
DEFENDING AGAINST IOT-ENABLED DDOS ATTACKS AT CRITICAL

VANTAGE POINTS ON THE INTERNET

by

DEVKISHEN SISODIA

A DISSERTATION

Presented to the Computer and Information Science
and the Division of Graduate Studies of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

June 2022

DISSERTATION APPROVAL PAGE

Student: Devkishen Sisodia

Title: Defending Against IoT-Enabled DDoS Attacks at Critical Vantage Points on
the Internet

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Computer and Information
Science by:

Jun Li Chair
Joe Sventek Core Member
Lei Jiao Core Member
Ramón Alvarado Institutional Representative

and

Krista Chronsiter Vice Provost for Graduate Studies

Original approval signatures are on file with the University of Oregon Division of
Graduate Studies.

Degree awarded June 2022

ii

© 2022 Devkishen Sisodia
All rights reserved.

iii

DISSERTATION ABSTRACT

Devkishen Sisodia

Doctor of Philosophy

Computer and Information Science

June 2022

Title: Defending Against IoT-Enabled DDoS Attacks at Critical Vantage Points on
the Internet

The number of Internet of Things (IoT) devices continues to grow every

year. Unfortunately, with the rise of IoT devices, the Internet is also witnessing a

rise in the number and scale of IoT-enabled distributed denial-of-service (DDoS)

attacks. However, there is a lack of network-based solutions targeted directly

for IoT networks to address the problem of IoT-enabled DDoS. Unlike most

security approaches for IoT which focus on hardening device security through

hardware and/or software modification, which in many cases is infeasible, we

introduce network-based approaches for addressing IoT-enabled DDoS attacks.

We argue that in order to effectively defend the Internet against IoT-enabled DDoS

attacks, it is necessary to consider network-wide defense at critical vantage points

on the Internet. This dissertation is focused on three inherently connected and

complimentary components: (1) preventing IoT devices from being turned into

DDoS bots by inspecting traffic towards IoT networks at an upstream ISP/IXP, (2)

detecting DDoS traffic leaving an IoT network by inspecting traffic at its gateway,

and (3) mitigating attacks as close to the devices in an IoT network originating

DDoS traffic. To this end, we present three security solutions to address the three

aforementioned components to defend against IoT-enabled DDoS attacks.

iv

This dissertation includes published and unpublished co-authored materials.

v

CURRICULUM VITAE

NAME OF AUTHOR: Devkishen Sisodia

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, OR, USA
The University of Texas at Arlington, Arlington, TX, USA

DEGREES AWARDED:

Doctor of Philosophy, Computer and Information Science, 2022, University
of Oregon

Bachelor of Science, Computer Science, 2015, The University of Texas at
Arlington

AREAS OF SPECIAL INTEREST:

Network Security
Network Traffic Analysis
Network Measurement

PROFESSIONAL EXPERIENCE:

Research and Teaching Assistant, University of Oregon, 2015 - 2022
Research and Teaching Assistant, University of Texas at Arlington, 2013 -

2015
Research Assistant, Indiana University–Pudue University Indianapolis, 2014
Chief Android Developer and Founding Member, Geronimobile Studios

LLC, 2012 - 2015

GRANTS, AWARDS AND HONORS:

NSF REU Best Research Contribution Award, 2014
Oregon Cyber Security Day Outstanding Poster Prize, 2018

vi

PROFESSIONAL SERVICES:

Student Member, CIS Diversity Committee, University of Oregon, 2022
Volunteer, ACM SIGCOMM 2021 Hackathon: ISP-DDoS, 2021
Reviewer, IEEE/ACM Transactions on Networking (ToN), 2021
Reviewer, IEEE/ACM International Symposium on Quality of Service

(IWQoS), 2021
Reviewer, IEEE Internet of Things Journal (IoT-J), 2020
Reviewer, IEEE Transactions on Dependable and Secure Computing

(TDSC), 2019
Reviewer, IEEE Journal on Selected Areas in Communications (JSAC), 2019
Demonstration and Poster Chair, Oregon Cyber Security Day, University of

Oregon, 2017
Technical Program Committee Chair, Research Experience for

Undergraduates Symposium, Indiana University–Pudue University
Indianapolis, 2014

PUBLICATIONS:

Jun Li, Devkishen Sisodia, Yebo Feng, Lumin Shi, Mingwei Zhang, Samuel
Mergendahl, Christopher Early, Peter Reiher (2022). Toward Adaptive
Distributed Filtering of DDoS Traffic. In Preparation.

Lumin Shi, Devkishen Sisodia, Jun Li, Mingwei Zhang, Alberto Dainotti,
Peter Reiher (2022). The Moving Target Attack: On Quantifying Multi-
Wave Victims in DDoS Mitigation. In Preparation.

Yebo Feng, Jun Li, Devkishen Sisodia, Peter Reiher (2022). On Explainable
and Adaptable Detection of Distributed Denial-of-Service Traffic.
IEEE Transactions on Secure and Dependable Computing (TDSC). In
Submission.

Yebo Feng, Jun Li, Devkishen Sisodia (2022). CJ-Sniffer: Measurement
and Content-Agnostic Detection of Cryptojacking Traffic. International
Symposium on Research in Attacks, Intrusions and Defenses (RAID). In
Submission.

vii

Devkishen Sisodia, Jun Li, Samuel Mergendahl, Hasan Cam (2021). A
Two-Mode, Adaptive Security Framework for Smart Home Security
Applications. ACM Transactions on Internet of Things (TIoT). In
Submission.

Jun Li, Devkishen Sisodia, Shad Stafford (2021). On the Detection of
Smart, Self-Propagating Internet Worms. IEEE Transactions on Secure
and Dependable Computing (TDSC). In Submission.

Jelena Mirkovic, Stephen Hayne, Michalis Kallitsis, Wes Hardaker,
John Heidemann, Christos Papadopoulos, Devkishen Sisodia (2021).
Cybersecurity Datasets: A Mirage (White Paper). NSF Workshop on
Overcoming Measurement Barriers to Internet Research (WOMBIR).

Devkishen Sisodia, Jun Li, Lei Jiao (2020). In-Network Filtering of
Distributed Denial-of-Service Traffic with Near-Optimal Rule Selection.
ACM ASIA Conference on Computer and Communications Security
(ASIACCS).

Devkishen Sisodia (2020). On the State of Internet of Things Security:
Vulnerabilities, Attacks, and Recent Countermeasures (Technical Report
AREA-202001-Sisodia). Computer and Information Science, University
of Oregon.

Lumin Shi, Samuel Mergendahl, Devkishen Sisodia, Jun Li (2020). Bridging
Missing Gaps in Evaluating DDoS Research. USENIX Workshop on
Cyber Security Experimentation and Test (CSET).

Yebo Feng, Jun Li, Devkishen Sisodia (2020). Content-Agnostic
Identification of Cryptojacking in Network Traffic (Extended Abstract).
ACM ASIA Conference on Computer and Communications Security
(ASIACCS).

Lumin Shi, Samuel Mergendahl, Devkishen Sisodia, Jun Li (2020). Playing
in the Sandbox: A Step Towards Sound DDoS Research Through
High-Fidelity Evaluation (Extended Abstract). Passive and Active
Measurement Conference (PAM).

Mingwei Zhang, Lumin Shi, Devkishen Sisodia, Jun Li, Peter Reiher (2019).
On Multi-Point, In-Network Filtering of Distributed Denial-of-Service
Traffic. IFIP/IEEE International Symposium on Integrated Network
Management (IM).

viii

Lumin Shi, Devkishen Sisodia, Mingwei Zhang, Jun Li, Alberto Dainotti,
Peter Reiher (2019). The Catch-22 Attack (Extended Abstract). Annual
Computer Security Applications Conference (ACSAC).

Devkishen Sisodia, Samuel Mergendahl, Jun Li, Hasan Cam (2018).
Securing the Smart Home via a Two-Mode Security Framework. EAI
International Conference on Security and Privacy in Communication
Networks (SecureCom).

Samuel Mergendahl, Devkishen Sisodia, Jun Li, Hasan Cam (2018). FR-
WARD: Fast Retransmit as a Wary but Ample Response to Distributed
Denial-of-Service Attacks from the Internet of Things. International
Conference on Computer Communications and Networks (ICCCN).

Tianchong Gao, Wei Peng, Devkishen Sisodia, Tanay Kumar Saha, Feng Li,
Mohammad Al Hasan (2018). Android Malware Detection via Graphlet
Sampling. IEEE Transactions on Mobile Computing (TMC).

Samuel Mergendahl, Devkishen Sisodia, Jun Li, Hasan Cam (2017). Source-
End DDoS Defense in IoT Environments (Extended Abstract). Workshop
on Internet of Things Security and Privacy (IoT S&P).

Wei Peng, Tianchong Gao, Devkishen Sisodia, Tanay Kumar Saha, Feng
Li, Mohammad Al Hasan (2016). ACTS: Extracting Android App
Topological Signature Through Graphlet Sampling. IEEE Conference
on Communications and Network Security (CNS).

ix

ACKNOWLEDGEMENTS

I sincerely thank my advisor, Jun Li, for guiding me throughout my journey

to my Ph.D. and providing me with invaluable lessons on how to be an effective

leader. With these lessons, I hope that one day, I can lead my own students with

kindness, compassion, and empathy.

I would also like to thank my other committee members, Joe Sventek and

Lei Jiao, for their guidance as I worked on my final two milestones, and Ramón

Alvarado, for his helpful feedback on how to best structure this thesis.

I am forever grateful to the many friends I made during these seven years

in Oregon for helping me get through some of the toughest times in my life. The

relationships I formed here will last a lifetime.

To my old friends, I can’t thank you enough for not only encouraging me to

pursue a Ph.D. far from home, but for motivating me to persevere when I wanted

to quit.

Last, but not least...

x

To my family.

xi

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 1

1.1. Thesis Statement . 2

1.2. Preventing IoT Devices From Being Turned Into DDoS
Bots by Inspecting Traffic Towards IoT Networks at an
Upstream ISP/IXP . 3

1.3. Detecting DDoS Traffic Leaving an IoT Network by
Inspecting Traffic at Its Gateway 4

1.4. Mitigating Attacks as Close to the Devices in an IoT
Network Originating DDoS Traffic 5

1.5. Dissertation Outline . 6

1.6. Co-authored Materials & Acknowledgment 6

1.6.1. Co-authored Materials 6

1.6.2. Acknowledgment . 7

II. BACKGROUND: IOT-ENABLED DDOS 9

2.1. An Overview of IoT-Enabled DDoS 9

2.2. Vulnerabilities That Cause IoT-Enabled DDoS Attacks 12

2.2.1. Open Ports . 12

2.2.2. Security Flaws in Firmware Images 13

2.2.3. Lack of Reliable Patching and Update Mechanisms 14

2.2.4. Weak Credentials and Lack of Strong
Authentication Mechanisms 14

2.3. Countermeasures Against IoT-Enabled DDoS Attacks 15

2.3.1. Detecting the Execution of Malicious Processes 15

2.3.2. Reliable Patching and Update Mechanism 16

xii

Chapter Page

2.3.3. Management of Compromised Devices 17

III. THE STATE OF IOT SECURITY 19

3.1. Vulnerabilities . 19

3.1.1. Lack of Necessary Power for Cryptographic Primitives 19

3.1.2. Security Flaws in Various Communication Protocols 20

3.1.3. Lack of Data Flow Control in Trigger-Action Platforms . . . 22

3.1.4. Lack of Verification in Virtual Personal Assistant Services . . 22

3.2. Attacks . 23

3.2.1. Side-Channel Attacks 23

3.2.2. Voice-Command Injection Attacks 26

3.2.3. Selective-Forwarding Attacks 26

3.2.4. Battery-Draining Attacks 27

3.2.5. DDoS Attacks . 28

3.3. Countermeasures . 30

3.3.1. Access Control . 30

3.3.2. Data Flow Control 32

3.3.3. Recently Proposed Authentication Mechanisms 35

3.3.4. Detecting Side-Channel Attacks 36

3.3.5. Detecting Routing Attacks 36

3.3.6. Detecting Voice-Command Injection Attacks 37

3.3.7. Detecting Attacks via Encrypted Traffic Analysis 38

3.3.8. Detecting Hidden Inter-Application Interactions 38

3.3.9. Improvements to 6LoWPAN Security 39

3.3.10. Recent Encryption Protocols 40

3.3.11. Identification Through Traffic Analysis 41

xiii

Chapter Page

3.3.12. Traffic Shaping to Prevent Unauthorized Identification 42

3.4. Challenges and Open Issues 43

IV. DEFENSE AT AN UPSTREAM ISP/IXP: PREVENTING
IOT DEVICES FROM TURNING INTO DDOS BOTS 46

4.1. Introduction . 47

4.2. Background and Related Work 50

4.2.1. Worm Traffic Detection 50

4.2.2. Content-Agnostic Traffic Analysis 53

4.3. The SWORD Detector . 54

4.3.1. Placement of SWORD 54

4.3.2. BDD: Preventing Fast Scanning via the Burst
Duration Detector 56

4.3.3. QPD: Ensuring Quiescent Periods via the
Quiescent Period Detector 58

4.3.4. Clustering . 61

4.3.5. Design of SWORD 61

4.4. Experiment Methodology for Inbound Worm Detection 62

4.4.1. Procedure Overview 62

4.4.2. The Mirai Worm . 63

4.4.3. Metrics and Parameters 63

4.4.4. Evaluation Environment 64

4.5. Inbound Worm Detection Evaluation 66

4.5.1. Total Number of Mirai IPs Detected 66

4.5.2. False Negative Rate 68

4.5.3. Detection Latency 70

4.5.4. Summary . 73

xiv

Chapter Page

4.5.5. Limitations and Open Issues 73

4.6. Conclusion . 73

V. DEFENSE AT THE GATEWAY: DETECTING DDOS
TRAFFIC LEAVING AN IOT NETWORK 75

5.1. Introduction . 76

5.2. Background and Related Work 78

5.2.1. Smart Home Security Analysis 78

5.2.2. Frameworks and Systems 79

5.2.3. Security Mechanisms for Edge Computing 81

5.2.4. Motivation for the TWINKLE Design and
Possible Extensions 82

5.3. TWINKLE: Design and Architecture 83

5.3.1. Design with Two Modes for IoT-based Security Applications . 84

5.3.2. Architecture of TWINKLE 86

5.3.3. TWINKLE Security Applications 90

5.3.3.1. Example Application to Address
Jamming Attacks 92

5.3.3.2. Example Application to Address
Flooding Attacks 94

5.3.3.3. Example Application to Address Weak Encryption . 95

5.4. TWINKLE Implementation Details 95

5.4.1. Representing a Security Application 96

5.4.2. Automated Routine Instantiation 98

5.4.2.1. Initialization and component threads 98

5.4.2.2. Parsing a security application 100

5.4.2.3. Assigning routines to devices 101

5.4.2.4. Sending routines to devices 101

xv

Chapter Page

5.4.2.5. Executing routines 101

5.4.2.6. Dealing with errors 102

5.4.2.7. Cross-compiling for embedded systems 102

5.4.3. Component Interaction After Routine Instantiation 102

5.4.3.1. Generating suspicious behavior alerts 103

5.4.3.2. Mode switching and invoking the SBHR 103

5.4.3.3. Running the SBHR 104

5.4.3.4. Querying the security manager 104

5.5. DDoS Attack Detection By Transforming D-WARD 105

5.5.1. DDoS Attacks with IoT Devices 105

5.5.2. Prior Art: D-WARD Against DDoS Attacks 105

5.5.3. D-WARD+: A Two-Mode Approach Against
DDoS Attacks . 107

5.6. Evaluation . 110

5.6.1. Retransmissions . 112

5.6.2. Connection Duration 114

5.6.3. Energy Consumption 114

5.6.4. Memory Consumption 115

5.6.5. Naive TCP Flooding Attack 117

5.6.6. Smart TCP Flooding Attack 119

5.6.7. Evaluation Summary 121

5.7. Conclusion . 122

VI. DEFENSE INSIDE OF AN IOT NETWORK:
MITIGATING ATTACKS CLOSER TO THE DEVICES
ORIGINATING DDOS TRAFFIC 123

6.1. Introduction . 123

xvi

Chapter Page

6.2. Background and Related Work 126

6.2.1. IoT Intrusion Detection and Mitigation Systems 126

6.2.2. SDN and NFV for Security 127

6.2.3. DDoS Mitigation at Source-End IoT Networks 130

6.3. Mobile Firewall System Design 131

6.3.1. System Components 131

6.3.1.1. Mobile Security Node 132

6.3.1.2. Security Controller 134

6.3.2. Leveraging the SDN and NFV Design Paradigms 137

6.3.3. Running Security Applications 138

6.3.4. Extensions . 140

6.3.4.1. Security controller in the cloud 140

6.3.4.2. Multiple mobile security nodes 140

6.3.4.3. Crowdsourcing 141

6.4. Evaluation . 141

6.4.1. Procedure Overview 141

6.4.2. Key metric and parameters 142

6.4.3. Evaluation Environment 142

6.4.4. Mitigation Efficacy Results 144

6.5. Conclusion . 147

VII. FUTURE WORK . 149

7.1. Future Work Related to SWORD 149

7.2. Future Work Related to TWINKLE 149

7.3. Future Work Related to The Mobile Firewall System 150

VIII.CONCLUSIONS . 152

xvii

Chapter Page

BIBLIOGRAPHY . 154

xviii

LIST OF FIGURES

Figure Page

1. The three vantage points at which we deploy our network-
based security solutions to tackle IoT-enabled DDoS
attacks. Vantage point 1 is an upstream ISP/IXP to the
protected IoT network, vantage point 2 is a gateway of the
protected IoT network, and vantage point 3 is inside of the
protected IoT network. 2

2. Setting up C&C servers. 10

3. Initial infection. 10

4. Worm propagation. 11

5. Formation of a large-scale botnet. 11

6. Botmaster initiates a DDoS attack. 12

7. C&C servers command the infected devices to attack. 12

8. DDoS attack. 13

9. Placement of the SWORD detector. 54

10. Examples of observed connections over time. 59

11. Number of Mirai IPs in the 1-hour testing period. 65

12. Number of Mirai IPs detected. 67

13. False negative rates. 68

14. Detection latency of Mirai IPs detected. 72

15. The basic architecture of TWINKLE. 86

16. Three example TWINKLE security applications. 93

17. A template XML file for representing a TWINKLE security application. . 96

18. A flow diagram of the interactions between the main
threads in the TWINKLE framework. 98

xix

Figure Page

19. The messages TWINKLE currently supports for inter-
component communication. 101

20. Comparison of number of retransmissions and connection
duration under D-WARD and D-WARD+. 111

21. Energy consumption under D-WARD and D-WARD+,
along with the number of batteries D-WARD+ saves over a
one year period. 113

22. Memory consumption for D-WARD and D-WARD+ (in
regular mode and vigilant mode). In each graph, 80% of all
agflows are good and 80% of all connections are good. 116

23. Behavior of a naive attacker under D-WARD and D-WARD+. 117

24. Behavior of a smart attacker under D-WARD and D-WARD+. 119

25. Diagram of the mobile firewall system. 132

26. Diagram of the security controller’s decision module. 136

27. Three example networks with different infection rates. 143

28. Volume of DDoS traffic allowed with respect to the
percentage of devices infected. 145

29. Percentage of total DDoS traffic generated by the network
with respect to the cumulative distance traveled by the
mobile security node. 146

30. Total DDoS traffic throughput (in terms of Mbps) with
respect to time. 147

xx

LIST OF TABLES

Table Page

1. Total number of Mirai IPs detected by each detector. 66

2. Mirai worm detection latency of each worm detector. 71

3. Comparison of frameworks and systems related to TWINKLE. 80

4. Taxonomy of common attacks in smart home environments. 92

5. Summary of key findings for the DDoS attack case study. 121

xxi

CHAPTER I

INTRODUCTION

The Internet of Things (IoT) is a computer networking paradigm that

refers to scenarios where network connectivity and computing capability extends

to embedded sensors and everyday devices, allowing them to generate, exchange,

consume, and act upon data with minimal to no human intervention. This

paradigm is possible due to recent advancements in the miniaturization of

electronics, networking capabilities, and computing power. Even in its relative

infancy, IoT is already impacting our everyday lives in profound ways, from

healthcare to home automation. By the beginning of 2021, there were around

11.3 billion IoT devices connected to the Internet, and this number is expected

to increase to more than 27 billion by 2025 [129].

While IoT devices and traditional machines suffer from the same types of

attacks, IoT devices tend to be harder to secure due to some unique properties. IoT

devices are often harder to patch and update due to largely non-existent automatic

update systems. Also, they tend to have scarce CPU and memory resources,

and limited battery capacity, if not plugged into an external power source. IoT

devices can have anywhere from a few gigabytes to a few kilobytes of memory.

Furthermore, with many different types of IoT devices, IoT networks are far more

diverse and heterogeneous than traditional networks. These unique properties,

which differentiate IoT devices from traditional machines, hinder the deployment

of existing security mechanisms in IoT environments.

With the rise of IoT devices, the Internet is also witnessing a rise in IoT-

enabled distributed denial-of-service (DDoS) attacks [68]. However, the lack of

attention paid to the ever-growing problem of IoT-enabled DDoS by the IoT

1

Internet...

Protected IoT Network

3 2 1

Figure 1. The three vantage points at which we deploy our network-based security
solutions to tackle IoT-enabled DDoS attacks. Vantage point 1 is an upstream
ISP/IXP to the protected IoT network, vantage point 2 is a gateway of the
protected IoT network, and vantage point 3 is inside of the protected IoT network.

security community has lead to a lack of network-based solutions targeted directly

for IoT networks to address IoT-enabled DDoS. The solutions that do exist usually

require modifications of the IoT devices themselves in order to patch vulnerabilities

that allow for devices to be turned into DDoS bots.

The two main issues facing such solutions that require modifications

are that they are infeasible and not scalable. With regards to feasibility, many

of the devices already connected to the Internet are closed systems, thereby

making modifications at any layer almost impossible. Also, the location of IoT

devices can also make modifications extremely difficult (e.g., devices implanted

in the body). Furthermore, modifying the software or hardware of a device

may require a shutdown, which could cause wide-ranging negative effects. With

regards to scalability, there are billions of IoT devices currently connected to the

Internet [129]; patching each one of them is practically impossible.

1.1 Thesis Statement

Unlike most security approaches for IoT which focus on hardening device

security through hardware and/or software modification, we introduce networking-

2

based approaches for addressing IoT-enabled DDoS attacks. We argue that in order

to comprehensively defend IoT networks, defense must occur at several important

vantage points on the Internet. Thus, the thesis statement is as follows. In order

to effectively defend the Internet against IoT-enabled DDoS attacks, it

is necessary to consider network-wide defense at critical vantage points

on the Internet. This thesis is focused on three inherently connected

and complimentary components: (1) preventing IoT devices from being

turned into DDoS bots by inspecting traffic towards IoT networks at

an upstream Internet service provider (ISP) or Internet exchange point

(IXP), (2) detecting DDoS traffic leaving an IoT network by inspecting

traffic at its gateway, and (3) mitigating attacks as close to the devices

in an IoT network originating DDoS traffic. Figure 1, shows the three

vantage points at which we deploy our network-based security solutions to tackle

IoT-enabled DDoS attacks. We elaborate on each component below.

1.2 Preventing IoT Devices From Being Turned Into DDoS Bots by

Inspecting Traffic Towards IoT Networks at an Upstream ISP/IXP

Self-propagating worms, which ultimately can lead to devastating DDoS

attacks, can infect millions of computers on the Internet in just several minutes. As

witnessed by the recent Mirai [12] worm, worm attacks are real, destructive, and

continue to persist. Although many worm detectors exist, most that we studied

suffer from three drawbacks: none systematically consider countermeasures from

worm authors, potentially causing low effectiveness against evasive worms; all

focus on outbound worms leaving a network, leaving their efficacy against inbound

worms entering a network unanswered; and many require bi-directional traffic to

detect worms, making their placement on the Internet inflexible. We therefore

3

revisit worm detection while avoiding the aforementioned drawbacks of existing

work. We describe our design of SWORD, a new worm detector that focuses on

the fundamental behavior of worms. It includes two complementary modules to

monitor connections from and to a protected network, with one module monitoring

burst durations and the other ensuring quiescent periods. While SWORD can be

deployed at an IoT network’s gateway router, we choose to deploy it at an IoT

network’s upstream ISP/IXP, which is a more challenging placement due to the

likelihood of SWORD only observing partial traffic. However, the main advantage

for deploying SWORD upstream is that it is more cost efficient compared to

running SWORD at each network downstream. Furthermore, if SWORD is effective

at detecting the presence of worms upstream, it will be equally effective, if not

more effective, if deployed at an IoT network’s gateway router. Via extensive

experiments using a real-world Mirai worm trace, we demonstrate that SWORD

is superior to existing detectors at detecting inbound worms, especially those that

are superspreading or surreptitious.

1.3 Detecting DDoS Traffic Leaving an IoT Network by Inspecting

Traffic at Its Gateway

The growth of the IoT is contributing to the rise in cyber attacks on the

Internet. Unfortunately, the resource-constrained IoT devices and their networks

make many classical security systems ineffective or inapplicable. We present

TWINKLE, a security framework for smart home environments that considers

the unique properties of IoT networks. TWINKLE utilizes a two-mode adaptive

security framework that allows an IoT network to be in regular mode for most

of the time, which incurs a low resource consumption rate, and switch to vigilant

mode only when suspicious behavior is detected, which potentially incurs a higher

4

overhead. We also describe critical challenges in implementing TWINKLE in an

IoT environment and explain in detail how we addressed each challenge. We also

provide technical details of the TWINKLE framework, such as the threads that

make up each component and the messages that are passed between threads.

Furthermore, we show the efficacy of TWINKLE, when deployed on a gateway

router, in detecting DDoS traffic leaving an IoT network. Our evaluations show

that TWINKLE is not only effective at securing resource-constrained IoT networks,

but can also successfully detect and prevent DDoS attacks with a significantly lower

overhead than existing solutions.

1.4 Mitigating Attacks as Close to the Devices in an IoT Network

Originating DDoS Traffic

In some IoT networks, security solutions cannot rely on a central location,

where all the network traffic passes through, to be deployed at. Such networks

require security solutions to defend against attacks as close to the devices as

possible. In this chapter, we focus on defense close to the devices in an IoT network

originating DDoS traffic, and present the mobile firewall system, which leverages

the SDN and NFV design paradigms to publish and subscribe security functionality

in an IoT network. This system consists of mobile security nodes that monitor the

network on-demand, and a security controller that decides which security functions

to deploy on the mobile security nodes, given network telemetry data provided

to it by the mobile security nodes. In order to detect and mitigate DDoS traffic

generated by an IoT network, the mobile firewall does not need to modify devices

in the network. Additionally, security functions can be installed on-demand to

handle new security threats as they emerge. Through initial simulations, we show

the efficacy of the mobile firewall system at mitigating DDoS traffic from an IoT

5

network. The mobile firewall system is an ongoing project that we will continue

to work on in the future. We plan on eventually implementing a fully functioning

prototype in a real IoT network.

1.5 Dissertation Outline

The rest of this dissertation is organized as follows. In Chapter II, we

provide a background of IoT-enabled DDoS attacks, common vulnerabilities that

lead to IoT-enabled DDoS attacks, and countermeasures for handling IoT-enabled

DDoS attacks. In Chapter III, we briefly survey the current state of IoT security,

and discuss several challenges facing IoT security research and missing gaps that we

believe have not been sufficiently addressed. In Chapter IV, we present SWORD,

our solution to preventing IoT devices from being turned into DDoS bots by

inspecting traffic towards IoT networks at an upstream ISP/IXP. In Chapter V,

we present TWINKLE, our solution to detecting DDoS traffic leaving an IoT

network by inspecting traffic at its gateway. In Chapter VI, we present the mobile

firewall system, our solution to mitigating attacks as close to the devices in an IoT

network originating DDoS traffic. Finally, we discuss future work in Chapter VII,

and conclude the dissertation in Chapter VIII.

1.6 Co-authored Materials & Acknowledgment

1.6.1 Co-authored Materials. Most of the content in this thesis

is from published and unpublished work. Below we connect each chapter to the

material and authors that contributed to it.

– Chapter II and Chapter III:

∗ Published as Devkishen Sisodia. On the State of Internet of Things

Security: Vulnerabilities, Attacks, and Recent Countermeasures.

6

Computer and Information Science, University of Oregon, Technical

Report, AREA-202001-Sisodia, 2020

– Chapter IV:

∗ Unpublished as Jun Li, Devkishen Sisodia, Shad Stafford. On

the Detection of Smart, Self-Propagating Internet Worms. IEEE

Transactions on Secure and Dependable Computing, 2021. In

submission.

– Chapter V:

∗ Unpublished as Devkishen Sisodia, Jun Li, Samuel Mergendahl, Hasan

Cam. A Two-Mode, Adaptive Security Framework for Smart Home

Security Applications. ACM Transactions on Internet of Things, 2021.

In submission.

∗ Published as Devkishen Sisodia, Samuel Mergendahl, Jun Li, Hasan

Cam. Securing the Smart Home via a Two-Mode Security Framework.

International Conference on Security and Privacy in Communication

Networks, 2018.

– Chapter VI:

∗ Unpublished as Derek Strobel, Sam Mergendahl, Zhangxiang Hu,

Matthew Supan, Devkishen Sisodia, Jun Li. An Open Firewall

Ecosystem with On-Demand Security for Internet of Things, 2020. In

preparation.

1.6.2 Acknowledgment. The material presented in this thesis is

partially based upon work supported by the National Science Foundation under

7

Grant No. 0644434 and the Science and Technology Directorate of the United

States Department of Homeland Security under contract number D15PC00204.

The views and conclusions contained herein are those of the authors and should

not be interpreted necessarily representing the official policies or endorsements,

either expressed or implied, of the National Science Foundation, the Department of

Homeland Security, or the US Government.

8

CHAPTER II

BACKGROUND: IOT-ENABLED DDOS

In the this chapter, we provide an overview of IoT-enabled DDoS attacks,

detail vulnerabilities that can lead to IoT-enabled DDoS attacks, and present recent

countermeasures to tackle IoT-enabled DDoS attacks.

The chapter is derived in part from the following published work: On

the State of Internet of Things Security: Vulnerabilities, Attacks, and Recent

Countermeasures [131] by Sisodia, D. I am the leading author of this work, and

the content of this chapter was written entirely by me.

2.1 An Overview of IoT-Enabled DDoS

A distributed denial-of-service (DDoS) attack is an attack that attempts

to render a service, machine, or network, which we term the victim, inaccessible

to benign users by overwhelming the victim with a flood of network traffic, which

we term attack traffic. IoT-enabled DDoS attacks are simply DDoS attacks where

the attack traffic is generated by infected IoT devices. Over the last decade, the

Internet is witnessing a rise in IoT-enabled DDoS attacks [68], and this trend will

only continue to grow.

Let us begin by studying how IoT-enabled DDoS attacks are generally

launched on the Internet. Before launching an IoT-enabled DDoS attack, an

attacker must have access to a botnet of infected IoT devices which can be used to

send DDoS traffic to the victim. In order to build an IoT botnet, a malicious entity,

which we call the botmaster, will initially set up command and control (C&C)

servers around the world, as shown in Figure 2. The botmaster will use these C&C

servers to first initiate the infection of IoT devices and later send commands to the

infected IoT devices.

9

Botmaster

C&C Server

Figure 2. Setting up C&C servers.

Botmaster

C&C Server

Infected Device

Figure 3. Initial infection.

Once set up, the C&C servers will begin the initial infection of IoT devices

through worm propagation, as shown in Figure 3. It does so by scanning the

Internet for potentially vulnerable IoT devices susceptible to brute-force attacks.

For example, the Mirai worm identified potential victims by sending TCP SYN

probes to pseudo-random IPv4 addresses on telnet TCP ports 23 and 2323 [12].

If an IoT device were to respond to a probe, the C&C server would enter into a

brute-force login phase, during which the C&C server would try to establish a

telnet connection using predetermined username and password pairs from a list

of common credentials or default credentials from IoT vendors. Unfortunately, this

was a highly effective attack because there are hundreds of thousands of devices

10

Botmaster

C&C Server

Infected Device

Figure 4. Worm propagation.

Botmaster

C&C Server

Infected Device

Figure 5. Formation of a large-scale botnet.

on the Internet which use default settings. Once infected, the device, now a bot,

will listen for commands from the C&C server. The initially infected IoT devices

will continue to spread the worm by rapidly scanning the Internet and launching

brute-force attacks themselves, as shown in Figure 4, eventually forming a large-

scale botnet that potentially spans the entire globe, as shown in Figure 5.

After the botnet is formed, the botmaster can initiate a DDoS attack by

notifying the C&C servers of the victim IP address to target, as shown in Figure 6.

The C&C servers will then relay that information to the bots, as shown in Figure 7.

Note, depending on the attack, the botmaster may only select a subset of bots

to use for the attack. Finally, the subset of attacking bots flood the victim with

11

Botmaster

C&C Server

Infected Device

DDoS Victim

Figure 6. Botmaster initiates a DDoS attack.

Botmaster

C&C Server

Infected Device

DDoS Victim

Figure 7. C&C servers command the infected devices to attack.

attack traffic thus causing a DDoS attack, as shown in Figure 8. Most botnets have

the capability to launch numerous different types of DDoS attacks. For example,

Mirai’s DDoS attack capabilities include TCP SYN flooding, UDP flooding, TCP

ACK flooding, GRE-flooding, along with HTTP GET, POST and HEAD attacks,

among others [12].

2.2 Vulnerabilities That Cause IoT-Enabled DDoS Attacks

2.2.1 Open Ports. A major concern to the security of IoT networks

is the significant number of devices with unnecessarily open ports. The first step

in infecting an IoT device with malware to turn it into a DDoS bot is to gain

access to it by creating a connection to it on an open port. Czyz et al. [40] showed

12

Botmaster

C&C Server

Infected Device

DDoS Victim

Figure 8. DDoS attack.

that a large number of IoT devices are only reachable over IPv6, and various IoT

protocols are more accessible over IPv6 than over IPv4 (e.g., 6LoWPAN). They

discovered that a given IPv6 port is almost always more open than the same port

is in IPv4. For example, IPv6 had 5% more open SSH ports, and 46% more open

Telnet ports as compared to IPv4. They also concluded that there was a systemic

failure in organizations to deploy consistent security policies for their devices as it

pertains to port blocking. Lastly, the authors debunked the belief that the security

threat of open ports in IPv6 is dampened due to the infeasibility of IPv6 network-

wide scanning by discovering high-value hosts through scanning alone.

2.2.2 Security Flaws in Firmware Images. Costin et al. [37]

performed simple static analysis on 32,000 embedded firmware images, and

discovered 38 previously unknown vulnerabilities in almost 700 firmware images.

They were also able to verify that some of those vulnerabilities are affecting at

least 140,000 devices on the Internet. Specifically, the authors were able to extract

private RSA keys and their self-signed certificates used in an estimated 35,000

online devices (many of these devices were surveillance cameras). The authors were

also able to extract 100 distinct hard-coded password hashes, and, for 58 of them,

13

recover the original passwords. However, simple static analysis alone is insufficient

to discover all of the vulnerabilities in a given firmware image, and therefore the

number and severity of the vulnerabilities discovered through only simple static

analysis should be very worrying.

2.2.3 Lack of Reliable Patching and Update Mechanisms. In

order to minimize the number of attack vectors, operating systems, firmware,

and applications should be patched regularly. However, many manufacturers

either do not regularly maintain security patches, or do not have automated

update mechanisms in place [99]. Some devices themselves may lack software

updating capabilities, while others may outlive the limited period for which they

receive updates. Even if updates are available, they may be challenging to apply,

as some devices may require users to actively install updates, while those that

automatically install might need to restart to update their firmware, causing gaps

in availability [125]. Furthermore, even available update mechanisms lack integrity

guarantees, rendering them vulnerable to man-in-the-middle and modification

attacks.

2.2.4 Weak Credentials and Lack of Strong Authentication

Mechanisms. Weak credentials and lack of strong authentication mechanisms is

a major concern for IoT devices. In 2010, Cui et al. [39] conducted Internet-scale

probing and uncovered more than half a million embedded devices with default

credentials. Most of these devices belonged to government organizations, large

enterprises, ISPs, and educational institutions. Two years later, in 2012, the Carna

botnet revealed that there were more than 1.2 million devices online with no or

default credentials [92]. Weak credentials have in fact led to large-scale, real-world

attacks [92, 12, 89, 62].

14

Note, brute-force, or dictionary attacks, can easily be launched against

IoT devices, especially those using weak credentials. As we discussed, there are

a significant number of open IoT devices with no, default, or weak credentials,

a vulnerability that can be exploited fairly easily. One of the most notorious

examples of such exploitations is the Mirai malware which at one point infected

over 300,000 IoT and embedded devices all over the world [12]. The botnet that

was formed from the infected devices was used to launch devastating DDoS attacks

against multiple targets (Krebs on Security, OVH, and Dyn), where the Krebs on

Security attack exceeded 600 Gbps in volume, making it the largest DDoS attack

recorded at the time. A study conducted by Cetin et al. [26] showed that while

Mirai could be removed by rebooting an infected device, simply rebooting the

device will not fix the underlying problem as the device remains vulnerable to

infections once it comes back online. As the authors note, removing the underlying

problem would require affected users to change default passwords, or update the

firmware — measures that are much more complicated than a mere reboot. In

recent years, the Mirai malware has been evolving into potentially much more

dangerous strands, such as the Hajime malware [62], whose real purpose remains

a mystery as it has no attacking code for launching DDoS attacks.

2.3 Countermeasures Against IoT-Enabled DDoS Attacks

2.3.1 Detecting the Execution of Malicious Processes.

Breitenbacher et al. [19] presented a host-based anomaly detection system called

HADES-IoT, to detect if unauthorized processes, such as those belonging to

IoT malware, are attempting to execute. HADES-IoT has proactive detection

capabilities, and provides tamper-proof resistance. It is installed inside a device’s

kernel space, and can be deployed on a wide range of Linux-based IoT devices.

15

HADES-IoT is first pre-compiled and delivered to the device. The kernel’s

initialization file is modified accordingly to ensure that HADES-IoT is always

executed when the device is booted. Once executed, HADES-IoT monitors and

collects information about all calls to the execve system call. It only allows a set of

whitelisted processes, which it learns of during a profiling phase, to call the execve

system call. The authors deployed HADES-IoT on seven IoT devices and achieved

100% effectiveness in detecting recent IoT malware strains, such as VPNFilter and

IoTReaper, while on average, requiring only 5.5% of available memory, but in some

cases incurs almost 40% extra CPU usage.

2.3.2 Reliable Patching and Update Mechanism. Along with

insecure firmware images, one of the major vulnerabilities facing IoT devices

is the lack of reliable patching and update mechanisms. Mainly to address

the issue of patching in IoT environments, Simpson et al. [125] proposed a

central security manager that can be installed on top of a smart home’s gateway

router. The security manager is aware of the status of all devices in the home,

by observing all network traffic leaving and entering the network. By having

knowledge of each devices status, and keeping track of reported vulnerabilities,

the security manager could potentially intervene as needed to deter or alleviate

many types of security risks. Modules can be built on top of the manager to offer

convenient installation of software updates, filter traffic that might be malicious,

and strengthen authentication for legacy devices. As the authors elaborate, the

proposed modules can help improve security for the IoT devices at different stages

in the patching process:

1. Stage 1: Vulnerability discovery but no patch yet. In this case, the goals of

the security manager are to identify the affected devices, filter attack flows

16

to these devices, reduce the impact of default passwords, mitigate cross-site

request forgeries, secure vulnerable SSL/TLS connections, block vulnerable

APIs on the affected devices, and alert the user.

2. Stage 2: Acquiring the patch. In this case, the main goal of the security

manager is to apply the patch as quickly as possible by alerting the user. If

the device is offline or in use, the security manager will pre-fetch the patch

and apply it later, while continuing to protect the device as described in

Stage 1.

3. Stage 3: Applying the patch. In this case, the goal of the security manager is

to simply apply patches when it is safe to do so.

4. Stage 4: Device compromised. In this case, the goal of the security manager

is to prevent the compromised device from harming other devices in the

network.

The security manager is a proof-of-concept, as implementation details of the

security manager and modules are not discussed in the paper.

2.3.3 Management of Compromised Devices. Instead of

focusing solely on device identification, Xu et al. [154] presented an idea more

related to IoT device management. The authors argued that large IoT networks,

consisting of many nearly identical devices, are especially attractive targets to

attackers. However, recovery from compromises by conventional means is costly

and slow, especially if the devices are distributed over a large geographical area,

where network administrators or operators would have to travel to the devices to

manually recover them. The authors presented CIDR, a system that can recover

compromised IoT devices within a short amount of time, even if attackers have

17

taken root control of every device in the network. Once a network administrator

identifies a compromise and creates an updated firmware image, he/she can direct

CIDR to force the devices to reset and to install the patched firmware. The authors

call the ability of one computing device (i.e., the server on which CIDR is running)

to control the software configuration of another computing device dominance.

Unfortunately, CIDR requires hardware modifications, making it difficult to be

applied in the real-world.

18

CHAPTER III

THE STATE OF IOT SECURITY

Due to the prevalence of IoT and the security threats facing it, we briefly

survey the area of IoT security. The goal of this chapter is to provide a holistic-

view of the vulnerabilities, attacks, and recent countermeasures in the Internet of

Things. This chapter is particularly focused on countermeasures proposed in the

last five years to capture the more recent landscape of IoT security. We hope to

provide the reader with a view on what security-related topics the IoT research

community has been focusing on, mainly in the last five years. We also discuss

several challenges facing IoT security research, and missing gaps that we believe

have not been sufficiently addressed.

The chapter is derived in part from the following published work: On

the State of Internet of Things Security: Vulnerabilities, Attacks, and Recent

Countermeasures [131] by Sisodia, D. I am the leading author of this work and the

content of this chapter was written entirely by me.

3.1 Vulnerabilities

In Chapter 2.2, we describe several vulnerabilities that can lead to IoT-

enabled DDoS attacks. In this section, we mainly focus on vulnerabilities that have

peaked the interest of the IoT security research community in recent years.

3.1.1 Lack of Necessary Power for Cryptographic Primitives.

While it is clear that encryption can help to address some of the vulnerabilities

presented in [153], complex cryptographic functions, such as those found in the

Advanced Encryption Standard (AES), can result in large overhead for resource-

constrained IoT devices. As a result, there is a growing interest in ultra lightweight,

but secure encryption algorithms optimized for low-powered hardware. However,

19

as Singh et al. [127] pointed out, hardware-based encryption engines have a

significant vulnerability: the power dissipation of the hardware can be measured

while performing encryption, and later statistically analyzed to recover the secret

key, thus compromising the device. Many countermeasures have been proposed to

address this vulnerability in AES engines. Unfortunately, these countermeasures

incur significant power and performance overheads, and therefore are not suitable

for lightweight cryptographic primitives.

3.1.2 Security Flaws in Various Communication Protocols.

Before we present the vulnerabilities of 6LoWPAN, ZigBee, and BLE, we provide

a brief overview of each. 6LoWPAN uses the Constrained Application Protocol

(CoAP) [122] as its application layer protocol, UDP with DTLS at the transport

layer, IPv6 over LoWPAN with Routing Protocol for Low-Power and Lossy

Networks (RPL) [152] as the routing algorithm at the network layer, and finally

IEEE 802.15.4 at the data link and physical layers. ZigBee on the other hand

uses ZigBee-specific protocols at the application, transport, and network layers,

with a routing algorithm similar to Ad hoc On-Demand Distance Vector Routing

(AODV) [104], but like 6LoWPAN, also uses IEEE 802.15.4 as the underlying data

link and physical layer protocol. Unlike 6LoWPAN and ZigBee, BLE supports

its own physical (BLE PHY) and data link layer (BLE MAC) protocols, but like

ZigBee, also supports its own application, transport, and network layer protocols.

Granjal et al. [56] showed that Neighbor Discovery (ND) and mesh routing

mechanisms in IEEE 802.15.4 environments, such as 6LoWPAN and ZigBee, are

susceptible to security threats, such as routing and data leakage attacks. While

RPL has a self-healing mechanism to deal with routing topology failures, link

20

failures, and node failures, Wallgren et al. [144] showed that this mechanism

cannot self-correct networks under certain selective forwarding attacks.

ZigBee devices use symmetric-key encryption to establish secure

communications. However, if keys are not pre-installed on devices that want to

communicate, they are transmitted unencrypted, making it feasible for attackers to

not only gain sensitive information, but control over the devices, as demonstrated

by Vidgren et al. [143]. Furthermore, studies by Zillner [169] and Morgner et al.

[95] showed that the ZigBee Light Link (ZLL) protocol, which is used in smart

home lighting systems to set up the connection between smart lights and the hubs

responsible for controlling them, had a security flaw that allowed control of smart

lights to be taken from their hubs and given to adversaries. This vulnerability

can be exploited to launch crippling distributed-denial-of-service (DDoS) attacks

against smart cities.

BLE also has its share of vulnerabilities. As shown by Ryan [115], a

flaw in the key-exchange protocol for Bluetooth allows an attacker to passively

recover session keys. Ho et al. [64] showed how door locks could be opened

by launching relay attacks on BLE — an attacker can capture a lock’s BLE

authentication challenge message, relay the message (possibly over Wi-Fi for long-

range communication) to an accomplice who is several meters away from the lock’s

rightful owner; the accomplice would then broadcast the challenge message and

capture the response from the rightful owner’s device, and relay the response

back to the attacker who can now use the response to unlock the door. Even

more worrying is that home-based IoT devices have vulnerable legacy versions of

low energy protocols implemented in hardware, thereby limiting their mitigation

options, as described by Alrawi et al. [9].

21

3.1.3 Lack of Data Flow Control in Trigger-Action Platforms.

In recent years, researchers have begun studying the potential vulnerabilities of

trigger-action IoT platforms. The trigger-action programming paradigm provides a

simple and intuitive abstraction for non-technical users to automate IoT devices,

and as a result, is commonly used for home automation. Essentially, a trigger-

action program contains a set of trigger-action rules that specify that when a

certain trigger event occurs, such as motion is detected, one or more actions, such

as turn on the lights, should be subsequently executed.

Wang et al. [148] comprehensively analyzed the interactions between

trigger-action rules in order to identify inter-rule vulnerabilities. Some of these

vulnerabilities, if exploited, could lead to serious damage. For example, an attacker

could exploit an action loop vulnerability to continuously turn on and off a light

potentially inducing seizures, or the action duplicate to inject medicine multiple

times potentially causing a fatal reaction.

Once the authors identified the inter-rule vulnerabilities, they then analyzed

315,393 applications from a popular trigger-action programming platform, IFTTT

(acronym for If This Then That), and found that 66% of them had potential for

inter-rule vulnerabilities. Due to the popularity of trigger-action platforms, coupled

with the aforementioned serious vulnerabilities, there has been a push within the

research community to find appropriate countermeasures to these vulnerabilities.

3.1.4 Lack of Verification in Virtual Personal Assistant

Services. Lastly, we describe speech recognition and voice-injection

vulnerabilities that are present in virtual personal assistant (VPA) services

running on IoT devices. Given a voice commands, such as “will it rain today?”,

VPA services can run a function, or a skill, to respond to the command. Most

22

VPA services, such as Amazon’s Alexa and Google Assistant, allow third-party

skills to be uploaded to their skills market to further enrich the user experience

when interacting with the VPA services. Unfortunately, Kumar et al. [78] found

a vulnerability, which was later termed invocation confusion [165], that when

exploited could cause a voice squatting attack (VSA). This vulnerability stems

from the fact that VPA services allow for different skills to be initiated by same or

similar sounding commands. Therefore, an attacker could exploit this vulnerability

to create a malicious skill that can be initiated unknowingly by a victim. The

authors give the example of a malicious skill, which attempts to phish credit

card information, that is initiated by the words “Capital Won”. In this case, the

victim may initiate the malicious skill when he/she says the words “Capital One”,

which in normal circumstances (in absence of the malicious skill) would initiate

the legitimate skill (which opens the authentic Capital One application). Speech

recognition and voice-injection vulnerabilities in VPA services can cause more

interesting attacks, some of which we discuss later in this chapter.

3.2 Attacks

In this section, we describe various attacks common in IoT networks. Most

of the attacks we cover in this section exploit the vulnerabilities we described in

Chapter 3.1.

3.2.1 Side-Channel Attacks. Attackers can exploit data leakage

vulnerabilities to gain sensitive information about users. One such example was a

side-channel attack described in 2015 [147]. The goal of the attack was to discover

the keystrokes of a victim typing on a keyboard from their wrist position inferred

by accelerometer and gyroscope data sensed from a smartwatch. The authors tested

the attack on eight real users, each of whom was asked to type 300 different English

23

words from a dictionary of 5000 words while wearing a smartwatch on their left

wrist. The results showed that the keystroke detection rates for the left-most keys

on the keyboard (Q, W, E, R, T, A, S, D, F, G, Z, X, C, V, B) were from 88% to

99% accuracy, while the keystroke detection rates for the right-most keys on the

keyboard (Y, U, I, O, P, H, J, K, L, N, M) were from 3% to 5%. These keystroke

detection rates allowed the authors to have a 50% chance to narrow down each

possible word typed by 99.5% (in other words, for each word the user typed, the

attack had a 50% chance of accurately eliminating 4976 words from the 5000-word

dictionary of possible words). Unlike similar previous papers that explored side-

channel attacks from sensor data leakage of smartphones, this paper was one of the

first to present an attack from sensor data leakage of wearable devices with relative

success, without requiring any training from the victim. In 2016, Wang et al. [146]

improved the accuracy of the attack and tested it on real ATM machines with over

a 93% success rate.

Alternatively, sensitive data can also be leaked through traffic analysis

attacks. Copos et al. [36] presented a traffic analysis attack on encrypted smart

home network traffic. The authors analyzed the network traffic of Nest Thermostat

and Nest Protect (smoke and carbon monoxide detector) devices, and showed

that potentially sensitive information about the state of the smart home could be

discerned from the encrypted traffic. Specifically, the authors captured traffic to

and from the Nest devices within the smart home network, and decrypted the WPA

encrypted traffic so that they could identify the hosts that the devices frequently

contact. However, the packets are still encrypted with SSL/TLS. By analyzing the

types of requests (e.g., HTTPS, NTP, DNS, etc.) and the frequency of requests,

the authors were able to discover when the devices switched between Home (home

24

is occupied) and Away (home is unoccupied) modes. For example, there was a

discrepancy in the frequency of NTP requests generated between when the Nest

Thermostat was operating in Home mode and when it is in Away mode. From this

information, the authors created a simple Support Vector Machine (SVM)-based

learning model that achieved 81% accuracy (with zero false positives) in predicting

the mode of the Nest Thermostat.

Apthorpe et al. [13] extended the work done in [36] by demonstrating that

ISPs or other network observers could infer privacy sensitive in-home activities

by simply analyzing the traffic rates generated from smart homes containing

commercially-available IoT devices, even when those devices used encryption.

Clearly, an attacker aware of this correlation between smart home traffic rates and

device states could easily distinguish user activities within the smart home. The

authors present a traffic shaping defense method for preventing such traffic analysis

attacks.

Covert channel attacks presented in works [158] and [113] show that an

attacker can use IoT devices to bypass security mechanisms, such as firewalls,

traffic monitors, and information flow control systems, by routing sensitive data

through covert channels. Yang et al. [158] presented a covert communication

method called NICScatter, where a mobile device, infected with malware,

backscatters surrounding radio frequency (RF) signals at varying intensities to

transmit sensitive information retrieved from the device’s memory to the attacker’s

phone. In order to launch this attack, the malware controls the impedance of a

device’s wireless network interface card (NIC). While the authors only tested their

attack on laptop and smartphone NICs, this attack is very much possible in an

IoT environment. In fact, Ronen et al. [113] showed that it was possible to create

25

a covert channel with smart LED lights. The authors were able to misuse smart

LEDs’ APIs to cause the lights to oscillate between different intensities, in such a

way as to be indistinguishable to the human eye, to surreptitiously transmit data to

a light sensor.

3.2.2 Voice-Command Injection Attacks. In recent years, the

IoT security research community has focused much attention on voice-command

injection vulnerabilities. In this subsection, we present three papers that exploit

such vulnerabilities, one on inaudible command attacks [164], and two on skill

squatting attacks [78, 94].

In 2017, Zhang et al. [164] designed a completely inaudible attack, which

they called the DolphinAttack, that modulates voice commands on ultrasonic

frequencies (e.g., f > 20 kHz) using the amplitude modulation technique (AM)

to achieve inaudibility. By leveraging the nonlinearity of electret condenser

microphone (ECM) and MEMS microphone circuits, the modulated low-frequency

audio commands can be successfully demodulated, recovered, and interpreted by

the speech recognition systems. The authors showed that with the DolphinAttack,

an adversary can inject malicious and inaudible voice commands into major speech

recognition systems, including Siri, Google Now, and Alexa.

3.2.3 Selective-Forwarding Attacks. In a selective-forwarding

attack, a malicious device, which is located on the route between the sources and

destinations of certain connections, launches a denial-of-service (DoS) attack by

forwarding only a subset of the packets that it receives to the destination [144].

Although this attack is primarily targeted to disrupt routing paths, it can be

used to filter any type of traffic, no matter the protocol. For example, an attacker

could forward all RPL control messages (thereby preventing devices from detecting

26

routing inconsistencies), and drop all other traffic. In this case, RPL’s self-healing

mechanisms will not be able to detect the DoS attack, as the control messages are

still being forwarded.

Selective-forwarding attacks can be coupled with sinkhole attacks to become

even more powerful. In sinkhole attacks, a malicious device advertises an artificial,

but attractive routing path, thereby causing many nearby devices to route traffic

through it [144].

It is generally fairly difficult to defend against all selective-forwarding

attacks. However, there are some security mechanisms that can minimize the

impact of these types of attacks. For example, through encryption, legitimate

devices can ensure that an attacker cannot distinguish between different types of

traffic, thus forcing the malicious device to either forward all or none of the traffic

it receives. To this end, devices can use IPsec to secure RPL control messages.

Additionally, analysis of application-layer traffic can help detect if any application

traffic is lost, and devices may report such losses to the underlying RPL system in

order to improve path quality by finding a route that bypasses the malicious device.

3.2.4 Battery-Draining Attacks. Battery-draining, or energy-

depleting attacks are another way attackers can target the availability of IoT

devices. Vasserman et al. [141] present various battery-draining attacks, called

Vampire attacks, which target wireless ad hoc sensor networks. Vampire attacks

use routing protocols to permanently disable networks by depleting devices’ battery

power. These attacks do not depend on particular protocols or implementations,

but rather rely on the properties of many popular classes of routing protocols.

These properties include link-state, distance-vector, source routing, and geographic

and beacon routing. The authors show through simulation that depending on the

27

location of the adversary in the network, network energy expenditure increases from

between 50 to 1000 percent. While the authors present Vampire attacks on ad hoc

sensor networks, smart home networks could just as easily fall prey to such attacks,

as many smart home devices, many of which are mobile and battery-powered, use

routing protocols similar to those used in ad hoc sensor networks, such as AODV

(used by ZigBee devices).

Chiariotti et al. [31] also analyze battery-draining attacks from a game-

theoretic perspective. The authors use game theory to model a smart IoT device

defending itself from a similarly energy-constrained jammer. Both devices are

assumed to be rational actors, and their interactions can be modeled as a zero-sum

game The mathematical properties of this zero-sum game are exploited to find an

effective defense solution.

3.2.5 DDoS Attacks. Lastly, we describe unique DDoS attacks

presented in recent years against IoT devices and networks. In 2018, Soltan et al.

[136] and Ronen et al. [114] presented DDoS attacks that could potentially disrupt

entire cities or countries. Soltan et al. demonstrated that a botnet of high wattage

IoT devices, such as air conditioners and heaters, gives an adversary the unique

ability to launch large-scale coordinated attacks on a city’s or country’s power grid.

By synchronously switching on/off compromised high wattage IoT devices, and

thereby manipulating the total power demand, an adversary could significantly

disrupt a power grid’s normal operation. Through simulation of the attack on

Poland’s power grid, the authors show that this attack, in the extreme case, could

cause large-scale, country-wide blackouts. With a botnet of only 210 devices, the

attack could initiate a cascading failure resulting in a power outage covering 86% of

the country.

28

Ronen et al. described a new type of malware worm that infects IoT devices

that are in close proximity with one other, thereby rapidly spreading over large

areas, given that the density of compatible IoT devices exceeds a certain amount

(i.e., critical mass). The authors tested the malware on the popular Philips

Hue smart lamps. The worm spreads by jumping directly from one lamp to its

neighboring lamps, using only the built-in ZigBee wireless mesh connectivity. The

infection can begin spreading by a user plugging in a single infected bulb anywhere

in a city, and the worm can catastrophically spread throughout the city within

minutes. The malware enables an attacker full control of the city’s smart lamps –

he/she can turn all of the lights on or off, permanently brick them, or use them in

a massive DDoS attack. To make such an attack possible, the authors had to find a

way to:

1. remotely break the connection between already installed lamps and the hubs

controlling them (i.e., remove them from their networks), and

2. perform over-the-air firmware updates.

As we mentioned in Chapter 3.1, the authors exploited the known vulnerability

in the ZLL protocol to overcame the first problem. To solve the second problem,

they developed a side-channel attack to extract the global AES-CCM key (for each

device type) that Philips uses to encrypt, and authenticate new firmware.

Two examples of real-world DDoS attacks targeting IoT devices are the

BrickerBot [32] malware, and the attack on Finland’s central heating and warm

water circulation systems [71]. In the span of about one year (November 2016

to December 2017), the BrickerBot malware managed to permanently destroy

over 10 million IoT devices, in the hopes, according to its author, to prevent

29

those bricked devices from being infected with the Mirai malware and launch

DDoS attacks themselves. Also in November 2016, a DDoS attack halted heating

distribution in two buildings in Finland. While the attack did not target any IoT

devices directly, but rather the computers that controlled the devices responsible

for central heating and warm water circulation, this attack prevented the devices

from functioning normally. Thankfully the attack was easily mitigated by limiting

network traffic, and no one was hurt. However, these real-world attacks that target

critical infrastructure should make us wary about the potential damage that IoT-

based attacks can cause.

3.3 Countermeasures

In this section, we describe various recent countermeasures to the

aforementioned IoT vulnerabilities and attacks. Most of the countermeasures we

cover in this section attempt to prevent, detect, and/or mitigate the attacks we

described in Chapter 3.2.

3.3.1 Access Control. In recent years, researchers have found the

need for reenvisioning access control and authentication for multi-user-per-device

environments, like the smart home. As He et al. [60] noted in their 2018 study of

access control and authentication in the home IoT, current authentication methods

for the home IoT appear transplanted from smartphone and desktop paradigms,

which for the most part, assume a single-user-per-device environment. However,

in IoT environments, such as the smart home, multiple users with complex social

relationships may interact with a single device. Therefore, He et al. conducted a

425-participant online user study and found major differences in the participants’

desired access-control policies for different capabilities within a single device (e.g.,

updating software, turning lights on/off, turning cameras on/off, adding new

30

user, etc.), as well as based on who is trying to use that capability (e.g., spouse,

teenager, child, visiting family, babysitter, neighbor, etc.). This study allowed them

to pinpoint various contextual factors (e.g., time of day, location of user, location of

device, who is near by, etc.) that, along with capabilities and relationships, dictate

the specification of more complex, yet desired, access-control policies.

One year later, Zeng et al. [163] applied the complex access-control policies

derived from [60], among other design principles from other studies, to create an

access control system (in the form of a mobile application) for the smart home. The

application included four types of access controls:

– Role-Based Access Control: Each user is assigned a role — admin, child, or

guest. Only admins are allowed to change access control policies, add new

users, and organize the devices.

– Location-Based Access Control: Users can be restricted from using devices if

they are not physically near the device.

– Supervisory Access Control: Allows a user who may be restricted from using

a device, to use the device, if and only if another (authorized) user is nearby.

– Reactive Access Control: If a user attempts to use a device they do not

have permission to use, the application will ask a more privileged user for

permission in real-time, by sending a notification asking them to approve or

deny the request.

The authors further tested their application in seven households in the Seattle

metropolitan area. Although the users expressed that they had a strong need

for certain access controls in their homes before the study, only a few ended up

using the application. While usability was one factor that went into this, most

31

participants were either unconcerned about restricting access to mundane devices,

or that existing social norms and trust in their households checked against bad

behavior. For example, children were trusted to follow rules, roommates respected

each others’ spaces, and for the most part, people were not concerned about

information revealed by the smart home when it matched their household’s privacy

norms. The users were also willing to accept (multi-user) security and privacy risks

posed by usage of devices because of the convenience and utility lost by using the

access control mechanisms. The study reemphasized the notion that the design of

security and privacy features for a smart home must work with, and not limit, a

user’s primary use case for the smart home.

Hong et al. [65] argued that IoT device communications should be default-

off and only explicitly enabled when absolutely needed because IoT applications

and devices, unlike traditional applications and computers (e.g., web browser or

laptop), serve narrowly defined purposes. The authors proposed, Bark, a policy

language and runtime for specifying and enforcing minimal access permissions

in IoT networks by whitelisting access for IoT applications when communication

is default-off. Bark constructs access control policies through natural questions

(e.g., who, what, where, when, and how), and transforms them into transparently

enforceable rules for IoT application protocols. However the authors assume that

the gateway, where policies are being enforced, can observe all traffic between

devices, applications, and remote servers. This means that the system would not

be able to enforce rules for device-to-device communication in protocols that allow

for mesh networking (e.g., 6LoWPAN, ZigBee, Bluetooth).

3.3.2 Data Flow Control. As discussed in Chapter 3.1, the lack of

data flow control is a significant vulnerability in smart home environments. We

32

analyze five recent works [53, 54, 14, 23, 91] related to controlling how data flows

between sources and sinks.

Fernandes et al. [53] introduced a method called FlowFence for restricting

an application’s access to sensitive IoT data. The authors noted that while IoT

frameworks use permission-based access control for data sources and sinks, they do

not control flows between the authorized sources and sinks. To explain this notion

further, let’s consider the example of an application that unlocks a door based on

the person’s face. It extracts features from the person’s face and compares them to

the features belonging to authorized people, checks the current state of the door,

unlocks the door, and sends a notification to the home owner over the Internet.

The user may have given this application permission to use the camera, unlock

the door, and access the Internet, however, there is no way for the user to ensure

that the application does not leak camera data to the Internet. To be supported

by FlowFence, an application developer must split his/her application into two

parts — one part is code that deals with non-sensitive data, and the other that

does. The code that deals with sensitive data is “quarantined”. FlowFence then

runs the application in a sandbox to generate a data flow graph, which is analyzed

to determine if any data flowing through the quarantined code violates any user

defined flow rules (e.g., no data flowing through quarantined code should be sent

over the Internet).

Fernandes et al. applied rule-based flow tracking and control properties

for action integrity for trigger-action IoT platforms [54] as an extension of their

work in [53]. They noted that IFTTT, and other trigger-action platforms, can

have overprivileged access to smart home devices, which can cause serious attacks

if the authorization tokens, which give the platforms the ability to control the

33

devices, are compromised. For example, a user could allow a IFTTT application to

change the color of the smart lights in their living room if a friend posts a picture

on FaceBook. In order to create this type of application, the setup process would

include the user allowing the smart lights’ action service (which could be located on

the devices themselves, the hub controlling the devices, or in the cloud) to provide

an authorization token to the application. Although the application should only

control the lights’ color, with the authorization token it has full control over the

lights. Therefore, if the application accidentally leaks the authorization token or

if the platform itself is compromised, this would potentially give an attacker full

control over the lights. In [54], Fernandes et al. present a security principle that

ensures that an attacker who controls a compromised trigger-action platform can

only invoke actions and triggers that are specified in the rules that users have

created (e.g., can only control the color of the lights), can invoke actions only if

it can prove to an action service that the corresponding trigger occurred in the past

within a reasonable amount of time, and cannot secretly tamper with any data

passing through the platform.

Similarly to [53] and [54], Bastys et al. [14] and Celik et al. [23] evaluate

the runtime execution of applications to enforce policy-based information flow

control for trigger-action platforms. Bastys et al. studied a dataset of 279,828

IFTTT applets and found that that 30% of the applets were at risk of violating

privacy. To tackle this problem, they argued and demonstrated that information

flows should and can be secured in applications by state-of-the-art information

flow tracking techniques. Celik et al. [21] presented IoTGuard, a dynamic, policy-

based enforcement system for IoT. The purpose of IoTGuard is to protect users

from unsafe and insecure device states by monitoring the behavior of trigger-action

34

platform applications. It requires extra logic to be added to an application’s source

code to collect runtime information. Similarly to [53], that runtime information is

used to create a dynamic model that represents the runtime execution behavior of

the application. Lastly, it finally enforces relevant safety and security policies on

the dynamic model of the individual application or sets of interacting applications.

Most of these solutions [53, 14, 21] are somewhat impractical for the real-

world due to the fact that they require applications to be modified. Furthermore,

the aforementioned solutions also require applications to be analyzed thoroughly

before they are used, in order to discern their runtime execution behavior.

However, they do provide an important first-step in addressing the problem of lack

of data flow control in IoT environments.

Melara et al. [91] introduced an access control system that did not require

the modification of applications. Because most IoT applications include third-

party libraries that may contain vulnerabilities, the authors aimed to provide

intra-process access control for applications, especially for those that generate

and analyze highly privacy-sensitive data. The access control system, called

Pyronia, enforces function-granular resource access policies via runtime and kernel

modifications. Therefore, while Pyronia does not need to modify the applications

themselves, each device looking to deploy Pyronia needs to run a custom Linux

kernel.

3.3.3 Recently Proposed Authentication Mechanisms. While

conducting this survey, we found that recently proposed authentication mechanisms

mostly dealt with biometric factors. For example, many papers [67, 101, 83, 156,

29] developed unique touch-based authentication mechanisms for wearable or smart

35

home devices. Alternatively, Lin et al. [86] presented a continuous authentication

system based on geometric and non-volitional features of cardiac motion.

Of all the interesting authentication methods we found, the continuous

authentication mechanism for voice assistants presented by Feng et al. [50] is

the most relevant to our survey. The authors present VAuth, the only system

that we found that provides continuous authentication for voice assistants. VAuth

collects the body-surface vibrations of a user, and matches it with the speech signal

received by the voice assistant’s microphone. VAuth can fit inside things that

people normally wear, such as eyeglasses, earbuds, and necklaces, Such a system

can guarantee that the voice assistant only executes the commands that originate

from the voices of authorized users. The authors evaluated the system on 18 users

and 30 voice commands, and achieved a detection accuracy of 97% with less than

0.1% false positives, regardless of VAuth’s position on the user’s body, the user’s

language, the user’s accent, or the user’s mobility. This authentication mechanism

would help prevent against the inaudible voice-command injection attacks.

3.3.4 Detecting Side-Channel Attacks. We discussed side-

channel attacks in Chapter 3.2, and present a recent solution to this type of attack.

Chaman et al. [28] analyzed stealthy eavesdroppers that employ passive receivers

that only listen and never transmit any signals. The authors show that even passive

receivers leak RF signals over the wireless medium. As a result, they were able to

detect passive receivers present in a network, even when the leaked RF signals were

buried under ongoing transmissions.

3.3.5 Detecting Routing Attacks. While in the past four decades

there has been a plethora of papers focused on the detection and mitigating

of routing attacks in wireless sensor networks (WSNs), we focus on a more

36

recent IDS for 6LoWPAN routing attacks. Raza et al. [111] presented SVELTE

which detected sinkhole attacks in 6LoWPAN networks that occur through RPL

rank manipulation. It has two main modules running on the border router of a

6LoWPAN network: 6LoWPAN Mapper (6Mapper) that gathers information about

the network, and an intrusion detection module that checks the rank inconsistency

in data obtained by 6Mapper to detect sinkhole attacks. The 6Mapper sends

probing messages to nodes in the entire network at regular intervals (e.g.2 minutes).

Each node then sends a response message to the 6Mapper, which includes its node

ID, node rank, parent ID, and all of its neighbors’ IDs and ranks.

Unfortunately, SVELTE’s probing mechanism can increase the network

overhead, device power consumption, and the latency of detecting sinkhole attacks.

Every probe from the border router increases the network overhead. Every response

from a device consumes more power. Worst of all, SVELTE has a dilemma in

choosing the probing interval: a short interval leads to a low latency in detecting

sinkhole attacks, but a large overhead due to frequent probing and responding; a

long interval results in a low overhead, but a high latency in detecting sinkhole

attacks.

3.3.6 Detecting Voice-Command Injection Attacks. He et al.

[61] instead presented a detection and mitigation system to tackle voice-command

injection attacks. Specifically, the system they presented detects inaudible voice

commands by analyzing the frequency of voice commands picked up by the

microphone. Once an inaudible voice command is detected, the authors apply

active noise cancellation techniques to negate the frequency at which the inaudible

command is carried.

37

3.3.7 Detecting Attacks via Encrypted Traffic Analysis.

Sensitive data can be leaked through traffic analysis, even if that traffic is

encrypted. Zhang et al. [166] employed the same techniques used in traffic analysis

attacks to create an anomaly detection system. The goal of the system, called

HoMonit, is to detect misbehaving applications. Specifically, HoMonit leverages the

leakage of packet size and inter-packet timing to infer device activities. The inferred

activities are compared to the expected program logic of the application to identify

anomalies. and then compares the inferred event sequences with the expected

program logic of the application to identify misbehaviors (e.g., event spoofing).

At the core of HoMonit is a Deterministic Finite Automaton (DFA) matching

algorithm. The authors argue that every application follows a certain DFA model,

in which each state represents the status of the application and the corresponding

smart devices, and the transitions between states indicate interactions between the

application and the devices. HoMonit includes techniques to extract the program

logic from an application’s source code, and automate the DFA construction

process. HoMonit applies the DFA matching algorithm to compare the inferred

device activities with the expected DFA transitions of each application. If the DFA

matching fails, a misbehaving application is detected.

3.3.8 Detecting Hidden Inter-Application Interactions. We

previously discussed inter-rule vulnerabilities which are essentially the same as the

inter-application interaction vulnerabilities that Ding et al. [45] analyzed. Unlike

in traditional networks, in an IoT environment, an application can control a device

to change the physical environment, which may in turn trigger another application

to command another device to react to that change. Therefore, if an application

is not aware of all of its possible interactions with other applications, unexpected

38

interactions could be exploited and triggered by attackers. The authors proposed

a framework called IoTMon that captures all potential physical interactions across

applications, and allows users to create safe interaction controls. IoTMon performs

intra-application interaction analysis using static program analysis and NLP to

extract necessary application information, such as conditions, actions, and devices,

for generating inter-application interaction chains. After identifying all interaction

chains, IoTMon uses a risk analysis mechanism, similar to [148], to evaluate the

risk of identified inter-application interaction chains. The authors evaluated their

framework on 185 official SmartThings applications, and found that 162 hidden

interaction chains exist among these applications, where 37 of them are highly risky

and could be potentially exploited to launch serious attacks.

In the same vein, Wang et al. [149] argued that with the rise in popularity

of home automation, devices and applications may be chained together in long

sequences of trigger-action rules. These chains could be so complex that from an

observable symptom (e.g., an unlocked door), it may be impossible to identify

the distantly removed root cause (e.g., a malicious app). Thus, the authors

presented ProvThings, an auditing system that performs efficient automated

instrumentation of IoT apps and device APIs in order to capture complex chains

of interdependencies between different apps and devices.

3.3.9 Improvements to 6LoWPAN Security. As we described in

Chapter 3.1, 6LoWPAN enables the use of IP in IEEE 802.15.4 low power and lossy

wireless networks, and it uses CoAP as its application-layer protocol, which sits

on top of UDP with DTLS at the transport-layer. While DTLS supports a wide

range of cryptographic primitives for peer authentication and payload protection,

it was originally designed for networks where machine resources and message

39

length were not critical constraints. Therefore, Raza et al. [110] proposed Lithe

— CoAP with a compressed version of DTLS. They employed the same techniques

used in 6LoWPAN to compress IP headers. Through DTLS header compression,

the authors argued that they achieved energy efficiency by reducing the overall

IP/UDP datagram size (due to the fact that transmitting packets requires more

energy than computation). They also argued that they minimize 6LoWPAN

fragmentation that is applied when the size of a datagram is larger than the link

layer MTU (127 bytes for the case of IEEE 802.15.4), thereby making 6LoWPAN

less vulnerable to fragmentation attacks. Similarly, Raza et al. [109] also proposed

to use IPsec to secure communication between devices through IPsec compression.

However, it is unclear from these papers ([110, 109]) if compressing the respective

security protocols reduces the overall security of a network and opens it up to

potential attacks. Furthermore, neither of the protocols presented in these papers

have been standardized as of yet, and therefore, it is unlikely that they are being

used in the real-world.

3.3.10 Recent Encryption Protocols. IoT applications often

store and share data in the cloud, and therefore, sensitive data about users

could be observed by cloud operators, or leaked if the cloud infrastructure is not

appropriately secured. In order to tackle the problem of sensitive data leakage

in the cloud, Shafagh et al. [121] designed a data protection framework, called

Talos, where the cloud stores encrypted data while allowing applications to

perform queries over the encypted data, without having to first download and

decrypt the data. The proposed solution utilized crpytographic techniques, such

as Partial Homomorphic Encryption (PHE) and order-preserving encryption, to

allow computations to be carried out on encrypted data. Furthermore, the authors

40

later extended Talos to not only be able to query encrypted data, but to also share

it [120].

Due to the resource constrained nature of some IoT devices, and the

resource consumption incurred by cryptographic primitives, Li et al. [80]

proposed a key-free communication method for IoT networks, which they called

HlcAuth. Essentially, HlcAuth utilized challenge-response mechanisms for mutual

authentication between the gateways and smart devices without key management.

Through real-world evaluation, the authors showed that HlcAuth can defend

against replay attacks, message-forgery attacks, and man-in-the-middle attacks.

However, for HlcAuth to work, the authors assumed that attackers are not within a

certain range (at least 4.2 meters) of the gateway node.

3.3.11 Identification Through Traffic Analysis. The discovery

and identification of IoT devices is a necessary first-step to monitor and protect

those devices. Sivanathan et al. [133] analyzed the problem of classification

of IoT devices based on their network traffic characteristics. The authors first

instrumented a real-world IoT environment consisting of 28 devices. The devices

included smart cameras, lights, plugs, motion sensors, appliances, and health-

monitors. They then collected data from this environment for a period of 6 months,

which they made available to the IoT research community. Next, they identified

key statistical attributes such as activity cycles, port numbers, signaling patterns,

and cipher suites, which gave them insights into the underlying network traffic

characteristics of the IoT devices. The authors further developed a multi-stage

machine learning-based classification algorithm, and demonstrated its ability to

identify, with high accuracy, specific IoT devices based solely on their network

behavior.

41

Alternatively, as Feng et al. [51] argued, manual device annotation impedes

large-scale discovery, and device classification based on machine learning requires

large training data with labels. Therefore, the authors proposed an Acquisitional

Rule-Based Engine (ARE), which can automatically generate rules for discovering

and annotating IoT devices without the need of any training data. ARE creates

these rules by using application-layer responses from IoT devices and product

descriptions from websites for device annotations. The authors define a transaction

as a pair of textual units, consisting of the application-layer data of an IoT device,

and the corresponding description of an IoT device from a website. To collect the

transaction set, ARE uses the association algorithm to generate rules of IoT device

annotations in the form of (type, vendor, and product). In testing ARE in the

real-world for a 2-month period, the authors were able to discover nearly 2,000

compromised IoT devices among 12,928 IP addresses.

3.3.12 Traffic Shaping to Prevent Unauthorized Identification.

While identification is an important step in securing IoT devices, unauthorized

analysis of IoT traffic for malicious purposes should be prevented. Apthorpe et al.

[13], who demonstrated that network observers, such as ISPs, could infer privacy

sensitive in-home activities by simply analyzing the traffic rates generated from

encrypted traffic of smart home devices, argued that current defenses to such

traffic analysis attacks, such as blocking traffic, or tunneling traffic through a

virtual private network (VPN), are ineffective. Specifically, developers would be

disincentivized to allow users to block all or some traffic from leaving the smart

home, and while tunneling smart home traffic through a VPN would increase the

attack difficulty, it would not provide the user with any actual proof of privacy

protection. In fact, the authors showed that an adversary can still fingerprint

42

devices using the rate of VPN traffic alone. Therefore, the authors suggested that

traffic shaping is the only solution that can prevent the leak of rate information,

and thus render such an attack impossible. By shaping traffic rates to match a

predetermined rate or schedule, users can prevent exposing information about

device behavior to an adversary. Unfortunately, slowing down devices’ traffic

rates to match the predetermined rate can have significant negative performance

impacts (e.g., voice assistants not answering questions, devices losing connectivity

to their mobile applications, etc.), and adding extra cover traffic to match the

predetermined rate can incur significant data usage costs.

3.4 Challenges and Open Issues

While surveying the area of IoT security, we found several missing gaps

and challenges yet to be sufficiently addressed, such as a lack of large-scale

identification methods for insecure and compromised devices, lack of security

protocol standardization, lack of sufficient regulatory frameworks, lack of user

interest in or knowledge of security and privacy concerns in their homes, and lack

of real-world deployment. However, from our perspective, there are four main

challenges that are critical to IoT security, and need to be strongly considered in

future work related to this area:

1. Lack of concern for IoT-enabled DDoS: Considering the recent rise of

large-scale IoT-enabled DDoS attacks, we were surprised to find a lack of

interest among the IoT security research community in studying this issue

in more depth. We only found a few solutions, such as [19], that focused

on detecting recent malware strains specifically targeting IoT devices. We

suspect the research community is not interested in this topic because many

assume that the large body of work dealing with worm propagation and

43

botnet detection for the traditional Internet can be applied directly to the

IoT environment. However, we believe that the mesh networking capabilities,

coupled with energy (and potentially memory) consumption constraints of

IoT devices makes direct application somewhat unsuitable.

2. Strong assumptions related to device and application modification:

Of the few distributed solutions we surveyed, most of them assume that

devices or applications running on the devices can be modified. We argue

that this is a strong assumption. Many of the devices already connected

to the Internet are closed systems, thereby making modifications at any

layer almost impossible. Furthermore, the location of IoT devices can also

make modifications very difficult, and in some cases, infeasible (e.g., devices

implanted in the body).

3. Lack of concern for energy consumption: We were surprised to find that

almost none of the papers published in the last five years that we surveyed

treated energy consumption as a primary constraint when designing their

security solutions. This may be because we mainly surveyed papers related

to smart home security, and the research community is less concerned with

energy consumption in such networks. We disagree. While it is true that

many smart home devices may be “plugged-in” and do not rely on a finite

energy source (e.g., a battery), there are some devices, such as cameras,

smoke detectors, and various wearables, that are not always plugged-in.

Also, an ideal security solution should be able to be deployed in various

different IoT environments, not just smart homes. Furthermore, a solution

that requires a seemingly moderate amount of energy may not be a significant

issue for an individual, plugged-in device, but if that solution were to scale to

44

the billions of IoT devices all over the world, its total energy consumption

would be anything but moderate, which could arguably have a negative

impact on our environment.

4. Lack of distributed solutions: Most of the papers we surveyed proposed

defense mechanisms that were placed in a central location, most likely the

gateway/border router of the IoT network. Unfortunately, due to the device-

to-device communication and mesh networking capabilities of many IoT

protocols (e.g., 6LoWPAN, ZigBee, Bluetooth Mesh), centralized solutions

cannot capture a large portion of intra-network traffic, and therefore, may be

useless against in-network attacks.

We attempt to address each of the aforementioned challenges in this thesis.

To address the first challenge, we dedicate the rest of this thesis to tackling the

problem of IoT-enabled DDoS attacks. Specifically, in Chapter IV, we present

a solution for preventing IoT devices from being infected with worms that can

turn them into DDoS bots. In Chapter V, we present a solution for detecting

DDoS traffic leaving an IoT gateway. Finally, in Chapter VI, we present a solution

for mitigating DDoS traffic originating from an IoT network. To address the

second challenge, all of the solutions we present require little to no modification

of individual IoT devices. To address the third challenge, a primary focus for

the solutions presented in Chapter V and Chapter VI is on limiting resource

consumption incurred by IoT devices and networks. Lastly, to address the fourth

challenge, the solutions presented in Chapter V and Chapter VI are distributed

security systems that are able to handle the mesh networking capabilities of IoT

networks.

45

CHAPTER IV

DEFENSE AT AN UPSTREAM ISP/IXP: PREVENTING IOT DEVICES FROM

TURNING INTO DDOS BOTS

In this chapter, we focus on defense at an upstream ISP or IXP to the

protected IoT network. The first step in launching IoT-enabled DDoS attacks is to

take control of IoT devices by infecting them with a worm, and therefore to detect

such worm infections, we present a worm detector called SWORD.

While SWORD can detect both incoming and outgoing worm traffic, we

analyze inbound worm detection, or worm traffic originating from the Internet

to the protected network. Running SWORD at an ISP/IXP can be more cost

efficient compared to running SWORD at each network downstream. However,

the drawback to running SWORD upstream is that detection is far more difficult,

especially when only partial incoming traffic is observed.

We use a real-world Mirai traffic trace collected at an Internet Exchange

Provider (IXP) in September 2016 to evaluate SWORD’s performance at detecting

incoming worm traffic. SWORD consistently outperforms all other detectors in

terms of total number of Mirai IPs detected, false negative rates, and detection

latency. We also find that SWORD outperforms every other detector at detecting

surreptitious worm IPs with relatively low total scans or low incoming scanning

rates, and superspreading worm IPs with relatively high total scans.

The chapter is derived in part from the following unpublished work: On

the Detection of Smart, Self-Propagating Internet Worms by Li, J.; Sisodia, D.;

Stafford, S. Note, this unpublished work was itself derived from the following

published work: Detecting Smart, Self-Propagating Internet Worms [81] by Li, J.;

Stafford, S. The content of this chapter is focused on inbound worm detection, of

46

which I am the primary contributor, and was responsible for conducting all of the

presented analyses.

4.1 Introduction

Worms can infect millions of hosts on the Internet in just several minutes

and continue to pose a severe threat to the security of the Internet. In fact, the

ground for worms to spread is potentially more fertile than ever. The number of

Internet-capable devices continues to rise at a stunning rate [130], and each of these

devices is capable of running a diverse range of user-installable software that can be

vulnerable to malicious attacks.

While there was a relatively long lull without much worm activity between

the Morris worm in 1988 and the big wave of many devastating worms in the late

1990s and early 2000s (e.g.Trinoo, Tribe Flood Network, Code Red, Nimda, SQL

Slammer) [82], worm activity has continued in the last two decades [150]. For

example, in 2008, Conficker [150] infected over a million machines, and between

2010 and 2012, Stuxnet/Duqu/Flame [33] caused devastating damage to several

industrial and energy-producing facilities in several countries. More recently, the

world witnessed BASHLITE [34] in 2015 which caused massive spikes in distributed

denial-of-service (DDoS) attacks, along with WannaCry and NotPetya in 2017

which caused catastrophic ransomware attacks all over the world [33].

One of the widest spreading worms in recent memory is the Mirai worm.

In 2016, the Mirai worm infected over 300,000 Internet of Things (IoT) and

embedded devices all over the world, and thus formed a botnet that was used

to launch multiple devastating DDoS attacks against companies such as OVH

and Dyn [12]. According to the 2020 NETSCOUT Threat Intelligence Report,

“Malware king” Mirai continues to “thrive” on the Internet, especially in IoT-rich

47

environments [66]. Furthermore, due to its propagation success, Mirai’s scanning

techniques have been copied by a plethora of newer worms such as Hajime,

IoTroop, and Mozi, among others [11].

All of the existing worm detectors we studied [58, 119, 35, 73, 117] focus

solely on detecting outgoing worm traffic from a protected network to the Internet,

leaving their efficacy at detecting incoming worm traffic from the Internet to a

protected network unknown. Even if a detector is effective against outbound

worms, we cannot assume it will be effective against inbound worms. Inbound

worm detection is significantly more difficult than outbound worm detection.

When detecting outbound worms, a detector can be placed to observe all of the

outgoing scans from an infected network. However, when detecting inbound worms,

because the scans from every infected host usually target victims all over Internet,

no matter where a detector is placed, it may only observe a miniscule portion of all

worm scans, making it significantly harder to detect the inbound worms.

We revisit worm detection in this chapter. We treat worm detection as

an arms race in which a worm can be smart and evasive, and propose a new

worm detector called SWORD (Self-propagating Worm Observation and Rapid

Detection). Unlike most existing detectors, SWORD is focused on the fundamental

behavior of worms that is hard for any worm to evade. The only truly fundamental

behavior of worms is that of connecting to new destinations. Behavior-based

detection systems that do not focus on this fundamental behavior can be evaded

successfully by sufficiently smart worms. Furthermore, SWORD is designed

to detect both outbound worms from, and inbound worms toward a protected

network. It only needs to observe a very small number of connections from an

infected host to detect the presence of the worm, either outbound or inbound. In

48

addition, unlike some detectors that require bi-directional traffic to detect worms in

either direction, SWORD only requires outgoing traffic to detect outbound worms

and incoming traffic to detect inbound worms.

SWORD’s working mechanisms are novel. It includes two main modules in

detecting violations that a worm will cause in connecting to new destinations, and

these two modules complement each other: If a worm does not wish to violate one

module when connecting to somewhere, it will inevitably violate the other, leaving

little space for a worm to breathe and forcing it to slow down or freeze.

We evaluate SWORD and three detectors, MRW, PGD, and RBS, on

incoming worm traffic, where all of the detectors are only given uni-directional

incoming traffic as if they were deployed at an upstream ISP or IXP to protect

multiple downstream networks. We exclude DSC, TRW, and TRWRBS from

comparison because they require bi-directional traffic to detect worms. We

leveraged a real-world, Mirai worm traffic trace collected at a major educational

IXP [3], along with a trace of background traffic collected at the same IXP [2].

Not only does SWORD outperform every other detector in terms of false negative

rates, but it also outperforms them at detecting surreptitious worm IPs with low

total scans or low incoming scanning rates, and superspreading worm IPs with

high total scans. Compared to its competitors, SWORD detects significantly more

worm IPs that make as low as 5 incoming scans, and unlike any of its competitors,

SWORD can detect worm IPs with incoming scanning rates as low as 0.002

scans/s. Furthermore, SWORD detects the first incoming Mirai worm scan the

quickest, therefore allowing the fewest incoming worm scans out of all the detectors

before alerting of the first worm scan.

49

4.2 Background and Related Work

4.2.1 Worm Traffic Detection. A worm running on a host actively

scans the network (or the entire Internet) that the host is connected to and looks

for new victims to infect. A worm can employ a variety of scanning mechanisms,

including random, local preference, sequential, permutation, topological, and hitlist

scanning [139]. It infects a remote host by gaining sufficient privileges to copy itself

to, and then execute itself on, the remote host.

We categorize worm detection systems into two categories: host-based and

network-based. Host-based detection uses information available at the end-host,

and example techniques include buffer overflow detection, correlating network data

to memory errors, and looking for patterns in system calls (e.g.[85, 38, 100]). But

since host-based detection requires deployment on every host to detect if a host

is infected, network-based detection became more desirable with less overhead to

install and maintain. Network-based systems usually only need a single deployment

location, such as a network gateway, to protect an entire network. Network-based

detection mainly includes content-based detection and behavior-based detection.

Content-based detection observes the content of network traffic to look for byte

patterns that match the signature of a worm. Early content-based detectors

leveraged simple statistical methods (e.g.[77, 128, 84]), while recent content-based

detectors leverage deep learning to detect worms (e.g.[168, 135]). Behavior-based

detection observes the network behavior of end hosts and identifies patterns that

are indicative of the presence of a worm. Because content-based detection is less

capable against zero-day or polymorphic worms and can incur a high overhead to

inspect traffic payload, we focus on behavior-based detection in this chapter.

50

Existing behavior-based worm detection has focused on various types of

traffic behaviors, including: how the outgoing connections from a host correlate to

the incoming connections to that host, how the connection failure patterns of a host

deviate from normal, and what a host’s pattern of visiting destinations looks like.

As we will need to compare SWORD against state-of-the-art behavior-based worm

detectors, we now summarize these detectors below.

DSC [58] detects a worm by correlating an incoming connection on a given

port with subsequent outgoing connections on that port. If the outgoing connection

rate exceeds a threshold established during training, the alarm is raised.

TRW [117] identifies a host as worm infected if its attempts to connect to

new destinations result in a high rate of connection failures. The basic idea is that

a worm-infected host that is scanning the network randomly will have a higher

connection failure rate than a host engaged in legitimate operations.

The multi-resolution approach [119], which we refer to as MRW, supposes

that when there is no worm, the growth curve of the number of distinct

destinations over time is concave, but not so when a worm is present since worm

scanning will lead to many destinations. This hypothesis can be leveraged by

monitoring over multiple time windows with different thresholds for each window.

If the number of new destinations for a host within a given window exceeds the

threshold, an alarm is raised.

The Protocol Graph detector [35], which we refer to as PGD, is targeted

at detecting slowly propagating hitlist or topologically aware worms. It works by

building protocol-specific graphs where each node in the graph is a host, and each

edge represents a connection between two hosts over a specific protocol. It assumes

that during legitimate operation over short time periods, the number of hosts in the

51

graphs is normally distributed and the number of nodes in the largest connected

component of each graph is also normally distributed. During a worm infection,

however, both numbers will become abnormal, thus indicating the presence of a

worm.

RBS [73] measures the rate of connections to new destinations, similar to

MRW. It assumes that a worm-infected host contacts new destinations at a higher

rate than a legitimate host does. It measures this rate by fitting the inter-arrival

time of new destinations to an exponential distribution.

TRWRBS [73] combines the TRW and RBS detectors into a unified scheme,

and observes both the connection failure rate and the first contact rate. It performs

sequential hypothesis testing on the combined likelihood ratio to detect worms.

All aforementioned detectors are focused primarily on classic worms, without

considering the countermeasures that a smart, evasive worm may employ. Research

in [138] have also evaluated and compared their performance, but only against

classic worms. Although a detector may appear to perform well by only considering

classic worms, their performance against sophisticated evasive worms remains to be

seen.

Furthermore, all aforementioned detectors are focused solely on detecting

outbound worms from a network. While each detector may be applied to also

detect inbound worms toward a network without significant changes, each detector

was evaluated only against outbound worms.

Lastly, DSC, TRW, and TRWRBS require bi-directional traffic to detect

worms. DSC needs to observe both incoming and outgoing traffic in order to

correlate the two, TRW needs to observe incoming traffic in order to determine

which outgoing connections led to connection failures, and TRWRBS leverages

52

TRW and therefore also needs to observe incoming traffic. In some scenarios

in the real world, the requirement of bi-directional traffic may be impossible to

meet, due to the deployment location of a detector, hardware limitations, privacy

considerations, and other constraints.

4.2.2 Content-Agnostic Traffic Analysis. The aforementioned

behavioral-based worm detectors, including SWORD, are content-agnostic because

they do not need to observe the content of the network traffic. There is a plethora

of content-agnostic traffic anomaly detection approaches in literature, especially in

two areas related to worm detection: bot detection and DDoS detection.

While somewhat similar, bot detection differs from worm detection in

that typical bot detection approaches attempt to detect communication between

bots and their C&C servers, instead of detecting scanning behavior of the bots.

Content-agnostic bot detection approaches leverage flow-level information, instead

of deep packet inspection, to identify key features of C&C communication and

develop detection frameworks (e.g. [57, 17]). In many cases, worms are used to

create botnets that ultimately launch DDoS attacks. Over the last couple decades,

content-agnostic DDoS detection has been a fertile ground for network security

research (e.g. [46, 106]).

Some of the same shortcomings that apply to the previously investigated

behavioral-based worm detectors also apply to the content-agnostic anomaly

detection approaches in bot and DDoS detection. All of the investigated approaches

require a relatively comprehensive view of the network in which they are deployed,

which includes being able to observe bi-directional traffic. While content-agnostic

approaches claim to be easier to deploy in the real-world due to not needing

53

Unmonitored Traffic
Monitored Outgoing Traffic
Monitored Incoming Traffic

ISP/IXP
Router

Protected Network

Possible SWORD placement locations

Gateway
Router

Internet

...

Figure 9. Placement of the SWORD detector.

network traffic content, the requirement of comprehensive input data may render

them infeasible for many networks on the Internet.

4.3 The SWORD Detector

4.3.1 Placement of SWORD. SWORD can detect both outgoing

and incoming worm traffic from and toward a protected network. In other words, to

detect outgoing worm traffic, SWORD needs to be placed where it can monitor the

network’s outgoing traffic; no incoming traffic is needed. To detect incoming worm

traffic, it needs to be placed where it can monitor the network’s incoming traffic; no

outgoing traffic is needed.

A SWORD detector can be placed either at or away from a protected

network. As depicted in Figure 9, a typical deployment position of SWORD is the

gateway of a protected network where SWORD can monitor all of the outgoing and

incoming traffic. Alternatively, SWORD could also run at an ISP/IXP that is en

route of the outgoing traffic from and/or incoming traffic to the network. If the

network is single-homed (i.e.connected to the Internet with just one ISP/IXP) and

SWORD is deployed at its direct ISP/IXP, SWORD can monitor all the outgoing

and incoming traffic. However, if the network is multihomed (i.e.connected to the

Internet with more than one ISP/IXP), SWORD may not see all of the outgoing or

54

incoming traffic and thus only detect outgoing or incoming worm traffic traversing

the ISP/IXP where it is installed. This is also true if SWORD is deployed at an

ISP/IXP multiple hops away from the protected network (regardless if the network

is single-homed or multihomed). A distributed version of SWORD that runs

multiple instances of SWORD at more than one location can also be deployed to

collectively monitor all the outgoing/incoming traffic; in this work we focus on the

single-instance version of SWORD.

To monitor outbound worms departing from a protected network, it is often

preferable to deploy SWORD at a location where it can observe all the outgoing

traffic, such as the network gateway or its direct ISP/IXP if the network is single-

homed, so that the network can minimize its liability of leaking worms to the

Internet. Moreover, if SWORD is deployed at a location not able to monitor all

the outgoing traffic, the worms that have infected the network may also learn the

location of SWORD, and bypass it such that the protected network may not even

know the presence of the worm.

To monitor inbound worms toward a protected network, SWORD can

also be deployed at the network gateway or its direct ISP/IXP if the network

is single-homed such that it can see all the incoming traffic to maximize the

detection of all worm traffic. However, as inbound worms can travel toward the

network along multiple incoming paths, even if SWORD is only deployed on one

of the incoming paths, such as when SWORD is deployed at one of the protected

network’s ISP/IXPs, SWORD will still be able to detect the presence of the worm,

for two reasons: First, even though in such a deployment scenario SWORD may

only see incoming traffic to the network, SWORD only needs uni-directional traffic

to detect worms. Second, although SWORD is not deployed on every incoming

55

path, worm traffic usually appears on every incoming path toward the network.

Running SWORD at an ISP/IXP can be more cost efficient compared to running

SWORD at each network downstream, but far more difficult, especially when only

partial incoming traffic is observed. ISPs/IXPs may also be interested in running

such a worm detection service, that can act as an early warning system, in order

to advertise to potential customers that it has the ability to detect the presence of

worm traffic towards its customers. Note, if SWORD is effective at detecting the

presence of worm traffic upstream, it will also be just as effective, if not more so, if

deployed at an IoT network’s gateway router.

In this dissertation, we focus solely on inbound worm detection.

Below we describe SWORD’s two complimentary detection modules, BDD and

QPD, in detail.

4.3.2 BDD: Preventing Fast Scanning via the Burst Duration

Detector. The behavior of contacting new destinations seeking new victims to

infect simply cannot be avoided by a worm that is looking to propagate. So, to

detect a worm one should look for anomalies in the rate at which a host contacts

new destinations, i.e.the rate of first-contact connections. The key is then to

determine whether or not a host is making first-contact connections at a rate faster

than usual.

Two previous detectors relied on heuristic of this flavor: the MRW detector

and the RBS detector. However, they both have their deficiencies. The MRW

detector counts the number of first-contact connections in a series of time windows

of different length, but it only uses a relatively small set of windows, typically

fewer than 10. An intermediate window size might produce a detection window

that would detect a worm more quickly than the bigger or smaller sizes in use, but

56

due to the limited number of windows, MRW cannot take advantage of this. RBS,

on the other hand, computes a threshold for every different window size, and it

uses the number of connections instead of time to describe the window. However,

it suffers from sub-optimal thresholds, and thus a poor performance even against

classic worms. RBS attempts to fit a single curve to the distribution of inter-

connection intervals and uses this curve to generate the thresholds, but in practice

the distribution does not map well to a single curve.

BDD avoids the drawbacks in the MRW and RBS approaches. Rather than

using a small number of time windows of different sizes like MRW, it uses RBS’s

method of creating a window for every different size of connection burst. Moreover,

BDD derives a threshold for every burst size (from a two-connection burst size to

a maximum-connection burst size). We introduce a training process, during which

we measure multiple different durations observed for each burst size and use the

minimum duration observed for each burst size to determine the threshold for a

burst of that size. Different from RBS using a single curve to derive thresholds, this

process allows for a more complex distribution of inter-connection interval times for

connections in a burst, thus obtaining more accurate thresholds. As a result, BDD

has the advantages of supporting a large number of window sizes and obtaining an

accurate threshold for every burst of a different size.

Another advantage of BDD is that even if a worm only makes a small

number of connections, these connections will be verified against the thresholds for

bursts of a small size, and if any threshold is violated, BDD can detect the worm.

This advantage is especially useful in detecting inbound worm traffic from a worm-

infected host toward a protected network, since the host, while scanning everywhere

57

on the Internet, may only launch a small number of worm connections toward the

network.

The potential drawback to this new method is greater overhead for storing

different thresholds and greater computational requirements for examining a recent

connection history to determine if it violates any of the thresholds. However, a

truism is that computational power and storage space are constantly increasing,

and this additional load is of a less concern.

4.3.3 QPD: Ensuring Quiescent Periods via the Quiescent

Period Detector. A normal host will exhibit regular quiescent periods where

it does not make any first-contact connections. In other words, legitimate traffic

is typically bursty, with first-contact connections occurring in groups and quiet

periods between them. Figure 10a shows an example pattern of legitimate

connections. Point A in the figure shows a quiescent period with no worm traffic,

followed by a burst of connections.

After a worm infects a host and tries to spread itself, if it scans at a fixed

rate, it will make connections during the middle of a legitimate burst, which will

raise the overall observed connection rate from the host. Figure 10b shows the

legitimate traffic with the addition of classic worm traffic. Point B indicates a spot

of increased connection rate due to the worm connections adding to the burst of

legitimate traffic. If BDD is in place, it can detect the worm.

The worm, however, could be adaptive and avoid this additive effect.

Specifically, the worm can dynamically adjust its first-contact rate so that it is

always lower than the detection threshold. If the host makes bursts of legitimate

first-contact connections, the worm can simply slow down to keep from adding

too many of its connections to the legitimate connections, thus avoiding exceeding

58

Time

A

(a) Legitimate connections

Time

B

(b) Legitimate connections plus classic worm connections

Time

(c) Legitimate connections plus rate-adaptive worm connections

Figure 10. Examples of observed connections over time.

the detection threshold. When the host is otherwise idle, however, as long as the

worm does not exceed the BDD thresholds, it is then free to make first-contact

connections. Figure 10c shows the legitimate traffic with an adaptive worm

overlaid. By scanning mostly when the host is in the middle of a quiescent period,

the adaptive worm avoids having a scanning rate greater than the legitimate traffic,

even at a higher scanning rate than the classic worm (with eight worm scans

instead of five in Figure 10b).

Preventing or limiting this adaptive behavior of worms would then help to

reduce the achievable scan rate of a worm, and is the basis for QPD. Basically, if a

host does not display quiescent periods as it typically does, and has been “active”

59

for overly long, QPD then determines that the host is infected by a worm that is

scanning the network.

QPD thus detects worms by measuring the duration of active periods during

a training phase. An active period is defined as the duration of a period during

which first-contact connections happen with no more than the specified quiescent

period between them. QPD uses a series of different quiescent periods. For every

quiescent period size, it measures the mean and standard deviation of all the

active periods that are separated by a quiescent duration of at least that length.

These values are used to generate a threshold duration for active periods, which

is the mean plus β times the standard deviation. β can be tweaked for different

environments to fix the false positives at a specific value. If a host has an active

period exceeding the threshold duration for any of the quiescent period, it is likely

infected with a worm. For example, we can apply QPD to Figure 10c where the

host is active all the time and does not exhibit any quiescent period at all to detect

the presence of the worm.

Note that, similar to BDD, QPD also has the advantage that it is sensitive

to worms that only make a small number of connections, which, again, is

particularly useful in detecting incoming worm traffic despite that there may be

only a small number of scans from a worm IP. Among the different quiescent

periods QPD uses, some of them can be extremely short, and the active period

based on a short quiescent period will also be short and contain only a small

number of connections. Therefore, even if a worm only makes a small number of

connections, it could cause certain active periods to exceed their threshold values,

causing QPD to detect the worm.

60

4.3.4 Clustering. Existing behavior-based detection systems employ

the same threshold for all hosts in a protected network or on the Internet. This

is a poor choice because hosts show widely divergent behaviors. As more devices

(e.g.IoT devices) connect to the Internet, they also come with even more divergent

behaviors [10]. Desktop computers used primarily for web surfing make connections

in a different pattern than a department email server would, for example. If a

desktop computer started making connections at the same rate as the email server,

it is likely an anomalous event and something strange must have happened to that

computer. But if the desktop computer applies same thresholds as the email server

does, its behavior would not appear to be anomalous because those thresholds

must allow it as normal behavior to avoid constantly flagging the email server as

infected.

We applied existing clustering techniques to automatically categorize

the hosts such that different thresholds can be applied to different groups of

hosts. We examined a range of clustering techniques, behavior characteristics to

cluster against, and number of clusters to create. We have found that using k -

means clustering to separate the hosts into groups allows us to improve overall

performance. In our current design we cluster based on a single feature of the hosts,

the number of destinations contacted during a training period.

4.3.5 Design of SWORD. We have combined the above principles

into a new worm detector, i.e.SWORD. It uses the BDD and QPD detectors

outlined above, and declares a host to be infected with a worm when either BDD

or QPD raises an alarm. SWORD observes legitimate network activity for a period

of time to cluster hosts into groups and generate thresholds for each cluster.

61

The co-existence of BDD and QPD makes it extremely hard for a worm

to avoid being caught. If a worm wants to escape BDD but still makes new

connections, it cannot shorten the duration of a burst of any size; it will then have

to lengthen active periods, but doing so will get it caught by QPD. On the other

hand, if a worm wishes to escape QPD while still making new contacts, it then

has to ensure the quiescent periods; it will then have to insert its connections into

active periods, which however will cause certain connection bursts to have a shorter

duration than permitted, thus triggering the alarm from BDD. Therefore, this

combined, collective detection of SWORD captures the fundamental behavior of

worm detection, preventing a worm from quickly spreading to many destinations.

4.4 Experiment Methodology for Inbound Worm Detection

4.4.1 Procedure Overview. Our objective is to evaluate and

fairly compare the performance of different detectors, including SWORD, against

inbound worms. We chose to place each detector at a protected network’s upstream

ISP/IXP, a challenging deployment scenario where the detector is not guaranteed

to be able to access all the incoming traffic, to study how effective SWORD and the

other detectors are under such a realistic scenario. Moreover, such placement does

not guarantee a detector to be able to access both incoming and outgoing traffic

of a protected network either, a requirement for DSC, TRW, and TRWRBS to

detect worms, we thus exclude them from comparison for inbound worm detection.

The incoming traffic at the ISP/IXP is composed of (1) background traffic that we

collected at a major IXP called FRGP [2] that does not contain worm traffic, and

(2) the real-world Mirai worm traffic also collected at FRGP [3].

Different from the evaluation against outbound worms where we evaluated

both classic worms and evasive worms, we do not assume inbound worms can

62

be evasive. While an outbound worm, as it originates from a network already

compromised, may have the knowledge of the legitimate traffic of the network

and/or the parameters of the detector in place to become evasive, we do not expect

the same knowledge for inbound worms.

For each worm detector, we first train it on 1-hour worth of background

traffic. Specifically, we set the threshold values of each detector as aggressive as

possible without triggering a false positive during the 1-hour period. Then on a

different 1-hour period of background traffic that is mixed with worm traffic, we

test each detector and measure its accuracy (total number of detected worm IPs,

false positive rate, and false negative rates) and latency.

4.4.2 The Mirai Worm. We use the Mirai worm as a case study

for this evaluation. As Mirai’s code will continue to be the basis of future

worms [11], the detection of Mirai traffic should be considered a baseline for worm

detectors striving to achieve success in today’s Internet. Hosts infected by the

Mirai worm are diverse: Some only make a very small number of scans during

a period or scan with an extremely slow scanning rate, which we call running a

surreptitious worm; some scan a large number of targets, which we call running

a superspreading worm. The ability to detect surreptitious worms potentially

can alert a protected network of a worm infection otherwise unnoticed, while

superspreading worms are clearly too dangerous not to detect.

4.4.3 Metrics and Parameters. The key metrics we will focus on in

this evaluation are number of Mirai IPs detected, false positive rate, false

negative rate, and detection latency. We denote TP as the number of Mirai

IPs correctly detected as Mirai, FP as the number of legitimate IPs incorrectly

detected as Mirai, TN as the number of legitimate IPs correctly detected as

63

legitimate, and FN as the number of Mirai IPs incorrectly detected as legitimate.

Then the number of Mirai IPs detected is TP + FP and we define the false

positive rate as FP
FP+TN

and false negative rate as FN
FN+TP

. The detection latency

is in terms of the number of worm scans allowed before detection. A Mirai IP’s

detection latency is thus the number of incoming scans the Mirai IP made before

it is detected. On the other hand, the Mirai worm is detected when detecting the

first Mirai IP, so the detection latency of the Mirai worm is the total number of all

incoming worm scans made by all the Mirai IPs before detecting the first Mirai IP.

We also define two parameters associated with each Mirai IP: W that is the

number of incoming worm scans made by the Mirai IP during the testing period

and R that is the worm scanning rate of the Mirai IP, which is particularly useful

when we inspect slowly scanning, surreptitious Mirai IPs. If a Mirai IP is detected,

say after making m worm scans, assuming its first scan is at time t1, the m-th scan

is at time tm, R = m
tm−t1

; otherwise R = W
tW−t1

where tW is the time of the last scan

from the Mirai IP.

4.4.4 Evaluation Environment. The Mirai traffic trace are Argus

flow records and was collected at FRGP during four days in September of 2016

(8th, 9th, 10th, 12th) [3]. These days coincide with Mirai’s first major growth

phase in early September 2016 [12]. The background traffic was also collected at

FRGP in September 2016, across the entire month [2]. Both are uni-directional

traffic collected at a single router at FRGP towards its downstream customers; as

such traffic is not guaranteed to be all the incoming traffic toward a customer, it

creates a more challenging deployment scenario.

We trained the detectors on 1-hour worth of FRGP background traffic (∼3

GB of records) collected on 9/8/2016 at 6:20 PM—7:20 PM (MST). We verified

64

0 100 200 300 400
Total # of Worm Scans

1

10

100

1000

of

 M
ira

i I
P

s

(a) With respect to the total number of
worm scans (W)

0.001 0.01

1

10

100

1000

of

 M
ira

i I
P

s

0.1
 Worm Scanning Rate (scans/s)

1 5

(b) With respect to the worm scanning
rate (R)

Figure 11. Number of Mirai IPs in the 1-hour testing period.

that no incoming Mirai connections are present during this time window (there

were no incoming connections to destination ports 23/2323 from random source

ports). Once trained, the detectors were tested on 1-hour worth of Mirai scanning

traffic mixed with FRGP background traffic (totaling ∼8 GB), both collected at

FRGP on 9/9/2016 at 6:20 PM—7:20 PM (MST).

There was a total of 45,291 unique Mirai IPs present in the 1-hour

testing period, along with 45,903 unique legitimate source IPs making incoming

connections to FRGP customer IPs. Figures 11a and 11b show the total number of

Mirai IPs (log scale) for different W and R values in the 1-hour testing period,

respectively. From Figure 11a we can see that a large portion of the Mirai IPs

made fewer than 50 connections to FRGP customer IPs. Detecting such IPs is

almost impossible for any detector. Figure 11b shows a large number of worm IPs

had extremely slow scanning rates between 0.001 and 0.030 incoming scans per

second, also almost impossible to detect.

65

Table 1. Total number of Mirai IPs detected by each detector.

Detector Mirai IPs Detected
SWORD 8882
MRW 5797
PGD 9100
RBS 1041

4.5 Inbound Worm Detection Evaluation

4.5.1 Total Number of Mirai IPs Detected. Table 1 shows the

total number of Mirai IPs detected by each detector, By setting the threshold

values of each detector without triggering a false positive during training, we found

during testing that every detector’s false positive rate is also 0, and therefore, all

detections are true positives. PGD detected slightly more Mirai IPs than SWORD,

while MRW and RBS detected around 35% and 88% less Mirai IPs than SWORD,

respectively.

Figure 12a provides us with a more detailed view of the number of Mirai

IPs detected by grouping the Mirai IPs based on their number of scans, i.e.their

W values. First, for all of the detectors, most Mirai IPs that were detected made

anywhere from around 120 to 250 scans (120≤W≤250). Second, there is a dip in

detections between around 250 and 300 scans (250≤W≤300); this is because there

was only a small number of Mirai IPs (less than 10) that fell within this range, as

shown in Figure 11a. Third, although there were many Mirai IPs whose number of

scans were relatively low with W ≤ 120, it was difficult to detect them; without

enough incoming Mirai traffic, a detector has difficulty in distinguishing between

incoming legitimate and malicious connections.

Nonetheless, if we take a closer look at surreptitious Mirai IPs with a low

number of incoming scans (e.g., no more than 50 scans or W ≤ 50), as shown

66

0 60 120 180 240 300 360 420
0

50

100

150

200
SWORD

0 60 120 180 240 300 360 420

MRW

0 60 120 180 240 300 360 420
0

50

100

150

200
PGD

0 60 120 180 240 300 360 420

RBS

Total # of Worm Scans

 #
 o

f M
ira

i I
P

s
D

et
ec

te
d

(a) Number of Mirai IPs detected with respect to W

0 10 20 30 40 50
0

2

4

6
SWORD

0 10 20 30 40 50

MRW

0 10 20 30 40 50
0

2

4

6
PGD

0 10 20 30 40 50

RBS

Total # of Worm Scans

 #
 o

f M
ira

i I
P

s
D

et
ec

te
d

(b) Number of Mirai IPs detected with respect to W ≤ 50

Figure 12. Number of Mirai IPs detected.

in Figure 12b, we see that SWORD significantly outperformed the other three

detectors, and shows that it has the ability to detect some worm IPs with very

low number of scans. While other detectors did not detect any Mirai IPs making

less than 10 scans in the entire 1-hour period, SWORD was even able to detect

a Mirai IP that only made 5 scans in the period. The main reason for SWORD’s

superior performance here is that even with an extremely low number of scans,

some surreptitious worm IPs will exhibit bursty behavior, and will therefore be

caught by SWORD’s BDD module.

67

[1,
10]

[51,
60]

[101,
110]

[151,
160]

[201,
210]

[251,
260]

[301,
310]

[351,
360]

[401,
410]

450+

Total # of Worm Scans (binned)

0

20

40

60

80

100

F-
 R

at
e

(%
)

SWORD
MRW
PGD
RBS

(a) False negative rates with respect to W

0 10 20 30 40 50

Total # of Worm Scans

99.970

99.975

99.980

99.985

99.990

99.995

100.000

F-
 R

at
e

(%
)

SWORD
MRW
PGD
RBS

(b) False negative rates with respect to W ≤ 50

0.000 0.005 0.010 0.015 0.020 0.025 0.030

Worm Scanning Rate (scans/s)

93

94

95

96

97

98

99

100

F-
 R

at
e

(%
)

0.002 0.004 0.006

99.8

99.9

100.0
SWORD
MRW
PGD
RBS

(c) False negative rates with respect to R ≤ 0.03

Figure 13. False negative rates.

4.5.2 False Negative Rate. Figure 13a shows a granular view of

the false negative rates for each detector. We first binned Mirai IPs based on their

68

total number of scans, i.e.their W values, at 10-scan increments and then calculated

every detector’s false negative rate for each bin. Overall, SWORD outperformed

MRW, PGD, and RBS. Specifically, while SWORD’s false negative rates were

lower than MRW and RBS over all the Mirai IPs, PGD had a slightly lower false

negative rate than SWORD for Mirai IPs that made from 121 to 240 total scans,

which further led PGD to detect slightly more Mirai IPs than SWORD over all

Mirai IPs. However, PGD was not as effective as SWORD against Mirai IPs that

were superspreading or surreptitious, which are of particular importance for worm

detection.

For superspreading Mirai IPs, which are clearly damaging when left

undetected, we can observe at which point a detector reached 0% false negative rate

to gauge its capability in detecting them. From Figure 13a, we can see for Mirai

IPs with more than 240 scans, PGD remained at about a 20% false negative rate,

while SWORD approaches 0%. SWORD reached a 0% false negative rate when

Mirai IPs made more than 270 scans. PGD, MRW, and RBS, on the other hand,

did not reach a 0% false negative rate until 371, 391, and 401 scans, respectively,

allowing Mirai IPs 100, 120, and 130 more scans than SWORD, respectively, before

they were guaranteed to be detected.

For surreptitious Mirai IPs, we look at every detector’s performance against

them in two complementary measurements. We first view every detector’s false

negative rates against Mirai IPs that made no more than 50 scans during the

entire 1-hour testing period. Figure 13b shows for the most part SWORD’s false

negative rates were clearly lower than those of every other detector compared.

Note that although the false negative rates here were fairly high, so long as they

were not 100%, given the false positive rates were 0%, even if only one Mirai IP

69

was detected, a reliable early warning could be issued against the worm. On the

other hand, we also notice the false negative rate curves oscillated as the number of

scans increased. This is because a surreptitious worm IP that made less scans than

the other surreptitious worm IPs could have just scanned within a smaller time

window, thus achieving a higher scanning rate and potentially a lower false negative

rate. We therefore also look at every detector’s performance against Mirai IPs

using every worm’s scanning rate. Figure 13c shows every detector’s false negative

rates against surreptitious Mirai IPs at different scanning rates between 0.001 and

0.030 scans/s. Now, the false negative rate curve decreases as the worm scanning

rates increase. Again, clearly SWORD outperformed all of the other detectors at

detecting surreptitious worms. For example, SWORD was even able to detect at

least some Mirai IPs with scanning rates as low as 0.002 scans/s, while MRW,

PGD, and RBS did not detect any worms with scanning rates less than 0.004,

0.004, and 0.005 scans/s, respectively.

4.5.3 Detection Latency. Table 2 shows for each detector when it

detects the first worm scan and the number of unique worm IPs allowed to scan

the protected network before the detection. It also shows the total number of worm

scans that occurred before the detection, which is the detection latency of a worm

detector. For the given 1-hour testing period, SWORD detected the first worm

scan more than twice as fast as PGD and MRW, and 1.5 times faster than RBS.

Out of a total of 45,291 unique Mirai IPs present in this 1-hour period, SWORD

only allowed 102 unique Mirai IPs undetected to scan the protected network before

the first worm scan was detected, which accounted for 5,380 total worm scans in a

7.87-second period. SWORD therefore allowed around 57% less worm scans than

PGD, 61% less worm scans than MRW, and 38% less worm scans than RBS before

70

Table 2. Mirai worm detection latency of each worm detector.

Detector First Detection Allowed IPs Allowed Scans
SWORD 7.87s 102 IPs 5380 scans
MRW 19.77s 272 IPs 13728 scans
PGD 18.20s 235 IPs 12641 scans
RBS 12.50s 169 IPs 8674 scans

detecting the occurrence of the Mirai worm. While 5,380 allowed incoming scans

may seem high, this accounts for only 0.23% of all of the incoming Mirai scans

in the 1-hour testing period (in other words, SWORD detected the presence of

Mirai before 99.77% of the Mirai scans reached the protected network). While

PGD detected slightly more Mirai IPs overall, SWORD’s ability to detect Mirai IPs

faster could be a more valuable attribute to a network operator who may want to

perform mitigative and preventative steps as soon as possible to limit the damage

of the worm.

We further measured the detection latency of every Mirai IP detected, as

shown in Figure 14a. Recall the latency is measured in terms of the number of

worm scans allowed before detection. Among all Mirai IPs detected by SWORD

(8,882), 98.87% of them were all detected before they could make more than 50

scans. The next best detector in terms of latency was RBS, none of the Mirai

IPs detected (1,041) made more than 140 scans. For all the Mirai IPs that PGD

and MRW detected (9,100 and 5,797, respectively), they made no more than 230

and 250 scans, respectively. In fact, SWORD was able to detect 80% of all of

its detected Mirai IPs each within 20 scans. When compared to MRW, which

detected less than 40%, and PGD along with RBS, which detected less than 10%

of all of their detected Mirai IPs each within 20 scans, clearly SWORD can detect

individual Mirai IPs faster than the other detectors.

71

0 50 100 150 200 250
of Worm Scans Allowed Before Detection

0

20

40

60

80

100

C
D

F
(%

 o
f M

ira
i I

P
s

D
et

ec
te

d)

SWORD
MRW
PGD
RBS

(a) Detection latency (number of scans before detection)
CDF of the Mirai IPs detected

0 10 20 30 40 50
0

500

1000

1500
SWORD

0 10 20 30 40 50

MRW

0 10 20 30 40 50
0

500

1000

1500
PGD

0 10 20 30 40 50

RBS

of Worm Scans Allowed Before Detection

 #
 o

f M
ira

i I
P

s
D

et
ec

te
d

(b) Number of Mirai IPs detected for low latency values

Figure 14. Detection latency of Mirai IPs detected.

Finally, Figure 14b details how many Mirai IPs each detector detected with

very low latency (i.e.50 scans or less). For SWORD, the majority of low latency

detections occurred within 10 scans, and a large portion of detections occurred

even within just 5 scans. MRW’s low latency detections were spread across 10 to

30 scans, and PGD’s low latency detections were spread fairly evenly across the

5 to 50 scans range. Both MRW and PGD detected a significantly lower number

of Mirai IPs with 5 scans, as compared to SWORD. RBS had such a low number

of detected Mirai IPs for each latency that it is difficult to eyeball, but it too

follows an even distribution similar to PGD, with its detections spread across the

72

10 to 30 scans range like MRW; it does not detect any Mirai IPs until 8 scans.

Clearly, compared to other detectors, SWORD can detect many more Mirai IPs

within a very small number of scans (e.g., 5 allowed scans); this fact is consistent

with SWORD’s lowest detection latency of the Mirai worm among all detectors

evaluated.

4.5.4 Summary. As with outbound worm detection, SWORD again

significantly outperformed all of the other detectors in inbound worm detection.

While PGD detected slightly more total Mirai IPs than SWORD, SWORD

outperformed PGD in terms of false negative rates and detection latency. SWORD

also outperformed MRW and RBS in all three metrics. Furthermore, SWORD

detected far more superspreading Mirai IPs with relatively high total scans, and

surreptitious Mirai IPs with relatively low total scans and relatively low scanning

rates than the other three detectors. In fact, SWORD was even able to detect some

surreptitious Mirai IPs with extremely low scanning rates, unlike MRW, PGD, and

RBS.

4.5.5 Limitations and Open Issues. It is possible that worm

traffic may be present in the 1-hour training dataset. While we verified that no

incoming Mirai scans were present, it may be possible that other strands of worms

are present. Also, we only tested the detectors on one 1-hour period. While the

results may vary across different 1-hour periods, we doubt that we will arrive at

vastly different conclusions to the ones presented in this section.

4.6 Conclusion

We identify two principles that an effective worm detection solution must

follow: (1) Worm propagation and worm detection are in an arms race, and a

detector must consider potential countermeasures from worm authors; and (2)

73

Behavior-based worm detection must focus on the fundamental behavior of worm

propagation that worms cannot avoid. Although there are many existing worm

detectors, they are inadequate in following these two principles.

In this chapter, we revisited behavior-based worm detection. We identified

that the fundamental behavior of worm propagation is that of connecting to

new destinations, and designed SWORD, a detector that encompasses two

complementary modules that can detect violations that a worm will cause in

connecting to new destinations. With one module monitoring burst duration and

the other ensuring quiescent periods, SWORD is extremely hard for a worm to

evade.

Furthermore, unlike previous behavior-based worm detectors which only

focus on outbound worm detection, we designed SWORD such that it not only can

detect outbound worms, but also inbound worms, even though detecting inbound

worms is difficult given that a detector usually observes only a fraction of scans

from worm-infected hosts. Additionally, unlike some worm detectors that require

bi-directional traffic to detect worms, SWORD can detect worms solely from uni-

directional traffic.

As demonstrated in our evaluation, the SWORD detector significantly

outperforms all other detectors. We evaluated SWORD and its competitors against

the inbound Mirai worm using only uni-directional real-world incoming traffic, and

demonstrated that SWORD is most effective at inbound worm detection, especially

in detecting superspreading and surreptitious worm IPs.

74

CHAPTER V

DEFENSE AT THE GATEWAY: DETECTING DDOS TRAFFIC LEAVING AN

IOT NETWORK

In the previous chapter, although we show that SWORD is highly effective

at detecting the presence of a worm from incoming worm traffic, completely

preventing worm infections is almost impossible, especially given the difficulties in

incoming worm detection. Thus, if devices within a network happen to be infected,

preventing DDoS traffic from leaving the network is crucial. Therefore, in this

chapter, we focus on detecting DDoS traffic leaving an IoT network by inspecting

traffic at its gateway.

A fundamental dilemma facing any security solution for IoT (especially as it

moves closer to the devices themselves) is that it must consume as little resources

as possible while still achieving the same level of performance as classical security

systems. To address this dilemma, we present TWINKLE, a two-mode adaptive

security framework for IoT environments. This framework allows an IoT network

to incur a low resource consumption rate most of the time, and only incur higher

overhead when suspicious behaviors are detected. We transform a classic security

system for detecting and mitigating DDoS attacks at the source-end of the DDoS

traffic (called D-WARD), into a new DDoS defense solution using TWINKLE

(which we call D-WARD+).

We show that using TWINKLE leads to the reduction in retransmissions

and connection duration, which has the positive side effect of reducing overall

energy consumption in the network. Furthermore, only storing limited information

in regular mode, allows TWINKLE to significantly reduce its overall memory

consumption, as compared to a classic security system.

75

The chapter is derived in part from the following unpublished work: A

Two-Mode, Adaptive Security Framework for Smart Home Security Applications

by Sisodia, D.; Li, J.; Mergendahl, S.; Cam, H. Note, this unpublished work was

itself derived from the following published work: Securing the Smart Home via a

Two-Mode Security Framework [132] by Sisodia, D.; Mergendahl, S.; Li, J.; Cam,

H. I am the leading author of these works and was responsible for leading all of the

presented analyses.

5.1 Introduction

The Internet of Things (IoT) continues to pervade our lives. By the

beginning of 2021, there were around 11.3 billion IoT devices connected to the

Internet, and this number is expected to increase to more than 27 billion by

2025 [129]. However, as IoT devices are connected by the Internet, they also suffer

from the same types of attacks that plague traditional Internet-connected machines.

In October 2016, for example, the Mirai IoT botnet, which comprised of up to

100,000 infected IoT devices, launched multiple large-scale distributed denial of

service (DDoS) attacks [63]. This botnet created a 1.2 terabits per second attack

which resulted in the inaccessibility of many popular websites, such as Twitter,

Reddit, Netflix, GitHub, and Airbnb. The landscape of IoT security is growing

darker and more precarious as new malware strains, such as Hajime [62], Satori [4],

the new Bashlite variants [142], Echobot [70], Silex [20], and many others, are being

developed and deployed to exploit the many vulnerabilities of IoT devices.

While IoT devices and traditional machines often suffer from the same types

of attacks, IoT devices tend to be harder to secure due to some unique properties.

IoT devices are often harder to patch and update due to largely non-existent

automatic update systems. More significantly, they tend to have scarce CPU

76

and memory resources, lower network bandwidth, and limited battery capacity if

not plugged into an external power source. These properties, which differentiate

IoT devices from traditional machines, severely hinder the deployment of existing

security mechanisms in IoT environments.

Cryptographic protocols and intrusion detection/prevention systems

(IDSes/IPSes), developed for the traditional Internet, are designed without the

assumption of extremely limited resource and computing power. Even systems that

are considered extremely lightweight cannot be installed on memory-constrained

devices that have less than 1 MB of available memory [140]. For example, Sehgal

et. al. [118] show that many IoT devices struggle to run the cryptographic protocol

TLS, a traditional Internet security standard. If a security solution needs to probe

devices they protect, most devices in an IoT environment may either lack the power

or network bandwidth to respond to every probe, or simply wish to stay dormant

most of the time. Sometimes a security solution may impose some minor penalties

on benign devices while mitigating an attack (e.g.dropping benign traffic from

devices to mitigate a DDoS attack). These minor penalties, when moved to an IoT

environment, can become a significant hindrance to those benign devices.

In this chapter, we focus on the smart home environment where security

and privacy are especially important and address the ineffectiveness of classical

security mechanisms in the smart home. We introduce a security framework called

TWINKLE, TWo-mode IN-home frameworK toward Lightweight SEcurity,

that supports individual security applications that handle specific attacks in the

smart home. By enabling each security application to run in two distinct modes,

TWINKLE not only preserves the salient features of classic security solutions, but

also addresses the resource limitations that IoT devices face. While plugged into

77

TWINKLE, every security application runs in regular mode for most of the time

and incurs a minimal amount of resource consumption, but when it detects any

suspicious behavior that an attack must display, it can readily switch to vigilant

mode and engage in sophisticated routines for a short time window during which

to cope with the suspicious behavior with strong competence. By only running

the heavyweight routines when needed, TWINKLE saves precious resources over

applications that run these routines either continuously or periodically.

We further implement TWINKLE by addressing key implementation

challenges and use it to transform two prior attack solutions for the smart home

environment. We convert the D-WARD solution [93] that handles DDoS attacks

from source networks to D-WARD+; unlike D-WARD, D-WARD+ does not drop

packets from benign devices while still effectively keeping the DDoS traffic to an

unharmful level. Our evaluation further demonstrates that D-WARD+ incurs much

less overhead than D-WARD, while achieving equal to better efficacy in detecting

and mitigating DDoS attacks.

5.2 Background and Related Work

5.2.1 Smart Home Security Analysis. We begin by studying

papers that explore the current state of smart home security and provide

suggestions on improvements in this environment. Denning et al. [42] group

security and privacy goals into three categories: device goals (device privacy, device

availability, command authenticity, and execution integrity), data goals (data

privacy, data integrity, and data availability), and environment goals (environment

integrity, activity pattern privacy, sensed data privacy, sensor validity, and sensor

availability). Notra et al. [102] report vulnerabilities in various household devices,

such as the Phillips Hue light-bulb, the Belkin WeMo power switch, and the Nest

78

smoke-alarm. Sivaraman et al. [134] also analyze various smart home devices

and rate them in terms of confidentiality, integrity, access control, and their

ability to launch reflection attacks. Mare et al. [88] evaluate seven popular smart

home platforms, mainly focusing on the extent these platforms support access

control, privacy, and automation. Similarly, Celik et al. [22] study the security and

privacy of five popular IoT programming platforms through program analysis. The

main contribution of [52] is the discovery of security-critical design flaws in the

SmartThings capability model and event subsystem. Fernandes et al. [54] introduce

a security principle that prevents an attacker from misusing compromised OAuth

tokens of trigger-action platforms. These papers give insight into the vulnerabilities

and open issues that need to be addressed by smart home security frameworks

and systems. Of the seven papers, only [102] and [54] provide security solutions.

However, [102] only provides protection via access control rules deployed at the

gateway router to prevent unauthorized in-bound and out-bound traffic, and [54]

provides a solution to a very specific vulnerability of trigger-action platforms.

Our framework, not only monitors traffic leaving and entering the network,

but also monitors device to device communication from within the network. This

allows our framework to potentially detect and prevent attacks that cannot be

detected or prevented solely at the gateway router. Our framework is also generic

in that a network administrator can plug various security applications into it,

allowing it to handle various vulnerabilities (including, but not limited to, trigger-

action platform vulnerabilities).

5.2.2 Frameworks and Systems. In this subsection, we survey

select papers which introduce security frameworks and systems targeted towards

IoT environments. Table 3 summarizes the differences between each of the studied

79

Table 3. Comparison of frameworks and systems related to TWINKLE.

Paper Design Philosophy Environment Evaluation Resource Consumption
Bernabe et al. [15] privacy preservation

through contextual
management

social IoT proof-of-concept not studied

Abie et al. [8] game theory and risk
analysis

eHealth proof-of-concept not studied

Rahmati et al. [107] risk-based permission smart home real-world not studied
Celik at al. [24] policy-based

enforcement
trigger-action platforms real-world not studied

Simpson et al. [126] centralized and
extensible security
manager

smart home real-world not studied

Kang et al. [75] access control
techniques

smart home proof-of-concept not studied

TWINKLE two-mode paradigm smart home real-world studied

frameworks and systems, and provides a comparison with TWINKLE. In [15], the

authors present a security framework based on the Architecture Reference Model

(ARM) of the IoT-A EU project. The work in [8], uses game theory and context-

aware techniques to create a risk-based adaptive security framework for IoT in an

eHealth environment. Both [15] and [8] are proof-of-concept papers that do not

provide evidence that the presented frameworks are viable in resource constrained

environments.

Rahmati et al. [107] introduce a secure development methodology which

leverages risk-based permissions for IoT networks, instead of permission models

used by smart phone operating systems. Unlike TWINKLE, this work attempts to

improve smart home security by focusing solely on the permission model aspect of

IoT devices.

The authors of [24] present a policy-based enforcement system that

prevents insecure device states that may occur in trigger-action platforms.

Again, unlike our framework, this system is targeted towards the specific area of

trigger-action platforms and cannot be applied to securing the generic IoT smart

80

home. Furthermore, this system does not concern itself with reducing resource

consumption which is a key aspect of our framework.

Similar to our framework, the frameworks presented in [126] and [75] are

both targeted towards smart home environments. The authors of [126] present

a centralized security manager, similar to the security manager component in

our framework, whose main purpose is to provide reliable patching and update

mechanisms to smart homes. The authors of [75] present a security framework

that requires kernel-level modifications to provide authentication and access

control mechanisms for smart home appliances. However, like [15] and [8], the

authors of both papers do not address the limitations of IoT devices nor provide

evaluation results for the resource costs of deploying their solutions. In contrast,

our framework’s primary focus is to reduce resource consumption while maintaining

a secure environment. Furthermore, we show that our framework can reduce

resource consumption through the evaluation of two concrete case studies.

5.2.3 Security Mechanisms for Edge Computing. Because IoT

and edge computing are closely related, we analyze existing security mechanisms for

edge computing. Specifically, we focus on identification and authentication, which

are two well-studied problems in edge computing.

In IP networks, the two main roles an IP address serves are as locator and

end point identifier. The Host Identity Protocol (HIP) [97] is a host identification

protocol that decouples these two roles by introducing a Host Identity (HI) name

space as an end point identifier which is based on public key cryptography. One of

the security advantages HIP provides is that it prevents machines on the Internet

from directly accessing IoT devices without passing the strict security procedure of

mutual peer authentication via Sigma-compliant Diffie-Hellman key exchange.

81

In fact, the preferred way of implementing HIP in edge networks is to use

Internet Protocol Security (IPsec) [76] to carry the data traffic. IPsec is a network

protocol suite that is used to authenticate and encrypt packets, thereby providing

secure communication between two machines in an IP network. Specifically, the

only defined method for implementing HIP is to use IPsec’s Encapsulated Security

Payload (ESP) to carry the data packets. When used in combination, HIP and

IPsec not only provides data authentication, integrity, and confidentiality, but

allows for secure IP multihoming and mobile computing.

Protocols, such as HIP and IPsec, which enhance the security of

communications between IoT devices, are orthogonal to the security benefits that

TWINKLE provides. Because HIP and IPsec only deal with the specific problems

of host identification, and data authentication, integrity, and confidentiality,

TWINKLE, which can handle a plethora of attacks, can be leveraged in

combination with HIP and IPsec to provide a more secure environment for IoT

networks.

5.2.4 Motivation for the TWINKLE Design and Possible

Extensions. Lastly, we analyze papers that motivate certain design choices and

components of TWINKLE. Instead of introducing new security countermeasures,

the authors of [74] attempt to strengthen security for smart home networks

by making it easier for non-expert home owners to set up secure networks and

intuitively manage trust and access to their devices. The research in [98] attempts

to provide adequate mechanisms to control the flow of data and enforce policies

based on users’ preferences. Such work motivates the need for TWINKLE’s

automated component instantiation which allows users to intuitively and easily

82

plug existing security applications into the framework without having any

knowledge about the inner-workings of those applications.

The TWINKLE framework can be extended to include additional features

that may work well with the two-mode paradigm, and further increase its defense

efficacy and resource efficiency. In [25], the authors utilize special nodes that

monitor traffic within the network to detect certain routing attacks. The work

in [74], [98], and [25] show the need of user interaction, adjustable policies set

by users, and dedicated event watchdog nodes for inspection of in-network

communication, respectively. Also, the work in [79] provides motivation for allowing

security policies, such as using efficient authentication and key agreement methods.

He et al. [60] conclude that per-device granular access control policies are not

sufficient, and instead, a combination of per-capability, per-relationship, and per-

context granular access control policies are needed. TWINKLE can be extended

to allow the user to specify these types of access control policies, and how these

policies may change depending on the mode. Furthermore, the substantial research

in the area of security in wireless sensor networks (WSNs), such as the work

presented by Abduvaliyev et al. [7] and Roman et al. [112], where devices are

extremely constrained, can be leveraged to further improve TWINKLE’s resource

efficiency.

5.3 TWINKLE: Design and Architecture

Many security solutions developed for the traditional Internet, if deployed in

an IoT environment such as a smart home, may cause a substantial burden on some

IoT devices due to their computing power, resource, and energy requirements. We

design the TWINKLE framework in such a way as to not only preserve the salient

features of classic security solutions, but also address the resource limitations that

83

IoT devices face. In this section we describe its design, architecture, and how it

supports security applications running in a smart home.

5.3.1 Design with Two Modes for IoT-based Security

Applications. A smart home requires many types of security applications. It

may face various malicious attacks such as an eavesdropping attack that can spy

on the traffic between the smart home devices, a sinkhole attack that can misdirect

traffic of devices to a sinkhole, a wormhole attack that can reroute data from the

smart home to an attacker outside, or an attack that compromises devices at the

smart home and turns them into nodes of a botnet. Worse, a smart home may also

initiate attacks, such as launching a distributed denial-of-service (DDoS) attack

or a phishing campaign through compromised devices at home. The TWINKLE

framework thus aims to support various security applications for the smart home,

where every security application handles a specific type(s) of attack. We also

call these security applications TWINKLE security applications. For every

TWINKLE security application, the network administrator can plug it into the

TWINKLE framework when needed.

The central dilemma facing these security applications is that they must

address the inadequacy of computing power and resources available to smart home

devices without compromising their own efficacy. A security application may

demand resources from a device, such as CPU utilization, memory consumption,

power consumption, and bandwidth consumption, such that it is impossible for

the device to meet that demand without sacrificing performance of the security

application itself, or other applications running on the device.

To address this dilemma, we design the TWINKLE framework that supports

security applications to run on top of TWINKLE and operate in two distinct

84

modes: regular mode for most of the time which has a low resource consumption

rate and vigilant mode that potentially incurs a high overhead but is infrequent.

In regular mode, a TWINKLE security application invokes functions to detect

suspicious behavior that an attack, if occurring, must display, whereas those

functions must also be lightweight. Note, a legitimate operation may also display

a suspicious behavior. Once it detects a suspicious behavior (i.e., an attack may be

occurring), the security application enters vigilant mode to closely inspect whether

an attack is indeed occurring and if so, conduct other security operations such as

sending an alert of the attack, mitigating the attack, or recovering from the attack.

After the attack is handled or the smart home is no longer under this attack, the

security application goes back to regular mode.

This two-mode design differs from many classical security applications,

which usually run in one mode. Specifically, a classical application usually runs

continuously or periodically to monitor security-related events and must minimize

both false positives and false negatives. It often employs complicated operations

in order to be accurate in detecting attacks, thus consuming resources frequently

and heavily. Conversely, a TWINKLE security application, by switching between

these two modes but staying in regular mode most of the time, does not consume

as much resources as classical applications. In regular mode, it is only concerned

about detecting with high sensitivity the suspicious behaviors that attacks in

question must demonstrate, even if legitimate operations may also demonstrate

such behaviors. In other words, in regular mode it is more concerned with

minimizing false negatives but less concerned with minimizing false positives. While

every security application defines and handles suspicious behaviors of a different

type, nature, or severity, this design choice simplifies the detection of suspicious

85

Routine Instantiation

Mode Switch Function

Security Manager

Suspicious Behavior Handling Table

...
TWINKLE Security Application 1

Suspicious Behaviors SBDRs SBHRs

...

suspicious behaviori SBDRi SBHRi

...

Event Watchdog Security Engine

1 1

2a 2b

3

5a 5b

7

Suspicious Behaviors Pointers to SBHRs
... ...

suspicious behaviori
suspicious behaviorj

... ...

Suspicious
Behavior Detection

Routines

...

SBDRi

...

Security
Application 1

Suspicious
Behavior Detection

Routines

...

SBDRj

...

Security
Application n

...

Suspicious Behavior Handling
Routines

...

SBHRi

SBHRj

...

6

Network & Device Information
4

3

TWINKLE

Initialization

Regular Mode

Vigilant Mode

Key:

Suspicious Behaviors SBDRs SBHRs

...

suspicious behaviorj SBDRj SBHRj

...

TWINKLE Security Application n

Figure 15. The basic architecture of TWINKLE.

behaviors for every security application, as they all can rely on vigilant mode to

further check if a suspicious behavior is indeed from an attack. By transitioning

into vigilant mode for a short period only when needed, the security application

can engage in sophisticated operations, including those that may be resource-

consuming, to detect or handle an attack in question. Since regular mode is usually

less resource-consuming than a classical one-mode system, and by only invoking

the resource-consuming vigilant mode infrequently and on demand, a TWINKLE

security application overall incurs much less resource consumption than classical

security applications.

5.3.2 Architecture of TWINKLE. As shown in Figure 15,

TWINKLE is composed of three main components: security manager, event

watchdog, and security engine. The security manager is TWINKLE’s central

component and acts like a security operating system. It is responsible for

supporting various security applications, maintaining information about the smart

home and key data structures for security, instantiating the security functions at

86

the event watchdog and the security engine according to security applications in

place, and switching between regular and vigilant mode. The event watchdog is

responsible for detecting suspicious behaviors. The security engine is responsible for

further handling those suspicious behaviors, such as verifying whether a suspicious

behavior is indeed from an attack or not.

In general, the security manager and security engine are deployed at a

central node, such as the border router of a smart home, and an event watchdog

can consist of more than one instance by running at multiple devices that can

detect suspicious behaviors, such as a smart watch running a monitoring routine, a

Raspberry Pi devoted to eavesdropping and monitoring IoT traffic, or any selected

devices in the smart home. Certain security applications may instead require a

single event watchdog to be installed at the network’s border router.

Responding to the need of supporting various different security applications

for the smart home, the network administrator can plug any security application

into TWINKLE as needed (Step 1 in Figure 15). In doing so, the security manager

populates data structures and instantiates routines that run on the event watchdog

and security engine, all according to the security application in question. On the

other hand, in order to be supported by TWINKLE, a security application that

handles an attack must define the suspicious behaviors that may be a sign of the

attack in question. And for every suspicious behavior, the security application

must define the routine that detects the suspicious behavior, which we call a

suspicious behavior detection routine (SBDR), and the routine that handles

the suspicious behavior, which we call a suspicious behavior handling routine

(SBHR). A general principle here is that an SBDR should be lightweight while an

87

SBHR may be more resource-consuming since, as we explain below, the SBDR runs

in regular mode and the SBHR runs in vigilant mode.

After a security application is plugged into TWINKLE, the security

manager’s Routine Instantiation module instantiates the event watchdog by

having the event watchdog monitor the set of suspicious behaviors defined by the

security application (Step 2a). Specifically, the event watchdog begins running the

lightweight SBDRs defined by the security application.

TWINKLE provides a dynamic mechanism for a security application to

install its event watchdog or security engine at any device needed. At start-up,

lightweight processes that can receive, consume, and send messages run at each

device that may be a candidate for running an event watchdog or security engine of

a security application. When the network administrator deploys a new security

application on TWINKLE, and needs to run the event watchdog or security

engine code of the application on a device, the security manager can communicate

with the device to ship, install, and eventually run the code on the device. Note,

depending on the security application, an event watchdog may perform signature-

based detection, behavior-based detection, or a combination of both. As described

in the previously, the event watchdog ensures that detection is lightweight by not

concerning itself with minimizing false positives. When tuned to be lightweight,

off-the-shelf intrusion detection systems (IDSes), such as Snort [5], Suricata [6], and

Zeek [103], could be used as a basis for the event watchdog.

Next, to instantiate the security engine, the Routine Instantiation module

injects the SBHRs defined by the security application into the security engine.

Furthermore, the Routine Instantiation module ensures that every defined

suspicious behavior is mapped to an SBHR (Step 2b). It does so by populating

88

a data structure called the suspicious behavior handling table (SBHT). For

each suspicious behavior, the SBHT points to a specific SBHR at the security

engine for handling that behavior. While, in general, the security engine runs at

a central node, such as a border router, some security applications may require the

security engine to run at multiple locations in the network. For example, traffic

from a malicious device may need to be dropped before it reaches the border

router, and therefore the SBHR that is responsible for dropping malicious traffic

should be installed in-network between the malicious device and border router.

Note, security applications may define parameters for various SBDRs and

SBHRs. Furthermore, security applications may also require data to be tracked

which may be needed for certain SBDRs and SBHRs. Parameters (i.e., threshold

values that define various suspicious behaviors) defined by security applications

that are required by SBDRs and SBHRs are transferred to the event watchdog and

security engine during routine instantiation. Data required by security applications’

SBDRs and SBHRs are stored in the security manager’s Network & Device

Information module.

Once the routines are instantiated, the application begins in regular mode,

with the event watchdog running. In order to detect suspicious behaviors, in

some cases the SBDRs may need to retrieve information stored in the security

manager’s Network & Device Information module, such as network topology or

routing information (Step 3). As mentioned previously, data required by security

applications’ SBDRs and SBHRs are stored in this module, as well. Once the event

watchdog detects a suspicious behavior, it notifies the security manager’s Mode

Switch Function (MSF) to handle the suspicious behavior (Step 4). Upon

receiving the notification, the security manager then switches to vigilant mode. The

89

MSF takes the detected suspicious behavior as input, queries the SBHT (Step 5a)

to determine which SBHR should be invoked (Step 5b), and passes the pointer of

that SBHR to the security engine (Step 5c). The security engine, in turn, invokes

the SBHR in question. Generally, as we said above, the SBHRs are heavyweight

and should only be running in vigilant mode when invoked on demand. SBHRs,

like the SBDRs in regular mode, may need to retrieve (and update) network

information stored at the security manager (Step 6) in order to successfully handle

a suspicious behavior. Once the SBHR finishes its execution, the security engine

notifies the security manager, and TWINKLE returns to regular mode.

5.3.3 TWINKLE Security Applications. Although TWINKLE

security applications are not a part of the TWINKLE framework, they affect

how each component in TWINKLE operates. Specifically, the SBDRs and

SBHRs, which are critical in detecting and mitigating attacks, are defined by the

TWINKLE security applications plugged into TWINKLE. A TWINKLE security

application must:

1. define a set of suspicious behaviors that may constitute the attack, and

2. define a set of routines to detect and handle these suspicious behaviors.

Handling an attack requires defining a set of suspicious behaviors that must

be present if that attack is occurring. As mentioned before, suspicious behaviors are

defined and detected via SBDRs, which run on event watchdog nodes in regular

mode. Depending on the security applications, suspicious behaviors can be of

varying granularity. An example of a coarse-grained suspicious behavior is all

outgoing traffic exceeding 100 MB at any given time (thus necessitating inspecting

the entire network as a whole to determine the suspicious behavior). An example

90

of a fine-grained suspicious behavior is device X sending more than 100 KB traffic

every 10 seconds (thus warranting inspecting a specific device to determine the

suspicious behavior). Nonetheless, suspicious behaviors must be measurable and

detectable by event watchdog nodes. Some suspicious behaviors can be easily

measured, such as the amount of outbound traffic, while others may be more

difficult, such as the energy consumption of a particular device.

However, suspicious behaviors, if present, are not sufficient in determining

if an attack is actually occurring. Further analysis needs to be performed in order

to detect if a suspicious behavior or combination of suspicious behaviors should be

considered malicious. If an event watchdog detects a suspicious behavior, it triggers

the security manager to enter vigilant mode where the security engine performs

detailed inspection to determine if the suspicious behaviors are indeed malicious.

In particular, a set of routines or functions must be defined to verify and mitigate

an attack. These routines are dependent on the attack and vary across different

security applications. For example, for certain suspicious behaviors, a security

application may want to send probing signals to gain additional information from

devices (SEND-SIGNAL), drop outbound traffic (DROP), change certain paths in

the network (CHANGE-PATH), change the encryption protocol between certain

devices (CHANGE-ENCRYPTION), or change the channel frequency between

certain devices (CHANGE-FREQUENCY).

Security applications may handle any number of attacks. Table 4 shows a

taxonomy of common attacks in smart home environments. TWINKLE provides

a framework for any security application to utilize the two-mode paradigm for

reducing resource consumption in IoT environments. However, while any security

application can be plugged-into TWINKLE, how effectively the application will

91

Table 4. Taxonomy of common attacks in smart home environments.

Security Requirements Attacks Description

Targeting Confidentiality
Side-Channel Exploits data leakage vulnerabilities

to gain sensitive information.
Brute-Force Exploits weak credentials to gain

privileged access to devices.

Targeting Integrity
Voice-Command Injection Exploits vulnerabilities in speech-

recognition systems to inject malicious
or inaudible voice commands.

Event Spoofing Exploits lack integrity checks in
applications to propagate seemingly
legitimate events to devices causing
them to react in some way that
benefits the attacker.

Targeting Availability
Sinkhole/Selective Forwarding Exploits routing protocol

vulnerabilities to launch a DoS attack
by forwarding only a subset of packets
to the destination.

Jamming Exploits how transceivers operate to
launch a DoS attack that disrupts
data transmission and forces devices
to repeatedly retransmit packets.

Battery-Draining Exploits routing protocol
vulnerabilities to launch a DoS attack
by depleting devices’ battery power.

utilize the two-mode paradigm depends on how the security application itself is

written. To exhibit TWINKLE’s versatility in protecting an IoT network, we

present three example TWINKLE applications, as shown in Figure 16, that use

the TWINKLE framework to address jamming attacks, flooding attacks, and weak

encryption.

5.3.3.1 Example Application to Address Jamming Attacks.

In Figure 16a, TWINKLE is being used to handle a jamming attack where the

link between devices A and B is being jammed by an unknown attacker. In the

first two steps (box 1 and box 2), TWINKLE is running in regular mode. In the

first step, an event watchdog node in the network, while running an SBDR defined

by the security application, detects suspicious behavior. In this case, device B is

not receiving traffic from device A, which is abnormal. The event watchdog can

92

A

B

Data not being sent from A to B,
watchdog finds this unusual

1

A

B

Watchdog communicates with

manager: Abnormality detected

2

A

B

Manager switches to vigilant
mode, invokes security engine

34

A

B

Security engine commands A
and B to change frequency

M

M

M

M

W W

E E

(a) Jamming example

A

B

Unwanted traffic flooding B from
A, watchdog finds this unusual

1

Watchdog communicates with

manager: Abnormality detected

2

Manager switches to vigilant
mode, invokes security engine

34

Security engine commands A to
change its path, C filters traffic

C
A

B

C

A

B

C
A

B

C

MM

W W

MM

EE

(b) Flooding example

A B

Weak encryption between
A and B

1

Manager follows schedule to
decide when to switch modes

2

Manager switches to vigilant
mode, invokes security engine

34

Security engine commands A and
B to change to strong encryption

A B

A BA B

MM

W W

MM

E E

(c) Encryption example

Figure 16. Three example TWINKLE security applications.

detect this abnormality by eavesdropping on the communication between A and

B by setting its network interface controller (NIC) to promiscuous mode. Because

the watchdog does not receive any traffic from A to B for a prolonged period of

time (e.g., the period of time without receiving any traffic surpasses the threshold

for what is considered normal), it notifies the security manager at the border

router of the suspicious behavior, by invoking the MSF. The security manager

switches TWINKLE to vigilant mode (box 3). The security manager’s SBHT

matches the suspicious behavior detected with the proper SBHR (e.g., CHANGE-

FREQUENCY), and the security manager then invokes the security engine to

run that SBHR. By running the CHANGE-FREQUENCY routine, the security

93

engine commands A and B to change their communication channel to possibly

alleviate the jammed link (box 4). In a worst case scenario, where no SBHR can

mitigate the attack (e.g., all channels are being jammed), the security manager

can notify the network administrator (we assume that the manager is running

on a router with wired ethernet connection, thereby bypassing any jamming that

may be present). After the attack is mitigated, either by successfully changing the

communication channel or by the network administrator manually identifying and

removing the malicious device from the network, the SBHR terminates, and regular

mode resumes.

5.3.3.2 Example Application to Address Flooding Attacks.

In Figure 16b, we show how TWINKLE handles a flooding attack where device A

is flooding device B with unwanted traffic. Note, the unwanted traffic may have

originated from a node other than A, who is simply forwarding the traffic to B,

and therefore may not be malicious. Similar to the previous example, the first two

boxes show TWINKLE’s operation in regular mode. First, the event watchdog,

running an SBDR, detects an unusually large amount of traffic being sent to device

B by device A, which surpasses the normal threshold. The event watchdog then

invokes the security manager, which (by invoking the MSF) switches the security

application to vigilant mode (boxes 2 and 3). The SBHT at the security manager

points to the security engine’s SBHR (e.g., CHANGE-PATH) and, as a result, the

security manager invokes the security engine. The security engine then commands

A to change its path to route its traffic to a node C which can filter the unwanted

traffic and route only the wanted traffic to B (box 4). Here, C can be a machine

dedicated to detecting and filtering malicious traffic which may be required for this

particular security application. If A does not change its path, and continues to

94

flood B, the security engine may notify the network administrator, or attempt to

isolate A from the rest of the network by running other SBHRs. Once the attack

had been mitigated, the SBHR terminates and the framework returns to regular

mode.

5.3.3.3 Example Application to Address Weak Encryption.

The TWINKLE framework can be used to proactively secure an IoT network that

requires expensive but stronger encryption at certain critical periods. Figure 16c

shows an example of how TWINKLE can help. For this IoT network, there

are certain times during operation that require stronger encryption. During

normal operational times, the network is operating under regular mode when

weak or no encryption between certain devices, say A and B, is sufficient (box

1). However, once a critical period begins, the watchdog triggers the MSF (box

2), which switches the security application to vigilant mode. Once in vigilant

mode, the security manager invokes the security engine to handle the time change

and commands the devices to change to strong encryption (e.g., CHANGE-

ENCRYPTION; box 4). During the secure period, the event watchdog nodes in

the network can ensure that strong encryption is being used between the critical

devices. Once the critical period ends, the framework returns to regular mode.

5.4 TWINKLE Implementation Details

There are three main challenges that must be addressed in order to

implement the TWINKLE framework. First, the security application plugged into

the framework must be represented in a way as to allow for routine instantiation by

the security manager. Second, routine instantiation must be done automatically,

without human intervention. Finally, after the routines are initiated, all of the

components running the routines must interact with each other in order to detect,

95

(a) Behavior element (b) Routine element

Figure 17. A template XML file for representing a TWINKLE security application.

verify, and mitigate attacks. What follows is a detailed look at how the TWINKLE

framework may be implemented in actuality and how each aforementioned

challenge is addressed.

5.4.1 Representing a Security Application. In order for the

TWINKLE framework to support various security applications with minimal

effort, each security application must be represented in such a way as to allow for

automatic routine instantiation. Generally, either the application’s developer or

network administrator is responsible for creating such a file. We represent security

applications using a markup language such as XML. This allows for the security

manager to easily parse the file to find which devices need to run which routines.

Figure 17 depicts a template XML file for representing a security application. An

XML file represents a single security application, and consists of the following two

main type of elements: behavior and routine elements.

The behavior element contains information about a suspicious behavior

that the security application must detect and handle (lines 11 to 28, as shown in

Fig 17a). Note, each suspicious behavior is defined in a separate behavior element.

The behavior element contains a name element, which serves simply as a unique

96

identifier to differentiate it from other suspicious behaviors, along with an SBDR

and an SBHR element, which represent the SBDR and SBHR to detect and handle

the given suspicious behavior, respectively. The SBDR and SBHR elements further

consist of a name element that represents the name of the routine, along with

parameter name, parameter value, and devices elements. The parameter name

and parameter value elements define parameters (e.g., thresholds) that the routine

takes as input (as command-line arguments). Note again, there must be separate

parameter name and parameter value elements for each routine parameter. The

devices element specifies the devices, as a list of device IDs, on which the given

routine will run.

The routine element contains the routine code, and information necessary

for compiling and running the code (lines 29 to 35, as shown in Fig 17b). It

contains a name element that represents the name of the routine. The name of

the routine must match the name of an SBDR or SBHR specified in a behavior

element. The lang element specifies the programming language in which the

routine is written, which the device responsible for running the routine must

know because the command to run the routine may depend on the language. For

example, if the routine is written in a language that must be interpreted, such as

Python (e.g., “python routine.py arg0, arg1, ...”) and Java (e.g., “java routine arg0,

arg1, ...”), the device must invoke the appropriate interpreter. The code element

contains the actual code for the routine. The code of a routine can be as simple as

a single function, or as complex as multiple classes that may need to be split across

multiple files. The compile element specifies the compilation command for the code

if it needs to be compiled.

97

Mode
Switch
Thread

Parser
Thread

Assigner
Thread

Send/Recv
Thread

Compiler
Thread

Runner
Thread

Send/Recv
Thread

SBDR
Thread

Compiler
Thread

Runner
Thread

Send/Recv
Thread

SBHR
Thread

5

1

2
3a 3b

64a
4c

8 9

10

7

Key:

Initialization

Regular Mode

Vigilant Mode

Security Manager

Security EngineEvent Watchdog

4b

4d

Figure 18. A flow diagram of the interactions between the main threads in the
TWINKLE framework.

It is important to note that one can introduce additional elements into the

XML file when necessary, especially in order to include additional information

required for certain security applications. Minimal change to the TWINKLE

framework (mainly the security manager) would be required in order to parse any

new elements.

5.4.2 Automated Routine Instantiation.

5.4.2.1 Initialization and component threads. Each TWINKLE

component is a lightweight process that contains several threads that are executed

at start-up. The network administrator initializes TWINKLE by executing the

security manager, event watchdog, and security engine processes. The network

administrator provides the security manager process with a configuration file

that includes information about devices in the network, such as a device’s ID, IP

address, and listening port, along with architecture, board, and operating system

98

information, which the security manager process stores in the Network & Device

Information module (which can simply be a database). The network administrator

provides the event watchdog and security engine processes with a port number

on which it should listen on for TWINKLE messages. Each process starts the

component threads, which are independent from the security applications plugged

into TWINKLE and must be running before the routines are instantiated. We list

the threads for each component below and provide a brief description of each. We

explain each in detail throughout the rest of this section.

– Security manager threads:

∗ parser thread: parses and extracts routines from a security application

file

∗ assigner thread: assigns routines to the event watchdog and security

engine

∗ send/recv thread: sends and receives information to and from the event

watchdog and security engine

∗ mode switch thread: given an alert from the event watchdog, invokes the

appropriate SBHR

∗ query handler thread: handles queries from the event watchdog and

security engine

∗ alert thread: sends SMS and email alerts to network administrator

∗ cross-compiler thread: cross-compiles a given routine (only when needed)

– Event watchdog and security engine threads:

99

∗ send/recv thread: sends and receives information to and from the

security manager

∗ compiler thread: compiles a given routine

∗ runner thread: runs a given routine

5.4.2.2 Parsing a security application. Once a security

application needs to be plugged into TWINKLE, the network administrator

uploads its file onto the security manager. Figure 18 shows a flow diagram of

the interactions between the main threads in the TWINKLE framework. The

parser thread reads in the file and parses each element. It parses each behavior

element, and extracts the necessary information to populate the SBHT and create

source code files for the SBDRs and SBHRs. Specifically, it appends a row of two

columns to the SBHT, where one element of the row is the name of the suspicious

behavior and the other element is a pointer to the SBHR (e.g., the name of the

SBHR) that handles that suspicious behavior. Parameter values, as specified

in the parameter value elements, are ultimately sent as arguments along with

the source code files to event watchdog and security engine devices. In order to

correspond parameters to their routines, the parser matches the name element in

the SBDR/SBHR element with the name element in the routine element. In order

to correspond routines to the devices on which they will run, the parser parses

the devices element. Once all parameters are matched with their routines and all

routines are matched with devices, the parser parses the code element to generate

the source code file(s), along with the lang and compile elements. Finally, it sends

all of the parsed information of the security application to the assigner thread

(circle 1 in Figure 18).

100

routine instantiation information messages

error messages

SBHR invocation messages

SBHR alert messages

query messages

response messages

routine instantiation information messages

error messages

suspicious behavior alert messages

query messages

response messages

Security

Manager

Security

Engine

Event

Watchdog

Figure 19. The messages TWINKLE currently supports for inter-component
communication.

5.4.2.3 Assigning routines to devices. After the assigner thread

receives the parsed information from the parser thread, it assigns the SBDR and

SBHR source code to the event watchdog and security engine devices, respectively.

It does so by mapping each device’s ID to its IP address and port, and appends

this information to the original parsed information. Then the assigner thread sends

all of the information of the security application to the send/recv thread (circle 2

in Figure 18).

5.4.2.4 Sending routines to devices. After the security manager’s

send/recv thread receives a message from the assigner thread for a device, it

simply forwards the message as a routine instantiation information message to

the device (circles 3a and 3b in Figure 18). The send/recv thread creates and

manages a TCP/IP socket for each receiving device, where each socket is connected

to a receiving device’s IP and port, which it fetches from the Network & Device

Information module. Note, TWINKLE currently supports seven types of messages

for inter-component communication, as shown in Figure 19.

5.4.2.5 Executing routines. After receiving a routine instantiation

information message, the device’s send/recv thread forwards it to the runner

thread (circles 4a and 4b in Figure 18). The runner thread first checks if the

101

routine needs to be compiled or can be interpreted. If the former, it invokes

the compiler thread, which compiles the source code as specified by the given

compilation command into an executable (circle 4c and 4d in Figure 18). It then

checks the type of the routine. If the routine is an SBDR, the runner runs the

routine in a new SBDR thread (circle 5 in Figure 18). If the routine is an SBHR,

it saves the code to be executed when the SBDR thread detects the suspicious

behavior in question. Note, by compiling and running routines in such a way,

routines can be easily hot-plugged into TWINKLE without requiring any of the

devices to be restarted or interrupted.

5.4.2.6 Dealing with errors. If an error is encountered at any

point in the compiler and runner threads, the compiler or runner thread will send

an error message that includes the specific compilation or runtime error, to the

security manager. The security manager’s alert thread can then send an alert to

the network administrator that an error during routine instantiation occurred.

5.4.2.7 Cross-compiling for embedded systems. The security

manager’s cross-compiler thread cross-compiles routines on behalf of extremely

lightweight devices, such as an embedded system without an operating system.

To do so, the assigner thread invokes the cross-compiler thread before invoking

the send/recv thread. The compiler installed on the security manager must

be compatible with the target device’s processor architecture. Note, because

compiling on the target machine is generally more safe and straightforward, cross-

compilation is only done when absolutely necessary; capable devices compile

routines themselves, as previously described.

5.4.3 Component Interaction After Routine Instantiation.

Next, we explain how the components interact with each other after routine

102

instantiation is complete. For simplicity, we explain the interaction between a single

event watchdog device and security engine device.

5.4.3.1 Generating suspicious behavior alerts. In regular mode,

the watchdog device’s SBDR thread is running (or multiple SBDR threads are

running). Once an SBDR thread detects a suspicious behavior it constructs a

suspicious behavior alert message that includes the device’s ID, name of the

suspicious behavior, and a list of parameters to be consumed as arguments by

the corresponding SBHR. These parameters are usually identifying features of the

entity that caused the suspicious behavior alert (e.g., the source and destination

IP:port pairs of a suspicious connection). Note, the SBDR and corresponding

SBHR must be coded so that the output of the SBDR can be seamlessly handled

as input to the SBHR. The SBDR thread sends the suspicious behavior alert

message to the send/recv thread which in turn forwards the message to the security

manager’s send/recv thread, as shown by circle 6 in Figure 18 (note, the connection

established during routine instantiation is kept alive, thus allowing the two devices

to communicate over the same connection).

5.4.3.2 Mode switching and invoking the SBHR. The security

manager’s send/recv thread observes that the message is a suspicious behavior

alert message, and sends the message to the mode switch thread (circle 7 in

Figure 18). The mode switching thread first extracts the name of the suspicious

behavior from the message, looks it up in the SBHT, and finds the name of

the corresponding SBHR that should be invoked. It then constructs an SBHR

invocation message, which includes the name of the SBHR, the event watchdog’s

device ID, and the list of parameters, and sends it to the send/recv thread, which

103

in turn forwards the message to the security engine’s send/recv thread (circle 8 in

Figure 18).

5.4.3.3 Running the SBHR. The security engine’s send/recv thread

receives the message, observes the message is an SBHR invocation message, and

sends the message to the local runner thread (circle 9 in Figure 18). The runner

thread finds the SBHR with the same name as is specified in the message, appends

the parameters in the message to the list of arguments, and prepares to run the

SBHR. In the same way that the event watchdog’s runner thread created a thread

for running its SBDR, the security engine creates a thread for running the SBHR

(SBHR thread), as shown by circle 10 in Figure 18. During the process of running,

the SBHR may need to issue an alert to the network administrator, and it does so

by sending an SBHR alert message, which includes all information regarding the

alert, to the security manager. The security manager’s alert thread in turn forwards

the entire SBHR alert message to the network administrator.

5.4.3.4 Querying the security manager. Finally, if at any time an

SBDR or SBHR thread needs to query the security manager’s Network & Device

Information module, it sends the query (e.g., an SQL command) encapsulated in a

query message to the security manager via the local send/recv thread. The security

manager’s send/recv thread forwards the query message to the query handler

thread, which simply extracts and executes the query. It then encapsulates the

result in a response message, and sends the message back to the send/recv thread,

which forwards it to the receiving device’s send/recv thread. Note, the query

message may include update commands, which when executed, will update the

Network & Device Information module with new information.

104

5.5 DDoS Attack Detection By Transforming D-WARD

In this case study, we transform D-WARD, a classic security system for

detecting and mitigating DDoS attacks at the source-end of the DDoS traffic, into

D-WARD+, a new DDoS defense solution as a security application on TWINKLE.

5.5.1 DDoS Attacks with IoT Devices. In a DDoS attack, an

attacker sends a victim, such as a web server, an overwhelming amount of traffic

to make it unavailable. The attacker usually employs a botnet, or a network of

compromised devices, to send the traffic. Due to their abundance and the ease

to be compromised, IoT devices are easy targets to be recruited by a botnet. As

shown in the Mirai attack [63], recent DDoS attacks have been launched from

compromised IoT devices and networks [69].

5.5.2 Prior Art: D-WARD Against DDoS Attacks. A DDoS

defense system placed near the victim may struggle with high volume attacks, but

because links closer to the attack sources are less likely to be overwhelmed, filtering

attack traffic becomes more feasible for source-end defense systems. One source-end

solution example is D-WARD [93], which we detail in this subsection.

Deployed at the border router of a policed network, D-WARD consists of

an observation module, a rate-limiting module, and a traffic-policing module. The

observation module classifies each aggregated flow, or agflow, from all devices in

the policed network to an entity outside, receiver, as good, suspicious, or attack.

The classification is based on the ratio of sent packets to received packets of each

agflow. Also, each agflow consists of multiple connections where each connection is

the traffic from a specific device to the receiver. D-WARD classifies each individual

connection as good, transient, or bad, also based on the ratio of sent packets to

received packets (smoothed over time) of the connection; a connection is classified

105

as good if its smoothed packet ratio is below a threshold defined by a legitimate

TCP connection model, transient if there is not enough information about the

connection to discern its packet ratio, and bad if it is classified as neither good

nor transient. D-WARD’s observation component stores information in an agflow

table and a connection table. In the agflow table, D-WARD stores the number of

bytes sent, received, and dropped for each agflow, which is used to label the agflow

and calculate the potential rate-limit for connections in a suspicious or attack

agflow. In the connection table, D-WARD stores the smoothed packet ratio for

each connection, which is used to determine if connections follow the legitimate

connection model. For agflows that are labeled suspicious or attack, D-WARD first

checks the smoothed packet ratio of each connection in the agflows to determine

which connections need to be rate-limited; only bad and transient connections are

rate-limited. Specifically, the rate limiting module cuts the allowed sending rate

of all bad and transient connections in a suspicious or attack agflow to a fraction,

fdec, of the afglow’s current sending rate. The observation module observes the

aglow for a certain period of time, called the observation interval. The dynamic

rate-limit for the next observation interval is determined by the agflow compliance

factor, which is the ratio of bytes sent to the sum of bytes sent and bytes dropped;

a high compliance factor leads to a relaxed rate-limit in the next observation

period. Finally, the traffic-policing module decides whether to forward or drop

each outgoing packet. It allows all packets from good connections and transient

connections that belong to good agflows to be forwarded, but drops packets based

on the current rate-limit from bad and transient connections that belong to attack

or suspicious agflows.

106

D-WARD is designed for DDoS attacks launched from traditional end-hosts

on the Internet, and therefore, several drawbacks may arise when deploying it in

a smart home environment that otherwise would not be noticed in a traditional

network. First, the memory consumption caused by storing agflow and connection

statistics may be too costly in constrained IoT networks. Second, and most

importantly, D-WARD could hurt benign devices if their connections are labeled

as transient or mislabeled as bad connections, since their traffic, if over the dynamic

rate-limit, is dropped. While a traditional benign end-host can recover from the

accidental loss of their packets, in an IoT environment such as a smart home, a

benign device could instead suffer significantly from such a loss, due to unnecessary

retransmissions of lost packets and increased connection duration. As we show in

Chapter 5.6, unnecessary retransmissions and an increase in connection duration

directly leads to an increase in energy consumption.

5.5.3 D-WARD+: A Two-Mode Approach Against DDoS

Attacks. We therefore transform D-WARD into D-WARD+ that runs on

TWINKLE. To overcome the aforementioned drawbacks of D-WARD, D-WARD+

significantly reduces memory consumption by not storing any connection-level

information in regular mode, and only storing suspicious and bad connection

information in vigilant mode. Furthermore, when detecting a DDoS attack from

a policed network, D-WARD+ leverages the fast retransmit mechanism in TCP

congestion control to reduce the sending rate of transient connections, rather than

dropping their packets as done in D-WARD. Since these connections could be

from benign devices, leveraging fast retransmit does not cause their packets to be

dropped, but does lower the amount of DDoS traffic departing from the network.

In this subsection, we present the two-mode design of D-WARD+ and explain in

107

detail why D-WARD+ is better suited for an IoT environment as compared to D-

WARD.

The XML representation of the D-WARD+ security application consists of

a single behavior element for detecting and handling suspicious agflows, and two

routine elements. Within the behavior element, the SBDR and SBHR elements

each specify the name and input parameters of a routine. The SBDR element

defines an agflow monitoring routine, which observes and labels each agflow in the

network and detects suspicious agflows. The SBHR element defines a connection

monitoring routine, which inspects every suspicious aglow more closely, including

each connection in the agflow. The agflow monitoring routine has a single input

parameter value that defines the threshold for determining if an agflow is suspicious

in terms of its ratio of sent packets to received packets, while the connection

monitoring routine does not have any input parameters. The routine elements

provide the programming language, code, and compilation specifics of the SBDR

and SBHR.

The security manager, event watchdog, and security engine of D-WARD+,

all running at the border router, are designed as follows. The security manager’s

Network & Device Information module stores the agflow and connection tables,

along with keeping track of a fixed rate-limit based on the receiver’s TCP receive

window (RWIN) for every suspcious agflow, which is detailed in the following

paragraphs. The event watchdog consists of the agflow monitoring routine and

invokes the security engine when it detects a suspicious agflow. The security engine

consists of the connection monitoring routine.

As a security application of TWINKLE, D-WARD+ handles DDoS attacks

by switching between the two modes. In regular mode, the event watchdog keeps

108

track of each agflow’s sent to received packet ratio and stores this information in

the agflow table, located at the security manager. However, unlike D-WARD, the

event watchdog does not keep track of any connection-level information in regular

mode. If the event watchdog detects a suspicious agflow, it invokes the security

manager’s MSF to determine what routine to execute at the security engine.

In vigilant mode, the MSF invokes the security engine’s connection

monitoring routine to handle the agflow in question. The security engine begins

keeping track of the smoothed packet ratio for bad and suspicious connections, and

stores these ratios in the connection table, also located at the security manager.

Here, we introduce a new connection class called suspicious connections, which

include transient connections and other connections that have only slightly

surpassed the smoothed packet ratio threshold (i.e., connections that may be

legitimate, but were labeled bad by the legitimate connection model). Introducing

this new class of connection allows us to reduce collateral damage, especially since

false positives caused by strict legitimate connection models leads to unnecessary

network overhead (specifically, an increase in retransmissions and connection

durations). In addition to the smoothed packet ratio for each bad and suspicious

connection, the security engine periodically keeps track of the receiver’s RWIN, for

each suspicious agflow. Unlike D-WARD, which attempts to guess the maximum

sending rate that the receiver can handle by calculating a dynamic rate-limit,

D-WARD+ sets a fixed rate-limit at the beginning of each observation period

which is set to the current RWIN. Although D-WARD+ is periodically storing an

additional value in memory, it ensures that traffic sent from the IoT network never

overwhelms the receiver. Furthermore, we will show that D-WARD+ significantly

decreases the overall memory consumption as compared to D-WARD in the

109

evaluation section, and therefore, periodically keeping track of RWIN is feasible.

The security engine monitors each suspicious connection of the suspicious agflow;

it sends three duplicate TCP acknowledgments to the device of the connection,

which, by following the TCP congestion control design, reduces its congestion

window by half, thus halving its sending rate. Here, we call the three duplicate

TCP acknowledgments a signal. In case the device ignores the signal and continues

to send its traffic at the original rate, the routine detects it, labels the connection

as a bad connection, and drops its packets (note that if a DDoS device follows the

signal in the same way as a benign device, it lowers its sending rate and effectively

mitigates the DDoS attack). Furthermore, if the traffic volume of the connection

is still above the static rate-limit after sending a signal, the routine can send

another signal and observe the volume change of the connection, and it can repeat

this procedure until the connection is no longer overwhelming its receiver, thus

mitigating an ongoing DDoS attack.

Based on the two-mode design above, D-WARD+ is more suitable to

a smart home environment than D-WARD. It significantly reduces memory

consumption by being selective with what information is stored in the agflow

and connection tables. Furthermore, by not dropping packets as in D-WARD,

D-WARD+ instead informs devices to transmit more slowly. Doing so avoids

retransmissions of packets from benign devices, thus lowering network overhead

and power consumption.

5.6 Evaluation

We evaluate TWINKLE’s two-mode design by showing how D-WARD+

outperforms D-WARD in source-end DDoS defense. The metrics we focused

on are retransmissions, connection duration, energy consumption, and memory

110

 0

 100

 200

 300

 400

 500

 600

 700

 800

 50 100 150 200 250 300

M
ag

n
it

u
d
e

o
f

Im
p
ro

v
em

en
t

Window Size (W)

fdec=0.1
fdec=0.2
fdec=0.3
fdec=0.4
fdec=0.5
fdec=0.6
fdec=0.7
fdec=0.8
fdec=0.9

(a) Retransmissions

 0

 1

 2

 3

 4

 5

 6

 7

 50 100 150 200 250 300

M
ag

n
it

u
d
e

o
f

Im
p
ro

v
em

en
t

Window Size (W)

fdec=0.1
fdec=0.2
fdec=0.3
fdec=0.4
fdec=0.5
fdec=0.6
fdec=0.7
fdec=0.8
fdec=0.9

(b) Connection duration

Figure 20. Comparison of number of retransmissions and connection duration
under D-WARD and D-WARD+.

consumption. We additionally compared the effects of D-WARD+ and D-WARD

on a naive TCP flooding attack versus a smart TCP flooding attack, and analyze

the differences in how the two systems detect and mitigate such attacks.

The evaluation results are a mixture of real-world testing, simulation, and

formulation, where small-scale testing was performed on a real-world IoT testbed

and large-scale results were obtained through simulation and formulation. For

small-scale results, we constructed two IoT testbeds, one in which the devices

communicated over 802.11b/g/n Wi-Fi, and the other in which the devices

communicated over Bluetooth LE. Both testbeds consisted of several low-powered

Raspberry Pi Zero W devices (1 GHz single-core CPU, and 512 MB of RAM),

and a 2015 Dell XPS (2.2 GHz dual-core CPU, and 8 GB of RAM) as the border

router. For large-scale results, we implemented the TWINKLE framework, D-

WARD+, and D-WARD in Java on a 2015 Dell XPS with the same specifications

as mentioned previously. When comparing D-WARD and D-WARD+ through

formulation, TCP Reno is utilized for congestion control.

111

The main difference between D-WARD+ and D-WARD is that D-WARD+

utilizes the fast retransmit mechanism instead of dropping packets from suspicious

connections. The fast retransmit mechanism allows D-WARD+ to throttle DDoS

traffic that leaves the source network it polices and avoid resource penalties on

benign traffic. In this subsection, we analyzed the attainability of these goals

in a smart-home network that utilizes D-WARD+. Specifically, we analyzed the

following:

1. the ratio of retransmissions D-WARD requires of a benign suspicious

connection over the amount required by D-WARD+;

2. the difference in connection duration of a benign suspicious connection under

D-WARD compared to that of D-WARD+;

3. the energy consumed by a benign device under D-WARD and D-WARD+;

4. the amount of memory consumed by the border router running D-WARD and

D-WARD+;

5. the behavior of a naive attacker under D-WARD and D-WARD+;

6. the behavior of a smart attacker under D-WARD and D-WARD+.

5.6.1 Retransmissions. In order to compare the amount of

retransmissions required of a benign suspicious connection by D-WARD and

D-WARD+, we examined, through formulation, the number of retransmissions

required of a benign suspicious connection that attempts to send 2.5 MB of data

outside of the policed network at a maximum bandwidth of 250 Kb/s under both

D-WARD and D-WARD+.

112

 4900

 5000

 5100

 5200

 5300

 5400

 5500

 50 100 150 200 250 300

E
n
er

g
y
 C

o
n
su

m
p
ti

o
n
 (

m
J)

Window Size

D-WARD
D-WARD+
No Defense

 4987

 4988

 100 200 300

(a) Energy consumption

 0.1

 1

 10

 100

 0 50 100 150 200 250 300 350

#
 o

f
B

at
te

ri
es

 S
av

ed

Time (days)

AA
AAA

CR2032
CR2477

LR44

(b) Number of batteries saved

Figure 21. Energy consumption under D-WARD and D-WARD+, along with the
number of batteries D-WARD+ saves over a one year period.

Figure 20a presents the ratio of retransmissions of a benign suspicious

connection under D-WARD over D-WARD+. We call this ratio “magnitude of

improvement” because it signifies the magnitude at which D-WARD+ prevents

unnecessary retransmissions, as compared to its counterpart. We measure the

magnitude of improvement with respect to two main parameters: the sender’s

congestion window size, W , at the time D-WARD or D-WARD+ detects a

potentially malicious agflow, and the pre-set fraction of traffic, fdec, that D-WARD

or D-WARD+ allows to leave the source network during a suspected DDoS attack.

Mirkovic et al. set fdec to 1/2 by default [93]. Upon detection of an attack agflow,

D-WARD only allows W ∗ fdec segments to the sender each RTT to mitigate

any DDoS attacks. Therefore, when the benign suspicious devices follow TCP

congestion control, D-WARD drops W −W ∗ fdec segments every 2 RTTs. Thus,

as W increases, D-WARD drops more segments which causes more retransmissions.

With a large window size and depending on the fdec, D-WARD may require more

than 500 times the number of retransmissions than D-WARD+. Even when the

window size is less than 10 and given any pre-set fraction of allowed traffic, D-

113

WARD still requires more than 10 times the number of retransmissions than D-

WARD+.

5.6.2 Connection Duration. We further compared how long a

benign suspicious connection may last under D-WARD and D-WARD+. Clearly,

when transmitting the same amount of data, a shorter duration is desired. We

examined the duration of a benign suspicious connection that attempts to send

2.5 MB of data outside of the policed network, again at a maximum bandwidth of

250 Kb/s, under both D-WARD and D-WARD+.

Figure 20b shows the magnitude of improvement in connection duration

of D-WARD+ over D-WARD (ratio of average connection duration under D-

WARD, over average connection duration under D-WARD+) with respect to the

two main parameters W and fdec. When fdec is set low, D-WARD may punish a

benign suspicious connection too heavily which leads to long connection durations.

However, in cases where fdec is set high (0.5 or above) and W is small, a benign

suspicious connection’s duration under D-WARD+ is only slightly faster (at

most 3 seconds) than if it were under D-WARD (i.e., a small to no magnitude of

improvement).

5.6.3 Energy Consumption. Based on the analysis presented by

Feeney et al. [49], who estimate the microwatt seconds consumed by a wireless

device with respect to the amount of data transmitted, we estimate, through

formulation, the energy consumption D-WARD and D-WARD+ requires from a

benign IoT device. The results are shown in Figure 21a. Under D-WARD (with

an fdec of 1/2), energy consumption increases linearly with respect to the benign

device’s congestion window size. However, under D-WARD+, energy consumption

is static across varying window sizes. Furthermore, D-WARD+ contributes to less

114

than 1 mJ of extra energy consumption for a benign device. This is again due to

the fact that D-WARD+ does not throttle traffic and, as a result, does not require

a large amount of retransmissions.

We further extend the energy consumption results to analyze D-WARD’s

cost of increased energy consumption by showing how much battery life D-WARD+

can save over D-WARD. We examine the battery life of a benign IoT device under

D-WARD and D-WARD+ across five popular IoT batteries (alkaline AA, alkaline

AAA, CR2032, CR2477, and LR44) and present how many more batteries an IoT

device consumes under D-WARD throughout a year of deployment. These results

are shown in Figure 21b. On average, across the batteries tested, a benign IoT

device consumes 15.55 less batteries every year under D-WARD+.

Note that energy consumption should still be a concern for devices that

are plugged into an external power source. Energy efficiency is a critical factor

for the rise in smart home environments and this is especially true for large-

scale environments, such as smart cities [137]. Therefore, a defense system that

minimizes energy consumption is preferable in IoT environments, no matter if the

devices are plugged-in or battery powered.

5.6.4 Memory Consumption. Next, we analyzed the memory

consumption at the border router under D-WARD and D-WARD+. D-WARD

maintains information about agflows and connections, while D-WARD+ in regular

mode maintains information about agflows, and in vigilant mode, maintains

information about suspicious and bad connections. Therefore, the number of

agflows and connections per agflow affects the memory consumption of both

systems.

115

 0

 5

 10

 15

 20

 25

 30

 35

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

M
em

o
ry

 C
o
n
su

m
p
ti

o
n
 (

M
B

)

of agflows (in 100s)

(a) D-WARD

 0

 0.5

 1

 1.5

 2

 2.5

 3

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

M
em

o
ry

 C
o
n
su

m
p
ti

o
n
 (

M
B

)

of agflows (in 100s)

Vigilant Mode
Regular Mode

(b) D-WARD+

Figure 22. Memory consumption for D-WARD and D-WARD+ (in regular mode
and vigilant mode). In each graph, 80% of all agflows are good and 80% of all
connections are good.

Figure 22 shows the large-scale memory consumption results of both systems

through simulation (a total of 100 runs). We assume that 80% of all agflows are

good and 80% of all connections are good. The number of connections per agflow

follows a power law distribution, where a few agflows have many connections (over

100), while most agflows have only a few connections each (less than 5).

It is clear that D-WARD (Figure 22a) incurs more memory consumption

than D-WARD+ (Figure 22b), especially as the number of agflows increase. This is

due to the fact that D-WARD+ does not keep track of connection-level information

in regular mode, and only keeps track of suspicious and bad connections in

vigilant mode, while D-WARD keeps track of agflow and connection information

continuously. Furthermore, the added memory consumption in vigilant mode for

keeping track of the RWIN for each suspicious connection is insignificant. The

memory consumption D-WARD incurs in a traditional network is more than

acceptable (and probably acceptable in a smart home environment), but not in

constrained IoT networks where the border router, like the devices in the network,

is memory-constrained.

116

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Time (seconds)

Attacker Throughput
RWIN

Start of Attack
Throttle Traffic

(a) D-WARD

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Time (seconds)

Attacker Throughput
RWIN

Start of Attack
Send Signal

Throttle Traffic

(b) D-WARD+

Figure 23. Behavior of a naive attacker under D-WARD and D-WARD+.

5.6.5 Naive TCP Flooding Attack. A naive TCP flooding attack

is one in which the attacker ignores TCP congestion and flow control. In this

subsection, we analyze how D-WARD and D-WARD+ handle a naive attacker.

D-WARD classifies connections based on the ratio of the number of packets

sent and received, where a ratio that surpasses the maximum threshold indicates

an attack. Depending on how the maximum threshold is set, D-WARD may either

allow some DDoS traffic to leave the policed network or incorrectly classify benign

connections as bad.

In most cases (i.e., not taking into account when significant packet loss

is present), when the sender is not overwhelming the receiver, the ratio of the

number of packets sent and received stays relatively constant (which we call the

normal ratio), regardless of the sending rate. However, as soon as the sending

rate begins to overwhelm the receiver (i.e., RWIN is surpassed), the ratio of the

number of packets sent and received increases with respect to the sending rate. If

the maximum threshold is set below the normal ratio, D-WARD has a devastating

impact on benign connections. Namely, whenever a benign connection surpasses the

threshold, it essentially throttles continuously causing major collateral damage.

117

Therefore, D-WARD aims to learn the correct normal ratio so it can set the

maximum threshold to be higher. However, the larger the difference between the

maximum threshold and the normal threshold, the more time it takes D-WARD to

detect and throttle DDoS traffic. Mirkovic et al. set the maximum threshold to 3

by default [93], and we therefore use this value in our evaluation.

Figure 23a shows the behavior of a naive attacker under D-WARD in our

802.11b/g/n Wi-Fi testbed. The results of the Bluetooth LE testbed is relatively

similar, and therefore, we only present the results of the 802.11b/g/n network.

We start the DDoS attack at 2 seconds. At around 3 seconds, the maximum

threshold is surpassed, causing D-WARD to throttle the connection and cut the

throughput in half (we set fdec to 1/2). Note, in Figures 23 and 24, the green

dotted line represents the maximum throughput the receiver can handle before

RWIN is surpassed, which we label as “RWIN” for simplicity. While D-WARD

throttles the naive attacker, it still allows a small amount of DDoS traffic to leave

the network (DDoS traffic here refers to the traffic that surpasses the victim’s

RWIN). Specifically, since the maximum threshold is met after RWIN is surpassed,

the receiver is under DDoS attack for about 300 milliseconds before the connection

is throttled. The attacker continues to send at its maximum sending rate even after

it’s connection is throttled because it ignores TCP congestion control. At around

3.2 seconds, D-WARD again throttles the connection (this time continuously) and

classifies the connection as bad.

Unlike D-WARD, D-WARD+ keeps track of RWIN, thereby avoiding the

hassle of choosing a correct maximum threshold for the ratio of number of packets

sent and received. Figure 23b shows the behavior of a naive attacker under D-

WARD+ (again, in our 802.11b/g/n Wi-Fi testbed). At around 2.7 seconds, D-

118

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8 9 10 11

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Time (seconds)

Attacker Throughput
RWIN

Start of Attack
Throttle Traffic

(a) D-WARD

 0

 1

 2

 3

 4

 5

 6

 0 1 2 3 4 5 6 7 8 9 10 11

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Time (seconds)

Attacker Throughput
RWIN

Start of Attack
Send Signal

(b) D-WARD+

Figure 24. Behavior of a smart attacker under D-WARD and D-WARD+.

WARD+ sends a signal to the attacker (three duplicate ACKs), which the attacker

ignores (because it is ignoring TCP congestion control). After a few milliseconds

(the time it takes a packet from the attacker to reach the border router), D-

WARD+ notices that the attacker is not complying to the signal, labels the

connection as bad, and begins throttling. Note that in these few milliseconds, the

attacker’s throughput can surpass RWIN, but it is immediately throttled.

In summary, both D-WARD and D-WARD+ handle naive attackers

similarly. However, D-WARD+ does a slightly better job of preventing the victim

from being overwhelmed with traffic that surpasses its RWIN. The differences

between D-WARD and D-WARD+ is more noticeable when handling a smart

attacker.

5.6.6 Smart TCP Flooding Attack. A smart TCP flooding attack

is one in which the attacker follows TCP congestion control, but not flow control.

In this subsection, we analyze how D-WARD and D-WARD+ handle a smart

attacker.

Figure 24a shows the behavior of a smart attacker under D-WARD in our

802.11b/g/n Wi-Fi testbed. The DDoS attack begins at 2 seconds. At around 4

119

seconds, the maximum threshold for the ratio of the number of packets sent and

received is surpassed, causing D-WARD to throttle the connection and cut the

throughput in half. Similar to the case of the naive attacker under D-WARD, the

receiver is under DDoS attack for about 500 milliseconds before the connection is

throttled. However, unlike in the naive attacker scenario, the smart attacker follows

TCP congestion control and cuts its window size in half. For the next 2 seconds, D-

WARD checks to see if the attacker continues to comply with the rate limit, which,

in this case, the attacker does. Once the observation period is over, D-WARD

linearly increases the connection’s rate limit. At around 9.5 seconds, the connection

again surpasses the maximum threshold and is throttled. But again, D-WARD

allows DDoS traffic to leave the policed network for about 500 milliseconds. The

attacker then cuts its sending rate again in half and complies with the rate limit.

This trend continues, allowing the smart attacker to launch a successful periodic

DDoS attack on the victim. Also note that if the maximum threshold were higher,

the amount and length of the DDoS attack would increase.

Figure 24b shows the behavior of a smart attacker under D-WARD+ (again,

in our 802.11b/g/n Wi-Fi testbed). At around 4 seconds, D-WARD+ sends a signal

to the attacker, which the smart attacker responds to by cutting its sending rate in

half (unlike the naive attacker). However, in this case, unlike D-WARD, no DDoS

traffic surpassing RWIN leaves the policed network. The attacker follows TCP

congestion control and linearly increases its sending rate (congestion avoidance

phase). D-WARD+ again sends the attacker a signal at around 6 seconds. This

trend continues. At each peak, D-WARD+ allows the attacker no more than 1/4

RTT (or travel time between attacker and border router) amount of time to send

DDoS traffic surpassing RWIN (which, in this case, can be seen on the 4th signal

120

Table 5. Summary of key findings for the DDoS attack case study.

Metrics Key Findings
Retransmissions With a large W, D-WARD may require more than 500 times the

number of retransmissions than D-WARD+, and with a small
W, D-WARD may require more than 10 times the number of
retransmissions than D-WARD+.

Connection Duration When fdec is low and W is high, D-WARD can cause up to 7
times longer connection duration than D-WARD+, and when fdec
is high and W is low, connection duration under D-WARD+ is
only at most 3 seconds faster than under D-WARD.

Energy Consumption Under D-WARD, energy consumption increases linearly
with respect to window size, while under D-WARD+ energy
consumption is static across varying window sizes and contributes
to less than 1 mJ of extra energy consumption for a benign
device. This leads 15.55 less batteries consumed every year under
D-WARD+.

Memory Consumption On average, D-WARD consumes 10 times more memory
consumption than D-WARD+.

– at around 10.5 seconds). This is significantly less than the amount of DDoS

traffic that D-WARD allows to leave the network and makes an attack essentially

unfeasible. However, to prevent even a minuscule amount of DDoS traffic from

leaving the network, D-WARD+ could drop any traffic surpassing RWIN or

preemptively send a signal before traffic surpasses RWIN, but such actions could

cause a (relatively small) negative impact on benign devices that behave similarly

to smart attackers.

5.6.7 Evaluation Summary. The various metrics measured and

analyzed for the DDoS attack case study clearly show that the two-mode design of

D-WARD+ helps make it more suitable in an IoT environment as compared to its

counterpart, D-WARD. Table 5 shows a summary of the key findings for the DDoS

attack case study. For D-WARD+, not throttling any connections in regular mode,

the signal mechanism in vigilant mode, and only throttling when a connection is

labeled bad, allows for the reduction in retransmissions and connection duration,

121

which has the positive side effect of reducing overall energy consumption in the

network. Furthermore, only storing limited information in regular mode, allows

D-WARD+ to significantly reduce its overall memory consumption, as compared

to D-WARD. In conclusion, with D-WARD+ as proof, the TWINKLE framework

can transform a security application for the smart home environment, into one that

achieves equal to better defense efficacy than classical security applications, while

consuming significantly less resources.

5.7 Conclusion

The staggering growth of the Internet of Things (IoT) brings serious security

concerns. However, due to the constrained resources of IoT devices and their

networks, many classical security applications become ineffective or inapplicable

in an IoT environment. Using the smart home as the battleground, this paper

proposes and implements a security framework called TWINKLE that endeavors to

address a fundamental dilemma facing any security solution for IoT: the solution

must consume as little resources as possible while still aspiring to achieve the

same level of performance as if the resources needed are abundant. It introduces

a two-mode design to enable security applications plugged into the framework to

handle their targeted attacks in an on-demand fashion. Every security application

can simply run lightweight operations in regular mode most of the time, and

only invoke heavyweight security routines when it needs to cope with suspicious

behavior. As demonstrated by our detailed studies and evaluations in applying

TWINKLE to DDoS attacks, we can successfully convert prior solutions to effective

but more resource-efficient versions.

122

CHAPTER VI

DEFENSE INSIDE OF AN IOT NETWORK: MITIGATING ATTACKS CLOSER

TO THE DEVICES ORIGINATING DDOS TRAFFIC

In the previous chapter, we make the assumption that a network operator

has access to a gateway at which they can deploy a security solution. However,

this assumption may not hold true in the real-world for some IoT networks. For

example, networks with cellular IoT devices connect to cell sites or base stations

that are most likely inaccessible to the owners of the devices. Furthermore, some

IoT networks may have multiple gateways that connect them to the Internet, and

deploying security solutions on every possible gateway may be infeasible.

Therefore, in this chapter, we focus on defense close to the devices in an IoT

network originating DDoS traffic, propose a mobile firewall system, and evaluate

our system by analyzing how well it mitigates DDoS traffic generated by infected

devices in an IoT network.

The chapter is derived in small part from the following unpublished work:

An Open Firewall Ecosystem with On-Demand Security for Internet of Things by

Strobel, D.; Mergendahl, S.; Hu, Z.; Supan, M.; Sisodia, D.; Li, J. The content of

this chapter was written entirely by me, and I was responsible for conducting all of

the presented analyses.

6.1 Introduction

We use the term open IoT network to refer to an IoT network that has

an inaccessible gateway (or gateways) connecting the network to the Internet.

Because we cannot assume access to or rely on a central gateway in an open

IoT network, we need to be able to detect and mitigate attacks as close to the

devices as possible. However, as opposed to traditional networks, there are several

123

requirements that a security solution must satisfy when deployed (1) in any IoT

network, (2) closer to devices, and (3) specifically, in an open IoT network.

Traditional networks are set up as star networks where all nodes within

the network are directly connected to a central node, such as a gateway router.

However, IoT networks leverage mesh networking, where each node in the network

can act as routers and forward traffic to nodes within communication range. Thus,

mesh networking introduces blind spots within a network for security solutions that

are deployed on a central node, such as gateway-based firewalls. Although, security

solutions deployed in IoT networks with a single, accessible gateway may be able

to detect and mitigate a majority of network attacks, but as mentioned before,

this does not apply to open IoT networks. Therefore, a security solution deployed

within an open IoT network must handle more blind spots than traditional

networks.

Traditional networks are also fairly static in terms of mobility and churn,

making statically distributed security solutions effective. On the other hand, IoT

networks are far more dynamic. IoT devices can be mobile, and continuously enter

and leave networks. Furthermore, it is common for low-powered IoT devices to

duty-cycle to reduce energy consumption, further increasing churn in the network.

To handle the mobility and churn of IoT devices, security solutions must also be

dynamically distributed, mobile, and provide security on-demand. In other words,

a security solution deployed within an IoT network, whether open or not, must

handle more dynamic network topologies than traditional networks.

Furthermore, installing security solutions directly on machines that

make up traditional networks is far easier than on IoT devices. As mentioned

in Chapter V, this is in-part due to the fact that traditional networks tend not

124

to be concerned with resource consumption (e.g., CPU and memory). However,

another critical issue is that installing security solutions directly on IoT devices

is infeasible in many cases. For example, in some cases, installing new software

might require a shutdown of the device, which may not be possible in networks that

provide critical, always-on, services. Also, some IoT devices deployed in certain

environments may be difficult to physically access or intermittently powered,

making new software installation extremely challenging. Therefore, a security

solution that needs to be deployed close to the IoT devices must handle security

threats without modification of the devices themselves.

Lastly, as an IoT network evolves, new types of devices may join the

network. As new devices join a network, new threats and attacks are also

introduced into the network. Over time, the number of security solutions to run

in order to handle all possible attacks will explode, making it infeasible to rely on

a network operator for constantly deciding which security solutions to run given

the current state of the network. Therefore, a security solution deployed within any

IoT network must handle the dynamic security needs of the network as new threats

emerge.

In this chapter, we focus on defense close to the devices in an open IoT

network originating DDoS traffic, and propose a security system that satisfies

each of the aforementioned requirements. Specifically, we introduce a mobile

firewall system with on-demand security, which leverages the software defined

networking (SDN) and network function virtualization (NFV) paradigms to publish

and subscribe security functionality in an IoT network. This system introduces

mobile security nodes that can monitor different parts of the network on-demand,

and a security controller that decides which security functions to deploy on the

125

mobile security nodes to verify and mitigate attacks. To show the efficacy of such

a system, we analyze how well it can mitigate DDoS traffic generated by infected

devices in an open IoT network.

The rest of this chapter is organized as follows. We first survey related work

in Section 6.2, then describe the design of our mobile firewall system in Section 6.3.

Next, we conduct a preliminary evaluation of our system in Section 6.4, and

conclude the chapter in Section 6.5.

6.2 Background and Related Work

We organize the related work into three sections: IoT intrusion detection

and mitigation systems, SDN and NFV for Security, and DDoS mitigation at

source-end IoT networks.

6.2.1 IoT Intrusion Detection and Mitigation Systems. One of

the main purposes of the mobile firewall system is to detect and mitigate intrusions.

We therefore begin by taking a look at papers that focus on intrusion detection and

mitigation for IoT networks.

In Chapter III we analyzed recent IDSes that tackle several attacks that

IoT devices and networks face, such as side-channel attacks, execution of malicious

processes, routing attacks, spoofing attacks, voice-command injection attacks,

attacks via encrypted traffic analysis, and hidden inter-application interactions.

These IDSes can be used as security functions for the mobile firewall system in

order to detect and mitigate various attacks.

There have been several surveys on IDSes for IoT throughout the last few

decades, and we list a few recent surveys below. Zarpelao et al. [162], Mosenia

et al. [96], and Gendreau et al. [55] all surveyed intrusion detection in IoT.

Many IDS-based security papers for IoT not only focus on attack detection and

126

mitigation, but also placement of security resources. The careful placement of

IDSes is more critical in IoT networks than in traditional networks due to - limited

computational/memory/battery capacity at IoT devices, and - device-to-device

communication or mesh networking. A recent survey by Chaabouni et al. [27]

focused on machine learning-based network IDSes for IoT — a research area still

in its infancy. All four surveys conclude that detection and prevention are difficult

in the realm of IoT due to the limited computational power of IoT devices.

6.2.2 SDN and NFV for Security. We leverage the SDN and NFV

paradigms of centralized decision making and dynamic installation of functions to

design the mobile firewall system. We therefore survey the areas of SDN and NFV,

and analyze how others in the research community have used these technologies

towards enhancing network security [47].

SDN provides various features to a network, and one such feature is traffic

isolation. Through the decoupling of the control plane and data plane, SDN

allows for controllers to separate and isolate traffic by enforcing routing policies at

network switches. For example, Yiakoumis et al. [159] applied this aspect of SDN

to smart home networks to facilitate home network management by virtualizing

the smart home infrastructure. Specifically, the authors sliced the common physical

infrastructure between multiple service providers and users to more easily share the

common infrastructure, which also supported many policies and business models

for cost sharing. For security purposes, traffic isolation can be used to dynamically

separate suspicious or malicious traffic flows from legitimate traffic, and to this end,

SDN can offer different levels of network abstractions to appropriately separate

traffic.

127

Another feature SDN provides is centralized visibility which can be used for

network monitoring. An SDN controller has wide visibility of the data plane of the

switches it controls, and can query those switches for various statistics and status

information. The controller can provide these statistics to applications running on

the control plane to get a continuously updated view of the underlying network

infrastructure. Applications for detecting network-wide anomalies and attacks

rely on such information. For example, there are many SDN-based applications

for timely DDoS detection [155]. In fact, Mehdi et al. [90] showed that detection

algorithms that do not perform well at identifying anomalies at the ISP level,

instead perform well at the network edge when leveraging SDN.

Lastly, an important feature of SDN is dynamic flow control, or the

capability of a controller to dynamically install and update forwarding rules

in switches to manage traffic flows. This feature of SDN allows for a controller

to forward traffic to security nodes for closer inspection. For example, Shin et

al [123] presented a framework called CloudWatcher, which utilized SDN to

dynamically forwards traffic flows to pre-installed network security devices so that

all packets flowing through the network were inspected. Shin et al. [124] introduced

NetSecVisor, which is an SDN-based system that determines optimal routing paths

based on policy requirements to maximize the utilization of pre-installed and fixed-

location security devices. Furthermore, Yoon et al. [160] presented various SDN-

based security functions, such as firewalls and IDSes/IPSes, that are possible

due to the increased network manageability provided by dynamic flow control.

Lallo et al. [43] proposed an SDN-based architecture that allowed an Industrial

Control System (ICS) operator to replicate and forward sensitive traffic flows

to strategically placed IDSes to maximize the number of analyzed flows. This

128

architecture enabled the use of spare bandwidth in the network to forward the

replicated traffic while avoiding packet loss of production traffic. Note, due to

dynamic flow control and the increased ease of deploying traffic filtering rules, SDN

has led to a plethora of DDoS filtering solutions [116, 145, 48, 87, 108, 167, 44].

In addition to the aforementioned features, SDN provides a platform for

NFV. NFV enables the use of commodity servers for deploying virtual network

functions (VNFs), including security functions. Due to the various constraints

and heterogeneity of IoT devices and networks, offloading security functionality to

virtualized middleboxes can be extremely useful to IoT networks. For example, Yu

et al. [161] presented IoTSec, a security architecture for IoT networks that allowed

rapid instantiation of customized micro-middleboxes running various security

functions. In fact, Boudi et al. [18] analyzed the feasibility of container-based

security solutions on resource-constrained edge nodes, concluded that container-

based security functions have extremely low overhead compared to native execution

of security functions, and therefore supported the provisioning of VNFs even in

constrained IoT environments.

A powerful feature enabled by SDN and NFV is VNF chaining. Through

VNF chaining, traffic can be processed through chains of virtualized middleboxes,

which can drastically reduce operational costs and improve resource utilization.

An example of leveraging VNF chaining to secure IoT networks is Securebox [59].

Securebox provides a combination of on-demand security and management services,

through traffic analysis and device state configuration. Such a system allows for

flexible onloading and offloading of security functions to IoT devices, and easier

deployment of new security functions as new security threats emerge.

129

6.2.3 DDoS Mitigation at Source-End IoT Networks. A main

focus of this chapter is to leverage the mobile firewall system to mitigate DDoS

traffic originating from IoT devices within an open IoT network. In Chapter V we

detail D-WARD, a source-end DDoS defense solution for traditional end-hosts on

the Internet, but show that several drawbacks may arise when deploying it in an

IoT environment. We therefore analyze several papers related to source-end DDoS

mitigation and prevention specifically for IoT networks.

After the high-profile DDoS attacks caused by the Mirai IoT botnet in

2016, the National Institute of Standards and Technology (NIST) introduced

the following objectives: (1) reduce the vulnerability of IoT devices from being

turned into bots and (2) limit the utility of compromised IoT devices to malicious

actors, and presented primary technical elements to achieve this objective [105].

Some of the technical elements the NIST proposed were network gateways/routers

supporting wired and wireless network access, Manufacturer Usage Description

(MUD) Specification controllers and file servers (i.e., a standard defined by the

IETF, or Internet Engineering Task Force, for embedded software that allows IoT

device manufacturers to advertise device specifications and intended communication

patterns when devices are connected to a network), Dynamic Host Configuration

Protocol (DHCP) and update servers, and threat signaling servers, among other

elements. While such elements would not completely eliminate IoT devices from

being compromised, but the NIST argued that they would significantly increase the

effort required by malicious actors to compromise devices in home or small-business

IoT networks.

In the last decade, researchers have turned to relatively newer technologies

such as SDN and blockchain to address the problem of IoT-based DDoS attacks.

130

In fact, there have been many papers that leverage SDN to mitigate DDoS attacks

at source-end IoT networks [41]. One such solution, presented by Yang et al. [157],

utilizes a distributed network of SDN-based IoT gateways running OpenFlow with

detection and mitigation functions for distributed DDoS detection and mitigation

in real-time. Javaid et al. [72] integrated IoT networks with blockchain by using

smart contracts to replace the traditional centralized IoT infrastructure with a

decentralized one. Within this decentralized infrastructure, IoT devices are required

to access the network using smart contracts, which prevents compromised devices

from launching DDoS attacks by using static resource allocation for devices in the

network.

The main drawback to each of these solutions is that they make large

assumptions about the infrastructure of the IoT networks that they are trying

to protect. Most existing IoT networks cannot utilize SDN and blockchain

technologies as is, and therefore, these solutions will most likely not be widely-

adopted in the real-world. While the mobile firewall system does leverage the SDN

and NFV paradigms of centralized decision making and dynamic installation of

functions, it does not require any major modifications of the network infrastructure,

unlike the aforementioned solutions.

6.3 Mobile Firewall System Design

In this section, we detail the components and modules that make up

the mobile firewall system, explain how we leverage the SDN and NFV design

paradigms, and discuss various extensions to the mobile firewall system.

6.3.1 System Components. The two main components are the

mobile security node and the security controller. At a high level, the mobile

security node is responsible for 1) monitoring the network by collecting network

131

Telemetry Updater
Module

Packet Sniffing

Module

packet-level data

update/query response

Short-Term Network
Telemetry Module

Security Functions
Module

Security Function0

Security Functionn
...

update/query response

Mobile Security Node

Decision Module

Traffic Processor
Module

Security Function
Database Module

Long-Term Network
Telemetry Module

notification

packet-level and
flow-level data

query/response

query/responsesecurity

function

packet-level data

Security Controller

Figure 25. Diagram of the mobile firewall system.

telemetry information, and 2) running security functions to verify and mitigate

attacks. Based on the network telemetry information provided by the mobile

security node, the main responsibility of the security controller is to decide which

security functions to deploy on the mobile security node. Note, as we explain

later, the mobile firewall system can include multiple mobile security nodes and

even multiple security controllers, but for simplicity, we describe how the system

functions with a single mobile security node and security controller. Figure 25

depicts a diagram of the mobile firewall system, including each component and

module.

6.3.1.1 Mobile Security Node. We begin by detailing each module

in the mobile security node and the interactions between modules.

Packet Sniffer Module: In order to monitor the network without needing

to install any software on individual IoT devices in the network, the mobile security

132

node employs packet sniffing via the packet sniffing module. Packet sniffing allows

the mobile security node to collect and log packets that are received on a specific

wireless channel, regardless of how the packets are addressed. In order to do so, the

mobile security node must have a wireless network interface controller (WNIC) that

supports RFMON (Radio Frequency MONitor) mode, also known as monitor mode

for short [1]. Due to the heterogeneity of IoT networks as it pertains to physical

layer protocols and the fact that most sniffers can only monitor one channel at a

time, a mobile security node may need to use multiple WNICs to monitor all traffic

within an IoT network.

The packet sniffer module collects sampled packet-level information (i.e., as

PCAP files) from the network. Captured packets may include management, control,

and data frames, all of which may be important in detecting suspicious behavior

in the network. The packet sniffer module sends the packet-level information it

collects to the telemetry updater module.

Telemetry Updater Module: The telemetry updater module serves

two main purposes. First, it receives information from the packet sniffer module

and updates the information stored in the short-term network telemetry module.

Second, when the mobile security node relays telemetry information to the security

controller, the telemetry updater module queries the short-term network telemetry

module for the latest telemetry information and sends that information to the

security controller’s traffic processor module.

Short-Term Network Telemetry Module: The short-term network

telemetry module stores all of the sampled packet-level information collected by the

packet sniffer module. Because the mobile security node itself may be a resource-

constrained device, it can only store a limited amount of information. Therefore,

133

once the telemetry updater module transfers telemetry information to the security

controller, it deletes the information stored in the short-term network telemetry

module. As a result, the short-term network telemetry module only stores a

limited, but up-to-date snapshot of the network at any given time.

Security Functions Module: Finally, the security functions module stores

and executes security functions that the mobile security node needs to run. After

analyzing the network telemetry information, the security controller may publish

security functions to the mobile security node to verify and mitigate attacks.

Because security functions need access to up-to-date network telemetry information,

the security functions module can query the short-term network telemetry module

whenever necessary. Note, multiple security functions can be executed as separate

threads within the security functions module.

6.3.1.2 Security Controller. Now, we detail each module and their

interactions in the security controller.

Traffic Processor Module: The main function of the traffic processing

module is to process the packet-level information received from the mobile security

node’s telemetry updater module into flow-level information. It can also convert the

PCAP files it receives into more easily parsable formats, such as sFlow. It does so

by running a utility called sflowtool on the PCAP files it receives, which converts

the PCAP files into sFlow and NetFlow files. The traffic processor module stores

both the packet-level information and flow-level information into the long-term

network telemetry module. Note, it is important to keep both levels of granularity

of information because, depending on the attacks in question, both may be needed

in order to detect suspicious behavior.

134

Long-Term Network Telemetry Module: Like the mobile security

node’s short-term network telemetry module, the long-term network telemetry

module provides a view of the network by storing packet-level and flow-level

information. Note, because the information is derived from sampled data, the

view of the network provided by the long-term network telemetry module is not a

complete one, but should still be sufficient for detecting attacks. Unlike the mobile

security node, we assume that the security controller is not resource-constrained,

and therefore is able to keep a more long-term view of the network.

Security Function Database Module: Security functions are stored

in the security function database module. As explained in Chapter V, security

functions can be represented as files containing parameters, source code, and

compilation instructions. When the decision module decides that a security

function needs to be deployed on the mobile security node, it will query the

security function database module for the given function.

Decision Module: The decision module is responsible for deciding

which security function(s) to run, given the network telemetry information, and

publishing those functions onto the mobile security node. Figure 26 shows a

detailed diagram of the decision module. The decision module contains a detection

initiation thread, attack detection thread(s), and a security function selection

thread. After the traffic processor module processes new telemetry information

from the mobile security node, it notifies the decision module’s detection initiation

thread, which in turn queries the long-term network telemetry module. The

detection initiation thread initiates each attack detection thread and provides them

with network telemetry information. Each attack detection thread attempts to

detect a particular attack by taking in network telemetry information as input,

135

Traffic Processor
Module

Long-Term Network
Telemetry Module

Security Function
Database Module

Security Functions
Module

Security Function0

Security Functionn
...

Detection
Initiation
Thread

"A" Attack
Detector
Thread

"B" Attack
Detector
Thread

"C" Attack
Detector
Thread

"D" Attack
Detector
Thread

...

Security
Function
Selection
Thread

Decision Module

...

query/response

network
telemetry

data

detection

scores

query/response

Security Controller

Mobile Security Node

network
telemetry

data

Figure 26. Diagram of the security controller’s decision module.

and outputting a detection score, which represents how confident the detector is

that the particular attack is occurring. The detection scores are fed to the security

function selection thread, which, given the detection scores, decides which security

functions should run in the network, queries the security function database module

for those functions, and publishes those functions to the mobile security node’s

security functions module.

There are several key details worth mentioning about the decision module.

First, the decision module can add and remove security functions to and from the

mobile security node on-demand. Specifically, once an attack is no longer present

in the network (i.e., the detection score for a particular attack is low), the security

function selection thread removes all security functions pertaining to that attack

136

from the mobile security node’s security functions module. Second, a network

operator can deploy on-demand a detector into the decision module and security

functions into the security function database module for each attack that they want

to defend their network against. This is similar to how SBDRs and SBHRs can be

added to the TWINKLE framework on-demand, as explained in Chapter V. Third,

a network operator can manually create a mapping within the security function

selection thread between the detection scores and the security functions to deploy,

and adjust this mapping based on the needs of the network. However, this mapping

and decision process can also be learned over time using unsupervised learning

methods, thereby requiring little to no human intervention.

6.3.2 Leveraging the SDN and NFV Design Paradigms. Due

to the limited resources and heterogeneity of IoT networks, the enforcement of

appropriate security and privacy measures is challenging. For the most part,

traditional security solutions either cannot contend with the constrained resources

on devices, or cannot cope with the increasing attack vectors against IoT networks.

However, by leveraging the SDN and NFV design paradigms, security solutions

can more easily be applied to IoT networks. Specifically, the SDN paradigm of

offloading processing and decision making required by gateway nodes or IoT devices

to a central controller solves the problem of having to deal with limited resources,

and ensures scalability to support more traffic, devices, and functionalities. The

NFV paradigm of dynamic allocation of functions, security can be scaled up or

down according to the needs of the network, thereby allowing a network operator to

more easily cope with the ever-increasing security threats facing IoT networks.

To show how the mobile firewall system leverages the SDN and NFV design

paradigms, we compare its design to the design of the TWINKLE framework. First,

137

in order to detect attacks close to the devices in an open IoT network, TWINKLE

must rely on devices (either regular devices already in the network or dedicated

devices) running the watchdog component to detect suspicious behaviors. However,

in the mobile firewall system, we move the detection process to the security

controller, which has far more resources than the watchdog nodes. This allows us

to scale up the number of attacks the system can detect since it is not constrained

by the resources of individual IoT devices. Furthermore, a system can achieve more

accurate detection when detection occurs at a central location, where it has access

to a more holistic view of the network. Second, in order to mitigate attacks close to

the devices in an open IoT network, TWINKLE must rely on devices running the

security engine component, in the same way the mobile firewall system must rely

on the mobile security node to run security functions. However, in TWINKLE, the

installation of SBHRs on security engine nodes is not done on-demand. Whenever

a network operator wants to handle a new attack that may occur sometime in the

future, they install an SBHR for that attack on each security engine node, which

will only be used when that attack is detected. The SBHR will remain on the

security engine node even after the attack is mitigated. This design unfortunately

does not scale. While an IoT network may face a plethora of different types of

attacks over its lifetime, it is safe to assume that it will most likely face only a

handful at most at at any given time. Therefore, in the mobile firewall system, the

decision module installs security functions on the mobile security node on-demand,

better utilizing the resources on the mobile security node and allowing the system

to handle far more types of attacks in the long run.

6.3.3 Running Security Applications. Similar to TWINKLE,

security applications should be able to be plugged into the mobile security system

138

with relative ease. Let us take SWORD and D-WARD+ as example security

applications, and show how they may run on the mobile security system.

Assuming a network operator wants to prevent worm traffic from leaving

their network, SWORD can be used to detect outgoing worm traffic. Note,

SWORD requires flow-level information in order to detect worm traffic. By default,

the mobile security node will collect packet-level network telemetry data, which

will eventually be converted into flow-level data by the security controller’s traffic

processor module. The decision module will then take the flow-level data as input

and run SWORD to detect worm traffic. If worm traffic is detected, it will publish

a security function to drop the traffic from infected devices.

D-WARD+ can be used to detect, verify, and mitigate DDoS traffic leaving

an open IoT network using the mobile firewall system, which it would not be

able to do comprehensively if deployed on a single gateway router in the open

IoT network. D-WARD+ also requires flow-level information to detect DDoS

traffic. Therefore, the decision module will take the flow-level data as input and

run D-WARD+ to detect suspicious and attack connections. It will then publish a

security function which leverages the fast retransmit mechanism in TCP congestion

control to verify that the suspicious connections are indeed attack connections.

Furthermore, any device initiating attack connections will have its traffic dropped.

Note, each security function must be lightweight enough to run on the

potentially resource-constrained mobile security node. The resources under

consideration not only include the CPU and memory consumption of the functions,

but the power consumption required to transmit and receive packets. Ideally, the

mobile security node can remain in sleep mode most of the time, and wake when

139

needed. However, it is difficult to know when such transitions should happen, given

the fact that an attack can occur at any given moment.

6.3.4 Extensions.

6.3.4.1 Security controller in the cloud. In order to further

increase the system’s scalability, the security controller can be deployed in the

cloud, where it has access to far more resources. This would allow a security

controller to control several different IoT networks simultaneously, and make

sharing of resources and information between security controllers easier. However,

an issue to consider with this approach is the latency between the mobile security

node and the security controller.

6.3.4.2 Multiple mobile security nodes. The mobile security

system can be extended to support multiple mobile security nodes. This extension

would include a mobile node status module, which stores information, such as IP

address, listening port, architecture, board, operating system information, and

memory capacity, about each mobile security node, and the security functions

currently running on each node. Whenever a mobile security node joins the system,

it subscribes to the security controller by sharing its information with the security

controller. The security function selection thread will update the mobile node

status module whenever it publishes a security function to a mobile security nodes.

This allows the system to balance utilization of the cumulative resources available

on the mobile security nodes.

Furthermore, having multiple mobile security nodes allows for the chaining

of security functions. For example, if multiple security functions need to be

executed to verify and mitigate a particular attack, instead of deploying all of the

functions on a single mobile security node, the system can deploy each function on

140

a separate node. The functions can share information as the output of one function

may be required as input to another, thereby creating a chain between the mobile

security nodes.

6.3.4.3 Crowdsourcing. Throughout this chapter we discussed the

use of mobile IoT devices, as mobile security nodes, dedicated solely for security

purposes. However, the software that makes up the mobile security node can be

installed on most types of hardware, such as a small Raspberry Pi Zero W, and

a network operator can attach this hardware to devices in the network, such as a

automated vacuum cleaner. Users of the network can even volunteer to use their

own everyday objects, such as a coffee cup, as mobile security nodes. This way

the system can leverage the power of crowdsourcing to collectively create a mobile

firewall ecosystem. In this approach, the system loses complete control over the

mobile security nodes, but gains larger coverage, potentially leading to a more

secure network.

6.4 Evaluation

In this section, we evaluate the efficacy of the mobile firewall system at

mitigating DDoS traffic generated in an open IoT network. We begin by providing

a brief overview of the procedure, explain the key metric and parameters, and

detail the evaluation environment. We then present our results.

6.4.1 Procedure Overview. The goal of this evaluation is to provide

initial results on the efficacy of the mobile firewall system in a specific case study:

mitigating DDoS traffic as close to the devices as possible in an open IoT network

generating DDoS traffic towards a victim on the Internet. To do so, we simulate

an open IoT network, where a set of nodes are infected and sending DDoS traffic

out of the network. We also simulate a single mobile security node inside of the

141

network which is running a security function to drop the DDoS traffic. Since we

are only focused on mitigating the attack, we assume that the mobile security node

already knows which devices are infected. As mentioned in Chapter VII, we plan on

conducting a more comprehensive study on the entire mobile firewall system in the

future.

6.4.2 Key metric and parameters. The key metric we focus on in

this evaluation is mitigation efficacy. We show mitigation efficacy in terms of the

amount of DDoS traffic the system drops over the evaluation period. We also study

the amount of DDoS traffic the system allows to leave the network over time.

The three main parameters in this evaluation are the percentage of infected

devices, distance traveled by the mobile security node, and time. We also vary the

speed of the mobile security node as an additional parameter. As we show later, all

aforementioned parameters have a direct impact on the system’s mitigation efficacy.

6.4.3 Evaluation Environment. In this evaluation, we simulate a

6LoWPAN open IoT network. 6LoWPAN (IPv6 over Low power Wireless Personal

Area Networks) is a wireless technology that combines IPv6 and Low-power

Wireless Personal Area Networks (LoWPAN) to enable low-powered devices to

communicate using an Internet protocol. A 6LoWPAN network uses RPL (Routing

Protocol over Low Powered and Lossy Networks) as its routing protocol [151]. For

each destination in a 6LoWPAN network to reach, RPL creates a graph called

Destination Oriented Directed Acyclic Graph (DODAG) where every node is a

device in the network and the destination is the root. Each node in a DODAG has

a set of parents, including a preferred parent, where every parent is a potential next

hop to reach the root. Moreover, every node in a DODAG has a rank to represent

142

(a) Infection rate of 25% (b) Infection rate of 50% (c) Infection rate of 75%

Figure 27. Three example networks with different infection rates.

the distance between the device and the root (the distance can be calculated in a

number of ways, the simplest being hop-count).

Each device sends out a DODAG Information Object (DIO) message to

advertise its rank. An entering device, upon the receipt of DIO messages from its

neighboring devices, creates its set of parents, chooses the preferred parent, and

calculates its own rank (which is greater than the rank of each of its parents).

Our IoT network consists of 100 nodes evenly distributed over a 100m x

100m area. The network uses IEEE 802.15.4 at the physical layer. Depending

on the infection rate, we select a set of nodes to be infected uniformaly and at

random. These nodes launch a direct UDP flooding attack towards a single victim

outside of the IoT network. Figure 27a, figure 27b, and figure 27c show three

different example networks, each with varying infection rates (25%, 50%, and

75%, respectively), where the black triangle represents the mobile security node,

the green circles represent benign nodes, and the red squares represent malicious

nodes. The entire simulation is implemented in Python, and we utilize Scapy’s

6LoWPAN library [16] to implement 6LoWPAN. We also utilize SimpleRPL, which

is a Linux-based implementation of RPL as defined in RFC 6550 [151] from the

143

National Institute of Standards and Technology (NIST) to implement RPL in

simulations [30].

It is important to understand how the security function running on

the mobile security node mitigates the DDoS attack. First, it uses Dijkstra’s

algorithm to find the shortest path between malicious nodes. Once it reaches

within transmission range of a malicious node, in order to drop the packets

generated by that node, it must first get the malicious node to route its traffic to

the mobile security node. It does so by sending a DIO message to the malicious

node, advertising the lowest rank possible, which will in turn cause the malicious

node to treat the mobile security node as its parent, thereby routing its traffic

through the mobile security node. The mobile security node can then simply drop

all of the traffic that the malicious node sends it.

Note, in Chapter V, we argue that benign devices could suffer significantly

from the loss caused by a security solution dropping its traffic, and therefore

instead leverage the fast retransmit mechanism (for TCP-based attacks) in D-

WARD+. However, since we are operating under the assumption that the system

has already verified the devices that are malicious, we are not concerned with

dropping traffic from legitimate devices. Furthermore, using the fast retransmit

mechanism to reduce the sending rate of malicious devices allows more DDoS traffic

to leave the network, as opposed to dropping the traffic outright.

6.4.4 Mitigation Efficacy Results. We begin by analyzing

Figure 28, which shows the volume of DDoS traffic allowed (in terms of Mb) with

respect to the percentage of devices infected, or infection rate. For these results, the

speed of the mobile security node is set to 10m/s, which is approximately the top

speed for most commercial drones. Clearly, as the percentage of infected devices

144

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Percentage of Devices Infected

0

1000

2000

3000

4000

5000

6000

7000

Vo
lu

m
e

of
 D

Do
S

Tr
af

fic
 (M

b)

Total DDoS Traffic Dropped
Total DDoS Traffic Allowed

Figure 28. Volume of DDoS traffic allowed with respect to the percentage of
devices infected.

increases, so does the amount of DDoS traffic dropped and the amount of DDoS

traffic allowed. However, in all circumstances, the amount of dropped DDoS traffic

is more than the amount of DDoS traffic allowed. In fact, as the infection rate

increases, so does the ratio of dropped to allowed DDoS traffic. The reason why

the system allows some DDoS traffic to leave the network is because the mobile

security node must travel within transmission radius of each malicious node before

it can drop its traffic, which takes time, depending on how fast it is traveling.

To take a closer look at how the distance traveled by a mobile security node

affects mitigation efficacy, we analyze Figure 29 next, which shows the percentage

of total DDoS traffic generated by the network (i.e., both dropped and allowed)

with respect to the cumulative distance traveled by the mobile security node,

when traveling at a speed of 10m/s. From Figure 29a, when 25% of the network

is infected, we can observe that the mobile security node must travel a total of

approximately 1100m in order to completely mitigate the attack. From Figure 29b,

145

0 200 400 600 800 1000
Distance Traveled (m)

0

20

40

60

80

100
Pe

rc
en

ta
ge

 o
f T

ot
al

 D
Do

S
Tr

af
fic

DDoS Traffic Dropped
DDoS Traffic Allowed

(a) Infection rate of 25%

0 500 1000 1500 2000
Distance Traveled (m)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f T
ot

al
 D

Do
S

Tr
af

fic

DDoS Traffic Dropped
DDoS Traffic Allowed

(b) Infection rate of 50%

0 500 1000 1500 2000 2500 3000 3500 4000
Distance Traveled (m)

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f T
ot

al
 D

Do
S

Tr
af

fic

DDoS Traffic Dropped
DDoS Traffic Allowed

(c) Infection rate of 75%

Figure 29. Percentage of total DDoS traffic generated by the network with respect
to the cumulative distance traveled by the mobile security node.

when 50% of the network is infected, and from Figure 29c, when 75% of the

network is infected, the mobile security node must travel approximately 2400m

and 4000m to mitigate the attack, respectively. From all three graphs, we see a

logarithmic growth in the percentage of DDoS traffic dropped and an exponential

decay in the percentage of DDoS traffic allowed.

Lastly, we analyze the time it takes to mitigate an attack, by presenting

Figure 30, which shows the total DDoS traffic throughput (in terms of Mbps) with

respect to time (in seconds) for different mobile security node speeds. Figure 30a

shows how the total DDoS traffic throughput changes over time when the mobile

146

0 50 100 150 200 250 300 350 400
Time (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

To
ta

l D
Do

S
Tr

af
fic

 T
hr

ou
gh

pu
t (

M
bp

s) 75% Infection Rate
50% Infection Rate
25% Infection Rate

(a) Mobile security node with a speed of
10m/s

0 1000 2000 3000 4000 5000 6000 7000 8000
Time (s)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

To
ta

l D
Do

S
Tr

af
fic

 T
hr

ou
gh

pu
t (

M
bp

s) 75% Infection Rate
50% Infection Rate
25% Infection Rate

(b) Mobile security node with a speed of
0.4m/s

Figure 30. Total DDoS traffic throughput (in terms of Mbps) with respect to time.

security node is traveling at a speed of 10m/s. We can clearly see that the infection

rate has a direct effect on the amount of time it takes the mobile security node to

mitigate the attack. On the other hand, Figure 30b shows the total DDoS traffic

throughput over time when the mobile security node is traveling at a speed of

0.4m/s, which is approximately the top speed for most automated vacuum cleaners.

As expected, at a significantly slower speed, the single mobile security node takes a

significantly longer amount of time to mitigate the attack. These results show that

either the speed of a device should be considered when choosing an appropriate

mobile security node, or that enough mobile security nodes should be present in the

network, in order reduce mitigation latency.

6.5 Conclusion

In open IoT networks, or IoT networks that have inaccessible gateways

connecting them to the Internet, security solutions cannot rely on a central

location, where all the network traffic passes through, to be deployed at. Instead,

such networks require security solutions to defend against attacks as close to

the devices as possible. However, there are several challenges a security solution

147

faces when handling attacks close to the devices, such as dealing with device

heterogeneity, limited resources on devices, and the infeasibility of modifying

devices, while trying to tackle the ever-growing and changing IoT attack landscape.

In this chapter, we present the mobile firewall system, which leverages the

SDN/NFV design paradigm to publish and subscribe security functionality in an

open IoT network. This system consists of mobile security nodes that monitor the

network on-demand, and a security controller that decides which security functions

to deploy on the mobile security nodes. In order to detect and mitigate DDoS

traffic generated by an IoT network, the mobile firewall does not need to modify

devices in the network, and therefore has no negative impact on device resources.

Furthermore, security functions can be installed on-demand to handle new security

threats as they emerge.

Through simulation, we show the efficacy of the mobile firewall system

at mitigating DDoS traffic originating in an open IoT network. Specifically, we

measure the amount of DDoS traffic dropped and the amount of DDoS traffic

allowed, while varying several parameters, such as the network’s infection rate.

Overall, the mobile firewall system is able to successfully mitigate the DDoS attack,

regardless of the network’s infection rate.

The mobile firewall system is an ongoing project that we will continue to

work on in the future. We plan on eventually implementing a fully functioning

prototype in a real IoT network.

148

CHAPTER VII

FUTURE WORK

In this chapter, we outline several possible future directions for research

presented in this dissertation.

7.1 Future Work Related to SWORD

There are several open issues related to SWORD that warrant future work.

First, as described in Chapter 4.3, a distributed version of SWORD can be studied,

where multiple SWORD instances are distributed throughout the network to

collectively monitor traffic. Further, in evaluating SWORD against inbound worms,

there are several Mirai worm variants [11], and SWORD can be evaluated against

these variants. Finally, SWORD could be deployed and evaluated in a real-world

network on the Internet to verify the findings in this dissertation.

7.2 Future Work Related to TWINKLE

One factor in the feasibility of deploying TWINKLE is the potential

difficulty of installing components on a smart home’s border router. We assume

that the border router has enough resources to run TWINKLE’s security manager

and security engine components. While this may be a safe assumption to make

for many commercial home routers, we have yet to evaluate this claim. Also, the

feasibility of running TWINKLE on routers is highly dependent on the security

application.

Another issue is the feasibility of running event watchdog code on devices

in the smart home. We assume that an event watchdog device can run various

lightweight processes. However, some devices, such as legacy and extremely

resource-constrained devices, may not have the ability to install even lightweight

processes. Therefore, in some cases, additional devices need to be added to the

149

network to act as event watchdogs. Furthermore, event watchdogs are required

to have enough resources to run the lightweight SBDRs. Again, the feasibility of

running SBDRs is dependent on the security application.

The placement of event watchdog nodes is another important issue that

a network administrator must consider. Event watchdog nodes may be placed in

multiple locations in the network in scenarios where suspicious behaviors cannot

be detected at a central location, such as the border router. In such scenarios,

selecting an effective placement strategy for the event watchdog nodes is paramount

to effectively detect and mitigate a potential attack. However, selecting an effective

placement strategy is not trivial. This event watchdog placement problem can

be represented as a vertex-cover problem, where the constraint is the number of

devices that can run the event watchdog code plus the number of event watchdog

specific nodes that the network administrator can add into the network, and the

objective is to maximize the number of nodes that are within transmission range of

an event watchdog node.

In future work, we plan on studying, and eventually addressing, the

aforementioned issues.

7.3 Future Work Related to The Mobile Firewall System

As we mentioned in Chapter 6.5, the mobile firewall system is still in its

early stage, and is an ongoing project that we will continue to work on in the

future. In the near future, we plan on implementing a fully functioning prototype,

and test it in a real IoT network.

Additionally, in Chapter 6.3, we detailed several extensions that could

improve the scalability, coverage, and ultimately, the efficacy of the mobile firewall

system. Specifically, these extensions include leveraging cloud computing by

150

deploying security controllers in the cloud, utilizing multiple mobile security nodes,

and embracing the power of crowdsourcing to collectively create a mobile firewall

ecosystem. We plan on thoroughly investigating each extension, and potentially

apply these extensions to the prototype in future work.

151

CHAPTER VIII

CONCLUSIONS

As the number of internet-connected devices increases over time, so too

does the number and scale of IoT-enabled DDoS attacks. Unfortunately, the lack

of attention paid to the ever-growing problem of IoT-enabled DDoS by the IoT

security community has lead to a lack of network-based solutions targeted directly

for IoT networks to address IoT-enabled DDoS.

In this dissertation, we tackled the problem of IoT-enabled DDoS attacks.

We presented three complimentary and inherently connected network-based

prevention, detection, and mitigation approaches against IoT-enabled DDoS

at three critical vantage points on the Internet. Furthermore, we showed each

approach’s effectiveness through extensive evaluation. With this dissertation,

we thus provide a more holistic, defense in depth approach to handling the ever-

growing threat of IoT-enabled DDoS.

Specifically, in Chapter IV, we presented a worm detector called SWORD,

which we showed helps prevent IoT devices from being turned into DDoS bots

by quickly detecting the presence of worm traffic towards an IoT network at an

upstream ISP/IXP. Then, in Chapter V, we presented a security framework called

TWINKLE, which efficiently detected DDoS traffic leaving an IoT network by

inspecting traffic at its gateway. Lastly, in Chapter VI, we presented the mobile

firewall system, which has the ability to publish security functionalities in an IoT

network on-demand without needing to modify the devices in the network, and

showed that it can effectively mitigate DDoS attacks as close to the devices in an

IoT network originating DDoS traffic.

152

Ultimately, we hope that this dissertation can provide new insights into the

area of IoT security, and serve as a basis to future work hoping to comprehensively

tackle the problem of IoT-enabled DDoS.

153

BIBLIOGRAPHY

[1] RFMON: Radio Frequency Monitoring, Monitor Mode.
https://wlanbook.wordpress.com/2008/01/03/rfmon-monitor-mode/.

[2] FRGP Continuous Flow Dataset, IMPACT ID:
USC-LANDER/FRGPContinuousFlowData-20090729/rev3998.
USC/LANDER. http://www.isi.edu/ant/lander, 2016.

[3] FRGP Continuous Flow Dataset, IMPACT ID:
USC-LANDER/Mirai-FRGP-scanning-20160908/rev10326. USC/LANDER.
http://www.isi.edu/ant/lander, 2016.

[4] Satori IoT Botnet Variant. https://security.radware.com/ddos-threats-at
tacks/threat-advisories-attack-reports/satori-iot-botnet/, 2018.

[5] Snort - Network Intrusion Detection & Prevention System.
https://www.snort.org/, 2019.

[6] Suricata - Open Source IDS / IPS / NSM engine. https://suricata-ids.org/,
2019.

[7] Abduvaliyev, A., Pathan, A.-S. K., Zhou, J., Roman, R., and Wong,
W.-C. On the vital areas of intrusion detection systems in wireless sensor
networks. vol. 15, IEEE, pp. 1223–1237.

[8] Abie, H., and Balasingham, I. Risk-based adaptive security for smart iot in
ehealth. In Proceedings of the 7th International Conference on Body Area
Networks (2012), ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), pp. 269–275.

[9] Alrawi, O., Lever, C., Antonakakis, M., and Monrose, F. SoK:
Security Evaluation of Home-Based IoT Deployments. IEEE Symposium on
Security and Privacy (S&P) (2019).

[10] Alrawi, O., Lever, C., et al. SOK: Security Evaluation of Home-Based
IoT Deployments. In Symposium on Security & Privacy (2019).

[11] Alrawi, O., Lever, C., Valakuzhy, K., et al. The Circle Of Life: A
Large-Scale Study of The IoT Malware Lifecycle. In USENIX Security
Symposium (2021).

154

https://wlanbook.wordpress.com/2008/01/03/rfmon-monitor-mode/
http://www.isi.edu/ant/lander
http://www.isi.edu/ant/lander
https://security.radware.com/ddos-threats-attacks/threat-advisories-attack-reports/satori-iot-botnet/
https://security.radware.com/ddos-threats-attacks/threat-advisories-attack-reports/satori-iot-botnet/
https://www.snort.org/
https://suricata-ids.org/

[12] Antonakakis, M., April, T., Bailey, M., Bernhard, M., Arbor, A.,
Bursztein, E., Cochran, J., Durumeric, Z., Halderman, J. A.,
Arbor, A., Invernizzi, L., Kallitsis, M., Network, M., Ma, Z.,
Mason, J., Menscher, D., Seaman, C., Sullivan, N., Thomas, K.,
Zhou, Y., Antonakakis, M., April, T., Bailey, M., Bernhard, M.,
Bursztein, E., Cochran, J., Durumeric, Z., Halderman, J. A.,
Invernizzi, L., Kallitsis, M., Kumar, D., Lever, C., Ma, Z.,
Mason, J., Menscher, D., Seaman, C., Sullivan, N., Thomas, K.,
and Zhou, Y. Understanding the Mirai Botnet. USENIX Security
Symposium (2017).

[13] Apthorpe, N., Reisman, D., Sundaresan, S., Narayanan, A., and
Feamster, N. Spying on the Smart Home: Privacy Attacks and Defenses
on Encrypted IoT Traffic. arXiv preprint arXiv:1708.05044 (2017).

[14] Bastys, I., Balliu, M., and Sabelfeld, A. If This Then What?
Controlling Flows in IoT Apps. ACM Conference on Computer and
Communications Security (CCS) (2018).

[15] Bernabe, J. B., Hernandez, J. L., Moreno, M. V., and Gomez, A.
F. S. Privacy-preserving security framework for a social-aware internet of
things. In International Conference on Ubiquitous Computing and Ambient
Intelligence (2014), Springer, pp. 408–415.

[16] Bernardini, C. A., and Potter, G. 6lowpan protocol stack. https:
//github.com/secdev/scapy/blob/master/scapy/layers/sixlowpan.py,
2020.

[17] Bilge, L., Balzarotti, D., et al. Disclosure: Detecting Botnet Command
and Control Servers through Large-scale Netflow Analysis. In Annual
Computer Security Applications Conference (2012).

[18] Boudi, A., Farris, I., Bagaa, M., and Taleb, T. Assessing Lightweight
Virtualization for Security-as-a-Service at the Network Edge. IEICE
Transactions on Communications (2019).

[19] Breitenbacher, D., Homoliak, I., Aung, Y. L., Tippenhauer, N. O.,
and Elovici, Y. HADES-IoT: A Practical Host-Based Anomaly Detection
System for IoT Devices. ACM Asia Conference on Computer and
Communications Security (AsiaCCS) (2019).

[20] Cashdollar, L. LATEST ECHOBOT: 26 INFECTION VECTORS.
https://blogs.akamai.com/sitr/2019/06/latest-echobot-26-infectio

n-vectors.html, 2019.

155

https://github.com/secdev/scapy/blob/master/scapy/layers/sixlowpan.py
https://github.com/secdev/scapy/blob/master/scapy/layers/sixlowpan.py
https://blogs.akamai.com/sitr/2019/06/latest-echobot-26-infection-vectors.html
https://blogs.akamai.com/sitr/2019/06/latest-echobot-26-infection-vectors.html

[21] Celik, Z. B., Babun, L., Sikder, A. K., Aksu, H., Sikder, A. K., Tan,
G., Mcdaniel, P., and Uluagac, A. S. Sensitive Information Tracking
in Commodity IoT. USENIX Security Symposium (2018).

[22] Celik, Z. B., Fernandes, E., Pauley, E., Tan, G., and McDaniel, P.
Program analysis of commodity iot applications for security and privacy:
Challenges and opportunities.

[23] Celik, Z. B., Tan, G., and McDaniel, P. IoTGuard: Dynamic
Enforcement of Security and Safety Policy in Commodity IoT. Network and
Distributed System Security Symposium (NDSS) (2019).

[24] Celik, Z. B., Tan, G., and McDaniel, P. Iotguard: Dynamic enforcement
of security and safety policy in commodity iot. In Network and Distributed
System Security Symposium (NDSS) (2019).

[25] Cervantes, C., Poplade, D., Nogueira, M., and Santos, A. Detection
of sinkhole attacks for supporting secure routing on 6lowpan for internet of
things. In IFIP/IEEE International Symposium on Integrated Network
Management (2015), IEEE, pp. 606–611.

[26] Cetin, O., Ganan, C., Altena, L., Kasama, T., Inoue, D., Tamiya,
K., Tie, Y., Yoshioka, K., and van Eeten, M. Cleaning Up the
Internet of Evil Things: Real-World Evidence on ISP and Consumer Efforts
to Remove Mirai. Network and Distributed System Security Symposium
(NDSS) (2019).

[27] Chaabouni, N., Mosbah, M., Zemmari, A., Sauvignac, C., and
Faruki, P. Network Intrusion Detection for IoT Security Based on
Learning Techniques. IEEE Communications Surveys and Tutorials (2019).

[28] Chaman, A., Wang, J., Sun, J., Hassanieh, H., and Choudhury, R. R.
Ghostbuster: Detecting the Presence of Hidden Eavesdroppers. ACM
International Conference on Mobile Computing and Networking (MobiCom)
(2018).

[29] Chen, W., Chen, L., Huang, Y., Zhang, X., Wang, L., Ruby, R., and
Wu, K. Taprint: Secure Text Input for Commodity Smart Wristbands.
ACM International Conference on Mobile Computing and Networking
(MobiCom) (2019).

[30] Cheneau, T. Simplerpl. https://github.com/tcheneau/simpleRPL, 2013.

[31] Chiariotti, F., Pielli, C., Laurenti, N., and Zanella, A. A
Game-Theoretic Analysis of Energy-Depleting Jamming Attacks with a
Learning Counterstrategy. ACM Transactions on Sensor Networks (2019).

156

https://github.com/tcheneau/simpleRPL

[32] Cimpanu, C. BrickerBot Author Retires Claiming to Have Bricked over 10
Million IoT Devices, 2017.

[33] Cimpanu, C. A decade of hacking.
https://www.zdnet.com/article/a-decade-of-hacking-the-most-not

able-cyber-security-events-of-the-2010s/, 2019.

[34] Cimpanu, C. A decade of malware. https://www.zdnet.com/article/a-de
cade-of-malware-top-botnets-of-the-2010s/, 2019.

[35] Collins, M. P., and Reiter, M. K. Hit-List Worm Detection and Bot
Identification in Large Networks Using Protocol Graphs. Symposium on
Recent Advances in Intrusion Detection (RAID) (2007).

[36] Copos, B., Levitt, K., Bishop, M., and Rowe, J. Is Anybody Home?
Inferring Activity from Smart Home Network Traffic. IEEE Symposium on
Security and Privacy Workshops (SPW) (2016).

[37] Costin, A., Zaddach, J., and Francillon, A. A Large Scale Analysis of
the Security of Embedded Firmwares. USENIX Security Symposium (2014).

[38] Crandall, J., Su, Z., et al. On Deriving Unknown Vulnerabilities from
Zero-Day Polymorphic & Metamorphic Worm Exploits. ACM Conference on
Computer and Communications Security (CCS) (2005).

[39] Cui, A., and Stolfo, S. J. A Quantitative Analysis of the Insecurity of
Embedded Network Devices: Results of a Wide-Area Scan. Annual
Computer Security Applications Conference (ACSAC) (2010).

[40] Czyz, J., Luckie, M., Allman, M., and Bailey, M. Don’t Forget to Lock
the Back Door! A Characterization of IPv6 Network Security Policy.
Network and Distributed System Security Symposium (NDSS) (2017).

[41] Dantas Silva, F. S., Silva, E., Neto, E. P., Lemos, M.,
Venancio Neto, A. J., and Esposito, F. A Taxonomy of DDoS Attack
Mitigation Approaches Featured by SDN Technologies in IoT Scenarios.
Sensors (2020).

[42] Denning, T., Kohno, T., and Levy, H. M. Computer security and the
modern home. vol. 56, ACM, pp. 94–103.

[43] di Lallo, R., Griscioli, F., Lospoto, G., Mostafaei, H., Pizzonia,
M., and Rimondini, M. Leveraging SDN to Monitor Critical
Infrastructure Networks in a Smarter Way. IFIP/IEEE Symposium on
Integrated Network and Service Management (IM) (2017).

157

https://www.zdnet.com/article/a-decade-of-hacking-the-most-notable-cyber-security-events-of-the-2010s/
https://www.zdnet.com/article/a-decade-of-hacking-the-most-notable-cyber-security-events-of-the-2010s/
https://www.zdnet.com/article/a-decade-of-malware-top-botnets-of-the-2010s/
https://www.zdnet.com/article/a-decade-of-malware-top-botnets-of-the-2010s/

[44] Dietzel, C., Wichtlhuber, M., Smaragdakis, G., and Feldmann, A.
Stellar: Network attack mitigation using advanced blackholing. In
Proceedings of the 14th International Conference on Emerging Networking
EXperiments and Technologies (2018), CoNEXT.

[45] Ding, W., and Hu, H. On the Safety of IoT Device Physical Interaction
Control. ACM Conference on Computer and Communications Security
(CCS) (2018).

[46] Doshi, R., Apthorpe, N., and Feamster, N. Machine Learning DDoS
Detection for Consumer IoT Devices. In Security and Privacy Workshops
(2018).

[47] Farris, I., Taleb, T., Khettab, Y., and Song, J. A Survey on Emerging
SDN and NFV Security Mechanisms for IoT Systems. IEEE
Communications Surveys & Tutorials (2018).

[48] Fayaz, S. K., Tobioka, Y., Sekar, V., and Bailey, M. Bohatei: Flexible
and elastic DDoS defense. In USENIX Security Symposium (2015).

[49] Feeney, L. M., and Nilsson, M. Investigating the energy consumption of a
wireless network interface in an ad hoc networking environment. In
Proceedings IEEE INFOCOM 2001. Conference on Computer
Communications. Twentieth Annual Joint Conference of the IEEE
Computer and Communications Society (Cat. No. 01CH37213) (2001),
vol. 3, IEEE, pp. 1548–1557.

[50] Feng, H., Fawaz, K., and Shin, K. G. Continuous Authentication for Voice
Assistants. ACM International Conference on Mobile Computing and
Networking (MobiCom) (2017).

[51] Feng, X., Li, Q., Wang, H., and Sun, L. Acquisitional Rule-based Engine
for Discovering Internet-of-Things Devices. USENIX Security Symposium
(2018).

[52] Fernandes, E., Jung, J., and Prakash, A. Security Analysis of Emerging
Smart Home Applications. IEEE Symposium on Security and Privacy
(S&P) (2016).

[53] Fernandes, E., Paupore, J., Rahmati, A., Simionato, D., Conti, M.,
and Prakash, A. FlowFence: Practical Data Protection for Emerging IoT
Application Frameworks. USENIX Security Symposium (2016).

[54] Fernandes, E., Rahmati, A., Jung, J., and Prakash, A. Decentralized
Action Integrity for Trigger-Action IoT Platforms. Network and Distributed
System Security Symposium (NDSS) (2018).

158

[55] Gendreau, A. A., and Moorman, M. Survey of Intrusion Detection
Systems Towards an End to End Secure Internet of Things. International
Conference on Future Internet of Things and Cloud (FiCloud) (2016).

[56] Granjal, J., Monteiro, E., and Sa Silva, J. Security for the Internet of
Things: A Survey of Existing Protocols and Open Research Issues. IEEE
Communications Surveys and Tutorials (2015).

[57] Gu, G., Perdisci, R., Zhang, J., et al. BotMiner: Clustering Analysis of
Network Traffic for Protocol- and Structure-Independent Botnet Detection.
In USENIX Security Symposium (2008).

[58] Gu, G., Sharif, M., Qin, X., et al. Worm Detection, Early Warning and
Response Based on Local Victim Information. Annual Computer Security
Applications Conference (ACSAC) (2004).

[59] Hafeez, I., Ding, A. Y., Suomalainen, L., Kirichenko, A., and
Tarkoma, S. Securebox: Toward Safer and Smarter IoT Network.
Proceedings of the 2016 ACM Workshop on Cloud-Assisted Networking
(2016).

[60] He, W., Padhi, R., Ofek, J., Golla, M., Dürmuth, M., Fernandes,
E., and Ur, B. Rethinking Access Control and Authentication for the
Home Internet of Things (IoT). USENIX Security Symposium (2018).

[61] He, Y., Bian, J., Tong, X., Qian, Z., Zhu, W., Tian, X., and Wang,
X. Canceling Inaudible Voice Commands Against Voice Control Systems.
ACM International Conference on Mobile Computing and Networking
(MobiCom) (2019).

[62] Herwig, S., Harvey, K., Hughey, G., Roberts, R., and Levin, D.
Measurement and Analysis of Hajime, A Peer-to-Peer IoT Botnet. Network
and Distributed System Security Symposium (NDSS) (2019).

[63] Hilton, S. Dyn analysis summary of friday october 21 attack. https:
//dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack,
2016.

[64] Ho, G., Leung, D., Mishra, P., Hosseini, A., Song, D., and Wagner,
D. Smart Locks: Lessons for Securing Commodity Internet of Things
Devices. ACM Asia Conference on Computer and Communications Security
(AsiaCCS) (2016).

[65] Hong, J., Levy, A., Riliskis, L., and Levis, P. Don’t Talk Unless I Say
So! Securing the Internet of Things with Default-Off Networking.
ACM/IEEE International Conference on Internet of Things Design and
Implementation (IoTDI) (2018).

159

https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack

[66] Hummel, R., Hildebrand, C., Modi, H., et al. NETSCOUT Threat
Intelligence Report: DDoS in a Time of Pandemic.
https://www.netscout.com/threatreport/, 2021.

[67] Hutchins, B., Zhou, M., Reddy, A., Li, M., Jin, W., and Yang, L.
Beat-PIN: A User Authentication Mechanism for Wearable Devices Through
Secret Beats. ACM Asia Conference on Computer and Communications
Security (AsiaCCS) (2018).

[68] Ikeda, S. IoT-Based DDoS Attacks Are Growing and Making Use of Common
Vulnerabilities.
https://www.cpomagazine.com/cyber-security/iot-based-ddos-attack

s-are-growing-and-making-use-of-common-vulnerabilities/, 2020.

[69] Ilascu, I. IoT Botnets Responsible for More Powerful DDoS Attacks.
https://www.bitdefender.com/box/blog/iot-news/iot-botnets-respon

sible-powerful-ddos-attacks/, 2018.

[70] Ilascu, I. New Silex Malware Trashes IoT Devices Using Default Passwords.
https://www.bleepingcomputer.com/news/security/new-silex-malware

-trashes-iot-devices-using-default-passwords/, 2019.

[71] Janita. DDoS Attack Halts Heating in Finland Amidst Winter, 2016.

[72] Javaid, U., Siang, A. K., Aman, M. N., and Sikdar, B. Mitigating loT
Device based DDoS Attacks using Blockchain. Proceedings of the 1st
Workshop on Cryptocurrencies and Blockchains for Distributed Systems
(2018).

[73] Jung, J., Milito, R., and Paxson, V. On the Adaptive Real-Time
Detection of Fast-Propagating Network Worms. Conference on Detection of
Intrusions & Malware & Vulnerability Assessment (DIMVA) (2007).

[74] Kalofonos, D. N., and Shakhshir, S. Intuisec: A framework for intuitive
user interaction with smart home security using mobile devices. In IEEE
18th International Symposium on Personal, Indoor and Mobile Radio
Communications (2007), IEEE, pp. 1–5.

[75] Kang, W. M., Moon, S. Y., and Park, J. H. An enhanced security
framework for home appliances in smart home. Springer Berlin Heidelberg,
pp. 1–6.

[76] Kent, S., and Atkinson, R. RFC 2401: Security Architecture for the
Internet Protocol. https://www.rfc-editor.org/rfc/rfc2401.html, 2015.

[77] Kim, H.-A., and Karp, B. Autograph: Toward Automated, Distributed
Worm Signature Detection. USENIX Security Symposium (2004).

160

https://www.netscout.com/threatreport/
https://www.cpomagazine.com/cyber-security/iot-based-ddos-attacks-are-growing-and-making-use-of-common-vulnerabilities/
https://www.cpomagazine.com/cyber-security/iot-based-ddos-attacks-are-growing-and-making-use-of-common-vulnerabilities/
https://www.bitdefender.com/box/blog/iot-news/iot-botnets-responsible-powerful-ddos-attacks/
https://www.bitdefender.com/box/blog/iot-news/iot-botnets-responsible-powerful-ddos-attacks/
https://www.bleepingcomputer.com/news/security/new-silex-malware-trashes-iot-devices-using-default-passwords/
https://www.bleepingcomputer.com/news/security/new-silex-malware-trashes-iot-devices-using-default-passwords/
https://www.rfc-editor.org/rfc/rfc2401.html

[78] Kumar, D., Paccagnella, R., Murley, P., Hennenfent, E., Mason,
J., Bates, A., and Bailey, M. Skill Squatting Attacks on Amazon
Alexa. USENIX Security Symposium (2018).

[79] Kumar, P., Braeken, A., Gurtov, A., Iinatti, J., and Ha, P.
Anonymous secure framework in connected smart home environments.
IEEE, pp. 968–979.

[80] Li, C., Ji, X., Zhou, X., Zhang, J., Tian, J., Zhang, Y., and Xu, W.
HlcAuth: Key-free and Secure Communications via Home-Limited Channel.
ACM Asia Conference on Computer and Communications Security
(AsiaCCS) (2018).

[81] Li, J., and Stafford, S. Detecting Smart, Self-Propagating Internet Worms.
IEEE Conference on Communications and Network Security (CNS) (2014).

[82] Li, P., Salour, M., and Su, X. A Survey of Internet Worm Detection &
Containment. In IEEE Communications Surveys & Tutorials (2008).

[83] Li, X., Yan, F., Zuo, F., Zeng, Q., and Luo, L. Touch Well Before Use:
Intuitive and Secure Authentication for IoT Devices. ACM International
Conference on Mobile Computing and Networking (MobiCom) (2019).

[84] Li, Z., Wang, L., Chen, Y., and Fu, Z. Network-based and Attack-resilient
Length Signature Generation for Zero-day Polymorphic Worms.
International Conference on Network Protocols (ICNP) (2007).

[85] Liang, Z., and Sekar, R. Fast and Automated Generation of Attack
Signatures: A Basis for Building Self-Protecting Servers. ACM Conference
on Computer and Communications Security (CCS) (2005).

[86] Lin, F., Song, C., Zhuang, Y., Xu, W., Li, C., and Ren, K. Cardiac
Scan: A Non-Contact and Continuous Heart-Based User Authentication
System. ACM International Conference on Mobile Computing and
Networking (MobiCom) (2017).

[87] Liu, Z., Jin, H., Hu, Y.-C., and Bailey, M. Middlepolice: Toward
enforcing destination-defined policies in the middle of the Internet. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security (2016), CCS.

[88] Mare, S., Girvin, L., Roesner, F., and Kohno, T. Consumer smart
homes: Where we are and where we need to go. In Proceedings of the 20th
International Workshop on Mobile Computing Systems and Applications
(2019), ACM, pp. 117–122.

161

[89] Marzano, A., Alexander, D., Fonseca, O., Fazzion, E., Hoepers, C.,
Steding-Jessen, K., Chaves, M. H., Cunha, I., Guedes, D., and
Meira, W. The Evolution of Bashlite and Mirai IoT Botnets. IEEE
Symposium on Computers and Communications (ISCC) (2018).

[90] Mehdi, S. A., Khalid, J., and Khayam, S. A. Revisiting Traffic Anomaly
Detection Using Software Defined Networking. Symposium on Recent
Advances in Intrusion Detection (RAID) (2011).

[91] Melara, M. S., Liu, D. H., and Freedman, M. J. Pyronia: Redesigning
Least Privilege and Isolation for the Age of IoT. arXiv preprint
arXiv:1903.01950 (2019).

[92] Minn, Y., Pa, P., Suzuki, S., Yoshioka, K., Matsumoto, T., Kasama,
T., and Rossow, C. IoTPOT: Analysing the Rise of IoT Compromises.
USENIX Workshop on Offensive Technologies (WOOT) (2015).

[93] Mirkovic, J., and Reiher, P. D-ward: A source-end defense against
flooding denial-of-service attacks. vol. 2, IEEE, pp. 216–232.

[94] Mitev, R., Miettinen, M., and Sadeghi, A. R. Alexa Lied to Me:
Skill-Based Man-in-the-Middle Attacks on Virtual Assistants. ACM Asia
Conference on Computer and Communications Security (AsiaCCS) (2019).

[95] Morgner, P., Mattejat, S., and Benenson, Z. All Your Bulbs are
Belong to Us: Investigating the Current State of Security in Connected
Lighting Systems. arXiv preprint arXiv:1608.03732 (2016).

[96] Mosenia, A., and Niraj, K. A Comprehensive Study of Internet of Things.
IEEE Transactions on Emerging Topics in Computing (2017).

[97] Moskowitz, R., and Nikander, P. RFC 4423: Host Identity Protocol
Architecture.
https://datatracker.ietf.org/doc/html/draft-ietf-hip-arch, 2015.

[98] Neisse, R., Steri, G., and Baldini, G. Enforcement of security policy rules
for the internet of things. In IEEE 10th International Conference on
Wireless and Mobile Computing (2014), IEEE, pp. 165–172.

[99] Neshenko, N., Bou-Harb, E., Crichigno, J., Kaddoum, G., and
Ghani, N. Demystifying IoT Security: An Exhaustive Survey on IoT
Vulnerabilities and a First Empirical Look on Internet-Scale IoT
Exploitations. IEEE Communications Surveys and Tutorials (2019).

162

https://datatracker.ietf.org/doc/html/draft-ietf-hip-arch

[100] Newsome, J., and Song, D. Dynamic Taint Analysis for Automatic
Detection, Analysis, and Signature Generation of Exploits on Commodity
Software. Network and Distributed System Security Symposium (NDSS)
(2005).

[101] Nguyen, V., Ibrahim, M., Truong, H., Nguyen, P., Gruteser, M.,
Howard, R., and Vu, T. Body-Guided Communications: A Low-Power,
Highly-Confined Primitive to Track and Secure Every Touch. ACM
International Conference on Mobile Computing and Networking (MobiCom)
(2018).

[102] Notra, S., Siddiqi, M., Gharakheili, H. H., Sivaraman, V., and
Boreli, R. An experimental study of security and privacy risks with
emerging household appliances. In IEEE Conference on Communications
and Network Security (2014), IEEE, pp. 79–84.

[103] Paxson, V. Bro: a System for Detecting Network Intruders in Real-Time.
Computer Networks 31, 23-24 (1999), 2435–2463.

[104] Perkins, C., Belding-Royer, E., and Daas, S. RFC 3561: Ad hoc
On-Demand Distance Vector (AODV) Routing. Internet Engineering Task
Force (2003).

[105] Polk, T., Souppaya, M., Haag, B., and Barker, W. C. Mitigating
IoT-Based Distributed Denial of Service (DDoS). US Department of
Commerce, National Institute of Standards and Technology (2017).

[106] Procopiou, A., Komninos, N., and Douligeris, C. ForChaos: Real
Time Application DDoS Detection using Forecasting and Chaos Theory in
Smart Home IoT Network. Wireless Communications and Mobile Computing
(2019).

[107] Rahmati, A., Fernandes, E., Eykholt, K., and Prakash, A. Tyche:
A Risk-Based Permission Model for Smart Homes. IEEE Cybersecurity
Development Conference (SecDev) (2018).

[108] Ramanathan, S., Mirkovic, J., Yu, M., and Zhang, Y. SENSS against
volumetric DDoS attacks. In Proceedings of the 34th Annual Computer
Security Applications Conference (2018), ACSAC.

[109] Raza, S., Duquennoy, S., Chung, T., Yazar, D., Voigt, T., and
Roedig, U. Securing Communication in 6LoWPAN with Compressed
IPsec. IEEE International Conference on Distributed Computing in Sensor
Systems (DCOSS) (2011).

163

[110] Raza, S., Shafagh, H., Hewage, K., Hummen, R., and Voigt, T.
Lithe: Lightweight Secure CoAP for the Internet of Things. IEEE Sensors
Journal (2013).

[111] Raza, S., Wallgren, L., and Voigt, T. SVELTE: Real-Time Intrusion
Detection in The Internet of Things. Ad Hoc networks (2013).

[112] Roman, R., Zhou, J., and Lopez, J. Applying intrusion detection systems
to wireless sensor networks. In IEEE Consumer Communications &
Networking Conference (2006), IEEE, pp. 640–644.

[113] Ronen, E., and Shamir, A. Extended Functionality Attacks on IoT
Devices: The Case of Smart Lights. IEEE European Symposium on Security
and Privacy (Euro S&P) (2016).

[114] Ronen, E., Shamir, A., Weingarten, A. O., and Oflynn, C. IoT Goes
Nuclear: Creating a Zigbee Chain Reaction. IEEE Symposium on Security
and Privacy (S&P) (2018).

[115] Ryan, M. Bluetooth Smart: The Good, The Bad, The Ugly ... and The Fix.
Black Hat USA (2013).

[116] Sahay, R., Blanc, G., Zhang, Z., and Debar, H. Towards Autonomic
DDoS Mitigation using Software Defined Networking. Workshop on Security
of Emerging Networking Technologies (2015).

[117] Schechter, S. E., Jung, J., and Berger, A. W. Fast Detection of
Scanning Worm Infections. Symposium on Recent Advances in Intrusion
Detection (RAID) (2004).

[118] Sehgal, A., Perelman, V., Kuryla, S., and Schonwalder, J.
Management of resource constrained devices in the internet of things. IEEE
Communications Magazine 50, 12 (2012).

[119] Sekar, V., Xie, Y., Reiter, M. K., et al. A Multi-Resolution Approach
for Worm Detection and Containment. International Conference on
Dependable Systems and Networks (DSN) (2006).

[120] Shafagh, H., Hithnawi, A., Burkhalter, L., Fischli, P., Shafagh,
H., Hithnawi, A., Burkhalter, L., Fischli, P., Shar, S. D. S.,
Shafagh, H., Burkhalter, L., Fischli, P., and Duquennoy, S.
Secure Sharing of Partially Homomorphic Encrypted IoT Data. ACM
Conference on Embedded Networked Sensor Systems (SenSys) (2017).

[121] Shafagh, H., Hithnawi, A., Dröscher, A., Duquennoy, S., and Hu,
W. Talos: Encrypted Query Processing for the Internet of Things. ACM
Conference on Embedded Networked Sensor Systems (SenSys) (2015).

164

[122] Shelby, Z., Hartke, K., Bormann, C., and Frank, B. RFC 7252: The
constrained application protocol (CoAP). Internet Engineering Task Force
(2014).

[123] Shin, S., and Gu, G. CloudWatcher: Network Security Monitoring using
OpenFlow in Dynamic Cloud Networks (or: How to provide security
monitoring as a service in clouds? International Conference on Network
Protocols (ICNP) (2012).

[124] Shin, S., Wang, H., and Gu, G. A First Step Toward Network Security
Virtualization: From Concept To Prototype. IEEE Transactions on
Information Forensics and Security (2015).

[125] Simpson, A. K., Roesner, F., and Kohno, T. Securing Vulnerable Home
IoT Devices with an In-Hub Security Manager. International Workshop on
Pervasive Smart Living Spaces (PerLS) (2017).

[126] Simpson, A. K., Roesner, F., and Kohno, T. Securing vulnerable home
iot devices with an in-hub security manager. In IEEE International
Conference on Pervasive Computing and Communications Workshops
(2017), IEEE, pp. 551–556.

[127] Singh, A., Chawla, N., Ko, J. H., Kar, M., and Mukhopadhyay, S.
Energy Efficient and Side-Channel Secure Cryptographic Hardware for
IoT-Edge Nodes. IEEE Internet of Things Journal (2019).

[128] Singh, S., Estan, C., et al. Automated Worm Fingerprinting. Symposium
on Operating System Design and Implementation (OSDI) (2004).

[129] Sinha, S. State of IoT 2021.
https://iot-analytics.com/number-connected-iot-devices/, 2021.

[130] Sinha, S. State of IoT 2021.
https://iot-analytics.com/number-connected-iot-devices/, 2021.

[131] Sisodia, D. On the State of Internet of Things Security: Vulnerabilities,
Attacks, and Recent Countermeasures. University of Oregon. Tech. rep.,
AREA-202001-Sisodia, 2020.

[132] Sisodia, D., Mergendahl, S., Li, J., and Cam, H. Securing the Smart
Home via a Two-Mode Security Framework. International Conference on
Security and Privacy in Communication Systems (SecureComm) (2018).

[133] Sivanathan, A., Gharakheili, H. H., Loi, F., Radford, A.,
Wijenayake, C., Vishwanath, A., and Sivaraman, V. Classifying IoT
Devices in Smart Environments using Network Traffic Characteristics. IEEE
Transactions on Mobile Computing (2018).

165

https://iot-analytics.com/number-connected-iot-devices/
https://iot-analytics.com/number-connected-iot-devices/

[134] Sivaraman, V., Gharakheili, H. H., Fernandes, C., Clark, N., and
Karliychuk, T. Smart iot devices in the home: Security and privacy
implications. vol. 37, IEEE, pp. 71–79.

[135] Sohi, S. M., Seifert, J.-P., and Ganji, F. RNNIDS: Enhancing Network
Intrusion Detection Systems through Deep Learning. Computers & Security
(2021).

[136] Soltan, S., Mittal, P., Vincent, H., and Poor, H. V. BlackIoT: IoT
Botnet of High Wattage Devices Can Disrupt the Power Grid. USENIX
Security Symposium (2018).

[137] Song, J. The realities of smart city development.
https://www.forbes.com/sites/forbestechcouncil/2019/05/14/the-re

alities-of-smart-city-development, 2019.

[138] Stafford, S., and Li, J. Behavior-based Worm Detectors Compared. In
Symposium on Recent Advances in Intrusion Detection (2010).

[139] Staniford, S., Paxson, V., and Weaver, N. How to 0wn the Internet in
Your Spare Time. In USENIX Security Symposium (2002).

[140] Team, O. P. Ossec: Open source hids security.
https://ossec.github.io/index.html, 2019.

[141] Vasserman, E. Y., and Hopper, N. Vampire Attacks: Draining Life from
Wireless Ad Hoc Sensor Networks. IEEE Transactions on Mobile Computing
(2013).

[142] Vicente, M., Galera, B., and Remillano, A. Bashlite IoT Malware
Updated with Mining and Backdoor Commands, Targets WeMo Devices.
https://blog.trendmicro.com/trendlabs-security-intelligence/bash

lite-iot-malware-updated-with-mining-and-backdoor-commands-tar

gets-wemo-devices/, 2019.

[143] Vidgren, N., Haataja, K., Patiño-Andres, J. L., Raḿırez-Sanchis,
J. J., and Toivanen, P. Security Threats in ZigBee-Enabled Systems:
Vulnerability Evaluation, Practical Experiments, Countermeasures, and
Lessons Learned. Hawaii International Conference on System Sciences
(HICSS) (2013).

[144] Wallgren, L., Raza, S., and Voigt, T. Routing Attacks and
Countermeasures in the RPL-Based Internet of Things. International
Journal of Distributed Sensor Networks (2013).

166

https://www.forbes.com/sites/forbestechcouncil/2019/05/14/the-realities-of-smart-city-development
https://www.forbes.com/sites/forbestechcouncil/2019/05/14/the-realities-of-smart-city-development
https://ossec.github.io/index.html
https://blog.trendmicro.com/trendlabs-security-intelligence/bashlite-iot-malware-updated-with-mining-and-backdoor-commands-targets-wemo-devices/
https://blog.trendmicro.com/trendlabs-security-intelligence/bashlite-iot-malware-updated-with-mining-and-backdoor-commands-targets-wemo-devices/
https://blog.trendmicro.com/trendlabs-security-intelligence/bashlite-iot-malware-updated-with-mining-and-backdoor-commands-targets-wemo-devices/

[145] Wang, B., Zheng, Y., Lou, W., and Hou, Y. T. DDoS Attack
Protection in the Era of Cloud Computing and Software-Defined
Networking. Computer Networks (2015).

[146] Wang, C., Guo, X., Wang, Y., Chen, Y., and Liu, B. Friend or Foe?
Your Wearable Devices Reveal your Personal PIN. ACM Asia Conference on
Computer and Communications Security (AsiaCCS) (2016).

[147] Wang, H., Lai, T. T. T., and Choudhury, R. R. MoLe: Motion Leaks
Through Smartwatch Sensors. ACM International Conference on Mobile
Computing and Networking (MobiCom) (2015).

[148] Wang, Q., Datta, P., Yang, W., Liu, S., Bates, A., and Gunter,
C. A. Charting the Attack Surface of Trigger-Action IoT Platforms. ACM
Conference on Computer and Communications Security (CCS) (2019).

[149] Wang, Q., Hassan, W. U., Bates, A., and Gunter, C. Fear and
Logging in the Internet of Things. Network and Distributed System Security
Symposium (NDSS) (2018).

[150] Ward, M. Why some computer viruses refuse to die.
https://www.bbc.com/news/technology-44564709, 2018.

[151] Winter, T., Thubert, P., Brandt, A., Hui, J., and Kelsey, R. RFC
6550: RPL: IPv6 Routing Protocol for Low-power and Lossy Networks.
https://tools.ietf.org/html/rfc6550, 2012.

[152] Winter, T., Thubert, P., Brandt, A., Hui, J., and Kelsey, R. RFC
6550: RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks.
Internet Engineering Task Force (2014).

[153] Wurm, J., Hoang, K., Arias, O., Sadeghi, A. R., and Jin, Y. Security
Analysis on Consumer and Industrial IoT Devices. Asia and South Pacific
Design Automation Conference (ASP-DAC) (2016).

[154] Xu, M., Huber, M., Sun, Z., England, P., Peinado, M., Lee, S.,
Marochko, A., Mattoon, D., Spiger, R., and Thom, S. Dominance
as a New Trusted Computing Primitive for the Internet of Things. IEEE
Symposium on Security and Privacy (S&P) (2019).

[155] Yan, Q., Yu, F. R., Gong, Q., and Li, J. Software-Defined Networking
(SDN) and Distributed Denial of Service (DDoS) Attacks in Cloud
Computing Environments: A Survey, Some Research Issues, and Challenges.
IEEE Communications Surveys & Tutorials (2015).

167

https://www.bbc.com/news/technology-44564709
https://tools.ietf.org/html/rfc6550

[156] Yan, Z., Song, Q., Tan, R., Li, Y., and Kong, A. W. K. Towards
Touch-to-Access Device Authentication Using Induced Body Electric
Potentials. ACM International Conference on Mobile Computing and
Networking (MobiCom) (2019).

[157] Yang, Y., Wang, J., Zhai, B., and Liu, J. IoT-Based DDoS Attack
Detection and Mitigation Using the Edge of SDN. International Symposium
on Cyberspace Safety and Security (CSS) (2019).

[158] Yang, Z., Huang, Q., and Zhang, Q. NICScater: Backscater as a Covert
Channel in Mobile Devices. ACM International Conference on Mobile
Computing and Networking (MobiCom) (2017).

[159] Yiakoumis, Y., Yap, K.-K., Katti, S., Parulkar, G., and McKeown,
N. Slicing Home Networks. Proceedings of the 2nd ACM SIGCOMM
Workshop on Home Networks (2011).

[160] Yoon, C., Park, T., Lee, S., Kang, H., Shin, S., and Zhang, Z.
Enabling Security Functions with SDN: A Feasibility Study. Computer
Networks (2015).

[161] Yu, T., Sekar, V., Seshan, S., Agarwal, Y., and Xu, C. Handling a
Trillion (Unfixable) Flaws on a Billion Devices: Rethinking Network Security
for the Internet-of-Things. Proceedings of the 14th ACM Workshop on Hot
Topics in Networks (2015).

[162] Zarpelao, B. B., Miani, R. S., Kawakani, C. T., and de Alvarenga,
S. C. A survey of intrusion detection in internet of things. Journal of
Network and Computer Applications (2017).

[163] Zeng, E., and Roesner, F. Understanding and Improving Security and
Privacy in Multi-User Smart Homes: A Design Exploration and In-Home
User Study. USENIX Security Symposium (2019).

[164] Zhang, G., Yan, C., Ji, X., Zhang, T., Zhang, T., and Xu, W.
DolphinAttack: Inaudible voice commands. ACM Conference on Computer
and Communications Security (CCS) (2017).

[165] Zhang, N., Mi, X., Feng, X., Wang, X., Tian, Y., and Qian, F.
Dangerous Skills: Understanding and Mitigating Security Risks of
Voice-Controlled Third-Party Functions on Virtual Personal Assistant
Systems. IEEE Symposium on Security and Privacy (S&P) (2019).

[166] Zhang, W., Meng, Y., Liu, Y., Zhang, X., Zhang, Y., and Zhu, H.
Homonit: Monitoring Smart Home Apps from Encrypted Traffic. ACM
Conference on Computer and Communications Security (CCS) (2018).

168

[167] Zheng, J., Li, Q., Gu, G., Cao, J., Yau, D. K., and Wu, J. Realtime
DDoS Defense Using COTS SDN Switches via Adaptive Correlation
Analysis. IEEE Transactions on Information Forensics and Security (2018).

[168] Zhou, H., Hu, Y., Yang, X., Pan, H., Guo, W., and Zou, C. C. A
Worm Detection System Based on Deep Learning. IEEE Access (2020).

[169] Zillner, T., and Strobl, S. ZigBee Exploited: The Good, The Bad and
The Ugly. Black Hat USA (2015).

169

	 Introduction
	Thesis Statement
	Preventing IoT Devices From Being Turned Into DDoS Bots by Inspecting Traffic Towards IoT Networks at an Upstream ISP/IXP
	Detecting DDoS Traffic Leaving an IoT Network by Inspecting Traffic at Its Gateway
	Mitigating Attacks as Close to the Devices in an IoT Network Originating DDoS Traffic
	Dissertation Outline
	Co-authored Materials & Acknowledgment
	Co-authored Materials
	Acknowledgment

	 Background: IoT-Enabled DDoS
	An Overview of IoT-Enabled DDoS
	Vulnerabilities That Cause IoT-Enabled DDoS Attacks
	Open Ports
	Security Flaws in Firmware Images
	Lack of Reliable Patching and Update Mechanisms
	Weak Credentials and Lack of Strong Authentication Mechanisms

	Countermeasures Against IoT-Enabled DDoS Attacks
	Detecting the Execution of Malicious Processes
	Reliable Patching and Update Mechanism
	Management of Compromised Devices

	 The State of IoT Security
	Vulnerabilities
	Lack of Necessary Power for Cryptographic Primitives
	Security Flaws in Various Communication Protocols
	Lack of Data Flow Control in Trigger-Action Platforms
	Lack of Verification in Virtual Personal Assistant Services

	Attacks
	Side-Channel Attacks
	Voice-Command Injection Attacks
	Selective-Forwarding Attacks
	Battery-Draining Attacks
	DDoS Attacks

	Countermeasures
	Access Control
	Data Flow Control
	Recently Proposed Authentication Mechanisms
	Detecting Side-Channel Attacks
	Detecting Routing Attacks
	Detecting Voice-Command Injection Attacks
	Detecting Attacks via Encrypted Traffic Analysis
	Detecting Hidden Inter-Application Interactions
	Improvements to 6LoWPAN Security
	Recent Encryption Protocols
	Identification Through Traffic Analysis
	Traffic Shaping to Prevent Unauthorized Identification

	Challenges and Open Issues

	 Defense at an upstream ISP/IXP: Preventing IoT devices from turning into DDoS bots
	Introduction
	Background and Related Work
	Worm Traffic Detection
	Content-Agnostic Traffic Analysis

	The SWORD Detector
	Placement of SWORD
	BDD: Preventing Fast Scanning via the Burst Duration Detector
	QPD: Ensuring Quiescent Periods via the Quiescent Period Detector
	Clustering
	Design of SWORD

	Experiment Methodology for Inbound Worm Detection
	Procedure Overview
	The Mirai Worm
	Metrics and Parameters
	Evaluation Environment

	Inbound Worm Detection Evaluation
	Total Number of Mirai IPs Detected
	False Negative Rate
	Detection Latency
	Summary
	Limitations and Open Issues

	Conclusion

	 Defense at the gateway: Detecting DDoS traffic leaving an IoT network
	Introduction
	Background and Related Work
	Smart Home Security Analysis
	Frameworks and Systems
	Security Mechanisms for Edge Computing
	Motivation for the TWINKLE Design and Possible Extensions

	TWINKLE: Design and Architecture
	Design with Two Modes for IoT-based Security Applications
	Architecture of TWINKLE
	TWINKLE Security Applications
	Example Application to Address Jamming Attacks
	Example Application to Address Flooding Attacks
	Example Application to Address Weak Encryption

	TWINKLE Implementation Details
	Representing a Security Application
	Automated Routine Instantiation
	Initialization and component threads
	Parsing a security application
	Assigning routines to devices
	Sending routines to devices
	Executing routines
	Dealing with errors
	Cross-compiling for embedded systems

	Component Interaction After Routine Instantiation
	Generating suspicious behavior alerts
	Mode switching and invoking the SBHR
	Running the SBHR
	Querying the security manager

	DDoS Attack Detection By Transforming D-WARD
	DDoS Attacks with IoT Devices
	Prior Art: D-WARD Against DDoS Attacks
	D-WARD+: A Two-Mode Approach Against DDoS Attacks

	Evaluation
	Retransmissions
	Connection Duration
	Energy Consumption
	Memory Consumption
	Naive TCP Flooding Attack
	Smart TCP Flooding Attack
	Evaluation Summary

	Conclusion

	 Defense inside of an IoT network: Mitigating attacks closer to the devices originating DDoS traffic
	Introduction
	Background and Related Work
	IoT Intrusion Detection and Mitigation Systems
	SDN and NFV for Security
	DDoS Mitigation at Source-End IoT Networks

	Mobile Firewall System Design
	System Components
	Mobile Security Node
	Security Controller

	Leveraging the SDN and NFV Design Paradigms
	Running Security Applications
	Extensions
	Security controller in the cloud
	Multiple mobile security nodes
	Crowdsourcing

	Evaluation
	Procedure Overview
	Key metric and parameters
	Evaluation Environment
	Mitigation Efficacy Results

	Conclusion

	 Future Work
	Future Work Related to SWORD
	Future Work Related to TWINKLE
	Future Work Related to The Mobile Firewall System

	 Conclusions
	BIBLIOGRAPHY

