
CRYPTOGRAPHY, DEPENDABILITY AND PRIVACY IN DECENTRALIZED

SYSTEMS

by

ZHANGXIANG HU

A DISSERTATION

Presented to the Department of Computer Science
and the Division of Graduate Studies of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

June 2023



DISSERTATION APPROVAL PAGE

Student: Zhangxiang Hu

Title: Cryptography, Dependability and Privacy in Decentralized Systems

This dissertation has been accepted and approved in partial fulfillment of the
requirements for the Doctor of Philosophy degree in the Department of Computer
Science by:

Christopher Wilson Co-chair
Jun Li Co-chair
Lei Jiao Core Member
Yingjiu Li Core Member
Michael Pangburn Institutional Representative

and

Krista Chronsiter Vice Provost for Graduate Studies

Original approval signatures are on file with the University of Oregon Division of
Graduate Studies.

Degree awarded June 2023

ii



c© 2023 Zhangxiang Hu
All rights reserved.

iii



DISSERTATION ABSTRACT

Zhangxiang Hu

Doctor of Philosophy

Department of Computer Science

June 2023

Title: Cryptography, Dependability and Privacy in Decentralized Systems

Decentralized systems are distributed systems that disperse computation

tasks to multiple parties without relying on a trusted central authority. Since any

party can be attacked and compromised by malicious adversaries, ensuring security

becomes a major concern in decentralized systems. Depending on the model of

decentralized systems, different computation tasks leverage cryptography and

secure protocols to protect their security and obtain dependable outputs. In this

dissertation, we examine prior security solutions and study the inherent difficulties

of securely performing computation tasks in decentralized systems by focusing on

three complementary components.

– We evaluate the performance of cryptographic algorithms in decentralized

systems where nodes may have different amounts of computing resources. We

provide a benchmark of widely deployed cryptographic algorithms on devices

with a different extent of resource constraints, and show what computing

capabilities are required for a device to perform expensive cryptographic

operations.

– We investigate the dependability issue in individual decentralized systems,

where parties are not allowed to communicate with each other. We show that

iv



even if some parties are compromised or malicious, the entire decentralized

system can still converge to a dependable result.

– We address the privacy concern in collaborative decentralized systems, where

parties need to share information with each other. We show that parties can

collaborate with each other and obtain a dependable result without revealing

any useful information about their privacy.

This dissertation includes published and unpublished co-authored materials.
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CHAPTER I

INTRODUCTION

Decentralized system, which is a subset of distributed system, disperses

computation tasks from a central party to multiple independent parties [102, 133].

It provides an innovative approach to share information, store data, and perform

computation tasks in a decentralized manner without an authority, as shown in

Figure 1. In a traditional centralized system, a single trusted authority controls

the entire system to make decisions for computation tasks, and provides only

single-point-of-failure security (i.e., the authority controls all sensitive data and

manages associated cryptographic keys). In contrast, a decentralized system has

multiple parties that control different components of the system [199], thereby

significantly increasing the reliability of the system and reducing the workload

on each party [157]. In addition, the decentralized system does not rely on the

trustworthiness of the parties. Instead, it assumes that parties in the system could

be compromised by adversaries.

Based on the behavior of participating parties, decentralized systems can be

categorized into individual decentralization and collaborative decentralization. In the

system of individual decentralization, parties do not need to cooperate with each

other. Instead, parties are independent of each other, and each party individually

performs its own tasks without information from other parties, as exemplified by

independently running intermediary parties that assist the computing tasks of

resource-constrained Internet-of-things (IoT) devices [94]. In contrast, parties in

collaborative decentralization must jointly perform a computing task to obtain a

common output. Most modern blockchain systems such as Bitcoin and Ethereum

are systems of collaborative decentralization. All the parties must share information

1



with each other and collaboratively execute a consensus algorithm to ensure

agreement on the output results across all parties [142]. Over the past decade,

interest in decentralized systems has been on the rise, catalyzed by their use in

IoT, distributed computing, and blockchain.

(a) A centralized system (b) A decentralized system

Figure 1. Comparison of centralized system and decentralized system

Because of the nature of no central authority design and high fault

tolerance feature, decentralized systems have received growing interest in both

academia and industry. However, in the meantime, decentralized systems

also suffer from additional security and privacy risks due to the distinctive

characteristics of decentralization, and security and privacy of decentralized

systems continue to be the limitations when deploying decentralized systems

in various applications [176, 171, 153]. On the one hand, when compared to a

centralized system, a decentralized system usually has a better fault tolerance since

a decentralized system has multiple parties that controlling the system. If some

parties are unavailable or compromised by adversaries, the entire system can still

function correctly; whereas in a centralized system, the trusted authority becomes

the single point-of-failure for the entire system.
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On the other hand, a decentralized system has more security and privacy

concerns than a centralized system because the parties in a decentralized

system are highly heterogeneous and could be compromised by adversaries

and become malicious [217]. First, a decentralized system must secure not

only the communications between each party and the authority, but also the

communications between all the parties. Attackers can try to steal private

information (confidentiality), inject false information (integrity), and block services

and functionalities (availability), known as CIA triad in information security. A

decentralized system should provide these fundamental security services to protect

all parties. A generic solution is to leverage secure cryptographic algorithms and

protocols to ensure security and privacy. However, due to the heterogeneity of

decentralized systems, participating parties with limited resources may not be able

to perform expensive cryptographic operations.

In addition, a decentralized system suffers from the Byzantine Generals’

Problem [119]. In a centralized system, a trusted authority performs all

computations to decide the final results, and all other parties simply accept the

authority’s decision. However, in a decentralized system, computation results are

determined by multiple parties, which could be compromised by an adversary and

become malicious. The compromised parties in the system can send malicious

messages during the computation in order to manipulate the output results and

force the honest parties to accept the manipulated results [14, 18].

Finally, lack of privacy also becomes a fatal weakness in a decentralized

system because data is stored across the whole system. In a centralized system,

parties outsource their privacy to an authority such that the authority controls

all data and parties trust the authority to protect their privacy. In contrast, in

3



a decentralized system, each party controls its own data. In some decentralized

systems such as blockchain [144], attackers can trivially access all sensitive data to

launch associated attacks and compromise parties’ real identity information [44].

These unique characteristics, which differentiate a decentralized system from

a centralized system, have been identified as major concerns in securing a

decentralized system. Therefore, it is essential to have a comprehensive view of

security and privacy requirements in decentralized systems.

1.1 Dissertation Statement

In order to improve the security and privacy of decentralized systems, we

argue that it is essential to conduct research in designing novel cryptographic

algorithms and cryptographic protocols for output agreements and user privacy.

In particular, this dissertation addresses the security and privacy concerns in

decentralized systems by focusing on the following three components: (1)

benchmarking the performance of cryptographic algorithms in order

to apply cryptography in decentralized systems; (2) ensuring the

correctness of computation results in individual decentralization with

the existence of untrustworthy nodes; and (3) enhancing user privacy in

collaborative decentralization. We briefly elaborate on each component below.

1.2 Our Contributions

In this dissertation, we present several new results improving the security

and privacy in decentralized systems.

1.2.1 Benchmarking the Performance of Cryptographic

Algorithms. To ensure security and privacy in decentralized systems, it is

essential to use cryptography to protect information and communications. For

example, an encryption scheme can be employed to protect the confidentiality of

4



data, and a digital signature scheme can guarantee the authenticity and integrity

of data. However, one concern in employing cryptography in decentralized systems

is the computing capability of participating parties. A party in a decentralized

system may not be able to perform cryptography operations as needed since

cryptographic operations require a significant amount of resources that not

all parties in a decentralized system can support, especially those parties with

constrained resources such as the Internet of Things (IoT) devices [66].

In Chapter IV, we first evaluate the performance of cryptographic

algorithms in decentralized systems where parties may have different amounts of

computing resources. Especially, we focus on devices with constrained resources

and demonstrate that a device in a decentralized system may not be able to

perform some cryptographic algorithms. We provide a benchmark of widely

deployed cryptographic algorithms on devices with a different extent of resource

constraints, and show what computing capabilities are required for a device to

perform expensive cryptographic operations.

1.2.2 Ensuring Output Dependability In Individual

Decentralization. Since decentralized systems disperse computation tasks

to multiple independent parties, and these parties could be compromised by

adversaries, the computing results of the system may not be dependable [216]. This

concern is particularly significant for the system of individual decentralization. In

an individual decentralized system, each node is independent and does not share

information with others. If some parties behave maliciously, the entire system is

not dependable since it is impossible for the system to verify the correctness of

the computing results. (A collaborative decentralized system often has built-in

mechanisms to stay resilient against malicious parties, which is a salient feature of
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many blockchain systems.) For example, when relying on independently running

intermediary parties to assist the computing tasks of resource-constrained IoT

devices, if some intermediary parties are not trustworthy, the whole system can

no longer be dependable. When some parties become malicious and deviate from

the protocol governing the operations of the entire decentralized system, it is

possible for malicious parties to damage the system and cause the system fail to

function correctly. Moreover, since each node does not collaborate with others, it

is almost impossible for honest parties to identify malicious parties. Therefore, in

a decentralized system, it is essential that the system has the ability to verify the

correctness of the computation results and identify malicious nodes. To the best of

our knowledge, when dispersing computation tasks to multiple parties, all existing

works assume that all parties must be honest [96] or semi-honest [100]. In other

words, all parties must follow the instructions and protocols honestly in individual

decentralization to guarantee the correctness of the computation results.

In Chapter V, we investigate and address the dependability issue in

individual decentralization when parties are malicious, i.e., parties may deviate

from a predefined protocol. In particular, through the design of an intermediary-

based key exchange protocol, we show that even if some parties in a decentralized

system are compromised or malicious, the entire decentralized system can still

converge to a trustworthy result, thereby improving the dependability of a

decentralized system. In addition, our design also allows users to identify malicious

parties.

1.2.3 Enhancing User Privacy In Collaborative

Decentralization. Finally, the current decentralized systems lack privacy in

collaborative decentralization. As demonstrated by various blockchain-based
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systems, all transaction records on blockchains are visible to the public. Although

many privacy-preserving solutions have been proposed to protect privacy in

blockchain infrastructures [46] and smart contracts [111], they are still not sufficient

and are not applicable to some blockchain-based applications. For example, in

Decentralized Exchanges (DEX) with Automated Market Maker (AMM) [208],

even if privacy-preserving solutions are applied to protect privacy on blockchain

and smart contracts, attackers can still learn the asset type and trade amount of a

transaction.

In Chapter VI, we address the privacy concern in collaborative

decentralization by focusing on the privacy in blockchain infrastructures.

Specifically, we study the privacy in AMM-based DEX protocols, which is one of

the most challenging research problems in blockchain infrastructures. We show

that none of the existing solutions that protect blockchain privacy can provide full

privacy for AMM-based DEX, and we introduce a new mechanism to improve the

privacy of AMM protocols and discuss whether an AMM protocol can have full

privacy in general.

1.3 Dissertation Outline

The rest of this dissertation is organized as follows. In Chapter I, we

provide an introduction of decentralized systems. In Chapter II, we describe the

required security and privacy properties in decentralized systems. In Chapter III,

we investigate the current solutions that address the security and privacy

requirements in decentralized systems. In Chapter IV, we present a benchmark

to evaluate the performance of various cryptographic algorithms on resource-

constrained devices. In Chapter V, we propose an intermediary-based key exchange

protocol to introduce a novel approach to improve the dependability of individual
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decentralization. In Chapter VI, we design a framework for AMM-based DEX

to enhance the privacy of collaborative decentralization. Finally, Chapter VII

concludes the dissertation.
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CHAPTER II

BACKGROUND: SECURITY AND PRIVACY REQUIREMENTS IN

DECENTRALIZED SYSTEMS

In this section, we describe both fundamental security requirements that are

supported as the essential requirements in any computer information system, and

advanced security and privacy properties that are desired in decentralized system.

For each requirement, we also briefly introduce the generic approach to achieve the

requirement.

2.1 Fundamental Security Requirements

Confidentiality, integrity and availability, also known as CIA triad, have

been considered as fundamental security requirements in computer information

systems [181].

– Confidentiality: Only authorized parties can access the sensitive resource.

Security mechanisms such as data encryption, certificate-based authentication

are widely used in computer systems to provide confidentiality.

– Integrity: Only authorized parties can modify the sensitive resource.

To achieve the integrity, authorized parties usually apply some message

authentication schemes such as digital signature and message authentication

code to guarantee that the original resource is not tampered by unauthorized

parties.

– Availability: Any authorized parties should be able to access the sensitive

resource. The availability property should not only ensure that authorized

parties can access the resource in a normal condition, but also in an extreme

condition. For example, when a system is under Denial-of-service (DoS)
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attack, authorized parties can use firewalls to mitigate the attack or have a

failover backup method to provide duplication of the sensitive resource. A

system usually provides an access control mechanism to manage sensitive

resource and countermeasures to detect and mitigate DoS attack.

Decentralized system should not only provide the inherent security requirements

of CIA triad from centralized system, it also requires extra security and privacy

properties as described below.

2.2 Advanced Security Requirements

Decentralized system is different from the traditional computer system in

terms of the distinguishing properties of decentralization. For example, all parties

in a decentralized system must have the same current state of the system. Since

parties could be compromised, the new state of the system should be agreed by all

parties and any updates to the system should be propagated to the whole system.

To securely apply decentralized system in different applications, additional security

properties are required. Here, we investigate several prior research [70, 55, 72, 217,

122, 36], and briefly describe two advanced security requirements in this section and

introduce the privacy requirements in next section 2.3.

2.2.1 Dependability. In a decentralized system, Dependability refers

to the property that parties should have the same system state of computation at

the same time. In other words, the output of a computation task should be correct

and agreed by all parties. For instance, in a decentralized database system, data is

stored on multiple parties to improve availability and fault tolerance. Any updates

to the current database from a party must be propagated to other parties in order

to maintain the Dependability of the database. When users send a SELECT query

to the database, parties should return the same results. Similarly, in a blockchain
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system, all parties maintain the same ledger for transaction history. When a new

transaction occurs, a party propagates the transaction to the whole blockchain

network. Then miners add the transaction to a new block, convince other parties

to accept the block through a consensus algorithm, and attach the block to the

current blockchain. Eventually, the new blockchain achieves dependability across all

parties.

2.2.2 Accountability and tamper-resistance. Accountability and

tamper-resistance refer to the completeness of the system state of computation.

Accountability means that when a party wants to change the system state, it

cannot deny the operation after it commits the change. Tamper-resistance is similar

to integrity but with more features. When a decentralized system propagates a

state change among all parties, attackers should not be able to tamper with the

state change information. Moreover, after the system state is updated, attackers

cannot alter, delete, or tamper with the records of the computation history by

modifying stored records or forging nonexistent records. This property is also

known as immutability. For example, in a blockchain system, a user cannot deny

a transaction it issued, attackers cannot modify the transaction neither before or

after it is added to the blockchain. Decentralized system usually applies digital

signature schemes to guarantee the accountability and tamper-resistance.

2.3 Privacy Requirements

Privacy is another essential property in decentralized system. Especially in

collaborative decentralization, parties need to cooperate with each other to perform

some computations, and communications between parties could reveal sensitive

information such as identity information and private inputs. In decentralized

system, privacy contains two components: anonymity and computation privacy.
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2.3.1 Anonymity. Anonymity refers to the identity privacy that

attackers cannot learn useful information about the real identity of a party during

the computation. A decentralized system usually associates a pseudonym with a

party to provide a certain degree of anonymity. The pseudonym is a random value

such as a public key that is derived from party’s private information (e.g., private

keys or real identity). parties interact with the system by using their pseudonym

without revealing any personal information. However, anonymity increases the

risk that a honest party may exchange information with an attacker who hides its

identity and pretend to be another honest party. Therefore, a decentralized system

needs to launch a prescribed authentication scheme [210] to establish trust among

all honest parties.

However, pseudonym is not sufficient to provide full anonymity for

decentralized system. In a system that a party may have multiple pseudonyms,

by observing the computation history and the behavior of the party, attackers

could link different pseudonyms to the same party. In addition, attackers could

launch de-anonymization inference attacks to abstract the typical behavior of users

and eventually map pseudonyms to the real identities of parties [12]. Therefore,

full anonymity should also ensure that attackers cannot link computations with

pseudonyms.

2.3.2 Computation Privacy. Computation Privacy refers to the

property that computation contents (e.g., private input and output) can only be

accessed by authorized parties. Computation Privacy contains two aspects:

– External privacy. Computation privacy needs to be protected against

public parties that are not involved in the computation, unless a public

party is authorized or parties in the system agree to disclose information.
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Unfortunately, the computation contents in many decentralized systems

are not protected against public parties. For example, in a blockchain

system, transaction records in the blockchain are in plaintext and visible to

public. Attackers can trivially access the whole records and obtain sensitive

information such as transaction amounts and transaction time. Consequently,

attackers could use this transaction information to compromise the anonymity

property [79]. Thus, computation privacy against public is essential to reduce

the risk of linkage of the transactions to the real user identity.

– Internal privacy. While external privacy protects computation privacy

against the public that are not involved in the computation, internal

privacy refers to the privacy of parties that participate in the computation.

Malicious participants could abort the computation prematurely or arbitrarily

deviate from a pre-defined computation protocol and attempt to learn

private inputs of other participants. Thus, computation privacy against

internal computation participants is also required to improve confidentiality,

authenticity, and fairness in the presence of malicious parties and aborting

behavior.

To our best knowledge, computation privacy is still a main challenge in applying

decentralized system. This is mainly due to the fact that in most decentralized

systems, parties need to share information with each other to have a common

agreement on the computation results. For instance, many blockchain systems are

open and transparent. Prior research has shown that lack of computation privacy

in blockchain systems not only leaks transaction details of individuals, but also

breach the fungibility property in economics. In addition, attackers can observe

different transactions and earn profits from manipulating the order of transactions
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(e.g., front-running attack [201]). To ensure computation privacy, recent research

suggests to introduce privacy-preserving approaches in decentralized system which

relies on complex cryptographic primitives such as Multi-party computation [212],

Zero-knowledge proof [83], and homomorphic encryption [82].
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CHAPTER III

THE STATE OF SECURITY AND PRIVACY IN DECENTRALIZED SYSTEM

In this chapter, we study the prior solutions for security and privacy in

decentralized system. We aim to give a holistic overview on what algorithms

and protocols have been focusing on in recent years to address the security

and privacy requirements in decentralized system (Section 2.1). This thesis

focuses on the three missing gaps that are identified in Section 3.4. Specifically,

Section 3.1 surveys standard cryptographic algorithms and protocols that provide

the fundamental security services (i.e., CIA triad) in decentralized system, and

reviews some lightweight cryptographic algorithms and protocols that are designed

for resource-constraint devices. Section 3.2 investigates the consensus mechanisms

for dependability property in decentralized system and discuss the challenges of

achieving dependability in individual decentralization. Section 3.3 exploits the

state-of-art approaches for computation privacy in decentralized system, especially

in collaborative decentralization.

The chapter is partially derived from the following published work: Layered

Network Protocols for Secure Communications in the Internet of Things [93] by Hu,

Z.. I am the leading author of this work and the content of this chapter was written

entirely by me.

3.1 Fundamental Security By Cryptography

As described in Section 2.1, decentralized system inherits some

(i.e.confidentiality, integrity, and availability) from computer information system,

and leverages cryptographic algorithms and protocols to provide these security

requirements. In this section, we describe some cryptographic primitives that

are widely employed in decentralized system to ensure the fundamental security
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requirements. However, one major concern in applying cryptography in a

decentralized system is that cryptographic operations are expensive while some

devices in the system could be resource-constrained. Therefore, we evaluate the

performance of various cryptographic primitives in Chapter IV

3.1.1 Encryption Schemes. Encryption algorithms are used to

provide confidentiality by encoding original data (plaintexts) into ciphertexts

such that only authorized parties can access the original data. Based on the key

type, encryption algorithms can be categorized into symmetric encryption and

asymmetric encryption.

– A symmetric encryption algorithm G is a triplet (KeyGen,Enc,Dec) where

KeyGen creates a secret key k, Enc encrypts a message m with the key k to

generate a ciphertext c, and Dec decrypts c into the original message m with

the same key k. G should satisfy the property that Dec(Enc(m, k), k) = m.

All communication parties in a system must share the key k.

Symmetric encryption can be further categorized into block cipher and

stream cipher. Block cipher operates on a fixed size of block (e.g., 128

bits) for encryption and decryption. Advanced Encryption Standard

(AES) [58] is the most widely employed standardized encryption algorithm

in decentralized system to protect confidentiality. It is very efficient for

software implementation and many systems also support AES acceleration

at hardware level. Stream cipher performs encryption and decryption on each

received bit rather than a block of bits. It is usually used in decentralized

cloud computing [180] when plaintexts have unknown length. ChaCha [35]

has been recognized as the most widely used stream cipher and is suitable for

resource-constrained devices [60].
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– An asymmetric encryption G is also a triplet (KeyGen,Enc,Dec) where

KeyGen creates a key pair (kpub, kpri), Enc encrypts a message m with

the public key kpub to generate a ciphertext c, and Dec decrypts c into the

original message m with the private key kpri. G should satisfy the property

that Dec(Enc(m, kpub), kpri) = m. Each party in a system must share its

public key with other parties and keeps its private key secret.

Asymmetric encryption relies on the hardness of some mathematical problems

such as efficiently factoring a large number. RSA [172] is most popular

standardized asymmetric encryption algorithm in the literature to protect

confidentiality in decentralized system. However, due to the mathematical

group operations in RSA, asymmetric encryption is much more expensive

than symmetric encryption in terms of the running time.

Besides the standardized encryption algorithms, researchers also proposed

many lightweight encryption algorithms to meet requirements for resource-

constrained devices. Lightweight cryptography should have smaller footprint, low

energy consumption, and low computational power [56], but without weakening

the security. Usually lightweight cryptography refers to the trade-offs between

security level, cost, and performance. For example, the Scalable Encryption

Algorithm (SEA) [191] is designed for small embedded applications. The main

advantage of SEA is its key size could be as small as 6 times the processor size

and the “on-the-fly” key derivation. Therefore, SEA scalable and adaptable to

different hardware platforms. TWINE [193] is a lightweight block cipher with block

length of 64 bits and key sizes of 80 and 128 bits. In the hardware implementation,

TWINE has the circuit size of 2K gates while AES has the circuit size of 15K

gates. Evaluations showed that the efficiency of TWINE is more than twice that
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of AES and now TWINE is considered as “to-class” performance in both hardware

and software implementations. Some other lightweight cryptography includes the

Tiny Encryption Algorithm [203], PRESENT Cipher [42], and HIGHT cipher [92].

Unfortunately, lightweight cryptography does not rise too much interest in the

research community and thus is not fully discussed in this work.

3.1.2 Digital Signatures. Digital Signatures takes input of a message

and outputs a “random” string that is associated with the message. A digital

signature scheme consists of three algorithms (KeyGen, Sign, V er), where KeyGen

creates a signing key sk and a verification key vk, Sign takes an input message

m and generates a signature σ with the signing key sk, V er verifies if an input

σ is valid signature of m with the verification key vk. If Sign(sk,m) = σ, then

V er(vk, σ,m) should output true.

Digital signature schemes are usually built on top of public key

cryptography (i.e., asymmetric key cryptography) such as RSA [172] or Elliptic

Curve Cryptography (ECC) systems. A user must keep its signing key sk secret

and announce the verification key vk to public. Therefore, only the user with the

signing key can generate valid signatures and others can verify the user’s signatures

with the verification key. Digital signatures ensure integrity since it is hard to

modify a message and produce a valid signature without knowing the signing key

sk. In addition, digital signatures provide authenticity because everyone can verify

signatures but only the holder of sk should be able to generate valid signatures.

Digital signatures are used to provide integrity and authenticity in

decentralized system. For example, in many blockchain-based cryptocurrency

systems [15, 16], when a party Alice wants to commit a transaction to the

blockchain, she applies Elliptic Curve Digital Signature Scheme (ECDSA) [103] to
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sign the transaction with its signing key. Other parties then use Alice’s verification

key to confirm that the transaction is made by Alice and the content of the

transaction is not tampered by attackers.

3.1.3 Hash Functions. A hash function H : {0, 1}∗ → {0, 1}n

maps an input of arbitrary length to a fixed length output. A cryptographic hash

function usually has two common security properties: collision resistance and

second-preimage resistance. Roughly speaking, collision resistance means that it

is hard to find two different inputs x and x′ such that H(x) = H(x′). Second-

preimage resistance guarantees that when given x, it is hard to find another x′ 6= x

such that H(x) = H(x′). In some scenarios, a cryptographic hash function also

needs to provide pre-image resistance that when given a hash value h, it is hard to

find a pre-image x such that H(x) = h.

The most popular hash algorithm in decentralized system is the Secure

Hash Algorithms (SHA) [69]. The FIPS certified secure hash algorithms in SHA

family are SHA-2 which is based on the Merkle–Damgard construction, and SHA-3

(also known as Keccak) which is based on the sponge construction. Blake2 [23] is

another hash function that is widely used in resource-constrained environments. It

is derived from ChaCha stream cipher and based on the HAIFA construction.

Hash function is essential to ensure security services in decentralized system.

For example, in blockchain system, Bitcoin uses SHA-2 while Ethereum uses

SHA-3 for their consensus algorithms. Also, hash algorithm is usually combined

with digital signature to provide integrity and authenticity. To sign a message, a

user first hashes the message and then provide a signature on the hashed value

instead of the original message, which significantly reduce the workload of signing

a message. Also, in some hash-based data structures such as Merkle hash tree [140]
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and bloom filter [39], users can efficiently check if a given data exists to verify the

availability.

3.2 Dependability By Consensus Mechanisms

In this section, we address the advanced security requirement of

dependability (as described in Section 2.2) in decentralized system. We survey

some state-of-art consensus mechanisms to achieve dependability, and identity

the limitations of the consensus mechanisms in individual decentralization. Then

we advance the current solutions in Chapter V by leveraging a new cryptographic

technique to ensure dependability in individual decentralization.

Dependability is one of the most important security requirements in

decentralized system. Since there are multiple parties that control different

components of a decentralize system and parties in the system may be

compromised by adversaries, it is essential to have a mechanism that coordinates

all parties to ensure they have the same state of the system during computations.

For example, a malicious party may provide malicious messages and deviate from

the consensus algorithm in order to manipulate output results or cause the system

to fail to reach dependability. The failure of reaching dependability is referred as

the Byzantine Generals’ Problem. Any updates and changes to the system state

should be accepted by most, if not all parties, otherwise the updates and changes

should be ignored and aborted.

Decentralized system introduces consensus mechanisms to achieve

dependability of the system state in the presence of malicious parties. In general,

a decentralized system applies a consensus algorithm to validate computations and

determine if a state change should be committed to the system. In this section, we

review various consensus algorithms in the literature, especially in collaborative
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decentralization since to our best knowledge, ensuring dependability in individual

decentralization is still a main challenge.

3.2.1 Proof of Work. Proof of Work (PoW) is one of the most

widely employed consensus algorithms in decentralized system. It was first

introduced by Satoshi Nakamoto in the Bitcoin system [146]. The main idea of

PoW is that, before committing an update to a decentralized system, parties

must present a proof-of-work related to the update. Each party tries to convince

other parties that it has done a certain amount of work by competitively solving

a computationally intensive mathematical puzzle, and the winner determines the

computation results and the next system state. In particular, the system is given a

target hash value, each party in the system randomly picks a nonce and calculates

the hash value of the combination of the nonce, previous system state, and current

computation process. If this hash value is less than the target hash value, then the

nonce is the correct solution to this hash puzzle. Only the party that first finds the

correction solution is the winner, it then broadcasts the solution and updates to

the entire system. After receiving the broadcast, other parties will abort solving

the current hash puzzle and verify if the solution meets the requirement of the

target hash value. If so, other parties accept the solution, update the system state

accordingly, and start the competition for the next hash puzzle. The security of

PoW is from the fact that solving hash puzzles are time intensive but verifying

a puzzle solution is easy and efficient. Many blockchain-based systems such as

Bitcoin, Dogecoin, and Monero are based on PoW.

Although PoW algorithm is effective in achieving dependability in

decentralized system, it also suffers from some limitations. First of all, PoW

consumes immense amount of electric energy, but has no other advantage except
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for finding solutions for some hash puzzles. Second, PoW is extremely inefficient

with low throughput and decentralization. For example, Bitcoin system can

only process about ten transactions per second and it takes about ten minutes

to solve a hash puzzle [15, 174]. The third drawback of PoW is the fairness and

security. Since PoW relies on finding solutions of hash puzzles, parties that have

more computational capacities would have higher chance to successfully find the

solutions. Also, when a party owns more than 50% of the system’s computing

power, it may have the ability to control the whole system. The party would

be able to manipulate computation results, reverse system states, or even alter

previous system states. This is referred to as the 51% attack [18].

To address these problems, researchers have conducted different

improvements to PoW and proposed new PoW algorithms that originate from

PoW. Primecoin [109] advantages the search of nonce in hash puzzle into finding

large prime numbers, which could benefit both industry security and academia

research. The Greedy Heaviest Observed Subtree (GHOST) protocol [204], once

used in Ethereum, improves the energy consumption by using heaviest subtree

instead of longest chain in Bitcoin. Also, Kara et al. [106] introduces Compute

and Wait in PoW (CW-PoW) which uses several proof rounds rather than single

round proof in the standard PoW. Their protocol significantly reduce the energy

consumption and robust against various attacks. Komodo [123] proposes delayed

proof of work (dPoW) which introduces a second blockchain to secure the main

chain. dPoW is resilient against the 51% attack since an attacker must control both

the main chain and the second chain.

3.2.2 Proof of Stake. Proof of State (PoS) is an alternative approach

to achieve dependability in decentralized system. It was first introduced in
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Peercoin [110] as a replacement of PoW algorithm to eliminate the immense

amount of energy consumption. In PoS, a party needs first prove that it owns a

certain amount of economic stake in a system. Then it locks up its stake in the

system to become a validator. The reason to lock up stake is to ensure the party

behave honestly during computations. Once it is cheating, the system will take

away its stake as penalties. To update the system state, each validator has a chance

to be selected as the one to validate computations and propose the next system

state. In addition, a set of validators will also be selected by the system to verify

the proposed system state. The system accepts the proposed new state only if

majority validators (e.g., more than 50%) in the set vote yes for it. In general, the

probability that a validator to be selected by the system is proportional to its stake

value. A party with more stake value will have a higher change to be selected.

The elimination of solving hash puzzles bring PoS many advantages.

First, PoS does not require parties to solve computation intensive puzzles, which

significantly reduces the workload on each party and improves the energy efficient.

Second, PoS has a better resiliency against attacks. For example, 51% attack

becomes much more difficult since it is economically infeasible for an adversary

to control more than 50% economic stake in the whole system. In addition, when a

party becomes malicious and launches attacks to cause the system fail, it will lose

its stake and be banned by the system in the future. This eventually reduce the

motivations of parties to become malicious.

There are efforts to further improve the efficiency and security of PoS.

Delegated proof of stake (DPoS) [121] has been recognized as the most influential

variant of PoS. DPoS has a voting process for small stake holders to select delegates

and stake holders entrust the delegates with their own stake. Then multiple
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delegates form a consensus group to decide the next system state. Usually,

delegates in the consensus group take turns to validate computations and propose

new system state. DPoS is more efficient and has a higher throughput since it

can control the size of the consensus group and reduces the messaging overhead.

However, a system with DPoS may tend toward centralization, especially when

the size of consensus group is small. Many blockchain-based cryptocurrency

systems such as BitShares [184], Cosmos [117], and Lisk [1] are based on DPoS.

Other improvements such as Ouroboros [108] formalizes the security definition

in PoS algorithms and provides new security properties such as persistence and

liveness. It also presents a novel reward mechanism for the incentive of parties.

Reijsbergen et al. [169] proposes the Large-scale Known-committee Stake-based

Agreement (LaKSA) which leverages a lightweight committee voting process to

reduce interactions between parties.

PoW and PoS are widely deployed in decentralized system to achieve

dependability, especially for permissionless system in which anyone can join the

system without permission. There are also other consensus algorithms in the

literature for permissionless decentralized system. For example, Proof of Authority,

Proof of Importance, Proof of Believability, etc. We refer readers to some survey

work [200, 152, 74, 41, 214] of consensus algorithms for more information.

3.2.3 Byzantine Fault Tolerant Algorithms. While a

permissionless decentralized system allows anyone to join and leave the system

without permission, a permissioned decentralized system has relatively fixed

parties that are determined in advance. However, similar to the permissionless

decentralized system, parties in the system could still be compromised and become

malicious during a computation task. Malicious parties could arbitrary deviate
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from the computation, for instance, by providing malicious input or even aborting

prematurely, and eventually cause the system fail to reach the dependability.

The failure of reaching dependability due to malicious parties is referred as the

Byzantine Generals’ Problem (BGP) [158]. Since parties are whitelisted and

identified in the permissioned decentralized system, it usually does not require

expensive consensus mechanisms such as PoW and PoS in the permissionless

system.

Byzantine Fault Tolerant (BFT) refers to the failure tolerance capability

of a decentralized system against BGP. BFT algorithms allow the system to reach

dependability even in the presence of certain malicious parties when majority of

the parties in the system are honest. Note that permissionless decentralized system

prevents BGP from happening by applying consensus algorithms such as PoW and

PoS. However, these solutions are not perfect due to their inefficiency and high

communication overhead. Here we review some BFT algorithms that are used in

permissioned decentralized system.

Many prior works have been focusing on BFT algorithms. Pease et al. [158]

introduce the dependability problem in decentralized system and propose the

first solution to BGP in 1980. However, the time complexity of the solution is

exponential to the number of parties in the system, thereby it is impractical in

the real word usage. To improve the efficiency, Castro et al. [51] present Practical

Byzantine Fault Tolerance (PBFT) which significantly reduces the time complexity

from exponential to polynomial. For a decentralized system with PBFT, it can

tolerate f < n/3 malicious nodes where n is the total number of parties in the

system. Because of the high efficiency, PBFT is a widely used consensus algorithm

in many systems such as Hyperledger [11].

26



The Ripple Protocol consensus algorithm (RPCA) [185] is another famous

BFT consensus algorithm. The major property that differentiates RPCA from

other BFT algorithms is that RPCA assumes a small group of trusted parties

(called validators) while other BFT algorithms has a large number of parties

which could be malicious. A system with RPCA maintains a unique node list

(UNL) for trusted validators and validators on the list vote for a set of system

state changes. When there are more than 80 percent validators agree on the set

changes, the system updates the state according to the set of changes. Otherwise,

validators modify the proposed set to align it with other validators until it reaches

the threshold of 80 percent. RPCA is very efficient because of the small group of

trusted validators.

BFT algorithms also have some drawbacks for the usage in decentralized

systems. Most BFT algorithms assume that there are majority number of honest

parties in a system. For example, RPCA assumes more than two thirds of honest

parties and RPCA assumes a threshold of more than 80 percent. In addition, these

solutions do not compatible with individual decentralization in which parties do not

communicate with each other. Consider a scenario that parties in a system receive

some private inputs and start to perform some computations on their private

inputs respectively. Then the system needs to aggregate all outputs to agree on

a single value. However, in this scenario, parties do not want to reveal their outputs

since the outputs may contain sensitive information about their private inputs.

These drawbacks limit the usage of decentralized system in many applications.

In Chapter V, we discuss the requirement of majority honesty and the consensus

algorithm for individual decentralization.
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3.3 Privacy By Privacy Preservation Techniques

In this section, we investigate the previous solutions that address the privacy

issue in decentralized system. We survey several advanced cryptographic primitives

that could be applied to provide privacy, and show shat some decentralized systems

still do not have privacy due to their basic design. In Chapter VI, we present a new

security framework to further the privacy preservation techniques in decentralized

system.

Privacy or computation privacy in a decentralized system refers to the

property that parties in the system can perform computations without leaking

any useful information to other unauthorized parties. A privacy-preserving

decentralized system should protect both (1) external privacy which ensures privacy

against public parties that are not involved in computations and (2) internal

privacy which ensures privacy against participating parties that are involved in

computations. However, privacy is still a chief concern in decentralized system,

especially in collaborative decentralization. This is because parties in collaborative

decentralization usually need to share messages with other parties in order to

collaboratively perform a computation task and agree on the same system state.

The shared messages may contain sensitive information about parties’ private

inputs or real identities.

Basic cryptographic algorithms that we described in section 3.1 to provide

fundamental security services are not sufficient to provide privacy in decentralized

system. In this section, we review some advanced cryptographic primitives and

privacy-preserving approaches that have been recently studied to achieve external

privacy and internal privacy in decentralized system.
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3.3.1 Mixing. Mixing service was first introduced by Chaum [53] in

order to anonymize email usage. Its main idea is to let a message sender encrypt

its message with an intermediary’s key and send the encrypted message to the

intermediary. The intermediary then decrypts the message but delays sending it to

the receiver. Instead, the intermediary aggregates enough messages from different

senders and then send them at the same time or in a randomized order. With

enough input messages to the intermediary and the delay of messages, it is hard for

attackers to link the sender and receiver with the message (known as unlinkability).

Similarly, in decentralized system such as blockchain-based cryptocurrency systems,

users can aggregate multiple transactions into one transaction to obfuscate the

transaction history, and eventually reduce the risk of de-anonymization attack.

Mixing technique is used in many decentralized systems such as CoinJoin [138],

Mixcoin [43], and CoinShuffle [175].

Although mixing technique improves the anonymity property, it suffers from

some three drawbacks. The main drawback of mixing is that the intermediary

becomes the single point of failure. When it becomes malicious, the intermediary

could compromise privacy and steal assets from users. Also, the delay of messages

reduces the efficiency of the system. In time-sensitive systems, this drawback would

become the major bottleneck. Finally, the intermediary usually charges for a fairly

high fees to provide the mixing services, which increases the cost of users.

3.3.2 Ring Signature. Ring signature [173] is an advanced digital

signature scheme that enhances anonymity in decentralized system. It is a special

type of group signature [52] through which a party could anonymously sign a

message on behalf of a group of parties by using its private key. Others with the

group’s public key can validate the generated signature without knowing which
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party in the group has produced the signature. Differ from the group signature,

ring signature achieves full anonymity since it does not require a trusted group

manager to establish the group, add new group members, or handle disputes to

reveal original signer.

Ring signature has been applied in many decentralized system to provide

anonymity and unlinkability. CryptoNote [197] is the first one that introduces

ring signature to the blockchain system. In CryptoNote, parties sign and verify

transactions with a ring signature, and attacker can only learn that the signer is

from a specific group but without knowing the real identity of who initialize the

transaction. Also, for each transaction, a party’s (sender) one-time public key is

derived from its own randomness and another party’s (receiver) one-time address.

This ensures that receiver address is unique such that attackers cannot determine

whether two transactions are sent to the same party. However, CryptoNote is

vulnerable to transaction amount-related attacks. Attackers can analyze the

transaction details and infer useful information about parties.

Inspired by CryptoNote, other solutions have been proposed to improve the

security and privacy based on similar ideas. One improvement to CryptoNote is

the Ring Confidential Transactions (RingCT) [149] approach which is proposed

by Noether in 2016. RingCT employs Confidential Transaction [137] to hide

transaction amounts with a commitment scheme [104]. Here a commitment scheme

is a cryptographic primitive that allows one party to hide a secret value v at

the beginning and open the value later to other parties. At the meantime, the

party cannot lie about v during the opening. The cryptocurrency system Monero

implements this approach to use RingCT to hide transaction amounts and ring

signature to break the linkability between transactions and parties. However, a
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recent study [145] about Monero identifies some weaknesses that could advantage

attackers to deduce private inputs.

3.3.3 Zero-Knowledge Proof. Zero-Knowledge Proof (ZKP) [84, 95]

is a powerful cryptographic protocol that ensures privacy in decentralized system.

Roughly speaking, ZKP allows one party (the prover) to convince another party

(the verifier) to accept some statement without revealing any useful information

except the statement is true. A secure ZKP should satisfy three fundamental

properties:

– Completeness. If a statement is true, then the receiver accepts the statement

with a overwhelming probability.

– Soundness. If a statement is false, then no cheating prover can convince the

verifier that the statement is true, except with negligible probability.

– Zero knowledge. After the proof, the verifier should learn nothing except that

the statement is true.

Although ZKP is a powerful tool to provide privacy service, one main drawback is

that it requires interactions between the prover and the verifier, which increases the

communication cost to the system.

An enhanced ZKP is the non-interactive zero-knowledge proof (NIZK) [40]

which eliminates the communication cost between the prover and the verifier. In

NIZK, the prover and the verifier do not require to communicate with each other,

but only need to share a common reference string. Moreover, NIZK allows the

verifier to validate a statement anonymously and asynchronously (i.e., prover and

verifier do not need to be online at the same time).
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Many decentralized systems have adopted ZKP and NIZK for privacy

protection. Zerocoin [141] introduced zero-knowledge proofs of set membership

to provide anonymity. The prover first commits to its private input (i.e., money

it owns) with a commitment scheme and announce the committed value to the

system. Note that a secure commitment scheme does not leak any information

about the private input. Later, the prover accumulates multiple commitments

from the system history and convince others it has committed to one of these

commitments with ZKP, thereby hides the origin of the private input. Also, in

some blockchain-based cryptocurrency systems [111], users can encrypt all state

information (e.g.account balance or transaction amounts) and store encrypted

state history on the blockchain. When a party transfers money to some other

party, it applies ZKP or NIZK to convince others that it has sufficient balance to

successfully perform the transfer without leaking any other information about the

account balance.

An even more powerful variant of NIZK is Zero-Knowledge Succinct Non-

Interactive Argument of Knowledge (zk-SNARK) [81]. Roughly speaking, zk-

SNARK allows a verifier to verify the output of a computation task (i.e.evaluation

of a polynomial) is correct without actually computing it. Its main idea is to

convert a proof statement into the polynomial knowledge proof of quadratic span

programs (QSP) or quadratic arithmetic programs (QAP), and then transfers

the evaluation of polynomials to the evaluation of bilinear pairings. Therefore,

rather than evaluating polynomials, the verification process only needs to check

the equivalence of bilinear pairings. Zk-SNARK significantly reduces the proof size

and the verification time.
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One of the most known applications that adopts zk-SNARK is

Zerocash [183]. To provide highest level of anonymity and transaction privacy,

To transfer money, a user encrypts the transaction details and provide a proof to

convince others that the transaction is valid. Instead of verifying all transaction

details, verifiers only need to check the “argument” that is derived from zk-

SNARK.

There are two main drawbacks to apply NIZK or zk-SNARK in

decentralized system. The first one is that all NIZK protocols, including zk-

SNARK, require a setup phase to share a common reference string between provers

and verifiers. This setup phase must be reliable and fully trusted by everyone.

Secondly, NIZK and zk-SNARK consume a huge amount of computing resources of

a system. Therefore, in cryptocurrency systems, provers usually need to pay extra

fees to generate proofs for their transactions.

3.3.4 Multi-Party Computation. Multi-party computation

(MPC) hides computation details to protect privacy in decentralized system. It

was first introduced by Andrew Yao [212, 213] for his Millionaires’ problem. In

general, MPC allows different parties in a system to jointly compute a function

without revealing additional information about their private inputs beyond what

is deducible from the computation outputs. Since decentralized system performs

computation tasks in a distributed manner, it makes MPC a perfect solution to

ensure privacy of inputs and the correctness of outputs.

In recent years, many decentralized systems have employed MPC to protect

computation privacy. CoinParty [219] and Enigma [220] split a private input into

different shares with a secret sharing scheme such that each share do not leak

information about the private input. Then the system performs computations
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on all shares without leaking any information about the original private input.

HAWK [111] suggests to use MPC to generate common reference string for zk-

SNARK, thereby minimizes the trust necessary in the zk-SNARK setup phase.

The staggering growth of decentralized exchange (DEX) markets also draws

researchers’ interests in MPC. In contrast to centralized exchange that a trusted

authority (e.g., banks) must exist, DEX allows parties to exchange assets without

the assistance from the authority. In the traditional order-book-based DEX service,

it requires the presence of buyers and sellers to announce their order prices, and

then matches all buy and sell orders with some matching algorithms to reach

trading agreements. Knowing order prices could advantage adversaries to launch

associated attacks such as front-running attack [29]. In order to protect the privacy

of the order prices, a DEX system could leverage MPC to match buy orders and

sell orders [30, 85], but does not leak any information about the price of these

orders.

3.4 Missing Gaps In Decentralized System Security and Privacy

The broad applications of decentralized systems have motivated vast prior

work to address the security and privacy issues in decentralized systems. Most

existing work rely on cryptographic algorithms and cryptographic protocols to

provide fundamental security properties. These algorithms and protocols have

been proven to be secure to protect decentralized systems. However, existing

solutions fall short when: (1) parties in a decentralized system are heterogeneous.

parties may have limited computing resources such as CPU and memory such

that they may fail to perform necessary operations (e.g., expensive cryptographic

operations) to protect their security [86]. Thus, it is important for parties to realize

their computational capabilities when performing cryptographic operations. (2)
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parties are not allowed to communication with each other. A decentralized system

requires a consensus mechanism to ensure the dependability of computation results

such that all parties have an agreement of the results [185, 151, 206]. However,

in individual decentralization, parties are independently perform their own tasks

without communication, thereby it is hard to ensure the correctness of computation

results and achieve a common agreement for all parties. (3) parties have to share

sensitive information with each other. In collaborative decentralization, in order

to cooperatively ensure the correctness of the final results of the computations,

each party may have to share sensitive information with other parties and thus

threats the privacy of the party. For example, attackers can leverage the shared

information to launch associated attacks and learn useful information of parties’

real identities, or even cause the parties to loss their properties and assets.
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CHAPTER IV

CRYPTOGRAPHY: A BENCHMARK STUDY OF CRYPTOGRAPHIC

CAPABILITIES OF RESOURCE-CONSTRAINED DEVICES

In this chapter, we study the performance of various basic cryptographic

algorithms on resource-constrained devices in decentralized system. Specifically, we

focus on the algorithms that are described in Section 3.1 to provide fundamental

security requirements in decentralized systems.

While resource-constrained devices such as the Internet of Things (IoT) are

widely deployed in decentralized systems to provide various services [86, 214, 180],

a major concern to apply cryptography in a decentralized system is that

cryptographic operations may require a significant amount of resources that not

all devices in the decentralized system could support, especially for devices with

constrained resources such as the Internet of Things (IoT).

Therefore, it is important to have a comprehensive study of the performance

of various cryptographic algorithms on resource-constrained devices, and

realize the computing capabilities of devices in the system when performing

cryptographic operations. Knowing the capabilities and limitations of different

resource-constrained devices would help parties to choose the most appropriate

cryptographic algorithms to efficiently protect the fundamental security

requirements for their devices.

We present a benchmark study of different cryptographic algorithms

such as symmetric cryptography (both block and stream ciphers), asymmetric

cryptography, and hash functions over four representative types of resource-

constrained development boards: (SAML11 Xplained Pro, SAMR21 Xplained

Pro, Arduino Due, and Arduino Nano 33 BLE. These devices has different levels
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of resource limitations, where every device is equipped with the same IoT-friendly

operating system and consistent implementations of cryptographic primitives.

We evaluated the running time, firmware usage, memory usage, and energy

consumption with different security levels. Our results show that all selected

symmetric ciphers and hash functions perform well even on extremely resource-

constrained devices. For asymmetric ciphers, RSA fails on all chosen devices while

elliptic-curve cryptography (ECC) only fails on SAML11 Xplained Pro and is

affordable on the other three devices.

The chapter is derived in part from the following unpublished work: A

Benchmark Study of Cryptographic Capabilities of the Internet of Things by Hu,

Z.; Li, J.; Thompson, K.; Wilson, C.. The content of this chapter is focused on

cryptography in decentralized system, of which I am the primary contributor, and

was responsible for conducting all of the presented analyses.

4.1 Introduction

The Internet of Things (IoT) has become increasingly popular and

ubiquitous. IoT has proliferated in smart home, smart hospital, smart car, smart

city, and many other environments. According to the study in [189], the number

of connected IoT devices grows to 14.4 billion by the end of 2022 and will be more

than 27 billion by 2025. One salient feature of IoT devices is their heterogeneity.

Depending on where IoT devices are used, IoT devices can vary drastically in terms

of computational capability, memory size, network bandwidth, mobility, battery

capacity, and so on.

On the other hand, regardless where IoT devices are used and how different

they may be, they all share common security concerns. For example, when IoT

devices need to securely communicate with each other such as exchanging medical
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data from a pacemaker, transmitting personal data from a webcam, or reporting

the aggregated state of a nuclear reactor [179], malicious attackers may compromise

the confidentiality and integrity of these messages and cause serious consequences.

To protect the confidentiality and integrity of IoT device communications,

IoT devices (or more specifically, the IoT applications running on IoT devices)

need to support cryptographic primitives, mainly encryption algorithms and hash

functions. For example, to protect the confidentiality of their communication, two

IoT devices may employ a symmetric key cryptography (SKC)-based encryption

algorithm, which uses a secret key previously shared only between the two devices,

or an public key cryptography (PKC)-based encryption algorithm, which does not

require a shared secret key.

Unfortunately, applying cryptographic algorithms to protect data in

IoT environment is still a main challenge. A survey in 2020 [148] showed that

about 98% of all IoT device traffic is unencrypted, thus can be easily attacked

by adversaries. While many IoT devices are resource constrained in terms of

computing power, memory size, network bandwidth, and battery capacity, a

cryptographic primitive can require a significant amount of resources. With

much less resources than a device in a traditional wired network, an average

IoT device can easily struggle with carrying out the function of a cryptographic

primitive. In addition, due to the vast hetergeneity of IoT devices, IoT application

developers can struggle in choosing appropriate cryptographic primitives for a

device. Some may assume that their IoT devices are extremely resource-constrained

and thus choose to not execute any encryption scheme; some may overestimate the

computational capabilities of their IoT devices and deploy cryptographic primitives

that cannot even execute on their devices. Both lead to security vulnerabilities.
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Also, inappropriate cryptographic algorithms could significantly affect the

performance of an IoT device and cause the device to function abnormally.

Therefore, applying the right cryptographic algorithms is essential to securing IoT

devices and their communications.

In order to help IoT researchers and developers understand the

cryptographic capabilities of their IoT devices and choose appropriate

cryptographic algorithms for them, it is complelling to conduct a benchmark study

of the performance of widely deployed cryptographic algorithms for various IoT

devices. In addition, a comprehensive study of cryptographic algorithms could help

developers improve the existing implementations of these algorithms.

There are a number of existing works that have evaluated the performance

of cryptographic algorithms on IoT devices, but they suffer from various drawbacks

and limitations. One of the main drawbacks is that many evaluations are conducted

alone without a supporting operating system, or over an operating system that

is not suitable for IoT devices. Since an IoT device is usually supported by an

operating system [80] for various applications, and cryptographic algorithms

are usually implemented in an operating system to provide security services, it

is indispensable to consider the impact of operating systems when evaluating

the performance of cryptographic algorithms. Another main drawback in the

existing work is that the implementations of the tested cryptographic algorithms

are inconsistent, making experimental results not comparable. For example,

the implementations could be from different software packages with different

configurations and standards [160]. In addition, some of the implementations

are proprietary to the original algorithm designers and not endorsed by security

organizations or standardization bodies. Moreover, to the best of our knowledge,
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none of the existing works investigated the implementation details in their analysis.

For example, to evaluate the stack usage, these works only measure the peak stack

usage during the algorithm executions without investigating which function in the

implementation leads to the peak usage. However, identifying functions that lead

to the maximum stack usage is critical for developers to avoid stack overflows when

deploying their devices. Finally, some of the evaluations are only performed on a

single device, or devices that are not resource-constrained, and therefore cannot

accurately reflect the performance on many general-purpose IoT devices.

In this work we present a comprehensive study of cryptographic algorithms

and conduct thorough experimental evaluations to analyze the cryptographic

capabilities of IoT devices. All of our evaluations are performed on the IoT-friendly

operating system RIOT OS with wolfCrypt, which is a lightweight cryptography

library certified by Federal Information Processing Standard (FIPS) 140-2 [150].

We choose widely deployed SKC-based encryption schemes, hash functions, and

PKC-based encryption schemes from existing network security protocols in IoT

environments, and measure their running time, firmware usage, stack usage, and

energy consumption on four IoT development boards: SAML11 Xplained Pro

(SAML11), SAMR21 Xplained Pro (SAMR21), Arduino Due (Due), and Arduino

Nano 33 BLE (Nano). These devices are highly resource-constrained (with flash

memory ≤ 1 MB and RAM size ≤ 256 KB) and have different range of resource

capacity. Also, our evaluation provides an implementation-level analysis of firmware

usage and stack usage.

4.2 Related Work

A comprehensive study of the performance of cryptographic algorithms on

resource-constrained devices is essential for researchers and developers to offer
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security services when deploying their devices [148]. Surveys in [147, 178, 192,

168, 196] compared the performance of lightweight cryptographic algorithms

and presented comparative analysis in terms of different metrics. However,

these surveys focused more on the collection of existing algorithms instead of

experimental evaluations. They only provided qualitative comparisons and their

experimental evaluations lack implementation details such as tested devices,

cryptographic libraries, and operating systems. Below we focus on previous studies

that provided quantitative comparisons of cryptographic algorithms on resource-

constrained devices.

Since SKC is usually more efficient than PKC and more preferred in

resource-constrained environment, most existing evaluations focused on SKC-based

algorithms such as block ciphers and stream ciphers. For example, Barahtian et al.

[26] showed the running time of AES, TEA, and Speck across 8-bit, 16-bit and

32-bit microcontrollers. Panahi et al. [155] extended the number of tested block

ciphers to 10 lightweight algorithms. This work evaluated memory usage (RAM

and ROM), energy consumption, throughput, and execution time on Raspberry Pi

3 and Arduino Mega 2560. In addition, De Santis et al. [61] studied ChaCha20

stream cipher and Poly1305 authenticator against block ciphers of AES-CCM

and AES-GCM on different ARM Cortex microcontrollers. They showed that

ChaCha20-Poly1305 runs faster than AES-CCM and AES-GCM. However, in these

evaluations the implementation details of the tested algorithms are missing and

therefore cannot be replicated in practice.

In certain evaluations researchers introduced existing cryptographic libraries

or implementations by the original cipher designers. Hyncica et al. [98] evaluated

15 symmetric block ciphers across 3 different microcontroller platforms against
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the LibTomCrypt library. However, the ECB block mode used in their evaluation

is not secure since the ECB mode lacks diffusion and cannot hide data patterns.

Also, the library was not originally designed for resource-constrained devices. Kane

et al. [105] extended the evaluation for different block modes in AES with the

Arduino Cryptography Library. In addition, this work measured the running time,

energy consumption, RAM and flash usage of AES, ChaCha and Acorn across

three low-powered microcontroller devices. The experimental results showed that

ChaCha has a better performance than AES. Similarly, Dinu et al. [63] took the

implementations from the original cipher designers and presented a framework

to evaluate the execution time, RAM footprint, and binary code size of 19 block

ciphers across AVR, MSP, and ARM microcontroller platforms. The results

showed that Chaskey cipher outperforms other block ciphers on all three platforms.

However, a major drawback in these evaluations is that they did not consider the

effect of the underlying operating system and in some cases the evaluations are

performed even without an operating system.

Since an operating system is a vital component to support cryptographic

algorithms on resource-constrained devices, it is essential to address the overhead

of operating systems when comparing the performance of cryptographic algorithms.

Fotovvat et al. [75] analyzed 32 SKC-based encryption algorithms on embedded

Linux OS. However, the employed operating system is not IoT oriented, and

the chosen devices (e.g.Raspberry Pi 3) have enough resources to perform

cryptographic operations. Therefore, their comparisons are not applicable to

many extremely resource-constrained devices (e.g.devices with 48MHz CPU and

32kb RAM). Similarly, Saraiva et al. [182] also analyzed the impact of operating

systems on SKC-based algorithms. They evaluated the performance of AES, RC6,
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Twofish, SPECK128, LEA, and ChaCha20-Poly1305 in terms of execution times,

throughput, and power consumption on Samsung Galaxy Core Prime and Xiaomi

Redmi Note 3 with Android system. The chosen devices are also not resource-

constrained and the employed operating system is not IoT oriented.

Pereira et al. [160] evaluated popular symmetric primitives, including hash

functions and message authentication code on extremely resource-constrained

devices. Their evaluation also addressed the influence of operating system on

microcontrollers. In particular, they conducted evaluations on the TelosB device

with the TinyOS and ContikiOS operating systems, and the Intel Edison device

with the Yocto operating system. For different input message size, this work

measured the running time and energy consumption of the encryption and

decryption operation for the tested symmetric ciphers, and init/update/final

operation for the tested message authentication code (MAC) and hash algorithms.

However, the chosen operating systems for the evaluation are not consistent and do

not fully support C or C++ implementation and modularity. Thus, the results may

not precisely reflect the real performance of the selected cryptographic primitives.

In addition, most implementations are from the original authors of the algorithms,

and are not standardized or certified by authorized organizations. Therefore,

the performance is tested under inconsistent circumstances such as different

programming languages or incompatible input parameters. Finally, the work also

skipped PKC-based algorithms, especially for ECC which is widely deployed on

many resource-constrained devices because of its efficiency and useful features.

Various existing work studied the feasibility of running PKC-based

algorithms on resource-constrained devices, even though they are more resource

intensive than SKC-based algorithms. For example, Pry and Lomotey [166]
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measured the mobile energy consumption of RSA to encrypt and decrypt medical

images, and similar work in [156, 10, 3] analyzed the running time and energy

consumption of RSA for various key sizes and compared the RSA performance

with symmetric ciphers such as AES and DES. Fujdiak et al. [77] evaluated the

performance of Elliptic Curve Diffie-Hellman (ECDH) key exchange protocol

on MSP430f5438A microcontroller and tested its running speed and memory

requirements with OpenSSL libraries. Since ECDH uses ECC for key exchange,

this work has shown that it is possible to run ECC on resource-constrained devices

with affordable speed and memory consumption. However, the evaluation did not

address the energy consumption or the influence of operating systems. Similarly,

Dzurenda et al. [68] analyzed the performance of basic arithmetic operations

used in ECC on different smart cards. However, the smart cards in this evaluation

study have different versions of operating systems and implementations, making the

evaluations inconsistent.

4.3 Testing Environment

In this section, we describe the test environment in our experiments,

including the selected cryptographic algorithms, hardware, and software. We first

give a brief overview of the cryptographic primitives that we choose to evaluate

in this work. Then we illustrate the selected microcontroller devices with limited

range of resources along with their technical specifications. Finally, we describe the

main operating system in our evaluation as well as the cryptography library for

implementations.

4.3.1 Cryptographic Primitives. The cryptographic Primitives we

choose to test are widely deployed in standardized secure networking protocols to

protect confidentiality and integrity. The chosen primitives can be categorized into
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three types: symmetric key encryption schemes, hash functions, and asymmetric

key encryption schemes.

4.3.1.1 SKC-based Ciphers. One main class in symmetric key

encryption schemes is the block cipher. Data Encryption Standard (DES) [37] was

first invented in 1974 and was adopted as a new cryptographic algorithm which

could be used for a variety of applications. DES is a symmetric block cipher using

a Feistel network for encryption and decryption. It encrypts 64 bit long blocks and

uses a 56 bit long key. Due to its short key size, DES is vulnerable to brute-force

attack. To achieve a more secure encryption, an alternative DES, denoted as triple

DES (3DES or TDES), is applied in practical use. It consists of three plain DES

encryptions with three keys: y = DESk3(DESk2(DESk1(x))). NIST [27] implies the

security level for 3DES is 280, thereby should not be used to protect data that has

a large size of blocks. Since IoT messages are relatively small, 3DES is still used

in some IoT environments because of its compatibility, flexibility and hardware

efficiency.

Advanced Encryption Standard (AES) [67] was first introduced by Vincent

Rijmen and Joan Daemen in 2001. AES is a symmetric block cipher that uses

the fixed block size of 128 bits and supports key sizes of 128, 192, and 256 bits

for different security levels. In contrast to other block ciphers such as DES, AES

does not use a Feistel network. In addition, in the encryption process, the number

of encryption rounds with respect to the three key sizes are 10, 12, and 14 rounds.

For the security of AES, to our best knowledge, there is currently no analytical

attack which has a complexity less than a brute-force attack against AES with full

encryption rounds.
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Camellia [17] is a symmetric block cipher which is similar to AES. The

cipher also works on 128-bit block and supports key sizes of 128, 192, 256 bits. But

the encryption rounds are 18, 24, 24 respectively and based on Feistel structure.

Camellia provides the same security levels as AES and supported by Transport

Layer Security (TLS) to provide secure communication in different scenarios (e.g.,

low-power smart cards). For its security, to our best knowledge, there is no known

succeed and practical attacks that against full round Camellia encryption.

A special type of cipher in symmetric block cipher is the Authenticated

Encryption with Associated Data (AEAD). Traditionally, in order to guarantee

the data authenticity, users combine a symmetric block cipher with a message

authentication code (MAC). For example, a user first encrypts a message first and

then uses the hash MAC algorithm to generate the MAC (Encrypt-then-MAC). In

contrast to the standard symmetric block ciphers that only protect confidentiality,

AEAD protects both confidentiality and data authenticity without a MAC scheme.

In this work, we consider two AEAD schemes for block ciphers: AES-CCM and

AES-GCM which are both supported in TLS. Similar to AES, AES-CCM and

AES-GCM use a key size of 128, 192 or 256 bits with block size of 128 bits. Note

that in RFC 8446 [170], TLS 1.3 only defines AES 128 GCM, AES 256 GCM, and

AES 128 CCM for AEAD.

Another class in symmetric key encryption schemes is the stream ciphers.

Rabbit [198] is a lightweight stream cipher in the ECRYPT Stream Cipher Project

(eSTREAM). It is designed for software implementation with high performance and

thus suggested for use in wireless sensor networks [195]. Technically, Rabbit takes

a 128-bit secret key and a 64-bit initialization vector (IV) as inputs and outputs a

key stream which is used to encrypt up to 264 blocks of plaintext.
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ChaCha20 [33] is another stream cipher and it is a variant of the Salsa20

family which is also selected into the eSTREAM portfolio. ChaCha20 is usually

combined with Poly1305 authenticator to built into an AEAD algorithm [120] in

TLS. In order to provide 256-bit security level, ChaCha20-Poly1305 takes 256-bit

key and 96-bit nonce as inputs and outputs the corresponding ciphertext with a

128-bit tag for data authenticity. Santis et al. [62] have shown that ChaCha20-

Poly1305 is very efficient in embedded IoT applications (even for TLS secured

communications).

4.3.1.2 Hash Functions. One of the most famous hash schemes

is the Secure Hash Algorithms (SHA) [88] which is a family of cryptographic

hash functions. SHA family is widely used in many networking protocols such as

TLS and IPsec to provide data integrity service. Two FIPS certified secure hash

algorithms in SHA family are SHA-2 and SHA-3 (Keccak) which both have output

sizes of 224, 256, 384 and 512 bits. In our work, we consider the digest size of 256

and 512 bits in both SHA-2 and SHA-3. Note that even SHA-2 and SHA-3 are in

the same family, they have different building structures. In particular, SHA-2 is

based on the Merkle–Damg̊ard construction while SHA-3 is based on the sponge

construction.

Blake2 [22] is another hash function that is widely used in resource-

constrained environments due to its high speed. It is derived from ChaCha stream

cipher and based on the HAIFA construction. Blake2 has the same output size as

SHA-3 and also provides the same security level, but Blake2 usually has a better

performance than SHA-2 and SHA-3 in software implementations. In our work, we

use Blake2b (one flavor in Blake2) and consider the digest size of 256 bits.
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4.3.1.3 PKC-based Ciphers. RSA is one of the widely used PKC-

based ciphers in securing communications over public channel. It is based on the

difficulty of factoring the product of two large prime numbers. RSA can be used in

encryption to protect confidentiality and also in digital signature scheme to protect

authenticity. However, RSA is mush slower than the symmetric key cryptography

due to its long key size. For example, to achieve the security level of 128-bit, RSA

requires a key size of 3072 bits while AES only has key size of 128 bits.

Elliptic curve cryptography (ECC) provides an alternative solution for

PKC. ECC is based on the elliptic curves which is the set of solutions satisfying

the equation y2 = x3 + ax + b over prime field or binary field. Compared to

RSA, ECC has much smaller key sizes. For the security level of 128-bit, ECC only

requires a 256-bit key. Note that different from RSA, ECC cannot be directly used

to encrypt a message. In the wolfCrypt implementation, ECC encryption takes a

client’s private key and a server’s public key as inputs, and then derives a secret

key to encrypt a message with the symmetric block cipher AES 128 CBC.

4.3.2 Devices. We select devices that are widely used for IoT

application development and have different ranges of available resources in terms

of flash memory, RAM and CPU cycles. Also, in this work, we focuses on extremely

resource-constrained devices, where the flash memory size is less than 1 MB

and RAM size is less than 256 KB. In addition, for consistency of experiments

and heterogeneity of IoT devices, we select devices from two vendors but with

the same processor architecture of ARM Cortex 32-bit. Specifically, we choose

SAML11 Xplained Pro (SAML11) and SAMR21 Xplained Pro (SAMR21), which

are manufactured by Microchip Technology, and Arduino Due (Due), Arduino Nano

33 BLE (Nano) from Arduino family.
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4.3.2.1 SAML11 Xplained Pro and SAMR21 Xplained Pro.

The SAML11 Xplained Pro is an ultra-low power evaluation board with a 32-bit

ATSAML11E16A-AU microcontroller clocked at 32 MHz. The microcontroller

unit (MCU) is extremely resource-constrained with 16KB of RAM and 64KB of

program flash memory. Nevertheless, it features the ARM TrustZone and supports

cryptography acceleration and secure key storage. For the power supply in our

experiments, SAML11 is charged at 5V with a micro-USB connector which is

connected to a MacBook Pro.

The SAMR21 Xplained Pro is also a low power hardware platform with

a 32-bit ATSAMR21G18A microcontroller clocked at 48 MHz. The MCU comes

with 32KB of RAM and 256KB of program flash memory. In addition, the

microcontroller also combines a AT86RF233 radio which features the IEEE

802.15.4 standard on the medium access control layer. For the power supply in our

experiments, SAMR21 is connected to a MacBook Pro with a micro-USB connector

and charged at 3.3V.

4.3.2.2 Arduino Due and Arduino Nano 33 BLE. Arduino

Due is a open-source hardware based on ARM Cortex processors. It is the first

32-bit ARM core microcontroller board in Arduino family. Due is equipped with a

AT91SAM3X8E microcontroller clocked at 84 MHz. The MCU has 96KB of RAM

and 512KB of program flash memory. Similar to SAML11 and SAMR21, Due is

also connected to a MacBook Pro with a micro-USB connector and operates at

3.3V.

Arduino Nano 33 BLE is another open-source hardware in Arduino family.

It is equipped with a nRF52840 microcontroller running at 64 MHz. The MCU

comes with 256KB of RAM and 1MB of program flash memory which allows
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Table 1. Specifications of testing IoT devices

CPU CPU clock Flash memory RAM Voltage Current draw
SAML11 ATSAML11E16A-AU 32 MHZ 64 KB 16 KB 5 V 2.64 mA
SAMR21 ATSAMR21G18A 48 MHZ 256 KB 32 KB 3.3 V 7 mA
Due AT91SAM3X8E 84 MHZ 512 KB 96 KB 3.3 V 77.5 mA
Nano nRF52840 64 MHZ 1 MB 256 KB 3.3 V 6.3 mA

the device to run larger programs than other devices in our experiments. Nano

also features a transceiver that supports Bluetooth and IEEE 802.15.4 standard.

Moreover, Nano is embedded with a 9 axis inertial sensor and has a very small

size (only 45x18mm), thereby suitable for the usage as a wearable device. For the

power supply, Nano operates at 3.3V and is also connected to a MacBook Pro with

a micro-USB connector.

Table 1 describes the specifications of the selected four devices in the

experiments. Note that the current draw for each device in the specifications

represents the current consumption when running CoreMark benchmark [78] under

normal temperature (i.e., 25◦C).

4.3.3 Operating System and Implementations. Operating

system (OS) plays an critical role in IoT applications. Due to the high resource

consumption, traditional systems such as Linux or BSD are not suitable for IoT. In

order to minimize the requirements in terms of RAM and ROM consumption, many

optimized operating systems have been introduced in recent years, especially for

Wireless Sensor Network (WSN) environments. Contiki [65] and TinyOS [125] are

some examples of lightweight OS that are widely deployed in WSN. However, both

of these two operating systems follow the event driven design, thus suffering from

the drawbacks of efficiency and functional networking implementations [25].

In this work, we adopt the RIOT OS [24], which is designed for low-power

IoT devices and embedded devices with low memory requirement and high energy
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Table 2. Comparison of RIOT OS, Contiki, TinyOS, and Linux [25].

Min RAM Min ROM Support C Support C++ Multi-Threading Modularity Real-Time
TinyOS <1KB <4KB No No Partially No No
Contiki <2KB <30KB Partially No Partially Partially Partially
Linux ∼1MB <1MB Yes Yes Yes Partially Partially
RIOT OS ∼1.5KB <5KB Yes Yes Yes Yes Yes

efficiency. RIOT OS is free, open-source, and modular to adapt to application

needs for most constrained IoT devices. RIOT OS supports many standardized

IETF networking protocols (e.g., 6LoWPAN), which will benefit our future work to

analyze the performance of networking protocols in IoT environments. Compared

to the WSN oriented operating systems, RIOT OS is more efficient and more

friendly to the developers of IoT application. For example, the modularity feature

in RIOT OS allows the system to compile only the necessary core and specified

functionalities. If a module of a non-core functionality is not specified, the compiler

would not compile the module even if the system supports the functionality,

thereby reducing the total size of the final binary code that would be flashed into

a device. Also, RIOT OS has full support for C and C++ while Contiki only has

partial support for C and TinyOS has no support for C or C++. Table 2 shows the

comparisons [25] of RIOT OS with Contiki, TinyOS, and Linux.

To implement the selected cryptographic algorithms, we choose to use

wolfSSL which is a C-language-based SSL/TLS library designed for resource-

constrained devices. It is a free, open-source, and lightweight cryptography library

(up to 20 times smaller than OpenSSL), and certified by FIPS 140-2. WolfSSL

supports TLS 1.3 and DTLS 1.2 with a lightweight cryptography library wolfCrypt.

WolfCrypt is written in ANSI C and also certified by FIPS 140-2. It supports

most popular cryptographic algorithms and protocols in practice, including hash

functions, symmetric ciphers, and asymmetric ciphers that are widely used in
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TLS and DTLS. To date, wolfCrypt has been used by more than 2 billion IoT

applications and devices to secure data and communications. The performance

evaluation of algorithms and protocols in wolfCrypt could help these devices to

analyze their security capabilities and improve their security and efficiency.

4.4 Evaluation Methodology

To evaluate the performance of the selected cryptographic algorithms, we

measure the metrics of running time, firmware usage, memory usage, and energy

consumption on all devices according to the essential operations, security levels or

modes if applicable, and input size for each algorithm.

The essential operations define the cryptographic tasks in each algorithm.

For SKC-based and PKC-based ciphers, the three essential operations are key

generation, encryption and decryption. Similarly, each hash function contains

operations of Init, Update, and Final. In our experiments, for all ciphers, we record

the results of each operation for all metrics except the firmware usage, since a

device must flash the entire implementation code into its flash memory in order

to function properly. Also, for hash functions, we only record the results of each

operation for memory usage. This is because hash functions have an extremely fast

execution time and low energy consumption, making it difficult to record results for

each operation.

For algorithms with various levels of security or modes, we also test their

performance for different security levels and modes. For example, since AES has

different security levels and block modes, we test AES with three possible security

levels (i.e.128-bit, 192-bit, and 256-bit), and three most common block modes in

practice (i.e.CTR, CBC, and CFB).

52



Finally, we test the performance for each algorithm according to different

input size. In particular, we test input sizes of 16, 32, 64, 128, and 256 bytes. There

are two reasons to choose these input sizes: (1) they are multiple of 16 bytes which

is the block size of most popular block ciphers; (2) in our experiment, 256 bytes

is the maximum size of input that RSA can directly encrypt for 112-bit security

which is the minimum acceptable security level in practice. Following we provide a

more detailed description of our evaluation methodology.

4.4.1 Running time. Since an IoT device may have a constrained

CPU clock and limited in computing capability, the first evaluation metric for a

cryptographic algorithm is the running time. In order to comprehensively study the

factors that may affect the running time, we divide the evaluation of running time

into 6 comparisons (Section 4.5.1): security levels in AES, block modes in AES,

block ciphers, stream ciphers, hash functions, and asymmetric ciphers.

1. We first evaluate the most popular block cipher AES. Our experiments test

three security levels in AES with CTR mode and investigate how security

levels would affect the running time of each operation (i.e.key generation,

encryption and decryption) in AES-CTR.

2. Then we evaluate AES with three most common block modes in practice:

CTR, CBC, and CFB, and investigate which block mode has the best

performance in AES. Here we only consider 128-bit security to compare CTR,

CBC, and CFB in AES. This is because 128-bit security is considered as

secure in many standards (e.g.IEEE 802.15.4 standard), and our experiments

showed that 128-bit security is faster than 192-bit and 256-bit. After the

evaluations of security levels and block modes in AES, we conclude that AES-

CTR-128 has the best performance of running time.
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3. Next we use AES-CTR-128 as the benchmark to compare it against other

symmetric ciphers such as Camellia and AEAD schemes.

4. We also compare AES-CTR-128 with stream ciphers Rabbit and Chacha1305

since AES-CTR can also be considered as a type of stream cipher.

5. Then we test the running time of different hash functions with 256-bit digest

size since 256-bit output provides enough security in IoT environment and

saves the computing power, memory, and bandwidth than a larger digest size

such as 512-bit.

6. Finally, we test the two selected asymmetric ciphers RSA and ECC. For RSA,

we choose 3072-bit key size for 128-bit security and also 2048-bit key size for

112-bit security in case the 128-bit security of RSA fails due to its long key

size. For ECC, we choose the curve of ECC SECP256R1 with 256-bit key size

of 128-bit security. However, since ECC cannot encrypt a message directly,

we must first generate two key pairs respectively for the two communication

parties, a client and a server. Then the client calls the key derivation process

procedure in wolfCrypt to derive a real secret session key from client’s private

key and server’s public key. Finally the client uses the session key to encrypt

a message with symmetric block cipher of AES-128-CBC and outputs a

ciphertext. Similarly, the server derives the session key from its private key

and client’s public key, and then use it to decrypt the ciphertext to obtain the

original message.

4.4.2 Firmware Usage. Firmware usage represents the total size

of code that is written into a device, including program instructions and static

data. It is also an essential metric to evaluate the performance of an cryptographic
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algorithm on IoT devices since IoT devices usually have limited size of flash

memory while the code to implement of a cryptographic algorithm is relatively

large, especially when integrating with a networking protocol and running over an

underlying operating system. The firmware usage information on an IoT device

could be obtained when a program is compiled and the corresponding binary

code is flashed into the device’s flash memory. Note that the firmware usage of

an algorithm is independent of its security levels or input sizes, here we show the

total firmware usage for each algorithm. In addition to the total size of firmware

usage, we also provide a more detailed analysis (Section 4.5.2) by dividing the

total firmware usage into four components: 1) Essential system code to launch

the underlying operating system; 2) Algorithm module code that implements the

chosen cryptographic algorithms in wolfCrypt library; 3) Developer’s application

code that reads inputs from outside environment and applies wolfCrypt to perform

specified operations; 4) Data of all initialized variables that are used in the

application.

4.4.3 Memory Usage. Memory usage indicates the size of data of

all intermediate variables that are generated during the execution of a program

and are stored in the device’s RAM memory. In contrast to the firmware usage

that the flash memory only stores the data of initialized variables, RAM stores

the data of all variables, including both initialized and uninitialized data. Usually,

in an IoT device, RAM has a much smaller size than the flash memory, thereby

the device is vulnerable to suffer from running out of RAM memory and results

in system crash. Thus, RAM usage is another important metric to measure the

performance of a cryptographic algorithm on IoT devices and help developers to

improve the robustness of their systems. The RAM usage information is recorded
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from a memory tool that is provided by an operating system. We present the

overall RAM usage of each algorithm running on RIOT OS in Section 4.5.3.

In addition to the overall RAM usage, a special space in the RAM memory

is the stack space which is used to store temporary variables created by a program

during execution. The stack size is usually predefined by an underlying operating

system and and the stack memory space is also allocated by the operating system.

An inappropriate assigned stack size may cause the stack overflow and result in

system crash. In order to help developers to be cautious with the stack overflow

when applying cryptographic algorithms and also help developers to improve

the efficiency of cryptographic algorithm implementations, we also provide a

detailed analysis of stack usage for each algorithm according to its essential

operations. In particular, for key generation, encryption, decryption operation in

symmetric/asymmetric ciphers, and Init, Update, Final operation in hash functions,

we examine the maximum individual stack usage and the maximum cumulative

stack usage for each operation. Here, the maximum individual stack usage means

the stack usage of each operation without its callees. For example, in AES-CTR

encryption, before calling the corresponding encryption function wc AesCtrEncrypt

(one of the callees in encryption operation) in wolfCrypt, the encryption operation

needs to first initialize some required data as the inputs to the encryption function

wc AesCtrEncrypt, and those data will be considered as individual stack usage.

In contrast, the cumulative stack usage traces the peak stack usage of both the

operation itself and all of its callees.

4.4.4 Energy Consumption. Finally, another crucial aspects in

IoT environments is the energy consumption since many IoT devices operate

on unreliable sources of energy such as batteries. With a benchmark of energy
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consumption information, it could help a developer to estimate the battery life of

their IoT devices. More importantly, it shows that the software consumes about

80% of the total energy consumption on embedded systems [134]. Therefore, the

energy consumption information could also help developers to improve the energy

efficiency of their implementations of cryptographic algorithms. In this work, we

measure the energy consumption with the formula E = U · I · t where U is the

operating voltage, I is the current intensity when a device is active, and t is the

average running time of an algorithm [20]. For each selected device, the information

of U and I is from the device specification as shown in Table 1. The information

of t is directly derived from the evaluation of running time in our experiments as

presented in Section 4.5.1.

4.5 Experimental Results

In this section, we present the experimental results of selected cryptographic

primitives on four different devices which we introduced in Section 4.3. We follow

the methodology described in Section 4.4 to measure the four evaluation metrics

of running time, firmware usage, stack usage, and energy consumption for each

cryptographic algorithm with different parameters.

4.5.1 Running Time. We first present the results of running time

for the selected cryptographic algorithms on each device. To better analyze the

experimental results, we first study the effects of security levels and block modes

in AES since AES is one of the most widely deployed ciphers in practice in IoT

network protocols to protect confidentiality. Then we compare the running time of

different block ciphers, stream ciphers, hash functions, and asymmetric key ciphers

respectively. In the experiments, for each algorithm with specific input parameters
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Figure 2. The running time of AES-CTR with security levels of 128, 192, and 256
bits.

(e.g.security levels, input size, etc.), we recorded the running time in microseconds

and took the average across 50 experiments.

4.5.1.1 Security Levels. AES provides three different security

levels to support specific security needs in IoT environments. We first investigate

how security levels would affect the performance of AES. In particular, on each

device, we measure the running time of key generation, encryption, and decryption

operation for security levels of 128-bit, 192-bit, and 256-bit with the input message

size of 16 bytes (one block). In all of our experiments, the running time includes

the time to initialize all necessary randomnesses. For example, AES requires

the initialization of a random IV before the encryption starts. Fig. 2 shows the

average running time along with its standard deviation of AES-CTR for each

operation.

For the key generation, we adopted the Password-Based Key Derivation

Function 2 (PBKDF2) in wolfCrypt. PBKDF2 takes an input password along with

a salt and outputs a derived secure key. In the experiments, to specify the inputs

of PBKDF2, we hardcoded the input password to be the same value for all keys
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Figure 3. The running time of AES-CBC and AES-CFB with security levels of 128,
192, and 256 bits.

and randomly generated a different salt for each key. Then applied SHA256 in

PBKDF2 for 1024 iterations to secure the key generation. The results in Fig 2a

show that on all devices, as the security level increases, the running time of key

generation increases. However, the growth is relatively small compared to the

running time. For example, on SAML11 which has the minimum resources among
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the four chosen devices, the running time of key generation are 2289406± 1.98 (128-

bit), 2291090.5 ± 10.63 (192-bit), and 2292740 ± 1.27 (256-bit), with the growth

of 1684.5 from 128-bit to 192-bit and 1649.5 from 192-bit to 256-bit. The growth

becomes even smaller when a device has more resources. For example, on Arduino

Nano 33 BLE, the running times are 278288.75 ± 0.79 (128-bit), 278613.88 ± 0.93

(192-bit), and 278929.41 ± 0.75 (256-bit), with the growth of 325.13 and 315.53

respectively. An interesting observation here is that on SAML11 and SAMR21, the

standard deviation of 192-bit security is larger (10.63 and 9.56) than 128-bit (1.98

and 0.78) and 256-bit security (1.27 and 0.45). However, the reason behind such

abnormal differences is unknown.

In contrast to key generation, the running time of encryption and decryption

in AES-CTR remain almost the same when the security level changes. As an

example in Fig 2b, on SAML11, the running time of encryption are 2238.3 (128-

bit), 2238.16 (192-bit), and 2238.22 (256-bit) microseconds respectively. For

decryption in Fig 2c, SAMR21 has the same running time of decryption of 119

µs for all security levels with standard deviation 0. It is worth mentioning that the

running of decryption is significantly faster than encryption. In our experiments, we

performed the decryption operation immediately after the encryption operation was

done, we believe this is due to the system cache of data such as S-box that is used

in encryption. Thus, when performing decryption, the system does not need to load

the data again which would reduce the running time of decryption.

Fig 3 shows the running time of encryption and decryption of AES-CFB and

AES-CBC for different security levels. Note that AES-CFB and AES-CBC share

the same key generation procedure as AES-CTR, so we did not record the running

time of key generation here. For encryption and decryption, similar to AES-CTR,
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the running time of both operations in AES-CFB and AES-CBC remain almost

the same respectively when the security level changes. For example, on device

SAML11, AES-CFB has encryption times of 2240.82, 2240.92, 2240.88 microseconds

and decryption times of 334.76, 334.8, 334.74 microseconds; AES-CBC has

encryption times of 2222.18, 2222.28, 2222.32 microseconds and decryption times

of 506.5, 506.7, 506.38 microseconds.

In conclusion, 128-bit security level has the best performance of running

time for key generation even though the growth is relatively small when the

security level increases. On the other hand, encryption/decryption have the same

running time performance for different security levels. In the practice, 128-bit

security level is used in most IoT networks such as IEEE 802.15.4 defined network.

Therefore, we use 128-bit as the criterion for the rest of evaluations.

4.5.1.2 Block Modes. Next we investigated how block modes would

affect the performance of AES. Specifically we evaluated CTR, CFB, and CBC

block modes which are the three most common modes in practice. As mentioned

above, we use 128-bit security level as the criterion and encrypt messages of sizes

16, 32, 64, 128, and 256 bytes with each block cipher modes. Since all block modes

leverages the same procedure PBKDF2 to generate keys, we only recorded the

running time for encryption and decryption operations. The reason we chose these

input sizes is that they are multiples of the block size (16 bytes) in AES. Also, we

chose 256 bytes as the maximum input size since it is also the maximum size of

inputs for the later RSA evaluations.

Fig. 4 and Fig. 5 show the experimental results for different block modes. In

general, it is clear to see that the three block modes have very close performance

on all four devices. Indeed, CBC has the smallest running time for encryption
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Figure 4. The running time of AES-128 for encryption with block modes of CTR,
CFB, and CBC.

operation while CTR outperforms the other two for decryption operation. When

combining both encryption and decryption, CTR has the best performance and

CFB runs the slowest.

When the computing resource is more constrained, the differences of the

running time between the block modes become larger. For example, to encrypt a

message of 256 bytes, CBC mode on Nano is 8.82 ms faster than CTR mode and

31.25 ms faster than CFB mode. However, on SAML11, CBC is 54.26 ms faster

than CTR and 208.13 ms faster than CFB.

It is also worth pointing out that when the computing resources cross some

threshold, the running times keep almost the same even with more resources. As

shown in Fig. 4 and Fig. 5, to encrypt/decrypt a 256 bytes message with AES-

CTR, encryption/decryption on SAML11 perform 6.63/5.54 times slower than

Nano. However, Due performs similar to Nano for both operations even though

Nano has more resources than Due. Unfortunately, we did not find the specific

threshold in our experiments.

In general, we conclude that CTR has the best performance among the three

block modes on all devices. For the rest of the analysis, we will use AES-128-CTR

as the criterion to compare it with other block ciphers and stream ciphers.
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Figure 5. The running time of AES-128 for decryption with block modes of CTR,
CFB, and CBC.

4.5.1.3 Block Ciphers. Next we evaluate the performance of different

block ciphers of AES-CTR, 3DES, Camellia, AES-CCM, and AES-GCM. Since

all tested block ciphers have the same procedure to generate keys, we again only

recorded the running time of encryption and decryption operations. Note that for

AES-CCM and AES-GCM, the running time of encryption and decryption also

includes the time for the generation and verification procedure of authentication

tags. Similar to the evaluation of block modes, we used 128-bit security level as

the criterion and encrypted input messages of sizes 16, 32, 64, 128, and 256 bytes

with each block ciphers. One exception is that the key size of 3DES does not

support 128-bit security. Instead, 3DES uses three 56-bit long independent keys

and provides 112-bit security.

Fig 6 and Fig 7 show the running time of different block ciphers for

encryption and decryption operations. Consider the encryption operation, it is

easy to see that the performance of 3DES is significantly worse than other block

ciphers while Camellia outperforms all other block ciphers. Fig 6c Fig 6d show

that Camellia is about 0.9x faster than AES-CTR (the second best) on more

resource-constrained devices SAMR21 and SAML11. For AEAD schemes, AES-

GCM is about 1.7x slower than AES-CCM on all devices when the input message

size becomes larger.
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Figure 6. The running time of block ciphers for encryption.
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Figure 7. The running time of block ciphers for decryption.

For the decryption operation, 3DES still performs the worst while AES-CTR

and Camellia have close performance that beats other block ciphers. For AEAD

schemes, similar to the encryption operation, AES-GCM is about 1.6x slower

than AES-CCM in decryption operation on all devices when the input message

size becomes larger. Combining encryption and decryption, we conclude that 3DES

runs the slowest and provides the minimum security level. Camellia has the best

performance in both encryption and decryption operations and AES-CCM has a

better performance in AEAD schemes.

It is worth pointing out again that when the computing resources cross some

threshold, the running time almost not change even if there are more resources.

4.5.1.4 Stream Ciphers. Now we study the performance of stream

ciphers of Rabbit and ChaCha20-Poly1305. Note that Rabbit provides 128-bit

security level while ChaCha20-Poly1305 only provides 256-bit security level. Both

64



0 1632 64 128 256
Input size (bytes)

0

1000

2000

3000

4000

5000

Ru
nn

in
g 

tim
e 

(
s) Rabbit

Chacha1305
AES-CTR

(a) Nano

0 1632 64 128 256
Input size (bytes)

0

1000

2000

3000

4000

5000

Ru
nn

in
g 

tim
e 

(
s)

(b) Due

0 1632 64 128 256
Input size (bytes)

0

1000

2000

3000

4000

5000

Ru
nn

in
g 

tim
e 

(
s)

(c) SAMR21

0 1632 64 128 256
Input size (bytes)

0

1000

2000

3000

4000

5000

Ru
nn

in
g 

tim
e 

(
s)

(d) SAML11

Figure 8. The running time of stream ciphers and AES-CTR for encryption.

stream ciphers have the same key generation procedure as AES with PBKDF2.

Thus, the running time of key generation can be referred to Fig 2.

Fig. 8 and Fig. 9 show the comparison of stream ciphers with AES-128-

CTR. The results of encryption show that Rabbit performs better than ChaCha20-

Poly1305. This is consistent with the intuition that ChaCha20-Poly1305 needs to

generate authentication tags for the integrity check while Rabbit does not have

such extra overhead. Compared to block cipher AES-128-CTR, both selected

stream ciphers are faster even though ChaCha20-Poly1305 has extra operations

to generate authentication tags. For decryption, Rabbit still beats the other two

stream ciphers. However, the performance of AES-128-CTR and ChaCha20-

Poly1305 differ from devices. When the message size becomes larger, compared to

ChaCha20-Poly1305, AES-128-CTR is 1x slower on Nano and Due (Fig 9a and

Fig 8b) but 0.2x faster on SAMR21 and SAML11 (Fig 8c and Fig 9d). When

combing both encryption and decryption, it is clear to see that Rabbit has the

best performance on all devices. For AES-128-CTR and ChaCha20-Poly1305, we

conclude that AES-128-CTR is 804.98, 786.84, 71.21, and 805.33 microseconds

slower than ChaCha20-Poly1305 respective to devices Nano, Due, SAMR21, and

SAML11.

4.5.1.5 Hash Functions. Next we show the running time for selected

hash functions of SHA2, SHA3, and Blake2b with varying input sizes and fixed
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Figure 9. The running time of stream ciphers and AES-CTR for decryption.
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Figure 10. The running time of hash functions.

output size of 256 bits. Note that in our experiments, we combined the INIT,

UPDATE, and FINAL operations in hashing and only recorded the total execution

time. The results in Fig 10 shows that SHA3 performs the worst on all devices.

Especially on the extremely resource-constrained device SAML11, for the input

size of 256 bytes, the running time of SHA-3 is about 2.36x slower than SHA-2 and

Blake2. For SHA-2 and Blake2, the differences of their performance are similar

on all devices. Specifically, when the input size is small (16 and 32 bytes), Blake2

is about 1x slower than SHA-2. On the other hand, when the input size becomes

large (greater than 64 bytes), Blake2b is slightly better than SHA-2. For example,

in the worst case on SAML11, Blake2b runs 281.44 microseconds faster than SHA-

2.

4.5.1.6 Public Key Cipher. Lastly, we compare the performance of

RSA and ECC which are the two popular public key ciphers in practice. Indeed,

RSA failed on all devices for 2048-bit key size (112-bit security) in our experiments.
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For ECC, in our experiments, we used the curve of ECC SECP256R1 for 256-

bit key size (128-bit security) and the implementation fails on SAML11 due to

the stack overflow for the key generation operation. Since ECC cannot encrypt

a message directly, it needs to first generate two key pairs respectively for the

two communication parties (a client and a server). Then the client calls the key

derivation process procedure in wolfCrypt to derive a real secret session key from

client’s private key and server’s public key. Finally the client uses the session key to

encrypt the message with symmetric block cipher of AES-128-CBC and obtains a

ciphertext.

Table 3. Running time of ECC encryption (s)

Key generation Encryption Decryption
SAMR21 6.59 3.29 3.28

Due 1.48 0.74 0.74
Nano 1.20 0.60 0.60

Table 3 showed the running time of key pair generation, encryption, and

decryption of 16 bytes input. Note that the time of key pair generation is the time

of generating two key pairs for the client and server. Encryption time includes the

time of key derivation procedure from the two key pairs and the time of encryption

operation with AES-128-CBC. Fig. 11 showed the running time of ECC for

encryption and decryption on Nano, Due, and SAMR21 with different input sizes.

It is clear to see that for both operations, the running time on each device remains

almost the same as the input size increases. This is because when compared to

the key derivation procedure, the running time of encryption with AES-128-CBC

is too small. In other words, the majority of the total running time is from the

key derivation procedure instead of encryption with AES-128-CBC. Similarly, for

the decryption, the server also needs to generate the session key first and then use
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the session key to decrypt the ciphertext. Therefore, the time for the session key

derivation procedure would dominate the total running time of decryption.
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Figure 11. The running time of ECC encryption and decryption.

Summary of running time. From the above analysis, we can see that on

all devices, PKC-based cipher ECC runs much slower than SKC-based ciphers,

and hash functions has the better performance than all ciphers. For SKC-based

ciphers, Camellia runs the fastest in block ciphers and Chacha1305 has the best

performance in stream ciphers. An interesting finding here is that security levels

and block modes have very little impact on the running time. For hash functions,

Blake2 outperforms other hash functions on all devices when the input size becomes

larger, especially on extremely resource-constrained devices. For PKC-based

ciphers, RSA fails on all devices and ECC fails on SAML11. For both SKC-based

and PKC-based ciphers, the key generation operation dominates the total running

time.

4.5.2 Firmware Usage. Since IoT devices usually have limited

size of flash memory, firmware usage is another important metric to evaluate the

performance of a cryptographic algorithm. It represents the total bytes of code that

is flashed into a device’s flash memory, usually including program instructions and

data. In our experiments, firmware usage is obtained when flashing a program into

a device.
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4.5.2.1 Overview of Firmware Usage. Table 4 shows the overview

of the firmware usage for each algorithm. It is easy to see that even the same

algorithm have varying firmware usages on different devices. This is mainly because

RIOT OS may need to load different codes for the system kernel and system

modules to support the corresponding microcontroller. In general, for the same

manufacture, the device with more resources have a larger firmware usage. For

most algorithms, SAMR21 requires more flash memory (about 1000-1200 bytes

more) than SAML11 and Nano requires more flash memory (about 6000 bytes)

than Due. The exceptions are the hash algorithm Blake2 and ECC cipher. The

firmware usage on SAMR11 is about 18000 bytes less than SAML11 for Blake2

(ECC is failed on SAML11). Also, compared to the usage on Due, Nano is about

3500 bytes less for Blake2 and 3700 bytes less for ECC.

Considering all devices, the results show that SAMR21 has the maximum

firmware usage for most algorithms except for AES-CCM, AES-GCM, and Blake2.

AES-CCM and AES-GCM have the maximum usage on Nano while Blake2 has the

maximum usage on SAML11. Similar results exist for Due which has the minimum

firmware usage for most algorithms except for Blake2 and ECC. Indeed, since

the same algorithm would load the same algorithm modules and have the same

developer’s implementation, if the code of the system (kernel and modules) is the

only factor that affects the firmware usage, the intuition is that all algorithms

should follow the same trend and style on four devices. However, this contradicts

the experimental results. Therefore, we conclude that the size of algorithm modules

are also affected by the type of microcontrollers.

All algorithms show a similar trend/style on each device. For standard block

ciphers, 3DES has the smallest code size while Camellia has the largest code size
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which is contrary to the running time. In the running time, 3DES is the slowest

one in running time while Camellia is the fastest. For the specific AES cipher,

CTR mode has the best performance in both firmware usage and running time.

The AEAD algorithms AES-CCM and AES-GCM have a very close code size on

all devices. For stream ciphers, the firmware usage is consistent with the running

time. Rabbit has a minimal code size compared to Chacha20 and both Rabbit and

Chacha20 have less usage than AES-CTR. For hash functions, SHA2 outperforms

SHA3 and Blake2 on all devices except SAMR21 on which Blake2 has the minimum

firmware usage compared to the other two hash functions.

Table 4. Firmware usage (bytes)

AES-CBC AES-CTR AES-CFB 3DES Camellia AES-CCM AES-GCM Rabbit ChaCha20 SHA2 SHA3 Blake2 ECC
SAML11 54104 53184 53392 45888 63584 39416 39608 42912 45512 39488 44008 56472 ⊥
SAMR21 55416 54392 54680 47176 65664 40404 40600 44128 46752 40672 45912 57672 71772

Due 44140 43180 43396 36068 52652 35920 35964 33076 35164 29620 34252 45364 60072
Nano 50028 49068 49292 41960 58684 41788 41804 38956 41044 35532 40172 51244 60064

4.5.2.2 Details of Firmware Usage. Now we detail the firmware

usage of cryptographic algorithms on each device. In our experiments, the firmware

usage of a cryptographic algorithm on a device has four components.

– The first component is the essential system code to launch the RIOT OS

kernel on the device. Since RIOT OS is based on a modular architecture,

we also used extra system modules to support necessary functionalities in

our experiments. For example, the shell commands module defines some

generic shell commands and allows a developer to implement user-defined

shell commands. Table 5 lists the additional system modules along with the

descriptions of their functionalities that we adopted in our experiments for all

selected cryptographic primitives. The size of the operating system code could

also vary on devices due to different architectures of microcontrollers and is

determined by the implementation of the OS.
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Table 5. Additional system modules required in the experiments.

System modules Description
shell Shell interpreter.

shell commands Allow users to define shell commands.
xtimer Obtain current system time.

ps Show the information of all threads.
printf float Print out the running time of an algorithm.

– The second one is the code of algorithm module and its size is usually

dependent on the implementation of the wolfCrypt library. In fact, we will

also show that the size of an algorithm module is also affected by the type of

microcontrollers. One cryptographic algorithm may require multiple modules

to support full functionality of the algorithm. For example, in addition to the

wolfcrypt aes module, AES (including all three block modes) also requires

wolfcrypt random, wolfcrypt sha256, and wolfcrypt pwdbased modules to

generate a encryption/decryption key. A full description of required algorithm

modules for each cryptographic algorithm is shown in Table 6.

Table 6. Algorithm modules required for each algorithm.

Algorithms Modules
AES-CTR, AES-CBC, AES-CFB

AES-CCM, AES-GCM
wolfcrypt aes, wolfcrypt, wolfcrypt hmac, wolfcrypt random, wolfcrypt sha256, wolfcrypt pwdbased

3DES wolfcrypt des3, wolfcrypt, wolfcrypt hmac, wolfcrypt random, wolfcrypt sha256, wolfcrypt pwdbased
Camellia wolfcrypt camellia, wolfcrypt, wolfcrypt hmac, wolfcrypt random, wolfcrypt sha256, wolfcrypt pwdbased
Rabbit wolfcrypt rabbit, wolfcrypt, wolfcrypt hmac, wolfcrypt random, wolfcrypt sha256, wolfcrypt pwdbased

Chacha20 wolfcrypt chacha, wolfcrypt poly1305, wolfcrypt, wolfcrypt hmac, wolfcrypt random, wolfcrypt sha256, wolfcrypt pwdbased
SHA2 wolfcrypt sha256, wolfcrypt, wolfcrypt random
SHA3 wolfcrypt sha3, wolfcrypt, wolfcrypt random
Blake2 wolfcrypt blake2b, wolfcrypt, wolfcrypt random
ECC wolfcrypt ecc, wolfcrypt aes, wolfcrypt, wolfcrypt hmac, wolfcrypt random, wolfcrypt sha256

– The next component is the developer’s implementation of an application.

In our experiments, we implemented key generation, encryption, and

decryption operations for symmetric/asymmetric ciphers, and hash operations

for hash functions. Also, our code can generate varying sizes of random

messages as inputs to each algorithm. The size of the application code

is determined by the developer. In order to minimize the effects of the

implementation differences on code sizes, we tried to maintain the consistency
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of implementations by reusing our code and follow the same designing

framework.

– The final component is the data of all variables, including both initialized

and uninitialized data. Initialized data (i.e.also marked as data segment)

such as global variables and static variables are usually stored in both flash

memory and RAM and their values are specifically assigned by a programmer

in the code. Uninitialized data (i.e.also marked as bss segment) refers to all

variables that are not initialized by a programmer and these variables are

stored in RAM. Usually the system kernel will assign a default value to the

uninitialized data before the program execution. Since uninitialized data is

not stored in flash memory, we only focus on the initialized data in firmware

usage and uninitialized data will be analyzed in Section 4.5.3 for RAM and

stack usage.

An example of detailed firmware usage for AES-CTR is depicted in Fig. 12.

Note that the total size in the figure indicates the size of code that is flashed into

a device’s flash memory (as described in Table 4). Since the percentage of the

firmware usage for each component follows a similar pattern on each device, we

use SAML11 as an example to analyze the usage of each component. The figure

shows that the system code uses about 78.8% of the total size. Specifically, more

than 68% of usages within system code are libraries and functions to support basic

operations such as float operations on ARM-based microcontrollers. The rest of the

32% of usages within system code are used to launch the RIOT OS and its extra

modules for a specific device. Also, the size of system code is the main reason that

the same algorithm has varying firmware usages on different devices. Algorithm

modules (i.e.wolfCrypt) use about 17.2% of the total size. In particular, the file of
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wolfcrypt aes module consumes more than 49% of the size of algorithm modules.

Other two main modules are wolfcrypt random (¿19%) and wolfcrypt sha256

(¿14%).

Developers’ implementation and data occupies about 3% and 1% of the

total size respectively. It is worth mentioning here that even the same developer’s

implementation has minor differences in code size (less than 30 bytes) on four

devices. We believe this is due to the differ of float operations on different devices

since our code shows that only a function that involves float operations has varying

size. Finally, SAML11 and SAMR21 require 496 bytes data storage while Arduino

Due and Nano require 492 bytes.
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Figure 12. Detailed firmware usage of AES-CTR.

Fig. 13 shows the detailed firmware usage of tested cryptographic algorithms

on all devices. It is clear that the sizes of system code for different algorithms on

the same device are also varying. This is because the ARM architecture may call

different functions and libraries in order to support required operations in the

corresponding cryptographic algorithms. For example, AES-CTR calls the function

dtoa r to support the conversion from binary representations to ASCII strings

in float operation. In fact, our results show that on SAML11 (ATSAML11E16A-

AU microcontroller), AES-CTR involves 134 functions to support all necessary

operations while AEC-CCM only needs 93 functions. Overall, the block ciphers
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with the maximum and the minimum size of system code are AES-CTR/CFB/CBC

and AES-CCM/GCM; stream ciphers and hash functions have almost the same size

of system code respectively.

For algorithm modules, we investigated the file size for the implementation

of each algorithm in wolfCrypt. As shown in Table 6, all algorithms in each

category (block ciphers, stream ciphers, hash functions, and asymmetric ciphers)

involve the same set of algorithms modules except the first module which

corresponds to the specific algorithms. Note that even all AES ciphers use the

same wolfcrypt aes module (i.e.same aes.c file), the file size for each AES cipher is

different since only required functions will be flashed into the flash memory (e.g.for

encryption operation, AES-CTR flashes function wc AesCtrEncrypt while AES-

CCM flashes function wc AesCcmEncrypt). Overall, Camellia, which runs the

fastest in block ciphers, has the maximum size of algorithm module while 3DES,

the slowest one, has the minimum size of algorithm module. In stream ciphers,

ChaCha20-Poly1305 has a larger size of algorithm module than Rabbit. This is

consistent to our intuition that ChaCha20-Poly1305 requires additional files to

support Poly1305. It is worth mentioning here that if Poly1305 is removed and

authentication is not required, then the size of standard ChaCha20 module (950

bytes) is less than Rabbit (1128 bytes).

The implementation and initialized data have very minor effects on the total

firmware usage. Our experiments tried to reuse code and follow the same designing

procedure, the implementation only differs in less than 100 bytes in each category

of cryptographic algorithms. For initialized data, CCM and GCM uses 132 bytes on

SAML11 and SAMR21, and 128 bytes on Due and Nano. All other algorithms use

496 bytes on SAML11 and SAMR21, and 492 bytes on Due and Nano.
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Figure 13. Detailed firmware usage of cryptographic algorithms on all devices.

Summary of firmware usage. The results of firmware usage vary and depend

on both algorithms and devices. For example, when comparing AES-CCM with

Rabbit, AES-CCM has a lower firmware usage on SAML11 (39416 bytes vs. 42912

bytes), but use more storage on Nano (41788 bytes versus 38956 bytes). This is

because the RIOT OS kernel system code and algorithm module code are affected

by the device type. In addition, the system code and the algorithm module code

consume most of the storage while the implementation code and initialized data

have very little effect on the total firmware usage. In general, for SKC-based

ciphers, 3DES has the smallest code size while Camellia has the largest in block

ciphers, and Rabbit has a better performance than Chacha20 in stream cipher. For
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hash functions, SHA2 outperforms other hash functions and Blake has the highest

firmware usage. For ECC, it also uses more storage than all SKC-based ciphers and

hash functions.

4.5.3 Memory Usage. Next we analyze the memory usage of

cryptographic algorithms on IoT devices. In this work, we focus on both the RAM

usage and the stack usage. RAM usage indicates the size of uninitialized data and

intermediate variables that are generated during the execution of a program. It is

another important metric to measure the performance of a cryptographic algorithm

on IoT devices since IoT devices usually have a much smaller size of RAM than

the flash memory. A special space in the RAM memory is the stack space which is

used to store temporary variables created by a program during execution. Stack

overflow is a very common reason that causes a system to crash. Usually, an

underlying operating system predefines the size of a stack and allocates the space

of the stack to each thread for a running program. We can use stack usage to track

the stack overflows and computing capability of a device. In our experiments, we

are interested in the worst case stack usage for all operations in an algorithm since

the the worst case stack usage implies if we could successfully run the algorithm on

an IoT device and configure the maximum stack size as needed. In contrast to the

firmware usage, the memory usage information cannot be directly obtained from

the compiler. Therefore, we employ the tool puncover to analyze the RAM usage

and the built-in command ps in RIOT OS for stack usage analysis.

4.5.3.1 Overview. Fig. 14 shows an overview of RAM usage for each

algorithm on selected four devices. On each device, all algorithms have a very

close RAM usage except ECC which is about 1000 bytes more of RAM usage than

other algorithms. The main reason is that compared to the RIOT OS core files,
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the cryptographic algorithms consume a very small percentage of RAM space.

Particularly, the cryptographic algorithms only consume about 0.8% RAM usage

while RIOT OS core files take more than 74% RAM usage. Other system files

such as system modules occupies the rest of the RAM usage. In the worst case of

ECC on Nano, RIOT OS core take more than 42.78% RAM space while the ECC

algorithm only takes 16.4% RAM space.
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Figure 14. RAM usage of different cryptographic primitives on four devices.

Fig 15 shows the overall stack usages for different cryptographic primitives

on all devices. All experiments are based on 128-bit key (except for 3DES with 168-

bit key and ChaCha20 with 256-bit key) and 16 bytes input for encryption schemes.

Hash functions are based on 256-bit output size and 16 bytes input. For standard

block ciphers, Camellia uses the least amount of stack except on the device Nano.

Both AEAD block ciphers have the same stack usage on all devices. An interesting

observation for stream cipher is that even though Chacha20-poly1305 needs to

generate an authentication tag, it still has less stack usage than Rabbit on all

devices except Nano. For hash functions, similar to the firmware usage, Blake2 has

a higher same stack usage than SHA2 and SHA3, which both have the same stack

usage on all four devices.

4.5.3.2 Detailed stack usage. Now we study the detailed stack

usage of tested cryptographic algorithms on four devices. In order to help
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Figure 15. Stack usage of different cryptographic primitives on four devices.

developers better understand the potential cause of stack overflow and improve

the efficiency of cryptographic algorithm implementations in the future, we divide

each algorithm into three operations and then investigate the maximum stack usage

for each operation. I.e., key generation, encryption, and decryption operations

in symmetric and asymmetric ciphers; init, update, and final operations in hash

functions.

For each operation, we trace both the maximum individual stack usage

(ISU) and the maximum cumulative stack usage (CSU). ISU represents the

stack usage of each operation without its callees. For example, in the encryption

operation of AES-CTR, before encrypting a message, the system needs to first call

the function of wc InitRng() to initialize some randomnesses, and then encrypt

the message with function wc AesCtrEncrypt(). In ISU, it does not trace the stack

usage of these callees and only indicates the stack usage of required constant data

in each operation. In contrast, CSU traces both the stack usage of the operation

and all of its callees. By analyzing the results of ISU and CSU, we will show the

operation in each algorithm that has the maximum stack usage, and also the

function in each operation that leads to the maximum stack usage.

Table 7 shows the ISU and CSU of each operation for each algorithm.

Overall, the results of stack usage various depend on the operations and algorithms.
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For the ISU of different operations, the encryption operation in all ciphers

consumes the most ISU except for 3DES in which the decryption operation has

the maximum ISU. Different from ciphers, hash functions have the same ISU for all

its operations except that the Init operation in SHA2 consumes less than Update

and Final operations.

From the algorithm aspect, the PKC algorithm ECC has the maximum

ISU than all symmetric ciphers. In symmetric ciphers, all ciphers have the same

ISU for the key generation since they share the same process to create secret keys.

AES-CCM has the maximum ISU for the encryption operation while 3DES has the

maximum ISU for the decryption operation. In hash functions, opposite to their

running time, SHA2 has the minimum usage of ISU and Blake2 consumes the most.

For the CSU of operations, as shown in the table, encryption operation

has the maximum usage in all symmetric ciphers compared to the key generation

and the decryption operation. One thing we want to highlight here is that the

callee which leads to the maximum CSU in encryption operation is not the

corresponding encryption function (e.g.wc AesCtrEncrypt() in AES-CTR). Instead,

in all symmetric ciphers, the encryption operation reaches the maximum CSU when

it calls wc InitRng() to initialize the randomness. Different from symmetric ciphers,

the decryption operation in ECC has the maximum cumulative stack usage and the

hash key derivation function wc HKDF() in the decryption operation reaches the

maximum CSU. In hash functions, the final operation has the maximum cumulative

stack usage and its corresponding final function (e.g.wc Sha256Final in SHA2)

leads to the peak usage of CSU.

From the algorithm aspect, ECC has the maximum CSU than all symmetric

ciphers in all operations. For symmetric ciphers, all ciphers have the same CSU
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since they have the same key generation process. However, 3DES has the maximum

CSU for encryption while Camellia has the maximum CSU for decryption. Hash

functions have the same trend of CSU as ISU. SHA2 has the minimum usage of

CSU and Blake2 consumes the most.

Table 7. Detailed stack usage of cryptographic algorithms on four devices (bytes).

AES-CTR/CFB/CBC 3DES Camellia AES-CCM AES-GCM Rabbit Chacha20 SHA2 SHA3 Blake2 ECC
Keygen ISU 144 144 144 144 144 144 144 208 504 584 -1
(Init) CSU 1160 1160 1160 1160 1160 1160 1160 216 524 688 -1
Enc ISU 456 88 88 472 472 256 152 232 504 584 -1

(Update) CSU 1472 1560 1464 1488 1488 1272 1168 568 864 1176 -1
Dec ISU 424 504 424 88 88 232 120 224 504 584 -1

(Final) CSU 592/584/560 696 1056 704 736 416 656 560 864 1216 -1

(a) Detailed stack usage on device SAML11.

AES-CTR/CFB/CBC 3DES Camellia AES-CCM AES-GCM Rabbit Chacha20 SHA2 SHA3 Blake2 ECC
Keygen ISU 144 144 144 144 144 144 144 208 504 584 120
(Init) CSU 1160 1160 1160 1160 1160 1160 1160 216 524 688 1240
Enc ISU 456 88 88 472 472 256 152 232 504 584 144

(Update) CSU 1472 1552 1456 1488 1488 1272 1168 568 864 1176 1744
Dec ISU 424 504 424 88 88 232 120 224 504 584 120

(Final) CSU 592/584/560 696 1056 704 736 416 656 560 864 1216 1752

(b) Detailed stack usage on device SAMR21.

AES-CTR/CFB/CBC 3DES Camellia AES-CCM AES-GCM Rabbit Chacha20 SHA2 SHA3 Blake2 ECC
Keygen ISU 136 136 136 136 136 136 136 200 496 568 112
(Init) CSU 1136 1136 1136 1136 1136 1136 1136 208 508 672 1224
Enc ISU 440 80 80 464 464 248 136 224 496 568 136

(Update) CSU 1440 1528 1432 1464 1464 1248 1136 568 848 1184 1728
Dec ISU 416 520 416 80 80 224 112 224 496 568 112

(Final) CSU 592/560/552 672 1024 704 720 384 640 568 848 1232 1736

(c) Detailed stack usage on device Due.

AES-CTR/CFB/CBC 3DES Camellia AES-CCM AES-GCM Rabbit Chacha20 SHA2 SHA3 Blake2 ECC
Keygen ISU 144 144 144 144 144 144 144 200 496 568 120
(Init) CSU 1144 1144 1144 1144 1144 1144 1144 208 508 672 1232
Enc ISU 448 88 88 472 472 256 144 224 496 568 144

(Update) CSU 1448 1536 1440 1472 1472 1256 1144 568 848 1184 1744
Dec ISU 424 504 424 88 88 232 120 224 496 568 120

(Final) CSU 600/568/560 680 1040 720 728 392 648 568 848 1232 1752

(d) Detailed stack usage on device Nano.

Summary of memory usage. In our work, we analyzed both the RAM usage

and the stack usage of the tested algorithms on all devices. For RAM usage, PKC-

based algorithm ECC has a higher RAM usage than all other algorithms. All SKC-

based ciphers and hash functions have a very close RAM usage except for AES-

CCM and AES-GCM, which consume about 300 bytes less than the others. For
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stack usage, ECC also has a higher stack usage than all other algorithms. For SKC-

based ciphers, all block ciphers have similar stack usage while in stream ciphers,

Chacha20 consumes about 120 bytes less stack memory than Rabbit on all devices

except Nano. For hash functions, Blake2 uses 200 bytes more stack memory than

SHA2 and SHA3.

4.5.4 Energy Consumption. Now we have a look at the energy

consumption of each algorithm. In our evaluation, due to the extremely low energy

consumption of hash functions, we keep hash functions as a whole process and

only break ciphers into three operations for analysis. Then we apply the formula

of E = U · I · t to calculate the energy consumption for each operation. Here U

is the operating voltage, I is the current intensity when a device is active, and t is

the average running time of an algorithm [20]. The specifications of U and I for

all devices can be found in Table 1. Again, the current intensity we used in our

calculation is the current consumption when running CoreMark benchmark under

normal temperature (i.e., 25◦C).
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Figure 16. Overview of the total energy consumption on different devices.

An overview of the total energy consumption for each of the algorithms

is shown in Fig. 16. All the results of ciphers are based on 16 bytes input with

128-bit security except for 3DES and ChaCha20. This is because 3DES and

Chacha20 only support 168-bit key and 256-bit key, respectively. Similarly, the
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results of hash functions are based on 16 bytes input and 256-bit output. For ease

of presentation in the figure, we use 0.0 for energy consumption that is less than

0.01 mJ (e.g.SHA2 and Blake2 in Fig. 16a). From the algorithm point of view,

ECC is about 9 times more energy consuming than SKC-based ciphers and at least

4000 times more energy consuming than hash functions. For SKC-based ciphers,

the energy consumption is close to each other. This is because SKC-based ciphers

have the same key generation process and the key generation process dominates the

energy consumption among all the three operations. For example, in AES-CTR,

key generation consumes more than 98% of the total energy. For hash functions,

SHA2 consumes the least energy while SHA3 consumes the most.

Next, we show the energy consumed for each operation. Note that due

to the extremely low energy cost of hash functions, the energy consumption

for hash functions in the following figures is the total consumption for all three

operations. Therefore, it is the same as in Fig. 16 and we do not discuss the energy

consumption for each operation in hash functions.

For the key generation, since all SKC-based ciphers have the same process to

create private keys, we run the experiments to generate 50 keys for each algorithm

and take the average. Fig. 17 shows energy consumption comparison of key

generation. We can see that SKC-based ciphers consumes much less energy than

the PKC-based cipher ECC. For example, on Nano, the energy consumption of

SKC-based ciphers is 22.7% of that of ECC (5.65mJ versus 24.94mJ). On more

resource-constrained devices, this number becomes 18.9% on Due (71.68mJ versus

378.4mJ) and 12% on SAMR21 (18.27mJ versus 152.17mJ).

Fig. 18 shows the energy consumption of the encryption operation. In

general, all algorithms have low energy consumption except ECC. When compared
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Figure 17. Energy consumption of key generation.

to key generation, ECC performs even worse in encryption operation. For example,

3DES, which has the highest energy consumption among SKC-based ciphers,

consumes only 0.32%, 0.33%, and 0.16% of the energy of ECC on Nano, Due, and

SAMR21, respectively. For SKC-based ciphers, Camellia and Rabbit outperform all

other ciphers, and 3DES has the worst performance of all.
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Figure 18. Energy consumption of encryption operation.

Fig. 19 shows the the energy consumption of the decryption operation.

Similar to the encryption operation, for all algorithms except ECC, the decryption

operation also has an extremely low energy consumption. 3DES still performs the

worst among SKC-based ciphers and consumes the same percentage of energy of

ECC as in encryption operation.

Summary of energy consumption. From the above analysis, we can see

that in general, ECC consumes a lot more energy than the SKC-based ciphers,

and the hash functions consume a very small amount of energy compared to all
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Figure 19. Energy consumption of decryption operation.

the ciphers. For SKC-based ciphers, all ciphers have close energy consumption

because they share the same key generation operation, and the key generation

operation dominates the energy consumption of all three operations. Compared

to key generation, the energy consumption of encryption and decryption operation

are significantly small. For hash functions, SHA2 outperforms other hash functions

and SHA3 consumes the most energy. For ECC, similar to SKC-based ciphers, key

generation consumes three times more energy than encryption and decryption.

From the device perspective, for the same manufacturer, a device with more

resources consumes less energy. For example, Nano has a better performance than

Due and SAMR21 performs better than SAML11.

4.6 Discussion and Future Work

From the results and analysis described in the last section, we can see

that on all devices and for all evaluation metrics, SKC-based algorithms and hash

functions perform much better than PKC-based algorithms. Most traditional SKC-

based algorithms and hash functions performed well even on extremely resource-

constrained devices. On the other hand, PKC-based algorithms have much higher

resource requirements to function. For example, ECC failed on SAML11, while

RSA failed on all devices. Based on the results, we can conclude that the resources

required to perform ECC are somewhere between those of SAML11 and those of
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SAMR21 (see Table 1). However, the resource needed to successfully run RSA

is still unclear. Therefore, a future work would be to select devices with more

resources to narrow down the resource requirements for running RSA.

It is interesting to note how the resources on a device can affect the

performance of a cryptographic algorithm. In terms of the running time, devices

with more resources perform better than those with fewer resources. For example,

Nano, which has the most abundant resources, performs the best, while SAML11,

which is the most resource-constrained device, runs much slower than other devices.

However, when it comes to energy consumption, the results vary because each

device has a different operating voltage and current intensity. If the devices are

from the same manufacturer, devices with more resources will consume less energy.

Otherwise, the results are non-deterministic. For example, while Due has more

resources than SAMR 21, it also consumes more energy. For the firmware usage,

if the devices are from the same manufacturer, devices with more resources will

incur more firmware usage. Otherwise, the results are also non-deterministic. For

memory usage, devices with more resources also have a higher RAM usage, which is

probably why devices with more resources have a shorter running time.

Further evaluations are needed as important future work to analyze the

cryptographic capabilities of IoT devices. Of particular urgency is to integrate

the selected algorithms with network protocols (e.g.TLS and DTLS) and then

evaluate network related metrics such as network delay and bandwidth between two

interacting devices. This is because IoT devices typically protect messages between

themselves by using network protocols to establish secure communication channels.

Different cryptographic algorithms can affect the overall network overhead when

exchanging messages during the execution of network protocols.
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Another possible future work is to extend the evaluations to include more

certified lightweight cryptographic algorithms. Since traditional cryptographic

algorithms were not originally designed for use in IoT devices, it is imperative

to compare their performance with newly developed IoT-oriented lightweight

cryptographic algorithms. For example, TWINE [194] is a lightweight block cipher

with the 64-bit block size and the 80-bit or 128-bit key size. Their experimental

results show that TWINE is about twice as fast as AES. However, most lightweight

cryptographic algorithms are not standardized and their implementations are not

certified by any security organization. Therefore, in 2018, NIST published a call for

lightweight cryptographic standards with authenticated encryption with associated

data and optional hashing functionalities, and recently announced the selection of

the Ascon family [64] for lightweight cryptography standardization.

Furthermore, our work could be extended by evaluating more complex

cryptographic algorithms and protocols. For example, Attribute-Based Encryption

(ABE) schemes are used by IoT to enforce fine-grained access control on encrypted

data [165]. Also, as the blockchain technology plays a critical role in building

trust and addressing security challenges in IoT [2, 115], modern cryptographic

algorithms and protocols such as threshold threshold cryptosystems [116], zero-

knowledge proof [95], and multi-party computation [8] are also introduced to

provide additional security services in IoT. Meanwhile, the requirement of huge

computational resources for these cryptographic primitives could severely affect

their deployment on IoT devices, and the minimum resource requirements for these

cryptographic primitives are still unknown.

Finally, for consistency, all devices in our evaluations have the same

processor architecture (ARM Cortex 32-bit). However, the processor architecture
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can also affect the performance of the cryptographic algorithms. It would be

worthwhile to experiment with processors of different architectures. In addition,

since the operating system plays a critical role in IoT applications, our work could

also be extended by using other operating systems and investigating how operating

systems would affect the performance of cryptographic algorithms. This study is

especially needed when the cryptographic algorithms are integrated with network

protocols that need to be supported by the underlying operating systems.

4.7 Conclusion

In this work, we presented a comprehensive study of the performance of

different cryptographic primitives on four widely used microcontroller development

boards for IoT devices, namely SAML11 Xplained Pro (SAML11), SAMR21

Xplained Pro (SAMR21), Arduino Due (Due), and Arduino Nano 33 BLE (Nano).

Our evaluation results will better inform IoT researchers and developers in choosing

appropriate cryptographic algorithms to meet the security requirements of their

devices, and can also help developers to improve the existing implementations of

these algorithms. We measured and analyzed the running time, firmware usage,

stack usage and energy consumption of 9 symmetric ciphers, 3 hash functions,

and 2 asymmetric ciphers. In particular, different from existing work, we analyzed

how different software components contributed to the firmware usage and which

functions or operations contributed to the peak usage of the stack space. The

measurement was performed on an IoT-friendly operating system RIOT OS with

a certified lightweight cryptography library wolfCrypt.

Overall, our experimental results show that SKC-based ciphers and

hash functions perform well even on extremely resource-constrained devices.

In particular, for block ciphers, Camellia has the best performance in terms of
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running time, stack usage, and energy consumption, but it requires more firmware

usage on all devices. If authentication is required, AES-CCM is preferred over

AES-GCM for all evaluation metrics. For stream ciphers, if stack usage is the

first priority or authentication is required, we should use Chacha20-poly1305;

otherwise, Rabbit is better than Chacha20-poly1305. For hash functions, Blake2

has a better performance than the SHA family in terms of running time and energy

consumption. However, it requires more firmware usage and stack space than the

SHA family. For asymmetric ciphers, RSA failed on all devices, while ECC failed

only on SAML11.
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CHAPTER V

DEPENDABILITY: ACHIEVE DEPENDABILITY IN INDIVIDUAL

DECENTRALIZATION

In the previous chapter, we study the performance of various cryptographic

algorithms on different resource-constrained devices. We show that even

on extremely resource-constrained devices, it is still possible to provide the

fundamental security requirements in decentralized system. In this chapter, we

further our research on the advanced security requirements and focus on the

dependability requirement.

As described in Section 2.2, dependability in decentralized system refers to

the correctness of computation outputs and the consistency of the system state

in the presence of malicious parties. In collaborative decentralization, parties

could share computation information with others and verify the correctness

of the computation results together. For example, a blockchain system could

use consensus mechanisms such as proof of work or proof of stake to ensure

dependability. In contrast, in individual decentralization, parties do not share

information with others, which enhances the privacy property, but reduce the

dependability when some parties are malicious.

In this chapter, we investigate the dependability issue in individualized

decentralization. We introduce a novel technique to detect malicious behaviors and

identify the cheating parties during computations. In particular, we study the case

of intermediary-based key exchange protocol in which intermediaries in the protocol

do not communicate with each other as in the individual decentralization. Through

the design of intermediary-based key exchange protocol, we show that in individual

decentralization, when parties are compromised and become untrustworthy, a
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decentralized system would be undependable and fail to function correctly. Thus,

we propose a novel and efficient solution to ensure the correctness of computation

results while honest users have the ability to detect malicious parties, thereby

improve the dependability of a decentralized system. Our solution is provable

secure and the failure probability of our protocol is easily negligible with a

reasonable setup. Furthermore, the malicious party detection probability can be

1.0 even when a malicious party only tampers a small number of messages.

The chapter is derived in part from the following unpublished work:

Resilient Intermediary-Based Key Exchange Protocol for IoT by Hu, Z.; Li, J.;

Wilson, C.

Note, this unpublished work was itself derived from the following published

work: Toward a Resilient Key Exchange for IoT [94] by Hu, Z.; Li, J.; Mergendahl,

S.; Wilson, C. I am the leading author of these works and was responsible for

leading all of the presented analyses.

5.1 Introduction

Due to advances in lightweight computing and networking technologies, the

Internet of Things (IoT) has rapidly penetrated into our lives. However, because

a compromised IoT system can lead to disastrous results [186, 218, 124], a key

challenge facing IoT is that IoT networks must support secure communications

channels to protect message integrity and confidentiality, thus resistant to both

message tampering and eavesdropping. To establish secure communication

channels, a general solution for IoT devices is to employ cryptographic algorithms.

For instance, IoT devices can either employ public key cryptography (PKC) or

symmetric key cryptography (SKC) to establish secure communication channels

between them. However, IoT devices are highly heterogeneous and usually have
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extremely limited resources such as memory, battery, and computing power. Due

to the expensive operations and longer key sizes of PKC, many IoT devices are not

capable of performing PKC and have to resort to SKC. A central question with

using SKC, however, is key exchange; that is, any two IoT devices must exchange a

common secret key in order to encrypt and decrypt messages between them.

Non-cryptographic solutions have been proposed for secret key exchange

between IoT devices. A typical solution is using a secure secondary communication

channel, which however usually requires additional hardwares or sensors [127, 215]

that IoT devices may not be equipped with. Other non-cryptographic solutions

include jamming [9] and proximity [161]. The jamming solution requires a special

entity—jammer—to jam the channel and the proximity solution needs IoT devices

to be physically close to each other (e.g.6cm); both are often unrealistic.

Cryptographic key exchange solutions can be various methods using PKC

(e.g.Diffie-Hellman, ECC, RSA) or methods not using PKC. The former’s demand

on resources and computing power is often beyond the reach of IoT devices.

The latter are methods using SKC. In contrast to using PKC, SKC-based key

exchange has a better performance with significantly lower usage of resources

and computational power, thus is often preferred to PKC-based key exchange in

resource-constrained environments. However, to use SKC for key exchange, if only

two communication parties are involved and no pre-shared private secret, SKC

alone is not sufficient to establish a key exchange protocol via public channels,

even if one-way function exists [99]. There are two approaches in using SKC for key

exchange between two parties: using a pre-shared secret between the two parties,

or using the help of intermediary parties between the two parties. Here, we also call

an intermediary party a helper in the rest of the paper. As an IoT network is often
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composed of hundreds or even thousands of devices, doing the former approach for

every pair of devices is daunting. The latter approach is more feasible, which we

focus on in this paper.

All existing intermediary-based key exchange protocols rely on an

assumption in their adversary model that the intermediaries must be honest or

semi-honest, where the intermediaries do not tamper with messages in a protocol

or abort the protocol and follow all instructions in a key exchange protocol.

(Intermediaries in the honest model are trustworthy while intermediaries in

the semi-honest model are not fully trustworthy and may attemp to obtain

useful information from the protocol.) This assumption is usually stringent and

often unrealistic. A stronger adversary model is the malicious model in which

intermediaries can arbitrarily deviate from a protocol. If intermediary parties are

compromised by malicious adversaries, they can tamper with messages between

the key exchange parties. IoT devices may not detect the compromise and they

may either fail to exchange a secret key between them or leak useful information

pertaining to the key to adversaries. Key exchange parties could try to sign their

messages, but signing with PKC is too expensive for IoT devices, and signing with

SKC requires the key exchange parties to have a shared key between them which

they have yet to agree on.

Furthermore, to our best knowledge, none of the previous intermediary-

based key exchange protocols have formally proved that their protocol is secure

under the Universally Composable (UC) security model, or UC-secure [48]. Here,

a UC-secure key exchange protocol means even when it is used by multiple key

exchange sessions simultaneously or when it is combined with other protocols

(e.g.when it is embedded in another protocol), the protocol is still secure (e.g.no
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information can leak from one session to another session or leak from the key

exchange protocol to another protocol).

In this work, we design, prove, and evaluate a new intermediary-based key

exchange protocol for devices with limited resources—especially IoT devices—to

successfully and securely agree upon a secret session key. In particular, we apply

the cut-and-choose technique to identify the malicious helpers without using any

PKC primitives. Cut-and-choose is widely adopted in multi-party computation

(MPC) [129, 8] to achieve security against malicious parties. Its main idea is to

let one party construct different versions of a secret message and have the other

party randomly check some of them and use the rest of them. In our protocol,

we first let an IoT device create a bunch of test keys, and then let the other IoT

device randomly pick a subset of test keys to detect malicious helpers and use the

remaining test keys to derive a real secret session key for communication between

the two devices. Our main contributions include:

– Our protocol advances SKC-based key exchange. Unlike any previous

intermediary-based solution, our protocol is the first one that does not rely

on the trustworthiness of helper parties. Also, the protocol does not leak any

useful information to the helper parties. If some helpers are malicious and do

not follow the protocol, the two devices will still be able to establish a session

key without leaking any useful information.

– Our protocol introduces a novel design that can efficiently identify the

malicious helpers when they tamper messages going through them, even if

they collude or selectively tamper messages.
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– With the SK-security framework and the UC model, we formally prove that

our protocol is secure against malicious intermediary helpers in both the

stand-alone model and the UC model.

– We derive the best possible setting (e.g.the number of intermediary helpers

and secure channels needed) for an intermediary-based key exchange protocol

to be secure. We also show how two communication devices authenticate each

other with the help from intermediaries before the key exchange starts.

– We conduct theoretical analysis of our protocol and show its failure

probability is easily negligible with a reasonable setup and its malicious

helper detection probability can be 1.0 even when a malicious helper only

tampers a small number of messages.

– We provide empirical evaluations for our protocol. We implemented our

protocol and emulated different IoT devices on Mininet to evaluate its

performance against three widely used PKC-based protocols: RSA, Diffie-

Hellman, and Elliptic Curve Diffie-Hellman. For two parties doing key

exchange, our experiments demonstrated that our protocol achieves 2.3 to

1591 times faster on one party and 0.7 to 4.67 times faster on the other.

5.2 Related Work

A secure key exchange protocol is a core cryptographic primitive in building

secure communication channels [49]. Various standard public key cryptography

(PKC) schemes are sufficient to implement a secure key exchange protocol in

traditional networks. However, due to the limited resources of IoT devices, these

schemes are not suitable for many IoT environments. Many previous approaches

were introduced to improve the efficiency of PKC, such as more efficient variants
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of Elliptic Curve schemes [34, 57]. The computational cost during key exchange

can also be reduced by performing pre-computations before key exchange [154].

However, improvements on PKC-based methods are limited, mostly insufficient

in addressing the resource limitations of IoT devices. Below we focus on previous

approaches that mainly use SKC.

One key exchange solution without PKC is using a pre-shared secret. For

example, the approach in [118] and [187] assume that all nodes in the same network

share a common master key, from which any two nodes can derive their session key.

However, if any node is compromised, it will expose the master key and therefore

threaten the confidentiality of the entire network. To address this issue, some

approaches (such as those in [167, 136]) instead use a password between a client

and all its servers as a pre-shared secret, where every server has a share of the

password. The servers collectively use the password to authenticate the client

and then derive a session key for the client to communicate with any one of the

servers. Here, unless more than a threshold number of servers are compromised,

a compromised server node will not leak the password. Unfortunately, these

password-based approaches still employs PKC. Also, like the pre-shared master

key, they still have a single point-of-failure (the password), and they cannot identify

which server(s), if any, are compromised.

Instead of one common pre-shared secret among all nodes, Chan et al. [89]

suggest each node pre-store a set of keys randomly selected from a universal key

space, where the sets of any two nodes overlap. When a node decides to start a

communication session with another node, it must identify all the common keys

it shares with that node and then derive a session key between them from the

common keys. If an attacker subverts a node, the attacker can only learn the
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keys in the node’s set of keys, while the session key remains secure. However,

the procedure to identify common keys between different nodes could leak useful

information about the universal key space and eventually the information of the

session keys between nodes. In a similar work [131], every node is associated with

a set of polynomials in a universal pool of random bivariate polynomials. Any two

nodes need to derive their session key by first identifying their common bivariate

polynomials, which however could leak useful information of the pool and also the

information of the session keys.

Different from using a pre-shared secret, another solution is to use help from

a trusted third party. Hummen et al. [97] suggested that as long as an IoT device

maintains a key associated with an external trusted server, it then can use the help

of the trusted server to derive a new secret session key for its communication with

another party. This approach drastically reduces the computations of IoT devices.

Yet, the trusted server is a major point of failure. If it is compromised, it could

obtain all secret keys.

Instead of placing trust into a single third party, researchers proposed

solutions using multiple intermediary helpers. Solutions in [100, 177, 164, 163] use

the neighboring nodes of key exchange parties as intermediary helpers, whereas

for the solution in [89], multiple independent communication paths between two

communication nodes can be regarded as intermediary helpers. A party can initiate

a key exchange with another party by splitting a secret into multiple secret shares

and sending each share to a different intermediary helper, where each share leaks

no information of the original secret. Every intermediary helper then forwards the

share it receives to the other key exchange party, which subsequently assembles

all the shares it receives to derive the original secret, and both parties can then
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use the same secret to derive their session key. However, these intermediary-based

solutions assume all intermediaries are trusted or at least semi-honest. In other

words, all intermediaries must follow the protocol honestly. If any intermediary

becomes malicious and deviates from the protocol, such as discarding a secret

share or tampering a secret share before forwarding it, the whole key exchange

could fail and the malicious intermediary may learn certain information of the

secret, potentially weakening the confidentiality strength of the session key.

Furthermore, the communication nodes cannot detect which intermediary helpers

are compromised by the adversary.

5.3 Basic Design

Not only does our intermediary-based key exchange solution eliminate

all PKC operations and only rely on SKC operations, it also significantly differs

from prior intermediary-based solutions and adds new features. In particular, we

describe the basic design of our key exchange solution in this section and focus on

the resiliency against malicious intermediaries in the next section.

5.3.1 Settings and Assumptions. Every IoT device, say PA,

communicates with another IoT device, say PB, via a public channel, which is

not secure as messages through the channel could be eavesdropped or tampered.

PA and PB thus need to exchange a session key to protect their communication,

where PA is the key exchange initiator and PB is key exchange responder.

PA and PB are honest and follow their key exchange protocol between themselves.

Finally, both parties are resource-constrained IoT devices and can only perform

SKC operations (i.e., no PKC operations).

Between PA and PB are n intermediary helper parties Hi (i = 1, . . . , n)

(Figure 20) that will assist the key exchange. A helper can be a gateway device,
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a smart phone, or another IoT device. Further, PA and PB each set up a secure

channel with every helper through a registration process, which can establish a

shared secret between an IoT device and a helper and use the shared secret to set

up a secure channel between them for their communication. (Note this registration

process is not suitable for two IoT devices to exchange a session key as it will

need to register every IoT device at its every communication party, a much larger

overhead than registering a device at all its helpers.) Finally, unlike PA and PB

who are honest, a helper may be malicious. We assume there are less than t helpers

in total which are malicious.

Before they start key exchange, PA and PB authenticate each other, as

follows. For PA to authenticate itself to PB, PA composes an authentication

message about its identity and sends it to every helper (through its secure channel

with the helper). Every helper then verifies the message; if the message is verified,

the helper then sends a claim to PB (through its secure channel with PB) that the

other side is indeed PA. On the side of PB, upon the receipt of claims from all the

helpers, PB can then decide if PA is authenticated based on its authentication

policy, which, for example, may require (a) all the claims vouch for PA, or (b)

the majority of claims vouch for PA, or (c) no more than a threshold number

or percentage of claims vouch for an identify that is not PA. Clearly, except for

policy (a), if some helpers are malicious, PB can still authenticate PA. PB can

authenticate itself to PA in the same way.

5.3.2 Key Exchange Protocol π. We now describe the key exchange

protocol π to illustrate the basic design of our key exchange solution. It leverages

a standard t-out-of-n secret sharing scheme [188] in which a secret S is composed

of n shares and a collection of at least t(t ≤ n) shares must be present in order

98



PA PB

H1
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...

Figure 20. The settings of key exchange. PA and PB are communication devices
and Hi (i = 1, . . . , n) are intermediary helpers.

to reconstruct S. Any collection that has less than t shares does not leak any

information about S. The main idea of π is for the key exchange initiator PA to

split a secret into n shares and for the key exchange responder PB to receive at

least t shares separately through t helpers and reconstruct the original secret, thus

PA and PB are able to use the same secret to derive their session key. The protocols

is as follows.

1. Initialization. PA initializes the key exchange with PB by sending PB a

message (init, sid) (via a public channel) where init contains PA’s security

parameters (including ciphers and parameters available for key exchange and

ciphers and key lengths for its communication with PB) and sid is the ID of

the current key exchange session. PB then sends back (initconfirm, sid)

(via a public channel) where initconfirm contains a subset of PA’s security

parameters that PB agrees with for their key exchange.

2. Choose secret and its shares. PA randomly choose a secret S and invokes

a t-out-of-n secret sharing scheme to obtain n shares of S: {si|i = 1, . . . , n}.

3. Transfer secret shares. PA sends si to Hi (i = 1, . . . , n), which then

forwards si to PB after receiving si.
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4. Derive secret from shares. Upon receipt t shares among {si|i = 1, . . . , n},

PB then uses the t-out-of-n secret sharing scheme to reconstruct S.

5. Derive session key. PA and PB both compute ksid = f(S, 0), where f is

a pseudorandom function agreed by PA and PB during initialization. ksid is

then the session key for PA and PB.

6. Verify session key. Furthermore, PA and PB each compute

S ′ = f(S, 1), and PB sends an acknowledgement message M =

g(“confirm”, sid, PA, PB, S
′) to PA where g is a message authentication

function (also agreed by PA and PB during initialization). Upon the receipt

of M , PA checks if M is also g(“confirm”, sid, PA, PB, S
′). If so, PA

knows both parties agree on ksid as their session key, and PA can start its

communication with PB; otherwise, PA either aborts the protocol or initiates

another instance of π.

Hi

(init, sid)
(initconfirm, sid)

si si

M

Randomly
picks a secret
S, obtains
its shares
(s1, . . . , sn),
and sends si
to PB via Hi

Reconstructs
secret S,
derives
session key
from S, and
composes
acknowledgement
message M

Device PA Device PB

Figure 21. Key exchange protocol π. Each dashed line means a message is sent
via a public channel. Each solid line means a message is sent via an intermediary
helper party.
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5.3.3 Optimal Network Configuration. As shown in Figure 20,

protocol π relies on the existence of n helpers and pre-established secure channels

between communication devices and helpers. One concern here is that what are

the minimum number of helpers and secure channels for protocol π to successfully

exchange a key between two devices. In this section, we show that without PKC,

π with two helpers and four secure channels is the optimal intermediary-based key

exchange protocol that uses the fewest number of intermediary helpers and secure

channels.

To prove π’s optimality, we explore the possibility of other cases that

use one helper (Figure 22), two helpers (Figure 23), and three or more helpers

(Figure 24). (We omit settings that are isomorphic to each other.) Compared to

protocol π with two helper parties and four secure channels, these cases either

utilize fewer helper parties or fewer secure channels, and we show below that if only

using SKC, these cases are not sufficient to implement a key exchange protocol.

Theorem 1. The key exchange protocol π with two helpers and four secure

channels is the optimal intermediary-based key exchange protocol for two parties

to establish a session key in that π uses the fewest number of intermediary helpers

and secure channels.

We analyze cases with one helper, two helpers, and three or more helpers

separately below.

5.3.3.1 One-Helper Cases. Cases with one helper include cases 22a,

22b, and 22c in Figure 22. We focus on showing 22c is impossible to have a secure

key exchange protocol without using PKC. The impossibility of 22c implies the

impossibility of 22a and 22b because 22c has a stronger setting with more secure

channels. The proof follows the fact that whatever messages that are transferred
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over the network, these messages are also be obtained by the helper H1. In Figure

22c, since the communication channel between PA and PB is public, H1 can

eavesdrop all messages on this channel. In addition, H1 has as much (or more)

computational power as PA and PB, since our protocol does not rely on PKC,

whatever can be learned or computed by PA or PB can also be learned by H1.

Therefore, it is impossible for PA and PB to share a common secret session key

without leaking it to H1.

PA PB

H1

(a) G1

PA PB

H1

(b) G2

PA PB

H1

(c) G3

Figure 22. Different network settings for one helper.

PA PB
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H2
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PA PB

H1

H2

(b) G5

PA PB

H1

H2

(c) G6

PA PB

H1

H2

(d) G7

PA PB

H1

H2

(e) G8

PA PB

H1

H2

(f) G9

Figure 23. Different network settings for two helpers.

5.3.3.2 Two-Helper Cases. For two-helper cases, we first look at

cases 23a, 23b, 23c. Here we only show that 23c is impossible to achieve secure key

exchange since the impossibility of case 23c also implies the impossibility of cases
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23a and 23b because case 23c has a stronger setting with more secure channels.

We show that case 23c can be reduced to the case of no helper. Assume that we

have a secure key exchange protocol π for case 23c, now we construct a secure

key exchange protocol π′ for two communication parties with no helper as follows.

Consider the components CA = (PA, H1) and CB = (PB, H2), we create new parties

P ′A and P ′B to simulate the behavior of CA and CB respectively. Namely, for all

operations that PA and H1 perform in π, P ′A behaves the same. P ′B also behaves

the same as PB and H2 in π. Since π is a secure key exchange protocol against

malicious adversaries, π′ is also a secure key exchange protocol for parties P ′A and

P ′B. However, it contradicts the result of Impagliazzo-Rudich [99] that without

PKC, no secure key exchange protocol exists while only the two communication

parties are involved. Therefore, there is no such protocol π for case 23c.

We now look at cases 23d, 23e, 23f. Case 23f follows a similar argument

as in case 22c. In case 23f, the communication channel between PB and H1 is a

public channel. H2 can eavesdrop all messages that are transferred between H1

and PB. Thus, H2 obtains all the information in this case. Since H2 has more

computational power than PB, whatever PB computes or receives can also be

computed or obtained by H2. Therefore, it is impossible for PA and PB to share

a common secret session key without leaking it to H2.

5.3.3.3 Cases with Three or More Helpers. To show the

impossibilities, we divide all cases into two categories which depend on whether

there is a secure path from PA to PB. Namely, a secure path from PA to PB

indicates that there is a secure channel from PA to a helper Hi and also a secure

channel from the same helper Hi to PB (e.g., Figure 24a). Notice that we only

consider the cases with three secure channels since there are more than two
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Figure 24. Different network settings for more than two helpers. 24a has a secure
path between PA and PB. 24b has no secure path between PA and PB.

helpers. Also, the the impossibility of cases with three secure channels implies the

impossibility of cases that has two or less secure channels.

For all cases without a secure path from PA to PB as in Figure 24b, they

follow a similar argument to case 23c. We can reduce these cases to the no helper

case as follows. For all helpers that PA has secure channels with, we group them

into a component CA with PA and let a new party P ′A to simulate the behavior

of CA. For all other helpers, including helpers that PB has no secure channels

with, we also group them into a component CB with PB and let a new party P ′B

to simulate the behavior of CB. Thus, if there is a secure key exchange protocol for

these cases, we can also construct a secure key exchange protocol for P ′A and P ′B

which contradicts to the Impagliazzo-Rudich result.

For all cases that have a secure path from PA to PB, the argument is similar

to case 23f. Assume the secure path passes through the helper Hi. Since the
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number of secure channels is less or equal than three, there is no other secure path

from PA to PB. Without loss of generality, if the third secure channel connects to

PA, then Hi can eavesdrop on all messages PB receives and obtain all information

that PB can compute. Therefore, it is impossible for PA and PB to share a common

secret session key without leaking it to Hi.

5.3.4 Agreement of Helpers for n-Helper Protocol. The protocol

π requires the two key exchange devices to have secure channels with the same set

of helper parties. However, this requirement can be a challenge in the real world

since every device can choose helpers based on its preferences. It is possible that

when two devices starts key exchange, they do not have the same n helpers in

common. For example, in Figure 25, although PA and PB wish to use three helpers,

PA only has secure channels with H1 and H2, and PB only has secure channels

with H2 and H3. We therefore design a helper discovery process to enable two key

exchange IoT devices PA and PB to agree on the same set of helpers before they

invoke the n-helper protocol.

First of all, PA and PB need to determine which n helpers they need to

agree on to use for their key exchange. Denote C this set of n helpers. Also denote

A and B the initial sets of helpers of PA and PB, respectively. First, PA sends

an initialization message to PB. Compared to the message in Figure 5.3.2, the

initialization message here contains extra information which includes A and the

number of helpers (i.e., n) needed for the key exchange. PB then identifies the

common helpers it has with PA, i.e., A∩B. If |A∩B| ≥ n, PB randomly picks n

helpers from A∩B and assign them to C. Otherwise, besides the common helpers,

PB randomly selects n-|A∩B| helpers from A∪B \ A∩B and place all these helpers

into C. Clearly, now |C|=n. PB also notifies PA of C.
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Both PA and PB then try to add new helpers that are in C but not in A and

B, respectively. To do so, they each use their current helpers to establish a secure

channel with every new helper. Assume PA needs to add a new helper Hnew. PA

then treats Hnew as a key exchange responder in a completely new key exchange

session and runs an independent instance of an |A|-helper key exchange protocol

with helpers from A. Here, Hnew needs to have a secure channel with each helper

in A, which is trivial since all helpers have enough computational resources and can

simply apply conventional PKC techniques to build secure channels between each

other. As a result, PA and Hnew can agree on a common secret key and PA can use

the key to establish a secure channel with Hnew, thus also establishing Hnew as a

new helper. The procedure for PB to add a new helper is exactly the same.

Back to the example in Figure 25, we can see here n = 3, A = {H1, H2},

B = {H2, H3}. Upon the initialization message from PA, PB determines C =

{H1, H2, H3} and also notifies PA about C. PA then adds H3 as a new helper; to

do so, PA will use its current helpers H1 and H2 to conduct a key exchange with H3

and use the secret key to establish a secure channel with H3 and thus have H3 as

a new helper. PB also uses the same procedure and adds H1 as a new helper. As a

result, PA and PB both use helpers specified by C.

PA PB

H1

H3

H2

Figure 25. PA and PB do not share the same set of helper parties.
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5.4 Resiliency Design

5.4.1 Overview. Protocol π is not resilient against malicious helpers.

If a helper tampers or forges a share before sending it to PB and PB uses it with

other shares to reconstruct the secret (S), PB will not derive the same secret that

PA has, resulting in the failure of the key exchange. Moreover, PA and PB cannot

detect or identify malicious helpers. A typical approach to this problem is to sign

every share, but signing with PKC is too expensive for IoT devices, and signing

with SKC requires PA and PB to have a session key between them already, which

they have yet to agree on.

We design a new protocol πA that advances π with resiliency. Without using

any PKC operation, πA enables key exchange devices to try to detect and identify

malicious helpers. The main design idea of πA is derived from the cut-and-choose

technique widely used in secure multi-party computation. The cut-and-choose

technique lets one party construct different versions of a message and have the

other party randomly checks some of them and use the rest of them. In πA, PA

generates a number of random keys which we call test keys, PB use some of them

called opening keys to identify malicious helpers via an efficient and effective

design, and PA and PB use the rest of them called evaluation keys to derive the

session key.

5.4.2 Key Exchange Protocol πA: General Design. πA is

composed of three phases. We overview them here and elaborate them in

Section 5.4.3.

Initialization phase. As opposed to choosing one secret S as in π, PA now

generate a number of test keys. For every test key, πA invokes a standard t-out-of-

n secret sharing scheme to split it into n shares, sends each share to a different

107



helper, which then forwards the share to PB. Note that with the assumption

that there are less than t helpers in total which are malicious (Section 5.3.1),

the security property of the t-out-of-n secret sharing scheme guarantees that the

malicious helpers, even if they collude, will not be able to have t or more shares to

learn any useful information of any test key.

Cut-and-choose phase. This phase is focused on identifying malicious

helpers and drops shares from them. PB first randomly chooses half of the test keys

as opening keys and the other half test keys as evaluation keys and also notifies PA

its choice. PA then retransmits a copy of every share of every opening key to PB

via a helper rather than the original helper that forwarded the share, where the

helper is randomly chosen each time. PB then inspects every helper and compares

every share of an opening key forwarded by the helper against the share’s copy

retransmitted via another helper. If there are t or more helpers that disagree with

the helper, PB then regards the helper as malicious. Otherwise, i.e., if this helper

was not malicious, every helper who disagreed with the helper is then malicious;

with t or more disagreements, there would be then t or more malicious helpers,

which contradicts with the assumption that at most t − 1 helpers are malicious

(Section 5.3.1).

If more than n-t helpers are malicious, PB aborts the protocol. Otherwise,

PB drops all the shares forwarded by every helper identified as malicious, some of

which could be shares of an evaluation key. PB finally reconstructs every evaluation

key with its remaining shares. Although it is still likely that some remaining shares

are compromised and as a result evaluation keys reconstructed with them are also

compromised, the likelihood is low given that most remaining shares are authentic.
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Session key derivation phase. PA randomly chooses a secret, uses each

evaluation key to encrypt the secret separately, and sends each encrypted secret to

PB. PB then uses the corresponding evaluation key to decrypt every encrypted

secret. Although PB may not reconstruct some evaluation keys correctly due

to compromised shares, it can treat the decryption output with the majority

agreement as the secret. PA and PB can therefore use the secret to derive their

session key.

Hj

Hh(i)

Initialization phase:

Cut-and-choose phase:

Session key derivation phase:

(init, sid)
(initconfirm, sid)

τ1j ,. . . ,τsj τ ′1j ,. . . ,τ
′
sj

O, E

τij τ ′′ij

notify

ci

M

Generates s test
keys (τ1,..., τs); for
each test key τi,
obtains n shares
(τi1,..., τin); for all
j ∈ {1,..., n}, sends
shares (τ1j ,..., τsj) to
PB via Hj

Randomly picks O
and E from {1,..., s}

For all i ∈ O and
all j ∈ {1,..., n},
sends τij to PB via
helper Hh(i) where h
is a random mapping
function

Detects malicious
helpers and drops all
shares from them

For all i ∈ E ,
encrypts secret S
with each evaluation
key τi to obtain
ci = Encτi(S)

Decrypts ci and
takes the majority
output as secret S
to derive the session
key; composes the
acknowledgement
message M

Device PA Device PB

Figure 26. Key exchange protocol πA. Each dashed line means a message is sent
via a public channel. Each solid line means a message is sent via an intermediary
helper party.
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5.4.3 Key Exchange Protocol πA: Protocol. The protocol πA is as

follows.

[Initialization phase.] This phase is the same as π’s Initialization (see

Section 5.3.2), except that the init also contains the number of test keys from PA.

Plus, PA sends test keys to PB as follows:

– PA randomly generates s test keys T = (τ1, τ2, · · · , τs), where every test key is

of an equal length.

– For every τi ∈ T , PA invokes the t-out-of-n secret sharing scheme to obtain its

n shares (τi1, τi2, · · · , τin).

– For every test key τi and its every share τij, PA sends τij to helper Hj, which

then forwards the share to PB. Helper Hj will thus receive and forward a set

of shares (τ1j, τ2j, · · · , τsj).

– For each τi, PB receives shares (τ ′i1, τ
′
i2, · · · , τ ′in). (We use notation τ ′ij instead

of τij since a share may be tampered by a corrupted helper.)

[Cut-and-choose phase.] PB now processes all the test key shares it has received:

– Based on the total number of test keys, PB randomly chooses half of test key

indexes, denoted as O, to be the indexes of opening keys and the other half,

denoted as E , to be the indexes of evaluation keys. PB sends (O, E) to PA

(via a public channel).

– On PA, upon the receipt of O and E , for every τij (i ∈ O) it forwarded,

retransmit a copy of τij to PB via helper Hh(i), where h is a random mapping

function and ∀i ∈ O, h(i) 6= j.
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– On PB, for every helper Hj (j = 1, . . . , n), compare every τ ′ij (i ∈ O) it

received from Hj with its retransmitted copy from helper Hh(i) to see if they

match. If for helper Hj there are t or more helpers that disagree with Hj, Hj

is then a malicious helper and PB drops all the test key shares from Hj.

– If more than n-t helpers cheated, PB aborts the protocol. Otherwise, for every

i ∈ E , PB knows at least t shares from (τ ′i1, τ
′
i2, · · · , τ ′in) still remain. With

these remaining shares, PB thus uses the t-out-of-n secret sharing scheme to

reconstruct τ ′i . Here, PB regards τ ′i as τi (which may not be the same if at

least one share used is tampered but not found in the previous step).

– PB sends (notify) to PA to let PA enter the next phase (via a public

channel).

[Session key derivation phase.] PA and PB now generate their session key as

follows:

– PA randomly chooses a secret S, encrypts S with each evaluation key τi

separately, i ∈ E , to obtain ciphertext ci=Encτi(S), and sends each ci to PB

(via a public channel).

– For each ciphertext ci (i ∈ E) received, PB decrypts it using the evaluation

key τ ′i .

– PB takes the majority output from the previous step as the secret S.

– PA and PB follow exactly π’s “Derive session key” and “Verify session key”

steps (see Section 5.3.2). PB also notifies PA the identities of malicious

helpers, encrypted with their newly derived session key.
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5.5 Security Proof of πA

We now formally prove the security of protocol πA. We first introduce the

formal definitions of session key security (SK-security) and t-out-of-n secret sharing

scheme, and then prove πA’s security.

5.5.1 Definitions.

5.5.1.1 Session Key Security. We adopt the session key security

(SK-security) [31], which formally defines the security of a key exchange protocol.

We choose this definition because it is conceptually simple and easy to use when

analyzing and proving the security of a key exchange protocol. In addition,

adopting SK-security also helps define the key exchange protocol security in the

universally composable (UC) model, which we will describe in Section 5.5.1.2. The

intuition behind the SK-security is that it means an adversary cannot distinguish a

session key from a randomly chosen value.

To define SK-security, we first define a game GameIA between a simulator

I and an adversary A. Let k be a session key and c ∈ {0, 1} be a coin, GameIA is

defined in two steps:

– I first generates the session key k and then tosses the random coin c. I

receives c
R← {0, 1} where

R← means randomly choosing a value from a set.

If c is 0, I provides the real session key k to A; otherwise I randomly chooses

a value k′
R← {0, 1}|k| from the session key space and returns k′ to A.

– With the received value k or k′, A outputs a result c′ as its guess for the

value c. If c′ = c then I outputs 1 (I → 1); otherwise, I outputs 0 (I →

0).

Definition 1. A key exchange protocol Π is SK-secure against adversary A if it

satisfies the following properties:
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– Correctness. After running Π, the two honest parties establish the same

session key only with a negligible probability of failure.

– Indistinguishability. The probability that adversary A outputs a correct c′

that equals to c is 1
2

+ ε(λ) where ε(λ) is a negligible function in λ. Or, in an

equivalent expression, assuming ADVΠ
A(λ) be the advantage of adversary A

to win the game GameIA , we then have ADVΠ
A(λ) = |Pr[I → 1]− 1

2
| = ε(λ).

5.5.1.2 Universally Composable Model. UC model provides a

stronger security definition for a key exchange protocol than SK-security. The

SK-security defines the key exchange security in the standalone model that a key

exchange protocol is secure only when a single instance of the protocol runs in

isolation. In contrast, US model guarantees that a key exchange protocol remains

secure even if it is used by multiple key exchange sessions simultaneously or when

it is combined with other protocols (e.g., when it is embedded in another protocol).

That is, no information can leak from one session to another session or leak from

the key exchange protocol to another protocol. Clearly, a key exchange protocol

that is UC-secure has a stronger guarantee and is thus more desired. We refer

to the original paper of Canetti [48] for more details and formal definition of UC

model.

5.5.1.3 Secret Sharing Scheme.

Definition 2. A t-out-of-n secret sharing scheme Σ consists of the following two

algorithms:

– Share distribution algorithm Share. A randomized algorithm that takes

a secret message m as input and outputs a sequence of n shares: M =

(m1, · · · ,mn).
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– Secret reconstruction algorithm Reconstruct. A deterministic algorithm

that takes an input of a collection of t or more shares and outputs the secret

message m.

A secure secret sharing scheme should satisfy the property of

correctness such that for all U ⊆ {1, · · · , n} with |U | ≥ t, it holds that

Pr[Reconstruct(mi|i ∈ U) = m] = 1. For any U ⊆ {1, · · · , n} with |U | < t, no

information will be learned from those shares.

To formalize the security of Σ, let m,m′ ∈ M be two different messages

from the message space M. The challenger (i.e., the simulator) I invokes the

Share algorithm on m,m′ and obtains M← Share(m), M′ ← Share(m′).

I also tosses a random coin b ∈ {0, 1}. If b = 0, I returns (mi|i ∈ U) to the

adversary A. Otherwise I returns (m′i|i ∈ U). With the received set of shares, A

outputs a result b′ as its guess for the value b. If b′ = b then I outputs 1; otherwise,

I outputs 0.

We define the advantage of the adversary A in this game as:

ADVΣ
A = |Pr[I → 1]− 1

2
|

Definition 3. A t-out-of-n secret sharing scheme Σ is secure over message space

M if ADVΣ
A is a negligible function.

An instance of implementation of a t-out-of-n secret sharing scheme is

Shamir’s secret sharing scheme [188]. The idea behind this scheme is that d + 1

points can determine a unique degree-d polynomial. We refer to [188] for more

details.

5.5.2 Security Proof. With SK-security, we first prove that π

(specified in Section 5.3.2) is secure against malicious helpers, and then prove πA
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(specified in Section 5.4.3) is also secure according to an advanced theorem in SK-

security.

Proof. We first prove π is secure. We assume in π all helper parties are semi-honest

and they follow the protocol and forward messages correctly (i.e., thus messages are

authentic). According to Definition 1, to prove this theorem we need to prove both

the correctness and the indistinguishability of π.

The correctness of π follows the correctness of the t-out-of-n secret sharing

scheme. Since for every i ∈ {1, . . . , n}, helper Hi follows the protocol and forwards

si correctly, both PA and PB will agree on the same secret S. This is guaranteed by

the correctness property of a secret sharing scheme defined in Section 5.5.1.3. It is

clear that as PA and PB are honest (Section 5.3.1), they can derive the session key

ksid = f(S, 0) with probability one.

To show the indistinguishability property of π, we need to prove no

adversary has a non-negligible advantage to distinguish a real session key k (i.e.,

ksid in π) from a random value k′. To do so, we now prove the opposite is not

possible. Specifically, we assume that there was such an adversary A against π

and show with this assumption, we can construct a distinguisher D as follows

that would violate Definition 3 about the security of the t-out-of-n secret sharing

scheme. In another words, D can distinguish (si|i ∈ U) from (s′i|i ∈ U) and output

the correct b′ with non-negligible probability.

The distinguisher D works as follows. Upon the input [k∗, (si|i ∈ U)], where

k∗ is randomly chosen with probability 1
2

between the real session key k (i.e., ksid in

π) and k′ (a random string of length k), D invokes A which plays the same role as

a helper in protocol π. After receiving the share si from PA, A forwards it to PB.

Based on the input k∗, A determines whether k∗==k or k∗ 6= k and output c′ = 0
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or c′ = 1, respectively. D then uses the output of c′ from A as its guess for coin toss

b, outputs b, and terminates.

Now we show the contradiction caused by the assumption above. Assume

the adversary compromises a helper party and obtains one share from the helper,

i.e., (si|i ∈ U). Note that since we assume PA an PB are always honest and an

adversary can only compromise up to t − 1 helpers, the adversary cannot obtain

t shares of the secret. If the real session key k is chosen as the input k∗ (i.e.,

k∗ == k), si is a share of k∗. Otherwise, a random k′ is chosen to be k∗ and si

is not a share of k∗. Now, even though k∗ is randomly chosen between k and k′

with the same probability, A can guess if the input k∗ is the real session key and

output the correct c′ with non-negligible advantage ADVΠ
A, therefore D can base

on c′ from A to guess if mi is a share of k∗, with non-negligible advantage ADVΠ
A.

Clearly, D’s non-negligible advantage contradicts Definition 3. We thus prove the

indistinguishability property of π.

Now that we proved both the correctness and the indistinguishability of π,

according to Definition 1, π is secure.

Next we prove the security of πA. We use the theorem that if a key exchange

protocol (say Π) in which all key exchange messages are authentic satisfies SK-

security, when the protocol is extended to become a new protocol (say Π′) in which

key exchange messages can be corrupted, the new protocol also satisfies SK-security

if it can authenticate messages and discard corrupted ones [31, 50]. Here, when

we extend π to πA, we see in π every message is assumed authentic, while in πA

messages can be tampered by malicious helpers but PB can identify and drop

tampered messages (Section 5.4.2). Therefore, πA also satisfies SK-security.
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Finally, we prove πA is secure under UC model. The proof follows the

fact in [50] that a key exchange protocol is secure under the UC model if (1) the

protocol is SK-secure in the stand-alone model and (2) if the protocol verifies at

the end that the two parties agree on the same session key. From the proof above,

we know (1) is true that πA satisfies SK-security. For (2), as shown in the “Verify

session key” step (see Section 5.3.2), PB sends an acknowledgement message M to

PA, and then PA checks the correctness of M to verify that PA and PB share the

same value of S ′, thereby confirm that both parties agree on the same session key

ksid. Therefore, (2) is also true. We conclude that protocol πA is secure under UC

model.

5.6 Theoretical Performance Analysis of πA

In this section we conduct a theoretical performance analysis of πA. We

analyze its failure probability, pf , the lower bound of test keys s, the probability

that a malicious helper can be detected, pd, and the number of messages to send

during a key exchange session, N .

5.6.1 Failure Probability (pf). πA fails if PA and PB do not reach

an agreement on their session key. Note that the failure is only a denial-of-service,

while no secret or any useful information is leaked. πA fails in two cases:

– Case 1: πA fails if more than n-t helpers are malicious. As described in

Sections 5.4.2 and 5.4.3, in this case PB will not have enough shares to

reconstruct evaluation keys, so it will abort the protocol with pf = 1.

– Case 2: πA fails if the majority of evaluation keys at PB are corrupted (i.e.,

each of them is reconstructed using at least one corrupted share). Denote C
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the set of corrupted evaluation keys; given there are s test keys and half of

them are evaluation keys, we can see in this case |C| ≥ ds/4e. As a result, in

the session key derivation phase PB will not be able to correctly decrypt the

encrypted secret from PA and derive the session key.

More specifically, Case 2 happens if ∀τi ∈ C, τi would not be selected as

an opening key during the cut-and-choose phase, which has a probability of 0.5,

and τi is not correctly reconstructed. Denote pr the probability that PB correctly

reconstructs an evaluation key. Now we have:

pf = (0.5 · (1− pr))|C| (5.1)

Since |C| ≥ ds/4e, we have

pf ≤ (0.5 · (1− pr))ds/4e (5.2)

From Equation (5.2), a higher pr will result in a lower pf . Moreover, 0.5 · (1 − pr)

is less than 0.5 since pr is no more than 1. Thus, the failure probability pf declines

exponentially as the number of test keys s increases, which we say pf is negligible

in s.

We now analyze pr. Let pc be the cheating probability of each one of the n

helpers. The expected number of cheating parties is then n · pc. For each test key,

PB receives n− (n · pc) correct shares. To reconstruct a test key, PB needs to choose

t correct shares. We thus have:

pr =
t−1∏
i=0

n− i− n · pc
n− i

(5.3)

Note that for simplicity, here we assume all helpers have the same cheating

probability pc. If each helper Hi has a different cheating probability pic, the

expected number of cheating helpers is
∑n

i=1 p
i
c rather than n · pc.
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From Equation (5.3), pr is affected by n, t, and pc. If t and pc are fixed,

when n increases, pr also increases. This is consistent with the intuition that if

there are fixed number of malicious shares, increasing n means more helpers and

thus more shares per evaluation key, which provides PB a better chance to pick

correct shares to reconstruct evaluation keys. On the other hand, if n and pc are

fixed, when t increases, pr would decrease. This is because increasing t requires

PB to select extra shares to reconstruct every evaluation key, which means PB

would have a higher likelihood to pick malicious shares. Finally, if fixing n and t,

a higher pc would cause PB to have a higher probability to pick malicious shares,

thus decreasing pr.

Finally, combines Equations (5.2) and (5.3), if pf must be lower than an

upper bound, while key exchange parties probably cannot control the value of pc,

they can adjust the values of parameters s, t, and n to meet the requirement.

5.6.2 Number of test keys (s). In order to derive the session key

with probability at least 1 − pf , PB must correctly reconstruct enough number of

evaluation keys. Recall that for a total number of s test keys, in the cut-and-choose

phase, PB chooses half of them as opening keys and the other half as evaluation

keys. Then in the session key derivation phase, PB needs to correctly reconstruct at

least s/4 evaluation keys to obtain majority outputs.

For the s/2 evaluation keys, we consider the critical point case when half

of evaluation keys (i.e., s/4) are not reconstructed correctly. In this case, PB

would not be able to obtain the secret in the session key derivation phase. From

Equation (5.3), for each evaluation key, PB can correctly reconstruct it with

probability pr. Thus, for s/4 evaluation keys, the probability that the critical point

case happens is (1−pr)s/4. Since pf is the maximum acceptable probability that the
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critical point case happens, we must have (1− pr)s/4 ≤ pf . From this inequality, we

can see the lower bound of test keys is:

s ≥ 4 · log1−pr pf . (5.4)

5.6.3 Malicious Helper Detection Probability (pd). Now we

discuss the probability that PB can identify a malicious helper. We point out that

if the number of test keys s and the t parameter in πA’s t-out-of-n secret sharing

scheme satisfy that s ≥ 4t − 4, PB can always identify a malicious helper if it

tampered at least 2t − 2 shares in total of all opening keys We detail the analysis

below.

In the cut-and-choose phase, for every helper Hj (j = 1, ..., n) PB counts the

number of other helpers that disagrees with the helper in forwarding an opening

key’s share and identifies the helper as malicious if there are at least t helpers that

disagrees with Hj. Below we analyze the probability pd that PB can successfully

identify a malicious helper Hj based on the number of shares that Hj tampered, Z.

Recall every helper forwards one share per opening key, thus forwarding totally s/2

shares; clearly, Z ≤ s/2.

1. Hj tampered at least 2t − 2 shares of opening keys (i.e., Z ≥ 2t − 2).

Here, because for each share tampered by Hj, PA retransmitted a copy of

its original value along a different helper, i.e., totally at least 2t − 2 helpers,

even if all malicious helpers collude with Hj to not show disagreements (i.e.,

retransmitting a copy of a share’s tampered value rather than its original

value), given there are at most t−1 malicious helpers (including Hj), there are

at least t benign helpers each of which will disagree with Hj, thus identifying

Hj as malicious. i.e., pd = 1.

120



Notice this case assumes Z ≥ 2t−2. Given Z ≤ s/2, we can obtain that s and

t must satisfy s ≥ 4t− 4.

2. Hj tampered less than t shares of opening keys (i.e., Z < t). In this case,

PB cannot identify Hj as malicious. i.e., pd = 0. This is because Hj could

be either benign or malicious. Specifically, while it is possible that Hj is

malicious and all helpers that disagree with Hj are either benign or malicious,

it is also possible that Hj is benign and all helpers that disagree with Hj,

whose total number is less than t, are malicious. On the other hand, even

though PB cannot identify Hj as malicious in this case, the number of

opening key shares that Hj can tamper must be less than t. Given PB’s

random choice of opening keys and evaluation keys from the test keys, the

number of evaluation key shares that Hj can tamper must also be less than

t on average. Compared to totally s/2 shares of all s/2 evaluation keys (one

share per key) that Hj could have tampered, t is much less than s/2 as we set

s ≥ 4t − 4 from (1) above. PB would thus have a much higher probability to

reconstruct evaluations keys correctly, thereby reducing the failure probability

pf .

3. Hj tampered t ≤ Z ≤ 2t − 3 shares of opening keys. In this case, PB can

identify a malicious helper with probability pd and we show how to compute

pd as follows. Given that there are s/2 opening keys and Hj forwarded the

j-th share of every opening key, Hj forwarded totally s/2 shares. As PA

retransmitted each of these shares via a randomly chosen helper that is not

Hj, we assume the total number of such helpers is Q. Clearly, Q ≤ s/2. PB

will then check if each of these Q helpers disagrees with Hj, and determines

Hj to be malicious if there are at least t disagreements. Denote x the number
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of disagreements. Assume the worst case where there are t − 1 malicious

helpers and they collude, while there are n− t+ 1 benign helpers (with totally

n helpers) and n− t+1 > t−1 (or n− t+1 ≥ t). To detect Hj is malicious, all

x disagreements then must come from benign helpers, which has a probability(
n−t+1
x

)
·
(
t−2
Q−x

)(
n−1
Q

) .

Here, while all Q helpers come from totally n − 1 helpers (excluding Hj), x

helpers are chosen from n− t+ 1 benign helpers and the rest Q−x helpers are

chosen from t− 2 malicious helpers (excluding Hj with totally t− 1 malicious

helpers). Last, we know x≥t and x cannot be greater than Q, we then have in

the worst case

pd =

Q∑
x=t

(
n−t+1
x

)
·
(
t−2
Q−x

)(
n−1
Q

) (5.5)

5.6.4 Message Overhead (N). We now analyze how many messages

PA and PB will need to send in one key exchange session with πA. Indeed,

the message overhead is one of the four metrics that is used in Section 5.7 to

evaluate the efficiency of πA. First, during the Initialization phase, there are two

initialization messages (i.e., (init, sid) and (initconfirm, sid)), plus n shares of

s test keys where every share is a separate message, resulting in n·s+2 messages.

Then during the Cut-and-choose phase, PB sends PA two messages (i.e., (O, E)

and (notify)), and PA sends PB a copy of every opening key’s every share. With

totally s/2 opening keys (we assume s is an even number for simplicity) and n

shares for each opening key, this leads to s/2 · n + 2 messages for this phase. Last,

during the Session key derivation phase, PA sends PB s/2 ciphertexts, plus one final

message from PB for session key verification. Overall, there are 3n+1
2
s + 5 messages

in total.
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i.e.,

N =
3n+ 1

2
s+ 5 (5.6)

From Equation (5.6), N increases as n and s increase. If a lower message

overhead is desired, one can lower the value of n and s (i.e., less helpers and

test keys). On the other hand, from Section 5.6.1, lowering the values of n and

s will increase pf . Therefore, users need to adjust n and s to meet their specific

requirements for pf and N .

5.6.5 Graphical Analysis of πA’s Performance. Before conducting

the experimental evaluation, we first perform a graphical analysis to show how

the input parameters affect the performance of πA. Based on the analysis of πA

in Section 5.6, here we use the message overhead N to theoretically evaluate the

efficiency of πA for efficiency in this section and also use N one of the four metrics

for experimental evaluation in Section 5.7. From Equation( 5.6), it is easy to see

that N depends on n (number of intermediary helpers) and s (number of test keys).

From Equation( 5.4) and ( 5.3), s relies on n, t (number of required shares), and pf

(target failure probability). Since pf is pre-configured by communication devices,

we fix pf and analyze how t and n affect N .

First we let PA and PB fix the failure probability pf to be 0.005. This is the

same failure probability due to the packet loss when we let PA send a key to PB

directly and PB replies with a confirm message (assume no attacker exist). In our

experiment, we emulate a Wi-Fi environment with a 0.3% packet loss probability

which a typical value in a Wi-Fi environment.

One possible concern here is that if the packet loss rate would affect the

message overhead of πA. In fact, our evaluation results show that the packet loss

rate has very little impact on N unless it reaches a very large, unrealistic value,
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such as 30%. This is because unless the packet loss rate is large, packet loss is

easily compensated by the inherent message redundancy in πA, since πA uses many

redundant shares for every test key to reconstruct the key.

Figure 27 shows how N is affected by t and n with pf fixed at 0.005. In

the evaluation, we set t ranging from 2 to 5 and n ranging from 3 to 12 which is

enough to show the trend. In general, we can see that when t (i.e., more required

shares) or n (i.e., more helpers) increases, N also increases (i.e., more messages).

Intuitively, a larger n means PA needs to generate more shares, thus increase the

number of messages to send. To see why N increases as t increases, recall that PB

needs all the t shares for the evaluation key reconstruction to be correct, a larger t

means a higher possibility that at least one of the shares is tampered. To counter

this risk, more test keys, and thus more messages, will be needed to filter more

tampered shares and increase the difficulty for malicious helpers to corrupt the

majority evaluation keys. Notably, N increases dramatically when t becomes close

to n. For example, when n = 6 and t changes from 4 to 5, N increases from 376 to

781. Here t plays a more important role than n in determining N , and it doubles

the values of N .

To minimize the message overhead, a naive solution here is to choose t and

n as small as possible. However, the values of t and n decide how “secure” the key

exchange session should be. For example, if there are at most X malicious helpers

that collude among themselves, t must be greater than X; otherwise, these X

helpers could mislead PB to reconstruct corrupted evaluation keys, where each of

them is reconstructed using all the t shares that these helpers forged (note that

every helper can and only can provide one share).
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Figure 27. Message overhead N over the number required shares t and the number
of intermediary helpers n.

In addition, t and n also affect the malicious helper detection probability.

From Equation 5.5, it shows that when t and n are small, it is almost impossible

for communication devices to detect malicious helpers. This is because PA and

PB must have enough benign helpers to retransmit shares and identify malicious

helpers in the cut-and-choose phase. In addition, from Equation 5.4, the number

of test keys s also depends on t and n, increasing the value of n may decrease the

value of s, thereby decrease the total message overhead. For instance, when t =

5 and n changes from 6 to 7, N decrease from 781 to 623. This is because when

increasing n with a fixed value of t, PB would have a higher chance to choose the

correct shares to reconstruct evaluation keys, thus reduce the number of required

test keys to detect malicious helpers.

5.7 Experimental Results

5.7.1 Experiment Design. We implemented πA with python

cryptography libraries and measured its performance, including its running time,

CPU cycles, energy consumption, and bandwidth overhead, in experiments.
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We set up our experiment devices and running environments as follows. For

each key exchange session between a key exchange initiator PA and a key exchange

responder PB, we selected three different types of resource-constrained devices:

Raspberry Pi Zero W, Arduino Due, and SAM D21 Xplained. They are commonly

used in the real word for IoT applications but have a different range of resource

capacity. Table 8 describes their basic specifications. For the implementations of

πA and other three PKC-based key exchange protocols, we used Python 3.6.9 with

cryptography library pycrypto 2.6.1. For the networking environment, we used the

Mininet platform [87] on Ubuntu 18.04.4 to emulate a Wi-Fi environment, where

every link is 10 Mbps with a 0.3% packet loss probability.

Table 8. Key exchange devices in experiments

CPU Memory Voltage Current
draw

Raspberry Pi Zero W 1 GHZ 512 MB 5 V 500 mA
Arduino Due 84 MHZ 512 KB 1.8 V 77.5 mA
SAM D21 Xplained 48 MHZ 32 KB 1.62 V 7 mA

The main parameters to configure for our experiments are n, t, s, and

the number of malicious helpers m. In our experiments, we first set the failure

probability of πA to be 0.005 which was pre-configured by PA and PB. With this

setup, from Section 5.6.1 and Section 5.6.5, we can derive that πA has the minimum

message overhead when we set n to be 6, t to be 4, and s to be 28. In addition, PA

and PB can always detect malicious helpers when m is no greater than 2.

We compare πA

6 with traditional PKC-based key exchange protocols:

RSA (Rivest–Shamir–Adleman), DH (Diffie-Hellman), and ECDH (Elliptic

Curve Diffie-Hellman). We set the key length of πA

6 to be 128, for which the

equivalent key lengths for RSA, Diffie-Hellman, and ECDH are 3072, 3072, and 256,
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respectively [27]. For ECDH, we use the curve SECP256R1 with ephemeral keys.

For each PKC-based protocol, we do not include an authentication component;

even so and even as πA

6 includes an authentication (Section 5.3.1), we show πA

6

outperforms them, many times tremendously.
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Figure 28. Running time of key exchange protocols on devices PA and PB. Note
that each subfigure uses a different maximum value for its Y-axis.

5.7.2 Running Time. We measured the running time of πA

6 and the

comparator key exchange protocols on both PA and PB. We recorded the time for

running a complete session of each protocol on each device and took the average

across 10 experiments. Figure 28 shows the comparison results of πA

6 versus different

comparator protocols. Specifically, Figure 28a and Figure 28c show the running
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time of PKC-based key exchange protocols, while Figure 28b and Figure 28d show

the running time of πA

6(0), πA

6(1), and πA

6(2).

Figure 28a and Figure 28b illustrate that on PA, πA

6 is much faster than its

comparators, especially when PA is an Arduino Due or SAM D21 whose resources

are extremely limited. Using πA

6(2) as an example, which has the slowest running

time among the three πA

6 configurations in our experiments, on Raspberry Pi Zero

W, πA

6(2) in the worst case is 2.3 times faster than ECDH and 24.1 times faster

than RSA; however, on SAM D21, πA

6(2) is 59.6 times faster than ECDH and 1591

times faster than RSA.

Figure 28c and Figure. 28d show on PB for all types of IoT devices, although

its lead is less striking than that on PA, πA

6 is still faster than other protocols.

Again using πA

6(2) as an example, while on PA π
A

6(2) is 2.3 to 59.6 times faster

than ECDH, on PB it is still about 0.7 to 3.65 times faster than ECDH; with

a Raspberry Pi Zero, the running time of πA

6(2) on PB is 0.072 seconds while

it takes ECDH 0.122 seconds. The lead reduction here is because PB needs

to perform more operations than PA, including identifying malicious helpers,

reconstructing evaluation keys, and decrypting multiple ciphertexts to obtain the

secret. Nonetheless, πA

6 is faster than its comparator protocols on both devices in a

key exchange.

5.7.3 CPU Cycles. We also measured the CPU cycles of πA

6 and

the comparator protocols on both PA and PB. As shown in Figure. 29, it takes

the comparator protocols many times more CPU cycles than πA

6 to conduct a key

exchange session. On PA, for example, if it is a Raspberry Pi Zero W, it takes

ECDH 4.87 times more CPU cycles than πA

6(2) in the worst case, where πA

6(2) is the

most expensive among the three different configurations of πA

6. Similarly, if it is a
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SAM D21, it takes 4.1 times more instead. On PB, for example, if it is a Raspberry

Pi Zero W, it takes ECDH 11.79 times more CPU cycles than πA

6(2), and if it is a

SAM D21, it takes 104.7 times more instead. Again, even though πA

6’s operations on

PB are relatively heavier than PA, similar to its running time performance on PB,

its CPU cycles on PB still easily betters those of the comparator protocols.
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Figure 29. CPU cycles of key exchange protocols on devices PA and PB.

5.7.4 Energy Consumption. We measured πA

6 and the comparator

protocols’ energy consumption with the formula E = U · I · T [20] where U is

the voltage, I is the current intensity, and T is the time to complete a session of

a key exchange protocol. The values of U and I are from Table 8. Notice we only
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consider the current intensity when devices are in the active mode. Figure 30a and

Figure 30b show the energy consumption comparison results at PA. We can see if

PA is a Raspberry Pi Zero, while the most energy-efficient PKC protocol ECDH

consumes 497.5mJ, πA

6(2) in the worst case only consumes 152.5mJ, which is only

about 30.6% of ECDH’s energy consumption. In fact, the energy saving with πA

6 is

even more significant if the device is resource-constrained. For example, if PA is a

SAM D21, while ECDH consumes 42mJ, πA

6(2) only consumes 0.41mJ, which is only

0.97% of ECDH’s energy consumption.

Figure 30c and Figure 30d show energy consumption comparison at PB. We

can see πA

6 again consumes much less energy than the PKC-based key exchange

protocols. For example, if PB is a Raspberry Pi Zero, the energy consumption

of πA

6(2) on PB is 59.1% of that of ECDH (180mJ versus 305mJ), and if PB is a

much more resource-constrained SAM D21, this number becomes 47.9% (20.1mJ

versus 41.8mJ). Last, in πA

6(0) and πA

6(1) PB consumes even less energy than the

comparator protocols.

5.7.5 Bandwidth Overhead. Finally, we measured the bandwidth

overhead of πA

6 and its comparator key exchange protocols. In our experiments, the

bandwidth overhead indicates the amount of messages that both parties need to

transmit over the network in order to establish a session key. Figure 31 illustrates

the results. We can see that πA

6(1) and πA

6(2) incur more bandwidth than PKC

protocols and πA

6(0) have more bandwidth overhead than ECDH, but less than RSA

and Diffie-Hellman. On one hand, the number of messages in πA

6 is much more than

that in the other three PKC-based protocols. On the other hand, the length of

keys in πA

6 is much shorter (Section 5.7.1) and the size of messages in πA

6 is much

smaller. As a result, overall the bandwidth overhead of πA

6 is comparable to that
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Figure 30. Energy consumptions of key exchange protocols on devices PA and PB.
Note that each subfigure uses a different maximum value for its Y-axis.

of the comparator protocols, especially when considering its vast improvements in

running time and energy consumption. We also emphasize here that the bandwidth

overhead in one key exchange session is independent of other key exchange sessions,

thus not affected by other sessions. Even if an intermediary may be shared across

multiple sessions, it is usually not an IoT device and not poor in bandwidth

capacity, further assuring our design is scalable against the size of an IoT network.
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5.8 Use cases

In this section, we describe the practical application of our protocol by

illustrating some real-world use cases. Specifically, we show the use of our protocol

for two IoT devices to exchange a secret and establish secure communication

channels in three scenarios of smart home, healthcare, and smart agriculture.

5.8.1 Smart Home. Smart home technology refers to devices that

provide residents with remote monitoring and management services of appliances

and systems. Over the past few decades, smart home technology has developed

rapidly and has become one of the critical solutions for energy efficiency, climate

change, and innovation [190]. However, due to the resource-constrained nature

of IoT devices in the smart home, secure communication between these devices

is still a major challenge. If the devices are from the same manufacturer, two

communicating devices could have a secret pre-installed by the manufacturer to

establish a secure channel between them; however, most devices are often from

different manufacturers.

Our protocol can be used by smart home devices to exchange secret keys

and establish secure communication channels with each other, even if the devices
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are from different vendors. Suppose there is a light sensor that monitors the

brightness in the house. It has established secure communication channels with

some intermediary helpers. The helpers can be a gateway device, a desktop, or

another smart device. For example, the light sensor may already have a secure

communication channel with a smart humidifier because they share a secret pre-

installed by the same manufacturer.

Now, let’s say an occupant wants to install a new smart shade that needs

to establish a secure channel with the light sensor. If the smart shade and the light

sensor are from different manufacturers and do not have a pre-shared secret, then

they can run our protocol to exchange a secret key and establish a secure channel.

First, the smart shade needs to select some devices as its intermediary helpers.

For example, it can use a desktop as an intermediary helper; the occupant can

randomly create a secret key and hardcode the key into the smart shade and the

desktop such that they can establish a secure communication channel with the

key. Note that we assume here that the occupant cannot simply hardcode a secret

into the smart shade and the light sensor for important reasons; for example, (1)

compared to hardcoding a key into a desktop, it would be difficult to reconfigure

the light sensor when it is already set up and installed, and (2) since the smart

shade may also need to communicate with other devices, it will also incur a large

overhead to hardcode different keys into each of its communication parties. Also,

the smart shade can use another smart device as an intermediary helper if it is

from the same vendor as the smart shade and they share a pre-installed secret,

where they can use the secret to set up a secure communication channel. Next,

the smart shade initializes a key exchange request and sends it to the light sensor

to agree on the same set of helpers for them. Then, they start the key exchange
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session and agree on a shared secret key. Finally, the smart shade and the light

sensor can communicate securely using the secret key.

5.8.2 Healthcare. Healthcare is one of the most critical areas for

IoT applications [21]. IoT devices used in healthcare, such as pacemakers, insulin

pumps, and cochlear implants, can monitor the vital signs of a patient’s health and

synchronize the collected data with other devices. In particular, if some unusual

activity is detected, a healthcare device can immediately report to a nearby medical

machine for further analysis and response.

Suppose a pacemaker is implanted in a patient. Before implanting the

pacemaker in the patient’s chest, we can set up the pacemaker by selecting

intermediary helpers and establishing a secure communication channel between the

pacemaker and each helper. For example, the helpers can be different applications

developed by different organizations or companies, such as the pacemaker’s

manufacturer. These applications are pre-installed on the patient’s smart phone.

Suppose a medical machine needs to establish a secure communication

channel with the pacemaker so that the pacemaker can synchronize and store its

data on the machine. The medical machine then invokes our protocol to perform

the key exchange with the pacemaker. First, the machine must register with the

above applications to establish a secure communication channel with each helper

(i.e.the applications). Then the machine initializes a key exchange request and

sends it to the pacemaker so that they can agree on the same helpers. When the

helpers are confirmed by the pacemaker, they start the key exchange session and

agree on a common secret key. Finally, the pacemaker can synchronize its data to

the medical machine using the secret key.
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5.8.3 Smart Agriculture. Smart agriculture is another emerging

paradigm that improves crop yields and production [76] by using IoT to monitor

soil efficiency, temperature, humidity, etc. Meanwhile, smart agriculture is still

experiencing a low level of security features. In order to build a robust and efficient

smart agriculture system, it is critical to ensure the integrity and confidentiality of

the data collected by IoT devices when transferring and processing them [59].

As a common setup, IoT devices in smart agriculture are often connected

to a gateway or other edge node devices, which are used to store and process small

amounts of data and relay data to cloud servers [59, 211]. Therefore, IoT devices

can leverage edge node devices as their intermediary helpers.

For a new device, say a smart sprinkler, to join a smart agriculture system,

it is essential that the sprinkler communicate with other devices, such as a smart

soil moisture meter, through secure communication channels. To establish secure

channels, the sprinkler can invoke our protocol to exchange a common secret key

with other devices. First, the sprinkler can select some edge node devices as its

helpers and set up a secure channel with each of them. For example, the sprinkler

can select some edge node devices as its helpers according to their geographical

location. Then, the system randomly generates a different secret for each edge node

device and hardcodes the secret into the sprinkler’s memory and the edge node

device, thereby setting up a secure channel with the edge nodes using the shared

secret. Again, for the similar reasons described in Section 5.8.1, the system should

not hardcode a secret directly between the sprinkler and the moisture meter. Then,

the sprinkler can choose a set of helpers and initialize a key exchange request.

However, different from the smart home system and healthcare system, a smart

agriculture system has a much larger space. The sprinkler needs to choose nearby
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helpers according to their geographic locations. It is possible that the sprinkler and

the moisture meter do not share the same set of helpers In this case, they must first

invoke a helper agreement process, as described in Section 5.3.4, to agree on the

the same helpers in common. For example, suppose at the beginning the sprinkler

and the moisture meter have different helpers; say the sprinker has helpers A and B

and the moisture meter has helpers C and D. Since A, B, C, and D are edge node

devices and well-resourced and they can build secure channels among themselves

easily, the moisture meter can first build a secure channel with A by using C and

D as their common helpers, thus adding A as a new helper of the moisture meter.

Similarly, the moisture meter can add B as a new helper, and the smart sprinkler

can add C and D as its new helpers, resulting that the moisture meter and the

sprinkler have the same helpers A, B, C, and D. Finally, the smart spinkler and the

moisture meter can start the key exchange session and agree on a common secret

key.

5.9 Conclusion

Internet of things (IoT) devices have an essential need of secure

communications between them, for which a key exchange protocol for them to

establish a communication session key is a prerequiste. However, due to their often

extremely constrained resources and computing power, many IoT devices are not

capable of performing public key cryptography (PKC), making any key exchange

solution that uses PKC infeasible. There have been lightweight, non-cryptographic

solutions, but they are often unrealistic.

Key exchange solutions that only use symmetric key cryptography (SKC)

can be divided into two categories: those using pre-shared secrets and those using

intermediary parties. The former is daunting and hardly scalable when employed
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for an IoT network composed of hundreds or even thousands of devices. The latter

so far relies on honest or semi-honest intermediary parties.

This paper proposes a new SKC-based key exchange solution (πA) using

intermediary parties (also called helpers). It departs from the state of the art by

assuming any intermediary party can be malicious. Its design makes it lightweight

and deployable in IoT and resilient against malicious intermediary parties. In

particular, under the cut-and-choose methodology, πA introduces a new protocol

design that not only can successfully establish a session key in the end, but also can

efficiently identify malicious intermediary parties when they tamper messages going

through them, even if they collude or selectively tamper messages.

This paper provided both theoretical proof and analysis and empirical

evaluations of πA. From the proof πA is shown to be secure against malicious

helpers. From the analysis, πA’s failure probability is easily negligible with a

reasonable setup and πA’s malicious helper detection probability can be 1.0 even

when a malicious helper only tampers a small number of messages. From the

empirical evaluations, πA outperforms three widely used PKC-based key exchange

protocols in terms of running time, CPU cycles, and energy consumption while its

bandwidth overhead is comparable to them.
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CHAPTER VI

PRIVACY: ENHANCE PRIVACY PRESERVATION IN COLLABORATIVE

DECENTRALIZATION

In the previous chapter, we discuss the dependability problem in individual

decentralization and proposed a new technique based on cut-and-choose to detect

malicious behaviors during computations. In this chapter, we discuss the privacy

issue in collaborative decentralization.

As described in Section 2.3, privacy refers to both anonymity that

computations should not leak any useful information about the real identities

of parties, and computation privacy that computation contents (e.g., private

input and output) can only be accessed by authorized parties. In collaborative

decentralization, in order to ensure dependability, parties may need to share

computation information with others to verify the correctness of computation

results. Sharing computation information enhances the dependability in

decentralized system, but at the risk of exacerbating the privacy problem.

In this chapter, we address the privacy concern in collaborative

decentralization by focusing on the privacy in blockchain infrastructures.

Specifically, we study the privacy in decentralized exchange (DEX) with automated

market maker (AMM) protocols, which is one of the most difficult research

problems in blockchain infrastructures. We show that none of the existing solutions

that protects blockchain privacy can provide privacy for AMM-based DEX, and we

introduce a new security framework to enhance the privacy of AMM protocols and

discuss if an AMM protocol might have full privacy in general.

The chapter is derived in part from the following unpublished work:

Foundations of Private Decentralized Exchanges with Automated Market Maker
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Protocols by Hu, Z.; Feng, Y.; Li, J. The content of this chapter was written

entirely by me, and I was responsible for conducting all of the presented analyses.

6.1 Introduction

The blockchain technology is served as a type of distributed ledgers to store

transactions and track trading assets across a peer-to-peer network. Decentralized

cryptocurrencies based on blockchains such as Bitcoin [146], Ethereum [47], and

Ripple XRP [19] have rapidly gained popularity since they allow users to perform

financial transactions without relying on a central trusted authority (e.g., bank)

and achieving consensus in a decentralized fashion.

Among all the financial transaction activities, decentralized finance

(DeFi) [101, 207, 209] is a novel financial technology that builds on top of

distributed ledgers and decentralized cryptocurrencies to provide financial products

and services such as borrow and lend money, earn interests, and trade assets.

Different from the traditional finance, users in DeFi can access the DeFi markets

and take advantages of the financial services without permissions or censorship

from any authorities. In addition, users have more control of their assets in DeFi

since they do not need to transfer the ownership of their cryptocurrencies assets to

intermediaries, thereby have to entrust the intermediaries to manage their assets.

More importantly, DeFi has a higher level of security since its security relies on

cryptography, provable secure protocols, and smart contracts [202].

A special type of finance services in DeFi is decentralized exchanges

(DEX) with automated market maker (AMM) [208]. Similar to traditional

centralized exchange, DEX also allows users to exchange assets with others, but

in a decentralized fashion without trusting a third party. In the standard order-

book-based decentralized exchange service, the asset price for trading is determined
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by the last matched buy and sell orders, and the trading requires the presence of

buyers and sellers. Then the DEX protocol matches all buy and sell orders with

some matching algorithms to reach trading agreements. Differ from the order-book-

based DEX, AMM-based DEX allows users to trade assets without the need of

finding another matched party to participate in the trading. In addition, the asset

price in AMM-based DEX is determined by a pre-defined conservation function

to algorithmically calculates the asset prices. Thus, the pricing mechanism in

AMM is automatic and does not need to reach any agreements between buyers and

sellers. Specifically, an AMM financial system forms a liquidity pool where liquidity

providers contribute crypto assets for trading. A user with some input assets

applies the conservation function to inquire the trading price. If the user agrees

on the trading price, then it exchanges assets with the pool to obtain output assets

immediately without the need of finding a counterparty. Major AMM platforms

such as SushiSwap and Uniswap [7] have a rapid surge in the popularity and lock

billions of USD in the market [143].

Need for privacy in AMM-based DEX. However, as a newly proposed

trading platform built on top of complicated decentralized systems, security is

still a major concern in both standard DEX (i.e.order-book-based exchanges)

and AMM-based DEX. For instance, DEX is vulnerable to transaction-ordering

attacks [28] such as front-running attack. In the front-running attack, since

all transactions are public before they are finalized and committed to a block,

attackers can observe the transactions and manipulate the order of transactions

in a new block to make additional profits, which is known as the Miner Extractable

Value (MEV). In particular, an attacker observes all transactions orders in assets

exchanges. Once it detects profitable transactions from an victim, the attacker
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could place the same transactions as the victim. By providing a higher gas fee, the

attacker puts its transaction orders before the victim, thus front-runs the victim’s

transactions and makes extra profits [71]. A similar attack is the back-running

attack [73] in which attackers can add a large number of cheap gas transactions

follow the victim’s transactions, thereby reduce the throughput of the system with

useless transactions. By combining both attacks, attackers can use front-running to

cause victim losses and use back-running to redeem profits. Moreover, transaction

details can also advantage attackers to learn useful information about users and

grant attackers the ability to detect users’ real identities [12, 112, 91].

Lack of privacy is the main reason behind these attacks in decentralized

exchange. In a permissionless blockchain system, all transaction records are

visible to public. The system allows attackers to access all transactions in the

system and launch associated attacks accordingly. In the front-running attack, an

attacker can trivially observe a victim’s transaction orders before the transaction

is committed to a block, and then place the attacker’s orders before the victim’s

orders. Therefore, ensuring privacy to eliminate transaction-ordering attack has

been identified as a critical concern when using DEX.

The transaction-ordering problem has motivated vast prior work to

address the privacy issue in DEX. For instance, solutions based on secure

multiparty computation (MPC) [130], privacy-preserving smart contract [135],

and private payment system [139] are suitable for users to protect their privacy

when exchanging assets with others. Given the recent advances in design and

implementation of related cryptographic primitives, these solutions are shown to

be efficient in practice. However, all of these solutions are originally designed for

order-book-based DEX, and do not compatible with AMM-based DEX.
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Challenges for Privacy in AMM-based DEX A naive solution to adopt a

privacy-preserving order-book-based DEX protocol in the AMM-based DEX would

result in some security problems that are avoidable. This is because of the unique

pricing mechanism that AMM uses conservation function to determine the asset

prices rather than finding counterparties. we point out three major challenges when

designing AMM-based DEX with privacy requirement.

1. Formalization of AMM-based DEX with privacy requirement. The

functionality of AMM-based DEX should be formally generalized to describe

all participants and how they interact with each other. Roughly speaking, the

functionality should describe the inputs and outputs for each participating

party, and define the corresponding behaviors when a party receives some

inputs, even if the inputs are invalid. For example, when a honest party

receives a malicious input from a compromised party, the honest party

needs to decide if it should continue the transaction as normal or drop the

transaction. In addition, the functionality should also capture the privacy

requirement to define what information is allowed to leak to each party.

A recent work [208] modeled AMM by using the state transition mechanism.

In this model, a state of an AMM system refers to the liquidity pool and a

transition function describes how the system state would change according to

an action imposed on the system. This model also abstracts the liquidity

change, asset swap, and various formulas for generic AMM protocols.

However, this model does not consider security and privacy requirements in

AMM, especially when some participants become malicious and arbitrarily

deviate from AMM protocols. Formalizing the functionality of AMM-based

DEX in the presence of malicious participants remains a chief challenge.
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2. Transaction privacy for users. In a secure AMM-based DEX, transaction

details must be hidden from the public to avoid front-running attack. When a

user exchange some assets with the liquidity pool, only the user is allowed to

know the transaction amounts and the trading price. An intuitive solution is

to let the user encrypt all transaction details and perform the exchange with

some privacy-preserving techniques such as multi-party computation [212] and

homomorphic encryption [4].

Unfortunately, encrypting transaction or applying other privacy-preserving

solutions in AMM cannot prevent attackers from learning useful information

about the transaction. This is due to the essence design in AMM that

liquidity pool and conservation function are the core components, and both

of them are associated with transaction details and public to all parties. For

example, Uniswap V2 [5] maintains the conservation function c = x∗y where x

and y are the reserves of each asset in the liquidity pool, and c is an invariant

that is defined by the AMM protocol. By observing the reserves of each asset

before and after the exchange, attackers can simply deduce the trading price.

Even if the liquidity pool is encrypted and the reserves of assets are hidden

from the public, attackers can still query the AMM protocol for the asset

prices before and after the exchange, and then infer useful information about

transactions from the price change of assets [13].

3. Tradeoff between privacy and utility Achieving privacy usually brings extra

cost to utility. First of all, privacy relies on cryptography and users may

need to pay a higher price (e.g., transaction fee and gas fee) for computing

resources to perform cryptographic operations. Also, additional operations in

order to achieve privacy would result in delay of processing exchange orders,
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and eventually reduce the throughput of a AMM-based DEX system. Finally,

hiding liquidity pool and conservation function to ensure privacy may lead

to high slippage and divergence loss, which are the two essential implicit

costs imposed on users and liquidity providers respectively in AMM-based

DEX. Therefore, it is a main challenge to design a secure AMM protocol with

privacy, while ensure the best user experience of utility.

6.1.1 Our Contributions. We propose a new universally composable

(UC) [48] framework for privacy enhanced decentralized exchange with AMM

protocols, and instantiate the framework with real protocols to show the feasibility

of achieving certain degree of privacy in AMM-based DEX. Our main contributions

include:

– Formalization: A generic framework for AMM-based DEX. We are the

first ones to formalize the AMM protocols with UC model. Our framework

is independent of conservation functions and provides a generic approach to

define and model the security in AMM.

– Instantiation: We instantiate the framework with real protocols, and shows

that it is possible to have privacy in AMM. We propose two approaches

to hide details of transaction amounts and both approaches enhance the

transaction privacy.

– Security: Our protocol is provably secure against malicious adversaries

based on the UC model. We define the ideal functionality for private AMM,

and formally prove the security of our protocol under a simulation-based

paradigm [128]. We construct a simulator in a hybrid way to simulate the

interactions with an adversary.
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– Privacy: Our protocol enhances the privacy property in AMM, and reduces

the risk of suffering from the front-running attack.

6.2 Related Work

There have been a number of proposals for improving privacy and mitigating

front–running attacks in decentralized exchange. Nevertheless, previous solutions

on privacy-preserving decentralized exchange or decentralized finance only focus

on the traditional order-book-based exchanges, and thus do not compatible with

AMM-based DEX due its basic design of asset price discovering mechanism

(i.e., conservation function). Attackers could infer a transaction details from the

asset prices before and after the transaction even if we apply existing privacy-

preserving solutions to AMM protocols. To our best knowledge, there is no work

in the literature that fully addresses the privacy issue in AMM. In this section,

we summarize some major technologies that are related to the privacy concern in

traditional order-book-based decentralized exchange.

Secure multi-party computation (MPC). MPC [212] allows parties to

jointly compute a function on their private input data without leaking any useful

information about the data to each other, which is a perfect solution to preserve

privacy in decentralized exchange. For traditional order-book-based DEX, MPC

is the main building block to securely matching buy orders and sell orders. [126]

leverages MPC to sort orders and then match the buy order that has the highest

price with the sell order that has the lowest price. Rialto [85] secret shares order

prices to a set of brokers and uses MPC to perform computations on shared value

to ensure that brokers learns nothing about the order prices. P2DEX [30] improves

MPC with public verifiability such that parties can prove the validity of outputs
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without revealing inputs. It implements the MPC component and shows that MPC

solution is feasible and efficient in practice.

Privacy-preserving smart contracts. Since most decentralized exchange

applications are built on top of smart contract [135], another approach to ensure

privacy in DEX is to construct privacy-preserving smart contract. Parties can

validate the correctness of smart contract outputs without revealing private inputs.

Hawk [111], which derives from Zerocash, is a framework that formalizes the

blockchain model of cryptography. It provides a simple approach for developers

to build privacy-preserving smart contracts to protect transactional privacy without

implementing any cryptography. It relies on the non-interactive zero knowledge

proof (NIZK) to validate the correctness of contract execution. ZEXE [45] provides

a stronger privacy by not only hides the inputs and outputs, but also hides which

function is being executed (i.e., function privacy). Similarly, ZEXE relies on a

special type of NIZK - the zero-knowledge succinct non-interactive arguments

of knowledge (zk-SNARK) - to ensure the correctness of the function outputs.

KACHINA [107] protocol abstracts the protocol logic of existing privacy-preserving

smart contract systems and presents a UC model for deploying private smart

contracts. This work shows that it is possible to have privacy in a general-purpose

smart contract functionality. The KACHINA protocol also builds on top of

NIZK to check for the correct executions of smart contracts. Privacy-preserving

smart contracts provide a strong guarantee of privacy for DEX. However, a main

drawback in privacy-preserving smart contracts is that they require a trusted party

to set up a common reference string (CRS) for NIZK. A compromised trusted party

could use a malicious CRS and launch associated attacks such as front-running

attack.
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Private payment mechanism. Another promising approach to addressing

the privacy problem in DEX is to create payment channel [139, 162]. Payment

channel was originally introduced to resolve the scaling problem in Bitcoin, but

it also inherits many privacy weaknesses from Bitcoin. For example, a decentralized

exchange system builds on top of payment channel could leak identity information

to parties that are involved in the payment channel [159]. Heilman et al. [90]

introduced an anonymous payment channel to protect identity information, but

it relies on the existence of a semi-honest intermediary. Zerocash [183] is also a

decentralized anonymous payment scheme that could provide full privacy guarantee

for DEX. However, similar to the privacy-preserving smart contracts solution,

Zerocash also leverages zk-SNARK to ensure the payment correctness, which

requires require a trusted CRS for all parties.

In summary, existing solutions are effective to provide privacy in traditional

order-book-based DEX, but they do not compatible with AMM-based DEX due the

basic design of asset pricing algorithm. To our best knowledge, design of privacy-

preserving AMM protocols are still missing in the literature. To this end, in this

work we propose a UC secure framework for AMM protocols and instantiate the

framework with real protocols to show how to enhance privacy in AMM.

6.3 Background and Preliminaries

6.3.1 AMM-based DEX. We briefly describe the main components

of AMM-based DEX and refer work [208] for more detailed description. An

AMM-based DEX involves three types of parties: a protocol foundation, liquidity

providers (LPs), and exchange user (traders). The protocol foundation provides

input parameters that are essential to initialize the AMM-based DEX. For example,

the maximum number of distinguished tokens in the pool, the conservation
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function, and the liquidity pool share algorithm that defines how to allocate

transaction fees to LPs. A protocol foundation usually can be instantiated by a

smart contract to deploy the liquidity pool. LPs in AMM contribute asset liquidity

by depositing assets into the pool and in turn, receive pool shares (defined by the

liquidity pool share algorithm ) according to their liquidity contribution. LPs earn

profits from the transaction fees that are paid by exchange users. In addition, a

LP can also withdraw its funds from the AMM pool but subject to a withdrawal

penalty. Exchange users propose exchange orders and directly trade assets with the

liquidity pool. In particular, a user specifies input assets and output assets along

with the trading quantity, then the protocol calculates the price and executes the

order accordingly.

The asset prices in an exchange order are determined by a conservation

function. The conservation function encodes a desired invariant property of the

AMM system such that the amount removed in one asset and the amount added in

the other asset should satisfy a relationship R. For example, in Uniswap V2 [6], the

conservation function to support the asset exchange is x ∗ y = k, where x and y are

the reserves of two different types of asset and k is the invariant.

A general approach to formalize AMM functionality is through state space

representation [208]. The state of a liquidity pool is expressed as

X = ({rk}k∈[n], {pk}k∈[n], I) (6.1)

where rk is the amount of token τk, pk is the current spot price of τk, and I

is the conservation function invariant. In our work, we adopt this state space

representation but removes pk and I since pk and I are implicitly indicated by the

conservation function
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6.3.2 Multi-Key Homomorphic Encryption. A homomorphic

encryption (HE) allows users to perform computations directly on ciphertexts

without decrypting them, thus protecting the confidentiality of the data. However,

a main drawback of traditional HE is that the ciphertexts must be encrypted

under the same secret. Therefore, if there are multiple data providers, each of

which encrypt its data with its own secret key, then traditional HE cannot support

computation on those ciphertexts.

Multi-key homomorphic encryption (MKHE) [132] is a variant of

homomorphic encryption that addresses the issue of multiple data providers. It

supports computation on ciphertexts that are encrypted under different keys. A

multi-key homomorphic encryption MKHE consists of five probabilistic polynomial

time (PPT) algorithms (Setup,KeyGen,Enc,Dec,Eval).

– Setup: pp ← MKHE.Setup(1λ). The Setup algorithm takes the security

parameter as input and returns a public parameter pp.

– Key generation: (msk,mpk) ← MKHE.KeyGen(pp). The KeyGen algorithm

takes the input of public parameter and returns a pair of secret and public

keys. Each party has an ID i that is associated with the key pair.

– Encryption: ct ← MKHE.Enc(m;mpk). Given a input message m, MKHE.Enc

encrypts m with a public key mpk and returns a ciphertext ct ∈ {0, 1}∗. Each

ciphertext also contains an ID i that is associated with a corresponding party

that generates the ciphertext.

– Decryption: m ← MKHE.Dec(ct; {mski}i∈[k]). Given a ciphertext ct, Dec

decrypts it with a corresponding sequence of secret keys {mski}i∈[k], and

returns a plaintext m.
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– Homomorphic evaluation: ct ← MKHE.Eval(C, {ctj}j∈[l], {mpki}i∈[k]). Given

multiple ciphertexts {ctj}j∈[l] and the corresponding sequence of public keys

, Eval evaluates the ciphertexts with the circuit C and returns a cipher text

ct. The returned ciphertext is implicitly associated with the ID of parties that

generates the ciphertexts {ctj}j∈[l].

A secure MKHE should satisfy the properties of correctness and semantic

security. For correctness, let (m1, · · · ,ml) be a set of original messages and

(ct1, · · · , ct1) be the set of corresponding ciphertexts that are encrypted under keys

(mpk1, · · · ,mpkl). After applying the above homomorphic evaluation algorithm to

generate ct, we have

Pr[MKHE.Dec(ct; {mski}i∈[l]) = C(m1, · · · ,ml)] ≥ 1− ε (6.2)

where ε is a negligible function. For semantic security, let m0,m1 be two different

messages and A be any PPT algorithm. Given a ciphertext of MKHE.Enc(mi;mpk),

A cannot distinguish if the ciphertext is associated with m0 or m1. Formally, we

have

Pr[A(1λ,MKHE.Enc(mi;mpk)) = i] =
1

2
+ ε (6.3)

where ε is a negligible function.

6.3.3 Zero-Knowledge Proof. Zero-knowledge proof [84] is a

fundamental primitive in cryptography and are used as a building block in

numerous applications. It allows a prover P to convince a verifier V that some

statement x is true by using a secret witness w. During the proof, the verifier

cannot learn any information about the witness w except the fact that the

statement x is true.
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Formally, let L be a language in NP and RL be an NP relationship, for some

input statement instance x ∈ L, there exists a witness w such that (x,w) ∈ RL.

Otherwise, if x /∈ L, then for all strings w we have (x,w) /∈ RL. A secure ZKP

protocol should satisfy the following three properties.

1. Completeness.
¯

Completeness ensures the prover to convince the verifier to

accept a true statement. That is, if (x,w) ∈ RL, we have

Pr[accept← P (w, x, 1λ)] = 1

where λ is the security parameter.

2. Soundness.
¯

Soundness guarantees that, with an overwhelming probability,

the verifier will not be tricked by the prover into accepting a false statement.

Formally, (x,w) /∈ RL, we have

Pr[accept← P (w, x)&((x,w) /∈ RL)] ≤ ε

where ε is a negligible function.

3. Zero knowledge.
¯

Zero knowledge guarantees that the verifier should learn

nothing beyond the validity of a true statement. Formally, for any PPT

simulator S, we have

view(P (w, x), 1λ) ≈ S(x, 1λ)

where view is the set of messages that the verifier receives during the proof.

Now ZKP has been employed in many blockchain applications to provide

privacy protections. For example, zero-knowledge Succinct Non-interactive

ARguments of Knowledge (ZK-SNARK), a variant of ZKP, was introduced in

Zerocash [183] to provide decentralized anonymous payments for Bitcoin. For the

sake of simplicity, in this work, we will not fully formalize the implementation of
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a ZKP protocol. Instead, we assume the existence of a ZKP functionality FRZK, as

shown in Figure 32.

Functionality FRZK

FRZK is parameterized by a NP relationship R. It interacts with a prover party P
and a verifier party V .

– Initialization. Upon input (init,R) from P , if no R is stored, stores R
internally.

– Proof. Upon input (prove, x, w, sid) from P , if (x,w) ∈ R, then FRZK sends
(accept, x, sid) to V . Otherwise, sends (reject, x, sid) to V .

Figure 32. Ideal functionality FRZK for a zero-knowledge proof.

6.4 Formalize AMM-based DEX in Universally Composable Model

In this section, we now formally describe the functionality of AMM-based

DEX. We let P = {P1, · · · ,Pm} to be a set of liquidity provider (LP) U =

{U1, · · · ,Un} be a set of exchange user (trader), and Q the liquidity foundation,

as described in Section 6.3.1.

6.4.1 Ideal Functionality of AMM-based DEX. Let F tAE describe

the ideal functionality for our private decentralized exchange with AMM. Here t

is a global parameter that all parties agree on, which determines the maximum

number of distinguished tokens in a liquidity pool for exchange. F tAE maintains

an internal set τ to track the total amount of each token in the pool. Also, F tAE

internally stores the conservation function fc and an algorithm Flp to mint and

burn liquidity shares for LPs.

F tAE allows interactions with LPs and traders. LPs can deposit crypto

assets into the liquidity pool, and as the payback, LPs receive liquidity shares

proportionate to their liquidity contribution. In addition, LPs can withdraw funds
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and profit liquidity shares subject to some liquidity withdrawal penalty. The

interaction with LPs is also known as liquidity provision/withdrawal. traders

specify the input and output assets and then interact with F tAE to exchange

assets, also known as asset swapping. During the exchange, the side function Φ

captures the information that is allowed to be leaked to the associated parties. The

full description F tAE is defined in Figure 33 and Figure 34. It consists phrases of

Initialization, Liquidity Withdrawal, Price Query, Trade, and Settlement.

Initialization. In the initialization phase, at the beginning, the protocol

foundation Q provides initial supply of assets to initialize the liquidity pool. Then

for each LP Pj, it deposits assets to the pool. F tAE updates the pool accordingly

and stores the conservation function fc and the liquidity share algorithm Flp.IN.

Then F tAE mints the liquidity shares with Flp.IN based on the inputs of (1) the type

of the liquidity share LPShare; (2) share amount al that is provided by Q; (3)

and the token set τ which implicitly determines how many liquidity shares that

each LP can receive. Finally, F tAE informs Q that liquidity shares are successfully

distributed to LP and announces all parties that the pool is ready for trading. In

the case that new LP joins and provides more tokens to the asset pool, we also let

F tAE redistribute liquidity shares accordingly (Step Initialization(2)).

Liquidity Withdrawal. In this phase, LPs remove funds from the liquidity

pool. Upon the request from LP Pj that surrenders ain of liquidity shares, F tAE

invokes function Flp.OUT to calculate the corresponding amount aout of token τi,

and sends them to Pj. Note that since removing funds from the poll could affect

the shape of the conservation function and elevate slippage, F tAE will take off some

liquidity withdrawal penalties accordingly from Pj.
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Functionality F tAE, part 1

Let τ = {(τ1, a1) · · · , (τt, at)} be a token set in which t is the maximum number of
distinguished tokens and ai indicates the amount of token τi in the liquidity pool.
F tAE is parameterized by the relationship R between the number of tokens and
the conservation function fc such that R(fc, a1, · · · , at) == 1. F tAE interacts four
different types of parties: a protocol foundation Q, a set of liquidity provider (LP)
P = {P1, · · · ,Pm}, a set of exchange user (trader) U = {U1, · · · ,Un}, and a set of
validators V = {V1, · · · ,Vl}. A is an adversary that controls a set of compromised
users and validators.
Initialization: F tAE initializes the token set τ = {(τi, 0)}i∈[t]

1. On input (init, sid, fc, Flp, t, {ai}i∈[t], al) from the protocol foundation Q,
F tAE updates τ = {(τi, ai)}i∈[t] and internally record fc and Flp. Locally
compute liquidity shares (LPShare, aout) ← Flp.IN(LPShare, al, τ); send
(confirmed, LPShare, al, sid) to Q. Send (ready, sid) to each Pi and
announces (sid, Flp) to all parties.

2. Upon input (deposit, τi, ain, sid) from each Pj, if τi /∈ τ , send (skip, τi, sid)
to Pj. Otherwise, update (τi, ai + ain). Locally compute (LPShare, aout) ←
Flp.IN(τi, ain, τ); send (confirmed, LPShare, aout, sid) to Pj.

Liquidity Withdrawal: Upon input (withdrawl, τi, LPShare, ain, sid)
from a liquidity provider Pj, F tAE locally compute (τi, aout, ap) ←
Flp.OUT(LPShare, ain, τi); send (withdrawl, τi, aout, ap) to Pj.

Price Query: Upon input (query, τi, τj, xi,type, sid) from Uk, where type
indicates the type of the trade to be buy or sell τi.

– If type == buy and xi ≤ ai, F tAE locally computes xj such that
R(fc, a1, · · · , ai−xi, aj +xj, · · · , at) == 1. F tAE sends xj to Uk. If xi > ai, F tAE
aborts the protocol and send (abort, sid) to Uk

– If type == sell, F tAE locally computes xj such that R(fc, a1, · · · , ai+xi, aj−
xj, · · · , at) == 1. F tAE sends xj to Uk.

Figure 33. Ideal functionality F tAE for AMM-based decentralized exchange, part I.

Price Query. In this phase, F tAE receives price query request from traders

and reply with the current spot price. In particular, a trader Uk queries F tAE for
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Functionality F tAE, part 2

Trade: Upon input of a transaction request T = (trade, τi, τj, xi,type,Uk, tid, sid)
from Uk and if Initialization is finished:

1. If type == buy and xi > ai, F tAE aborts the protocol and send
(abort, tid, sid) to Uk.

2. If type == buy and xi ≤ ai, locally compute xj such that R(fc, a1, · · · , ai −
xi, aj + xj, · · · , at) == 1. If type == sell, locally compute xj such that
R(fc, a1, · · · , ai + xi, aj − xj, · · · , at) == 1.

3. F tAE sends (confirm, tid, sid, T,Φ(fc, T )) to all validators in V and
Φ(fc, T ) to all parties that are controlled by A. If no validator replies with
(confirmed, tid, sid, T ), meaning a client canceled the transaction, F tAE
aborts the protocol and send (abort, sid) to A.

Settlement: Upon input (confirmed, tid, sid,Φ(fc, T )),
where T = (trade, τi, τj, xi,type,Uk, tid, sid), F tAE computes (Uk, τi, x′i, τj, x′j) ←
swapSettle(T, sid) and finally settles the transaction T on the ledger.

Figure 34. Ideal functionality F tAE for AMM-based decentralized exchange.

the price of τj when it wants to buy/sell xi amount of τi. F tAE calculates the price

according to the conservation function and sends the result to Uk.

Trade. Trade phase processes transactions from trader Uk. Once a transaction

request T arrives at F tAE, F tAE calculates the realized price and executes the

transaction by submitting it to all validators. If one or more validators confirm the

transaction is valid, F tAE proceeds to the next phase to settle the transaction. Note

that F tAE also calls the side function Φ(fc, T ) to compute the information leakage

and sends the leaked information to all validators and comprised parties that are

controlled by the adversary A.
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Settlement. In this phase, F tAE transfers the exchanged tokens and settles the

transaction T to the underlying infrastructure (e.g., underlying blockchain). For

simplicity, we assume all transactions happen on the same ledger and leave the

transactions across multiple ledgers as the future work. F tAE calls the algorithm

swapSettle which takes as input the validated transaction T , and outputs the

updated amount of exchanged tokens. Finally, F tAE settles the transaction on the

underlying ledger.

6.5 Instantiate the AMM-based DEX Functionality F tAE

We now describe the protocol ΠAE that instantiates the AMM-based DEX

functionality F tAE.

6.5.1 Detailed Protocol Description. ΠAE runs between m

liquidity providers P and the protocol foundation Q, and n exchange users U

and the protocol foundation Q. Roughly speaking, each liquidity provider needs

to interact with Q to add liquidity into the AMM pool. Then, when users U

interact with Q to swap assets, Q cannot learn any useful information about the

transaction except for the information that is captured by the algorithm Φ. In

addition, adversaries can also interact with Q to query asset price, but cannot learn

anything about user’s transaction except for the information that is captured by

the algorithm Φ.

[Initialization.] All parties agree on a public security parameter λ, a token

set {τ1, · · · , τt} for exchange, and a liquidity share algorithm Flp for liquidity share

distribution. To initialize the liquidity pool, P interacts with Q as follows:

1. Q creates a smart contract F tsc to initialize and store the session ID sid, the

conservation function fc, and the liquidity share algorithm Flp. F tsc announces

sid to the public. Note that F tsc can accept supplies of crypto assets from
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LPs and calculate liquidity shares that proportionate to LPs’ liquidity

contribution to the AMM pool, and take off withdrawal penalty from LP who

removes asset supplies from the pool. In addition, the smart contract also

interacts with U such that U can securely exchange crypto assets with the

liquidity pool with some privacy assurance. Details of the F tsc behavior are as

below.

2. Each party calls the Key Generation algorithm from a MKHE scheme

to sample a key pair (msk,mpk). The smart contract F tsc initializes the

liquidity pool by setting token set τ = {(τ1, 0) · · · , (τt, 0)}. F tsc invokes the

Encryption algorithm in MKHE with its public key mpksc to encrypt the pool

ep← MKHE.Enc(τ,mpksc).

3. Each LP Pj encrypts its assets and the amounts of the assets with the

public key mpkj, and sends (deposit, eti ← MKHE.Enc(τi,mpkj), eaj ←

MKHE.Enc(ain,mpkj), sid) to F tsc.

4. Upon receiving (deposit,MKHE.Enc(τi,mpkj),MKHE.Enc(ain,mpkj), sid)

from each LP Pj, F tsc invokes the homomorphic evaluation algorithm to

update the liquidity pool ep← MKHE.Eval(Cd, (ep, eti, eaj), {mpksc,mpkj}).

5. F tsc invokes the homomorphic evaluation algorithm again to calculate and

distribute liquidity shares eci ← MKHE.Eval(Cls, (ep, eti, eaj), {mpksc,mpkj}).

6. All parties invoke the algorithm Settle(ep, ecj) to settle the states change of ep

and ec on the corresponding ledger.

[Liquidity Withdrawal.] A liquidity provider sends a withdrawl request to

F tsc in order to remove funds from the AMM pool subject to a withdrawal penalty.
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Function fp takes the input of liquidity pool, asset type, and the amount liquidity

share, then outputs the updated liquidity pool and the withdrawal penalty.

1. A liquidity provider Pj encrypts the assets type and the amounts of the

liquidity shares it requires to withdraw with the public key mpkj, and

sends (withdrawl, eti ← MKHE.Enc(τi,mpkj), LPShare, eaj ←

MKHE.Enc(ain,mpkj), sid) to F tsc.

2. Upon input (withdrawl, eti, LPShare, eaj, sid) from a liquidity provider

Pj, F tsc invokes the homomorphic evaluation algorithm to update the

liquidity pool and calculate the withdrawal penalty (ep, eti, eaj, efj) ←

MKHE.Eval(Cp, (ep, eti, eaj), {mpksc,mpkj}), where Cp is the circuit to

implement function fp.

3. All parties invoke the algorithm Settle(ep, eti, eaj, efj) to settle the states

change of ep on the corresponding ledger.

[Price Query.] A user sends a price query request to F tsc for a potential

asset exchange. F tsc calculates the asset price with the conservation function fc,

and sends the price result to the user. Note that the privacy of price query is not

protected in our protocol since we assume price query phase is independent of the

Trade phase. Also, price query does not change the state of the AMM pool, thus

involved parties do not need to make settlements on the ledger.

1. A user Uk sends a price request (query, τi, τj, xi,type, sid) to F tsc, F tsc

invokes the conservation function fc to calculate the asset price and

guarantees that the price change satisfies the relationship R.

[Trade.] A user sends an asset transaction request to F tsc, and F tsc returns

a transaction ID tid to the user. Then F tsc creates a temporary buffer to store
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the transaction and wait for more transactions to process. Also, the user will

initialize a relationship R in ZKP functionality FRZK for transactions. For an input

transaction, FRZK verifies if an input transaction is valid and sends accept or reject

to the validator accordingly. The validator verifies the proof result from FRZK and

sends a confirmation message to F tsc if the proof is accepted. Here we require

the user to send transaction fees along with the transaction request to reserve a

transaction ID. This is because an attacker may launch Denial-of-Service attacks by

sending dummy transaction requests to F tsc.

1. A user Uk encrypts the exchanging assets eti ← MKHE.Enc(τi,mpkk)

and etj ← MKHE.Enc(τj,mpkk), and the exchanging amount

eak ← MKHE.Enc(ain,mpki), sid). Then Uk sends T =

(trade, eti, etj, eak,type,Uk, sid) to F tsc. Uk also sends a transaction fee of

amount af to F tsc.

2. Upon receiving the transaction request T from Uk, F tsc sends a transaction

ID tid to Uk. Both parties invoke the algorithm Settle(tid, af) to settle the

transaction ID and the corresponding transaction fees on the ledger.

3. F tsc check if there is a buffer to store the transaction. If there is no buffer in

the memory, F tsc creates a new buffer of size N to store the transaction and

wait for the confirmation message from validators. Otherwise:

– If the buffer is not full, F tsc adds T to the buffer and wait for the

confirmation message from validators.

– If the buffer is full and transactions are not all confirmed by validators,

F tsc creates a new buffer to store unconfirmed transactions. Then F tsc
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drops the unconfirmed transactions from the precious buffer, fill it with

faked transactions, and go to the Settlement phase to proceed.

– If the buffer is full and transactions are all confirmed by validators, F tsc

go to the Settlement to proceed.

4. After receiving tid from F tsc, Uk generate a witness w for the transaction T ,

and sends (T,w, tid) to the functionality FRZK. FRZK checks if (x,w) ∈ R

and sends accept or reject to the validator accordingly. The validator verifies

the proof result, if the proof is accepted, sends (confirmed, tid, sid) to F tsc.

Otherwise, send (abort, tid, sid) to F tsc.

[Settlement.] Let E be the set of confirmed transactions, F tsc invokes

the homomorphic evaluation algorithm to update the liquidity pool ep ←

MKHE.Eval(Cs, (ep, {Tj}j∈E), {mpksc,mpkj}j∈E). All parties invoke the algorithm

Settle(ep, {Tj}j∈E) to settle the states change of ep and users’ assets on the

corresponding ledger.

6.6 Security Proof of Protocol ΠAE

In this section we prove the security of the protocol ΠAE. The security of

our protocol relies on the security of the underlying functionality FRZK and the

multi-Key homomorphic encryption scheme MKHE. The functionality FRZK can be

instantiated with various implementations such as [38, 95, 32, 205].

Theorem 2. The protocol ΠAE presented in Section 6.5 securely implements the

F tAE functionality in the FRZK hybrid model.

Proof. In order to prove the security of ΠAE, depending on which party is

corrupted, we are going to construct different simulators S to interact with

corrupted parties. For the underlying functionality FRZK, we assume the interaction
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transcripts between the simulator S and the corrupted parties in the ideal world is

indistinguishable from the real view when running ΠAE in the real world between

the corrupted parties and honest parties. In addition, since F tsc is created by the

protocol foundation Q and behaves on behalf of Q, we combine F tsc and Q in our

proof as an identical party for simplicity. The primary role of the simulator is

to extract corrupted parties’ input and simulate the behavior of honest parties

without knowing their private inputs. During the simulation, the adversary who

controls the corrupted parties cannot distinguish if it is interacting with honest

parties or the simulators.

We construct the simulator for each corrupted party as follows:

– In the Initialization phase, in the real world, F tsc receives the encrypted

supply of crypto assets from each liquidity provider and adds them to the

liquidity pool by applying the MKHE.Eval algorithm. For LPs and traders,

they receive some public parameters such as the session ID sid, the liquidity

share algorithm Flp, and the conservation function fc. Also, LPs will receive

encrypted liquidity shares eci. Finally, LPs and traders can also see the

encrypted liquidity pool that is generated by F tsc. Note that, no party in the

initialization phase would abort the protocol.

∗ When F tsc is corrupted. In this case, S simulates the behavior of honest

LPs by calling the Key Generation algorithm MKHE.KeyGen(pp) to

generate m key pairs. For each public key ˜mpkj, S randomly picks

a message of type (τ̃i
$←−, ãin

$←− R) where $ means randomly

select a value and R means a real number. Then S encrypts the

random message under they key ˜mpkj and sends (deposit, ẽti ←

MKHE.Enc(τ̃i, ˜mpkj), ˜eaj ← MKHE.Enc(ãin, ˜mpkj), sid) to F tsc. The
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semantic security of MKHE defined in Section 6.3.2 guarantees that the

adversary (the corrupted F tsc) cannot distinguish the simulated values

(ẽti, ˜eaj) from the real value (eti, eaj).

∗ When some LPs are corrupted. In this case, S works similar as

the case of F tsc is corrupted. S calls the Key Generation algorithm

MKHE.KeyGen(pp) to generate key pairs for F tsc and LPs that are not

corrupted. Then for each public key, S randomly picks a message and

encrypt it. Now differ from corrupted F tsc, S calls the homomorphic

evaluation algorithm MKHE.Eval on all encrypted messages (both self

generated messages and received messages from LPs) and output the

final value ẽp.

Additionally, S needs to calculate and distribute liquidity shares to LPs.

However, S cannot directly apply MKHE.Eval on input ẽp since ẽp is

a simulated value. To correctly compute liquidity shares for corrupted

LPs, S can first extract corrupted LPs’ input (τi, ain). Then S invokes

function (LPShare, aout)Flp.IN(LPShare, ain, τi), and output ẽci ←

MKHE.Enc(aout, ˜mpksc), where ˜mpksc is the randomly picked public key

to simulate F tsc’s public key. In addition, S sends (deposit, τi, ain, sid)

to F tAE. Finally, S internally stores the input (τi, ain, aout) from each

corrupted LP. Note that the semantic security of MKHE guarantees that

the encryption of simulated value in the ideal world is indistinguishable

from the encryption of the actual value in the real world.

∗ When some traders are corrupted. In this case, the traders do not have

any private input. The only information that needs to be simulated

is the encrypted liquidity pool. Again, S calls the Key Generation
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algorithm MKHE.KeyGen(pp) to generate key pairs for F tsc and honest

LPs. Then for each public key, S randomly picks a message and encrypt

it, and finally calls the homomorphic evaluation algorithm to generate a

simulated encrypted liquidity pool.

– In the Liquidity Withdrawal phase, in the real world, F tsc receives

withdrawal requests with encrypted tokens and amounts from LPs. Then

LPs receive the outputs of updated pool, received token, amounts, and the

withdrawal penalty.

∗ When F tsc is corrupted. In this case, as in 6.6, S also generates m key

pairs, randomly pick a fake message, encrypts it with a public key

that F tsc generated, and sends F tsc the ciphertext (withdrawl, ẽti ←

MKHE.Enc(τ̃i, ˜mpkj), LPShare, ˜eaj ← MKHE.Enc(ãin, ˜mpkj), sid).

(ẽti, ˜eaj) is indistinguishable from (eti, eaj) in the real world because

of the semantic security of MKHE.

∗ When some LPs are corrupted. In this case, S cannot directly

calculate the correct amount and the penalty because S does not

have the input assets from honest LPs. Therefore, S needs to

extract the input eti and eaj from each corrupted Pj, and then sends

(withdrawl, τi, LPShare, ain, sid) to F tAE. After receiving (τi, aout, ap)

from F tAE, S encrypts all messages and applies the Settle algorithm to

settle the states change.

∗ When some traders are corrupted. In this case, there is no input or

output for corrupted traders. Therefore, S can simply simulate the

pool change by randomly picking a fake message and encrypting it.
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The semantic security of MKHE guarantees that the corrupted cannot

distinguish the faked pool with the actual pool in the real world

– In the Price Query phase, S does not need to simulate anything. This is

because we assume the price query phase is independent of the Trade phase

and there is no private input from any party. Therefore, S can accept the

adversary’s price query and send exactly the query to F tAE. Then S sends

whatever it receives from F tAE to the adversary.

– In the Trade phase, in the real world, F tsc receives exchange requests from

traders at the beginning, and then receives the confirmation results from

validators to determine whether to proceed the protocol or abort the protocol.

For a trader, it sends an exchange request to F tsc and receives a transaction

ID tid when the transaction is buffered in F tsc’s memory. Note that in the

Trade phase, the trader does not receive the asset since F tsc needs to wait for

enough confirmation notices from validators to proceed the transaction.

∗ When F tsc is corrupted. In this case, again S generates a key

pair for each trader Uk. To simulate the transaction, S picks

random input parameters (τ̃i, τ̃j, ãin) for a transaction T and calls

the encryption algorithm MKHE.Enc to encrypt the parameters

ẽti ← MKHE.Enc(τ̃i, ˜mpkk), ẽtj ← MKHE.Enc(τ̃j, ˜mpkk),

and ˜eak ← MKHE.Enc(ãin, ˜mpki), sid). Then S sends T =

(trade, ẽti, ẽtj, ˜eak,type,Uk, sid) and a transaction fee to

F tsc. After receiving a transaction ID tid from F tsc, S can send

(confirmed, tid, sid) to F tsc without interacting with the ZKP
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functionality FRZK. This is because in this case, traders are honest and

transactions are assumed to be valid.

∗ When some traders are corrupted. In this case, S waits for a trader’s

transaction request and extracts the private inputs from a corrupted

trader. S randomly pick a tid and sends the transaction request T =

(trade, τi, τj, xi,type,Uk, tid, sid) to F tAE. Also, S internally stores

tid and sends tid to the corrupted trader. For the confirmation of the

transaction, since S works in the FRZK hybrid model, S can abort just as

a honest validator would abort if the corrupted trader sends a invalid

transaction request.

∗ When some validators or LPs are corrupted. In this case, S does not

need to simulate anything. This is because all states do not change in

the Trade, and in the FRZK hybrid model, S always send (accept, T, sid)

to the validator.

– In the Settlement phase, in the real world, all parties see the updates of

liquidity pool and traders receives the exchanged assets.

∗ When F tsc is corrupted. In this case, S does not need to simulate

anything except invoking the algorithm Settle with F tsc to settle the

states change of et.

∗ When some traders are corrupted. In this case, when it

is time to proceed to the Settlement phase, S sends

(confirmed, tid, sid,Φ(fc, T )) to F tAE. After receiving the updated

token amounts of τi and τj from F tAE for a corrupted trader Uk

(Uk, τi, x′i, τj, x′j) ← swapSettle(T, sid), S encrypts (τi, x
′
i, τj, x

′
j) with the

165



trader’s public key and sends the ciphertexts to the trader Uk. Finally, S

invokes the algorithm Settle with Uk to settle the states change of et and

the balance of Uk.

∗ When some LPs are corrupted. In this case, S does not need to simulate

anything except updating the status of liquidity pool with a fake set of

assets. Similar as 6.6, S also generates a key pair, randomly pick a fake

message, encrypts it with the public key.

It is easy to see that the security of the simulated protocol significantly

relies on the semantic security of the multi-Key homomorphic encryption scheme

MKHE. All transcripts that an adversary views during the simulated protocol are

encrypted and indistinguishable from the messages that the adversary receives in

the real protocol. Moreover, S aborts the protocol whenever the validator aborts

the protocol based on the output from the ZKP functionality FRZK. Therefor we can

construct a simulator S to interact with the adversary without knowing the private

inputs from honest parties.

6.7 Obfuscate Conservation Function and Security Analysis

In section 6.6, we proved that the protocol ΠAE securely implements the

F tAE functionality in the FRZK hybrid model. However, for the Trade phase in

functionality F tAE, F tAE runs the algorithm Φ(fc, T ) to capture the information

that is leaked by the conservation function fc. In this section, we present several

approaches to add noise on the conservation function, and then we discuss how

these approaches define the algorithm Φ in the next section.

6.7.1 Laplace Noise.

6.7.1.1 Laplace Distribution and Differential Privacy. The

Laplace distribution [113] is a continuous probability distribution of differences
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between two independent variables with identical exponential distributions. The

density function of a Laplace distribution with location parameter µ and scale

parameter b is defined as

lap(x | µ, b) =
1

2b
exp(−|x− µ|

b
)

For simplicity, we take µ = 0 and Figure 35 shows the visualizations of the density

of the Laplace distribution with various scales of b.
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Figure 35. Laplace distributions with various scales.

To obfuscate the conservation function fc, we can simply calculate the fc

and then obfuscate the result with noise from the Laplace distribution. Formally,

the Laplace mechanism against the conservation function fc is defined as:

M(X) = fc(X) + (Y1, · · · , Yk)
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where X is the input distribution and Yi ∼ lap(x|0, b) are independent and

identically distributed (i.i.d.) random variables sampled from a Laplace distribution

with scale b. In the next section, we will show that by adding Laplace noise to fc,

transactions in AMM satisfy the ε-differential privacy property which protects

the information of individuals in a dataset. In fact, the scale b in the Laplace

mechanism is determined by ε and the sensitivity of fc.

6.7.1.2 Security of Laplace Mechanism. Now we analyze the

security of Laplace mechanism. We first introduce the concepts of stable and liquid

in AMM that are defined in work [114]. Then we provide a security analysis for

each approach to obfuscate the conservation function, and show how to define the

side function Φ which captures the information that is leaked to adversaries.

Stability and liquidity defines the upper bound and the lower bound of price

impact for a transaction [114]. Specifically, for a trading size of ∆ ∈ [0, K] in a

transaction where K is the allowed maximum trading size in an AMM system,

stability and liquidity are the linear upper bound and lower bound of the maximum

marginal price change. Here the marginal price refers to the asset price change

when increasing the trading size. Formally, let g(∆) be a function that outputs

the marginal price for an input of the trading size ∆, then we say an AMM with

conservation function fc is α-stable if

g(0)− g(−∆) ≤ α∆

for all ∆ ∈ [0, K]. Similarly, we say an AMM with conservation function fc is β-

liquid if

g(0)− g(−∆) ≤ β∆
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Now we show that with Laplace Mechanism, an AMM could provide

differential privacy for traders. Differential privacy is a cryptographic technology

that allows a user to learn some statistic results of a dataset D while maintaining

the privacy of each individual privacy in the dataset. Roughly speaking, for two

datasets D and D′ where D differs from D′ by one entry, for a PPT algorithm A, it

cannot distinguish D from D. More formally,

Definition 4. Given a ε ≥ 0, two datasets D,D′ ∈ Domain[A] where A is a

randomized algorithm and D,D′ differ in exactly one entry, S ∈ Range[A], we say

A is ε-differentially private if

Pr[A(D) ∈ S] ≤ expε Pr[A(D′) ∈ S]

The parameter ε describes the the maximum distance between the outputs

of fc on two datasets. In general, a smaller value of ε indicates a better privacy but

less accurate output.

The obfuscation of conservation function with Laplace mechanism defined in

Section 6.7.1 is ε-differentially private with ε = ∆fc/b. Here ∆fc is the sensitivity

of fc which depends on fc and indicates how the output changes when the input

changes by one. To show that the Laplace mechanism is differentially private for fc,

let pD(z) and pD′(z) denote the probability density function of fc(D) and fc(D′),

where D and D′ are two batched orders differ only in one transaction, and z ∈ R is
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an arbitrary point from the coordinate, we have

pD(z)

pD′(z)
=

exp(−ε|fc(D)−z|
∆fc

)

exp(−ε|fc(D′)−z|
∆fc

)

= exp(−ε(|fc(D)− z| − |fc(D′)− z|)
∆fc

)

≤ exp(−ε(|fc(D)| − |fc(D′)|)
∆fc

)

≤ exp(ε)

which satisfies the definition of differential privacy. Note that the second inequality

holds because of the definition of sensitivity. Also, dding noise with Laplace

mechanism to the transaction price guarantees that all of the transactions in the

batched set are unique.

Furthermore, Chitra et al. [54] suggested to randomly permute the batched

orders. By combining the permutation and Laplace mechanism, for all transactions

in the batched orders, we can control the lower bound of the difference between

the permuted price and the original price. Specifically, their work shows that if the

condition

∆min = |min(∆i −
α

β
∆j)| = Ω(1)

holds, then the expectation of the maximum price difference before and after the

permutation is Θ(α log n). Here α is the stability parameter, β is the liquidity

parameter, and n is the number of transactions in the batched set. For a specific

price lower bound cmin and a probability bound δ ∈ (0, 1), there exists a value

a which depends on α and β such that, by applying the Laplace mechanism

Yi ∼ lap(x|a, |a|) to fc, i.e., , fc(X) + (Y1, · · · , Y n), we have

Pr[∆min > cmin] > 1− δ
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In other words, we can always find a valid Laplace mechanism that guarantees

the expectation of the maximum price change before and after the permutation

is Θ(α log n + max ∆i). Therefore, in order to provide a better privacy, the system

needs to reduce the maximum value of the allowable trading size in a batched set.

This can be achieved by splitting a transaction with large trading size into multiple

transactions with smaller trading size. For more details, we refer to the original

work [54] for complete discussion.

6.7.2 Non-Constant Conservation Functions. Most AMM

protocols utilize a constant conservation function to determine the asset price.

With a fixed input of price query, if the state of the AMM pool does not change,

the output price remains the same even if we apply the Laplace mechanism to add

noise to the price. Therefore, it is possible for an attacker to make a large number

of price queries in a short time period, and these queries may have collisions with

a honest user’s real transaction orders, especially when the number of batched

transactions is small and the distribution of transaction sizes is not uniform.

Therefore, if the collisions occurs and the attacker controls most transactions in

a batched set, our system would fail to provide differential privacy.

To address the collision problem, the AMM protocol can make use of non-

constant conservation functions. The idea is derived from universal hashing. In

hash functions, in order to reduce the probability of hash collisions, universal

hashing constructs a family of hash functions H and randomly picks a function

h ∈ H for each hashing operation. Similarly, we let the AMM protocol picks

a family of conservation functions F = {f 1
c , · · · , fkc }. For each price query or

transaction order, AMM randomly picks a conservation function f ic to calculate the

asset price. It is easy to see that for a batched set of size N , even if the adversary
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controls most transactions in the set, the probability that the adversary can create

two same batched transactions is ( 1
k
)N which is negligible in N .

6.8 Conclusion

In the last decade, collaborative decentralized systems have attracted

extensive attention to build various applications such as cryptocurrencies,

decentralized identities, and decentralized finance. However, a collaborative

decentralized system usually suffers from the privacy problem because participating

parties need to share sensitive information with each other in order to agree on the

same state of the system.

In this chapter, we investigated how to achieve privacy in AMM-based

DEX which is one of the most challenging research problems in collaborative

decentralized systems. We first presented a functionality F tAE to formally define

the security of AMM-based DEX. The functionality describes the input and

output for each participating party, and defines the behavior of each party, even

for adversaries that can compromise honest parties. We designed a real protocol

to instantiate the functionality with cryptographic algorithms and protocols. We

formally proved that our protocol securely implements the functionality in a FRZK

hybrid model where FRZK is a zero-knowledge proof functionality.

However, according to the result of the work [13], it shows that an AMM-

based DEX cannot have a full privacy with a constant conservation function.

This is because the natural design of AMM with a conservation function can leak

useful information about transactions. Therefore, we use a side function Φ to

capture the leakage from the conservation function. In particular, we obfuscated

the conservation function by adding noise to it using the Laplace mechanism, and

constructing multiple conservation functions for an AMM system. Through the
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obfuscation, we showed that Φ can be defined by an alternative security definition

of differential privacy which protects the privacy of individual trade orders in a

batched transaction set.

The privacy enhancing AMM-based DEX is an ongoing project that

we will continue to work on in the future. The implementation of the work is

still a major obstacle and will require a lot of effort in the future. We plan on

eventually implement a prototype of our protocol and deploy it on a real blockchain

infrastructure to experimentally evaluate its efficiency and complexity.
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CHAPTER VII

CONCLUSIONS

As decentralization eliminates the need for a trusted central authority in a

computing system. On one hand, decentralization relaxes the strong assumption

of trustworthiness and improves the fault tolerance of the computing system.

On the other hand, decentralization also introduces new challenges in protecting

security and privacy. This is because in a decentralized system, participating

parties are highly heterogeneous, and the computation results and the system state

are determined by all the participating parties, any of which could be compromised

by a malicious adversary. As a result, the compromised party can manipulate the

output results of a computation task and force the honest parties to accept the

manipulated results. In addition, in a decentralized system, the input data of a

computation task is usually stored across the entire system, which is observable by

all parties. Therefore, attackers can steal sensitive information from honest parties

and thus compromise the privacy property of honest parties.

In this dissertation, we have addressed the problem of security and privacy

in decentralized systems. In general, modern decentralized systems leverage

secure cryptographic algorithms and protocols to protect the systems. Therefore,

we studied three complementary and inherently connected components in

cryptography-based solutions. First, the participating parties in a decentralized

system are highly heterogeneous and some parties with limited resources may not

be able to perform expensive cryptographic operations. Thus we evaluated the

performance of widely deployed cryptographic algorithms in decentralized systems,

and showed that parties must have sufficient computational resources in order to

perform expensive cryptographic operations, Second, since attackers can manipulate
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the output results of a computation task, we studied the dependability problem

in individual decentralized systems. By designing of an intermediary-based key

exchange protocol, we showed that in individual decentralization, where parties

do not communicate with each other, the system can still function correctly in

the presence of malicious parties. Finally, we investigated the privacy concern

in collaborative decentralized systems, where participating parties need to share

information with each other. By studying the privacy issue in AMM-based DEX,

we showed that while full privacy is not always achievable in decentralized systems,

we can still provide an alternative solution to ensure certain level of privacy for

each individual party.

Specifically, in Chapter IV, we presented a benchmark study of several

cryptographic algorithms that are widely used in decentralized systems. We

conducted a comprehensive study of cryptographic algorithms and performed

thorough experimental evaluations to analyze the cryptographic capabilities

of resource-constrained devices. We measured and analyzed the running time,

firmware usage, stack usage and energy consumption of 9 symmetric ciphers, 3

hash functions, and 2 asymmetric ciphers. The evaluations are performed on

four resource-constrained microcontroller development boards, namely SAML11

Xplained Pro (SAML11), SAMR21 Xplained Pro (SAMR21), Arduino Due (Due),

and Arduino Nano 33 BLE (Nano). Our results showed that SKC-based algorithms

and hash functions performed well even on extremely resource-constrained devices

while PKC-based algorithms consumed much more resources and could fail on

some resource-constrained devices. In addition, we showed that among the four

evaluation metrics, the firmware usage is the most critical concern for executing

cryptographic algorithms on resource-constrained devices.
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Then, in Chapter V, we studied the dependability problem and showed

that in individualized decentralization, a system can still converge to correct

computational results in the presence of compromised parties. Through the design

of an intermediary-based key exchange protocol, we showed that our protocol is

secure against malicious parties. The main idea of our solution is to apply the cut-

and-choose technique to let a decentralized system generate multiple copies of a

computation task. Then it uses a subset of the copies to verify the correctness of

the output results of the computation task, and uses the remaining copies to derive

the real output results that all parties can agree upon. During the computation,

the system can detect malicious behaviors by compromised parties and identify the

compromised intermediary parties with an overwhelming probability when they

attempt to manipulate the final output.

Finally, in Chapter VI, we investigated the privacy problem in collaborative

decentralization. By enhancing the privacy of participating parties in AMM-

based DEX, we showed that full privacy is not always achievable in decentralized

systems. This is because in some decentralized systems, attackers can always learn

private information from the computation results and the system state changes.

For instance, in AMM-based DEX, attackers can learn the trade amounts of a

transaction from the assets price change in an AMM pool. Therefore, instead

of providing full privacy to a decentralized system, we introduced an alternative

solution to provide some level of privacy for each individual computation (e.g.,

differential privacy for each transaction in AMM-based DEX).

Security and privacy are still one of the main challenges in designing modern

decentralized systems. It still requires much effort and time for improvement. We
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hope that this dissertation can contribute some new insights and advance the future

research in decentralized systems.
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