76

4. Single-metric oracle results for predicting user preference 77

5. Two-metric oracle results for predicting user preference 78

6. Three-metric oracle results for predicting user preference 79

7. Performance statistics of the top oracle when comparing
cameras based on user preference 81

8. Rate of successful predictions by top oracle per data set 82

9. Brief descriptions of the eleven VQ metrics implemented in situ 87

10. In situ CPU timings for each VQ metric to evaluate a single viewpoint . . 94

11. Average cameras considered for each search algorithm to find
a top scoring viewpoint using all VQ metrics 98

12. Average cameras considered for each search algorithm to find
a top scoring viewpoint using new VQ metrics 98

13. Execution time and maximum score of search algorithms for
varying camera budgets . 101

14. Average score increase of VQ metrics when increasing
camera budget . 102

xvii

CHAPTER I

INTRODUCTION

I was the primary author of this manuscript, and Hank Childs provided

editorial suggestions.

This dissertation considers automating in situ camera placement on

supercomputers. The goal of this research is to enable domain scientists to

efficiently and confidently produce quality images visualizing exascale simulations.

This research topic requires study in multiple areas, in particular how to predict

user preferences and how to run efficiently on supercomputers. This chapter lays

out the motivation for this dissertation as well as the research problems it aims to

answer. The remainder of this chapter is organized as follows: Section 1.1 covers

the basics and current state of high-performance computing (HPC); Section 1.2

details a challenge in HPC and how it affects scientific visualization; Section 1.3

details the importance and use of in situ processing; Section 1.4 enumerates the

challenges of automated in situ camera placement; and Section 1.5 details the

projects of this dissertation.

1.1 Supercomputing Trends

Scientific breakthroughs in a variety of fields — astrophysics, biophysics,

chemistry, medicine, nuclear physics, and more — are coming from computational

simulations. These simulations often require significant compute power to obtain

accurate results. In many cases, this compute power can only be obtained by

using supercomputers, i.e., connecting many regular CPUs and GPUs together

via a network and operating the collective computing power in a coordinated

manner. Supercomputers are typically measured in FLoating point OPerations

per Second, abbreviated “FLOPS.” Organizations in the US, China, Japan, and

1

Europe are currently endeavoring to make the world’s first “exascale” machine,

meaning a supercomputer that can achieve 1018 FLOPS. As regular computers are

approximately 109 FLOPS, this means these machines will be on the order of one

billion times more powerful than a typical desktop computer.

1.2 Supercomputing Challenge: the I/O Gap

The computational power of supercomputers has been steadily trending

upwards, reaching petascale capabilities in 2008 with the expectation of reaching

exascale in Fall of 2022. This increase in computational power allows researchers

to run larger and larger scientific simulations. Because of the increase in compute-

per-node, modern supercomputers can generate massive amounts of data in a short

amount of time. Unfortunately, the speed in which supercomputers can generate

data severely outpaces its ability to save data, leading to a phenomenon referred

as the I/O gap. And as the gap between I/O and compute capabilities continues

to grow on state-of-the-art supercomputers, scientists will have to adapt their

workflows for analyzing and visualizing their generated simulation data.

In the traditional paradigm, referred to as post-hoc processing, simulations

save out entire time slices of data to permanent storage, and visualization occurs

afterwards by reading these time slices from disk. But with the rise of the I/O

gap, researchers operating within the traditional paradigm had limited options:

either save less often and potentially miss important phenomena, or deal with

significant time penalties for storing data — neither of which are great solutions.

The shortcomings of the post-hoc paradigm has led to increased interest in in situ

processing.

2

1.3 In Situ Processing

In situ processing, i.e., processing data as it is generated, has become

an important technique for visualizing and analyzing data from computational

simulations on modern supercomputers. Its benefits include reducing I/O costs

and access to increased temporal resolution. That said, in situ processing also can

generate new challenges that were not present with the traditional model of post

hoc processing. In particular, while it is possible to perform in situ processing with

a human-in-the-loop (HITL), the large majority of in situ processing occurs with

no human-in-the-loop. This change is important: where the HITL model enabled

domain scientists to bring their expertise to direct visualizations and analyses, their

absence requires new approaches to perform this direction.

There are multiple strategies for directing visualizations and analyses with

no human-in-the-loop. One strategy is to determine how visualization and analysis

should be carried out beforehand and encoding these directions into the in situ

workflow. In particular, sometimes predecessor calculations inform good settings,

and those settings can be reused. Another strategy is to defer, i.e., reduce the

data set to a small enough form that it can be saved to disk, and then perform the

visualizations and analyses afterwards in a post hoc and HITL fashion. That said,

this strategy can create a tension between the amount of data reduction that can

occur and the loss of data integrity. A third strategy is to automate the settings for

visualizations and analyses. In this case, in situ infrastructures must be augmented

with new algorithms whose sole purpose is to calculate these settings. For example,

an in situ infrastructure would need to contain not only an isosurface algorithm,

but also an algorithm for picking the isolevels. We feel all three strategies are

useful, and require attention from the in situ community. With this dissertation, we

3

focus on the third strategy (automation), and more specifically, automating camera

placement.

1.4 Challenges of Automatic Camera Placement

Camera placement is a critical task for scientific visualization. In a post hoc

setting, the camera placement process typically involves starting with a default

camera position (e.g., zoomed out with the camera translated down the Z-axis

and pointed at the center of the data set) and a domain scientist using a mouse to

modify the camera location to a position or positions that increase their insight. In

the context of the automation strategy, in situ systems would then need algorithms

for identifying the camera position(s) that are as useful as the ones the domain

scientist would produce in a HITL setting. This is a somewhat daunting task, as it

requires evaluation of what makes one camera position more useful than another.

Fortunately, the scientific visualization community has already done significant

research on this topic [104, 27, 48, 118], having developed a number of Viewpoint

Quality (VQ) metrics that can evaluate a given camera placement for a data set.

That said, these research works have not considered in situ use cases nor scientific

data. Instead, this previous research was performed with goals of saving time for

domain scientists (since they would not have to go through the process of finding

good camera positions themselves) or of improving key camera position (i.e., using

automation to become better at finding camera positions than domain scientists,

and then helping them find camera positions they would not have discovered on

their own).

One important concern regarding existing camera placement algorithms is

their application to a parallel setting. All published work to date focuses on serial

implementations, and parallelizing serial algorithms can be difficult. In particular, a

4

number of the algorithms require a large amount of coordination when implemented

in a distributed fashion.

A second important concern regarding existing camera placement algorithms

are their execution times. For many algorithms, the work to evaluate a camera

position is comparable to actually performing a render. That level of slowness

suggests different approaches altogether — instead of evaluating N camera

positions, why not just render images from those N positions and allow a domain

scientist to explore them all? This idea is not just viable, but is further a good

idea. It has been pursued by the Cinema project, among others. That said, we feel

that automated camera placement still has important roles to play. One potential

role is to ensure that there are quality camera positions, i.e., if the N camera

positions are all bad, then camera placement algorithms can help inform this and

cue in situ infrastructures to try more camera positions. But we believe the most

important role is for presentation graphics, i.e., the images that domain scientists

use to advertise their own work (journal covers, conference presentations, etc.). In

this case, we envision that camera placement algorithms will find the best camera

position, and then very high quality renderings will be performed at this camera

position. Since these very high quality renderings are expensive to produce (i.e., ray

tracing with many secondary rays), the cost of the camera placement will be small

in comparison.

1.5 Dissertation Question

This dissertation aims to answer the following question: is automated in

situ camera placement viable for large-scale simulations and what are

the best practices? To do this, we have broken the larger dissertation question

into four research subquestions:

5

– RQ1: What viewpoints of scientific data sets do visualization experts and

domain scientists want to see and can VQ metrics be used to user predict

preference?

– RQ2: Can VQ metrics be performed efficiently in situ at scale?

– RQ3: Can a quality viewpoint be found quickly at scale?

– RQ4: How often should a simulation automate camera placement?

In all, we plan to answer this dissertation’s research question by creating

camera placement metrics that can be performed efficiently with a low memory

footprint at large-scale as well as evaluating methods for finding the best viewpoint.

The remainder of this chapter is organized as follows: Section 1.5.1 describes

the research thrust to answer RQ1; Section 1.5.2 describes the research thrust

to answer RQ2; Section 1.5.3 describes the research thrust to answer RQ3; and

Section 1.5.4 describes the research thrust to answer RQ4.

1.5.1 RQ1: Expert Survey and Oracles Based on VQ Metrics.

This research thrust studies the correlation between user preference and VQ metric

score. To do this we will survey a group of visualization researchers and domain

scientists who will rank viewpoints from a number of different scientific simulations.

These rankings will then be compared to the VQ metric scores to determine if

there is any correlation. The results of this survey can provide vital insights into

what VQ metrics produce the best results and which VQ metrics may be used in

conjunction to yield the best image viewpoints.

The results of this research thrust are detailed in Chapter III.

1.5.2 RQ2: Distributed Implementation and Performance

Study. For this research thrust, we will implement the selected VQ metrics

6

in situ and conduct a performance study. Specifically, we want to make sure

that the VQ metric calculations do not overburden the simulation and that the

metrics can be run efficiently on HPC architectures. To guarantee our approach

can be computed quickly and achieve portable performance, we plan to integrate

the VQ metrics into Ascent [71], a lightweight in situ analysis and visualization

framework that is built using the VTK-m library. By implementing our approach

into software infrastructures that utilize VTK-m, we are guaranteeing that our

approach can achieve high performance on current and emerging architectures.

Once implemented within Ascent, we plan to study the execution of the metrics in

situ with varying number of camera viewpoint samples and parallelism of varying

large-scale scientific simulations on the Cori supercomputer at Lawrence Berkeley’s

NERSC supercomputing facility.

Prior to beginning this thesis, we already determined which camera

placement metrics are fit for in situ. Out of the 26 VQ metrics surveyed for my

Area Exam, seven were identified as viable for in situ implementation. These

VQ metrics were chosen because of their low communication costs, only needing

one or two global coordinations in order to compute a metric score. Additionally,

they utilize data that is freely available in the rendering process, meaning they all

execute with a small memory footprint. And lastly, these metrics are simple and, to

varying degrees, can be calculated at a low computational cost.

The results of this research thrust are detailed in Chapter IV.

1.5.3 RQ3: Search Routine. The next research thrust involves using

VQ metrics to identify the best viewpoint over all possible viewpoints. In order

to find the best viewpoint, we plan on developing search algorithms to pinpoint

quality camera placements without having to consider 100s or 1,000s of viewpoints.

7

This work explores the benefit or cost of searching for the “best” viewpoint and

will study the tradeoffs between the highest obtained VQ metric score and the

incurred execution cost for a number of different in situ search budgets (i.e., how

many camera placements are considered).

The results of this research thrust are detailed in Chapter IV.

1.5.4 RQ4: Temporal Coherence. The last research thrust will

focus on the temporal behavior of the VQ metrics as a scientific simulation evolves.

For the most part, scientific data sets are temporally coherent, hence, a simulation

may have the same “best” viewpoint for some VQ metric over a period of time.

Thus, as the simulation progresses, instead of searching for the best viewpoint

again, maybe it is enough to check if the previous best viewpoint is still good.This

will also amortize the cost of the initial search, as well as subsequent searches.

And in the case where the scores are sporadic, automated in situ camera

placement can be useful for directing researchers to what is important, or to the

fact that something has changed. The behavior of these metrics over time will be

studied on a number of different scientific simulations and will help influence the

usage of VQ metrics, such as frequency of execution.

The results of this research thrust are detailed in Chapter V.

8

CHAPTER II

BACKGROUND

I was the primary author of this manuscript, and Hank Childs provided

editorial suggestions.

2.1 Introduction

With supercomputers on the brink of exascale capabilities, new in situ

analysis and visualization methods are still needed. Ideally they need to be

lightweight, not increasing the simulation runtime too dramatically nor requiring

a large memory footprint. An emerging requirement is that the new algorithms

should run independently. That is, algorithms that used to require user input

should be able to generate input automatically, thus eliminating the human-in-

the-loop. Research in automatic visualization is being developed to solve a number

of problems, such as automatic seed placement for flow visualization [79, 90] and

automatic transfer functions for volume rendering [141, 111, 136, 137], to name a

few. As already stated in the introduction, the primary focus of this dissertation is

automatic camera placement while running in situ.

Visualization is a key component to understanding large scale scientific data.

Compared to raw data, images are perceivable to the human mind, allowing us to

visually discover phenomena, detect patterns and trends, as well as outliers and

possible errors. Additionally, images can be used as proof of concept by clearly

conveying the conducted research or results. But not all images are created equal:

data can produce countless images depending on the camera placement, and while

some may contain valuable information, others may not. Being able to determine

the best viewpoint based on some criteria is a useful way to produce noteworthy

visualizations. But with the increase in computing power, scientists are having to

9

adapt how they visualize their data and how to produce the best representative

image of their data. And with the increasing size of simulation data, where to point

the camera without a human-in-the-loop is an ongoing problem.

In the post-hoc setting, algorithms for determining the best viewpoint

has been a growing area of research and has been used in scene exploration and

camera placement, image-based modeling and rendering, scientific visualization,

shape retrieval, and mesh simplification [27]. The majority of the techniques

perform some calculation based on the geometry of the data, with few techniques

for scientific field data.

This chapter explores the automatic camera placement techniques that have

been proposed to date, as well as presenting preliminary evaluations of more than

half of the metrics applied to scientific data in order to test their fitness for in situ

analysis.

2.1.1 What Makes an Image Good?. Trying to quantify what

makes an image good is not a new venture. The Ancient Romans did it with the

Golden Ratio, a proportion that is still considered to be visually pleasing, and

psychology has shown that it is preferred when formatting an image [58, 7, 114].

In the 1930s a mathematician named George D. Birkhoff attempted to

quantitatively measure beauty [22, 23]. He believed beauty is a ratio of order over

complexity, i.e. beauty increases as complexity decreases. But after applying these

notions to a wide array of formats, including simple geometries, poetry, melodies,

art, etc., he was unable to produce a general formula for order and complexity. And

while he did not produce a detailed equation for beauty, he did remark that “a fine

composition is always arranged so as to be easily comprehensible.”

10

Tarr and Kriegman [130] conducted psychoanalysis experiments investigating

the influence of an object’s aspect on user preference. They found that for many

models there exist a small number of views that are preferred by most people.

It has also been shown through numerous user studies that users prefer an

image with a three-quarter or canonical view [25, 97]. Kamada et al. [68] calls that

a non-degenerate view and consider an image good if it minimizes the number of

degenerate views, as shown in Figure 1. According to Blanz et al. [25], canonical

views are stable and expose as many salient and important features as possible.

But while these views have been proven to be visually pleasing, they provide no

guarantee of scientific merit or importance.

Figure 1. Taken from Barral et al. [13], this image depicts one non-degenerate view
of a cube (left) and two degenerate views of a cube (center and right) as defined
by Kamada et al. [68]. Notice that the non-degenerate cube is shown at a three-
quarter, or canonical view.

Other aspects of an image are also critical to user understanding and

preference. For instance, color maps play a key role in image comprehension.

Bujack et al. [29] survey research that quantifies good color maps and present

mathematical design rules for choosing color maps.

There has also been work on optimal light source placement. Much

like color, this is a non-trivial problem that may not have a general solution

[67, 105, 106]. Current works are based on inverse lighting techniques, where the

optimal light source is deduced from an expected result. In general, most current

11

techniques are not fully automatic and require user interaction [91, 61]. Gumhold

[59] presents an automatic method based on light entropy, but results are not

consistent.

Bordoloi and Shen [28] understand that the “best image” depends on

context. From a volume rendering perspective, they have two guidelines for

determining a “good image”:

– A viewpoint is good if voxels with high noteworthiness factors have high

visibilities. This guideline applies to user input that has placed importance

on certain aspects of the model when defining the transfer function.

– A viewpoint is good if the projection of the volumetric data set contains a

high amount of information.

It is clear that there is a significant amount of research into what makes an

image good, but this raises the question: “How do we find it?”

2.1.2 How to Find the Best Image?. Finding the best image of a

data set is difficult problem. For instance, a data set could contain multiple “best

images” depending on what the domain scientist wants to convey. Polonsky et al.

[104] treats viewpoint selection as a function where the best viewpoint maximizes

this function. A function that quantifies a viewpoint is called a view descriptor,

with later research renaming view descriptor functions as Viewpoint Quality (VQ)

metrics. Polonsky et al. constructed their VQ metrics off of the following three

principles:

– Geometric Complexity. The first principle is based on the geometry of

the scene and will assign higher scores to views that expose as much of the

geometric complexity as possible.

12

– View-dependent Features. The second principle focuses on features that

are view-dependent. In this case, there are features that are only visible from

certain views; these views are considered better viewpoints.

– Primitive Elements The third principle involves the elements that are

assigned values or otherwise used within the descriptor. Descriptors can use

a number of primitive elements (vertices, faces, edges etc.) to determine the

best viewpoint, this principle also considers larger portions of the model that

have some significance or meaning.

Depending on the data set or what the domain scientist wants to convey,

researchers could utilize one or more of these principles to design a viewpoint

quality metric.

2.2 Viewpoint Quality (VQ) Metrics

This section surveys all of the metrics that have been used as a viewpoint

quality measurement to select the best camera placement. The metrics have

been categorized into two sections. Section 2.2.2 surveys the viewpoint quality

measures that are based on the geometry of the data. And Section 2.2.3 surveys

the viewpoint quality measures that are based on the field data.

2.2.1 Notation. This section will define the notation used for these

metrics. Table 1 comes from the in-depth survey from Bonaventura et al. [27]

where they compared 22 different viewpoint metrics. The notation developed is

based off of an information channel developed by Feixas et al. [54]. The information

channel is defined between a set of viewpoints V and a set of polygons Z of an

object. For some polygon z ∈ Z and some viewpoint v ∈ V , the projected area of

polygon z from viewpoint v is denoted az(v). Similarly, the projected area, t, of the

model Z from some viewpoint v ∈ V is denoted at(v).

13

Feixas et. al [54] created a selection framework based off of their information

channel. The information channel is defined by a matrix of conditional probabilities

based on the ability to view polygons given some v ∈ V . Since the conditional

probabilities represent the probability of viewing a particular polygon z from some

viewpoint v, the information channel can also be considered a visibility channel.

The information channel defines three elements:

– The conditional probability matrix, p(Z|V), is made up of the surface area

ratios p(z|v), such that p(z|v) = az(v)
at(v)

and
∑

z∈Z p(z|v) = 1.

– The input distribution p(V) represents the importance of each viewpoint

within the set of views. The importance distribution is made up of elements

p(v) = at(v)∑
v∈V at(v)

.

– The output distribution p(Z) represents the average projected area of polygon

z and is made up of elements p(z) =
∑

v∈V p(v)p(z|v).

2.2.2 Geometry Based Quality Measures. This section will cover

all automatic viewpoint selection metrics that are based on geometry, e.g. surface

curvature, polygons, mesh saliency, etc. While some of these metrics are used in

fields other than computer science, the majority of them have been utilized in

determining camera position for image-based modeling. Few of these metrics have

been applied to scientific data sets and all have been applied post-hoc.

Work by Bonaventura et al.[27] and Secord et al.[118] have categorized the

following 22 viewpoint quality measures into five different categories based on the

calculations involved. The five categories of measurements are: area, silhouette,

depth, stability, and surface curvature. This chapter, and the remainder of this

14

dissertation will follow the same naming conventions and categorizations for each

measurement.

2.2.2.1 Area. This section covers the measurements that involve

the projected area of the polygons in relation to a particular viewpoint, including

view area, ratio of visible area, and surface area entropy. These metrics are useful

on datasets with highly varying polygons and when maximizing visible area is

important. They are all relatively quick, unless they involve mutual information,

and can be simply implemented with the aid of graphics hardware [13, 14].

Number of Visible Triangles. Several of the first measurements on

viewpoint selection came from Plemenos [101] and were then expanded upon by

Plemenos and Benayada [102]. The first measurement is based on the total number

of visible triangles from some viewpoint. Their reasoning being that maximizing

information means maximizing details, and the more triangles present, the more

details associated with that view. This viewpoint quality measurement is defined as

follows:

V Q1(v) =
∑
z∈Z

visv(z).

This measurement can be implemented differently depending on the chosen

definition of visible. For most implementations, a polygon z is considered visible if

any portion of it is viewable from the given v (az(v) > 0).

Unfortunately, this measurement has an obvious pitfall. By being based

solely on the number of visible triangles, this measurement favors quantity over

quality and could potentially choose views that contain a lot of polygons but little

content. Figure 2 shows the best and worst viewpoints of the Stanford Bunny based

on V Q1, Number of Visible Triangles.

15

(a) The best viewpoint of the Stanford
Bunny.

(b) The worst viewpoint of the Stanford
Bunny.

Figure 2. The best and worst viewpoints of the Stanford Bunny determined by
metric V Q1.

Projected Area. Plemenos and Benayada [102] realized that their first

measurement, V Q1(v), may not be an adequate measurement in some cases, and

they should take into account the projected area of the polygons.

Their second measurement is simply the total visible area of the model from

some viewpoint is defined as follows:

V Q2(v) = at(v).

For this measurement, the higher the projected area of the model, the better

the viewpoint.

This metric also has known pitfalls. In the worst case, this metric could

potentially choose a viewpoint that contains a single, very large polygon. Further,

by maximizing the visible area there is the risk of potentially maximizing the

number of occlusions. Figure 3 shows the best and worst viewpoints of the Stanford

Bunny using V Q2, Projected Area.

Plemenos and Benayada (PB). The next measurement from Plemenos

and Benayada is a combination of V Q1(v) and V Q2(v), creating a viewpoint ratio

16

(a) The best viewpoint of the Stanford
Bunny.

(b) The worst viewpoint of the Stanford
Bunny.

Figure 3. The best and worst viewpoints of the Stanford Bunny determined by
metric V Q2.

based on both the total number of visible triangles and the total projected area.

This measurement is expressed as follows:

V Q3(v) =

∑
z∈Zd

az(v)
az(v)+1

e
N

+

∑
z∈Z az(v)

R

where N is the total number of polygons of the model (N = |Z|) and R is

the resolution of the image (i.e. total number of pixels).

The best viewpoint will have the highest value, corresponding to a viewpoint

that maximizes the number of visible triangles as well as the resolution of the

rendered image. This is a quick and generic metric that should produce adequate

results for most data sets.

Figure 4 shows the best and worst viewpoints of the Stanford Bunny using

V Q3, PB.

Visibility Ratio. Lastly, Plemenos and Benayada [102] measured the

visibility ratio of the model given some viewpoint. Interestingly, their ratio involves

the real surface area of some polygon z and not its projected area (i.e. the area of

the triangle in World Space).

This measurement is defined as follows:

17

(a) The best viewpoint of the Stanford
Bunny.

(b) The worst viewpoint of the Stanford
Bunny.

Figure 4. The best and worst viewpoints of the Stanford Bunny determined by
both metrics V Q3, PB, and V Q7, VKL.

V Q4(v) =

∑
z∈Z visv(z)Az

At

The higher the visibility ratio the better the viewpoint.

Notice that Az and At are the real area of polygon z and the model,

respectively, and are insensitive to the chosen viewpoint.

This metric has similar pitfalls and advantages as V Q2, Projected Area.

Viewpoint Entropy. To determine the best, most representative viewpoint

of an image, a new technique is used involving information theory called Viewpoint

Entropy [134, 115].

Viewpoint Entropy is based off of Shannon Entropy [41, 24]. From a high

level, Shannon Entropy determines the saliency of data by calculating how many

bits are required to save the given data. The more bits that are required, then the

more information that is present.

From a low level, Shannon Entropy is the summation of the negative log of

the probability mass function of each possible data value:

18

S = −
∑
i

Pi logPi

To calculate Viewpoint Entropy, Vazquez et al. [134] alter Shannon Entropy

to take into account the projected area of the scene when centered at a particular

viewpoint.

To define viewpoint entropy, let az(v) be the projected area of polygon z

from viewpoint v, let at(v) be the total projected area of the model from viewpoint

v, and let N be the total number of polygons of the model. Then, viewpoint

entropy of a given view v is defined as follows:

V Q5(v) = −
N∑
i=0

az(v)

at(v)
log

az(v)

at(v)

The ratio az(v)
at(v)

represents the proportion of the projected area of each

polygon. This ratio is also proportional to the cosine of the angle between the

normal of the projected polygon az(v) and the camera angle. Additionally, this

ratio is inversely proportional to the squared distance from the camera to polygon.

This means that az(v)
at(v)

will be higher when the polygon is seen from a better angle

and at a closer distance.

Viewpoint entropy can be rewritten in terms of conditional probabilities,

since it measures the conditional entropy of Z given some v. Using conditional

probabilities, viewpoint entropy can be defined as follows:

V Q5(v) = H(Z|v) = −
∑
z∈Z

p(z|v) log p(z|v).

Given this definition, the best camera position for a scene is the view that

has the highest viewpoint entropy and thus the highest information content. This

19

metric will work best on data sets with varying polygonal size, since larger polygons

are penalized in comparison to smaller polygons.

Polonsky et al. [104] also considered viewpoint entropy and a handful of

the other measurements as view descriptors. But instead of assigning values to

primitive elements of the model (e.g. vertices, faces, edges), importance is assigned

to segments and connected components.

I2. The measurement I2 is a normalization of V Q5 and has been used in

neuroscience by DeWeese and Meister [44] to quantify the information content in

the brain in terms of stimuli and response. Bonaventura et al. [26] also applied this

measure to selecting the best viewpoint. I2 is defined as follows:

V Q6(v) = I2(v;Z) =H(Z)−H(Z|v)

=H(Z)− V Q5(v)

=−
∑
z∈Z

p(z) log p(z) +
∑
z∈Z

p(z|v) log p(z|v).

H(Z) represents the entropy of the polygons and is constant for every

viewpoint. Notice that I2 is based off of viewpoint entropy, H(Z|v), and

subsequently has the same behavior, but in this case, the higher the viewpoint

entropy then the lower the value of I2 will be. And unlike viewpoint entropy, which

grows to infinity for finer and finer mesh resolutions, the normalization within I2

makes its behavior more stable.

Viewpoint Kullback-Leibler Distance (VKL). The Kullback-Leibler

distance was applied by Sbert et al. [116] as a viewpoint quality measurement

between the normalized distribution of the real areas of the polygons, and the

20

normalized distribution of the projected area of the polygons from viewpoint v.

The VKL distance is defined as follows:

V Q7(v) =
∑
z∈Z

az(v)

at(v)
log

az(v)
at(v)

Az
At

.

Notice that the best viewpoint, which corresponds to the minimum value,

happens when the distribution of projected areas is equal to the distribution of real

areas.

Figure 4 shows the best and worst viewpoints of the Stanford Bunny using

this metric.

Viewpoint Mutual Information (I1). Feixas et al. [54] introduces this

viewpoint selection method that quantifies the degree of correlation between the

viewpoints and set of polygons. I1 is expressed as follows:

V Q8(v) = I1(v;Z) =
∑
z∈Z

p(z|v) log
p(z|v)

p(z)
.

High values of I1 correspond to representative views for certain areas of the

model. Meaning that the respective image is highly coupled with the polygons

from that viewpoint, and certain regions of the model can only be seen from this

or few other viewpoints. Alternatively, low values of I1 correspond to the most

representative views of the entire model, i.e., views that capture the most polygons

in a balanced way. This measure has been used in neuroscience to capture the

correlation between stimuli and brain responses [44].

Note that mutual information is a time intensive calculation, making this

metric, as well as the following metric, potentially less desirable than the 7 previous

metrics, which perform much more quickly.

21

(a) The best viewpoint of the Stanford
Bunny.

(b) The worst viewpoint of the Stanford
Bunny.

Figure 5. The best and worst viewpoints of the Stanford Bunny determined by
metric V Q8, Viewpoint Mutual Information.

Figure 5 shows the best and worst viewpoints of the Stanford Bunny using

this metric.

Information I3. Again from neuroscience, Butts [31] presents a metric

to quantify the information associated with a stimulus using mutual information.

Whereas Bonaventura et al. [26] proposed this metric as a viewpoint quality

measure. I3 is expressed as follows:

V Q9(v) = I3(v;Z) =
∑
z∈Z

p(z|v)I2(V ; z)

such that

I2(V ; z) =H(V)−H(V |z)

=−
∑
v∈V

p(v) log p(v) +
∑
v∈V

p(v|z) log p(v|z)

where I2(V ; z) is comprised of the entropy of the viewpoints, and the

conditional entropy of the viewpoints for polygon z. A high I3 means a high

I2(V ; z) value and corresponds to the view that sees the highest number of

“maximally informative polygons.”[27]

22

(a) The best viewpoint of the Stanford
Bunny.

(b) The worst viewpoint of the Stanford
Bunny.

Figure 6. The best and worst viewpoints of the Stanford Bunny determined by
metric V Q9, Information I3.

Figure 6 shows the best and worst viewpoints of the Stanford Bunny using

V Q9, I3.

2.2.2.2 Silhouette. This section surveys metrics that utilize a model’s

silhouette. The silhouette, or occluding contour, of an object is a view-dependent

metric. Simply, the silhouettes of an object are the edges that are created if the

object were to be represented as a single color on a plain background, as shown in

Figure 7.

In computer science, silhouettes have most commonly been used for image

recognition. For scientific data, silhouettes are best used on datasets with lots of

occlusions. Since silhouettes are a view-dependent metric, a model with significant

occlusions, either in number or size, will result in silhouettes that are specific to

certain viewpoints. The following metrics utilize a model’s silhouette to determine

the best viewpoint.

Silhouette Length. The use of an object’s silhouette as a goodness

measure was presented by Polonsky et al. [104]. From the given viewpoint, the

silhouette of the model is calculated by counting the number of pixels that belong

to the silhouette, or edge, of the object. The silhouette length is defined as follows:

23

(a) The Stanford Bunny. (b) The corresponding, view-dependent
silhouette of Image 7a.

Figure 7. An example of a silhouette of a model.

V Q10(v) = slength(v).

In the cases where there are multiple connected components and,

subsequently, multiple silhouettes, the silhouette of each component is combined

for a total sum of the silhouette lengths. The maximum silhouette is the longest

silhouette and is associated with the best viewpoint.

Silhouette Entropy. Page et al. [96] was the first to combine silhouettes

and entropy, and it was Polonsky et al. [104] who first identified their approach

as a metric for viewpoints. The entropy of a curve is the entropy of the curvature

distribution. The histogram for the silhouette curvature distribution is computed

using the angles between the pixels that make up the silhouette. In the discrete

case, the turning angles range from −π
2

to π
2

with a step of π
4
, and entropy is

calculated for all turning angles between adjacent silhouettes. Silhouette entropy

is defined as follows:

V Q11(v) = −
π
2∑

α=−π
2

h(α) log h(α),

24

where h(α) is the normalized silhouette curvature histogram and α is the bin for

a particular turning angle. The highest silhouette entropy corresponds to the best

viewpoint.

Silhouette Curvature and Silhouette Curvature Extrema. Vieira et

al. [135] introduced a new metric, based on the work by Felldman et al. [55], where

the integral curve of the silhouette is calculated. Silhouette curvature is defined as

follows:

V Q12(v) =

∑
c∈C

|c|
π
2

Nc

,

where c is the turning angle between two consecutive pixels, C is the set of

turning angles, and Nc is the number of turning angles (s.t. |Nc| = slength(v)).

The highest silhouette curvature corresponds to the best viewpoint.

Secord et al. [118] slightly alters silhouette curvature by enhancing the

impact of the turning angles, this will emphasize any extreme curvatures present

in the silhouette. Silhouette curvature extrema is expressed as

V Q13(v) =

∑
c∈C(|c|π

2
)2

Nc

.

Similarly, the higher the silhouette curvature extrema, the better the

viewpoint.

Note that for both curvature and curvature extrema, intersecting silhouettes

create T-junctions that can create high curvatures and create false positives when

searching for the best viewpoint.

2.2.2.3 Depth. This section reviews the metrics that involve the model

depth. Depth is a natural metric for choosing the best viewpoint because depth,

25

and portraying depth, is a key component to three dimensional renderings. For

certain data sets, such as terrain, taking into account the depth of the model is a

necessity. For example, if we were to apply the area metrics to a terrain model, the

best viewpoint will most likely be an overhead view that makes the terrain appear

flat.

Stoev and Straber. Stoev and Stasser[124] realized that the area metrics

perform poorly on terrain data sets and introduced a metric that selects the

viewpoint that best maximizes both the projected area and the projected depth.

The Stoev and Straber metric is defined as follows:

V Q14(v) = αp(v) + βd(v) + γ(1− |d(v)− p(v)|),

where p(v) is the normalized projected area of the model from some

viewpoint v, and d(v) is the normalized maximum depth of the model from some

viewpoint v. For general purposes, the authors set α = β = γ = 1
3
. And for terrain

models the authors recommend setting α = β = 1
4

and γ = 1
2
.

For this metric, the highest value will correlate to the best viewpoint. This

metric is best used when projected area as well as depth are key components of the

model, such as with terrain data sets. This metric is adaptable and allows for some

user input in terms of prioritizing depth, area, or both.

Maximum Depth. Secord et al. [118], inspired by Stoev and Straber, also

considered depth when creating a viewpoint metric. Their first metric is simply the

maximum depth of the model. Maximum depth is defined as follows:

V Q.49(v) = depth(v),

26

(a) The best viewpoint based on
Maximum Depth, V Q16.

(b) The worst viewpoint based on
Maximum Depth, V Q16.

Figure 8. The best and worst viewpoints of the Stanford Bunny based on V Q16,
Depth Distribution.

where depth(v) is the maximum depth of the model from some viewpoint v.

For this metric, the best viewpoint will have the greatest depth. This metric

should work well for terrain datasets, but could perform poorly on image-based

models, as shown in Figure 8.

Depth Distribution. Secord et al. [118] also took into account the depth

distribution of the image for each viewpoint. Their metric maximizes the range of

depths and chooses the camera placement that has the most equally distributed

view of depths.

Depth distribution is defined as follows:

V Q16(v) = 1−
∑
d∈D

h(d)2,

where d is a depth bin, D is the set of bins, and h(d) is the normalized

histogram of depths. Figure 9 is an example of a normalized historgram and

corresponds to Figure 7a.

The best viewpoint will have the most even distribution of depths. Hence,

this metric will work well for most 3-dimensional data sets.

27

Figure 9. The normalized depth histogram corresponding to Figure 7a. The Depth
Distribution metric will favor viewpoints whose histograms are evenly distributed
with few peaks or valleys. This analysis used 256 bins for the 1M pixels of the
image.

2.2.2.4 Stability. The metrics in this subsection involve visual

stability, which is determined by analyzing a neighborhood of surrounding views

(defined by a threshold). If the difference between the view and its neighboring

views are large, then that view is said to be unstable, conversely, if the difference

is small, then that view is considered stable. From user studies, a stable viewpoint

has been shown to be more visually appealing, whereas an unstable viewpoint is a

good starting point for post-hoc exploration since the user can see a large change in

the model with only slight changes to the view.

Instability. Bordoloi and Shen [28] were the first to consider the similarities

between viewpoints for volume rendering. To find similar or dissimilar images, they

use the projected area distributions associated with each viewpoint and compute

the distance using the Jensen-Shannon divergence measure [30]. They considered

the Kullback-Leibler difference [24] as well, but two images with differing occlusions

cannot be compared with that measure.

28

Feixas et al. [54] expanded on this research and used instability as a

metric for image-based rendering. And Lin [82] showed that the Jensen-Shannon

divergence of projected area distributions used in stability calculations can be

expressed in terms of Shannon Entropy. Instability is calculated as follows:

V Q17(v) =
1

Nv

Nv∑
j=1

D(v, vj),

where vj is a neighboring view of v, Nv is the number of neighbors of v,

and D(v, vj) is the Jensen-Shannon divergence of the projected area distributions.

D(v, vj) is defined as follows:

D(v, vj) = JS(
p(v)

p(v) + p(vj)
,

p(vj)

p(v) + p(vj)
; p(Z|v), p(Z|vj)),

where p(Z|v) and p(Z|vj) are the distributions with weights p(v)/(p(v) + p(vj)) and

p(vj)/(p(v) + p(vj)), respectively.

For this metric, the lowest instability is the best viewpoint. This metric is

suitable for data producers who want a viewpoint that will appeal to most users.

Depth-based Visual Stability. Vazquez et al. [134] computes stability

using the corresponding depth images from every viewpoint. To determine the

similarity between two depth images, the Normalized Compression Distance (NCD)

is utilized. NCD is defined as follows:

NCD(vi, vj) =
L(vivj)−min{L(vi), L(vj)}

max{L(vi), L(vj)}
,

where L(vi) and L(vj) are the sizes of the compressed depth images for

viewpoints vi and vj respectively, and L(vivj) is the sized of the compressed

concatenation of the depth images for views vi and vj.

A view is considered similar to another if their corresponding NCD score is

less than a given threshold. The best viewpoint will be the one that has the largest

29

number of similar views. Hence, the depth-based visual stability metric is defined

as follows:

V Q18(v) = number of similar views to v .

Again, this metric is useful when user appeal/preference is esthetically

important.

2.2.2.5 Surface Curvature. The metrics in this section analyze

the curvature of the model’s surface in order to determine the best viewpoint.

Intuitively, the curvature of a surface is the amount of curve the surface deviates

from being flat.

Curvature Entropy. Page et al. [96], interested in shape analysis, first

proposed calculating the entropy of the Gaussian curvature distribution over the

entire surface of the object. Polonsky et al. [104] built off of this work to develop

a metric that calculates the entropy of the curvature distribution over the visible

portion of the object’s surface. With this metric, the best viewpoint will maximize

the projection of unique curvature present in the model.

The curvature of vertex x is estimated by the standard angle deficit

approximation:

Kx = 2π −
∑
j

φj,

where angle φj is the wedge subtended by the edges of a triangle whose

corner is at vertex x.

The curvature entropy is defined as follows:

30

V Q19(v) = −
∑
b∈B

h(b) log h(b),

where b represents a curvature bin, B is the set of curvature bins, and h(b) is

the normalized histogram of visible curvatures from viewpoint v.

The best viewpoint will have the highest curvature entropy. This metric is

fitting for data sets that place importance on depth and specifically the angles of

the peaks and valley’s that make up the model’s visible surface.

Visible Saliency. Lee et al. [75] present a metric for computing the mesh

saliency of a 3D object. This is based on the center-surround method from Itti et

al. [63] which computed the saliency for 2D images.

To calculate visible saliency, the curvature at every vertex is calculated using

the strategy presented by Taubin [131]. Next, the saliency, S(x), of each vertex, x,

is calculated using the Gaussian-weighted average of the mean curvature, defined as

follows:

S(x) = |G(C(x), σ)−G(C(x), 2σ)|,

where G(C(x), σ) is the Gaussian-weighted average of the mean curvature

and σ is Gaussian’s standard deviation. Multiple saliency maps are created by

varying σ. The final saliency is the aggregate of the saliency maps with a non-linear

normalization. Visible saliency is defined as follows:

V Q20(v) =
∑
x∈X

S(x),

with X being the set of visible vertices and S(X) being the saliency of vertex x.

Figure 10 shows how mesh saliency is calculated. The best viewpoint will be the

one with the highest visible salience value.

31

Figure 10. To compute Visible Saliency, the mean curvature is computed for
each vertex. The vertex saliency is then computed as the difference between
mean curvatures filtered with a narrow and broad Gaussian. Multiple saliency
maps are computed by varying σ, the Gaussian standard deviation. Lastly, the
saliency of the viewpoint is the aggregate of all the saliency maps using a non-linear
normalization. Taken from Lee et al. [75].

Sokolov and Plemenos [122] also implemented this metric, but for curvature

they used the standard angle deficit approximation Kx, as seen in V Q19.

The authors believed that a curvature peak within a flat region is as

important as a flat region in the middle of dense peaks. This metric aims to

quantify the variations present in the geometry, the more intense the variations,

the higher the saliency. Subsequently, zero saliency will correspond to a region with

uniform intensity, such as a sphere. Mesh saliency and the produced saliency map

can be a preservation guide when applying other visualization operations, such as

mesh simplification, shown in Figure 11.

Projected Saliency. Feixas et al. [54] apply the idea of mesh saliency

to individual polygons. The saliency of a polygon is defined as the average

32

(a) Mesh simplification using QSlim [56].

(b) Mesh simplification guided by the saliency map.

Figure 11. Taken from [75], Lee et al. visually compared the QSlim mesh
simplification to their saliency-guided mesh simplification. The mesh saliency
map produced from this metric guides the mesh simplification in order to keep the
highly salient aspects of the object intact.

dissimilarity between this polygon and its neighbors. This metric is based on

mutual information, similar to metric VMI from Section 2.2.2.1.

The saliency, S(z), of polygon z is defined as:

S(z) =
1

Nz

Nz∑
j=1

D(z, zj),

where zj is a neighboring polygon of z, Nz is the set of heights of z, and

D(z, zj) = JS(
p(z)

p(z) + p(zj)
,

p(zj)

p(z) + p(zj)
; p(V |z), p(V |zj)),

is the Jensen-Shannon divergence between the distributions p(V |z) and p(V |zj)

with weights p(z)/(p(z) + p(zj)) and p(zj)/(p(z) + p(zj)), respectively.

The visible saliency is defined as follows:

33

V Q21(v) =
∑
z∈Z

S(z)p(v|z),

where the best viewpoint will have the highest visible saliency.

This metric takes into account the saliency of individual polygons rather

than the curvature of the mesh surface, meaning it will do well on amorphous

geometries comprised of locally unique polygons. But, much like the other

polygonal metrics that use mutual information, this metric is likely to have a long

execution time.

Saliency-based EVMI. Feixas et al. [54] extends VMI from Section 2.2.2.1

to include a weighted importance factor. Saliency-based EVMI is defined as follows:

V Q22(v) =
∑
z∈Z

p(z|v) log
p(z|v)

p′(z)
,

with p′(z) defined as:

p′(z) =
p(z)i(z)∑
z∈Z p(z)i(z)

,

and i(z) is the importance of polygon z.

Serin et al. [119] alter this metric, redefining i(z) as the curvature of

polygon z and in place of p(z) they use the total area of polygon z, az.

The best viewpoint will correspond to the minimum value. This metric

will do well with geometries comprised of differing polygons, but will have a long

execution time, similar to the other metrics based on mutual information.

2.2.3 Data Driven Quality Measures. This section will cover all

VQ metrics that are based on field data. Metrics in this category would most likely

34

be applied to scientific data sets, such as scalar fields and volumetric data that lie

on a regular mesh.

There has been little research done to define data-driven metrics that

will determine the best viewpoint of a regular grid. The solutions that have

been proposed involve information theory. While this survey only covers entropy

informed camera placement, Wang and Shen [140] survey the use of information

theory in scientific visualization.

2.2.3.1 Entropy. This section will cover all metrics that utilize

entropy to determine the best viewpoint.

Viewpoint Entropy. The first metric is to utilize viewpoint entropy

established by Vazquez et al. [139, 134]. Viewpoint entropy would maximize the

visible entropy of each face. Unfortunately, a regular mesh has at most six faces.

This is an easily implementable and quick metric that could be applied to all

3D regular datasets. A significant issue with this metric — and all of the geometry-

based metrics — is that it assumes the surfaces have zero thickness.

Isosurface Entropy. Takahashi et al. [127] applied viewpoint entropy

to volumetric data, utilizing the inherent geometry that is based on the transfer

function. Let pi(i = 0, . . . , n− 1) be the set of scalar values that has been uniformly

sampled from the entire data set. This set of scalar values will be used to create n

individual isosurfaces, Ii(i = 0, . . . , n− 1).

The viewpoint entropy of an individual isosurface, Ei(v), is defined as

follows:

Ei(v) =
1

log(mi + 1)

mi∑
j=0

aij
R

log
aij
R
,

35

(a) The best and worst images based on Isosurface Entropy (left) and Weighted
Isosurface Entropy (right).

(b) The best and worst images based on Interval Volume Entropy (left) and Weighted
Interval Volume Entropy (right).

(c) The key for Figure 12.

Figure 12. The viewpoint entropy distributions as well as the best and worst
images based on the Isosurface Entropies (12a) and Interval Volume Entropies
(12b) metrics, and respective key (12c). Taken from [127].

36

where aij(j = 0, . . . ,mi) is the jth visible face of the ith isosurface, R is the

resolution of the viewpoint (i.e. pixel resolution), mi is the total number of visible

faces of the isosurface, and 1
logmi+1

normalizes the value.

The viewpoint entropy of the entire volumetric data set is the average of the

individual isosurface entropies and is defined as follows:

V Q23(v) =
1

n

n−1∑
i=0

Ei(v).

The best viewpoint will have the highest isosurface entropy.

A downside of this metric is that it uses the isosurfaces individually and

does not take into account occlusions, as shown in Figure 12a.

Weighted Isosurface Entropy. Wanting to improve their previous metric

to account for occlusions, Takahashi et al. [127] assign different weights to the

individual isosurfaces, helping to accentuate certain features and choose views

with fewer occlusions. The weight, λi, for the ith isosurface is computed using the

transfer function. Transfer functions can be designed to emphasize the inherent

geometry present in the scalar field [128, 142].

Denote the transfer function of a scalar value s as TF (s). Then λi is defined

as follows:

λi = TF (pi),

where pi is the isovalue for isosurface, Ii.

Then the weighted isosurface entropy is defined as follows:

V Q24(v) =
n−1∑
i=0

λi
L
Ei(v),

37

Figure 13. An example of a contour tree and the respective interval volumes
associated with sections of the tree. Taken from [127].

where L =
∑n−1

i=0 λi.

The best viewpoint will correspond to the highest entropy.

Adding these weights resulted in fewer occlusions, but still suffers from

overlaps as shown in Figure 12a. They found this was the case for other volumetric

data sets as well.

Interval Volume Entropy.

Takahashi et al. [127] hypothesized that an isosurface-based metric could

not provide satisfactory results, even when individual results are weighted, due to

three reasons:

– Universally sampling the data for isovalues does not precisely reflect all the

shapes present in the data, and it’s possible the most interesting isovalue will

not be selected.

– The approach cannot distinguish between connected components of a

single isosurface, meaning they cannot assign different weights to disjoint

components.

38

– The isosurface is neglecting the overall thickness present in the data.

The authors shift their focus towards interval volumes. Interval volumes are

defined as a subvolume composed of isosurface within a range of scalar field values.

The authors use an interval volume decomposer (IVD) [126] to represent an interval

volume as a contour tree [12], which tracks the topological transitions of isofields

with respect to the scalar field as shown in Figure 13. Once the data has been

decomposed, entropy can be calculated. The viewpoint entropy of an individual

interval volume Ev
i (v) is defined as follows:

Ev
i (v) =

1

log(mi + 1)

mi∑
j=0

aij
R

log
aij
R
,

where aij is the jth face of the ith interval volume Vi(i = 0, . . . , n), and R is the

total area of the screen.

The interval volume entropy of the entire volumetric data set is the average

of the individual isovolume entropies and is defined as follows:

V Q25(v) =
1

n

n−1∑
i=0

Ev
i (v).

Using this metric, the best viewpoint will correspond to the highest entropy.

By using interval volumes, the authors notice that the thickness of the data

is more accurately portrayed as shown in Figure 12b.

Weighted Interval Volume Entropy.

Again, Takahashi et al. [127] build off the previous metric by adding weights

to the interval volumes. The weights are based on a multidimensional transfer

function. Figure 14 shows how using a multi-dimensional transfer function enhances

39

the internal structure of the volume compared to a single-dimensional transfer

function.

Let ki be the number of voxels present in Vi and let tij(j = 0, . . . , ki − 1) be

the opacity value associated with the jth voxel of the ith interval volume. Then λi is

defined as follows:

λi =
1

ki

ki−1∑
j=0

tij.

Then the weighted interval volume entropy is defined as follows:

V Q26(v) =
n−1∑
i=0

λi
L
Ev
i (v),

where L =
∑n−1

i=0 λi.

The best viewpoint will have the highest entropy.

The previous two metrics are applicable when the thickness of the data is

important. And though Figure 12b shows only a modest difference between the

two metrics, the use of a multi-dimensional transfer function can be critical to

enhancing interior structures as shown in Figure 14, which is only utilized in the

weighted interval volume metric.

As a final note, for extremely large data sets, these metrics are

computationally heavy with potentially high communication costs. That said,

utilizing software from Section 2.3 can help mitigate these performance costs.

2.3 In Situ Analysis and Visualization Software

This section surveys notable libraries and software that allow for in situ

visualization and analysis. When applicable, for each software examined we

determine how the default camera position is chosen.

40

(a) Weighted Interval Volume Entropy using a single-dimensional transfer function.

(b) Weighted Interval Volume Entropy using a multi-dimensional transfer function.

Figure 14. Viewpoint entropy distributions and the best and worst views of
the simulation based on the Weighted Interval Volume Entropy using a single-
dimensional transfer function (14a) and a multi-dimensional transfer function (14b).
By using a multi-dimensional transfer function the inner structures are emphasized.
Taken from [127].

41

ADIOS. The Adaptable IO System (ADIOS) [84] is a simple and flexible

I/O middleware library that allows users to describe, write, read, or move data

in situ. Using XML files as input, ADIOS easily lets users change how their I/O

is handled. ADIOS has been shown to be scalable, portable, and efficient on

supercomputers.

VTK-m. VTK-m [95] is a many-core implementation of the Visualization

Tool Kit (VTK) [117]. VTK is an open-source software that is used for 3D

computer graphics, modeling, image processing, volume rendering, scientific

visualization, and 2D plotting. VTK-m has been used to rewrite visualization

algorithms using data parallel primitives, allowing a single implementation to run

efficiently on emerging architectures [73, 81, 77, 69, 80, 94, 147, 108, 78]. The VTK-

m library plays a critical role in many of the following software implementations.

Ascent. Developed by Larsen et al. [71], Ascent is a multi-institutional

project funded by the Exascale Computing Project (ECP) [93]. A later

implementation of Strawman [72, 62], Ascent is a flyweight infrastructure that

allows for in situ analysis and visualization of scientific datasets. Ascent utilizes

VTK-m [95] for shared-memory parallelism using data-parallel primitives that are

efficient and hardware agnostic. The goal of Ascent is three-fold:

– Provide in situ analysis and visualization for modern and emerging

supercomputing architectures.

– Be a flyweight infrastructure with a simple interface, minimal dependencies

on outside software, and minimal processing overheads when it comes to

memory and copying data.

42

– Interoperability with other software. Ascent can support software other than

VTK-m (such as R [109]). But it is up to the user to build a bridge for the

data models to or from VTK-m.

Ascent also comes with several built-in scientific simulations.

In Ascent, unless otherwise specified, camera placement is based on the

magnitude of the extents. This guarantees the data is in frame and is a canonical

view for 3D datasets.

Cinema. Cinema [3] is open source software that provides a unique

approach to in situ and post-processing analysis and visualization of large scale

scientific data. Unlike the other software that will typically only save a single

image, Cinema saves a set of images in what the authors call a Cinema database.

Using this database of images, the user can explore data at a fraction of the storage

and I/O costs of saving the entire time slice. Beyond exploring data, Cinema

provides sophisticated analysis and visualization routines that can be applied to

the database. And now databases can now be composed of a range of metadata,

such as run parameters, output variables, grids, or any other type of data that can

written to disk.

Cinema has been integrated as an export option for VisIt/Libsim,

Paraview/Catalyst, and Ascent. For this software, discussing camera placement

does not make sense as this approach saves data from many viewpoints.

The components of the Cinema ecosystem are shown in Figure 15.

VisIt/LibSim. VisIt [35] is a free software for parallel visualization and

analysis. VisIt allows users to generate visualizations of scientific data, animate

through time, manipulate the data, and save images or viewpoint animations.

Libsim [143] is a tool in VisIt that facilitates in situ visualization. This allows

43

Figure 15. The Cinema ecosystem is composed of databases, algorithms, writers,
and viewers. Cinema databases have been integrated as an export option for a
number of state-of-the-art in situ analysis and visualization software, or writers.
Cinema can employ sophisticated quantitative and qualitative algorithms on the
database. The output can then be visualized using the Cinema viewer either post-
hoc or in situ. Taken from [47].

users to explore the data interactively as the simulation is running, in addition to

some debugging and simulation steering capabilities. Unless otherwise specified, the

camera view defaults to a flat, 2D representation with the origin in the lower left

corner.

ParaView/Catalyst. Paraview [2] is an open source, data analysis and

visualization application that utilizes VTK [117] under the hood. Providing both

qualitative and quantitative techniques that users can perform either interactively

or programmatically. Paraview was designed to be able to analyze extremely

large datasets using distributed memory resources. Catalyst [9] is a library within

Paraview that allows for in situ visualization and analysis.

Unless specified, the Paraview/Catalyst camera placement defaults to a

rendering with the origin in the lower left corner.

44

Figure 16. SENSEI is a generic interface that provides a bridge to many
technologies. With a simple API, the user can decide which analysis routine to
run. In other words, the user can “write once and run every where.” Taken from
[36].

SENSEI. SENSEI [10] is a generic in situ interface, providing the bridge

from the simulation to a number of different visualization and analysis software,

I/O file types, as well as in-transit data movement and analysis, as shown in Figure

16. The bridge takes the simulation data and, using the data adaptor, exposes

the simulation data structures. This is then passed to the analysis routines on

the back-end via the analysis adaptor. With SENSEI, a user can can instrument

their simulation code to the SENSEI API and then be able to utilize any of the

in situ infrastructures that SENSEI currently supports (Ascent, VisIt/Libsim,

Paraview/Catalyst, etc.). Additionally, a user can develop an in situ method using

the SENSEI API with little modification to the simulation code.

For camera placement, unless otherwise specified, placement defaults to

what the analysis routine dictates.

Overview. The aforementioned software is are the main state-of-the-art in

situ analysis and visualization applications and libraries being used today on large-

scale simulations. Figure 17 shows where they fall within the in situ visualization

and analysis workflow. Notice that VTK-m is heavily utilized among all these

45

Figure 17. The current state-of-the-art for in situ analysis and visualization
software and libraries. This diagram depicts the workflow from the simulation,
to the in situ application, I/O routines, and then post processing. Taken from [47].

applications, proving its usefulness and necessity as supercomputers push for

exascale.

2.4 Use Cases

In this section we look at recent works that apply in situ visualization

to large-scale simulations or works that save out images. For each use case, we

describe their method, and if applicable, how camera placement for rendering is

determined. These works are far from an exhaustive survey, but we feel they are

representative of the diversity of practices currently being used.

Combustion.

Yu et al. [149] provide an early result within the in situ paradigm by

proving the feasibility of in situ visualization at scale. Their in situ visualization

produces high quality renderings of a large-scale turbulent-combustion simulation

using S3D, a Sandia DNS (direct numerical simulation) solver. This particular

46

simulation produces volume and particle data, so their work performs both highly

parallel volume rendering and particle rendering in situ with manageable simulation

strain (ranging from 2-36%). They performed their experiments using various

configurations, with their largest run having 41 million particles, 600 million cells,

executed on 15,360 cores. The camera position and transfer function for their

renderings are user-specified, with the default being based on a small set of sample

runs.

As analysis routines become more complex, they begin to take longer to

execute and, as a consequence, stall the simulation. A way to mitigate this is

to transfer the data to secondary compute resources to perform the analysis,

allowing the simulation to resume. But transferring data in itself can be prohibitive

depending on the amount of data and desired configuration, whereas in situ

analysis will have all the data locally. Work from Bennett et al. [17] present a

hybrid method that utilizes both in situ and in transit data analytics to offload

data that as been reduced or transformed in situ to secondary compute resources.

Applying their method to a 4,096 cores S3D simulation of one billion cells, their

approach had an average wall clock of 16 seconds per time step. They compare

their hybrid methods to purely in situ algorithms, and show that, for the most

part, their approach produces less or equitable strain on the simulation. Much like

their previous work [149], their camera placement is based on previous small scale

runs.

Tokamak.

Work by Pugmire et al. [107] shows that near-real-time visualization and

analysis is possible within a distributed workflow. Their work lies in the cross-hairs

of simulation monitoring and steering and of in situ visualization and analysis.

47

There has been a lot of effort into developing steering and monitoring techniques

for visualizing data across a network [20, 19, 21, 99, 98], as well as work for in

situ approaches [37]. In particular, this work focuses on in transit methods, where

data being produced from the XGC1 [34] simulation running in Singapore is moved

asynchronously over the network to compute resources in Georgia, USA where the

data will be visualized and queried. Their in transit method uses ADIOS [84], a

middleware system that has a variety of different transport methods, including

Dataspaces [45], FlexPath [43], and ICEE [38]. On the simulation side, 162MB of

field and 62GB of particle data are produced every time step, which ADIOS then

transfers to local staging nodes. From here, the field data is transferred over the

WAN to Georgia where data consumers can visualize the data, steer the simulation,

query the particle data, and track individual particles over time, all before the next

time step begins (in 10 seconds). In terms of viewpoint, the user can interactively

choose an area of interest which will determine the camera placement.

Weather.

Work by Ellsworth et al. [51] describe a time-critical visualization pipeline

for weather forecasting using the fourth generation Goddard Earth Observing

System (GEOS4) simulation code. The GEOS4 simulation is run under tight time

constraints four times a day which requires the visualization to be performed with

minimal overhead so they can be made available to forecasters at the National

Hurricane Center. The visualization had to be performed on data consisting of

23 million cells with up to seven 3D and four 2D fields per cell. To be able to

visualize the data quickly with high resolutions, Ellsworth et al. decoupled the

data, transferring the data to staging nodes where they compressed the data using

MPEG encoding. The resulting MPEG streams are then sent to the remote sites

48

where the completed time steps are shown in a continuous animation loop. Camera

placement is moot in this circumstance as the data is always presented on a 2D

world map with an overhead viewpoint.

The work by Slawinska et al. [121] integrates ADIOS into the Maya

computational astrophysics simulation to allow physicists to analyze and visualize

their data in situ. By utilizing the staging capabilities of ADIOS, Slawinska et al.

are able to apply in situ techniques to analyze, reduce, and visualize their data

with little impact on the simulation. This work was primarily an adaptation of

Maya’s workflow, so there was no discussion of camera placement nor types of

visualizations performed.

Molecular Dynamics.

Before data scientists employ in situ techniques, it is important to determine

if in situ is a right fit for their use-case. If the analysis routines are compute

heavy, it may be better to use in transit techniques and move data to secondary

compute resources, or maybe write to disk. There also needs to be sufficient

memory to perform the analysis, which may not be possible for memory intensive

simulations. For large-scale simulations, Malakar et al. [89] propose a routine for

optimal scheduling of in situ analysis that is based on resource configurations

and application demands. Based on the time and memory requirements of the

simulation and the analysis kernels, their program will recommend which analyses

can be done in situ within the constraints, prioritize the analyses, while also taking

into consideration the expected I/O costs. Overall the contributions of this work

are four-fold [89]:

– Formulation of an optimization problem for scheduling in situ analyses.

49

– Recommendation for performing in situ analyses based on their resource

usage and available system resources.

– Performance modeling of in situ analysis routines.

– Demonstration of in situ analyses execution with the proposed optimization

schedules with two exemplar applications, LAMMPS [103] and FLASH [138],

on a leadership supercomputing system.

The issue with this work is that after calculating which analyses to perform it

also decides how many times to perform each analysis, then evenly spaces the

analyses among the total number of time steps, thus, potentially missing important

phenomena if the analyses are not performed at the correct time step.

Fluid Mechanics.

In order to visualize their data in situ, Lorendeau et al. [86] integrate

Catalyst [9] into Code Saturn [6], an open source Computational Fluid

Dynamics (CFD) code designed to solve the Navier-Stokes equations for 2D, 2D

axisymmetric, and 3D flows. With increasing computational power, researchers at

the Electricité de France (EDF) were beginning to spend the majority of their time

writing and reading their data. By integrating Catalyst the researchers were able

to work around the growing I/O gap and were now able to visualize their data in

situ with only 10% added overhead on runs with 204M hexahedral elements and

3,600 cores on Ivanhoe, their corporate EDF supercomputer. Viewpoints and other

parameters were determined based smaller test runs.

Also wanting to visualize their data in situ, Yi et al. [148] integrate

Catalyst into the simulation Parallel Hierarchic Adaptive Stabilized Transient

Analysis (PHASTA) [64], an open source codebase used to solve compressible and

50

incompressible Navier-Stokes equations. They tested their integration on both Oak

Ridge National Lab’s Titan and Argonne National Lab’s Mira supercomputers.

On Titan, using 18,432 cores and having 167M tetrahedral elements, the in situ

visualization added a 10% execution overhead. Whereas on Mira, using 32,768

cores, the in situ visualization caused an additional 30% overhead. While they

added steering capabilities and checkpoints so they could “rewind” and alter

simulation parameters in situ, their initial conditions and viewpoints are based

small test runs.

2.5 Evaluation

Over the course of this survey we implemented 14 of the 26 metrics to

determine which are palatable for in situ implementation. Wanting to keep

computational overheads low and memory footprints small, we immediately

disqualified the following metrics for being unfit for in situ without significant work

parallelizing the algorithms:V Q8, V Q9, V Q17 − V Q26.

Of the remaining metrics, we applied them to several scientific datasets of

varying size, measuring their average execution time as well as visually analyzing

the images each metric determines to be the best and worst.

For this research we use isosurfaces of individual timesteps from the

following ECP datasets:

– ExaSky-Nyx a cosmological simulation: three different timesteps with

55,544 (ExaSky #1), 143,059 (ExaSky #2), and 19,280 (Exasky #3)

triangles.

– ExaAM Truchas a metallurgy casting simulation: three different timesteps

with 21,255 (ExaAM #1), 6,474 (ExaAM #2), and 18,473 (ExaAM #3)

triangles.

51

– ExaConstit a metallurgy simulation: two different timesteps with 938,862

(ExaConstit #1), and 135,109 (ExaConstit #2) triangles.

Table 2 shows the average execution time for each metric per viewpoint for

each timestep. Some metrics can be computed during the rendering process, thus

requiring little time to compute. But even those that require extra computations,

none exceeded 2 seconds and most were significantly faster.

Figures A.43-A.50 show the best and worst images for each metric for the

eight timesteps. Notice that there are viewpoints that are consistently favored

among the majority of metrics, but overall the results could be wildly different

depending on the data set.

In terms of findings, each metric has pros and cons. For the area metrics,

they favor images that maximize pixel resolution, but in doing so can have lots

of occlusions and little depth. For the silhouette metrics, they favor images with

jagged silhouettes, which, in some cases, reduces occlusions. Similarly for depth,

by maximizing the viewable depth of the image this prevents any large components

from dominating.

Our conclusion from this mini-study is that no one metric will find the best

image, but maybe a combination of metrics can. We believe an entropy calculation

on the field data in conjunction with geometric metrics is a promising direction for

generating scientifically important image.

52

Notation Definition
z polygon
Z set of polygons
v viewpoint
V set of viewpoints

az(v) projected area of polygon z
from viewpoint v

at(v) projected area of the model
from viewpoint v

visz(v) visibility of polygon z from
viewpoint v (0 or 1)

N number of polygons
R number of pixels of the projected image
Az area of polygon z
At total area of the model

p(z|v) conditional probability of z given v
p(z) probability of z
p(v|z) conditional probability of v given z
p(v) probability of v
H(V) entropy of the set of viewpoints
H(Z) entropy of the set of polygons
H(V |z) conditional entropy of the set

of viewpoints given polygon z
H(Z|v) conditional entropy of the set

of polygons given viewpoint v
slength(v) silhouette length from viewpoint v
{h(α)} normalized silhouette curvature histogram
α turning angle bin
a turning angle between two consecutive pixels
A set of turning angles
Na number of turning angles

depth(v) normalized maximum depth of the
scene from viewpoint v

{h(d)} normalized histogram of depths
d depth bin
D set of depth bins
Nv number of neighbors of v
L(v) size of the compression of the depth

image corresponding to viewpoint v
L(vi, vj) size of the compression of the

concatenation of the depth images
corresponding to viewpoints vi and vj

Ki curvature of vertex i
{h(b)} normalized histogram of visible curvatures

from viewpoint v
b curvature bin
B set of curvature bins
S(x) saliency of vertex x

Table 1. Mathematical notation for the defined VQ metrics. This notation was
developed in the survey by Bonaventura et al. [27].

53

Metric ExaConstit #1 ExaConstit #2 ExaSky #1 ExaSky #2 ExaSky #3 ExaAM #1 ExaAM #2 ExaAM #3
(938,862 4s) (135,109 4s) (55,544 4s) (143,059 4s) (19,280 4s) (21,255 4s) (6,474 4s) (18,473 4s)
Time in µs

V Q1 N/A N/A N/A N/A N/A N/A N/A N/A
V Q2 N/A N/A N/A N/A N/A N/A N/A N/A
V Q3 248065 µs 14830.5 µs 5311 µs 14185.3 µs 1929.03 2508.63 µs 305.72 µs 952.74 µs
V Q4 N/A N/A N/A N/A N/A N/A N/A N/A
V Q5 1.33009e+06 µs 268443 µs 626197 µs 1.36365e+06 µs 545438 µs 148650 µs 207043 µs 135033 µs
V Q6 1.33009e+06 µs 268443 µs 143059 µs 1.36365e+06 µs 545438 µs 148650 µs 207043 µs 135033 µs
V Q7 1.25724e+06 µs 33725.3 µs 615655 µs 1.33423e+06 µs 531735 µs 143863 µs 202881 µs 133310 µs
V Q10 17144.4 µs 12047.8 µs 14965.4 µs 20626.9 µs 15637.9 µs 11319.3 µs 11141.9 µs 12442.1 µs
V Q11 17144.4 µs 12047.8 µs 14965.4 µs 20626.9 µs 15637.9 µs 11319.3 µs 11141.9 µs 12442.1 µs
V Q12 17144.4 µs 12047.8 µs 14965.4 µs 20626.9 µs 15637.9 µs 11319.3 µs 11141.9 µs 12442.1 µs
V Q13 17144.4 µs 12047.8 µs 14965.4 µs 20626.9 µs 15637.9 µs 11319.3 µs 11141.9 µs 12442.1 µs
V Q14 N/A N/A N/A N/A N/A N/A N/A N/A
V Q15 40476.5 µs 20735.9 µs 29617.2 µs 50017.6 µs 27389 µs 17836.3 µs 19834.8 µs 17445.5 µs
V Q16 36.96 µs 37.52 µs 35.66 µs 45.04 µs 39.31 µs 36.85 µs 36.4 µs 36.1 µs

Table 2. The average execution time in microseconds for each metric per viewpoint
for each of the eight datasets. N/A means the metric calculation is done in
conjunction with the rasterization process.

54

CHAPTER III

AN ENTROPY-BASED APPROACH FOR IDENTIFYING USER-PREFERRED

CAMERA POSITIONS

This chapter is published co-authored work [92]. Contributions to this work

are the following: I was the first author on this work. I wrote the majority of code

for this project, including implementing and evaluating the metrics, and developing

the website. I attained IRB approval for the user study and conducted the user

survey with a presentation at the DOE’s 2021 Computer Graphics Forum. I was

also the primary author of this work. Yuya Kawakami aided in developing and

testing the use survey as well as providing statistical expertise for analyzing the

survey results. Yuya also helped in editing the manuscript. Samuel D. Schwartz

aided in developing and testing of the user survey as well as providing statistical

expertise for analyzing the survey results. Samuel implemented the database that

recorded and stored the responses to the user survey. Samuel also helped in editing

the manuscript. Stefan Fields aided in developing and testing the user survey.

Hank Childs aided in developing and testing of the user survey as well as providing

statistical expertise for analyzing the survey results. Hank also provided extensive

feedback over the course of this work and helped in editing the manuscript.

3.1 Introduction

As discussed in Chapter II, significant number of research investigations

have considered using viewpoint quality (VQ) metrics to evaluate the quality of

a camera placement. These metrics are designed to produce “better” views as

the metric values increase. That said, the evaluation of these metrics has been

limited to non-scientific data sets and the metrics have not considered in situ

constraints. With this work, we fill this gap by conducting a user study of large

55

data visualization practitioners using isosurface imagery. Further, while we do not

apply our results in situ, we do constrain the metrics considered to those that can

be efficiently calculated in such a setting.

As a separate contribution, we introduce new VQ metrics that are based on

entropy. We introduce three such metrics, one that measures data entropy, one that

measures depth entropy, and one that measures shading entropy. Many previous

research efforts have considered entropy for optimizing visualization parameters;

the novelty in our work is in the specific form for this specific problem. We also

introduce a mechanism for combining metrics. Our findings show that these metrics

perform better than comparator VQ metrics.

Summarizing, this work has two significant contributions:

– We introduce new VQ metrics that are appropriate for an in situ setting and

demonstrate that these metrics perform better than existing metrics.

– We conduct the first ever user study devoted to large, scientific visualizations,

and use the results to evaluate the efficacy of ten VQ metrics.

3.2 Our Method

This section details our method for constructing an oracle that can use VQ

metrics to predict user preference. There are two main concepts in this section:

(1) how to construct an oracle from VQ metrics? and (2) which VQ metrics do

we incorporate into oracles? The first concept is discussed in Section 3.2.1. The

second concept is discussed in two parts: Section 3.2.2 discusses new entropy-based

VQ metrics that we introduce in this work and Section 3.2.3 discusses existing VQ

metrics that we use as comparators.

3.2.1 Constructing Oracles from VQ Metrics. A VQ-based oracle

uses VQ metric values to predict which camera a user would prefer. In an in situ

56

setting, they could be used to automate camera placement: evaluating camera

positions and ultimately selecting the one thought to best match user preference.

However, in this study, oracles are used in a more limited way: to evaluate which

VQ metric best matches user preference. Further, in this study, an oracle considers

two camera positions and attempts to predict the user’s preference between the

two. That said, oracles could trivially be expanded to deal with more than two

camera positions.

For the version of oracle we consider, the only inputs are VQ metrics. They

do not have access to image data, information about the camera position, or the

geometry being rendered. For example, one of the VQ metrics we consider is

“Visibility Ratio” (described in Section 3.2.3.4) and one of the oracles we construct

attempts to predict user preference using only Visibility Ratio. In this case, the

only input to the oracle would be the values for Visibility Ratio for the two camera

positions.

As shown in Figure 18, oracles can operate using only a single VQ metric or

multiple VQ metrics. The key distinction between them is that single-metric oracles

do not need to combine metrics.

A single-metric oracle is an oracle that uses only one metric to make

decisions. We created 10 single-metric oracles, one each for our three new entropy

metrics (Section 3.2.2) and one each for the seven existing metrics (Section 3.2.3).

If a metric M produces score M(C1) for camera position C1 and score M(C2) for

camera position C2 and if M(C1) > M(C2), then the oracle would select C1. For

all of the metrics, “bigger is better,” so their corresponding oracles choose the

higher values. Further, it was not necessary to decide how to deal with equal metric

values, since this did not occur in our experiments.

57

Multi-Metric
OracleC1

C2

M1, M2, ..., Mn

Combine
Metrics

Compare
and Make
Prediction

M1, M2, ..., Mn

Combine
Metrics

Single-Metric
Oracle

Compare
and Make
Prediction

C1

C2

M1

M1

Figure 18. A single-metric oracle (Left) and a multi-metric oracle (Right). Single-
metric oracle: For two cameras, C1 and C2, and a single metric, M1, the oracle will
compare each camera’s respective metric score and determine the best viewpoint.
Multi-metric oracle: For two cameras, C1 and C2, and n metrics, M1, . . . ,Mn, the
oracle will combine each camera’s metric scores, compare the combined scores, and
determine the best viewpoint.

An oracle that uses multiple metrics has the potential to make better

decisions by drawing on different types of information. Given a multi-metric oracle

that uses n metrics, M1, . . . ,Mn, these metrics produce tuple (M1(C1) . . . ,Mn(C1))

for camera position C1 and tuple (M1(C2), . . . ,Mn(C2)) for camera position C2.

That said, these tuples are not immediately useful, as the metrics produce values

with disparate ranges and a variety of units — combining the metrics to make

a binary decision is a a fundamental issue with the multi-metric approach. Our

solution is to try three different methods for combining metric scores and evaluate

all three. That said, looking ahead to results, all three combination methods

produced similar findings.

The three methods we consider for combining metrics are:

– NORM: Normalizing the scores based on minimum and maximum values

and adding the normalized scores together.

– TIER: Clustering the scores into tiers using an automated method (Jenks

natural breaks optimization [65]) and then adding the tiers together.

58

– NONE: Adding the raw scores together.

The NONE approach is not appropriate in almost all cases, but it is appropriate

in the case of adding together three entropy scores.

Once the scores were combined, they were compared, and the oracle selected

the Ci with the highest value. The TIER approach did have ties in some cases,

and in these cases a random camera was chosen.

3.2.2 New VQ Metrics. Each of our new metrics utilizes Shannon

Entropy [24], which calculates the average level of information. Given a discrete

random variable X, with the possible outcomes x1, . . . , xn, occurring with the

respective probabilities P (x1), . . . , P (xn) the entropy of X is defined as:

H(X) = −
n∑
i=1

P (xi) · log(P (xi))

The higher the entropy the more information that is present.

Entropy-based VQ metrics can be constructed by placing fields on images

in addition to the typical colors. For example, graphics libraries often produce

depth information for the Z-buffer algorithm, and this data augments the image.

This depth information can then be used as the discrete random variable for the

Shannon entropy calculation, i.e., construct a discrete random variable made up

of the depth information for every pixel where data appears and then calculate

Shannon entropy on that random variable. Further, maximizing the score of a given

entropy-based VQ metric equates to maximizing the information present in the

image, at least with respect to its type of data (for example, maximizing entropy in

depth information).

We pursued three types of data entropy-based VQ metrics:

59

– Field Data: the visible data of some user specified field

– Depth Data: the distance from the camera to the visible field data

– Shading Data: the shading coefficients for the visible geometry of the data

These metrics correspond to readily available quantities during the rendering

process (field value, depth value, and normal value, which becomes a shading

value).

In all cases, we considered the “visible” data (i.e., visible field data, visible

depth data, or visible shading data). This means that a scene is rendered, an image

is produced, and the data from that image (field, depth, shading) is extracted. If

an image has N pixels, and if M pixels have no data occupying that pixel (i.e.,

background color), then the visible data comes from the N − M pixels that do

overlap with the geometry. Considering the example of shading data on an image of

10 pixels (N == 10), if 3 pixels have no data (M == 3), then the visible shading

data would be the set of shading values from the remaining 7 pixels (N −M), e.g.,

{0.3, 0.2, 0.6, 1.0, 1.0, 0.8, 0.2}.

3.2.2.1 Data Entropy. Data Entropy calculates the entropy of the

visible field data from a given viewpoint v. Given field data F , let F (v) be the

visible field data for some viewpoint v with elements f1, . . . , fn, then Data Entropy

is defined as:

H(F (v)) = −
n∑
i=1

P (fi) · log(P (fi))

Past research failed to develop this metric because they were primarily

focused on developing viewpoint quality metrics for 3D objects that only have

geometric data and lack any field data, unlike scientific data. And while Data

60

Entropy can be applied to any field mesh, it is best if the geometry is unstructured

and produces amorphous shapes, as opposed to a three-dimensional rectilinear

mesh.

3.2.2.2 Depth Entropy. Depth Entropy calculates the entropy of

the distances from the camera to the visible field data from a given viewpoint v.

Let D(v) be the set of distances from the camera to the visible field data for some

viewpoint v with elements d1, . . . , dn, then Depth Entropy is defined as:

H(D(v)) = −
n∑
i=1

P (di) · log(P (di))

Depth entropy is similar to Secord et al.’s [118] metric, Depth Distribution,

which deals with the normalized histogram of depth bins. Finally, this metric is

readily applicable to surface data, which fits our isosurface-centric study. Volume

rendering would require extending this metric, e.g., adapting for regions of high

opacity or when the opacity along a ray hits a threshold.

3.2.2.3 Shading Entropy. Shading Entropy calculates the entropy of

the visible shading coefficients. This metric determines the shading coefficient for

each visible triangle and then calculates the entropy.

Let G(v) be the set of visible shading coefficients from a viewpoint v, with

elements g1, . . . , gn, then Shading Entropy is defined as:

H(G(v)) = −
n∑
i=1

P (gi) · log(P (gi))

We used flat shading in our calculations, since that was straightforward in

our infrastructure, but we note that vertex shading is also possible. Additionally,

our infrastructure uses a “miner’s light” that is always located above the camera.

61

And while this work is the first to use shading entropy for viewpoint selection, this

metric was first proposed by Gumhold [59] who used shading entropy to determine

optimal placement for light sources.

3.2.3 Comparators: Existing VQ Metrics. We consider seven

existing VQ metrics as comparators. There are other VQ metrics beyond these

seven, but we are only interested in those that can be extended to run both in

an in situ setting and in a distributed-memory parallel setting. In all, we only

considered a VQ metric if it met three requirements:

– The metric should have a small memory footprint.

– The metric should have a fast execution time.

– The metric should require minimal communication.

The remainder of this section describes the seven VQ metrics, first defining

how the metric works and then discussing its merits. These metrics have previously

been defined in Chapter II, but are restated for clarity. All descriptions use the

notation summarized in Table 1.

3.2.3.1 Number of Visible Triangles. This metric, developed by

Plemenos [101] and then expanded upon by Plemonos and Benayada [102], is based

on the number of visible triangles from some viewpoint. The best viewpoint will be

the one with the highest number of visible triangles. Formally:

V Q1(v) =
∑
z∈Z

visv(z).

In the worst case, this metric favors quantity over quality and may choose

viewpoints that contain a lot of polygons but little content.

62

3.2.3.2 Projected Area. This metric, developed by Plemenos and

Benayada [102], favors viewpoints that show the most projected area of the data

model. This metric simply sums the visible area of the data’s geometry. Formally:

V Q2(v) = at(v).

In the worst case, this metric could select an image that favors one large

polygon. Further, maximizing the projected area of the data could also maximize

the number of occlusions.

3.2.3.3 Plemenos and Benayada. This metric, from Plemenos and

Benayada [102], is a combination of their first two metrics and is defined as follows:

V Q3(v) =

∑
z∈Zd

az(v)
az(v)+1

e
N

+

∑
z∈Z az(v)

R
,

Correcting the downside from the first two metrics, Plemenos and Benayada

developed a metric that maximizes the number of visible triangles as well as

the resolution of the rendered image. While this metric is an improvement, it is

susceptible to favoring viewpoints with large occlusions since this metric can be

dominated by visible surface area.

3.2.3.4 Visibility Ratio. This final metric from Plemenos and

Benayada [102] is the ratio of the real visible surface area over the total real surface

area (i.e. the areas in World Space) and is defined as follows:

V Q4(v) =

∑
z∈Z visv(z)Az

At

Note that this metric uses the world space geometry rather than device space

geometry. This metric has similar advantages and disadvantages as the second

metric, V Q2.

63

3.2.3.5 Viewpoint Entropy. This metric was first applied

to viewpoint selection by Vázquez et al. [134]. Their metric alters Shannon

Entropy[41, 24] to take into account the projected area of the scene when centered

at a particular viewpoint. Viewpoint Entropy is defined as follows:

V Q5(v) = −
N∑
i=0

az(v)

at(v)
log

az(v)

at(v)
.

The ratio az(v)
at(v)

represents the proportion of the projected area of each polygon.

This ratio is also proportional to the cosine of the angle between the normal of the

projected polygon az(v) and the camera angle. Additionally, this ratio is inversely

proportional to the squared distance from the camera to polygon. This means

that az(v)
at(v)

will be higher when the polygon is seen from a better angle and at a

closer distance. This metric will work best on data sets with varying polygonal

size, since larger polygons are penalized in comparison to smaller polygons. An

important drawback of this metric is that it will go towards infinity with finer mesh

resolutions.

3.2.3.6 Viewpoint Kullback-Leibler Distance (VKL). Developed

by Sbert et al. [116], this metric measures the Kullback-Leibler distance between

the normalized distribution of the projected areas of polygons from a given

viewpoint and the normalized distribution of the real areas of polygons. It is

defined as:

V Q6(v) =
∑
z∈Z

az(v)

at(v)
log

az(v)
at(v)

Az
At

.

The best viewpoint, which corresponds to the minimum value, is achieved when

the normalized distribution of the projected areas is equal to the normalized

64

distribution of real areas. In order to make the metrics all follow a “bigger is

better” pattern, we multiply this value by -1.

3.2.3.7 Maximum Depth. This metric was defined by Stoev and

Strasser [124], but was applied by Secord et al. [118] as a VQ metric. This metric is

defined as follows:

V Q7(v) = depth(v),

where depth(v) is the maximum depth of the model from some viewpoint v. Depth

can be a useful metric for terrain data sets. Terrain data sets are often viewed

from above when information is maximized, making the data appear flat, thus it

is important to take depth into consideration.

3.3 Corpus for Comparing Viewpoints

This section describes our data corpus for evaluating our method. The

corpus is made up of multiple elements. First, the corpus contains images

and meta-data about these images. This aspect of the corpus is discussed in

Section 3.3.1. Second, the corpus contains results from a user survey on preferred

images. This aspect of the corpus is discussed in Section 3.3.2.

3.3.1 Generating a Database of Images. Our corpus considers

multiple camera positions for multiple scientific data sets. For each (camera, data

set) pair, the corpus contains an image and all VQ metric scores for that image.

In all cases, the visualization was of a multi-level isosurface. The remainder of this

section describes more detail on the data sets used, the selection of isovalues, and

how cameras were placed.

3.3.1.1 Data Sets. A gap in prior research is the lack of application

to scientific data sets. To fill this gap, we chose ten large-scale scientific data sets,

drawing the IEEE Visualization Conference’s Scientific Visualization Contest and

65

from data sets from the Exascale Computing Project from the United States’

Department of Energy. One of our primary goals in selecting these data sets was

to consider diverse application domains and diverse imagery, so our results would

be (as much as possible) applicable to a larger proportion of scientific data sets.

Four data sets were from the Scientific Visualization Contest:

– Asteroid: A data set of a deep water impact of an asteroid [100].

– Fluid Dynamics: A fluid dynamics data set that models a cylindrical flow of

water [70].

– Hurricane: A weather data set of Hurricane Isabel [1].

– Mantle: An earth sciences data set that models the Earth’s mantle [120].

Six data sets were from the Exascale Computing Project:

– Constit: A material sciences data set that probes the deformation response of

polycrystalline materials [32].

– ExaAm Truchas: A materials science data set that looks at effects within

micro-structures of Additive Manufacturing (AM) [16].

– ExaSky Nyx: A cosmological data set that looks at gas dynamics [5].

– Miranda: A hydrodynamics data set of large-scale turbulence [39].

– S3D-N2: A combustion data set of field data N2 [132].

– S3D-UVEL: A combustion data set of field data U Velocity [132].

For each of the chosen data sets we selected a single timeslice we felt was

representative of the simulation.

66

3.3.1.2 Choosing Isovalues. Each of the data sets are three-

dimensional and volumetric, and to each we applied isosurfacing as our

visualization operation. Six isovalues were selected, specific to each data set. Our

process for choosing isovalues was as follows. Initially, default isovalues were chosen

and the data was rendered. If the resulting image is considered “good,” we keep

those values. Otherwise, we explored the data set to choose isovalues that are

“good.” “Good” was taken to mean “not bad,” as in: the isosurfaces occupied a

significant portion of the possible volume and (within reason) the isosurfaces were

not bunched together with little separation.

Figure 19. Example of using a Fibonacci Lattice to equally space cameras around
a data set. This research used this method determine the ten camera placements
for the user survey data sets.

3.3.1.3 Camera Placement. For each data set, we rendered ten

images from ten different viewpoints that can be seen in Figure 20. The camera

placements were chosen using Fibonacci’s Lattice, a formula that equally spaces

points around a sphere, as shown in Figure 19.

We experimented with many camera placement techniques and also with the

number of camera positions to include in the survey. We felt the Lattice approach

and this number of views provided a nice compromise between two factors. First,

we felt the camera positions covered the space of all possible camera positions

well — every feature was covered by at least one image. Second, we felt that a

67

small number of camera positions was beneficial, so we could investigate issues like

participant disagreement; if the number of views is very large, then it becomes less

likely to get two different participants considering the same pair.

3.3.2 User Study. Our user study collected participant preferences on

camera position. The participants in the survey were attendees of the 2021 United

States’ Department of Energy’s Computer Graphics Forum, which is made up

large data visualization practitioners across a wide variety of simulation domains.

Participants were instructed to make their decision around one central question: “if

you had to pick only of these images to represent this simulation, which would it

be?”

To take the survey, participants accessed a website where they were

presented with a sequence of questions. Each question was composed of two images

from the same data set, as shown in Figure 21. Participants were asked to spend

10 minutes answering questions, though they could stop whenever they wanted.

Participants answered the question by selecting the image they felt was most

representative, or neutral. Having answered, a new pair of images is generated for

that user to compare. The questions are randomly generated on demand for each

user. To generate a question, first the data set was randomly chosen, then the two

images to be compared ware randomly chosen, making sure to not to select the

same viewpoint for both images, and making sure not to repeat any pairs of images

that user has already seen. It is believed that approximately 30 visualization

practitioners participated in the survey. (If a participant closed their web browser

and restarted the survey, then they would appear as a new participant, making an

exact count difficult.)

68

X X X X X X O O X O O O X X O X X O X X X X O X X X X X X X

O X X X X O X O O O X X O O X X X X X X O X X O O O X X X X

X O X X X X X X X X X O O X X O X O X X X O X O X X O O O O

X O O X O O O O X X X O X O O O X X X O O X O O X X O X X O

X X X X X X X X X X X X X X X X X X O X X X O O O O O X X O

X X O X X O X X O X O O X O O X O O O X O O O X O O X X X X

O X X X X X X O X O X X O X X X X O X X O O O X O O X O X X

O X O O X O O O X X X X X X X O X O X O X X X X X X X O X X

X X O X O X X O X O X O X X X X X O X O X X X X O O O X X O

X X X X X X O O O X O X X X X X X X X O O O O O X X X X X O

Figure 20. The image set for our corpus. Each data set was transformed into a
multi-level isosurface, using six isovalues unique to each data set. Then, using the
Fibonacci Lattice, each data set was rendered from ten equally-spaced camera
positions around the data set. Each row of images is from the same scientific data
set. Each column of images is using the same camera placement. The data sets
are, from top to bottom: Asteroid, Constit, ExaAm Truchas, Fluid Dynamics,
Hurricane, Mantle, Miranda, S3D-N2, S3D-UVEL, ExaSky Nyx. In the top right
corner of each image is an annotation representing the Data Entropy score, Depth
Entropy score, and Shading Entropy score, respectively, for each viewpoint. For
each data set and metric, the scores were normalized to be between [0.09]. An O
means the viewpoint has a metric score in the top 20% among the ten images.
An X means the viewpoint has a metric score in the bottom 80% among the ten
images.

69

Figure 21. Examples of two questions from the user survey. The left image depicts
a question between two viewpoints from the Asteroid data set. The right image
depicts a question between two viewpoints from the S3D-UVEL data set. Users
can select the image they feel is most representative of the simulation, or they can
select neutral if they have no preference.

70

The survey resulted in 1266 responses, although 170 of these responses

indicated the participant had no preference for one image over another. We

discarded these “neutral” responses, resulting in 1096 entries where the participant

had a preference. Each of these 1096 entries is a tuple of the form (D,Ci, Cj, R)

where D is one of the ten data sets, Ci and Cj are camera positions, and R is the

participant preference (i.e., R = Ci or R = Cj).

With respect to metric information, we calculated the ten VQ metric

values for each of the 100 combinations of camera position and data set, and

these 1000 values complemented our corpus. The values were calculated using

Ascent [71], which has implementations to calculate all ten VQ metrics (although

some implementations have not yet been merged to the main Ascent repository).

For the entropy calculations, data needs to be placed in a histogram with a fixed

number of bins. The number of bins can change the distribution of the histogram

and thus the entropy. For data entropy, we chose six bins, since there were six

distinct scalar values (one for each isosurface). For shading entropy and depth

entropy, we chose the common default of 100. Finally, Ascent was also used to

generate the isosurfaces and imagery for the user study.

3.4 Evaluation Approach

As discussed previously in Section 3.2.1, our method uses camera metrics

to construct oracles that attempt to predict human behavior. Our evaluation for

a given oracle measures the extent that oracle can successfully predict participant

preferences in our data corpus. For each entry (D,Ci, Cj, R) in the corpus, our

evaluation approach provides the oracle with the corresponding VQ metrics and

records whether the oracle predicted the user would prefer Ci or Cj. If the oracle

correctly predicts R, then it receives one point. If not, then it receives zero points.

71

The oracle’s score is the sum of these points over all 1096 entries, and the oracle

with the highest score is the best, since it has made the highest number of correct

predictions. Table 3 shows a notional example of this process.

Table 3. An example of evaluating an oracle on a notional corpus with four entries.
Entries 1, 3, and 4 correspond to data set 1, while entry 2 corresponds to data
set 2. This oracle would receive a total of two points, since it correctly predicts
participant preferences for the first two entries, but is incorrect for the last two
entries. Further, note that entries 1 and 4 involves the same combination of data
set and cameras to compare, but the participants had different preferences, which is
a situation that occurs in practice. This means that no oracle can achieve a perfect
score for this corpus — the maximum score is three, since any oracle must make a
poor prediction of user behavior for either entry 1 or entry 4.

Participant Oracle
Entry Data Set Ci Cj Preference Prediction

1 DS1 3 6 3 3
2 DS2 8 8 8 8
3 DS1 3 9 9 3
4 DS1 3 6 6 3

Despite having 1096 entries in our corpus, the maximum possible score is

not 1096, because users sometimes disagree on which view is preferred (like entries

1 and 4 in Table 3). Therefore, none of our camera metric-based oracles should

expect to get a score of 1096. We studied the corpus and determined the maximum

achievable score is 952, i.e., when participants disagreed, the sum of the dissenting

choices was 144.

3.5 Results

This section evaluates how well camera metric-based oracles can predict user

preference. It is organized into three sections:

– Section 3.5.1 evaluates single-metric oracles, i.e., metrics that make

predictions using only one type of camera metric.

72

Table 4. Correct predictions for each single-metric oracle. Percent correct is
reported for both with respect to the maximum possible for our corpus (952 —
see discussion in Section 3.4), and to the total number of entries (1096).

Correct
Metric Predictions % (/952) % (/1096)

Data Entropy 676 71.0% 61.6%
Shading Entropy 662 69.5% 60.4%
Maximum Depth 571 60.0% 52.1%
Depth Entropy 566 59.4% 51.6%

of Visible Triangles 503 52.8% 45.9%
Visibility Ratio 502 52.7% 45.8%

Plemenos & Benayada 498 52.3% 45.4%
Viewpoint Entropy 492 51.6% 44.9%

VKL Distance 484 50.8% 44.2%
Projected Area 465 48.8% 42.4%

– Section 3.5.2 evaluates multi-metric oracles, i.e., metrics that make

predictions using more than one type of camera metric.

– Section 3.5.3 considers the conditions where our top oracles can predict user

behavior and where they cannot.

3.5.1 Single-Metric Oracles. The evaluation for each metric can be

found in Table 4. The rate of correct prediction is surprisingly low for all metrics.

An oracle that made random choices would be correct 50% of the time, and yet

six of the metrics were unable to achieve this threshold. Certainly, these metrics

(on their own) do not appear to be useful for the data sets in our corpus. The top

performing metrics do include our new entropy-based metrics, although their rate

of successful prediction is somewhat low. The best-performing metric, data entropy,

is correct at slightly more than a 3-to-2 rate, although it does achieve 71% of the

performance of a perfect oracle.

3.5.2 Multi-Metric Oracles. This multi-metric analysis begins

by considering oracles that incorporate two metrics, with the top results listed

73

Table 5. This table displays results for two-metric oracles all three combination
methods (TIER, NORM, NONE). There are 45 two-metric oracles, but only the
best ten are shown for each combination method. The TIER method is prone to
ties, and these ties were discarded, meaning the number of entries evaluated for
TIER is lower than 1096. For example, the sum of the tiers for depth entropy and
data entropy were equal for the camera pairs for 158 of the 1096 corpus entries, and
so only the remaining 938 entries were considered. Further, its percentage is based
on this lower number, i.e., 63.4% × 938 means this oracle made the correct number
of predictions 595 times. The number of entries considered for TIER evaluations
ranged over the 45 combinations from 842 to 1016. For NORM and NONE, the
percentages reflect all 1096 entries.

NORM TIER NONE
Rank Metric 1 Metric 2 % Metric 1 Metric 2 % Metric 1 Metric 2 %

1 Data Ent. Shading Ent. 64.4% Data Ent. Depth Ent. 63.4% Data Ent. Shading Ent. 65.2%
2 Data Ent. Depth Ent. 64.1% Data Ent. Max Depth 63.4% Shading Ent. Depth Ent. 64.8%
3 Shading Ent. Depth Ent. 62.2% Data Ent. Shading Ent. 62.8% Data Ent. Depth Ent. 63.0%
4 Data Ent. Max Depth 62.0% Shading Ent. Depth Ent. 62.2% Shading Ent. PB 60.5%
5 Data Ent. Visible 4’s 59.4% Data Ent. Visible 4’s 59.5% Data Ent. Vis. Ratio 60.1%
6 Shading Ent. Visible 4’s 57.0% Data Ent. Vis. Ratio 59.0% Shading Ent. Vis. Ratio 60.0%
7 Shading Ent. Vis. Ratio 56.0% Data Ent. VKL 56.8% Data Ent. Max Depth 59.5%
8 Depth Ent. Max Depth 56.7% Shading Ent. Max Depth 56.6% Data Ent. PB 59.3%
9 Data Ent. Vis. Ratio 56.5% Data Ent. Viewpoint Ent. 56.3% Shading Ent. VKL 57.2%
10 Shading Ent. Max Depth 55.7% Depth Ent. Max Depth 56.1% Depth Ent. Max Depth 55.9%

in Table 5. This table demonstrates two important findings: (1) that our new

entropy-based metrics are performing well as oracles and (2) that the method

for combining metrics (i.e., TIER, NORM, or NONE) is not crucial. With

respect to performance, each of the top oracles uses at least one of our entropy-

based metrics. Further, the three combinations that involve two of our metrics

(i.e., data entropy + shading entropy, data entropy + depth entropy, and shading

entropy + depth entropy) rank as the top three for NORM and NONE and three

of the top four for TIER. In fact, the top performer that does not have one of

our entropy-based metrics are the 14th best performers for NORM and TIER

(visible triangles+maximum depth for both cases) and the 13th best performer for

NONE (VKL+maximum depth). With respect to combining metrics, while there

is variation in the order and percentages, the overall trends are quite close: each

74

Table 6. This table displays results for three-metric oracles for all three
combination methods (TIER, NORM, NONE). There are 120 three-metric
oracles, but only the best ten are shown for each combination method. As discussed
in Table 5’s caption, the TIER method is prone to ties, and these ties were
discarded. The number of entries considered for TIER evaluations ranged over
the 120 combinations from 928 to 1051. Once again, the percentages for NORM
and NONE reflect all 1096 entries. Finally, for formatting reasons, data entropy,
depth entropy, and shading entropy are abbreviated DaE, DeE and ShE.

NORM TIER NONE
Rank Metrics % Metrics % Metrics %

1 DaE + ShE + DeE 65.7% DaE + ShE + DeE 64.5% DaE + ShE + DeE 68.0%
2 DaE + ShE + Max. Depth 64.1% DaE + ShE + Vis. Ratio 63.3% DaE + ShE + Vis. Ratio 65.0%
3 DaE + ShE + Vis. 4’s 63.3% DaE + ShE + Max. Depth 62.6% DaE + ShE + PB 64.8%
4 DaE + ShE + Vis. Ratio 63.1% DaE + ShE + VKL 61.8% ShE + DeE + Vis. Ratio 64.5%
5 DaE + ShE + PB 61.4% DaE + ShE + Visible 4’s 61.7% ShE + DeE + PB 63.8%
6 DaE + ShE + VKL 61.2% DaE + DeE + Max. Depth 59.7% DaE + ShE + VKL 62.9%
7 DaE + DeE + Max. Depth 60.7% DaE + ShE + Viewpoint Entropy 59.6% DaE + DeE + Vis. Ratio 61.8%
8 DaE + ShE + Projected Area 60.5% ShE + DeE + Max. Depth 59.2% DaE + DeE + PB 61.2%
9 DaE + ShE + Viewpoint Ent. 60.1% DaE + DeE + Visible 4’s 59.1% ShE + DeE + Viewpoint Ent. 60.8%
10 ShE + DeE + Max. Depth 59.5% DaE + DeE + Vis. Ratio 59.0% ShE + Vis. Ratio + PB 60.5%

of the top combinations are in the 63%-65% range and many of the same pairs of

metrics are repeated across the table.

Table 6 continues the analysis with oracles that incorporate three metrics.

This table shows highly similar results to the two-metric analysis: our entropy

metrics are good performers and the method for combining metrics (TIER,

NORM, NONE) is not all that significant. Once again, each of the top ten

performers involves at least one of our entropy-based metrics, and most involve two.

Further, the top combination across all three combination methods is data entropy

+ shading entropy + depth entropy. One difference between the combination

methods is that the NONE version yields the highest prediction rate (746 correct

predictions with a maximum possible of 952). In terms of how the comparator

(non-entropy) metrics performed, the top oracles were:

– NORM and TIER both had visible triangles + visibility ratio + maximum

depth ranked as the 46th best combination (out of 120), with successful

predictions 50.4% and 50.1% of the time, respectively.

75

– NONE had VKL + visibility ratio + maximum depth ranked as its 35th best

combination (again out of 120), with successful predictions 54.3% of the time.

We repeated this analysis with four metrics, and found that 4-metric oracles

were generally not as effective as the 3-metric oracles. One exception was the

combination of data entropy, shading entropy, depth entropy, and PB (Plemenos

& Benayada), which had a 68.4% winning percentage with NONE. That said, we

are skeptical about the strength of this finding. On the one hand, PB does provide

new insights that the entropy-based metrics do not have — it maximizes visible

triangles and projected area per pixel, typically choosing viewpoints that “fill” the

final image. On the other hand, the data in our corpus is noisy and the amount of

improvement is small. Further, we are concerned that we run the risk of “reverse

engineering” a result based on our corpus. In all, we conclude from this analysis

that our entropy-based metrics do provide better prediction of user preference than

previous methods, and also that the combination method is not important. We feel

this conclusion is supported by the high rate that entropy-based metrics appear as

top performers and in the invariance of the result across combination method.

3.5.3 Efficacy of Top Oracle. This section investigates how the top

oracle (data entropy + shading entropy + depth entropy, combined with NONE)

performed on the corpus.

Table 7 presents analysis about how the oracle performs for different

types of cameras. Specifically, each camera is classified as “POOR,” “FAIR,”

“GOOD,” or “VERY GOOD” and the analysis considers how the oracle

performs for each of the combinations (e.g., when the oracle is asked to choose

between a “POOR” and “GOOD” camera). We classify the cameras based

on their win percentage, i.e., the rate that an individual image was preferred by

76

Table 7. Performance statistics for our top oracle. As an example of how to
interpret this table, the data from the GOOD/POOR entry means that there
were 222 instances in our corpus where our oracle was asked to choose between
one camera that was GOOD and one camera that was POOR, and it correctly
matched participant preference 188 times, which was an 85% success rate. The
Sum column provides statistics about behavior for one camera grouping. For
example, there were 470 instances in our corpus where at least one of the cameras
was POOR, for which our oracle correctly matched participant preference 82% of
the time. The Sum column involves double counting some of the corpus entries,
e.g., entries with both GOOD and FAIR are counted in both the GOOD and
FAIR sums. Some table cells have higher counts because the number of cameras
for each type varies; there are 34 GOOD cameras and 22 of the other three types.
Finally, table cells are colored by their performance: a success rate of 70% or more
is colored green, 60%-70% is colored yellow, and less than 60% is colored pink.

POOR FAIR GOOD VERY GOOD Sum
POOR 82% (23/28) 75% (55/73) 85% (188/222) 80% (118/147) 82% (384/470)

FAIR 75% (55/73) 60% (30/50) 54% (88/162) 61% (69/114) 61% (242/399)
GOOD 85% (188/222) 54% (88/162) 58% (57/99) 60% (107/177) 67% (440/660)

VERY GOOD 80% (118/147) 61% (69/114) 60% (107/177) 46% (11/24) 66% (306/462)

participants. For example, camera position #6 for the Mantle data set was one of

the most preferred images, being preferred by users in 28 out of 31 comparisons,

i.e., a “win percentage” of 90.3%. We label as follows: 0%-25% as POOR, 25%-

50% as FAIR, 50%-75% as GOOD, and 75%-100% as VERY GOOD. While

our oracle does not have access to either win percentage or these labels, they are

useful for postmortem analysis of oracle behavior. In terms of findings, our oracle

appears to be most effective at predicting user preference when POOR cameras

are involved, with an 82% efficacy, which was the highest of any group by a large

margin. When a participant is asked to choose between two cameras that are

GOOD or VERY GOOD, our oracle is only 58% effective (175/300). Possibly

these images are both adequate to the participant, and so other factors, such

as esthetics, become more important. Overall, this table shows that we perform

77

relatively similarly for all types of cameras. Moreover, it does not show evidence

that our oracle is under-performing for certain types of comparisons.

Table 8. The rate of successful predictions by our top oracle per data set.

Data Set Prediction Rate
Asteroid 74.2%
Constit 52.2%
ExaAM 76.5%

Fluid Dynamics 80.8%
Hurricane 60.3%

Mantle 79.1%
Miranda 52.5%
S3D-N2 57.7%

S3D-UVEL 72.7%
ExaSky Nyx 71.5%

Table 8 presents prediction rate by data set. Three of the data sets —

Constit, Miranda, and S3D-N2 — have success rates below 60%, and a fourth,

Hurricane, is just above 60%. The remainder of the data sets are at or above the

oracle average. Visual inspection of the images for these four data sets shows:

– Constit has many views that are similar. Participants preferred those with

empty space between the isosurfaces, presumably the other views created

confusion with occlusion issues. None of the entropy-based metrics would

assist with this issue.

– Hurricane is composed of several layers with high rates of occlusion,

undoubtedly causing issues for both data entropy and depth entropy.

Additionally, this data set is easily identifiable and an uncommon choice of

esthetics may influence user preference.

– Miranda has blue/orange surfaces at the boundary of the volume that are (in

the opinion of the authors) not as interesting as the isosurfaces at the mixing

78

layer. That said, data entropy rewards showing more of these blue/orange

surfaces. When we modified our oracle to ignore data entropy, the prediction

rate went to 69.7%, in line with the oracle average.

– S3D-N2 has small features that are clearly visible from some images, but not

from others. Users preferred the images with these features, but the data

entropy calculation did not reflect their presence since its calculations were

dominated by the other surfaces.

All of these observations suggest possible future improvements for an oracle-

based scheme.

3.6 Conclusion

The research premise of this study is that the entropy-based metrics are

good predictors, especially in combination, and we feel our results provide strong

evidence to support this premise. We do believe that we could look further at

ways to combine metrics (such as weighted combinations) and decision-tree

type oracles (“if the data entropy is better then choose this camera, else look at

shading entropy...”) and optimize those approaches for this given corpus. But

such optimizations would have to be verified on a different corpus with different

data set and users; we view this as future work. We also believe the shortcomings

identified with Constit, Hurricane, Miranda, and S3D-N2 suggest future avenues of

improvement.

We (surprisingly) recommend the NONE combination method of adding

the three scores together. While such an approach creates apples-to-oranges

concerns when involving non-entropy metrics, it is appropriate when adding three

entropy metrics together. Our motivation for this recommendation is not because

NONE got the highest prediction percentage, but because it requires no additional

79

knowledge. NORM and TIER require evaluating multiple cameras to establish a

baseline for what should go in a “good” or “bad” tier or what should be normalized

to “1” or “10.” NONE does not require these extra calculations, which is an

advantage in an in situ setting.

There are two major areas of future work: (1) how the study itself can

be improved and extended, and (2) how the results of this study can be used

for automating in situ camera placement. With respect to improving the study,

we would like to continue to expand our corpus of data and evaluate additional

metrics and oracles. In particular, our corpus consisted of multi-level isosurface

imagery, and other visualizations may have differing results. Further, we limited

our consideration of combined metrics due to concerns of overfitting, but an

additional corpus would enable us to optimize combinations on one corpus and

validate on the other. Other extensions could include enhancing the survey, for

example to include stereo imagery, or enhancing the overall approach, for example

considering variation in isolevels as well as camera position. With respect to in situ

automation, this research direction is tackled in the remaining chapters.

80

CHAPTER IV

AUTOMATIC IN SITU CAMERA PLACEMENT FOR LARGE-SCALE

SCIENTIFIC SIMULATIONS

This chapter is co-authored work that is in submission. Contributions to

this work are the following: I provided initial parallelized implementation of the

VQ metrics, as well as executing the performance and search studies. I was also

the primary author of this work. Manish Mathai re-parallelized the implemented

VQ metrics using VTK-m and helped in the editing of the manuscript. Stefan

Fields explored search algorithms in the early stages of this work. Hank Childs

provided extensive feedback over the course of this work and helped in editing the

manuscript.

4.1 Introduction

There are two major challenges to deploying VQ metrics for in situ camera

placement. The first challenge is selecting VQ metrics that will fit within an in

situ environment, i.e., they can be enhanced to run in a distributed-memory

environment and can operate quickly on many-core architectures. The second

challenge is finding a quality viewpoint quickly. While there are an infinite number

of possible camera positions, it is critical to find a good camera placement without

having to consider 100s or even 1000s or viewpoints.

The main contribution of this chapter is to address these two challenges:

– We develop a parallelization scheme for two common patterns of VQ

metrics that enable VQ metrics to be deployed in a parallel (distributed-

memory+shared-memory), in situ setting. This is the first-ever approach for

parallelizing calculation of these metrics. We also establish that the approach

is performant.

81

– We develop search algorithms that trade off between camera quality and total

execution time. We also evaluate these algorithms, and provide practical

suggestions about “sweet spots” in these tradeoffs.

In all, this work provides a pragmatic and useful approach for in situ

automation of camera placements. It also shows that automatic camera placement

can be performed efficiently in situ.

In our study, we incorporate the same eleven VQ metrics Marsaglia et

al. [92] evaluated in their user preference study. The selection of these VQ metrics

is based on their potential for in situ implementation: small memory footprint,

low communication overhead, and quick execution time. The eleven metrics are

summarized in Table 9.

4.2 Our Method

This section describes our method in two parts: Section 4.2.1 describes our

parallelization for the calculation of VQ metrics, while Section 4.2.2 describes how

we search for a good camera placement. In terms of relationship between the two

parts, the search algorithm operates by evaluating VQ metrics at potential camera

positions, and it uses the parallelization approach to quickly calculate these metrics

in a distributed-memory, in situ setting.

4.2.1 VQ Metric Parallelization. The eleven VQ metrics we

consider all operate by analyzing the result of a rendering process. That is, a

rendering process takes a data set as input and produces an image, and then a

VQ metric analyzes the image to produce a number. However, each VQ metric

alters the rendering process to accomplish its goals. For example, the “visible

triangles” metric annotates each triangle with a unique identifier prior to rendering,

and the result of the rendering process is an image where pixels contain triangle

82

Table 9. Descriptions of the 11 VQ metrics used in this research.

VQ Metric Definition

Data Entropy
Maximizes the entropy of the visible
field data from some viewpoint [92].

DDS Entropy

The sum of the three VQ metric scores:
Data Entropy + Depth Entropy + Shading Entropy [92].

The Marsaglia user study showed this metric
was most aligned with user preference.

Depth Entropy
Maximizes the entropy of the visible
depth data from some viewpoint [92].

Max Depth Maximizes the visible depth from some viewpoint [118].
Plemenos and

Benayada (PB)
Maximizes the number of visible triangles as

well as the resolution of the rendered image [102].

Projected Area
Maximizes the visible projected area of
the data set from some viewpoint [102].

Shading Entropy
Maximizes the entropy of the visible shading

coefficients from some viewpoint [92].

Viewpoint Entropy
Maximizes the entropy of the projected area

from some viewpoint [134].

Visibility Ratio
Maximizes the ratio of visible surface area

over the total surface area [102].

Visible Triangles
Maximizes the total number of visible triangles

from some viewpoint [102].

Viewpoint
Kullback-Leibler
distance (VKL)

Minimizes the distance between the normalized
distribution of projected areas in Image Space
and the normalized distribution of projected

areas in World Space [116].

identifiers instead of colors. For this metric, if triangle T is visible from a given

camera position at pixel P , then the image data for pixel P will contain T . The

metric can then count the number of visible triangles by counting the number of

unique identifiers in the image.

We implemented our algorithm in the Ascent in situ library [71], which

makes use of VTK-m [95]. VTK-m operates on shared-memory architectures,

and Ascent adds distributed-memory parallelism via MPI. VTK-m employs a

portable parallelism approach: algorithms are implemented using data parallel

83

Rank 0

Rank 1

Rank 2

Rank n

.

.

.

Local
Calculations

Global
Calculation

Rank 0

Rank 1

Rank 2

Rank n

.

.

.

Local
Calculations

Final
Score

Global
Calculation

Rank 0

Rank 1

Rank 2

Rank n

.

.

.

Local
Calculations

Global
Calculation

Final
Score

One Global Communication Two Global Communications

Figure 22. As input, each metric receives the simulation data, including both field
data and geometry, as well as a rendering of the visible field data and geometry
from some viewpoint. Using this input, the implemented metrics require either one
or two global coordinations when computing a viewpoint score.

primitives, which then get executed efficiently on devices using an appropriate

back end (CUDA, OpenMP, Kokkos). VTK-m and Ascent already had parallel

rendering capability, which could utilize shared-memory and distributed-memory

parallelism, through VTK-m and Ascent respectively. Further, the approach for

parallel rendering is well established in the visualization community: each MPI task

renders its own data to make a “sub-image” and then all MPI tasks participate

in a “compositing” phase where the “sub-images” are combined to make a single

image. For our approach, we adapted Ascent’s rendering to have the requisite

information to carry out a VQ metric calculation (e.g., triangle identifiers), had

Ascent perform a render, and then analyzed the result in our VQ routines. The

VQ calculations were implemented using a combination of VTK-m (using shared-

memory parallelism to analyze images to calculate metrics) and MPI (to coordinate

calculations across MPI tasks).

At a high level, the VQ metrics all follow one of two execution patterns,

as shown in Figure 22. Depending on the metric, the calculations may require

84

one or two global communications. In the former case, the metrics receive the

data, perform local calculations, and then globally coordinate the final metric

score. In the latter case, the individual ranks first perform any local calculations,

second they coordinate globally, third they again individually perform any local

calculations, and then finally they do one more global coordination to calculate the

final score.

Data Entropy is an example of a VQ metric that requires only one global

communication. From Ascent, this metric receives the minimum and maximum

field values, as well as a rendering of the visible field data from some camera

placement. In our infrastructure, rank 0 is the only process that receives the

composited render of the visible data. From here, rank 0 sorts the visible data

present in each pixel into a histogram comprised of 1000 bins that are equally

spaced using the field range. After creating a histogram, rank 0 can calculate the

probability of each field value and calculate entropy using Shannon’s Entropy.

Lastly, rank 0 broadcasts the final entropy score to the other ranks.

Visibility Ratio is an example of a VQ metric that requires two global

communications. From Ascent, this metric receives a rendering that details the

visible triangles via triangle identifiers. (Again, rank 0 is the only process that

receives the composited render of the visible triangles.) In the first phase of local

work, each rank calculates the surface area of their local geometry. The first

global communication is an MPI Reduce summation that adds up each rank’s

local surface area and returns a global surface area to rank 0 (the root process).

In the second phase of local work, rank 0 calculates the visible surface area from

the rendering of visible triangles and then calculates the visibility ratio by dividing

85

the visible surface area by the global surface area. Lastly, rank 0 broadcasts the

final visibility ratio to the other ranks.

4.2.2 Viewpoint Search Algorithm. An important consideration

for this algorithm is the “stability” of VQ metrics as the camera moves. If small

changes in camera position consistently lead to large changes in metrics scores,

then it would be difficult to search the space without performing many evaluations.

On the other hand, if scores vary somewhat smoothly, then it is easier to search

with few evaluations. Section 4.3.2.1 explores this topic in detail. That said, the

findings from that section provide intuition behind our search algorithms: scores

vary somewhat smoothly as the camera position changes.

Much like the approach used in the popular Cinema project [3], our search

algorithms consider camera locations on the surface of a sphere that bounds the

data set. Using Spherical Coordinates, we divide the surface into equal segments,

φm and θn, for some integers m and n, that creates a grid search-space of size

m ∗ n. A user can then decide a camera budget that dictates how many camera

placements to evaluate with each search algorithm.

We developed four search algorithms. That said, one of the algorithms has

three variants, meaning we have six algorithms overall (three algorithms with no

variants, and one algorithm with three variants). Given a search space and camera

budget, the algorithms operate as follows:

– Random Search: each new camera position is placed at a random location,

as shown in Algorithm 1.

– Diagonal Search: this approach travels along a diagonal of the search

space, and allows for user-specified spacing between the considered camera

placements, as shown in Algorithm 2. The variants are due to skipping

86

behavior defined by the sample rate, which greatly affects performance. In

order to hit every grid point and evaluate the respective camera, it is critical

that the chosen sample rate is co-prime to the dimensions of each axis. That

is, the chosen sample rate needs to be co-prime with both n and m, meaning

the only common divisor is one. The sample rates selected for evaluation in

Section 4.3.2.2 are 7, 23, and 43.

– Space-Filling Curve Search: as more and more potential camera positions

are considered, they are placed using the Morton (Z-order) space-filling curve

approach, as shown in Algorithm 3. This ensures that each additional camera

position is placed into the largest unexplored region of possible camera

positions.

– Linear Search: iterate over the camera positions one-by-one, with each

camera position adjacent to the previous one, as shown in Algorithm 4. This

algorithm does a poor job of sampling the space and is intended only as a

reference.

Algorithm 1 Random Search

max score= −FLT MAX
count = 0
while count < camera budget do

cam pos = Math.Random() ∗ n ∗m
if score(cam pos) > max score then

max score = score(cam pos)
count++

end if
end while

87

Algorithm 2 Diagonal Search with sample rate

max score= −FLT MAX
count = 0
while count < camera budget do

phi pos = count ∗ sample rate % m
round = (int) count ∗ sample rate

m
% m

theta pos = (round + phi pos) % n
cam pos = GetCamera(phi pos,theta pos)
if score(cam pos) > max score then

max score = score(cam pos)
count++

end if
end while

Algorithm 3 Space-Filling Curve Search

max score= −FLT MAX
count = 0
while count < camera budget do

cam pos = morton space filling curve(count)
if score(cam pos) > max score then

max score = score(cam pos)
count++

end if
end while

Algorithm 4 Linear Search

max score= −FLT MAX
count = 0
while count < camera budget do

phi pos = count % m
theta pos = (int) count

m
% n

cam pos = GetCamera(phi pos, theta pos)
if score(cam pos) > max score then

max score = score(cam pos)
count++

end if
end while

88

4.3 Results

Our results are organized into three phases. Phase 1 focuses on the

performance of individual Viewpoint Quality metrics in a parallel setting. Phase

2 focuses on the efficacy of our search algorithms to find an optimal image quickly.

Finally, Phase 3 considers holistic behavior by running our algorithm in an in situ

setting.

4.3.1 Phase 1: Parallel Performance of Individual Metrics. To

evaluate parallel performance, we ran the Lulesh proxy application on NERSC’s

Cori supercomputer. Our runs used 27 nodes with one MPI task per node. Each

MPI task incorporated shared-memory parallelism through OpenMP, and had

access to 32 threads. The Lulesh simulation was of a Sedov blast problem, which

we ran for 100 cycles and evaluated 10 camera positions per cycle. Each MPI task

had a data size of 3423, for a total data size of 10203.

Table 10 contains the results of our experiments. The major result is that

the rendering stage dominates the majority of the computation, and our separate

phases for metric evaluation add minimal overhead. In other words, our method

takes about long as rendering a single image. Of course, our overall approach

involves evaluating many camera positions. Phase 2 will explore how many camera

positions are necessary. Phase 3 will then add more context to these parallel

performance results, since it will consider overall in situ encumbrance.

4.3.2 Phase 2: Evaluating Viewpoint Search Algorithms. The

second contribution of this work evaluates viewpoint search algorithms on scientific

data sets. For this contribution, we first examine the stability of the search space.

We then evaluate how quickly search algorithms can find a quality viewpoint.

89

Metric Pre-Processing* Rendering Local Work 1 Global Comm 1 Local Work 2 Global Comm 2 Total
Data Entropy 7.80E-05 1.01E-02 1.01E-04 1.08E-05 - - 1.03E-02
Depth Entropy 7.80E-05 1.01E-02 9.59E-05 8.09E-06 - - 1.03E-02
Max Depth 7.80E-05 1.01E-02 1.59E-05 1.00E-05 - - 1.02E-02
PB 7.80E-05 1.01E-02 1.02E-03 1.01E-05 - - 1.12E-02
Projected Area 7.80E-05 1.01E-02 1.00E-03 9.34E-06 - - 1.12E-02
Shading Entropy 7.80E-05 1.01E-02 9.91E-04 9.44E-06 - - 1.12E-02
Viewpoint Entropy 7.80E-05 1.01E-02 6.81E-06 7.34E-06 1.00E-03 1.08E-05 1.12E-02
Visibility Ratio 7.80E-05 1.01E-02 2.16E-08 9.84E-06 1.00E-03 1.06E-05 1.12E-02
Visible Triangles 7.80E-05 1.01E-02 1.01E-03 1.21E-05 - - 1.12E-02
VKL 7.80E-05 1.01E-02 5.05E-06 9.30E-06 1.00E-03 8.12E-06 1.12E-02

Table 10. The total execution times, in seconds, for each metric to evaluate a
single viewpoint. Note: Pre-processing is a stage in the workflow that only needs to
be executed once per cycle, no matter how many camera placements are considered.
The rendering stage, as well as the metric evaluations, need to be excuted for each
considered camera placement.

4.3.2.1 Stability of Search Space. The values in the search space

depend on both the VQ metric and the data being rendered. For our evaluation, we

considered the VQ metrics from Table 9. For data sets, we used the same ten data

sets from the Marsaglia et al. [92] user study on camera placement for large data

visualization. These data sets are:

– Asteroid: A data set of a deep water impact of an asteroid [100].

– Constit: A material sciences data set that probes the deformation response of

polycrystalline materials [32].

– ExaAm Truchas: A materials science data set that looks at effects within

micro-structures of Additive Manufacturing (AM) [16].

– ExaSky Nyx: A cosmological data set that looks at gas dynamics [5].

– Fluid Dynamics: A fluid dynamics data set that models a cylindrical flow of

water [70].

– Hurricane: A weather data set of Hurricane Isabel [1].

90

– Mantle: An earth sciences data set that models the Earth’s mantle [120].

– Miranda: A hydrodynamics data set of large-scale turbulence [39].

– S3D-N2: A combustion data set of field data N2 [132].

– S3D-UVEL: A combustion data set of field data U Velocity [132]

For each data set, we calculated each VQ metric for ten-thousand

viewpoints. The viewpoints were constructed in the same way as the search

algorithms in Section 4.2.2: along the surface of a sphere, and taking even

increments in φ and θ in Spherical Coordinates (φm = θn = 100). The ten-thousand

scores were then rendered as heatmaps (high scores are white, low scores are dark

orange and black):

– Figure 23 shows heatmaps for two data sets, including thumbnails of the

images with high or low scores using DDS Entropy,

– Figure 24 shows heatmaps for 10 VQ metrics for a single data set, and

– Figure 25 shows heatmaps for 10 data sets using the DDS Entropy metric

(the metric that best predicts user preference from Marsaglia’s user study).

While there are sharp cliffs as occlusions change, the “high” regions for each metric

are (for the most part) large and easy to find. Further, the metric DDS Entropy,

shown in Figure 25, has large “white” regions, meaning good viewpoints are not

sparse nor randomly appearing. In their user study, Marsaglia found that users

disagreed regularly about “good” views, but were consistent in rejecting “bad”

views. Based on the DDS Entropy heatmaps in Figure 25, these bad views are

relatively easy to identify and avoid, i.e., find a camera placement a white region

91

instead of an orange or black region. Whereas the score heatmaps in Figure 24 has

several VQ metrics where the local optimums are tightly clustered and may be hard

to locate quickly. Overall, we find these heatmaps to be promising with respect to

the searchability of the space.

Figure 23. Annotated heatmaps of the Asteroid (top) and Constit (bottom) data
sets. For the Asteroid data set, the DDS Entropy scores from best to worst are:
top left, bottom left, bottom right, top right. For the Constit data set, the best to
worst are: top right, bottom left, bottom right, top left.

92

Figure 24. Ten heatmaps corresponding to ten VQ metrics applied to the Asteroid
data set. The VQ metrics are, from top left to bottom right: Data Entropy, Depth
Entropy, Max Depth, PB, Projected Area, Shading Entropy, Viewpoint Entropy,
Visibility Ratio, Visible Triangles, VKL. The Asteroid heatmap for DDS Entropy
can be found in Figure 25. These heatmaps show that the searchability of the space
is dependent on VQ metric.

Figure 25. Heatmaps of DDS Entropy values as camera position changes for all
ten data sets. The data sets are, from top left to bottom right: Asteroid, Constit,
ExaAm Truchas, Fluid Dynamics, Hurricane, Mantle, Miranda, S3D-N2, S3D-
UVEL, ExaSky Nyx. These heatmaps show that the higher scores or “hot spots”
are not sparse nor randomly appearing.

4.3.2.2 Search Algorithm Evaluation. This evaluation considered

all algorithms from Section 4.2.2. We tested our search algorithms on the heatmaps

from Section 4.3.2.1, evaluating how many camera positions each search algorithm

needs to evaluate in order to find a quality viewpoint.

93

Search
Algorithms

Percentile
80th 85th 90th 95th 99th

Linear 1330.8 1592.4 1816 2514 4025.6
Random 25.1 31.8 83.3 210.2 921
Diagonal 7 91.7 126.8 145.5 322.9 1141.2
Diagonal 23 33.5 40 80.3 253.9 1051.2
Diagonal 43 23.3 30.3 69 138.6 799.1
Space-Filling
Curve

29 36 83 147.9 712.2

Table 11. The average number of camera positions each search algorithm had to
evaluate in order to find a camera position with a score in a given percentile. This
average is taken over all VQ metrics.

Search
Algorithms

Percentile
80th 85th 90th 95th 99th

Linear 267.6 350.2 507.9 1428 3446.6
Random 2.2 3.2 6.8 22 398.9
Diagonal 7 7.2 12 20.8 60.5 359.1
Diagonal 23 3 4.6 7.9 44 307.6
Diagonal 43 2.1 3.8 5.4 19.2 104.6
Space-Filling
Curve

3.9 7.6 11.7 28.2 204.9

Table 12. The average number of camera positions each search algorithm had to
evaluate in order to find a camera position with a score in that percentile. This
average is taken over just the Entropy VQ metrics that Marsaglia et al. found best
predict user preference.

94

Table 11 shows the average number of camera positions it takes for each

search algorithm to find a viewpoint that has a score in the 80th, 85th, 90th, 95th,

and 99th percentiles for each VQ metric. The best performers were primarily

the Diagonal search algorithms followed by Random Search and then Space-

Filling Curve. Diagonal 43 performed the best, finding a viewpoint in the 80th

percentile after considering 23.3 camera placements on average, followed closely by

Random Search and Space-Filling Curve, which had to consider 25 and 29 camera

placements on average, respectively.

We repeated this analysis, but limited the VQ metrics considered to just

the Entropy metrics that the Marsaglia et al. study showed most closely align with

user preference [92]. The results are in Table 12. Again, Diagonal 43 performed

the best, being able to find a viewpoint with a score in the top 80th percentile after

considering, on average, 2.1 viewpoints. Interestingly, one of the best performers

is the Random Search. This is most likely due to the nature of the data sets and

the fact that good viewpoints are not sparse. Overall, almost all of the search

algorithms can find a viewpoint in the top 80th and 85th percentiles rather quickly.

But, if a user is wanting a viewpoint in the 90th percentile or higher, the search

for a viewpoint could be substantially longer and the user will have to decide if

performing 10X more searches is worth an image that is 10% better.

4.3.3 Phase 3: In Situ Evaluation. This phase builds on the

previous two phases by performing an situ evaluation. Section 4.3.1 demonstrated

that parallel VQ metric calculation can be executed quickly, adding little overhead

to the more costly rendering process. Section 4.3.2 provided insight into best

practices when searching for a camera placement. That said, this phase did its

evaluation by using data that would be prohibitive to calculate in an in situ setting.

95

For this phase, we ran a scientific simulation with in situ camera placement

search, and evaluated tradeoffs between in situ constraints and the quality of a VQ

metric’s chosen camera placement. Specifically, we again ran Lulesh on NERSC’s

Cori supercomputer, with the same level of parallelism as Phase 1. We executed

Lulesh for 100 cycles, and for every cycle evaluated each metric using one of five

different budgets: 5, 10, 20, 50 and 100 camera placements. The five budgets

control how many camera placements are evaluated. The camera placements

were chosen using Diagonal 43, i.e., the best performing search algorithm from

Section 4.3.2.2, Note that our search algorithm starts from the same location for

a given camera budget, meaning that the set of placements for a smaller budget

are a subset of the set of placements for a larger budget. In terms of measurement,

we timed the in situ execution of rendering the budgeted camera placements and

calculating their respective VQ metric scores.

Table 13 shows the in situ execution results for a single cycle, as well as the

maximum score achieved for each VQ metric for each camera budget. Among the

eleven evaluated VQ metrics, only one metric, VKL, found its best camera (for this

cycle) amongst the first 5 cameras considered, meaning this metric did not benefit

when considering up to 95 more cameras. The ten other VQ metrics all benefited

at least once to an increase in the number of cameras considered. Six of those ten

VQ metrics experienced only one increase across all budgets: PB, Projected Area,

Viewpoint Entropy, and Visible Triangles found their best camera placement when

considering 10 cameras, whereas Data Entropy and Visibility Ratio found their best

camera placement when considering 20 cameras. VQ metrics DDS Entropy, Depth

Entropy, Max Depth, and Shading Entropy all experienced multiple increases across

budgets. Max Depth found their best score when considering 50 cameras, while

96

DDS Entropy, Depth Entropy, and Shading Entropy found their best score when

considering 100 cameras. Overall, for the given cycle, the majority of metrics found

their best camera placement when considering 20 cameras or less, whereas only four

metrics benefited from considering 50 or 100 cameras.

We then evaluated the average increase in score for each metric when

increasing the camera budget over all 100 cycles of the Lulesh simulation. We did

this by normalizing the VQ metric scores for each cycle using the scores from all

budgets. Once normalized, we calculate the percentage change when increasing the

camera budget, and then took the average across all cycles. Table 14 shows the

average percentage increase in score for each metric when the budget was increased.

VQ Metric
5 Cameras 10 Cameras 20 Cameras 50 Cameras 100 Cameras

Max Score Time (s) Max Score Time (s) Max Score Time (s) Max Score Time (s) Max Score Time (s)
Data Entropy 1.633 1.523 1.633 2.786 1.634 5.057 1.634 12.922 1.634 26.167
DDS Entropy 9.542 1.858 9.627 3.102 9.74 5.672 9.965 14.489 10.162 29.077
Depth Entropy 4.248 1.522 4.331 2.783 4.363 5.055 4.536 12.912 4.686 26.135
Max Depth 0.0124 1.513 0.01253 2.758 0.01257 5.007 0.0131 12.774 0.0131 25.899
PB 7.066 1.525 7.119 3.024 7.119 5.542 7.119 14.130 7.119 28.611
Projected Area 6284440 1.644 6332160 3.023 6332160 5.543 6332160 14.123 6332160 28.581
Shading Entropy 3.680 1.642 3.680 3.020 3.746 5.540 3.763 14.109 3.844 28.565
Viewpoint Entropy 3.872 1.654 3.876 3.027 3.876 5.544 3.876 14.151 3.876 28.638
Visibility Ratio 0.8660 1.652 0.8660 3.028 0.8692 5.545 0.8692 14.137 0.8692 28.268
Visible Triangles 147 1.643 148 3.024 148 5.542 148 14.125 148 28.597
VKL -0.2632 1.655 -0.2632 3.027 -0.2632 5.551 -0.2632 14.148 -0.2632 28.625

Table 13. Metric scores and execution time for all five budgets and all VQ metrics
for our Lulesh experiments using the Diagonal 43 search algorithm. Using the first
row as an example, with a budget of five cameras, the best camera with respect
to Data Entropy took 1.523s and produced a score of 1.633. If the budget was ten
cameras, then the search cost went up (2.786s), but the score did not go up. Going
up to a budget of twenty cameras, the score went up very slightly, but the time also
got longer. This cell is colored pink to indicate its value increased with the larger
budget. This table shows the results for cycle 50, which is representative.

Few of the metrics showed any substantial increase in metric score. Depth

Entropy and Max Depth had the most substantial percentage increase, each

experiencing an average increase in score of 11%, when increasing the considered

cameras from 20 to 50. Depth Entropy also had an 8% increase in score when the

considered cameras increased from 50 to 100, but requires more than doubling

97

Metric 5 to 10 Cameras 10 to 20 Cameras 20 to 50 Cameras 50 to 100 Cameras
Data Entropy 0.17% 0.03% 0.09% 0.03%
DDS Entropy 0.08% 12% 2.3% 1.6%
Depth Entropy 5.6% 1.3% 11.1% 8.7%
Max Depth 2.2% 1.4% 11.6% 0.0%
PB 1.5% 0.0% 0.0% 0.0%
Projected Area 1.3% 0.0% 0.0% 0.0%
Shading Entropy 0.07% 4.7% 2.6% 3.6%
Viewpoint Entropy 1.1% 1.2% 0.7% 1.3%
Visibility Ratio 1.2% 0.3% 1.1% 0.8%
Visible Triangles 2.0% 0.7% 3.0% 0.8%
VKL 0.2% 0.4% 0.1% 0.1%

Table 14. The average percentage increase of each metric’s viewpoint quality score
as budget increases using Diagonal 43. These averages are calculated over all 100
cycles.

the in situ execution time. Shading Entropy also benefited from increasing the

camera budget, but to a lesser extent: experiencing a 4.7% increase when budgeted

cameras went from 10 to 20, and a 3.6% increase when budgeted cameras went

from 50 to 100, but, again, results in an increase of in situ execution time. DDS

Entropy also experienced similar benefits: in particular a 12% increase when the

camera budget was increased from 10 to 20 cameras, as well as percentage increases

of 2.3% and 1.6% when the budget was increased from 20 to 50 cameras and 50 to

100 cameras, respectively. But for the seven other VQ metrics, they experienced

very little benefit when increasing the number of budgeted cameras, and certainly

not enough to offset the necessary the increase in execution time. One reason for

this could be that for most of these metrics, a quality viewpoint is easy to find, so

increasing the budget may not necessarily yield a significantly better viewpoint.

Or alternatively, a quality viewpoint may be hard to find, as some heatmaps from

Figure 24 and Table 11 would suggest for individual VQ metrics. The percentage

increases, or lack thereof, reinforces the conclusions from Section 4.3.2: that,

depending on the VQ metric, the search algorithms can find a viewpoint with a

98

reasonably high VQ metric score quite quickly, but to improve upon a metric score

may take longer than in situ constraints allow.

4.4 Conclusion

The goal of this research was to show that in situ automatic camera

placement is viable and that good viewpoints can be found quickly. This work is

the first to parallelize these VQ metrics and optimize them for both shared- and

distributed-memory environments. To show the viability of in situ implementation

we ran performance study that shows VQ metrics are much less costly compared

to the rendering process. This work also introduced several search algorithms and

studied their behavior, first in a post-hoc environment, using processing resources

that would be unavailable in an in situ environment. From this preliminary

phase, we found that, depending on the VQ metric, good viewpoints for cycles

of scientific data sets are not sparse nor hard to find. The search algorithms can

find a viewpoint with a metric score in the 80th − 85th percentile rather quickly,

but finding a viewpoint in the 90th percentile would require a rendering budget

that is likely infeasible for in situ execution. Further, previous work [92] has shown

that while users dislike low scoring viewpoints, they often disagree on the highest

scoring viewpoints. As a result, we believe the best in situ strategy is to quickly

find a viewpoint that is “good” rather than taking longer to find a viewpoint that

is the “best.” Our belief in this strategy aligns with our findings, in that increasing

camera budget led to only modest changes in VQ metric score. Overall, few metrics

benefited significantly when the camera budget was increased to 50 or 100 cameras,

with most metrics experiencing the greatest score increase when considering 20

cameras.

99

Future work is two-fold: (1) examining the behavior of optimal camera

placement over time and (2) design and evaluate best practices for how often a

search should be conducted. In regards to the former point, we plan to analyze

optimal viewpoint placement over time in order to determine the in situ behavior

of optimal viewpoints for a given scientific simulation. Based on these results,

we will be able to design a fixed search interval, that searches for a new optimal

viewpoint after a fixed number of time steps, as well as design a trigger, that when

activated will immediately begin a new search for an optimal viewpoint search.

These research directions are explored in the next chapter.

100

CHAPTER V

OPTIMAL VIEWPOINT PLACEMENT OVER TIME (OVPOT) FOR

SCIENTIFIC SIMULATIONS

This chapter is unpublished co-authored work. Contributions to this work

are the following: I am the first author of this work. I coded the majority of this

project’s code base, designed the project’s experiment parameters, executed the

study’s runs on the Summit supercomputer and analyzed the results. I also wrote

the entirety of the manuscript. Meghanto Majumder executed the study’s runs on

CDUX’s (Computing and Data Understanding at eXtreme Scale) local computer

cluster, Alaska, and analyzed the results. Hank Childs provided extensive feedback

over the course of this work and helped in editing the manuscript.

5.1 Introduction

Previous research has explored using Viewpoint Quality (VQ) metrics

as a way to measure the quality of a camera placement. For the most part, the

application of these metrics have been limited to individual time steps, rarely

taking into account time-varying data. When considering the study of optimal

camera placement over time, there are several research gaps. While previous work

has explored the optimal camera budget when searching for a new camera for

individual cycles, there has been no investigation into the stability of the goodness

of a camera placement as a simulation evolves. Additionally, there has been no

investigation into the frequency of searching for a new camera placement. This

chapter aims to fill these research gaps with two research contributions:

– We determine the best camera budget to use for time-varying data.

101

– We consider how our findings can be implemented as a “trigger’ based

method that will only conduct a new camera search when the current best

viewpoint falls below some user-defined threshold.

5.2 Related Work

The key themes of this work, and the topics of this section, involves

triggers 5.2.1 and automatic camera placement for time-varying data 5.2.2.

Automatic camera placement for individual cycles is also a key theme for this work,

and was already described in Chapter II.

5.2.1 Triggers. Triggers are a powerful mechanism that can guide the

execution of algorithms, determining when to perform actions and what actions to

perform. Past research for triggers fall into one of two categories: domain agnostic

and domain specific.

5.2.1.1 Domain Agnostic Triggers. Domain agnostic triggers are

typically applied to arrays of values, and do not need special knowledge of the

simulation or domain. there have been several notable works in this space. Ling

et al. [83] uses feature importance metrics and machine learning to determine when

data should be saved to disk. Yamaoka et al. [146] calculates the Kullback-Leibler

divergence between PDFs of the simulation’s timesteps, and uses the results to

adapt the sampling rate for in situ data reduction. Larsen et al. [74] provides user-

defined triggers via a visualization service.

5.2.1.2 Domain Specific Triggers. Domain specific triggers are

similar to domain agnostic triggers, in that they are applied to arrays of values,

but they differ in that they require special knowledge of the simulation or domain.

Bennett et al. [18] developed a trigger that detects the ignition in combustion

simulations; this work was made more robust by Salloum et al. [113]. Work from

102

Ullrich and Zarzycki [133] and Zhao et al. [150] created triggers for tropical storms

within climate simulations. Additionally, work from Liu et al. [85] and Sun et

al. [125] developed triggers for eddy identification and tracking. These are just

a handful of works that involve anomaly detection, an area of research that has

developed a number of both domain agnostic and specific solutions [33, 112, 4]. In

a lot of cases, anomaly detection provides domain agnostic triggers, but are made

domain specific when tailored to a particular application.

5.2.2 Camera Placement Over Time. Several flow Visualization

techniques have attempted to optimize data visualization as a simulation

progresses. Lee et al. [76] was the first to consider seed placement and viewpoint

selection simultaneously, utilizing the entropy of the vector field to determine

optimal camera placement and then determining the best seed placements for a

given viewpoint, but does not alter the viewpoint over time. Tao et al. [129] uses an

information channel between streamlines and viewpoints to choose streamlines that

are view independent and then generates a path between the selected viewpoints.

Ma et al. [88] chooses streamlines that are view dependent and subsequently

developed FlowTour which automatically determines critically regions present in

steady flow fields and then temporally traverses the viewpoints that best display

these regions. This work was then extended to not only consider steady flow fields

but unsteady flow fields as well [87].

Camera placement over time has also been applied to in situ visualization

via Computational Steering [52, 110, 53, 46, 123, 15, 98, 50, 49, 57, 60, 144, 42, 40,

8], a tool that allows users to interact with a simulation in situ, such as changing

viewpoint, without having to write to disk. This differs from our own work on

103

automated placement, since computational steering enables domain scientists to

set camera positions via human-in-the-loop interactions.

Several works have tried to determine the best view path for time-varying

datasets. Bai et al. [11] develop a view path for volume data by measuring feature

evolution and determining a viewpoint’s quality based on the topological and visual

features. Ji and Shen [66] provided a more static approach by determining each

cycle’s optimal viewpoint and then employ dynamic programming to design a view

path.

Another research strategy involves writing informative videos to disk.

Yamamoto et al. [145] output videos of the simulation as it evolves over time from

a number of different viewpoints. As the simulation progresses, data is passed to a

rendering process via a “Membrane Layer,” which separates the running simulation

from the rendering process. But if the simulation generates data faster than it can

be rendered it will overwrite the data that has not yet been written to disk, users

can then access a movie database to view the rendered data over time.

5.3 Our Method

This section describes our method for constructing and evaluating an

algorithm for determining the optimal viewpoint placement over time (OVPOT).

The central question of our OVPOT algorithm is whether or not to search

for a new camera position at a given cycle. The OVPOT algorithm will use

Viewpoint Quality (VQ) metrics to evaluate viewpoints and decide the best view

from a sampling of camera placements. In particular, this work utilizes DDS

Entropy, the VQ metric from Chapter III to produce views most preferred by

visualization experts and domain scientists. To determine camera placement, our

algorithm utilizes a Fibonacci’s Lattice in order to equally space camera placements

104

around the data set; this is similar to spacing camera placements along the diagonal

of the data (XZ-plane), which was shown in Chapter IV to find quality views

fastest.

The results from Chapter IV showed that searching for a quality camera

placement can be costly. Further, the VQ metric DDS Entropy is an imperfect

oracle when choosing between good views, meaning there is no guarantee that

the view with the highest score will actually be the most preferred. Thus, we

favor limiting the total number of searches that are performed in situ so as not

to unnecessarily encumber the simulation. More so, scientific data is typically

considered to be smooth and have temporal-coherence, meaning data changes

gradually as the simulation progresses, so performing frequent camera searches

would most likely lead to superfluous and repetitive results. Given the nature of the

data, our trigger criteria is based on the notion that a quality camera will remain

a quality camera until determined otherwise. Our OVPOT algorithm only has one

criteria that will trigger a search for a new camera placement: the VQ metric score

of the current best camera position has dropped below a percentage threshold.

In order to develop an algorithm that can output the the best camera

position over time, we need to optimize (1) the camera budget used when searching

for a new camera and (2) the percentage threshold that is used to trigger a new

camera search. The construction and analysis of our OVPOT algorithm was

conducted in two phases: Phase 1 involves post-hoc analysis of view placements

over time and Phase 2 incorporates the results of Phase 1 into in situ execution

and evaluates the performance of different percentage thresholds. This section is

organized accordingly.

105

5.3.1 Phase 1: Post-hoc Analysis. Before implementing and

evaluating an OVPOT algorithm in situ, we first analyze the behavior of camera

positions over time for scientific simulations. Evaluating a VQ metric for a given

camera position has non-negligible cost, meaning it is very desirable for an OVPOT

algorithm to produce good views with a ”small” number of VQ metric evaluations.

The goal of Phase 1 is to utilize post-hoc processing to inform best practices for

Phase 2’s in situ implementation, namely, the optimal camera budget for time-

varying data.

For a number of small- and medium-sized simulations, we will evaluate the

effects of using variable camera budgets for time-varying data has on the quality of

the generated viewpoint. To do this, for each simulation run, at some fixed-interval,

we evaluate the VQ metric score for 100 camera placements . Then, we evaluate

the average maximum score attainable when considering X number of cameras.

That is, for X number of cameras, we considered every possible set of X cameras

that are equally spaced among the total 100 cameras, then, amongst these sets,

we average the maximum VQ metric score. For example, if we were considering a

camera budget of four, from the total 100 cameras we would create sets containing

four camera in the following way: [0, 25, 50, 75], [1, 26, 51, 75], . . . , [24, 49, 74, 99]. We

then compute the average maximum VQ metric score from all of these sets. We

computed this value for the duration of the simulation.

From these experimental runs we can analyze the effect a camera budget has

on maximum score over time and determine an appropriate in situ camera budget

for time-varying data, and subsequent use in Phase 2.

5.3.2 Phase 2: In Situ Implementation and Evaluation. The

goal of Phase 2 is to use the results from Phase 1 for in situ implementation

106

and evaluate different triggers for time-varying data. We perform several in situ

evaluations of medium- and large-scale scientific simulations. The runs consider

the recommended camera budgets from Phase 1 and evaluate different trigger

thresholds. The trigger thresholds are used to determine if a search for a new

“best” camera placement needs to be conducted and are based on a percentage

of the VQ metric score of the current best camera.

Our OVPOT algorithm behaves as follows: At a fixed-interval, each time our

algorithm is executed, it will evaluate the the current best viewpoint and determine

if a new camera search is triggered. For example, assume we execute our OVPOT

algorithm every cycle and the trigger threshold is set as 95% of the best camera.

Further, assume cycle T1 requires a new camera search, and this search determines

that camera C1, with a VQ metric score M1, has the highest score amongst all

considered cameras.Then, for the next four cycles the metric score for camera C1

continually decreases until timestep T5 when the metric score, M5, for camera C1

falls below the threshold, that is, M5 < .95 ∗M1. At this point, a search for a new

camera is triggered and the camera with the highest metric score is chosen as the

new “best” viewpoint.

From these experimental runs we can analyze the effect trigger thresholds

have on camera search frequency and how best to optimize automatic in situ

camera placement over time.

5.4 Experimental Overview

Studying optimal viewpoint placement over time was conducted in two

phases. Phase 1 is a post-hoc evaluation of variable camera budgets over time.

Phase 2 is an in situ study on the frequency of a trigger-based search routine. The

107

Figure 26. Renderings of the Impact input deck over time. The field, log of energy,
was transformed using isosurfaces as well as a clipping of one of the quadrants.

Figure 27. Renderings of the Impact input deck over time. The field, log of
pressure, was transformed using isosurfaces as well as a clipping of one of the
quadrants.

Figure 28. Renderings of the Ball of Fury input deck over time. The field, log of
energy, was transformed using isosurfaces.

108

Figure 29. Renderings of the Jetbox input deck over time. The field, energy, was
transformed using isosurfaces as well as a clipping of one of the quadrants.

rest of this section is organized accordingly and details the experimental overview

of these phases.

5.4.1 Phase 1: Post-hoc Experiment. Phase 1 was conducted on

Alaska, a computer-cluster located at the University of Oregon that utilizes Intel

XEON CPUs. The executed simulation was CloverLeaf3D, a simulation that is

provided in Ascent [71] that utilizes input decks to define the problem setup. For

this study we utilized two different input decks and evaluated the optimal camera

placement over time for a chosen field. We utilized the VQ metric DDS Entropy

to determine the quality of the camera placement. The camera placements were

chosen using the Fibonacci Lattice, a method for equally distributing points around

a sphere. Whenever a new camera search is performed, 100 camera placements

are evaluated using the chosen VQ metric. Additionally, the simulation data is

transformed into an isosurface to better display the data.

The three configurations, meaning input decks, field, and execution

parameters, are as follows:

– Configuration #1 used the “Impact” input deck and visualized the energy

field. This simulation was executed for 830 cycles and a new camera search is

109

performed every 10th cycle. The size of this simulation was 643 and executed

on a single node. Renderings of this simulation are shown in Figure 26.

– Configuration #2 used the “Impact” input deck and visualized the pressure

field. This simulation was executed for 830 cycles and a new camera search is

performed every 10th cycle. The size of this simulation was 643 and executed

on a single node. Renderings of this simulation are shown in Figure 27.

– Configuration #3 used the “Ball of Fury” input deck and visualized the

energy field. This simulation was executed for 9,100 cycles and a new camera

search was performed every 100th cycle. The size of this simulation was 643

and executed on a single node. Renderings of this simulation is shown in

Figure 28.

5.4.2 Phase 2: In Situ Experiment. Phase 2 was conducted on

both Alaska and the OLCF supercomputer Summit. Once again, the simulation

data is transformed into an isosurface before being evaluated by our OVPOT

algorithm.

On Alaska, CloverLeaf3D was executed with the following two

configurations:

– Configuration #1 used the “Jetbox” input deck and visualized the energy

field. This simulation was executed for 1,200 cycles and a new camera search

was performed every 10th cycle. The size of this simulation was 256 × 128 ×

256 and executed on a single node. In addition to being transformed into an

isosurface, this data also clips one quarter of the data, as shown in Figure 29.

For each simulation run we utilized one of two camera budgets: 10 and 20

camera samples with viewpoints chosen using the Fibonacci Lattice. And for

110

each camera budget we evaluated three trigger thresholds that are based on

a percent of the best camera’s metric score. The threshold percentages used

are: 95%, 96%, 97%, 98%, 99%, and 100%.

– Configuration #2 used the “Ball of Fury” input deck and visualized the

energy field. This simulation was executed for 9,100 cycles and a new camera

search was performed every 100th cycle. The size of this simulation was 643

and executed on a single node, renderings of this simulation are shown in

Figure 28. For each simulation run we utilized one of two camera budgets: 10

and 20 camera samples with viewpoints chosen using the Fibonacci Lattice.

And for each camera budget we evaluated three trigger thresholds that

are based on a percent of the best camera’s metric score. The threshold

percentages used are: 95%, 97%, and 99%.

On the Summit supercomputer, the AMR-Wind simulation was excuted

with the following parameters:

– The size of this simulation was 8483 and ran on 25 nodes using 130 MPI

ranks and 130 GPUs. The simulation was executed for 100 cycles and a

new camera search was performed every cycle.For each simulation run we

utilized one of two camera budgets: 10 and 20 camera samples chosen using

the Fibonacci Lattice. And for each camera budget we evaluated three trigger

thresholds that are based on a percent of the best camera’s metric score. The

threshold percentages used are: 95%, 96%, 97%, 98%, 99%, and 100%.

The chosen VQ metric for all of these simulation runs is DDS Entropy.

111

5.5 Results

This section details the results of Phase 1 and Phase 2 described in Section

5.3 with experiment parameters from Section 5.4.

5.5.1 Phase 1: Post-hoc Results. To examine the impact camera

sample size has on VQ metric score over time, we evaluated the following camera

budgets: 1, 4, 5, 10, 20, 25. That is, for all of the camera budgets, from the total

100 cameras sampled, we created sets of equally spaced cameras for each of the

specified camera budgets. Figure 30 shows the results of the tradeoff between the

number of cameras considered and the maximum attainable VQ metric score. The

top row of figures shows the log of the average maximum score over time for a given

camera budget in comparison to the maximum score achieved when considering

all 100 cameras. The bottom row of figures shows the relative performance of

each budget of cameras when scaled against the maximum score out of all 100

cameras. These figures show that, over time, considering a single camera greatly

limits a user’s ability to find a high scoring camera placement. Notably, there

is a significant improvement when increasing the camera budget from 1 to 4 or

5 cameras. Additionally, there is an increase in metric score when the budgets

are increased to 10, 20, and 25 cameras, albeit less so. But overall, the average

maximum score for budgets 10, 20, and 25 are consistently high and, going forward,

we recommend considering a minimum number of 10 cameras (or possibly 5 if

constraints are tight) and a maximum of 20 cameras. We do not recommend a

camera budget of 25 because our results show that using a camera budget of 20

over time achieves comparable while considering 20% fewer cameras.

112

0 20 40 60 80
Cycle

7.5

8.0

8.5

9.0

9.5

10.0

Av
er

ag
e

M
et

ric
 S

co
re

Camera Budget

1 4 5 10 20 25 100

Average Metric Score for Varying Camera Budgets

0 20 40 60 80
Cycle

0

2

4

6

8

10

Av
er

ag
e

M
et

ric
 S

co
re

Camera Budget

1 4 5 10 20 25 100

Average Metric Score for Varying Camera Budgets

0 20 40 60 80
Cycle

8.0

8.5

9.0

9.5

10.0

10.5

Av
er

ag
e

M
et

ric
 S

co
re

Camera Budget

1 4 5 10 20 25 100

Average Metric Score for Varying Camera Budgets

0 20 40 60 80
Cycle

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Av
er

ag
e

Re
la

tiv
e

M
et

ric
 S

co
re

Camera Budget

1 4 5 10 20 25

Average Relative Metric Score for Varying Camera Budgets

0 10 20 30 40 50 60 70 80
Cycle

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Av
er

ag
e

Re
la

tiv
e

M
et

ric
 S

co
re

Camera Budget

1 4 5 10 20 25

Average Relative Metric Score for Varying Camera Budgets

0 20 40 60 80
Cycle

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Av
er

ag
e

Re
la

tiv
e

M
et

ric
 S

co
re

Camera Budget

1 4 5 10 20 25

Average Relative Metric Score for Varying Camera Budgets

Figure 30. The average maximum score for each camera budget over time. The
top row shows the log of average metric score for each of the considered camera
budgets, with the dotted black line showing the maximum metric score that was
achieved when considering all 100 cameras. The bottom row shows the relative
maximum average score for each camera budget. From left to right the data sets
and respective fields are as follows: Impact (field: log of energy), Impact (field: log
of pressure), Ball of Fury (field: log of energy). The metric used is DDS Entropy
from Chapter III.

5.5.2 Phase 2: In Situ Results. To determine how often to search

for a new camera placement, this phase executes several simulations with variable

percentage thresholds and analyzes its effects on the frequency of searches.

Figure 31. The number of in situ viewpoint changes that were triggered for each
percentage threshold over the course of the Jetbox simulation.

113

Figure 32. The number of in situ viewpoint changes for each percentage threshold
and when they were triggered over the course of the Jetbox simulation. Note that a
vertical blue line means that a new search was triggered, and the Y-axes are unused
in these plots.

Figures 31 - 34 show the in situ results using both camera budgets for

the Jetbox CloverLeaf3D input deck. Figure 31 shows the number of times each

percentage threshold changed viewpoints over the course of the simulation. When

using a camera budget of 10, the percentage thresholds set to 95%, 96%, and 97%

were only triggered once over the course of the simulation. Larger thresholds,

114

unsurprisingly, experienced a greater number of viewpoint changes: the 98% and

99% threshold were triggered four and six times, respectively, which are both a

reduction from the nine triggers experienced with a threshold of 100%. Results for

Jetbox with a camera budget of 20 are similar: the 95%, 96%, and 97% thresholds

were triggered two times, the 98% threshold was triggered four times, the 99%

threshold was triggered five times, and the 100% threshold was triggered eight

times over the course of the simulation. And Figure 32 shows when, over the

course of the simulation, the percentage threshold was triggered and activated a

new camera search. For all trigger thresholds, the frequency of viewpoint changes

is consistent across camera budgets. Figure 33 graphs the difference between the

metric score of the chosen camera and the metric score of the optimal camera over

time for all thresholds.. We see that, no matter the budget, the chosen camera

score can deviate from the optimal camera score, but it will trigger a new camera

search if it deviates too far from optimal. Overall, the metric scores produced by

each threshold, while not optimal, are not far off, producing, on average, relative

metric scores that are in the top 99th percentile, as in shown in Figure 34.

The results from Ball of Fury, plotted in Figures 35 - Figures 38, shows

similar results to Jetbox, but with even fewer viewpoint changes. With a budget of

10 cameras, the 95% and 97% thresholds both experienced zero viewpoint changes,

meaning the camera chosen on the first cycle was the chosen camera for the

entire simulation run, and the 99% threshold was triggered only three times. The

frequency of viewpoint changes for Ball of Fury increased when the camera budget

was 20: the 95% threshold was triggered once, the 97% threshold was triggered

four times, and the 99% threshold was triggered five times, as shown in Figure 35.

The difference in metric scores for the chosen camera and optimal camera for all

115

Figure 33. For each camera budget and threshold trigger, we graphed the
scores of the camera placement chosen in situ against the top scoring camera
placement over time for the Jetbox simulation. The orange line in each graph
represents the top scoring camera placement amongst each camera budget. The
blue line in each graph represents the score of the chosen camera placement
when executing our OVPOT algorithm. The graphs show that the chosen
camera placement may be sub-optimal, and a larger camera budget may cause
greater deviation for optimal, but this deviation will never exceed the X% where
X = 100− chosen percentage threshold.

thresholds is shown Figure 37. Much like Jetbox, we see only slight deviations

from the optimal camera placement before a new search is triggered, but we do

116

Figure 34. The average relative metric score of the chosen camera placements for
the chosen camera budgets and trigger thresholds for the Jetbox simulation.

Figure 35. The number of in situ viewpoint changes that were triggered for each
percentage threshold over the course of the Ball of Fury simulation.

see more deviation when using a camera budget of 20 versus 10. For this data set,

increasing the camera budget decreased the relative quality of the chosen camera

to a higher degree. For a camera budget of 10, all thresholds achieve an average

relative metric score in the top 99th percentile. Whereas, for a camera budget of

20, only the 97%, 98% and 99% thresholds yield cameras with an average relative

score in the 99th percentile, the 95% threshold yields a camera that over time only

achieves an average relative score in the 98th percentile, as shown in Figure 38.

117

Figure 36. The number of in situ viewpoint changes for each percentage threshold
and when they were triggered over the course of the Ball of Fury simulation. Note
that a vertical blue line means that a new search was triggered, and the Y-axes are
unused in these plots.

While, AMR-Wind triggered more searches over the course of the simulation

than any other data set, as shown in Figure 39, it also experiences a similar

reduction in search frequency via threshold triggers. Overall, the results show

consistent search frequency across camera budgets and thresholds, as shown in

Figure 40, which plots the frequency of triggering a new camera search, and shows

that all thresholds for both camera budgets experience a clustering of searches in

the early cycles. Much like Ball of Fury, the larger camera budget provides a wider

array of viewpoints and, thus, a potential for greater deviation from the optimal

camera, as shown in Figure 41. This deviation can also be seen in Figure 42 which

plots each threshold’s average relative score. All thresholds when using a camera

budget of 10 produce scores that average in the 99th percentile, whereas only the

95% and 99% thresholds produce scores that average in the 99th percentile when

using a camera budget of 20.

118

Figure 37. For each camera budget and threshold trigger, we graphed the
scores of the camera placement chosen in situ against the top scoring camera
placement over time for the Ball of Fury simulation. The orange line in each
graph represents the top scoring camera placement amongst each camera budget.
The blue line in each graph represents the score of the chosen camera placement
when executing our OVPOT algorithm. The graphs show that the chosen camera
placement may be sub-optimal, and a larger camera budget may cause greater
deviation for optimal. That said, this deviation will never exceed the X% where
X = 100− chosen percentage threshold.

When it comes to frequency of searches, all data sets experienced a

reduction in viewpoint searches when utilizing our triggered-based OVPOT

algorithm. In most instances, reducing the percentage threshold significantly

reduced the number of searches performed over time. For nearly all the data sets,

employing a trigger threshold of 97% or lower reduced the number of searches by

50% or more.

5.6 Conclusion

This chapter explores the best practices for optimizing camera placement

over time. Searching for a quality viewpoint can be costly, it is important that our

119

Figure 38. The average relative metric score of the chosen camera placements for
the chosen camera budgets and trigger thresholds for the Ball of Fury simulation.

Figure 39. The number of in situ viewpoint changes that were triggered for each
percentage threshold over the course of the AMR-Wind simulation.

OVPOT algorithm minimizes the number of searches conducted over the course

of the simulation. With this work, we evaluate variable camera budgets over time,

we show that when searching for a new camera, a user should employ a camera

budget of 10 to 20 cameras. We also explored the use of a trigger threshold that

is based on a percentage the best camera’s VQ metric score. A new camera search

will be triggered when the current best camera falls below a selected percentage

threshold. The use of this trigger minimizes the number of searchers over the course

120

Figure 40. The number of in situ viewpoint changes for each percentage threshold
and when they were triggered over the course of the AMR-Wind simulation. Note
that a vertical blue line means that a new search was triggered, and the Y-axes are
unused in these plots.

of the simulation by limiting it to time cycles that represent change. This research

found that using a percentage threshold can significantly reduce the frequency of

in situ camera searches, finding that using a threshold of 97% or lower can reduce

the number of searches by more than 50% in most cases. Overall, this work informs

on the best practices for optimizing automatic in situ camera placement for time-

121

Figure 41. For each camera budget and threshold trigger, we graphed the
scores of the camera placement chosen in situ against the top scoring camera
placement over time for the AMR-Wind simulation. The orange line in each
graph represents the top scoring camera placement amongst each camera budget.
The blue line in each graph represents the score of the chosen camera placement
when executing our OVPOT algorithm. The graphs show that the chosen
camera placement may be sub-optimal, and a larger camera budget may cause
greater deviation for optimal, but this deviation will never exceed X% where
X = 100− chosen percentage threshold.

varying data. This work balances the cost of searching with for a quality viewpoint

against the overall quality of a viewpoint over the course of a simulation. It also

122

Figure 42. The average relative metric score of the chosen camera placements for
the chosen camera budgets and trigger thresholds for the AMR-Wind simulation.

presents a percentage-based trigger to limit the frequency of searching for a new

viewpoint.

Future work for this research includes evaluating our OVPOT algorithm

on more simulations, as well as a more thorough investigation into the effects that

OVPOT execution frequency has on camera search frequency. Additionally, in the

circumstance where entropy continually increases as the simulation progresses, it

may be beneficial to perform a new camera search at fixed intervals regardless of

the trigger. Further, rather than outputting just an image, a video that traverses

an informative path from the old camera to the new camera would better show the

change that just occurred within the simulation.

123

CHAPTER VI

CONCLUSION

I was the primary author of this manuscript, and Hank Childs provided

editorial suggestions.

With the rise of in situ processing, analysis and visualization is routinely

being executed without a human in the loop (HITL). Camera placement is one of

those tasks traditionally performed in a post-hoc, HITL fashion. The goal of this

dissertation was to research methods for researchers running large-scale scientific

simulations to automatically determining camera placement in situ. This work has

shown that to be the case with each research thrust that answered our four research

subquestions. The remainder of this chapter is organized as follows: Section 6.1

summarizes the research that answers to the research subquestions; Section 6.2

answers the dissertation question; and Section 6.3 discusses future work.

6.1 Research Subquestions

6.1.1 Answering RQ1. The first research thrust, presented in

Chapter III, involved performing a user survey to determine scientific users’

preferences. This research was the first to apply VQ metrics to scientific data

and study the preference of scientific researchers. Overall, this work culminated

in three new entropy-based metrics, and their combination was the best performing

predictor of user preference at 68%.

6.1.2 Answering RQ2. The second research thrust, presented in

Chapter IV, involved parallelizing VQ metrics using the VTK-m library [95] within

the Ascent [71] infrastructure. VTK-m’s use of parallel primitives guarantees

portable performance because the parallel primitives can be mapped to any current

or emerging parallel architecture for efficient usage, including exascale computers,

124

for efficient usage. By re-writing the VQ metrics using VTK-m, our metrics can

make full use of parallel architectures. This research was the first time these VQ

metrics have been parallelized and results of our performance study show they

can be executed quickly for a large-scale simulation. Additionally, based on the

performance study, it is reasonable to extrapolate the success of our approach to

exascale simulations.

6.1.3 Answering RQ3. The third research thrust, presented in

Chapter IV, utilized search algorithms and tested their ability to find a quality

viewpoint quickly, first in a post-hoc setting and then in an in situ setting. In a

post-hoc setting, we evaluated six search algorithms using individual cycles of large-

scale scientific simulations and measured how quickly each search algorithm can

find a quality viewpoint amongst all 10,000 views of each data set. This initial work

proved that certain VQ metrics are easily searchable whereas other VQ metrics

may produce search spaces that are lacking quality viewpoints and are thus harder

to search. In an in situ setting, we evaluated the six search algorithms with a

varying number of camera budgets and measured the tradeoff between the best

VQ metric score and overall execution time. This thrust showed that, depending

on the metric, a user only needs to consider 10-25 cameras in order to find a good

viewpoint, whereas considering more than 25 cameras incurs execution costs that

do not produce higher quality viewpoints in equal measure. In all, this research

thrust proved that quality viewpoints can be found quickly and informs on best

practices for how to find such viewpoints.

6.1.4 Answering RQ4. The final research thrust, presented in

Chapter V, analyzed the behavior of camera viewpoints for time-varying data in

order to determine how often to search for a new camera placement. This research

125

showed that, using a percentage based threshold, camera placement is relatively

stable, and searching for a new camera placement happens infrequently, and

thus amortizes the cost of searching for a new viewpoint over the lifespan of the

simulation.

6.2 Dissertation Question

This dissertation aimed to answer the following question: is automated

in situ camera placement viable for large-scale simulations and what

are the best practices? This question was broken down into four research

subquestions that in combination answer the dissertation questions. Answering

the first subquestion showed that camera placement can be automated and produce

renderings from viewpoints that users will want to see. This research performed

a user survey to determine what viewpoints visualization experts and domain

scientists prefer when visualizing scientific data. Further, it resulted in the creation

of three new VQ metrics that, when added together, is the best predictor of user

preference at 68%. Answering the second subquestion showed that VQ metrics

can be performed in situ efficiently for large-scale simulations. This research

rewrote the VQ metrics using VTK-m, allowing them to make effective use of

shared-memory parallelism, shown by the large-scale performance study and

the efficient use of OpenMP on the backend. Answering the third subquestion

showed that quality viewpoints, as determined by VQ metric score, can be found

quickly without having to compute an encumbering number of camera placements.

Utilizing multiple search algorithms and multiple camera budgets, this research

showed that searching the data space diagonally or randomly can produce a

quality viewpoint with a camera budget that should not exceed 20. Answering

the fourth subquestion showed that camera placement over time fairly stable and

126

using a trigger-based search routine limits the frequency of performing a search to

instances of change within the simulation. This research resulted in a threshold

trigger based on the percentage of the best VQ metric score, which, based on

the chosen percentage, can be used to limit the frequency of camera searches. In

all, this research has shown that automatic camera placement is viable for in situ

visualization and has informed on best practices for running at scale.

6.3 Future Work

Future work for this research is numerous. Certainly there is more work

needed in developing new VQ metrics, in addition to formulating a combination of

VQ metrics, that better align with users preferences. Additionally, there should

be further user surveys to enlarge the corpus of user preference that has been

established with this work. Another important direction is types of data, and we

feel this work should be expanded to include other types of scientific data other

than scalar data, such as flow or volume data. The type of output of this work

should also be explored. Instead of outputting a single image, it could output

several of the best images. Or when the optimal viewpoint changes, outputting a

number of transitionary images or video that follows a an informative path from

the old optimal viewpoint to the new optimal viewpoint. In a final area of future

work, there are many additional aspects of scientific visualization and analysis that

are traditionally done in a post-hoc setting with a HITL and that require automate

those decisions for in situ implementation.

127

APPENDIX

BEST AND WORST IMAGES FROM EVALUATION IN CHAPTER II

(a) V Q1 Best (b) V Q1 Worst

(c) V Q2 Best (d) V Q2 Worst

128

(e) V Q3 Best (f) V Q3 Worst

(g) V Q4 Best (h) V Q4 Worst

(i) V Q5 Best (j) V Q5 Worst

129

(k) V Q6 Best (l) V Q6 Worst

(m) V Q7 Best (n) V Q7 Worst

(o) V Q10 Best (p) V Q10 Worst

130

(q) V Q11 Best (r) V Q11 Worst

(s) V Q12 Best (t) V Q12 Worst

(u) V Q13 Best (v) V Q13 Worst

131

(w) V Q14 Best (x) V Q14 Worst

(y) V Q15 Best (z) V Q15 Worst

(aa) V Q16 Best (ab) V Q16 Worst

Figure A.43. The best and worst images for the implemented metrics on the
ExaAM #1 timestep with 21,255 triangles.

132

(a) V Q1 Best (b) V Q1 Worst

(c) V Q2 Best (d) V Q2 Worst

(e) V Q3 Best (f) V Q3 Worst

133

(g) V Q4 Best (h) V Q4 Worst

(i) V Q5 Best (j) V Q5 Worst

(k) V Q6 Best (l) V Q6 Worst

134

(m) V Q7 Best (n) V Q7 Worst

(o) V Q10 Best (p) V Q10 Worst

(q) V Q11 Best (r) V Q11 Worst

135

(s) V Q12 Best (t) V Q12 Worst

(u) V Q13 Best (v) V Q13 Worst

(w) V Q14 Best (x) V Q14 Worst

136

(y) V Q15 Best (z) V Q15 Worst

(aa) V Q16 Best (ab) V Q16 Worst

Figure A.44. The best and worst images for the implemented metrics on the
ExaAM #2 timestep with 6,474 triangles.

137

(a) V Q1 Best (b) V Q1 Worst

(c) V Q2 Best (d) V Q2 Worst

(e) V Q3 Best (f) V Q3 Worst

138

(g) V Q4 Best (h) V Q4 Worst

(i) V Q5 Best (j) V Q5 Worst

(k) V Q6 Best (l) V Q6 Worst

139

(m) [ExaAM 3 V Q7 Best]V Q7

Best (n) V Q7 Worst

(o) V Q10 Best (p) V Q10 Worst

(q) V Q11 Best (r) V Q11 Worst

140

(s) V Q12 Best (t) V Q12 Worst

(u) V Q13 Best (v) V Q13 Worst

(w) V Q14 Best (x) V Q14 Worst

141

(y) V Q15 Best (z) V Q15 Worst

(aa) V Q16 Best (ab) V Q16 Worst

Figure A.45. The best and worst images for the implemented metrics on the
ExaAM #3 timestep with 18,473 triangles.

142

(a) V Q1 Best (b) V Q1 Worst

(c) V Q2 Best (d) V Q2 Worst

(e) V Q3 Best (f) V Q3 Worst

143

(g) V Q4 Best (h) V Q4 Worst

(i) V Q5 Best (j) V Q5 Worst

(k) V Q6 Best (l) V Q6 Worst

144

(m) V Q7 Best (n) V Q7 Worst

(o) V Q10 Best (p) V Q10 Worst

(q) V Q11 Best (r) V Q11 Worst

145

(s) V Q12 Best (t) V Q12 Worst

(u) V Q13 Best (v) V Q13 Worst

(w) V Q14 Best (x) V Q14 Worst

146

(y) V Q15 Best (z) V Q15 Worst

(aa) V Q16 Best (ab) V Q16 Worst

Figure A.46. The best and worst images for the implemented metrics on the
ExaSky #1 timestep with 55,544 triangles.

147

(a) V Q1 Best (b) V Q1 Worst

(c) V Q2 Best (d) V Q2 Worst

(e) V Q3 Best (f) V Q3 Worst

148

(g) V Q4 Best (h) V Q4 Worst

(i) V Q5 Best (j) V Q5 Worst

(k) V Q6 Best (l) V Q6 Worst

149

(m) V Q7 Best (n) V Q7 Worst

(o) V Q10 Best (p) V Q10 Worst

(q) V Q11 Best (r) V Q11 Worst

150

(s) V Q12 Best (t) V Q12 Worst

(u) V Q13 Best (v) V Q13 Worst

(w) V Q14 Best (x) V Q14 Worst

151

(y) V Q15 Best (z) V Q15 Worst

(aa) V Q16 Best (ab) V Q16 Worst

Figure A.47. The best and worst images for the implemented metrics on the
ExaSky #2 timestep with 143,059 triangles.

152

(a) V Q1 Best (b) V Q1 Worst

(c) V Q2 Best (d) V Q2 Worst

(e) V Q3 Best (f) V Q3 Worst

153

(g) V Q4 Best (h) V Q4 Worst

(i) V Q5 Best (j) V Q5 Worst

(k) V Q6 Best (l) V Q6 Worst

154

(m) V Q7 Best (n) V Q7 Worst

(o) V Q10 Best (p) V Q10 Worst

(q) V Q11 Best (r) V Q11 Worst

155

(s) V Q12 Best (t) V Q12 Worst

(u) V Q13 Best (v) V Q13 Worst

(w) V Q14 Best (x) V Q14 Worst

156

(y) V Q15 Best (z) V Q15 Worst

(aa) V Q16 Best (ab) V Q16 Worst

Figure A.48. The best and worst images for the implemented metrics on the
ExaSky #3 timestep with 19,280 triangles.

157

(a) V Q1 Best (b) V Q1 Worst

(c) V Q2 Best (d) V Q2 Worst

(e) V Q3 Best (f) V Q3 Worst

158

(g) V Q4 Best (h) V Q4 Worst

(i) V Q5 Best (j) V Q5 Worst

(k) V Q6 Best (l) V Q6 Worst

159

(m) V Q7 Best (n) V Q7 Worst

(o) V Q10 Best (p) V Q10 Worst

(q) V Q11 Best (r) V Q11 Worst

160

(s) V Q12 Best (t) V Q12 Worst

(u) V Q13 Best (v) V Q13 Worst

(w) V Q14 Best (x) V Q14 Worst

161

(y) V Q15 Best (z) V Q15 Worst

(aa) V Q16 Best (ab) V Q16 Worst

Figure A.49. The best and worst images for the implemented metrics on the
ExaConstit #1 timestep with 938,862 triangles.

162

(a) V Q1 Best (b) V Q1 Worst

(c) V Q2 Best (d) V Q2 Worst

(e) V Q3 Best (f) V Q3 Worst

163

(g) V Q4 Best (h) V Q4 Worst

(i) V Q5 Best (j) V Q5 Worst

(k) V Q6 Best (l) V Q6 Worst

164

(m) V Q7 Best (n) V Q7 Worst

(o) V Q10 Best (p) V Q10 Worst

(q) V Q11 Best (r) V Q11 Worst

165

(s) V Q12 Best (t) V Q12 Worst

(u) V Q13 Best (v) V Q13 Worst

(w) V Q14 Best (x) V Q14 Worst

166

(y) V Q15 Best (z) V Q15 Worst

(aa) V Q16 Best (ab) V Q16 Worst

Figure A.50. The best and worst images for the implemented metrics on the
ExaConstit #2 timestep with 135,109 triangles.

167

REFERENCES CITED

[1] Hurricane isabel simulation data.
http://vis.computer.org/vis2004contest/data.html (2004), online.

[2] Ahrens, J., Geveci, B., and Law, C. Paraview: An end-user tool for large
data visualization. Visualization Handbook (01 2005).

[3] Ahrens, J., Jourdain, S., O’Leary, P., Patchett, J., Rogers, D. H.,
and Petersen, M. An image-based approach to extreme scale in situ
visualization and analysis. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis
(Piscataway, NJ, USA, 2014), SC ’14, IEEE Press, pp. 424–434.

[4] Akoglu, L., Tong, H., and Koutra, D. Graph based anomaly detection
and description: a survey. Data Mining and Knowledge Discovery 29, 3
(2015), 626–688.

[5] Almgren, A. S., Bell, J. B., Lijewski, M. J., Lukiä, Z., and
Van Andel, E. Nyx: A massively parallel amr code for computational
cosmology. The Astrophysical Journal 765, 1 (Feb 2013), 39.

[6] Archambeau, F., Méchitoua, N., and Sakiz, M. Code saturne: A finite
volume code for the computation of turbulent incompressible flows -
industrial applications.

[7] Arnheim, R. The power of center. University of California Press.

[8] Atanasov, A., Bungartz, H.-J., Frisch, J., Mehl, M., Mundani, R.-P.,
Rank, E., and van Treeck, C. Computational steering of complex flow
simulations. High Performance Computing in Science and Engineering,
Garching/Munich 2009 (2010).

[9] Ayachit, U., Bauer, A., Geveci, B., O’Leary, P., Moreland, K.,
Fabian, N., and Mauldin, J. Paraview catalyst: Enabling in situ data
analysis and visualization. In Proceedings of the First Workshop on In Situ
Infrastructures for Enabling Extreme-Scale Analysis and Visualization (New
York, NY, USA, 2015), ISAV2015, ACM, pp. 25–29.

[10] Ayachit, U., Whitlock, B., Wolf, M., Loring, B., Geveci, B., Lonie,
D., and Bethel, E. W. The sensei generic in situ interface. In
Proceedings of the 2Nd Workshop on In Situ Infrastructures for Enabling
Extreme-scale Analysis and Visualization (Piscataway, NJ, USA, 2016),
ISAV ’16, IEEE Press, pp. 40–44.

168

[11] Bai, Z., Yang, R., Zhou, Z., Tao, Y., and Lin, H. Topology aware view
path design for time-varying volume data. Journal of Visualization 19, 4
(2016), 797–809.

[12] Bajaj, C. L., Pascucci, V., and Schikore, D. R. The contour spectrum.
In Proceedings of the 8th Conference on Visualization ’97 (Los Alamitos,
CA, USA, 1997), VIS ’97, IEEE Computer Society Press, pp. 167–ff.

[13] Barral, P., Dorme, G., and Plemenos, D. Visual understanding of a
scene by automatic movement of a camera. In GraphicCon ’99 (January
1999).

[14] Barral, P., Dorme, G., and Plemenos, D. Scene understanding
techniques using a virtual camera. In Eurographics 2000 - Short
Presentations (2000), Eurographics Association.

[15] Beazley, D., and Lomdahl, P. Lightweight computational steering of very
large scale molecular dynamics simulations. In Supercomputing
’96:Proceedings of the 1996 ACM/IEEE Conference on Supercomputing
(1996), pp. 50–50.

[16] Belak, J., Turner, J., and Team, E. T. Exaam: Additive manufacturing
process modeling at the fidelity of the microstructure. In APS March
Meeting Abstracts (2019), vol. 2019, pp. C22–010.

[17] Bennett, J. C., Abbasi, H., Bremer, P.-T., Grout, R., Gyulassy, A.,
Jin, T., Klasky, S., Kolla, H., Parashar, M., Pascucci, V.,
Pebay, P., Thompson, D., Yu, H., Zhang, F., and Chen, J.
Combining in-situ and in-transit processing to enable extreme-scale scientific
analysis. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (Los Alamitos,
CA, USA, 2012), SC ’12, IEEE Computer Society Press, pp. 49:1–49:9.

[18] Bennett, J. C., Bhagatwala, A., Chen, J. H., Seshadhri, C., Pinar,
A., and Salloum, M. Trigger detection for adaptive scientific workflows
using percentile sampling. CoRR abs/1506.08258 (2015).

[19] Bethel, E. W. Visapult: A prototype remote and distributed visualization
application and framework.

[20] Bethel, W. Visualization dot com. IEEE Computer Graphics and
Applications 20, 3 (May 2000), 17–20.

[21] Bethel, W., Siegerist, C., Shalf, J., Shetty, P., Jankun-Kelly, T.,
Kreylos, O., and Ma, K.-L. Visportal: Deploying grid-enabled
visualization tools through a web-portal interface.

169

[22] Birkhoff, G. Aesthetic measure. Harvard University Press, Cambridge,
Massachusetts (1933).

[23] Birkhoff, G. Mathematics of aesthetics. J.R. Newman (ed.) The World of
Mathematics 4 (1956).

[24] Blahut, R. E. Principles and Practice of Information Theory.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1987.

[25] Blanz, V., Tarr, M. J., and Bülthoff, H. H. What object attributes
determine canonical views? Perception 28 5 (1999), 575–99.

[26] Bonaventura, X., Feixas, M., and Sbert, M. Viewpoint information.
21st International Conference on Computer Graphics and Vision,
GraphiCon’2011 - Conference Proceedings (01 2011).

[27] Bonaventura, X., Feixas, M., Sbert, M., Chuang, L., and
Wallraven, C. A survey of viewpoint selection methods for polygonal
models. Entropy 20, 5 (2018).

[28] Bordoloi, U., and Shen, H. View selection for volume rendering. In 16th
IEEE Visualization Conference, VIS 2005, Minneapolis, MN, USA, October
23-28, 2005 (2005), pp. 487–494.

[29] Bujack, R., Turton, T. L., Samsel, F., Ware, C., Rogers, D. H., and
Ahrens, J. The good, the bad, and the ugly: A theoretical framework for
the assessment of continuous colormaps. IEEE Transactions on
Visualization and Computer Graphics 24, 1 (Jan 2018), 923–933.

[30] Burbea, J., and Rao, C. On the convexity of some divergence measures
based on entropy functions. IEEE Transactions on Information Theory 28, 3
(May 1982), 489–495.

[31] Butts, D. A. How much information is associated with a particular stimulus?
Network: Computation in Neural Systems 14, 2 (2003), 177–187. PMID:
12790180.

[32] Carson, R. A., Wopschall, S. R., Bramwell, J. A., et al. Exaconstit.
Tech. rep., Lawrence Livermore National Lab.(LLNL), Livermore, CA
(United States), 2019.

[33] Chandola, V., Banerjee, A., and Kumar, V. Anomaly detection: A
survey. ACM Comput. Surv. 41, 3 (jul 2009).

[34] Chang, C. S., Ku, S., Diamond, P. H., Lin, Z., Parker, S., Hahm,
T. S., and Samatova, N. Compressed ion temperature gradient
turbulence in diverted tokamak edge. Physics of Plasmas 16, 5 (2009),
056108.

170

[35] Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S.,
Pugmire, D., Biagas, K., Miller, M., Harrison, C., Weber, G. H.,
Krishnan, H., Fogal, T., Sanderson, A., Garth, C., Bethel,
E. W., Camp, D., Rübel, O., Durant, M., Favre, J. M., and
Navrátil, P. VisIt: An End-User Tool For Visualizing and Analyzing Very
Large Data. In High Performance Visualization–Enabling Extreme-Scale
Scientific Insight. Oct 2012, pp. 357–372.

[36] Childs, H., Loring, B., Rogers, D., Larsen, M., Harrison, C., Rizzi,
S., Whitlock, B., and Thompson, D. In situ and visualization tutorial
with sensei and ascent. In International Conference for High Performance
Computing, Networking, Storage and Analysis (2019), SC ’19.

[37] Childs, H., Ma, K.-L., Yu, H., Whitlock, B., Meredith, J., Favre,
J., Klasky, S., Podhorszki, N., Schwan, K., Wolf, M., Parashar,
M., and Zhang, F. In Situ Processing. In High Performance
Visualization—Enabling Extreme-Scale Scientific Insight. CRC
Press/Francis–Taylor Group, Oct. 2012, pp. 171–198.

[38] Choi, J. Y., Wu, K., Wu, J. C., Sim, A., Liu, Q. G., Wolf, M.,
Chang, C., and Klasky, S. Icee: Wide-area in transit data processing
framework for near real-time scientific applications.

[39] Cook, A. W., Cabot, W. H., Williams, P. L., Miller, B. J.,
de Supinski, B. R., Yates, R. K., and Welcome, M. L. Tera-scalable
algorithms for variable-density elliptic hydrodynamics with spectral
accuracy. In SC’05: Proceedings of the 2005 ACM/IEEE Conference on
Supercomputing (2005), IEEE, pp. 60–60.

[40] Coulaud, O., Dussere, M., and Esnard, A. Toward a distributed
computational steering environment based on corba. In Parallel Computing,
G. Joubert, W. Nagel, F. Peters, and W. Walter, Eds., vol. 13 of Advances
in Parallel Computing. North-Holland, 2004, pp. 151–158.

[41] Cover, T. M., and Thomas, J. A. Elements of Information Theory (Wiley
Series in Telecommunications and Signal Processing). Wiley-Interscience,
New York, NY, USA, 2006.

[42] Davison de St. Germain, J., McCorquodale, J., Parker, S., and
Johnson, C. Uintah: a massively parallel problem solving environment. In
Proceedings the Ninth International Symposium on High-Performance
Distributed Computing (2000), pp. 33–41.

171

[43] Dayal, J., Bratcher, D., Eisenhauer, G., Schwan, K., Wolf, M.,
Zhang, X., Abbasi, H., Klasky, S., and Podhorszki, N. Flexpath:
Type-based publish/subscribe system for large-scale science analytics. In
2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (May 2014), pp. 246–255.

[44] DeWeese, M., and Meister, M. L. R. How to measure the information
gained from one symbol. Network Computing Neural Systems 10 (1999),
325–40.

[45] Docan, C., Parashar, M., and Klasky, S. Dataspaces: an interaction and
coordination framework for coupled simulation workflows. In HPDC (2010).

[46] Dorier, M., Sisneros, R., Peterka, T., Antoniu, G., and Semeraro,
D. Damaris/viz: a nonintrusive, adaptable and user-friendly in situ
visualization framework. In 2013 IEEE Symposium on Large-Scale Data
Analysis and Visualization (LDAV) (2013), IEEE, pp. 67–75.

[47] DSS Los Alamos National Lab, . Cinema tutorial. In International
Conference for High Performance Computing, Networking, Storage and
Analysis (2019), SC ’19.

[48] Dutagaci, H., Cheung, C. P., and Godil, A. A benchmark for best view
selection of 3d objects. In Proceedings of the ACM workshop on 3D object
retrieval (2010), pp. 45–50.

[49] Eisenhauer, G., Gu, W., Kindler, T., Schwan, K., Silva, D., and
Vetter, J. Opportunities and tools for highly interactive distributed and
parallel computing. Tech. rep., Proceedings of the Workshop, 1996.

[50] Eisenhauer, G., Schwan, K., Gu, W., and Mallavarupu, N.
Falcon-toward interactive parallel programs: the on-line steering of a
molecular dynamics application. In Proceedings of 3rd IEEE International
Symposium on High Performance Distributed Computing (1994), pp. 26–33.

[51] Ellsworth, D., Green, B., Henze, C., Moran, P., and Sandstrom, T.
Concurrent visualization in a production supercomputing environment.
IEEE transactions on visualization and computer graphics 12 (09 2006),
997–1004.

[52] Esnard, A., Richart, N., and Coulaud, O. A steering environment for
online parallel visualization of legacy parallel simulations. In 2006 Tenth
IEEE International Symposium on Distributed Simulation and Real-Time
Applications (2006), pp. 7–14.

172

[53] Fabian, N., Moreland, K., Thompson, D., Bauer, A. C., Marion, P.,
Gevecik, B., Rasquin, M., and Jansen, K. E. The paraview
coprocessing library: A scalable, general purpose in situ visualization library.
In 2011 IEEE Symposium on Large Data Analysis and Visualization (2011),
IEEE, pp. 89–96.

[54] Feixas, M., Sbert, M., and González, F. A unified information-theoretic
framework for viewpoint selection and mesh saliency. ACM Trans. Appl.
Percept. 6, 1 (Feb. 2009), 1:1–1:23.

[55] Feldman, J., and Singh, M. Information along contours and object
boundaries. Psychological Review 112, 1 (1 2005), 243–252.

[56] Garland, M., and Zhou, Y. Quadric-based simplification in any dimension.
ACM Trans. Graph. 24, 2 (Apr. 2005), 209–239.

[57] Geist, G., Kohl, J. A., and Papadopoulos, P. M. Cumulvs: Providing
fault toler. ance, visualization, and steer ing of parallel applications. The
International Journal of Supercomputer Applications and High Performance
Computing 11, 3 (1997), 224–235.

[58] Gooch, B., Reinhard, E., Moulding, C., and Shirley, P. Artistic
composition for image creation. In Rendering Techniques 2001 (Vienna,
2001), S. J. Gortler and K. Myszkowski, Eds., Springer Vienna, pp. 83–88.

[59] Gumhold, S. Maximum entropy light source placement. In ACM SIGGRAPH
2002 Conference Abstracts and Applications (New York, NY, USA, 2002),
SIGGRAPH ’02, Association for Computing Machinery, p. 215.

[60] Hackstadt, S., Harrop, C., and Malony, A. A framework for interacting
with distributed programs and data. In Proceedings. The Seventh
International Symposium on High Performance Distributed Computing (Cat.
No.98TB100244) (1998), pp. 206–214.

[61] Halle, M., and Meng, J. C. Lightkit: a lighting system for effective
visualization. IEEE Visualization, 2003. VIS 2003. (2003), 363–370.

[62] Harrison, C., Larsen, M., and Brugger, E. A lightweight in situ
visualization and analysis infrastructure for multi-physics hpc simulation
codes, version 00, 12 2016.

[63] Itti, L., Koch, C., and Niebur, E. A model of saliency-based visual
attention for rapid scene analysis. IEEE Transactions on Pattern Analysis
and Machine Intelligence 20, 11 (Nov 1998), 1254–1259.

173

[64] Jansen, K. E. A stabilized finite element method for computing turbulence.
Computer Methods in Applied Mechanics and Engineering 174, 3 (1999), 299
– 317.

[65] Jenks, G. Optimal data classification for choropleth maps occasional paper no
2. University of Kansas, Department of Geography (1977).

[66] Ji, G., and Shen, H.-w. Dynamic view selection for time-varying volumes.
IEEE Transactions on Visualization and Computer Graphics 12, 5 (2006),
1109–1116.

[67] Jolivet, V., Plemenos, D., and Poulingeas, P. Inverse direct lighting
with a monte carlo method and declarative modelling. In International
Conference on Computational Science (2002).

[68] Kamada, T., and Kawai, S. A simple method for computing general
position in displaying three-dimensional objects. Computer Vision,
Graphics, and Image Processing 41, 1 (1988), 43 – 56.

[69] Kress, J., Churchill, R. M., Klasky, S., Kim, M., Childs, H., and
Pugmire, D. Preparing for in situ processing on upcoming leading-edge
supercomputers. Supercomputing frontiers and innovations 3, 4 (2016),
49–65.

[70] Kuhnert, J. Meshfree numerical schemes for time dependent problems in fluid
and continuum mechanics. Advances in PDE modeling and computation
(2014), 119–136.

[71] Larsen, M., Ahrens, J., Ayachit, U., Brugger, E., Childs, H.,
Geveci, B., and Harrison, C. The alpine in situ infrastructure:
Ascending from the ashes of strawman. In Proceedings of the In Situ
Infrastructures on Enabling Extreme-Scale Analysis and Visualization (New
York, NY, USA, 2017), ISAV’17, ACM, pp. 42–46.

[72] Larsen, M., Brugger, E., Childs, H., Eliot, J., Griffin, K., and
Harrison, C. Strawman: A batch in situ visualization and analysis
infrastructure for multi-physics simulation codes. In Proceedings of the First
Workshop on In Situ Infrastructures for Enabling Extreme-Scale Analysis
and Visualization (New York, NY, USA, 2015), ISAV2015, ACM, pp. 30–35.

[73] Larsen, M., Harrison, C., Kress, J., Pugmire, D., Meredith, J. S.,
and Childs, H. Performance modeling of in situ rendering. In SC’16:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (2016), IEEE, pp. 276–287.

174

[74] Larsen, M., Woods, A., Marsaglia, N., Biswas, A., Dutta, S.,
Harrison, C., and Childs, H. A flexible system for in situ triggers. In
Proceedings of the Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization (New York, NY, USA, 2018),
ISAV ’18, Association for Computing Machinery, pp. 1–6.

[75] Lee, C. H., Varshney, A., and Jacobs, D. W. Mesh saliency. In ACM
SIGGRAPH 2005 Papers (New York, NY, USA, 2005), SIGGRAPH ’05,
ACM, pp. 659–666.

[76] Lee, T.-Y., Mishchenko, O., Shen, H.-W., and Crawfis, R. View point
evaluation and streamline filtering for flow visualization. pp. 83–90.

[77] Lessley, B., Binyahib, R., Maynard, R., and Childs, H. External
facelist calculation with data-parallel primitives. In EGPGV (2016),
pp. 11–20.

[78] Lessley, B., Li, S., and Childs, H. HashFight: A Platform-Portable Hash
Table for Multi-Core and Many-Core Architectures. In IS&T International
Symposium on Electronic Imaging: Visualization and Data Analysis (VDA)
(Burlingame, CA, Jan. 2020), pp. 376–1–376–12.

[79] Li, L., and Shen, H. Image-based streamline generation and rendering. IEEE
Transactions on Visualization and Computer Graphics 13, 3 (May 2007),
630–640.

[80] Li, S., Larsen, M., Clyne, J., and Childs, H. Performance impacts of in
situ wavelet compression on scientific simulations. In Proceedings of the in
situ infrastructures on enabling extreme-scale analysis and visualization
(2017), ACM, pp. 37–41.

[81] Li, S., Marsaglia, N., Chen, V., Sewell, C. M., Clyne, J. P., and
Childs, H. Achieving portable performance for wavelet compression using
data parallel primitives. In EGPGV (2017), pp. 73–81.

[82] Lin, J. Divergence measures based on the shannon entropy. IEEE Transactions
on Information Theory 37, 1 (Jan 1991), 145–151.

[83] Ling, J., Kegelmeyer, W., Aditya, K., Kolla, H., Reed, K., Shead,
T., and Davis, W. Using feature importance metrics to detect events of
interest in scientific computing applications. pp. 55–63.

175

[84] Liu, Q., Logan, J., Tian, Y., Abbasi, H., Podhorszki, N., Choi, J. Y.,
Klasky, S., Tchoua, R., Lofstead, J., Oldfield, R., Parashar,
M., Samatova, N., Schwan, K., Shoshani, A., Wolf, M., Wu, K.,
and Yu, W. Hello adios: The challenges and lessons of developing
leadership class i/o frameworks. Concurr. Comput. : Pract. Exper. 26, 7
(May 2014), 1453–1473.

[85] Liu, Y., Chen, G., Sun, M., Liu, S., and Tian, F. A parallel sla-based
algorithm for global mesoscale eddy identification. Journal of Atmospheric
and Oceanic Technology 33, 12 (2016), 2743 – 2754.

[86] Lorendeau, B., Fournier, Y., and Ribes, A. In-situ visualization in fluid
mechanics using catalyst: A case study for code saturne. In 2013 IEEE
Symposium on Large-Scale Data Analysis and Visualization (LDAV) (Oct
2013), pp. 53–57.

[87] Ma, J., Tao, J., Wang, C., Li, C., Shene, C.-K., and Kim, S. H.
Moving with the flow: an automatic tour of unsteady flow fields. Journal of
Visualization 22, 6 (2019), 1125–1144.

[88] Ma, J., Walker, J., Wang, C., Kuhl, S., and Shene, C. K. Flowtour:
An automatic guide for exploring internal flow features. In 2014 IEEE
Pacific Visualization Symposium (2014), pp. 25–32.

[89] Malakar, P., Vishwanath, V., Munson, T., Knight, C., Hereld, M.,
Leyffer, S., and Papka, M. E. Optimal scheduling of in-situ analysis
for large-scale scientific simulations. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (New York, NY, USA, 2015), SC ’15, ACM, pp. 52:1–52:11.

[90] Marchesin, S., Chen, C., Ho, C., and Ma, K. View-dependent
streamlines for 3d vector fields. IEEE Transactions on Visualization and
Computer Graphics 16, 6 (Nov 2010), 1578–1586.

[91] Marks, J., Andalman, B., Beardsley, P. A., Freeman, W., Gibson,
S., Hodgins, J., Kang, T., Mirtich, B., Pfister, H., Ruml, W.,
Ryall, K., Seims, J., and Shieber, S. Design galleries: A general
approach to setting parameters for computer graphics and animation. In
Proceedings of the 24th Annual Conference on Computer Graphics and
Interactive Techniques (New York, NY, USA, 1997), SIGGRAPH ’97, ACM
Press/Addison-Wesley Publishing Co., pp. 389–400.

[92] Marsaglia, N., Kawakami, Y., Schwartz, S. D., Fields, S., and
Childs, H. An Entropy-Based Approach for Identifying User-Preferred
Camera Positions. In IEEE Symposium on Large Data Analysis and
Visualization (LDAV) (2021).

176

[93] Messina, P. The Exascale Computing Project. Computing in Science and
Engineering 19, 3, 2017.

[94] Moreland, K., Maynard, R., Pugmire, D., Yenpure, A., Vacanti, A.,
Larsen, M., and Childs, H. Minimizing Development Costs for Efficient
Many-Core Visualization Using MCD3. Parallel Computing 108 (Dec. 2021),
102834.

[95] Moreland, K., Sewell, C., Usher, W., Lo, L., Meredith, J.,
Pugmire, D., Kress, J., Schroots, H., Ma, K., Childs, H., Larsen,
M., Chen, C., Maynard, R., and Geveci, B. Vtk-m: Accelerating the
visualization toolkit for massively threaded architectures. IEEE Computer
Graphics and Applications 36, 3 (May 2016), 48–58.

[96] Page, D., Koschan, A., Sukumar, S. R., Abidi, B., and Abidi, M.
Shape analysis algorithm based on information theory. vol. 1, pp. 229–232.

[97] Palmer, S. E., Rosch, E., and Chase, P. Canonical perspective and the
perception of objects.

[98] Parker, S. G., and Johnson, C. R. Scirun: A scientific programming
environment for computational steering. In Supercomputing ’95:Proceedings
of the 1995 ACM/IEEE Conference on Supercomputing (Dec 1995),
pp. 52–52.

[99] Pascucci, V., Laney, D. E., Frank, R. J., Scorzelli, G., Linsen, L.,
Hamann, B., and Gygi, F. Real-time monitoring of large scientific
simulations. In Proceedings of the 2003 ACM Symposium on Applied
Computing (New York, NY, USA, 2003), SAC ’03, ACM, pp. 194–198.

[100] Patchett, J., and Gisler, G. Deep water impact ensemble data set.

[101] Plemenos, D. Contribution à l’étude et au développement des techniques de
modélisation, génération et visualisation de scènes : le projet multiformes.
PhD thesis, 1991. 1991NANT2041.

[102] Plemenos, D., and Benayada, M. Intelligent display in scene modelling.
new techniques to automatically compute good views. In GraphiCon’96
(Saint Petersburg (Russia), July 1996).

[103] Plimpton, S. Fast parallel algorithms for short-range molecular dynamics.
Journal of Computational Physics 117, 1 (1995), 1 – 19.

[104] Polonsky, O., Patané, G., Biasotti, S., Gotsman, C., and
Spagnuolo, M. What’s in an image? The Visual Computer 21, 8 (Sep
2005), 840–847.

177

[105] Poulin, P., and Fournier, A. Lights from highlights and shadows. In
Proceedings of the 1992 Symposium on Interactive 3D Graphics (New York,
NY, USA, 1992), I3D ’92, ACM, pp. 31–38.

[106] Poulin, P., Ratib, K., and Jacques, M. Sketching shadows and
highlights to position lights. In Proceedings of the 1997 Conference on
Computer Graphics International (Washington, DC, USA, 1997), CGI ’97,
IEEE Computer Society, pp. 56–.

[107] Pugmire, D., Kress, J., Choi, J., Klasky, S., Kurc, T., Churchill,
R. M., Wolf, M., Eisenhower, G., Childs, H., Wu, K., Sim, A.,
Gu, J., and Low, J. Visualization and analysis for near-real-time decision
making in distributed workflows. In 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW) (May 2016),
pp. 1007–1013.

[108] Pugmire, D., Yenpure, A., Kim, M., Kress, J., Maynard, R., Childs,
H., and Hentschel, B. Performance-Portable Particle Advection with
VTK-m. In Eurographics Symposium on Parallel Graphics and Visualization
(EGPGV) (Brno, Czech Republic, June 2018), pp. 45–55.

[109] R Core Team. R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2014.

[110] Richart, N., Esnard, A., and Coulaud, O. Toward a computational
steering environment for legacy coupled simulations. In Sixth International
Symposium on Parallel and Distributed Computing (ISPDC’07) (2007),
IEEE, pp. 43–43.

[111] Ruiz, M., Bardera, A., Boada, I., Viola, I., Feixas, M., and Sbert,
M. Automatic transfer functions based on informational divergence. IEEE
Transactions on Visualization and Computer Graphics 17, 12 (Dec 2011),
1932–1941.

[112] Salehi, M., and Rashidi, L. A survey on anomaly detection in evolving
data: [with application to forest fire risk prediction]. SIGKDD Explor.
Newsl. 20, 1 (may 2018), 13–23.

[113] Salloum, M., Bennett, J. C., Pinar, A., Bhagatwala, A., and
Chen, J. H. Enabling adaptive scientific workflows via trigger detection. In
Proceedings of the First Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization (New York, NY, USA, 2015),
ISAV2015, Association for Computing Machinery, pp. 41–45.

[114] Sander, F., and Krueger, F. Gestaltpsychologie und Kunsttheorie: ein
Beitrag zur Psychologie architektonischer Gestalten. Beck, 1932.

178

[115] Sbert, M., Feixas, M., Rigau, J., Viola, I., and Chover, M.
Applications of information theory to computer graphics. In Eurographics
(2002).

[116] Sbert, M., Plemenos, D., Feixas, M., and González, F. Viewpoint
quality: Measures and applications. In Proceedings of the First Eurographics
Conference on Computational Aesthetics in Graphics, Visualization and
Imaging (Aire-la-Ville, Switzerland, Switzerland, 2005), Computational
Aesthetics’05, Eurographics Association, pp. 185–192.

[117] Schroeder, W., Martin, K. M., and Lorensen, W. E. The
Visualization Toolkit (4th Ed.). Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 2006.

[118] Secord, A., Lu, J., Finkelstein, A., Singh, M., and Nealen, A.
Perceptual models of viewpoint preference. ACM Trans. Graph. 30, 5 (Oct.
2011), 109:1–109:12.

[119] Serin, E., Sumengen, S., and Balcisoy, S. Representational image
generation for 3d objects. Vis. Comput. 29, 6-8 (June 2013), 675–684.

[120] Shahnas, M. H., Peltier, W. R., Wu, Z., and Wentzcovitch, R. The
high-pressure electronic spin transition in iron: Potential impacts upon
mantle mixing. Journal of Geophysical Research: Solid Earth 116, B8
(2011).

[121] Slawinska, M., Clark, M., Wolf, M., Bode, T., Zou, H., Laguna,
P., Logan, J., Kinsey, M., and Klasky, S. A maya use case:
Adaptable scientific workflows with adios for general relativistic
astrophysics. In Proceedings of the Conference on Extreme Science and
Engineering Discovery Environment: Gateway to Discovery (New York, NY,
USA, 2013), XSEDE ’13, ACM, pp. 54:1–54:8.

[122] Sokolov, D., and Plemenos, D. Viewpoint quality and scene
understanding. In Proceedings of the 6th International Conference on
Virtual Reality, Archaeology and Intelligent Cultural Heritage (Aire-la-Ville,
Switzerland, Switzerland, 2005), VAST’05, Eurographics Association,
pp. 67–73.

[123] Stein, C., Bennett, D., Farrell, P., and Ruttan, A. A steering and
visualization toolkit for distributed applications. pp. 451–457.

[124] Stoev, S. L., and Strasser, W. A case study on automatic camera
placement and motion for visualizing historical data. In IEEE Visualization,
2002. VIS 2002. (Oct 2002), pp. 545–548.

179

[125] Sun, M., Tian, F., Liu, Y., and Chen, G. An improved automatic
algorithm for global eddy tracking using satellite altimeter data. Remote
Sensing 9, 3 (2017).

[126] Takahashi, S., Fujishiro, I., and Takeshima, Y. Interval volume
decomposer: a topological approach to volume traversal. In Visualization
and Data Analysis 2005 (2005), R. F. Erbacher, J. C. Roberts, M. T.
Grohn, and K. Borner, Eds., vol. 5669, International Society for Optics and
Photonics, SPIE, pp. 103 – 114.

[127] Takahashi, S., Fujishiro, I., Takeshima, Y., and Nishita, T. A
feature-driven approach to locating optimal viewpoints for volume
visualization. In VIS 05. IEEE Visualization, 2005. (Oct 2005),
pp. 495–502.

[128] Takahashi, S., Takeshima, Y., and Fujishiro, I. Topological volume
skeletonization and its application to transfer function design. Graph.
Models 66, 1 (Jan. 2004), 24–49.

[129] Tao, J., Ma, J., Wang, C., and Shene, C.-K. A unified approach to
streamline selection and viewpoint selection for 3d flow visualization. IEEE
Transactions on Visualization and Computer Graphics 19, 3 (2013),
393–406.

[130] Tarr, M. J., and Kriegman, D. J. What defines a view? Vision Research
41, 15 (2001), 1981 – 2004.

[131] Taubin, G. Estimating the tensor of curvature of a surface from a polyhedral
approximation. In Proceedings of IEEE International Conference on
Computer Vision (June 1995), pp. 902–907.

[132] Treichler, S., Bauer, M., Bhagatwala, A., Borghesi, G.,
Sankaran, R., Kolla, H., Mccormick, P., Slaughter, E., Lee,
W., Aiken, A., and Chen, J. H. S3d-legion: An exascale software for
direct numerical simulation of turbulent combustion with complex
multicomponent chemistry.

[133] Ullrich, P. A., and Zarzycki, C. M. Tempestextremes: a framework for
scale-insensitive pointwise feature tracking on unstructured grids.
Geoscientific Model Development 10, 3 (2017), 1069–1090.

[134] Vázquez, P.-P., Feixas, M., Sbert, M., and Heidrich, W. Viewpoint
selection using viewpoint entropy. In Proceedings of the Vision Modeling and
Visualization Conference 2001 (2001), VMV ’01, Aka GmbH, pp. 273–280.

180

[135] Vieira, T., Bordignon, A. L., Peixoto, A., Tavares, G., Lopes, H.,
Velho, L., and Lewiner, T. Learning good views through intelligent
galleries. Comput. Graph. Forum 28 (2009), 717–726.

[136] Viola, I., Feixas, M., Sbert, M., and Groller, M. E.
Importance-driven focus of attention. IEEE Transactions on Visualization
and Computer Graphics 12, 5 (Sep. 2006), 933–940.

[137] Viola, I., Kanitsar, A., and Groller, M. E. Importance-driven feature
enhancement in volume visualization. IEEE Transactions on Visualization
and Computer Graphics 11, 4 (July 2005), 408–418.

[138] Vishwanath, V., Hereld, M., Papka, M. E., Hudson, R., Jordan,
G. C., and Daley, C. J. A. In situ data analysis and i / o acceleration of
flash astrophysics simulation on leadership-class system using glean. In Proc.
SciDAC, Journal of Physics: Conference Series (2011).

[139] Vázquez, P.-P., Feixas, M., Sbert, M., and Heidrich, W. Automatic
view selection using viewpoint entropy and its application to image-based
modelling. Computer Graphics Forum 22, 4 (2003), 689–700.

[140] Wang, C., and Shen, H.-W. Information theory in scientific visualization.
Entropy 13, 1 (2011), 254–273.

[141] Weber, G. H., Dillard, S. E., Carr, H., Pascucci, V., and Hamann,
B. Topology-controlled volume rendering. IEEE Transactions on
Visualization and Computer Graphics 13, 2 (March 2007), 330–341.

[142] Weber, G. H., and Scheuermann, G. Automating transfer function
design based on topology analysis. In Geometric Modeling for Scientific
Visualization (Berlin, Heidelberg, 2004), G. Brunnett, B. Hamann,
H. Müller, and L. Linsen, Eds., Springer Berlin Heidelberg, pp. 293–305.

[143] Whitlock, B., Favre, J. M., and Meredith, J. S. Parallel in situ
coupling of simulation with a fully featured visualization system. In
Proceedings of the 11th Eurographics Conference on Parallel Graphics and
Visualization (Aire-la-Ville, Switzerland, Switzerland, 2011), EGPGV ’11,
Eurographics Association, pp. 101–109.

[144] Wood, J., Brodlie, K., and Walton, J. gviz - visualization and steering
for the grid.

[145] Yamamoto, K., and Kageyama, A. In-Situ Visualization with Membrane
Layer for Movie-Based Visualization. 06 2019, pp. 588–594.

181

[146] Yamaoka, Y., Hayashi, K., Sakamoto, N., and Nonaka, J. In situ
adaptive timestep control and visualization based on the spatio-temporal
variations of the simulation results. In Proceedings of the Workshop on In
Situ Infrastructures for Enabling Extreme-Scale Analysis and Visualization
(New York, NY, USA, 2019), ISAV ’19, Association for Computing
Machinery, pp. 12–16.

[147] Yenpure, A., Childs, H., and Moreland, K. Efficient Point Merge
Using Data Parallel Techniques. In Eurographics Symposium on Parallel
Graphics and Visualization (EGPGV) (Porto, Portugal, June 2019),
pp. 79–88.

[148] Yi, H., Rasquin, M., Fang, J., and Bolotnov, I. A. In-situ
visualization and computational steering for large-scale simulation of
turbulent flows in complex geometries. In 2014 IEEE International
Conference on Big Data (Big Data) (Oct 2014), pp. 567–572.

[149] Yu, H., Wang, C., Grout, R. W., Chen, J. H., and Ma, K. In situ
visualization for large-scale combustion simulations. IEEE Computer
Graphics and Applications 30, 3 (May 2010), 45–57.

[150] Zhao, M., Held, I. M., Lin, S.-J., and Vecchi, G. A. Simulations of
global hurricane climatology, interannual variability, and response to global
warming using a 50-km resolution gcm. Journal of Climate 22, 24 (2009),
6653 – 6678.

182

	 Introduction
	Supercomputing Trends
	Supercomputing Challenge: the I/O Gap
	In Situ Processing
	Challenges of Automatic Camera Placement
	Dissertation Question
	RQ1: Expert Survey and Oracles Based on VQ Metrics
	RQ2: Distributed Implementation and Performance Study
	RQ3: Search Routine
	RQ4: Temporal Coherence

	 Background
	Introduction
	What Makes an Image Good?
	How to Find the Best Image?

	Viewpoint Quality (VQ) Metrics
	Notation
	Geometry Based Quality Measures
	Area
	Silhouette
	Depth
	Stability
	Surface Curvature

	Data Driven Quality Measures
	Entropy

	In Situ Analysis and Visualization Software
	Use Cases
	Evaluation

	 An Entropy-Based Approach for Identifying User-Preferred Camera Positions
	Introduction
	Our Method
	Constructing Oracles from VQ Metrics
	New VQ Metrics
	Data Entropy
	Depth Entropy
	Shading Entropy

	Comparators: Existing VQ Metrics
	Number of Visible Triangles
	Projected Area
	PB
	Visibility Ratio
	Viewpoint Entropy
	VKL
	Maximum Depth

	Corpus for Comparing Viewpoints
	Generating a Database of Images
	Data Sets
	Choosing Isovalues
	Camera Placement

	User Study

	Evaluation Approach
	Results
	Single-Metric Oracles
	Multi-Metric Oracles
	Efficacy of Top Oracle

	Conclusion

	 Automatic In Situ Camera Placement for Large-Scale Scientific Simulations
	Introduction
	Our Method
	VQ Metric Parallelization
	Viewpoint Search Algorithm

	Results
	Phase 1: Parallel Performance of Individual Metrics
	Phase 2: Evaluating Viewpoint Search Algorithms
	Stability of Search Space
	Search Algorithm Evaluation

	Phase 3: In Situ Evaluation

	Conclusion

	 Optimal Viewpoint Placement Over Time (OVPOT) for Scientific Simulations
	Introduction
	Related Work
	Triggers
	Domain Agnostic Triggers
	Domain Specific Triggers

	Camera Placement Over Time

	Our Method
	Phase 1: Post-hoc Analysis
	Phase 2: In Situ Implementation and Evaluation

	Experimental Overview
	Phase 1: Post-hoc Experiment
	Phase 2: In Situ Experiment

	Results
	Phase 1: Post-hoc Results
	Phase 2: In Situ Results

	Conclusion

	 Conclusion
	Research Subquestions
	Answering RQ1
	Answering RQ2
	Answering RQ3
	Answering RQ4

	Dissertation Question
	Future Work

	APPENDIX: Best and Worst Images from Evaluation in Chapter II
	REFERENCES CITED

