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DISSERTATION ABSTRACT

Srinivasan Ramesh

Doctor of Philosophy

Department of Computer and Information Science

June 2022

Title: Performance Observability and Monitoring of High Performance Computing
With Microservices

Traditionally, High Performance Computing (HPC) software has been built

and deployed as bulk-synchronous, parallel executables based on the message-

passing interface (MPI) programming model. The rise of data-oriented computing

paradigms and an explosion in the variety of applications that need to be supported

on HPC platforms have forced a re-think of the appropriate programming and

execution models to integrate this new functionality. In situ workflows demarcate

a paradigm shift in HPC software development methodologies enabling a range of

new applications — from user-level data services to machine learning (ML) workflows

that run alongside traditional scientific simulations.

By tracing the evolution of HPC software development over the past 30 years,

this dissertation identifies the key elements and trends responsible for the emergence

of coupled, distributed, in situ workflows. This dissertation’s focus is on coupled

in situ workflows involving composable, high-performance microservices. After

outlining the motivation to enable performance observability of these services and why

existing HPC performance tools and techniques can not be applied in this context,

this dissertation proposes a solution wherein a set of techniques gathers, analyzes,

and orients performance data from different sources to generate observability. By

iv



leveraging microservice components initially designed to build high performance

data services, this dissertation demonstrates their broader applicability for building

and deploying performance monitoring and visualization as services within an in

situ workflow. The results from this dissertation suggest that: (1) integration of

performance data from different sources is vital to understanding the performance

of service components, (2) the in situ (online) analysis of this performance data is

needed to enable the adaptivity of distributed components and manage monitoring

data volume, (3) statistical modeling combined with performance observations

can help generate better service configurations, and (4) services are a promising

architecture choice for deploying in situ performance monitoring and visualization

functionality. This dissertation includes previously published and co-authored

material and unpublished co-authored material.
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CHAPTER I

INTRODUCTION

Traditionally, high performance computing (HPC) has been the domain of bulk-

synchronous, parallel MPI applications deployed as single program, multiple data

(SPMD) executables. The past decade has seen a steady and marked rise in the

number of separate, parallel applications and distributed services operating together

to achieve a common scientific goal [3]. This new class of coupled applications and

services, broadly referred to as in situ workflows, involves the collective execution

of distributed “entities” comprising MPI applications, analysis tasks, visualization

modules, and distributed services providing a host of specialized functionality. In

situ workflows present new challenges concerning their performance observation,

monitoring, and optimization. This dissertation focuses on in situ workflows involving

high performance, distributed services.

The definition of what constitutes a “service” is indeed broad, originating

in the broader cloud computing community as “how needs and capabilities are

brought together” [4]. While that abstract definition can support several different

implementations of services, historically, the implied definition for what constitutes

a service involves (at the very least) the following characteristics: (1) the service

module runs inside a dedicated (set of) process(es) separate from the client invoking

the service, (2) the service module is a distinct entity that exposes a well-defined

application programming interface (API) to access its functionality, usually involving

a network call. Service-oriented architectures have enjoyed great success in the cloud

community due to the need and support for extensible software modules, rapid

development, integration of new and varied functionality, and the need to scale

individual software components and development teams independently.
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While the concept of services per se is not new to the HPC software community,

until the last decade or so, their scope has primarily been limited to providing an

interface to access core system functionality such as parallel file storage, job launch,

and scheduling mechanisms. Put another way, the end-user of the HPC platform,

such as a domain scientist or application programmer, has rarely had to worry about

programming or configuring these services. That job was usually reserved for the

system administrators and developers of lower-level communication libraries such

as MPI. However, the advent of user-level service frameworks such as ADIOS [5],

Mochi [6], Faodel [7], DataSpaces [8] and Decaf [9] is beginning to change this rhetoric.

A common observation that can be made about most, if not all of these emerging

service frameworks is that they each provide access to either transient data storage,

data analysis, data visualization, or some form of “in-memory” computing. This

trend can arguably be attributed to two significant factors. On the one hand, the slow

growth of parallel I/O bandwidth on HPC clusters in relation to the computational

capabilities has forced applications to minimize their access to parallel file storage.

The rise of in situ schemes for data analysis and visualization and asynchronous I/O

techniques that hide the cost of expensive parallel file system operations stand as a

testament to this fact. On the other hand, the range of applications requiring high

performance capabilities has broadened rapidly due to the advent of data-oriented

statistical computing techniques such as machine learning (ML). As a result, HPC

data frameworks have evolved to support a broader range of data models for storage

and analysis, resembling their cloud counterparts in form while being required to take

advantage of the HPC platform on which they operate.

The explicit coupling of user-level data storage, visualization, and analysis services

alongside traditional MPI-based applications puts the onus on the end-user to identify
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the “optimal” service configuration and make decisions concerning the allocation of

computing resources to different in situ workflow components. A haphazard allocation

of resources to different workflow components can yield an overall poor performance

for the workflow. The first step in helping the user identify a poorly performing

service (workflow) configuration is to enable the service operation’s performance

observability (insight). The ultimate goal is to use this insight to develop a working

performance model of the workflow and design appropriate solutions for service

adaptivity. The main focus of this dissertation is (1) to identify how to enable

performance observability of services that are built by composing high performance

microservices, and (2) how to enable the performance monitoring of the services along

with the other in situ workflow components. Enabling performance observability and

monitoring with HPC microservices involves several challenges:

Challenge 1: Identifying What To Observe and Monitor

The first step in enabling performance observability is to identify the appropriate

set of performance data to observe. Enabling observability is a challenge for two

reasons. First, the performance observations must accurately represent the key

aspects affecting service performance, implying that a good understanding of the

service execution model is needed. If this execution model is inaccurate, performance

observations may prove inadequate in helping understand service performance.

Further, the performance observations must be able to give us a holistic picture of all

aspects of service performance, such as identifying the high-level service interactions

and providing a resource-centric view of the execution. Second, the performance

observations must be able to guide the user (or an external entity) in understanding

how to modify the service configuration to result in better service performance.

Challenge 2: Selecting Instrumentation Techniques
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The services that this dissertation considers are built and composed using high

performance remote procedure calls (RPC). In other words, the flow of control

resulting from an execution of a service request can traverse several process boundaries

before a response is returned to the caller. Traditional HPC applications are built

and deployed as MPI applications, and therefore, most HPC performance tools that

are designed to operate within an MPI context implicitly assume that control is not

passed between processes and applications. Given that HPC performance tools are

primarily inapplicable in this context, this dissertation finds the need to look to the

broader cloud computing community for inspiration. At the same time, the challenge

is to understand how to adapt existing cloud-based observability and monitoring

techniques to be applicable and valuable in an HPC execution environment.

Challenge 3: Combining and Orienting Performance Data

The third challenge lies in understanding how to combine and orient the captured

performance data to yield helpful insight and actionable knowledge. This challenge

has three components to it. First, knowledge of the desired visualization and analysis

is required before performance data can be combined. Further, the decision of what to

visualize and analyze must pertain directly to the goals of performance observability.

Second, combining and orienting the performance data from different sources requires

an understanding of how to implement a “hand-shake” operation between the different

software layers that hold the said data. Third, the decision about when to collect

the performance data affects both the quality of the resulting observations and the

runtime overheads involved.

Challenge 4: Managing Large Data Volumes

The fourth challenge pertains primarily to enabling online monitoring and analysis

of in situ workflows that involve HPC microservices. The HPC services that this
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dissertation studies operate in a highly concurrent environment, potentially serving

multiple MPI clients simultaneously. The quantity of captured performance data

or traces captured from different distributed components could quickly become

intractable. Therefore, it is necessary to manage the large trace data volume to

reduce the storage requirements and speed up the extraction of performance insight

from the data.

Challenge 5: Ubiquitous Monitoring

The final challenge also pertains to enabling online monitoring and analysis

of in situ workflows. Given that HPC services operate alongside other workflow

components such as MPI applications, analysis tasks, and ML ensembles, any

proposed monitoring solution must be ubiquitously applicable to all workflow

components, requiring a minimal amount of additional setup and glue code to ensure

easy operation. Further, it is a desirable property of such a monitoring solution to be

seamlessly integrated while leveraging existing solutions to gather performance data

for monitoring.

1.1 Main Research Question

This dissertation strives to investigate these challenges and answer the following

research question: How to enable and use performance insight to improve

service configuration when the service is a part of a coupled, HPC in situ

workflow? This broad research question is decomposed into more minor, constituent

questions and addressed in subsequent chapters of this dissertation. Figure 1 depicts

the specific questions addressed in each chapter. Brief descriptions of each chapter

and connections are presented here.
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Figure 1. Challenges and research questions addressed in different chapters. Research
questions are presented in green boxes. The challenges are presented in violet boxes.
Challenge 1 - Identifying What To Observe and Monitor,
Challenge 2 - Selecting Instrumentation Techniques,
Challenge 3 - Combining and Orienting Performance Data,
Challenge 4 - Managing Large Data Volumes,
Challenge 5 - Ubiquitous Monitoring.
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1.2 Chapter II — Evolution of HPC Software Development and

Accompanying Changes in Performance Tools

Designing maintainable and scalable modular software has always been a long-

standing goal within the HPC community. Tracking the evolution of HPC software

development over the past 30 years yields several insights into the origins of dominant

software development paradigms. These insights put the current trends in context

and allow for a systematic study of the performance-related challenges exposed by

increasingly modular software. The late 1990s saw the emergence of a community-

wide effort to develop and deploy modular software through the common component

architecture (CCA) [10, 11, 12]. Microservices arguably represents an end of

the spectrum of distributed component software, allowing for rapid development

and a high degree of code reuse between projects. This dissertation follows the

parallel evolution of HPC performance tools for modular software and, in the

process, identifies critical techniques that can be adapted to generate performance

observability of HPC microservices.

The material in this chapter is unpublished with no co-authorship. However,

revision suggestions were given by the dissertation advisory committee (Allen Malony,

Hank Childs, and Boyana Norris) during the Area Exam.

1.3 Chapter III — Identifying What to Observe and Monitor

Chapter III partly addresses RQ1: How to enable performance observability

(insight) of services built by composing high performance microservices? Chapter III

provides an introduction to microservices and motivates the performance challenges

associated with such highly modular software. While these techniques are broadly

applicable to any high performance microservice environment, this dissertation uses

the Mochi [6] software stack as a development vehicle. Beginning with a broad
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description of microservices and an overview of what makes them attractive to the

development of distributed software, Chapter III describes the critical components

of the Mochi [6] high performance service framework in detail. In particular, this

chapter pays special attention to elicit the key aspects of Mochi’s RPC execution

model to identify what aspects of performance to observe and monitor.

The content of this chapter is published at IPDPS, 2021 [13]. This publication is

co-authored by Dr. Allen Malony from the University of Oregon and Dr. Philip Carns,

Dr. Robert Ross, Dr. Matthieu Dorier, and Shane Snyder from Argonne National

Laboratory, and Dr. Jerome Soumagne from The HDF Group.

Connection to Chapter IV: The broad question RQ1 can be addressed in

three parts: (1) identifying what to observe and monitor, (2) selecting the right

set of performance instrumentation techniques, and (3) combining the resulting

performance data to yield performance insight. While Chapter III provides an answer

to part (1), Chapter IV provides an answer to part (2) and part (3), describing in

detail a set of techniques to gather and orient the performance observation data.

1.4 Chapter IV — Selecting and Combining Sources of Performance Data

Chapter IV partly addresses RQ1: How to enable performance observability of

services built by composing high performance microservices? Chapter IV introduces

SYMBIOSYS, a methodology for integrated performance observation and analysis of

HPC microservices. The SYMBIOSYS approach embellishes distributed callpath

profiles and traces with rich performance data from lower levels in the Mochi

microservice software stack. Distributed callpath profiling and tracing techniques are

inspired by cloud-based tools such as Dapper [14] at Google, and the embellishment of

callpath profiles occurs through a performance data exchange strategy that is inspired

by the MPI Tools Information Interface [15]. While distributed callpath profiling
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can provide an overview of the dominant microservice interactions, SYMBIOSYS

demonstrates that embellishing them with rich performance data from different

software layers provides insight into how these microservice interactions affect time

and resource usage. SYMBIOSYS has a low operating overhead at scale, resulting

in no more than 4% of runtime overheads when applied to a workflow involving the

HEPnOS [6] data service. Concerning the performance analysis of the microservice

API under concurrent access, this dissertation finds time-series metrics (event traces)

to be helpful. Further, combining time-series metrics with statistical data models

generated offline can prove helpful in identifying more optimal service configurations.

The content of this chapter is published at IPDPS 2021 [13]. This publication

is co-authored by Dr. Allen Malony from the University of Oregon and Dr. Philip

Carns, Dr. Robert Ross, Dr. Matthieu Dorier, Shane Snyder from Argonne National

Laboratory, and Dr. Jerome Soumagne from The HDF Group. The content of this

chapter is also published at HiPC 20211 [16, 17] and SC 2021 [18]. These publications

are co-authored by Dr. Kevin Huck and Dr. Allen Malony from the University of

Oregon, and Dr. Philip Carns, Dr. Robert Ross, and Dr. Matthieu Dorier from

Argonne National Laboratory.

Connection to RQ2 and Chapter V: Chapter IV addresses part (2) and part

(3) of RQ1. The consolidated RPC callpath profiles that SYMBIOSYS generates

enable insight into the operation of the HPC service components. No existing

HPC performance tool could be applied for this purpose. Using SYMBIOSYS, we

could better identify the root causes for poorly performing service configurations and

rectify these issues, resulting in better performing service configurations. However,

SYMBIOSYS is limited to offline analysis of performance data. Given that HPC

services operate as a part of in situ workflows, monitoring aspects of service
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performance online in conjunction with the other workflow components can help

identify poorly performing service configurations during execution and help guide

the workflow to a better performing state.

1.5 Chapter V — Ubiquitous Monitoring of Services and In Situ

Workflow Components

Chapter V addresses RQ2: How to enable ubiquitous performance monitoring of

HPC applications, services, and workflows alike? Observability tools for distributed

cloud services often include metric data collection to complement performance

data gathered through distributed request tracing. Given that services operate

as a part of the workflow, it might be necessary to monitor and evaluate service

performance in the context of the performance of other workflow components, such

as MPI applications. Therefore, a ubiquitously applicable performance monitoring

infrastructure that can enable the remote, online monitoring of services and other

in situ workflow components is required. This chapter introduces SYMBIOMON, a

metric monitoring service tailored for HPC platforms. The design of this service

draws inspiration from cloud-based monitoring tools such as Prometheus [19] to

allow the definition and export of metrics with custom taglists. SYMBIOMON

is specifically designed to operate efficiently in sub-millisecond time intervals,

enabling the management of large volumes of metric trace data through the

AGGREGATOR and REDUCER microservices for online metric data reduction

and analysis. Notably, every SYMBIOMON component is implemented as a Mochi

microservice, allowing flexibility in composing and toggling different functionality

while simultaneously leveraging Mochi’s high performance RPC stack to operate

with reasonable overhead. This chapter also demonstrates the seamless integration

of SYMBIOMON’s monitoring and analysis capabilities for traditional MPI-based
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applications (LULESH) and HPC ensembles by leveraging the previously developed

TAU plugin system [20].

The content of this chapter is published at HiPC 2021 [16], HIPC 2021

(Poster) [17], and SC 2021 (Poster) [18]. These publications are co-authored by

Dr. Kevin Huck and Dr. Allen Malony from the University of Oregon, and Dr. Philip

Carns, Dr. Robert Ross, and Dr. Matthieu Dorier from Argonne National Laboratory.

The content of this chapter is also published at ICPP 2019 [21]. This publication was

co-authored by Dr. Allen Malony, Dr. Kevin Huck, Dr. Sameer Shende and Dr. Nick

Chaimov from the University of Oregon. The content of this chapter also represents

unpublished work resulting from a collaboration with Dr. Allen Malony from the

University of Oregon, Dr. Matteo Turilli from RUTGERS, and Dr. Shantenu Jha,

Dr. Tan Li, and Dr. Mikhail Titov from Brookhaven National Laboratory.

Connection to Chapter VI: Chapter V addresses RQ2. In connection to

Chapter VI, the key takeaway from Chapter V is applying the Mochi RPC framework

to develop a high performance metric monitoring service. Note that the Mochi

framework was originally designed to support the development of composable, high

performance data services. Chapter VI demonstrates that the same core Mochi

components can be broadly applicable to rapidly integrate microservices for in situ

visualization of MPI applications.

1.6 Chapter VI — Extending the Applicability of High Performance

Microservices

Chapter VI presents the implications of the key findings from attempting to answer

RQ2. In particular, this chapter explores the broader application of microservices

for in situ visualization. This chapter presents SERVIZ, a high performance in situ

visualization service built and deployed as a hybrid MPI + RPC Mochi microservice.
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SERVIZ operates in a shared setting, allowing multiple MPI simulations (clients)

to access its visualization API simultaneously to result in significant cost savings

over prior approaches. The results from SERVIZ suggest that building shared HPC

services out of microservice components provides three comprehensive benefits: (1)

cost savings, (2) rapid development, and (3) high degree of code reuse, promoting

maintainability of HPC software. The content of this chapter is currently under

review at SC 2022 [22]. This publication effort is co-authored by Dr. Allen Malony

and Dr. Hank Childs from the University of Oregon.

With Chapter VII, this dissertation concludes its exploration to answer the

main question presented in Section 1.1 concerning the generation of optimal service

configurations and the implications of the resulting tool solution. This dissertation

includes prose, figures, and tables from previously published conferences, workshops,

and journal proceedings.
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CHAPTER II

EVOLUTION OF HPC SOFTWARE DEVELOPMENT AND ACCOMPANYING

CHANGES IN PERFORMANCE TOOLS

This chapter contains unpublished material with co-authorship. The content

presented in this chapter was developed as a part of the departmental Area Exam,

where I received guidance from my advisor Dr. Allen Malony. While working on

the Area Exam, I received feedback and suggestions from my dissertation advisory

committee members (Dr. Hank Childs and Dr. Boyana Norris). I did all the data

collection and writing while the committee members helped proofread the Area Exam

document.

2.1 Introduction

Chapter II presents an overview of the evolution of the HPC software development

methodologies over the past 30 years. Special attention is devoted to describe the key

factors underlying these changes while also presenting a categorization of the state-of-

the-art HPC software frameworks under various axes of analysis. At the same time,

the accompanying changes in HPC performance tool development are discussed to

elicit the open areas requiring tool solutions to be put in place.

Over the past three decades, there has been a constant evolution in how HPC

distributed software is conceptualized, implemented, and deployed. Traditional HPC

software development has been centered around the message-passing programming

model. In particular, the message-passing interface (MPI) has been the de-facto

programming model of choice for developing distributed HPC applications. In

response to the recent explosion of data-centric and machine learning (ML) workloads

in scientific computing [23], HPC systems and software are rapidly evolving to

meet the demands of diversified applications. These new applications do not fit
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into the MPI programming model [23, 24], thus necessitating a change in the

fundamental methodologies for distributed HPC software development. In particular,

the emergence of coupled applications, ensembles, and in-situ software services

running alongside traditional HPC simulations [25] are the key indicators of such

change. Scientific workflows are beginning to move away from traditional MPI

monoliths to resemble a mix of several different pieces of specialized distributed

software working in concert to achieve some larger goal [3].

Within a process running inside the broader distributed application, increasing

software complexity and the need to perform ever-more-realistic simulations have been

the driving forces behind the componentization of HPC software [26]. Parallels can

be drawn between adopting componentization in the industry [27] and the subsequent

push to componentize HPC software to manage complexity. At the same time, HPC

performance tools have also been updated to reflect this change [28]. Over the last 20

years, the push to componentize software has resulted in evolving a service-oriented

architecture in the industry. The HPC community has recently been actively looking

into similar software architectures to support heterogeneous, data-centric workloads.

The key aspect that sets HPC applications from other forms of distributed software

is the need to achieve high performance, high efficiency, and a high degree of scalability

on exotic HPC hardware. In such environments, performance measurement and

analysis tools play a critical role in identifying sources of performance inefficiencies.

State-of-the-art HPC performance tools such as TAU, HPCToolkit, and Caliper [29,

30, 31] excel at the performance analysis of monolithic MPI applications. However,

when faced with the task of holistically analyzing the performance of coupled multi-

physics codes or distributed HPC data services, applying these performance tools

without change finds limited application because these tools implicitly rely on the
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existence of an MPI library to bootstrap their measurement frameworks. Studying

the evolution of HPC performance tools in this context is necessary to identify

opportunities and future tool design requirements.

This area exam explores the evolution of HPC software and performance tool

development. Starting with a collection of source files built into one monolithic MPI

executable, HPC software has evolved to support coupled applications, distributed

data services, in-situ ML, visualization, and analysis modules running together on

a single machine allocation. A novel narrative of the tension between the need

to manage software complexity while simultaneously achieving high performance is

presented. Wherever appropriate, notable trends from the general computing industry

are cited as key technology enablers of such change. The parallel timeline and

evolution of performance measurement, analysis, and online monitoring tools and

techniques are also presented in this research document.

2.2 Background

To familiarize the reader with standard HPC programming practices and common

terminology, a brief overview of the state-of-the-art in HPC system architectures,

applications, and performance analysis software is necessary. HPC machines, also

known as supercomputers, represent the largest networked computers designated

for scientific computing. Although official figures of the cost of such machines are

rarely released, speculations [32] suggest that the hardware cost alone is several

hundreds of millions of dollars. Also, the annual operating costs of running these

machines are in the order of tens of millions of dollars. Thus, the applications that

run on these machines must do so at the highest efficiency possible to maximize

scientific output, maximize machine occupancy, and minimize cost. Today’s typical

HPC machine architecture consists of a heterogeneous mix of general-purpose CPUs
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and accelerator architectures such as the graphics processing unit (GPU) [33].

These computing elements are connected through a high-bandwidth, low-latency

interconnect such as Infiniband [34]. Further, all the computing and networking

elements are typically situated within the same IT infrastructure or building. These

key characteristics separate HPC architectures from more general distributed grid

computing architectures.

2.2.1 MPI: The Dominant Distributed Programming Model. The

MPI programming model [35] has dominated the HPC software development

landscape for a large portion of the past three decades. An MPI application is

launched as a set of N communicating processes. Traditional MPI applications [36, 37]

divide an application domain, such as a computational grid into several logical sub-

domains. Each MPI process is assigned one or more sub-domains on which they

perform local computation. When necessary, these MPI processes communicate to

exchange or aggregate intermediate results. This communication can either be point-

to-point or collective. A typical scientific application [36] contains a discretized time

domain and a computational grid (spatial domain) and runs for a certain number

of fixed timesteps. Communication and computation proceed in phases within a

timestep, with periodic synchronization between the different processes. Such a model

of parallel computation is referred to as the bulk-synchronous parallel model (BSP).

Given the importance of MPI, there have been several large-scale, ongoing

efforts to implement high-performance MPI implementations that are portable as

well [38, 39]. Communication requires processes to synchronize with each other.

Besides, communication over the network can significantly slow down a parallel

program. At a large scale, synchronous, collective communication can degrade

the application’s overall performance and quickly limit the application’s scalability.
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Therefore, several HPC performance engineering efforts have been centered around

improving MPI library communication performance.

2.2.2 Shared-Memory Programming Models. Multi-core and many-

core CPU architectures such as the Intel Xeon Phi [40] and accelerator architectures

such as the GPU have become commonplace on leadership-class HPC systems[33].

HPC applications have evolved to support and extract performance from the increased

on-node parallelism. Specifically, shared-memory parallel programming has been a

key focus area for performance optimizations. Notable programming models offering

shared-memory parallel programming capabilities include OpenMP [41], TBB [42],

pthreads [43], and OpenACC [44]. NVIDIA CUDA [45] is arguably the most popular

GPU programming model, followed by OpenCL [46].

These shared-memory programming models expose their functionality either

through a library-based API or through compiler pragmas or hints to aid with the

automatic identification and generation of parallel code. Invariably, shared-memory

parallel programming involves the generation of parallel threads of execution. These

threads share the same process address space, may have their local stacks, and

communicate through shared memory regions.

2.2.3 Other Programming Models. While many conventional HPC

applications employ a distributed model such as MPI combined with a shared-memory

model such as OpenMP, other applications employ hybrid programming models and

runtimes. Notable examples include Charm++ [47], a machine-agnostic task-based

programming approach, and partitioned global address space (PGAS) programming

models such as UPC [48] and Chapel [49].

2.2.4 Performance Analysis Tools. This section discusses the state-of-

art in the performance analysis of traditional HPC applications.
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2.2.4.1 MPI Performance Analysis. Performance tools for HPC

applications have primarily catered to those applications that employ the MPI

programming model. Typically, the parallel profiling and tracing tools build on the

presence of an MPI library to bootstrap their measurement frameworks [29, 31, 30].

The PMPI-based library interposition technique has successfully enabled performance

tools to intercept MPI calls to perform timing measurements and capture other

relevant performance data such as message sizes. The PMPI approach is often the

first step in analyzing the performance of MPI applications. Key performance metrics

include the sizes of MPI messages, contributions of MPI collective routines, and the

contributions of MPI synchronization operations to the overall execution time.

2.2.4.2 Shared-Memory Performance Analysis. Regarding the

capture of application-level performance information (function-level timers), HPC

performance tools follow one of two schools of thought. Instrumentation-based

tools [29, 31] rely on intrusive instrumentation to elicit the exact measurements of

events. Tools based on statistical sampling [29, 30] rely on lightweight sampling and

call stack unwinding to capture statistical features of the performance data. Hardware

counters are commonly used to track the efficiency of various routines based on their

hardware resource usage characteristics. The performance API (PAPI) [50] has grown

into a standard and portable way of exposing hardware performance data.

Shared-memory programming libraries expose their profiling APIs to allow insight

into their operation and performance. Notably, the OMPT interface [51] allows

performance tools to register callbacks for several events defined by the OpenMP

specification. Likewise, the CUDA CUPTI API allows insight into the operation

of the CUDA API. After the node-level performance data from various sources is
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collected, performance tools typically orient and aggregate this data around the MPI

processes involved in the particular execution instance.

2.3 Definitions

This section defines the various terms that are used in the sections that follow.

Unless specified otherwise, any usage of these terms pertains to the following

definitions.

2.3.1 Module. A module is any piece of software or code entity with well-

defined boundaries used as a general building block for higher-level functionality. A

module can be a library, a class object, a file, a service, or a component. Throughout

this document, the term “module” is used in the broadest context possible, i.e., it

does not refer to any specific software, implementation, technique, or specification.

Therefore, it follows that modularization is the process by which a piece of software

is divided into separate, independent entities by following the general software design

principle of “separation of concerns”. Process-local modularization results in software

modules that run within the same address space (process). Distributed modularization

results in software modules that are separated by different address spaces (processes).

2.3.2 Component. The term component is interchangeably used with the

term module everywhere except in Section 2.5. In Section 2.5, the term “component”

has a special meaning and refers to modules that adhere to a particular type

of component architecture and interface specification. Componentization, as used

in Section 2.5, is converting a piece of software into components that follow the

component architecture.

2.3.3 Service. Services are regarded as loosely connected software modules

running on separate processes with well-defined public interfaces specifying access

to the service functionality. Usually (but not always), the interaction between two
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service entities involves calls over the network. Again, every service is a module (or

a component), but not every module is a service.

2.3.4 Composition. Composition is the process by which two or more

modules are connected (coupled) to form a larger entity that functions as a whole.

By this definition, the composed modules can be within the same process, within

different processes on the same computing node, or inside processes running on

separate computing nodes. Composition is a natural outcome of the modularization

of software.

2.4 Application Complexity and Modularization

This section presents the fundamental claim regarding the evolution of HPC

software along with the reasoning supporting this claim.

2.4.1 Claim. HPC software development approaches have become

increasingly modular to manage software complexity. As a direct consequence of

this modularization, performance analysis tools have had to reinvent themselves to

stay relevant and practical.

2.4.2 Reasoning. By modularizing software, the complexity of software

is compartmentalized [26], and modules become re-usable. Individual teams or

developers can focus on building just a few specialized modules with clearly defined

interfaces instead of having to deal with a massive, complicated codebase representing

the entire application. Individual components can be portable by having multiple

“backend” implementations. Componentization can also enable fine-grained resource

allocation and management. Besides, modularization is attractive because it allows

for the rapid composition of modules to create many composed applications targeting

different usage scenarios. The complexity in developing HPC software primarily arises

from the following sources.
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2.4.2.1 Simulation Scale and Fidelity. There are two challenges to

programming at large scale. First, parallel programming is inherently hard to get

right. There are several classes of software bugs related to “program correctness”

that show up only on highly concurrent systems. The one constant in high-end

computing has been the need to simulate natural systems with ever-increasing fidelity

and at a larger scale. A study of the largest HPC systems globally over the past 25

years [33] supports this claim. Second, with a billion-way parallelism available on

modern machines, the software must be constantly re-written and updated to reflect

and utilize new sources of parallelism. An analysis of popular large-scale applications

such as CESM [52], LAMMPS [53], HACC [54] reveals that each of these applications

has consistently been updated with additional modules to simulate individual physical

phenomena with increased fidelity.

2.4.2.2 Range of Applications and Platforms. In the past decade, the

range and diversity of applications requiring high-end computing capabilities have

exploded. The US Department of Energy develops and publishes mini-applications

called CORAL benchmarks that represent the core computations within applications

of national interest. Performance optimization of these benchmarks would likely

result in an improvement in the performance of the larger scientific applications they

represent. An analysis of the CORAL-1 benchmark suite [55] released in 2014 and

the CORAL-2 benchmark suite [56] released in 2020 reveals a telling story. In 6 years,

data science and machine learning (ML) workloads have become Tier-1 applications.

These data science workloads are not regular MPI applications. This explosion in

application variety has resulted in the search for a broader set of programming models

and supporting services to accommodate the newer applications.

21



2.4.2.3 Structure of Modern Scientific Research Teams. Due to the

number of different components involved in modern scientific software development,

it has become impossible for one person or team to develop all the software

components [26, 57].

With an increase in the number of interacting components or modules that must

simultaneously run at high efficiency, performance data exchange with analysis and

monitoring tools has become more complex. When modularization results in black-

box software components, it is challenging for performance tools to instrument and

extract the necessary performance data. There is tension between the need to

manage software complexity and the simultaneous requirement of running software

components at their optimal efficiency. The rest of this paper attempts to present

evidence in support of this reasoning.

2.5 Process-Local Modularization

This section presents an overview of the development of component-based HPC

software. An in-depth account of the techniques implemented by HPC performance

tools to analyze component-based software is also discussed.

2.5.1 Important Trends in the Computing Industry. Arguably, the

need for designing modular software can be traced to the popularization of object-

oriented methodologies in the 1970s and early 1980s [58]. Software complexity had

exploded, and the computing industry was beginning to realize the importance of

software architectural patterns as a way to implement and manage software.

Eventually, the focus on separating concerns led to the development of component-

based software engineering (CBSE) [59]. CBSE aimed to go beyond object or module

re-use by defining components as “executable units of independent production,

acquisition, and deployment that can be composed into a functioning whole”. The
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fundamental notions of independent deployment, re-usability, and composition are

the recurring themes underlying major revolutions in software architecture over the

past two decades.

In the early 1990s, the industry began to adopt component-based software

engineering frameworks such as the Common Object Request Broker Architecture

(CORBA) [60], the Java Remote Method Invocation (RMI), and the Component

Object Model (COM) [61]. Component models aimed to address the shortcomings of

object-oriented methodologies. Specifically, components were designed to be modular,

re-usable, and language-independent, allowing for their rapid composition to build

higher-level functionality.

2.5.2 Component Software For HPC. In the late 1990s, the HPC

research community had realized that the ballooning scientific software complexity

had to be controlled and managed. Scientific software developers were beginning to

develop coupled, multi-physics models for plasma simulations, and nuclear fusion

codes. There was a need to employ high-performance, re-usable, plug-and-play

components that were language-agnostic.

The Common Component Architecture (CCA) [62, 63, 64, 65, 66] sought

to address several shortcomings of object-oriented methodologies, libraries, and

commercial component frameworks [60, 61]. First, while object-oriented frameworks

had done well to encourage software reuse within a project, they offered little to no

cross-project reuse. Second, object-oriented frameworks were limited in their ability

to form the basis of component software as they were applicable only in compile-time

coupling scenarios. HPC component frameworks required that components expose a

way for compatible implementations to be “swapped” at runtime. Third, component

frameworks enabled language independence by relying on meta-language interfaces, a
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feature that was not typically available with object-oriented frameworks at the time.

Fourth, the main issue with employing commercial component frameworks in HPC

was the exorbitant performance overheads for “local” inter-component interactions.

Lastly, multiple component implementations with the same interface could co-exist

within a framework. Doing so was not possible with libraries. After initial attempts

to develop independent, disparate component frameworks, the HPC community

came together to form the CCA Forum, mainly consisting of members from various

academic institutions and US Department of Energy laboratories.

2.5.2.1 CCA Model. The objectives of the CCA specification are found

in [62]. Specifically, the CCA was designed within the context of single-program-

multiple-data (SPMD) or multiple-program-multiple-data (MPMD) codes. The

CCA-MPI marriage was destined given the popularity of the MPI programming model

and the integration objectives of the CCA specification.

The following list defines some of the critical elements of the CCA model.

– Components: In the CCA model, a component is an encapsulated piece of

software that exposes a well-defined public interface to its internal functionality.

Notably, this definition allows components to be composed together to form

more complex software.

– Local and Remote Components: Components that live within the same address

space are local components. Interactions among local components are ideally

no more expensive than regular function calls. A process boundary separates

remote components. Although the CCA specification supported remote

component interactions, it implicitly incentivized components to perform a bulk

of the interactions locally, if possible.
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– Scientific Interface Definition Language (SIDL): The CCA specification

introduced the scientific interface definition language (SIDL) as a means of

enabling composition and interaction amongst components written in different

languages. Given the prevalence of “legacy” HPC codes written in C and

Fortran and the growing use of Python for scripting and analysis tasks, language

interoperability was an essential CCA requirement. The SIDL is a meta-

language that is used to describe component interfaces. Notably, it supported

complex data types, a feature that commercial component frameworks did

not support at that time. Other tools such as Babel [67] read in the SIDL

specification to generate glue code allowing components written in different

languages to interact.

– Frameworks: Frameworks are the software that manage component interactions.

They are responsible for connecting components through the use of ports. The

notion of a framework implies a certain level of orchestration necessary for the

functioning of CCA components.

– CCA Ports: The CCA specification described two types of ports — provides

and uses ports. A component allows access to its functionality through the

provides port, and it registers its intent to interact with other components

through the uses ports. The framework is ultimately responsible for actuating

the interaction by connecting the provides and uses ports.

– CCA Services: Every CCA-compliant framework provides the registered

components with a set of essential services. The components access these

framework services similar to how they interact with other components —

through ports. One of the most important functionalities of the services object
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is to provide methods for the components to register their uses and provides

ports.

– CCA Repository: The CCA specification included a public CCA repository

for components. The key idea was to enable the rapid, “plug-and-play”

design of scientific applications using off-the-shelf components available in the

CCA repository. The other motivation behind providing a repository was to

encourage large-scale community reuse of software components and widespread

adoption of the CCA specification.

– Cohort: A collection of components of the same type (running within different

address spaces) is referred to as a cohort.

– Direct-Connected Framework: As Figure 2 depicts, there are two ways in which

CCA components can be composed. In a direct-connected framework, each

process consists of the same set of parallel components. A notable feature

of such a framework is that it does not allow diagonal interactions among

components, i.e., inter-component interactions are limited to function calls

within a process. Direct-connected frameworks only support the SPMD model

of parallelism. Parallel components within a cohort can interact through any

distributed communication library available. This latter type of communication

was outside the scope of the CCA specification.

– Distributed Framework: Distributed frameworks, depicted by Figure 2, allow

diagonal interactions and a more general MPMD model of parallelism.

Specifically, inter-component interaction can occur between components

belonging to different processes. In addition to providing a remote-method-

invocation (RMI) interface, distributed frameworks need to address data
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distribution between coupled applications. This problem shall be revisited in

Section 2.6.

Figure 2. CCA: Framework Types (inspired from DCA [1])

2.5.2.2 CCA: Performance Measurement. Given the composition

model of CCA applications, it was imperative to generate a performance model of the

component assembly and judge the efficacy of the instantiation [68, 69]. Specifically,

the community found it necessary to measure local component performance and inter-

component interactions in a non-intrusive, cohesive way. These measurements would

then be used to generate performance models of individual components and their

interactions. Finally, the generated performance models would be employed to select

an optimal set of components for the particular application context. The research on

performance measurement and analysis of high-performance CCA applications can

be divided into two categories: (1) Intra-component performance measurement and

(2) Inter-component performance measurement.
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Intra-component performance measurement entails capturing performance data

about the execution of functions and routines within a component. Literature [28]

presents two ways in which intra-component interactions can be captured:

– Direct Instrumentation: This is the most straightforward way to extract

measurement data. Existing HPC performance tools could instrument

component routines directly (either manually or through automatic instrumentation).

The component invokes the measurement library to generate the necessary

performance data.

– Performance Component: Direct instrumentation techniques suffer from the

disadvantage of being tightly coupled with component implementations. The

use of an abstract measurement component interface and a performance

component that implements the measurement interface circumvents this

problem of tight-coupling, and it allows for a more flexible approach to

performance measurement of intra-component interactions. Specifically,

any compliant performance tool (TAU being just one example) can

implement the performance component interface. Moreover, the use of an

abstract measurement interface ensures that the overheads of performance

instrumentation are effectively zero when no performance component is

connected.

Inter-component performance measurement is necessary to study the interactions

between components. Specifically, components are connected via provides and uses

ports. The interactions between components occur on these ports and contain

valuable information such as data transfer sizes and source and destination identifiers

28



used in message-passing routines. These interactions are not visible to an external

entity, and thus, unique instrumentation is required to capture them.

The instrumentation and measurement techniques used for inter-component

performance analysis can be categorized as either (1) direct instrumentation, (2)

instrumentation during interface definition and generation, or (3) Proxy-based

instrumentation and measurement.

– Direct Instrumentation: A few CCA frameworks, such as CCAFFEINE [70], are

based entirely on C++ as the language for implementing component interfaces.

In such scenarios (often not the case), direct instrumentation techniques can

measure and observe inter-component interactions.

– Instrumentation of Interface Generation Code: When component interfaces

are specified using an interface definition language such as SIDL [71], direct

instrumentation can be applied only once the interface language compiler (such

as Babel) has generated the language-specific component interface glue code.

Another approach is to build the instrumentation directly into the process of

generating the glue code. Both approaches are feasible. However, the latter

technique is likely to yield more optimal code [28].

– Proxy-based Instrumentation and Measurement: Arguably, the most popular

technique to instrument and measure component interactions involves

component proxies to snoop for invoked methods on the provides and uses

ports [68, 72]. Component proxies are stub component implementations

presenting the same interface as the components they represent. Component

proxies placed “in-front” of “caller” components trap method calls on the uses

ports to enable performance measurement. A “Mastermind” component invokes
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the measurement API of a backend performance component (such as the TAU

component) and is responsible for storing and exposing the performance data

for external analysis and query.

2.5.2.3 CCA: Performance Monitoring and Optimization. Aside

from managing software complexity, component frameworks also present logical

boundaries for performance optimization. Recall that, unlike standard libraries,

the CCA component specification allowed multiple component implementations

presenting the same interface to coexist within the application. In a CCA-

enabled application, a sub-optimal component can be dynamically replaced with

a more optimal component. For example, in a scientific application composed of

solver components performing a linear-algebra calculation, the solver component

implementation can be switched at runtime depending on how well the component

performs on traditional metrics such as execution time as well as functional metrics

such as solver residual.

Literature [73, 74, 26] describes computational quality of service (CQoS)

as a general methodology for optimizing CCA-enabled application. CQoS is

the “automatic selection and configuration of components to suit a particular

computational need”. Essentially, the selection of an optimal set of components

involves a trade-off between accuracy, performance, stability, and efficiency [74].

The cycle of performance measurement and optimization of CCA applications has

four distinct parts: (1) performance measurement, (2) performance analysis, (3)

performance model generation, and (4) a control system to implement optimizations.

Performance measurement has been discussed in Section 2.5.2.2. Thus, here we

discuss performance analysis, performance model generation, and control systems for

CCA optimization. The application is instrumented to report traditional performance
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metrics such as the execution time and component-specific functional performance

metrics such as the solver residual. This performance information is used to

train analytical and empirical models of component performance. Specifically, the

performance information is written to a performance database component [75]. The

analysis tools query the database component to generate component performance

models. These component models are written into a “substitution assertion database”

that acts as the link between the analysis and control infrastructure.

The control system is driven by control laws that dictate the actions of the control

infrastructure. Control laws are essentially the “rules” that drive dynamic adaptation

of CCA components. A control law executes by combining the application’s state

information with the appropriate model information within the substitution database

to output a recommendation for optimization. The control infrastructure is ultimately

responsible for implementing the recommendation.

The control infrastructure consists of the reparameterization decision service and

the replacement service as the critical pieces. CQoS control is accessed seamlessly via

proxy components. The use of a proxy allows applications to benefit from CQoS with

minimal addition of intrusive instrumentation. Further, CQoS can be dynamically

turned on or off. When CQoS is disabled, proxy components function as gateways

to CCA performance measurement. When CQoS is enabled, the proxy component

is connected to the optimization components that inform the proxy of the optimal

provides port to use (among many candidate component ports). Effectively, the proxy

component functions as a switch that connects the caller (application component)

with the optimal implementation of the callee component.
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2.5.3 Other HPC Component Frameworks. Although the CCA

specification formed the majority of efforts to componentize HPC software, there

were other similar projects that had related goals.

2.5.3.1 High-Performance Grid Component Frameworks. Component-

based grid scientific computing infrastructures explore methodologies for optimization [76]

that share similarities with CCA. First, like CCA, grid component compositions

are indicated in the component metadata. CXML is a markup-based composition

specification that is similar to the SIDL language used in CCA frameworks. Such

a specification enables the component framework to generate and analyze static

call graphs. Second, the “application mapper” is an optimization component that

functions as the control system within the framework. The application mapper takes

the abstract component composition (known as an application description document)

and generates a runtime representation of the composition. It takes system resource

metadata as input from the grid deployment services and combines the existing

component performance models to form an optimal execution plan. If there is a

change in grid resources, the grid application can contact the application mapper at

runtime to generate a new execution plan.

Aside from the hardware on which they operate, there are two crucial

differences between high-performance grid component frameworks and traditional

high-performance computing frameworks such as CCA. First, although both

frameworks operate on distributed systems, inter-component interactions in grid

frameworks typically involve the network. In direct-connected CCA frameworks,

most inter-component interactions are reduced to a sequence of regular function

calls. As a result, grid component frameworks are designed more like distributed

“services”, and traditional HPC frameworks operate more like libraries. Second, grid
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component frameworks assume that the component repository contains performance

model metadata that allows the application mapper to make reconfiguration decisions.

In other words, dynamic component reconfiguration is treated as a first-class design

requirement, given that the fluctuation in available resources is a common occurrence.

The CCA specification as such does not pay special attention to ensuring the

dynamic reconfiguration of components. Instead, CCA treats dynamic component

reconfiguration as an activity to be performed on a per-application need basis. Despite

this, the HPC community has invented clever ways of seamlessly and incrementally

integrating control capabilities through the use of proxy components.

2.5.3.2 Low-Level Component Framework (L2C). The L2C [77]

attempts to address the issue of performance portability on HPC systems. The

authors observe that multi-platform support for large applications is usually achieved

through means that offer little code reuse (conditional compilation, component

software, runtime switches). They attempt to resolve this problem through a low-

level component model that is (1) composable, (2) offers portable performance, and

(3) offers a high degree of code reuse. Components are implemented as annotated

objects with well-defined entry points, resembling a plugin architecture.

The components are written in C++, Fortran, or Charm++. Multiple instances of

a particular component type can co-exist within the application. The composition is

specified through an L2C assembly descriptor file. A small L2C runtime is responsible

for managing the component interactions. Notably, there is no support for multi-

language component compositions (and associated glue code generation). The key

idea lies in breaking down the application into several fine-grained components.

Doing so allows for a high degree of code reuse between performance-portable

implementations designed for different platforms. This design choice also leads to
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an explosion in the number of components required to implement even a relatively

simple application such as a Jacobi solver.

2.5.3.3 directMOD Component Framework. HPC applications such as

adaptive mesh refinement (AMR) codes form a particular category of applications

whose structure (data and communication distribution) changes over time. As the

application structure informs the component assembly, AMR applications require a

component framework that supports dynamic reconfiguration. Not only this, multiple

dynamic reconfigurations co-occur inside different application processes, introducing

synchronization and consistency issues among them. The directMOD [78] component

framework addresses these problems by offering a component model that introduces

two new concepts: domains and transformations. Domains are components that lock

specific portions of the application and ensure safety. Transformations are ports that

connect a transformation to its target sub-assembly. However, directMOD is not

broadly applicable to any general application.

2.5.4 Comparing Component Frameworks. A comparison of the various

component frameworks is presented in Table 1. Several of these comply with the CCA

architecture. CCAFFEINE [70] was intended to be a model implementation of the

CCA specification. Notably, it is the only major HPC-optimized CCA implementation

that does not support the MPMD model. In other words, all CCAFFEINE-enabled

applications are limited to SPMD parallelism, and peer components interact through

direct connections only. Some component frameworks such as MOCCA [79], VGE-

CCA [80], CCAT [81], LegionCCA [82], and XCAT3 [83] are not HPC-optimized.

These frameworks are geared primarily to operate in grid environments, and thus,

the distributed communication libraries they employ are not HPC-aware.

34



Table 1. Comparing Component Frameworks

Property CCaffeine DCA XCAT3 Uintah SCIRun2 MOCCA VGE-CCA LegionCCA L2C directMOD CCAT

CCA Compliant? Yes Yes Yes Yes Yes Yes Yes Yes No No Yes
Optimized for HPC? Yes Yes No Yes Yes No No No Yes Yes No
General Purpose? Yes Yes Yes No Yes Yes Yes Yes Yes No Yes

Distributed Communication Support N/A RMI Multiple RMI RMI Multiple SOAP-RPC RMI MPI MPI RMI
Built-In Performance Optimization? No No No Yes Yes No Yes No No Yes No
Cross-Framework Compatibility? No No No No Yes Yes No No No No No

Cross-Language Support? Yes Yes Yes Yes Yes Yes Yes Yes No No Yes
Code Reuse Moderate Moderate Moderate Moderate Moderate Moderate Moderate Moderate High Moderate Moderate

Among the HPC-optimized frameworks, SCIrun2 [84] and Uintah [85] are the only

CCA frameworks that have some form of in-built performance optimization support

for dynamic reconfiguration of their components. However, the performance analysis

and optimization techniques discussed in Section 2.5.2.2 and Section 2.5.2.3 can be

generally employed in CCA frameworks that do not have built-in support. SCIRun2

is the only HPC-optimized framework that supports cross-framework compatibility.

That is, SCIRun2 is a meta-framework that allows interoperability of components

adhering to different specifications. For example, SCIRun2 allows the composition

of a CCA component with a CORBA component. It is also worth mentioning that

most CCA frameworks support some form of data distribution among components

that run within a coupled, MPMD-style architecture. A detailed discussion of this

support is presented in Section2.6.5.1.

2.5.5 Scientific Computing Frameworks. Component architectures

have helped manage the complexity of HPC software development and increase

developer productivity. At the same time, there have been other noteworthy,

smaller-scale efforts in this direction. Specifically, scientific computing frameworks

such as POOMA [86], PETSc[87], HYPRE [88], Grace [89], and OVERTURE [90]

have enabled the rapid development of scientific software from “building blocks”.

These frameworks are built into libraries and export an interface in either C, C++,

or Fortran (the three most commonly used languages to develop HPC software).
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Except for HYPRE, the building blocks used to compose higher-level functionality

are explicitly implemented as objects.

While these frameworks share with component architectures the general principle

of composition, they target a different user and application space. Table 2 enlists

the similarities and differences between scientific computing frameworks and the

CCA component framework. Most importantly, scientific frameworks are tailored

for a specific, narrow domain and are not applicable to build arbitrary HPC

applications. HYPRE, for example, is a library of pre-conditioners for use in

linear algebra calculations. On the other hand, PETSc is a library designed

specifically for matrix operations. Given that scientific frameworks are implemented

as libraries, traditional performance analysis techniques such as library interposition,

sampling, and compiler instrumentation can be employed directly without any special

modifications. Compared to CCA, scientific frameworks typically offer an unmatched

speed of development, productivity, and out-of-the-box performance for applications

that fit the particular domain supported by the framework. However, scientific

frameworks generally offer little to no support for adaptivity. It is generally assumed

to be the responsibility of the application developer for fine-tuning the performance

of the library on a novel platform.

Table 2. Comparing Scientific Frameworks and CCA

Property Scientific Frameworks CCA

Domain Specific? Yes No
Distributed Computing Support? No Yes

Cross-language Support? Partial Yes
Traditional Performance Tools Applicable? Yes No

Support for Performance Portability? Moderate High
Speed of Development of Higher-Level Functionality? High Moderate

Support for Adaptivity? Moderate High
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2.5.6 Modularization of MPI Libraries. MPI libraries were among

the first to adopt a modular architecture. The rising complexity of MPI library

implementations, the need to be portable across HPC platforms, and the scale

of development teams were the primary motivating factors behind the push to

modularize MPI libraries. Three prominent MPI libraries are discussed, compared,

and contrasted based on how they choose to implement modular architectures.

2.5.6.1 LAM/MPI. The LAM/MPI project [91] was the first production-

ready MPI implementation to implement a component architecture explicitly. The

LAM project was initially structured as an extensive collection of source files and

directories. However, it was observed that new developers found it increasingly

hard to understand the source code, contribute to the project, and experiment with

novel optimization strategies. As a result, the LAM project adopted a component

architecture focused on being lightweight, high-performance, and domain-specific, as

opposed to more general frameworks such as the CCA [65] architecture.

LAM/MPI supports four types of components — the RPI (Request Progression

Interface) component, the COLL (COLLector) component, the CR (Checkpoint-

Restart) component, and the BOOT (BOOTstrapping) component. LAM

supports multiple implementations of the same component type (through a plugin

framework) to coexist within an MPI process. Doing so allows for a dynamic

selection of component implementation to optimize runtime behavior. Notably,

the re-implementation of LAM using a component architecture improved MPI

communication performance by a small margin.

2.5.6.2 OpenMPI. The OpenMPI project [92] is a successor to the

LAM/MPI library. The OpenMPI community recognized the need for an MPI

library that explicitly supports and encourages third-party developer contributions.
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When OpenMPI was being developed, algorithms for process control, fault tolerance,

checkpoint-restart, and collective communication were beginning to form separate

research areas in their own right. Thus, there was a need to support several different

versions of these algorithms within a single larger framework.

At the heart of the OpenMPI implementation is a component architecture that

aims to resolve both of these challenges. The design element that sets OpenMPI

apart from previous implementations is a multi-level component architecture. The

principal, higher-level component framework (“meta-framework”) supports several

component frameworks underneath. Each of these lower-level component frameworks

targets one specific function, such as collective communication or checkpoint-restart.

Further, these lower-level component frameworks manage one or more modules. It

is the responsibility of the individual component frameworks to load, discover, and

manage the life-cycle of their respective modules. Like LAM/MPI, OpenMPI modules

are implemented as plugins. They are integrated into the MPI library statically

or as shared libraries, allowing for compile-time or runtime module discovery and

initialization.

2.5.6.3 MVAPICH2. MVAPICH2 [39] is a state-of-the-art, high-

performance MPI implementation that does not explicitly follow a component

architecture. However, due to the same factors described in Section 2.4.2, the design

of the library has become increasingly modular over time. Figure 3 depicts this

modularization of MVAPICH2. The current version of the library delineates the

same set of logically separate modules as OpenMPI — fault tolerance, job startup, and

collective algorithms. However, these separate modules are not explicitly managed

as independent units. Therefore, the primary method by which MVAPICH2 allows

an external user to control its behavior is through the use of environment variables
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Figure 3. Modularization of MVAPICH2 (image credits: Dr. D.K. Panda, Network
Based Computing Lab, The Ohio State University)

and compile-time configuration flags. Notably, MVAPICH2 does not support custom

implementations of these modules, nor does it offer an easy way to replace them at

runtime dynamically. Arguably, its monolithic architecture makes it more difficult

for external contributors to make changes to the library source code.

2.5.7 Tools for Performance Data Exchange. A side-effect of the

increasing software complexity and scale is an update in how performance tools

instrument the software to measure performance. While modularization can be

considered a good engineering practice and a necessity when considering the sizeable

cross-institutional nature of HPC software development, modularization hinders the

exchange of necessary performance essential information between software layers.

At the same time, the use of modular software on large, high-end computing

systems has (1) necessitated their dynamic, online adaptation and (2) enabled

fine-grained optimization of the various modules and algorithms that comprise the

software. Traditionally, HPC performance tools have been passive participants in the

optimization of HPC applications. They are primarily employed for offline analysis

of performance data. The various costs associated with running applications at

exceedingly large scales have motivated the tighter integration of performance tools

into the software stack.
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2.5.7.1 MPI Tools. There have been various attempts to design and

implement techniques that enable closer interaction between a performance tool and

the MPI library. PERUSE [93] was an initial attempt at using callbacks to gain access

to significant events that occur inside the MPI library. The performance tool installs

callbacks into its code for events that it is interested in measuring. When these

events occur, the tool callback is invoked, allowing the tool to gather and analyze the

pertinent performance data. Ultimately, PERUSE failed to gain traction in the MPI

community due to a mismatch between the proposed events and the capabilities of

existing MPI implementations.

The MPI Tools Information Interface (MPI T), introduced as a part of the MPI

3.0 standard, has received significantly more attention from tool developers than

previous efforts. MPI T defines two variable types — performance variables (PVARs)

and control variables (CVARs). Tools need to query the MPI T interface to access the

list of PVARs and CVARs that the MPI library wishes to export. PVARs represent

counters and resource usage levels within the MPI library, while CVARs represent the

“control knobs” that can affect dynamic MPI library reconfiguration. Several tools

have been developed [94, 95, 96] to take advantage of the MPI T interface to gather

performance data, while only one previous work [95] implements a tool architecture

that enables the dynamic control of the MPI library through CVARs. MPI libraries

such as MVAPICH2 and OpenMPI export a plethora of PVARs to be queried at

runtime, but they currently lack support for CVARs that control online behavior.

As a result, the effective use of MPI T for dynamic reconfiguration of MPI libraries

remains an open problem. More recently, callback-driven event support through

MPI T is once again gaining traction within the MPI community [97].
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2.5.7.2 OpenMP Tools. The first notable effort to enable profiling of

the OpenMP runtime is the POMP [98] profiling interface. POMP was designed

as an OpenMP equivalent of the PMPI interface for MPI applications. POMP allows

for seamless, portable profiling of OpenMP sections to gather context information

using the OPARI source-to-source instrumentor. However, it can impose noticeable

runtime overheads for short-running loops. More importantly, POMP does not allow

access to internal OpenMP runtime information and thus has limited application in

gathering internal event data. The Sun (Oracle) profiling interface [99] implements a

callback-driven model to gain partial access to OpenMP runtime state through the

asynchronous sampling of call stacks. However, a lack of support for static executables

and gathering of context information resulted in the interface not gaining traction

within the community.

Like MPI, these various efforts to enable low-overhead profiling and tracing of

OpenMP applications have culminated in developing the OpenMP Tools Interface

specification (OMPT)[51]. OMPT is a standard that defines how tools and OpenMP

runtimes should interact to enable profiling and tracing of OpenMP applications. It

borrows ideas from past efforts to present a callback-driven interface that supports

several mandatory and optional events. Each supported event is associated with

a specific data structure provided to the tool for generating context information.

Additionally, the OpenMP runtime manages state information on a per-thread basis.

Since its introduction into the OpenMP standard, the OMPT interface has grown to

support callback-driven profiling of accelerators such as GPUs.

2.5.7.3 PAPI SDE. While the MPI and OpenMP tool interfaces are limited

to enabling performance data exchange within their respective domains, the PAPI

Software-Defined-Events (SDE) [100] is an attempt to standardize the exchange of
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software performance counters between any two software layers within a process.

The PAPI SDE project recognizes that library-specific approaches such as MPI T,

albeit standardized, are not widely applicable directly. Through the existing PAPI

API, software modules can export software performance metrics of interest to other

libraries or modules running within the process. There are three ways in which SDEs

can be created and used. One, a library can declare an internal variable as an SDE

to be read directly by other modules. Two, the library can register a callback that

returns the value of the variable. Three, the library can create and update a variable

that lives inside the PAPI library.

2.5.7.4 Comparing Techniques for Performance Data Exchange.

Table 3 compares various tools on the basis of how they enable performance data

exchange. Notably, the PAPI SDE effort is unique in its ability to be generally

applicable to any type of software module. Over the past fifteen years, the HPC

community has iterated on various designs for performance introspection, and it

can be argued that event-based callbacks are generally favored over instrumentation.

Moreover, the push to include performance introspection capabilities as a part of the

standards specification of major communication libraries such as OpenMP and MPI

has resulted in the widespread adoption and support of performance tools. In other

words, performance tools are increasingly viewed as first-class citizens as opposed to

an afterthought within the performance optimization process.

A notable limitation of the MPI T effort is a lack of tool portability. Specifically,

the MPI T standard allows the MPI implementation the freedom to export any

counter or gauge. The standard does not require any mandatory counters or events

to be exported. As a result, performance tools need to discover the specific list and

names of PVARs and CVARs exported by an MPI library. These names and types
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Table 3. Comparing Techniques for Performance Data Exchange

Property PERUSE MPI T POMP Sun OpenMP Interface OMPT PAPI SDE

Data Exchange Strategy Event Callbacks Counters, Event Callbacks Source-to-Source Instrumentation Event Callbacks Event Callbacks Counters
Generally Applicable? No; MPI-only No; MPI-only No; OpenMP-only No; OpenMP-only No; OpenMP-only Yes

Access to Fine-Grained Events? Yes Yes No Partial Yes Yes
Standardized Technique? No Yes No No Yes No
Widespread Support? No Yes Yes No Yes Yes

Direct Support for Control? No Yes No No No No
Level of Insight into Module Internals? High High Low Moderate High Low

Tool Portability? Moderate Low High Moderate High Low
Support for Accelerators? No Yes No No Yes Yes

are not portable between MPI implementations, and thus, there is little reuse for tool

logic that generates performance recommendations or optimizations. OMPT, on the

other hand, resolves this problem by separating salient events into mandatory and

optional events. This approach can facilitate tool portability across different library

implementations.

2.6 Distributed Modularization

This section presents how distributed modularization of HPC software has resulted

in the formation of coupled application (“in-situ”) workflows, ensembles, and services.

At the same time, an overview of the accompanying changes within the performance

analysis and monitoring tools landscape is also discussed.

2.6.1 Overview. Since the late 1990s, there have been several efforts to

support task-coupling on HPC systems. Specifically in this context, task-coupling

is defined as the simultaneous execution of two or more distributed entities in an

inter-dependent manner. The shift towards a coupled distributed architecture began

in the late 1990s and early 2000s. This process has been accelerated in the last

decade by several factors described in Section 2.4.2. Logan et al. [101] define three

categories of task-coupling that capture how emerging HPC software architectures

are being designed. In a strongly coupled architecture, the coupled entities are tightly

integrated and intimately dependent on one another to make progress. Most multi-
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physics applications such as the XGC-GENE [102] coupled code operate with an

assumption of strong coupling.

In a weakly coupled architecture, the producer of data can proceed without being

concerned about how the data is being consumed. This interaction model is the

modus operandi for most in-situ data analysis, visualization, monitoring, and ML

services. These services run alongside a “primary” application, typically an MPI-

based simulation. Sarkar et al [103] allure to this type of software architecture by

giving it the moniker “new-era weak-scaling”.

A third emerging type of a coupled architecture is ensemble computing. Ensembles

find application in domains such as weather modeling, molecular biology [24], and the

training of ML models [23]. Ensembles involve simultaneously executing collections

of parallel tasks (each of which may be an MPI application) within a single HPC node

allocation. Deelman et al.[104] refer to this kind of architecture as “in-situ workflows”,

distinguishing them from “distributed workflows” that span multiple HPC platforms

and scientific instruments. Unless specified, the primary focus of this document is to

delineate the critical questions surrounding in-situ workflows.

Distributed modularization has several benefits. By breaking up a large,

monolithic code into several smaller distributed modules, the user has increased

control on scaling individual entities. In doing so, the application can be executed on

a larger node count as compared to a traditional monolithic MPI-based executable.

Two, when software modules are deployed as separate parallel executables, it

allows larger software development teams to collaborate without worrying about the

logistical issues associated with a mammoth code base. Third, specific capabilities

such as data-processing and ML-based analysis tasks can not be leveraged directly

within the constraints of the MPI programming model. Thus, their integration
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requires a software architecture that allocates a set of dedicated computing resources

for their operation. Four, when modules run inside separate processes, they can be

implemented in the language that best suits their specific need. The development

of a separate, intermediate language-interoperability tool such as Babel [67] is not

required — this job is usually performed by the communication library.

However, several challenges need to be addressed when considering a distributed,

modular architecture. First, it is necessary to identify, among the available options,

the correct way of splitting up the monolithic application into the constituent

(parallel) modules. Second, even when the modularization itself is straightforward,

it is not always clear how to allocate the appropriate computing resources to

each parallel module. An optimal configuration can be orders of magnitude more

performant than a haphazardly configured setup. Third, distributed modularization

can result in vast amounts of data traversing the network between the parallel

modules. Thus, an efficient middleware or data-transfer mechanism assumes vital

importance. Four, when dealing with multiple simultaneously executing components

and transient services, performance monitoring and analysis challenges are notably

different from those posed by traditional monolithic MPI executables. Distributed

components require performance data to be extracted, exported, aggregated, and

analyzed online from multiple sources. Given the transient nature of these distributed

components and the scale of operation, it is often infeasible for this data to be written

out to disk and analyzed offline. We touch upon these opportunities and challenges

in the sections that follow.

2.6.2 Important Trends in the Computing Industry. A key

observation that can be made when surveying the origins of several defining shifts

in HPC software development methodologies is that they are usually predated by
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similar changes within the broader computing industry. Specifically, two computing

industry trends bear importance in the context of distributed modularization. The

first of these is the notion of a service-oriented-architecture[4]. This reference

model for SOA defines “services” as to how needs and capabilities are brought

together. Fundamentally, SOA embodies the principle of “separation of concerns”.

Further, the services within an SOA are assumed to have potentially different owners

(software development teams) and are developed and deployed independently of each

other. SOA architectures directly reflect the structure of software development teams

within a larger organization. Arguably, this bears a resemblance to the emerging

methodologies for designing and deploying coupled HPC applications.

The other relevant trend is that of the “enterprise service bus” (ESB) [105]. The

ESB is the mechanism by which different services within a framework discover and

connect. The ESB assumes the job of connecting a service requestor with a service

provider, transporting the message requests correctly, implementing load-balancing,

and making the necessary protocol conversions. In other words, the ESB functions

within the confines of a “publish-subscribe” model of distributed communication. It

orchestrates the interaction between the different entities in the system. Arguably,

data transfer and staging software such as ADIOS [5] and DataSpaces [8] perform the

same duties within a coupled HPC workflow.

2.6.3 Composition Model. This section presents a discussion of the

various types of distributed HPC frameworks and compares them based on their

composition models, coupling strategies, and distributed communication protocols.

A framework in this context is defined as any software that either (1) functions as

a standalone distributed component offering a distinct functionality or (2) enables

the development of specialized distributed components through a programming
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library or platform. This study does not regard I/O libraries such as ADIOS and

Decaf [9] as “frameworks”. Instead, they are a part of a larger body of work

addressing the problem of distributed data management and are discussed separately

in Section 2.6.5.2. At the same time, it is worth mentioning that there is significant

overlap between in-situ analysis tools, data services, and data management libraries.

This overlap is depicted by Figure 4.

Figure 4. Overlap Between In-Situ Analysis and Visualization (ISAV) Tools, Data
Management Libraries, and Data Services

Composition models define the functional relationship between coupled modules

or tasks. Here, we follow and extend the definitions for composition models provided

by Logan et al. [101]:

– Strongly-coupled: Two or more coupled modules are tightly integrated and

interact in a back-and-forth manner to exchange data during execution.
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– Weakly-coupled: Distinct sets of producers and consumers characterize this

composition model. Notably, the execution of producer logic does not depend

on the consumer’s execution, performance, or failure state.

– Hybrid: In a hybrid model, the coupled modules can either be strongly-coupled

or weakly-coupled depending on how the system is set up.

– Ensemble: An ensemble represents a distinct type of distributed coupling

between tasks, and it is characterized by the execution of a large number of

concurrent tasks (each of which may be an MPI application). The tasks may or

may not depend on one another. When the tasks are completely independent,

the ensemble is “fully decoupled”. Such a model resembles “embarrassingly

parallel” computation, except that it occurs at a higher level of task granularity.

A coupling strategy determines how the framework functionality is accessed from an

external component. For example, the remote procedure call (RPC) is a popular

coupling strategy for HPC data services, while most CCA component frameworks are

limited to using the parallel remote method invocation (PRMI) model for distributed,

inter-component interaction. Table 4 presents a list of popular distributed HPC

frameworks covering a broad spectrum, a brief description of the functionality enabled

by each of these frameworks, and their composition models. Table 5 is a list of the

coupling strategies and the internal communication protocols used by these particular

frameworks.

2.6.3.1 Distributed CCA Frameworks. Distributed CCA frameworks

were among the first HPC software to develop a solution to enable communication

between distributed CCA components. Several efforts such as DCA [1] and

PAWS [106] recognized that the CCA specification primarily targeted SPMD
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parallelism within direct-connected frameworks and had little provision or advice for

enabling distributed frameworks. However, when CCA frameworks were beginning

to be integrated into production HPC applications, the community realized the need

to enable CCA-based componentization of multi-physics codes such as the XGC-

GENE [102] code, molecular dynamics applications such as LAMMPS [53], and fusion

codes.

Each module in a coupled code is typically implemented as a separate MPI

application consisting of one or more CCA components. Within a purely direct-

connected framework, enabling collective port invocation for a subset of components

is straightforward — the set of communicating processes can make use of a separate

MPI communicator. The CCA framework need not be involved in this collective

communication process (refer to Figure 2). However, when the collective port

invocation needs to happen between two parallel, distributed components belonging to

different MPI programs (as in a coupled code), several challenges arise. First, the use

of MPI communicators is meaningless when passed across different MPI programs.

Second, the CCA framework needs to know and decide which set of processes (or

components) participate in a collective, distributed port invocation. Third, there

needs to be an agreed-upon synchronization strategy for components participating in

the port invocation. Fourth, the framework needs to know how to distribute the data

between the callee and the caller components involved in the collective port invocation

call. The CCA forum recognized these issues and drafted a communication model

called the parallel remote method invocation (PRMI).

In the PRMI model, the callee component blocks until the caller has completed the

method invocation. When this requirement is imposed in a collective communication

routine involving the participation of multiple components in the RMI port call,
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it categorizes distributed CCA frameworks as implementing a strongly-coupled

composition model. Specifically, the PRMI call serves as a potentially unwanted

synchronization point and reduces the system’s effective concurrency. At the

same time, the coupled codes that were built using distributed CCA frameworks

required such patterns of communication between M processes of one component

and N processes of another. The data redistribution issues that arise from this

communication pattern are broadly referred to as the MxN problem and shall be

discussed in depth in Section 2.6.5.2.

Among the CCA frameworks described in Table 1, CCAFFEINE [70] is a purely

direct-connected framework. MOCCA [79], VGE-CCA [80], XCAT [83], CCAT [81],

and LegionCCA [82] support distributed component interactions through RMI, but

these frameworks are optimized for scientific applications in the grid as opposed to

those employed on HPC platforms. The individual components in these frameworks

are not MPI programs, and as a result, the restrictions of the PRMI model do

not apply. The grid frameworks employ RMI over SOAP/HTTP or another web-

services protocol for distributed interaction. The two notable general-purpose, HPC-

optimized distributed CCA frameworks are DCA [1] and SCIRun2 [84]. As depicted

in Table 5, both DCA and SCIrun2 employ MPI for internal communication within

a component cohort. DCA allows collective PRMI communication among a subset of

caller components by re-using the MPI communicator support but stipulates that all

the caller components take part in the communication. SCIrun2, on the other hand,

provides two types of PRMI calls: (1) independent calls that involve one component

on both sides of the caller-callee cohort pair, and (2) collective calls that involve every

component on both sides of the caller-callee cohort pair [107].
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In a more recent work that bears a resemblance to distributed CCA, Peng et

al. [108] propose a new strategy to decouple MPI applications into sets of custom

process groups. This research stems from the need to address the scalability

limitations of the BSP programming model, particularly concerning load imbalance.

Instead of building BSP programs where each process is essentially a replica of

the same executable (SPMD), the authors propose to break down the application’s

functionality into a set of specialized operations. The process space is divided into

groups of processes implementing these specialized operations. These process groups

are organized into a cohesive distributed processing system through a data stream

pipeline. An evaluation of this methodology on a Map-Reduce application at a large

scale improved the performance of the application by over four times as compared

to a standard BSP-style implementation. Arguably, this distributed architecture is

one step toward a services-style coupled model that is commonly used in the broader

computing industry.

2.6.3.2 HPC Data Services. Two distinct trends have given rise to a class

of applications broadly categorized as “data services”. The first noteworthy trend

is that the performance of traditional file-based parallel HPC I/O storage systems

has not been able to keep up with the increase in the concurrency available on the

platform. In other words, the total computational performance is growing faster

than the total storage performance of the HPC system. As a result, these systems

are forced to integrate faster storage technologies such as burst-buffers, non-volatile

storage-class memories, and NVMe technology to provide a cost-efficient, performant

storage stack.

The second trend is the broadening of the variety of HPC applications and

accompanying I/O access patterns that need to be supported on these platforms.
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Table 4. Distributed HPC Frameworks: Composition Models

Framework Short Description Composition Model

DCA Distributed CCA framework Strongly-coupled
SCIRun2 Distributed CCA framework Strongly-coupled
Mochi HPC data service Hybrid
Faodel HPC data service Hybrid

BESPOKV HPC data service Hybrid
ParaView Catalyst In-situ viz. and analysis Weakly-coupled

VisIt Libsim In-situ viz. and analysis Weakly-coupled
SENSEI In-situ viz. and analysis Weakly-coupled
Ascent In-situ viz. and analysis Weakly-coupled
TINS In-situ analysis Weakly-coupled
Henson In-situ analysis Weakly-coupled

Damaris-viz In-situ viz. and analysis Weakly-coupled
Seer In-situ steering Hybrid

Swift/T HPC dataflow programming Ensemble
RADICAL-PILOT HPC task-based ensembles Ensemble

Merlin ML-ready HPC ensembles Ensemble

The traditional interaction between MPI-based HPC applications and the storage

system is characterized by an input read phase and one or more large, parallel bulk-

synchronous writes of structured data for check-pointing purposes. Machine-learning

and data-intensive applications such as CANDLE [23] are characterized by irregular

read access and the writing of a large number of small files [6]. Further, these new HPC

applications require various data types such as key-value (KV) stores and document

stores.

Although there are areas of overlap, data services are distinct from data

management libraries. Data services offer transient, high-performance data storage

and notably richer functionality than just helping move data between different

components in the workflow. Broadly, there are two classes of data services that

are of interest — those that function as user-level, distributed file systems, and more
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general programmable data services that can be employed to serve various application

needs. The latter class of data services is of primary interest to this study. General

programmable data services such as Mochi [6] can be used to build custom distributed

file systems.

There have been attempts to leverage the portability and performance offered by

MPI for building HPC file systems and storage services [109, 110]. These studies

conclude that while MPI is sufficiently capable of serving as the platform upon which

these services can be built. However, there are several missing features (“wish-

lists”), if implemented, would give MPI the best chance of widespread adoption.

Specifically, these features include extended support for non-blocking calls, one-sided

communication, and the flexibility to continue operating in a situation of failure.

User-level distributed file systems have been developed primarily to improve the

application performance on platforms that support burst-buffers or node-local, fast

storage hardware. Examples of the state-of-the-art, user-level distributed file systems

include FusionFS [111], GekkoFS [112], and UnifyFS [113]. These file systems can

be seamlessly integrated into any HPC application by specifying a mount point for

storage operations. The user-level file system intercepts regular POSIX I/O calls and

routes them to the burst-buffer if the file path matches the mount point. GekkoFS

implements relaxed semantics for POSIX I/O calls. GekkoFS and UnifyFS employ a

background daemon to serve local client requests and store file metadata.

General programmable data services are fundamentally different from user-level

file systems in two ways. First, they are designed to support various functionality in

addition to simply improving application storage performance. Second, they employ

the principle of composability to enable higher-level functionality to be developed from

relatively simpler building blocks. The three general programmable data services that
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we consider here are BESPOKV [114], Faodel [7], and Mochi [6]. A fourth, composable

storage service, Malocology [115] employs the principle of composition to decompose

Ceph [116] to make it more programmable [6]. However, Malocology operates more

like a storage service than a data service and is not considered here. Specifically,

it targets the composition of the storage stack that is typically out of the end-users

control and within the purview of a system administrator. As a result, Malocology

can not be used to build transient user-level services.

BESPOKV [114] is a high-performance distributed KV store. By recognizing the

growing importance of KV stores in HPC for coupling, analysis, and visualization

purposes, BESPOKV introduces a flexible design for a distributed service based on

the decoupling of the data plane and the control plane. The fundamental unit of the

control plane is referred to as a controlet. The control plane receives client requests

and forwards them to one of the distributed datalets in the system. Each user-supplied

datalet implements a standard KV store API and manages a customizable “backend”.

Further, the user has complete control over the number and topology of datalets and

controlets in the system, thus making the BESPOKV service customizable, flexible,

and extensible. However, the evaluation of the BESPOKV system was performed

on a virtualized cloud-based system. Thus, its performance when coupled with HPC

applications is unknown.

Faodel [7] is a composable data service that aims to serve the general data

storage and analysis needs of in-situ workflow components. There are three

Faodel components — Kelpie, a distributed KV blob store, OpBox, a library

offering primitives for distributed communication patterns, and Lunasa, a memory-

management library for network operations. Faodel is intended to be a sink for data

from bulk-synchronous applications, asynchronous many-task runtimes, and other
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ML-based services running inside the workflow. At the same time, Faodel also acts

as a source for in-situ visualization and analysis (ISAV) tools that run either within

the workflow node allocation or remotely.

The Mochi project [6] arguably represents the largest-scale effort to build

customizable, high-performance data services. The fundamental premise behind

this effort is the observation that each member of an ever-broadening set of HPC

applications has unique data storage requirements and access patterns. Thus, a one-

size-fits-all approach is not a good strategy for developing data services. Instead, the

Mochi project relies on the composition of microservice building blocks to enable the

rapid development of higher-level functionality and customized data services.

The term “microservice” is a concept that originated in the cloud computing

industry and is defined by Fowler [117] to be a “building block that implements

a set of specific, cohesive, minimal functionality and can be updated and scaled

independently”. The works by Dragoni et al.[58] and Zimmermann [118] elucidate

the various tenets surrounding the development of microservices in the cloud industry.

Essentially, a microservice represents an end of the spectrum of distributed services

and encapsulates minimal functionality (separation of concerns). The explosion in

the number of cloud-computing services such as Amazon, Netflix, and Facebook

that have adopted this architecture has given rise to the debate regarding whether

microservices represent an “evolutionary” or “revolutionary” step in distributed

software development. Jamshidi et al.[119] present both sides of this argument and

conclude that the consensus among industry experts is that microservices are “SOA

done right”, i.e., they are an evolutionary trend in distributed service architectures.

The Mochi framework offers a set of microservices such as the SDS KV store

(SDSKV), the BAKE object store, the REMI resource migration service, the
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SONATA document store (to name a few). An HPC application can compose these

microservices in any manner to serve its custom needs. Mochi depends on the

Mercury [120] RPC library for communication and the Argobots [121] library for

managing concurrency on the server. Notably, Mochi is a multi-institution effort

involving five primary organizations contributing to the software’s core development.

Several other organizations and research teams across national research laboratories

in the US have utilized the Mochi framework to develop a wide range of data services.

Examples of these data services include the HEPnOS [122] data store for high-energy

physics applications, the FlameStore [6] service for storing the results of ML-trained

models in a distributed manner, the UnifyFS [113] user-level distributed file system,

and the Mobject [6] object-store.

Table 4 and Table 5 present a comparison of the different HPC data services

based on their composition model and coupling strategies. HPC data services fall

under a category of components that are composed with HPC applications in a

hybrid manner. This categorization is due to the flexibility offered by data services.

For example, applications could use the data service purely for storing some partial

results during execution. In this first case, data services are weakly-coupled with the

HPC application. However, the application could also be simultaneously reading and

writing from the data service. In other words, the application depends on the stored

results in order to proceed with its computation. In this second case, the data services

are strongly-coupled with the HPC application.

The fundamental unit of composition within the Mochi framework is a

microservice, while Faodel offers three fixed components. BESPOKV offers

customizable units called “controlets” and “datalets” that bear some resemblance

to Mochi microservices in their design. Both Mochi and BESPOKV support multiple
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Table 5. Distributed HPC Frameworks: Coupling Strategies and Communication
Protocols

Framework Basic Coupling Internal
Name Computation Unit Strategy Communication Protocol
DCA CCA component PRMI MPI

SCIRun2 CCA component PRMI MPI
Mochi Microservice RPC Mercury RPC
Faodel OpBox, Lunasa, Kelpie RPC Shared-memory

BESPOKV Datalet, Controlet N/A Shared-memory
ParaView Catalyst MPI process Shared-memory MPI

VisIt Libsim MPI process Shared-memory MPI
SENSEI MPI process Shared-memory MPI/ADIOS
TINS Task Shared-memory MPI+Intel TBB
Henson Henson Puppet Shared-memory MPI
Ascent MPI process Shared-memory MPI/ADIOS

Damaris-viz MPI process Shared-memory MPI
Seer MPI process/Microservice Shared-memory/RPC RPC

Swift/T Turbine Task Dataflow MPI
RADICAL-PILOT Compute Unit Task DAG ZeroMQ

Merlin Celery Worker Task DAG RabbitMQ

database backends, while Faodel doesn’t appear to do so. Mochi is unique as it

recursively uses RPC to compose operations internal to the service and the operations

exposed for external application use. BESPOKV and Faodel employ a relatively flat

structure and use shared-memory for internal communication within data service

components. Mochi is also unique in the sense that it is the only framework that

offers more than just key-value store capabilities. Mochi microservices span a more

comprehensive range of functionality and thus are more broadly applicable.

2.6.3.3 In-situ Visualization and Analysis. Over the past decade,

the flourishing research within the in-situ visualization and analysis (ISAV) research

community has resulted in several loose definitions for the term “in-situ”. To reduce

the confusion over the use of this term, the ISAV community got together to define

and categorize ISAV tools under six unique axes. Thus, unless specified otherwise,

any reference to the methodologies surrounding ISAV tools in this section follows the

definitions laid out by the community[123].
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In-situ refers to the processing of analyzing the simulation data as it is being

generated. This type of analysis is distinctly different from data processing after

it has been written out to a storage medium. The motivation to perform in-situ

analysis primarily arises from the inability of traditional HPC I/O systems to absorb

the large volumes of data being generated by HPC applications [124]. Specifically,

computation capabilities are growing faster than the storage I/O bandwidth. As a

result, it is simply infeasible to write the entire simulation data to long-term storage

for offline analysis.

In-situ methods enable the online, parallel processing of large amounts of

simulation data to result in significantly smaller volumes of “interesting” simulation

features written to disk. All the ISAV tools considered here have either (1) on-

node proximity or (2) off-node proximity. This study does not consider an in-depth

study of the third variety of ISAV tools that run on “distinct computing resources”,

except under the circumstance that this distinct computing resource happens to be

a remote monitoring client (human-in-the-loop interaction). Specifically, the tools

that utilize distributed computing resources spanning multiple geographical sites to

perform computation fall under the category of grid computing systems, and thus,

they are not a primary focus of our study.

As depicted by Table 4, most ISAV frameworks are composed along with the

application in a weakly-coupled manner. In other words, the application is the

producer, and the ISAV tool is the consumer. The application does not depend on the

result of the analysis to proceed with its computation. The general assumption made

by ISAV tools is that the analysis to be run is pre-determined (automatic, adaptive, or

non-adaptive). One exception to this rule is the Seer [125] in-situ steering framework.

In Seer, the simulation takes input from a human-in-the-loop in a non-blocking way,
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i.e., there is a back-and-forth interaction between the simulation, ISAV tool, and the

human user. Thus, Seer is composed along with the application in a hybrid manner.

Notably, Seer uses the Mochi [6] data service as an intermediate communication

module to enable this interaction.

Concerning the coupling strategy (a combination of proximity, access, and

integration type), Paraview Catalyst [126], VisIt Libsim [127], SENSEI [128],

TINS, [129], Ascent [130], HENSON [131], Damaris-viz [132], and Seer [125] primarily

interact with the application through shared memory. Except for Ascent, they all

implement a dedicated API. Ascent supports multiple backends and hence implements

a multi-purpose API. Typically, ISAV tool integration with an MPI application occurs

through the use of a client library. The simulation invokes the ISAV routine locally

on each MPI process, and the ISAV tool client converts the simulation data into a

format suitable for analysis and visualization. Some tools such as SENSEI support the

off-node transfer of this ISAV data to other components running within the in-situ

workflow. Further, VisIt and ParaView support remote visualization of this data.

Except for Damaris-viz and SENSEI, all the ISAV tools considered here support

only time division between the application and the ISAV routines. Damaris-viz

is implemented using the Damaris [133] I/O framework that allocates a dedicated

compute core for the execution of ISAV routines. Damaris-viz communicates with

the simulation through shared-memory belonging to the operating system, and thus,

it can support space division and time division.

2.6.3.4 HPC Ensemble Frameworks. Among the many changes in the

HPC landscape over the past few years, an important one is the emergence of a new

class of scientific workloads referred to as HPC ensembles. Traditional workloads

on HPC clusters are characterized by a small number of large, long-running jobs.
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The push towards uncertainty quantification (UQ) [134] has resulted in ensemble

workloads that consist of a large number of small, short-running jobs [135]. These

ensembles are also referred to as “in-situ workflows” [104]. An analysis of the batch job

submissions on Lawrence Livermore National Laboratory (LLNL)’s Sierra machine

reveals that 48.5% of all submitted jobs reveal a pattern that typifies ensembles [135].

Individual jobs or tasks within an ensemble can be fully decoupled (such as the UQ

pipeline [134]), or their coupling can be represented by a directed acyclic graph (DAG)

or dataflow graph. The latter form represents the more general case. Notably, it is not

uncommon for these tasks to represent a collection of different executables. There are

a few fundamental capabilities that ensemble frameworks must provide — an ensemble

programming system that includes a way to specify task dependence, support for

inter-task communication, and hardware resource management (scheduling).

Swift/T [136] is a programming language and runtime for in-situ ensemble

workflows. Swift is the scripting language used to specify the composition of workflow

tasks, and Turbine [137] is the runtime used to manage the execution of tasks on an

HPC cluster. Swift is a naturally concurrent language that uses a dataflow graph to

infer dependencies between tasks, each of which can, in turn, be an MPI program

itself. Swift is a scripting language that can natively invoke code written in C, C++,

or Fortran and scripts in Python or Tcl.

Notably, the dataflow specification is not a static graph but dynamically discovered

as the program executes. Internally, the Swift/T program is converted into an MPI

program that runs multiple copies of the Turbine runtime on a machine allocation.

These Turbine instances (MPI processes) manage the execution of Swift/T tasks by

balancing the load between the available resources. When the Swift/T task is itself

a parallel MPI program, Turbine creates a separate MPI communicator group to
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represent the MPI program. MPI is also used by Swift/T tasks to communicate with

one another. Swift/T and UQ Pipeline [134] share the distinction of being single-

cluster ensemble frameworks. These frameworks cannot be used to run tasks across

multiple HPC clusters. At the same time, by bootstrapping on top of MPI, they do

not need to deal with the complexities of interacting with a job scheduler and working

around the security limitations posed by traditional HPC batch systems.

Merlin [138] and RADICAL-PILOT (RP) [139] are ensemble workflow frameworks

that blur the line between HPC and grid computing. While Merlin is a workflow

framework tailored for HPC ensembles that result in data being used for training ML

models, RP is a general-purpose workflow framework applicable to any system. These

two frameworks share several common design elements. One, they both support task

execution across multiple HPC clusters. Two, task dependence is inferred through an

internal task DAG. Three, both these frameworks employ a script-based programming

“frontend”. Four, there is an external centralized service or node that hosts the

task queue. The workers that are launched on compute nodes within the batch job

allocation (Celery tasks in Merlin, Agents in RP) pull from this external task queue in

what resembles a producer-consumer model. Five, there is an entity that manages the

worker instances within a batch job allocation and performs the work of a scheduler.

This entity is referred to as a “Pilot” in the RP framework and is the Flux [135]

component within Merlin.

However, there are some differences between these two frameworks. One, while

Merlin supports inter-task communication through a data management library called

Conduit [140], RP appears to use the file system to perform this action. Two, while

Merlin uses RabbitMQ for internal communication between its components, RP uses

the ZeroMQ [141] messaging platform. While there exist mature, general-purpose,
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distributed workflow management systems such as Pegasus [142], they are generally

not applicable for ensemble HPC workflows. Three reasons are provided by Peterson

et al. [138] to support this claim: (1) they often have a considerable upfront user

training cost, (2) they do not support accelerators such as GPUs and FPGAs, and

(3) they do not work well under the security constraints imposed by HPC data centers.

2.6.4 Resource Allocation and Elasticity. When two or more

components are coupled together, one of the most fundamental questions that need

to be addressed is how they share resources. Resource allocation refers to the

methodology by which computing resources are divided among a set of simultaneously

executing components. A related problem is the ability to change an existing resource

allocation scheme dynamically. Resource elasticity refers to the ability of a framework

to dynamically shrink or expand the number of resources being utilized in response to

an internal change in application requirements or external factors such as performance

variability and power constraints.

2.6.4.1 Resource Allocation. Table 6 lists the resource allocation schemes

for the set of distributed HPC frameworks introduced in Section 2.6.3. Broadly, the

common resource allocation schemes can be divided into five categories. Starting

from the schemes that involve the highest degree of resource sharing to the ones that

involve the lowest degree of resource sharing, these categories are:

1. Local node, same process: The framework and the “application” that utilizes

the framework live in the same address space, interact through regular function

calls and share the same computing resources. They may or may not share

processing threads.
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2. Local node, separate processing core: The coupled components live on the same

computing node and share the computing resources. However, they do not live

in the same address space, and thus they do not share processing threads.

3. Distinct nodes, same machine: The coupled components simultaneously execute

on distinct computing nodes within the batch job allocation. The only resources

they share are network resources (switches and routers) and the parallel I/O

filesystem.

4. Hybrid: In a hybrid resource allocation scheme, there is significant flexibility in

how the resources are divided up among the coupled components. Specifically,

any one of the schemes (1), (2), or (3) can be employed.

5. Distinct nodes, different machines: The coupled components share a minimal

amount of resources. They can run across multiple HPC machines and

communicate through a centralized messaging or communication framework.

Most distributed CCA component frameworks such as DCA [1] and SCIRun2 [84]

employ a resource allocation scheme in which the individual components are executed

on distinct computing nodes within the same machine. Typically, these components

are deployed as independent MPI programs within the same batch job allocation.

Faodel [7] and BESPOKV [114] also employ this same type of resource allocation

strategy. Within the class of frameworks referred to as “data services”, the Mochi [6]

infrastructure is unique because it offers a hybrid resource allocation scheme. Mochi

microservices can be configured to run inside the same process as the “client”

(MPI simulation), on different processes running on the same node as the client, or

distinct computing nodes within the batch job allocation. Notably, the Mercury RPC

63



Table 6. Distributed HPC Frameworks: Resource Allocation Scheme

Framework Resource Allocation Scheme

DCA Distinct nodes, same machine
SCIRun2 Distinct nodes, same machine
Mochi Hybrid
Faodel Distinct nodes, same machine

BESPOKV Distinct nodes, same machine
ParaView Catalyst Local node, same process

VisIt Libsim Local node, same process
SENSEI Hybrid
Ascent Local node, same process
TINS Local node, separate processing core
Henson Local node, same process

Damaris-viz Local node, separate processing core
Seer Hybrid

Swift/T Distinct nodes, same machine
RADICAL-PILOT Distinct nodes, different machines

Merlin Distinct nodes, different machines
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framework [120] employed by Mochi offers an RPC API that abstracts the specific

resource allocation scheme in use.

Typically, ISAV tools are tightly integrated with the MPI application and employ

a time-division or space division scheme to share data within the application. Their

proximity to the application ensures that the data transfer overheads are minimized.

ParaView [126] VisIt [127], and Ascent [130] employ the resource allocation scheme

of type (1) and run inside the same process as the MPI application. However, they

support an external remote-monitoring client (such as a Jupyter notebook) to monitor

the results of the in-situ analysis.

SENSEI [128] functions as a generic bridge between an HPC application and

several in-situ implementations such as ParaView and VisIt. Additionally, SENSEI

can be coupled to an external component running on the system through ADIOS.

Thus, SENSEI implements a hybrid resource allocation scheme. TINS is built upon

IntelTBB [42], and the analysis routines are launched within separate threads sharing

the local computing resources with the application. Among ISAV tools, Damaris-

viz [132] and TINS [129] are unique because they run within a dedicated processing

core on each computing node. Damaris-viz is itself an MPI application that is

launched beside the simulation. Each Damaris-viz MPI process communicates only

with the MPI processes belonging to the simulation that runs on the same computing

node. Seer [125] employs a hybrid scheme wherein the simulation is coupled with an

external Mochi SDSKV service. Seer offers the user the flexibility to determine the

exact resource allocation for the Mochi service.

Swift/T [136] tasks are scheduled onto processes belonging to a single MPI

application. Here, we consider the resource allocation scheme employed at the task

level. Since multiple tasks can run simultaneously on distinct nodes (where each
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task is itself an MPI program), Swift/T employs a scheme of type (3). In contrast,

Merlin [138] and RP [139] are unique as their tasks can span multiple HPC machines.

These two ensemble frameworks employ a resource allocation scheme of type (5).

2.6.4.2 Resource Elasticity. Resource elasticity is the ability to

dynamically expand or shrink the number of resources being utilized in response to

external stimuli or a change in application requirements. Note that resource elasticity

is just one method by which a system can adapt itself, and it does not have the same

meaning as dynamic adaptivity. Table 7 lists the current support for elasticity within

different distributed HPC frameworks.

Most distributed HPC frameworks do not natively support resource elasticity. As

pointed out by Dorier et al. [143], one of the factors is the dependence on MPI as

a bootstrapping mechanism. Although the MPI standard has provisions to support

the dynamic addition of new processes, most widely used MPI implementations do

not support this feature [144]. The ones that do support elasticity (such as Adaptive

MPI [145]) require a significant modifications to the application code. Supporting

elasticity within a traditional HPC cluster requires changes to the scheduler and cost

model as well. Specifically, over-provisioning is not a feature supported by most

existing HPC cluster schedulers. Motivated by the pay-as-you-go cost model and the

elasticity supported on cloud platforms, previous efforts [144, 146] explore the elastic

execution of MPI programs within the cloud. Typically, the techniques implemented

by these efforts require some form of checkpoint-restart combined with a monitoring

and decision-making framework.

However, none of these efforts have successfully demonstrated the elastic execution

of MPI programs within the context of a traditional HPC cluster. Therefore, it

is safe to say that currently, MPI programs do not support elasticity. ISAV tools
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such as ParaView and VisIt run within the context of an MPI process and employ

time-division coupling to share computing resources. Therefore, any ISAV tool that

depends on MPI is limited in its support for elasticity. TINS is an ISAV tool

wherein the analysis routines run within a separate TBB thread associated with

a dedicated “helper core”. When analytics routines are available to run, this core

is used exclusively to execute the analytics routines to prevent interference with the

simulation. Otherwise, the helper core is utilized as a common core for processing

simulation tasks.

The only class of frameworks that support elasticity are data services. Specifically,

BESPOKE supports “scale-out” resource elasticity through the dynamic addition

and removal of its core components — controlets and datalets. The support

for elasticity has recently been added to the Mochi framework. Specifically, the

BEDROCK microservice functions as a bootstrapping mechanism through which

other microservice instances can be dynamically instantiated. Note that although

these frameworks support resource elasticity in some form, none provide the ability

to do so automatically.

Further, none of the ensemble frameworks surveyed here support resource

elasticity. Each of these frameworks requires the user to either specify a fixed number

of MPI tasks (Swift/T) or a fixed batch allocation size for a given set of tasks (Merlin

and RP). Once these tasks are mapped onto the computing resources, there is no way

for them to request more (or less) resources dynamically should the need arise. Note,

however, that the resource utilization levels within a batch job allocation can naturally

wax and wane depending on the particular sequence of task execution. Arguably, this

is not the same as the ability of a framework to enable resource elasticity.
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Table 7. Distributed HPC Frameworks: Resource Elasticity

Framework Supports Elasticity? Unit of Elasticity

DCA No N/A
SCIRun2 No N/A
Mochi Yes Microservice
Faodel No N/A

BESPOKV Yes Controlet, Datalet
ParaView Catalyst No N/A

VisIt Libsim No N/A
SENSEI No N/A
Ascent No N/A
TINS Yes Task
Henson No N/A

Damaris-viz No N/A
Seer Partially Microservice

Swift/T No N/A
RADICAL-PILOT No N/A

Merlin No N/A
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2.6.5 Data Management Strategy. A fundamental question that arises

when coupling two or more distributed HPC frameworks or applications is how to

transfer and stage data between them efficiently. Within the context of our study,

HPC data management frameworks are differentiated from more general HPC data

services. From a functional standpoint, HPC data management frameworks exist

solely to transfer data between coupled components, while data services offer a more

broad set of capabilities.

Table 8. MxN Coupling Frameworks

Framework Conceptual Technique General Framework? Data Redistribution Communication Schedule Calculation Data Transfer

DDB Component-based Yes MxN Centralized Parallel
CUMULVS Component-based No Mx1 Centralized Parallel

Seine Component-based Yes MxN Centralized Parallel
MCT Component-based No MxN Distributed Coupler
PAWS Component-based Yes MxN Centralized Parallel

InterComm Component-based Yes MxN Distributed Parallel
DCA PRMI Yes MxN Distributed Parallel

SCIRun2 PRMI Yes MxN Distributed Parallel

2.6.5.1 MxN Problem. Multi-physics applications launched as two or

more strongly-coupled, separate MPI programs need some way to communicate and

exchange data with each other. The general problem of redistributing data from an

application launched with M processes to an application launched with N processes

came to be known as the MxN problem [107]. The MxN problem was recognized as

a major research area within the general field of distributed CCA framework design.

As elucidated by Zhao and Jarvis [147], the MxN communication typically involves

the following steps:

– Data translation: Data stored in one format (for example, row-major form) may

need to be translated into another form (column-major form).

– Data redistribution: The sender and the receiver must be aware of the exact

set of elements they expect to communicate with each other.
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– Computing a communication schedule: Once the set of elements to be sent are

identified, each sender needs to identify the portions of these data elements to

be sent to specific receivers and accordingly compute a communication schedule.

– Data transfer: After the communication schedule has been computed, the last

step involves the actual data transfer itself.

Table 8 uses these steps to list out and differentiate a set of popular MxN

frameworks. Importantly, MxN frameworks use one of two methodologies to

enable MxN data redistribution — PRMI or a component-based implementation.

Distributed CCA frameworks such as DCA [1] and SCIrun2 [84] employ the PRMI

model to perform complete MxN data redistribution. DCA is built upon MPI and

allows a subset of components on the sender side to redistribute data. However,

it requires all receiving components to take part in the data redistribution process.

SCIrun2 allows two forms of data redistribution — collective and point-to-point.

In collective data redistribution, all the components across the sender and receiver

side must necessarily be involved in the communication. All the other frameworks

presented here — DDB [148], CUMULVS [149], Seine [150], MCT [151], PAWS [106],

and InterComm [152] employ a separate CCA component to perform the data

redistribution.

Among the component-based frameworks, all of them are generally applicable

to any distributed CCA application except for CUMULVS and MCT. CUMULVS

is designed as a distributed component that allows a human user to visualize,

interact with, and steer the MPI-based simulation as it is running. Specifically, this

visualization component is implemented as a serial application that generates a set of

requests to “pull in” the necessary portions of the domain (multi-dimensional array)

from multiple MPI processes while they are running. As a result, CUMULVS only
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supports an Mx1 data redistribution scheme. Further, the communication schedule

is calculated in a centralized manner within the serial visualization application. The

MPI processes transfer their portions of the requested domain in a parallel fashion. On

the other hand, the MCT component is explicitly designed to work with earth science

applications such as CESM [52]. Although MCT supports an MxN data distribution

scheme and the calculation of communication schedules locally within every sender

process, the data transfer mechanism is unique. Each of the M sender processes routes

their individual data elements through a “coupler” module that performs the data

redistribution and forwards them to N receiver processes.

DDB, InterComm, Seine, and PAWS are general-purpose component-based MxN

frameworks that support full MxN data distribution. Among these, InterComm

is unique concerning the methodology by which the communication schedule is

calculated. Specifically, InterComm identifies a set of “responsible” processes that

compute the communication schedule after gathering the source and destination data

structure representations. Once this task is complete, these “responsible” processes

transfer the schedules to the processes that need them. Finally, each sender process

proceeds to transfer the data in a parallel manner.

On the other hand, DDB, Seine, and PAWS employ a dedicated centralized

component to calculate the communication schedule. DDB employs a two-level

scheme where each coupled application nominates a control process (CP) to

communicate domain information and data layout to a single registration broker

(RB) during the registration phase. Once the RB receives all the information from

each CP, the RB performs the matching between data producers and consumers and

calculates the communication schedule. This communication schedule is broadcast to

all other processes when they finish their registration phase.
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PAWS and Seine are similar because they introduce a distinct distributed

component to orchestrate the data redistribution. Both these frameworks introduce

the notion of a “shared virtual space” used to inform the communication schedule.

Notably, the calculation of the communication schedule is performed during the

registration phase, making this phase the most expensive routine in terms of execution

time. The notion of a shared virtual space and the introduction of a dedicated

central component to perform data redistribution allows these frameworks to support

process dynamism elegantly. New processes register themselves and their portion of

the domain (multi-dimensional array) with the Seine framework, after which they

can seamlessly take part in the MxN communication without being aware of who the

actual senders are.

Table 9. Data Staging and I/O Frameworks

Framework Data Asynchronous Allows
Name Staging Nodes? Data Transfers? Process Dynamism?
ADIOS Flexible Yes Yes

DataSpaces Yes Yes Yes
FlexPath No Yes Yes
GLEAN Yes Yes Yes
Decaf Yes No No

FlowVR No Yes No
Damaris No Yes No

2.6.5.2 Data Staging and I/O Frameworks. While MxN frameworks

address a critical problem that arises when coupling two MPI applications, it is not

difficult to see that the class of applications (and hence the coupling methodologies)

they support are limited. Specifically, most, if not all MxN frameworks assume

that the data needs to be transferred (1) immediately, (2) synchronously, and (3)

only between two MPI applications. In other words, MxN frameworks are generally

associated with strongly-coupled applications.
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The advent of transient, in-situ visualization and analysis tasks together with

the growing disparity between computing and parallel storage performance has given

rise to a class of frameworks that offer general data staging and I/O management

capabilities. Specifically, these data staging frameworks offer the ability to transfer

and stage data asynchronously and between more than two coupled components.

Moreover, they allow significant flexibility in describing the data to be staged and

potentially also support process dynamism, i.e., the ability to continue operating

when processes enter or leave the system.

ADIOS [5] is arguably the most widely supported data staging and I/O framework

for HPC applications. ADIOS originally started as an API that offered seamless

asynchronous I/O capabilities. The growing disparity between compute and storage

performance meant that applications could no longer afford to synchronously write

massive amounts of data to disk without severely damaging their overall performance.

ADIOS offered a way out of this problem by staging the data locally and performing

the write operation only during the application’s compute phase. The ADIOS API

was initially designed to be POSIX-like while decoupling the action of performing

a parallel write with when and where the data is written out. Since its initial

release, ADIOS has become synonymous with an I/O API that offers various data

staging and in-situ analysis capabilities. Specifically, ADIOS employs several backend

“transport methods” that effectively determine the sink for the data. Examples of

transport methods include specialized data staging software such as DataSpaces [8]

and FlexPath [153]. ADIOS’ modular design has ensured widespread adoption as a

“high-level” I/O API across various classes of HPC applications.

GLEAN [154] is a data staging and in-situ analysis library that offers asynchronous

data staging and offloading capabilities. GLEAN can be leveraged either directly

73



through its API or by the transparent library interposition of HDF5 routines. Note

that the latter technique has the benefit of not requiring any application code changes.

Data from GLEAN-instrumented applications is asynchronously transferred to a

dedicated set of staging nodes, effectively functioning as an in-memory “burst-buffer”.

After the data is transferred to the staging nodes, the data is available to other

components such as in-situ analysis tools. As such, GLEAN does not offer any special

features to transform application data into different formats. Because of the passive,

decoupled way in which it operates, GLEAN is indifferent to process dynamism within

the source application.

DataSpaces [8] is a project that leverages the “shared virtual space” concept

first introduced by the Seine [150] MxN coupling framework. DataSpaces builds

upon the multi-dimensional data representation and linearization scheme in Seine

and offers data coupling via a separate dataspaces distributed component. This

MPI-based dataspaces component runs on a dedicated set of computing nodes

that asynchronously stage data from multiple coupled applications. Further, the

dataspaces component offers an API that allows in-situ analysis to be performed and

an API to install a monitor that checks for updates on a region of interest. A benefit

of having a separate data staging component is the implicit ability to support process

dynamism.

The FlexPath [153] system offers a typed publish-subscribe mechanism for

connecting data producers with data consumers within a coupled HPC application.

The data producers effectively define and generate a data stream to be consumed by

any distributed component running on the system or remotely. Notably, FlexPath

employs a direct-connect scheme to transfer data objects directly between a publisher

and subscriber. This scheme is different from a traditional brokered architecture
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employed by other data staging software such as DataSpaces. A direct-connect

design choice implies that data is staged locally within every publisher process.

FlexPath hooks into application I/O routines through the ADIOS I/O API. FlexPath

utilizes the EVPath [155] communication substrate to transfer data between different

components. Every new process entering the system communicates the data objects

of interest to a local message coordinator that, in turn, calculates the publishers from

which it must fetch data. This decoupled approach enables FlexPath to support

process dynamism.

FlowVR [156] and Decaf [9] represent data staging software that depend on the

concept of dataflows to transfer data between coupled components (“nodes”). Decaf

is a data staging software that depends on MPI. Specifically, the Decaf system takes

as input a JSON file representing the coupled applications and splits the global MPI

communicator among the various “nodes” (coupled MPI applications) and “links”

(data staging processes). Note that a link separates two nodes. The producer

node transfers data to the link, and the link can optionally transform the data

or perform specialized analysis on the data before forwarding it to the consumer

node. In FlowVR, however, the data transfer is performed in the background by a

FlowVR daemon process on every computing node, with limited support to stage

data. However, FlowVR data in transit can be acted upon by a set of pre-defined

“filters” to transform it before it is passed on to the next component in the flow.

Both FlowVR and Decaf need to be informed of the task graph before execution, and

as a result, they cannot handle process dynamism.

Damaris [133] is an I/O management framework that relies on a dedicated

processing core on each computing node to perform asynchronous I/O. The global

MPI communicator of the application is split into two — one for the main application
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itself and the other for the Damaris component. Processes within a computing node

asynchronously communicate their I/O data with the local Damaris process through

shared memory. The Damaris process optionally hosts a set of plugins that act upon

this data to compress, analyze, and finally commit it to a long-term storage medium.

Due to its reliance on MPI, Damaris is limited in serving as a general distributed

data staging software. Instead, it can serve as a data source for in-situ analysis tools

such as Damaris-viz [132].

2.6.6 Performance Tools. As the number of simultaneously executing

components within a distributed, in-situ workflow continues to rise along with the

scale of the HPC machine, the application of performance tools to ensure the

proper and optimal operation of the workflow is growing in importance as well.

Traditionally, HPC performance tools are employed for the offline performance

analysis of monolithic MPI applications. State-of-the-art performance tools such as

Score-P [157], TAU [29], CALIPER [31], and HPCToolkit [30] collect a rich profile

and trace that is ultimately written out to disk for offline performance analysis.

With the advent of coupled applications and in-situ workflows, a different approach

is needed for practical performance analysis at scale. Specifically, several challenges

must be addressed within each of the three classical performance engineering

categories — performance measurement, performance monitoring and analysis, and

performance control and adaptivity. This section considers these challenges in detail.

Table 10 summarizes the level of tool support currently available within each of

these categories for the different types of coupled applications and in-situ workflows

previously introduced.

2.6.6.1 Performance Measurement. Performance instrumentation,

measurement, and sampling often represent the first steps in the performance
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engineering of an application. The tool API instrumentation is added either explicitly

(source instrumentation) or implicitly (library interposition). Measurements are then

made when the application executes. Traditionally, these measurements are gathered

and written out to disk when the application finishes executing.

An important observation to be made about in-situ workflows is that many depend

on one or more MPI-based components. Specifically, this is the case for commonly

used strongly-coupled MPI applications (XGC-GENE and LAMMPS) and ISAV tools

such as ParaView [126], SENSEI [128], and Ascent [130]. In such a situation, the

rich support for measurement in existing HPC performance tools can be leveraged

and extended as needed. Specifically, there are two types of measurements to be

made. One, the measurements that represent internal function execution times and

metrics for each coupled component. Second, the measurements that correspond to

the interactions between the components. Wolf et al. [158] identify key ADIOS [5]

routines to instrument for capturing data movement between coupled applications.

Given its widespread use, instrumenting high-level ADIOS routines automatically

enables insight into any transport method utilized underneath.

Malony et al. [159] demonstrate a methodology by which Ascent routines are

instrumented and analyzed using TAU’s plugin architecture [160]. ISAV tools are

typically tightly integrated with the MPI application, and the ISAV tool routines are

invoked synchronously by each MPI process. This design presents an opportunity for

TAU plugins to “hook into” these synchronous executions to dynamically calculate

the contributions of the Ascent routines to the captured performance events. A key

observation here is that plugin architecture offers a doorway to both the performance

event data and the tool measurement API.
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Traditional HPC performance analysis tools built for MPI-based applications

cannot be generally applied to gather performance measurements from HPC data

services such as Mochi [6] and BESPOKV [114]. HPC performance tools implicitly

assume that control is not passed between two different distributed applications. Data

services break this assumption through an RPC-based client-server communication

model. Thus, the HPC community needs to look to the general cloud computing

industry for answers to measuring data service performance. Sambasivan et al. [161]

summarize the extensive body of research on a class of distributed tracing tools that

implement request metadata propagation. Briefly, this technique involves generating

a unique “request ID” and the subsequent propagation of this request ID through the

system by RPC invocations. The request ID is then used to tie together events that are

causally related and thus, this technique can be used to capture distributed callpaths,

request structures, and also be used to compare request flows [162]. Industry tracing

tools such as Dapper [14] and Jaeger [163] employ request metadata propagation on

production-scale cloud computing systems.

Performance measurement of HPC ensembles is an open area that is yet to

be targeted by the HPC tools community. Table 10 enlists the current level of

performance measurement support for HPC ensembles as “partial”. While traditional

measurement tools can be used to capture the execution time of individual ensemble

tasks that happen to be MPI-based applications (or serial tasks), there is no existing

tool to provide a holistic picture of the task execution in conjunction with the dynamic

task interactions and resource utilization measurements. An integrated approach is

required to capture and correlate all three types of performance measurements.

2.6.6.2 Performance Monitoring and Analysis. Arguably, the bulk

of performance solutions for coupled in-situ workflows fall into the category of
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Table 10. Performance Tools for Coupled Applications and Workflows

Application Measurement Monitoring & Analysis Control & Adaptivity
Type Tools Exist? Tools Exist? Tools Exist?

Strongly-coupled MPI Yes Yes Partial
ISAV Tools Yes Yes Partial
Data Services No Partial Partial
Ensembles Partial Partial No

monitoring and analysis tools. Partly, this is due to the observation that

several existing performance measurement tools can be leveraged directly for most

components within the coupled in-situ workflow. Therefore, the existing research

focuses on monitoring and exporting this data to an external entity for aggregation

and analysis.

WOWMON [164] is a monitoring and analysis infrastructure for in-situ workflows.

WOWMON instruments coupled applications using traditional HPC performance

tools to generate performance measurements. These performance measurements

are buffered and sent over EVPath [155] to a central workflow manager. The

performance data is analyzed to gather the end-to-end latency of the workflow.

Further, this performance data is passed through a machine learning profiler to rank

the instrumented metrics according to their correlation with the end-to-end latency

of the workflow.

SOS [165] is a distributed monitoring tool that offers the ability to collect,

aggregate, and analyze performance data from multiple simultaneously executing

coupled applications. The SOS client interfaces with the application to collect

performance data which it then forwards to a collector daemon running on the same

computing node. The daemon processes are organized into an overlay network that

aggregates local performance data. The Lightweight Distributed Messaging System

(LDMS) [166] and MRNet [167] tools also employ an overlay network to aggregate
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performance metrics within an HPC cluster. LDMS, together with Ganglia [168]

represent a class of monitoring tools that can be employed for system resource

monitoring. Unlike SOS, they do not offer a client instrumentation library, and thus,

they can not be used to capture application performance data directly.

As the level of concurrency on modern HPC systems continues to rise, the volume

of performance monitoring data produced can significantly perturb application

performance [158, 101]. Thus, there is a growing interest in sub-sampling and

analyzing performance data in-situ to reduce trace sizes before a global aggregation

is carried out. The MOnitoring Analytics (MONA) [158, 57] approach speaks to this

kind of a technique. Specifically, MONA employs the SOS [165] monitoring tool to

aggregate and analyze TAU performance data from a coupled MPI application. The

TAU performance data is piped to SOS through a TAU plugin. The aggregated data

is analyzed and visualized on an interactive dashboard.

Chimbuko [169] is a workflow-level in-situ trace analysis tool. Chimbuko

analyzes the performance data from a coupled application workflow to generate

performance anomalies. Specifically, the TAU plugin infrastructure is utilized to

export performance traces to a process-local anomaly detection (AD) module. The

AD module periodically communicates with a central AD parameter server to

update its internal anomaly thresholds based on a global view of statistical outlier

information. Finally, when Chimbuko detects an anomaly, it captures and stores

provenance information that helps identify the context in which the anomalous value

was recorded.

While the design of distributed tools such as SOS can be generally applied to

monitor HPC data services, the data model used to capture performance information

must be carefully studied. HPC data services that run in highly concurrent
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environments handle thousands of requests per second. Thus, the instrumentation

library must be able to operate efficiently under a high degree of concurrency. Not

only this, the accompanying in-situ analysis needs to be able to track changes across

time to be able to observe poor service performance. Thus, a time-series monitoring

approach combined with sophisticated node-local analysis for trace data reduction

may be a viable strategy. There are several state-of-the-art cloud-based tools such as

Prometheus [19] and Graphite [170] that implement a time-series database. However,

these tools operate within the constraints of a commodity hardware and stack, and

thus, they need to be appropriately modified to suit HPC service requirements.

2.6.6.3 Control and Adaptivity. Several tools implement adaptive

algorithms within the context of individual applications. The MPI T interface is a

notable effort to enable tool integration for control and adaptivity of MPI applications.

Specifically, performance tools can use control variables (CVARs) to effect dynamic

adaptation and control. The APEX [171] monitoring system exposes a set of listeners

that external tools can use to implement control policies. The TINS [129] in-situ

framework implements a naturally elastic threading model that enables the sharing

of computing resources between simulation and analysis routines.

However, fewer tools enable control and adaptivity resulting from data analysis

of a coupled execution. The MONA [158] project studies the cross-application

interactions resulting from an XGC-GENE coupling to determine a more optimal task

placement for both applications. However, this more optimal task placement cannot

be implemented immediately. Instead, it is a valuable starting point for subsequent

coupled executions. The Seer [125] in-situ steering framework enables a human user

to interact with a running simulation to execute custom, dynamic in-situ analysis

routines. Older monitoring tools such as Falcon [172] also enable user-interactive
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simulation steering of traditional monolithic executables. Pufferscale [173] is a multi-

objective optimization framework that can simultaneously and dynamically balance

load and data across a set of distributed Mochi [6] microservices. This re-balancing

is enabled through the REMI resource migration microservice. However, Pufferscale

cannot enable an online re-scaling (or resizing) of the number of distributed

microservices.

2.7 Trends and Open Areas

This section describes the important trends and open areas that inform future

work for HPC performance tools.

2.7.1 Trends. This section describes the major trends and open areas that

inform future work for HPC performance tools.

There are several significant trends concerning the evolution of modern HPC

applications. First, the number of distinct components coupled together has been

steadily increasing over the past two decades. As distributed CCA frameworks became

popular, strongly-coupled MPI applications were developed. ISAV tools and data

management frameworks arrived on the scene, increasing the number of coupled,

distributed components. HPC ensembles push the barrier even further, resulting in

hundreds to thousands of small, short-running tasks.

Second, the types of applications that require high-performance capabilities have

exploded. HPC platforms that were once strictly the domain of bulk-synchronous

parallel applications now share the space with transient data analysis tools and ML

tasks that were traditionally executed on desktop-class single-node machines. On

the one hand, tools based on statistical analysis extract helpful knowledge from the

large amounts of data generated by HPC applications, and their integration with

traditional BSP-style codes requires careful thought. As a result, the HPC community
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has borrowed ideas and techniques from the general cloud-computing and artificial

intelligence (AI) communities. On the other hand, some of these ML and AI tools are

large-scale distributed applications in their own right. Their special needs are driving

the decisions behind the procurement of these multi-million dollar HPC machines [56].

Third, the relatively slow growth of traditional file-storage performance on HPC

machines compared to the computational performance is the single most significant

hardware factor contributing to the emergence of several new classes of distributed

frameworks described in this document. The resulting storage heterogeneity and

the inclusion of faster, storage-class memories is only one part of the solution to

this problem. The second part consists of the development of appropriate software

abstractions such as data services and I/O frameworks. This latter part is particularly

challenging to get right — the integration of these new services: (1) should ensure

high performance of the resulting coupled application, (2) should present a unified

interface that hides the complexity of programming the storage hardware, (3) should

not hamper developer productivity, and (4) should not adversely affect the operation

of existing legacy codes.

Fourth, performance tools are always the last to be updated. In other words, their

evolution has always followed the applications they measure, instead of co-evolving

with the application itself. For example, the CCA specification in its initial form did

not appear to have any special provision for the design of CCA-capable performance

tools. Instead, the tool community invented clever ways to integrate performance

measurements through component proxies seamlessly. Aside from SCIRun2 [84] and

Uintah [85], no other CCA framework considered performance optimization as a

first-class design requirement. However, there are indications that this is changing.
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The MPI and OpenMP communities have recognized the need to tightly integrate

performance tools by including a “tools section” in their respective specifications.

A fifth, bold prediction can be made by comparing the evolution of HPC

software architectures with the respective changes within the general computing

industry. The industry has shifted from an ESB-style tightly-coupled model to a

more loosely-coupled services model where each service is highly cohesive in terms of

functionality and can be independently updated from other services or components.

This paradigm shift has increased the scalability of the overall application and

allowed for faster, dynamic updates to service functionality without hampering other

distributed components. If the initial signs [108, 6] are anything to go by, HPC

software architectures are likely to resemble their industry counterparts in the future.

2.7.2 Open Areas. The trends discussed in this section naturally point

to some critical open areas for future tool development. Table 10 presents a brief

overview of the level of tool support for the different classes of distributed HPC

frameworks discussed in this document.

2.7.2.1 Performance Instrumentation & Measurement. As discussed

in Section 2.6.6, relatively few techniques exist to instrument and measure HPC

data service performance. Their key interactions cannot be captured using existing

techniques such as compiler instrumentation or PMPI-based library interposition.

There are two reasons for this. One, these services typically do not use MPI for

communication. Instead, the data services considered in this study primarily rely on

RPC for passing control between coupled components. Traditional HPC performance

tools are not designed to handle a client-server architecture. Second, and more

importantly, control is passed between two or more distributed components. In the

case of a microservice architecture such as Mochi [6], RPC calls can span microservices
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running on different computing nodes. Tracking these microservice interactions

(“callpaths”) through the system requires HPC tools to borrow some ideas from

the cloud-based performance tools. At the same time, these microservice callpaths

need to be annotated with context to associate performance inefficiencies occurring

at lower levels in the software stack with higher-level interactions. Thus, a careful

application of a combination of ideas borrowed from decades of HPC tool research

with novel distributed request-tracing techniques can be a practical approach.

Regarding performance measurement, HPC ensembles only partially succumb to

the application of existing HPC performance tools. For example, applying traditional

PMPI-based measurement techniques to a Swift/T [136] workflow execution can yield

information about the data transfers between individual Swift/T tasks. However,

little information can be gathered this way about the execution details of individual

Swift/T tasks. Individual tasks need some way of exchanging their identity with

the performance tool so that the tool’s measurement infrastructure can separate the

performance events belonging to the task from the performance events belonging to

the underlying Turbine [137] runtime.

2.7.2.2 Performance Monitoring & Analysis. While several robust

performance monitoring tools such as LDMS [166] exist, these tools primarily target

the monitoring of hardware resources. Recently, tools such as SOS [165] have been

developed to monitor and aggregate performance data simultaneously from multiple

data sources. They can be broadly applied to monitor any distributed application.

However, most existing monitoring tools collect the data, aggregate this data in a

central location (database), and then optionally provide the ability for a user to

analyze the data from within this central location.
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While this technique can scale well when the volume of data aggregated is minimal,

it may not work for newer types of applications such as data services. Specifically,

HPC data services operate in a highly concurrent environment. Thus, they require

monitoring, aggregation, and analysis of large volumes of event traces to detect

performance inefficiencies. Given the large storage footprint of event tracing, there is

a need to analyze data at the source, before the aggregation is performed. Monitoring

tools need to be flexible enough to support this type of analysis.

2.7.2.3 Control & Adaptivity. Few tools exist that can dynamically

control and guide the execution of a coupled application. Fewer (if any) tools

offer the ability to do so automatically. While adaptive algorithms have been

studied and developed for individual modules in isolation, the guided execution of a

coupled application requires performance data to be captured from multiple sources,

aggregated, and finally analyzed to result in a control decision.

Further, the question of who actuates the control mechanism is also essential.

Currently, the power to make these control decisions rests with a human user [125,

158]. This solution may work well when the number of coupled modules is relatively

small, and the timescales involved in the control loop are large. However, HPC

ensembles and transient data services involve tens or hundreds of individual modules

and tasks that complete in a short span. Thus, they may require an automatic

control system that relies on predefined policies. Further, as depicted in Table 7,

many existing frameworks need to be updated to support resource elasticity before

they can reap the full benefits of a control infrastructure.

2.8 Summary

Chapter II presented a novel narrative of the evolution of HPC software

development methodologies and the accompanying changes in HPC performance
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tools. Modularization was identified as the recurring theme underlying major

revolutions in HPC software development. Over the past thirty years, HPC software

has become increasingly modular due to the following broad factors:

1. Simulation Scale and Fidelity: The need to run simulations efficiently

on ever-increasing node counts continues to impact the design choices for

implementing HPC software.

2. Number and Variety of Applications Requiring HPC: The recent

emergence of ML workloads requiring HPC capabilities has forced the

community to consider alternatives to the MPI programming model to integrate

them into traditional workloads.

3. Hardware Trends: Hardware trends, particularly the slow growth of parallel

I/O bandwidth and the emergence of accelerators such as GPUs and FPGAs,

have resulted in an update to how HPC software is built and deployed.

4. Structure and Complexity of HPC Software Development: Today’s

state-of-the-art HPC software is notably more complex and modular than

three decades ago, reflecting the structure and the number of collaborating

development teams.

This chapter categorized various emerging types of HPC frameworks and applications

based on their composition model, resource allocation scheme, and data management

strategies. A discussion of the various techniques HPC performance tools have

implemented to stay relevant was also presented. Finally, this chapter touched upon

some trends and open areas informing future work. Chapter III explores these open

areas in the context of performance observation tools for HPC services.
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CHAPTER III

IDENTIFYING WHAT TO OBSERVE AND MONITOR

This chapter contains previously published material with co-authorship. All of

the presented research in this chapter was conducted as a collaboration between the

University of Oregon and Argonne National Laboratory. The research work in this

chapter was presented at IPDPS 2021 [13] and HiPC 2021 [16]. I was the first author

of the IPDPS 2021 and HiPC 2021 papers. Dr. Philip Carns and Dr. Robert Ross

were instrumental in helping me formulate the main research questions presented in

this chapter. In both of these publications, I wrote all of the sections constituting the

papers with suggestions and edits from Dr. Philip Carns and Dr. Robert Ross. All of

the co-authors helped in proofreading. This chapter is formulated by gathering my

contributions from these two publications.

3.1 Introduction

Chapter II presented the factors driving the trend toward increasingly modular

HPC software and the open areas for tool development, particularly concerning tools

for observation and analysis of in situ workflows. Chapter III narrows the focus of this

dissertation to in situ workflows involving high performance distributed services. In

particular, Chapter III focuses on breaking down the broader question of improving

service performance into a set of concrete performance queries for a tool solution

to address. This chapter also describes why existing HPC performance tools are

primarily inapplicable. By addressing Challenge 1, Chapter III partially addresses

the research question RQ1: How to enable performance observability of services built

by composing high performance microservices?

Microservices [117] originated in the broader cloud computing community as a

way to implement a particular form of distributed services architecture involving
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highly independent, specialized components. The definition of a component (used

interchangeably with the term “module”) in this context is “any piece of software

that is independently upgradeable and replaceable”. By this definition, every service

is a component, but not every component is a service. In other words, libraries can

also be used to implement component software, with the distinction that accesses to

library components involve a local function call instead of a remote function call that

traverses the process (and network) boundary. Componentizing software is a logical

way to represent boundaries and a clean way to implement separation of concerns.

Not only that, component software in the cloud industry was designed to reflect

the structure of software development teams — independent units with well-defined

functionality and interfaces to exchange information.

3.1.1 Benefits of Microservice Architectures. Prior to the advent

of microservices, cloud software and services were primarily deployed as so-called

“monoliths” — large pieces of software with several components tightly coupled

together either within a process or a framework abstraction such as an enterprise

service bus that disallowed the independent scaling or modification of constituent

components. Figure 5 depicts this difference between monolithic and microservice

architectures. Specifically, microservices are attractive for developing distributed

software for the following reasons:

– Reuse: Microservices promote a higher degree of reuse than traditional

monolithic services. Designing microservices with highly specialized

functionality can achieve significantly more code reuse between invoking

modules.

– Independent Scalability: Perhaps the single biggest benefit of using

microservices over monoliths is the ability of microservices to be scaled
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independently of one another. For example, consider a situation in Figure 5

wherein component B happens to be a bottleneck for a given client workload and

needs to be scaled out. With a monolithic architecture, there is no option but to

scale the entire application and create duplicate copies to resolve the bottleneck

situation. With a microservice architecture, only microservice (component) B

needs to be scaled out while the other components can remain as they are. In

this manner, microservices can more efficiently use computing resources.

– Increased Fault Tolerance: Microservices also promote a higher degree of

fault tolerance than their traditional monolithic service counterparts. Under

the assumption that process boundaries separate services, a microservice

implementation would necessarily involve a higher number of such services

than monolithic architectures. Therefore, elegant response codes can control

the “blast radius” of a crash or failure in one microservice. In a monolithic

implementation, a failure in one component can bring down the entire

application due to their tight coupling.

– Support for Software Diversity: Another advantage of building and

integrating new components as services is that the limitation of programming

these new components under a single “umbrella language” or framework model

no longer applies. The separation of components into their processes allows

flexibility in choosing the appropriate programming language to implement the

functionality in question, provided that the component can interact with the

outside world through some standard means.

3.1.2 Challenges Posed by Microservice Architectures. Splitting up

a monolith into several microservices can potentially have functional side-effects such
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Figure 5. Monolith vs Microservices

as changing the consistency model for the service. For example, if a monolithic

database is spread (split up) across multiple microservices, updates to different parts

of the (overall) database may complete at different points in time. Therefore, the

design of such a distributed database may involve a choice between a low-performance

design guaranteeing ACID transactions and a higher performance design based on

an eventual consistency model. While this is a broad research area in its own

right, this dissertation focuses on understanding the performance challenges posed

by microservices. Though the scale and the nature of the usage of cloud and high

performance microservices vary significantly, a common set of performance challenges

between cloud and high performance microservices is presented here:

– Allocation of Resources: Arguably, the most fundamental challenge relates

to the question of what constitutes the optimal resource allocation to each

microservice within a larger, composed distributed service. A sub-optimal
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allocation of resources can profoundly negatively impact the performance of

the overall client-service workflow.

– Modeling Performance and Identifying Bottlenecks: The goal of

identifying an optimal allocation of resources would necessarily involve the

generation of a performance model for the service. The presence of tens

or several hundreds of microservices interacting to serve several millions of

concurrent client requests can make it difficult to model the overall service

performance. Further, identifying the root cause and the correct resolution

for a given performance bottleneck observation can prove challenging. As

Figure 6 illustrates, there can be different paths traced in the system by

(any) two requests — request 1 and request 2. Request 1 traces the path

A→C→B→C→A, while request 2 traces the path A→B→A. In this simple

scenario, identifying the relative ratio of request 1 and request 2 in a client

workload can suggest how to split a given set of computing resources between

microservices A, B, and C. For example, if the ratio of request 1 to request 2

is 2:1, a simple initial resource allocation ratio for the microservices A:B:C is

3:3:2, reflecting the total number of requests passing through them. Of course,

this information alone is insufficient to judge the optimality of the resource

allocation, as the immediate next question would be — What are the relative

resource requirements for request 1 and request 2? An equally valid question

would be — How do these request ratios change over time?

– Enabling Adaptivity: Concerning the question of service adaptivity,

microservices expose a significantly larger search space due to the presence

of several independent components and their associated tunable “knobs”.

There are two challenges to enabling adaptivity: (1) navigating this search
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space can be expensive, and (2) correctly implementing adaptivity may

involve the orchestration and consensus of several different distributed services.

Further, implementing adaptivity of high performance microservices involves

the following additional challenges: (1) the clients in the former case (MPI

applications) are not stateless entities and may thus require checkpointing to

store and retrieve state between adaptations, and (2) modeling the cost-benefits

of adaptivity is strictly time-bound because high performance services are

transient. At the same time, it is worth noting that microservice architectures’

highly modular nature opens up opportunities for fine-grained control of

“knobs” affecting overall service performance.

3.2 High Performance Microservices: A Background

Although the questions on performance observability and the solutions proposed

thereof are widely applicable to any high performance microservice stack, the high

performance microservices that this dissertation considers are built on top of the

Mochi [6] software stack. This section presents an overview of the core components

that enable Mochi microservices, the RPC execution model, and examples of

production-ready Mochi microservices.

3.2.1 Mochi: A Background. Storage systems on today’s high-

performance computing (HPC) platforms are complex and rapidly evolving because

of the continuous adoption of new technologies in storage hardware, networking

infrastructure, memory, and compute resources. On the application front, the

traditional MPI-based parallelism is increasingly supplemented by large-scale task

parallelism [23, 174]. The heterogeneity in hardware, diversified application mix, and

execution environments coupled with increasing on-node parallelism complicates the
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Figure 6. Microservices: Interactions Resulting From Requests Through the Service
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task of managing and optimizing I/O performance and meeting the application’s data

needs.

Composability is a valuable development paradigm for this complex environment;

it allows distributed services to be incrementally developed and improved in a

modular fashion. The Mochi project [6] is an example of an HPC framework that

embodies this principle. It structures and catalyzes the development of customized

HPC data services through microservices that can be rapidly composed to meet

application requirements. The Mochi project seeks to enable this rapid development

of customized data services by providing an array of out-of-the-box microservices

for various standard data storage and analysis operations. Examples of such

microservices are the SDS key-value store (SDSKV), the BAKE blob object store

to store large data objects and the REMI resource migration microservice. These

microservices, in turn, provide a uniform client API to access a variety of data storage

“backends”, effectively serving as an abstraction layer to access and integrate existing

and new storage technologies in an incremental and modular fashion.

Users provision a set of nodes on an HPC cluster through the batch system and

split the allocation between the various workflow constituents to use Mochi services.

The workflow could involve a mix of MPI applications, ML-based tasks, analytics

routines, and visualization modules. Note that the Mochi services are coupled with

the main workflow components in a transient manner, implying that the service runs

in userspace for the duration of the batch job. Further, it is up to the user to identify

how to split the allocation between the workflow entities.

Concerning the development of custom Mochi composed services, the methodology

inspired from Ross et al. [6], involves four steps: (1) gathering the user requirements,

(2) gathering the service requirements, (3) identifying the Mochi microservices to
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compose, and (4) instantiation of the Mochi services. Specifically, the key idea

is to speed up step (3) through a set of already available, out-of-the-box, high

performance microservices that can be composed in a “plug-and-play” fashion. Step

(4) allows the user significant flexibility in deciding how to deploy the composed

service. Microservices can be shared amongst multiple composed services that are a

part of the workflow.

3.2.2 Mochi: Core Components. Mochi data services are built and

composed by using the RPC as the fundamental communication method between

processing elements, whether they are local or remote. A Mochi client (referred to

interchangeably as an origin entity) contacts a service provider (referred to as a

target entity). The Mochi ideology is to provide the tools and environment necessary

to enable the rapid development of HPC data services. This goal is achieved by

composing microservices to build higher-level, customized functionality. This section

describes the core components that enable Mochi microservices.

Mochi’s core components include Argobots [121], Mercury [120], Margo/Thallium,

and SSG (Scalable Service Groups). For our study, we focus on the first three.

3.2.2.1 Argobots. Developed outside the scope of the Mochi project,

Argobots is a user-level threading library designed for highly concurrent systems.

Argobots decouples the work (user-level threads, or ULTs) from the hardware

resources that perform that work (execution streams, or ESs). Argobots was created

to provide lightweight threading support on modern CPUs that support high degrees

of concurrency. Specifically, Argobots strives to implement this lightweight threading

support through lightweight notifications, fast thread-switching mechanisms, and

efficient data movement and mapping strategies.
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Concerning Mochi services, the three fundamental Argobots abstractions are

execution streams (ESs), work pools, and work units (WUs). ESs process instructions

sequentially and are bound to hardware resources (CPU cores). A concrete

implementation for an ES is an OS thread bound to a CPU core. The ES can be

associated with a dedicated work pool from which it pulls WUs for execution. Further,

the ES can be associated with one or more schedulers that manage the execution of

WUs on the ES.

Argobots WUs are of two types — user-level threads (ULTs) and tasklets. While

both these WUs represent independent sets of instructions, ULTs are unique in two

ways: (1) they are non-preemptable entities and will yield control to the scheduler

either when explicitly programmed to do so, or when their execution completes, and

(2) ULTs have their persistent stack, while tasklets borrow the stack of the ES’s

scheduler. This decoupling strategy between WUs and ESs allows the migration of

WUs between different schedulers of ESs and between different ESs.

3.2.2.2 Mercury. Mercury is an RPC framework designed for HPC

environments. Mercury takes advantage of RDMA-enabled HPC networks for large

data transfers and a callback-driven completion model for concurrency. Notably,

Mercury supports several different network implementations such as OFI, UCX, TCP,

and shared-memory (SM) as plugins underneath a common network abstraction layer.

A detailed description of Mercury’s RPC execution model is presented in Section 3.2.3.

3.2.2.3 Margo/Thallium. As illustrated in Figure 7, Margo is the common

underlying layer for Mochi services to interact with RPCs and RPC handlers.

Margo eases the burden of Mercury callback programming and Argobots concurrency

management and presents a unified model that leverages both technologies. Margo

operates in two modes: client and server. When used in server mode, Margo allows the
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registration of one or more providers. Essentially, a provider is a uniquely identifiable

network object that can receive and make RPC calls. A Mochi provider implements

a given microservice API through one or more backend targets. Further, a provider

can be assigned dedicated Argobots work pools and ESs on which to schedule the

execution of RPCs.

Thallium is a C++ wrapper for Margo and exposes an object-oriented interface for

making RPC calls. Notably, Margo/Thallium supports the execution of blocking and

non-blocking calls through the same interface. When a blocking call is made, the client

(origin) thread blocks (waits) for a response to be received before the call completes.

When a non-blocking call is made, Margo/Thallium returns a handle to the client as

soon as the (send) data buffer is safe to be reused. The client can check the status

(completion) of the RPC through a separate API call. The progress semantics for

the RPC is determined by the network implementation and the configuration of the

service.

3.2.3 Mochi: RPC Execution Model. This section describes the events

during the generation and execution of a Mochi RPC call.

3.2.3.1 Service Discovery. Before an RPC call is made, Mochi

service target providers must make their RPC addresses publicly known, usually

accomplished through an address file. Inside a workflow, the general operation model

assumes that the service processes are launched and initialized first, before the other

workflow components such as MPI applications. When a client entity initializes, it

is expected to look up the address file, identify the target provider, and use this

information to create a Margo client object. At this point, the client is ready to use

the service.
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Figure 7. Mochi: Interaction between Distributed Components and Software Stack

3.2.3.2 Request Generation. After the target provider address has been

acquired, the origin entity generates an RPC request. The RPC request metadata

is serialized inside Mercury and eagerly sent over to the target. In the case that the

eager buffer overflows, Mercury employs an internal RDMA call to send the additional

request metadata. Margo installs a callback with Mercury invoked when the response

is available. These actions correspond to steps t1 to t3 in Figure 8.

3.2.3.3 Execution of the Request. When a target provider receives an

RPC request, the main service provider execution stream (progress ES) creates a

new ULT to service the request (t4). This request enters a pool of tasks waiting to

run on the next available ES. When the ULT is assigned an ES to run on, it begins

executing (t5) by first deserializing the input metadata (t6 to t7). The number of ESs

available to the service provider is specified during the initialization phase. These ESs
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Figure 8. Mochi RPC Execution Model
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constantly dequeue ULTs from the various registered pools and execute them as they

arrive. If there are no ULTs to execute, the ESs remain idle. The service provider

transfers data from the origin through Mercury’s bulk interface.

3.2.3.4 Issuance of a Response. The target provider generates a response

(t8), and the output gets serialized inside Mercury (t9 to t10). The Margo library on

the target registers a callback handler for the response. Mercury triggers this callback

handler (t13) when the response has been sent to the origin.

3.2.3.5 Receipt of a Response. Once the response is available at the

network layer on the origin (t11), at some later point in time the Mercury progress

engine adds the completion callback for this request to the completion queue (t12).

Then the callback for this request is triggered (t14).

3.2.4 Mochi: Microservices. Mochi microservices have two components

— the client library and the service library. The client library is a stub that

serializes input arguments and deserializes the output using Mercury. The server

library implements the RPC API. After deserializing the input and performing any

necessary RDMA operations to pull in the bulk arguments, the server invokes the

API of the backend target during execution. For example, the SDSKV Mochi

microservice supports three backend targets — std::map, LevelDB, and BerkeleyDB.

Likewise, the BAKE microservice provider supports two backends — a file backend

and a persistent memory (PMEM) backend. Abstracting the backend implementation

behind a common API allows Mochi to be portable across platforms and targets

without code modifications. Presently, Mochi supports the following non-exhaustive

list of out-of-the-box microservices:

– SDSKV (YOKAN) key-value microservices

– BAKE object store
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– REMI resource migration microservice

– BEDROCK bootstrapping microservice

– COLZA in situ visualization and analysis microservice

– POESIE microservice for executing scripts inside interpreters (Python)

– SONATA document store

– SSG microservice for group membership operations

A complete list of services supported by Mochi can be found on GitHub

(https://github.com/mochi-hpc).

3.2.5 Mochi: Composed Services. The Mochi project has resulted in the

development of several composed services across several institutions and laboratories.

HEPnOS [6] is a data service for a high-energy physics application that uses the

SDSKV microservice. Flamestore [6] is a storage service designed to store the results

of the training of ML models on HPC systems. Mobject [6] is a distributed object-

storage service that implements a subset of the RADOS [175] API. As Figure 9

illustrates, Mobject is itself composed of three microservices — the SDSKV key-value

microservice (for storing metadata), the BAKE microservice for storing object data,

and the Mobject “sequencer” microservice to translate a client request into a sequence

of RPC calls to the appropriate SDSKV and BAKE service providers.

Mochi components have also been used to design user-level filesystems.

UnifyFS [113] provides seamless access to burst-buffer storage on a compute node.

The DeltaFS [176] is a user-level filesystem designed to overcome the file metadata

bottlenecks encountered by HPC applications that read and write many small files.
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Figure 9. Mobject: An Illustration (Image Credits: Dr. Matthieu Dorier, Argonne
National Laboratory)

3.3 The Goal of Performance Observability

Performance observability is defined by Malony [177] as the “ability to accurately

capture, analyze, and present information about the performance of a computer

system”. This definition has broad applicability, and in the context of high

performance microservices, observability has the following goals:

– Generate insight into the interactions amongst the microservice components

when coupled with other in situ workflow components,

– Aid in forming a performance model or understanding of the execution of these

services that closely reflects their execution model,

– Pinpoint sources of inefficiency by measuring the saturation levels of various

hardware and software resources, and

– Ultimately aid in the generation of a better performing service configuration.
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Performance monitoring, on the other hand, implies the storage, export, and online

analysis of some or all of the captured observations by an external entity (human user

or another program). Therefore, while performance observability and monitoring

are related concepts, the former is primarily concerned with making visible the

system’s “invisible” performance aspects. The latter deals directly with how to

present information for online adaptivity and decision-making while the system is

executing. Put another way; performance observability is a necessary first step to be

established before monitoring is even possible.

To understand what makes performance observability important for high

performance microservices, consider the two service configurations presented in

Figure 10. Both configurations involve an in situ workflow that couples an MPI

application (workflow component) with a Mochi data service “S”. Data service “S”

is composed of two types of microservices: (1) microservice A, denoted by the

green boxes, and (2) microservice B, denoted by the purple boxes. Configuration 1

involves three instances of microservice A coupled with six instances of microservice

B, while Configuration 2 involves six instances of microservice A and three instances of

microservice B. Note that individual instances of each microservice type are identical

copies of each other. Therefore, from the perspective of the service client (MPI

application), Configuration 1 and Configuration 2 are functionally equivalent but

can have vastly different performance characteristics, resulting in up to an order of

magnitude or more of a performance difference for the overall workflow.

To understand why, consider how the client is expected to use the data service

“S”. Let microservice A represent a key-value store, and microservice B represent an

analysis service. During execution, a client process (MPI rank) may want to store a

piece of data in the service. Given that all instances of microservice A are identical,
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this process generates a hash of the object to identify which instance of microservice

A to store this piece of data. Hashing is one way to implement the load balance

of data within the service. Another client rank may want to perform analysis on

a piece of data for which it contacts an instance of microservice B. Note that the

client-server coupling in this example scenario is two-way, meaning the performance

of the workflow depends not only on the scalability of the MPI application but also

on the optimality of the data service configuration. A haphazard configuration of

the service without the knowledge of the precise mix of the operations on the critical

path of the workflow can result in an overall poor performance for the workflow.

Therefore, performance observability is the first step in addressing the main

question this dissertation attempts to answer: How to enable and use

performance insight to improve service configuration when the service

is a part of a coupled, HPC in situ workflow? Note that deciding on “an

improved service configuration” involves a broader range of contributing factors than

just identifying the optimal number of microservices of each type. Specifically, these

additional factors include the number of Argobots ESs (threads) to assign to each

microservice, the software knobs for each framework component, and the client-side

batching strategy for RPCs. Two observations concerning these factors affecting

performance make observability challenging:

– Overall service performance is often a result of the interplay between these

factors, i.e., these contributing factors cannot be analyzed independently, and

– These factors affect different portions of the microservice software stack.

These observations suggest that an integrated performance analysis strategy would

likely prove most effective.
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(a) Configuration 1

(b) Configuration 2

Figure 10. Functionally Equivalent Service Configurations
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Table 11. Improving Service Performance By Addressing a Set of
Performance-related Queries

Query Number Query
Query 1 What combinations of dependent microservice operations have the greatest impact on performance?
Query 2 Is there load imbalance in the service?
Query 3 How to gain insight into the individual request structure?
Query 4 How do the individual microservice operations map to resource usage and time for RPC events?
Query 5 What hardware and software resources are being saturated?
Query 6 How to gain insight into the performance of application-level APIs?
Query 7 Is there a better service configuration?

3.4 Elements of Observability

This dissertation proposes to break down the broader question of generating an

improved service configuration into a set of specific performance-related queries for

the observability infrastructure to target. These queries are listed in Table 11.

The following sections present a detailed overview of each of these performance-

related queries and discusses how answering these queries can address the main

research question.

3.4.1 Query 1: Identifying Dominant Microservice Operations.

Conceptually, the dependencies among the microservices are represented as

distributed callpaths through the system. As opposed to monolithic architectures

where callpaths are local to a process, generating callpaths for microservices is

inherently tricky because these callpaths can span across multiple processes on

different nodes. Microservices that make up a composed service are loosely

coupled, work on potentially different scales, operate in a heterogeneous execution

environment, and are configured in myriad ways. Figure 6 depicts a scenario where

three microservices (A, B, and C) interact to generate two distinct callpaths in

the system: A−→C−→B (shown in blue) and A−→B (shown in purple). The

microservices A, B, and C can be located on the same process, on different processes

within a node, or on entirely separate nodes depending on how the service is
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configured. A summary of the various distributed callpaths in the system sorted based

on the total call time or call counts can help identify: (1) the dominant (resource-

intensive) callpaths that account for a majority of the execution time of the service

and (2) the candidate microservices that could lie on the critical path for the workflow.

3.4.2 Query 2: Detecting Load Imbalance. Analyzing the distribution

of the call times (or call counts) for the dominant callpaths can help the developer

quickly track down the load distribution for these callpaths and identify if there is a

load imbalance. In a data service, for example, load imbalance can signal that the

hashing scheme to distribute the data among the constituent microservices does not

yield a uniform distribution.

3.4.3 Query 3: Eliciting Individual Request Structure. Callpath

summaries are a good first step in identifying the dominant microservice interactions,

but these summaries alone are insufficient to explain why, for example, a certain

request took longer than expected to complete. Consider the service deployment

configuration described in Figure 6. In an alternate execution, Request 1 can take

the following path: A→C→A→C→A→C→B→C→A. The callpath summary for this

request would result in the generation of two callpaths: A→C→B and A→C. The

red nodes indicate an RPC response. Essentially, the individual call sequences within

a request are lost while summarizing the callpaths. However, if information about

the entire request structure were available, it would help answer why, for example,

the latency for Request 2 was several times higher than the average latency for this

specific callpath.

3.4.4 Query 4: Mapping RPC Resource Usage and Time. Once the

microservice dependencies have been identified, it is imperative to understand the

relative contributions of various software components and events that make up the
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remote procedure call (RPC) on the client and the server. Importantly, these events

must closely reflect the vital performance-related aspects of the RPC execution model.

To tease out these details, we need a way to integrate various sources of performance

data and timers gathered from different levels in the stack and fuse that data with

the distributed callpaths as common reference points.

3.4.5 Query 5: Detecting Hardware and Software Resource

Saturation. Identifying a poorly performing service configuration involves the

ability to detect resource saturation. Resource saturation can occur on a hardware

level or software level. For example, tasking frameworks (such as Argobots) that

manage the concurrency on the server place newly spawned tasks in internal queues.

Observing a backlog of tasks on these queues is an indication that the tasking

system is starved of compute resources. Correlating these resource saturation metrics

with higher-level RPC callpath information can help narrow down the cause of the

task pileup. Presenting a “hardware-centric” view of the service execution can

identify when hardware resources are being saturated. This hardware-centric view

can either be presented in a “software-agnostic” manner, separate from the callpath

information, or in conjunction with the callpath information to narrow down the

software component or service interaction causing the hardware saturation.

3.4.6 Query 6: Application-level API Performance. In a highly

concurrent service environment, delays and inefficiencies can also happen inside the

microservice API (application-level) and need to be identified through appropriate

instrumentation. For example, a service exposing access to a database can experience

request pileups if: (1) the access to the database is serialized, or (2) the service

is configured with too few database instances for the client workload. Without
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appropriate instrumentation and knowledge about the characteristics of the client

workload, it is not easy to estimate the optimal number of these database instances.

3.4.7 Query 7: Identifying Better Service Configurations.

Ultimately, the goal of enabling performance observability is to aid in the generation

of a better, more optimal service configuration if it exists. If resource saturation is

detected, the performance data must sufficiently indicate what parameters could be

changed to improve performance.

3.5 Summary

Chapter III presented an overview of microservices, touching upon the key

benefits and performance-related challenges associated with this highly modular

architecture, particularly in the context of HPC microservices. Chapter III also

presented an introduction to the Mochi software framework [6] to describe the

Mochi RPC execution model and the critical aspects of service operation requiring

performance observability. While the ultimate stated goal for the dissertation is to

help generate optimal HPC service configurations, Chapter III breaks down this goal

into a set of concrete performance-related queries for the observability infrastructure

to target. Chapter III sets the stage for discussing the tool solutions to address these

performance queries, presented in Chapter IV.
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CHAPTER IV

SELECTING AND COMBINING SOURCES OF PERFORMANCE DATA

This chapter contains previously published material with co-authorship. All of

the presented research in this chapter was conducted as a collaboration between the

University of Oregon and Argonne National Laboratory. The research work in this

chapter was presented at IPDPS 2021 [13] and HiPC 2021 [16]. I was the first author

of the IPDPS 2021 and HiPC 2021 papers. While working on the SYMBIOSYS tool,

I received regular guidance from Dr. Philip Carns and Dr. Robert Ross. Dr. Philip

Carns put in place the initial version of the distributed callpath profiling support in

Margo that I took forward. While working on SYMBIOMON, I received guidance

from Dr. Matthieu Dorier, Dr. Robert Ross, Dr. Philip Carns, and Dr. Jerome

Soumagne. For both of these publications, I did all the software development,

conducted the experiments, writing, and data collection, with suggestions and edits

from Dr. Philip Carns and Dr. Robert Ross. For both of these publications, I received

guidance from Dr. Allen Malony. Other co-authors also helped in the proofreading.

This chapter is formulated by gathering my contributions from these two publications.

4.1 Introduction

The difficulty with enabling the analyses raised in Chapter III lies in understanding

how to combine various instrumentation and measurement techniques to present

an integrated analysis and profile. Observing distributed callpaths, for example,

involves tracking and forwarding RPC call ancestry across distributed microservices

by employing some form of request metadata propagation. Attributing resource usage

to individual steps within a microservice operation involves exchanging performance

data across the software stack and orienting it around appropriate reference points.
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Identifying resource saturation requires the ability to correlate low-level performance

metrics with high-level callpath information.

This chapter describes a solution to the queries raised in Chapter III and in

the process, addresses the research question RQ1: How to enable performance

observability (insight) of services built by composing high performance microservices?

The solution presented in this chapter consists of a set of techniques packaged as two

separate tools — SYMBIOSYS and SYMBIOMON. While SYMBIOSYS is designed

to generate and analyze performance observations offline, SYMBIOMON is a flexible

tool that allows for both offline analysis of time-series metrics (event traces) and online

monitoring and analysis of this metric data. This chapter is concerned primarily

with using SYMBIOMON’s instrumentation capabilities to analyze performance

observations offline. The online monitoring aspects of SYMBIOMON are presented

in Chapter V.

4.2 Related Work

This section presents a brief overview of the analysis activities that is central to

HPC microservices and the effectiveness of different classes of tools to address these

requirements.

4.2.1 HPC Performance Tools. HPC performance tools excel at the

performance analysis of applications based on the distributed-memory parallel

programming model. Typically, they build on the presence of an MPI programming

model to capture distributed performance information. State-of-the-art tools such as

TAU [29], ScoreP [157], CALIPER [31], and HPCToolkit [30] employ sophisticated

sampling, automatic compiler instrumentation, manual instrumentation, and library

interposition techniques to gather insights into application and communication library

performance. These tools implicitly assume that control is not passed between
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applications. As a result, HPC performance tools cannot be directly utilized to

observe distributed microservice callpaths. While some HPC tools are capable of

working with user-level tasking frameworks such as Argobots (e.g., APEX [171]),

almost all are constrained to measuring code performance within a node, with limited

application in the generation of distributed callpaths.

4.2.2 Cloud-Based Tools for Microservices. Several efforts have been

made within the general distributed systems community and industry to design

performance tools for microservice-based distributed services. They employ some

form of metadata propagation to stitch together request trace events across processes

to form a complete picture. Distributed request tracing is effective in detecting

structural and empirical anomalies [178]. A comprehensive survey of the variety of

tools available for distributed tracing can be found in [179]. Dapper [14] from Google,

OpenZipkin [2], and Jaeger [163] are the notable industry efforts at tracking requests

and associated metadata through a hyper-scale distributed setup. Our distributed

tracing implementation is compatible with the trace format of these tools. Unlike

these tools, however, SYMBIOSYS does not require additional processes on the node

for staging performance data. Further, we find the need to extend their data model

to support generating and capturing a wide variety of performance data from across

the stack.

The SYMBIOMON metric data model is inspired by time-series monitoring

databases used in the cloud industry, such as Prometheus [19], Graphite [170],

and InfluxDB [180]. Cloud-based monitoring frameworks are typically employed to

extract data over coarse-grained time intervals (seconds). The services they monitor

are long-running, are spread over a large geographical region, and run on top of a

commodity hardware and software stack. Services in the cloud are written in various
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languages, and thus cloud-based monitoring frameworks offer rich, multilanguage

client instrumentation support. Importantly, these monitoring frameworks are not

set up to directly enable fast, dynamic service reconfiguration. Instead, they rely on

alerting mechanisms complemented with powerful, human-friendly remote querying

capabilities. HPC data services are transient, highly concurrent services that run on

high-performance hardware. Thus, while the cloud-based time-series data model has

application in monitoring HPC services, the specialized hardware and software stack

necessitates a high-performance monitoring service implementation.

4.2.3 Tools That Integrate Data Sources. A growing body of research

employs techniques to exchange vital performance data between software layers.

Notably, within the MPI community, there are ongoing efforts [15, 181, 182] to

expose internal MPI counters and events to gain a deeper insight into the distributed

communication performance. The OpenMP community is also pursuing similar

efforts [51, 183] to associate library-level performance data with higher-level tasks.

The PAPI software-defined events [184] approach aims to standardize the exchange

of software-level performance metrics across layers through accessor functions. Our

performance data strategy is inspired by the efforts in the MPI community, whereby

tool support is directly available in the communication library as opposed to

employing an external component.

4.3 SYMBIOSYS: Distributed Callpath Profiling

4.3.1 Instrumentation. SYMBIOSYS tracks RPC callpath ancestries to

present a callpath profile summary. This summary contains information about

the total amount of time spent along different callpaths (or callchains) in the

system. Each microservice instance keeps track of its callpath ancestry and forwards

this information along the request path. This callpath information is maintained
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separately on the origin and target entities. Further, for every callpath, each origin

entity making the call and each target entity servicing the call are uniquely identified

in the profile. The RPC call name is hashed into a 64-bit value and sent along with

the RPC request during the RPC call. This 64-bit value denotes the callpath ancestry

for the chain of RPCs. The Margo instance invoking the RPC stores this hash value

inside Mercury at t1 (see Figure 11) and retrieves it from a callback argument at t14.

At this point, the Margo instance measures the time it took for the RPC target to

service the call. This measurement is referred to as the origin execution time.

The delay between the receipt of the RPC call at t3 and the execution of the

corresponding ULT at t4 is denoted as the target ULT handler time and is stored

in a ULT-local key. The Margo instance receiving the RPC call at t3 unpacks the

incoming RPC request and stores the 64-bit hash value in another key local to the

ULT servicing that request. Doing so is important because this ULT can make another

RPC call as a side effect of the original one. If that is the case, the ULT needs to

pass the callpath ancestry to downstream operations to maintain the correct chain of

operations. The ULT first performs a 16-bit left shift of the 64-bit value representing

callpath ancestry. It then hashes the name of the downstream call RPC and performs

a logical OR operation such that the name of the downstream RPC call occupies the

lowest 16 bits of the 64-bit value. The ULT then proceeds with making the RPC

request. Currently, Margo can store RPC callpath lengths of up to four in the 64-bit

hash value. When the ULT servicing the request on the target completes, it measures

the time to service this request at t8. This is denoted as the target ULT execution

time. The delay between the issuance of a response at t8 and the triggering of the

corresponding completion callback at t13 is stored in a ULT-local key as the target

completion callback time. In this manner, the Margo instance on each process (origin
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and target) keeps a track of the total call time and call count for all the callpaths

that pass through the instance.

Figure 11. Annotated Mochi RPC Execution Model

4.3.2 Analysis and Visualization. The goal of distributed callpath

profiling is to enable insight into the dominant microservice operations that account

for most of the service execution time and resource usage. Therefore, the analysis

and visualization modules were designed with this goal in mind. The SYMBIOSYS

callpath analysis and visualization module perform the following analysis:

– At the end of the execution, each Margo instance in the workflow (origin and

target) writes its local callpath profiles into separate files.

– The callpath analysis module reads these files and summarizes the origin and

target profiles for every callpath observed. This summary includes the total

execution time and call counts as seen by the origin and the target, the

distribution of these call times and call counts, and other basic statistics.
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– These callpath profiles contain a wealth of information, including all the

system’s microservice interactions; the callpath analysis module identifies the

dominant callpaths by sorting the summarized profiles based on the call time

and the call count.

– The visualization module ingests this data and generates a plot of these sorted,

summarized profiles.

Figure 12. Mobject + ior: Dominant Callpaths by Call Time

Figure 12 illustrates the SYMBIOSYS callpath profile resulting from an execution

of an ior benchmark [185] with the Mobject Mochi data service. The callpath

profile depicts the top-5 callpaths sorted by cumulative call time. For this

execution, the mobject_write_op accounts for over 50% of the total service call

time (as seen by the ior client). Within this larger API call, the callpath
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mobject_write_op→bake_write_rpc is the dominant interaction, accounting for

over 90% of the mobject_write_op execution time.

4.4 SYMBIOSYS: Distributed Request Tracing

4.4.1 Instrumentation. While callpath profiling helps gather a quick

summary of service performance, information about individual requests is lost. Traces

can span multiple nodes (and processes) and contain rich performance information

that allows for correlations of various performance metrics with time to be performed.

The key idea lies in propagating request metadata (typically a unique request ID)

through the system and then having a post-processing system collect and stitch the

individual trace events after completion. Distributed tracing involves the generation

of trace events at t1, t14 on the origin and t5, t8 on the target. The end-client

(typically an MPI application) generates a globally unique request ID and propagates

this ID along with a counter representing the order of the event in the individual trace.

We implement Lamport’s algorithm [186] to mitigate clock skew in the system. For

every trace event generated, the current timestamp is stored along with a wide variety

of performance data gathered from the RPC API, RPC library, and concurrency

control layers. Section 4.5 describes the methodology for retrieving and storing this

rich performance data.

4.4.2 Analysis and Visualization. While the locations for instrumentation

between distributed callpath profiling and distributed request tracing are common,

the analysis and visualization strategy differs. The goal for distributed request tracing

is to provide a detailed, request-centric view for the execution and enable insight into

the structure of the individual requests and allow for the correlation of RPC request

events with other performance data gathered from across the Mochi software stack.

The SYMBIOSYS request tracing module performs the following operations:
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– When the execution of a service workflow completes, every instrumented Margo

process in the workflow writes the locally-collected request traces into its local

trace event file.

– Because the event traces that constitute a client request can be spread across

multiple microservices (processes), the trace “pieces” belonging to each process

need to assembled in memory, effectively stitching them together to form a

coherent request timeline as it passes through various microservices.

– At this point, the processed requests are ready for analysis and visualizations.

Concerning the analysis of the request events, a temporal view of the key aspects

of service execution is presented, along with correlations of the occurrence of

request events with resource usage such as memory and the Argobots pending

queue sizes. For example, Figure 13 presents a timeline view of the execution

of the mobject_write_op RPC for the ior + Mobject workflow described in

Section 4.3. The first plot depicts the overall request latencies as a function of

time. Interestingly, these latencies fall into two broad “ranges”. The second plot

depicts the maximum memory usage for any event in the request as a function

of time. The third and the fourth plots capture information about the state of

the Argobots RPC work queues on the target.

– Concerning the visualization of the request data, request tracing, provides

valuable insight into the request structure of individual requests. The standard

methodology for visualizing microservice call structures is a gantt chart. Instead

of building a custom visualizer for this purpose, SYMBIOSYS leverages the

standard JSON-based data model exposed by the existing, state-of-the-art

Zipkin [2] tool. SYMBIOSYS implements a data converter module that maps
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the SYMBIOSYS traces to the Zipkin trace format to enable Zipkin-based trace

visualization.

Figure 13. Mobject + ior: Trace Analysis for the mobject write op RPC

4.5 SYMBIOSYS: Performance Data Exchange

Associating higher-level callpaths with events from the RPC library and

concurrency control layers is critical to forming a complete picture of RPC

performance. Typically, each software item in the RPC stack behaves like a black

box, preventing the exchange of vital performance data that can aid in understanding

performance and can present optimization opportunities. Figure 14 presents a

pictorial representation of the problem. The distributed callpath profiling and tracing

techniques operate at the RPC API layer (Margo). While they are useful in eliciting

high-level microservice interactions, they have limited visibility into the operation

of the core RPC (Mercury) and the concurrency layers. The MPI community has
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attempted to standardize the exchange of performance data through the MPI Tools

Information Interface [15]. The SYMBIOSYS architecture for performance data

exchange with the RPC library takes inspiration from these efforts.

Figure 14. Mochi: Opaqueness of RPC Events to Callpath Profiling and Tracing

4.5.1 Performance Variables. From the viewpoint of performance, several

important events occur inside the Mercury communication library. We identify and

implement several key performance variables (PVARs) in Mercury that capture these

events. We introduce the concept of PVAR classes to represent the variety in the types

of PVARs that can exist. For example, the PVAR class STATE is used to represent the

current state of a particular Mercury resource or metric. Table 12 presents a list of

PVAR classes currently available, and Table 13 lists some of the various PVARs that

are currently implemented. The PVAR num_posted_handles represents a PVAR

of the STATE class. Similarly, the PVAR class COUNTER represents a monotonically
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Table 12. Performance Variable Classes

PVAR Class Description

STATE Represents any one of a set of discrete states
COUNTER Monotonically increasing value
TIMER Interval event timer
LEVEL Represents the utilization level of a resource
SIZE Represents the size of a resource

HIGHWATERMARK Highest recorded value
LOWWATERMARK Lowest recorded value

increasing value, and the PVAR classes HIGHWATERMARK and LOWWATERMARK denote

the highest or lowest values recorded for a particular metric.

The other key concept we introduce is the notion of PVAR bindings. Many PVARs

have a “global” scope and represent a counter or metric with a broad temporal

and spatial presence across the Mercury library. Such PVARs have a binding type

NO_OBJECT. An example of a PVAR of this type is the completion_queue_count

representing the current length of the Mercury completion queue. Other PVARs

are short-lived and have a much narrower scope. We introduce the binding type

HANDLE to represent PVARs bound to internal Mercury handles. Every RPC call

is internally associated with a Mercury handle object. Once the particular RPC

has been completed, these PVARs go out of scope, and their values are lost forever.

Examples of such PVARs include the timers for the input and output serialization

and deserialization times on the origin and the target.

4.5.2 Performance Tool Interface. We introduce a PVAR interface in

Mercury to externally sample these Mercury PVARs. Briefly, the steps taken by an

external tool to access and sample the PVARs are as follows:
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Table 13. List of Available Performance Variables

PVAR Name Description PVAR Class PVAR Binding

num posted handles Number of currently posted RPC handles LEVEL NO OBJECT
completion queue size Number of events in Mercury’s completion queue STATE NO OBJECT
num ofi events read Number of OFI completion events last read LEVEL NO OBJECT
num rpcs invoked Number of RPCs invoked by instance COUNTER NO OBJECT

internal rdma transfer time Time taken to transfer additional RPC metadata through RDMA TIMER HANDLE
input serializaton time Time taken to serialize input on origin TIMER HANDLE
input deserializaton time Time taken to de-serialize input on target TIMER HANDLE

origin completion callback time Delay between the arrival of RPC response and invocation of completion callback TIMER HANDLE

– Initialize a PVAR session: Each tool querying the Mercury PVAR interface is

assigned a unique session_handle.

– Query the interface to gather a list of the supported PVARs: Once a session is

initialized, the external tool queries the interface to gather information about the

number, type, binding, and count of all the PVARs exported.

– Allocate handles for PVARs: Once the relevant PVARs have been identified, the

tool must allocate pvar_handles for the PVARs it wishes to read. The interface

provides an API call for this purpose.

– Sample PVARs: After the handle has been allocated, the external tool can sample

(read) the value of the PVAR by providing the pvar_handle as input to the

sampling API. If this PVAR is bound to a Mercury handle, the tool must provide

the Mercury handle as input.

– Finalize the PVAR session: When the external tool is done sampling PVARs, it

can free the allocated pvar_handles and finalize the PVAR session.

4.6 SYMBIOSYS: Orienting Performance Data to Generate Observability

The microservice callpath measurements are used to orient and integrate

performance data from the communication library. The Margo RPC API layer

initializes a PVAR session with Mercury inside its initialization routine. At the
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Figure 15. PVAR Interface Between Margo and Mercury

same time, it also initializes all necessary PVAR handles. Figure 15 represents this

interaction between the two layers of the Mochi stack. Margo samples the Argobots

layer for the number of blocked and runnable tasks when generating a trace event.

These instrumentation points also serve as helpful to sample memory usage and CPU

utilization from the OS layer.

Although the OpenFabrics Network Interface [187] specification does not allow us

to read the instantaneous number of events in its completion queue, we can gather

a sense of the size of the completion queue by sampling the number of actual events

last read in the form of the num_ofi_events_read Mercury PVAR at t14. When

Mercury PVAR profiling is enabled, it samples the num_ofi_events_read PVAR and

adds this data to the trace record. At the origin, Margo reads the PVARs holding the

origin callback completion time and input serialization time when measuring at t14.

Similarly, at the target, the PVARs representing the target internal RDMA transfer

time, input deserialization time, and output serialization time for the particular RPC

call are sampled when measuring at t13. These trace events and profile data are

consolidated, aggregated, and presented for visualization at the end of the execution.
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Table 14. Combining Instrumentation Strategies

Interval Name Interval Start Interval End Instrumentation Strategy

Origin Execution Time t1 t14 ULT-local key
Input Serialization Time t2 t3 Mercury PVAR

Target Internal RDMA Transfer Time t3 t4 Mercury PVAR
Target ULT Handler Time t4 t5 ULT-local key
Input Deserialization Time t6 t7 Mercury PVAR

Target ULT Execution Time (exclusive) t5 t8 ULT-local key
Output Serialization Time t9 t10 Mercury PVAR

Target ULT Completion Callback Time t8 t13 ULT-local key
Origin Completion Callback Time t12 t14 Mercury PVAR

4.7 SYMBIOSYS: Sampling Node Resource Usage

While the callpath profiling, tracing, and performance data exchange strategies

enable insight into the operation of the RPC software stack and generate observations

of the microservice interactions, an “out-of-band” sampling strategy that captures

basic node resource usage statistics such as the memory usage, CPU utilization and

load average can be helpful for performance monitoring. SYMBIOSYS implements

this sampling strategy by creating an Argobots user-level thread (ULT) inside Margo

during initialization. This ULT is scheduled to execute periodically on the primary

ES. The ULT captures these node resource statistics and appends this information

to an internal record buffer when it runs. When the Margo instance is finalized, this

record buffer is written out as a profile and analyzed offline. The node information

is appended as additional metadata for the analysis to ingest.

4.8 SYMBIOMON: Time-series Metrics

While SYMBIOSYS enables performance analysis of the critical aspects of the

RPC software stack and captures the overall execution time for the RPC on the origin

and the target, we find this instrumentation strategy is insufficient to explain the

cause for the delays occurring inside the microservice API. Gaining insight into these

delays requires additional instrumentation to be placed inside the microservice API.
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Specifically, in a microservice that is expected to operate efficiently under concurrent

access, time-series metric analysis (a form of event tracing) proves beneficial. Time-

series metrics are commonly employed for performance monitoring of cloud services.

Time-series data can capture trends, allow for “windowed analysis” on the time-

series data, detect anomalies in function execution times, and correlate measurements

across different metrics to narrow down the root cause of performance inefficiencies.

This section describes the time-series metric interface and the implementation of the

COLLECTOR microservice component developed as a part of the SYMBIOMON

monitoring system.

4.8.1 COLLECTOR Microservice. The COLLECTOR microservice

exports the metric collection API that any service component or MPI process can

invoke to create and update arbitrary metrics. Notably, the COLLECTOR is

the only SYMBIOMON component interacting directly with a metric API client.

COLLECTOR microservice instances run within the address space of the metric API

client. In other words, the COLLECTOR operates like a library-based microservice,

and all COLLECTOR API calls are implemented as regular function calls. This

microservice is unique because the origin entity and the target provider are located

within the same process, and they communicate through regular function calls (as

opposed to using RPCs). This design choice was made recognizing that clients

interact with their local COLLECTOR provider only for the most frequently used

operations, such as metric creation and update. Implementing the COLLECTOR as

a library ensures that these frequently used operations finish quickly and introduce

minimal unnecessary overhead. During metric creation, the COLLECTOR associates

an internal buffer of a fixed size with the metric and returns a metric handle to the

client. The client subsequently uses the metric handle to update and destroy the
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Table 15. SYMBIOMON Metric API

Microservice API Key Input Arguments
COLLECTOR taglist create(destroy) taglist
COLLECTOR metric create(destroy) name, namespace, type, taglist
COLLECTOR metric update(destroy) value, sample id
COLLECTOR remote metric fetch collector address, metric id, num samples

COLLECTOR output raw metric data filename, metric id
COLLECTOR metric reduce(all) metric id, reduction operator
AGGREGATOR aggregate metric metric id, aggregator address

REDUCER global metric reduce(all) metric id, reduction operator, reducer address

metric. Our current prototype limits metric sample updates to a single DOUBLE value

along with an optional sample ID field. By default, the COLLECTOR uses the

Argobots thread ID of the caller for the sample ID field.

4.8.2 Data Model and Metric API. SYMBIOMON employs a time-series

data model to store and export performance metrics and exposes the corresponding

API through the COLLECTOR microservice. A time series is a collection of samples.

Table 28 depicts the key metric APIs available to the user for metric creation,

aggregation, and reduction.

4.8.2.1 Metric Creation. During metric creation, the user must supply

a namespace and a metric name. Since SYMBIOMON can simultaneously monitor

multiple workflow components, namespaces are essential to differentiate metrics with

the same name but originating from different sources. The other required field is a

metric type. The metric types currently supported, along with a brief description of

each, are presented in Table 16. These types are reflective of common practice in

time-series monitoring systems.

The user can optionally “decorate” a metric with an arbitrary-length taglist of

strings. For example, the unique microservice provider ID within a cohort is a good

starting point for generating a taglist. Taglists are necessary when the user wants
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Table 16. SYMBIOMON Metric Types

Metric Type Description
COUNTER Monotonically increasing value
TIMER Monotonically increasing value representing a timer
GAUGE Metric values that can increase or decrease over time

Table 17. SYMBIOMON Metric Reduction Operators

Reduction Operator Description
SUM Sum of all metric samples
MIN Low-watermark value
MAX High-watermark value
AVG Mean value of all metric samples

ANOMALY Metric samples that deviate from the mean by three σ

to aggregate metric data globally. The other optional metric field is a reduction

operator. Table 17 presents a list of reduction operators that are currently supported.

Reduction operators are meaningful only when the COLLECTOR is composed with

an AGGREGATOR and a REDUCER microservice.

4.8.2.2 Metric Update. Traditional time-series databases employ a tuple

of a timestamp and a value to denote each metric sample. As depicted in Table 28,

we find that it is helpful to have an optional “sample ID” field (e.g., representing the

thread’s ID) for performing the metric update. The metric update is a local, fast

operation; no RPC calls are made during the metric update operation.

A new metric value is inserted at the end of the buffer holding the metric data

during the metric update. The user supplies the metric value and an optional sample

ID when updating a metric through the COLLECTOR metric API.

4.8.2.3 Management of Metric Buffer Size. The COLLECTOR

provides three options for the user to manage the buffer associated with a metric.

First, one can allocate more space for the metric data when the metric buffer is full.
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This strategy is the default behavior that we choose to evaluate this work. Second,

the COLLECTOR will reset the metric buffer index to zero and overwrite the existing

data. Third, the COLLECTOR will reset the metric buffer index to zero a reduction

operation is invoked.

4.9 Case Studies Addressing the Performance Queries

This section presents case studies addressing each performance query raised in

Chapter III. The background of the operation of specific Mochi microservices is

presented before the case studies are discussed.

4.9.1 Mobject Composed Service. Mobject [6] is a distributed object

storage service that exposes a subset of the RADOS [175] API to support concurrent,

noncontiguous writes of objects. Each Mobject provider node (service provider

process) hosts three types of providers—a Mobject sequencer provider, a BAKE

provider, and an SDSKV provider. The Mobject sequencer provider translates the

RADOS operations into the underlying BAKE and SDSKV operations. BAKE stores

object data through RDMA transfers between BAKE and client memory. SDSKV

is used to store metadata information. We note that the Mobject provider is the

client-facing provider, and control always goes back to the Mobject provider after the

BAKE and SDSKV operations are complete. Figure 16 depicts this structure.

4.9.1.1 Query 1: Identifying Dominant Microservice Dependencies.

Identifying dominant microservice dependencies or callpaths is a crucial first step

in performance analysis. It isolates resource-intensive portions of the workload

at a high level and helps determine where to focus attention for further analysis

and optimization. Recall that RPC callpaths can cross process boundaries. The

SYMBIOSYS profile summary script ingests all the profiles and performs a global

analysis to identify origin-target pairs for each callpath. The script summarizes
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Figure 16. Mobject Illustration

and sorts callpaths by cumulative end-to-end request latency to determine the most

dominant ones. For each of these dominant callpaths, the SYMBIOSYS profile

summary script generates call count distributions for all the participating origin and

target entities. These distributed callpaths are used as a pivot around which lower-

level communication library data and tasking library queue information is oriented.

The results from this profile summary can be used as a starting point for a more

detailed performance study.

We employ a single Mobject service provider node and ten ior [185] clients

colocated on the same physical node. The ior benchmark has been modified to use

Mobject for reading and writing objects. For this setup, Figure 17 depicts the top 5

most dominant callpaths by cumulative end-to-end request latency. mobject read op

is the most expensive Mobject API operation overall. The profile suggests that the

mobject read op−→sdskv list keyvals rpc is the dominant component of the top-level

mobject read op API call. Note that for each of these callpaths, the breakdown of

the individual steps for each callpath, such as the input serialization time, internal
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RDMA transfer time, and target handler time is shown. For this application setup,

these individual steps occupy a negligible time compared to the time taken to execute

the request on the target.

Figure 17. ior + Mobject: Identifying the Dominant Callpaths

4.9.1.2 Query 2: Detecting Load Imbalance. While Figure 17 depicts

the cumulative time for the top-5 callpaths resulting from the ior +Mobject execution,

Figure 18 depicts the distribution of the call time across the origin entities for the same

execution. Significant load imbalance is observed for the mobject_read_op RPC call

time across the origin (MPI) processes. Note that this observation, although helpful

in explaining the observed performance, does not directly yield additional information

about the cause for the load imbalance.
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Figure 18. ior + Mobject: Raw Cumulative Distribution of Calltimes Among Origin
Entities

4.9.1.3 Query 3: Discovering Individual Request Structure. Once

the dominant callpaths have been identified, developers may be interested in

tracing the path of individual requests to pinpoint the exact microservice operations

getting invoked due to a higher-level operation. This sort of analysis is beneficial

for identifying root causes for performance anomalies resulting from structural

abnormalities in service requests.

For the same ior and Mobject setup described previously, Figure 19

represents the trace visualization for a single invocation of the mobject write op

callpath. It discovers 12 discrete SDSKV and BAKE microservice calls (e.g.,

mobject write op−→sdskv get rpc, mobject write op−→bake persist rpc) that make

up the higher-level mobject write op request. Each of these 12 discrete microservice

calls has its profiling data, so the user can break down where time is spent and reason
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Figure 19. ior + Mobject: OpenZipkin [2] Trace Visualization Depicting Discrete
Steps for a Single mobject write op Request

about request performance. Without this trace data, the internal structure of the

request is completely opaque to the user. SYMBIOSYS enables this Gantt chart

visualization through an adapter module that “stitches” the events with a common

requestID from different processes into a Zipkin [2] JSON trace file.

4.9.2 SONATA Microservice. Sonata is a microservice for remotely

accessing and storing JSON objects. It is based on an UnQLite [188] database and

offers the ability to run analysis remotely on the stored JSON objects through Jx9

scripts. While the BAKE microservice is optimized for large blobs of unstructured

data, and the SDKSV microservice is optimized for small key-value pairs, Sonata

is instead optimized for document storage, especially if there is a need to perform

complex, in-place queries on these documents.

4.9.2.1 Query 4: Mapping RPC Resource Usage and Time. The

JSON document to be stored is transferred as RPC metadata. However, if Mercury’s

eager buffer overflows, the additional RPCmetadata is transferred through an internal

Mercury RDMA operation (between t3 and t4). With a large RPC metadata transfer,

it is imperative to understand the contributions of (de)serialization and internal

RDMA transfer operations to the RPC execution time. We execute a simple Sonata

benchmark with one target and one origin entity on separate compute nodes. The

benchmark repeatedly invokes the sonata_store_multi_json API call to store a
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Figure 20. Sonata: Mapping Execution Time to Individual Steps

fixed-length JSON record array in a set of batches. The batch size benchmark

parameter determines the size of RPC metadata and the total number of RPC calls.

Figure 20 depicts the breakdown of the cumulative RPC execution time on the target

for a JSON record array of 50,000 entries and a batch size of 5,000. While the target

internal RDMA transfer time is relatively low, the time to de-serialize the input

accounts for 27% of the overall execution time on the target.

4.9.2.2 HEPnOS Composed Service. HEPnOS [6] is a Mochi storage

service designed for high-energy physics experiments and simulations at Fermilab.

Data in HEPnOS is arranged in a hierarchy of datasets, runs, sub-runs, and events.

Events correspond to serialized C++ data objects. HEPnOS distributes both object

data and metadata. Each HEPnOS service provider node hosts several SDSKV

providers to store event and product data. Figure 21 depicts the structure of the

134



HEPnOS service. Client processes (physics simulation) contact the SDSKV providers

directly through a C++ client API.

Figure 21. HEPnOS Illustration

The production HEPnOS client application is a workflow comprising multiple

steps. This study focuses on the “data-loader” step in which particle event data

is loaded into the system. We chose this step for evaluation since it is the most

mature and has the fewest external dependencies. Client processes (MPI-based

physics analysis tasks) contact the SDSKV providers directly using a C++ API. To

minimize the RPC data transfer overheads, the data-loader client batches the event

data using the sdskv_put_packed API. Specifically, event data is transferred to the

service providers as a set of packed, key-value pairs.

The data-loader client application and the HEPnOS service are tightly coupled

entities. Thus, the overall runtime of the data-loader is determined primarily by the

configuration of the HEPnOS data service. The key high-level, tunable parameters

affecting HEPnOS performance are as follows.
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Table 18. HEPnOS: Service Configurations

Configuration Total Clients; Clients Per Node Total Servers; Servers Per Node Batch Size Threads (ESs) Databases Client Progress Thread? OFI max events

C1 32; 16 4; 2 1024 5 32 ✗ 16
C2 32; 16 4; 2 1024 20 32 ✗ 16
C3 32; 16 4; 2 1024 20 8 ✗ 16
C4 2; 1 4; 2 1024 16 8 ✗ 16
C5 2; 1 4; 2 1 16 8 ✗ 16
C6 2; 1 4; 2 1 16 8 ✗ 64
C7 2; 1 4; 2 1 16 8 ✓ 64

– Batch Size: Amount of work passed through the system. Clients batch RPC

requests to improve throughput. A low value of batch size is expected to

affect performance negatively. Note that batching is performed at the HEPnOS

application level and is not a feature offered natively by the Mochi stack.

– Threads: Number of Argobots execution streams per service provider node.

– Databases: Number of databases to store events and products per service provider

node. Increasing the number of databases does not always lead to improved

performance. The event data is spread over many databases, potentially resulting

in smaller effective batch size.

– Service Topology: Number of server processes deployed on a single computing node.

4.9.3 Query 5, 7: Observing Resource Saturation and Identifying

a Better Service Configuration. SYMBIOSYS is employed to study the root

causes of poorly performing HEPnOS configurations and to determine better

service configurations to improve performance. Table 18 enlists the various service

configurations that are a part of this study.

4.9.3.1 Too Few Execution Streams. It is difficult to estimate the optimal

number of target Argobots execution streams (ESs) required for a given workload.

However, by observing delays in the execution pathway of the RPC call, one can

determine when these resources saturate, thereby identifying a poorly performing

service configuration. Recall that on the target, a new ULT is spawned at t4 for every
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incoming RPC request. We define the delay between events t4 and t5 in Figure 8 as

the target handler time. A newly spawned ULT spends this portion of time in the

Argobots handler pool before an ES can pick it up for execution. When the target

is overloaded with RPC requests and lacks the execution resources to dispatch the

corresponding ULTs promptly, the target handler time can contribute significantly to

the overall request latency and worsen performance.

Figure 22 demonstrates that C1 suffers from a lack of execution resources on

the target. Avoidable delays inside the Argobots handler pool (target handler time)

account for 26.6% of the total RPC execution time.

A Better Service Configuration: C2 remediates this by adding 15 additional

execution streams (threads). Overall cumulative RPC execution time improves by

53.3%, with the target handler time contributing 14% to the overall time.

Figure 22. HEPnOS: Cumulative Target RPC Execution Time for sdskv put packed

4.9.3.2 Too Many Databases. Each target provider node employs several

databases to parallelize the writing of HEPnOS event data. Specifically, in this

study, the target utilizes a map backend. For the sdskv put packed RPC, the origin
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implements a hashing scheme using the key and the total number of databases to

identify the target database ID. All else being equal, the greater the number of target

databases, the greater the number of RPCs generated. Since the map backend is

not capable of parallel insertions, employing too many target databases can create a

flood of RPCs and result in write serialization during bursty behavior. Configuration

C2 suffers from this problem. The x-axis in Figure 23 denotes the timestamp of

when the request began execution on the target at t4 (Figure 8), and the y-axis

represents the total number of blocked ULTs sampled from Argobots at this time.

Each colored dot represents a single request. Different colors represent requests

executed at different targets. Figure 23a depicts this serialization problem during

bursty behavior with configuration C2. This pattern of vertical lines generated by

requests that arrived simultaneously but finished in quick succession (as opposed to

simultaneously) indicates serialization on a backend resource.

A Better Service Configuration: Counterintuitively, RPC performance in

this situation improves when reducing the number of databases. RPC performance

in C3 is better than C2 by 28.5%. Figure 23b also demonstrates that the severity of

serialization in C3 is much reduced as compared with C2. The reduced number of

RPCs generated with C3 also has the effect of lowering the target handler time and

the target completion callback time—the ULTs are being processed quickly without

introducing unwanted delays.

4.9.3.3 Effect of a Low Batch Size on Client Progress. HEPnOS

clients batch key-value pairs containing HEPnOS event data to improve RPC

throughput when generating an sdskv put packed request. A batch size of 1,024 (C4)

is roughly 475 times more performant than a batch size of 1 (C5). Figure 24 suggests

that instrumentation from the RPC API and RPC library layers is insufficient
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(a) C2

(b) C3

Figure 23. HEPnOS: Sampling Blocked Tasks from Argobots for sdskv put packed

to capture all components of the cumulative RPC execution time for C5 (the

unaccounted portion is depicted by the blue color in Figure 24). We consider the

question of identifying this gap in instrumentation. We also seek to improve RPC

performance when low batch size is an inherent property of the application setup.

The HEPnOS data-loader client employs a Mercury progress ULT to progress

RPC communications within the client process. This progress ULT has two important

tasks: (1) read the OFI events containing notifications of RPC responses from the

network abstraction layer and add the corresponding completion callbacks to the

completion callback queue and (2) trigger completion callbacks from the completion

callback queue.

To prevent context switching overheads, this progress ULT is executed within

the context of the main Argobots execution stream that also runs the ULTs issuing
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Figure 24. HEPnOS: Unaccounted Component of RPC Execution

RPC requests. When the batch size is small, the progress ULT can compete for

CPU resources with the ULTs issuing RPC requests. As a result, the completion

callback queue or the OFI event queue can clog up and introduce unwanted delays.

Every time it is scheduled to execute, the progress ULT reads up to a maximum of

OFI_max_events events from the OFI interface. OFI_max_events has a default user-

defined value of 16, set inside the Mercury library. Figure 25a depicts a sample of the

num_ofi_events_read PVAR in configuration C4 where the batch size is optimal.

In this configuration, the OFI_max_events threshold is never breached, implying that

the OFI completion queue is emptied at regular intervals. Figure 25b depicts a sample

of the same PVAR in configuration C5 where the batch size is low. The number of

OFI events read consistently breaches the threshold value of 16, suggesting that the

completion queue is backed up.
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A Better Service Configuration: Increasing the OFI_max_events threshold

from 16 to 64 with C6 improves RPC performance by over 40% while reducing the

unaccounted time by 47%. The performance data gathered from various layers in

the software stack indicate that employing a separate, dedicated execution stream

for the client’s progress thread is likely to improve performance. Figure 24 confirms

that RPC performance for C7 improves by a further 75% and the unaccounted time

reduces by a further 90% as compared with C6. From Figure 25d, we conclude that

the OFI event queue is no longer backed up.

(a) C4 (b) C5

(c) C6 (d) C7

Figure 25. HEPnOS: Sampling OFI Events Read from Network Abstraction Layer
for sdskv put packed

4.9.3.4 Query 6, 7: Improving Key-value Store Performance

Under Concurrency. It is difficult to estimate the correct number of HEPnOS

service providers and database instances per service provider without knowing the

client workload characteristics. Recall that a provider spawns a new Argobots

ULT to service an incoming RPC. When the provider is servicing multiple requests

simultaneously, the ULTs can contend for database access. When an SDSKV provider,

for example, is provisioned with a less-than-optimal number of database resources,

the ULTs requesting concurrent access can get queued up, leading to delays and an

overall poor data service performance.
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This problem is especially pronounced when the database access is serialized,

that is when only one ULT gets exclusive access to the database at any point in

time. Here we use SYMBIOMON to understand how concurrency affects SDSKV

database performance. Specifically, we focus on the sdskv_put_packed API under

concurrent access while keeping all the other performance-related factors fixed. The

database write operation delineates a candidate critical section around it. Note that

the actual database backend implementation underneath determines whether multiple

threads are allowed simultaneous access to the candidate critical section. SDSKV is

instrumented with the COLLECTOR metric API to generate a time-series for the

following GAUGES.

– num entrants: This metric denotes the number of ULTs currently inside a candidate

critical section. When a ULT enters the section, this metric is incremented. When

the ULT exits, this metric is decremented.

– latency: This metric stores the latency of the database operation.

– data size: This metric captures the total amount of data written.

– batch size: This metric denotes the batch size (number of keys) written as part of

the put packed operation.

Figure 26 depicts a trace of the SDSKV num entrants metric during a typical

execution of the data-loader client with the HEPnOS service. There are bursts of

time when the database is busy (num entrants is more than zero), and there are

periods when the database is free (indicated by a zero value for the num entrants

metric). In this context we define a concurrency region as the period of execution

between two such zeros. We are particularly interested in studying the database

performance inside these concurrency regions.
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Figure 26. SDSKV: “num entrants” Metric and Concurrency Regions

4.9.3.5 Establishing a Performance Baseline. A baseline performance

model must be established before time-series data is analyzed to generate a better

service configuration. We use this data to generate a multiple linear regression model

of serial performance. A single-client, single SDSKV server setup is employed to

observe the latency for the sdskv_put_packed operation for various data sizes and

batch sizes.

The fundamental premise for our analysis is that the performance of a

sdskv_put_packed call under concurrency must be at least as good as, if not better

than, the baseline serial performance. For database backends that do not support

concurrent write access (such as std::map), performance under concurrent access

can be no better than serial performance. Regardless of the type of database backend

employed, we aim to generate a better service configuration that is at least as good

as serial performance, if not optimal.
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4.9.3.6 Identifying Performance Bottlenecks. We fix all the other

input parameters and identify a better service configuration by resolving performance

issues related to concurrent database access. Algorithm 1 describes this process.

The algorithm inputs the time-series data for the four metrics of interest described

previously and the regression model of serial performance. It generates the average

latency dilation ratio (ALDR) as the output. The ALDR metric measures the factor

by which the average request is dilated because of concurrency. When performance

is at least as good as serial performance, the ALDR should be close to one. A higher

value for the ALDR implies a relatively poor service configuration.

Algorithm 1 ingests the time-series data and generates a list of concurrency regions

in the execution. A list of threads executing inside each concurrency region is

generated. Note that the sample ID field enables this within the metric sample.

Recall that the Argobots thread ID is employed as the sample ID by default. The

data size and the batch size of the sdskv_put_packed operation associated with each

thread are used to predict the baseline latency value (using the regression model).

The actual latency is divided by this baseline latency value to generate the dilation

factor for the thread. In this manner, the ALDR value is calculated and returned as

the output.

4.9.3.7 A Better Service Configuration. The ALDR metric value is

directly employed to generate a more optimal database configuration as a simple

heuristic. For example, suppose the ALDR is two. In that case, the user is

recommended a new service configuration in which the total number of databases in

the system is approximate twice the previous value. There are two ways to increase

the number of databases in the system. The first method is to increase the number

of SDSKV databases per HEPnOS service provider. The second is to increase the
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Algorithm 1 Latency Dilation Due to Concurrency

1: Input: Time series data (all service providers), regression model
2: Output: Average latency dilation ratio for the entire execution
3: procedure LatencyDilationRatio
4: C← SetOfConcurrencyRegions
5: TT← TotalNumberOfThreads
6: TT← 0
7: TDR← Total Latency Dilation Ratio
8: TDR← 0
9: ALDR← Average Latency Dilation Ratio
10: ALDR← 1
11: for each c in C
12: T← ThreadsInConcurrencyRegion
13: TT← TT + Size(T )
14: for each t in T
15: l← operation latency
16: b← batch size
17: d← data size
18: baseline latency ← regression model.predict(b, d)
19: ldr ← l/baseline latency
20: TDR← + = ldr

21: ALDR← TDR/TT
22: return ALDR
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number of HEPnOS service provider instances by running more providers on the same

set of resources. We choose to use the latter method in our experiments. Note that

the number of threads for each service provider process was set to 16, allowing for a

maximum of 4 service provider processes per KNL node. Algorithm 1 is repeatedly

invoked until the ALDR ratio approaches the value of one. Figure 27 depicts this

process. While this algorithm can be employed to reconfigure the service online, we

use an offline analysis of the time-series data for our case study.

Figure 27. HEPnOS: Iteratively Improving Data Service Performance Under
Concurrency

Algorithm 1 is applied to a large-scale HEPnOS setup on the Theta1 machine at

the Argonne Leadership Computing Facility (ALCF). Theta is a CrayXC40 system

that hosts 4,393 Intel Knights Landing compute nodes, each of which supports 64 CPU

cores. Execution time of the data-loader client application is employed as a measure

of performance. The performance improvements from applying Algorithm 1 to a set

1https://www.alcf.anl.gov/alcf-resources/theta
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Table 19. HEPnOS: Generating Better Service Configurations

Configuration #Clients / Client Nodes #Databases / Databases Per Service Provider ALDR Execution Time (s)

C1, 0 112 / 1 64 / 16 1.616 336
C1, 1 112 / 1 96 / 16 0.751 123
C2, 0 224 / 2 128 / 16 1.836 195
C2, 1 224 / 2 256 / 16 0.876 139
C3, 0 448 / 4 256 / 16 2.063 114
C3, 1 448 / 4 512 / 16 0.808 67

of service and client configurations are described in Table 19. Ci, j represents the jth

iteration of Algorithm 1 on configuration Ci. Ci, 0 is the default configuration. Note

that for a given Ci, the total number of clients (TC) remains the same. At the same

time, the algorithm attempts to identify the optimal total number of database service

providers (TD) for the client workload generated by TC. In addition, the number of

database service providers per node (DSP) remains constant across configurations,

implying that a higher TD value is associated with a larger node allocation for service

providers.

The service and client processes are spread across 128 compute nodes on the HPC

machine. Note that the batch size (8192), the number of threads (16), and the number

of SDSKV databases (with std::map backend) per HEPnOS service provider (16) are

kept fixed across all the configurations. Performance improves by up to 65% between

the default and optimized service configurations with identical client workloads. An

astute reader would note that the ALDR value is less than one, given that std::map

does not allow concurrent writes. We attribute this to “holes” in the training data

used to generate the regression model and to performance variation in the system.

Future work will aim to employ additional training data to create a model of baseline

performance.
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4.10 Overhead Analysis

This section presents the overheads in employing the SYMBIOSYS and

SYMBIOMON tools for performance measurement and analysis of the HEPnOS

storage service. We pay special attention to the process of separating the overheads

of adding instrumentation, making the measurement, and analyzing the generated

performance data.

4.10.1 Setup.

4.10.1.1 Hardware. All the experiments were conducted on the Theta 2

system at the Argonne Leadership Computing Facility (ALCF). Theta, a CrayXC40

system, hosts 4,393 Intel KNL compute nodes, each of which hosts 64 processing

cores. We used the Intel KNL processors for all our experiments.

4.10.1.2 Software. Our experiments were conducted using the HEPnOS

storage service and a data-loader client application setup. The Mochi components

were installed using the Spack [189] package manager. We employed 128 nodes for

our large-scale study.

4.10.2 SYMBIOSYS Overhead Study. We used 32 HEPnOS service

provider processes spread evenly over 16 nodes. Each service provider process was

assigned 30 threads and 16 databases for storing HEPnOS events. We employed

224 data-loader clients spread over 112 nodes. The batch size was set to 8,192, and

a separate client progress thread was not used for our experiments. We measured

the execution time of the data-loader application as the metric to compare the

instrumentation and measurement overheads in SYMBIOSYS. We used the following

terms to denote the various stages of the process:

2https://www.alcf.anl.gov/support-center/theta
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– Baseline: This is the baseline execution time with instrumentation and

measurement disabled.

– Stage 1: This is the execution time with instrumentation turned on while no

measurements are made. In SYMBIOSYS, this corresponds to the addition of

RPC callpath and trace ID information in the RPC request.

– Stage 2: Callpath profiling, tracing, and system statistic sampling are enabled, but

Mercury PVAR collection is disabled.

– Full Support: Callpath profiling, tracing, and system statistic sampling are enabled.

Mercury PVAR collection is turned on, and the PVAR data is integrated on the

fly with the callpath profiles.

Figure 28 depicts the overheads involved in enabling various stages of performance

measurement using the HEPnOS setup. Each entry in the table is the average of 5

execution times.

Figure 28. HEPnOS: SYMBIOSYS Measurement Overheads

The SYMBIOSYS tracing system collected 1 million samples on a large scale.

Even at this scale, enabling profiling and tracing led to minimal overheads of less

than 4% of the total workflow execution time. Table 20 presents the time taken to

analyze the collected performance data and generate visual plots. The profile and
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Table 20. HEPnOS: SYMBIOSYS Analysis Overheads

Profile Summary (s) Trace Summary (s) System Statistics Summary (s)
35.1 481.1 73.4

Table 21. HEPnOS: SYMBIOMON Measurement Overheads

Configuraton Minimum (s) Maximum(s) Average (s)
Without COLLECTOR 111 118 116
With COLLECTOR 106 118 116

system summary analysis scripts took a short amount of time to complete, while

the trace summary script took a long time to run when applied to the large-scale

performance data. The trace summary overhead can be reduced by employing the

sampling support within the trace summary module.

4.10.3 SYMBIOMON Overhead Study. We present a study of the

overhead of employing the SYMBIOMON COLLECTOR component to instrument

the HEPnOS data service at scale. The HEPnOS storage service is instrumented to

extract the data size, batch size, latency, and num entrants for the sdskv_put_packed

API.

We employed 128 nodes for our overhead study. We used 224 data loader clients,

spread evenly across 112 nodes, and 32 HEPnOS service providers, spread evenly

across the remaining 16 nodes (a known good configuration). We assigned 32 threads

to each HEPnOS service provider and fixed the batch size at 8,192. The execution

time of the data-loader application was utilized as a measure of performance. Table 21

depicts the execution time for the setup with and without the use of COLLECTOR

instrumentation. The results suggest that the COLLECTOR introduces no noticeable

overhead.
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4.11 Limitations

While SYMBIOSYS represents a significant first step toward generating optimal

HPC service configurations, it is worthwhile to discuss the limitations of this

approach:

– Performance Observation in a Shared-service Setting: The case studies

presented in this chapter involve the coupling of an MPI application (workflow

component) with a dedicated service instance. The flexibility resulting from a

microservice architecture allows multiple clients to share access to microservices.

The Mochi framework indeed provides the support for a shared-service model

to be configured and deployed. In this scenario, the performance observation

framework would be required to discern the performance of the service

components as they relate to the specific client accessing the service. If employed

in a shared-service setting in its current state, SYMBIOSYS would generate an

aggregated profile that would not be able to map the performance observations

to the individual clients making the requests. To rectify this, an additional

client identifier would need to be appended and passed along with the existing

RPC ancestry information in the request. The offline analysis module would

also need to be appropriately modified to reflect this change.

– Performance Data Exchange with Argobots Concurrency Layer: The

performance data exchange strategy presented in Section 4.5 primarily deals

with eliciting the critical events from within the Mercury RPC layer. Presently,

the Argobots API is queried for basic information about the state of the RPC

queues and the number of blocked tasks. Extending the performance data

exchange layer to support Argobots would enable a deeper insight into the

lifecycle of the Argobots ULT servicing the RPC request and the status of
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the locks and other synchronization objects it acquires and releases during its

execution.

4.12 Summary

To address research question RQ1, Chapter IV presented the SYMBIOSYS

integrated performance measurement and analysis infrastructure designed for HPC

data services. SYMBIOSYS enables effective and portable profiling and analysis of

HPC microservices by tracking the RPC callpath ancestry. By integrating data from

the RPC communication library through a data-exchange strategy, SYMBIOSYS

correctly attributes low-level events and resource usage levels with higher-level

interactions between service entities. This chapter presented the COLLECTOR

microservice, which helped improve the microservice operation under concurrency.

The analysis of the performance observations generated by the SYMBIOSYS and

SYMBIOMON tools enables the identification of a better data service configuration.

This analysis helped improve the coupled application-service workflow’s performance

(execution time) by up to 3x while operating with a maximum runtime overhead of

4% of the total workflow execution time. Figure 29 summarizes the key takeways

from Chapter IV:

– A combination of performance data from different techniques yields performance

observability of HPC microservices.

– The solutions corresponding to individual techniques may already be proposed

in some form by different communities — the challenge involves understanding

how to adapt and apply these techniques for HPC microservices.

– Statistical modeling generates an understanding of the expected performance

under ideal operating conditions. This dissertation finds the combination of
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statistical modeling with the performance data useful for generating better-

performing service configurations offline.

Figure 29. Selecting and Combining Instrumentation Techniques

While SYMBIOSYS enables a better service configuration through offline analysis,

dynamic (online) service reconfiguration requires performance data for analysis and

control to be accessible quickly from anywhere in the system and available to a remote

user or entity for external, interactive analysis. Further, since these HPC services

operate inside a workflow constituting other components such as ML tasks or MPI

applications, a ubiquitously applicable performance monitoring solution is required.

Chapter V strives to present a solution to this problem.
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CHAPTER V

UBIQUITOUS MONITORING OF SERVICES AND IN SITU WORKFLOW

COMPONENTS

This chapter contains previously published and unpublished material with co-

authorship. Section 5.2, Section 5.4.1, Section 5.4.2, and Section 5.5.2 represent

research conducted as a collaboration between the University of Oregon and Argonne

National Laboratory. This research was published as a full paper at HiPC 2021 [16], a

poster at HiPC 2021 [17], and a poster at SC 2021 [18]. For each of these publications,

I was the first author and implemented the software, conducted the experiments, and

wrote all the sections for the papers and posters, with suggestions and text edits by

Dr. Philip Carns and Dr. Robert Ross. All the co-authors helped with proofreading.

Section 5.3 and Section 5.5.1 represent research that was conducted as a

collaboration between Dr. Allen Malony, Dr. Sameer Shende, Dr. Kevin Huck,

Dr. Nick Chaimov, and me. This research was published as a full paper at ICPP

2019 [21], where I was the second author. I implemented the plugin system in TAU

with guidance from Dr. Sameer Shende and Dr. Kevin Huck. I implemented all

the plugins described in the paper and conducted all the experiments except those

involving the SOS plugin developed by Dr. Kevin Huck. Dr. Allen Malony wrote

the introduction, related work, and background sections for the ICPP paper, while I

wrote the plugin implementation, usage scenarios, and evaluation sections. The plugin

design section was written by both Dr. Allen Malony and me (equal contribution).

All the authors helped in proofreading the paper.

Section 5.4.3 represents unpublished work resulting from a collaboration between

the University of Oregon, Brookhaven National Laboratory, and RUTGERS

University. I implemented the software, conducted the experiments, and wrote this
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section. While performing this research, I received regular guidance from Dr. Matteo

Turilli, Dr. Shantenu Jha, Dr. Tan Li, Dr. Mikhail Titov, and Dr. Allen Malony.

5.1 Introduction

HPC services do not operate in isolation — instead, they execute as a part of

an in situ workflow consisting of other distributed components that include MPI

applications, visualization routines, and ML tasks. Therefore, their performance must

also be presented and analyzed in the context of the other workflow components.

Further, these user-level services are transient entities — they are launched as a

part of the batch job, execute for the duration of the workflow and are shut down

once the workflow completes. While the SYMBIOSYS tool presented in Chapter IV

enables offline analysis of service performance and is certainly useful to generate better

service configurations for a static client workload, enabling the online adaptivity of

these transient services requires a performance monitoring solution that can export,

analyze, and make available some or all of these observations. Chapter V presents a

solution to the challenges posed by these requirements:

– Challenge: Managing Large Data Volumes: Performance monitoring of

many independent entities can result in trace volumes that can quickly

grow to be intractable. The SYMBIOMON monitoring service, presented in

Section 5.2 addresses this problem by exposing a set of reduction operators

for the trace data. SYMBIOMON decouples the instrumentation and

measurement components from the components responsible for the storage,

analysis, and remote monitoring of this data. Specifically, these components

are high performance microservices built using the Mochi framework. This

methodology of building a monitoring service out of high performance

microservice components has four distinct advantages: (1) it allows easy
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integration for monitoring Mochi data services, (2) SYMBIOMON can directly

leverage performance improvements made to the core Mochi software stack, (3)

SYMBIOMON’s composable design enables its constituent components to be

“toggled” as necessary, allowing for various modalities to be realized, and (4)

it is arguably more maintainable than monitoring services built in an ad-hoc

manner.

– Challenge: Ubiquitous Monitoring: The goal of ubiquitous monitoring involves

using the same components to monitor a plethora of different types of workflow

entities. The challenge is to seamlessly integrate monitoring capabilities while

simultaneously leveraging existing tools that perform instrumentation and

measurement. This dissertation proposes to use a plugin approach to address

this challenge. Plugins, as described in Section 5.3 are attractive because they

serve as a gateway between the source of the performance data (measurement

tool) and the destination for this data (monitoring system). Further, plugins can

host the “glue” code hosting the connection logic to the service entities, thereby

enabling seamless integration of monitoring capabilities without requiring a

significant code change to the application.

In addressing these challenges, Chapter V answers the research question RQ2: How

to enable the ubiquitous monitoring of HPC applications, services, and workflows

alike?

5.2 SYMBIOMON: A Composable Service for Monitoring and Analysis

A systematic approach to generating a better service configuration involves the

ability to characterize a client workload, observe the performance of the service under

the workload, decide whether a better service configuration exists, and implement

the service reconfiguration through a control system. Dynamic (online) service
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reconfiguration requires performance data for analysis and control to be accessible

quickly from anywhere in the system and be available to a remote user for external,

interactive analysis.

To this end, we propose SYMBIOMON, a metric-monitoring service built by

composing high-performance microservices. The monitoring service consists of three

core microservice components—a COLLECTOR microservice that exposes the metric

collection API, an AGGREGATOR key-value store for aggregation and storage,

and a REDUCER microservice to implement global reduction operations. While

SYMBIOMON is intended primarily to self-monitor Mochi data services, its utility as

a general-purpose, scalable monitoring service for traditional HPC applications is also

demonstrated. Time-series databases are beneficial in situations that require changes

to be tracked over time. Time-series data is utilized in cloud-based service monitoring

systems to perform forecasting, variability, and trend analysis. We argue that the

monitoring of HPC applications can also benefit from this approach. For example,

detecting anomalies in function execution times requires storing and analyzing

snapshots of pertinent performance data over a time interval. SYMBIOMON

implements a flexible time-series data model that allows users to export metrics with

custom taglists to “decorate” the metric data.

5.2.1 Related Work. The applications and services to be monitored on

HPC systems execute in the context of ephemeral batch jobs. As a result, monitoring

services must be spun up quickly without any elevated privileges. Further, the

monitoring service is expected to yield high-resolution time-series data and run

efficiently in a highly concurrent environment. This high-resolution data also needs

to be managed because storing every single data point at scale is not feasible. This

section presents our contributions in the context of existing monitoring approaches.
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5.2.1.1 Cloud-Based Service Monitoring Tools. The SYMBIOMON

metric data model is inspired by time-series monitoring databases used in the cloud

industry, such as Prometheus [19], Graphite [170], and InfluxDB [180]. Cloud-based

monitoring frameworks typically are employed to extract data over coarse-grained

time intervals (order of seconds). The services they monitor are long-running, are

spread over a large geographical region, and run on top of a commodity hardware

and software stack. Services in the cloud are written in various languages, and thus

cloud-based monitoring frameworks offer rich, multilanguage client instrumentation

support. Importantly, these monitoring frameworks are not set up to directly enable

fast, dynamic service reconfiguration. Instead, they rely on alerting mechanisms that

are complemented with powerful, human-friendly remote querying capabilities. HPC

data services are transient, highly concurrent services that run on high-performance

hardware. Thus, while the cloud-based time-series data model has application in

monitoring HPC services, we find that the specialized hardware and software stack

necessitates a high-performance monitoring service implementation.

5.2.1.2 HPC Monitoring and Analysis Tools. The SYMBIOMON

design shares a lot in common with the state-of-the-art HPC monitoring services

and aggregation frameworks, such as SOS [165], LDMS [166, 190], MRNET [167],

Ganglia [168], and Nagios [191]. All of these tools implement distributed data

aggregation and optionally allow the ability to store the aggregated data for offline

or remote analysis. Tools such as WOWMON [164] and SOS are closest to

SYMBIOMON in terms of design and target usage. They all export a client

instrumentation library and allow the ability to extract and aggregate performance

data from multiple sources. However, they do not explicitly track time-series data,
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nor do they offer the ability to analyze or reduce performance data at the source.

Instead, analysis is often the last step in the data collection pipeline.

Time-series monitoring is similar in approach to HPC event tracing. While tools

such as Vampir [192] and Jumpshot [193] offer sophisticated support for offline event

trace analysis, fewer tools exist that can perform online analysis of trace events.

Online event tracing in the HPC application context is known to be prohibitively

expensive in terms of memory and storage costs [194]. Thus, there is a need to

reduce, compress, or down-sample the trace data before it becomes a problem. In situ

analysis tools such as Chimbuko [169] choose to analyze the trace data for performance

anomalies while also generating provenance information. Seer [125] is an in situ

analysis and simulation steering infrastructure intended explicitly for human user

interaction. SYMBIOMON chooses to build upon a high-performance framework,

reuse existing components, and extend them only where necessary, instead of building

everything from scratch. This design principle ensures that the service components

are more maintainable than ad hoc counterparts.

5.2.2 Design. SYMBIOMON is a high-performance, composable metric-

monitoring service. SYMBIOMON can capture, store, analyze, and export

performance metrics from any distributed component running on the HPC platform.

Its composable architecture enables a user to turn features on and off easily.

SYMBIOMON consists of three core microservice components—a COLLECTOR

that exports the metric collection API, an AGGREGATOR that aggregates and

stores metric data from distributed COLLECTOR instances, and a REDUCER that

performs a global reduction of the metric data. The COLLECTOR component and

the SYMBIOMON metric API have been described in Chapter IV. Here we present
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the AGGREGATOR and REDUCER components and describe their composition

model in detail.

5.2.2.1 AGGREGATOR. SYMBIOMON depends on a two-stage

reduction scheme to manage the volume of time-series data being transferred

between different microservice components. During the first stage, the COLLECTOR

implements a local reduction of the time-series data using one of the operators

described in Table 17, and it stores the locally reduced results in one of the

AGGREGATOR instances. The AGGREGATOR service consists of a configurable

number of service provider processes that run on dedicated computing resources. A

cohort is defined as a set of processing elements within a workflow that share a similar

goal. Figure 30, for example, depicts two cohorts—the MPI application and the data

service. When SYMBIOMON is employed to monitor multiple cohorts in a coupled

workflow simultaneously, these cohorts can share a single set of AGGREGATOR

instances.

5.2.2.2 REDUCER. The REDUCER component implements the second

stage—a global reduction operation. When a client invokes the REDUCER’s

microservice API to perform the global reduction of a metric, the REDUCER contacts

the appropriate AGGREGATOR instance to ingest the locally reduced values using

RPC calls. Then, it applies the appropriate reduction operator on the set of

locally reduced values and stores the resulting globally reduced value(s) as a regular

COLLECTOR metric. Both reduction stages employ the same reduction operator

for a particular metric; that is, a composition of different operators for the two

stages is not yet supported. Each cohort is expected to use its dedicated REDUCER

microservice. As depicted in Figure 30, the COLLECTOR metric representing a

globally reduced result lives inside the REDUCER process. It can be exported via
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RPC to an external remote monitoring client, a visualization module, or a control

infrastructure that runs within the same node allocation.

5.2.2.3 Py-COLLECTOR: Python Client for Remote Monitoring.

The COLLECTOR exposes a Python client that can list the available metrics

and return metric samples from a COLLECTOR provider running inside the HPC

workflow. Specifically, this enables remote-monitoring scenarios that involve human

interaction with the HPC workflow (for example, through a Jupyter notebook).

Although the SYMBIOMON framework allows the querying of any COLLECTOR

provider running in the system directly, we expect the typical user to query the

COLLECTOR running alongside the REDUCER provider only for metric data that

has undergone a global reduction.

Figure 30. SYMBIOMON Conceptual Illustration

5.2.2.4 Flexible Integration. One of the key benefits of a composable

design for the monitoring system is the resulting flexibility in its integration. Figure 31

depicts the various modalities for using SYMBIOMON. Further, switching between
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these modalities involves little to no client code modification. Once the service

components are built, configured, and deployed, switching between the modalities in

SYMBIOMON requires only an update to a set of environment variables describing

the execution. Chapter IV explores the offline analysis of time-series data captured

during the execution of a data service. At the same time, this chapter employs

the monitoring and analysis components and describes their integration with HPC

applications and ensembles.

Figure 31. SYMBIOMON: Flexibility in Integrating Monitoring and Analysis
Capabilities

5.2.3 Implementation. Every SYMBIOMON component is implemented

as a Mochi microservice. As a result, SYMBIOMON can take direct advantage of

the high-performance RPC library software stack and all the tools that the Mochi

framework provides. Here we describe the implementation of each SYMBIOMON

component in the context of the Mochi framework. The metric capture through

the COLLECTOR component has been described in Chapter IV. Here, we describe
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the implementation and composition of the AGGREGATOR and REDUCER

microservices.

5.2.3.1 AGGREGATOR. The AGGREGATOR service is implemented as

a collection of a configurable number of distributed SDSKV microservice instances.

SDSKV is an existing Mochi microservice that provides general key-value store

capabilities with a choice of multiple backends—an std::map, a LevelDB database,

or a BerkeleyDB[195] database. When an application invokes the local reduction

operation on a metric, the COLLECTOR invokes an sdskv_put operation (one per

metric) to store the reduced value as a key-value pair. The key is generated by

using the metric name, the metric namespace, and the reduction operator. The

COLLECTOR passes this key through a hash function to identify the SDSKV

instance to store the reduced result. The hash function attempts to evenly distribute

keys across the total number of available SDSKV instances. Note that the metric

taglist is not used to generate the key for aggregation. Doing so ensures that all the

metrics with a common name and namespace are stored within the same SDSKV

instance.

5.2.3.2 REDUCER. As Figure 30 depicts, the REDUCER microservice

is invoked by the leader of a cohort to perform a global reduction operation. The

REDUCER exposes a single API that takes the metric name, the metric namespace,

and the aggregation operator as input arguments to the RPC. It employs the same

hashing scheme as the AGGREGATOR to identify the SDSKV instance holding

the key-value pairs representing locally reduced results. Then, it makes a single

sdskv_list_keyvals_with_prefix RPC call to gather all the locally reduced values

belonging to a cohort. Here the REDUCER makes a critical assumption: the taglist

(if any) used to create the metric is consistent across all the cohort members. Once
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the locally reduced values are available, the REDUCER employs the aggregation

operator to perform a global reduction of the particular metric. The REDUCER

stores the resulting value as a COLLECTOR metric with a GLOBAL suffix added to

the metric name. This metric can be queried by a visualization module or a control

system implementation within the HPC workflow to identify performance trends.

5.2.3.3 BEDROCK Integration. BEDROCK functions as a bootstrapping

and configuration system for Mochi microservices. Specifically, a user can employ

BEDROCK daemons to dynamically compose, configure, and resolve service

dependencies using a JSON configuration file. The user can also query the existing

configuration of a service using BEDROCK. By implementing a BEDROCK module

for the COLLECTOR microservice, any composed Mochi data service configured

using BEDROCK can take seamless advantage of monitoring capabilities.

5.2.3.4 Service Discovery and Composition. Our prototype

implements the AGGREGATOR service inside a separate MPI application; that

is, the AGGREGATOR service instances are launched on MPI processes. Further,

each service instance (one per process) is assigned a dedicated set of threads for

executing RPCs. AGGREGATOR service instances collectively write out their

addresses to a file subsequently read by the COLLECTOR instances during the

service discovery phase. The REDUCER is launched as a standalone process and

discovers the AGGREGATOR instances in the system using the same file. The

REDUCER makes its address public through another file. After service discovery is

complete, all subsequent interactions between distributed SYMBIOMON components

are performed by using RPCs.

5.2.3.5 Metric Reduction. When aggregation is enabled, the COLLECTOR

exposes an API to perform local reduction on a metric—aggregation results in
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the invocation of RPCs. Among the reduction operators currently supported, the

ANOMALY is the only operator that can result in more than one value when reduction

is invoked. When global reduction support is enabled, the COLLECTOR exposes

an API to contact a REDUCER that performs the global reduction on behalf of

the caller. It is expected that only the cohort leader (rank 0 of an MPI cohort, for

example) invokes the global reduction operation.

5.3 Plugin Architecture for Ubiquitous Monitoring

The advances in high-performance computing (HPC) hardware and systems have

made it possible to develop parallel applications of greater sophistication and power

for purposes of achieving more ambitious objectives in computational and data

science domains. With the potential for scalable parallelism, heterogeneous execution,

massive concurrency, and low-latency/high-bandwidth interconnection, the challenge

for applications is how to maximize the advantage these advances bring. Clearly, the

evolution of HPC technology and integration have increased the complexity of this

challenge. While new features in parallel languages, programming tools, and runtime

system environments can help to transform existing applications or to develop new

ones in ways that leverage HPC’s strengths, they can also introduce complexities of

their own. At the end of the day, the goal of gaining high performance is paramount,

but productivity and performance portability concerns are important as well.

Throughout the history of parallel computing, it has been important to

characterize and understand the performance of HPC systems and the applications

that run on them. For this purpose, parallel performance systems have been developed

to empirically analyze real applications on real machines. Several robust performance

systems have been created for parallel systems with the ability to observe diverse

aspects of application execution on the different underlying hardware. A key objective
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is to support measurement methods that are efficient, portable, and scalable. For

these reasons, the performance measurement infrastructure is tightly embedded

with the application code and runtime execution environment. Unfortunately, the

performance system is not immune to the changes in HPC system environment and

parallel programming methodologies. Researchers in the parallel tools’ community

know very well the constant attention needed to massage and extend a performance

system to support the rich space of possible parallel operation that it is supposed to

observe.

Indeed, it is remarkable that these parallel performance systems can do what

they do on leading HPC platforms and for the variety of applications run on them

today. However, as HPC systems and parallel software evolve, especially towards more

heterogeneous, asynchronous, and dynamic operation, it is to be expected that the

requirements for performance observation and awareness will change. For example,

there is a growing interest in interacting with the performance infrastructure for

in situ analytics and policy-based control. The problem is that the performance

systems may need to react to new demands for performance observation that might go

beyond the core features of the performance system. More seriously, the performance

system architecture could be constrained in its ability to evolve to meet these new

requirements.

Here we report our research efforts to address these type of evolutionary concerns

in the context of the TAU Performance System. Given the goals of TAU to support

current and next-generation high-performance parallel applications, it is necessary

to create mechanisms to enable advanced performance measurement and analysis

solutions. Specifically, we consider the use of a powerful plugin model to both

enhance TAU’s existing capabilities, and to extend its functionality in ways it was not
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necessarily conceived originally. The TAU plugin architecture supports three types

of plugin paradigms: EVENT, TRIGGER, and AGENT. We demonstrate how each

operates under several different scenarios. Results from large-scale experiments are

shown to highlight the fact that efficiency and robustness can be maintained, while

new flexibility and programmability can be offered that leverages the power of the

core TAU system while allowing significant and compelling extensions to be realized.

5.3.1 Related Work. Our ideas are inspired by research contributions

in parallel performance systems, performance interfaces, measurement libraries, and

performance monitoring frameworks. There are several remarkable performance

systems developed for HPC applications, most notably HPCToolkit [30] Scalasca [196],

Vampir [192], Score-P [157], Extrae [197], Open|SpeedShop [198], and TAU [29].

All are robust, scalable, and able to work with applications written in a variety of

languages, targeting multiple models of parallelism, and executing in sophisticated

runtime environments. It is almost certainly the case that these performance systems

face the same challenges as TAU with respect to extending their architecture to extend

functionality. Callbacks and plugins are powerful software techniques for adding new

capabilities flexibly to systems in general.

It is easy to identify the usage of such techniques in how software and hardware

interfaces are made accessible to performance measurement. The PMPI interposition

concept in MPI and its extension with PNMPI [199] make possible the linking

and activation of software based on an MPI call. Other interfaces are exposed for

performance measurements using callback support, such as OpenMP OMPT [51] and

CUDA CUPTI [200]. PAPI [201] implements statistical profiling by installing and

emulating arbitrary callbacks on hardware counter overflow. These and other similar

mechanisms are used by performance systems to be made aware of events taking
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place in libraries, runtime systems, and hardware, as well as to provide access to the

context in which the events occurred.

The general notion of a producer-consumer model for performance tool interaction

maps to examples where callbacks and plugins can be applied. One example is the

RCRToolkit [202] which can gather information from various producers and provide

a shared memory region for real-time access by consumers. It is used for resource-

level observation to better understand the performance interactions in shared-

memory systems. Similarly, the APEX [203] autonomic performance system provides

asynchronous introspection of performance for policy-driven adaptive control. APEX

was developed for the HPX runtime system to support dynamic task scheduling for

performance and power optimization. Both RCRToolkit and APEX allow online

performance data processing and support separation of concerns between components.

While APEX does not implement a plugin model, it is based on an event/listener

model (Observer design pattern), and functionality can be added to APEX by

implementing additional listeners. Paradyn [204] is an early foundational system

that captures the abstraction of a composable system with pluggable components

addressing measurement and online analysis for performance discovery.

This perspective extends to performance monitors in general. Such is the case

with the Periscope Tuning Framework [205]. Periscope enlists a communication and

analysis agent framework that runs in a connected way with the application to identify

performance problems at runtime. While the access to performance measurements

takes place in a “monitor library” called by application processes, the actual analysis

takes place in Periscope’s analysis agent network running on separate processes. The

AutoTune project [206] extended Periscope with plugin support for runtime control.
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It has been integrated with several parallel pattern libraries to tune parameters for

power and scheduling.

There are two research projects closest to what we are discussing in this paper. The

first concerns the extension of Score-P through plugins [207]. As noted above, Score-

P [157] is a leading parallel performance system very similar to TAU. (In fact, TAU

components can be integrated with Score-P.) It provides both “metric” plugins, which

extend the standard timers and hardware counters, and “substrate” plugins, which

enables custom processing of event streams, including doing analysis. In contrast, our

plugin architecture works differently in that it allows a closer link between “states”

and “triggers” while also allowing different plugins to be programmed and registered.

We believe it would be possible to provide similar “metric” and “substrate” plugins

within the TAU plugin architecture.

The second is the Caliper [208] performance system. Caliper consists of the source-

code annotation API, a backend runtime component that manages blackboard buffers

and the generalized context tree, add-on support services for control tasks (such as

I/O and controlling snapshots), and additional data producer, measurement control,

and data consumer services. Caliper utilizes a mixture of techniques identified in

the tools, but combined in a novel and effective architecture. Snapshot mechanisms

are the basic methods to collect data from data producers and provide it to data

consumers. Data producers and consumers interact with Caliper through annotation

and control APIs, or by registering callback functions for certain events. The callback

interface provides notifications about system actions, measurement states, and event

processing. Caliper is a newer performance system architecture than TAU and does

not necessarily have the challenges TAU does. That said, there are similarities with
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respect to plugin support and it might be interesting to try to recreate certain Caliper

functionality, such as the blackboards.

Finally, there is the interesting new support in PAPI for software defined

events [209] that is related to our approach. The essential idea is that PAPI

infrastructure can be extended to support events that come from different software

layers (application, library, runtime) while leveraging the core PAPI infrastructures.

These events are defined and programmed by the software developer. There is a

way to register the events with PAPI, similar to plugin interfaces. Because the data

created is all accessible within the PAPI system, performance systems that use PAPI,

like TAU, could gain access. It would also appear that TRIGGER plugins could be

used to reproduce PAPI software defined events.

5.3.2 Background.

5.3.2.1 TAU Overview. The TAU Performance System® [29]

is the product of 25+ years of development to create a robust, flexible,

portable, and integrated framework and toolset for performance instrumentation,

measurement, analysis, and visualization of large-scale parallel computer systems

and applications. TAU supports all major parallel paradigms (shared memory

multithreading, distributed memory message passaging, data parallel acceleration),

parallel programming models (e.g., MPI, OpenMP, OpenACC), and languages (e.g.,

C, C++, Fortran, Python). The TAU software is open source and has been ported

to many processor architectures and HPC platforms around the world. It has been

utilized in many performance analysis and optimization efforts across a wide spectrum

of science and engineering applications.

From TAU’s perspective, the execution of a program is regarded as a sequence of

significant performance events. TAU was originally conceived to observe these events

170



through probes inserted in the application code. The combination of a flexible event

model and multiple instrumentation techniques allowed TAU to effectively morph its

observation capabilities to capture events and their semantics that might otherwise

be intractable. Over time, TAU expanded its observation approach to include event-

based sampling (EBS) methods [210], where the “event” here is an interrupt to the

application’s execution. TAU’s EBS support adds performance observability and

detail. Both probes and statistical sampling (i.e., EBS) can be used simultaneously

in TAU.

Logically, once “events” are made visible (via probes or sampling) they can be

measured. The TAUmeasurement system event interface allows events to be defined,

their visibility controlled, and their runtime data structures to be created. Each event

has a type (atomic or interval), a group, and a unique event name. The event name is a

character string and is a powerful way to encode event information. At runtime, TAU

maps the event name to an efficient event ID for use during measurement. Events

are created dynamically in TAU by providing the event interface with a unique event

name. This makes it possible for runtime context information to be used in forming

an event name (context-based events), or values of routine parameters to be used

to distinguish call variants, (parameter-based events). TAU also supports phase and

sample events.

The purpose of event control in TAU is to enable and disable a group of events at

a coarse level. This allows the focus of instrumentation to be refined at runtime. All

groups can be disabled and any set of groups can be selectively enabled. Similarly,

all event groups can be enabled initially and then selectively disabled. It is also

possible to individually enable and disable events. TAU uses this support internally

to throttle high overhead events during measurement.
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The measurement system is the heart and soul of TAU. It has evolved over

time to a highly robust, scalable infrastructure portable to all HPC platforms. The

instrumentation layer defines which events will be measured and the measurement

system selects which performance data metrics to observe. Performance experiments

are created by selecting the key events of interest and by configuring measurement

modules together to capture desired performance data. TAUś measurement system

provides support for portable timing, integration with hardware performance counters

(e.g., PAPI [50]), parallel profiling, parallel tracing (with OTF-2 [211]), and runtime

monitoring.

TAU’s measurement system has two core capabilities. First, the event

management handles the registration and encoding of events as they are created.

New events are represented in an event table by instantiating a new event record,

recording the event name, and linking in storage allocated for the event performance

data. The event table is used for all atomic and interval events regardless of their

complexity. Event type and context information are encoded in the event names.

The TAU event management system hashes and maps these names to determine if

an event has already occurred or needs to be created. Events are managed for every

thread of execution in the application.

Second, a runtime representation called the event callstack captures the nesting

relationship of interval performance events on each thread. It is a powerful runtime

measurement abstraction for managing the TAU performance state for use in both

profiling and tracing. In particular, the event callstack is key for managing execution

context, allowing TAU to associate this context with the events being measured.

The final component of TAU is analysis tools. TAU includes support for parallel

profile data management
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(TAUdb [212]), analysis(ParaProf [213]), and data mining (PerfExplorer [214]).

It leverages existing trace analysis functionality available in robust external tools,

including the Vampir [192], Jumpshot [193], and Expert/CUBE [215, 216].

5.3.2.2 TAU Operation. Given this overview, let us consider how the TAU

measurement actually operates. The TAU measurement system is implemented as

a library that is loaded with a parallel application and lives within each application

process on every node that is allocated to the job. During execution, events occurring

within threads of execution on a process are then measured by TAU and stored in

thread-specific data structures. That is to say, if a parallel profile measurement is

being made, each application thread of execution will have its own profile data for the

events that occurred on that thread. Similarly, each application thread will output a

separate trace of events from that thread. TAU collects a variety of metrics for events

instrumented by probes and/or captured by event-based sampling in parallel profiles

and/or traces. All of the TAU performance data is stored in the memory space of

each process.

Interval events capture performance metrics that occur between entry and exit

actions. The metrics could include execution time, hardware counters, or software

counters. Atomic events are used to capture metrics of interest at a particular point

in time or location in the code. Metrics could include hardware counters, message

sizes involved in MPI communication, memory allocation, and so on. For every thread

of execution within a process, TAU collects data for every interval and atomic event

instrumented.

Figure 32 shows the two event types occurring on a thread of execution and

TAU’s updating of the thread’s performance data structure. Figure 33 portrays how

TAU operates for multiple application processes. All of the TAU performance data
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Figure 32. TAU supports interval and atomic events. Event measurements are made
for each event occurring on each thread of execution. The performance data is store
in a thread-specific data structure.

measured for each process thread is stored in the process memory space. Because

TAU is a library, it will run within the process thread that called it. For this

reason, measurement should be made as efficiently as possible so TAU can return

to the application quickly. Furthermore, TAU is a thread-safe library and can be

running simultaneously on each application thread of execution. In a distributed

MPI application, TAU will generate performance data that resides locally within

each MPI rank.

TAU measurements are recorded in parallel profiles and/or traces. Figure 34

portrays the profiles kept for all application processes which are spread across the

HPC nodes allocated for the execution. TAU collects these profiles at the end of

program execution and saves the performance information for offline analyses. TAU

provides a routine for a process to access its thread profiles during execution, including

taking a snapshot of the entire profile data.
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Figure 33. TAU captures performance data for all threads in each application process.
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Figure 34. TAU collects parallel profiles for different events across all threads and
processes in an application’s execution. The “global” parallel profiles are distributed
across all nodes of the application.
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5.3.2.3 Constraints. While TAU offers powerful measurement capabilities

which have been successfully applied over many years, there are aspects of its present

operation that will impose constraints to its use in the future. These include:

– All TAU execution takes place on application threads, including event

measurements and interrupt handlers. There is no support for TAU-only thread

resources to aid in any runtime tasks.

– TAUmeasures exactly the same metrics for all interval events. It is not possible,

for example, to measure only time for one event and only cache misses for

another event.

– If TAU is set up for profiling and tracing, all events are profiled and all events

are traced. It is not possible to have only a subset of events traced.

– Although TAU offers “user-defined” events (both interval and atomic), the

application can not pass TAU any data. The atomic interface has basic support

for processing application values, but the functionality is limited.

– TAU resides in each application process and thus executes in a distributed

manner, but there is no support for TAU to interact across the other processes

except at the end of the program.

– Beyond the EBS support in TAU, there are rudimentary mechanisms for

handling signals and asynchronous events.

Our objective is to update and extend the TAU architecture in such a way to

address these concerns. We believe that doing so will “open up” TAU development

to enhancements with broad interest.
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In general, TAU is not dissimilar to other major parallel performance system in

its design and operation, including Score-P [157], HPCToolkit [30], Scalasca [196],

Vampirtrace [192], Extrae [197], and Open|SpeedShop [198]. It is possible that these

performance systems struggle with the same limitations.

5.3.3 TAU Plugin Architecture. Our objective is to overcome the

potential future constraints to TAU by updating its system design architecture to

allow new functionality to be developed. Specifically, we look to a plugin architecture

to extend the core measurement and analysis capabilities in TAU. The general idea

is that a plugin will register callbacks to respond to certain states of TAU execution.

When such a TAU state occurs, any registered plugins are called with data appropriate

for the state semantics. In this manner, the plugin operation can be informed of

its context and implement additional processing. Below we discuss our design and

development approach to a TAU plugin architecture.

Of course, the challenge for a performance system such as TAU with mature

capabilities in frequent use is how to “integrate” a plugin architecture into an existing

implementation. The tension between retrofitting an existing system and wholesale

redesign is always there. Nevertheless, the plugin architecture we hope for should be

designed to address as best as possible the following criteria:

– Separation of concern between what action invokes a plugin and what

functionality the plugin provides.

– Control over enabling/disabling of plugin invocation versus control of plugin

operation.

– Access to TAU’s internal operations and performance information.
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– Flexible plugin programming methods that are not constrained by necessarily

by TAU development rules.

These criteria are better thought of as guidelines for the plugin architecture rather

than strict requirements, since they will be addressed at different degrees depending

on what is being done.

The following describes the approach taken for our prototype TAU plugin

architecture. We begin with a description of the “state classes” distinguished by TAU

and what additional access points might be relevant. We then discuss the operational

model for plugins at a high level, followed by a description of the plugin prototype

implementation.

5.3.3.1 TAU States and STATE Plugins. TAU supports multiple

capabilities and is in different states of processing depending on what it is doing

at a particular time. For instance, Section §5.3.2.1 describes at a high-level what

happens when TAU makes measurements for interval and atomic events, but there

are other functionalities that TAU supports that are relevant to identify. The general

idea is that plugins could register callbacks to one or more of TAU’s “states” of

execution that could be “salient” or “interesting” from a perspective of additional

plugin processing.

Presently, TAU recognizes several states of execution that effectively correspond

to locations inside the TAU performance system where the processing is taking place.

Each state will have a state-specific context that captures relevant information of

importance of the plugin. If the state context identifies the particular instance, we

will say that the plugin is named, otherwise, it is generic. For example, when TAU is

in a FUNCTION_ENTRY processing state, the name of the function being entered is part

of the state context, making it possible for the plugin to be invoked with the function
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name, to distinguish it from other occurrences of FUNCTION_ENTRY processing. Below

is a non-exhaustive list of TAU states that are presently available for plugin support.

– FUNCTION_ENTRY/EXIT: When TAU measures interval events, the profiling

module is invoked at the entry and exit of every instrumented interval event.

The FUNCTION_ENTRY and the FUNCTION_EXIT TAU states occur accordingly.

Here, the interval event name, TAU’s associated function ID, function group,

and timestamp information is context data that can be passed to a registered

named plugin.

– PHASE_ENTRY/EXIT: TAU makes it possible to demarcate phases within the

application source code. The PHASE_ENTRY and PHASE_EXIT TAU states

represent the TAU processing states specific to phases. The phase name is

a part of the context provided to a registered named plugin for invocation with

every entry/exit of static and dynamic phases.

– INTERRUPT_TRIGGER: TAU installs a signal handler for the SIGUSR signal to

implement sampling operations. When sampling is turned on and TAU’s signal

handler is run, TAU is in the INTERRUPT_TRIGGER state. Different interrupt

intervals are possible. Any registered plugins are invoked with a generic context.

– MPI_T: When TAU is configured to support the MPI Tools Information Interface

(MPI T [217]), TAU collects performance variable data (PVARs) through the

MPI T interface. Each PVAR has a name and a unique ID associated with

it. When TAU is querying a PVAR value, it is in the MPI_T state. Registered

named plugins can be called with the PVAR name and ID.

– POST_INIT/PRE_END_OF_EXECUTION: During its initialization phase, TAU

performs a number of important internal tasks such as invoking the init()
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routines of downstream APIs, allocating memory for timers, and so on. TAU

is in the POST_INIT state then. Similarly, during its finalization phase after

profiling has been completed, TAU frees up allocated memory, invokes the

finalize() routines of APIs, and prepares to shut down operations and write

out the profile or trace information that has been collected. TAU is in the

PRE_END_OF_EXECUTION state then. During these states, registered generic

plugins can utilize TAU support to perform specialized tasks that rely on

parallel programming and profiling libraries to be in a certain state (initialized

or finalized).

We have designed STATE plugin support to work with TAU states and have

developed specific plugins for each of the cases above. Figure 35 (top) graphically

portrays how the plugins work for the FUNCTION_ENTRY/EXIT and ATOMIC TAU states.

Because this is a plugin for a named state, it is called with an interval event name

or atomic event name, plus other context information. The plugin can then process

the event with or without specializing its function based on the context. Event-

specific plugin processing is indicated by the plugin shading. Notice, the standard

TAU performance measurements are still being performed. The plugin processing is

whatever the plugin developer implemented.

5.3.3.2 TRIGGER Plugins. TAU states discussed above are all defined

by and occur within the TAU performance system. Registering generic and named

plugins for TAU states offers a clear separation of concern from the state occurrence

and any plugin action associated with it, beyond the standard TAU measurement

processing. In essence, it allows for enhanced observation and actuation of extended

functionality “triggered” by TAU state. We will refer to these plugins as TRIGGER

plugins.
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Should it be the case that only internal TAU processing can trigger plugins?

Consider a situation where the application desires an analysis of current TAU

performance data at a particular point in its execution. For instance, it might

be interested in detecting performance anomalies per iteration of a time-stepped

simulation on a large HPC system. One example of a performance anomaly is a sudden

increase in communication time that deviates significantly from regular behavior.

If such an anomaly is detected, the application could decide to checkpoint certain

aspects of its application state, as well as performance state, for offline analysis. The

analysis task can be broken down into the following distinct elements:

– The application invokes (somehow) performance processing within TAU at the

end of every iteration.

– Communication performance is aggregated and stored in a buffer.

– Anomalies are analyzed with respect to previously stored data.

– Results are returned (somehow) to the application.

How should this functionality be developed? It seems reasonable to want to actuate

certain operations for a task like this independent of a particular TAU state. In fact,

it should be expected that the “triggering” of these operations could occur outside

of TAU altogether, such as from the application itself. However, it is still important

that the operations run “inside” the TAU environment so that they can access the

TAU performance data.

In keeping with our plugin design concerns, we want to register a plugin with

respect to a “trigger” that actuates the plugin when “fired” while keeping plugin

functionality isolated within its implementation. To do so, a means to create a trigger,

to fire the trigger, and receive a result is required. We have designed the TRIGGER
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plugin architecture that does just that. Like the STATE plugin, a TRIGGER plugin

will run on an application thread of execution in the TAU environment with access

to TAU performance data. However, it requires a new API to create and fire the

trigger and exchange data across the interface. Figure 35 (bottom) shows how the

TRIGGER plugins operate. They are named in the sense that a trigger has a unique

name and plugins register for specific triggers.

5.3.3.3 AGENT Plugins. Both STATE plugins and TRIGGER plugins are

synchronous in that they are invoked by TAU run on the same application thread as

TAU, and are expected to return to TAU. Interestingly, TAU was originally designed

to execute on the same threads of execution as the application. For the most part,

it continues to do so now. Suppose that we relax this constraint and allow TAU to

create new threads that then run in an asynchronous manner to the application. The

concept of an AGENT plugin is based on exactly this thought. It is a plugin that has

its own thread resources to do things that are not otherwise bound by application

or TAU processing. Its functionality benefits from running on a thread within the

process and hence has full access to TAU information. Like STATE and TRIGGER

plugins, in fact, it can allocate memory for its operation. It can interact (for the

purpose of exchanging data or control) using thread synchronization mechanisms

with the TAU system and with other plugins.

5.3.4 Plugin Implementation. The plugin system is implemented in C++

with C/C++ interfaces. The user can specify the path to the directory containing the

plugins using the environment variable TAU_PLUGINS_PATH. The user can also specify

the plugins to be loaded using the environment variable TAU_PLUGINS, separating the

plugins by use of a delimiter.
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5.3.4.1 Plugin Lifecycle. The plugin system in TAU operates through the

following phases:

– Initialization: This is invoked during TAU library initialization. During this

phase, TAU’s plugin manager reads the environment variables TAU_PLUGINS_PATH

and TAU_PLUGINS and loads the plugins. Internally, each loaded plugin is

associated with a unique, unsigned integer ID for the duration that it is in

scope. Each plugin must implement a function called Tau_plugin_init_func.

Inside this function, every STATE plugin registers callbacks for a subset of TAU

states.

– Callback: When TAU states occur during execution, the plugin manager

invokes any registered callbacks for the specific TAU state in the increasing

order of their ID’s. Each state that is supported has a specific, typed data

object associated with it. When the state occurs, this data object is populated

and sent as a parameter to the plugin callback. The TRIGGER plugin is special

as it serves the purpose of analyzing application-defined data. As a result, a

void* pointer is passed to such plugins from within the application. It is up

to the plugin developer (user) to know how to decipher this information from

within the plugin.

– Finalize phase: When TAU is done processing the performance data measured

for an application, the plugins are notified to complete their operation. They

are then unloaded, and all the auxiliary memory resources allocated by the

plugin manager are freed. Optionally, the plugin may use this phase to write

out any performance data for offline analysis at the end of the execution.
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5.3.4.2 Enabling Customizability and Runtime Control. Section 5.3.3.1

introduces the notion of named and generic states in TAU. For instance, the function

name field is used to distinguish between the various FUNCTION_ENTRY states. The

entry of functions foo() and bar() represent separate, distinguishable states in our

framework.

By default, all registered plugins for a given state are invoked when the state

occurs. We define customizability as the ability to specify the execution of a subset of

all registered plugins on the occurrence of a certain named state. Customizability is

valid only for named states. Internally, named states are hashed based on the name

field and a map is used to store the list of plugins to execute for the specific named

state. TAU allows users to modify this map through the plugin API. Note that the

full name of the state or its regular expression can be used to access the map.

We define runtime control as the ability to enable or disable specific plugins for

specific states (named or generic) at runtime. The TAU plugin API allows users

access to such functionality. This API requires the name of the event (or its regular

expression) along with the plugin ID. The same functionality is extended to trigger

states as well, where the trigger ID is used in place of the name. We envision runtime

control to be invoked infrequently in the program, such as when a phase change occurs.

Also, we expect both customizability and runtime control to be invoked in a serial

portion of the program. These semantics allow for a simpler plugin framework design

that involves a significantly reduced need for locking of internal data structures.

5.3.5 Usage Scenarios. In this section, we describe some of the scenarios

that motivate and are enabled by the design of our plugin system.

5.3.5.1 Event Counter. In order to broadly demonstrate our plugin

system, we designed a plugin that registers callbacks for a variety of supported TAU
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(a) Atomic events

(b) Number of function calls

Figure 36. Paraprof: LULESH profile

plugin processing events. The events of primary interest to us are FUNCTION_ENTRY,

FUNCTION_EXIT, and ATOMIC_EVENT_TRIGGER. Inside the callback for the plugin event,

a thread-level counter keeps track of the number of times that TAU has seen that

event.

No filtering of any sort is performed on the processing state: the plugin is

invoked for every named and generic processing state encountered. For example, the

FUNCTION_ENTRY state is invoked at the entry of every function that is instrumented

by TAU. The rationale behind designing this plugin is to correlate information

collected by the plugin with the information collected by TAU’s measurement system.

Figure 36a summarizes the number of function calls made by thread 0, MPI rank 0 of a

LULESH [218] application that has been instrumented and built with MPI+OpenMP

support. Figure 36b depicts the number of atomic events that have been triggered on

this thread. Table 22 is the statistics that are output by the event counter plugin for

thread 0, MPI rank 0 at the end of execution. It is evident that this correlates well

with the profiling information collected by TAU, depicted in Figure 36.
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Table 22. LULESH: Processing state counter values on thread 0, MPI rank 0 (other
ranks also captured)

Processing State Counter Value
FUNCTION REGISTRATION 29
FUNCTION ENTRY 23528
FUNCTION EXIT 23538
ATOMIC EVENT REGISTRATION 2
ATOMIC EVENT TRIGGER 500

5.3.5.2 Selective Tracing. Section 5.3.2.1 describes the types of events

that TAU measures: interval and atomic events. Every event that passes through

TAU’s measurement system is either profiled and/or traced. As such, there is no

mechanism in TAU that allows one to specify separate sets of events to profile and

trace. In other words, the action to profile and/or trace is specified at a high level

and is applied across the board for all instrumented events.

The plugin system allows one to separate the occurrence of an event from the

action associated with it. Particularly, it allows for the capability to profile all events

while only tracing a subset of those events. This is useful in at least two ways:

– It reduces the size of the trace file generated.

– It reduces the amount of information in the trace file making it easier to visualize

only the events that are important.

A plugin that performs selective tracing registers callbacks for the FUNCTION_ENTRY

and FUNCTION_EXIT processing states and performs tracing inside these callbacks.

The selection of these named processing states, however, is performed from within

the application using TAU’s plugin API. The application uses C++ regex support to

enable/disable selective tracing for classes of functions. In order to demonstrate the

usage of this functionality, we consider a LULESH application that been instrumented
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(a) Tracing all events

(b) MPI Wait events disabled

Figure 37. Vampir: LULESH trace

with the Program Database Toolkit (PDT) and built with MPI+OpenMP support.

We trace all events except MPI_Wait events. Figure 37a depicts the OTF2 trace

visualization generated in Vampir [219] when all instrumented events are traced.

Figure 37b depicts the trace visualization generated when tracing for MPI_Wait events

is selectively disabled using TAU’s plugin infrastructure. Note that this functionality

is distinctly different from using Vampir to “turn off” the uninteresting events. The

plugin system prevents such events from being processed in the first place, allowing

for a significant reduction in trace sizes.

5.3.5.3 Filter Plugin. When instrumenting an application using compiler-

based instrumentation or PDT, TAU uses a selective instrumentation file to selectively

enable/disable instrumentation for functions and/or files. We developed a filter plugin

that allows us to enable filtering at runtime. The plugin registers a callback for the

FUNCTION_REGISTRATION_COMPLETE processing state that is invoked exactly once for
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every function that is instrumented using TAU. Inside the callback, the plugin checks

the selective instrumentation file to see if instrumentation needs to be disabled for

the function in question.

This functionality enables selective instrumentation to be performed without the

need to recompile the application in order to perform different targeted performance

studies. As opposed to the selective tracing plugin, the filter plugin enables

specialization of plugin functionality through an external mechanism (selective

instrumentation file).

5.3.5.4 TAU SOS Plugin. The Scalable Observation System (SOS) [220] is

a framework for aggregating performance data from distributed workflows in support

of in-situ analysis and feedback & control. SOS is designed as an aggregation network

consisting of client data sources, intermediate data listeners (one per allocation node),

and one or more aggregation servers running on additional allocation nodes. Some

HPC submission queues and batch systems don’t allow launching multiple distributed

applications per allocated node, so the SOS plugin follows a particular startup

procedure to work around that limitation. The integration description below assumes

that TAU is measuring an MPI application.

SOS is integrated into TAU as a plugin that can aggregate the data either as

performance profiles or full event traces. In a typical usage scenario, the SOS plugin

is configured to initialize the SOS client connection during TAU plugin initialization.

It is assumed that one or more SOS aggregation daemons are already running on

additional allocation nodes, having been launched by the submission script. If the

SOS client library is unable to make a connection to an SOS listener daemon running

on its node, the plugin will use the MPI infrastructure to coordinate between all

ranks, group them by the nodes they are assigned to and then choose one rank on
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that node to launch an SOS listener daemon. The chosen rank will fork and exec

the SOS listener process daemon for the SOS clients to connect to.

After the connections are established, the plugin will then optionally spawn a

thread to perform asynchronous data aggregation over SOS. If asynchronous data

aggregation isn’t used, the data can be aggregated using the TAU trigger event. For

profiling, the plugin code will iterate over the profile data of the current process,

pack and publish it to the local listener. When tracing, the plugin will pack data

in the local SOS client for each event and publish either periodically or on a trigger

event. Once the listeners have received the data, they will then forward it to the

aggregator(s).

5.3.5.5 Trigger: Aggregating Interval Events. The trigger mechanism

is special in the sense that it allows an application to access TAU without an

accompanying measurement being made. This can be harnessed to aggregate and

snapshot performance information at an application-defined point of execution. We

developed a plugin that aggregates and summarizes TAU interval and atomic event

information across all threads of all processes inside the callback for the TRIGGER

event. Note that this aggregation happens synchronously on the thread that invokes

the trigger-event.

Additionally, the plugin depends on MPI to perform the necessary reduction

operations on the TAU performance data. The summarized information is stored

inside the plugin as a snapshot and can optionally be written out at the end of the

application. The overheads involved in enabling this plugin depends on three factors:

– The number of processes involved in the reduction operation.

– Frequency of invocation of the trigger plugin.
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– Number of interval and atomic events to be processed.

5.3.5.6 Agent: Asynchronous Load Tracking. An agent plugin is

especially useful in a situation where a background task needs to be performed on a

repetitive basis in such a way that the application execution isn’t interrupted. Recall

that the agent plugin is assigned a thread when the plugin is loaded. This thread can

perform arbitrary tasks.

In addition to the SOS plugin that performs asynchronous work, we developed

an agent plugin that periodically wakes up to record the current system load and

resident set size in an OTF2 trace for every process. Specifically, the plugin creates a

single pthread during the plugin initialization phase. In an MPI application, each MPI

process would create its own agent thread. The load information is gathered from

\proc\loadavg and the resident memory usage is extracted using the getrusage

POSIX routine. Each of these metrics is internally stored as TAU user events and

recorded in an OTF2 trace for offline visualization. The agent thread and its resources

are cleaned up during the execution of PRE_END_OF_EXECUTION plugin state.

5.4 Monitoring of HPC Applications and Ensembles

Extending the SYMBIOMON monitoring service such that it can generally apply

to HPC applications and ensembles requires a scheme to control the large volume

of data generated. The other aspect to consider is seamlessly integrating these

distributed time-series monitoring capabilities into traditional HPC applications.

Here we describe an archetype of such a setup using the TAU performance system [29].

5.4.1 TAU Plugin for SYMBIOMON. As depicted by Figure 38, TAU’s

plugin mechanism is employed to integrate SYMBIOMON instrumentation into any

traditional MPI application seamlessly. The SYMBIOMON plugin installs a callback

to the TAU_DUMP plugin event triggered when the application invokes the Tau_dump
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API call. We expect the typical application to repeatedly invoke this API at an

appropriate location in the code, for example, at the end of every simulation timestep.

The plugin uses all the SYMBIOMON components to enable online monitoring and

analysis of application performance. The plugin has access to the TAU measurement

API, making it a powerful mechanism for building application-monitoring capabilities.

In the callback function for the TAU_DUMP event, the plugin gathers a list of all

timers and counters currently being tracked by TAU. For each of these timers and

counters, the plugin creates a SYMBIOMON metric of an appropriate type. Within a

process, TAU timers are expected to increase monotonically. Thus, TAU timers map

directly to SYMBIOMON TIMERS. On the other hand, TAU counters are either

SYMBIOMON COUNTERS or GAUGES, depending on what they represent. All the

metrics are created within the “tau2” metric namespace. The metric name is borrowed

directly from TAU. When the plugin is built with MPI support, the “taglist” for all

the metrics contains the MPI rank information. Every time the plugin is invoked, the

TAU measurement API is queried for the latest value of a metric, and the metric is

updated accordingly. Local metric updates, local reduction, and metric aggregation

do not require synchronization among the instrumented MPI processes. The global

reduction, however, depends on the individual results being readily available with

the AGGREGATOR service. The user can optionally request an MPI Barrier before

rank 0 contacts the REDUCER to invoke a global reduction. Doing so guarantees

the total correctness of the operation. On the other hand, a lack of synchronization

may result in a global reduction being performed on partially available data. The

plugin also provides the user with an option to control the frequency of reduction

operations. At present, a change in the aggregation operator for timers and counters
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Figure 38. TAU SYMBIOMON Plugin

requires recompilation of the plugin. In the future, we plan to export environment

variables to control this behavior.

5.4.2 HPC Application Monitoring: Visualizing LULESH Load

Imbalance. We apply the TAU plugin for SYMBIOMON to monitor and visualize

LULESH performance data during execution. Specifically, the tau_exec program

is used to wrap MPI calls made by the LULESH application. The global range of

the total exclusive time for MPI Allreduce is used as a proxy for the degree of load

imbalance in the application. LULESH is unchanged except for a single line of code

that invokes the Tau_dump routine and triggers the plugin module. AGGREGATOR

and REDUCER support is enabled. A Jupyter notebook is employed to connect to

the COLLECTOR instance running alongside the REDUCER. We extract time-series

data for the (instantaneous) global maximum and minimum for the MPI Allreduce

exclusive call time using the COLLECTOR’s Python client. Figure 39 depicts a visual

representation of this time-series data when the load is balanced between processes
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(blue and green lines). When load imbalance is induced in the application through

the use of configuration options (orange and red lines), the difference between the

global maximum and minimum time for MPI Allreduce is more significant than in

the former case.

Figure 39. LULESH: Monitoring the Range of MPI Allreduce Exclusive Time

5.4.3 HPC Ensemble Monitoring: Performance Variation in

GROMACS Ensembles. Ensemble computing is an exciting new way of

deploying scientific applications on HPC platforms. Ensembles have been used

to generate superior scientific results for molecular dynamics applications such as

GROMACS [221]. Figure 40 depicts the fundamental difference between how HPC

cluster resources are traditionally used to deploy HPC applications and how ensembles

are executed. Traditionally, a single, extensive MPI application spans the entire batch

job allocation. Over the past three decades, the HPC community has primarily

focused on making this single application execute faster and more efficiently on

increasingly more significant node counts, thereby accelerating the rate of scientific
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(a) Traditional HPC Applications (b) HPC Ensembles

Figure 40. Traditional HPC Applications vs. HPC Ensembles

insight. HPC ensembles take an orthogonal approach, executing many smaller,

independent MPI tasks (instances) on the same resource allocation.

The breadth of applications that benefit from an ensemble computing model also

spans machine learning applications [23, 222]. Today, ensembles executing on HPC

platforms orchestrate 100s to 1000s of individual tasks. Typically, each task is a

scientific simulation implemented as a parallel MPI program spanning one or more

distributed computing nodes. Adaptive ensembles, depicted in Figure 41 analyze the

intermediate results to generate newer generations of ensemble tasks. Intermediate

scientific and performance data analysis is employed intelligently, guiding future

ensemble workloads.

While adaptive ensembles promise to accelerate science on pre-exascale and

exascale platforms, several software challenges need to be addressed before this

promise is realized in full effect. One such challenge pertains to enabling robust

performance observability and monitoring ensemble components. Performance

monitoring entails capturing, exporting, storing, and analyzing all the necessary

performance data for different elements in the ensemble system.
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Figure 41. Adaptive Ensembles

5.4.3.1 Performance Variability of Ensemble Tasks. Figure 42

depicts the performance variation resulting from the execution of 2,500 GROMACS

MPI tasks on the Theta 1 supercomputer at the Argonne Leadership Computing

Facility. The RP ensemble system was set up to execute these GROMACS tasks as

a set of ensemble workloads spread across multiple batch jobs. Each MPI task is

run on a dedicated Theta KNL node using 64 MPI processes. The key observation

from Figure 42 is that these GROMACS tasks experience significant performance

variation. Given that these tasks are identical copies operating on the same input,

this observation requires further investigation and an appropriate solution to mitigate

its effects online.

From the ensemble’s viewpoint, it is highly undesirable for there to be a large

performance variation between the tasks in the workload for the following reasons:

1https://www.alcf.anl.gov/alcf-resources/theta
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Figure 42. Performance Variation in GROMACS Ensembles

– The overall execution time of the workload is determined by the slowest task in

the workload — this could lead to significant wastage of CPU node hours.

– The unpredictability resulting from performance variation makes future task

scheduling difficult.

– There is a lack of performance reproducibility of the ensemble’s execution.

While understanding the cause for the performance variation requires a separate study

to be carried out, high-level online performance monitoring and analysis of the task

runtimes serve as a first step in mitigating its effects within the ensemble system. The

following section describes the design and implementation of an ensemble monitoring

solution.

5.4.3.2 Ensemble Monitoring Solution. We integrated the SYMBIOMON

monitoring system with the GROMACS ensemble tasks through the TAU plugin

described in Section 5.4.1. Figure 43 depicts this integration.

The steps involved in integrating SYMBIOMON with the RADICAL PILOT

ensemble are as follows:

– Instrumenting GROMACS: The first step involves gathering the necessary

performance data through instrumentation. Here, we are interested in
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Figure 43. Performance Monitoring of GROMACS Ensembles
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tracking and analyzing the current runtime of each task in the ensemble as

it executes. We achieved this by leveraging TAU’s instrumentation capabilities

and launching the application with the tau_exec script.

– Setting up the AGGREGATOR and ANALYZER microservices: Enabling

the online storage and analysis of the captured performance data from each

ensemble task requires the AGGREGATOR and ANALYZER to be launched as

“special” tasks within the ensemble before the actual ensemble execution begins.

These tasks are unique because: (1) there is a strict ordering requirement

between the monitoring service tasks and the other tasks with the ensemble,

and (2) the AGGREGATOR and ANALYZER run for the entire duration of the

ensemble execution, i.e., they are long-running. The monitoring service tasks

need to be initialized first as they are required to make their RPC addresses

publicly available for the regular ensemble tasks to consume.

– Exporting and analyzing data: The TAU plugin for SYMBIOMON, described

in Section 5.4.1 was employed to capture, store, and export data from within

each task to the monitoring service, with one modification — the cohort in this

context comprises all the ensemble tasks. Given that the goal here is to identify

the degree of performance variation between these ensemble tasks, we assign

the ensemble task with ID “0” as the leader of the cohort. While rank 0 of each

task constantly publishes updates of the current execution time of the task,

the leader of the cohort is responsible for contacting the ANALYZER service to

trigger the corresponding analysis of the current degree of performance variation

in the system. The ANALYZER reads partially reduced metric values from the

AGGREGATOR to perform this analysis. It reduces this data globally, thereby

identifying the minimum and maximum task runtimes (range). This process
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Figure 44. Online Monitoring of the Degree of Ensemble Task Runtime Variation

is repeated at periodic intervals. The ANALYZER exposes this value as an

SYMBIOMON time-series metric that can be ingested by a remote monitoring

entity such as the Py-COLLECTOR or an adaptivity component within the

ensemble system. Figure 44 depicts a plot of the degree of variation of task

runtime during actual execution. Although in this particular execution, the

degree of variation was not significant, and there are open questions to be

answered concerning the methodology for accessing and integrating data from

multiple sources, this study demonstrates the utility of service-based monitoring

infrastructure.

5.5 Overhead Analysis

5.5.1 TAU Plugin Operation. In this section, we present a study of

the performance of some of the plugins described in the section on Usage Scenarios.

We pay special attention to the overheads involved in setting up and using multiple

plugins together on the Intel Xeon Phi Knights Landing (KNL) processors.
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5.5.1.1 Hardware Setup and Software Background. Experiments on

Intel KNL processors were performed on the Cori supercomputer2 at the National

Energy Research Scientific Computing Center (NERSC). The KNL partition on Cori

has a total of 9,688 compute nodes, where each node is a single-socket Intel Xeon Phi

7250 processor with 68 cores. Compute nodes are connected through the Cray Aries

interconnect. The platform-optimized Cray-MPICH was used on Cori.

LULESH is a proxy application that represents a typical hydrocode such as

ALE3D. LULESH is implemented using a variety of programming models. We use a

version of LULESH that is parallelized using MPI and OpenMP. LULESH is a typical

HPC simulation application — it consists of an outer iteration loop that runs for a

fixed number of times specified by the input. The problem size scales with the number

of MPI processes used. We instrumented LULESH using PDT to retrieve MPI as well

as application-level information. We also added TAU annotation to trigger the TAU

plugin module (using the TRIGGER plugin interface) at the end of every LULESH

major iteration.

All the experiments in our study are run on 64 Intel Xeon Phi KNL nodes with

pure MPI being used to parallelize LULESH. 64 processes of LULESH are executed

per node for a total of 4096 MPI processes. The length of the cube mesh along

each side is set to 60, totaling 884,736,000 elements. Every experiment executes 500

iterations of the LULESH outer loop.

LULESH was executed using the selective tracing plugin in combination with

the trigger plugin that aggregates and snapshots TAU profile information globally at

the end of every major iteration. The environment variable TAU_PLUGINS is used to

specify the use of multiple plugins through the command line.

2https://www.nersc.gov/users/computational-systems/cori/
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XSBench is a mini-app that captures the core computational kernels within the

larger OpenMC neutron transport code. XSBench is an MPI+OpenMP code. For

our overhead studies, we used pure MPI to parallelize XSBench. We instrumented

XSBench using PDT and TAU’s PMPI wrapper.

The experiments for XSBench were run on 64 Intel Xeon Phi KNL nodes. 64 MPI

processes were executed per node. We experimented with the small problem size with

34 lookups per particle for a total of 500,000 particles. The grid type was set to be

unionized. XSBench was executed using the event counter plugin in combination with

the load tracking agent plugin.

5.5.1.2 Results. An important aspect of our study is the overhead involved

in enabling multiple plugins that perform non-trivial tasks. Table 23 depicts the

overheads introduced by enabling the selective tracing and trigger-based profile

aggregation plugins. Selective tracing is performed by disabling one or more events.

For the study described in Table 23, tracing is enabled only for the MPI events.

Meanwhile, all the events generated by PDT instrumentation are being profiled by

TAU’s measurement system. PDT instrumentation alone adds 1.4% of overhead over

the baseline (un-instrumented) code. The selective tracing plugin is responsible for

an additional 1.4%. Overall, the use of both plugins adds a total of 5.6% overheads

over the baseline run. The trigger-based plugin aggregates 29 interval events and 2

atomic events during every LULESH iteration (for a total of 500 times).

Selective tracing is especially useful when one is trying to control the trace file

size generated by a large parallel application. We measured the trace file sizes under

the following conditions:

– Tracing all events.

– Selectively tracing only MPI events.
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Table 23. LULESH: Overheads with multiple plugins

Run Description Time (seconds)
Default 710
PDT instrumentation 720
PDT + Tracing all events 730
PDT + Selective tracing 730
PDT + Selective tracing + Aggregation 750

Table 24. LULESH: Trace size with selective tracing

Run Description Trace Size (GB)
Tracing all events 6.6
Tracing only MPI events 5.5
Tracing all events except MPI Wait 1.1

– Selectively tracing all MPI events except MPI Wait events.

Table 24 clearly demonstrates that MPI is responsible for a bulk of the events in

the trace. Specifically, MPI events account for 83.3% of the trace file size. Further,

removing just the MPI Wait class of events from the trace reduces the trace file size

by 77.2% as compared to the default execution that includes all events.

For the XSBench application, we measured the overheads involved in enabling

the event counter and load tracking agent plugins. Table 25 suggests that PDT

instrumentation by itself does not add much overhead, but enabling the event

counter plugin for all instrumented events leads to high overheads — over 100x in

runtime. The sheer number of instrumented events (specifically, FUNCTION_ENTRY

and FUNCTION_EXIT events) and the frequency of their invocation is a true stress test

for our plugin architecture. Of course, we would not use this plugin in this manner.

We reason that the source of the overhead is largely due to the hashing function for

the strings representing function names.

However, when we used TAU’s PMPI wrapper to instrument only the MPI

events, the overheads are negligible. The lesson here is two-fold. It is important
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Table 25. XSBench: Overheads with multiple plugins

Run Description Time (seconds)
Default 105
PDT instrumentation 106
PDT + Event counter (all events) >100,000
PMPI wrapper + Event counter (only MPI events) 106
PMPI + Event counter (only MPI events) + Load tracking agent 107

to consider the impact of the number of events and their frequency when managing

plugin overhead. The hashing logic needs to be optimized in the plugin framework.

Interestingly, there are no noticeable overheads when the load tracking agent plugin

is enabled. It is important to note that every MPI process spawns its own agent

thread, accounting for a total of 64 agent threads per KNL node. This thread wakes

up every 2 seconds to record the load and memory usage.

5.5.2 SYMBIOMON Monitoring and Analysis.

5.5.2.1 Hardware and Software Setup. We present a study of the

overheads involved in using the TAU SYMBIOMON plugin to monitor, and we

analyze the LULESH performance data. We pay special attention to the process

of separating overheads due to the COLLECTOR, the AGGREGATOR, and the

REDUCER. All of the experiments are conducted on a testbed consisting of Intel

Xeon processors interconnected with a high-speed InfiniBand network. Each Intel

Xeon processor hosts 28 CPU cores and 128 GB of memory. For this study we

employed 343 LULESH processes spread evenly across 16 nodes. We used a total

of 4 AGGREGATOR instances (one per node) with one thread each and a single

REDUCER instance to perform the global reduction. Following are the various stages

of the process.

– Stage 0: Uninstrumented LULESH binary. The program is built and run without

the TAU plugin or any other SYMBIOMON component.
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– Stage 1: The COLLECTOR is employed to make measurements at the end of every

timestep loop. However, reduction and aggregation support are disabled.

– Stage 2 (frequency “f”): The COLLECTOR is employed to make measurements at

the end of every timestep loop. Metrics are reduced locally once every “f” iterations,

and the reduced results are sent to the AGGREGATOR. Global reduction is

disabled.

– Stage 3 (frequency “f”): The COLLECTOR is employed to make measurements

at the end of every timestep loop. Metrics are reduced locally every “f” iterations,

and the reduced results are sent to the AGGREGATOR. Rank 0 performs the

global reduction (by invoking the REDUCER) every “f” iterations.

5.5.2.2 Results. Figure 45 demonstrates the runtime overheads involved

in each step of employing SYMBIOMON to monitor and analyze 250 iterations of

the LULESH timestep loop with a problem size of 45. The COLLECTOR does

not add any noticeable overhead to the execution. When tau_exec is employed to

instrument LULESH, 60 metrics are created and tracked on each MPI process. The

local reduction and aggregation operations add 2.3–6.5% of the overheads, depending

on how frequently these operations are invoked. The locally reduced result for each

metric is transferred to the AGGREGATOR by using a dedicated sdskv_put RPC

call. The global aggregation step (Stage 3) is relatively inexpensive compared with

local reduction and aggregation.

5.5.2.3 Aggregator Sensitivity Analysis. Among the three SYMBIOMON

components, the number of AGGREGATORS is likely to have the most significant

impact on the overall performance of the monitoring workflow. As we have

demonstrated here, the COLLECTOR introduces virtually zero overhead because
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Figure 45. LULESH: Overhead Study

Table 26. Aggregator Sensitivity Analysis

Aggregator Count Execution Time (s) Avg. Client Connection Time (s)
2 125.0 0.90
4 126.1 1.1
8 126.2 1.2
16 129.0 1.5

the metric update operations are local to the client. The REDUCER is unlikely to

be on the critical path because: (1) it is invoked infrequently and typically only by

one client (leader of the cohort), and (2) it performs a single RPC call for each metric

being tracked. However, the AGGREGATOR is the central piece coordinating and

interacting with all the COLLECTOR and REDUCER instances in the system.

Our experimental analysis reveals that the optimal number of AGGREGATORS

in the system is dependent on three critical characteristics of the workload: (1)

number of clients interacting with the AGGREGATOR service, (2) the frequency

of invocation of AGGREGATOR operations, and (3) the number of metrics being

tracked. While performance tuning is necessary for each unique workload, we present

the results of employing different numbers of AGGREGATOR instances to monitor

the LULESH workflow.
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Table 26 suggests that this particular workflow is not sensitive to the number of

AGGREGATOR instances in the system. Interestingly, 2 AGGREGATOR instances

are sufficient to serve the monitoring needs of 343 MPI processes. However, a deeper

analysis of the individual AGGREGATOR operations reveals the contribution of

different procedures to the overhead. Before the metrics can be aggregated, each

COLLECTOR client needs to be aware of the addresses of all the AGGREGATOR

instances in the system and request a connection to them to open the SDSKV

database. This requires an sdskv_open RPC call to be made for each connection (a

one-time cost). SYMBIOSYS [223] instrumentation added to the AGGREGATOR

service reveals that the average cost that clients pay for the sdskv_open RPC call

steadily rises with the number of AGGREGATOR instances. Although it is a one-

time cost, this operation is serialized on the server and can lead to client delays. Thus,

a trade-off exists between the raw performance of the AGGREGATOR service and

the upfront cost that clients pay for balancing the metric load across multiple server

instances.

5.6 Limitations

While the monitoring infrastructure described in Chapter V is attractive for

serving as a flexible, ubiquitous monitoring solution for in-situ workflows, there are

open questions that need to be addressed before this monitoring infrastructure can

realize its full potential:

– Data Model: While SYMBIOMON’s storage and analysis microservices

are broadly applicable to any in situ workflow component, the ubiquitous

application of the time-series data model may not be appropriate. Consider

an ML workflow involving training thousands of individual tasks, requiring a

monitoring solution to store and retrieve information about the ML model being
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trained. Alternatively, an MPI application may want to report monitoring data

in a customized structure. For both these use cases, posing this data as a (set

of) time-series data may not be ideal — the data model must be appropriate

for the type of analysis required.

– Integration of Custom Reduction Operators: Presently, SYMBIOMON exports

a limited set of reduction operators to manage the large volumes of time-series

data before they are stored for subsequent monitoring and analysis. This set of

operators needs to be extended to support custom reduction schemes that may

require the generation, storage, and monitoring of derived metrics. Such support

would enable a broader decision-making range for the adaptive execution of

distributed services and workflow components.

5.7 Summary

Chapter V presented a ubiquitous monitoring solution for HPC services,

applications, and ensembles, thereby addressing the research question RQ2. We

achieved this goal by combining a plugin architecture for the TAU performance

system with the SYMBIOMON monitoring service. SYMBIOMON’s composable

service architecture offers the user a significant degree of flexibility, making it feasible

to monitor any coupled HPC workflow. Notably, SYMBIOMON’s microservices

were designed and implemented using Mochi components, demonstrating that we

can potentially employ these microservices for a broader set of usage scenarios in

addition to their original intention for serving the applications’ data storage needs.

Chapter VI extends the applicability of Mochi microservices, demonstrating their

usage for building shared, high performance, in situ visualization services.

208



CHAPTER VI

EXTENDING THE APPLICABILITY OF HIGH PERFORMANCE

MICROSERVICES

This chapter contains unpublished material with co-authorship. The research

presented in this chapter results from a collaboration between Dr. Hank Childs,

Dr. Allen Malony, and me. The research presented in this chapter is under review

at SC 2022 [22]. While performing this research, I received regular guidance from

Dr. Hank Childs and Dr. Allen Malony. I did all the experiments, writing, and data

collection. Dr. Hank Childs and Dr. Allen Malony helped with suggestions and edits

for the paper. All the authors helped in proofreading the submission.

6.1 Introduction

One of the key takeaways from Chapter V is that Mochi microservices have

a broader range of applications than the original purpose for which they were

designed. Figure 46 depicts the core components of the Mochi framework (Margo,

Argobots, and Mercury) and how they are employed to build various microservices.

Viewing the Mochi framework as two separate products — (1) out-of-the-box

microservices to build custom data services and (2) a core framework on which to

build arbitrary HPC microservices allows for their extension to other domains of high

performance computing applications. Chapter VI demonstrates the extension of these

microservices to build a shared, in situ visualization service.

In situ visualization for HPC applications offers a solution to the storage

bottlenecks encountered by traditional offline analysis methods. In particular,

traditional visualization can require the storage and loading of a potentially large

amount of data resulting from the execution of an HPC application (henceforth

referred to as the simulation). Typically, the simulation code is an iterative MPI
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Figure 46. Broad Applicability of Mochi Microservices

application that writes data out to the parallel file system after some number of

cycles. Once the simulation has written all the data, a visualization program then

processes it to produce results.

In situ schemes avoid the storage overhead by operating directly on the simulation

data, effectively circumventing the parallel file system. There are two popular

“flavors” of in situ implementations [224]: which we refer to in this paper as inline

and in transit. In the inline scenario, the application invokes the visualization

module through a library call while passing along a reference to the simulation

data. The simulation and the visualization module run on the same computing

resources and time-share the computing resources between themselves. Specifically,

the application is idle (blocked waiting) while the visualization module runs and vice-

versa. Figure 47a depicts this scenario.

In the in transit case depicted in Figure 47b, the visualization module runs on

in transit resources. One of the benefits of running in an in transit configuration

is that the visualization can proceed asynchronously and run concurrently with the
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(a) Inline Visualization

(b) In Transit Visualization

(c) Service-based In Transit Visualization

Figure 47. Different approaches to in situ visualization. The red arrow indicates data
transfer in (b) and (c).
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simulation, allowing it to proceed as soon as the visualization data has been safely

copied out. Also, the in transit mode allows the visualization program to run at a

lower level of concurrency than the simulation, potentially improving the efficiency

of the visualization operation [225, 224].

However, there are additional costs associated with in transit — transfer of data to

the in transit visualization and the additional in transit computing resources (which

may sit idle). That said, previous work by Kress et al. [225] showed the in transit

approach can still achieve cost savings: the savings from running at lower concurrency

can exceed costs for transfer and additional resources. In their experiments, Kress

et al. [225] used the traditional approach of connecting a single simulation code to a

single in transit resource that ran at a smaller scale. However, their experiments ran

visualization every simulation cycle — much higher than typically used in practice.

If they had run less frequently, the in transit resources would have suffered from

idle time, which offset any cost savings from running at a lower concurrency. As a

result, while their research demonstrated that in transit has opportunities for cost

savings, it did not demonstrate these cost savings in configurations frequently used

in practice. Our work aims to realize the cost savings demonstrated by Kress in

practical configurations, i.e., configurations where simulation codes perform in situ

visualization and analysis at lower frequencies.

With this work, we propose a shared service-based approach which we call

SERVIZ. SERVIZ allows multiple simulations to simultaneously connect to the

visualization program (henceforth called the server), thereby keeping it busy and

reducing the idle time of the in transit resource allocated for it. Figure 47c depicts

how these additional cost savings are achieved over the standard in transit model.

SERVIZ is developed using Mochi [6], which embodies the principle of composition
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by utilizing a microservice architecture to create and deploy distributed services. By

instantiating SERVIZ as a shared Mochi-based visualization service, the simulation

can easily be programmed for in transit operation and benefits directly from an HPC-

optimized RPC library [120] for client-server communication. SERVIZ achieves cost

savings of up to 12% over the inline configuration and up to 4x reduction in idle time

over the dedicated in transit setup. Furthermore, the SERVIZ service-based model

offers a programming interface that naturally subsumes the inline and in transit

models.

The main contributions of our work are:

– The formulation of a cost model for a shared, in transit visualization service

– The design and implementation of a shared, in transit visualization service based

on robust and high-performance microservices technology

– Experimental results demonstrating the cost savings of a service-based, shared, in

transit visualization approach over standard inline and in transit models

6.2 Related Work

6.2.1 In situ Visualization. SENSEI [128], Seer [125], and Damaris-

viz [133] are three in situ visualization software packages that are capable of

space-division (in transit) couplings. SENSEI employs the ADIOS [5] I/O service

to allow the transfer of data to a separate executable that implements the

visualization operation. Damaris-viz reserves one CPU core on every compute node

for visualization processing and allows the transfer of data through shared memory.

SEER enables simulation steering of the application through a Mochi [6] service.

Meanwhile, Ascent [130] is currently limited to time-division (inline) coupling.
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Harvesting unused computing cycles has been explored in the context of inline

visualization and analytics. The TINS [129] package leverages work-stealing strategies

to execute analytics tasks when there are no available simulation tasks scheduled.

GoldRush [226] and Landrush [227] employ smart co-scheduling of analytics routines

alongside MPI-OpenMP and GPU simulation tasks. They combine monitoring data

with a scheduler to identify regions of idle time on the processor that can be used

to run these routines demonstrating significant cost savings without perturbing the

execution of the simulation.

While in transit visualization can be appealing due to the potential for reducing

the simulation execution time through asynchronous operation, the additional

computing resources (nodes/cores), the data transfer time, and in transit idle time

need to be factored in to estimate if overall cost savings are achieved. Abram

et al. [228] explored in transit as a valid design choice for implementing in situ

visualization frameworks. Their flexible “ETH” architecture could be configured

to explore different strategies to deploy the simulation and analysis/visualization.

Kress et al. [225] found that running the visualization module as a separate in

transit program with fewer MPI ranks than the simulation has the potential to offset

these additional costs. In particular, they identify the ”visualization cost-efficiency

factor” (VCEF) as a critical parameter for achieving overall cost benefits. Our

work builds upon and extends on this observation, with our focus on the frequency

of visualization. The Kress experiments performed visualization tasks every cycle,

significantly reducing idle time. Simulation codes often run in situ visualization at a

much lower frequency — with the approach used by Kress et al., any gains from VCEF

would then be wasted as resources sit idle. Our SERVIZ service-based architecture,

however, allows the server to be shared. Our approach has the potential to make
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more efficient use of the in transit resources, i.e., still benefiting from VCEF but

not suffering from idle since the resources are kept busy by servicing requests from

multiple simulation codes.

6.2.2 Services in HPC. The HPC community has applied service-oriented

architectures for deploying distributed applications. DataSpaces [8] employs an

RDMA-enabled, transient data staging service for coupling multiple applications

within a workflow. ADIOS [5] functions as an I/O processing engine that presents a

uniform interface to perform both parallel file storage and data staging. ADIOS

is especially useful as a coupling or data staging platform that allows multiple

applications to share data asynchronously. GLEAN [154] employs a set of dedicated

data staging nodes to buffer data writes to the parallel file system. GLEAN has

been used to accelerate the in situ analysis and analytics operations for the FLASH

astrophysics code [229]. The Mochi [6] software stack exposes a set of programming

tools for building and composing HPC data services. Mochi has enabled the

development of a wide range of data services, such as HEPnOS [122, 6], a transient

key-value store, and UnifyFS [113], a user-level file system for accessing burst-buffers.

Finally, Melissa [230] is an in transit service for performing large-scale sensitivity

analysis that bears similarities to SERVIZ in its design. In particular, both follow

an explicit client-server model and perform an MxN data re-distribution using a two-

level approach. However, the primary motivation for Melissa is to avoid or reduce

the number of parallel file system operations — in contrast, SERVIZ aims to provide

cost savings over existing in situ analysis techniques.

Huang et al. [231] present a comprehensive review of the state-of-the-art libraries

for “in-memory” computing. For all the libraries reviewed, the primary motivation

for employing a service architecture was to hide the expensive parallel file system
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operations. To the best of our knowledge, no existing work has explored the use of a

shared distributed service to improve the throughput of visualization operations.

6.3 Ascent Visualization Library

A strength of the service-based approach is that software can be incorporated and

integrated without significant effort. As a result, SERVIZ was not built from scratch

but rather via existing software. While we considered only a single in situ visualization

library (Ascent) for our study, the SERVIZ approach could easily accommodate

working with many libraries simultaneously.

Ascent [130] is a lightweight library for in situ visualization designed for use

on HPC platforms. Ascent supports distributed-memory parallelism through MPI.

It supports shared-memory parallelism on CPUs and GPUs through OpenMP and

the NVIDIA CUDA API. The mesh data in Ascent is processed as a Conduit [140]

node. Conduit nodes are serializable data structures used to describe and represent

hierarchical data. This node data can be converted into the human-readable YAML

and JSON formats or as plain Internally, Ascent supports several runtimes. Flow [232]

is a standard built-in runtime based on Python. Ascent can optionally be built

with the VTK-h library that supports distributed-memory parallelism on top of the

VTK-m [233] shared-memory implementation. To use Ascent, the simulation needs

to convert the simulation data into a Conduit node and pass it to Ascent through

Ascent’s API. The Ascent API consists of four main routines that are briefly discussed

below:

– Open : This call initializes Ascent and takes as a single parameter a Conduit

node representing “options” for which visualization runtime to use and the MPI

communicator specification, if operating within a distributed setting. OpenMP can
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be also be used to parallelize visualization operations within a process. This API

is invoked once, outside the main simulation loop.

– Publish: The publish API call expects a single, valid Conduit node as input,

specifying the mesh data on which to perform visualization operations. Internally,

Ascent stores this data and returns control back to the simulation. This API call

is invoked inside the simulation loop.

– Execute : The execute call takes as input a Conduit node specifying one or more

“actions” to apply to the published mesh data. Scenes are used to create images

from the simulation data. Pipelines data into other derived forms to be further

analyzed. Extracts are used to move data out of Ascent, potentially into other file

formats such as ADIOS or HDF5. Queries are used to evaluate and Triggers are

used to execute a set of actions based on certain conditions. The execute call is

also invoked inside the simulation loop (following publish).

– Close : The call takes no input arguments. This call finalizes the Ascent library

and invokes a cleanup operation.

The publish-execute call sequence fully describes the data and the visualization

actions. Individual call sequences are independent of each other and require the

storage of no state information in between. Therefore, they can be executed in any

order so long as the publish and execute operations are performed in an atomic

manner. Ascent’s API and execution model significantly reduces the complexity of

implementing a shared, distributed visualization service.

6.4 SERVIZ: A Shared Visualization Service

6.4.1 Original In transit Cost Model.
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6.4.1.1 Terminology and Base Cost Model. While comparing the costs

of an in transit scheme relative to the inline version, Kress et. al. [225] discovered

that running the in transit application at a lower level of concurrency as compared to

the simulation can improve the cost efficiency of the visualization operation. To this

end, they defined the “visualization cost-efficiency factor” (VCEF) as the ratio of the

total node seconds to perform visualization at two different concurrency levels. Any

in transit implementation will involve additional costs over and above the equivalent

inline implementation. These include costs for the transfer of data and the additional

in transit node resources. The original VCEF base model for the in transit scenario

assumes that each client is assigned a dedicated in transit visualization program.

Specifically, cost savings for in transit over inline is achieved when:

Nsim ∗ (Tsim + Tinline) > Nsim ∗ (Tsim + Tclient) + Nintrans ∗ Tintrans (6.1)

Table 27 defines the terms used in this model. Expanding the terms Tclient, Tintrans,

V CEF , and σ gives us:

Tclient = Tsend + Tgather (6.2)

Tintrans = Trecv + Tidle + Tdelay + Tviz (6.3)

σ = Nintrans/Nsim (6.4)

V CEF = Tinline/σ ∗ Tviz (6.5)

In practice, we find that Trecv and Tdelay are zero and the client pays the cost of

serializing and sending data to the server. Plugging in these expanded terms into

Equation 6.1 and simplifying, we get:

Tinline ∗ (1 − 1

σ ∗ V CEF
) > Tsend + Tgather + σ ∗ Tidle (6.6)
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In general, M simulation processes are coupled with N in transit visualization

processes. When N is less than M, σ is less than 1, implying that simulation clients

incur a cost needed to gather the data before it is sent over to the N in transit

visualization processes. Note that this model assumes that there exists no “in-

between” layer such as ADIOS to perform data staging. In other words, data is

transferred directly from simulation process memory to the in transit application

without any data staging nodes. Tgather represents this data gathering cost. When M

is equal to N, Tgather is zero.

The idle time on the in transit application, denoted by Tidle is a natural outcome

of an in transit coupling. When there is only one simulation coupled to an in transit

visualization program, reducing the idle time on the in transit resources can be

difficult to achieve, requiring careful tuning of the MxN ratio. Further, to keep the in

transit resources busy, the application would need to invoke visualization operations

more frequently than needed. Otherwise, the benefits from this mode of operation

may not be able to justify the additional costs involved.

6.4.1.2 Shared-service Cost Model. The fundamental motivation to have

multiple simulations share the same in transit service is to reduce Tidle. The other

benefit of having multiple simulations connect to a shared, in transit server instance

is to do away with the issue of having to invoke the visualization program more

frequently than needed. The application can invoke the visualization as frequently as

it would like, while the service can take on additional clients if it notices that the Tidle

is large. Essentially, keeping the service as busy as possible ensures the full utilization

of in transit resources and a better chance of achieving cost savings with an in transit

implementation. In the shared scenario with C (homogeneous) application clients
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sharing a single in transit service, Equation 6.1 becomes:

C ∗Nsim ∗ (Tsim + Tinline) >

C ∗Nsim ∗ (Tsim + Tclient) +Nintrans ∗ Tintrans (6.7)

Under the simplifying assumptions where there are no server delays, the simulation

pays the data transfer cost for the RDMA operation, and the server is continuously

busy doing only visualization work, then:

Tintrans = Tviz (6.8)

Plugging these back in to Equation 6.7 and simplifying, we get:

Tinline ∗ (C − 1

V CEF
) > C ∗ (Tsend + Tgather) (6.9)

The problem size determines the Tsend value and the MxN ratio determines the Tgather

time.

6.4.2 Service Architecture and Implementation. SERVIZ is

implemented as a Mochi microservice. This microservice has two components —

the client library and the server library. The client library exposes RPC APIs that a

visualization client (simulation) can invoke directly. The RPC API on the server-side

is implemented as member functions within a service provider — a uniquely addressed

object that can receive and execute RPC calls. Each provider is associated with one

or more Argobots work queues from which it can pull and execute RPC requests. The

provider can also be assigned a set of dedicated OS threads to execute multiple RPC

requests concurrently. Mochi allows the instantiation of one or more service providers

on a server process.

6.4.2.1 SERVIZ API. Table 28 lists and describes the SERVIZ client RPC

APIs. These APIs mimic the functionality exposed by Ascent (see Section 6.3). All

these APIs are implemented as asynchronous RPCs, i.e., the simulation does not
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Table 27. Cost Model: Definition of Terms

Term Description
Nsim Number of simulation nodes

Nintrans Number of in transit visualization nodes
Tsim Total simulation time (excluding visualization)
Tinline Total inline visualization time
Tintrans Total in transit visualization time
Tclient Total client time for in transit operations
Tsend Total time to send simulation data
Trecv Total time to recieve simulation data
Tgather Total time to gather simulation data in MxN coupling
Tidle Total idle time on the server
Tdelay Total time for in transit server delays
Tviz Total time for in transit visualization operations
C Number of application clients per in transit server
σ Ratio of in transit nodes to simulation nodes

V CEF Visualization cost efficiency factor

221



Table 28. SERVIZ API Description

serviz open

Initializes Ascent library through ascent::open()
serviz close

Finalizes Ascent library through ascent::close()
serviz publish

Invokes Ascent publish API through ascent::publish()
serviz execute

Invokes Ascent execute API through ascent::execute()
serviz publish execute atomic

Invokes Ascent publish,and execute calls atomically
serviz execute pending requests

Executes pending (stored) requests on the server

have to block for the execution of the RPC to complete on the server. Once the data

is safely copied out of the simulation buffer, the API call returns a request handle

to the simulation, and the simulation code can proceed with its computation. This

request handle can be used to query the status of the RPC call at a later point in time.

Among the APIs listed in Table 28, the serviz_publish_execute_atomic API holds

particular importance in the context of a shared service. This API takes the Conduit

nodes holding the Ascent options, the mesh data to be published, and the Ascent

actions to execute on the mesh data as input arguments. When multiple simulations

are simultaneously invoking Ascent operations on the server, it is necessary to have

each simulation fully describe the visualization operation to prevent the intermediate

storage of client-specific state information on the in transit server. In other words,

atomically executing the ascent::publish() and ascent::execute() routines inside a

single RPC function on the server simplifies the service implementation.

6.4.2.2 SERVIZ Implementation. The SERVIZ client library is a stub

capable of serializing and transferring data for the RPC call through the Mercury

library (see Section 6.3). The service itself is an MPI executable that implements
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distributed-memory parallelism in Ascent. MPI is not used for the transfer of RPC

data to the service. Each MPI process within the server instantiates a single SERVIZ

provider object. This SERVIZ provider runs within the context of the primary process

thread, i.e., no extra OS threads are used. Also, each provider is associated with a

dedicated Argobots work queue.

The SERVIZ provider object implements the RPC APIs presented in Table 28.

The first four APIs listed in Table 28 result in a direct invocation of the corresponding

Ascent API call after the Conduit nodes are parsed from the RPC arguments.

Notably, these APIs can be invoked only in a dedicated in transit server setting.

When SERVIZ is shared amongst multiple simulations, each simulation invokes the

serviz_publish_execute_atomic API call. Consider the following scenario that

can occur when executing SERVIZ in a shared setting. There are simulations s1 and

s2 sharing a service consisting of two processes p1 and p2. At some point during

the execution, p1’s work queue contains the requests r1 (from s1) and r2 (from s2)

in that order. The work queue on p2 contains the same requests, but in the reverse

order. Given that each RPC request is internally processed as a sequence of MPI

calls (for Ascent) involving both p1 and p2, these processes must be synchronized

and in agreement concerning which request they are currently processing. However,

the SERVIZ providers on each process execute RPC work requests from the work

queue in the order in which they were inserted (FIFO). Note that this situation

arises because of the inherent non-determinism in a multi-client setting and cannot

be avoided. Given that SERVIZ is both — an RPC-based service as well as an MPI

program, this situation needs to be addressed to ensure the correct operation.

MPI rank 0 of each simulation broadcasts a high-resolution timestamp to its

peers to remedy this situation. This timestamp is an additional argument to
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the serviz_publish_execute_atomic API call. On the SERVIZ provider, this

timestamp and the Conduit node data are retrieved and stored in a priority_queue

(heap) that partially sorts the requests based on the timestamp. Each SERVIZ

provider MPI process then pulls the top element from the queue and performs an

MPI Allreduce to check if its peers agree with respect to the request ID. If they are,

the Ascent computation proceeds in parallel. If they are not, this request is stored

for future execution using serviz_execute_pending_requests. The latter scenario

can occur due to delays in receiving and processing the RPC request at the network

layer (beneath Argobots).

Figure 48. SERVIZ: Division Into Multiple Instances

6.4.2.3 SERVIZ Execution Model. The SERVIZ MPI processes can be

divided into one or more service instances as depicted in Figure 48. This strategy

benefits large HPC clusters that do not allow multiple MPI applications to share a

single compute node. Each service instance is given its own MPI communicator to

use for performing parallel Ascent operations.
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The various steps in the invocation and the execution of the service are described

below:

– Generation of Server Addresses: The service MPI program is launched first,

following which the division of the processes into the configured number of server

instances takes place. Each process instantiates its SERVIZ provider and makes

its RPC address public through a file. The service is now ready to accept requests.

– Discovering and Connecting to Servers: Each simulation is provided access to

a specific instance of the service (among those available) through an environment

variable. During its initialize phase, each simulation process reads the service

addresses from the corresponding address file and creates a SERVIZ client object

through which it can make RPC calls. This client object is created once. If the

simulation notices that the number of server ranks is less than the number of client

ranks (MxN, where M > N), it sub-divides its MPI COMM WORLD into N sub-

communicators such that the number of ranks in each sub-communicator is M/N.

This step is not necessary in an MxN coupling where M = N. Note that we make

a simplifying assumption that M divides N exactly.

– Gathering Data on the Simulation: At each iteration where visualization is

to be performed, rank 0 of each simulation sub-communicator gathers the Conduit

mesh data from its peers using MPI. This step is necessary to ensure correctness

of the visualization operation when M > N.

– Execution of the RPC: Once the mesh data has been gathered, rank 0 of each

simulation sub-communicator invokes the SERVIZ API to perform the RPC call.

Note that the SERVIZ API call is asynchronous and returns as soon as the data has

been safely copied out. The simulation ranks that do not participate in the RPC
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call continue on their normal execution path. The service operation is described in

Section 6.4.2.2.

6.4.2.4 SERVIZ Deployment Configurations. One of the benefits

of a service-based model is the flexibility in choosing the SERVIZ deployment

configuration. Figure 49 depicts three ways in which SERVIZ can be deployed and

coupled alongside the simulation. Figure 49a is a SERVIZ deployment configuration

that mimics the (default) inline implementation. The SERVIZ provider is instantiated

on the simulation MPI process in this configuration. Therefore, the RPC calls between

the simulation and the SERVIZ provider are implemented as regular function calls.

Figure 49b depicts a situation where SERVIZ shares the compute node with the

simulation. This mode benefits from using shared memory to transfer the data for

visualization. It is beneficial on clusters that allow multiple MPI applications to

share a compute node. Note that Damaris-viz [133] can be viewed as a particular

case of this deployment configuration — where one core on the node is reserved for

the visualization service. Finally, Figure 49c is an in transit deployment configuration

that allows SERVIZ to run on a dedicated set of compute nodes. This mode allows

SERVIZ to operate as a shared visualization service.

6.4.2.5 SERVIZ Operating Modes. SERVIZ operates in two modes —

Immediate and Delayed. In the Immediate mode, SERVIZ processes a visualization

request at the earliest possible time, i.e., as soon it receives the request. In contrast,

when SERVIZ operates in a Delayed mode, the visualization data corresponding to

the request is stored for future execution. In the Mochi RPC execution model, once

the RPC execution begins, the RPC does not yield control of the OS thread until the

RPC execution is complete. The same OS thread is also responsible for progressing

Mercury RDMA communication to pull client data. Therefore, the mode of operation
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(a) Inline Deployment

(b) Shared-memory Deployment

(c) Shared, In transit Deployment

Figure 49. SERVIZ: Deployment Configurations
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determines the maximum number of simulations that can be coupled with a shared

service instance without causing a simulation-side delay. In the Delayed mode, the

SERVIZ provider continues to store simulation requests until one of two conditions

are met — the SERVIZ provider realizes that there are no more simulation requests

in the queue, or the serviz_execute_pending_requests RPC call is invoked. The

SERVIZ provider begins processing the queued requests and does not yield control

until completion.

6.5 Evaluation

AMR-Wind was chosen as the simulation to evaluate SERVIZ as a shared

visualization service. AMR-Wind, part of the ExaWind [234] project, is a massively

parallel, adaptive mesh solver used to run wind-farm simulations. AMR-Wind is an

MPI-based code with OpenMP and NVIDIA CUDA support for leveraging shared-

memory parallelism. AMR-Wind is integrated with the Ascent inline visualization

framework through the AMReX [235] library. AMR-Wind is an iterative code that

uses an input deck specifying the problem size (grid size), the (maximum) number

of time steps, and the Ascent invocation frequency. We used two problems sizes

in our evaluation: Small (160x64x48 = 491, 520 cells) and Large (320x64x48 =

983, 040 cells). The number of AMR-Wind time steps was fixed at 50 for all our

experiments.

6.5.1 Setup.

6.5.1.1 Hardware. All experiments were run on the Theta supercomputer

at the Argonne Leadership Computing Facility (ALCF). Theta is a Cray XC40 system

hosting an aggregate of 4,392 Intel Knights Landing (KNL) nodes. Each KNL node

has 64 compute cores, 192 GB of DDR4 memory, and 16 GB of high-bandwidth
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MCDRAM memory. The MCDRAM memory can either be configured in cache mode

or flat mode. All the experiments were conducted with the MCDRAM in cache mode.

6.5.1.2 Software. SERVIZ and its Mochi component dependencies were

installed using the Spack [189] package manager. The RADICAL Pilot [236]

ensemble system was employed to set up multiple, simultaneously executing instances

of the AMR-Wind application as a way to emulate a multi-client, shared-service

environment. The latest development versions of Ascent, Conduit, VTK-h, and

VTK-m were installed using the Spack package manager. AMR-Wind and Ascent

were built without OpenMP and GPU support. For all our evaluations, a maximum

of 60 (simulation or server) MPI ranks were placed on a single KNL compute node.

6.5.2 Single Client Experiments. Single client experiments were

conducted to understand the costs of gathering the data in an MxN setting (Tgather),

sending the data using RPC (Tsend), performing in transit visualization (Tviz), and the

idle time (Tidle) on the in transit resource for different simulation and server process

counts. Table 29 depicts the baseline values of the simulation execution time (Tsim)

and the inline Ascent visualization time (Tinline) for AMR-Wind process counts of

120 (2 KNL nodes), 240 (4 KNL nodes), and 360 (6 KNL nodes). When visualization

is performed at every AMR-Wind iteration, it is observed that Ascent operations

account for 20% of the total execution time at a 120-process count, 13% at a 240-

process count, and 12% at a 360-process count. Note that SERVIZ was set up to run

in Immediate mode to mimic the inline execution model.

Table 29. AMR-Wind Inline Visualization Time

# Ranks AMR-Wind Baseline (Tsim) (s) Ascent (Tinline) (s)
120 162 40
240 360 53.5
360 366 48.0
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(a) 120 AMR-Wind ranks, Size = small

(b) 240 AMR-Wind ranks, Size = large

(c) 360 AMR-Wind ranks, Size = large

Figure 50. Single Client In transit Visualization Experiments. X-axis Represents the
Simulation x Server (MxN) Process Counts.
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Figure 50 depicts a detailed break-up of the execution time for a single-client

in transit coupling using different process counts. Across the three simulation

process counts, several common observations can be made. First, in the SERVIZ

implementation, the simulation pays the cost of gathering the data and transferring

the data to the server using RPC. Second, these costs of gathering and transferring

the data steadily grow with the MxN ratio. Third, the wall-time for performing

visualization on the in transit resource also grows with the MxN ratio. This

observation is expected as the concurrency level for performing visualization drops

with a larger MxN ratio. However, the most important observation to make in this

context is that the server has plenty of idle time in all the configurations tested.

For example, as Figure 51 depicts, when there are just 15 in transit server processes

coupled (Immediate mode) to 120 AMR-Wind simulation processes, the idle time

accounts for nearly 60% of the total in transit server time. When each simulation is

coupled with a dedicated in transit server, it is difficult to fill up this idle time on

the server. The only option here would be to reduce the number of in transit server

processes until the idle time is minimized. Even with this fine-tuning, there could

still be idle time if the application invokes the visualization infrequently.

Figure 51. Server Idle Time in Different Modes (Single Client)
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Figure 52. Pending RPC Queue Size: Immediate Mode (120x15)

Figure 53. VCEF and In transit Cost Savings (Single Client)
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Recall that the motivation for reducing the concurrency level of the visualization

is to achieve cost savings through VCEF. A high VCEF value is indicative of a higher

potential for cost savings. Figure 53 is a plot of the VCEF values and cost savings

achieved for a range of MxN couplings for each of the three simulation process counts

— 120, 240, and 360. These MxN values are derived from Figure 50. With a server to

simulation process ratio of 0.041 (corresponding to a 360x15 coupling), for example,

the VCEF value achieved is 7.4, stating that in transit visualization with 15 processes

is 7.4 times more efficient than the default inline implementation at a 360-process

scale. Even with this high VCEF value, the dedicated in transit implementation

cannot achieve cost savings over the inline implementation. Specifically, due to three

factors, a 360x15 in transit coupling is 10% less cost-effective than the default inline

case. First, the data gathering cost (Tgather) and the RPC data transfer cost (Tsend)

increase with the MxN ratio. Second, there is significant idle time on the in transit

server. Third, the cost calculation considers the total number of nodes used and

not the total number of cores (processes). This methodology is consistent with how

most job schedulers on HPC clusters such as Theta allocate and charge for resources,

i.e., at node-level granularity. Further, these job schedulers do not allow multiple

applications to share the same compute node, limiting the number of MPI programs

that can be launched on the compute node to one.

6.5.3 Shared-Server Experiments. The shared-service model realized

through the SERVIZ architecture can address some of the shortcomings of the

dedicated in transit server approach. In particular, the shared-service goal is to

reduce the idle time on the server and make efficient use of in transit node resources.

Recall that SERVIZ operates in two modes — Immediate and Delayed.
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6.5.3.1 Immediate Mode. In the Immediate mode, the server processes

the visualization requests at the earliest possible time after each server process has

“seen” the request. When there are multiple simulations coupled to a server, this can

reduce the idle time on the server. However, as detailed in Section 6.4.2, operating

the server correctly under a multi-simulation, Immediate setting necessarily requires

synchronization across server processes. As shown in Figure 51, this synchronization

adds a small but non-zero cost to the overall request processing time. When

determining the “optimal” number of clients (C) per server instance, the objective is

to minimize the idle time (Tidle) without causing visualization requests to pile up on

the server.

Figure 54 depicts the results of coupling one, two, and three 120-process AMR-

Wind simulations with a 15-process server instance. When two AMR-Wind clients

are coupled with the 15-process server, the idle time on the server drops from 77

seconds (with one client) to 41 seconds. The total time spent doing visualization goes

up from 39% to 70% with two clients with no impact on simulation execution time.

When three clients are coupled with the server, the total percentage of time spent

doing visualization goes up by 2%. However, the simulation execution time increases

by an average of 52 seconds. This is an artificial limitation of the Mercury RPC

implementation, requiring asynchronous RPC requests to be coupled with a wait()

call placed at the end of the simulation execution (before MPI_Finalize()) to ensure

that all the data for visualization is safely copied out of simulation memory before

Mercury is finalized. Future Mercury releases will do away with this unnecessary need

for blocking the simulation for asynchronous RPC calls. Figure 52 is a depiction of

the Argobots pending RPC queue sizes (sampled over time) for each of these three

couplings. A large and growing value for the pending queue size suggests overloading
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the server. While the simulation’s asynchronous RPC invocation strategy can afford

to absorb the impact of some of this overloaded server state, it appears that when

three simulations are coupled to a 15-process server, this leads to significant wait times

on the AMR-Wind simulation. Therefore, the lesson here is to carefully monitor the

Argobots queue size and the simulation-side wait times to determine the optimal

number of simulations per server instance.

Figure 54. Multiple Simulations/Server: Immediate Mode (120x15)

Figure 55. Pending RPC Queue Size: Immediate Mode (Shared)

Given this understanding of how to determine the optimal number of simulations

per server instance in an Immediate setting, a subset of MxN configurations for each
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Figure 56. Simulation Execution Times: Immediate Mode (Shared)

of the three simulation process counts was chosen based on their model-projected

cost savings (see Equation 6.7) when executed in a shared-server setting. Table 30

depicts the chosen simulation and server configurations for different MxN ratios.

The RADICAL Pilot [236] (RP) ensemble system was used to emulate a shared-

service setting wherein the simulations make concurrent requests to the server. Each

simulation or server instance is executed as an independent RP task within a pilot

job (batch job) allocation. A total of 17 nodes were allocated to C1, 33 nodes to C2,

49 nodes were allocated to C3, and 25 nodes to the C4 configuration. In each of these

sub-allocations, the server tasks were launched first, allowing them to share their RPC

addresses with simulations. Next, the simulations were launched simultaneously such

that their execution timelines completely overlapped with each other. Configurations

C1 to C4 were used as a “stress-test” for SERVIZ — visualization was invoked at

every AMR-Wind iteration. For configurationsC5 toC7, visualization was performed

once out of every 8 AMR-Wind iterations to represent a more practical setting. At the

same time, the number AMR-Wind simulations per server instance was increased 8-

fold such that the total amount of visualization work in the system remained constant

between the equivalent configurations of C1-C4 and C5-C7.
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Table 30. Shared-Service Configurations
(Mode (immediate, delayed), Visualization Frequency)

Config MxN #Clients, #Client Nodes #Servers, Processes/Server #Clients/Server Size M F

C1 120x15 8, 16 4, 15 2 small I 1
C2 240x30 8, 32 2, 30 4 large I 1
C3 240x15 12, 48 4, 15 3 large I 1
C4 360x60 4, 24 1, 60 4 large I 1
C5 120x15 64, 128 4, 15 16 small I 1/8
C6 240x30 64, 256 2, 30 32 large I 1/8
C7 360x60 32, 192 1, 60 32 large I 1/8
C8 120x15 64, 128 4, 15 16 small D 1
C9 120x15 88, 176 4, 15 22 small D 1
C10 360x60 30, 180 1, 60 30 large D 1

Figure 56 depicts the execution times of simulations under the different MxN

ratios. It is observed that the simulations in each configuration complete well within

the baseline (inline) execution time. As Figure 57 demonstrates, for C1, SERVIZ

achieves 9% of cost savings over the inline execution time, while for C4, SERVIZ is

able to achieve up to 5% of cost savings. Simultaneously, for C2 and C4, SERVIZ can

reduce the idle time on the server by four times compared to the dedicated in transit

implementation. For the configurations tested, the maximum idle time on the server

is 27% of the total server execution time for C7. As Figure 55 depicts, the pending

RPC queue size for large-scale executions (C5 - C7) does not grow uncontrollably,

indicating that the server configuration (single KNL node) is sufficient to handle the

visualization workload.

6.5.3.2 Delayed Mode. The Delayed mode prioritizes responding to

the visualization requests over processing them immediately. The visualization is

performed later when no simulations are waiting for a data receipt to arrive from

the server. In doing so, many more simulations can be coupled to a single server

instance, compared to Immediate mode. Another benefit is that server processes

need not synchronize, further increasing the capability of the server to take on more

simulations.
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Figure 57. Cost Savings and Idle Time: Immediate Mode (Shared)

Figure 58. Simulation Time and Cost Savings: Delayed Mode (Shared)

Figure 59. Memory Usage: Delayed Mode (Shared)
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As Figure 51 demonstrates, the idle time on the server with a Delayed C1

configuration is more than 95% of the total server execution time (when the simulation

is executing), suggesting that a single, 15-process server instance can comfortably

handle 20 AMR-Wind simulations. However, when the server is actively responding

to visualization requests, the memory usage in the Delayed mode grows with the

number of visualization requests being stored for future execution.

Table 30 enlists the three shared-service configurations that were chosen for

Delayed execution at a large scale. Similar to the Immediate configurations, these

Delayed configurations were launched as a RADICAL Pilot ensemble job. The

simulation task with the highest task ID was programmed within a given configuration

to invoke the serviz_execute_pending_requests API after completing its time step

iteration loop. At this point, the server immediately switched to executing the stored,

pending visualization tasks until completion. The cost savings calculations were made

by taking note of this time to execute the stored, pending requests. Batch systems do

not allow partial freeing of compute nodes associated with completed tasks within a

batch job. This constraint was relaxed while performing the cost savings calculations.

Figure 58 depicts the cost savings achieved over the baseline inline implementation

and the server idle time for configurations C8, C9, and C10.

The Delayed mode of operation offers up to 12.2%, 11.1%, and 6.2% cost

savings over inline for C8, C9, and C10 respectively. The observations from

Figure 59 suggest that the limiting factor for this mode of operation is node

memory. Specifically, the memory usage steadily grows with the request ID (or

simulation iteration count) until the execution of pending requests is triggered through

serviz_execute_pending_requests.
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Table 31. SERVIZ: Lines of Code

Component Lines of Code
Data Gathering Logic 70

Service Discovery (simulation) 100
Service Invocation (simulation) 15
Service API Implementation 800

Service Template Code (Mochi framework) 3100

6.6 Discussion

As Section 6.4 elucidates, a service-based model is an attractive way to develop

and deploy customized functionality in myriad ways. One element that was

not emphasized in our experiments is the ease and speed with which it can be

implemented. SERVIZ was assembled using off-the-shelf HPC software in a relatively

short period, and minimal code changes were required to invoke and use the SERVIZ

infrastructure. Table 31 depicts the total lines of code that were required to

integrate SERVIZ into the AMR-WIND application. Notably, the simulation-side

code changes were approximately 200 lines of code, of which a majority was dedicated

to implementing the data gathering and the service discovery. Concerning the

SERVIZ provider implementation, user-supplied lines of code were just 800, and the

remaining 3100 lines of code were attributed to the off-the-shelf Mochi microservice

programming template. The shared-service model also has additional cost advantages

and functional advantages that should be explored as future work.

Concerning additional cost savings, we see two main opportunities with SERVIZ

both from embracing a throughput model. Of note, most in situ visualization software

to date has been designed with latency in mind. Those motivators are no longer

present with the SERVIZ model, allowing it to focus on throughput instead of latency.

The first is to increase VCEF by running at a smaller and smaller concurrency level

in terms of the opportunities. For example, SERVIZ could experiment with running
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each successive visualization task from a simulation code on fewer and fewer cores to

find the maximum VCEF factor. The second opportunity is to minimize idle time.

SERVIZ needs sufficient to be sufficiently busy to achieve cost savings. “Work” should

be evaluated relative to the computational resources, and one way to ensure this work

exists is to use fewer resources. This could create a scenario where the backlog of

visualization tasks becomes unacceptably large. However, the balance of tasks and

resources can be perfectly “right-sized” with an adaptive monitoring component that

can retain tasks on the client nodes when a backlog emerges. This could optimize our

cost equations, i.e., maximizing VCEF and zeroing out idle.

On the functional side, SERVIZ shares some benefits with traditional in transit

approaches and provides some new ones. Like traditional in transit, SERVIZ

also has advantages over inline concerning fault tolerance and robustness. A

functional advantage distinct to SERVIZ is the ability to do comparative analysis

and visualization, whether across ensembles of related simulations or across time

steps of a single simulation. SERVIZ would not be the first to do such an analysis,

however, as Melissa [230] has been doing this for ensembles.

There are limitations with both our implementation and potentially with the

approach overall. Concerning implementation, the SERVIZ development was

constrained by restrictions in the HPC execution environment. Many platforms,

Theta included, disallow the over-subscription of node-level resources. A node is

limited to use by a single application, and the number of application processes is

effectively capped to the number of available hardware cores. As a result, it was more

difficult, if not impossible, to implement specific SERVIZ scenarios. For example,

imagine a scenario where the simulation has fewer ranks than the total cores on each

node. It would be interesting to seamlessly configure SERVIZ to run the visualization
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server on the simulation resources through a shared-memory coupling. By being co-

located with the simulation, this mode of deployment can take advantage of the “free

energy” on the compute node while minimizing the data transfer costs. Overall,

concerning the approach, there is a practical question of how to charge resources.

Most HPC centers provide a bank with an allocation of compute-node hours, and

each job draws from that allocation. We envision SERVIZ living outside that model

and accepting visualization tasks from disparate simulation codes. It is unclear how

this time would be charged to the jobs. Ideally, if our research matures and proves

practical, HPC centers would keep a permanent allocation running free of charge

to make their entire center more efficient. Finally, even with this charging issue

unresolved, our work is applicable for ensembles belonging to a single code team.

6.7 Summary

Chapter VI presented the SERVIZ shared in situ visualization service. We have

demonstrated that a shared-service model offers significant cost savings over inline

and dedicated in transit methods for performing visualization on large-scale clusters.

By leveraging the Mochi microservice framework for development, SERVIZ was

implemented and integrated quickly and with minimal code changes to the simulation

code. Further, we demonstrated that SERVIZ could be configured in two different

modes depending on how quickly the visualization results are desired.
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CHAPTER VII

CONCLUSION AND FUTURE WORK

7.1 Conclusion

HPC software architectures have evolved over the past three decades to support

an ever-increasing need to efficiently run simulations at a higher level of fidelity and

concurrency and on more diverse hardware platforms. A notable outcome of this

evolution is that HPC software has become increasingly modular. More recently, the

emergence of ML workloads and data-centric computing paradigms has accelerated

this trend, partly because integrating these new applications into traditional HPC

workflows requires the support of a broader range of programming models than

just MPI. The timing of the emergence of these new applications, conflated with

the hardware trends that were already underway a decade ago, has resulted in the

emergence of in situ workflows involving user-level HPC services. The onus rests on an

end-user to identify how to optimally configure and deploy these services within these

workflows. The lack of performance tools for these HPC services and the criticality

of an optimal service configuration to the overall workflow performance motivates

the search for a solution. This dissertation strives to answer the following main

research question: How to enable and use performance insight to improve

service configuration when the service is a part of a coupled, HPC in situ

workflow? Chapter I provides an introduction to the challenges that need to be

addressed to answer this central question and breaks down this broader question into

its constituent elements. The following section summarizes the key takeaways from

each chapter of this dissertation.

Chapter II explores the evolution of HPC software development over the past three

decades to identify the key factors driving their design. This exploration identifies
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four broad factors contributing to the need to develop increasingly modular HPC

software: (1) simulation scale and fidelity, (2) the need to support and integrate

newer compute and storage hardware, (3) the need to support a broader range of

applications requiring HPC, and (4) the structure and complexity of HPC software

development teams. This chapter follows the parallel evolution of HPC performance

tools with the goal of identifying the techniques that have been developed to observe

and analyze modular software components and to determine the open areas requiring

further study.

Chapter III narrows the focus of this dissertation to generating performance

observability for HPC services that rely on a composition model to build and deploy

custom, scalable distributed components. A background of the Mochi software

framework [6] is discussed to identify the main performance-related queries that

contribute to addressing the broader question of generating an improved service

configuration.

Chapter IV presents the tool solutions to address each of the performance-related

queries raises in Chapter III. The tool solutions, packaged as SYMBIOSYS and

SYMBIOMON, comprise various techniques borrowed from the HPC community

and the broader cloud community. The challenge lies in understanding how to

adapt them to be applicable for performance observability and monitoring of HPC

microservices. Distributed callpath profiling and tracing generate a picture of

the dominant high-level microservice operations. These callpath profiles, when

embellished with rich performance data from the RPC layer, make visible the

occurrence of low-level events and account for their contribution to the total RPC

execution time. Sampling is employed to provide a hardware-centric view of the

service execution. We find statistical analysis of time-series metrics useful to identify
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a better service configuration when the cause of the performance inefficiency lies

within the microservice API.

Chapter V addresses the challenge of enabling ubiquitous performance monitoring

of a variety of workflow components, including MPI applications and ensembles. A

plugin architecture for the TAU performance system enables the seamless integration

of SYMBIOMON’s monitoring capabilities into MPI applications and ensembles,

while simultaneously leveraging TAU’s existing measurement capabilities.

Chapter VI demonstrates the broader utility of the core Mochi components to

develop and deploy high performance functionality as microservices. This capability

is demonstrated through SERVIZ, a shared in situ visualization service. SERVIZ

is a hybrid MPI + RPC distributed application capable of realizing more cost

savings than traditional in transit visualization approaches. Through SERVIZ, we

demonstrate that such shared services can be rapidly developed and deployed with

MPI applications while requiring a minimal set of code changes.

7.2 Future Work

The research presented in this dissertation opens up broad avenues for future work

with high performance microservices. Some of these future directions are discussed

here.

7.2.1 Enabling Online Service Adaptivity. While the main focus

of this dissertation is to enable the performance observability and monitoring

of HPC microservices, the automatic adaptation of the service in response to

changes in the client workload represents the ultimate goal for this performance

infrastructure. Enabling online service adaptivity is a complex undertaking involving

the navigation of a large parameter search space and a separate set of challenges

concerning the actuation of these parameter changes. Our initial experiments suggest
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combining state-of-the-art ML-based search strategies (such as those employed by

DeepHyper [237]) with the first-principles approach to performance observation

analysis represented by the SYMBIOSYS and SYMBIOMON tools can potentially

accelerate the process of narrowing down this large search space.

7.2.2 Elastic In Situ Visualization. The research presented in Chapter VI

suggests that a shared visualization service can yield significant cost savings, thereby

improving the overall efficiency of the HPC cluster. However, if we can demonstrate

their elastic operation and their ability to respond appropriately to the changing

mix of applications running on the platform, this would strengthen the case of

exposing these shared services to user applications. Doing so requires a monitoring

solution combined with the shared visualization service. Composing the existing

SYMBIOMON monitoring system with the SERVIZ visualization service is an

interesting first step to be explored as a solution.

7.2.3 User-level Shared Monitoring + Learning Service. The idea of

a shared user-level service to improve the overall efficiency of the HPC cluster also

finds a potential application in performance monitoring and analysis. Specifically,

a delayed, throughput-oriented performance monitoring and analysis model can be

implemented using shared services running on cluster-owned node resources. The

applications (jobs) running on the cluster serve as the source for the performance

data, while the performance monitoring infrastructure hosts the storage, analysis, and

learning components. Further, these storage and analysis services can be partitioned

to represent different usage modes: (1) one partition to serve the immediate adaptivity

needs of applications currently running in the system, (2) one partition to enable

remote monitoring of performance data, and (3) another partition to perform “long-

term” performance analysis and learning to yield knowledge about the mix of jobs
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and how they use the cluster resources. This research would open up interesting

questions about implementing quality of service for these different operating modes.
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[95] S. Ramesh, A. Mahéo, S. Shende, A. D. Malony, H. Subramoni, A. Ruhela, and
D. K. D. Panda, “Mpi performance engineering with the mpi tool interface: the
integration of mvapich and tau,” Parallel Computing, vol. 77, pp. 19–37, 2018.

[96] E. Gallardo, J. Vienne, L. Fialho, P. Teller, and J. Browne, “Employing mpi t in
mpi advisor to optimize application performance,” The International Journal of
High Performance Computing Applications, vol. 32, no. 6, pp. 882–896, 2018.

[97] M.-A. Hermanns, N. T. Hjelm, M. Knobloch, K. Mohror, and M. Schulz, “The
mpi t events interface: An early evaluation and overview of the interface,”
Parallel computing, vol. 85, pp. 119–130, 2019.

[98] B. Mohr, A. D. Malony, S. Shende, and F. Wolf, “Design and prototype of a
performance tool interface for openmp,” The Journal of Supercomputing, vol. 23,
no. 1, pp. 105–128, 2002.

256



[99] M. Itzkowitz and Y. Maruyama, “Hpc profiling with the sun studio™
performance tools,” in Tools for high performance computing 2009. Springer,
2010, pp. 67–93.

[100] H. Jagode, A. Danalis, H. Anzt, and J. Dongarra, “Papi software-defined events
for in-depth performance analysis,” The International Journal of High
Performance Computing Applications, vol. 33, no. 6, pp. 1113–1127, 2019.

[101] J. Logan, M. Ainsworth, C. Atkins, J. Chen, J. Y. Choi, J. Gu, J. M. Kress,
G. Eisenhauer, B. Geveci, W. Godoy et al., “Extending the publish/subscribe
abstraction for high-performance i/o and data management at extreme scale,”
Bulletin of the IEEE Technical Committee on Data Engineering, vol. 43, no. 1,
2020.

[102] G. Merlo, S. Janhunen, F. Jenko, A. Bhattacharjee, C. Chang, J. Cheng,
P. Davis, J. Dominski, K. Germaschewski, R. Hager et al., “First coupled
gene–xgc microturbulence simulations,” Physics of Plasmas, vol. 28, no. 1, p.
012303, 2021.

[103] V. Sarkar, W. Harrod, and A. E. Snavely, “Software challenges in extreme scale
systems,” in Journal of Physics: Conference Series, vol. 180, no. 1. IOP
Publishing, 2009, p. 012045.

[104] E. Deelman, T. Peterka, I. Altintas, C. D. Carothers, K. K. van Dam,
K. Moreland, M. Parashar, L. Ramakrishnan, M. Taufer, and J. Vetter, “The
future of scientific workflows,” The International Journal of High Performance
Computing Applications, vol. 32, no. 1, pp. 159–175, 2018.

[105] D. A. Chappell, Enterprise service bus. ” O’Reilly Media, Inc.”, 2004.

[106] P. H. Beckman, P. K. Fasel, W. E. Humphrey, and S. M. Mniszewski, “Efficient
coupling of parallel applications using paws,” in Proceedings. The Seventh
International Symposium on High Performance Distributed Computing (Cat. No.
98TB100244). IEEE, 1998, pp. 215–222.

[107] D. Bernholdt, F. Bertrand, R. Bramley, K. Damevski, J. Kohl, S. Parker, and
A. Sussman, ““mxn” parallel data redistribution research in the common
component architecture (cca).”

[108] I. B. Peng, R. Gioiosa, G. Kestor, E. Laure, and S. Markidis, “Preparing hpc
applications for the exascale era: A decoupling strategy,” in 2017 46th
International Conference on Parallel Processing (ICPP). IEEE, 2017, pp. 1–10.

[109] R. Latham, R. Ross, and R. Thakur, “Can mpi be used for persistent parallel
services?” in European Parallel Virtual Machine/Message Passing Interface
Users’ Group Meeting. Springer, 2006, pp. 275–284.

257



[110] J. A. Zounmevo, D. Kimpe, R. Ross, and A. Afsahi, “Using mpi in
high-performance computing services,” in Proceedings of the 20th European MPI
Users’ Group Meeting, 2013, pp. 43–48.

[111] D. Zhao, Z. Zhang, X. Zhou, T. Li, K. Wang, D. Kimpe, P. Carns, R. Ross,
and I. Raicu, “Fusionfs: Toward supporting data-intensive scientific applications
on extreme-scale high-performance computing systems,” in 2014 IEEE
international conference on big data (Big Data). IEEE, 2014, pp. 61–70.
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