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DISSERTATION ABSTRACT

Jonathan Brophy

Doctor of Philosophy

Department of Computer Science

December 2022

Title: Understanding and Adapting Tree Ensembles: A Training Data Perspective

Despite the impressive success of deep-learning models on unstructured

data (e.g., images, audio, text), tree-based ensembles such as random forests

and gradient-boosted trees are hugely popular and remain the preferred choice

for tabular or structured data, and are regularly used to win challenges on data-

competition websites such as Kaggle and DrivenData. Despite their impressive

predictive performance, tree-based ensembles lack certain characteristics which

may limit their further adoption, especially for safety-critical or privacy-sensitive

domains such as weather forecasting or predictive medical modeling.

This dissertation investigates the shortcomings currently facing tree-based

ensembles—lack of explainable predictions, limited uncertainty estimation, and

inefficient adaptability to changes in the training data—and posits that numerous

improvements to tree-based ensembles can be made by analyzing the relationships

between the training data and the resulting learned model. By studying the effects

of one or many training examples on tree-based ensembles, we develop solutions for

these models which (1) increase their predictive explainability, (2) provide accurate

uncertainty estimates for individual predictions, and (3) efficiently adapt learned

models to accurately reflect updated training data.

This dissertation includes previously published coauthored material.
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CHAPTER 1

INTRODUCTION

Despite the impressive success of deep-learning models on unstructured

data (e.g., images, audio, text) [29, 164], tree-based ensemble models such as

random forests [25] and gradient-boosted trees [73] remain the preferred choice

for tabular or structured data [88, 159, 191], even with the recent interest and

advancements of deep learning on tabular data [9, 102, 106, 112, 158]. Tree

ensembles are regularly used to win challenges on data-competition websites such

as Kaggle and DrivenData [21, 72], and Kaggle CEO Anthony Goldbloom recently

described gradient-boosted trees as the most “glaring difference” between what

is used on Kaggle and what is “fashionable in academia” [110]. Despite the long-

lasting success of tree-based models, particularly on classification and regression

tasks, significant limitations exist which may prevent their further adoption,

especially for certain applications such as those in privacy-sensitive and safety-

critical domains.

1.1 Challenges

Traditionally, machine-learning (ML) models are evaluated on a set of held-

out never-before-seen test data, in which accuracy and predictive performance

is prioritized when selecting which model to use. This is largely still true today,

however, the focus on ML models has expanded from analyzing overall model

performance to analyzing individual predictions. This sentiment is reinforced by the

U.K.’s release of the General Data Protection Regulation (GDPR) [64], in which

the “Right to an Explanation” clause allows users to request an explanation for any

automated decisions that may significantly impact their lives. For example, an ML
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model trained to predict whether or not to give a bank loan to an individual would

fall under this category.

Tree-based ensembles tend to achieve high predictive performance, but

unfortunately lack explainability of their decisions. However, explainable artificial

intelligence (XAI) is a a new research subfield [68, 207] dedicated to making ML

models (including tree-based ensembles) more explainable. A popular and widely-

used method for explaining ML predictions is to quantify which features are

most important for a given prediction [137, 169]. However, this approach is not

always adequately sufficient, which leads us to a more recent and complimentary

methodology.

Challenge #1: Can we identify the training examples most

responsible for a given prediction? This direction is not only complimentary

to the features-based approach (in which a combination of methods may best

explain an individual prediction), but may also be used to identify outliers,

incorrectly-labeled, poisoned [131, 196], or noisy training data which can degrade

the overall performance of the model. Naive approaches to this problem are

generally intractable [80]. Thus, we develop new techniques of influential-example

identification for discrete tree-based ensembles by adapting efficient solutions from

continuous deep learning models. Later in Chapter 3, we introduce an adapted

influence estimation method capable of effectively identifying the most influential

training examples for a given target example prediction from a tree-based ensemble.

As previously mentioned, tree-based models perform particularly well for

tabular regression and classification tasks. However, in contrast to models built for

classification, tree-based models built for regression only produce a scalar value

for the output, and provide no uncertainty about the prediction. Uncertainty

2



estimates are particularly important for certain domain applications such as

financial forecasting [2], weather prediction [83], and medical modeling [10]. For

example, a clinic-mortality model that predicts a patient will live 5± 5.5 years post-

operation is more informative than a model that outputs only a single number.

This additional information signifies a large degree of uncertainty behind the

prediction, adds explainability to the model, and ultimately helps recipients of

the automated decision (e.g., doctors, patients) make more informed decisions.

Challenge #2: How can we accurately quantify the uncertainty of

a given prediction? To tackle this problem, we take an instance-based approach,

leveraging the structure of a given learned tree ensemble to identify the training

examples “most similar” to a given target example. We then use this subset of

training examples to model the conditional output probability distribution. We find

this simple approach can accurately and flexibly model the posterior for a given

target example (Chapter 4).

In addition to the “Right to an Explanation”, the GDPR also contains a

“Right to be Forgotten” [64] clause stating that users can request their data be

deleted from companies using their data, upon request. It is increasingly likely

that this clause will require companies to not only remove personal data from

their databases, but also retrain any models previously trained with that data. To

further illustrate these privacy implications, membership-inference [190] and model-

inversion [215] attacks provide evidence that the learned representation of a model

after training is in some sense a transformed version of the data they are trained

on, enabling adversaries to reverse-engineer the model to accurately infer what

examples were used to train the model.
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Removing examples from an ML model can be done by simply deleting

the unwanted examples from the training data and retraining the model from

scratch. However, this naive approach is often very costly, especially as the size of

the dataset, complexity of the model, or number of deletion requests increases. For

example, it is not uncommon for a single modern ML models to take hours, days,

weeks, etc. to train [29].

Challenge #3: Can we efficiently adapt a learned model to

accurately reflect updated training data? We address this challenge in

the context of random forests, in which we make deletions efficient by carefully

storing a minimal set of statistics needed to rebuild the parts of the model that

need retraining in response to a given deletion request. We introduce this approach

later in Chapter 5 and demonstrate its ability to delete data orders of magnitude

faster than retraining from scratch while sacrificing little to no predictive power.

1.2 Thesis Statement and Dissertation Outline

We combine the challenges tree-based ensembles face into one coherent

sentiment. Can we better understand, improve, and efficiently adapt tree-

based models by studying the relationship between the model and the

data they are trained on? In addressing these challenges, we find that indeed

tree ensembles can be more explainable, accurate, and adaptable by analyzing the

relationships and effects between learned models and their training data.

The outline for the rest of this dissertation is as follows. We provide all

necessary background information in Chapter 2, address the main shortcomings of

tree-based ensembles (posed in §1.1) in Chapters 3–5, and finally summarize our

work and provide valuable future research directions in Chapter 6 that may enable
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the continued success of tree-based ensembles and further their adoption to an even

wider range of applications and domains.
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CHAPTER 2

BACKGROUND AND RELATED WORK

In this chapter, we first describe the type of data well-suited for tree-

based methods, the notation we use throughout this dissertation, and formal

descriptions of the different tree-based models in widespread use today. Then,

we provide detailed background and related work regarding influence estimation,

uncertainty estimation, and machine unlearning, three overlapping topics outlined

in Chapter 1 whose advancements have the potential to significantly increase the

understandability, predictive capacity, and adaptability of tree ensemble methods.

The problems and related work in this chapter serve as the foundation of this

dissertation.

2.1 Tabular Data

In this work, we focus on tabular data—data that can be represented as

a table—which is one of the most common types of data used in real-world ML

applications [16, 44, 199]. Tabular data is also referred to as “structured” since the

features are often inherently meaningful. Contrast tabular data with “unstructured”

data such as audio, text, or video, in which deep learning methods are often

successfully applied since they can automatically extract meaningful features from

the low-level input (e.g., pixels, characters, etc.).

Tabular data is also often heterogeneous—data which contains significantly

different types of features—for example, a medical dataset may contain one

attribute about a patient’s blood pressure and another attribute about the patient’s

age. These two attributes are on completely different scales; fortunately, tree-based

models naturally handle heterogeneous data without needing to transform all

attributes to be on the same scale.
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2.2 Notation

Formally, we assume an instance space X ⊆ Rp and possible targets

Y ⊂ {{−1,+1},Z,R}. Let D := {(xi, yi)}ni=1 be a training dataset in which

each instance xi ∈ X is a p-dimensional vector (xi,j)
p
j=1 and yi ∈ Y. We

refer to P = {j}pj=1 as the set of possible attributes. We use x := {xi}ni=1,

y := {yi}ni=1, zi := (xi, yi) to denote the ith training instance, and zte := (xe, ye) to

denote a target instance.

We also define a (possibly randomized) learning algorithm A : D → F as a

function from a data set D to a model in hypothesis space F , and a loss function ℓ :

R×R→ R. We use notation “∼” to denote a deep learning variable, to distinguish it

from those corresponding to trees; for example, f̃ denotes a deep learning model, ℓ̃

is a deep learning loss function, etc. Next, we formally describe tree-based models,

which are known for excelling at problems represented as tabular data.

2.3 Individual Tree-Based Models

Tree-based models generally come in two forms: as a single tree, or as an

ensemble of trees. Since tree ensembles are made up of individual trees, we review

single tree-based models first.

Decision Tree. A decision tree is a tree-structured model in which each leaf

is associated with a prediction value equal to the mean of the data labels assigned

to that leaf, and each internal node is a decision node associated with an attribute

a ∈ P and threshold value v ∈ R. The outgoing branches of the decision node

partition the data based on the chosen attribute and threshold. Given a target

example xte ∈ X , the prediction of a decision tree can be found by traversing the

tree, starting at the root and following the branches consistent with the attribute
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(b) Dataset partition.

Figure 1. Example decision tree (1a) and resulting dataset partitioning (1b) for a
toy binary classification dataset in which the aim is to predict whether or not one
should eat at a particular pizza place given the rating and price.

values in x. Traversal ends at one of the leaf nodes, where the prediction is equal to

the value of the leaf node.

Decision trees are typically learned in a recursive manner, beginning by

picking an attribute a and threshold v at the root that optimizes an empirical split

criterion such as the Gini index [26]:

GD,Y(a, v) =
∑
b∈{ℓ,r}

|Db|
|D|

(
1−

∑
y∈Y

(
|Db,y|
|Db|

)2
)

(2.1)

or entropy [161]:

HD,Y(a, v) =
∑
b∈{ℓ,r}

|Db|
|D|

(∑
y∈Y

−|Db,y|
|Db|

log2

|Db,y|
|Db|

)
, (2.2)

in which D ⊆ D is the input dataset to a decision node, Dℓ = {(xi, yi) ∈ D | xi,a ≤

v}, Dr = D \Dℓ, Dℓ,y = {(xi, yi) ∈ Dℓ | yi = y}, and Dr,y = {(xi, yi) ∈ Dr | yi = y}.

Once a and v have been chosen for the root node, the data is partitioned into

mutually exclusive subsets based on the value of v, and a child node is learned for

each data subset. The process terminates when the entire subset has the same label

or the tree reaches a specified maximum depth dmax. Figure 1 shows an example of

a learned decision tree and its partitioning of the dataset.
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Regression Tree. A regression tree is similarly structured to a decision

tree, however the training labels used to build a regression tree are real-valued,

i.e., Y ∈ R. As a result, a decision node in a regression tree chooses the split which

most reduces the total variance of the dataset D at that node. More formally, the

variance reduction for attribute a and threshold v is:

VD(a, v) = var(y)−
∑
b∈{ℓ,r}

|Db|
|D|

var(yb), (2.3)

in which y and yb are the vectors of labels for D and Db, respectively, and var is

the variance function. The leaf value in a regression tree is simply the mean output

label of the training instances assigned to that leaf. Finally, the prediction of a

regression tree is performed in the same manner as a decision tree.

2.4 Tree Ensembles

Although simple and arguably very interpretable, shallow single

decision/regression-tree models (i.e., an individual tree grown to a small maximum

depth) tend to have low representational power, while deeper trees suffer from high

variance in their predictions. To achieve a more balanced bias-variance trade-off,

tree ensembles combine multiple individual trees (typically built with a shallow

maximum depth)—called weak learners—to form a strong learner, which tends to

perform extremely well in practice [21, 72]. Tree ensembles generally come in two

flavors: random forests and gradient-boosted trees.

Random Forest. A random forest (RF) is an ensemble of decision/regression

trees which predicts the mean output value from its component trees. Two sources

of randomness are used to increase diversity among the trees. First, each tree

in the ensemble is trained from a bootstrap sample of the original training data,

with some instances excluded and some included multiple times. Second, each
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decision node is restricted to a random subset of attributes, and the split criterion

is optimized over this subset rather than over all attributes. Training is easily

parallelizable for RFs since each tree is trained independent of all other trees in the

ensemble.

Gradient-Boosted Trees. Gradient boosting [73, 75] is a powerful machine-

learning algorithm that iteratively adds weak learners to construct a model f :

X → R that minimizes some empirical risk L : R× R→ R. The model is defined by

a recursive relationship:

f0(x) = γ, (2.4)

...

ft(x) = ft−1(x) + η mt(x), (2.5)

in which f0 is the base learner, γ is an initial estimate, ft is the model at

iteration t, mt is the weak learner added during iteration t to improve the

model, and η is the learning rate. Gradient-boosted decision trees (GBDTs)

choose ℓ to be logistic loss and γ to be the logit of the positive class (for binary

classification1); gradient-boosted regression trees (GBRTs) set ℓ to be the mean

squared error (MSE) and γ as 1
n

∑n
i=1 yi (mean output of the training instances).

Both GBDTs and GBRTs use regression trees as weak learners, and each weak

learner is typically chosen to approximate the negative gradient [143]:

mt = arg min
m̂

1

n

n∑
i=1

(−gt(xi, yi)− m̂(xi))
2, (2.6)

in which gt(xi, yi) = ∂ℓ(yi,ŷi)
∂ŷi

∣∣∣
ŷi=ft−1(x)

is the functional gradient of the ith training

instance at iteration t w.r.t. ŷi = ft−1(xi).

1For multiclass classification, GBDTs use the log of the class priors distribution.
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The weak learner at iteration t partitions the instance space into a set of Mt

disjoint regions Rt = ∪Mt
l=1rt,l. Each region is a leaf whose parameter value θt,l is

typically determined (given a fixed structure) using a one-step Newton-estimation

method [39, 118]:

θt,l = −
∑

i∈It,l gt(xi, yi)∑
i∈It,l ht(xi, yi) + λ

, (2.7)

in which It,l = {zi | zi ∈ rt,l} is the instance set of leaf l for tree t, ht(xi, yi) =

∂2ℓ(y,ŷ)
∂ŷ2

∣∣∣
ŷ=ft−1(x)

is the second derivative of the ith training instance w.r.t. ŷi, and λ

is a regularization constant. Thus, the output of mt can be written as

mt(xte) =
Mt∑
l=1

θt,l1[xte ∈ rt,l], (2.8)

in which 1 is the indicator function. The final model f = fT generates a prediction

by summing the values for the leaves xte is assigned to across all T trees, and

applying an activation function υ to the output: ŷte = υ
(∑T

t=1mt(xte)
)

. For

GBDTs, υ is the sigmoid (softmax) function for binary (multiclass) classification;

for GBRTs, υ is the identity function.

Gradient-boosted trees (GBTs) tend to have better predictive performance

than RFs in practice. However, RFs are arguably more interpretable than GBTs,

and GBTs must be trained sequentially since each tree in the ensemble is trained

using the residual error from the model at the previous iteration. Despite their

predictive prowess, GBTs are black-box models with opaque decision-making

processes [137, 138]. Influence estimation may help us better understand how

GBTs make predictions, remove unwanted biases, and ultimately improve our

models.
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2.5 Influence Estimation

Influence estimation analyzes how changes to the training data can lead to

different model predictions and helps investigate questions such as, “how would

this prediction change if I were to remove these training examples?” Analyzing the

influence of training data on model predictions can provide a better understanding

of model behavior [3, 68, 207] or improve model quality via data set or model

debugging [221]. Influence estimation may also be a useful tool in accurately

assessing whether a model is fulfilling its end of a narrowly-specified contract, and

help determine if the trust/distrust in that contract is warranted ; the resulting

analysis may then be used as a stepping stone towards building trustworthy models

and ultimately fostering Human-AI trust [109]. Additional applications include:

identifying domain adaptation/domain shift [80], data valuation [111], data set

poisoning, identifying memorized examples [66], and many more [125].

Existing influence estimation methods attempt to compute the influence of

each training example zi on the prediction of a given target example zte. Informally,

a training example is influential if its inclusion in the training data impacts the

learned model and its predictions. Following previous work [125, 160], we analyze

the influence of training examples on zte by computing their impact on the loss

of zte.
2 To this end, we define an influence-estimation method, A(D)×D×L× (X ×

Y)→ Rn, as a function from a model A(D), data set D, loss function ℓ, and target

example zte to a vector of influence values, one for each training example. Note

these influence values can be either positive or negative, indicating they reduce or

increase the loss of the target example, respectively.3

2Target example zte can be either in the train or test set.

3Following convention [160], we refer to training examples that reduce the loss of the target
example as proponents and those that increase loss as opponents.
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Leave-One-Out Retraining. The simplest and most intuitive approach

to estimating the influence of a training example zi on a target example zte is to

ignore the existing model and simply rerun A on an updated data set without zi,

and then measure the change in loss4 on zte:

ILOO(zi, zte) = ℓ(yte,A(D \ zi)(xte))− ℓ(yte,A(D)(xte)). (2.9)

Repeating this naive approach for all training examples is known as leave-one-out

retraining (LOO). LOO is agnostic to virtually all machine learning models, easy

to understand, easy to implement, and is regularly described as a gold-standard

influence-estimation method [80].

Expected Marginal Influence. A different way of determining the

contributions of individual examples belonging to a group is via Shapley values,

a game-theoretic method for distributing contributions amongst involved

players [183]. Data Shapley [80] is a model-agnostic approach that applies the

idea of Shapley values to influence estimation in which the marginal contribution

of zi on the loss of zte can be written as:

IDShap(zi, zte) = C
∑

S⊆D\zi

ℓ(yte,A(S)(xte))− ℓ(yte,A(S ∪ {zi})(xte))(
n−1
|S|

) , (2.10)

where C is a constant and S represents all possible subsets of the training data

without zi. Equation (2.10) computes the expected marginal impact of a single

example given a subset of the training data, but is also far more intractable than

LOO.

4When A is non-deterministic, one would need to retrain multiple times on the same data set
to compute the expected change in loss.
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Tractable Approximation of Expected Marginal Influence. Recently,

Feldman and Zhang [66] proposed a method that quantifies the amount of

memorization acquired by a deep learning model during training. Their approach

computes the memorization level of a training example as well as the influence of

a training example on the accuracy of a given learning algorithm A by training τ

different models on random subsets of the data, computing the expected marginal-

influence effects for different training examples. We apply this approach as a

tractable approximation of the computationally infeasible Data Shapley method,

defining the expected marginal-influence effect of zi on the loss of zte as follows:

ISub(zi, zte) = ES∼P (D,m)[ℓ(yte,A(S)(xte))|zi ∈ S]− ES∼P (D,m)[ℓ(yte,A(S)(xte))|zi ̸∈ S].

(2.11)

In Equation (2.11), P (D,m) represents the uniform distribution over all subsets

of D with size m < n. For this approach to be tractable and produce meaningful

influence values, m must be small enough to provide sufficient cases in which zi ̸∈ S,

but large enough to train reasonable approximations to the original model. We

refer to this approach as SubSample and note it is much more tractable than Data

Shapley (Eq. 2.10) and in most cases LOO (Eq. 2.9), especially when τ ≪ n.

Model-Agnostic vs. Model-Specific. Leave-one-out (LOO) retraining

defines influence as the difference between training with the entire training data set

and training with the specified example excluded. The Shapley value is similar to

LOO, but computes an expectation of LOO over all (exponentially many) subsets

of the original training data. In general, the impact of removing an example

depends on which other examples are removed. Existing methods compute a

single number for each individual training example in order to generate a ranking
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amongst the training data. Standard influence estimation metrics then evaluate this

ordering by analyzing sequential subsets of the most influential examples.

Both LOO and expected marginal influence work for any model, that is,

they are model-agnostic approaches. However, model-specific methods can often be

more effective in identifying influential training examples. The most well-known

model-specific approach is Influence functions [125], one of the first methods

proposed for influence estimation, first in differentiable models [48], then in deep

neural networks [125], and later in trees [185].

Static vs. Dynamic Influence Estimation. Influence functions [125]

approximate the influence of training examples using the final learned model,

and thus is classified as a static influence estimation technique. Additionally,

representer point methods [221] offer greater efficiency and an interpretation of

the model as a sum over contributions from all training points, based on representer

theorems. However, more recent approaches such as TracIn [160], HyDRA [41], and

SGDCleanse [99] estimate the influence of training examples throughout training,

providing a more accurate estimation of the total effect of a specific training

example on the resulting learned model and subsequently on the prediction of a

target example.

Adapting Influence Estimation. Previous work has extended

influence functions or TracIn to other types of models, including variational

autoencoders [128], NLP models with transformer architectures [228], and

generative adversarial networks (GANs) [206]. However, tree ensembles have not

yet benefited from the advantages of dynamic influence estimation methods, which

show great promise in deep neural networks. Later in Chapter 3, we describe and
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adapt recent influence estimation techniques designed for deep learning models

to GBTs, demonstrate their ability to identify influential training examples in

GBTs, and evaluate the tradeoffs between our adapted methods and model-agnostic

approaches such as LOO.

Prototypes, Criticisms, and Dataset Maps. Tangentially-related to

influence estimation, prototypes (and their complement: criticisms), attempt to

summarize a data set by identifying training examples in high- and low-density

regions of the input space [19, 121, 93]. Although typically model-agnostic, model-

specific versions exist such as TreeProto [204]. These approaches tend to work well

at providing a global perspective of a given data set. However, these approaches

differ significantly from the methods described thus far, which attempt to return

the most influential training examples for a given test example or set of test

examples. Similar to prototypes, data set cartography maps [4, 202] provide a

global perspective of the training data set, characterizing training examples as easy,

hard, or ambiguous to learn by measuring the confidence and variability of their

predictions throughout the training process.

Feature-Based Influence Estimation. Another highly related but

significantly different body of research is feature-based influence estimation. There

is a plethora of work in this area [81, 126, 138, 169, 179, 200] which estimates

the loss of zte with respect to each feature. Although feature-based approaches

are currently more prevalent than instance-attribution methods, instance-based

influence techniques are becoming increasingly popular as machine-learning

practitioners and researchers are shifting their focus from solely analyzing the

quality of their models to analyzing the quality of their data and the effect their
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data has on their models [12, 28, 96]. Both influence approaches are not mutually

exclusive, and using a combination of feature- and instance-based influence

estimation may provide the most informative context for a given prediction.

In addition to identifying the most influential training examples for a target

prediction, accurately quantifying its predictive uncertainty provides another layer

of useful information about that prediction and the data used to train the model.

2.6 Uncertainty Estimation

Classification tasks comprise a large fraction of important problems in

supervised machine learning, and GBDTs inherently provide a level of confidence

for each prediction by applying the sigmoid or softmax function to the aggregated

output from all the trees in the ensemble. However, regression tasks represent

an equally large and important subclass of problems which can range widely

from financial [2] and retail-product forecasting [142] to weather [83, 84] and

clinic-mortality prediction [10]. GBRTs are known to make accurate point

predictions [141] but provide no estimate of the prediction uncertainty, which is

desirable for both forecasting practitioners [22, 205] and the explainable AI (XAI)

community [3, 68, 207] in general.

Probabilistic Regression. Our focus is on probabilistic regression—estimating

the conditional probability distribution P (y|x) for some target variable y given

some input vector x ∈ X . Unfortunately, traditional GBRT models only

output scalar values. Under a squared-error loss function, these scalar values

can be interpreted as the conditional mean in a Gaussian distribution with

some (unknown) constant variance. However, homoscedasticity is a strong

assumption and unknown constant variance has little value in a probabilistic

prediction; thus, in order to allow heteroscedasticity, the predicted distribution
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needs at least two parameters to convey both the magnitude and uncertainty of the

prediction [61].

Natural Gradient Boosting. Natural Gradient Boosting (NGBoost) is

a recent method by Duan et al. [61] that tackles the aforementioned problems

by estimating the parameters of a desired distribution using a multi-parameter

boosting approach that trains a separate ensemble for each parameter of

the distribution. NGBoost employs the natural gradient to be invariant to

parameterization, but requires the inversion of many small matrices (each the

size of the number of desired parameters) to do so. Empirically, NGBoost generates

state-of-the-art probabilistic predictions, but tends to underperform as a point

predictor.

Probabilistic Gradient Boosting Machines. More recently, Sprangers et al.

[195] introduced Probabilistic Gradient Boosting Machines (PGBM), a single model

that optimizes for point performance, but can also generate accurate probabilistic

predictions. PGBM treats leaf values as stochastic random variables, using sample

statistics to model the mean and variance of each leaf value. PGBM estimates the

output mean and variance of a target example using the estimated parameters

of each leaf it is assigned to. The predicted mean and variance is then used as

parameters in a specified distribution to generate a probabilistic prediction. PGBM

has been shown to produce state-of-the-art probabilistic predictions; however,

computing the necessary leaf statistics during training can be computationally

expensive, especially as the number of leaves in the ensemble increases. Also,

since only the mean and variance are predicted for a given test example, PGBM is

limited to distributions using only location and scale to model the output.
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CatBoost with Uncertainty. Finally, Malinin et al. [143] introduce CatBoost

with uncertainty (CBU), a method that estimates uncertainty using ensembles of

GBRT models. Similar to NGBoost, multiple ensembles are learned to output the

mean and variance. However, CBU also constructs a virtual ensemble—a set of

overlapping partitions of the learned GBRT trees—to estimate the uncertainty of

a prediction by taking the mean of the variances output from the virtual ensemble.

Their approach uses a recently proposed stochastic gradient Langevin boosting

algorithm [212] to sample from the true posterior via the virtual ensemble (in the

limit); however, their formulation of uncertainty is limited only to the first and

second moments, similar to PGBM.

Instance-Based Uncertainty Estimation. Later in Chapter 4, we introduce

a simple method that uses the closest training examples to a target example to

model the prediction uncertainty of that example, where distance is measured using

the structure of the tree ensemble. This method performs well on both point and

probabilistic performance, can flexibly model the output, and can be applied to any

GBRT model.

Additional Related Work. Traditional approaches to probabilistic regression

include generalized additive models for location, scale, and shape (GAMLSS),

which allow for a flexible choice of distribution for the target variable but are

restricted to a pre-specified model form [170]. Prophet [205] also produces

probabilistic estimates for generalized additive models, but has been shown

to underperform as compared to more recent approaches [6, 180]. Bayesian

methods [89, 150] naturally generate uncertainty estimates by integrating over the

posterior; but, exact solutions are limited to simple models, and more complex
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models such as Bayesian Additive Regression Trees (BART) [42, 139] require

computationally expensive sampling techniques (e.g., MCMC [7]) to provide

approximate solutions.

Other approaches to probabilistic regression tasks include conformal

predictions [8, 181, 203] which produce confidence intervals via empirical errors

obtained in the past, and quantile regression [100, 124, 144, 171]. Similar to PGBM,

distributional forests (DFs) [176] estimate distributional parameters in each leaf,

and average these estimates over all trees in the forest. However, DFs are variants

of random forests (RFs), and GBRTs are known to regularly outperform RFs

on regression problems, making this approach less suitable for high-performance

tasks. Deep learning approaches for probabilistic regression [6, 166, 219] have also

increased recently, with notable approaches such as DeepAR [173] and methods

based on transformer architectures [132, 133].

The tools discussed thus far can often help identify noisy, mislabelled, or

poisoned training examples with less human effort [96], it may then be desirable

to remove these examples from the model to improve performance. However,

this can be an expensive operation depending on the size of the dataset and

the complexity of the model. In the next section, we describe efficient data-

deletion methods [24, 28] that can efficiently remove undesirable training examples

from a specified model, which may be especially useful in continual-learning

settings [43, 122] where models may need to be updated regularly.

2.7 Machine Unlearning

Recent legislation [32, 33, 64] requiring companies to remove private

user data upon request has prompted new discussions on data privacy and

ownership [188], especially since membership inference attacks [35, 224] can
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accurately test whether a model was trained with a given training example.

Fulfilling this “right to be forgotten” [77, 129] may require updating any models

trained on data requested to be deleted [216]. However, retraining a model from

scratch on a revised dataset becomes prohibitively expensive as dataset sizes and

model complexities increase [189]; the result is wasted time and computational

resources, exacerbated as the frequency of data removal requests increases.

This motivation has given rise to the nascent field of machine

unlearning [151], in which the goal is to “unlearn” specific training examples

by updating a trained model to completely remove their influence. We base our

definition of unlearning on prior work by Ginart et al. [82, Def. 3.1]. We define a

(possibly randomized) learning algorithm, A : D → H, as a function from a dataset

D to a model in hypothesis space H. A removal method, R : A(D)×D× (X ×Y)→

H, is a function from a model A(D), dataset D, and an instance to remove from

the training data (x, y) to a model in H.

Exact Unlearning. Machine unlearning approaches can be classified into

two broad categories: exact unlearning and approximate unlearning. For exact

unlearning (a.k.a. perfect unlearning), the removal method must be equivalent to

applying the training algorithm to the dataset with instance (x, y) removed. In the

case of randomized training algorithms, we define equivalence as having identical

probabilities for each model in H:

P (A(D \ (x, y))) = P (R(A(D),D, (x, y))) (2.12)

The simplest approach to exact unlearning is to ignore the existing model

and simply rerun A on the updated dataset, D \ (x, y). We refer to this as the naive

retraining approach. Naive retraining is agnostic to virtually all machine learning
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models, easy to understand, and easy to implement. However, this approach

becomes prohibitively expensive as the dataset size, model complexity, and number

of deletion requests increase.

There are a number of works that support exact unlearning of SVMs [36,

40, 60, 116, 172, 211] in which the original goal was to accelerate leave-one-out

cross-validation [182]. More recently, Cao and Yang [34] developed deletion

mechanisms for several models that fall under the umbrella of non-adaptive SQ-

learning [120] in which data deletion is efficient and exact (e.g. naive Bayes, item-

item recommendation, etc.); Schelter [174] has also developed decremental update

procedures for similar classes of models. Ginart et al. [82] introduced a quantized

variant of the k-means algorithm [136] called Q-k-means that supports exact data

deletion. Bourtoule et al. [23] and Aldaghri et al. [5] propose training an ensemble

of deep learning models on disjoint “shards” of a dataset, saving a snapshot of

each model for every data point; the biggest drawbacks are the large storage costs,

applicability only to iterative learning algorithms, and the significant degradation of

predictive performance.

Schelter et al. [175] enable efficient data removal for extremely randomized

trees (ERTs) [79] without needing to save the training data by precomputing

alternative subtrees for splits sensitive to deletions; aside from only being applicable

to ERTs, they assume a very small percentage of instances can be deleted. Later in

Chapter 5, we introduce a method that enables the exact removal of training data

from random forest models.
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Approximate Unlearning. In contrast to exact unlearning, approximate

unlearning (a.k.a statistical unlearning) guarantees

∀S ⊆ H,D, (x, y) ∈ D :

e−ϵ ≤ P (R(A(D),D, (x, y)) ∈ S)

P (A(D \ (x, y)) ∈ S)
≤ eϵ. (2.13)

Equation (2.13) is also known as ϵ-certified removal (Guo et al. [91], Equation 1).

Golatkar et al. [85, 86] propose a scrubbing mechanism for deep neural

networks that does not require any retraining; however, the computational

complexity of their approach is currently quite high. Guo et al. [91], Izzo et al.

[108], and Wu et al. [220] propose different removal mechanisms for linear and

logistic regression models that can be applied to the last fully connected layer

of a deep neural network. Golatkar et al. [87] perform unlearning on a linear

approximation of large-scale vision networks in a mixed-privacy setting. Fu et al.

[76] propose an unlearning procedure for models in a Bayesian setting using

variational inference.

Mitigation. Although not specifically designed as unlearning techniques, the

following works propose different mechanisms for mitigating the impact of noisy,

poisoned, or non-private training data. Baumhauer et al. [14] propose an output

filtering technique that prevents private data from being leaked; however, their

approach does not update the model itself, potentially leaking information if the

model were still accessible. Wang et al. [218] and Du et al. [58] fine-tune their

models on corrected versions of poisoned or corrupted training instances to mitigate

backdoor attacks [90] on image classifiers and anomaly detectors, respectively.

Although both approaches show promising empirical performance, they provide

no guarantees about the extent to which these problematic training instances
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are removed from the model [194]. Tople et al. [208] analyze privacy leakage in

language model snapshots before and after they are updated.

Differential Privacy. Differential privacy (DP) [1, 37, 62] is a sufficient

condition for approximate unlearning (in the case of a single deletion, sequential

deletions may require using group DP [63]), but it is an unnecessary and overly

strict one since machine unlearning does not require instances to be private [91].

Furthermore, differentially-private random forest models often suffer from poor

predictive performance [69, 71]; this is because the privacy budget (typically

denoted ϵ or β) must be split among all the trees in the forest, and among the

different layers in each tree. This typically results in a meaningless privacy

budget (e.g. ϵ > 10) [71], a relaxed definition of DP [165], extremely randomized

trees [70, 79], or very small forests (e.g. T = 10) [47].

Applications. A popular form of interpretability looks at how much each

training instance contributes to a given prediction [41, 125, 160, 184, 221]. The

naive approach to this task involves leave-one-out retraining for every training

instance in order to analyze the effect each instance has on a target prediction, but

this is typically intractable for most machine learning models and datasets. DaRE

models can more efficiently compute the same training-instance attributions as

the naive approach, making leave-one-out retraining a potentially viable option for

generating instance-attribution explanations for random forest models.

Aside from removing user data for privacy reasons, one may also wish to

efficiently remove outliers [55, 162] or training instances that are noisy, corrupted,

or poisoned [148, 196]. As previously mentioned, these examples may be more
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efficiently identified using one of the influence estimation techniques described in

Chapter 3.

Our methods can also be used to add data to a random forest model,

allowing for continuous updating as data is added and removed. This makes

them well-suited to continual learning settings with streaming data [43, 122].

However, the hyperparameters may need to be periodicially retuned as the size

or distribution of the data shifts from adding and/or deleting more and more

instances.

Finally, this line of research promotes a more economically and

environmentally sustainable approach to building learning systems; if a model can

be continuously updated only as necessary and avoid frequent retraining, significant

time and computational resources can be spared [92].
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CHAPTER 3

IDENTIFYING INFLUENTIAL TRAINING EXAMPLES

J. Brophy; Z. Hammoudeh; D. Lowd. Adapting and Evaluating

Influence-Estimation Methods for Gradient-Boosted Decision Trees.

(In Submission to the Journal of Machine Learning Research)

In this chapter, we adapt recent and popular influence-estimation

techniques designed for deep learning models to GBTs. Specifically, we

introduce TREX (§3.1.4), the adaptation of representer-point methods [222],

and BoostIn (§3.1.3), the adaptation of TracIn [160]. Since influence estimation

may behave differently in trees than in deep learning models, we evaluate a wide

range of techniques with varying methodologies to better understand how best

to do influence estimation in GBTs. However, empirically evaluating the merit of

different influence methods tends to vary in the literature, in part because there is

no single criterion for defining the optimal set of training examples that influence a

prediction [97, 125, 221].

To get a broad overview of performance, we focus on quantitative

evaluations rather than the qualitative analysis that is sometimes used to evaluate

influence-estimation methods. Specifically, we approximate the optimal set by

ranking training examples based on their individual influences and measure

changes in model predictions after performing some operation on a subset of

the most influential examples (e.g., removal) and retraining the model; this

evaluation methodology provides a quantitative measure of the fidelity of each

method, that is, how well a method predicts actual model behavior. We use

different evaluation measures since the effectiveness of an influence method may

be operation dependent. For example, the training instances identified as most

26



influential may have the biggest impact on a target prediction when removed, but

not when their labels are flipped instead; hence, we evaluate each influence method

in various contexts (§3.3).

We conduct extensive experiments on 22 real-world data sets to compare

eight different influence-estimation methods using 5 different evaluation measures

and 4 popular modern GBDT implementations : LightGBM [118], XGBoost [39],

CatBoost [159], and gradient boosting from Scikit-Learn [154]. Our results suggest

the adaptation of TracIn [160]—which we denote BoostIn—is a solid default choice

for influence estimation in GBTs. BoostIn is over four orders of magnitude faster

than the current state-of-the-art: LeafInfluence [185]—the adaptation of Influence

Functions [125] to GBTs—and provides better influence estimates than competing

methods in the majority of tested contexts, on average (§3.4).

Furthermore, leave-one-out (LOO)—removing training examples

one at a time, retraining the model for each removal, and measuring the

prediction difference between the original and retrained models—consistently

identifies the single-most influential training example for a given target

prediction by definition; however, we find LOO does a poor job of selecting

the most influential set of training examples that contribute to a given target

prediction (§3.4.4). We find LOO often induces small but significant changes to

the structure of the trees as a result of removing one or very few training examples;

we also observe LOO has a very low correlation with any of the other influence-

estimation methods (§3.4.3). Thus, when considering more training examples for

an influence estimate, we find methods using a fixed tree-structure assumption are

better able to find a set of training examples that most influence a given target

prediction than methods that do not.
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3.1 Adapting Influence Methods to GBTs

We first review LeafRefit (§3.1.1) and LeafInfluence (§3.1.2), work

by Sharchilev et al. [185] adapting LOO and influence functions [125] to

GBTs. Then we introduce BoostIn (§3.1.3), the adaptation of TracIn [160],

theoretically compare BoostIn to LeafInfluence, and then adapt representer-point

methods [221]—a method we denote TREX (§3.1.4).

3.1.1 LeafRefit: LOO with Fixed Tree Structures. To estimate

the influence of a training example on a target example without having to retrain

from scratch, Sharchilev et al. [185] develop LeafRefit, a method that computes the

influence of zi on the loss of zte in GBTs by refitting all leaf values without zi while

assuming a fixed-structure.

Assumption 1. (Fixed Structure) The effect of removing a single training point zi

can be estimated while treating the structure of each tree as fixed. Feature splits are

considered part of the structure of each tree, precluding the influence of zi on any

node split.

Assumption 1 enables LeafRefit to avoid recomputing node splits for

each tree; LeafRefit is thus LOO assuming a fixed structure. Although LeafRefit

avoids retraining completely from scratch, recomputing leaf values is an expensive

operation.

3.1.2 LeafInfluence: Adapting Influence Functions. Influence

functions [48] is a technique from robust statistics that analyzes how the

continuous parameters θ̃ of a differentiable model change when a training

example zi is upweighted by a small amount wi, giving new parameters θ̃wi,zi :=

arg minθ̃∈Θ̃
1
n

∑n
j=1 ℓ̃(zj, θ̃) + wiℓ̃(zi, θ̃) in which ℓ̃(zi, θ̃) is the loss of zi when

using parameters θ̃. The influence of wi on the model parameters can thus be
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approximated without having to retrain from scratch:

dθ̃wi,zi

dwi

∣∣∣
wi=0

= −H−1
θ̃
∇θ̃ℓ̃(zi, θ̃), (3.1)

where Hθ̃ = 1
n

∑n
i=1∇2

θ̃
ℓ̃(zi, θ̃). [125] use this result to develop an influence-

estimation method for deep learning models by analyzing the changing parameters

due to upweighting zi, and then analyzing the effect the changing model parameters

have on the loss of a target example zte:

IIF (zi, zte) = ∇θ̃ℓ̃(zte, θ̃)
⊺dθ̃wi,zi

dwi

∣∣∣
wi=0

= −∇θ̃ℓ̃(zte, θ̃)
⊺H−1

θ̃
∇θ̃ℓ̃(zi, θ̃). (3.2)

Their method (which we henceforth refer to simply as influence functions) provides

an efficient approximation to LOO for shallow deep learning models with strictly

convex and twice-differentiable loss functions; for larger or non-convex loss

functions, however, it has recently been shown that this approximation typically

does not hold [13].

For GBDTs, [185] develop LeafInfluence, an adaptation of influence

functions and an approximation of LeafRefit that analyzes the perturbation of

leaf values and the resulting effect on the loss of zte, assuming fixed tree structures:

ILI(zi, zte) =
∂ℓ(yte, f(xte))

∂wi

=
∂ℓ(yte, ŷte)

∂ŷte

∣∣∣
ŷte=f(xte)

· ∂f(xte)

∂wi
. (3.3)

Equation (3.3) approximates the change in loss on zte as a result of

upweighting zi.
1 The effect of zi on the final GBDT model (second term in Eq. 3.3)

1In our experiments, we take the negative of Eq. (3.3) to be consistent with the concept of
proponents and opponents, defined in §2.5.
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is defined as:

∂f(xte)

∂wi
=

T∑
t=1

∂θt,le(ft−1(x))

∂wi
, (3.4)

in which le = Rt(xte) is the leaf assigned to xte at iteration t, θt,le is the

corresponding leaf value, and ft−1(x) are the intermediate predictions at iteration t−

1. The partial derivative of leaf le at iteration t with respect to the ith training

instance is defined as:

∂θt,le(ft−1(x))

∂wi
= −

1[i ∈ It,le ](ht,iθt,le + gt,i) +
∑

j∈It,le
(kt,jθt,le + ht,j)J(ft−1(x))i,j∑

j∈It,le
ht,j

,

(3.5)

in which gt,i = gt(xi, yi), ht,i = ht(xi, yi), kt,i = ∂3ℓ(yi, ŷi)/∂ŷi
3|ŷi=ft−1(xi), and

J(ft−1(x))i,j = J(ft−2(x))i,j + ∂θt−1,Rt−1(xj)(ft−2(x))/∂wi is a Jacobian matrix that

accumulates the changing intermediate predictions of all training examples as a

result of upweighting zi.

Thus, the effect of a single training example zi on the loss of zte can be

found by running xte through a new ensemble with new leaf values defined by

Equation (3.5) and multiplying the result by the derivative of the loss with respect

to the original prediction (Equation 3.3).

Approximating the influence of a single training example via

LeafInfluence (Eq. 3.3) may be more efficient than LeafRefit, but the computation

is an expensive operation in general, mainly due to the cascade effect of changing

predictions. For example, upweighting zi changes the second-iteration predictions

of all examples in the same leaf as zi, which then changes the leaf values for all

leaves containing those examples in the second iteration and the predictions of the

examples in those leaves for the third iteration; this process repeats for subsequent

iterations, potentially necessitating the tracking and updating of all intermediate

30



training-example predictions throughout the ensemble. The runtime complexity

of LeafInfluence for computing ILI(zi, zte) is O(Tn2), and computing influence

values for all training examples is O(Tn3). Empirically, we find LeafInfluence to

be only marginally faster than LeafRefit, and surprisingly even slower than simply

retraining from scratch (§3.4.2).

LeafInfluence-SinglePoint: Mitigating the Cascade Effect. By

restricting LeafInfluence to analyze only the intermediate predictions of zi

and the parameters (leaf values) containing zi, [185] introduce LeafInfluence-

SinglePoint (which we henceforth call LeafInfSP), a rough approximation to the

main proposed approach (Equation 3.3):

ILISP
(zi, zte) =

∂ℓ(yte, ŷte)

∂ŷte

∣∣∣
ŷte=fT (xte)

·

(
T∑
t=1

1[Rt(xi) = Rt(xte)]

(
∂θt,Rt(xi)(ft−1(xi))

∂wi

))
,

(3.6)

in which

∂θt,l=Rt(xi)(ft−1(xi))

∂wi
= −(gt,i + ht,iθt,l) + (ht,i + kt,iθt,l)J̃(ft−1(xi))∑

j∈It,l wjht,j
(3.7)

and J(ft−1(xi)) = J(ft−2(xi)) + ∂θt−1,Rt−1(xi)(ft−2(xi))/∂wi analyzes the

changing intermediate predictions of only zi throughout the ensemble, mitigating

the problem of approximating the change in parameter values for leaves which do

not contain zi. Both LeafInfSP and LeafInfluence approximate the total change

in model parameters and estimate the effect of this change on the final model

prediction. In the next section, however, we introduce BoostIn, a method that

estimates the influence of zi on zte throughout the training process. We then

compare BoostIn to LeafInfSP and LeafInfluence, higlighting the similarities and

differences.
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3.1.3 BoostIn: Adapting TracIn. TracIn [160] is an influence-

estimation method designed for deep learning models that analyzes the impact of zi

on zte throughout the training process. TracIn is based on the fundamental theorem

of calculus that decomposes the difference between a function at two points using

the gradients along the path between those two points.

The idealized version of TracIn assumes every model update uses one

training example zt at each iteration t and thus defines the influence of zi as

the total reduction in loss on zte whenever zi is used to update the model; that

is, ITracInIdeal(zi, zte) =
∑

t:zt=zi
ℓ̃(zte, θ̃t) − ℓ̃(zte, θ̃t+1). This notion of influence has

the appealing property that the sum of influences for all training examples on zte

is exactly the total reduction in loss during training:
∑n

i=1 ITracInIdeal(zi, zte) =

ℓ̃(zte, θ̃0) − ℓ̃(zte, θ̃T ). However, deep learning models are almost never updated in

this fashion, and are typically trained using a batch or minibatches. Furthermore,

the target example would need to be known ahead of training, or the entire

training process would need to be repeated, which is generally intractable. Thus,

a reasonable heuristic approximation is to save the model at various checkpoints

throughout training in which it is assumed each training example has been

processed exactly once between checkpoints; the influence of zi on the loss of any

target example zte can then be computed via a sum of first-order approximations of

the loss as follows:

ITracInCP (zi, zte) =
k∑
i=1

ηi∇ℓ̃(zi, θ̃t) · ∇ℓ̃(zte, θ̃t), (3.8)

in which k is the number of checkpoints, and ηi is the learning rate at checkpoint i.

While TracIn computes influence by summing over gradient updates,

the analog in a GBDT is to sum over trees, where each tree represents a

functional gradient update (Equation 2.6). Thus to adapt TracIn to GBDTs,
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we first consider all intermediate GBDT models constructed during training as

checkpoints (f0, f1, . . . , fT ). Recall the difference between any two intermediate

models ft and ft−1 is the weak learner mt multiplied by ηt (the learning rate

at iteration t), and that each training example is visited exactly once between

checkpoints since mt computes the gradients of all training examples using the

predictions from the previous iteration (Equation 2.6).

We process each intermediate model using Assumption 1 to analyze the

effect of training example zi on the leaf it belongs to at each iteration. For the

tth iteration, the approximate change in leaf value due to zi corresponds to an

estimated change in prediction of zte only if zi and zte are in the same leaf at that

iteration. The estimated change in prediction then approximates the change in loss

on zte. Finally, we aggregate these approximations across all iterations, simulating

the effect of zi on zte throughout the training process. More formally, we use the

chain rule to analyze the marginal effect each changing leaf value has on the loss

of zte, and sum these marginal effects across checkpoints:

IBoostIn(zi, zte) =
T∑
t=1

1[Rt(xi) = Rt(xte)]

(
−dℓ(yte, ft(xte))

dwi

)

=
T∑
t=1

1[Rt(xi) = Rt(xte)]

(
−∂ℓ(yte, ŷte)

∂ŷte

∣∣∣
ŷte=mt(xte)

· ∂ft(xte)
∂wi

)

=
T∑
t=1

1[Rt(xi) = Rt(xte)]

(
∂ℓ(yte, ŷte)

∂ŷte

∣∣∣
ŷte=ft(xte)

· ηt
∂θt,l
∂wi

)
(3.9)

in which ∂ft(xte)
∂wi

≈ −ηt ∂θt,l∂wi
, l = Rt(xte), and the partial derivative of θt,l with respect

to zi is defined as:

∂θt,l
∂wi

=
gt,i + ht,i θt,l∑
j∈It,l ht,j + λ

. (3.10)

We denote this adaptation of TracIn to GBDTs as BoostIn. Again,

note Eq. (3.9) enforces a constraint that attributes nonzero influence only
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when zi and zte are in the same leaf at a given iteration. Also, when processing

an intermediate model at iteration t, BoostIn avoids the cascade effect by

approximating the change in only leaf l = Rt(xi) for weak learner mt. The

resulting runtime complexity of BoostIn for computing the influence of a single

training example is O(T ), and computing influence values for all training examples

is O(Tn).

BoostIn vs. LeafInfluence-SinglePoint. The main idea of

LeafInfSP (Eq. 3.6) is to accumulate the changes in the leaf values affected by

upweighting zi (only relevant when zi and zte are in the same leaf at a given

iteration t) and multiply this result by the final prediction of the GBDT model

on xte. In contrast, BoostIn (Eq. 3.9) multiplies each leaf-value derivative by

the corresponding intermediate prediction of xte at each iteration (only relevant

when zi and zte are in the same leaf at a given iteration t), then takes the sum over

all intermediate results. This is an important distinction as BoostIn analyzes the

cumulative change in loss throughout the training process, not just on the final

model prediction.

In terms of computation, BoostIn and LeafInfSP have the same runtime

complexity O(Tn). Empirically, however, the original implementation of LeafInfSP2

is not optimized to realize this lower runtime complexity as it is implemented in

conjunction with full LeafInfluence approach; thus, as a minor contribution, we

implement an optimized version of LeafInfSP and demonstrate in §3.4.2 that our

implementation achieves similar runtime performance compared to BoostIn, as

expected. Overall, BoostIn is a solid choice for influence estimation in GBDTs,

2https://github.com/bsharchilev/influence_boosting
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providing on par or better influence estimates than LeafInfSP and LeafInfluence

while being orders of magnitude more efficient than LeafInfluence.

3.1.4 TREX: Adapting Representer-Point Selection.

Representer theorems [177] state the optimal solutions of many learning

problems can be represented in terms of the training examples. In particular,

the nonparametric representer theorem [177, Theorem 4] applies to empirical risk

minimization within a reproducing kernel Hilbert space (RKHS); this covers a wide

range of linear and kernelized machine-learning methods.

Yeh et al. [221] apply representer theorems to deep learning models by using

the layers (except the final layer) of the network θ̃1 as a feature map fi = ϕ̃(xi; θ̃1),

and training a kernelized model with L2 regularization on the transformed features.

Specifically, a surrogate model f ∗ parameterized by ψ∗ is solved via the following

optimization problem:

ψ∗ = arg min
ψ

λ||ψ||2 +
1

n

n∑
i=1

ℓ(yi, f
∗(fi;ψ)). (3.11)

Once a stationary point is reached with high precision, the gradient of the loss can

be set equal to zero:

1

n

n∑
i=1

∂ℓ(yi, f
∗(fi;ψ

∗))

∂ψ∗
+ 2λψ∗ = 0, (3.12)

∴ ψ∗ = − 1

2λn

n∑
i=1

∂ℓ(yi, f
∗(fi;ψ

∗))

∂ψ∗
=

n∑
i=1

αifi, (3.13)

in which αi = − 1
2λn

∂ℓ(yi,ŷi)
∂ŷi

∣∣
ŷi=f∗(fi;ψ∗)

is the global importance of zi to the overall

surrogate model. Finally, the pre-activation prediction of an arbitrary target

example zte can be decomposed as a linear combination of the training examples:

f ∗(xte;ψ
∗) =

n∑
i=1

αik(xi, xte), (3.14)
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in which k(xi, xte) = ⟨fi, fe⟩ represents the similarity between zi and zte in the

transformed feature space; αik(xi, xte) is referred to as the representer value for zi

given zte, and its magnitude is largest when the magnitudes of both the training

example weight αi and the similarity of zi to zte is large. The representer value of zi

can be positive or negative, representing the attribution of zi towards or away from

the predicted value of zte, respectively.

To adapt representer-point methods to GBDTs, we need a way of extracting

the learned representation of a given GBDT model, similar to feature extraction in

deep learning models. For this purpose, we use supervised tree kernels [20, 52, 103],

a general approach for extracting the learned representation from a tree ensemble

by using the structure of the trees. Tree kernels can measure the similarity between

two instances by analyzing how each example is processed by each tree in the

ensemble [146], and they have been shown to be an effective adaptive nearest-

neighbors method [134] that can more effectively identify the most relevant training

instances for a given instance than traditional nearest-neighbor approaches that

operate in the original feature space and often suffer from poor performance as the

dimensionality of the data increases.

Intuitively, two examples are predicted identically if they appear in the same

leaf in every tree in the ensemble. Thus, we can define the degree of similarity

between two data points by comparing the specific paths taken through each

tree; we can incorporate extra flexibility into the similarity measure by taking

into account path overlap, node weights (number of examples at a node), and

leaf values. Formally, we define tree kernels as dot products in an alternate

feature representation defined by the feature mapping ϕ, i.e., k(xi, xte; f) =

⟨ϕ(xi; f), ϕ(xte; f)⟩ = ⟨fi, fe⟩. Note these supervised kernels are parameterized
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by the GBDT model f , since the computation necessarily depends on the structure

of the ensemble, similar to taking the output of the penultimate layer in deep

learning models. Based on work by Plumb et al. [157] on local linear modeling, we

define ϕ(x, f) = ∪Tt=1(
1
nt,l
· 1[x ∈ rt,l])Mt

l=1 as a sparse vector over all leaves in f ; for

each tree t, the element at leaf Rt(x) is nonzero and inversely weighted by nt,l, the

number of training examples assigned to leaf l.

Given the feature mapping ϕ, we use Eq. (3.11) to train a surrogate model

to approximate our original GBDT model, enabling the decomposition of a target

prediction using Equation (3.14). However, the resulting representer values only

quantify the contribution of a training example zi to the prediction of zte, but we

are interested in how zi affects the loss of zte; thus, we measure the influence of zi

on the loss of zte by subtracting the representer value for zi from the prediction

decomposition of zte and computing the change in loss:

ITREX(zi, zte) = ℓ

(
yte, υ

(
ŷ∗e − αik(xi, xte; f)

))
− ℓ
(
yte, υ(ŷ∗e)

)
, (3.15)

in which υ is an activation function3 and ŷ∗e =
∑n

j=1 αjk(xi, xte; f) is the surrogate

model pre-activation prediction for zte. We denote this method TREX (Tree-

ensemble Representer Examples) and evaluate its influence-estimation quality

in §3.4.

3.1.5 Similarity-Based Influence. As defined above, TREX

measures the influence of an example zi on a target example zte using two pieces of

information: the weight of the training example αi, and the similarity to the target

instance k(xi, xte; f). To better understand the marginal effect of each component,

we define an additional influence estimation method that skips training a surrogate

3Typically a sigmoid or softmax for binary and multiclass classification tasks.
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model and only uses the tree-kernel similarity to quantify the influence of zi on zte:

ITreeSim(zi, zte) = 1[yi = yte]k(xi, xte; f)− 1[yi ̸= yte]k(xi, xte; f). (3.16)

This method, TreeSim, attributes positive influence to examples with the same

label as zte, and negative otherwise;4 this value is then scaled by the similarity

between zi and zte.

3.2 Summary of Influence-Estimation Methods

Table 1 provides a summary of the influence-estimation methods discussed

in this paper. In summary, LOO and SubSample are model-agnostic approaches

that compute the influence of training examples by removing them and retraining

one or multiple models on revised data sets. The rest of the methods are model

specific and assume a fixed-structure while computing influence values. LeafRefit

recomputes all leaf values without a particular training instance in order to

estimate the influence of that instance. LeafInfluence and LeafInfSP provide

approximations to this process by measuring the total aggregated change in model

parameters and analyzing how this change affects the final target prediction.

BoostIn approximates the change in leaf values and their effects on the loss of a

target prediction at each intermediate model, tracing the influence of a training

instance on a target prediction throughout the training process. Both BoostIn and

LeafInfSP are theoretically much more tractable than LeafRefit and LeafInfluence.

TREX trains an interpretable kernel surrogate model that decomposes any

prediction into a sum of the training instances, and TreeSim identifies the most

influential training examples by how similar they are to the target example.

4For regression, TreeSim treats zi and zte as having the same label if yi and yte are on the
same side of the target prediction ŷe; that is, sgn(ŷe − yi) = sgn(ŷe − yte), in which sgn is the
signum function.
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Assume
Method Source Changes Fixed Structure

LOO - -
SubSample [66] -
LeafRefit [185] - ✓
LeafInfluence [125] [185] ✓
LeafInfSP [125] [185] ✓
BoostIn [160] §3.1.3 ✓
TREX [221] §3.1.4 ✓
TreeSim [157] §3.1.4 ✓

Table 1. Summary of influence-estimation methods.

In the following sections, we evaluate the estimation quality of each method

on a wide range of data sets and evaluation contexts.

3.3 Methodology

In our experiments, we order the training data based on the influence values

generated by each method for a single test example (§3.3.2, §3.3.3) or a set of

test examples (§3.3.4, §3.3.5, §3.3.6). We then evaluate these orderings in different

contexts by removing (§3.3.2, §3.3.4), performing targeted label editing (§3.3.3),

and adding label noise (§3.3.5) to the most influential examples and observing

the effect on the model/predictions after retraining ; the more a method degrades

the resulting model predictions,5 the higher that method is ranked. We also

evaluate the effectiveness of each method at detecting noisy or mislabelled training

examples (§3.3.6) as is often done in previous work [80, 160]. Overall, we want

influence methods with high fidelity, that is, methods that accurately predict the

behavior of the model after some operation (e.g., removing the most influential

training examples for a test example should actually increase the loss of the given

5We measure changes in model predictions via logistic loss for classification tasks and squared
error for regression tasks.
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test example after retraining without those‘ examples); in general, this evaluation

protocol provides a quantitative measure of the effectiveness of each influence-

estimation method. In the following subsections, we provide data set and method

details, and then describe each experiment in detail; we present our results in §3.4.

3.3.1 Datasets and Methods. This section describes the datasets,

models, and influence methods used in our experiments.

Datasets. We evaluate on 22 real-world tabular data sets (13 binary-

classification tasks, 1 multiclass-classification task, and 8 regression tasks) well-

suited for boosted tree-based models. For each data set, we generate one-hot

encodings for any categorical attributes and leave all binary and numeric attributes

as is. For any data set without a predefined train/test split, we sample 80% of the

data uniformly at random for training and use the rest for testing. All additional

data set details are in the Appendix, §A.1.

Models. We train GBDT models using the most popular and modern

implementations: LightGBM [118, LGB], XGBoost [39, XGB], Scikit-Learn [154,

SGB], and CatBoost [159, CB]. Each model is tuned using 5-fold cross-validation;

selected hyperparameters are in §A.3.1: Table A.11, with predictive performance

comparisons in §A.3.1: Table A.10.

Influence Methods and Baselines. We include the following

influence-estimation methods in our evaluation: LOO (Equation 2.9),

SubSample (Equation 2.11; we set τ = 4, 000 and m = ⌊0.7n⌋ as recommended

by Feldman and Zhang, 2020), LeafRefit, LeafInfluence (Equation 3.3),

BoostIn (Equation 3.9), LeafInfSP (Equation 3.6), TREX (Equation 3.15), and
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TreeSim (Equation 3.16). We also include Random as an additional baseline, which

assigns influence values via a standard normal distribution: IRandom(zi, zte) ∼

N (0, 1).

Due to the limited scalabilty of LeafRefit and LeafInfluence (see §3.4.2),

we evaluate these methods on a subset of the data sets consisting of 13 smaller

data sets and present results on this group, which we denote small data

subset (SDS) (exactly which data sets are part of SDS is given in §A.1: Table A.8);

however, we observe the same trends when including all data sets in our analysis,

which are in §A.2.1.

Implementation and Reproducibility. Code containing all influence-

estimation implementations and experiments is available at https://github.com/

jjbrophy47/tree_influence; our implementations also include an optimized

version of LeafInfSP. Supplemental implementation details as well as hardware

details used for the experiments are in §A.1.

3.3.2 Single Test Instance: Removing Influential Training

Examples. Inspired by the remove and retrain (ROAR) framework for measuring

the impact of different features [104], we evaluate the influence of training examples

on a given test example by measuring the change in loss on the test example using

a model retrained after removing the most influential training examples. In theory,

the training examples with the most positive influence values decrease the loss of

the test example the most; thus, removing them and retraining the model should

increase the loss of the test example.

For this experiment, we generate influence values for a given test

example zte, and order the training instances from most positive (i.e., instances that

decrease the loss of zte the most) to most negative. Using this ordering, we remove
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0.1%, 0.5%, 1%, 1.5%, and 2% of the training data, retraining a separate GBDT

model on each modified version of the data set. We then measure the change in

loss on zte using the original and retrained models. We repeat this experiment for

100 randomly chosen test examples and compute the average increase in test loss

per example. We then rank the influence-estimation methods by how much they

increase the test loss on average; then, we average these rankings over removal

percentages (0.1%, 0.5%, etc.), GBDT types, and data sets.

3.3.3 Single Test Instance: Targeted Training-Label Edits. In

this section, instead of removing examples, we ask the counterfactual [31, 119],

“how would this prediction change if I were to edit the label(s) of the most

influential training examples?” However, since most of the influence-estimation

methods simulate the removal of a training example, we slightly adapt them to

simulate a changing training label for this experiment. We modify LOO to compute

the influence of zi on zte via training-label edit by changing zi to z∗i (zi with a new

label y∗i ) and retraining the model. We similarly modify LeafRefit (LOO with a

fixed structure) to refit leaf values with z∗i instead zi. Note these operations are

equivalent to removing zi and adding z∗i . However, LeafInfluence, LeafInfSP, and

BoostIn only approximate the removal of zi, but these influence methods are able

to estimate the influence of an instance that does not actually exist in the training

data (see influence definitions in §3.1). Thus, we can approximate the influence of a

changing training label by simulating the removal of zi and the addition of z∗i ; that

is, I(zi → z∗i , zte) ≈ I(zi, zte)− I(z∗i , zte).

In this experiment, we use the same setup as §3.3.2, ordering the training

examples from most positive to most negative. Using this ordering, we change 0.1%,
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0.5%, 1%, 1.5%, and 2% of the training labels to the same chosen target label y∗.6

We retrain the model after each batch modification, and measure the change in loss

on the test example; we then rank each method by how much the loss increases,

and average these results over modification percentages, GBDT types, and data

sets.

3.3.4 Multiple Test Instances: Removing Influential Training

Examples. We now analyze the effect of influential examples on a set of test

instances. We sample 10% of the test examples uniformly at random to use as a

validation set and generate influence values for each example. We then aggregate

the influence values via a sum over the validation examples to get a single influence

value per training example, and then rank the training examples from most

positive (decreases the loss of the validation examples the most on aggregate) to

most negative. Using this ordering, we remove examples in batches of 5%, removing

up to a maximum 50% of the training data. We retrain a separate GBDT model

after each batch removal and measure the change in loss to the original model on

a held-out test set (that is, the test examples not used for the validation set). We

then rank each influence-estimation method by how well it degrades the resulting

model at each level of removal (5%, 10%, etc.), and average these rankings over

removal percentages, GBDT types, and data sets.

3.3.5 Multiple Test Instances: Adding Training-Label Noise.

For this experiment, we use the same setup as §3.3.4, including the orderings

produced by each influence-estimation method. Then, instead of removing the

most positively-influential examples, we add noise to them by randomly changing

6For binary-classification tasks, we choose y∗ to be opposite ŷe (the predicted label of zte). For
multiclass classification, y∗ is randomly sampled from Y \ ŷe. For regression, y

∗ = ȳ − (ȳ/2) if
ŷe > ȳ, otherwise y∗ = ȳ+ (ȳ/2).
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each of their labels: we flip labels for binary-classification tasks, sample new labels

uniformly at random for multiclass-classification tasks, and sample new target

values between the minimum and maximum values of y uniformly at random for

regression tasks. This procedure can be viewed as an availability data poisoning

attack [131, 196]. We then retrain, remeasure, and rank the influence methods in

the same way as §3.3.4.

3.3.6 Multiple Test Instances: Fixing Mislabelled Training

Examples. Another way of evaluating the influence of training examples is

via detecting and fixing noisy or mislabelled training instances. Intuitively, very

negatively-influential training examples may signify outliers, mislabelled/noisy

examples, etc., and possibly warrant manual inspection. We conduct this

experiment in a similar fashion to those in the literature [80, 125, 156, 160, 221],

sampling 40% of the training data uniformly at random and flipping their labels

in the same way as §3.3.5. We then generate influence values in the same way

as §3.3.4 and §3.3.5, but then rank the training examples from most negative (that

is, examples that increase the loss of the validation examples the most on

aggregate) to most positive. Using this ordering, we manually inspect 5%, 10%,

15%, 20%, 25%, and 30% of the training data, fixing the training examples whose

labels had been flipped. We rank each method by how many mislabelled examples

it detects at each level of manual inspection (5%, 10%, etc.); we then average these

rankings over all inspection levels, GBDT types, and data sets. We also add a

simple but effective baseline called Loss that orders the training examples to be

checked based on their loss (high-loss training examples are checked first).
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(a) Average rank of each method. For each evaluation setting, results are averaged over
all checkpoints, tree types, and data sets; error bars represent 95% confidence intervals
and are computed over data sets. Lower is better. We exclude Random since it performed
consistently worse than all other methods in each setting.
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(b) Average loss increase (except for “fix mislabelled”, which shows average increase in
mislabelled detection) relative to random. For each evaluation setting, results are averaged
over all checkpoints and tree types, then the geometric mean is computed over all data
sets. Higher is better.

Figure 2. High-level overview of results showing (a) average rank and (b) relative
impact of each method. Methods are grouped based on their relative
efficiency (Figure 3); for both subfigures, evaluation settings left of the gray-dashed
line represent experiments that compute influence values for a single test instance
and measure the predictive impact on that instance (this is then repeated and
averaged over 100 randomly-chosen test instances), while experiments right of
the dashed line compute aggregate influence values for a set of test examples and
measure the predictive impact on a held-out test set.

3.4 Results and Analyses

Figure 2 shows a high-level overview of our results across evaluation settings;

we partition the influence techniques into “fast” and “slow” methods (see §3.4.2
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for a runtime comparison) to give readers a sense of how much performance can

be increased (if any) given more computational effort. Overall, BoostIn tends

to perform best or equally best, except for the “targeted edit” experiment, in

which LeafRefit and methods based on tree-kernel similarity such as TREX and

TreeSim are more effective. Surprisingly, LOO performs consistently poorly; thus,

we investigate this method further in §3.4.4.

3.4.1 Summary of Results. Here we present an overview of the

results for each experiment, with additional analyses in the Appendix, §A.2.2-

§A.2.6.

Single Test: Removing Influential Examples. Figure 2a (left) shows

LeafRefit ranking highest, with BoostIn and LeafInfluence performing roughly the

same. Subsample also performs well, although we observe a noticeable drop in

its relative performance when adding larger data sets into our analysis (§A.2.1);

increasing τ for larger data sets may improve performance, but may also

significantly increase its running time. In terms of magnitude, all methods increase

the loss more than random, though BoostIn has a slight advantage over all other

methods (Figure 2b: left); surprisingly, LOO does only marginally better than

random.

Single Test: Targeted Label Edits. Figure 2a (middle-left) shows LeafRefit

ranking higher than all other methods; LeafInfluence, TREX, and TreeSim also

rank highly. Although BoostIn is not ranked as highly as these methods, it is

significantly more effective than LeafInfSP and SubSample; and its relative

magnitude in terms of loss increase is similar to that of LeafInfluence and

TreeSim (Figure 2b: middle-left).
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Multiple Test: Removing Influential Examples. Figure 2a (middle)

shows BoostIn and LeafInfSP ranking significantly higher than all other methods;

however, BoostIn tends to choose examples that increase the loss more than

LeafInfSP, on average (Figure 2b-middle shows a 2.2x and 1.7x increase in loss

relative to Random for BoostIn and LeafInfSP, respectively). Additional analyses

for other predictive performance metrics such as accuracy are in §A.2.4.

Multiple Test: Adding Label Noise. Our results show BoostIn clearly

outperforms all other methods in terms of rank (Figure 2a: middle-right) and

relative loss increase (Figure 2b: middle-right), and suggest BoostIn may be an

effective tool for providing untargeted data set poisoning attacks. Somewhat

surprisingly, LeafInfSP does not perform as well on this task as compared to

removing examples. Additional analyses for other predictive performance metrics

are in §A.2.5.

Multiple Test: Fixing Mislabelled Examples. Figure 2a (right) shows

BoostIn and LeafInfSP performing best, slightly outranking Loss; however,

all three methods perform comparably in terms of relative magnitude, on

average (Figure 2b: right). Predictive-performance improvements on the held-out

test set after retraining the model on partially fixed versions of the data sets are

in §A.2.6.

3.4.2 Runtime Comparison. To better understand the relative

efficiency of each method, we measure the time it takes to compute all influences

values for a single random test example for each dataset.7 We repeat each

experiment 5 times, and average the results over GBDT types.

7For a clearer comparison, no parallelization is used for any method.
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Figure 3. Left : Average setup time for each explainer. Right : Average time to
compute influence values of all training examples for one test example. Results are
averaged over 5 folds and GBDT types; each box plot represents average running
times across all SDS datasets. TreeSim, BoostIn, LeafInfSP, and TREX represent
“fast” methods with low setup and influence times, and are separated from the
remaining “slow” methods by orders of magnitude efficiency.

Figure 3 shows the runtime of each approach broken down into two

components: “fit time” and “influence time”. Fit time is the time to initialize

and set up the explainer, and influence time is the time to compute the influence

of all training examples for one test example; note the log scale. TreeSim has the

fastest setup time overall; however, TreeSim, BoostIn, LeafInfSP, and TREX all

have low initialization and influence times compared to SubSample, LOO, LeafRefit,

and LeafInfluence. We semantically group the former and latter methods into “fast”

and “slow” groups, separated by orders of magnitude efficiency.

All methods in the “slow” group must train or approximate (and store) a

separate model for each training example during setup, which becomes unwieldy

as n increases (SubSample is the exception that trains a fixed τ = 4000 models;

however, this is still a significant number of models to train and store). When

computing influence values, the “slow” methods predict using all models obtained
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during setup. In contrast, methods in the “fast” group are able to compute

influence values using only one model instead of n or τ models.

Surprisingly, LeafInfluence and LeafRefit take significantly more time to

set up than than LOO and have similar influence times, on average. Additionally,

the relative efficiency of SubSample is very similar to LOO; this is mainly due

to our choice of τ and the small data set sizes in the SDS. For larger data

sets (assuming τ remains fixed) or smaller choices of τ , one can expect SubSample

to be more efficient than LOO in general.

3.4.3 Correlation Between Influence Methods. To better

understand the relationships between different influence methods, we compute

the Spearman rank [227] and Pearson correlation coefficients between every pair of

influence methods using the values generated for each test example in §3.3.2. We

then average these correlations over all test examples, GBDT types, and data sets.
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Figure 4. Average Spearman and Pearson correlation coefficients between every pair
of influence methods; results are based on the rankings generated via the influence
values for each test example, averaged over 100 test examples and then over tree
types and data sets.
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Figure 4 shows a high correlation between LeafRefit and LeafInfluence,

which is expected since LeafInfluence is an approximation of LeafRefit. BoostIn

is highly correlated with LeafInfSP, which we theoretically analyzed as relatively

similar in §3.1.3. We also observe a cluster of similar methods: BoostIn, LeafInfSP,

TreeSim, and TREX. Surprisingly, LOO is not highly correlated with any other

method; the low correlation and relatively poor performance (Figure 2) prompts

us to investigate LOO further in §3.4.4. This result also provides evidence that

the previous state-of-the-art, LeafInfluence, is a poor approximation of LOO.

Additional analysis regarding the correlation between influence methods is

in §A.2.8.

3.4.4 The Structural Fragility of LOO. Throughout our

experiments, LOO performs consistently worse than many of the other methods,

often only doing marginally better than random. These results thus warrant further

investigation.

To assess the performance of LOO in more depth, we use the same setup

as §3.3.2, except we remove examples in increments of one instead of specified

percentages (0.1%, 0.5%, etc.); we do the same for Random, BoostIn, and LeafRefit

for additional context. Figure 5 shows the results, and we immediately notice a

spike in test loss (outlined by a gray box) after the first removal for LOO higher

than any of the other methods, followed by a drop and general plateau of the test

loss for subsequent removals. We consistently see this spike across data sets and

GBDT types (additional examples are in §A.2.9). This suggests that LOO indeed

often chooses the single-most influential example to the test instance, but fails to

provide the most influential set of examples based on its initial ordering.
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Figure 5. Change in test-example loss (averaged over 100 test examples using LGB)
after removing the most positively-influential training examples one at a time using
a fixed ordering as well as a dynamic ordering that reestimates influence values
for the remaining training data after each removal. The gray box highlights the
large increase in test loss by LOO after removing only a single example. Additional
examples are in the Appendix, §A.2.9.

To quantify how much this initial ordering makes a difference, we reestimate

influence values on the remaining training data after each deletion, dynamically

reordering the training examples to be removed (Figure 5). We make two

observations from this variation; first, we notice a significant improvement in the

performance of not only LOO, but all methods (except for random). Second, even

with improved performance, LOO tends to plateau after a certain point, being

surpassed by both BoostIn and LeafRefit. This suggests that greedily selecting

training examples that have a large impact on the test loss (such as LOO) may fare

worse than methods using a fixed-structure assumption when considering a larger

number of examples.

Figure 6 validates structural changes are induced by a single removal

ordered by LOO, measured via training-example affinities (number of times the

training examples are assigned to the same leaf as the test example across all
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Figure 6. Left : Distribution of training-example affinities to a randomly selected
test example zte using an LGB model trained on the Adult data set before (initial)
and after the removal of a single training example (1 removal) ordered using
LOO. Right : Average change in affinity over 100 randomly selected test examples.
The changing distribution of affinity values signals structural changes to the tree
structures after only a single removal.

trees in the ensemble). These structural changes may help explain why LOO has

significantly different performance (Figure 2) and low correlation (Figure 4) with

the other methods.

3.5 Summary

In this work, we adapt recent popular influence-estimation methods designed

for deep learning models to GBDTs, identify theoretical similarities between

BoostIn and LeafInfluence, and provide a comprehensive evaluation of each

influence method across many data sets using multiple GBDT implementations.

Overall, we find LeafRefit typically works best at finding influential

examples for a single test instance; however, this method is extremely slow

and intractable in most cases. Thus, we believe BoostIn is a viable alternative

that performs comparably for the single test case, and significantly outperforms

LeafRefit, LeafInfluence, and most other methods when identifying influential

instances for a set of test instances while being orders of magnitude more efficient,

providing an effective and scalable solution for influence estimation in GBDTs.
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Our findings also suggest that LOO consistently identifies the single-most

influential example to a given test prediction, but performs poorly at finding the

most influential set of examples due to small but significant structural changes in

response to removing one or very few examples. We find methods assuming a fixed

structure when computing influence values generally perform better than model-

agnostic approaches that do not. These structural changes also help explain why

LOO is not correlated with any other methods, and why the previous state-of-the-

art, LeafInfluence, is actually a poor approximation of LOO.
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CHAPTER 4

QUANTIFYING PREDICTION UNCERTAINTY

J. Brophy and D. Lowd. Instance-Based Uncertainty Estimation for

Gradient-Boosted Regression Trees. In Proceedings of the Thirty-Sixth

International Conference on Neural Information Processing Systems.

New Orleans, LA. 2022.

In this chapter, we introduce a simple yet effective method for enabling

any GBRT point-prediction model to produce probabilistic predictions. Our

proposed approach, Instance-Based Uncertainty estimation for Gradient-boosted

regression trees (IBUG), has two key components: 1) We leverage the fact that

GBRTs accurately model the conditional mean and use this point prediction as

the mean in a probabilistic forecast; and 2) We identify the k training examples

with the greatest affinity to the test instance and use these examples to estimate

the uncertainty of the test prediction. We define the affinity between two instances

as the number of times both instances appear in the same leaf throughout the

ensemble. Thus, our method acts as a wrapper around any given GBRT model,

such as LightGBM [118], XGBoost [39], CatBoost [159], or any other model

with (potentially) improved point-prediction performance invented in the future.

In experiments on 21 regression benchmark datasets and one synthetic

dataset, we demonstrate the effectiveness of IBUG to deliver on par or improved

probabilistic performance as compared to existing state-of-the-art methods while

maintaining state-of-the-art point-prediction performance. We also show that

probabilistic predictions can be improved by applying IBUG to different GBRT

models, something that NGBoost and PGBM cannot do. Additionally, IBUG

can use the training instances closest to the target example to directly model
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the output distribution using any parametric or non-parametric distribution;

again, something NGBoost, PGBM, and CBU cannot do. Finally, we show that

sampling trees dramatically improves runtime efficiency for computing training-

example affinities without having a significant detrimental impact on the resulting

probabilistic predictions, allowing IBUG to scale to larger datasets.

4.1 Instance-Based Uncertainty

Instance-based methods such as k-nearest neighbors have been around for

decades and have been useful for many different machine learning tasks [155].

However, defining neighbors based on a fixed metric like euclidean distance may

lead to suboptimal performance, especially as the dimensionality of the dataset

increases. More recently, it has been shown that random forests can be used as

an adaptive nearest neighbors method [52, 134] which identifies the most similar

examples to a given instance using the learned model structure. This supervised

tree kernel can more effectively measure the similarity between examples, and has

been used for clustering [146] and local linear modeling [20] as well as instance-[27]

and feature-based attribution explanations [157], for example.

In this work, we apply the idea of a supervised tree kernel to help model

the uncertainty of a given GBRT prediction. Our approach, Instance-Based

Uncertainty estimation for Gradient-boosted regression trees (IBUG), identifies

the neighborhood of similar training examples to a target example using the

structure of the GBRT, and then uses those instances to generate a probabilistic

prediction (Figure 7). IBUG works for any GBRT, and can more flexibly model the

output than competing methods.

4.1.1 Identification of High-Affinity Neighbors. At its core,

IBUG uses the k training examples with the largest affinity to the target example
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Figure 7. IBUG workflow. Given a GBRT model and an input instance x, IBUG
collects the training examples at each leaf x traverses to, keeps the k most frequent
examples, and then uses those examples to model the output distribution.

to model the conditional output distribution. Given a GBRT model f , we define

the affinity between two examples simply as the number of times each instance

appears in the same leaf across all trees in f . Thus, the affinity of the ith training

example xi to a target example xte can be written as:

A(xi, xte) =
T∑
i=1

1[Rt(xi) = Rt(xte)], (4.1)

in which Rt(xi) is the leaf xi is assigned to for tree t. Algorithm 1 summarizes

the procedure for computing affinity scores for all training examples. This metric

clusters similar examples together based on the learned model representation (i.e.,

the tree structures). Intuitively, if two examples appear in the same leaf in every

tree throughout the ensemble, then both examples are predicted in an identical

manner. One may also view Eq. (4.1) as an indication of which training examples

most often affect the leaf values xte is assigned to and thus implicitly which

examples are likely to have a big effect on the prediction ŷte. This similarity metric
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is similar to the random forest kernel [52], however, unlike random forests, GBRTs

are typically constructed to a shallower depth, resulting in more training examples

assigned to the same leaf (see §B.2.5 for additional details about leaf density in

GBRTs).

Algorithm 1 IBUG affinity computation.

1: ComputeAffinities(Input instance x ∈ X , GBRT model f)
2: A← 0⃗ ▷Initialize training-example affinities.
3: for t = 1 . . . T do
4: Get instance set I lt for leaf l = Rt(x)
5: for i ∈ I lt do
6: Ai ← Ai + 1 ▷Increment affinity score.
7: Return A

Algorithm 2 IBUG probabilistic prediction.

1: ProbPredict(Input x ∈ X , GBRT model f , k highest-affinity neighbors A(k),
minimum variance ρ, variance calibration parameters γ and δ, target
distribution D)

2: µŷ ← f(x) ▷GBRT scalar output.
3: σ2

ŷ ← max(σ2(A(k)), ρ) ▷Compute σ2 and ensure σ2 > 0.
4: σ2

ŷ ← γσ2
ŷ + δ ▷Variance calibration, Equation (4.2).

5: Return D(A(k)|µŷ, σ2
ŷ) ▷Probabilistic prediction, Equation (4.3).

4.1.2 Modeling the Output Distribution. IBUG has a multitude

of choices when modeling the conditional output distribution. The simplest

and most common approach is to model the output assuming a Gaussian

distribution [61, 195]. We use the scalar output of f : µŷte = f(xte) to model the

conditional mean since GBRTs already produce accurate point predictions. Then,

we use the k training instances with the largest affinity to xte—we denote this

set A(k)—to compute the variance σ2
ŷte

.

Calibrating prediction variance. The k-nearest neighbors generally do a

good job of determining the relative uncertainty of different predictions, but on
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some datasets, the resulting variance is systematically too large or too small. To

correct for this, we apply an additional affine transformation before making the

prediction:

σ2
ŷte ← γσ2

ŷte + δ, (4.2)

where γ and δ are tuned on validation data after k has been selected. Instead of

exhaustively searching over all values of γ or δ, we use either the multiplicative

factor (tuning γ with δ = 0) or the additive factor (tuning δ with γ = 1), and

choose between them using their performance on validation data.

We find this simple calibration step consistently improves probabilistic

performance for not only IBUG, but competing methods as well, and at a relatively

small cost compared to training the model. Thus, any future probabilistic estimator

should at least consider including a multiplicative or additive correction when

estimating the predicted variance.

Flexible posterior modeling. In general, we can generate a probabilistic

prediction using µŷte and σ2
ŷte

for any distribution that uses location and scale (note

PGBM and CBU can only model these types of distributions). However, IBUG can

additionally use A(k) to directly fit any continuous distribution D, including those

with high-order moments:

D̂te = D(A(k)|µŷte , σ2
ŷte). (4.3)

Eq. (4.3) is defined such that D can be fit directly with A(k) using MLE (maximum

likelihood estimation) [149], or may be fit using µŷte or σ2
ŷte

as fixed parameter

values with A(k) fitting any other parameters of the distribution. Overall, directly

fitting all or some additional parameters in D—for example, the shape parameter in
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a Weibull distribution—is a benefit over PGBM and CBU, which can only optimize

for a global shape value using a gridsearch-like approach with extra validation data.

Note that NGBoost can model any parameterized distribution, but must

specify this choice before training; in contrast, IBUG can optimize this choice

after training. Additionally, IBUG may choose D to be a non-parametric density

estimator such as KDE (kernel density estimation) [186], which PGBM, CBU, and

NGBoost cannot do.

4.1.3 Summary. In summary, Algorithm 2 provides pseudocode for

generating a probabilistic prediction with IBUG. Note Algorithms. 1 and 2 work

for any GBRT model, allowing practitioners to employ IBUG to adapt multiple

different point predictors into probabilistic estimators and select the model with the

best performance. Empirically, we show using different base models for IBUG can

result in improved probabilistic performance than using just one (§4.2.4).

IBUG is a nearest neighbors approach and thus seems well-suited to

estimating aleatoric uncertainty—remaining uncertainty due to irreducible error or

the inherent stochasticity in the system [107]—since it can quantify the range of

outcomes to be expected given the observed features. However, we use predictions

on held-out data to tune the number of nearest neighbors and the variance

calibration hyperparameters; thus, we effectively optimize prediction uncertainty

encompassing both aleatoric uncertainty and epistemic uncertainty—error due

to the imperfections of the model and the training data [57, 143]. The evaluation

measures in our experiments thus also focus on predictive uncertainty.

4.1.4 Computational Efficiency. We now discuss the runtime of

IBUG and methods for increasing its efficiency.
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Training efficiency. Since IBUG works with standard GBRT models,

it inherits the training efficiency of modern GBRT implementations such as

XGBoost [39], LightGBM [118], and CatBoost [159]. It also benefits from any

future developments in training efficiency, with no need to update the IBUG

algorithm.

Prediction efficiency. If there are T trees in the ensemble and each leaf has

at most nl training instances assigned to it, then IBUG’s prediction time is O(Tnl),

since it considers each instance in each leaf. Note training instances that do not

appear in a leaf with the test instance xte do not increase prediction time; what

matters most is thus the number of instances at each leaf. We find LightGBM

often induces regression trees with large leaves—in some cases, over half the dataset

is assigned to a single leaf. Thus, prediction time still grows with the size of the

dataset, as is typical for instance-based methods. This higher prediction time is the

price IBUG pays for greater flexibility.

Prediction efficiency can be increased at training time by using deeper

GBRTs with fewer instances in each leaf, after training by subsampling the

instances considered for predictions, or at prediction time by sampling the trees

used to compute affinities. We explore this last option in the next subsection.

Sampling Trees. The most expensive operation when generating a

probabilistic prediction with IBUG is computing the affinity vector (Eq. 4.1). In

order to increase prediction efficiency, we can instead work with a subset of the

trees τ < T in the ensemble. We can build this subset by sampling trees uniformly

at random, taking the first trees learned (representing the largest gradient steps), or

the last trees learned (representing the fine-tuning steps).
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By sampling trees, the runtime complexity reduces to O(τnl), which

provides significant speedups when τ ≪ T . In our empirical evaluation,

we find that taking a subset of the first trees learned generally works best,

significantly increasing prediction efficiency while maintaining accurate probabilistic

predictions (§4.2.7).

Accelerated k Tuning. Choosing an appropriate value of k is critical for

generating accurate probabilistic predictions in IBUG. Thus, we aim to tune k

using a held-out validation dataset Dval ⊂ D and an appropriate probabilistic

scoring metric such as negative log likelihood (NLL). Unfortunately, typical tuning

procedures would result in the same affinity vectors being computed—an expensive

operation—for each candidate value of k. To mitigate this issue, we perform

a custom tuning procedure that reuses computed affinity vectors for all values

of k. More specifically, IBUG computes an affinity vector A for a given validation

example xval, and then sorts A in descending order (i.e., largest affinity first). Then,

IBUG takes the top k training instances, and generates and scores the resulting

probabilistic prediction. For each subsequent value of k, the same sorted affinity

list can be used, avoiding duplicate computation. We summarize this procedure

in Algorithm 3.

Once k is chosen, we may encounter a new unseen target instance in which

the variance of A(k) for that target example is zero or extremely small. In this

case, we set the predicted test variance to ρ, which is set during tuning to the

minimum (nonzero) variance computed over all predictions in the validation set for

the chosen k. In practice, we find instances of abnormally low variance to be rare

with appropriately chosen values of k.
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Algorithm 3 IBUG accelerated tuning of k.

Require: Validation dataset Dval ⊂ D, GBRT model f , list of candidates K,
target distribution D.

1: for (xj, yj) ∈ Dval do
2: A← ComputeAffinities(xj, f) ▷Algorithm 1.
3: A← Argsort A in descending order ▷Use the same ordering for each k.
4: for k ∈ K do
5: A(k) ← Take first k training instances(A, k)
6: D̂k

yj
← ProbPredict(xj, f, A

(k), ρ, 1, 0, D) ▷Algorithm 2.

7: Skj ← V (yj, D̂
k
yj

) ▷Save validation score.
8: k ← Select best k from S
9: ρ← Select min. σ2 from D̂k

10: Return k, ρ

4.2 Experiments

In this section, we demonstrate IBUG’s ability to produce competitive

probabilistic and point predictions as compared to current state-of-the-art methods

on a large set of regression datasets (§4.2.2, §4.2.3). Then, we show that IBUG can

use different base models to improve probabilistic performance (§4.2.4), flexibly

model the posterior distribution (§4.2.5), and use approximations to speed up

predictions while maintaining competitive performance (§4.2.7).

4.2.1 Implementation and Reproducibility. We implement

IBUG in Python, using Cython—a Python package allowing the development

of C extensions—to store a unified representation of the model structure.

IBUG currently supports all modern gradient boosting frameworks including

XGBoost [39], LightGBM [118], and CatBoost [159]. Experiments are run on

publicly available datasets using an Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.6GHz

with 60GB of RAM @ 2.4GHz. Links to all data sources as well as the code for

IBUG and all experiments is currently available online.1

1https://github.com/jjbrophy47/ibug.
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4.2.2 Methodology. We now compare IBUG’s probabilistic and point

prediction to NGBoost [61] and PGBM [195] on 21 benchmark regression datasets

and one synthetic dataset. Additional dataset details are in §B.1.2

Metrics. We compute the average continuous ranked probability

score (CRPS ↓) and negative log likelihood (NLL ↓) [84, 226] over the test set

to evaluate probabilistic performance. To evaluate point performance, we use

root mean squared error (RMSE ↓). For all metrics, lower is better. See §B.1 for

detailed descriptions.

Protocol. We follow a similar protocol to Sprangers et al. [195] and Duan

et al. [61]. We use 10-fold cross-validation to create 10 90/10 train/test folds for

each dataset. For each fold, the 90% training set is randomly split into an 80/20

train/validation set to tune any hyperparameters. Once the hyperparameters are

tuned, the model is retrained using the entire 90% training set. For probabilistic

predictions, a normal distribution is used to model the output.

Significance testing. To determine which of two methods performs better on

a given dataset under a given metric, we use a two-tailed paired t-test over the 10

random folds with a significance level of p < 0.05. We also report counts of the

number of datasets in which a given method performed significantly better (“Win”),

worse (“Loss”), or not different (“Tie”) relative to a comparator.

Hyperparameters. We tune NGBoost the same way as in Duan et al. [61].

Since PGBM, CBU, and IBUG both optimize a point prediction metric, we tune

their hyperparameters similarly. We also tune variance calibration parameters γ
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and δ for each method (§4.1.2). Exact values evaluated and selected are in §B.1.3.

Unless specified otherwise, we use CatBoost [159] as the base model for IBUG.

Table 2. Probabilistic (CRPS) performance for each method on each dataset. Lower
is better. Normal distributions are used for all probabilistic predictions. Results are
averaged over 10 folds, and standard errors are shown in subscripted parentheses.
The best method for each dataset is bolded, as well as those with standard errors
that overlap the best method. Bottom row : Head-to-head comparison between
IBUG/IBUG+CBU and each method showing the number of wins, ties, and
losses (W-T-L) across all datasets. On average, IBUG+CBU provides the most
accurate probabilistic predictions.

Dataset NGBoost PGBM CBU IBUG IBUG+CBU

Ames 38346(547) 10872(355) 11008(330) 10434(367) 10194(368)

Bike 12.4(0.955) 1.183(0.041) 0.833(0.036) 0.974(0.048) 0.766(0.032)

California 1e11(1e11) 0.222(0.001) 0.217(0.001) 0.213(0.001) 0.207(0.001)

Communities 0.068(0.002) 0.068(0.002) 0.067(0.002) 0.065(0.002) 0.065(0.002)

Concrete 3.410(0.182) 1.927(0.086) 1.788(0.077) 1.849(0.098) 1.741(0.082)

Energy 0.519(0.043) 0.147(0.006) 0.196(0.009) 0.143(0.009) 0.157(0.008)
Facebook 4.022(0.099) 3.554(0.095) 3.211(0.059) 3.073(0.066) 2.977(0.070)

Kin8nm 0.095(0.001) 0.061(0.001) 0.057(0.001) 0.051(0.001) 0.051(0.001)

Life 2.897(1.465) 0.815(0.027) 0.772(0.024) 0.794(0.023) 0.731(0.022)

MEPS 5.527(0.196) 6.448(0.092) 6.050(0.109) 6.150(0.114) 6.016(0.113)
MSD 4.524(0.005) 4.576(0.005) 4.363(0.004) 4.410(0.005) 4.347(0.004)

Naval 0.003(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000)

News 2191(47.5) 2361(52.6) 2346(52.6) 2545(41.0) 2380(52.1)
Obesity 3.208(0.028) 1.860(0.022) 1.740(0.017) 1.866(0.021) 1.771(0.019)
Power 2.105(0.023) 1.531(0.019) 1.473(0.022) 1.542(0.020) 1.471(0.021)

Protein 5427(5409) 1.823(0.011) 1.788(0.009) 1.784(0.008) 1.742(0.009)

STAR 132(1.589) 131(1.380) 130(1.283) 130(1.214) 129(1.198)

Superconductor 2.405(0.028) 0.126(0.004) 0.150(0.004) 0.153(0.006) 0.128(0.004)

Synthetic 5.779(0.042) 5.737(0.039) 5.739(0.040) 5.731(0.040) 5.730(0.040)

Wave 571020(883) 3891(73.9) 2349(10.3) 2679(16.0) 2026(9.538)

Wine 0.385(0.005) 0.323(0.005) 0.337(0.006) 0.322(0.006) 0.321(0.006)

Yacht 1.177(0.158) 0.292(0.042) 0.281(0.048) 0.276(0.048) 0.255(0.046)

IBUG W-T-L 17-3-2 11-9-2 9-5-8 - 1-6-15
IBUG+CBU W-T-L 17-3-2 15-6-1 18-2-2 15-6-1 -

4.2.3 Probabilistic and Point Predictions. We first compare

IBUG’s probabilistic and point predictions to each baseline on each dataset. See

Table 2 for detailed CRPS results; for brevity, results for additional probabilistic
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metrics (e.g., NLL) as well as point performance results are in §B.1.4. Our main

findings are as follows:

– On probabilistic performance, IBUG performs equally well or better

than NGBoost and PGBM, winning on 17 and 11 (out of 22) datasets

respectively, while losing on only 2 and 2 (respectively). Since CBU and

IBUG performance is similar, we combine the two approaches, averaging

their outputs; we denote this simple ensemble IBUG+CBU. Surprisingly,

IBUG+CBU works very well, losing on only a maximum of 2 datasets when

faced head-to-head against any other method; these results suggest IBUG and

CBU are complimentary approaches.

– On point performance, PGBM, CBU, and IBUG performed significantly

better than NGBoost; this is consistent with previous work and is perhaps

unsurprising since NGBoost is optimized for probabilistic performance, not

point performance. However, IBUG generally performed better than PGBM,

winning on 13 datasets and losing on only 1 dataset; and performed slightly

better than CBU, winning on 6 datasets with no losses.

We also compare IBUG with two additional baselines—kNN and

BART [42]—shown in §B.2.2–B.2.3. We find IBUG generally outperforms these

methods in both probabilistic and point performance. Overall, the results in

this section suggest IBUG generates both competitive probabilistic and point

predictions compared to existing methods.

4.2.4 Different Base Models. Here we experiment using different

base models for IBUG besides CatBoost [159]; specifically, we use LightGBM [118]

and XGBoost [39], two popular gradient boosting frameworks. Table 3 shows that
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Table 3. Probabilistic (CRPS, NLL) performance on the test set for IBUG using
different base models. Results are averaged over 10 folds, and standard errors are
shown in subscripted parentheses; lower is better. On 6 and 5 datasets, respectively,
either IBUG-LightGBM or IBUG-XGBoost significantly outperforms IBUG-
CatBoost on the validation set and subsequently on the test set, demonstrating the
potential for improved probabilistic performance by using IBUG with different base
models.

Test CRPS (↓)

Dataset CatBoost LightGBM XGBoost

Bike 0.974(0.048) 0.819(0.024) 0.849(0.012)

MSD 4.410(0.005) 4.372(0.005) 4.418(0.005)
News 2545(41.0) 2436(50.8) 2551(56.0)
Power 1.542(0.020) 1.536(0.022) 1.518(0.018)

Protein 1.784(0.008) 1.683(0.009) 1.788(0.008)
Supercon. 0.153(0.006) 0.090(0.005) 0.010(0.003)

Test NLL (↓)

Dataset CatBoost LightGBM XGBoost

Bike 1.886(0.056) 1.292(0.048) 1.662(0.024)

MSD 3.415(0.002) 3.409(0.002) 3.402(0.002)

Naval -6.208(0.010) -6.281(0.007) -5.853(0.014)
Obesity 2.646(0.009) 2.593(0.016) 2.624(0.010)

Supercon. 0.783(0.181) -0.496(0.169) 20.4(23.2)

using a different base model can result in improved probabilistic performance. This

highlights IBUG’s agnosticism to GBRT type, enabling practitioners to apply

IBUG to future models with improved point prediction performance.

4.2.5 Posterior Modeling. One of the unique benefits of IBUG

is the ability to directly model the output using empirical samples (Figure 8),

giving practitioners a better sense of the output distribution for specific predictions.

IBUG can optimize a distribution after training, and has more flexibility in the

types of distributions it can model—from distributions using just location and scale

to those with high-order moments as well as non-parametric density estimators.

To test this flexibility, we model each probabilistic prediction using the following

distributions: normal, skewnormal, lognormal, Laplace, student t, logistic, Gumbel,

Weibull, and KDE; we then select the distribution with the best average NLL on

the validation set, and evaluate its probabilistic performance on the test set.

Figure 8 demonstrates that the selected distributions for the MEPS and

Wine datasets achieve better probabilistic performance than assuming normality.

Qualitatively, the empirical densities of A(k) for a randomly sampled set of test
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Figure 8. Left : Distribution of the k-nearest training instances for 5 randomly-
selected test instances from the MEPS (top) and Wine (bottom) datasets. Right :
Test NLL (with standard error) when modeling the posterior using two different
distributions (lower is better). IBUG can model parametric and non-parametric
distributions that better fit the underlying data than assuming normality.

instances reaffirms the selected distributions. As an additional comparison, we

report CBU achieves a test NLL of 3.699±0.038 and 1.025±0.028 for the MEPS and

wine datasets (respectively) using a normal distribution, while IBUG achieves

−6.887±0.260 and 0.785±0.025 using Weibull and KDE estimation (respectively). For

the MEPS dataset, the selected Weibull distribution takes a shape parameter,

which IBUG estimates directly on a per prediction basis using A(k)and MLE. In

contrast, PGBM or CBU would need to optimize a global shape value using a

validation set, which is likely to be suboptimal for individual predictions.

4.2.6 Variance Calibration. Table 4 shows probabilistic performance

comparisons of each method against itself with and without variance calibration. In

all cases, variance calibration (§4.1.2) either maintains or improves performance for

all methods, especially CBU. Overall, these results suggest that variance calibration

should be a standard procedure for probabilistic prediction, unless using a method

that has particularly well-calibrated predictions to begin with. We therefore use

variance calibration in all of our results.
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Table 4. Probabilistic performance comparison of each method with vs. without
variance calibration. In all cases, calibration maintains or improves performance; it
is especially helpful for CBU.

CRPS NLL

Method Wins ties Losses Wins Ties Losses

NGBoost 9 13 0 1 21 0
PGBM 13 9 0 11 11 0
CBU 17 5 0 11 11 0
IBUG 13 9 0 5 17 0
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Figure 9. Runtime comparison. Left : Total train time (including tuning). Right :
Average prediction time per test example. Results are shown for all datasets,
averaged over 10 folds (exact values are in §B.1.5, Tables B.9 and B.10). On
average, IBUG has comparable training times to PGBM and CBU, but is relatively
slow for prediction.

Additionally, §B.2.1 shows performance results for all methods without

variance calibration. Overall, we observe similar trends as when applying

calibration (Table 2).

4.2.7 Sampling Trees. Figure 9 shows the runtime for each method

broken down into total training time (including tuning) and prediction time

per test example. On average, IBUG has similar training times to PGBM and

CBU, but on some datasets, IBUG is roughly an order of magnitude faster than
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Figure 10. Change in probabilistic (NLL) performance (top) and average prediction
time (in seconds) per test example (bottom) as a function of τ for six datasets with
trees sampled first-to-last ; lower is better. NGBoost, PGBM, and CBU are added
for additional context. The shaded regions represent the standard error. Overall,
average prediction time decreases significantly as τ decreases while test NLL often
remains relatively stable, enabling IBUG to generate probabilistic predictions with
significant increased efficiency.

PGBM. For predictions, IBUG is similar to PGBM but relatively slow compared to

NGBoost and CBU.

However, by sampling τ < T trees when computing the affinity vector,

IBUG can significantly reduce prediction time. Figure 10 shows results when

sampling trees first-to-last, which typically works best over all tree-sampling

strategies (alternate sampling strategies are evaluated in §B.2.4). As τ decreases,

we observe average prediction time decreases roughly 1-2 orders of magnitude while

probabilistic performance remains relatively stable until τ/T reaches roughly 1–5%,

at which point probabilistic performance sometimes starts to decrease more rapidly.

Note for the Ames and Life datasets, IBUG can reach the same average prediction

time as NGBoost while maintaining the same or better probabilistic performance

than NGBoost, PGBM, and CBU. These results demonstrate that if speed is a

concern, IBUG can approximate the affinity computation to speed up prediction

times while maintaining competitive probabilistic performance.
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4.3 Summary

IBUG uses ideas from instance-based learning to enable probabilistic

predictions for any GBRT point predictor. IBUG generates probabilistic

predictions by using the k-nearest training instances to the test instance found

using the structure of the trees in the ensemble. Our results on 22 regression

datasets demonstrate this simple wrapper produces competitive probabilistic and

point predictions to current state-of-the-art methods, most notably NGBoost [61],

PGBM [195], and CBU [143]. We also show that IBUG can more flexibly model the

posterior distribution of a prediction using any parametric or non-parametric

density estimator. IBUG’s one limitation is relatively slow prediction time.

However, we show that approximations in the search for the k-nearest training

instances can significantly speed up prediction time; predictions are also easily

parallelizable in IBUG.
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CHAPTER 5

EFFICIENT MODEL ADAPTATION

J. Brophy and D. Lowd. Machine Unlearning for Random Forests. In

Proceedings of the Thirty-Eighth International Conference on Machine

Learning. Virtual. 2021.

Current work on deleting data from machine learning models has focused

mainly on recommender systems [34, 174], K-means [82], SVMs [36], logistic

regression [91, 174], and deep neural networks [14, 85, 220]; however, there is

very limited work addressing the problem of efficient data deletion for tree-

based models [175]. Thus, in this chapter, we focus on decision trees and random

forests [26, 75] because of their popularity and wide-spread use [138] on many

classification and regression tasks [18, 78, 123, 135, 217], and because of their

simpler training regime compared to GBDTs.

We introduce DaRE (Data Removal-Enabled) Forests (a.k.a DaRE RF), a

variant of random forests that supports the efficient removal of training instances.

DaRE RF works with discrete tree structures, in contrast to many related works

on efficient data deletion that assume continuous parameters. The key components

of DaRE RF are to retrain subtrees only as needed, consider only a subset of valid

thresholds per attribute at each decision node, and to strategically place completely

random nodes near the top of each tree to avoid costly retraining. 2) We provide

algorithms for training and subsequently removing data from a DaRE forest. 3)

We evaluate DaRE RF’s ability to efficiently perform sequences of deletions on 13

real-world binary classification datasets and one synthetic dataset, and find that

DaRE RF can typically delete data 2-4 orders of magnitude faster than retraining

from scratch while sacrificing less than 1% in terms of predictive performance.
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Random Forests. We base our methods on a minor variation of a standard

RF, one that does not use bootstrapping. Bootstrapping complicates the removal

of training instances, since one instance may appear multiple times in the training

data for one tree. There is also empirical evidence that bootstrapping does not

improve predictive performance [54, 145, 225], which was consistent with our

own experiments (Appendix: §C.2.2, Table C.2). Since predictive performance

was already similar, we saw no need to add the extra bookkeeping to handle this

complexity.

5.1 DaRE Forests

We now describe DaRE (Data Removal-Enabled) forests (a.k.a. DaRE RF),

an RF variant that enables the efficient removal of training instances.

Theorem 5.1.1. Data deletion for DaRE forests is exact (see Eq. 2.12), meaning

that removing instances from a DaRE model yields exactly the same model as

retraining from scratch on updated data.

This is also equivalent to certified removal [91] with ϵ = 0. Proofs to all

theorems are in §C.1 of the Appendix.

A DaRE forest is a tree ensemble in which each tree is trained independently

on a copy of the training data, considering a random subset of p̃ attributes at each

split to encourage diversity among the trees. In our experiments we use p̃ = ⌊√p⌋.

Since each tree is trained independently, we describe our methods in terms of

training and updating a single tree; the extension to the ensemble is trivial.

DaRE forests leverage several techniques to make deletions efficient: (1)

only retrain portions of the model where the structure must change to match

the updated database; (2) consider at most k randomly-selected thresholds per

attribute; (3) introduce random nodes at the top of each tree that minimally
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depend on the data and thus rarely need to be retrained. We present abridged

versions for training and updating a DaRE tree in Algorithms 1 and 2, respectively,

with full explanations below. Detailed pseudocode for both operations is in the

Appendix, §C.1.8.

5.1.1 Retraining Minimal Subtrees. We avoid unnecessary

retraining by storing statistics at each node in the tree. For decision nodes, we

store and update counts for the number of instances |D| and positives instances

|D·,1|, as well as |Dℓ| and |Dℓ,1| for a set of k thresholds per attribute. This

information is sufficient to recompute the split criterion of each threshold without

iterating through the data. For leaf nodes, we store and update |D| and |D·,1|,

along with a list of training instances that end at that leaf. These statistics are

initialized when training the tree for the first time (Alg. 4). We find this additional

overhead has a negligible effect on training time.

When deleting a training instance (x, y) ∈ D, these statistics are updated

and used to check if a particular subtree needs retraining. Specifically, decision

nodes affected by the deletion of (x, y) update the statistics and recompute the

split criterion for each attribute-threshold pair. If a different threshold obtains an

improved split criterion over the currently chosen threshold, then we retrain the

subtree rooted at this node. The training data for this subtree can be found by

concatenating the instance lists from all leaf-node descendants. If no retraining

occurs at any decision node and a leaf node is reached instead, its label counts and

instance list are updated and the deletion operation is complete. See Alg. 5 for

pseudocode.

5.1.2 Sampling Valid Thresholds. The optimal threshold for a

continuous attribute will always lie between two training instances with adjacent
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Algorithm 4 Building a DaRE tree / subtree.

1: Input: data D, depth d
2: if stopping criteria reached then
3: node ← LeafNode()
4: save instance counts(node, D) ▷ Pos./neg. counts: |D|, |D·,1|
5: save leaf-instance pointers(node, D)
6: compute leaf value(node)
7: else
8: if d < drmax then
9: node← RandomNode()
10: save instance counts(node, D) ▷ Pos./neg. counts: |D|, |D·,1|
11: a← randomly sample attribute(D)
12: v ← randomly sample threshold ∈ [amin, amax)
13: save threshold statistics(node, D, a, v) ▷ Left/right counts: |Dℓ|, |Dr|
14: else
15: node ← GreedyNode()
16: save instance counts(node, D) ▷ Pos./neg. counts: |D|, |D·,1|
17: A← randomly sample p̃ attributes(D)
18: for a ∈ A do
19: C ← get valid thresholds(D, a)
20: V ← randomly sample k valid thresholds(C)
21: for v ∈ V do
22: save threshold statistics(node, D, a, v)
23: scores← compute split scores(node)
24: select optimal split(node, scores)
25: D.ℓ,D.r ← split on selected threshold(node, D)
26: node.ℓ = Train(Dℓ, d+ 1) ▷ Algorithm 4
27: node.r ← Train(Dr, d+ 1) ▷ Algorithm 4
28: Return node

feature values containing opposite labels; if the two training instances have the

same label, the split criterion improves by increasing or decreasing v. We refer to

these as valid thresholds, and any other threshold as invalid. More precisely, a

threshold v between two adjacent values v1 and v2 for a given attribute a is valid if

and only if there exist instances (x1, y1) and (x2, y2) such that x1,a = v1, x2,a = v2,

and y1 ̸= y2.

Only considering valid thresholds substantially reduces the statistics we

need to store and compute at each node. We gain further efficiency by randomly
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sampling k valid thresholds and only considering these thresholds when deciding

which attribute-threshold pair to split on. We treat k as a hyperparameter

and tune its value when building a DaRE model. One might suspect that only

considering a subset of thresholds for each attribute may lead to decreased

predictive performance; however, our experiments show that relatively modest

values of k (e.g. 5 ≤ k ≤ 25) are sufficient to providing accurate predictions, and in

some cases lead to improved performance (Appendix: §C.2.2, Table C.2).

When deleting an instance at a given node, we must determine if any

threshold has become invalid. To accomplish this efficiently, at each node we also

save and update the number of instances in which attribute a equals v1, the number

in which a equals v2, and the number of positive instances matching each of those

criteria. When an attribute threshold becomes invalid, we sort and iterate through

the node data D, resampling the invalid threshold to obtain a new valid threshold.

5.1.3 Random Splits. The third technique for efficient model

updating is to choose the attribute and threshold for some of the decision nodes

at random, independent of the split criterion. Specifically, given the data at a

particular decision node D ⊆ D, we sample an attribute a ∈ P uniformly at

random, and then sample a threshold v in the range [amin, amax), the min. and

max. values for a in D. We henceforth refer to these decision nodes as “random”

nodes, in contrast to the “greedy” decision nodes that optimize the split criterion.

Random nodes store and update |Dℓ| and |Dr|, statistics based on the sampled

threshold, and retrain only if |Dℓ| = 0 or |Dr| = 0 (i.e. v is no longer in the range

[amin, amax)); however, since random nodes minimally depend on the statistics of

the data, they rarely need to be retrained. Random nodes are placed in the upper

layers of the tree and greedy nodes are used for all other layers (excluding leaf
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Algorithm 5 Deleting a training instance from a DaRE tree.

Require: Start at the root node.
1: Input: node, depth d, instance to remove (x, y).
2: update instance counts(node, (x, y)) ▷ Pos./neg. counts: |D| and |D·,1|
3: if node is a LeafNode then
4: remove (x, y) from leaf-instance pointers(node, (x, y))
5: recompute leaf value(node)
6: remove (x, y) from database and return
7: else
8: update decision node statistics(node, (x, y))
9: if node is a RandomNode then
10: if node.selected threshold is invalid then
11: D ← get data from leaf instances(node) \ (x, y)
12: if node.selected attribute (a) is not constant then
13: v ← resample threshold ∈ [amin, amax)
14: D.ℓ,D.r ← split on new threshold(node, D, a, v)
15: node.ℓ, r ← Train(D.ℓ, d+ 1), Train(D.r, d+ 1)
16: else
17: node← Train(D, d) ▷ Algorithm 4
18: remove (x, y) from database and return
19: else
20: if ∃ invalid attributes or thresholds then
21: D ← get data from leaf instances(node) \ (x, y)
22: resample invalid attributes and thesholds(node, D)
23: scores ← recompute split scores(node)
24: a, v ← select optimal split(node, scores)
25: if optimal split has changed then
26: D.ℓ,D.r ← split on new threshold(node, D, a, v)
27: node.ℓ, r ← Train(D.ℓ, d+ 1), Train(D.r, d+ 1)
28: remove (x, y) from database and return
29: if x·,a ≤ v then
30: Delete(node.ℓ, d+ 1, (x, y)) ▷ Algorithm 5
31: else
32: Delete(node.r, d+ 1, (x, y)) ▷ Algorithm 5

nodes). We introduce drmax as another hyperparameter indicating how many layers

from the top the tree should use for random nodes (e.g. the top two layers of the

tree are all random nodes if drmax= 2).

Intuitively, nodes near the top of the tree contain more instances than nodes

near the bottom, making them more expensive to retrain if necessary. Thus, we
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can significantly increase deletion efficiency by replacing those nodes with random

ones. We can also maintain comparable predictive performance to a model with no

random nodes by using greedy nodes in all subsequent layers, resulting in a greedy

model built on top of a random projection of the input space [101].

In our experiments, we compare DaRE RF with random splits to those

without, to evaluate the benefits of adding these random nodes. We refer to DaRE

models with random nodes as random DaRE (R-DaRE) and those without as

greedy DaRE (G-DaRE). G-DaRE RF can also be viewed as a special case of R-

DaRE RF in which drmax= 0.

5.1.4 Complexity Analysis. The time for training a DaRE forest is

identical to that of a standard RF:

Theorem 5.1.2. Given n = |D|, T , dmax, and p̃, the time complexity to train a

DaRE forest is O(T p̃ n dmax).

The overhead of storing statistics and instance pointers is negligible

compared to the cost of iterating through the entire dataset to score all attributes

at each node. The key difference is in the deletion time, which can be much better

depending on how much of each tree needs to be retrained:

Theorem 5.1.3. Given dmax, p̃, and k, the time complexity to delete a single

instance (x, y) ∈ D from a DaRE tree is O(p̃ k dmax), if the tree structure is

unchanged and the attribute thresholds remain valid. If a node with |D| instances

has invalid attribute thresholds, then the additional time to choose new thresholds is

O(|D| log |D|). If a node with |D| instances at level d needs to be retrained, then the

additional retraining time is O(p̃ |D| (dmax − d))).

When the structure is unchanged, this is much more efficient than naive

retraining, especially if the number of thresholds considered (k) is much smaller
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than n. In the worst case, if the split changes at the root of every tree, then

deletion in a DaRE forest is no better than naive retraining. In practice, this is

very unlikely, since different trees in the forest consider different sets of p̃ attributes

at the root, and the difference between the best and second-best attribute-threshold

pairs is usually bigger than a single instance.

Choosing new thresholds also requires iterating through the training

instances at a node. Thresholds only become invalid when an instance adjacent

to the threshold is removed, so this is an infrequent event when k is much smaller

than n. To analyze this empirically, we evaluate our methods with both random

and adversarially chosen deletions, approximating the average- and worst-case,

respectively.

The main storage costs for a DaRE forest come from storing sets of

attribute-threshold statistics at each greedy node, and the instance lists for the

leaf nodes.

Theorem 5.1.4. Given n = |D|, dmax, k, T , and p̃, the space complexity of a DaRE

forest is O(k p̃ 2dmax T + nT ).

In our experiments, we analyze the space overhead of a DARE forest by

measuring its memory consumption as compared to a standard RF, quantifying the

time/space trade-off introduced by DARE RF to enable efficient data deletion.

5.2 Experiments

Here we empirically evaluate DaRE RF and attempt to answer the following

research questions. Can we use G-DaRE RF to efficiently delete a significant

number of instances as compared to naive retraining (RQ1)? Can we use R-DaRE

RF to further increase deletion efficiency while maintaining comparable predictive

performance (RQ2)?
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5.2.1 Datasets. We conduct our experiments on 13 publicly-

available datasets that represent problems well-suited for tree-based models, and

one synthetic dataset we call Synthetic. For each dataset, we generate one-hot

encodings for any categorical variable and leave all numeric and binary variables

as is. For any dataset without a designated train and test split, we randomly

sample 80% of the data for training and use the rest for testing. A summary of the

datasets is in Table 5, and additional dataset details are in the Appendix: §C.2.1.

5.2.2 Hyperparameter Tuning. Due to the range of label

imbalances in our datasets (Table 5 and Appendix: §C.2.1, Table C.1) we measure

the predictive peformance of our models using average precision (AP) [229] for

datasets with a positive label percentage < 1%, AUC [98] for datasets between

[1%, 20%], and accuracy (acc.) for the remaining datasets. Using these metrics

and Gini index as the split criterion, we tune the following hyperparameters: the

maximum depth of each tree dmax, the number of trees in the forest T , and the

number of thresholds considered per attribute for greedy nodes k. Our protocol for

tuning drmax is as follows: first, we tune a greedy model (i.e. by keeping drmax = 0

fixed) using 5-fold cross-validation. Once the optimal values for dmax, T , and k are

found, we tune drmax by incrementing its value from zero to dmax, stopping when

the model’s cross-validation score exceeds a specified error tolerance as compared

to the greedy model; for these experiments, we tune drmax using absolute error

tolerances of 0.1%, 0.25%, 0.5%, and 1.0%. Selected hyperparameter values are in

the Appendix: §C.2.2, Table C.3.

5.2.3 Methodology. We measure relative efficiency or speedup as the

number of instances a DaRE model deletes in the time it takes the naive retraining

approach to delete one instance (i.e. retrain without that instance); the number
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Table 5. Dataset Summary. n = no. instances, p = no. attributes, % Positive =
positive label percentage, Metric = predictive performance metric.

Dataset n p % Positive Metric

Surgical 14,635 90 25.2% Accuracy
Vaccine 26,707 185 46.4% Accuracy
Adult 48,842 107 23.9% Accuracy
Bank Mktg. 41,188 63 11.3% AUC
Flight Delays 100,000 648 19.0% AUC
Diabetes 101,766 253 46.1% Accuracy
No Show 110,527 99 20.2% AUC
Olympics 206,165 1,004 14.6% AUC
Census 299,285 408 6.2% AUC
Credit Card 284,807 29 0.2% AP
CTR 1,000,000 13 2.9% AUC
Twitter 1,000,000 15 17.0% AUC
Synthetic 1,000,000 40 50.0% Accuracy
Higgs 11,000,000 28 53.0% Accuracy

of instances deleted gives us the speedup over the the naive approach.1 We also

measure the predictive performance of R-DaRE RF prior to deletion and compare

its predictive performance to that of G-DaRE RF. Each experiment is repeated five

times.

We determine the order of deletions using two different adversaries: Random

and Worst-of-1000. The random adversary selects training instances to be deleted

uniformly at random, while the worst-of-1000 adversary selects each instance by

first selecting 1,000 candidate instances uniformly at random, and then choosing

the instance that results in the most retraining, as measured by the total number of

instances assigned to all retrained nodes across all trees.

5.2.4 Deletion Efficiency Results. Here we present the results of

G-DaRE RF and R-DaRE RF against the random and worst-of-1000 adversaries.

1System hardware specifications are in the Appendix: §C.2.

80



100

101

102

103

104

105

Sp
ee

du
p 

vs
 N

ai
ve

Deletion Efficiency Using the Random Adversary (higher is better)
G-DaRE
R-DaRE (tol=0.1%)

R-DaRE (tol=0.25%)
R-DaRE (tol=0.5%)

R-DaRE (tol=1.0%)

100

101

102

103

104

105

Sp
ee

du
p 

vs
 N

ai
ve

Deletion Efficiency Using the Worst-of-1000 Adversary (higher is better)

Surgical
Vaccine

Adult
Bank Marketing

Flight Delays
Diabetes

No Show
Olympics

Census
Credit Card

CTR
Synthetic

Twitter
Higgs

Dataset

0

1

2

Te
st

 e
rr

or
 Δ

 (%
)

Test Error Increase Relative to G-DaRE RF (lower is better)

Figure 11. Deletion efficiency of DaRE RF. Top & Middle: Number of instances
deleted in the time it takes the naive retraining approach to delete one instance
using the random and worst-of-1000 adversaries, respectively (error bars represent
standard deviation). Bottom: The increase in test error when using R-DaRE
RF relative to the predictive performance of G-DaRE RF (error bars represent
standard error).

Random Adversary. We present the results of the deletion experiments using

the random adversary in Figure 11 (top). We find that G-DaRE RF is usually at

least two orders of magnitude faster than naive retraining, while R-DaRE RF is

faster than G-DaRE RF to a varying degree depending on the dataset and error

tolerance. R-DaRE RF is also able to maintain comparable predictive performance

to G-DaRE RF, typically staying within a test error difference of 1% depending on

which tolerance is used to tune drmax (Figure 11: bottom).

As an example of DaRE RF’s utility, naive retraining took 1.3 hours to

delete a single instance for the Higgs dataset. R-DaRE RF (tol = 0.25% resulting in

drmax= 3) deleted over 17,000 instances in that time, an average of 0.283s per

deletion, while the average test set error increased by only 0.5%. In this case,
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Figure 12. Effect of increasing drmaxon deletion efficiency (left), predictive
performance (middle), and the cost of retraining (right) using the random (top) and
worst-of-1000 (bottom) adversaries for the Bank Marketing dataset. The predictive
performance is independent of the adversary, as performance is measured before
any deletions occur. Error bars represent standard deviation and standard error
for the left and middle plots, respectively. In short, we see that increasing drmax

increases deletion efficiency but initially gradually degrades predictive performance.
Similar analysis for other datasets are in the Appendix: §C.2.3.

R-DaRE RF provides a speedup of over four orders of magnitude, providing a

tractable solution for something previously intractable.

Worst-of-1000 Adversary. Against the more challenging worst-of-1000

adversary (Figure 11: middle), the speedup over naive deletion remains large, but

is often an order of magnitude smaller. While R-DaRE models also decrease in

efficiency, they maintain a significant advantage over G-DaRE RF, showing very

similar trends of increased relative efficiency as when using the random adversary.

Summary. A summary of the deletion efficiency results is in Table 6. When

instances to delete are chosen randomly, G-DaRE RF is more than 250x faster

than naively retraining after every deletion (taking the geometric mean over the 14

datasets). By adding randomness, R-DaRE models achieve even larger speedups,
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Table 6. Summary of the deletion efficiency results. Specifically, the minimum,
maximum, and geometric mean of the speedup vs. the naive retraining method
across all datasets.

Model Minimum Maximum Geometric Mean

Random Adversary
G-DaRE 6x 12,232x 257x
R-DaRE (tol=0.1%) 10x 9,735x 366x
R-DaRE (tol=0.25%) 13x 17,044x 494x
R-DaRE (tol=0.5%) 68x 22,011x 681x
R-DaRE (tol=1.0%) 145x 35,856x 1,272x

Worst-of-1000 Adversary
G-DaRE 5x 626x 52x
R-DaRE (tol=0.1%) 8x 1,106x 79x
R-DaRE (tol=0.25%) 8x 961x 102x
R-DaRE (tol=0.5%) 33x 950x 139x
R-DaRE (tol=1.0%) 47x 1,476x 263x

from 360x to over 1,200x, depending on the predictive performance tolerance (0.1%

to 1.0%). The more sophisticated worst-of-1000 adversary can force more costly

retraining. In this case, G-DaRE RF is more than 50x faster than naive retraining,

and R-DaRE RF ranges from 80x to 260x depending on the tolerance.

5.2.5 Effect of drmax and k on Deletion Efficiency. Figure 12

details the effect drmax has on deletion efficiency under each adversary for the

Bank Marketing dataset2. As expected, we see that deletion efficiency increases

as drmax increases. Predictive performance degrades as drmax increases, but initially

degrades gracefully, maintaining a low increase in test error even as the top ten

layers of each tree are replaced with random nodes (+0.346% test error).

Figure 12 also shows the number of instances retrained at each depth, across

all trees in the model. We immediately notice the increase in retraining cost when

switching from the random (top-right plot) to the worst-of-1000 (bottom-right

2Other datasets show similar trends; see the Appendix: §C.2.3.
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Figure 13. Effect of increasing k on predictive performance (left) and deletion
efficiency (right) for the Surgical dataset using the random adversary; drmax is held
fixed at 0. Error bars represent standard error and standard deviation for the left
and right plots, respectively. Analysis for other datasets is in the Appendix: §C.2.4.

plot) adversary, especially at larger depths. This matches our intuition since nodes

deeper in the tree have fewer instances; each instance thus has a larger influence

on the resulting split criterion over all attributes at a given node and increases the

likelihood that a chosen attribute may change, resulting in more subtree retraining.

Figure 13 shows the effect increasing k has on predictive performance and

deletion efficiency for the Surgical dataset3. In general, we find k introduces a

trade-off between predictive performance and deletion efficiency. However, our

experiments show that modest values of k can achieve competitive predictive

performance while maintaining a high degree of deletion efficiency and incurring

low storage costs.

5.2.6 Space Overhead. This section shows the space overhead of

DARE forests by breaking the memory usage of G-DARE RF into three constituent

parts: 1) the structure of the model that is needed for making predictions, 2) the

additional statistics stored at each decision node, and 3) the additional statistics

and training-instance pointers stored at each leaf node. Parts 2) and 3), plus the

3Other datasets show similar trends; see the Appendix: §C.2.4.
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Table 7. Memory usage (in megabytes) for the training data, G-DARE RF, and an
SKLearn RF (SKRF) trained using the same values of T and dmax as G-DARE RF.
The total memory usage for the G-DARE RF model is broken down into: 1) the
structure of the model needed for making predictions (Structure); 2) the additional
statistics stored at all decision nodes (Decisions); and 3) the additional statistics
and training-instance pointers stored at all leaf node (Leaves). The space overhead
for G-DARE RF to enable efficient data deletion is measured as a ratio of the total
memory usage of (data + G-DARE RF) to (data + SKRF). Results are averaged
over five runs and the standard error is shown in parentheses.

G-DARE RF

Dataset Data Structure Decisions Leaves Total SKRF Overhead

Surgical 4 15 388 14 417 31 12.0x
Vaccine 16 18 426 14 458 37 8.9x
Adult 14 9 227 16 252 18 8.3x
Bank Mktg. 8 23 455 33 511 51 8.8x
Flight Delays 207 37 3,030 171 3,238 66 12.6x
Diabetes 83 125 4,968 199 5,292 257 15.8x
No Show 35 91 2,511 203 2,805 187 12.8x
Olympics 663 27 3,196 338 3,561 57 5.9x
Census 326 33 1,737 169 1,939 63 5.8x
Credit Card 27 5 105 457 567 7 17.5x
CTR 45 6 485 642 1,133 10 21.4x
Twitter 48 186 2,450 693 3,329 332 8.9x
Synthetic 131 128 5,661 357 6,146 114 25.6x
Higgs 1,021 935 39,416 3,787 44,138 1,325 19.3x

size of the data, constitute the space needed by G-DARE RF to enable efficient

data removal.

Table 7 shows the space overhead of G-DARE RF after training. We also

show the training set size for each dataset, and the total memory usage of an

SKLearn RF model using the same values for T and dmax as G-DARE RF.

As expected, decision-node statistics often make up the bulk of the space

overhead for G-DARE RF; two exceptions are the Credit Card and CTR datasets,

in which the size of the training-instance pointers outweigh the relatively low

number of decision nodes (an average of 238 and 726 per tree, respectively) for
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those models. The total memory usage of the G-DARE RF model is 10-113x larger

than that of the SKLearn RF model. However, since both approaches require

the training data to enable deletions (G-DARE RF may need to retrain subtrees;

SKLearn RF needs to retrain using the naive approach), the relative overhead of

G-DARE RF is the ratio of (data + G-DARE RF) to (data + SKLearn RF); this

results in an overhead of 6–26x, quantifying the time/space trade-off for efficient

data deletion.

5.3 Summary

DaRE RF is a random forest variant that supports efficient model updates

in response to repeated deletions of training instances. We find that, on average,

DaRE models are 2-3 orders of magnitude faster than the naive retraining approach

with no loss in accuracy, and additional efficiency can be achieved if slightly worse

predictive performance is tolerated.

DaRF RF is a discrete tree-structured model, in contrast to previous

unlearning works which assume continuous parameters. Data deletions in DaRE

models are also exact, thus membership inference attacks [35, 224] are guaranteed

to be unsuccessful for instances deleted from the model. DaRE models also reduce

the need for deletion verification methods [187, 194]. However, one must be aware

that DaRE models (as well as any unlearning method) can leak which instances are

deleted if an adversary has access to the model before and after the deletion [38].

Although privacy is a strong motivator for this work, there are a number of other

useful applications for DaRE forests and machine unlearning in general.
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CHAPTER 6

CONCLUSION AND FUTURE DIRECTIONS

Equipping tree ensembles with the tools we have developed in this

dissertation as well as the potential future tools and insights gained from following

the possible research directions listed here are likely to further increase the

popularity and adoption of tree ensembles to many more important domains and

applications.

6.1 Summary of Contributions

In this dissertation, we have examined and tackled significant shortcomings

of the popular and widely-used class of tree-ensemble models. Namely, we have

addressed three problem areas which modern tree-based ensembles face: (1) lack

of explainability for individual predictions; (2) missing prediction uncertainty

estimates for tree-based ensembles built for regression tasks; and (3) inefficient

updates to models in response to changes in the training data (e.g., deletion

requests).

We tackled (1) by adapting efficient influence-estimation methods designed

for continuous deep learning models to discrete tree-based ensembles; our main

approach, called BoostIn, efficiently provides competitive influential estimates to

existing methods with orders of magnitude more efficiency (Chapter 3). For (2),

we leverage the learned structure of the tree ensembles to identify a neighborhood

of semantically similar training examples to a target example that can be used to

accurately estimate the uncertainty of that target example prediction; we call this

approach IBUG, and find it can accurately and more flexibly model the posterior

than existing approaches (Chapter 4). Finally, we tackle (3) with a variant of

random forests called DaRE RF which maintains a minimal set of statistics that
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can be used to retrain parts of the model in need of retraining when responding

to changes in the training data; we find DaRE RF is orders of magnitude more

efficient than the naive approach of retraining from scratch while sacrificing little to

no predictive power (Chapter 5).

6.2 Future Directions

In this section, we outline a number of potentially valuable research

directions for tree ensembles that, if successful, would further improve their

adaptability, interpretability, predictive capabilities, and make them more robust to

adversarial attacks.

Adaptations from Deep Learning. We have shown in Chapter 3 that

adapting recent influence estimation methods from deep learning leads to

more efficient and effective influence estimation techniques in GBTs. Thus, it

is reasonable to wonder what other concepts useful to deep learning models

would also benefit tree-based ensembles if properly adapted. For example, the

introduction of attention mechanisms in transformer-based architectures has led to

a transformative success for deep learning models, especially for NLP tasks [214];

perhaps similar attention-based mechanisms adapted for tree-based models and

applied to tabular data may lead to better predictive performance. Memorization

is also a big concern in deep learning models and has recently generated much

research interest [66]. GBTs have considerable representational power as is

evident by their predictive prowess, thus similar analytical techniques used to

identify memorized examples in deep learning may also be relevant in GBTs.

Backdoor attacks [90, 219], data poisoning attacks [196], and adversarial attacks

in general [193] are also potentially viable concepts to adapt from deep learning
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research which, if successful in tree ensembles, could highlight new vulnerabilities

and possibly lead to research that make tree ensembles even more robust.

Improving Instance-Based Uncertainty Estimation. The main limitation

of IBUG is its relatively slow inference time, this is because IBUG is inherently

an instance-based learner, whose inference time complexity scales with the size

of the training set. We have already shown in Chapter 4 that sampling trees can

signficantly reduce prediction time, often by 1-2 orders of magnitude. However,

exploring additional approximations such as instance subsampling or reweighting

may further significantly reduce the inference time of IBUG and lead to IBUG

being more widely adopted. We have also shown that IBUG is a complementary

approach to CBU (CatBoost with uncertainty), thus combining IBUG with other

approaches to probabilistic regression such as conformal prediction [8] could be a

valuable research direction and may lead to more accurate uncertainty estimators

that ultimately provide more interpretable predictions to practitioners.

Certified Predictions. Dataset poisoning is the process of carefully adding

or modifying a strategic set of training examples to produce a model with low

predictive performance or a model that generates targeted predictions, and is

quickly becoming an important security concern in the ML community [131]. One

potential vulnerable target is regression models (including tree ensembles), in which

arbitrary changes to the training data could induce arbitrary changes to predictions

of the learned model. A promising model-agnostic certified approach was recently

introduced by Hammoudeh and Lowd [95], however, developing methods specific to

tree ensembels may result in tighter bounds, ultimately providing more significant
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certifications to ML practitioners looking to protect their models in the face of

potential dataset attacks.

DaRE RF Applications and Extensions. There are many exciting

opportunities and applications of DaRE forests, from maintaining user privacy to

building interpretable models to cleaning data, all without retraining from scratch.

At its best, DaRE RF was more than four orders of magnitude faster than naive

retraining, so it has the potential to enable new applications of model updating

that were previously intractable. One main limitation of DaRE RF, however, is

the significant increase in memory consumption over traditional RF models, thus

exploring how to reduce the overall space complexity of DaRE models would be

greatly beneficial and possibly further the adoption of DaRE models to smaller

more constrained devices such as mobile phones. Additionally, we focused mainly

on removing examples from random forests in Chapter 5, however, it is very likely

that a similar approach can be used to add data as well, allowing practitioners

to easily update their models by efficiently adding new data as they arrive and

removing old outdated data as necessary. Finally, we chose random forests when

researching the possibility of efficient data removal due to its simplicity compared

to gradient-boosted trees, however, gradient-boosted trees tend to outperform

random forests in terms of predictive performance. Thus, exploring the possibility

of extending DaRE to GBTs would be valuable future work.
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APPENDIX A

IDENTIFYING INFLUENTIAL TRAINING EXAMPLES

In this chapter, we provide implementation details, experiment details, and

additional analyses regarding the influence estimation methods from Chapter 3.

A.1 Implementation and Dataset Details

Experiments are run on an Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.6GHz

with 100GB of DDR4 RAM @ 2.4GHZ. We use Cython [15], a Python package

allowing the development of C extensions, to store a unified representation of the

model structure to which we can then apply the specified influence-estimation

method. Experiments are run using Python 3.9.6, and source code for all influence-

estimation implementations and all experiments is available at https://github.

com/jjbrophy47/tree_influence. The library currently supports all major

modern gradient boosting frameworks including Scikit-learn1 [154], XGBoost [39],

LightGBM [118], and CatBoost [159].

We perform experiments on 22 real-world data sets that represent problems

well-suited for tree-based models. For each data set, we generate one-hot encodings

for any categorical variable and leave all numeric and binary variables as is. For

any data set without a designated train and test split, we randomly sample 80% of

the data for training and use the rest for testing. Table C.1 summarizes the data

sets after preprocessing.

– Adult [59] contains 48,842 instances (11,687 positive) of 14 demographic

attributes to determine if a person’s personal income level is more than $50K

per year (binary classification).

1For our experiments, we use HistGradientBoostingRegressor and
HistGradientBoostingClassifier.
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Dataset Task Metric #instances % Pos. #attr. SDS?

Bank binary AUC 41,188 11.3 63
Flight binary AUC 100,000 19.0 650
HTRU2 binary AUC 17,898 9.2 8 ✓
No Show binary AUC 110,527 20.2 89
Twitter binary AUC 250,000 13.5 14

Adult binary Acc. 48,842 23.9 108
COMPAS binary Acc. 6,172 44.6 10 ✓
Credit Card binary Acc. 30,000 22.1 23 ✓
Diabetes binary Acc. 101,766 46.1 255
German binary Acc. 1,000 30.0 27 ✓
Spambase binary Acc. 4,601 39.4 57 ✓
Surgical binary Acc. 14,635 25.2 90 ✓
Vaccine binary Acc. 26,707 46.6 155

Bean multiclass Acc. 13,611 - 16 ✓

Concrete regression MSE 1,030 - 8 ✓
Energy regression MSE 768 - 16 ✓
Life regression MSE 2,928 - 204 ✓
Naval regression MSE 11,934 - 17 ✓
Obesity regression MSE 48,346 - 100
Power regression MSE 9,568 - 4 ✓
Protein regression MSE 45,730 - 9
Wine regression MSE 6,497 - 11 ✓

Table A.8. Dataset summary after preprocessing. AUC = area under the ROC
curve, Acc. = Accuracy, MSE = mean squared error, No. attr. = number
of attributes, SDS = small data subset (data sets for which LeafRefit and
LeafInfluence are tractable).

– Bank [59, 147] consists of 41,188 marketing phone calls (4,640 positive) from

a Portuguese banking institution. There are 20 attributes, and the aim is to

figure out if a client will subscribe (binary classification).

– Bean [59, 127] consists of 13,611 images of grains. The aim is to classify

each image into one of 7 different types of registered dry beans based on 16

features extracted from the image (multiclass classification).
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– COMPAS [130, 152] is a recidivism data set consisting of 6,172

defendants (2,751 deemed “high-risk”) characterized by 11 attributes. The

aim is to decide whether or not the defendant is at ‘high-risk” to be a repeat

offender (binary classification).

– Concrete [59, 222] consists of 1,030 instances of concrete characterized

by 8 attributes. The aim is to predict the compressive strength of the

concrete (regression).

– Credit [59, 223] consists of the payment credibility of 30,000 people in

Taiwan (6,636 people with bad credibility). Each person is characterized

by 23 attributes relating to default payments. The aim is to predict the

credibility of the client (binary classification).

– Diabetes [59, 198] consists of 101,766 instances of patient and

hospital readmission outcomes (46,902 readmitted) characterized by 55

attributes (binary classification).

– Energy [59, 209] consists of 768 buildings in which each building is one of 12

different shapes and is characterized by 8 features. The aim is to predict the

cooling load associated with the building (regression).

– Flight [168] consists of 100,000 actual arrival and departure times of

flights by certified U.S. air carriers; the data was collected by the Bureau

of Transportation Statistics’ (BTS) Office of Airline Information. The data

contains 8 attributes and 19,044 delays. The task is to predict if a flight will

be delayed (binary classification).
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– German [59] consists of 1,000 credit applicants characterized by 20

attributes. The aim is to predict whether the person is a good or bad credit

risk (binary classification).

– HTRU2 [59, 140] consists of 17,898 pulsar candidates characterized by

8 attributes. The aim is to predict whether the pulsar is legitimate or a

spurious example (binary classification).

– Life [163] consists of 2,928 instances of life expectancy estimates for various

countries during a specific year. Each instance is characterized by 20

attributes, and the aim is to predict the life expectancy of the country during

a specific year (regression).

– Naval [49, 59] consists of 11,934 instances extracted from a high-performing

gas turbine simulation. Each instance is characterized by 16 features. The

aim is to predict the gas turbine decay coefficient (regression).

– No Show [105] contains 110,527 instances of patient attendances for

doctors’ appointments (22,319 no shows) characterized by 14 attributes.

The aim is to predict whether or not a patient shows up to their doctors’

appointment (binary classification).

– Obesity [201] contains 48,346 instances of obesity rates for different states

and regions with differing socioeconomic backgrounds. Each instance is

characterized by 32 attributes. The aim is to predict the obesity rate of the

region (regression).
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– Power [59, 117, 210] contains 9,568 readings of a Combined Cycle Power

Plant (CCPP) at full work load. Each reading is characterized by 4 features.

The aim is to predict the net hourly electrical energy output (regression).

– Protein [59] contains 45,730 tertiary-protein-structure instances

characterized by 9 attributes. The aim is to predict the armstrong coefficient

of the protein structure (regression).

– Spambase [59] consists of 4,601 emails (1,813 spam) characterized by 57

attributes. The aim is to predict whether or not the email is spam (binary

classification).

– Surgical [115] consists of 14,635 medical patient surgeries (3,690 surgeries

with complications), characterized by 25 attributes; the goal is to predict

whether or not a patient had a complication from their surgery (binary

classification).

– Twitter uses the first 250,000 tweets (33,843 spam) of the HSpam14 data

set [178]. Each instance contains the tweet ID and label. After retrieving

the text and user ID for each tweet, we derive the following attributes: no.

chars, no. hashtags, no. mentions, no. links, no. retweets, no. unicode chars.,

and no. messages per user. The aim is to predict whether a tweet is spam or

not (binary classification).

– Vaccine [30, 56] consists of 26,707 survey responses collected between

October 2009 and June 2010 asking people a range of 36 behavioral and

personal questions, and ultimately asking whether or not they got an H1N1

and/or seasonal flu vaccine. Our aim is to predict whether or not a person

received a seasonal flu vaccine (binary classification).
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– Wine [50, 59] consists of 6,497 instances of Portuguese “Vinho Verde” red

and white wine. Each instance is characterized by 11 features. The aim is to

predict the quality of the wine from 0-10 (regression).
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A.2 Experiment Details

Here we provide detailed analyses of the different influence estimation

methods, including results using all datasets.

A.2.1 Summary of Results: All Datasets. Figure A.14 shows a

high-level summary of the results including all data sets. Overall, we observe very

similar trends as when analyzing only the SDS data sets. However, we do notice

a decrease in relative performance for SubSample; better performance may be

achieved by increasing τ , but this may also significantly increase its running time.
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(a) Average rank of each method. For each evaluation setting, results are averaged over
all checkpoints, tree types, and data sets; error bars represent 95% confidence intervals
and are computed over data sets. Lower is better.
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Figure A.14. High-level overview of results including all data sets; thus, LeafRefit
and LeafInfluence are not included in this analysis.
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A.2.2 Removing Examples (Single Test). Figure A.15 shows

a more fine-grained analysis for the removal experiment involving a single test

instance; it also includes an additional baseline: RandomSL, which assigns a

randomly-sampled positive value for training examples with the same label as

the test example, and negative otherwise:2

IRandomSL(zi, ze) = 1[yi = ye]U − 1[yi ̸= ye]U, U ∼ U(0, 1)

Overall, the trends are relatively consistent across GBDT types; however, we

observe TreeSim tends to perform better on XGB and CB than LGB and SGB.
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Figure A.15. Average ranks when removing examples for a single test instance,
shown for each GBDT type. Top row : SDS data sets; Bottom row : all data sets.
Results are averaged over checkpoints and data sets. Error bars represent 95%
confidence intervals computed over data sets. Lower is better.

Figure A.16 shows the change in loss for different GBDT types and data

sets; methods using the fixed-structure assumption tend to perform best.

2For regression, IRandomSL(zi, ze) = N (µi, σi) in which µi = 1/|yi − ye| and σi = s.d.(|yi − ye|).
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Figure A.16. Change in loss for a random test example (averaged over 100 runs) as
training examples are removed. Higher is better.
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A.2.3 Targeted Label Edits (Single Test). Figure A.17 shows

more fine-grained ranking analysis for the targeted-label-edit experiment involving

a single test instance. The trends are relatively consistent across GBDT types with

LeafRefit consistently performing well for the SDS data sets, especially on XGB

and CB; for larger data sets, TREX or TreeSim are solid alternative choices to

LeafRefit.
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Figure A.17. Average ranks when editing training labels to a target label for a
single test instance, shown for each GBDT type. Top row : SDS data sets; Bottom
row : all data sets. Results are averaged over checkpoints and data sets. Error bars
represent 95% confidence intervals computed over data sets. Lower is better.
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A.2.4 Removing Examples (Multiple Test). Figure A.18 shows

the rankings when using different predictive performance measures (e.g., accuracy

or AUC) when computing ranks. In contrast to loss, methods rank higher the more

they decrease accuracy or AUC as training examples are removed. Overall, BoostIn

and LeafInfSP are clear favorites across all three performance metrics.
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Figure A.18. Average ranks after removing training examples for multiple
test instances and evaluating on a held-out test set using different predictive
performance metrics. Top row : SDS data sets; Bottom row : all data sets. Results
are averaged over checkpoints, tree types, and data sets. Error bars represent 95%
confidence intervals computed over data sets. Lower is better.
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A.2.5 Adding Noise (Multiple Test). Figure A.19 shows the

rankings when using different predictive performance measures (e.g., accuracy

or AUC) when computing ranks for the noise addition experiment. In contrast to

loss, methods rank higher the more they decrease accuracy or AUC as training

examples are removed. Overall, BoostIn is a clear favorite in terms of loss, but both

BoostIn and TreeSim perform best for accuracy and AUC.
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Figure A.19. Average ranks after add noise to training examples for multiple
test instances and evaluating on a held-out test set using different predictive
performance metrics. Top row : SDS data sets; Bottom row : all data sets. Results
are averaged over checkpoints, tree types, and data sets. Error bars represent 95%
confidence intervals computed over data sets. Lower is better.
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A.2.6 Fixing Mislabelled Examples (Multiple Test). Figure A.20

shows the average rankings of each method when measuring predictive performance

on a held-out test set as noisy/mislabelled training examples are checked and fixed.

Methods rank higher the more they decrease loss and increase accuracy or AUC.

We also add an additional baseline: BoostIn (self), which measures the influence of

each training example on itself, i.e., IBoostIn(zi, zi); those values are then used to

order the training examples to be checked/fixed. Overall, BoostIn and LeafInfSP

rank highest in terms of loss and AUC; however, TREX and TreeSim tend to work

better in increasing accuracy.
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Figure A.20. Average ranks when measuring the predictive performance on the
held-out test set after checking/fixing any noisy/mislabelled training examples.
Top row : SDS data sets; Bottom row : all data sets. Results are averaged over
checkpoints, tree types, and data sets. Error bars represent 95% confidence
intervals computed over data sets. Lower is better.
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A.2.7 Runtime Comparison. Table A.9 shows the total time of

each method to compute all influence values for a single test instance (fit time +

influence time). Each experiment is repeated 5 times, and results are averaged over

GBDT types. Results are only shown for the SDS data sets since LeafRefit and

LeafInfluence are too intractable to run on the non-SDS data sets.

Data set TreeSim BoostIn LeafInfSP TREX SubS. LOO LeafRefit LeafInf.

Bean 0.260 1.021 1.362 3.999 1414 4194 132503 70618
Compas 0.027 0.110 0.139 0.598 175 248 2763 2302
Concrete 0.028 0.175 0.231 0.269 469 101 463 346
Credit 0.068 0.212 0.282 0.837 449 3250 35359 33430
Energy 0.024 0.164 0.248 0.260 411 68 317 214
German 0.005 0.031 0.043 0.420 101 21 70 48
HTRU2 0.123 0.357 0.382 0.861 506 1969 43107 40499
Life 0.107 0.445 0.596 0.936 2604 1440 3414 2706
Naval 0.291 1.140 1.358 4.390 2288 5417 38599 33484
Power 0.230 1.072 1.331 6.636 1658 3390 30938 26201
Spambase 0.121 0.522 0.659 1.201 2724 3064 7935 6313
Surgical 0.171 0.528 0.617 1.694 1170 4135 36798 33455
Wine 0.171 1.020 1.281 2.792 1862 2763 14549 11419

Table A.9. Time (in seconds) to compute all influences values for a single test
instance for the SDS data sets. Each experiment is repeated 5 times, and results
are averaged over GBDT types.
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A.2.8 Correlation Between Influence Methods. Figure A.21

shows additional correlation heatmaps averaged over the SDS data sets for

each GBDT type; overall, the trends remain the same across GBDT types.

Figure A.22 shows the correlation between influence methods averaged over

either all classification or regression data sets; overall, the methods are much less

correlated for the regression data sets than the classification data sets (note the

difference in legend values in both subplots).
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Figure A.21. Spearman correlation coefficient between influence methods for each
GBDT type, averaged over 100 test examples and SDS data sets.

Boo
stI

n

Le
afI

nfS
P

TR
EX

Tr
ee

Sim

Sub
Sam

ple LO
O

BoostIn

LeafInfSP

TREX

TreeSim

SubSample

LOO

0.2

0.4

0.6

0.8

(a) Classification data sets
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Figure A.22. Spearman correlation coefficient between influence methods averaged
over 100 test examples, all GBDT types, and either classification or regression data
sets.
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A.2.9 The Structural Fragility of LOO. Figure A.23 shows

examples of LOO choosing the single-most influential example.
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Figure A.23. Change in loss (averaegd over 100 test instances) as training examples
are removed one at a time. Higher is better. The gray box shows the spike in loss
after removing a single training example identified by LOO.
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A.3 Additional Experiments

Here we present additional experimental results, including predictive

performance of GBDTs vs. non-GBDT models, and all values considered and

selected during hyperparameter tuning.

A.3.1 Predictive Performance of GBDTs. This section evaluates

the predictive performance of the four most-popular modern gradient-boosting

frameworks: LightGBM (LGB), XGBoost (XGB), CatBoost (CB), and Scikit-learn

boosting (SGB).

GBDT Non-GBDT

Dataset LGB XGB CB SGB LR DT KNN SVM RF MLP

AUC (binary classification) (↑)
Bank 0.951 0.947 0.948 0.949 0.932 0.930 0.930 0.930 0.924 0.934
Flight 0.748 0.749 0.745 0.747 0.707 0.696 0.687 0.662 0.688 0.720
HTRU2 0.982 0.981 0.981 0.981 0.978 0.966 0.964 0.955 0.977 0.972
No Show 0.621 0.622 0.621 0.621 0.601 0.603 0.592 0.538 0.612 0.609
Twitter 0.927 0.924 0.917 0.927 0.808 0.893 0.859 0.836 0.884 0.897

Accuracy (binary classification) (↑)
Adult 0.874 0.874 0.874 0.873 0.853 0.861 0.803 0.852 0.852 0.818
COMPAS 0.752 0.770 0.777 0.770 0.768 0.747 0.746 0.760 0.768 0.769
Credit 0.822 0.822 0.820 0.821 0.810 0.822 0.780 0.819 0.821 0.760
Diabetes 0.648 0.648 0.650 0.648 0.637 0.631 0.602 0.643 0.628 0.626
German 0.735 0.710 0.705 0.745 0.730 0.730 0.720 0.720 0.720 0.645
Spambase 0.957 0.952 0.955 0.957 0.933 0.941 0.810 0.940 0.932 0.941
Surgical 0.909 0.909 0.909s 0.908 0.800 0.894 0.886 0.803 0.821 0.788
Vaccine 0.811 0.811 0.807 0.813 0.807 0.780 0.771 0.805 0.785 0.750

Accuracy (multiclass classification) (↑)
Bean 0.930 0.931 0.931 0.930 0.927 0.908 0.737 0.931 0.918 0.505

MSE (regression) (↓)
Concrete 20.1 21.6 23.9 18.8 124.9 69.4 98.9 102.4 54.7 50.6
Energy 0.28 0.10 0.13 0.26 0.97 0.36 2.10 10.03 0.36 20.18
Life 3.21 3.30 3.22 3.40 3.72 6.98 69.36 8.44 6.99 6e4
Naval 4e-7 8e-7 6e-6 4e-7 3e-6 1e-6 6e-6 6e-5 2e-5 1e1
Obesity 0.027 0.043 0.033 0.038 0.115 0.043 5.191 0.786 0.676 1.0e4
Power 8.5 8.4 8.8 8.6 20.3 16.1 15.1 17.1 16.5 24.7
Protein 13.4 13.6 14.9 13.3 26.6 20.9 33.2 23.9 23.9 329.1
Wine 0.384 0.422 0.427 0.389 0.528 0.524 0.626 0.446 0.524 0.512

Table A.10. Predictive performance of GBDTs against alternative methods: logistic
regression (LR), decision tree (DT), k-nearest neighbor (KNN), support vector
machine with an RBF kernel (SVM), random forest (RF), and a multilayer
peceptron (MLP), all evaluated on the test set of each data set. We use MSE
to evaluate regression models, accuracy (acc.) for models trained on multiclass data
sets or binary data sets with a positive label percentage > 20%, and AUC for the
rest; see Table A.8 for reference.
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We compare LGB, XGB, CB, and SGB against alternative methods that are

arguably more interpretable:

– Logistic regression (LR): Logistic regression implementation from Scikit-

Learn [154]; we tune the regularization hyperparameter using values [l1, l2],

and the penalty hyperparameter C using values [0.01, 0.1, 1.0].

– Decision tree (DT): Single decision tree implementation from Scikit-

Learn [154]; we tune the split criterion hyperparameter using values [gini,

entropy], the decision node splitter using values [best, random], and the

maximum depth of the tree using values [3, 5, 10, no limit].

– k-nearest neighbor (KNN): k-nearest neighbor implementation from Scikit-

Learn [154]; we tune k using values [3, 5, 7, 11, 15, 31, 61].

– Support vector machine (SVM): Support vector machine implementation from

Scikit-Learn [154]; we use a radial basis function (RBF) kernel and tune the

penalty hyperparameter C using values [0.01, 0.1, 1.0].

– Random forest (RF): Random forest implementation from Scikit-Learn [154];

we tune the number of trees using values [10, 25, 50, 100, 200], and maximum

depth using values [2, 3, 4, 5, 6, 7].

– Multilayer perceptron (MLP): Multilayer perceptron implementation from

Scikit-Learn [154]; we tune the number of layers and number of nodes per

layer using values [(100,), (100, 100)].

For the LGB, XGB, CB, and SGB models, we tune the number of

trees/boosting iterations (T ) using values [10, 25, 50, 100, 200]. Since the LGB and
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LGB XGB CB SGB

Dataset T lmax T dmax T dmax η T lmax bmax

Bank 50 31 100 4 200 7 0.1 50 31 100
Flight 200 91 200 7 200 7 0.3 200 61 250
HTRU2 100 15 100 2 200 3 0.3 50 15 50
No Show 50 61 100 5 200 7 0.3 50 61 100
Twitter 200 91 200 7 200 7 0.6 200 91 250

Adult 100 31 200 3 200 4 0.6 200 15 250
COMPAS 25 91 50 3 50 4 0.3 50 15 50
Credit 50 15 10 3 50 5 0.1 25 15 100
Diabetes 200 31 200 3 200 5 0.3 200 31 100
German 25 15 10 4 100 5 0.1 25 15 100
Spambase 200 31 200 4 200 5 0.3 200 91 250
Surgical 200 15 50 5 200 4 0.1 100 31 250
Vaccine 100 15 100 3 200 4 0.1 100 15 50

Bean 25 15 25 6 200 3 0.3 25 15 50

Concrete 200 15 200 4 200 4 0.3 200 15 50
Energy 200 15 200 5 200 4 0.9 200 15 50
Life 200 61 200 5 200 6 0.3 200 31 250
Naval 200 91 100 7 200 7 0.6 200 91 250
Obesity 200 91 200 7 200 6 0.6 200 91 250
Power 200 61 200 7 200 6 0.6 200 61 250
Protein 200 91 200 7 200 7 0.3 200 91 250
Wine 200 91 100 7 200 7 0.3 200 91 100

Table A.11. Hyperparameters selected for the GBDT models. The number of
trees/boosting iterations (T ), maximum number of leaves (lmax), maximum
depth (dmax), learning rate (η), and maximum number of bins (bmax) is found
using 5-fold cross-validation. Data sets are grouped based on their task and metric
used for evaluation; see Table A.8 for reference.

SGB models grow trees in a leaf-wise (depth-first) manner, we tune the maximum

number of leaves (lmax) for LGB and SGB using values [15, 31, 61, 91]. In contrast,

we tune the the maximum depth (dmax) for XGB and CB using values [2, 3, 4, 5, 6,

7]. We also tune the learning rate (η) for CB using values [0.1, 0.3, 0.6, 0.9], and

the maximum number of bins (bmax) for SGB using values [50, 100, 250].

We tune all hyperparameters using 5-fold cross-validation. We use mean

squared error (MSE) to tune hyperparameters for regression tasks, accuracy for

multiclass tasks, and accuracy for binary tasks with a positive label percentage
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> 20%, otherwise we use area under the ROC curve (AUC). The associated task

and metric used to tune hyperparameters for each data set is in Table A.8, and

the selected hyperparameters for the LGB, XGB, CB, and SGB models are in

Table A.11.

Table A.10 shows the GBDT models consistently outperform the alternative

models in terms of predictive performance. These results reaffirm the notion that

GBDT models generally outperform more traditional machine-learning algorithms

on tabular data and motivates the need for tailored influence-estimation methods

for GBDT models to better understand their decision-making processes.
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APPENDIX B

QUANTIFYING PREDICTION UNCERTAINTY

In this chapter, we provide implementation details, experiment details, and

additional analyses for IBUG from Chapter 4.

B.1 Implementation and Experiment Details

We implement IBUG in Python, using Cython—a Python package allowing

the development of C extensions—to store a unified representation of the model

structure. IBUG currently supports all major modern gradient boosting frameworks

including XGBoost [39], LightGBM [118], and CatBoost [159]. Experiments are run

on an Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.6GHz with 60GB of RAM @ 2.4GHz.

We run our experiments on publicly available datasets. Links to all data sources as

well as the code for IBUG and all experiments is currently available online.1

B.1.1 Metrics. We use the continuous ranked probability

score (CRPS) and negative log likelihood (NLL) to measure probabilistic

performance. CRPS is a quadratic measure of discrepancy between the cumulative

distribution function (CDF) F of forecast ŷ and the empirical CDF of the scalar

observation y:
∫

(F (ŷ)− 1[ŷ ≥ y])2dŷ in which 1 is the indicator function [84, 226].

To evaluate point performance, we use root mean squared error (RMSE):√
1
n

∑n
i=1(yi − ŷi)2.

B.1.2 Datasets. This section gives a detailed description for each

dataset we use in our experiments.

– Ames [53] consists of 2,930 instances of housing prices in the Ames, Iowa

area characterized by 80 attributes. The aim is to predict the sale price of a

given house.

1https://github.com/jjbrophy47/ibug.
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– Bike [59, 65] contains 17,379 measurements of the number of bikes rented

per hour characterized by 16 attributes. The aim is to predict the number of

bikes rented for a given hour.

– California [153] consists of 20,640 instances of median housing prices in

various California districts characterized by 8 attributes. The aim is to

predict the median housing price for the given district.

– Communities [59, 167] consists of 1,994 measurements of violent

crime statistics based on crime, survey, and census data. The dataset is

characterized by 100 attributes, and the aim is to predict the violent crime

rate for a given population.

– Concrete [59, 222] consists of 1,030 instances of concrete characterized by 8

attributes. The aim is to predict the compressive strength of the concrete.

– Energy [59, 209] consists of 768 buildings in which each building is one of 12

different shapes and is characterized by 8 features. The aim is to predict the

cooling load associated with the building.

– Facebook [59, 192] consists of 40,949 Facebook posts characterized by 53

attributes. The aim is to predict the number of comments for a given post.

– Kin8nm [213] consists of 8,192 instances of the forward kinematics of an 8

link robotic arm. The aim is to predict the forward kinematics of the robotic

arm.

– Life [163] consists of 2,928 instances of life expectancy estimates for various

countries during one year. Each instance is characterized by 20 attributes,
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and the aim is to predict the life expectancy of the country during a specific

year.

– MEPS [46] consists of 16,656 instances of medical expenditure survey data.

Each instance is characterized by 139 attributes, and the aim is to predict the

insurance utilization for the given medical expenditure.

– MSD [17] consists of 515,345 songs characterized by 90 audio features

constructed from each song. The aim is to predict what year the song was

released based on the audio features.

– Naval [49, 59] consists of 11,934 instances extracted from a high-performing

gas turbine simulation. Each instance is characterized by 16 features. The

aim is to predict the gas turbine decay coefficient.

– News [59, 67] consists of 39,644 Mashable articles characterized by 60

features. The aim is to predict the number of shares for a given article.

– Obesity [201] contains 48,346 instances of obesity rates for different states

and regions with differing socioeconomic backgrounds. Each instance is

characterized by 32 attributes. The aim is to predict the obesity rate of the

region.

– Power [59, 117, 210] contains 9,568 readings of a Combined Cycle Power

Plant (CCPP) at full work load. Each reading is characterized by 4 features.

The aim is to predict the net hourly electrical energy output.

– Protein [59] contains 45,730 tertiary-protein-structure instances

characterized by 9 attributes. The aim is to predict the armstrong coefficient

of the protein structure.
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– STAR [59, 197] contains 2,161 student-teacher achievement scores

characterized by 39 attributes. The aim is to predict the student-teacher

achievement based on the given intervention.

– Superconductor [59, 94] contains 21,263 potential superconductors

characterized by 81 attributes. The aim is to predict the critical temperature

of the given superconductor.

– Synthetic [25, 74] is a non-linear synthetic regression dataset in which the

inputs are independent and uniformly distributed on the interval [0, 1]; the

dataset contains 10,000 instances characterized by 100 attributes.

– Wave [59] consists of 287,999 positions and absorbed power outputs of wave

energy converters (WECs) in four real wave scenarios off the southern coast of

Australia (Sydney, Adelaide, Perth and Tasmania). The aim is to predict the

total power output of a given WEC.

– Wine [50, 59] consists of 6,497 instances of Portuguese “Vinho Verde” red

and white wine characterized by 11 features. The aim is to predict the quality

of the wine from 0-10.

– Yacht [59] consists of 308 instances of yacht-sailing performance

characterized by 6 attributes. The aim is to predict the residual resistance

per unit weight of displacement.

For each dataset, we generate one-hot encodings for any categorical variable

and leave all numeric and binary variables as is. Table B.1 shows a summary of the

datasets after preprocessing.
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Table B.1. Dataset summary after preprocessing.

Dataset Source n p

Ames [53] 2,930 358
Bike [59, 65] 17,379 37
California [153] 20,640 100
Communities [59, 167] 1,994 100
Concrete [59, 222] 1,030 8
Energy [59, 209] 768 16
Facebook [59, 192] 40,949 133
Kin8nm [213] 8,192 8
Life [163] 2,928 204
MEPS [46] 15,656 139
MSD [17] 515,345 90
Naval [49, 59] 11,934 17
News [59, 67] 39,644 58
Obesity [201] 48,346 100
Power [59, 117, 210] 9,568 4
Protein [59] 45,730 9
STAR [59, 197] 2,161 95
Superconductor [59, 94] 21,263 82
Synthetic [25, 74] 10,000 100
Wave [59] 287,999 48
Wine [50, 59] 6,497 11
Yacht [59] 308 6

B.1.3 Hyperparameters. Tables B.2 and B.3 show hyperparameter

values selected most often for each dataset when optimizing CRPS and NLL,

respectively. We tune nearest-neighbor hyperparameter k using values [3, 5, 7,

9, 11, 15, 31, 61, 91, 121, 151, 201, 301, 401, 501, 601, 701], γ and δ using values

[1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 0, 1e0, 1e1, 1e2, 1e3] with multipliers

[1.0, 2.5, 5.0], number of trees T using values [10, 25, 50, 100, 250, 500, 1000,

2000] (since NGBoost has no hyperparameters to tune besides T , we tune T on

the validation set using early stopping [61]), learning rate η using values [0.01,

0.1], maximum number of leaves h using values [15, 31, 61, 91], minimum number

of leaves nℓ0 using values [1, 20], maximum depth d using values [2, 3, 5, 7, −1
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(unlimited)], and ρ which selects the minimum variance computed from the

validation set predictions. For the MSD and Wave datasets, we use a bagging

fraction of 0.1 [61, 195].

Table B.2. Hyperparameters selected most often over 10 folds for each dataset when
optimizing CRPS.

NGBoost PGBM CBU

Dataset T γ/δ T η h nℓ0 γ/δ T η d nℓ0 γ/δ

Ames 2000 γ:1e+00 2000 0.1 15 1 γ:2e+00 2000 0.1 7 1 δ:5e+03
Bike 2000 γ:5e-01 2000 0.01 61 1 δ:1e-08 2000 0.1 2 1 δ:5e-02
California 2000 δ:3e-02 1000 0.1 31 20 δ:3e-02 2000 0.1 -1 1 δ:1e-01
Communities 223 δ:1e-02 500 0.01 15 20 γ:1e+01 2000 0.01 7 1 δ:5e-02
Concrete 2000 δ:1e+00 2000 0.1 15 20 δ:1e-08 2000 0.1 5 1 δ:2e+00
Energy 2000 γ:5e-01 2000 0.1 15 1 γ:5e-01 2000 0.1 3 1 δ:1e-01
Facebook 2000 γ:1e+00 2000 0.01 15 1 γ:2e+00 2000 0.1 5 1 γ:1e+00
Kin8nm 581 δ:3e-02 2000 0.1 61 20 δ:5e-02 2000 0.1 7 1 δ:5e-02
Life 2000 γ:1e+00 2000 0.1 15 1 δ:2e-01 2000 0.1 5 1 δ:1e+00
MEPS 583 δ:1e-01 50 0.1 15 1 δ:1e-08 100 0.01 -1 1 γ:1e+00
MSD 2000 δ:1e-01 2000 0.01 91 20 γ:1e+01 2000 0.1 7 1 δ:5e-01
Naval 2000 δ:0e+00 2000 0.1 61 20 γ:3e-02 2000 0.1 7 1 δ:3e-04
News 2000 γ:5e-01 100 0.01 15 20 δ:2e+03 100 0.01 2 1 γ:5e-01
Obesity 2000 δ:1e-01 500 0.1 91 20 δ:1e-08 2000 0.1 7 1 δ:5e-01
Power 2000 δ:2e-01 500 0.1 91 1 δ:5e-01 2000 0.1 7 1 δ:1e+00
Protein 2000 δ:1e-01 2000 0.1 91 20 γ:2e+00 2000 0.1 7 1 δ:1e+00
STAR 187 δ:2e+01 1000 0.01 15 1 γ:1e+01 2000 0.01 -1 1 δ:5e+01
Superconductor 162 γ:5e-01 1000 0.01 15 20 δ:5e-02 2000 0.1 -1 1 δ:3e-02
Synthetic 208 δ:5e-01 500 0.01 15 20 δ:1e+01 2000 0.01 3 1 δ:1e+00
Wave 2000 δ:5e+03 2000 0.1 15 1 δ:1e-08 2000 0.1 -1 1 δ:2e+02
Wine 309 δ:5e-02 2000 0.01 91 20 δ:5e-01 2000 0.1 7 1 δ:2e-01
Yacht 2000 γ:5e-01 2000 0.1 15 1 δ:0e+00 2000 0.1 3 1 γ:2e+00

CatBoost IBUG

Dataset T η d nℓ0 k ρ γ/δ

Ames 2000 0.1 -1 1 5 2206 δ:3e-04
Bike 2000 0.1 2 1 3 0.471 γ:2e-01
California 2000 0.1 -1 1 7 2e-15 δ:1e-08
Communities 2000 0.01 -1 1 15 0.017 δ:0e+00
Concrete 2000 0.1 5 1 3 0.049 γ:5e-01
Energy 2000 0.1 5 1 3 0.035 γ:1e-01
Facebook 2000 0.1 -1 1 15 0.213 δ:1e-01
Kin8nm 2000 0.1 7 1 3 0.003 γ:5e-01
Life 2000 0.1 5 1 3 0.047 γ:5e-01
MEPS 250 0.01 5 1 201 1.08 δ:1e-07
MSD 2000 0.1 7 1 31 1.25 δ:1e-07
Naval 2000 0.1 7 1 3 1e-15 γ:5e-01
News 1000 0.01 2 1 15 163 γ:5e-01
Obesity 2000 0.1 7 1 5 0.306 γ:5e-01
Power 2000 0.1 7 1 5 0.220 δ:1e-01
Protein 2000 0.1 7 1 31 0.028 δ:1e-01
STAR 250 0.01 5 1 121 192 δ:1e-08
Superconductor 2000 0.1 5 1 3 5e-15 γ:1e-01
Synthetic 1000 0.01 7 1 401 9.34 δ:1e-08
Wave 2000 0.1 -1 1 3 2e-10 γ:2e-01
Wine 2000 0.1 7 1 15 0.268 δ:2e-08
Yacht 2000 0.1 2 1 3 0.196 γ:1e-01
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Table B.3. Hyperparameters selected most often over 10 folds for each dataset when
optimizing NLL.

NGBoost PGBM CBU

Dataset T γ/δ T η h nℓ0 γ/δ T η d nℓ0 γ/δ

Ames 373 δ:2e+03 2000 0.1 15 1 γ:2e+00 2000 0.1 7 1 γ:1e+01
Bike 926 δ:0e+00 2000 0.01 61 1 δ:1e-08 2000 0.1 2 1 δ:0e+00
California 2000 δ:5e-02 1000 0.1 31 20 δ:1e-01 2000 0.1 -1 1 δ:2e-01
Communities 156 δ:1e-02 500 0.01 15 20 γ:1e+01 2000 0.01 7 1 δ:1e-01
Concrete 383 δ:1e+00 2000 0.1 15 20 δ:1e+00 2000 0.1 5 1 δ:2e+00
Energy 422 δ:1e-02 2000 0.1 15 1 δ:1e-08 2000 0.1 3 1 δ:1e-01
Facebook 549 δ:0e+00 2000 0.01 15 1 γ:5e+00 2000 0.1 5 1 γ:2e+00
Kin8nm 975 δ:1e-02 2000 0.1 61 20 δ:5e-02 2000 0.1 7 1 δ:1e-01
Life 366 δ:2e-01 2000 0.1 15 1 δ:1e+00 2000 0.1 5 1 δ:1e+00
MEPS 188 δ:1e+00 50 0.1 15 1 δ:1e-08 100 0.01 -1 1 δ:1e+00
MSD 2000 δ:3e-02 2000 0.01 91 20 γ:1e+01 2000 0.1 7 1 δ:1e+00
Naval 2000 δ:5e-05 2000 0.1 61 20 γ:5e-02 2000 0.1 7 1 δ:3e-04
News 38 δ:1e+03 100 0.01 15 20 γ:1e+01 100 0.01 2 1 δ:2e+03
Obesity 2000 δ:0e+00 500 0.1 91 20 δ:1e-08 2000 0.1 7 1 δ:5e-01
Power 275 δ:2e-01 500 0.1 91 1 δ:1e+00 2000 0.1 7 1 δ:2e+00
Protein 2000 δ:2e-01 2000 0.1 91 20 δ:2e+00 2000 0.1 7 1 δ:1e+00
STAR 176 δ:1e+01 1000 0.01 15 1 δ:2e+02 2000 0.01 -1 1 δ:5e+01
Superconductor 378 γ:1e+00 1000 0.01 15 20 γ:2e+00 2000 0.1 -1 1 δ:1e-01
Synthetic 284 δ:5e-01 500 0.01 15 20 δ:1e+01 2000 0.01 3 1 δ:1e+00
Wave 2000 γ:1e+00 2000 0.1 15 1 δ:5e+02 2000 0.1 -1 1 δ:2e+02
Wine 390 δ:5e-02 2000 0.01 91 20 γ:2e+01 2000 0.1 7 1 δ:5e-01
Yacht 356 δ:0e+00 2000 0.1 15 1 δ:5e-02 2000 0.1 3 1 δ:5e-01

CatBoost IBUG

Dataset T η d nℓ0 k ρ γ/δ

Ames 2000 0.1 -1 1 11 4673 δ:1e-08
Bike 2000 0.1 2 1 5 0.4 γ:2e-01
California 2000 0.1 -1 1 31 0.063 δ:0e+00
Communities 2000 0.01 -1 1 61 0.026 δ:0e+00
Concrete 2000 0.1 5 1 5 0.56 δ:1e-08
Energy 2000 0.1 5 1 3 0.087 γ:2e-01
Facebook 2000 0.1 -1 1 301 0.175 δ:1e-01
Kin8nm 2000 0.1 7 1 7 0.031 δ:0e+00
Life 2000 0.1 5 1 7 0.22 δ:2e-08
MEPS 250 0.01 5 1 301 1.76 δ:1e+00
MSD 2000 0.1 7 1 61 1.75 δ:1e-07
Naval 2000 0.1 7 1 5 4e-04 γ:5e-01
News 1000 0.01 2 1 301 994 δ:2e+03
Obesity 2000 0.1 7 1 9 0.529 δ:1e-07
Power 2000 0.1 7 1 15 0.861 δ:1e-07
Protein 2000 0.1 7 1 121 0.218 δ:5e-08
STAR 250 0.01 5 1 121 189 δ:1e-05
Superconductor 2000 0.1 5 1 7 0.019 γ:2e-01
Synthetic 1000 0.01 7 1 401 9.39 δ:1e-08
Wave 2000 0.1 -1 1 31 349 γ:2e-01
Wine 2000 0.1 7 1 61 0.297 δ:2e-08
Yacht 2000 0.1 2 1 3 0.196 γ:2e-01
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B.1.4 Additional Metrics. In this section, we show results for point

performance and probabilistic performance with additional metrics. Each table

shows average results over the 10 random folds for each dataset, with standard

errors in subscripted parentheses. We use the Uncertainty Toolbox 2 [45] to compute

each metric. Lower is better for all metrics.

Point Performance and Negative-Log Likelihood. Tables B.4 and B.5

show point (RMSE) and probabilistic (NLL) performance of each method.

Table B.4. Point (RMSE ↓) performance for each method on each dataset. Bottom
row : Head-to-head wins-ties-losses.

Dataset NGBoost PGBM CBU IBUG IBUG+CBU

Ames 24580(804) 23541(1225) 22576(924) 22942(1388) 22391(1119)

Bike 4.173(0.076) 3.812(0.225) 2.850(0.192) 2.826(0.200) 2.708(0.202)

California 0.503(0.003) 0.445(0.001) 0.449(0.002) 0.432(0.001) 0.434(0.002)
Communities 0.137(0.004) 0.135(0.004) 0.133(0.004) 0.133(0.004) 0.132(0.004)

Concrete 5.485(0.182) 3.840(0.209) 3.682(0.202) 3.629(0.183) 3.617(0.188)

Energy 0.461(0.030) 0.291(0.022) 0.381(0.023) 0.264(0.023) 0.303(0.023)
Facebook 20.8(1.102) 20.5(0.867) 20.1(0.913) 20.0(0.903) 19.9(0.929)

Kin8nm 0.176(0.001) 0.108(0.001) 0.103(0.001) 0.086(0.001) 0.091(0.001)
Life 2.280(0.032) 1.678(0.059) 1.637(0.058) 1.652(0.055) 1.610(0.056)

MEPS 23.7(0.955) 24.1(0.760) 23.5(0.950) 23.7(0.932) 23.6(0.945)

MSD 9.121(0.010) 8.804(0.008) 8.743(0.008) 8.747(0.008) 8.722(0.008)

Naval 0.002(0.000) 0.001(0.000) 0.001(0.000) 0.000(0.000) 0.000(0.000)

News 11162(1153) 11047(1106) 11036(1118) 11036(1116) 11032(1118)

Obesity 5.315(0.022) 3.658(0.033) 3.572(0.038) 3.576(0.037) 3.567(0.037)

Power 3.836(0.045) 3.017(0.056) 2.924(0.065) 2.941(0.059) 2.912(0.063)

Protein 4.525(0.040) 3.455(0.021) 3.520(0.019) 3.512(0.017) 3.493(0.018)
STAR 233(2.388) 229(2.076) 229(1.850) 228(1.985) 228(1.857)

Superconductor 0.170(0.101) 0.425(0.091) 0.463(0.087) 0.427(0.088) 0.419(0.089)
Synthetic 10.2(0.068) 10.1(0.072) 10.2(0.072) 10.1(0.073) 10.1(0.073)

Wave 13537(32.7) 7895(86.0) 4803(37.5) 4899(55.0) 4020(33.5)

Wine 0.693(0.010) 0.603(0.010) 0.626(0.010) 0.596(0.012) 0.598(0.011)

Yacht 0.761(0.106) 0.809(0.103) 0.677(0.124) 0.668(0.125) 0.645(0.124)

IBUG 16-5-1 13-8-1 6-16-0 - 2-13-7
IBUG+CBU 18-3-1 12-9-1 16-6-0 7-13-2 -

2https://uncertainty-toolbox.github.io/
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Table B.5. Probabilistic (NLL ↓) performance for each method on each dataset.
Bottom row : Head-to-head wins-ties-losses.

Dataset NGBoost PGBM CBU IBUG IBUG+CBU

Ames 11.3(0.018) 11.3(0.029) 11.9(0.140) 11.2(0.030) 11.5(0.092)
Bike 1.942(0.024) 1.929(0.078) 1.184(0.034) 1.886(0.056) 1.382(0.042)
California 0.545(0.007) 0.580(0.005) 0.524(0.004) 0.477(0.010) 0.437(0.016)

Communities -0.697(0.045) -0.666(0.034) -0.614(0.109) -0.639(0.135) -0.665(0.116)

Concrete 3.043(0.030) 2.802(0.083) 2.766(0.086) 2.980(0.146) 2.695(0.060)

Energy 0.604(0.192) 0.322(0.182) 0.406(0.116) 1.644(0.514) 0.658(0.165)
Facebook 2.102(0.026) 3.116(0.077) 2.574(0.191) 2.175(0.067) 2.276(0.140)
Kin8nm -0.414(0.007) -0.774(0.034) -0.772(0.008) -0.841(0.008) -0.847(0.010)

Life 2.163(0.029) 1.943(0.033) 1.932(0.079) 1.858(0.033) 1.783(0.041)

MEPS 3.722(0.050) 3.902(0.049) 3.699(0.038) 3.793(0.052) 3.675(0.041)

MSD 3.454(0.002) 3.571(0.002) 3.415(0.001) 3.415(0.002) 3.393(0.001)

Naval -5.408(0.007) -5.064(0.338) -6.141(0.013) -6.208(0.010) -6.284(0.007)

News 10.9(0.268) 10.7(0.339) 10.6(0.205) 10.6(0.208) 10.6(0.192)

Obesity 2.940(0.003) 2.604(0.015) 2.439(0.009) 2.646(0.009) 2.515(0.010)
Power 2.752(0.032) 2.518(0.021) 2.538(0.019) 2.575(0.036) 2.514(0.017)

Protein 2.840(0.014) 2.661(0.005) 2.553(0.009) 2.653(0.054) 2.516(0.010)

STAR 6.869(0.013) 6.866(0.012) 6.866(0.014) 6.853(0.008) 6.852(0.009)

Superconductor 12.2(13.1) 0.035(0.095) -0.014(0.078) 0.783(0.181) 0.108(0.036)
Synthetic 3.745(0.007) 3.742(0.006) 3.741(0.008) 3.738(0.007) 3.738(0.007)

Wave 10.7(0.002) 10.3(0.021) 9.675(0.003) 10.5(0.030) 9.760(0.046)
Wine 1.025(0.013) 0.952(0.020) 1.025(0.028) 0.910(0.016) 0.933(0.012)
Yacht 0.905(0.232) 0.357(0.162) 0.951(0.252) 1.799(1.307) 0.840(0.310)

IBUG 12-10-0 7-11-4 5-11-6 - 2-8-12
IBUG+CBU 15-6-1 10-10-2 13-6-3 12-8-2 -
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Check and Interval scores. Tables B.6 and B.7 show results when measuring

performance with two additional proper scoring rules [84], check score (a.k.a.

“pinball loss”) and interval score (evaluation using a pair of quantiles with expected

coverage). Under these additional metrics, IBUG+CBU still outperform all other

approaches.

Table B.6. Probabilistic (check score a.k.a. “pinball loss” ↓) performance. Bottom
row : Head-to-head wins-ties-losses.

Dataset NGBoost PGBM CBU IBUG IBUG+CBU

Ames 19358(276) 5487(179) 5551(167) 5266(185) 5145(186)

Bike 6.264(0.482) 0.597(0.020) 0.420(0.018) 0.490(0.024) 0.386(0.016)

California 8e+10(8e+10) 0.112(4e−04) 0.110(4e−04) 0.107(5e−04) 0.104(4e−04)

Communities 0.034(0.001) 0.034(1e−03) 0.034(9e−04) 0.033(9e−04) 0.033(9e−04)

Concrete 1.722(0.092) 0.972(0.043) 0.902(0.039) 0.932(0.049) 0.878(0.041)

Energy 0.262(0.022) 0.074(0.003) 0.099(0.005) 0.072(0.005) 0.079(0.004)
Facebook 2.024(0.049) 1.788(0.047) 1.617(0.030) 1.551(0.033) 1.502(0.035)

Kin8nm 0.048(3e−04) 0.031(5e−04) 0.029(3e−04) 0.026(3e−04) 0.026(3e−04)

Life 1.462(0.739) 0.411(0.014) 0.389(0.012) 0.400(0.011) 0.368(0.011)

MEPS 2.779(0.098) 3.246(0.046) 3.050(0.055) 3.100(0.057) 3.033(0.056)
MSD 2.283(0.003) 2.310(0.002) 2.203(0.002) 2.226(0.002) 2.195(0.002)

Naval 0.002(3e−05) 2e-04(2e−05) 2e-04(2e−06) 1e-04(1e−06) 1e-04(8e−07)

News 1102(23.7) 1188(26.3) 1181(26.2) 1280(20.5) 1198(26.0)
Obesity 1.620(0.014) 0.939(0.011) 0.879(0.009) 0.941(0.010) 0.894(0.009)
Power 1.063(0.012) 0.773(0.010) 0.744(0.011) 0.778(0.010) 0.743(0.011)

Protein 2739(2730) 0.920(0.006) 0.902(0.005) 0.900(0.004) 0.880(0.004)

STAR 66.6(0.803) 65.9(0.697) 65.7(0.647) 65.4(0.613) 65.4(0.605)

Superconductor 1.215(0.014) 0.064(0.002) 0.076(0.002) 0.077(0.003) 0.064(0.002)

Synthetic 2.918(0.021) 2.897(0.020) 2.898(0.020) 2.894(0.020) 2.894(0.020)

Wave 2.9e+05(446) 1964(37.3) 1186(5.194) 1350(8.028) 1023(4.813)

Wine 0.194(0.002) 0.163(0.003) 0.170(0.003) 0.162(0.003) 0.162(0.003)

Yacht 0.594(0.080) 0.147(0.021) 0.142(0.024) 0.139(0.024) 0.128(0.023)

IBUG 17-3-2 11-9-2 9-5-8 - 1-6-15
IBUG+CBU 17-3-2 15-6-1 18-2-2 15-6-1 -
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Table B.7. Probabilistic (interval score ↓) performance. Bottom row : Head-to-head
wins-ties-losses.

Dataset NGBoost PGBM CBU IBUG IBUG+CBU

Ames 2.0e+05(3492) 59165(1952) 66337(2499) 57219(1941) 55551(1994)

Bike 66.4(6.425) 7.048(0.411) 4.270(0.136) 6.775(0.324) 4.263(0.191)

California 1e+12(1e+12) 1.257(0.008) 1.168(0.008) 1.230(0.020) 1.119(0.006)

Communities 0.361(0.013) 0.366(0.012) 0.352(0.011) 0.343(0.013) 0.339(0.011)

Concrete 17.2(0.917) 11.1(0.698) 10.3(0.491) 12.1(0.800) 10.1(0.523)

Energy 2.711(0.198) 0.814(0.050) 0.998(0.067) 0.912(0.083) 0.819(0.064)

Facebook 28.4(0.909) 26.8(1.125) 21.6(0.692) 17.4(0.476) 17.1(0.509)

Kin8nm 0.458(0.003) 0.311(0.007) 0.292(0.005) 0.302(0.009) 0.262(0.005)

Life 17.5(9.900) 5.051(0.239) 4.617(0.198) 5.093(0.264) 4.332(0.207)

MEPS 42.2(1.973) 44.3(1.294) 37.7(1.223) 38.3(1.375) 37.2(1.254)

MSD 24.5(0.039) 24.8(0.035) 22.3(0.020) 22.4(0.029) 22.0(0.025)

Naval 0.014(3e−04) 0.003(3e−04) 0.002(2e−05) 0.001(3e−05) 0.001(1e−05)

News 16557(519) 16242(556) 16166(580) 18694(373) 16426(551)

Obesity 15.5(0.153) 9.731(0.125) 8.747(0.083) 10.7(0.139) 9.162(0.086)
Power 10.6(0.136) 8.146(0.122) 7.837(0.165) 8.512(0.152) 7.803(0.156)

Protein 36689(36570) 10.1(0.149) 9.277(0.062) 9.322(0.045) 8.853(0.052)

STAR 642(7.014) 637(6.564) 636(6.131) 630(4.545) 630(4.968)

Superconductor 12.0(0.133) 0.776(0.023) 0.755(0.030) 1.150(0.060) 0.692(0.033)

Synthetic 28.4(0.228) 28.1(0.188) 28.1(0.211) 28.0(0.197) 28.0(0.199)

Wave 3e+06(3727) 20256(323) 11748(55.8) 16669(117) 10569(47.4)

Wine 1.930(0.023) 1.723(0.032) 1.793(0.035) 1.716(0.030) 1.692(0.031)

Yacht 5.798(0.808) 1.621(0.248) 1.796(0.419) 1.955(0.433) 1.619(0.406)

IBUG 18-3-1 8-9-5 4-8-10 - 0-6-16
IBUG+CBU 18-4-0 16-6-0 16-4-2 16-6-0 -
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Calibration Error. Table B.8 shows the average MACE (mean absolute

calibration error) and sharpness scores. Sharpness quantifies the average of the

standard deviations and thus does not depend on the actual ground-truth label;

therefore, MACE and sharpness are shown together, with better methods having

both low calibration error and low sharpness scores.

We observe that NGBoost is particularly well-calibrated, but lacks

sharpness, meaning the prediction intervals of NGBoost are generally too wide.

PGBM tends to have very sharp prediction intervals, but high calibration error. In

contrast, CBU tends to achieve both low calibration error and high sharpness

in relation to the other methods. However, these results are with variance

calibration (§4.1.2), which we note has a significant impact on the CBU approach.

For example, the median improvement in MACE score (over datasets) for CBU

when using variance calibration vs. without is greater than 3x.

Table B.8. Probabilistic (MACE ↓ / sharpness ↓) performance. Standard errors are
omitted for brevity.

Dataset NGBoost PGBM CBU IBUG IBUG+CBU

Ames 0.082/74148 0.040/18432 0.073/18867 0.068/23186 0.063/19791
Bike 0.070/190 0.140/2.077 0.045/2.136 0.096/1.272 0.051/1.595
California 0.014/3e+13 0.053/0.344 0.021/0.367 0.089/0.382 0.037/0.364
Communities 0.039/0.129 0.067/0.120 0.051/0.136 0.035/0.133 0.048/0.133
Concrete 0.056/6.889 0.068/3.002 0.096/3.177 0.115/2.503 0.054/2.708
Energy 0.127/1.497 0.093/0.252 0.054/0.373 0.103/0.249 0.053/0.296
Facebook 0.094/9.171 0.206/4.309 0.072/7.332 0.061/18.9 0.091/12.5
Kin8nm 0.020/0.182 0.037/0.108 0.020/0.096 0.126/0.071 0.045/0.081
Life 0.039/111 0.069/1.103 0.079/1.189 0.115/1.401 0.069/1.216
MEPS 0.030/6.680 0.074/8.200 0.119/14.1 0.086/17.2 0.106/15.3
MSD 0.007/7.749 0.036/7.436 0.012/8.137 0.039/9.088 0.031/8.519
Naval 0.032/0.006 0.279/1e-03 0.048/6e-04 0.059/5e-04 0.086/5e-04
News 0.104/2170 0.085/3289 0.101/2975 0.202/4803 0.109/3498
Obesity 0.012/5.996 0.065/3.451 0.006/3.102 0.095/2.957 0.043/2.956
Power 0.020/3.761 0.026/2.558 0.018/2.299 0.030/3.328 0.019/2.729
Protein 0.029/2e+06 0.076/2.823 0.037/3.144 0.016/3.977 0.046/3.498
STAR 0.025/248 0.031/250 0.030/242 0.023/245 0.025/243
Superconductor 0.074/7.993 0.102/0.240 0.028/0.322 0.205/0.208 0.041/0.240
Synthetic 0.012/10.4 0.023/10.9 0.019/10.4 0.012/10.4 0.014/10.4
Wave 0.129/1e+06 0.018/6403 0.007/4310 0.089/6496 0.042/5127
Wine 0.017/0.694 0.070/0.540 0.027/0.575 0.091/0.643 0.061/0.600
Yacht 0.115/4.057 0.174/0.690 0.098/0.508 0.124/0.371 0.078/0.412
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B.1.5 Runtime. Tables B.9 and B.10 provide detailed runtime results

for each method. Results are averaged over 10 folds, and standard deviations are

shown in subscripted parentheses; lower is better. The last row in each table shows

the Geometric mean over all datasets.

Table B.9. Total train (including tuning) time (in seconds).

Dataset NGBoost PGBM CBU IBUG

Ames 417(587) 1.4e+05(25170) 23181(258) 22264(796)

Bike 195(143) 58246(8207) 23207(239) 22417(794)

California 315(90.8) 16958(1173) 23141(253) 22530(649)

Communities 38.0(21.2) 24491(4246) 23023(260) 22429(483)

Concrete 57.1(22.9) 4130(3621) 22953(265) 22402(577)

Energy 35.3(33.0) 2706(601) 22783(278) 22423(602)

Facebook 731(659) 3.5e+05(58586) 23061(310) 23145(517)

Kin8nm 77.8(39.6) 10489(2181) 23142(296) 22694(529)

Life 105(87.4) 83814(25313) 23082(273) 20531(7050)

MEPS 351(477) 2.3e+05(41039) 23139(327) 20491(7004)

MSD 11720(1022) 2.2e+05(34478) 23972(258) 52760(16670)

Naval 847(1804) 38882(11481) 23133(210) 20607(7059)

News 2275(138) 2.4e+05(60642) 22960(258) 22492(448)

Obesity 1569(2208) 3.2e+05(64847) 23169(259) 21040(7086)

Power 107(53.0) 12556(1459) 23042(338) 22445(298)

Protein 1430(2298) 40132(5779) 23043(277) 22865(344)

STAR 17.0(5.788) 20797(3481) 22852(263) 22074(432)

Superconductor 215(29.3) 2.1e+05(42859) 23291(706) 22503(426)

Synthetic 439(351) 1.0e+05(15729) 23068(333) 22394(532)

Wave 3487(342) 1.0e+05(16204) 23394(173) 44282(16994)

Wine 33.1(19.2) 15067(2804) 20942(7191) 22269(451)

Yacht 51.3(41.8) 1965(87.7) 22915(239) 22184(433)

Geo. mean 265 43604 23017 23726

123



Table B.10. Average prediction time per text example (in milliseconds).

Dataset NGBoost PGBM CBU IBUG

Ames 5.583(5.778) 9.505(2.426) 0.066(0.010) 4.851(2.766)

Bike 0.514(0.815) 7.705(8.198) 0.010(0.002) 61.6(21.1)

California 0.243(0.082) 5.659(9.562) 0.004(0.001) 23.4(5.265)

Communities 0.393(0.170) 11.5(0.941) 0.027(0.010) 1.803(1.118)

Concrete 2.154(0.884) 44.8(57.5) 0.043(0.019) 1.876(0.726)

Energy 1.830(1.369) 32.9(12.1) 0.053(0.027) 1.135(0.300)

Facebook 0.533(0.469) 5.148(7.166) 0.024(0.004) 105(62.4)

Kin8nm 0.194(0.107) 168(89.7) 0.008(0.002) 4.713(0.454)

Life 1.466(1.171) 31.5(28.1) 0.064(0.037) 6.376(1.275)

MEPS 0.465(0.121) 9.510(23.6) 0.005(0.002) 8.845(7.866)

MSD 1.712(0.347) 25.3(1.933) 0.003(7e−04) 603(97.4)

Naval 0.280(0.129) 187(253) 0.010(0.007) 41.9(22.3)

News 0.577(0.100) 0.771(0.403) 0.002(1e−03) 40.0(38.0)

Obesity 0.988(0.475) 10.1(6.503) 0.020(0.003) 110(9.535)

Power 0.252(0.115) 6.904(4.256) 0.007(0.002) 18.3(17.5)

Protein 0.154(0.080) 130(73.7) 0.004(7e−04) 90.8(25.7)

STAR 0.353(0.121) 10.0(1.191) 0.038(0.010) 0.937(0.369)

Superconductor 0.096(0.055) 27.1(79.5) 0.005(0.002) 52.6(25.8)

Synthetic 0.482(0.541) 2.461(0.524) 0.009(0.005) 7.595(10.1)

Wave 1.018(1.339) 9.116(17.0) 0.003(3e−04) 719(106)

Wine 0.135(0.061) 280(281) 0.009(0.002) 6.001(1.696)

Yacht 4.192(2.669) 71.5(12.1) 0.124(0.081) 1.237(0.334)

Geo. mean 0.585 18.5 0.013 15.9
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B.2 Additional Experiments

In this section, we present additional experimental results.

B.2.1 Probabilistic Performance Without Variance Calibration.

Tables B.11 and B.12 show the probabilistic performance of each method without

variance calibration. Even without variance calibration, IBUG+CBU generally

outperforms competing methods. Standard errors are shown in subscripted

parentheses.

Table B.11. Probabilistic (CRPS ↓) performance without variance calibration.

Dataset NGBoost PGBM CBU IBUG IBUG+CBU

Ames 38279(564) 12173(484) 11948(386) 10442(373) 10208(392)

Bike 13.9(1.856) 1.274(0.054) 0.835(0.035) 1.899(0.224) 1.219(0.105)
California 2e+11(2e+11) 0.227(0.004) 0.221(0.001) 0.213(1e−03) 0.207(9e−04)

Communities 0.068(0.002) 0.077(0.004) 0.070(0.002) 0.065(0.002) 0.065(0.002)

Concrete 3.395(0.181) 1.932(0.088) 1.994(0.095) 1.938(0.079) 1.780(0.085)

Energy 0.539(0.042) 0.151(0.007) 0.207(0.010) 0.481(0.041) 0.293(0.022)
Facebook 4.022(0.099) 3.860(0.149) 3.214(0.058) 3.072(0.066) 2.971(0.072)

Kin8nm 0.095(6e−04) 0.069(0.003) 0.063(8e−04) 0.052(4e−04) 0.052(6e−04)

Life 2.897(1.465) 0.836(0.035) 0.852(0.030) 0.794(0.022) 0.739(0.024)

MEPS 5.529(0.196) 6.725(0.126) 6.050(0.109) 6.146(0.113) 6.022(0.114)
MSD 4.525(0.005) 5.767(0.006) 4.364(0.004) 4.410(0.005) 4.342(0.004)

Naval 0.003(6e−05) 0.005(0.002) 3e-04(3e−06) 3e-04(2e−06) 3e-04(2e−06)

News 2476(38.9) 2628(94.9) 2712(59.7) 2669(43.9) 2593(49.7)
Obesity 3.208(0.028) 1.860(0.022) 1.754(0.017) 1.882(0.019) 1.772(0.018)
Power 2.104(0.024) 1.585(0.057) 1.572(0.024) 1.542(0.020) 1.488(0.022)

Protein 5427(5409) 1.932(0.014) 1.822(0.010) 1.785(0.008) 1.740(0.009)

STAR 132(1.697) 157(6.908) 132(1.540) 129(1.225) 130(1.327)

Superconductor 3.200(0.031) 0.134(0.005) 0.151(0.004) 0.303(0.025) 0.201(0.013)
Synthetic 5.778(0.043) 6.946(0.242) 5.769(0.049) 5.731(0.040) 5.735(0.042)

Wave 5.7e+05(886) 4152(247) 2350(10.3) 4905(12.3) 3112(8.952)
Wine 0.385(0.005) 0.383(0.015) 0.355(0.007) 0.322(0.006) 0.321(0.006)

Yacht 1.187(0.142) 0.310(0.056) 0.291(0.050) 0.644(0.068) 0.394(0.042)

IBUG W-T-L 16-4-2 12-4-6 10-4-8 - 0-5-17
IBUG+CBU W-T-L 17-3-2 15-4-3 14-2-6 17-5-0 -
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Table B.12. Probabilistic (NLL ↓) performance without variance calibration.

Dataset NGBoost PGBM CBU IBUG IBUG+CBU

Ames 11.3(0.023) 23.7(6.813) 1676(1093) 11.2(0.031) 11.3(0.070)

Bike 1.942(0.024) 11.1(4.073) 1.264(0.080) 2.958(0.106) 2.386(0.091)
California 0.551(0.010) 7.821(7.026) 2.261(0.341) 0.484(0.009) 0.375(0.009)

Communities -7e-01(0.056) 20.7(7.235) 2.438(1.168) -6e-01(0.136) -4e-01(0.269)

Concrete 3.062(0.031) 3.102(0.277) 684(358) 2.848(0.055) 2.822(0.093)

Energy 0.670(0.250) 0.481(0.341) 6.129(3.597) 1.461(0.113) 1.048(0.162)
Facebook 2.099(0.026) 14.7(5.523) 5.147(1.834) 2.195(0.070) 2.044(0.045)

Kin8nm -4e-01(0.007) 35.0(23.1) 59.5(24.2) -8e-01(0.009) -9e-01(0.024)

Life 2.188(0.044) 23.5(20.6) 71.9(38.8) 1.889(0.038) 1.885(0.100)

MEPS 3.732(0.056) 11.3(3.246) 3.722(0.044) 3.820(0.064) 3.678(0.054)

MSD 3.454(0.002) 65.6(0.162) 3.450(0.004) 3.415(0.002) 3.383(0.002)

Naval -5e+00(0.007) -4e+00(0.357) -5e+00(0.057) -6e+00(0.007) -6e+00(0.006)

News 10.9(0.335) 130(49.5) 10.8(0.368) 11.0(0.415) 10.7(0.307)

Obesity 2.940(0.003) 2.603(0.015) 2.488(0.009) 2.646(0.009) 2.493(0.009)

Power 2.769(0.042) 11.0(8.270) 5.304(0.672) 2.575(0.036) 2.569(0.057)

Protein 2.841(0.015) 5.299(0.268) 3.291(0.042) 2.747(0.123) 2.531(0.028)

STAR 6.872(0.015) 23.2(5.203) 6.989(0.040) 6.853(0.008) 6.857(0.012)

Superconductor 12.1(13.4) 10.5(4.631) -6e-03(0.093) 1.151(0.111) 0.602(0.094)
Synthetic 3.746(0.008) 27.3(6.288) 3.782(0.032) 3.738(0.007) 3.744(0.010)

Wave 10.7(0.002) 22.2(7.985) 9.679(0.004) 10.9(0.004) 10.4(0.004)
Wine 1.029(0.014) 109(24.9) 578(428) 0.910(0.016) 0.968(0.030)
Yacht 0.904(0.232) 7.227(4.096) 4.770(2.330) 1.502(0.308) 1.204(0.519)

IBUG W-T-L 11-7-4 10-10-2 8-9-5 - 1-10-11
IBUG+CBU W-T-L 13-7-2 11-10-1 8-11-3 11-10-1 -
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B.2.2 Comparison to k-Nearest Neighbors. In this section, we

compare IBUG to k-nearest neighbors, in which similarity is defined by Euclidean

distance. For the nearest-neighbors approach, we tune two different k values, one

for estimating the conditional mean, and one for estimating the variance. We also

apply standard scaling to the data before training, and denote this method kNN in

our results. Table B.13 shows that IBUG is consistently better than kNN in terms

of probabilistic performance. However, we note that point predictions from GBRTs

is typically better than kNNs, thus we also compare IBUG to a variant of kNN that

uses CatBoost as a base model to estimate the conditional mean.

Euclidean Distance vs. Affinity. To test which similarity

measure (Euclidean distance or affinity) is more effective, we use the output from

CatBoost to model the conditional mean, we then use kNN or IBUG to find their

respective k-nearest training examples to estimate the variance; we denote these

methods kNN-CB3 and IBUG-CB. For kNN-CB, we also reduce the dimensionality

of the data by only using the most important features identified by the CatBoost

model;4 this helps kNN-CB combat the curse of dimensionality when computing

similarity. Results of this comparison are in Table B.13, in which we observe

IBUG-CB is always statistically the same or better than kNN-CB. These results

suggest affinity is a more effective similarity measure than Euclidean distance for

uncertainty estimation in GBRTs.

3Again, we apply standard scaling to the data before training kNN-CB.

4We tune the number of important features to use for kNN-CB using values [5, 10, 20].
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Table B.13. Probabilistic (CRPS) performance comparison of IBUG against
two different nearest-neighbor models. kNN estimates the conditional mean and
variance using two different k values; and kNN-CB estimates the variance in the
same way as kNN, but uses the scalar output from the CatBoost model to estimate
the conditional mean. Overall, these results suggest affinity is a better measure of
similarity than Euclidean distance for uncertainty estimation in GBRTs.

Dataset kNN kNN-CB IBUG-CB

Bike 0.932(0.029) 0.978(0.049) 0.974(0.048)

California 0.579(0.001) 0.219(1e−03) 0.213(9e−04)
Communities 0.072(0.002) 0.065(0.002) 0.065(0.002)

Concrete 4.645(0.140) 1.872(0.085) 1.849(0.098)

Energy 0.875(0.016) 0.153(0.010) 0.143(0.009)

Facebook 5.613(0.065) 3.275(0.068) 3.073(0.066)

Kin8nm 0.067(7e−04) 0.051(5e−04) 0.051(6e−04)
Life 4.738(0.078) 0.785(0.024) 0.794(0.023)

MEPS 7.283(0.220) 6.181(0.107) 6.150(0.114)

MSD 5.312(0.006) 4.446(0.004) 4.410(0.005)

Naval 8e-04(2e−05) 3e-04(2e−06) 2e-04(2e−06)
News 2654(52.0) 2597(52.3) 2545(41.0)

Obesity 5.526(0.013) 1.900(0.043) 1.866(0.021)

Power 2.074(0.022) 1.553(0.020) 1.542(0.020)

Protein 3.241(0.010) 1.787(0.008) 1.784(0.008)

STAR 140(1.553) 129(1.204) 130(1.214)

Superconductor 3.445(0.041) 0.156(0.006) 0.153(0.006)

Synthetic 6.136(0.047) 5.735(0.039) 5.731(0.040)

Wave 11987(36.6) 2700(17.0) 2679(16.0)

Wine 0.445(0.004) 0.322(0.006) 0.322(0.006)

Yacht 3.354(0.408) 0.275(0.048) 0.276(0.048)

IBUG-CB W-T-L 21-1-0 10-12-0 -
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B.2.3 Comparison to Bayesian Additive Regression Trees.

BART (Bayesian Additive Regression Trees) takes a Bayesian approach to

uncertainty estimation in trees [42]. Although well-grounded theoretically, BART

requires expensive sampling techniques such as MCMC (Markov Chain Monte

Carlo) to provide approximate solutions.

In this section, we compare IBUG to BART using a popular open-source

implementation.5 However, due to BART’s computational complexity, we tune the

number of trees for both IBUG and BART using values [10, 50, 100, 200], set the

number of chains for BART to 5, and run our comparison using a subset of the

datasets in our empirical evaluation consisting of 11 relatively small datasets.

Tables B.14 and B.15 show IBUG consistently outperforms BART in terms

of both probabilistic and point performance.

Table B.14. Probabilistic (CRPS ↓) performance comparison between IBUG and
BART.

Dataset BART IBUG

Bike 4.521(0.119) 0.974(0.048)

California 0.285(0.001) 0.213(9e−04)
Communities 0.072(0.002) 0.065(0.002)

Concrete 3.067(0.073) 1.849(0.098)

Energy 0.402(0.023) 0.143(0.009)

Kin8nm 0.107(8e−04) 0.051(6e−04)
Naval 1e-03(1e−05) 2e-04(2e−06)
Power 2.225(0.018) 1.542(0.020)

STAR 134(1.493) 130(1.214)

Wine 0.394(0.005) 0.322(0.006)

Yacht 0.849(0.039) 0.276(0.048)

IBUG W-T-L 11-0-0 -

5https://github.com/JakeColtman/bartpy
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Table B.15. Point (RMSE ↓) performance comparison between IBUG and BART.

Dataset BART IBUG

Bike 8.396(0.273) 2.826(0.200)

California 0.547(0.003) 0.432(0.001)

Communities 0.137(0.004) 0.133(0.004)

Concrete 5.507(0.161) 3.629(0.183)

Energy 0.685(0.039) 0.264(0.023)

Kin8nm 0.186(0.001) 0.086(8e−04)
Naval 0.002(2e−05) 5e-04(5e−06)
Power 4.057(0.049) 2.941(0.059)

STAR 234(2.479) 228(1.985)

Wine 0.708(0.008) 0.596(0.012)

Yacht 1.624(0.121) 0.668(0.125)

IBUG W-T-L 11-0-0 -
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B.2.4 Different Tree-Sampling Strategies. Figure B.1 shows

the probabilistic (NLL) performance of IBUG as the number of trees sampled (τ)

increases using three different sampling strategies: uniformly at random, first-to-

last, and last-to-first.

We observe that sampling trees last-to-first often requires sampling all trees

in order to achieve the lowest NLL on the test set. When sampling uniformly at

random, NLL tends to plateau starting around 10%. In contrast, sampling trees

first-to-last on the Kin8nm, Naval, and Wine datasets requires 5% of the trees or

less to result in the same or better NLL than when sampling all trees; these results

provide some evidence that trees early in training contribute most, and suggest that

sampling trees first-to-last may be most effective at obtaining the best probabilistic

performance while sampling the fewest number of trees.

131



11.5

12.0

Te
st

 N
LL

Ames

IBUG
CBU

PGBM
NGBoost 2.5

3.0

Facebook

0.8

0.6

0.4
Kin8nm

2.0

2.2
Life

6

5

Naval

0.9

1.0

Wine

0 25 50 75 100
% Trees sampled

100

101

Av
g.

 p
re

di
ct

tim
e 

(m
s)

0 25 50 75 100
% Trees sampled

100

102

0 25 50 75 100
% Trees sampled

10 1

101

0 25 50 75 100
% Trees sampled

10 1

100

101

0 25 50 75 100
% Trees sampled

10 1

101

0 25 50 75 100
% Trees sampled

10 1

101

(a) Sampling trees uniformly at random.
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(c) Sampling trees last-to-first.

Figure B.1. Probabilistic (NLL) performance (lower is better) and average
prediction time (in milliseconds) per test example (lower is better) as a
function of τ for different sampling techniques. Top: sample trees uniformly at
random, middle: sample trees first-to-last (in terms of boosting iteration), bottom:
sample trees last-to-first. All methods result in similar prediction times; however,
first-to-last sampling typically provides the best NLL with the fewest number of
trees sampled.
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B.2.5 Leaf Density. Figure B.2 shows the average percentage of train

instances visited per tree as a function of the total number of training instances for

each dataset. We note that for some datasets, CatBoost, LightGBM, and XGBoost

induce regression trees with very dense leaves where over half the training instances

belong to those leaves. Figure B.3 shows average leaf density for each tree in the

GBRT.

103 104 105

No. train

0

25

50

75

100

%
 tr

ai
n 

vi
si

te
d 

/ t
re

e

(a) LightGBM

103 104 105

No. train

0

25

50

75

100
%

 tr
ai

n 
vi

si
te

d 
/ t

re
e

(b) XGBoost

103 104 105

No. train

0

25

50

75

100

%
 tr

ai
n 

vi
si

te
d 

/ t
re

e

(c) CatBoost

Figure B.2. Average % train visited / tree during affinity computation for each
dataset. Results are averaged over test set w/ s.d; lower is better. In general, the
number of training instances visited per tree is highly dependent on the dataset;
and for some datasets, is also highly dependent on the test example (points with
large standard deviations).
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Figure B.3. Average % train visited at each iteration during affinity computation
for different datasets. Results show averages over test set w/ s.d.; lower is better.
Overall, leaf densities are dataset dependent. However, for LightGBM and
XGBoost, weak learners later in training tend to pool a larger proportion of
training instances into fewer leaves; in contrast, CatBoost has less dense leaves
and training instances are more equally distributed among the leaves in each tree.
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APPENDIX C

EFFICIENT MODEL ADAPTATION

In this chapter, we provide detailed proofs, implementation and experiment

details, and additional analyses for DaRE RF from Chapter 5.

C.1 Algorithmic Details

Here we provide proofs to all Theorems and Lemmas related to unlearning

in DaRE RFs.

C.1.1 Exact Deletion: Proof of Theorem 5.1.1. We use the

following Lemma to help prove the theorem of exact deletion for DaRE forests.

Lemma C.1.1. The probability of selecting a valid set of thresholds S from a dataset

D and then subsequently resampling any invalidated thresholds after the deletion

of (x, y) ∈ D is equivalent to the probability of selecting S from an updated dataset

D \ (x, y).

Proof. The probability of choosing a valid set of thresholds S from D \ (x, y) is

PA(S) = 1/
(
n−m
k

)
in which n is the number of valid thresholds before the deletion,

k is the number of thresholds to sample from the set of valid thresholds, and m

is the number of thresholds that become invalid due to the deletion of (x, y). The

probability of ending up with thresholds S by first choosing some set S∗ and then

resampling any thresholds invalidated by removing (x, y) is:

PB+R(S) =
1(
n
k

) m∑
i=0

(
m
i

)(
k
i

)(
n−k−(m−i)

i

) ,
in which

(
n
k

)
is the number of valid threshold sets for D; S∗ may have up to m

invalid thresholds, thus
(
m
i

)(
k
i

)
is the number of ways i invalid thresholds out of

k chosen thresholds could be resampled from the set of m invalid thresholds; and
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(
n−k−(m−i)

i

)
is the number of valid threshold sets that can be resampled to, starting

at a set with i invalid thresholds.

In the simplest case, m = 0 and no thresholds are invalidated, so the

probability of choosing S in the updated dataset and original dataset are identical:

1/
(
n
k

)
= 1/

(
n−0
k

)
. In the next simplest case, m = 1 and only a single threshold

is invalidated. Thus, we could arrive at S by first sampling it with the original

dataset (probability 1/
(
n
k

)
) or by first sampling one of the k sets that includes the

invalidated threshold and is otherwise identical to S, followed by resampling that

threshold from the remaining (n − 1) − (k − 1) valid and unselected thresholds to

obtain S.

Thus, the total probability (for m = 1) is:

PB+R(S) =
1(
n
k

) (1 +
k

n− k

)
=

1(
n
k

) ( n

n− k

)
=
k! (n− k)! n

n! (n− k)

=
k!(n− 1− k)!

(n− 1)!

=
1(
n−1
k

)
= PA(S)

For m > 1, we can reduce it to the m = 1 case by viewing it as a sequence of

invalidating one threshold at a time. After invalidating one of the thresholds, the

probability remains uniform, so by induction it continues to remain uniform after a

second deletion, or a third, or any number.
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Theorem. Data deletion for DaRE forests is exact (see Eq. 2.12), meaning that

removing instances from a DaRE model yields exactly the same model as retraining

from scratch on updated data.

Proof. Exact unlearning is defined as having the same probability distribution over

models by deletion as by retraining (Eq. 2.12). For discrete attributes, the node

statistics used in model updating are precisely those used for learning the initial

structure, so as the statistics are updated, the structure is updated to match what

would be learned from scratch (in distribution).

For continuous attributes, we first discretize by uniformly sampling k

thresholds from the set of all valid thresholds for that attribute. As instances are

removed, if one of the sampled thresholds becomes invalid, then those thresholds

are resampled to obtain a set of valid thresholds. Lemma C.1.1 shows the resulting

probability of each set of valid thresholds remains uniform, identical to what it

would be if the model were retrained from scratch.

The same logic and lemma also applies for attributes. If a deletion causes

one or more attributes to become invalid (i.e. no more valid thresholds to sample),

then those attributes are resampled to obtain a set of valid attributes, with all sets

of valid attributes being equally likely.

Since each decision node in the tree operates on its own partition of the data

D, then updating all relevant decision nodes and leaf nodes results in the entire

tree being updated to match the updated dataset. The extension to the forest

follows since all trees are independent; thus, the probability of a DaRE forest after

removing instances is the same as retraining the model from scratch on updated

data.
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C.1.2 Training Complexity: Proof of Theorem 5.1.2.

Theorem. Given n = |D|, T , dmax, and p̃, the time complexity to train a DaRE

forest is O(T p̃ n dmax).

Proof. When training a DaRE tree, we begin by choosing a split for the root

by iterating through all n training instances and scoring p̃ randomly selected

attributes. Generalizing this to nodes at other depths, there are (at most) 2d nodes

at depth d, and each of the n training instances is assigned to one of these nodes.

Choosing all splits at depth d thus requires a total time of O(p̃ n) across all depth-d

nodes, since we again process every training instance when finding the best split for

each node. Summing over all depths, the total time is O(p̃ n dmax) to train a single

DaRE tree or O(T p̃ n dmax) to train a forest of T trees.

C.1.3 Training Complexity: Proof of Theorem 5.1.3.

Theorem. Given dmax, p̃, and k, the time complexity to delete a single instance

(x, y) ∈ D from a DaRE tree is O(p̃ k dmax), if the tree structure is unchanged

and the attribute thresholds remain valid. If a node with |D| instances has an

invalid attribute threshold, then the additional time to choose new thresholds is

O(|D| log |D|). If a node with |D| instances at level d needs to be retrained, then the

additional retraining time is O(p̃ |D| (dmax − d))).

Proof. Deleting an instance from a DaRE tree (Alg. 5) requires traversing the

tree from the root to a leaf, updating node statistics, retraining a subtree (if

necessary), and removing the instance from the tree’s set of instances. Since there

are p̃ candidate attributes at each node, subtracting the influence of (x, y) from

the node statistics and checking for invalid attribute thresholds requires O(p̃) time.

Recomputing the score for each attribute-threshold pair requires O(p̃ k), since we
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have the necessary statistics and computing the Gini index can be done in constant

time for each pair. Across all depths up to dmax, this is a total time of O(p̃ k dmax).

Choosing new thresholds requires making a list of all attribute values at a

node, along with the associated labels. This can be done by traversing the subtree

rooted at the node, visiting each leaf and collecting the attribute values from the

instances at that leaf. Let |D| be the total number of these instances. Since the

number of leaves is bounded by the number of instances, traversing the subtree can

be done in O(|D|) time, plus O(|D| log |D|) time to sort the values. The remaining

work of making a list of valid thresholds, randomly choosing k thresholds, and

computing statistics for these k thresholds can all be done in O(|D|), since each

requires (at most) a single pass through all |D| instances. Thus, the total time is

O(|D| log |D|).

If the best attribute-threshold pair at a node has changed, then the subtree

must be retrained. Let |D| be the number of instances at the node and d be its

depth. The time for retraining a subtree is identical to the time for retraining a

DaRE tree, except that the number of instances is |D| and the maximum depth

(relative to this node) is (dmax − d). Thus, the total time is O(p̃ (dmax − d) |D|).

C.1.4 Space Complexity: Proof of Theorem 5.1.4.

Theorem. Given D, dmax, k, T , and p̃, the space complexity of a DaRE forest is

O(k p̃ 2dmax T + nT ).

Proof. The space complexity of a DaRE tree with a single decision node is O(k p̃+n)

since we need to store a constant O(1) amount of metadata for k thresholds times

p̃ attributes as well as n pointers (one for each training instance) partitioned across

the leaves in the tree. For a single DaRE tree with multiple decision nodes, we
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need to multiply the first term in the previous result by 2dmax since there may be

2dmax decision nodes in a single DaRE tree; the second term remains the same as

the training instances are still partitioned across all leaves in the tree. Thus, the

space complexity of a single DaRE tree is O(k p̃ 2dmax + n). For a DaRE forest, we

need to multiply this result by T ; thus, the space complexity of a DaRE forest is

O(k p̃ 2dmax T + nT ).

Assuming that we have at least one training instance assigned to each leaf,

the number of leaves in each tree is at most n, and thus the total number of nodes

per tree is at most 2n − 1. This gives us an alternate bound of O(k p̃ n T ), which

is proportional to the size of the training data times the number of thresholds and

trees in the forest (in the worst case).

C.1.5 Complexity of Slightly-Less-Naive Retraining. The

complexity of naive retraining is the same as training a DaRE forest from scratch,

O(T p̃ n dmax), where n = |D|.

A slightly smarter approach is to retrain only the portion of each tree that

depends on the deleted node. For example, if the best split at the root of the

tree after deleting an instance is the same as it was before, then the data will

be partitioned between its two children the same way as before. One part of this

partition never contained the deleted instance, and that fraction of the tree is

unchanged. The other part of the partition has been changed by this deletion, so

we must recurse, but only in that half of the tree.

This is potentially more efficient, but the efficiency gains are still bounded

relative to the naive retraining approach. Choosing the split at the root still

requires iterating through all training instances to compute statistics for each
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attribute (and each split of each continuous attribute), for a total time of O(T p̃ n)

across all T trees.

Since the total time for retraining is at most O(T p̃ n dmax), the gain from

this optimized approach is at most a factor of dmax (10-20 in our experiments).

This is ignoring the cost of scoring splits at the lower levels in the tree, or

retraining the lower levels of the tree (as is often required after data deletion).

Thus, the gain will be smaller in practice.

Therefore, a slightly-less-naive approach to retraining random forests could

improve over the naive approach, but would still be substantially slower than our

methods, which achieve speedups of several orders of magnitude (see Figure 11 and

Table 6).

C.1.6 Node Statistics. A DaRE tree may consist of three types

of nodes: greedy decision nodes, random decision nodes, and leaf nodes. Each

stores a constant amount of metadata to enable efficient updates. In addition to

the following type-specific statistics, each node stores |D| and |D·,1| the number of

instances and the number of positive instances at that node.

– Greedy decision nodes: For each threshold for an attribute, we store |Dl|,

|Dl,1|. This is a sufficient set of statistics needed to recompute the Gini

index (Eq. 2.1) or entropy (Eq. 2.2) split criterion scores. Since a threshold in

a greedy decision node is the midpoint between two adjacent attribute values,

we also keep track of how many positive instances and the total number of

instances are in each attribute value set; by updating this information, a

DaRE tree can sample a new threshold when one is no longer valid.

– Random decision nodes: After selecting a random attribute, and then a

random threshold within that attribute’s min. and max. value range, we
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only store |Dl| and |Dr|. Updating these statistics informs the DaRE tree

when the threshold value is no longer within the min. and max. value range of

that attribute. At that point, the random decision node is retrained.

– Leaf nodes: For each leaf, we store pointers to the training instances that

traversed to that leaf. This enables the DaRE tree to collect these training

instances when needing to retrain any ancestor decision nodes higher in the

tree.

C.1.7 Batch Deletion. Batch deletion is almost the same as deleting

one instance, except we may need to recurse down multiple branches of each tree

to find all relevant instances to delete, and we only retrain a given node (at most)

once, rather than (up to) once for each instance deleted. This will naturally be

more efficient, but waiting for a large batch may not be possible.
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C.1.8 Pseudocode. Algorithm 6 provides detailed pseudocode. 1

Algorithm 6 Pseudocode for building/deleting an instance from a DaRE tree.
1: Train(data D, depth d):
2: if stopping criteria reached then
3: node ← LeafNode(D)
4: else
5: if d < drmax then
6: node ← RandomNode(D)
7: else
8: node ← GreedyNode(D)
9: D.ℓ,D.r ← split on threshold(node, D)
10: node.ℓ← Train(Dℓ, d+ 1)
11: node.r ← Train(Dr, d+ 1)
12: return node

13: Delete(node, depth d, remove (x, y)):
14: node⇚ update +/total(node, (x, y))
15: if node is a LeafNode then
16: node⇚ remove (x, y) from leaf
17: node⇚ recompute leaf value(node)
18: remove (x, y) from database
19: else
20: node⇚ update dec. stats(node, (x, y))
21: if node is a RandomNode then
22: node← RandDel(node, d, (x, y))
23: else
24: node← GreedyDel(node, d, (x, y))
25: a, v ← node.selected attr., threshold
26: if no retraining occurred then
27: if x·,a ≤ v then
28: Delete(node.ℓ, d+ 1, (x, y))
29: else
30: Delete(node.r, d+ 1, (x, y))
31: return node

32: GreedyDel(node, d, remove (x, y)):
33: A← node.sampled attributes
34: Ā← get invalid attributes(A)
35: if |Ā| > 0 then
36: D ← leaf instances(node) \ (x, y)
37: A∗ ← resample invalid(Ā, D)
38: A← A \ Ā ∪A∗

39: for a ∈ A do
40: V ← a.sampled valid thresholds
41: V̄ ← get invalid thresholds(V )
42: if |V̄ | > 0 then
43: D ← leaf instances(node) \ (x, y)
44: V ∗ ← resample invalid(V̄ , D, a)
45: V ← V \ V̄ ∪ V ∗

46: scores ← recompute split scores(node)
47: node⇚ select optimal split(scores)
48: if optimal split has changed then
49: a, v ← node.selected attr., threshold
50: Dℓ, Dr ← split data(D, a, v)
51: node.ℓ← Train(Dℓ, d+ 1)
52: node.r ← Train(Dr, d+ 1)
53: return node

1: LeafNode(data D):
2: node← Node()
3: node← SaveNode(node, D)
4: node⇚2compute leaf value(node)
5: node⇚ save leaf instances(node, D)
6: return node

7: RandomNode(data D):
8: node← Node()
9: node← SaveNode(node, D)
10: a← sample attribute(D)
11: v ← sample threshold ∈ [amin, amax)
12: node← SaveThresh(node, D, a, v)
13: return node

14: GreedyNode(data D):
15: node← Node()
16: node← SaveNode(node, D)
17: node⇚ sample p̃ attributes(node, D)
18: for a ∈ node.sampled attributes do
19: C ← get valid thresholds(D, a)
20: V ← sample k valid thresholds(C)
21: for v ∈ V do
22: node← SaveThresh(node, D a, v)
23: scores← compute split scores(node)
24: node⇚ select optimal split(scores)
25: return node

26: SaveNode(node, data D):
27: node⇚ instance count(D)
28: node⇚ positive instance count(D)
29: return node

30: SaveThresh(node, D, a, v):
31: node⇚ L count(D, a, v)
32: if node is a GreedyNode then
33: node⇚ L+ count(D, a, v)
34: node⇚ L/R adj. feature val.(D, a, v)
35: node⇚ L/R adj. val− count(D, a, v)
36: node⇚ L/R adj. val+ count(D, a, v)
37: return node

38: RandDel(node, d, remove (x, y)):
39: if selected threshold is invalid then
40: D ← leaf instances(node) \ (x, y)
41: if sel. attr. (a) is still valid then
42: v ← resample ∈ [amin, amax)
43: Dℓ, Dr ← split(D, a, v)
44: node.ℓ← Train(Dℓ, d+ 1)
45: node.r ← Train(Dr, d+ 1)
46: else
47: node← Train(D, d)
48: return node

1We also use “node ⇚ . . .” to denote updates to a node or its data. Node statistics details are
in §C.1.6. See https://github.com/jjbrophy47/dare_rf for additional details.
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C.2 Implementation and Experiment Details

Experiments are run on an Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.6GHz

with 70GB of RAM. No parallelization is used when building the independent

decision trees. DaRE RF is implemented in the C programming language via

Cython, a Python package allowing the development of C extensions. Experiments

are run using Python 3.7. Source code for DaRE RF and all experiments is

available at https://github.com/jjbrophy47/dare_rf.

C.2.1 Datasets.

– Surgical [115] consists of 14,635 medical patient surgeries (3,690 positive

cases), characterized by 25 attributes; the goal is to predict whether or not a

patient had a complication from their surgery.

– Vaccine [30, 56] consists of 26,707 survey responses collected between October

2009 and June 2010 asking people a range of 36 behavioral and personal

questions, and ultimately asking whether or not they got an H1N1 and/or

seasonal flu vaccine. Our aim is to predict whether or not a person received a

seasonal flu vaccine.

– Adult [59] contains 48,842 instances (11,687 positive) of 14 demographic

attributes to determine if a person’s personal income level is more than $50K

per year.

– Bank Marketing [59, 147] consists of 41,188 marketing phone calls (4,640

positive) from a Portuguese banking institution. There are 20 attributes, and

the aim is to figure out if a client will subscribe.

– Flight Delays [168] consists of 100,000 actual arrival and departure times of

flights by certified U.S. air carriers; the data was collected by the Bureau

144

https://github.com/jjbrophy47/dare_rf


of Transportation Statistics’ (BTS) Office of Airline Information. The data

contains 8 attributes and 19,044 delays. The task is to predict if a flight will

be delayed.

– Diabetes [59, 198] consists of 101,766 instances of patient and hospital

readmission outcomes (46,902 readmitted) characterized by 55 attributes.

– No Show [105] contains 110,527 instances of patient attendances for doctors’

appointments (22,319 no shows) characterized by 14 attributes. The aim is to

predict whether or not a patient shows up to their doctors’ appointment.

– Olympics [114] contains 206,165 Olympic events over 120 years of Olympic

history. Each event contains information about the athlete, their country,

which Olympics the event took place, the sport, and what type of medal the

athlete received. The aim is to predict whether or not an athlete received a

medal for each event they participated in.

– Census [59] contains 40 demographic and employment attributes on 299,285

people in the United States; the survey was conducted by the U.S. Census

Bureau. The goal is to predict if a person’s income level is more than $50K.

– Credit Card [113] contains 284,807 credit card transactions in September

2013 by European cardholders. The transactions took place over two days

and contains 492 fraudulent charges (0.172% of all charges). There are 28

principal components resulting from PCA on the original dataset, and two

additional fetures: ‘time’ and ‘amount’. The aim is to predict whether a

charge is fraudulent or not.
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– Click-Through Rate (CTR) [51] contains the first 1,000,000 instances of the

Criteo 1TB Click Logs dataset, in which each row represents an ad that was

displayed and whether or not it had been clicked on (29,040 ads clicked). The

dataset contains 13 numeric attributes and 26 categorical attributes. However,

due to the extremely large number of values for the categorical attributes,

we restrict our use of the dataset to the 13 numeric attributes. The aim is to

predict whether or not an ad is clicked on.

– Twitter uses the first 1,000,000 tweets (169,471 spam) of the HSpam14

dataset [178]. Each instance contains the tweet ID and label. After retrieving

the text and user ID for each tweet, we derive the following attributes: no.

chars, no. hashtags, no. mentions, no. links, no. retweets, no. unicode chars.,

and no. messages per user. The aim is to predict whether a tweet is spam or

not.

– Synthetic [154] contains 1,000,000 instances normally distributed about the

vertices of a 5-dimensional hypercube into 2 clusters per class. There are

5 informative attributes, 5 redundant attributes, and 30 useless attributes.

There is interdependence between these attributes, and a randomly selected

5% of the labels are flipped to increase the difficulty of the classification task.

– Higgs [11, 59] contains 11,000,000 signal processes (5,829,123 Higgs bosons)

characterized by 22 kinematic properties measured by detectors in a particle

accelerator and 7 attributes derived from those properties. The goal is to

distinguish between a background signal process and a Higgs bosons process.

For each dataset, we generate one-hot encodings for any categorical variable

and leave all numeric and binary variables as is. For any dataset without a
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Table C.1. Dataset summary including the main predictive performance metric
used for each dataset, either average precision (AP) for datasets whose positive
label percentage < 1%, AUC for datasets between [1%, 20%], or accuracy (Acc.) for
all remaining datasets.

Dataset #train % Pos. #test % Pos. p Metric

Surgical 11,708 25.30 2,927 25.00 90 Acc.
Vaccine 21,365 46.60 5,342 45.60 185 Acc.
Adult 32,561 24.00 16,281 23.60 107 Acc.
Bank Marketing 32,951 11.40 8,237 10.90 63 AUC
Flight Delays 80,000 18.90 20,000 19.50 648 AUC
Diabetes 81,412 46.00 20,353 46.50 253 Acc.
No Show 88,422 20.14 22,105 20.41 99 AUC
Olympics 164,932 14.60 41,233 14.60 1,004 AUC
Census 199,523 6.20 99,762 6.20 408 AUC
Credit Card 227,846 0.18 56,961 0.17 29 AP
CTR 800,000 2.89 200,000 2.98 13 AUC
Twitter 800,000 16.96 200,000 16.83 15 AUC
Synthetic 800,000 50.00 200,000 50.00 40 Acc.
Higgs 8,800,000 53.00 2,200,000 53.00 28 Acc.

designated train and test split, we randomly sample 80% of the data for training

and use the rest for testing. Table C.1 summarizes the datasets after preprocessing.

C.2.2 Predictive Performance of DaRE Forests. If extremely

randomized trees exhibit the same predictive performance as their greedy

counterparts, then adding and removing data can be done by simply updating

class counts at the leaves and only retraining if a chosen threshold is no longer

within the range of a chosen split attribute for a given decision node. Thus, this

section compares the predictive performance of a G-DaRE forest against:

– Random Trees: Extremely randomized trees [79] in which each decision node

selects an attribute to split on uniformly at random, and then selects the

threshold by sampling a value in that attribute’s [min, max] range uniformly

at random.
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Table C.2. Predictive performance comparison of G-DaRE RF to: an extremely
randomized trees model (RT) [79], an Extra Trees [79] model (ET), and a popular
and widely used random forest implementation from Scikit-Learn (SKLearn)
with (*) and without bootstrapping. The numbers in each cell represent either
average precision, AUC, or accuracy as specified by Table C.1; results are averaged
over five runs and the standard error is shown in subscripted parentheses.

Dataset RT ET SKRF SKRF* G-DaRE RF

Surgical 0.783(0.001) 0.805(0.001) 0.848(0.001) 0.846(0.001) 0.867(0.001)
Vaccine 0.769(0.001) 0.795(0.001) 0.796(0.001) 0.793(0.002) 0.794(0.001)
Adult 0.802(0.003) 0.847(0.001) 0.863(0.000) 0.863(0.000) 0.862(0.001)
Bank Mktg. 0.879(0.001) 0.924(0.000) 0.940(0.001) 0.940(0.001) 0.940(0.001)
Flight Delays 0.650(0.009) 0.725(0.001) 0.729(0.001) 0.729(0.000) 0.739(0.000)
Diabetes 0.551(0.003) 0.631(0.001) 0.643(0.000) 0.642(0.001) 0.645(0.000)
No Show 0.694(0.001) 0.710(0.000) 0.732(0.000) 0.731(0.000) 0.736(0.000)
Olympics 0.835(0.001) 0.820(0.001) 0.819(0.001) 0.820(0.000) 0.871(0.000)
Credit Card 0.799(0.002) 0.840(0.004) 0.837(0.002) 0.831(0.005) 0.846(0.001)
Census 0.915(0.001) 0.936(0.000) 0.945(0.000) 0.945(0.000) 0.946(0.000)
CTR 0.668(0.001) 0.683(0.000) 0.702(0.000) 0.700(0.000) 0.701(0.000)
Twitter 0.883(0.001) 0.923(0.001) 0.943(0.000) 0.942(0.000) 0.943(0.000)
Synthetic 0.793(0.002) 0.909(0.001) 0.946(0.001) 0.945(0.000) 0.945(0.000)
Higgs 0.608(0.001) 0.700(0.000) 0.746(0.000) 0.744(0.000) 0.744(0.000)

– Extra Trees: Similar to the extremely randomized trees model [79], except

each decision node selects ⌊√p⌋ attributes at random; a threshold is then

selected for each attribute by sampling a value in that attribute’s [min, max]

range uniformly at random. Then, a split criterion such as Gini index or

mutual information is computed for each attribute-threshold pair, and the

best threshold is chosen as the split for that node.

– SKLearn RF: Standard RF implementation from Scikit-Learn [154].

– SKLearn RF (w/ bootstrap): Standard RF implementation from Scikit-

Learn [154] with bootstrapping.

Table C.2 reports the predictive performance of each model on the test set

after tuning using 5-fold cross-validation. We tune the number of trees in the forest
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using values [10, 25, 50, 100, 250], and the maximum depth using values [1, 3, 5, 10,

20]. The maximum number of randomly selected attributes to consider at each split

is set to ⌊√p⌋. For the G-DaRE model, we also tune the number of thresholds to

consider for each attribute, k, using values [5, 10, 25, 50]. We use 50%, 25%, 2.5%,

and 2.5% of the training data to tune the Twitter, Synthetic, Click-Through Rate,

and Higgs datasets, respectively, and 100% for all other datasets. Selected values

for all hyperparameters are in Table C.3.

We find the predictive performance of the Random Trees and Extra Trees

models to be consistently worse than the SKLearn and G-DaRE models. We also

find that bootstrapping has a negligible effect on the SKLearn models. Finally, we

observe that the predictive performance of the G-DaRE model is nearly identical to

that of SKLearn RF, in which their scores are within 0.2% on 9/14 datasets, 0.4%

on 1/14 datasets, and G-DaRE RF is significantly better than SKLearn RF on the

Surgical, Flight Delays, Olympics, and Credit Card datasets.
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Table C.3. Hyperparameters selected for the G-DaRE and R-DaRE (using error
tolerances of 0.1%, 0.25%, 0.5%, and 1.0%) models.

G-DaRE & R-DaRE R-DaRE Only

Dataset T dmax k
drmax

(0.1%)
drmax

(0.25%)
drmax

(0.5%)
drmax

(1.0%)

Surgical 100 20 25 0 1 2 4
Vaccine 50 20 5 5 7 11 14
Adult 50 20 5 10 13 14 16
Bank Marketing 100 20 25 6 9 12 14
Flight Delays 250 20 25 1 3 5 10
Diabetes 250 20 5 7 10 12 15
No Show 250 20 10 1 3 6 10
Olympics 250 20 5 0 1 2 3
Census 100 20 25 6 9 12 16
Credit Card 250 20 5 5 8 14 17
CTR 100 10 50 2 3 4 6
Twitter 100 20 5 2 4 7 11
Synthetic 50 20 10 0 2 3 5
Higgs 50 20 10 1 3 6 9

Table C.4. Training times (in seconds) for the G-DaRE model using the
hyperparameters selected in Table C.3. Mean and standard deviations (S.D.)
are computed over five runs.

Dataset Mean S.D.

Surgical 5.68 2.97
Vaccine 17.08 11.86
Adult 6.76 1.17
Bank Marketing 8.79 3.37
Flight Delays 262.00 50.39
Diabetes 141.91 39.12
No Show 77.65 20.33
Olympics 596.27 157.70
Census 127.40 9.57
Credit Card 616.65 166.00
Twitter 152.34 12.32
Synthetic 732.05 231.70
CTR 121.64 37.13
Higgs 5,016.44 146.34
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C.2.3 Effect of drmax on Deletion Efficiency. Figure C.1 shows the

effect drmax has on deletion efficiency for the Surgical, Vaccine, and Adult datasets.
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Figure C.1. Effect of drmax on deletion efficiency.
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C.2.4 Effect of k on Deletion Efficiency. Figure C.2 shows the

effect of k on deletion efficiency for different datasets. For k, we tested values [1, 5,

10, 25, 50, 100].
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(g) Olympics: In this case, the
randomness induced by a low k value
actually helps predictive performance.
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Figure C.2. Effect of k on deletion efficiency.
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