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DISSERTATION ABSTRACT

Yebo Feng

Doctor of Philosophy

Department of Computer Science

June 2023

Title: Fine-grained, Content-agnostic Network Traffic Analysis for Malicious
Activity Detection

The rapid evolution of malicious activities in network environments

necessitates the development of more effective and efficient detection and mitigation

techniques. Traditional traffic analysis (TA) approaches have demonstrated limited

efficacy and performance in detecting various malicious activities, resulting in

a pressing need for more advanced solutions. To fill the gap, this dissertation

proposes several new fine-grained network traffic analysis (FGTA) approaches.

These approaches focus on (1) detecting previously hard-to-detect malicious

activities by deducing fine-grained, detailed application-layer information in

privacy-preserving manners, (2) enhancing usability by providing more explainable

results and better adaptability to different network environments, and (3)

combining network traffic data with endpoint information to provide users with

more comprehensive and accurate protections.

We begin by conducting a comprehensive survey of existing FGTA

approaches. We then propose CJ-Sniffer, a privacy-aware cryptojacking detection

system that efficiently detects cryptojacking traffic. CJ-Sniffer is the first approach

to distinguishing cryptojacking traffic from user-initiated cryptocurrency mining

traffic, allowing for fine-grained traffic discrimination. This level of fine-grained

iv



traffic discrimination has proven challenging to accomplish through traditional TA

methodologies. Next, we introduce BotFlowMon, a learning-based, content-agnostic

approach for detecting online social network (OSN) bot traffic, which has posed a

significant challenge for detection using traditional TA strategies. BotFlowMon is

an FGTA approach that relies only on content-agnostic flow-level data as input and

utilizes novel algorithms and techniques to classify social bot traffic from real OSN

user traffic. To enhance the usability of FGTA-based attack detection, we propose

a learning-based DDoS detection approach that emphasizes both explainability

and adaptability. This approach provides network administrators with insightful

explanatory information and adaptable models for new network environments.

Finally, we present a reinforcement learning-based defense approach against L7

DDoS attacks, which combines network traffic data with endpoint information to

operate. The proposed approach actively monitors and analyzes the victim server

and applies different strategies under different conditions to protect the server while

minimizing collateral damage to legitimate requests.

Our evaluation results demonstrate that the proposed approaches achieve

high accuracy and efficiency in detecting and mitigating various malicious

activities, while maintaining privacy-preserving features, providing explainable

and adaptable results, or providing comprehensive application-layer situational

awareness. This dissertation significantly advances the fields of FGTA and

malicious activity detection.

This dissertation includes published and unpublished co-authored

materials.
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CHAPTER I

INTRODUCTION

Traffic analysis (TA) [137] is a widely-used technique that captures and

utilizes network features from the network or transport layers to infer knowledge

regarding the ongoing communications. Nowadays, TA is widely used to monitor

network events, measure network usages, detect anomalies, and pinpoint intrusions,

thereby safeguarding the internet. With decades of research and developments,

the security community has proposed a myriad of TA approaches to detect

a variety of malicious activities for endpoints in the network, such as worm

detection [247, 246], distributed denial-of-service (DDoS) traffic classification [92],

botnet detection [184], etc. Compared with endpoint-based detection approaches

that directly leverage the operational information from endpoints to discover

malicious activities, TA-based approaches feature the following advantages.

– They can be easily deployed on the gateway of a network to monitor

all the end points inside. While endpoint-based malicious activity

detection approaches have to be deployed on every single node to provide

comprehensive protections, which is challenging in most cases.

– They are efficient to operate. As network traffic information is usually

coarse-grained summaries of network packet headers, the information to be

processed is significantly reduced compared to the operational information on

all the nodes. Consequently, with the computing power of a single personal

computer, a TA-based malicious activity detection approach can protect a

large amount of end points at the line speed.
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– They are privacy-preserving as they do not require the sensitive content data

of users to detect malicious activities, instead, they leverage content-agnostic

network traffic data to infer malicious behaviors. Conversely, endpoint-based

malicious activity detection approaches require operational information on

the user side to function, such as application-layer logs, content of messages,

system operation information, etc.

However, the negative aspects of today’s malicious activity detection

approaches based on TA are also apparent. Various flaws in traditional TA

approaches limit the types of malicious activities that can be detected, the fine-

grained visibility of ongoing malicious activities, the accuracy of the detection

results, their usability in real-world scenarios, etc. More sophisticated and mature

TA approaches are needed to fill the gap.

First of all, the detection coverage of existing approaches is still limited.

As network traffic data is usually content-agnostic and only contains partial

information about the ongoing communication, it is difficult to deduce many types

of fine-grained knowledge about the endpoint behaviors. This is especially true for

some application-layer malicious activities, such as online social network (OSN)

bots, cryptojacking attacks, and application-layer (L7) DDoS attacks. We need to

equip TA approaches with more sophisticated algorithms or techniques to tackle

these challenging malicious activities, making the output results fine-grained.

Besides, many TA-based malicious activity detection approaches are weak

in usability. For example, many TA approaches are not easily adaptable. Their

performance highly depends on the coverage and applicability of the training data.

They may work well in one network environment but have significant performance

drops in a different network environment. Furthermore, due to the heavy use of
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machine learning algorithms, many TA-based detection approaches’ outputs are

inexplicable, just like black boxes. One can hardly fetch explanatory information

from the traffic analysis results. In real-world deployments, good explainability is

particularly needed by network administrators, as they usually need to manually

review and verify the detection results, including eliminating false alarms and

avoiding severe collateral damage due to the filtering of traffic from legitimate

users. Therefore, we need to propose some improvements to enhance the usability

of TA-based detection approaches.

In addition, TA-based malicious activity detection approaches are essentially

limited in detecting some application-layer attacks due to the nature of the input

data. Thus, finding a promising method to combine TA and endpoint information

to provide users with more comprehensive protections is a very significative avenue

of future research.

Last but not least, the accuracy of TA-based malicious activity detection

approaches require improvements. Generally, the detection accuracy of TA-based

approaches is lower than endpoint-based approaches because TA-based approaches

only identify malicious activities through the meta data of network traffic, without

any knowledge regarding the content or application-layer information. Nonetheless,

the detection accuracy, as well as the false positive rate, recall score, and precision

score, are vital to the effectiveness of these detection approaches. We thus need to

consolidate this aspect by improving existing methodologies.

1.1 Dissertation Statement

As traditional TA approaches have limited efficacy and performance in

detecting various malicious activities, we need to develop more sophisticated TA

approaches to fill the gaps. In this dissertation, we propose several new
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fine-grained network traffic analysis (FGTA) approaches for malicious

activity detection. These newly proposed approaches are focused on (1)

detecting previously hard-to-detect malicious activities by deducing fine-

grained, detailed application-layer information in privacy-preserving

manners, (2) enhancing the usability by providing more explainable

results and better adaptability to different network environments, and

(3) combining network traffic data with endpoint information to provide

users with more comprehensive and accurate protections.

Specifically, we use the following five projects to achieve our dissertation

goals.

1. We first examine the literature that deals with FGTA [148] to investigate the

frontier developments in this domain. By comprehensively surveying different

approaches toward FGTA, we introduce their input traffic data, elaborate on

their operating principles by different use cases, indicate their limitations and

countermeasures, and raise several promising future research avenues.

2. To leverage FGTA to broaden the use cases of TA and detect previously hard-

to-detect malicious activities, we propose two new FGTA-based detection

approaches to tackle two challenging application-layer malicious activities:

(a) cryptojacking activities, which are unauthorized use of other people’s

computing resources to mine cryptocurrencies, and

(b) OSN bots, which are automated accounts that are used to perform

malicious activities on OSNs.

3. We demonstrate that the usability of FGTA-based attack detection

approaches can be enhanced, as exemplified by our new learning-based DDoS
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detection approach that delivers adaptable and explainable DDoS traffic

classification.

4. Finally, to address the limited application-layer situational awareness of TA-

based methods, as demonstrated in our case study, we propose a blend of

FGTA and endpoint-based defense strategies. This combination aims to

provide users with more accurate, comprehensive, and tailored protections

against L7 DDoS attacks.

1.2 Main Components of the Dissertation

In this section, we briefly introduce the main components of this

dissertation. Section 1.2.1 and Section 1.2.2 present two FGTA-based detection

approaches to broaden the use cases of TA and detect previously hard-to-detect

malicious activities. Section 1.2.3 demonstrates that FGTA can be more usable

by proposing a new learning-based DDoS detection approach that features better

adaptability and explainability. Section 1.2.4 proposes a blend of FGTA and

endpoint-based defense strategies to provide users with more comprehensive and

accurate protections against L7 DDoS attacks, demonstrating that we can combine

network traffic data with endpoint information to enhance the application-layer

situational awareness of FGTA-based approaches.

1.2.1 Measurement and Content-Agnostic Detection of

Cryptojacking Traffic. With the continuous appreciation of cryptocurrency,

cryptojacking, the act by which computing resources are stolen to mine

cryptocurrencies, is becoming more rampant. Therefore, in one chapter of this

dissertation, we conduct a measurement study on cryptojacking network traffic

and propose CryptoJacking-Sniffer (CJ-Sniffer), an easily deployable, privacy-

aware approach based on FGTA to protecting all devices within a network against
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cryptojacking. Compared with existing approaches that suffer from privacy

concerns or high overhead, CJ-Sniffer only needs to access anonymized, content-

agnostic metadata of network traffic from the gateway of the network to efficiently

detect cryptojacking traffic. In particular, while cryptojacking traffic is also

cryptocurrency mining traffic, CJ-Sniffer is the first approach to distinguishing

cryptojacking traffic from user-initiated cryptocurrency mining traffic, making

it possible to only filter cryptojacking traffic, rather than blindly filtering all

cryptocurrency mining traffic as commonly practiced. This fine-grained traffic

discrimination is challenging to achieve through traditional TA-based approaches

and is also the main contribution of this work.

After constructing a statistical model to identify all the cryptocurrency

mining traffic, CJ-Sniffer extracts variation vectors from packet intervals

and utilizes a long short-term memory (LSTM) network to further identify

cryptojacking traffic. We evaluated CJSniffer with a packet-level cryptomining

dataset. Our evaluation results demonstrate that CJ-Sniffer achieves an accuracy

of over 99% with reasonable delays.

1.2.2 Learning-based, Content-agnostic Detection of OSN Bot

Traffic. Next, we tackle a more challenging problem in the realm of application-

layer malicious activity detection—distinguishing OSN bots from real OSN users

using FGTA. This project represents our ongoing effort to broaden the range of

practical applications for FGTA.

With the fast-growing popularity of OSNs, the security and privacy of

OSN ecosystems becomes essential for the public. Among threats OSNs face,

malicious social bots have become the most common and detrimental. They are

often employed to violate users’ privacy, distribute spam, and disturb the financial
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market, posing a compelling need for effective social bot detection solutions.

Unlike traditional social bot detection approaches that have strict requirements

on data sources (e.g., private payload information, social relationships, or activity

histories), this work proposes a method called BotFlowMon that relies only on

content-agnostic flow-level data as input to identify OSN bot traffic. BotFlowMon

introduces several new algorithms and techniques to classify social bot traffic from

real OSN user traffic, including aggregating network flow records to obtain OSN

transaction data, fusing transaction data to extract features and visualize flows,

and an innovative density-valley-based clustering algorithm to subdivide each

transaction into individual actions.

The evaluation shows BotFlowMon can identify the traffic from social bots

with a 96.1% accuracy, which, based on the worst case study on a testing machine,

only takes no more than 0.71 seconds on average after it sees the traffic.

1.2.3 Explainable and Adaptable Detection of DDoS Traffic.

Limited usability, stemming from a lack of explainability and adaptability, is

another common issue associated with traditional TA-based methods. In this

dissertation, we confront this challenge through a dedicated case study. Specifically,

we put forward an FGTA-based DDoS detection approach that underlines both

explainability and adaptability.

Launched from numerous end-hosts throughout the Internet, a DDoS attack

can exhaust the network bandwidth or other resources of a victim, cripple its

service, and make it unavailable to legitimate clients. Recently many learning-

based approaches attempt to detect DDoS attacks, but their results are often

hardly explainable to users and their models are seldom adaptable to new

environments. In one chapter of this dissertation, we propose a new learning-based
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DDoS detection approach. It detects DDoS attacks via an enhanced k-nearest

neighbors (KNN) algorithm, which utilizes a k-dimensional (KD) tree to speed up

the detection process, and classifies DDoS sources at a fine granularity according

to each IP’s risk level. Compared to previous DDoS detection approaches, this

approach outputs explanatory information that enables network administrators

to easily inspect detection results and make necessary interventions. Moreover, this

approach is adaptable in that users do not need to retrain the detection model to

have it fit with a new network environment.

We evaluated this approach in both simulated environments and the real

world, achieving 95.4% accuracy in detecting DDoS attacks at line speed. In

addition, we carried out a human subject study on its explainability, demonstrating

that the outputs can help people better understand the attack and make

interventions precisely and promptly.

1.2.4 Application-Layer DDoS Defense with Reinforcement

Learning. In the end, we illustrate how FGTA can enhance application-layer

situational awareness when combined with endpoint-based defense strategies.

Specifically, we propose a reinforcement-learning-based approach to L7 DDoS

attack defense as a compelling demonstration of this enhanced capability.

L7 DDoS attacks, by exploiting application-layer requests to overwhelm

functions or components of victim servers, have become a rising major threat to

today’s Internet. However, because the traffic from an L7 DDoS attack appears

legitimate in transport and network layers, it is difficult for traditional TA-based

DDoS solutions to detect and defend against an L7 DDoS attack due to their

limited application-layer situational awareness.
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We thus propose a new, reinforcement-learning-based approach to L7

DDoS attack defense. It combines FGTA and endpoint-based defense approaches

to overcome the weak application-layer situation awareness capability of TA-

based approaches. We introduce a multi-objective reward function to guide a

reinforcement learning agent to learn the most suitable action in mitigating L7

DDoS attacks. Consequently, while actively monitoring and analyzing the victim

server, the agent can apply different strategies under different conditions to protect

the victim: When an L7 DDoS attack is overwhelming, the agent will aggressively

mitigate as many malicious requests as possible, thereby keeping the victim server

functioning (even at the cost of sacrificing a small number of legitimate requests);

otherwise, the agent will conservatively mitigate malicious requests instead, with a

focus on minimizing collateral damage to legitimate requests.

The evaluation shows that our approach can achieve minimal collateral

damage when the L7 DDoS attack is tolerable and mitigate 98.73% of the malicious

application messages when the victim is brought to its knees.

1.3 Dissertation Outline

The rest of this dissertation is organized as follows. In Chapter II, we

conduct a comprehensive survey of existing FGTA approaches, investigating

the frontier developments and gaps in this domain. In Chapter III, we first

comperhensively measure the cryptojacking network traffic, and then propose CJ-

Sniffer, an easily deployable, privacy-aware, FGTA-based approach to protecting

all devices within a network against cryptojacking. In Chapter IV, we leverage

FGTA to tackle a more challenging application-layer malicious activity—OSN bot

behavior. Specifically, we propose BotFlowMon, a learning-based, content-agnostic

approach to identify OSN bot traffic. In Chapter V, we pursue better explainability
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and adaptability in attack detection by proposing a learning-based DDoS traffic

classification approach based on FGTA. As only using network traffic is essentially

limited in detecting many application-layer malicious activities, in Chapter VI,

we propose reinforcement-learning-based approach to L7 DDoS attack defense

by combining both network traffic and endpoint information. In Chapter VII, we

forward remaining open issues and indicate several future research avenues. In the

end, we conclude this dissertation in Chapter VIII.

1.4 Co-authored Materials

The majority of the content in this dissertation is from published and

unpublished research work. Below we connect each chapter to the material and

authors that contributed to it.

– Chapter II: Survey of Fine-Grained Network Traffic Analysis

∗ Unpublished as Yebo Feng, Jun Li, and Jelena Mirkovic. “Unmasking

the Internet: A Survey of Fine-Grained Network Traffic Analysis.” IEEE

Communications Surveys and Tutorials, 2023 [153]. In submission.

∗ Published as Yebo Feng. “Toward finer granularity analysis of network

traffic.” Computer and Information Science, University of Oregon,

Technical Report, AREA-202203-Feng, 2022 [148].

– Chapter III: Measurement and Content-Agnostic Detection of Cryptojacking

Traffic

∗ Published as Yebo Feng, Jun Li, and Devkishen Sisodia. “CJ-Sniffer:

Measurement and Content-Agnostic Detection of Cryptojacking Traffic.”

In Proceedings of the 25th International Symposium on Research in

Attacks, Intrusions and Defenses (RAID), pp. 482-494, 2022 [155].

10



∗ Published as Yebo Feng, Devkishen Sisodia, and Jun Li. “Poster:

Content-agnostic identification of cryptojacking in network traffic.”

In Proceedings of the 15th ACM Asia Conference on Computer and

Communications Security (ASIACCS), pp. 907-909, 2020 [157].

– Chapter IV: Learning-Based, Content-Agnostic Detection of OSN Bot Traffic

∗ Published as Yebo Feng, Jun Li, Lei Jiao, and Xintao Wu. “Towards

learning-based, content-agnostic detection of social bot traffic.” IEEE

Transactions on Dependable and Secure Computing 18, no. 5 (2020):

2149-2163 [152].

∗ Published as Yebo Feng, Jun Li, Lei Jiao, and Xintao Wu.

“BotFlowMon: Learning-based, content-agnostic identification of

social bot traffic flows.” In Proceedings of 2019 IEEE Conference on

Communications and Network Security (CNS), pp. 169-177, 2019 [151].

∗ Published as Yebo Feng. “BotFlowMon: Identify Social Bot Traffic With

NetFlow and Machine Learning.” University of Oregon, Master Thesis,

2018 [145].

– Chapter V: On Explainable and Adaptable Detection of Distributed Denial-

of-Service Traffic

∗ Unpublished as Yebo Feng, Jun Li, Devkishen Sisodia, and Peter Reiher.

“On Explainable and Adaptable Detection of Distributed Denial-

of-Service Traffic.” IEEE Transactions on Dependable and Secure

Computing, 2023. In submission.

∗ Published as Yebo Feng, and Jun Li. “Toward explainable and adaptable

detection and classification of distributed denial-of-service attacks.” In
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Deployable Machine Learning for Security Defense: First International

Workshop (MLHat 2020), Proceedings 1, pp. 105-121, 2020 [149].

∗ Published as Yebo Feng, and Jun Li. “Towards explicable and

adaptive DDoS traffic classification.” In The 21st Passive and Active

Measurement Conference as poster, 2020 [150].

– Chapter VI: Combining Network Traffic and endpoint Knowledge for

Intelligent Application-layer DDoS Defense

∗ Published as Yebo Feng, Jun Li, and Thanh Nguyen. “Towards

Intelligent Application-layer DDoS defense with reinforcement

learning.” Transactions on Information Forensics & Security, 2023. In

preparation.

∗ Published as Yebo Feng, Jun Li, and Thanh Nguyen. “Application-layer

DDoS defense with reinforcement learning.” In 2020 IEEE/ACM 28th

International Symposium on Quality of Service (IWQoS), pp. 1-10,

2020 [154].

∗ Published as Yebo Feng. “Towards Intelligent Defense against

Application-Layer DDoS with Reinforcement Learning.” Computer

and Information Science, University of Oregon, Technical Report, DRP-

201912-Feng, 2019 [146].
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CHAPTER II

SURVEY OF FINE-GRAINED NETWORK TRAFFIC ANALYSIS

Fine-grained traffic analysis (FGTA) is an advance of traffic analysis (TA)

that aims to analyze network traffic at a finer granularity for application-layer

behavior modeling, fine-grained user activities inferring, or traffic content decoding,

only through link-layer or network-layer traffic data, with or without encryptions.

Typically FGTA tasks include classifying traffic from different application-layer

activities (e.g., Twitter post vs. Tweeter read), different groups of application users

(e.g., online social network (OSN) bots vs. normal users), or different user content

(e.g., the visiting website).

To systematically study FGTA and further advance the state-of-the-art

for detecting malicious activities, it is vital to examine the literature that deals

with FGTA, understanding the current gaps and challenges, and identifying the

future research directions. In this chapter, we provide a comprehensive survey

of the existing FGTA literature, including the state-of-the-art techniques, use

cases, countermeasures, and limitations. It not only helps us to understand

the background and frontier developments of FGTA, but also provides a solid

foundation for our own research.

This chapter is derived in part from the following published and unpublished

articles:

– Yebo Feng, Jun Li, and Jelena Mirkovic. “Unmasking the Internet: A Survey

of Fine-Grained Network Traffic Analysis.” IEEE Communications Surveys

and Tutorials, 2023 [153]. In submission.

14



– Yebo Feng. “Toward finer granularity analysis of network traffic.” Computer

and Information Science, University of Oregon, Technical Report, AREA-

202203-Feng, 2022 [148].

I am the leading author of the above articles. The content of this chapter was

written entirely by me, and I was responsible for conducting all the presented study

and analysis.

2.1 Introduction

In the context of Internet, protocols and applications are usually built

upon hierarchical models [360] (e.g.TCP/IP and OSI), where the communication

functions of a telecommunication or computing system are categorized into

several abstraction layers. Higher layers only encapsulate high-level methods,

protocols, and specifications, operating with the support of lower layers [414]. With

such design, programmers can easily develop interoperable Internet applications

regardless of diverse underlying protocols and technologies. However, this

convention also makes cross-layered network analysis feasible. As developers of

higher layer applications usually only take higher-layer measures (e.g.encryption,

anonymization, etc.) to preserve the user privacy regardless of leaving traceable

patterns on lower layers, analyzers can capture network features from the lower

layers to infer higher-layer knowledge in communication [317], even in the presence

of message encryption. Such a process is called TA, a technique widely used in

today’s Internet.

TA has been studied for decades, with myriad systems, tools, and

algorithms [353, 137, 299, 294, 303, 229] developed to serve different types of

purposes, such as traffic measurement, traffic engineering, anomaly detection, and

network surveillance. In early development of TA, traditional TA approaches were
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mainly designed for network traffic measurement/forecast [335, 236, 272], anomaly

detection [56], and basic traffic classification [140]. These approaches are usually

rule-based, statistics-based, or clustering-based, can separate traffic of different

network protocols or conduct basic modeling of traffic flow changes. Later, with

the adoption of cutting-edge data processing techniques and algorithms, such

as harnessing the power of machine learning on big data, TA is able to deduce

more information from network traffic data regarding application-layer activities,

fine-grained user behaviors, and message content. For instance, researchers have

developed advanced TA techniques to detect application-layer threats, infer the

specific websites that people are visiting over HTTPS, or even dig users’ private

data from network-layer knowledge. We define such advanced TA techniques

as FGTA, the process of application-layer behavior modeling, fine-grained user

activities inferring, or traffic content decoding, only through link-layer or network-

layer traffic data, with or without encryptions.

As a subset of TA, FGTA is mainly different from traditional TA in the

following ways:

– The most notable difference is the goals of analysis. Traditional TA can

coarsely distinguish or model traffic from different types of network device,

protocols, or applications. However, FGTA aims to analyze traffic at a

finer granularity, such as traffic from different application-layer activities

(e.g.Twitter post vs. Tweeter read), different groups of application users

(e.g.OSN bots vs. normal users), or different user content (e.g.the visiting

website).

– The analysis pipelines of traditional TA and FGTA are usually different.

FGTA, aiming at more granular information, usually takes the traditional
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TA as a prerequisite step to “preprocess” the traffic before the final inference.

For example, a FGTA approach that tries to identify the web page the user is

visiting needs to first leverage traditional TA to extract all the web browsing

traffic.

– As for analysis algorithms, most FGTA approaches depend on sophisticated

modeling or classification methods, such as deep machine learning or

high-dimensional clustering, to tackle the challenging fine-grained object

identification tasks. While, traditional TA, dealing with easier tasks, can

utilize a number of different analytical methods, such as rule-based, statistics-

based, or soft-computing-based approaches.

With the increasingly complex Internet architecture, increasingly frequent

transmission of user data, and the widespread use of traffic encryption [299],

FGTA is becoming a more and more important research topic. Compared with

traditional TA, FGTA can reveal more information from network traffic and can

achieve high efficacy even in various complicated network environments [342].

Besides, as network traffic data become more easily accessible than before, the

applicable scenarios of FGTA are more extensive compared with directly analyzing

traffic content. Furthermore, FGTA is efficient and portable in discovering

application-layer knowledge [297, 380, 151]. By analyzing a small amount of

metadata or statistical information of traffic, FGTA can obtain almost the same

level of visibility as decoding large amount of message content. Therefore, FGTA

has a wide range of usage scenarios. As for network managements, FGTA can

help measure application usage [337], detect complicated network intrusions or

anomalies [49], investigate edge user experience [426], etc. As for the attacker

side, FGTA can help eavesdrop on private information of users [433], model user
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Figure 1. The organization of Chapter 2 and snapshots of proposed taxonomies.

behaviors [255], estimate user locations [52], etc. Studying FGTA is essential for

comprehensive network inspection, safeguarding information transmission, and

precise network configuration.

In this chapter, we examine the literature that deals FGTA. By including

more than 230 citations, we first discuss the network traffic data and its collection

in real-world environments. We then elaborate on frontier developments of FGTA,

demonstrating and comparing different FGTA approaches’ operating pipelines,
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classification approaches, and use cases. We further indicate the limitations

and countermeasures to current FGTA approaches. In the end, based on our

observations and reflections on this field, we propose several avenues for future

research, thereby helping future academics and developers to advance FGTA. To

our best knowledge, this paper is the first survey paper that focuses on FGTA and

compares the state-of-the-art approaches in this field.

The rest of this chapter is organized as follows. After describing the input

data of FGTA in Section 2.2, we discuss and summarize the methodologies of

FGTA in Section 2.3. We elaborate on frontier developments of FGTA by their

use cases in Section 2.4. We then point out the limitations of existing FGTA

in Section 2.5 and introduce the countermeasures in Section 2.6 In the end, we

propose some avenues for future research in Section 2.7 and conclude this report

in Section 2.9. Figure 1 illustrates the organization of this survey paper and give

snapshots of the proposed taxonomies.

2.2 Traffic Input

Like traditional TA, FGTA approaches use network traffic data from some

vantage points in the network as input to synthesize knowledge. Network traffic

data refers to the information exchanged between devices on a computer network.

Such data can be in diverse formats and include a wide range of information, such

as communication logs, packet headers, and payload. The network traffic data is

the inference object for all TA approaches. In this section, we compare different

types of network traffic data and survey their capture engines. We also introduce

these capture engines’ deployments and application scenarios in FGTA.

2.2.1 Network Observation Point. The observation point of the

traffic capture engine will significantly impact the integrity of the captured data
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Figure 2. Network visibility with different observation locations.

and the network visibility. Different observation points are suitable for different

types of TA tasks.

The ideal observation point for most FGTA tasks is located at the gateway

of a network (illustrated in Figure 2a), which enables them to capture both

inbound and outbound traffic of the network. Such a bidirectional traffic dataset

is suitable to infer the interactions between the observed network and rest of

the Internet. However, analyzers cannot learn about the traffic in the rest of the

Internet according to this dataset.

Sometimes, the observation point can be in the middle of the network

(illustrated in Figure 2b), especially when the traffic capture engine is deployed

by an ISP or IXP. In this case, the capture engine is able to collect a large amount

of traffic that pass by it. However, it also raises the following concerns:

– Due to asymmetric packet routing [194], in-network observation point

sometime may only capture traffic in one direction (illustrated in Figure 2b).
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– It cannot guarantee the robustness of captured traffic because of the

deployment of various traffic engineering techniques [398, 42]. The routing

path for any packet can be dynamic in today’s networks.

Therefore, in-network-based observation points may be more suitable for traditional

TA tasks such as Internet measurement and network-layer anomaly detection. As

for FGTA, many approaches (e.g., user behavior inference, website fingerprinting)

prefer to use the gateway-based observation point to capture more complete traffic

data from endpoints. However, wherever the observation point is located, it is

difficult to capture all the relevant traffic in the network.

To capture comprehensive traffic data from the network with complex

topology, we can deploy multiple observation points at different vantage points if

conditions permit. By using a pool of metering processes to collect network packets

at multiple observation points, optionally filter them and aggregate information

about these packets, a traffic exporter can gather each of the observation points

together into an observation domain and sends this information to a traffic capture

engine [375]. Then we can obtain relatively comprehensive network traffic data

without redundancy. However, this approach is expensive to deploy and not always

feasible due to real-world constraints.

2.2.2 Traffic Data Acquiring. Since the birth of the Internet,

various traffic capture engines have been developed to log traffic information. TA

approaches can further leverage these “log information” to measure network events,

detect anomalies, and analyze network behaviors. Based on different information

captured, these traffic capture engines can be classified into either packet-level or

flow-level [353].
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2.2.2.1 Packet-level capture. Packet-level capture is widely used

in local networks and endpoint devices. As its name states, it copies or makes a

snapshot of all the network packets that pass by the network interface and forwards

the collected data to a collector. The agent that takes charge of the capture is

called a packet-level traffic capture engine or a “sniffer”, which can be either

software-based (e.g.Snoop [10], Wireshark [291], etc.) or hardware-based (e.g.Sniffer

InfiniStream [4]). It can be as simple as an IP table rule on a route that copies all

the traffic to a cloud disk besides normal forwarding.

Packet-level capture can collect raw network traffic, containing both packet

headers and packet payloads. Theoretically, it can support all types of FGTA tasks

because it basically logs all the information flowing on networks. However, in most

cases, packet-level traffic capture might not be the right solution to deploy for the

following reasons:

– Packet-level traffic capture is expensive, not only because the interface needs

to copy all the packets that pass by it, but also because the interface needs

to forward all the captured traffic to an analysis node through a link. All

these operations will double the workload of the network interface and occupy

a considerable amount of link bandwidth. Packet-level traffic capture is

therefore not scalable.

– The information contained in packet-level traffic data is sometimes an

“overkill” for TA, as many TA approaches only require statistical information

from the packet headers to complete the analysis. Moreover, user messages,

website content, and video streaming are usually contained in packet payloads

in encrypted forms, making most information captured in packet-level traffic

meaningless for all TA approaches.

22



– Packet-level traffic may contain sensitive information (i.e.payload) of users.

Thus, network service providers are cautious about capturing and analyzing

such data.

2.2.2.2 Flow-level capture. To address the aforementioned issues

of packet-level traffic captures and make traffic capturing affordable, scalable, and

practical for network service providers, researchers and developers have proposed

myriad flow-level traffic capture engines.

In flow-level traffic capture systems, the capture engines no longer copy or

make snapshots of each packet, instead, they first aggregate relevant packets into

a flow and then capture metadata or statistical information to represent that flow.

Here, the concept of flow has been around for a long time. Typically, a flow can

be identified by either a 5-tuple (i.e., source IP address, source TCP/UDP port,

destination IP address, destination TCP/UDP port, and IP protocol) or a 3-tuple

(i.e., source IP address, destination IP address, and IP protocol) [54]. However,

with the development of flow capture engines, researchers have proposed many

other formal and informal definitions of network traffic flows (e.g.RFC 2722 [78],

RFC 3697 [313], RFC 3917 [311], etc.). In this paper, we define a network traffic

flow as a sequence of relevant network packets from a source to a destination for

the same application. In most instances, the network system will process packets

within a flow in the same manner. Besides, each application-layer behavior will

generate one or multiple flows in both directions.

By capturing traffic at flow-level, traffic capture engines no longer suffer

from high system overhead and high bandwidth usage. Figure 3 illustrates the

workflows of a network interface with and without Cflowd as the flow-level traffic

captured engine [268]. Unlike packet-level traffic capture that will copy and forward

23



Ingress Port Forward/

Drop

Sample?

Ingress PortTraffic

Forwarding

All Packets

Forward

Forward

Copy of Packet Headers

Header Information

Processing and


Flow Cache Updating

New or
Existing
Flow?

New Add Entry

Update Entry

Existing

Flow Cache Collector Port

Workflow with 

Cflowd as the 

traffic capture


engine

Workflow without traffic capture engines

Figure 3. Workflow of a network interface when Cflowd serves as the traffic
captured engine.

any packet entirely to the collector port, flow-level traffic capture only copies

information from headers to assemble traffic flows. The volume of data to process

is then largely reduced in such a procedure. According to existing literature [201],

NetFlow, the most frequently used flow-level traffic capture engine, only creates

1-1.5% of throughput (without sampling) on the interface it is exported on [242].

With a great deal of data reduction, network administrators can store, process,

inspect and analyze large amounts of network data efficiently. Furthermore, when

combining this procedure with packet sampling, it becomes feasible to capture and

store traffic flows at an ISP or IXP scale, thereby extending the usage scenarios

of TA. As we can see from a study, NetFlow only occupies around 15% of the

router/switch’s CPU load when capturing sampled network traffic [96]. Compared

with packet-level traffic capture that sometimes may double the system overhead
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Table 1. Comparisons of selected widely-used traffic capture engines ( : fully
support; G#: partially support; #: not support.).

Traffic
Capture
Engine

Data Captured Granularity
Open
or

Proprietary

Layer
(OSI)

Hardware
Acceleration

Sampling

SNMP [189] High-level statistical
information about the
interface.

Flow-level
(aggregated)

Open 2, 3 # #

IPFIX [103] Metadata and statistical
information about the flow.

Flow-level Open 3, 4   

NetFlow v9 [102] Metadata and statistical
information about the flow.

Flow-level Proprietary 3, 4   

NetFlow v5 [8] Metadata and statistical
information about the flow.

Flow-level Proprietary 3, 4   

Argus [2] Metadata and statistical
information about the flow.

Flow-level Open 2, 3, 4  #

sFlow [307] Complete packet headers
and partial packet
payloads.

Packet-level
Partially
Open

2 - 7   

Tcpdump [11] Network information pass
through the observation
point.

Packet-level Open 2 - 7 # #

Wireshark [291] Network information pass
through the observation
point.

Packet-level Open 2 - 7 # #

PF RING [33] Network information pass
through the observation
point.

Packet-level Open 2 - 7  G#

Netmap [325] Network information in the
memory of the observation
point.

Packet-level Open 2 - 7  G#

and link usage, flow-level traffic capture is a huge improvement regarding efficiency

and deployability.

However, the shortcoming of flow-level traffic capture is also obvious—it will

decrease the visibility of the network traffic because people only see metadata and

aggregated statistical information about the traffic rather than each packet. This is

especially troublesome for FGTA as many approaches require at least inter-packet

information (e.g., packet interval time). To make up for this, we can shorten the

lifecycle for each flow in traffic capture engines to let them generate flows more

frequently, thereby increasing the network visibility.
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2.2.3 Widely used traffic capture engines. Here, we introduce

widely-used traffic capture engines in academia and industry (Table 1 shows

comparisons of them).

2.2.3.1 Packet-level traffic capture engines. Back in the early

days of Internet, developers had realized the importance of capturing network

packets for troubleshooting. Thus, Tcpdump [11], a software-based packet-level

traffic capture engine (sniffer), was proposed in 1988. It allows users to store and

display TCP/IP and other packets being transmitted or received over a network.

Nowadays, Tcpdump has been ported to several operating systems (e.g.Unix with

libpcap library, Windows with WinPcap) and is still frequently used in network

studies. Similar software-based sniffers were also proposed to meet different

needs. For example, Snoop [10], a simple packet capture tool that is bundled

on Solaris operating system; Wireshark [291], a free packet capture and analysis

software that not only supports multiple operating systems (e.g.Linux, Solaris,

Windows, FreeBSD, Mac OS, etc.), but also comes with a user-friendly interface;

PF RING [33], a high speed packet capture library that can turn a commodity

PC into an efficient and cheap network measurement box suitable for both packet

capture and TA. As for routers and switches, traffic mirroring [315, 362, 397] is also

well-studied, with many software or hardware-based approaches [4, 27] proposed to

support real-time packet capture for enterprise-level networks.

However, as capturing the entire packet is expensive and sometimes

impractical, people began to make a snapshot of each packet rather than storing

it entirely. The most frequently-used approach is sFlow [307], an industrial method

(defined in RFC 3176 [307]) originally developed by InMon Inc., to capture packet-

level snapshot from switches and routers. Compared with previous packet-level
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traffic capture engines, sFlow has the following features, making it the ideal input

for most FGTA approaches:

– Without capturing the entire packet, sFlow can just copy the first N bytes

of a packet to save computing and transmission resource. This is especially

useful for TA tasks as packet payloads are useless in such scenarios but the

entire packet headers are still preserved for fine-grained analysis.

– As an industrial standard, sFlow is compatible on many different platforms

of network switches and routers and utilizes a dedicated chip built into the

devices to operate, which removes the burden of the CPU and memory of the

router or switch when capturing the traffic.

– By introducing time-based or packet-based sampling techniques, sFlow can

capture traffic on all interfaces simultaneously at wire speed.

Therefore, sFlow can reach a good balance between data integrity and velocity—

being able to capture all the packet headers and simultaneously create less burden

on the router or switch.

2.2.3.2 Flow-level traffic capture engines. Flow-level traffic

capture engines also have a long history. Back in 1984, the Audit Record

Generation and Utilization System (Argus flow [2]) was proposed as the first

implementation of network flow monitoring, and is still an ongoing open source

network flow monitor project now. Argus can monitor all network traffic, including

Internet Protocol (IP) traffic, data plane, control plane and management plane.

It captures much of the packet dynamics and semantics in each flow, providing

reachability, availability, connectivity, duration, rate, load, delay metrics for all

network flows. It also captures most attributes that are available from the packet
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headers [413]. Later, in 1988, Simple Network Management Protocol (SNMP) [189]

was proposed as a component of the Internet Protocol Suite as defined by the

Internet Engineering Task Force (IETF). Unlike Argus flow that provides rich

information about ongoing traffic, SNMP only provides statistical information per

interface, such as link utilization, interface bandwidth, and some other information

if the device provides. SNMP is thus less applicable in TA compared with Argus,

especially in the domain of FGTA.

With rapid development and popularization of the Internet, the industry

had realized the importance of flow-level traffic capture engine and many

solutions were proposed. The most typical example is NetFlow [102], so far

the most widely-used flow-level capture engine with many TA approaches built

upon. Just like Argus, NetFlow uses a flow record to represent a set of packets.

However, unlike Argus, which is a bidirectional monitoring approach, NetFlow

is a unidirectional flow monitor, reporting flow information of each direction

of conversations independently. This feature allows NetFlow to have a finer

granularity than Argus. Since NetFlow was developed by Cisco, it is bundled

with most Cisco routers and switches, making it the object of imitation of the

entire industry. Following NetFlow, many similar systems were proposed by both

research institutions and commercial companies, such as Cflowd [268], J-Flow [114],

NetStream [209], Remote Network Monitoring (RMON) [385], etc. NetFlow itself

also has evolved into different variations. The most famous one is Internet Protocol

Flow Information Export (IPFIX) [103], an IETF protocol built upon NetFlow v9.

The most recent development of traffic capture and traffic handling have

been mainly focusing on the velocity issue. Researchers have proposed multiple

approaches to capture large volume of network traffic at line speed without having
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Figure 4. A general data processing pipeline for FGTA.

any effect on data plane. For example, Netmap [325] a memory-based framework

that enables commodity operating systems to handle millions of packets per

seconds without the support of custom hardware; eXpress Data Path (XDP) [203],

a fast programmable packet processing approach based on the operating system

kernel, supports high speed packet logging and processing; hXDP [79], an efficient

software network packet processing approach written in extended Berkeley Packet

Filter (eBPF) on Field Programmable Gate Arrays (FPGA) network interface

controllers (NICs); NetSeer [445], a flow event telemetry (FET) monitor, which

aims to discover and record all performance-critical events on the programmable

data plane. However, those approaches do not change the pipeline of TA or FGTA,

as they only make it faster to capture and handle network traffic.

2.3 Methodology

In this section, we delve into the methodology of FGTA and explore

this field from the perspectives of data processing pipelines, feature extraction

approaches, classification approaches, and evaluation metrics. These components

are integral to the success of FGTA and play a crucial role in achieving accurate

results.
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Figure 5. Example of a simplified FGTA data processing pipeline.

2.3.1 Pipeline. The process of generating fine-grained analysis results

from raw network traffic collected from network infrastructures typically involves

several necessary steps. These data processing procedures are known as the FGTA

pipeline. Different FGTA approaches may have different pipelines, with different

steps and different orders. In this subsection, we discuss three types of FGTA

pipelines (illustrated in Figure 5, 4, and 6).

Figure 4 illustrates the most commonly-used pipeline for FGTA. Regardless

of whether the input traffic is in flow-level or packet-level format, it usually cannot

be directly processed by analysis algorithms. Therefore, the first step of the FGTA

pipeline is usually to preprocess the raw traffic data. The preprocessing step

typically involves the following tasks:

– Data decoding: the raw network traffic data is usually encoded in a format

that is not easily processable (e.g., binary format or encrypted form). This

task converts the raw traffic data into a readable and processable form.

– Data cleaning: the raw traffic data may contain some noise, invalid data,

or control messages. This task extracts only the valuable data for further

analysis.

– Data refactoring: this task refactors the raw network traffic data and make

it suitable for the subsequent analysis or maintenance. For example, indexing
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the raw traffic data by socket pairs, or converting the flow records to a B tree

structure [105].

– Other tasks necessary for subsequent steps: depending on different

FGTA pipelines, there may be other tasks necessary for subsequent steps. For

example, extracting marked packets from the raw traffic data, anonymizing

the raw traffic data for General Data Protection Regulation (GDPR)

compliance [383], or compressing the data for efficient storage.

After the preprocessing step, FGTA approaches usually move to feature

extraction, which refers to the process of selecting and transforming raw network

traffic data into a set of relevant features that are suitable for machine learning,

inference, or other analysis steps. For both traditional TA and FGTA approaches,

the feature extraction is a particularly important step for representing the ongoing

network events and achieving accurate results. We further discuss more details

about feature extraction in Section 2.3.2.

After relevant features are extracted, FGTA approaches are typically

ready for inference. The inference goals of these approaches can vary, including

identifying specific network events, classifying traffic flows based on different

application behaviors, or detecting network anomalies. We further discuss the

use cases of FGTA approaches in Section 2.4. The inference results of FGTA

approaches can be used for a variety of purposes, including network monitoring,

access control, device management, data center protection, etc. However, regardless

of the inference goal, the inference step of FGTA always operates in the form

of fine-grained classification. For example, classifying outlier traffic flows from

normal traffic flows (i.e., anomaly detection), or classifying traffic flows according

to different applications (i.e., application identification). Therefore, we use the
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Figure 6. Example of a more complicated FGTA data processing pipeline.

term classification to refer to the inference step of FGTA approaches. Section 2.3.3

discusses the classification approaches used in FGTA.

The previously mentioned pipeline outlines the general steps for FGTA

approaches. However, depending on the specific goals, system design, and

operational environments, the FGTA pipeline can be simplified or extended, with

specific steps omitted or added.

Figure 5 illustrates a simplified FGTA pipeline, where the raw network

traffic data is directly used for rule-based traffic pattern matching. A short data

processing pipeline is very efficient to operate and can still generate accurate

results if the pre-defined matching rules are effective. It is useful when target traffic

pattern is distinct or well-defined (i.e., location inference [52]). However, this short

pipeline is not suitable for most of the FGTA approaches, as they often require

additional steps to more thoroughly analyze the traffic data for generating fine-

grained, application-layer classification results.
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To infer high-level, fine-grained information from content-agnostic network

traffic data, most FGTA approaches employ more complicated pipelines to mine

hidden knowledge. Figure 6 illustrates such an example. Many application usage

inference approaches apply similar pipelines [156, 255, 152] because they need to

extract features and classify traffic for multiple times at different phases to derive

detailed user behavior information of specific applications. The sample pipeline

include two different classification steps, with one for narrowing down the analysis

scope and the other for generating fine-grained classification. More importantly,

this pipeline re-assemble traffic flows into sessions (some papers may call them

transactions [151] or bursts [343, 337]) before extracting features for the final

classification. This step is very helpful for digging fine-grained behavior information

from the traffic data because the target network behavior or event usually consist of

multiple packets or traffic flows. Simply analyzing the network traffic flow by flow

or packet by packet may not be able to capture the whole picture of the ongoing

network events. Therefore, session assembly is used to aggregate adjacent, relevant,

or similar traffic data into an analysis unit, which is a more representative data

structure to present the ongoing network events and makes it possible to infer fine-

grained application-layer information. Figure 7 illustrates an example of session

assembly [152], where flow records are divided into flow points and then aggregated

into sessions according to the traffic density. Based on current literature, the

following approaches are commonly used for session assembly:

– Time-based session assembly: this approach aggregates traffic flows into

sessions based on the timing or the intervals of ongoing network traffic.

– Clustering-based session assembly: this approach utilize clustering

algorithms to group traffic flows into sessions.
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Figure 7. Example of a session assembly procedure, where relevant flow records are
aggregated into a traffic session to represent a network event.

– Index-based session assembly: this approach aggregates traffic flows into

sessions by specific indexes (e.g., socket pair, packet ID ranges, time to live

(TTL), etc).

– Rule-based session assembly: this approach aggregates traffic flows based

on pre-defined rules (e.g., rules on the hash value of packet payload, rules on

TCP flags, etc.).

After sessions are assembled, representative features can be properly extracted for

fine-grained classifications.

2.3.2 Feature extraction. Feature extraction is a term refers to the

process of selecting and generating relevant features from the raw data in order to

create a representation that can be used for machine learning, statistical modeling,

or other analysis procedures [185]. In the context of FGTA approaches, feature
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Table 2. Examples for intrinsic and derived features.

Category Example

Intrinsic
feature

Flow-level Packet-level

Flow size, number of packets,
AS number, protocol type,

flow duration, etc.

TCP flag, ToS, packet size,
packet interval,

first n bytes of the payload, etc.

Derived
feature

Flow/packet-based Session-based

Interval deviation, size deviation,
interval distribution,

inbound/outbound packet ratio,
packet similarity, etc.

Session duration,
density distribution, session image,

normalized session vector,
round-way communication number,

etc.

extraction involves inspecting network traffic data to identify relevant features

that can be used for the corresponding classification tasks. This process typically

involves techniques such as packet inspection, data fusion, and statistical modeling

to identify and derive patterns or characteristics in the data that are relevant to

the specific inference goal. The resulting set of features is then used as input to the

classification model.

Due to the nature of network traffic collection, all the extracted features

can be categorized into two types: intrinsic features and derived features. Intrinsic

features are directly contained in the raw network traffic data, such as packet

length, packet header fields, etc. The process of fetching intrinsic features is simple

and straightforward. The analysis system can directly select, slice, or generate

intrinsic features from the raw data, requiring little to no additional processing.

On the other hand, derived features are not directly contained in the raw network

traffic data. They are generated by applying some data processing techniques to

the raw data, such as statistical modeling, feature transformation, information

assembly, data fusion, etc.
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Table 2 lists some typical examples of intrinsic and derived features.

Different features are suitable for different FGTA tasks. Typically, some relatively

easy FGTA tasks may only require intrinsic features to operate. For example,

some application identification or anomaly detection approaches can generate

accurate results by directly inputting intrinsic features. Because the network

traffic of such applications or anomalies can already be distinguishable by intrinsic

features [44, 366, 380]. However, some more complex FGTA tasks may require

derived features for finer granularity analysis, especially for tasks that infer

detailed, application-layer user behaviors [337, 321, 152]. The target network traffic

of these FGTA tasks is less distinguishable and may only show obvious patterns

with sophisticated feature engineering techniques. We discuss more details about

suitable features for different FGTA tasks in Section 2.4.

Although derived features are more powerful than intrinsic features in

mining fine-grained information from network traffic data, they are also more

complex and expensive to generate. One may need to apply sophisticated data

processing techniques, such as traffic buffering, data fusion, session assembly,

statistical modeling, etc., to fetch these derived features. Such processes are

time-consuming and may require significant computational resources. As time-

sensitive tasks, it is vital for FGTA procedures to be efficient and scalable, thereby

outputting analysis results in a timely manner. Thus, carefully selecting and

generating necessary features is a critical step for all FGTA approaches.

2.3.3 Classification approach. The key step of FGTA is to classify

the target network traffic from others. Designing a proper classification approach

determines the efficacy and performance of FGTA approaches. In many cases,

constructing a classification model requires labeled data. In the context of FGTA,
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labeled data refers to network traffic data that has been manually labeled or

annotated with ground truth information. This ground truth information typically

includes information such as the application type, user behavior type, or whether

the traffic is generated by malicious behavior or not. Obtaining labeled data can

be a challenging and resource-intensive process. It typically requires a significant

amount of manual effort and expertise to accurately label network traffic data.

Researchers may be able to automate the labeling process with the help of other

state-of-the-art classification approaches, but the accuracy of labels may not be

ideal [183]. On the other hand, some classification approaches can be trained

without labeled data or with other forms of prior knowledge. In the remaining of

this subsection, we discuss the classification approaches that are commonly used in

FGTA approaches (summarized in Table 3).

2.3.3.1 Traditional statistical approach. Traditional statistical

approaches leverage statistical properties, statistical models or some other

mathematical methods to identify subtle differences or patterns in different

groups of network traffic [300]. Typical examples of statistical approaches include

distribution fitting [155], logistic regression [218], linear regression [49], etc.

Traditional statistical approaches are widely used in traditional TA tasks because

they are explainable, easy to implement, usually efficient to operate, and good

at tackling relatively easy tasks. However, as FGTA tasks becoming more and

more challenging, traditional statistical approaches are not sufficient to identify

subtle differences in network traffic. Thus, traditional statistical approaches are

gradually replaced by more sophisticated classification approaches, such as machine

learning approaches. Still, traditional statistical approaches are commonly used in

feature extraction, pre-analysis, and pre-classification. For example, many FGTA
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approaches use traditional statistical approaches to narrow down the analysis scope

before fine-grained analysis, thereby reducing the computational complexity of the

subsequent procedures [155].

2.3.3.2 Rule-based approach. Rule-based approaches are based

on a set of pre-defined rules that are manually designed by experts to locate the

target network traffic group [134]. Before defining the classification rules, the

experts usually need a thorough understanding of the target network traffic and

the network environment. Typical examples of classification rules include session

signatures [426], traffic thresholds [74], pre-defined packet header fields [297], etc.

Similar to traditional statistical approaches, rule-based approaches are explainable,

easy to implement, and efficient to operate, thereby being widely used in traditional

TA tasks. However, in the era of FGTA, the analysis tasks are in finer granularity

and becoming more and more challenging. Thus, the pre-defined rule sets are

becoming larger, more complex, making them more difficult to define, verify,

and maintain. Moreover, the rule-based approaches are not able to adapt to the

dynamic network environment, which is a common feature of modern networks.

Therefore, in recent trends, rule-based approaches are less used in FGTA tasks. But

they are still powerful tools in some specific FGTA tasks, pre-classification, and

accelerating the analysis process.

2.3.3.3 Probabilistic approach. Probabilistic approaches are based

on probability theory and statistical inference to identify the target network traffic

group [47]. They model the traffic data probabilistically for classification tasks.

For instance, typical probabilistic approaches like Bayesian classifier [324], Markov

model [121], or hidden Markov model (HMM) [312] are widely used to model

network traffic first. These models can then be utilized to identify traffic patterns
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of specific applications, protocols, anomaly, or behaviors. Benefitting from the

following advantages, a variety of FGTA approaches have been proposed based on

probabilistic approaches to tackle different FGTA tasks [82, 166, 44]:

– Flexibility: probabilistic approaches can be used to model a wide range

of traffic patterns and behaviors. Besides, they can tolerate noise and

uncertainty in the data, making them powerful tools for analyzing complex

and heterogeneous traffic data.

– Adaptability: probabilistic approaches can be easily adapted to changes in

traffic patterns over time, allowing them to detect new or previously unseen

threats.

– Ease of use: with supports of various libraries, probabilistic approaches

are relatively easy to implement and does not require extensive domain

knowledge or expertise.

However, probabilistic approaches feature the following disadvantages, resulting

limited performance and application especially in complicated FGTA tasks (e.g.,

user behavior inference):

– Complexity: probabilistic approaches are usually computationally expensive,

especially when the network traffic data is large and complex.

– Sensitivity to assumptions: probabilistic approaches are sensitive to the

assumptions (labels) made during model training or development, and

incorrect assumptions can lead to inaccurate results.
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– Limited accuracy: probabilistic approaches may not achieve the highest

accuracy compared to other more advanced methods, such as deep learning,

in some scenarios. Also, they are relatively weak in handling nondiscrete data.

– Explainability: probabilistic approaches may not provide as much

interpretability as other methods, making it difficult to understand how the

models arrived at their conclusions.

2.3.3.4 Supervised machine learning. Supervised machine

learning is a widely used machine learning method that can be applied to almost

any FGTA tasks with reliable prior knowledge [342]. In supervised machine

learning, a classifier is trained using a labeled training dataset that includes

known classification labels. The trained classifier is then used to classify or detect

anomalies in new traffic data. Supervised machine learning approaches typically

involve two main phases: training and inference. During the training phase, the

classifier is trained on the labeled dataset (i.e., labeled network traffic) to learn the

relationship between the input features and the classification labels. The inference

phase involves using the trained classifier to infer the classification labels of ongoing

network traffic.

With decades of development, researchers have proposed a variety of

supervised machine learning approaches [220], from traditional machine learning

methods, such as k-nearest neighbor (KNN), decision tree, Support Vector

Machine (SVM), to advanced deep learning methods [241, 180], such as multi-

layer perceptron (MLP), recurrent neural network (RNN), long short-term memory

(LSTM). Each of the proposed supervised machine learning approaches has its own

advantages and disadvantages, making them suitable for different FGTA tasks.

Selecting the most suitable supervised machine learning approach is the key to
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designing an effective ML-based FGTA approach. We discuss more details about

the ML algorithm select by use case in Section 2.4.

Overall, due to the following advantages, supervised machine learning

approaches are the most widely used approaches in FGTA [49, 408, 37, 258]:

– High accuracy: supervised machine learning can achieve high accuracy in

FGTA, especially when compared to other methods.

– Ease of use: on the one hand, supervised machine learning approaches

are relatively easy to implement, with supports of various libraries and

tools [34, 302, 216]. On the other hand, they do not require extensive domain

knowledge or expertise to manually identify distinguishable rules or patterns.

– Flexibility: supervised machine learning approaches can be used to model a

wide range of traffic patterns and behaviors.

However, supervised machine learning approaches also have many shortcomings

that limit their performance and use cases:

– Limited explainability: many supervised machine learning algorithms, such

as deep neural network (DNN), can be difficult to interpret, which can

limit their usefulness in some applications, especially in anomaly or attack

detection.

– Overfitting: supervised machine learning models can overfit to the training

data, which can result in poor performance on new data.

– Dependency on labeled data: supervised machine learning requires high-

quality labeled training data, which can be time-consuming and expensive
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to collect, making them less effective than unsupervised or semi-supervised

methods in some cases.

– Limited scalability: many supervised machine learning approaches may not

scale well to extremely large or complex datasets. Both the training and

inference phases may be computationally expensive.

2.3.3.5 Unsupervised machine learning. Unlike supervised

machine learning, unsupervised machine learning is a machine learning method that

does not require labeled training data and can discover patterns and relationships

in the data on its own [46]. Unsupervised machine learning algorithms typically

involve clustering [378] or dimensionality reduction [379] techniques that can help

identify similarities and differences between traffic flows. These algorithms do not

directly output labeled classification results, but can be used to group similar traffic

flows together or identify anomalous traffic flows that do not fit into any of the

existing clusters. Widely used unsupervised machine learning algorithms include

K-means [190], DBSCAN, principal component analysis (PCA) [135], hierarchical

clustering [283], etc.

Unsupervised machine learning algorithms feature the following advantages

in FGTA:

– Discovering unknown patterns: unsupervised machine learning approaches can

identify previously unknown patterns and behaviors in the traffic data, which

can be useful for detecting new or emerging threats.

– Flexibility: unsupervised machine learning approaches can be more flexible

and adaptable than supervised machine learning as they do not require
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labeled data, making them easy to work with a wide variety of traffic

datasets.

– No training time: unsupervised machine learning approaches usually takes

zero training time, making them more efficient than supervised machine

learning approaches regarding model development.

They also inevitably have the following disadvantages:

– Limited result interpretability: interpreting the results of the clustering or

dimensionality reduction algorithms used in unsupervised machine learning

can be difficult without prior domain knowledge.

– Limited accuracy: unsupervised machine learning may not achieve the same

level of accuracy as supervised machine learning, especially when dealing with

complex or noisy traffic datasets.

– Scalability in inference: although taking no time for training, some

unsupervised machine learning algorithms are computationally expensive in

the inference phase, which can limit their scalability.

– Overfitting: unsupervised machine learning models can also suffer from

overfitting or underfitting, which can result in poor performance on certain

datasets.

In conclusion, unsupervised machine learning is a powerful tool for FGTA,

but it may have limitations in terms of result interpretability and accuracy. Due

to such natures, unsupervised machine learning approaches are not widely used in

tasks such as anomaly detection and attack detection [48, 152].
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2.3.3.6 Hybrid approach. Hybrid approaches combine the

advantages of multiple classification approaches to achieve better adaptability,

explainability, or performance. People can use different approaches as different

procedures in the FGTA pipeline, enhancing the feature extraction or pre-

classification phase, or simply use an ensemble classification model to increase the

robustness. For example, combining supervised and unsupervised machine learning

approaches for semi-supervised traffic classification [380], combining statistical

approaches with machine learning approaches better FGTA performance [155],

or utilizing a variety of approaches in the FGTA pipeline for more comprehensive

attack coverage [345].

Although hybrid approaches can usually achieve better performance, they

are more complex to design and assemble. Besides, hybrid approaches are usually

more computationally expensive than using single approaches.

2.3.4 Evaluation metrics. In FGTA, evaluation metrics are

important measures of the performance, efficiency, and usability of proposed

approaches. In this section, we discuss some commonly used evaluation metrics.

2.3.4.1 Classification efficacy. The most important evaluation

metric for FGTA is the classification efficacy, which measures the accuracy of

the proposed approach in classifying the target traffic flows. The classification

efficacy is well-defined in the domain of data mining [245]. It can be measured

by true positive rate (TPR), true negative rate (TNR), positive predictive value

(PPV), negative predictive value (NPV), false negative rate (FNR), false positive

rate (FPR), false discovery rate (FDR), false omission rate (FOR), F1 score

(F1), accuracy (ACC), receiver operating characteristic (ROC), area under

the curve (AUC), etc. Table 4 lists the calculations and descriptions of these
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Table 4. Widely used classification efficacy metrics for FGTA, where TP denotes
the number of true positives, TN denotes the number of true negatives, FP
denotes the number of false positives, and FN denotes the number of false
negatives.

Category Description Calculation

TPR The probability that an actual positive will test
positive.

TP
TP+FN

TNR The probability that an actual negative will test
negative.

TN
TN+FP

PPV The probability that an item with a positive test
result is truly positive.

TP
TP+FP

NPV The probability that an item with a negative test
result is truly negative.

TN
TN+FN

FNR The probability of positives which yield negative
outcomes.

FN
FN+TP

FPR The probability of negatives which yield positive
outcomes.

FP
FP+TN

FDR The probability that an item with a positive test
result is truly negative.

FP
FP+TP

FOR The probability that an item with a negative test
result is truly positive.

FN
FN+TN

F1 The harmonic mean of precision (PPV) and
recall (TPR).

2TP
2TP+FP+FN

ACC How close a given set of analysis results are to
their true value.

TP+TN
TP+TN+FP+FN

ROC A graph showing the performance of a
classification model at all classification
thresholds.

Through TPR and FPR.

AUC The area under the entire ROC curve. Through ROC.
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metrics. For specific FGTA tasks, some metrics may be more important than

others. For example, in anomaly detection, FPR and FNR are more important

than PPV and NPV because FPR determines the false alarm rate, reflecting the

usability of proposed approaches, and FNR determines the miss rate, reflecting the

detection effectiveness of proposed approaches. While in tasks such as webpage

fingerprinting, PPV and NPV are more important than FPR and FNR because

PPV and NPV are more relevant to the classification efficacy.

2.3.4.2 Efficiency. Efficiency is another important evaluation metric

for FGTA, which is usually measured by the time cost of finishing analyzing a

certain amount of traffic flows by the proposed approach. In addition to accuracy

and other performance metrics, the time cost can have a significant impact on the

proposed approach’s practicality and applicability. In real-world scenarios, the

majority of FGTA tasks are performed on a large amount of traffic flows in real

time. Therefore, the bottom line of these FGTA tasks is to reach the line speed in

processing traffic flows. Here, the line speed refers to the maximum speed at which

a FGTA approach can process incoming traffic data without dropping or losing

packets. It is typically measured in terms of bits per second (bps) or packets per

second (pps).

To increase efficiency, many FGTA approaches optimize the feature

extraction procedure, classification algorithms, or the general pipeline. Some

approaches also choose to design dedicated hardware architectures to accelerate

the FGTA process. For example, FlowLens [58] utilizes programmable switch to

support ML-based flow classification at hardware level, making ML-based flow

classification efficient enough to catch up with line-speed traffic. We discuss more

details about this issue in Section 2.4.
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Figure 8. A taxonomy for FGTA by use case.

2.3.4.3 Other metrics. According to different use cases, FGTA

approaches may need to consider other metrics, such as the memory cost, the

storage cost, compatibility, etc. Intrusion detection focused FGTA approaches

may also need to consider the explainability of the outputs to help network

administrators understand the reasons for the detection results, thereby facilitating

the network security management with confidence. In addition, some FGTA

approaches may need to consider the privacy of the users for compliance with

certain regulations (i.e., GDPR). Thus, developers need to select suitable metrics

for specific use cases.

2.4 Use Cases and Representative Approaches

As discussed in Section 2.1, FGTA has a wide range of uses. FGTA can be

leveraged by both attackers and network administrators, for both illegal purposes
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and social good. According to their use cases, we propose a taxonomy for FGTA

approaches (illustrated in Figure 8). In the rest of this section, We further examine

typical FGTA approaches in each of the category.

2.4.1 Attack/Anomaly Detection. TA approaches are widely used

by both the industry and academia to detect anomalies or attacks. With more than

two decades of research, we have seen a myriad of solutions (e.g.[143, 365, 149, 89])

targeting at different types of threats. However, as networks attacks become more

and more sophisticated and traffic encryption is widely used by all the parties,

detection approaches based on traditional TA gradually become incompetent to

tackle modern attacks. Therefore, researchers began adopting FGTA to model

hosts and clients’ application-layer behaviors to detect such attacks/anomalies. In

this subsection, we elaborate on FGTA-based attack/anomaly detection approaches,

introducing their applicable scenarios and operation mechanisms (Table 5 shows an

overview).

2.4.1.1 Intrusion detection. Many FGTA approaches focus on

detecting complicated intrusions in the network by examining the characteristics

of the underlying network traffic. Most of them apply machine learning models to

perform the detection.

Amoli et al. [48] leveraged an unsupervised machine learning model

(i.e.density-based spatial clustering of applications with noise (DBSCAN)) to

distinguish subtle differences between historic traffic and intrusion traffic. Their

approach is able to detect zero-day and complex attacks without much prior

knowledge of these attacks. Papadogiannaki et al. [298] generated traffic signatures

from packet metadata sequences and then used these to detect intrusions in the

UNSW-NB15 dataset [279].
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Many researchers also focus on utilizing supervised deep learning models

to detect intrusions. Tang et al. [366] extracted six basic features from traffic

flows and trained a DNN model with the NSL-KDD dataset to detect intrusions.

Shone et al. [345] first leveraged nonsymmetric deep autoencoder (NDAE) for

unsupervised feature learning. Then, they implemented stacked NDAEs with GPU-

based architectures for quick and accurate intrusion detection on labeled datasets

(i.e.KDD Cup ’99 and NSL-KDD). Mirsky et al. [274] monitored the statistical

patterns of network traffic and designed an ensemble of neural networks called

autoencoders to collectively differentiate between normal and abnormal traffic

patterns. Their approach is able to detect various attacks (e.g.video injection,

ARP MitM, OS scan, etc.). Besides, unlike many other approaches that are only

evaluated in closed-world environments, this approaches was tested with a real-

world test bed.

2.4.1.2 Malware detection. Today’s malware is becoming more and

more challenging to be detected by traditional TA due to traffic hiding and the

increasing adoption of traffic encryption. FGTA could be an ideal tool to detect

such malware.

Shabtai et al. [340] proposed a framework for malware detection on Android

platforms. It can identify attacks or masquerading applications installed on a

mobile device and injected applications with malicious code by semi-supervised

machine-learning methods. Wang et al. [400] leveraged a machine learning

algorithm (i.e.C4.5 decision tree) in analyzing mobile traffic, which is capable of

identifying Android malware with high accuracy—more than 98%.

Later, some researchers collectively evaluated the efficacy of different

machine learning models in detecting malware. Lashkari et al. [238] detected
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malicious and masquerading applications with five different classifiers—random

forest, KNN, decision tree, random tree, and regression. They found that these

models can achieve similar performances in malware detection. Besides, they

published a labeled dataset that contains both benign Android applications and

injected applications’ network traffic. Anderson et al. [49] designed and carried out

experiments that show how six machine learning algorithms (e.g.linear regression,

logistic regression, decision tree, random forest, SVM, and MLP) perform when

confronted with real network data. They found the random forest ensemble

classifier to be the most robust for the domain of malware detection.

2.4.1.3 Data exfiltration detection. FGTA can also be used

in detecting data exfiltration, thereby protecting personal sensitive data from

leakage. Different from directly detecting anomalies or attacks, approaches in this

domain usually profile user behaviors or model normal application usage to identify

abnormal data transfer.

Wei et al. [411] proposed ProfileDroid, which is the first approach to profile

mobile application at four layers: (a) static, or application specification, (b) user

interaction, (c) operating system, and (d) network. At network-layer, this approach

can capture essential characteristics of application communications, including but

not limited to the ratio of incoming traffic and outgoing traffic, number of distinct

traffic sources, traffic intensity, the percentage of HTTP and HTTPS traffic, etc.

The profiling information can help identify inconsistencies and surprising behaviors,

thereby detecting data exfiltration. A similar work is TaintDroid [139]. It leverages

dynamic information-flow tracking to identify private data leaks of Android

applications. The authors indicated that network traffic is useful to help monitor

the behavior of popular third-party Android applications and discover potential
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misuse cases of user private information across applications. These two approaches

do not only leverage network traffic, but their ideas inspired a lot of subsequent

work in this domain.

Later, researchers began to investigate purely using network traffic to profile

application usage and report possible data exfiltration. Razaghpanah et al. [318]

monitored network communications on mobile phones from user-space. The

proposed approach facilitates user-friendly, large-scale deployment of mobile traffic

measurements and services to illuminate mobile application performance, privacy

and security. Song et al. [356] proposed a VPN-based approach to detect sensitive

information leakage Le et al. [240] proposed AntMonitor, which passively monitors

and collects packet-level measurements from Android devices to provide a fine-

grained analysis. By inspecting the network traffic data, it can provide users with

control over how their data is shared by applications. Ren et al. [320] proposed

ReCon, a cross-platform system that reveals personally identifiable information

(PII) leaks by inspecting network packets and gives users control over them without

requiring any special privileges or custom operating system (OS). The authors

leveraged the Weka data mining tool [186] to train classifiers that predict PII

leaks. Continella et al. [110] proposed an approach to privacy leak detection that

is resilient to obfuscation techniques (e.g.encoding, formatting, encryption). To

achieve the goal, the authors first established a baseline of the network behavior of

applications, and then utilized black-box differential analysis on application usages.

However, the aforementioned approaches still require inspections on traffic

content to detect data exfiltration. The ideal FGTA-based solution should be

content-agnostic. In 2019, Rosner et al. [327] presented a black-box approach

for detecting and quantifying side-channel information leaks in TLS-encrypted
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network traffic. Given a user-supplied profiling-input suite in which some aspect

of the inputs is marked as secret, it combines network trace alignment, phase

detection, feature selection, feature probability distribution estimation and entropy

computation to quantify the amount of information leakage that is due to network

traffic.

2.4.1.4 Others. A few research works have been focusing on using

FGTA to detect other types of application-layer anomalies. By harnessing the

power of machine learning on big data, such approaches can model fine-grained

application-layer anomalies only with flow-level traffic or packet headers. For

example, BotFlowMon [151, 152] detects online social network bot traffic by

converting NetFlow records to images and training a convolutional neural network

(CNN)-based classification model; Coulter et al. [112] proposed a data-driven cyber

security system that can detect Twitter spam or other high-level application-layer

anomalies through machine-learning-based flow analysis; Feng et al. [157, 155]

detects cryptojacking traffic by inferring the hash rate stability with cryptomining

traffic in sFlow format. Table 5 lists their analysis features and methodologies.

2.4.2 Fine-Grained Quality of Experience Investigation.

Quality of experience (QoE) is a well-studied topic in the development of the

Internet. Unlike quality of service (QoS), which refers to the network parameter

settings configured by service providers to deliver various levels of service to their

customers, QoE measures how the service is experienced by individual users at

the edge of the network [227]. To score well in QoE, service providers need to

analyze network traffic to conduct QoE investigations. The investigation results can

help them revise the network configurations accordingly, thereby providing decent

service to users.
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Table 6. Comparisons of selected fine-grained QoE investigation approaches.

Approach Goal Method Feature

[129] Identify QoE degradation
in YouTube

Random forest Three feature sets selected
by information gain.

[293] Estimate QoE in YouTube Random forest, J48, Näıve
Bayes, OneR, and SMO

Five hand-crafted feature
sets

[265] Estimate video streaming
QoE over HTTPS and
QUIC protocols

Decision tree A packet-level feature set
extracted from network
and transport-layers

[228] Estimate QoE in YouTube Random forest and linear
regression

Three feature sets
(inbound, outbound, and
inbound + outbound)

[426] Estimate mobile ABR
video adaptation behavior
over HTTPS and QUIC
protocols

Traffic fingerprinting with
chunk sizes

Packet size and timing

Plenty of works have been proposed to conduct QoE investigations with

traditional TA (e.g.[227, 206, 39]). They can roughly classify network traffic into

several groups (e.g.video, voice, data transfer, etc.) using statistical, DPI-based,

or rule-based approaches and measure the service experience according to some

metrics. However, such approaches may not be able to tackle today’s increasingly

complicated network traffic, since different types of traffic may be encrypted by

different protocols (e.g.HTTPS, Quick UDP Internet Connection (QUIC)) and

sent from different devices (e.g.Internet of things (IoT), smartphone, server)

by different applications. Besides, service providers may want to conduct more

granular management of network traffic. For example, residential areas’ network

administrators may want to increase the priority of video streaming traffic related

to YouTube for certain users; network administrators of companies may want to

ensure the quality of online meeting traffic for some offices. Therefore, researchers

began to leverage FGTA to conduct QoE investigation in finer granularities in the

past ten years.
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Usually, fine-grained QoE investigations are performed in two steps:

1. Extract the target traffic using traffic classification.

2. Measure the extracted traffic to check if it meets certain criteria.

Some approaches may combine these two steps into one and directly identify

potential QoS/QoE problems. Table 6 shows a comparison of some selected QoE

methods.

In 2016, Dimopoulos et al. [129] proposed a random-forest-based detection

model to identify QoE issues related to YouTube video streaming. By selecting

three sets of features with information gain, the proposed model is able to directly

detect different levels of QoE degradation that is caused by three key influence

factors (i.e.stalling, the average video quality, and the quality variations). The

authors demonstrated that it can detect QoE problems with an accuracy of 92%

by evaluating this approach using collected traffic At the same year, Orsolic et

al. [293] also studied using different machine learning algorithms (i.e.random forest,

J48, Näıve Bayes, OneR, and Sequential Minimal Optimization (SMO)) to detect

YouTube QoE issues under different bandwidth scenarios. In 2019, Khokhar et

al. [228] proposed the first work that not only can identify YouTube QoE issues

related to objective factors (e.g.startup delay, stalling, resolution change, etc.), but

also can identify QoE issues related to the subjective Mean Opinion Score (MOS).

Mazhar et al. [265] further extends QoE investigation to all encrypted video

streaming traffic (transferred over HTTPS or QUIC) by using a classification model

trained by decision tree. They demonstrated that their approach is able to achieve

a 90% classification accuracy for HTTPS and an 85% classification accuracy for

QUIC Xu et al. [426] infers mobile Adaptive Bitrate (ABR) video adaptation

behavior using packet size and timing information in encrypted environments.
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2.4.3 Website Fingerprinting. Website fingerprinting (WFP) is

used to identify what web page the user is visiting, even in the presence of traffic

encryption or encrypted tunnels established by Tor [266, 304], Shadowsocks (i.e.a

popular secure socks5 proxy) [9], VPN, etc. It is a FGTA technique that widely-

used by attackers to eavesdrop on user activities online. In this subsection, we

survey and compare well-known WFP approaches (Table 7), elaborating on the

history of WFP and investigating its capability.

2.4.3.1 Early development of WFP. WFP has a long history. The

early WFP attacks simply focused on using data sizes to infer the URL the user

is visiting through encrypted SSL connections. Back in 1998, Mistry et al. [275]

demonstrated that the size of HTML files is a critical feature to specific web

pages. They proposed an attack that simply uses the transmitted data volumes

to identify certain websites. Although this attack is not feasible anymore after the

launch of connection pipelining and connection parallelization by HTTP 1.1 (RFC

2616 [161]), this research inspired many other WFP researches in the next two

decades. In 2002, Hintz [198] defined “fingerprints” of websites as the histograms

of transferred files’ sizes. He recorded some website fingerprints and successfully

recognize some websites transferred through HTTPS with these fingerprints.

However, Hintz’s WFP attack only works for a small number of websites. Later,

Sun et al. [359] extends size-based WFP to thousands of websites. They proposed a

WFP approach based on Jaccard’s coefficient, which can correctly identify 75% of

the websites in their collected dataset. However, a common drawback of file-based

attacks is that they cannot tackle traffic hidden in encrypted tunneling protocols

(e.g.VPN, OpenSSH), not to mention Tor.
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2.4.3.2 Defeat encrypted tunnel. To extend WFP to handle

encrypted tunneling protocols, multiple “more advanced” WFP approaches

had been proposed. Both Bissias et al. [74] and Liberatore et al. [252] proposed

improved forms of WFP. Rather than using the data size as the feature, they

extract sets of traffic patterns from encrypted IP packet headers, such as packet

inter-arrival time, size, etc. These approaches have some efficacy in identifying

websites transferred by encrypted tunneling services. However, the accuracies

of page identification is still not ideal in reality. In 2009, by using packet-level

features, Herrmann et al. [197] proposed a multinomial Näıve Bayes classifier

that can identify up to 97% of web requests on a sample of 775 sites and over

300,000 real-world traffic dumps recorded over a two-month period. The authors

demonstrate that this approach is effective in tackling website traffic in encrypted

tunnels. Lu et al. [261] pointed out that packet ordering information, though

noisy, can be utilized to enhance website fingerprinting. In addition, the ordering

information is effective for WFP even under traffic morphing. By calculating the

Levenshtein distance between different network traffic, their approach can perform

WFP over OpenSSH for 2,000 profiled websites. The identification accuracy of the

proposed scheme reaches 81%, which is 11% better than the approach proposed by

Liberatore et al. [252].

2.4.3.3 WFP in Tor era. To safeguard personal information and

avoid Internet censorship in an increasingly dangerous network environment, many

people began to use The Onion Router (Tor), a free and open-source software

for enabling anonymous communication, to visit the Internet. Different from

traditional encrypted tunneling protocols, Tor reroutes Internet traffic through

a worldwide, volunteer overlay network, consisting of more than six thousand
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Figure 9. Threat model for WFP attacks over Tor network.

relays [282], for concealing a user’s actual location and Internet usage from anyone

conducting network surveillance or TA.

Figure 9 illustrates the operation model of Tor. To protect user’s identity,

each Tor user creates an encrypted virtual tunnel to its destination through a chain

of several volunteer nodes—onion relays (ORs). According to their positions in the

virtual tunnel, ORs can be classified into entry OR, middle OR, and exit OR. Each

of the ORs only knows its predecessor and its successor [122]. When forwarding

network traffic, the user’s network packets will be encrypted in multiple layers and

each of the ORs can only decrypt one layer of encryption. Thus, Tor ensures that

none of the ORs in the circuit knows the user and its destination at the same time.

Besides, to prevent TA, the user data is encapsulated in chunks of a fixed size,

called cells, before transmission [130]. The WFP attacks above are thus ineffective

against Tor network, as they rely heavily on packet-size-related features.

Indeed, it is almost impossible to find any useful knowledge inside a Tor

network. However, the virtual tunnel between the Tor user and the entry OR
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does provide attackers with an interface and makes WFP possible (illustrated in

Figure 9).

In 2011, Panchenko et al. [296] are the first to demonstrate that it feasible to

use WFP to identify web pages visited by Tor users. They trained a SVM classifier

with features extracted from volume, time, and direction of network packets, with a

classification accuracy of 55% when testing with their web page dataset. Panchenko

et al. are also the first to evaluate their WFP attack in a real-world setting. The

result shows that their approach is able to achieve a true positive rate of up to

73% and a false positive rate of 0.05%. Based on this work, a significant amount of

improved WFP approaches were proposed to use different algorithms and features

(e.g.VNG++ [136], Hidden Markov Models [82], Levenshtein-like distance [403],

etc.) to tackle web page identification in Tor. In 2014, Wang et al. [402] proposed a

KNN WFP classifier and applied it on a large feature set with weight adjustment.

Their approach achieved an accuracy of 91% in a closed-world setting and a true

positive rate of 85% for a false positive rate of 0.6% when testing with more than

5,000 background pages in a real-world setting.

Nevertheless, these WFP approaches still have some obvious flaws according

to an evaluation made by Juarez et al. [221]:

– Previous WFP attacks assume single-tab browsing behavior of users.

However, multi-tab browsing is widely used in reality.

– WFP attacks highly depend on the coverage of training dataset, but existing

datasets cannot include web page traffic from all versions of Tor browser, user

habits, or user locations.
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– Previous WFP attacks cannot detect dynamic or personalized web pages, as

they traffic of these pages is polytropic.

– Many countermeasures for WFP have been proposed (which will be discussed

later in Section 2.6), making many of previous WFP attacks non-effective.

To further increase the success rate of WFP attacks and defeat countermeasures,

researchers began to collect more comprehensive training datasets, use more

complicated feature sets, and apply more sophisticated classification algorithms

for WFP.

Wang et al. [403] described how they collect the training dataset in a

much more thorough manner than previous works. They gathered the data in

different Tor settings and with different defense approaches. Later, Panchenko

et al.[295] collected the first Internet-scale WFP dataset to develop and evaluate

WFP comprehensively. Based on the dataset, they proposed CUMUL, a web page

classifier that has a higher recognition rate and a smaller computational overhead

than previous approaches. They also demonstrated that although CUMUL is more

efficient and superior in terms of detection accuracy, still, it cannot scale when

applied in realistic settings. As for WFP feature set, Cai et al. [81] systematically

analyzed previous WFP approaches to understand which traffic features convey

the most information; Hayes et al. [192] utilized the gini coefficient index to select

a feature set and designed a random decision forests classifier based upon them;

Wang et al. [404] evaluated the classification accuracy of each feature category by

using KNN.

In the recent five years, the development of WFP has been focusing

on conducting attacks in the presence of effective countermeasures, with little

encrypted data, or under complicated circumstances. Many of recent approaches
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also investigated the applicability of deep learning techniques in WFP. Rimmer

et al. [323] trained three classification model with Stacked Denoising Autoencoder

(SDAE), CNN, and Long Short-Term Memory (LSTM) respectively. These deep

learning models are capable of automatically learning the best features to conduct

WFP. The authors further demonstrated that automatically-created features are

more effective especially in tackling constantly changing web content. In 2018,

Sirinam et al. [348] presents a very powerful WFP attack—Deep Fingerprinting

(DF). By employing a CNN model with a sophisticated architecture design, the

authors claim that this attack can defeat many WFP countermeasures (e.g.WTF-

PAD [222] and Walkie-Talkie [404]) and works well in very complicated real-

world scenarios (95% accuracy for 20,000 URLs in a real-world setting). Sirinam

et al. [349] further proposed an approach based on N-shot learning with triplet

networks in 2019, which can achieve decent efficacy with relatively small training

data. Besides these approaches, Abe et al. [35] also applied SDAE in WFP; Bhat et

al. [66] leveraged ResNets [193], a CNN architecture, to reach high success rates

in WFP; Oh et al. [290] used unsupervised DNN to generate low-dimensional

features and trained different machine learning classification models based upon

them. In 2021, Wang et al. [391] leveraged adversarial domain adaption (a transfer

learning technique) to achieve high WFP accuracy with little encrypted data;

Yin et al. [433] proposed a WFP attack that is able to identify websites in multi-

tab environments, which means it can achieve usable accuracies regardless of the

number of simultaneously opened web pages; Hoang et al. [199] found that even in

the presence of domain name encryption technologies or content delivery network

(CDN), WFP based on IP addresses is still feasible. They exploited the complex

structure of most websites, which load resources from several domains besides their
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primary one, and further applied the generated domain fingerprints to conduct

WFP at large.

2.4.4 Location Inference. Location inference is a widely studied

topic by computer scientists. We have seen myriad works focusing on using social

network information [41, 211], smartphone accelerometer [187], image content [168],

etc. to infer users’ locations. In the past decade, a few researchers began to use

FGTA to conduct location inference. The location we discuss here can be either

a geographical location or a contextual location, the later one means the type

of location the user is sending packets from, such as an airport, a campus, or a

residential building. This subsection examines inference approaches for these two

types of locations.

2.4.4.1 Contextual location inference. The intuition behind

contextual location inference with FGTA is straightforward—users from different

types of locations tend to generate different traffic because they need to use

different web applications at different locations. Besides, different locations

(e.g.campus, company, residential area) may process network traffic in different

manners. Contextual location inference using FGTA aims to measure and analyze

sets of network traffic and infer where these sets of traffic are coming from.

Back in 2009, Trestian et al. [376] conducted a detailed study on

applications accessed by users at different locations. They demonstrated that users

are more likely to show interest in a particular class of applications than others at

certain locations, which is irrespective of the time of day. They indicated that we

can further use the traffic generated by these applications to identify the type of

locations (e.g.work versus home). In 2014, Das et al. [117, 118] collected around

100 GBs of real-world network traffic from more 1700 users at different types of
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Figure 10. Operation model for geographical location inference.

locations (e.g.cafeteria/restaurant, university campus, airport/travel, etc.). By

measuring and analyzing this dataset, Das et al. selected sets of features for packet-

level, flow-level traffic and built a decision-tree-based classification model to predict

contextual location with an overall accuracy of 87%. Later, a few similar works also

demonstrated that mobile traffic from different cellular towers [423, 395, 424] tends

to have different characteristics.

The drawback of contextual location inference is that it only works on a

group of network traffic sending from many endpoints. It cannot infer a device’s

contextual location by only analyzing its own network traffic.

2.4.4.2 Geographical location inference. Purely using network

traffic to infer a user’s geographical location seems impossible. However, in

2015, Ateniese et al. [52] demonstrated that it is actually feasible under certain

assumptions.

Nowadays, location-based applications (LBA), such as Facebook, Yelp,

Google Map, etc., are widely used. These LBAs obtain user locations through

location-based services (LBS). LBS providers usually use a base transceiver

station (BTS) to locate a user and send real-time location information to the
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user. Ateniese et al. proposed an approach (illustrated in Figure 10) that simply

monitors the traffic between the BTS and the LBS to identify user locations.

They found that different locations will trigger LBS packets of different sizes. An

adversary can potentially create a location knowledge base of different locations’

packet sizes and their corresponding timestamps to conduct geographical location

inference. Still, this approach has many limitations (e.g.low accuracy, difficult

to build the location knowledge base at large, etc.). This work is more about

demonstrating the feasibility of geographical location inference with FGTA than

launching a full-fledged, ready-to-use approach.

2.4.5 Device/OS Identification. TA has been used to identify user

devices or the OS running on the device for a long time. For example, Lippmann

et al. [254] focused on extracting TCP or IP packet metadata to recognize different

OSes in 2003. However, with the increase in the variety and complexity of user

device and OS, simply identifying the device/OS type according to rules in packet

header is no longer effective. Thus, researchers turn to use FGTA to investigate if

specific traffic patterns can be correlated with some OSes or devices, which not only

can recognize a few rough device/OS types, but also can pinpoint the device model

or OS for various IoT and mobile devices. In this subsection, we introduce such

FGTA approaches that deal with device/OS identification.

2.4.5.1 OS identification. Chen et al. [93] perform OS identification

and detection of NAT and tethering (i.e.multiple devices sharing the Internet

connection of a mobile device, which can lead to multiple OSes sharing a single

IP address) by inspecting TCP/IP headers of packet traffic. They leverage a

probability-based method by applying the Näıve Bayes classifier to effectively

combine multiple features (e.g.TTL value, IP ID monotonicity, TCP timestamp,
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clock frequency, etc.), thereby fingerprinting and recognizing different OSes in

different environments. Laštovička et al. [239] also proposed an OS identification

method by constructing a decision tree with the TLS handshake, HTTP headers,

and TCP/IP features. However, these approaches cannot distinguish between

minor versions of the same OS. To tackle this problem, Ruffing et al. [332] identify

different versions of smartphone OSes by using the frequency spectrum of packet

timing from encrypted traffic. By identification through correlations of the feature-

extracted spectra, the authors demonstrate that even a network traffic input of 30

seconds can be enough for high-accuracy identification results.

2.4.5.2 IoT device identification. Compared with OS identification,

IoT device identification can be more challenging due to the complexity of their

network environments and the devices’ wide variety. Lopez-Martin et al. [257]

extract a time-series feature vectors from network traffic, where each element of the

time-series vector contains the features of a packet in the flow. They then proposed

a classifier that is based on both a RNN model and a CNN model to separate

heterogeneous IoT traffic using the features. Meidan et al. [269] collected and

labeled network traffic from nine distinct IoT devices (e.g.baby monitor, motion

sensor, printer, security camera, etc.), PCs, and smartphones. They then utilized

a multi-stage machine-learning-based classifier to classify traffic of IoT devices

in two phases. In the first stage, the classifier can distinguish traffic between IoT

and non-IoT devices. In the second stage, the classifier can further identify traffic

from different IoT devices. The authors demonstrate that their approach is able to

classify IoT traffic with an accuracy of 99.281%.

However, these two researches do not consider complicated network

environments (e.g.smart homes, enterprises, and cities) of IoT devices. Sivanathan
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et al. [351] addressed this challenge by developing a robust framework for IoT

device traffic classification with a multi-stage machine-learning-based algorithm.

The authors instrumented a smart environment with 28 different IoT devices that

consist of spanning cameras, lights, plugs, motion sensors, appliances, and health-

monitors. They then collected and synthesized network traffic traces from this

infrastructure for a period of six months. By extracting statistical features such as

activity cycles, port numbers, signaling patterns, and cipher suites from the traffic

and using Näıve Bayes and random forest as the identification models, they are able

to classify heterogeneous IoT devices with an accuracy over 99%. Yao et al. [430]

further proposed an end-to-end IoT traffic classification method that eliminates

the multi-stage classification for high accuracy and efficiency. It relies on a deep-

learning-aided capsule network to construct an efficient classification mechanism

that integrates feature extraction, feature selection, and classification model. One

drawback of these approaches is that their evaluations are all based on closed-world

datasets, which may not be able to precisely reflect their true efficacy in the real

world.

2.4.6 Application Identification. Using the network traffic from

a device to identify the applications that are running on the device, even in the

presence of traffic encryption, is one of the most classic use cases of TA. Decades

ago, people have investigated using traditional TA approaches to classify traffic

from different applications. Before 2000, many researchers simply used traffic ports

to identify some popular applications that have well-established ports (e.g., port

443 for HTTPS, port 110 for POP3). Port-based approaches fail for most emerging

applications such as gaming, streaming, and messaging [63]. Later, Karagiannis et

al. proposed BLINC [225], which not only looks at port-based features, but also
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inspects the host’s social behavior and its community behavior to determine the

applications. Bernaille et al. [62] observe the sizes of the first few packets of an

SSL connection to identify the web application, which can achieve an accuracy

of more than 85%. There are also many machine-learning-based traditional TA

approaches [64, 267, 140, 277] that classify application traffic according to the

traffic patterns.

However, application identification with traditional TA can hardly adapt to

the current network environment and meet current needs due to several limitations:

– Traditional TA can only identify some high-level protocols (e.g.HTTP,

HTTPS, SMTP, POP3, etc.) and a few frequently used applications that

have obvious traffic patterns (e.g.MySQL, BitTorrent, MSN, etc.).

– Traditional TA-based application identifications only work in relatively simple

network environments. For example, endpoints only consist of servers, clients,

and peers; devices communicate without encrypted tunneling protocols

(e.g.virtual private network (VPN)).

Nowadays, network environments are becoming far more complicated that before.

Different types of nodes (e.g.smartphone, IoT, middlebox) may communicate

through complicated network environments (e.g.VPN, network address translation

(NAT), WiFi). Besides, millions of web applications are used on different platforms,

with more complex communication mechanisms and much less regular traffic

patterns. Therefore, people started to leverage FGTA in identifying specific

applications among miscellaneous traffic from different types of devices. In this

subsection, we introduce typical FGTA-based application identification approaches

(Table 8 shows an overview).
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2.4.6.1 Application identification for general-purpose devices.

General-purpose devices, such as personal computers and servers, support the

operation of countless web applications. Recently, FGTA-based application

identification for general-purpose devices focuses on identifying more specific

applications in more complicated network environments.

Chen et al. proposed Seq2img [94], an application traffic classification

framework based on an online CNN model. Seq2img employs a data fusion method

based on Reproducing Kernel Hilbert Space (RKHS) to convert flow sequences

into images, which can fully capture the static and dynamic behaviors of different

applications. Then, Seq2img utilizes a CNN model to recognize network traffic of

popular applications, such as Facebook, Instagram, Wechat, etc.

Rezaei et al. [321] investigated using a few labeled, sampled packet-level

datasets to train a comprehensive application identification model. They first

pre-train a CNN-based model on a large unlabeled dataset, where the input is

the time series features of a few sampled packets. Then, the learned weights are

transferred to a new CNN model that is re-trained on a small labeled dataset.

They demonstrated that this semi-supervised approach achieves almost the same

accuracy as a fully-supervised method with a large labeled dataset. The proposed

approach is able to identify applications like Google Drive, Google Doc, Google

Search, Google Music, etc.

In 2020, Lotfollahi et al. [258] proposed an application identification method

that can work in both VPN and non-VPN networks. After extracting features from

packet headers, they used both CNN and stacked autoencoder (SAE) to train the

classification models. Evaluation results show that this approach can achieve a

recall score of 0.98 in application identification tasks.
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2.4.6.2 Mobile application identification. With the raising of

mobile network, mobile application identification becomes an emerging research

topic in recent years. Unlike general-purpose devices, mobile devices are less

regularized in port usage. In addition, a wide variety of mobile applications may

utilize some common libraries in communication, generating similar network traffic

patterns. Thus, mobile application identification can be more challenging.

Wang et al. [399] use random forest algorithm to analyze packet-level traffic

in wireless networks. Their approach is able to detect the usage of 13 selected

popular mobile applications on IOS platform, such as Snapchat, Tecent QQ, Mint,

Tinder, YouTube, etc., with an accuracy of more than 87.23%. They demonstrate

that by using the mobile applications the privacy of the user is more at risk

compared to using online services through browsers on mobile devices.

Many researchers also studied application identification on Android

platform. Inspired by some WFP approaches (Section 2.4.3), Alan et al. [44]

use Jaccard’s coefficient and Näıve Bayes to analyze features (e.g.packet size,

timing, direction) from TCP/IP headers to identify 1595 applications on four

different devices. Taylor et al. [367] proposed AppScanner, a framework that can

automatically fingerprint and identify Android applications from their encrypted

network traffic. The authors extracted two sets of features (i.e.flow vector and

statistical features) from flow-level network traffic and implemented this approach

using both SVM and random forest algorithms. The evaluations show that

AppScanner can identify the 110 most popular applications in Google Play Store

with more than 99% accuracy. In the next year, Taylor et al. further extended

AppScanner in a follow-up research [368]. They investigated how application
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fingerprints change over time, across different devices, and across different

application versions.

Recently, many similar works (e.g.[36, 37, 380, 38]) have been proposed to

enhance the efficacy, efficiency, and coverage of mobile application identifications.

2.4.6.3 Application identification on other platforms. A

few researches have been focusing on identifying decentralized applications on

blockchain systems. Shen et al. [343] proposed an encrypted traffic classification

of decentralized applications (e.g.Cryptopepes, Matchpool, Lordless, etc.) on

Ethereum with features like packet lengths, bursts, and time series. Aiolli et al. [40]

focused on identifying user activities on Bitcoin wallet applications (e.g.BTC.com,

Bitcoin Wallet, Coinbase, etc.). The authors used SVM and random forest models

to conduct the identification.

We also studied the application identification approaches for IoT devices.

However, as each IoT device is usually bundled with a IoT application, the

identification of IoT application is equal to the identification of IoT devices in

most cases. Therefore, we introduce these approaches in Section 2.4.5 (IoT device

identification).

2.4.7 Application Usage Inference. Application usage inference

aims to analyze encrypted network traffic to identify certain application events,

infer user behaviors, and measure specific service usage. It is one of the most

challenging FGTA tasks, as it not only classifies the network traffic that is

associated with different applications, device, or web pages, but also leverages the

traffic patterns to recognize the application-layer activities that users conducted

with the applications, devices, or web pages. Therefore, many application usage

inference approaches may take extra steps (e.g.clustering, pre-filtering, etc.) to

73



T
ab

le
9.

C
om

p
ar
is
on

s
of

se
le
ct
ed

ap
p
li
ca
ti
on

u
sa
ge

in
fe
re
n
ce

ap
p
ro
ac
h
es

(#
:
n
ot

su
p
p
or
t;
G#
:
p
ar
ti
al
ly

su
p
p
or
t;
 
:

su
p
p
or
t)
.

C
a
te
g
o
ry

A
p
p
ro

a
ch

Y
e
a
r

A
n
a
ly
si
s
O
b
je
ct

F
e
a
tu

re
M

e
th

o
d

R
e
a
l-
W

o
rl
d

E
v
a
lu
a
ti
o
n

M
e
ss
a
g
e
r/

O
S
N

C
ou

ll
et

al
.

[1
11
]

20
14

A
p
p
le

iM
es
sa
ge
:
la
n
gu

ag
e,

co
n
tr
ol
,
re
ad

,
st
ar
t,

st
op

,
im

ag
e,

te
x
t,
et
c.

P
ay
lo
ad

le
n
gt
h
an

d
th
e
m
es
sa
ge

le
n
gt
h
;
a

b
in
ar
y
fe
at
u
re

ve
ct
or

of
p
ac
ke
t
le
n
gt
h
an

d
d
ir
ec
ti
on

p
ai
rs

L
in
ea
r
re
gr
es
si
on

,
N
äı
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narrow down the scope before the final traffic classification. Besides, they need

to perform traffic segmentation to locate different traffic bursts, where each burst

represents a group of adjacent packets that support an application event.

In this subsection, we introduce representative application usage inference

approaches, demonstrating their applicable scenarios and methodologies (Table 9

shows a comparison).

2.4.7.1 Messager/Online social network usage inference.

User activities on messaging or OSN applications are very private and sensitive.

However, although being encrypted, a third party can still infer the rough

messaging/OSN activities that users have performed only through content-agnostic

network traffic data.

Back in 2009, Schneider et al. [336] investigated OSN usages from the

perspective of network traffic for four different platforms—Facebook, LinkedIn,

Hi5, and StudiVZ. The authors studied how users actually interact with OSNs

by extracting clickstreams from passively monitored network traffic. They found

that different OSN operations (e.g.login, open friend list, logout, select profile,

etc.) will trigger statistically different network traffic. This research later lead

many researchers to dig deeper into using the traffic differences to classify different

user actions on OSNs. Coull et al. [111] analyzed the network traffic of encrypted

messaging services such as Apple iMessage. The authors demonstrated that

an eavesdropper can learn information about user actions (e.g.control, read,

start, stop, image, and text), the language of messages, and even the length of

those messages with greater than 96% accuracy simply by observing the sizes of

encrypted packets. They used three algorithms to perform the inference—linear

regression, Näıve Bayes, and rule lookup table. However, they only evaluated
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their approach in closed-world environments with a small dataset. Fu et al. [166]

extended the inference to more messaging applications (i.e.Wechat and WhatsApp)

and more activities (e.g.stream video call, news feed, location sharing, etc.). By

segmenting Internet traffic into sessions with a number of dialogs, extracting

discriminative features from the perspectives of packet length and time delay,

and leveraging multiple machine learning models to conduct the classification, the

proposed approach can achieve 96% and 97% accuracy in WeChat and WhatsApp

respectively. Liu et al. [255] further extended the inference coverage to more OSN

applications (e.g.Facebook, Wechat, and WhatsApp) and evaluated their approach

in a real-world environment with real-time traffic data streaming. Real-world

evaluation is essential to reveal the true performance and efficacy of application

usage approaches, but many approaches were only evaluated through closed-

world off-line cases, leaving the inference throughput and abilities to handle noise

mysteries. Feng et al. [152, 145] developed and evaluated their OSN usage inference

approach in a larger network environment—a campus network. Although their

approach is mainly built for social bot detection, it can identify some commonly

seen user activities (i.e.posting, reading, liking, etc.) on Twitter and Facebook.

2.4.7.2 Streaming service usage inference. There are a few works

focusing on leveraging FGTA to extract behavioral information from network traffic

of streaming service (e.g.VoIP, audio streaming, and video streaming). Researchers

have demonstrated the feasibility of revealing voice information from encrypted

VoIP conversations or identifying encrypted video streams [299].

Wright et al. [417] demonstrated that when the audio is encoded using

variable bit rate codecs, the lengths of encrypted VoIP packets can be used to

identify the phrases spoken within a call. By leveraging a HMM, the authors
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indicated that an eavesdropper can identify phrases from a standard speech corpus

within encrypted calls with an average accuracy of 50%, and with accuracy greater

than 90% for some phrases. Schuster et al. [337] demonstrated that many video

streams are uniquely characterized by their burst patterns, and classifiers based

on CNN models can accurately identify these patterns given very coarse network

measurements. The authors only extracted features from flow attributes, such as

inbound/outbound bytes per second, inbound/outbound packet per second, and

inbound/outbound average packet length. They have examined this approach on

Netflix, YouTube, Amazon, and Vimeo.

2.4.7.3 General-purpose application usage inference. The

approaches discussed in this subsection aim at inferring all types of application-

layer events rather than only recognizing certain event categories.

Conti et al. [109, 108] analyzed encrypted mobile traffic to infer user actions

on Android devices, such as email exchange, posting a photo online, publishing

a tweet, etc. They extracted features from TCP/IP packet fields (e.g.IP address,

port number, packet size, direction, and timing) and use a random forest to

perform the inference. They trained and evaluated their approach using a dataset

that is associated with several Android applications with diverse functionalities,

such as Gmail, Facebook, Twitter, Tumblr and Dropbox. The evaluation results

demonstrate that it can achieve more than 95% of accuracy and precision for most

of the actions within the dataset. However, this approach was not evaluated in the

real-world environments. In 2016, Saltaformaggio et al. [333] proposed NetScope,

a framework that can perform robust inferences of user activities for both Android

and IOS devices by only inspecting IP packet headers. NetScope leverages a K-

means model and an SVM model to learn and detect network traffic generated
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by different application behaviors. By testing the approach in a lab environment,

the authors demonstrated that despite the widespread use of fully encrypted

communication, NetScope can distinguish subtle traffic behavioral differences

between user activities (e.g.Instagram browse versus post, Yelp browse versus

search, Facebook feed versus post, etc.). Papadogiannaki et al. [297] further pushed

application usage inference to a much larger scale. They proposed OTTer, a highly

scalable engine that identifies fine-grained user actions (e.g.voice call, video call,

messaging, etc.) in popular Over-The-Top mobile applications, such as WhatsApp,

Skype, Viber, and Facebook Messenger with encrypted network traffic connections.

By evaluating OTTer is a real-world test bed, the authors demonstrated that it can

operate at traffic loads with an average of 109 Gbps.

2.4.7.4 Others. There are a few application usage inference

approaches tackling different problems. For instance, Yan et al. [428] segmented

the network traffic into several bursts and trained a random forest model to identify

red packet transactions and fund transfers in Wechat; Wang et al. [409] proposed

an approach to identify the mobile payment applications from traffic data, then

classify specific actions (e.g.transfer payment, transfer receipt, QR code payment,

etc.) on the mobile payment application, and finally, detect the detailed steps

(e.g.click the button, receive the fund, open the red packet, etc.) within the action;

Jiang et al. [218] studied encrypted remote desktop traffic and found that an

eavesdropper can reveal application usage information (e.g.reading documents,

surfing webs, editing documents, etc.) due to side-channel privacy leakage. Wang

et al. [408] aimed at identifying DApp (e.g.Superrare, Editional, John Orion Young,

etc.) user behaviors (e.g.open DApps, open market, view detail, etc.) on Ethereum

by using random forest, decision tree, and gradient boosting decision tree (GBDT).
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Figure 11. Training data coverage for WFP.

2.5 Limitations

Although it seems effective in inferring different high-level, fine-grained

behaviors, FGTA still has many limitations. In fact, FGTA approaches are far from

what they have promised in the real world, and their efficacies depend on many

conditions. In this section, we discuss the limitations of FGTA.

2.5.1 Coverage of train data. As most FGTA approaches are

based on machine learning algorithms or prior knowledge about specific traffic,

the efficacy of such approaches is highly dependent on the coverage of training

datasets or rules learned beforehand. Unfortunately, existing datasets or rules can

only represent a small fraction of real-world scenarios. It is actually impossible to

collect a dataset to cover all possible scenarios. Take the WFP attack discussed

in Section 2.4.3 as an example, as shown in Figure 11, state-of-the-art datasets

from public repositories can only cover less than 0.001% of all websites around

the world. FGTA approaches built upon such datasets then have little effect in

practice. Furthermore, network traffic of websites, applications, or OSes is dynamic.

For instance, the layouts of Facebook websites have been changed for several times

since its birth, and so has the network traffic associated with Facebook. Therefore,

79



a FGTA approach that worked before may no longer be effective, if we do not

update its classification model with the latest training datasets.

2.5.2 Uncertainties in real-world environments. As can be seen

from our previous discussion (Section 2.3.4 and Section 2.4), many approaches

were only evaluated in closed-world environments, which means they were only

tested with a small amount of labeled traffic, with a little noise or without noise.

Such closed-world evaluations cannot objectively reveal the efficacy of proposed

approaches in the real world. Network traffic in real-world environments can be

very quite different from traffic in laboratory environments:

– Real-world network configurations can be complicated, with traffic going

through NATs, Wi-Fi connections, or special middle boxes. All these factors

can significantly change the original traffic characteristics.

– Edge users have different habits of using web applications. Some may send

traffic with VPN, Shadowsocks, or Tor. Although many FGTA approaches

claim to be effective even with traffic tunneling techniques, many researchers

found their efficacy will actually be reduced under such circumstances [444].

– The ratio of different network traffic in the real world is different from that

in the laboratory environment, making accuracies obtained from closed-world

evaluations hardly representative.

Therefore, real-world evaluations or large-scale pilot studies are essential for

developing and polishing a usable FGTA approach.

2.5.3 False alarms. FGTA aims to identify specific types of user

activities from network traffic. Usually, the analysis object only occupies a very

tiny proportion of the whole traffic (e.g.less than 0.01%). Thus, a very small false
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positive rate can be amplified in deployment, making the proposed FGTA approach

hardly usable.

2.5.4 Integrity of network traffic. As discussed in Section 2.2, the

integrity of the network traffic collected in the real-world cannot be guaranteed.

The traffic flow can be asymmetric or highly sampled, which will certainly reduce

the efficacy of existing FGTA approaches. However, FGTA with incomplete

network traffic was not widely discussed in existing papers.

2.6 Countermeasure

Besides the aforementioned limitations of FGTA approaches, Internet users

can also adopt various tricks or methods to escape inference. From the perspective

of illegitimate users, these countermeasures can make them stay stealthy and

avoid being discovered when conducting malicious activities. On the other hand,

legitimate users can also leverage these countermeasures to perturb FGTA,

thereby protecting their privacy. This section investigates FGTA countermeasures,

comparing their efficacy and use cases.

Näıve countermeasures send individual or aggregated traffic through

encrypted channels to escape the inferences of traditional TA approaches, such

as VPN, Shadowsocks, and Tor. However, these approaches are proven to be

vulnerable to many FGTA approaches [127, 65, 133, 99]. Therefore, people

began to modify the features of traffic flows to perturb FGTA approaches’

classification models. Such perturbations can be conducted from either network

layer or application layer [122]. Table 10 shows a comparison of some well-known

countermeasure approaches.

2.6.1 Network-layer Countermeasures. Network-layer FGTA

countermeasures directly modifying the network traffic by adding padding packets,
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changing packet bytes, or delaying existing packets, thereby obfuscating specific

features that FGTA approaches rely on, making the current traffic look like

other activities’, or regularizing the traffic patterns of different applications [178].

Such approaches usually come with some side effects. They might increase the

overheads of the network system, including time overhead, bandwidth overhead,

and potentially computational overhead.

Among all the network-layer countermeasures, traffic obfuscation is the

most classic approach. Back in 2006, Liberatore et al. [252] leveraged per-packet

padding (i.e.increasing the bytes of packets) in an attempt to defeat host profiling

system. They found that per-packet padding is reasonably effective, which

can lower predictive accuracy to less than 8% with a cost of increasing traffic

volume by 145%. However, per-packet padding cannot defend against many WFP

attacks [136, 192] because this approach still preserves some key traffic features

that can help classify the traffic. To fix the drawbacks, WTF-PAD [222] extends

per-packet padding to link-based padding to modify more traffic features. It detects

large time gaps between packets and covers them by adding dummy packets.

Further, to obscure traffic bursts, it also adds delays between packets to make them

statistically different. Due to its low computational overhead and time overhead,

WFP-PAD has been used in many real-world FGTA defense systems [174, 26].

Still, WTF-PAD leaks a portion of information in transmission and can be broken

by some FGTA approaches [348, 250]. Gong et al. [178] proposed FRONT and

GLUE. FRONT focuses on obfuscating the trace front with dummy packets. It also

randomizes the number and distribution of dummy packets to impede the attacker’s

inferring process. GLUE adds dummy packets between separate traces so that they
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appear to the attacker as a long consecutive trace, making the attacker unable to

find the start or end points.

Compared with traffic obfuscation that freely modifies traffic features, traffic

confusion mimic other groups of traffic to let FGTA approaches generate wrong

outputs, which is sometimes more effective, especially when defending against WFP

attacks. Wright et al. proposed traffic morphing [418]. It can thwart statistical

TA approaches by morphing one class of traffic to look like another class using

convex optimizations. Although it cannot defend against some types of FGTA

approaches [136, 192], this approach inspired many subsequent countermeasure

approaches. For example, Glove [287] first leverages a clustering algorithm to

group web pages with similar traffic, and then inserts only a small amount of

dummy traffic to hide the web page traffic in a close group; Supersequence [402]

also clusters network traffic traces of different web pages and extracts the shortest

common supersequence to cover current web traffic; Walkie-Talkie [404] modifies

the browser to communicate in half-duplex mode (buffer traffic and send in bursts)

rather than the usual full-duplex mode (immediately send available data). By

combining with dummy packets, Walkie-Talkie can modify the traffic of monitored

sensitive pages and benign non-sensitive pages, so that each page’s packet sequences

are exactly the same (each packet has the same timing, length, direction and

sequence number). However, a traffic-confusion-based approach requires a priori

knowledge about popular web pages’ network traffic. It cannot tackle traffic of

dynamic content or unpredictable activities. Moreover, such approaches can lead

to noticeable computational overhead.

Another obfuscation direction is to regularize the network traffic, making

different groups of traffic have relatively uniform patterns. For instance, Buffered
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Fixed-Length Obfuscation (BuFLO) [136] obfuscates page transmissions by sending

packets of a fixed size at a fixed interval and using dummy packets to both fill in

and potentially extend the transmission. Thus, the traffic generated by different

websites has a similar continuous traffic flow. However, BuFLO can cause very

high time and bandwidth overhead, sometimes can even bring congestion problems

to the network [82]. To alleviate the problem, Congestion-Sensitive BuFLO (CS-

BuFLO) [80] was proposed to vary the packet transmission rate. Tamaraw [81]

achieves a better security/bandwidth trade-off by using smaller fixed packet sizes

and treating incoming and outgoing packets differently to avoid unnecessary

padding and dummy traffic. DynaFlow [259] morphs packets into fixed bursts,

dynamically changes packet inter-arrival times to generate constant traffic flows,

and pads the number of bursts. Theoretically, DynaFlow leads to less network

overhead compared with BuFLO, CS-BuFLO, and Tamaraw.

The recent development of FGTA countermeasures mainly focuses on two

aspects:

1. The countermeasure should lead to nearly zero overhead to both the data

plane and the endpoints.

2. The countermeasure should be applicable to various web applications (e.g.web

page visiting, video streaming, VoIP, etc.) and scenarios.

For instance, Henri et al. [196] split traffic exchanged between the user and Tor

nodes over two different, unrelated network connections (e.g., DSL, Wi-Fi, or

cellular networks) to protect against FGTA by a malicious ISP; TrafficSliver [122]

limits the data a single observation point can observe and distorts repeatable traffic

patterns exploited by FGTAs with user-controlled splitting of traffic over multiple
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Tor entry nodes. TrafficSliver also offers an application-layer solution, which will be

discussed in Section 2.6.2; Wang [401] points out that an attacker may only need to

successfully identify a single web page (which they define as the one-page setting)

in reality, and a WFP countermeasure must still thwart that attempt. Based on

this assumption, Wang fortifies WFP countermeasures by exploring randomness

and regularization options for several existing countermeasures. To protect IoT

networks, Pinheiro et al. [308] implement a middlebox to modify the outbound

and inbound traffic’s packet size. They also leverage an SDN application to obtain

information of network traffic from both sides (source and destination) to manage

the size-based padding mechanism.

2.6.2 Application-layer Countermeasures. Unlike network-layer

countermeasures that directly modify network traffic to cover user activities,

application-layer countermeasures use dummy applications to generate unnecessary

traffic, thereby indirectly perturbing FGTA approaches. However, most application-

layer countermeasures are limited in covering traffic of web page being visited.

Panchenko et al. [296] proposed a browser plug-in that adds traffic noise

by loading another random web page in parallel. However, it may fail to defend

against some WFP attacks if users lower the page loading frequency to decrease

the bandwidth overhead [402]. Another Tor-based countermeasures approach [271]

randomizes the order of requests for embedded website content and the pipeline

size (i.e.the number of requests processed in parallel) to perturb WFPs. Cherubin

et al. [95] propose LLaMA and ALPaCA, defenses for client side and server side.

LLaMA reorders outgoing HTTP requests by randomly delaying them and adding

dummy HTTP requests. On the server side, ALPaCA conducts traffic morphing
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by padding web objects of a page and inserting invisible dummy web objects. The

three methods above only work in Tor environments.

HTTP Obfuscation (HTTPOS) [263] is countermeasure that can be used

in environments other than Tor. By modifying HTTP requests and basic TCP

features, it manipulates four fundamental network flow features, including packet

size, web object size, flow size, and timing of packets. It can also modify and

reorder HTTP headers and insert dummy HTTP requests. Another general

countermeasure is TrafficSliver’s application-layer defense [122]. This approach is

on the client side. By sending single HTTP requests for different web objects over

distinct Tor entry nodes, this application-layer defense can reduce the detection

rate of WFP classifiers by almost 50 percentage points.

2.7 Future Research Direction

Although FGTA has been developed for decades, there still exists room for

further development, enhancement, and exploration. In this section, we discuss

avenues for future research according to our observations about recent research

trends, existing literature, industry deployments, and major problems to be solved

in this domain.

2.7.1 Improvement of Analysis Efficacy and Coverage. FGTA

has been used in many different subfields of computer network, including attack

detection, traffic measurement, side-channel attack, and network management,

etc. Researchers have constructed myriad analysis models and collected plenty of

datasets specifically for different categories of tasks. But there are still many use

cases or scenarios that have not been covered by existing approaches. For example,

with the raising of Unmanned Aerial Vehicle (UAV), FGTA can be potentially

refined for UAV anomaly detection [164]; FGTA can also be adopted to monitor
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and safeguard network traffic of automatic vehicles; with the emergence of new

forms of applications, attacks, and communication protocols, existing FGTA

approaches may not be able to handle today’s traffic. Therefore, researchers can

gather more updated traffic datasets to enhance the coverage of existing FGTA

approaches, so that they can be used in more types of tasks and scenarios.

In addition, the efficacy of many current FGTA approaches are not ideal for

real-world deployments. Depending on the observation points, FGTA approaches

may easily see millions of traffic flows over a short time period in the real world.

Under such circumstances, an FGTA approach could generate large numbers of

false positives or false negatives, even if it achieves more than 95% accuracies in

closed-world evaluations. Thus, increasing the efficacy of FGTA is a timeless topic

for researchers and developers.

2.7.2 Evaluation Enhancement. As we elaborate in Section 2.5,

current closed-world evaluation methods are far away from revealing an FGTA

approach’s real capability and many open-world evaluations are not very

standardized and effective. It is therefore suitable to propose a new, operable,

and effective evaluation paradigm for FGTA. Such an evaluation paradigm should

contain a testing dataset similar to a real-world test case in terms of volume,

environment, and data distribution. Simultaneously, the dataset should have

comprehensive labels for almost all traffic flows, not only for analysis targets. This

can be achieved by either constructing a large scale sandbox to simulate and collect

all types of traffic from a white box view, or collect a large-scale, real-world traffic

dataset and carefully label it using knowledge of endpoints from all perspectives.

Besides, the testing data portion that is visible to the observation point should be

consistent with the real-world deployment conditions.
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2.7.3 Dealing with Complex Network Environments. In real-

world deployments, the network environments and configurations can be different

from researchers’ assumptions. The following factors were not widely discussed in

previous papers, but can be common for network service providers.

– Many observation points can only see asymmetric network traffic, which can

challenge most FGTA approaches.

– Some networks are composed of multiple subnets, including but not limited

to wireless network, optical network, or radio frequency network. Traffic flows

collected from such a network can have different delays and congestion control

mechanisms. Tackling this type of traffic can be challenging.

– Due to deployments of modern traffic engineering approaches, traffic captured

from some observation points is dynamic, posing difficulties to many FGTA

methods.

We believe designing and implementing new FGTA approaches that can work under

these circumstances are directions worthy of future research.

2.7.4 Integrating FGTA into Other Analytical Systems.

Information contained in network traffic is essentially limited. Even though FGTA

can already reveal considerable amount of information, the detailed behavior

models of endpoints are still hidden behind the curtain. To more comprehensively

investigate the network situation, researchers can try to combine FGTA with

information from other dimensions (e.g.application-layer activities, server specifics,

hardware conditions, etc.), which can provide a better situational awareness. So

far, there are a few researches that combine TA with information from other

layers for more accurate attack/anomaly detection and timely threat response
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(e.g.[154, 406, 69]). Researchers can push this idea forward by further integrating

FGTA into this idea.

Furthermore, cyber threat intelligence (CTI) [57], allowing entities to

share attack/anomaly information with trusted partners and peers, is becoming

a powerful tool to quickly and accurately tackle intractable attacks. By embedding

results from FGTA into CTI systems, participating entities can raise awareness

of the current situation, thereby more quickly responding to incoming attacks.

Designing attack defense systems with both FGTA and CTI is thus a promising

research direction.

2.8 Related Work

In this section, we introduce related work on TA and compare our paper

with them. Table 11 summarizes the most related and representative ones.

Our work differs from existing works in the following aspects:

– we have a clear and focused survey topic: the whole paper focuses on FGTA,

which aims to analyze network traffic to deduce information related to high-

layer activities, fine-grained user behaviors, or application-layer message

content;

– to investigate FGTA comprehensively, our paper utilizes multiple

methodologies, including literature survey, summarization, and

taxonomization, to cover different subjects, such as traffic capture, application

identification, website fingerprinting, countermeasures, etc. Most existing

related survey papers only cover a subset of the aforementioned topics;

– although studied for many years, TA is still iterating rapidly and

continuously, especially for FGTA. Compared with other earlier literature,
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Table 11. Overview of related literature (#: not include; G#: partially include;  :
include).

Ref. Year Summary Focus
Subjects covered

General
TA

FGTA
Traffic
capture

Counter-
measure

This paper 2022 A survey of FGTA, which aims to analyze
network traffic to deduce information related to
high-layer activities, fine-grained user behaviors,
or application-layer message content.

FGTA G#    

[342] 2022 The most recent survey on achievements in
machine learning-powered encrypted traffic
analysis, including the workflow, feature
extraction, and algorithms.

Machine-
learning-based
encrypted TA

G# G# G# G#

[219] 2022 A survey consists of an analysis of IoT traffic
data acquisition approaches, a classification
of public datasets, a literature evaluation of
IoT traffic processing, and a comparison of ML
approaches for IoT device classification.

Machine-
learning-based
IoT TA

# G#  #

[299] 2021 A survey of literature that deals with network
traffic analysis and inspection after the ascent of
encryption in communication channels.

Encrypted TA G# G# #  

[419] 2021 An extensive analysis of the communications
channels of 32 IoT consumer devices, including
traffic measurement and modelling.

IoT TA G# G# G# #

[363] 2020 This survey looks at the emerging trends
of network traffic classification in IoT and
the utilization of traffic classification in its
applications. It also compares the legacy of
traffic classification methods.

IoT TA  G# G# #

[137] 2019 This survey mainly focuses on approaches and
technologies to manage the big traffic data,
additionally briefly discussing big data analytics
(e.g., machine learning) for the sake of TA.

General TA  G#  #

[107] 2018 A review of works that contributed to the
network traffic analysis targeting mobile devices,
including a systematic classification of such
works according to their goal, traffic capture
point, and targeted platforms.

Mobile device
TA

G# G# G#  

[294] 2018 A systematic review based on the steps to
achieve traffic classification by using machine
learning techniques, including their workflow,
feature extraction, deployment, etc.

Machine-
learning-based
TA

G# G# # #

[284] 2016 An examination of the literature on analyses of
mobile traffic collected by operators within their
network infrastructure.

Mobile device
TA

G# G#  #

[382] 2015 A survey of approaches for classification
and analysis of encrypted traffic, including
widespread encryption protocols and payload
and feature-based classification approaches.

Encrypted TA G# G# # #

[162] 2014 A survey in which a complete and thorough
analysis of the most important opensource deep
packet inspection modules is performed.

Payload-based
TA

G# # G# #

[177] 2013 A survey of peer-to-peer traffic detection and
classification, with an extended review of the
related literature.

P2P TA G# # # #

[83] 2009 A survey explains the main techniques and
problems known in the field of IP traffic analysis
and focuses on application detection.

General TA  #  #

[90] 2009 A report attempts to provide an overview of
some of the widely used network traffic models,
highlighting the core features of the model and
traffic characteristics they capture best.

General TA G# # # #

91



this paper sorts out and examine the most recent development of FGTA at

the time of writing this paper.

In the early development of TA (i.e., before 2010), the survey papers in

this field mainly focus on traditional TA [90, 83, 141], including protocol-level

traffic classification, TA approaches based on deep packet inspection (DPI),

distinguishing server or peer-to-peer nodes from clients, and coarse grained

application identifications.

Later, due to increasingly diverse web-applications and widespread use of

traffic encryption, there is an increasing need for more sophisticated TA approaches

to monitor and analyze the modern networks. Meanwhile, the evolution of

classification algorithms and easy access to big data also effectively stimulate the

development of TA. Therefore, survey papers began to examine works that leverage

big data [137] or machine learning [294] to tackle TA.

On the other hand, the network is also becoming more and more specialized,

which has spawned many TA approaches with specific design goals. To track

such a trend, many of the recent survey papers only survey a certain type of TA

approaches, such as TA for IoT devices [363, 419], encrypted TA [342, 299], TA for

mobile devices [284, 107], etc. Similar to these papers, our work focuses on a new

and specific topic—FGTA, which has not been systematically studied before.

2.9 Conclusion

With the increasing complexity of network transmission technology, FGTA

is becoming a crucial tool to gain a finer granularity of visibility over the network.

From the perspective of attackers, it can analyze the content-agnostic metadata

and statistical information of network traffic to infer the website visited by users,

estimate locations of traffic sender, or decode the video content streamed in the
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link. As for the network administrators, FGTA can be used to detect application-

layer threats even with layer 3 or layer 4 data, investigate quality of experience

without collect sensitive user data, or perform fine-grained traffic measurement to

better configure the network.

In this paper, we analyze literature that deal with FGTA to help researchers

and developers learn the latest developments in this area. After comparing different

FGTA approaches by their use cases, we found that most existing approaches are

based on machine learning or high-dimensional clustering. They are effective in

capturing the subtle differences between network traffic generated by different

activities. However, many FGTA approaches still come with limitations related

to training data coverage, false positive rates, and real-world usability. In addition,

edge users of the network can adopt a variety of countermeasures to defend against

FGTA, with some overheads regarding network bandwidth and delay. Researchers

can further study this domain to increase the coverage of FGTA or make the

approaches more practical in complex real-world network environments.
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CHAPTER III

MEASUREMENT AND CONTENT-AGNOSTIC DETECTION OF

CRYPTOJACKING TRAFFIC

In this chapter, we broaden the use case of FGTA to detect malicious

activities that were previously challenging to identify by traditional TA-based

approaches. Specifically, we employ FGTA to discern cryptojacking traffic within

the network, demonstrating its versatility and effectiveness in the realm of

cybersecurity. Cryptojacking refers to the act by which computing resources are

stolen to mine cryptocurrencies, such as Bitcoin, Monero, and Ethereum. With

sophisticated system designs and implementations, we demonstrate that FGTA

techniques can distinguish cryptojacking traffic from user-initiated cryptocurrency

mining traffic, making it possible to only filter cryptojacking traffic, rather than

blindly filtering all cryptocurrency mining traffic as commonly practiced. This

fine-grained traffic discrimination is difficult to accomplish through traditional TA

methodologies and is also the main contribution of this chapter.

This chapter is derived in part from the following published articles:

– Published as Yebo Feng, Jun Li, and Devkishen Sisodia. “CJ-Sniffer:

Measurement and Content-Agnostic Detection of Cryptojacking Traffic.” In

Proceedings of the 25th International Symposium on Research in Attacks,

Intrusions and Defenses (RAID), pp. 482-494, 2022 [155].

– Published as Yebo Feng, Devkishen Sisodia, and Jun Li. “Poster: Content-

agnostic identification of cryptojacking in network traffic.” In Proceedings of

the 15th ACM Asia Conference on Computer and Communications Security

(ASIACCS), pp. 907-909, 2020 [157].

94



I am the leading author of the above articles. Most content of this chapter was

written by me, and I was responsible for conducting all the system designs,

implementations, evaluations, and the presented analyses.

3.1 Introduction

With the frenzy of the cryptocurrency market, cryptocurrency mining

(cryptomining) has become a method of making huge profits. In fact, cryptomining

is critical in many blockchain-based systems, as it not only provides a means to

verify cryptocurrency transactions, but more importantly, also helps establish

consensus through different mechanisms [251], such as Proof of Work (PoW)

and Proof of Space (PoS). Therefore, to encourage cryptomining, cryptocurrency

systems usually reward miners with transaction fees and extra coins. Unfortunately,

the lucrative potential of cryptomining has caught the attention of hackers,

who compromise personal computers, servers, or even Internet-of-Things (IoT)

devices, such as smart TVs, to mine cryptocurrencies (e.g., BTC, XMR) [447].

Such activity is called cryptojacking, which is the unauthorized use of someone

else’s computing resources to mine cryptocurrency. Such a hacker is also called a

cryptojacker and such a resource is said to be cryptojacked.

There are many methods of conducting cryptojacking [204]. For example,

a cryptojacker can trick a victim into clicking on a malicious link in an email

to download cryptomining scripts onto their computer, infect a website with

JavaScript code to automatically run the code by a victim’s browser when it visits

the website, or compromise a server to stealthily execute cryptomining programs

in the background. Although Coinhive, an in-browser mining service provider, was

shut down in March 2019, cryptojacking has still been active and evolving [381].

According to the Unit 42 Cloud Threat Report [377], from December 2020 to
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February 2021, 17% of organizations with a cloud infrastructure showed signs

of cryptojacking, causing significant computing resource abuse and tremendous

economic loss. Recently, the SophosLabs team also disclosed that cryptojackers

compromised unpatched Exchange servers to mine XMR [76].

There have been many endpoint-based approaches to cryptojacking

defense [116, 405, 204]. By monitoring software operations, website visits, or

hardware conditions, an endpoint-based approach can often achieve decent accuracy

and is usually easy to deploy if resources permit, but it is almost infeasible to

deploy it on all endpoints due to user inertia and many endpoints are indeed

resource-constrained. To address this issue, researchers and developers proposed

network-based approaches to detect general cryptomining activities by analyzing

cryptominers’ network traffic [210, 87, 301]. These approaches are often deployed

only at a network gateway, avoiding the need for every device in the network

to deploy a defense solution. However, as application-layer behavior inference

through layer-3 network traffic is extremely difficult, whether these network-based

approaches are based on IP blocklists or deep packet inspection, or conduct state-

of-the-art traffic analysis, they can hardly distinguish cryptojacking from user-

initiated cryptomining, which is cryptomining performed by legitimate users of

computing devices in use. Thus, network-based approaches treat all cryptocurrency

mining traffic as either legitimate and allowing all of the traffic, or malicious and

dropping all of the traffic.

To fill the missing gap, in this paper, we first thoroughly measure and model

the characteristics of cryptomining network traffic, including exploring the tiny

differences between cryptojacking traffic and user-initiated cryptomining traffic.

We then propose CryptoJacking-Sniffer (CJ-Sniffer), a content-agnostic, easily
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deployable approach that not only can detect cryptomining activities, but also can

distinguish cryptojacking from user-initiated cryptomining, only by analyzing layer-

3 network traffic.

CJ-Sniffer operates in three phases. In the first phase, CJ-Sniffer inspects

packet sizes of every connection to discard obviously irrelevant connections,

which could significantly reduce the data volume for further analysis. In the

second phase, CJ-Sniffer detects cryptomining connections by comparing every

connection’s packet interval distribution with labeled traffic. In the third phase,

CJ-Sniffer leverages the long short-term memory (LSTM) model [200] to distinguish

cryptojacking connections from user-initiated cryptomining connections. As a

result, CJ-Sniffer can efficiently classify network connections into three categories:

cryptojacking connections, user-initiated cryptomining connections, and other

connections.

Our work makes the following contributions:

– CJ-Sniffer as a content-agnostic, network-based approach to detecting

cryptojacking activities is not only efficient since it does not inspect packet

payload, but also preserves user privacy by only leveraging a limited amount

of anonymized metadata of packets.

– CJ-Sniffer is the first work to distinguish cryptojacking traffic from user-

initiated cryptomining traffic. This is important because it is often necessary

to only filter cryptojacking traffic while preserving user-initiated cryptomining

traffic from a device. While the difference between cryptomining traffic and

other network traffic is already challenging to detect at a network gateway,

the difference between cryptojacking traffic and user-initiated cryptomining

traffic is significantly harder to detect.
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– CJ-Sniffer is easy and efficient to deploy. While cryptojacking is rampant, any

institution, enterprise, or an individual user can deploy CJ-Sniffer at their

network’s gateway to safeguard all the computing devices in their network

from cryptojacking at line speed.

– We collect, measure, and release the first labeled, packet-level cryptomining

traffic dataset to the research community. It contains more than 500 hours of

both cryptojacking and user-initiated cryptomining traffic from various types

of computing devices.

We evaluated CJ-Sniffer with real-world network traffic and found that

its efficacy and efficiency are both high. Even running on an ordinary personal

computer, CJ-Sniffer is capable of providing real-time traffic monitoring for an

enterprise or campus-level network. To reach a detection accuracy of 95%, it only

needs to collect approximately 160 network packets from a cryptojacked device, and

approximately 200 network packets to reach an accuracy of 97%, all with nearly

zero false alarms.

The rest of this paper is organized as follows. After we outline related work

in Section 3.2, we describe our discoveries of cryptojacking and cryptomining traffic

properties (Section 3.3). We then illustrate CJ-Sniffer’s design in Section 3.4 and

evaluate it in Section 3.5. We discuss its limitations, open issues, and potential

generalizations in Section 3.6 and conclude the paper in Section 3.7. Of a particular

note here is that the research described in this chapter is extended from our early

work published in [157] and [155].

3.2 Related Work

In the past few years, researchers have proposed various cryptomining

or cryptojacking defense approaches. According to the deployment position of
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these approaches, they are generally either endpoint-based or network-based, or

a combination of the two with multiple deployment positions.

3.2.1 Endpoint-based Cryptojacking Defense. Endpoint-based

cryptojacking defense is dominated by various endpoint-based cryptojacking

detection approaches. Usually, these approaches can be easily embedded in

antivirus tools, system firewalls, or even browsers.

Endpoint-based cryptojacking detection approaches can use different

types of input to conduct detection. The most common input is source code of

software or websites. For example, CMTracker [204] first uses hash-based and stack-

based profiling methods to extract features from websites and then matches the

features against hand-crafted rules to identify websites with cryptojacking code;

SEISMIC [405] derives semantic signatures from known cryptojacking scripts

and then matches running scripts at an endpoint against signatures to detect

cryptojacking scripts. Besides, hardware conditions can also be used as input.

Gomes et al. [175] extracted features from the CPU usage and used machine

learning to detect cryptojacking processes. Tahir et al. [364] proposed a machine

learning detection solution based on features from Hardware Performance Counters

(HPCs) values. However, hardware-based approaches may generate an excess of

false alarms, as many legitimate processes sometimes utilize hardware in a way

similar to cryptojacking. To address this issue, CoinPolice [305] actively changes

the execution speed of processes, then collects execution traces at various execution

speeds, and inputs the collected data into a deep neural network to pinpoint

cryptojacking scripts.

These approaches can often achieve a decent accuracy because they have

access to a variety of system and software metrics from end-users. However, the
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Table 12. Comparisons of selected network-based cryptomining detection
approaches (#: not support; G#: partially support;  : fully support).

Approach
Content
Agnostic

Cryptomining
Detection

User-initiated Cryptomining
v.s.

Cryptojacking

DPI-based solution #   
Cisco solution [45] G#  #
Munoz et al. [210]   #
Pastor et al. [301]   #
Hu et al. [208]   #
MineHunter [443]   #
CJ-Sniffer    

popularity of these approaches is limited by user habits, as not all users are willing

to install cryptojacking detection software and have it monitor their computer

thoroughly. Also, some IoT devices, such as smart furniture and health-monitoring

devices, have too little resources to deploy these approaches. Additionally,

cryptojacking malware is becoming more sophisticated; for example, hackers could

obfuscate their code to thwart an endpoint-based approach. It is thus necessary to

update an endpoint-based approach frequently.

3.2.2 Network-based Cryptomining Defense. Network-based

cryptomining defense operates at certain vantage points of a network so that any

devices within the network can be protected. During the early rise of cryptomining,

some companies, schools, and institutions deployed some simple network-based

approaches to guard their computing devices. For example, network administrators

can block the IP addresses of confirmed mining pools and websites hosting

cryptomining code [437, 224, 45]; or, intrusion detection systems can conduct deep

packet inspection (DPI) to discover specific cryptomining text strings in packet

payloads [124]. These approaches are easy to develop and deploy, but they can only

offer preliminary defense against cryptomining due to their low levels of accuracy.
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Later, as network traffic analysis techniques [299] evolved, several projects

began to detect cryptomining activities with content-agnostic traffic flows.

Munoz et al. [210] inspected network flows in NetFlow or IPFIX format with

some learning-based algorithms (e.g., SVM, CART, C4.5, and Näıve Bayes) to

detect cryptomining activities. Caprolu et al. [88] built a random-forest-based

framework to classify network traffic related to pool mining, solo mining, and

activities from active full nodes. Pastor et al. [301] extracted several features from

NetFlow data and leveraged deep learning models to detect encrypted cryptomining

malware connections; Hu et al. [208] indicate that using random forest with

extracted discriminative network traffic features can accurately and efficiently

detect cryptomining traffic; MineHunter [443] detects cryptomining connections

by analyzing packet intervals with a similarity calculation algorithm based on

credible probability estimation. These network-based approaches come with many

advantages: (1) once deployed in a network, they can protect all users inside the

network; (2) they do not analyze message content from users, thus protecting user

privacy; (3) they have a higher throughput than DPI methods due to their smaller

input size (network flow records vs. packet trace with payloads).

However, none of the aforementioned approaches distinguish between

cryptojacking and user-initiated cryptomining activities (as demonstrated

in Table 12). They cannot meet the desire of many networks to forbid only

cryptojacking traffic but still allow the user-initiated cryptomining traffic.

3.2.3 Hybrid Cryptojacking Defense. Hybrid cryptojacking

defense combines both endpoint-based and network-based approaches. For example,

Gomes et al. introduced CryingJackpot [176], which first extracts features from

both network traffic flows and endpoint operating system logs and then utilizes
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unsupervised machine learning algorithms to discover cryptojacked devices with

a high F1-Score. Although hybrid cryptojacking defense can achieve robust and

accurate detection results on different types of cryptojacking activities, it requires a

variety of data to operate, making it challenging to deploy in the real world.

3.3 Measurement of Cryptomining and Cryptojacking Traffic

As discussed in Section 3.1, we classify cryptomining activities into two

categories: (1) user-initiated cryptomining, refers to the cryptomining conducted

by the owner or legitimate user of the computing device; (2) Cryptojacking, refers

to the cryptomining conducted by attackers using stolen computing resources. In

this section, we study and measure the network traffic generated from both types of

cryptomining activities. The design and evaluation of CJ-Sniffer is based on these

measurement results.

We mainly investigate the mining traffic related to XMR [234], which

dominates the cryptojacking [71] campaigns in today’s Internet. XMR applies

CryptoNight [235] as its hash function, which is ASIC resistance and enables

cryptojackers to obtain reasonable profits through different types of computing

devices [212]. Conversely, other cryptocurrencies are much harder to mine with

ordinary computing devices, making them less profitable for cryptojackers. In

addition, other cryptocurrencies that employ PoW consensus mechanisms, will

generate similar cryptomining traffic to that of XMR. We further demonstrate this

point in Section 3.5.3 and show that by studying the cryptomining traffic of XMR,

we can detect many other PoW-based cryptomining traffic

3.3.1 In-depth analysis of general cryptomining traffic. In

PoW-based cryptocurrency systems, cryptominers need to participate in puzzle

solving competitions to obtain rewards or transaction fees. Due to the exceptional
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difficulty of solving these puzzles, individual miners with limited computing

capacities, particularly the cryptojacked devices, have to join mining pools to

ensure stable and prompt profits [256]. Thus, the traffic between miners and the

mining pool is the key to detecting cryptomining.

Mining poolMiner
Login (msg_l)

Login Confirmation (msg_c) / 
Assignment  Allocation (msg_allo)

Wallet_ID: "XXX...XXX.worker_id", 
Method: "login",
Algo: ["algo1",...,"algon"],
......

ID: "J_1", Job_ID: "JOB_1",
Blob: "BLOB_1", Height: "H_1"
Algo: ["algo1"], Target: "T_1"
......

Assignment Allocation (msg_allo)

Job_ID: "JOB_1",
Blob: "BLOB_1", Height: "H_1"
Algo: ["algo1"], Target: "T_1"
......

Assignment Allocation (msg_allo)

......

Result (msg_rst)

Job_ID: "JOB_n",
Nonce: "XXX...X", Result: "HASH_n"
......

......

Necessary fields  
in the message

Figure 12. Network messages generated by cryptomining and their necessary fields.
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Figure 13. Visualized network packets between an XMR mining pool and an XMR
miner. Other messages refer to packets that do not carry meaningful payloads, such
as TCP SYN and FIN packets.

For coordination, the mining pool and miners need to obey certain

protocols, such as Stratum [319], to register nodes, distribute tasks, and submit

results. Figure 12 illustrates the mining process and messages between miners and
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the mining pool. No matter what types of protocols the mining pool utilizes, there

should be at least four types of messages to cover the necessary mining operations:

– The login or registration message msgl, enabling miners to join the mining

pool, can have 75 to 600 bytes per message.

– The login confirmation message msgc, confirming the login status, sometimes

comes with an assignment allocation message.

– The assignment allocation message msgallo, allocating the most recent mining

task to the miner, should at least have 285 bytes.

– The result message msgr, returning calculated results to the mining pool,

usually has more than 200 bytes.

Besides, the login message and confirmation message often appear only once

during each connection. Thus, assignment allocation messages dominate the

inbound traffic and result messages dominate the outbound traffic during the whole

cryptomining process. Figure 13 illustrates communication between a miner and

mining pool. Excluding TCP control packets such as SYN and ACK packets,

we can see that the inbound traffic is mainly composed of assignment allocation

messages and the outbound traffic is mainly composed of result messages.

The size of the packet in the cryptomining traffic is distinctive. Figure 14

illustrates packet size ranges of cryptomining traffic and some contrast traffic

(collected from our lab and campus network). We can see that the sizes of

cryptomining packets are more monotonous compared with others, since the

same type of cryptomining messages usually have similar lengths. In addition,

cryptomining packets generally have smaller sizes compared with other types of

traffic. For most web applications, their maximum packet sizes are usually subject
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to the network’s maximum transmission unit (MTU), which is usually around 1500

bytes. However, the information in each cryptomining operation cannot fill even

half of the MTU. Besides, due to timeliness requirements, the miner or mining pool

cannot bank messages and send them in a single packet. Thus, all the cryptomining

packets are relatively small in size.
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Figure 14. Range of packet sizes of
different types of traffic.
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Figure 15. Frequency of different
types of cryptomining packets under
different hash rates (captured using
i7 8700k CPU and XMRig [20]).

Moreover, the frequency of inbound packets is more stable than that of

outbound packets. This is because mining tasks expire quickly with the growth

of the blockchain. The mining pool needs to keep sending assignment allocation

messages (inbound packets) with the growth of the blockchain to ensure that

miners always have valid up-to-date tasks. In the short term, the speed of

blockchain expansion is very stable, therefore the frequency at which assignment

allocation messages (inbound packets) are generated is also stable. On the other

hand, the frequency of result submission messages (outbound packets) is related

to the hash rate—the speed at which a device is completing an operation in the

cryptomining code. The higher the computing performance of a device, the higher

its hash rate, and the higher the frequency it sends result messages (outbound

packets) to the mining pool. Figure 15 illustrates this pattern, where the frequency

of outbound packets is proportional to the hash rate while the frequency of inbound

105



packets is relatively stable. It’s also important to note that the frequency of

assignment allocation messages doesn’t need to be higher than that of result

submission messages. Because one assignment can usually derive more than one

sub-results to fully complete.
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Figure 16. Interval distribution
of assignment allocation messages
(inbound packets larger than 285
bytes).
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Figure 17. Interval distribution
of result submission messages
(outbound packets larger than 200
bytes).

Last but not least, the generation of cryptomining packets is not subject

to human behavior. The time to generate the next result message depends on

the time the device completes the hash backtracking. Analogously, the time to

generate the next assignment allocation message depends on the time the mining

pool proposes a new task. Hence, the intervals of cryptomining packets exhibit

stable and unique distributions. These interval distributions can be treated as

fingerprints of cryptomining traffic (illustrated in Figure 16 and 17). We can

identify a cryptomining connection by checking whether these interval distributions

are obeyed.

3.3.2 Cryptojacking vs. user-initiated cryptomining traffic.

After studying cryptojacking activities, we found that they differ from user-

initiated cryptomining in the robustness of hash rate. This further results in a

difference in the network traffic generated by the two.
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1 <script src="https ://www.XXXpool.com/lib/base.js" ></script >

2 <script >

3 var miner=WMP.User(’<your -site -key >’,’<username >’,{

4 threads: 4, // number of maximum threads

5 autoThreads: true , // adjust the number of threads

automatically

6 throttle: 0.85, // maximum system load

7 forceASMJS: false

8 });

9 miner.start ();

10 </script >

Listing 3.1 JavaScript code piece of web-based cryptojacking.

Unlike user-initiated cryptomining, cryptojacking activities have the

following features that can lead to unstable mining hash rate: (1) First of all, as

injected programs, the execution priority of cryptojacking scripts is usually low,

making them easy to be disturbed by the resource manager of operating systems.

Modern operating systems will not blindly allocate a huge chunk of resources to

random processes (e.g.cryptojacking) because they need to ensure there is enough

redundant load to handle high-priority tasks that may occur. Conversely, user-

initiated cryptomining usually runs with a high execution priority by system

administrators. Even with many background processes, user-initiated cryptomining

still has access to a large amount of hardware and software resources. (2)

Cryptojackers use stolen computing resources to mine cryptocurrencies. To prevent

being discovered by legitimate users of the computing device, cyptojackers usually

conduct cryptojacking in surreptitious ways. For example, cryptojackers may
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dynamically adjust the hash rate of cryptojacked devices to prevent interference

with the normal use of users. Listing 3.1 shows part of the JavaScript code that is

used for browser-based cryptojacking. We can see that the hacker lets the device

automatically adjust the number of mining threads to make sure the system load

is under 85%. By doing so, legitimate users will not sense any abnormality in

the computing device, thereby allowing the cryptojacking program to run in the

background for a long time. Otherwise, the user will quickly sense the abnormality

and scan the device for a virus. (3) Moreover, executions of cryptojacking scripts

usually rely on executions of existing software running in the system such as the

browser, terminal, or Apache server. Due to the uncertainty of human behavior, the

execution situation of such software is inconstant, making the computing resources

devoted to cryptomining erratic.

We measured the hash rate trends of user-initiated cryptomining

and cryptojacking in the real world on the same machines (demonstrated in

Figure 18). The measurement results are consistent with our previous analysis that

cryptojacking produces unstable hash rates in most cases. Furthermore, according

to measurements in Section 3.3.1, this hash-rate instability will generate result

submission messages in unstable frequencies.

3.4 Design of CJ-Sniffer

In this section, we describe the design details of CJ-Sniffer, an in-network-

based cryptojacking traffic detection approach.

CJ-Sniffer can be deployed within the intrusion detection system (IDS)

of any router or switch between the mining pools and devices to be protected.

Particularly, CJ-Sniffer functions effectively at the gateway of a network, since

this vantage point enables CJ-Sniffer to access complete inbound and outbound
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(a) For most cryptojacking activities,
the hash rate exhibits irregular changes
due to automatic adjustments of
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(b) Due to minimum memory
requirements or time-based resource
throttling, hash rates of some
cryptojacking activities go to zero
from time to time.
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(c) Some cryptojacking activities have
stable hash rates. However, these hash
rates are still lower than that of user-
initiated cryptomining using the same
hardware.
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(d) In rare cases, the attacker
utilizes all computing resources of the
cryptojacked device, generating hash
rates that are similar to user-initiated
cryptomining.

Figure 18. Trends in hash rate of different types of cryptojacking activities
(extracted from our collected dataset described in Table 13).
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Figure 19. One operational model of CJ-Sniffer, where it is deployed apart from the
IDS.

traffic from all the devices in the network. In addition, people can treat CJ-Sniffer

as a cloud service and stream the network traffic to it for detection. To prevent

leakage of user information in this case, the IP addresses in the traffic flows are

anonymized with Crypto-PAn [425] and sent encrypted through a Kafka message

queue. Thus, the CJ-Sniffer service provider or any third parties cannot fetch

necessary information to trace back to individuals in the network. Figure 19

illustrates the operational model of CJ-Sniffer in this type of deployment,

As stated in Section 3.1, CJ-Sniffer detects cryptojacking activities in

three phases. The first detection phase can quickly filter out irrelevant traffic

flows, leaving only suspicious ones for future analysis. The second phase inputs

suspicious traffic and outputs confirmed cryptomining traffic. At last, the third

detection phase utilizes an LSTM model to distinguish cryptojacking traffic from

user-initiated cryptomining traffic.
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3.4.1 Preprocessing. CJ-Sniffer requires the timestamps and six

fields in the IP packet headers for detection, which are the source and destination

IP addresses, the source and destination port numbers, the protocol type, and

the packet size. CJ-Sniffer is therefore content-agnostic, as it does not require any

payload information.

To obtain this content-agnostic data, we recommend installing sFlow [307]

in the router or switch to stream traffic flows to CJ-Sniffer in real time. Other

network traffic capturing engines like Netmap [325] and PF-RING [33] are also

compatible with the proposed approaches. Once CJ-Sniffer fetches the traffic flows,

it extracts the aforementioned data fields and stores them in a table for future

analysis. In the table, each entry represents a received packet. Meanwhile, CJ-

Sniffer discards all other information from the traffic flows.

3.4.2 Phase one: rapid filtration. In phase one, CJ-Sniffer rapidly

filters out irrelevant network traffic and picks out only suspicious traffic for future

analysis. This step can significantly reduce the size of the traffic data for inference,

increasing the throughput of CJ-Sniffer.

To conduct rapid filtration, CJ-Sniffer first eliminates packets without

payload (e.g., TCP SYN, ACK, and FIN packets), packets of irrelevant protocols

(e.g., ICMP), and internal packets. CJ-Sniffer then groups remaining packets by

connections, which are defined as consecutive packets that are sent between the

same IP addresses and port numbers. Then, CJ-Sniffer inspects the packet sizes in

each connection to judge whether it could be a suspicious cryptomining connection.

We define a sliding time window to monitor each connection and make

a judgment. During each time window t, CJ-Sniffer collects a list of packets

P (P = {p1, p2, p3, ..., pn}) from the ongoing connection. It then represents
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Figure 20. Packet size distribution of different types of traffic.

inbound and outbound packets with their size values and stores them into two

lists (lin for inbound packets and lout outbound packets) respectively. Once this

time window is about to end, CJ-sniffer will check the value distributions of lin

and lout to determine whether the connection is suspicious. According to the

traffic measurement study in Section 3.3.1, CJ-Sniffer utilizes three sets of rules

to determine suspicious connections:

– The majority of the packets’ sizes should lie within the cryptomining packet

size range;

– The majority of the outbound packets’ sizes should be uniform (illustrated in

Figure 20a);
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– The majority of the inbound packets’ sizes should have values drawn from the

same narrow interval (illustrated in Figure 20b).

Once packets within a connection follow these three rules, CJ-Sniffer will

label this connection as suspicious and pass it onto the next phase for deeper

analysis. Note, labeling a connection as suspicious does not mean this connection

is confirmed to be related with cryptomining. For example, some connections

generated by NTP or DNS can have similar distribution of packet sizes. Hence,

CJ-Sniffer only filters out obviously irrelevant traffic in this phase to accelerate the

detection process.

3.4.3 Phase two: detection of cryptomining. In phase two,

CJ-Sniffer uses filtered network traffic from phase one as input and outputs

detected cryptomining traffic. According to the cryptomining traffic study in

Section 3.3.1, to accurately identify cryptomining traffic, CJ-Sniffer inspects the

packet intervals of suspicious connections to determine whether they are generated

by the cryptominer or the mining pool. Specifically, CJ-Sniffer compares both the

inbound and outbound packet interval distributions to distributions from collected

cryptomining traffic. As long as one of the inbound or outbound packet intervals

follow the same distribution with cryptomining traffic data, CJ-Sniffer will label the

connection as a cryptomining connection.

The distribution compliance test is conducted with the Two-Sample

Kolmogorov–Smirnov (KS) test [264], which is a nonparametric testing approach to

determine whether two data samples come from the same distribution. Compared

with other approaches to testing the distribution compliance, the KS test has no

restrictions on the size of data sample, which means little cryptomining traffic

data can help achieve decent accuracy. Moreover, the KS test is distribution-free.
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Figure 21. Illustration of the two-sample Kolmogorov–Smirnov statistic. The blue
line corresponds to the empirical distribution function of labeled cryptomining
traffic. The red line corresponds to the empirical distribution function of
downloading traffic. The black arrow is the two-sample KS statistic.

Users can easily update the contrast sample to cover the latest cryptomining traffic

regardless of the sample’s distribution.

The Two-Sample KS test works as follows. Suppose that the inbound or

outbound packet interval sample from P has size m with an observed cumulative

distribution function of F (x). Furthermore, suppose that the labeled cryptomining

sample Q has size n with an observed cumulative distribution function of G(x). CJ-

Sniffer defines the null hypothesis (H0) as: both samples come from a population

with the same distribution. It also defines the Two-Sample KS statistic Dm,n with

Equation 3.1 (illustrated in Figure 21).

Dm,n = max
x
|F (x)−G(x)|. (3.1)

After calculating Dm,n, CJ-Sniffer rejects the null hypothesis at significance level

α if Dm,n > Dm,n,α, where Dm,n,α is the critical value and can be calculated with

Equation 3.2.

Dm,n,α = c(α)

√
n+m

n ·m

=

√
− ln(

α

2
) ·

1 + m
n

2m
.

(3.2)
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Conversely, if Dm,n ≤ Dm,n,α, CJ-Sniffer will accept the null hypothesis H0 and

label the incoming traffic as cryptomining.

The significance level α in the Two-Sample KS test is the probability of

rejecting the null hypothesis when it is true. Users of CJ-Sniffer can adjust the

value of α to reach different detection sensitivities. A large significance level α

can lead to a small critical value Dm,n,α, which will raise the standard of the

distribution compliance test. In our implementation, we set α as 0.10, which is a

relatively large value but can increase the usability of CJ-Sniffer by reducing the

false positive rate.

Algorithm 1 demonstrates the detailed procedure that CJ-Sniffer utilizes to

determine cryptomining traffic. CJ-Sniffer only tests the distribution compliance

of inbound packet intervals, as inbound packet intervals are more robust compared

with outbound packet intervals (discussed in Section 3.3). Moreover, to reduce the

process time, the cumulative distribution function of labeled cryptomining traffic is

calculated beforehand. Therefore, when receiving new suspicious traffic, CJ-Sniffer

only needs to build one cumulative distribution function.

Once CJ-Sniffer completes the analysis in phase two, network operators can

choose the next step according to their needs. For instance, if some companies and

institutions prohibit any cryptomining inside their networks, then they can stop at

this phase and block any connection that is labeled as cryptomining. Meanwhile,

some network operators allow user-initiated cryptomining activities. Nonetheless,

they still want to distinguish cryptojacking traffic to safeguard users’ computing

resources. In this case, CJ-Sniffer can enter phase three to dig further into the

labeled cryptomining traffic.
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Algorithm 1 Cryptomining traffic detection using KS test.

1: Input: P , m, Q, G(x), n, k, α ▷ P is the packet list
with m packets, Q is the labeled cryptomining packet list with n packets, G(x)
is the cumulative distribution function of Q, k is the granularity for calculating
the KS statistic, α is the significance level

2: Output: 1 for cryptomining traffic, 0 for other traffic
3: lP = inboundInterval(P ) ▷ extract the inbound packet intervals and store
them in a list

4: lQ = inboundInterval(Q)
5: r = max(lQ)−min(lQ) ▷ calculate the range of G(x)
6: initialize list ld ▷ to store the differences of two cumulative distribution
functions (CDFs)

7: for i in range(k) do
8: x←− i·r

k
+min(lQ)

9: l←− {j|j ∈ lP and j ≤ x}
10: f ←− l.size()

lP .size()
▷ calculate the CDF value at x for P

11: append |f −G(x)| to ld
12: if f == 1 then
13: break
14: end if
15: end for
16: Dm,n ←− max(ld)

17: if Dm,n ≤
√
− ln(α

2
) · 1+

m
n

2m
then

18: return 1 ▷ accept the hypothesis H0

19: else
20: return 0
21: end if
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3.4.4 Phase three: detection of cryptojacking. In the third

phase, CJ-Sniffer uses detected cryptomining traffic as input and outputs identified

cryptojacking traffic. According to the detection results of CJ-Sniffer, network

operators can conduct access control only on cryptojacking connections while still

leaving user-initiated cryptomining connections alive.

Enlightened from the measurement results in Section 3.3.2, CJ-Sniffer

distinguishes cryptojacking traffic from user-initiated cryptomining traffic by

inspecting the long-term robustness of the result submission messages. For

various reasons, the hash rate of cryptojacking activities is relatively unstable

compared with user-initiated cryptomining. This hash rate instability further

affects the frequency of result submission messages (msgr). The key to identifying

cryptomining connections is to recognize such frequency instability.

To achieve the goal, CJ-Sniffer utilizes a LSTM machine learning model

to learn the cryptojacking traffic patterns, with cryptojacking traffic as positive

samples and user-initiated cryptomining traffic as negative samples. Then, CJ-

Sniffer applies the trained LSTM model to identify cryptojacking traffic. LSTM

is a type of artificial recurrent neural network (RNN) architecture used in the

field of deep learning [200]. Compared with other candidate approaches, LSTM

is particularly suitable to detect cryptomining traffic for the following reasons: (1)

as an RNN variant, LSTM is good at processing time series or sequential data, such

as cryptomining traffic; (2) LSTM introduces both a short-term and a long-term

memory component, allowing it to uncover hidden frequency changes out of traffic

data from a long-term perspective; (3) LSTM is a learning-based approach, which

means it can automatically and dynamically learn the detection thresholds from

our collect dataset without any human interventions. Nonetheless, the detection
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Figure 22. Structure of the LSTM model that CJ-Sniffer utilizes.

component here is modular. Users may use other machine learning algorithms or

statistical approaches to fit their environments once the inputs are the same.

As for the input data, CJ-Sniffer extracts the variation vector v from

outbound traffic to profile the changes in result submission message frequency. CJ-

Sniffer first picks out only the outbound packets from the traffic and divides them

into batches. Every batch consists of six consecutive packets with five consecutive

packet intervals. Then, CJ-Sniffer generates a variation vector v to represent

each batch of data, where v = [t1, t2, t3, t4, t5] and tn denotes the interval of two

consecutive packets. CJ-Sniffer will input the variation vectors into the LSTM

model and conduct cryptojacking detection batch by batch.

Figure 22 illustrates the structure of the LSTM model that CJ-Sniffer

utilizes. As the input data is not complicated, CJ-Sniffer employees a Vanilla

LSTM model, which has a single hidden layer of LSTM units, and an output layer

used to make the decision. We set the number of neurons in the hidden layer

to 20 according to a rule of thumb that was introduced in [125]. Equation 3.3

demonstrates the rule, where Ni denotes the number of input neurons, No denotes

the number of output neurons, Ns denotes the number of samples in the training

set, α is an arbitrary scaling factor (usually ranges from 2 to 10), and Nh denotes
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the maximum number of neurons in the hidden layer.

Nh =
Ns

α · (Ni +No)
. (3.3)

Moreover, the LSTM uses binary cross entropy as the loss function and Sigmoid

as the activation function for the output neuron, as this combination is the most

commonly used for binary classification problems. CJ-Sniffer keeps inputting

variation vectors as time-series data to the LSTM, until the incoming traffic is

identified as cryptojacking or all the batches have been processed.

The LSTM model requires training before it can be used. Since there are no

existing cryptojacking traffic datasets available in public repositories, we captured

both user-initiated cryptomining traffic and cryptojacking traffic to train the LSTM

model. We also release part of the packet-level dataset with this paper.

3.5 Evaluation

We evaluated CJ-Sniffer in campus network environments with real-

world network traffic. In this section, we first describe how we collect labeled

cryptomining traffic and real-world contrast traffic (Section 3.5.1). Then, we show

our evaluation results of CJ-Sniffer regarding the efficacy of cryptomining traffic

detection (Section 3.5.2), the ability of detecting other cryptocurrencies’ mining

traffic (Section 3.5.3), the efficacy of cryptojacking traffic detection (Section 3.5.4),

and comparisons with other network-based approaches (Section 3.5.5). In the end,

we evaluate the operation efficiency and the real-world deployability of CJ-Sniffer

(Section 3.5.6.2).

3.5.1 Data collection. To support the measurement study of

cryptomining traffic, train the statistical model and the machine learning model,

and promote related research, we collected a labeled cryptomining traffic dataset

from multiple calculation platforms, including both servers and personal computers,
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Table 13. Information of the collected cryptomining dataset.

Cryptocurrencies Size Length Mining Chips

Intel Core i5-5257U, Intel Core i7-6820HQ,
Apple M1, AMD Ryzen 5 1400 quad-core,

XMR, ETH 250 MB ∼ 750 hours NVIDIA GeForce GTX 1080, Intel Core i7-8700K,
Intel Xeon CPU E5-2430, AMD Radeon RX 570,

AMD Ryzen 5 1400 quad-core + AMD Radeon RX 570.

Table 14. Information of the collected contrast network traffic.

Network Size Length Types of Traffic Contained

Traffic without obvious periodic regularities:
∼ 35,100 Media streaming, VoIP service, HTTP, SMTP, FTP,

Campus (10 Gbps), 316 GB connections, Skype, Zoom, Gaming, Tunneling and proxy services, etc.
Lab (1 Gbps) ∼ 2,000 Traffic with obvious periodic regularities:

hours in total NTP, DNS, Control services of IoT appliances,
Notification services, STUN, Google static content, etc.

CPUs and GPUs. The cryptomining traffic dataset contains both user-initiated

cryptomining traffic and cryptojacking traffic.

To collect the dataset, we installed both user-initiated cryptomining

and cryptojacking software on different computing devices in different network

environments (e.g.home, lab, campus, etc.). We also created several websites with

cryptojacking scripts from WebMinePool [28], CoinIMP [19], Easy Pool Miner [21],

and Minero [25]. Then, we used Wireshark [291] to capture the packet-level

traffic along with labeling information generated by these cryptomining activities.

Table 13 shows the basic information of the collected dataset. The development

and evaluation of CJ-Sniffer is based on this dataset. Moreover, we release a

subset of the dataset to public [147], which has around 550 hours of cryptomining

traffic, with all the noise and human-behavior-related traffic removed due to ethical

considerations.

120



5 15 25 35 45 55 65

Time (min)

500

1000

1500

2000

2500

3000

3500

Ha
sh

 R
at

e 
(h

/s
)

0.53 0.63 0.68 0.79 0.86 0.96 1.00

0.59 0.81 0.90 1.00 0.99 1.00 0.97

0.58 0.84 0.95 0.99 0.97 1.00 0.97

0.69 0.97 0.99 1.00 1.00 0.95 1.00

0.73 0.99 1.00 1.00 0.99 0.98 0.99

0.80 1.00 1.00 0.96 0.98 1.00 1.00

0.89 1.00 0.97 1.00 1.00 0.99 1.00

0.6

0.7

0.8

0.9

1.0

Figure 23. Accuracy scores of detecting cryptomining traffic with different hash
rates and length.
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Figure 25. False positive rates of detecting cryptomining traffic with different hash
rates and length.

Besides, we captured around 316 GB of contrast traffic from our lab network

(link bandwidth: 1 Gbps) and campus network (link bandwidth: 10 Gbps) 1.

Table 14 shows the basic information of the collected contrast traffic. By using

port-based and graphlet-based [225] traffic classification approaches, we classified

the contrast network traffic into several categories (e.g.HTTP, NTP, SMTP, etc.).

Furthermore, according to the traffic patterns, we divided these categories into

two groups. One is traffic without obvious periodic regularities, which is easier to

distinguish from cryptomining traffic. The other is traffic with obvious periodic

regularities, which is more difficult to distinguish from cryptomining traffic. The

collected contrast traffic basically cover most types of network traffic we can see

1We anonymously collected the contrast traffic and omitted all the private content data before
storage. We have also obtained the Institutional Review Board (IRB) approval for the traffic
collection.
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from medium-sized companies/institutions. We later mixed all the contrast traffic

with the cryptomining traffic to evaluate the detection accuracy of CJ-Sniffer.

3.5.2 Efficacy of cryptomining traffic detection. To evaluate CJ-

Sniffer’s efficacy of detecting general cryptomining traffic, we divided the dataset

into two parts—the training set and testing set. The training set is used to train

the detection model, containing around 200 hours of labeled cryptomining traffic.

The testing set is treated as the input of CJ-Sniffer to evaluate its efficacy. As

cryptomining traffic and other types of traffic are unbalanced in reality, the ratio of

contrast traffic to cryptomining traffic is more than 20:1 in our testing set. Besides,

to evaluate the detection accuracy in different scenarios, we further divided the

testing set into seven groups according to the cryptomining hash rates.

Figure 23 demonstrates the accuracy scores of detecting cryptomining

connections using CJ-Sniffer. Figure 24 demonstrates the false negative rates

of detecting cryptomining traffic using CJ-Sniffer; We can see that detecting

cryptomining traffic of different hash rates or lengths will derive totally different

accuracy and false negative scores. As a statistics-based cryptomining detection

approach, CJ-Sniffer can achieve a better efficacy with a larger data sample.

Under this scenario, cryptomining traffic with longer durations or larger hash

rates is easier to be detected by CJ-Sniffer, since these sets of traffic contain more

interval samples for analysis. In general, to reach an accuracy of more than 0.95 in

detecting both low-hash-rate and high-hash-rate cryptomining traffic, CJ-Sniffer

needs to collect around 160 network packets generated from the device in each

processing unit. If the cryptojacked devices are all high-performance devices (with

hash rates of more than 2000h/s), they only need 15 minutes to generate this many
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statistics between XMR and other
cryptocurrencies’ mining traffic.
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network packets, which is significantly quicker compared with MineHunter that

needs around 2 hours of traffic to achieve a similar efficacy.

Figure 24 demonstrates the false negative rates of detecting cryptomining

traffic using CJ-Sniffer. Similar to accuracy scores, CJ-Sniffer needs shorter time

to detect high-hash-rate devices’ cryptomining traffic. Once CJ-Sniffer collects 55

minutes of traffic in each processing unit, it can achieve zero false negative rates for

detecting both low-hash-rate and high-hash-rate cryptomining traffic.

3.5.3 Adaptability to other cryptocurrencies. CJ-Sniffer is

mainly built upon XMR mining data. However, cryptomining/cryptojacking traffic

may be associated with other cryptocurrencies. In this section, we examine the

adaptability of CJ-Sniffer. We collected several hours of cryptomining traffic of

other cryptocurrencies (i.e.ETH, ETC, BTC, DCR, LBC, ZEC, and CHIA). The

data volume may be insufficient for thorough measurement but is enough for

testing. We then evaluated the ability of CJ-Sniffer (trained with XMR traffic)

in detecting such cryptomining traffic.
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Table 15. Efficacy of cryptojacking traffic detection with different system loads of
background processes.

System load of background processes.

0% 10% 20% 30% 40%

Accuracy 0.4714 0.5467 0.6176 0.7244 0.9390
Precision 0.8750 0.9130 0.9231 0.9348 0.9770
Recall 0.0875 0.2413 0.3673 0.5181 0.9140
FPR 0.0167 0.0317 0.0417 0.0411 0.0282
FNR 0.9125 0.7586 0.6327 0.4819 0.0860
F1 Score 0.1591 0.3818 0.5255 0.6667 0.9444

System load of background processes.

50% 70% 80% 90% 100%

Accuracy 0.9630 0.9877 0.9877 0.9938 0.9890
Precision 0.9770 0.9888 0.9891 0.9890 0.9897
Recall 0.9551 0.9888 0.9891 1 0.9897
FPR 0.0274 0.0135 0.0143 0.0143 0.0118
FNR 0.0449 0.0112 0.0109 0.0000 0.0103
F1 Score 0.9659 0.9888 0.9891 0.9945 0.9897

The test is conducted on normalized traffic data. Figure 26 demonstrates

the two-sample KS statistics between XMR and other cryptocurrencies’

cryptomining packet intervals. The closer these values are to 0, the more similar

these traffic intervals are to XMR’s, and the more likely CJ-Sniffer can detect

such traffic. From the results, we can see that cryptomining packet intervals of

ETH, ETC, BTC, DCR, LBC, and ZEC come from the same distribution as

XMR’s, because their KS test statistics are too small to reject the H0 hypothesis.

Conversely, CHIA, possibly due to the adoption of a different consensus mechanism

(i.e.Proof of Space), is quite different from XMR regarding cryptomining traffic.

The detection evaluation is consistent with the statistics (Figure 27). CJ-Sniffer

achieves decent precision and recall scores in detecting almost all the PoW-based

cryptomining traffic.
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3.5.4 Efficacy of cryptojacking traffic detection. CJ-Sniffer

observes the hash rate robustness of ongoing cryptomining traffic to distinguish

cryptojacking from user-initiated cryptomining. Therefore, the efficacy of

cryptojacking traffic detection may be influenced by the background process

running on the device. Here, the background process refers to all the computing

processes executed by the legitimate user of the cryptojacked device. Theoretically,

if the background processes cause a high system load, the computing resource

allocated to cryptojacking programs will be volatile, leading to obviously unstable

hash rates and becoming easier to be detected by CJ-Sniffer. However, when the

background processes only cause a little system load, the system is more likely to

allocate stable computing resources to cryptojacking programs, even if they are in

low priorities. Therefore, CJ-Sniffer may fail to detect such cryptojacking activities.

We evaluate the efficacies of cryptojacking traffic detection with different

background processes and present the results in Table 15. From the table, we can

see that CJ-Sniffer can achieve good accuracy scores and false positive rates in any

situation. However, we also notice that it can only reach decent recall scores and

false negative rates when the loads of background processes are higher than 30%.

Otherwise, CJ-Sniffer may have difficulty distinguishing cryptojacking traffic from

user-initiated cryptomining traffic. Fortunately, in these scenarios, the computing

device is in idle time, thereby limiting the effect such cryptojacking activities have

on legitimate processes. Therefore, a cryptojacking attack is less of a concern under

such circumstances. Still, CJ-Sniffer can tell network administrators that these

traffic are cryptomining traffic in all the cases.

3.5.5 Comparison evaluation. In this subsection, we compare CJ-

Sniffer with four other representative solution: 1. Cisco’s commercial solution [45]
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Figure 28. ROC curves of selected approaches for cryptomining traffic detection.

that integrated in routers; 2. SVM-based approach proposed by Munoz et

al. [210]; 3. Näıve Bayes-based approach proposed by Munoz et al. [210]; 4.

MineHunter [443].

3.5.5.1 Comparison of cryptomining traffic detection. We

use similar evaluation approaches in Section 3.5.2 to conduct the comparison

evaluations for cryptomining traffic detection. The only difference is that each

testing unit contains around 2 hours of traffic, so approaches that require a large

amount of traffic (i.e.MineHunter and Munoz et al.) can achieve the best efficacy.

Figure 28 illustrates receiver operating characteristic (ROC) curves generated by

the five approaches. We can see that CJ-Sniffer and MineHunter perform obviously

better than approaches proposed by Munoz et al. and Cisco. CJ-Sniffer and

MineHunter achieve similar accuracies, while CJ-Sniffer is better in false-positive

rates, and MineHunter is better in true-positive rates.
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As for the processing delay, all these five approaches can output the

detection results within 2 seconds. Therefore, all of them can meet the velocity

requirements in cryptomining traffic detection.

3.5.5.2 Comparison of cryptojacking traffic detection. Among

the five approaches, CJ-Sniffer is the only one that can distinguish cryptojacking

traffic from user-initiated cryptomining traffic. Other approaches simply treat these

two groups of traffic as the same. Hence, CJ-Sniffer allows network operators to

conduct more elastic and flexible security managements. For example, a network

administrator can only filter cryptojacking traffic while preserving user-initiated

cryptomining traffic from a device, which is a common requirement for many

Virtual Private Servers (VPS) providers. For networks with strict usage restrictions

(e.g.campus networks, enterprise networks, etc.), network administrators can simply

utilize the first two phases of CJ-Sniffer to identify all cryptomining traffic.

3.5.6 System Efficiency. In this section, we evaluate the efficiency of

CJ-Sniffer by time complexity analysis and measuring the system’s processing delay

in real-world environments.

3.5.6.1 Time complexity. Assume the total number of input packets

is n. The time complexity of the preprocessing module is O(n), as CJ-Sniffer

simply receives network traffic from traffic capture engines and extracts necessary

attributes from each packet header.

Then, CJ-Sniffer moves to phase one. CJ-Sniffer goes through each packet’s

extracted information to filter out noise and group them by connections, which

takes O(n) time to complete. After that, assume there are an (0 ≤ a ≤ 1) packets

left, CJ-Sniffer still needs O(an) time to complete rapid filtration. As a result, CJ-

Sniffer’s time complexity for phase one is O(n+ an).
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Figure 29. Processing delays of CJ-Sniffer under different operation circumstances
(different link bandwidths & sizes of processing units).

In phase two, assume there are bn (0 ≤ b ≤ 1) packets left. Since the labeled

samples’ cumulative distribution function G(x) is pre-built, CJ-Sniffer can utilize

Algorithm 1 to detect cryptomining traffic, allowing it to complete the analysis in

O(kbn) time.

In phase three, CJ-Sniffer employees an LSTM model to detect cryptojacking

traffic. The LSTM model performs detections batch-by-batch and needs O(1) time

to process each batch. Assumes there are cn (0 ≤ c ≤ 1) batches, CJ-Sniffer needs

O(cn) to complete phase three.

Overall, CJ-Sniffer takes O((a + kb + c)n) time to detect cryptojacking

traffic from captured network traffic, as it conduct all the detection processes

sequentially. In addition, k is a constant and a, b, c are numbers between zero and

one. Therefore, CJ-Sniffer’s time complexity is O(n), where n is the total number

of input packets.
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3.5.6.2 Processing delay. We then measured the processing delay

of CJ-Sniffer in the different real-world environments. Here, the processing delay

refers to the time it takes for CJ-Sniffer to output the detection result after the

data collection is completed. According to the design of CJ-Sniffer, there are two

factors that can affect the processing delay: (1) the number of packets in each

processing unit, and (2) the bandwidth of the link that CJ-Sniffer is monitoring.

We changed both of the factors to evaluate the efficiency of CJ-Sniffer. We used a

personal computer with an i7 8700k 4.7-GHz CPU and 32-GB memory to conduct

the evaluation. The network traffic was ported from the gateway routers of our

campus network and lab network.

Figure 29a demonstrates the delay with different number of packets in each

processing unit. CJ-Sniffer takes 89 milliseconds on average to output the result

when there are 200 packets per unit. If the number increases to 300, the processing

delay just slightly increases to around 100 milliseconds. Although there is a

noticeable performance drop when the number of packets in each processing unit

reaches 400, according to evaluations in Section 3.5.2, 200 packets per detection

unit is enough to reach a deployable accuracy.

Figure 29b demonstrates the delay with different link bandwidths. We can

see that with a personal computer’s computing power, CJ-Sniffer is able to monitor

a campus-level or medium-company-level network (10 Gbps) and finish processing

the data in less than 0.25 seconds.

Therefore, the processing time data from the real deployment of CJ-

Sniffer supports the aforementioned time complexity analysis result. CJ-Sniffer’s

monitoring and detection can reach line speed for most companies, campuses, or

institutes, with affordable computing power.
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3.6 Discussion

In this section, we discuss the limitations of CJ-Sniffer and its

generalizability to other FGTA applications.

3.6.1 Limitation. A primary contribution of CJ-Sniffer is to use

content-agnostic data to detect cryptomining traffic and further distinguish

cryptojacking traffic from user-initiated cryptomining traffic in the network, which

can protect users’ privacy and increase the efficiency during the detection process.

However, CJ-Sniffer still has a few open issues. In this subsection, we discuss these

open issues, indicating possible limitations of CJ-Sniffer and raising several avenues

for future research.

3.6.1.1 Bypassing CJ-Sniffer. CJ-Sniffer is fundamentally a

detection approach grounded in traffic analysis. As elaborated upon in Section 2.6,

a myriad of countermeasures aimed at circumventing traffic analysis have been

put forth by researchers and developers over the past two decades. These

include strategies such as packet padding [222], dummy packets [404], and traffic

morphing [418], among others. While some of these countermeasures may be

effective in bypassing CJ-Sniffer, others may not. We explore the potential

for utilizing these countermeasures to circumvent CJ-Sniffer in the subsequent

discussion.

1. Packet Padding or Adding Dummy Packets: Cryptojackers are unable

to directly alter their cryptomining traffic through padding or the addition

of dummy packets to elude our detection system. This is because present-

day cryptomining activities are largely dependent on public mining pools,

which necessitate miners to adhere strictly to public mining protocols

(i.e., Stratum [319]). These protocols demand the removal of superfluous
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content in packets to prevent virus injection. Therefore, any modification to

cryptomining traffic could potentially lead to disconnections from the mining

pool.

2. Packet Timing Manipulation: In theory, cryptojackers could manipulate

the timing of their cryptojacking traffic to bypass CJ-Sniffer, rendering the

traffic similar to user-initiated cryptomining traffic or even normal traffic.

Even though this strategy could potentially achieve their goal, it would

significantly diminish the cryptojackers’ profits. Cryptomining is a highly

competitive and time-sensitive process, and any delay in the delivery of

mining packets might lead to other miners submitting results first, resulting

in the rejection of the delayed results. Conversely, if the mining packets are

sent prematurely, the mining device has not computed the correct results yet,

which will also lead to rejection. Therefore, this strategy is rarely utilized by

cryptojackers to bypass FGTA-based detection systems.

3. Use of Private Mining Pool with Unknown Protocols: The

possibility of bypassing CJ-Sniffer by establishing a private mining pool

with an unknown cryptomining protocol is also unlikely. Given the intense

computational power competition [106] among mining pools, the hash rates

of private mining pools are considerably lower than those of popular public

mining pools. This makes private mining pools inefficient for mining new

coins. Thus, to mine cryptocurrencies efficiently, attackers rarely resort to

private mining pools.

4. Traffic Proxy or Tunneling: Nonetheless, it is feasible for cryptojackers to

exploit third parties to help conceal their cryptomining traffic (e.g., proxy,
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VPN, Tor with traffic obfuscation [148]), thereby bypassing CJ-Sniffer.

While we have yet to observe this defensive design in existing cryptojacking

software, studying the detection of cryptojacking traffic in the presence of

traffic tunneling presents an exciting direction for future research.

3.6.1.2 Adaptability to other network environments. CJ-

Sniffer’s adaptability in different network environments can significantly affect

its usability because re-training the detection model is a time-consuming process

for learning-based approaches. Fortunately, according to our collected data in

different network environments and investigations of the cryptomining mechanism,

changes in cryptomining traffic are independent of different network environments.

Therefore, a cryptomining detection model trained in one network environment

can be directly applied to another network environment if the input traffic is of the

same format (e.g., sFlow, in our implementation). However, blockchain systems

may evolve by upgrading their mining mechanisms, such as the Arrow Glacier

upgrade of ETH [32] and the CryptoNight V7 upgrade of XMR [123]. These

upgrades can bring changes to the cryptomining traffic patterns, thereby making

detection models trained by previous data no longer effective. To tackle this issue,

researchers need to continue enriching and updating the cryptomining traffic

dataset so that the dataset can cover most recent cryptomining traffic patterns.

3.6.1.3 Direct hash rate inference. CJ-Sniffer detects

cryptojacking by identifying hash rate fluctuations. A more straightforward

method is to directly identify the specific hash rates from the traffic, which not

only can help detect cryptojacking, but also can estimate the amount of computing

power that is devoted to cryptomining. However, identifying specific hash rates

is more challenging than identifying hash rate fluctuations, especially when
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there is no content data involved. In the future, extending CJ-Sniffer with more

traffic features, preprocessing steps, or training data so that it can discover more

information from content-agnostic traffic data is a promising research direction.

3.6.2 Approach generalization. CJ-Sniffer is specifically designed

for detecting cryptojacking traffic. The specificity of the training data and

the detection model makes it difficult to generalize CJ-Sniffer to other FGTA

applications. However, the traffic processing pipeline, methodologies, and

techniques used in CJ-Sniffer may be applied to other FGTA applications. Here, we

list several designs of CJ-Sniffer that may be useful for other FGTA applications.

3.6.2.1 Two phases of traffic processing. CJ-Sniffer employs

a two-phase traffic processing pipeline designed to boost the speed of traffic

processing. Initially, it employs straightforward yet efficient rules to discard

obviously irrelevant traffic, such rules may include criteria like port number,

packet size, among others. Following this, CJ-Sniffer employs a more complex but

precise detection model to discern target traffic from the remaining data pool. This

pipeline, thanks to its improved detection efficiency, could be beneficially applied to

other FGTA applications, thus rendering them more viable for scenarios involving

high traffic throughput.

3.6.3 Rapid KS test for packet interval distribution. CJ-Sniffer

capitalizes on the KS test, applied to the packet interval distribution, for the

detection of cryptomining traffic. Given that the packet interval distribution can

be considered as a unique fingerprint for numerous web applications, our proposed

method holds potential applicability for other TA tasks related to application

identification. Moreover, we have introduced a rapid KS test methodology

capable of significantly diminishing the time complexity of the KS test to O(n),
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as illustrated in Algorithm 1. This approach could also find extensive utilization in

various other domains.

3.6.4 LSTM for time series traffic analysis. For the purpose of

fine-grained traffic differentiation, CJ-Sniffer utilizes an LSTM model to scrutinize

time series traffic data, thereby identifying the subtle fluctuations in the hash

rate. The observed outcomes underscore the powerful efficacy of LSTM models in

performing such tasks. This technique holds potential applicability for other FGTA

applications that necessitate detailed traffic differentiation, which may include

application-layer anomaly detection, QoE investigations, or the online social bot

detection problem, as discussed in Chapter IV.

3.7 Conclusion

In this chapter, we extend the use case of FGTA to detect malicious

activities that traditional TA-based methods found challenging to identify. In

particular, we apply FGTA to detect cryptojacking traffic, harnessing the fine-

grained traffic discrimination capabilities of FGTA to achieve a fine-grained and

precise detection of such malicious traffic.

We propose CJ-Sniffer, a privacy-aware cryptojacking detection approach

that only relies on content-agnostic network traffic to conduct detections. CJ-

Sniffer applies a three-phase procedure to identify cryptojacking traffic. It first

filters out obviously irrelevant traffic to increase the detection throughput. It then

accurately detects cryptomining traffic by conducting distribution compliance tests

on packet intervals. Lastly, CJ-Sniffer digs deeper into the packet interval patterns,

utilizing an LSTM model to distinguish cryptojacking traffic from user-initiated

cryptomining traffic.
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By introducing traffic analysis into cryptojacking detection, CJ-Sniffer is

able to safeguard computing resources with superior efficiency and deployability.

With a personal computer and traffic flow access to the network gateway, CJ-Sniffer

is able to provide real-time traffic monitoring for a company-level network. More

importantly, the privacy of users will not be violated throughout the detection

process. In addition, unlike other network-based solutions that simply treat all

types of cryptomining activities the same, CJ-Sniffer can distinguish cryptojacking

traffic from user-initiated cryptomining traffic through their subtle differences.

Therefore, CJ-Sniffer can provide hierarchical detection results, allowing network

operators to conduct more elastic security management.

We have evaluated CJ-Sniffer with real-world network traffic and found

that its efficacy and efficiency are both high. With the computing power of an i7

8700k 4.7-GHz CPU and 32-GB memory, CJ-Sniffer is able to achieve an accuracy

of over 99% for PoW-based cryptocurrency systems with reasonable delays when

monitoring a campus-level network.

136



CHAPTER IV

LEARNING-BASED, CONTENT-AGNOSTIC DETECTION OF OSN BOT

TRAFFIC

Having successfully utilized FGTA for fine-grained detection of

cryptojacking traffic in the previous chapter, we persist in this chapter to expand

the scope of FGTA’s application. We aim to identify malicious activities that

were previously hard to detect with conventional TA-based approaches, thereby

demonstrating FGTA’s capability for fine-grained traffic discrimination and its

versatility. In particular, this chapter focuses on a more complex application-

layer malicious activity detection challenge—differentiating OSN bots from genuine

OSN users using FGTA. This chapter proposes a method called BotFlowMon that

relies only on content-agnostic flow-level data as input to identify OSN bot traffic.

To achieve the goal, BotFlowMon introduces several new FGTA algorithms and

techniques, including aggregating network flow records to obtain OSN transaction

data, fusing transaction data to extract features and visualize flows, and an

innovative density-valley-based clustering algorithm to subdivide each transaction

into individual actions.

This chapter is derived in part from the following published articles:

– Published as Yebo Feng, Jun Li, Lei Jiao, and Xintao Wu. “Towards learning-

based, content-agnostic detection of social bot traffic.” IEEE Transactions on

Dependable and Secure Computing 18, no. 5 (2020): 2149-2163 [152].

– Published as Yebo Feng, Jun Li, Lei Jiao, and Xintao Wu. “BotFlowMon:

Learning-based, content-agnostic identification of social bot traffic flows.”

In Proceedings of 2019 IEEE Conference on Communications and Network

Security (CNS), pp. 169-177, 2019 [151].
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– Published as Yebo Feng. “BotFlowMon: Identify Social Bot Traffic With

NetFlow and Machine Learning.” University of Oregon, Master Thesis,

2018 [145].

I am the leading author of the above articles. Most content of this chapter was

written by me, and I was responsible for conducting all the system designs,

implementations, evaluations, and the presented analyses.

4.1 Introduction

The past decades have witnessed a rapid expansion of online social networks

(OSN). Facebook has achieved more than 2.196 billion active users around the

world and Twitter has reached 336 million users [214]. Unfortunately, OSNs are

increasingly threatened by software-controlled social bots [160] that impersonate

real OSN users for troublesome or malicious purposes [440]. Even though not all

social bots are malicious, as many are used for customer service and information

dissemination, various attacks, abuses, and manipulations are based on social

bots [159], such as infiltrating Twitter [73], launching spam campaigns [170], and

performing financial fraud [23].

Existing approaches to detecting social bots need to utilize the social

relationship structure or private content data from users’ accounts, all of which

can lead to privacy infringement and can only be executed by OSN providers. In

this paper, we propose a new, content-agnostic social bot detection method called

BotFlowMon. It takes network traffic flow information as input, which is NetFlow

records [102] in this paper, to differentiate the social bot traffic from the real user

traffic. As Internet/network service providers can easily collect NetFlow records,

it is thus also convenient for them to deploy BotFlowMon, making social bot

detection no longer dominated by OSN providers. Moreover, as NetFlow records
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are coarse-grained summaries of packet headers and contain no OSN content data

from packet payload [354], BotFlowMon is also privacy-preserving.

BotFlowMon can detect social bot traffic accurately and quickly. It

harnesses the power of machine learning on big data for the best efficacy in labeling

social bot traffic versus real user traffic. BotFlowMon employs five modules:

1. The preprocessing module that filters out noises and irrelevant data from raw

NetFlow records and extracts OSN-related traffic flows;

2. The flow aggregation module that transfers the NetFlow records into

transaction-level datasets, making the characteristics of social bots more

apparent for detection;

3. The transaction fingerprint generation module that, with a new data fusion

technique, extracts features from transaction-level datasets, normalizes the

values, and visualizes the flows;

4. The transaction subdivision module that employs a new, density-valley-based

clustering algorithm to further divide each transaction into multiple actions,

thus reducing training data volume and accelerating training;

5. The machine learning & classification module that uses the action-level

data to construct a transaction-level social bot classification model with

convolutional neural network (CNN) and multilayer perceptron (MLP).

BotFlowMon is the first work that leverages content-agnostic traffic flows

to detect social bots. By embracing a suite of newly introduced techniques,

BotFlowMon provides social bot detection at behavior level, which is a finer

granularity than existing approaches; it can identify whether an individual OSN
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Table 16. Comparisons of different social bot detection approaches.

Category
Representative

work
Primary
input

Detection
granularity

Timeliness
Privacy

preservation

Content-based [101, 371, 429, 392], etc OSN content
behavior,

account (cluster)
mostly real time No

Structure-based [85, 179, 215, 388], etc OSN topology account
with the growth

of topology
No

Crowdsourcing-based [393, 128, 394, 316], etc human judgment account
with considerable

delay
No

Traffic-flow-based BotFlowMon network flows behavior real time Yes

behavior is from a real user or a social bot account. It also can detect social bots

in real time; as soon as it receives network traffic, BotFlowMon can start detection

immediately.

Our evaluation with 535 gigabytes (GB) of raw NetFlow data from a large

university environment shows that BotFlowMon can identify social bot traffic with

an accuracy of 96.1% (or around 90% if the user adjusts the false positive rate to

zero). Simultaneously, the conciseness of NetFlow data provides an advantage for

fast and efficient data processing. Even only running on a laptop with 2.7-Ghz

CPU and 16-GB memory, BotFlowMon can support real-time social bot detection

for a campus-level network; after the NetFlow records of a social bot are collected,

it takes only 0.71 seconds on average to detect the social bot.

The rest of this paper is organized as follows. After we outline related work

in Section 4.2, we describe BotFlowMon’s design in Section 4.3 and evaluate it in

Section 4.4. We discuss its limitations, open issues, and potential generalizations in

Section 4.5 and conclude the paper in Section 4.6.

4.2 Related Work

As BotFlowMon is a content-agnostic approach to detecting social bots from

network traffic, in this section we investigate other social bot detection approaches

and content-agnostic traffic classification and anomaly detection work.
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4.2.1 Social Bot Detection Approach. Various approaches have

been developed to identify social bots. According to the input data, they are

often either content-based or structure-based [226], with a new trend on using

crowdsourcing techniques as well. Table 16 shows a general comparison between

these methodologies. BotFlowMon is the only approach that only relies on network

traffic.

4.2.1.1 Content-Based Approach. Content-based social bot

detection approaches seek to detect behaviors, accounts, or account clusters

associated with social bots using OSN content. Here, the OSN content refers

to not only explicit information of an account, such as its profiles, URLs, and

linguistic features of posts, but also implicit information of an account such as

its clickstream, local graph structure, and user behavior. For example, research

in [370, 431, 101] finds URLs in posts can help identify spam messages or social bot

accounts; research in [358, 61, 371] leverages features related to account profiles or

message content to determine if an account is actually a social bot; and research

in [243, 429, 387] uses local graph structure information such as the number of

followers and relationship between interactions for social bot detection.

Different methods have been used to model the differences of the OSN

content between social bots and human users. While some used statistical analysis,

including [372, 429, 371, 358], to be more flexible in tackling complicated features

and more accurate, many leveraged machine learning techniques, such as random

forest ([243, 101, 120]), SVM ([392, 61, 355]), and logistic regression ([370, 355]).

While often effective, content-based approaches have certain drawbacks.

First, they require content data of OSN users. Compared with flow-level traffic

data used in BotFlowMon, such data are usually privacy sensitive and could lead
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to potential privacy infringement. Second, they are vulnerable to adversarial

attacks since social bot programs can mimic human users’ behaviors to escape their

detection.

4.2.1.2 Structure-Based Approach. The assumption of structure-

based approaches is that social bot accounts (often referred as Sybil accounts in

these approaches) can build connections between themselves arbitrarily, but it

is difficult for them to establish or manipulate social relationship with human

users [215]. The structural gap between social bot accounts and human accounts

can then be used to identify social bots.

Structure-based approaches can be classified into two categories—random

walk (RW) based and Markov Random Field (MRF) based. RW-based methods

start walking from either a social bot node or a human user node and then use

some classifiers to infer the labels of nodes along the path, as exemplified by

research in [115, 85, 84]. MRF-based methods, such as those in [179, 388, 389],

model the OSN structure as a Markov random field and use probability methods

(e.g.Loopy Belief Propagation) to estimate each node’s conditional probability of

being a social bot. The two methods can be combined [390, 171].

Unlike content-based approaches, structure-based approaches are not

vulnerable to content-oriented adversarial attacks. However, they have their own

drawbacks: (1) Their aforementioned assumption is not always true. According

to research in [231], it is easy for a social bot account to establish a relationship

with a real user account. Moreover, once a real user account is compromised

and becomes a social bot, it inherits all the social relationship of the real user.

Consequently, structure-based approaches will have difficulty in detection social

bots in such scenarios. BotFlowMon is not dependent on OSN structures, thus

142



not subject to these issues. (2) They can only offer social bot detection at the

account level, which is to determine whether an account is a real user or a social

bot. BotFlowMon works at the behavior level which is a finer granularity. (3) They

only detect social bot accounts with the change of social topology. If a social bot

keeps posting messages without interacting with other accounts, they will fail to

detect this social bot. In contrast, BotFlowMon detects social bots in real time

soon after it receives NetFlow records of social bot traffic.

4.2.1.3 CrowdSourcing-Based Approach. A new trend in social

bot detection is to utilize crowdsourcing [128, 394, 316], in which one can ask

individual crowdworkers to judge whether a program is a bot or not and then

aggregate the decisions from all crowdworkers. For example, research in [393] relies

on a crowdsourcing layer to have individual users determine whether an OSN

account is a bot account or not and a filtering layer to filter out unsatisfactory

reports from individual users. Compared with BotFlowMon, a crowdsourcing

approach tends to incur a high detection latency due to its interactions with human

users, a high cost to pay crowdworkers, and privacy risks if distributing privacy-

sensitive data to the crowd. Besides, a crowdsourcing approach usually detects

social bots at account level, while BotFlowMon does so at behavior level.

4.2.2 Content-Agnostic Traffic Classification & Anomaly

Detection. During the early development of traffic classification, content-agnostic

traffic classifications was elementary and mainly focused on classifying traffic into

a few frequently used applications, such as telnet, https, and BitTorrent. Different

traffic data were used as input. For example, research in [113] used the size, inter-

arrival time, and arrival order of IP packets; research in [53] leveraged packet

header information; and research in [330] utilized metadata of packets, flows,
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and connections. Later, more approaches, such as those in [328, 217, 59], used

increasingly popular NetFlow data to classify traffic. Compared with BotFlowMon

which aims to classify traffic from the same application (traffic from social bots vs.

traffic from human users), none of these approaches classify traffic from different

groups of entities within the same application.

Like BotFlowMon, many traffic anomaly detection approaches are

content-agnostic and use network flow information as input, such as those that

detect distributed denial-of-service (DDoS) [70], botnet [144], worm [249], and

cryptojacking [157]. However, the social bot anomaly that BotFlowMon tries to

detect differs from these anomalies in fundamental ways, warranting a completely

different detection approach. Foremost, any social bot anomaly is specific to an

OSN application; to detect it using network flow records, one must extract OSN-

specific behaviors from the records and detect behaviors that are anomalous

. Existing content-agnostic traffic anomaly detection approaches do not study

OSN-specific anomalies, making them unsuitable for detecting social bot traffic.

Moreover, traffic caused by anomalies such as DDoS, botnet, worm, or crypto-

mining is usually of different protocols, destinations, and underlying applications

than those of legitimate traffic; social bot traffic, however, usually use the same

protocols (e.g.HTTPS), destinations (e.g., Facebook), and underlying applications

(OSN) as those of real OSN user traffic, making these attributes unusable for social

bot detection. In fact, every content-agnostic traffic anomaly detection approach is

designed for a specific type of anomaly and hardly interchangeable. For example,

whereas content-agnostic botnet detection could use the trace of command and

control channels (e.g.[369, 72]), IRC messages (e.g.[184]), or collective DNS queries
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Figure 30. Operational models of BotFlowMon.

(e.g.[97]), none of these data or their properties applies to the detection of social

bots.

4.3 BotFlowMon Design

4.3.1 Overview. In order to detect if any machine in a network is a

social bot and producing social bot traffic, BotFlowMon can be deployed on any

machine that can access and analyze the traffic flow data between the monitored

network and OSN servers. Figure 30 shows two different operational models

of BotFlowMon, one with BotFlowMon accessing traffic from the router of the

monitored network at the source end (e.g.a campus network), the other from the

router of an OSN server at the destination end (e.g.Facebook).

There are different traffic flow formats. We focus on the NetFlow [102]

format, which is widely used for network traffic monitoring and analysis. Our

design can easily extend to other flow formats such as sFlow [307].

Every NetFlow record logs information of a network flow inbound or

outbound, including its start time, end time, number of packets, and number of

bytes. It also records information from the TCP/UDP and IP headers of all the
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Start Time End Time Protocol Src IP Dst IP Src Port Dst Port TCP Flags ToS pkts bytes 
1582822775.808 1582822802.688 TCP 240.246.127.7 43.175.217.143 80 17608 ...A.... 56 1300 1846000 
1582822776.832 1582822782.208 UDP 28.7.12.109 2.50.210.91 443 49599 ........ 8 8192 10485760 
1582822421.713 1582822425.191 TCP 13.187.25.153 123.41.10.88 443 34530 ...A.... 80 120 37920 

 
Figure 31. Fields of NetFlow records used by BotFlowMon.

packets in the flow, including source IP address, destination IP address, protocol,

port numbers, type of service (ToS), and TCP flags. It will not access, read, or

record the payload of any packet where the OSN content would be carried. As a

result, a NetFlow record will not contain OSN content data such as OSN account

profiles, Facebook or Twitter messages, or posted images. In another words,

NetFlow records are content-agnostic. Using NetFlow records as input is thus

privacy-preserving. Figure 31 shows the fields of NetFlow records that BotFlowMon

uses, with a few examples.

Figure 32 illustrates the architecture of BotFlowMon. It encompasses two

modes: training mode which uses labeled NetFlow data to derive a classification

model and detection mode which uses the classification model to detect

social bot flows from the input traffic flows. It also consists of five modules:

preprocessing, flow aggregation, transaction fingerprint generation, transaction

subdivision, and machine learning & classification. We detail each module below.

4.3.2 Preprocessing. Motivation. With the raw NetFlow records

collected from a router as input, the preprocessing module needs to select records

only related to OSN, group them by OSN users, and output them to the next

module. As a router forwards packets and summarizes them into NetFlow records,

there can be a vast amount of NetFlow records generated every second and these

records can be noisy as they contain flows not toward OSNs or flows of irrelevant

protocols and applications. The preprocessing module therefore must be both

efficient and accurate in extracting OSN-related flows.

146



Flow Aggregation

 Transaction Subdivision

 Transaction Fingerprint
Generation

Machine Learning &
Classification

Flows

Detected social 
bot flows

Any External Defense System

Action fingerprints

 Preprocessing

 ...
 OSN flow extraction

 ...

OSN IP 
Prefixes

NetFlow 
Data

BGP
Data

OSN flows for different IPs

OSN flows for transactions

Data labeled for training

Data unlabeled to analyze

Transaction fingerprints

Bo
tF

lo
w

M
on

Figure 32. BotFlowMon architecture. It has two modes of operation: training (data
in dashed line) and monitoring (data in solid line).

147



Design. We preprocess the raw NetFlow data collected from a router as

follows. We first extract the traffic flows only related to OSNs. After removing

NetFlow records with zero bytes, zero duration, or irrelevant protocols (such

as ICMP), BotFlowMon further discards NetFlow records whose source or

destination IP address is not associated with the social network site(s) in question

(e.g.Facebook or Twitter). One issue here is that each OSN site may own hundreds

or even more IP prefixes and they may change over time. We leverage BGP

stream [292] to obtain an OSN site’s current IP prefixes and check if a NetFlow

record’s source or destination IP address matches one of the prefixes. In order

to deal with a large number of flows efficiently, the matching process utilizes the

longest prefix match algorithm [191], which is similar to the IP forwarding table

lookup procedure when a router forwards packets based on their destination IP

address. Our design allows BotFlowMon to preprocess NetFlow records in real

time. We then group NetFlow records by OSN users, since these records may

summarize traffic from thousands of users. Here, we define each OSN user by

a unique combination of an IP address and a port number from the monitored

network.

4.3.3 Flow Aggregation. Motivation. Now that we have

preprocessed NetFlow records to be composed of only those relevant to detecting

social bot flows, we address the next challenge in that there is no sufficient

information from data of individual NetFlow records to distinguish social bot flows

from OSN flows generated by real users. As both social bot and real OSN user

behaviors are conducted at the application level, their NetFlow records, which do

not record application-specific data, can easily be indistinguishable.
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Figure 33. A flow aggregation example using modified DBSCAN. Every time
bin is a small window (e.g.0.1 seconds). Six NetFlow records are clustered into
two transactions by converting them to NetFlow records with flow points. (Each
flow point has a different gray level, with a darker gray indicating a higher traffic
volume.) One NetFlow record was fragmented into two records, each at a different
transaction.

Design. We thus introduce the flow aggregation module in BotFlowMon

to inspect collective OSN behaviors of flows in order to capture distinct patterns

of social bot versus real user behaviors. It aggregates all the NetFlow records

generated by the same transactions, so that we can inspect and compare

transactions of a social bot against those of real users, including defining and

comparing features of transactions. Here, a transaction is a sequence of actions by

either a social bot or real user that are closely adjacent to each other. For example,

it can be a user logging in her Facebook account and reading new posts on her

Facebook wall, or a Twitter bot retweeting a spam link one hundred times within a

short period.
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In this module, we use modified DBSCAN [142] to aggregate/cluster flows

into multiple transactions, with each transaction composed of multiple flows.

Figure 33 shows an example. DBSCAN is a common density-based clustering

algorithm that groups together adjacent high-density data points, where outliers

are points that lie only in low-density regions. This procedure includes the

following steps:

1. For every flow as described by a NetFlow record, we divide its duration into

multiple time bins of equal length and define a flow point for each bin. Every

flow point has a traffic volume derived from the bits per second (bps) of the

flow multiplied by the bin’s length.

2. We run the modified DBSCAN algorithm to group flow points into clusters,

with each cluster composed of flow points that are closely adjacent to each

other over a time window and have a high total traffic volume. In particular,

for any time interval of ϵ seconds from the time window, the flow points that

belong to the interval have a total traffic volume no less than minPts bits.

3. Finally, we inspect the time window of every cluster from the above step. All

the flows that fall within this window will belong to the same transaction.

4.3.4 Transaction Fingerprint Generation. Motivation. With

multiple transactions obtained from the flow aggregation module, every transaction

may contain a different number of NetFlow records, further with its information in

textual format (as every NetFlow record is textual). To make different transactions

directly comparable to each other, BotFlowMon must define, extract, and normalize

features from the aggregated flows of each transaction.
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Table 17. 6×N matrix as a transaction fingerprint.

Features Values

1: outgoing bps bpsot1 bpsot2 ... bpsotN
2: outgoing pps ppsot1 ppsot2 ... ppsotN
3: outgoing ToS tosot1 tosot2 ... tosotN
4: incoming bps bpsit1 bpsii2 ... bpsitN
5: incoming pps ppsit1 ppsii2 ... ppsitN
6: incoming ToS tosit1 tosii2 ... tositN

Design. BotFlowMon generates a fingerprint for each transaction. We

design a data fusion method that derives an f×N matrix from every transaction

and use this matrix as the fingerprint of the transaction. Here, N is the number

of time bins of equal length within the time window of the transaction, which

spans from the earliest start time to the latest end time among all flows in the

transaction, and f is the number of features of the transaction over each time bin.

Table 17 shows a 6×N example transaction fingerprint matrix. Rows 1 to 3

are features of outgoing flows and rows 4 to 6 are features of incoming flows. Both

use bits per second (bps), packets per second (pps) and type of service (ToS) as

features. Note for any time bin there can be more than one flow active, thus the

values of bps and pps (either incoming or outgoing) for that time bin should be

respectively the sum of the bps and pps values of all flows active in that time bin.

The outgoing or incoming ToS feature for a time bin, however, is not numerical,

and its value is the ToS field (which is widely used for prioritizing traffic) and

TCP flag of the flow that has the largest bps value during the time bin. However,

because the usage of the ToS field has not been standardized, the ToS feature may

not be reliable to help produce a transaction fingerprint. As such, we also introduce

a 4×N matrix that does not include the ToS feature for incoming and outgoing

flows.
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Once a transaction fingerprint matrix is generated, it also must be

normalized. In BotFlowMon, we use the quantile normalization approach to map

every value in the matrix to a number between 0 and 255. Using the 6×N matrix

from Table 17 as an example, we learned the distributions of bps, pps and ToS

values using a 235-GB NetFlow dataset of campus traffic, obtained three functions

fr(bps), fg(pps), and fb(tos) based on the distributions, and then normalized the

bps, pps, and ToS values in the matrix to numbers between 0 and 255, respectively.

With all the values in a f×N transaction matrix between 0 and 255, we can

easily visualize it for inspection and analysis. We can generate an image composed

of two colorful bars in the standard RGB space, one for the incoming flows in the

transaction and one for the outgoing flows, where each bar has a length of N pixels.

In particular, we calculate the RGB value of pixel i (i=1,...,N) using all the values

from the i-th column of the matrix. For example, for the 6×N matrix in Table 17,

we can use the outgoing bps, pps, and ToS values in column i to derive the i-th

pixel for the outgoing bar in the image as (R,G,B) = (255-bps, 255-pps, 255-ToS),

which maps a bigger bps or pps value to a darker color.

Figure 34 is an example of visualizing a transaction fingerprint, which has

220 flows and represents a real user spending 35.74 seconds browsing Facebook.

The beginning and ending positions of the image correspond to the starting and

ending time of the transaction, respectively, with the upper bar about the outgoing

traffic and the lower bar about the incoming traffic.

Figure 35 shows more examples of visualized transaction fingerprints from

labeled ground truth. Transaction fingerprints in Figures 35a and 35b are two

Twitter users messaging each other through Twitter Direct Messages, where

Figure 35a is generated by a real user and Figure 35b is generated by a chatbot.
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Figure 34. Visualizing the fingerprint of a transaction lasting 35.74 seconds with
220 flows.

(a) (b)

(c) (d)

Figure 35. Transaction fingerprint image examples

Figure 35c is created by a social bot that uses APIs to tweet text messages every

3 seconds. Figure 35d is created by a bot that crawls the photo albums of friends

and posts spam links at the same time. We can clearly see distinguishable patterns

between the transaction fingerprints of a social bot and those of real users in terms

of color depth, frequency, regularity, and density.

4.3.5 Transaction Subdivision. Motivation. Now that we have

produced a normalized fingerprint matrix for every transaction, we observe there

can be countless types of transactions since every transaction may contain an

arbitrary number of actions of various types. In addition, each transaction can be

of an arbitrary duration ranging from a few seconds to a few hours, which can lead

to a huge amount of training data if to have enough training data for every possible

duration range.
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Design. We thus subdivide a transaction further into a sequence of

primitive, short-lived behaviors called actions. Compared to countless types of

transactions, there are only a limited number of types of actions, such as clicking

a Like button, sending a tweet, or submitting a comment. As we will illustrate,

as opposed to inspecting their transactions, it is much easier to differentiate social

bots from real users through their actions in transactions. Once we tell social bot

actions apart from real user actions, we can separate social bot transactions from

real user transactions.

To subdivide a transaction into actions, we design a new clustering

algorithm named density-valley-based clustering for this purpose. Compared

with other density-based clustering algorithms such as DBSCAN [142] and

OPTICS [50] that work by traversing density-connected areas, our algorithm

clusters data points by finding the density valley between adjacent clusters. It

does not require a density threshold parameter to conduct the clustering. Instead,

it uses a valley point index ρ to identify the boundary of two clusters. Besides,

our algorithm has a good performance in processing datasets whose density is not

uniform.

This algorithm uses the following terms:

1. Density of a data point: The density of a data point p is the summation of

the values of all data points within a radius of r from p. Using bps values as

an example, p.density =
∑

dist(x,p)<r x.bps.

2. Density of a cluster: A cluster’s density is the density of the point in the

cluster that has the highest density.
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3. Potential point of a cluster: Point p is a potential point of C if p is within

radius r of a point b∈C.

4. Valley point: A data point p is a valley point of multiple clusters if p is a

potential point of each of these clusters.

5. Valley point competition: When two clusters share a valley point, they

“compete” to include the valley point as its member, with two possible

outcome:

(a) The two clusters merge into a new cluster, with the valley point now

belonging to the new cluster;

(b) The two clusters keep separate, with the valley point assigned to the

cluster with less data points.

Here, the two clusters keep separate if the density of the valley point is lower

than a percentage ρ of, thus in sharp contrast to, the density of both clusters.

The algorithm works as follows, with its pseudocode in Algorithm 2. It takes

a dataset D and a radius threshold value (r) as input. Using the 6×N or 4×N

matrix from Section 4.3.4 as an example, D can be a set of data points where the i-

th data point has a bps value that is the sum of the outgoing bps and incoming bps

from the i-th column of the matrix. The algorithm then sorts all the data points in

D, processes all the data points in the descending order of density, and forms and

populates clusters with data points in D. If a data point is a valley point between

two clusters, the algorithm then decides whether to merge the two clusters or still

keep them using the valley point competition mechanism; if the two clusters do

not merge, we also identify the subdivision moment where the two clusters meet.
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Algorithm 2 Density-valley-based clustering algorithm.

1: Input: dataset D, radius threshold value r, valley point index ρ
2: C = ϕ ▷ C is a set to store clusters
3: Use r to calculate the density of each data point in D
4: D := Sort(D) ▷ Sort data in the decreasing order of density
5: for data point e in D do
6: if e is not a potential point of any cluster then
7: Label e as a member of a new cluster ce
8: Add cluster ce to C
9: else if e is a potential point of cluster ca then
10: Label e as a member of cluster ca
11: else if e is a potential point of two clusters {ci, cj} then ▷ Start the valley
point competition

12: if e.density≤ρ·min(ci.density, cj.density) then
13: Add e to ci or cj that has less data points
14: else
15: cnew = merge(ci, cj)
16: Add data point e to cluster cnew
17: Remove clusters ci and cj from C
18: Add cluster cnew to C
19: end if
20: end if
21: end for
22: return C

Finally, the algorithm outputs all the newly formed clusters. If D is a set of data

points from a transaction’s fingerprint, these clusters then represent actions of the

transaction.

After subdividing a transaction into actions using the algorithm, we further

ensure every action is short-lived according to the definition above. If an action

produced from the algorithm is longer than 60 seconds, we further divide it into

multiple actions at 60-second intervals.

Like a transaction represented by a transaction fingerprint matrix, an action

can be represented by an action fingerprint matrix, which has the same look as

a transaction fingerprint matrix as shown in Table 17.
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(a) Social bot. (b) Real user.

Figure 36. Transaction subdivision examples.

Figure 36 shows two transaction subdivision examples. Figure 36a shows by

subdividing the transaction fingerprint of a social bot (which is a post bot) into five

actions, every action has a more outstanding pattern than the original transaction

fingerprint. Figure 36b shows a transaction by a real user that is composed of two

actions, where one was opening an OSN site and the other was scrolling down the

page of the OSN site. We can see actions from real users present more complicated

fingerprint images than those from social bots, making them easy to differentiate.

Algorithm 2 is dedicated to low dimensional datasets, such as the

transaction fingerprint data. We further extend it in Appendix A to make it a

general clustering algorithm that can deal with multi-dimensional datasets.

4.3.6 Machine Learning & Classification. Motivation. With

transactions subdivided into actions, the main challenge now becomes classifying

transactions through their actions, while it is yet to be seen what models work best

for classifying actions. Also, we need to devise an architecture when applying a

model to process action fingerprints.
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Design. We first classify actions into social bot actions and real user

actions, and then classify the transactions based on how their actions are classified.

Action classification model. To classify actions we train an action

classification model. The input to this model is a set of action fingerprint matrixes

labeled as either social bot actions or real user actions. Since every action

fingerprint matrix is nonlinear and high dimensional, we use Conventional Neural

Network (CNN) [241] and Multilayer Perceptron (MLP) [205] as classification

models. (BotFlowMon is not bound to MLP and CNN and could use other machine

learning algorithms if applicable.)

CNN and MLP architecture. We use the Keras [16] library with

TensorFlow [17] to implement CNN and MLP architectures. Figure 37 shows a

CNN architecture that is composed of a convolution layer, a pooling layer and a

flatten step to transform a fingerprint matrix into the input of a fully connected

neural network, which consists of an input layer, multiple hidden layers (we

evaluate the optimal number of hidden layers in Section 4.4.2.3), and an output

layer to finally output the label for the fingerprint matrix. The MLP architecture

is similar to the fully connected neural network in the CNN architecture, with

the input layer being a flattened fingerprint matrix. For both architectures, the

hidden layers use Leaky ReLU as its activation function so the model can converge

quickly; the output layer uses the Sigmoid function to produce a probability that

the fingerprint matrix is from a social bot. In addition, we train the CNN and MLP

models with the stochastic gradient descent optimization algorithm and use the

backpropagation algorithm to update the neural network.

Transaction Classification. With the action classification model trained,

we then can classify if every action within a transaction is from a social bot or from
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a real user and decide whether the transaction is a bot transaction or a real user

transaction. Apparently, if all actions are from a real user (or a social bot), we

can safely determine the transaction is by a real user (or a social bot). However, a

transaction may consist of actions of both types. We thus decide that a transaction

is a bot transaction if more than a certain percentage of actions are from a social

bot, and a real user transaction if otherwise. We define this percentage as the

detection sensitivity rate γ of BotFlowMon.

1@6x200 (fingerprint matrix)

3@4x198

3@2x66

Output layer

1x396 (input layer)

1x198 (hidden layer)

1x99 (hidden layer)

1x33 (hidden layer)

Convolution Layer
(3x3 kernel)

Pooling Layer
(2x3 kernel)

Flatten

Fully Connected
Neural Network

Figure 37. The CNN architecture of BotFlowMon (with example parameters).

4.4 Evaluation

We now evaluate BotFlowMon. We first introduce the dataset used in

Section 4.4.1, then config and analyze parameters used in the BotFlowMon system

in Section 4.4.2, present detection results and analysis in Sections 4.4.3–4.4.6, and

finally discuss BotFlowMon’s performance in Sections 4.4.7.
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4.4.1 Data Source. The datasets we use to construct and test

BotFlowMon come from two sources: (i) the traffic generated and gathered from

our lab’s computers and routers, which is a small experimental platform that has

superior flexibility and convenience for simulation, data collection, and experiments;

and (ii) datasets generated and collected from the campus network traffic of a large

university, which offers data from realistic scenarios for analysis and verification.

We created and labeled the real user and social bot traffic flows as

follows. For real user traffic flows, we recruited participants to manually conduct

normal daily activities on Twitter and Facebook using our lab’s computers.

For social bot traffic flows, we deployed open-source social bot programs and

homegrown bot scripts on the experimental platform and the campus network to

conduct bot activities on Twitter and Facebook. We then collected and labeled

the corresponding traffic as the ground truth. As described in Appendix B,

we categorized social bots into five types according to their implementation

mechanisms and simulated all of them. Besides, since the development and

evaluation of BotFlowMon involved human subjects, we address the ethical and

human subject issues of this process in Appendix C.

Table 18 shows the composition of the collected data. We collected 28 GB

raw NetFlow data from our experimental platform and 507 GB raw NetFlow data

from the campus traffic, both containing all traffic flows in the environment. After

preprocessing, we had a dataset of 3.204 GB with 30,932,991 labeled NetFlow

records for training and testing. The ratio of social-bot transactions to real-user

transactions is approximately 7:3.

4.4.2 System Parameters Configuration and Analysis. The

BotFlowMon system includes multiple system parameters for its different modules.
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Table 18. Composition of collected data.

Raw NetFlow records

Size of data 535 GB (campus network: 507 GB, lab platform: 28 GB)

Labeled NetFlow records

Size of data 3.204 GB (987.710 MB if removing irrelevant fields)

# records 30,932,991

Number of transactions (social bot : real user ≈ 7:3)

Social bot 166,615 Real user 67,723

We first set up the empirical or default values for some system parameters in

Section 4.4.2.1. We then investigate two key parameters more specifically: the

radius threshold r in the transaction subdivision module in Section 4.4.2.2 and the

number of hidden layers in CNN and MLP in the machine learning & classification

module in Section 4.4.2.3.

4.4.2.1 System Parameters with Empirical or Default

Values. Based on our empirical studies (of which we skip the details for space

considerations), we set the following parameters as follows:

– For the flow aggregation module, we set the length of every time bin to be 0.1

seconds. This length provides a time granularity that is fine enough but not

too small to skyrocket the computation cost of the system. This parameter

is adjustable, as smaller time bins could lead to more precise results with a

higher computational cost.

– For the DBSCAN algorithm in the flow aggregation module, we set ϵ to be

10-20 seconds. According to the user behavior models from the network

perspective [336], users usually do not trigger NetFlow records in 10-20

seconds. This setup also helps us lean toward clustering the flows into
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transactions over a longer period rather than short ones, as the former is

more friendly with the transaction subdivision module. Further, we set

minPts to be 1500 bits, which is a relatively small value for OSN traffic [336]

in order to accommodate certain tiny streams between an OSN user and an

OSN server.

– For the transaction fingerprint generation module, we set N as 200. Note

a larger value of N will generate more accurate results but require more

training data and computations.

We also set the default values of the following parameters:

– For the transaction subdivision module, we define ρ in valley competition

mechanism to be 50% by default.

– For the machine learning & classification module, we set the detection

sensitivity rate γ at 50% by default.

4.4.2.2 Subdivision Efficacy and Its Radius Threshold (r).

We evaluated the transaction subdivision module to see whether our density-

valley-based clustering algorithm can divide the transaction fingerprints into

action fingerprints correctly. Specifically, we studied how different values of radius

threshold r in the algorithm could generate different subdivision results and

potentially affect the detection outcome. Figure 38 shows the purity scores of the

resulted clusters from subdivision with different r values. We use this formula to

calculate the purity scores: purity = 1
N

∑
k maxj|cktruth ∩ cjalgo|, where N is the

number of input data points, cktruth is the k-th cluster from the ground truth, and

cjalgo is the j-th cluster generated by the algorithm. From Figure 38, we can see

that the algorithm is indeed susceptible to the values of r and we can generate
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optimal results when r is in the range of 18 to 23. For transactions of social bots,

the subdivision module works well when r is in this range and can achieve more

than 0.90 purity of the resulting clusters. This is because social bots utilize APIs

heavily, making their transaction fingerprints easy to subdivide. For real user

transactions, however, the purity scores of the clusters derived from the algorithm

are lower and more sensitive to the variation of r than those corresponding to

bot transactions, with the maximal purity score to be 0.7832 when r = 26. One

reason is that the boundaries of different actions in real user transactions are blurry

in flow-level data. Almost all the OSN web sites preload content to real users

dynamically, which can cause irrelevant NetFlow records to occupy the gap between

actions and thus make the clustering in the algorithm less accurate.

However, the ultimate goal of subdivision is not partitioning all the

transactions precisely. Instead, it is designed to make data more friendly to the

machine learning process. We randomly sampled 100 real user transactions and 100

bot transactions, then recorded the number of actions and their average duration

for each transaction after subdivision. Figure 39 is the scatter diagram of the

result. We found that while the lengths of actions vary, actions from bots tend to

have a short duration (0 to 15 seconds) and actions generated by real users usually

have a long duration (0 to 40 seconds). Nonetheless, the durations of bot actions

and real user actions are comparable, which makes it easy to compress actions of

different durations into fingerprints of a fixed length and makes the subsequent

machine learning module easy to converge.

4.4.2.3 Number of Hidden Layers in CNN and MLP. We

investigated the optimal numbers of hidden layers of our CNN and MLP models

as this parameter can significantly affect the accuracy of the models. In this
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evaluation, we took 80% of the labeled data as the training dataset, 10% of the

data as the validation dataset, and the remaining 10% of the data as the testing

dataset. For both CNN and MLP models, we started with three hidden layers. We

trained each model with the training dataset and validated their accuracies with

the validation dataset. We then kept adding new hidden layers to each model and

repeated the procedure above until the validation accuracies converge.

Figure 40 shows the validation accuracies with different numbers of hidden

layers. We can see the validation accuracy of CNN is already acceptable when the

number of hidden layers is three and remains almost the same after it reaches nine.

The MLP model’s accuracy stabilizes when the number of hidden layers reaches

seven. Therefore, we set CNN’s default number of hidden layers at nine and MLP’s

default number of hidden layers at seven.
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Figure 41. Detection scores for different detection models.

4.4.3 Classification Accuracy. We evaluated different classification

models’ abilities in detecting social bot transactions. Figure 41 shows the test

results for machine learning & classification module with different classification

models. The test dataset contains 10% of the labeled data, which has 16,661 social

bot transactions and 6,772 real user transactions. Here, we use 6×200 transaction
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fingerprints which use incoming and outgoing bps, pps and ToS features. Both

CNN and MLP models can correctly classify more than 93% of the traffic flows.

However, CNN achieves a better significant result, with 96.1% of accuracy. One

reason for this phenomenon is that CNN has convolutional and pooling layers to

incorporate spatial information from action fingerprints, while MLP only takes

flattened vectors as input, which disregards such spatial information. Moreover, we

can clearly see that the subdivision procedure helps improve the accuracy for more

than 10%. Table 19 shows other detailed evaluation scores of MLP and CNN for

both 6 × 200 and 4 × 200 transaction fingerprints. We can see that CNN slightly

surpasses MLP under all scoring criteria.

Table 19. True/false positive/negative rates for social bot traffic detection.

MLP CNN
6× 200 4× 200 6× 200 4× 200

True positive rate 0.9358 0.9318 0.9665 0.9485
True negative rate 0.9260 0.9221 0.9468 0.9334
False positive rate 0.0739 0.0778 0.0531 0.0665
False negative rate 0.0641 0.0681 0.0334 0.0514

Overall, BotFlowMon can detect social bots with high accuracy. With low

false negative (or high true positive) rates as shown in Table 19, we can detect

every single social bot transaction with a high probability. In particular, because

a social bot usually creates multiple transaction fingerprints in a burst and we often

only need to identify one of them to be able to trace the social bot, our chance of

detecting the social bot is even higher.

A concern here is the false positive rates as we do not want BotFlowMon to

mislabel real user traffic. An active social network user may generate hundreds of

transactions per day, which means the false positive rate of the detection system
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needs to be low enough to avoid causing interruptions to real users. For this

purpose, we can leverage the detection mechanism in the machine learning &

classification module (Section 4.3.6); in particular, we can adjust the detection

sensitivity rate γ to achieve zero false positive rate, which we further investigate

in Section 4.4.4.1.

4.4.4 Putting BotFlowMon to Use. We now study if putting

BotFlowMon to use, what factors the user can config and adjust to suit their

environment and need and how they may affect the detection of social bots.

4.4.4.1 Detection Sensitivity Rate (γ). BotFlowMon allows its

detection sensitivity rate γ to be adjusted to achieve different false positive rates.

As stated in Section 4.3.6, given a sensitivity rate γ, BotFlowMon identifies a

transaction as a social bot transaction if the percentage of social bot actions in

the transaction is larger than γ. If we want to limit or eliminate false alarms, we

can increase γ to sacrifice the detection accuracy a little bit for an extremely low

(or even zero) false positive rate.

Figure 42 shows the accuracies and false positive rates of BotFlowMon with

both MLP and CNN models when different γ values are used. We found from our

experiments that the false positive rate of CNN will reach nearly zero when γ is

no less than 0.75 (while the true positive rate is 0.91). Similarly, the false positive

rate of MLP will reach zero when γ is no less than 0.85. If only when more than

75% of its actions are classified as bot actions will a transaction be labeled as a

bot transaction, BotFlowMon with CNN will not generate any false alarm, while

its accuracy will only drop down to 0.89. Therefore, a conservative approach to

deploying BotFlowMon is to set the detection sensitivity rate γ at 0.75 if using
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CNN (or 0.85 if using MLP), in which case the detection accuracy will be more

than 0.89 if using CNN (or 0.85 with MLP) with no false positives.

4.4.4.2 ToS Features. Due to reliability concerns with the ToS

features (see Section 4.3.4), BotFlowMon may need to run without such features.

We investigated BotFlowMon’s detection efficacy without them. We thus used

4× 200 transaction fingerprints which only included incoming and outgoing bps and

pps features. Figure 41 shows the results, where the overall accuracy is 0.944, which

is 1.7% lower than that with 6 × 200 transaction fingerprints. We can see without

ToS features, we can have a classification model that is not only more usable but

also still fairly accurate.

4.4.4.3 Detection with Sampled NetFlow Records. A reality

factor in running BotFlowMon against NetFlow records as input is that many times

due to computational and bandwidth pressure on routers, only sampled NetFlow

records are available. We thus investigated BotFlowMon’s accuracy with sampled

NetFlow records.

We applied two sampling methods over the original NetFlow data from

Table 18: time-based sampling that takes packets from a τ -second interval every

τ ·x seconds, and packet-based sampling that takes one packet every x packets. We

created multiple datasets using both methods with different sampling rates (i.e. 1
x
)

and run BotFlowMon using the CNN classification model with three hidden layers.

Figure 43 shows the results. We can see that as the sampling rate decreases the

accuracies drop dramatically. BotFlowMon still works well with a low sampling rate

at 1 in 32, but it becomes barely usable when the sampling rate becomes 1 in 64 or

lower. On the other hand, as we pointed out in Section 4.4.3, because a social bot

usually spawns multiple transaction fingerprints in a burst, among which only one
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needs to be identified to track down the social bot, we still have a reasonably high

chance to include at least some bot transactions in the sampled input and be able

to detect at least one of them.
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4.4.4.4 Detection with Less Training Data. It is laborious to

train a classification model with a large amount of labeled data. We investigated

BotFlowMon’s capability with less training data to understand the least amount

of training data that would still lead to acceptable performance. Specifically, we

removed different portions of data from the original training dataset and evaluated

BotFlowMon’s detection ability under each different training data size with default

parameter values. Figure 44a shows the results. We can see BotFlowMon maintains

a decent accuracy even after we removed 90% of the training data, but its accuracy

degrades significantly when it is more than 90%. In another words, to maintain

satisfactory performance the training needs at least 1500 transactions (250 MB)

from real users and also this much from every type of social bot.

4.4.4.5 Detection with Imbalanced Datasets. When deploying

BotFlowMon in different environments, the ratio of real user transactions to social
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bot transactions can change significantly. For instance, the proportion of social bot

transactions in a VPS provider’s network can be higher than that in residential

networks. We therefore generated ten test datasets with different ratios to evaluate

BotFlowMon’s detection performance under such scenarios with default parameter

values. Each of the generated test sets has 3000 samples. Figure 44b describes

BotFlowMon’s accuracy, precision, recall, and F1 scores with these test datasets.

We can see that when the proportion of real user transactions increases, the

accuracy and recall remain almost the same, but the precision and F1 score clearly

drop. This phenomenon is expected as the false positive samples will dominate the

detection errors when the number of false samples grows. To solve this problem, we

can adjust the detection sensitivity rate discussed in Subsection 4.4.4.1 to reduce

false alerts.

4.4.4.6 Selection of Parameters in New Environments. When

transferring BotFlowMon to a different network environment, users do not need

to reset the parameters if the following two conditions are met: (1) The input

NetFlow records are of the same version and configuration. (2) Users are going

to detect the same types of social bots on the same OSN sites. Otherwise, users

need to reset the parameter values or retrain the detection model. To quickly

set up the parameters in BotFlowMon and achieve acceptable performance in

such scenarios, we suggest the users to begin with default parameters and use a

conservative detection sensitivity rate γ (e.g.0.85 - 0.95). Such setting will sacrifice

the true positive rate to decrease the false positive rate, enabling users to detect

social bots to some extent while not being overwhelmed by false alarms. Later,

after other parameters (e.g.the neural network) are fine-tuned according to the
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environment, users can adopt a radical detection sensitivity rate (e.g.0.5 - 0.75) for

better accuracies.

4.4.5 Comparisons with Other Approaches. We have compared

BotFlowMon with other social bot detection approaches, specifically content-based

methods and structure-based methods (elaborated in Section 4.2). As illustrated in

Figure 45, they each operate using different input at a different granularity in order

to detect social bots.

We compared BotFlowMon with a content-based method described in [169],

which we refer as SpamFilter. It utilizes four types of content features to detect

social bots and achieves a true positive rate (TPR) of 80.8% and a false positive

rate (FPR) of 0.32%. By analyzing their experimental data, an OSN account

has to generate at least two transactions in order to create enough data to derive

values of these features for SpamFilter to conduct its detection. We thus compare

BotFlowMon with SpamFilter with two transactions.

As for structure-based methods, we selected SybilWalk [215] to compare,

which achieves a TPR of 96% and a FPR of 1.3%. Here, in order to have enough

data to derive values of features used by SybilWalk, an OSN account has to

conduct at least four transactions, including account creation, profile initiation,

and relationship establishment. We thus compare BotFlowMon with SybilWalk

with four transactions.

Figures 46a and 46b illustrate the comparison results, where BotFlowMon

uses the CNN model with 6 × 200 fingerprints and sets the detection sensitivity

rate γ at 0.75. We can see the following. When there is only one transaction,

only BotFlowMon can detect whether it is a social bot transaction with a TPR

of 91% and a FPR of 0.1%. When there are two transactions, BotFlowMon can
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detect whether there is at least one social bot transaction with a TPR of 99.1%

and a FPR of 0.2%, which is significantly better than SpamFilter’s TPR (80.8%)

and FPR (1.3%). And when there are four transactions, BotFlowMon can detect

whether there is at least one social bot transaction with a TPR of 99.9% and a

FPR of 0.5%, which is still significantly better than SpamFilter’s TPR (96.3%) and

FPR (2.6%) and is also better than SybilWalk’s TPR (96.0%) and comparable to

its FPR (0.3%). Overall, BotFlowMon outperforms both SpamFilter and SybilWalk

with less transactions needed, a higher TPR, and a higher or comparable FPR.
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Figure 47. Multiclass classification scores for different categories of social bots.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
TPT (s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Detection with ToS features
Detection without ToS features

Figure 48. Cumulative distribution functions of TPT (time per transaction).

0 20 40 60 80 100
Number of transactions

0

10

20

30

40

50

60

70

Ti
m

e 
(s

)

Classification
The rest
All

Figure 49. Performance of BotFlowMon and its modules (using CNN with ToS
features).

174



4.4.6 Feasibility Study on Multiclass Classification of Social

Bot Traffic. Besides identifying social bot traffic flows, we investigated whether

BotFlowMon may further classify the social bot traffic flows into different

categories of social bots. By using the transaction fingerprints of different

categories of social bots, we trained a multiclass CNN classification model that

labels a social bot transaction fingerprint as one of the five following categories:

chatbot, post bot, amplification bot, OSN crawler, and hybrid bot.

Figure 47 shows the multiclass classification scores for different categories

of social bots. We used a test dataset that contains 250 bot transactions, with

50 transactions for each category. The overall classification accuracy is 78%. We

can see from Figure 47 that this model achieves the best score for labeling OSN

crawlers. This is because OSN crawlers usually have high frequencies, large packet

sizes, and sharp contrast of outgoing and incoming traffic volumes, leading to the

most differentiable traffic flows among the five types of social bots. The scores for

chatbots and hybrid bots are less remarkable, but still decent. On the contrary,

it is relatively hard to distinguish traffic flows from post bots and amplification

bots; the API calls made by both types of bots, regardless of the functions invoked

(e.g.liking a post, posting a message, following an account), will result in almost

identical traffic flows.

In general, the accuracy for classifying categories of social bots is

significantly lower than that of detecting social bots. These two tasks are

fundamentally different. The former aims to classify the traffic as different types

of social bot traffic, while the latter is focused on classifying the traffic as real-user

traffic or social-bot traffic. Obviously, the difference between real-user traffic and

social-bot traffic is more significant and easier to distinguish.

175



4.4.7 Time Complexity and Performance.

4.4.7.1 Time Complexity. The time complexity of BotFlowMon is

O(n), where n is the total number of input NetFlow records. The detailed analysis

is in Appendix D.

4.4.7.2 Performance. We tested BotFlowMon’s performance to

see how fast it is in detecting social bot traffic. We tested it on a personal laptop

with a quad-core 2.7-GHz CPU, 16-GB memory, but no GPU. We ran it in a single

thread with the worst case for performance where every flow is an OSN flow.

We first evaluated how long it takes for BotFlowMon to process a single

transaction, or TPT (time per transaction). Note among the three factors we

analyzed in Section 4.4.4, only the ToS features will affect TPT. We thus measured

BotFlowMon’s TPT with both 6×200 and 4×200 transaction fingerprints.

Figure 48 shows the cumulative distribution functions (CDFs) of the TPT for both.

Clearly, the TPT with 4x200 transaction fingerprints is shorter, where TPTs with

6×200 and 4×200 transaction fingerprints are 0.71 and 0.49 seconds on average,

respectively.

Moreover, we measured the time spent on each module of BotFlowMon and

found that about half time of a TPT is spent on the classification step. For the

TPT with 6×200 transaction fingerprints, its 56.75% is from the final classification

step and its 43.25% is from the rest operations.

Finally, Figure 49 shows that as the number of transactions increases, the

total processing time increases basically linearly. Here, the processing time is the

total time for the classification and the rest operations. The linear increase of the

classification time is less stable than that of the rest operations, as the classification
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workload for each transaction depends on the number of its actions, which is

uncertain.

Clearly, there is an ample space to improve both hardware and software

support (e.g., using GPU and multithreading) for running BotFlowMon. Even

without doing so, BotFlowMon is already fairly fast to detect social bot traffic in

real time.

4.5 Discussions

In this section, we delve into the limitations and open issues associated with

BotFlowMon, in addition to exploring its potential applicability across a diverse

range of other applications.

4.5.1 Limitations and Open Issues. A primary contribution of

BotFlowMon is to use data from network layers 3 and 4 to detect anomalies at

network layer 7. However, BotFlowMon has some limitations:

1. As BotFlowMon is focused on distinguishing the social bot traffic from the

real user traffic, its ability to identify different categories of social bots is not

ideal (demonstrated in Section 4.4.6). To address this limitation, we could

consider using social bot traffic identified by BotFlowMon to trace relevant

OSN content and then leveraging the content to help classify social bots.

2. In fact, not all the social bots are necessarily malicious, and the boundary

between “good” bots and “bad” bots can be blurry. To distinguish social bots

with malicious intentions from innocent ones, not only will we very likely need

content data of these social bots, but we also will have to apply techniques

such as natural language processing to identify the intention behind a social

bot.

177



3. If the training data of BotFlowMon does not include traffic of certain social

bots, such as zero-day social bots, the system probably will not be able to

detect them.

4. Adversaries could potentially circumvent BotFlowMon by programming

their social bots to mimic the application-layer behaviors of real users, thus

generating traffic patterns indistinguishable from real user traffic. In such

scenarios, BotFlowMon might face challenges in accurately differentiating

social bot traffic from that of genuine users. However, it’s important to

note that such instances are relatively uncommon in reality, primarily

because replicating real user behavior is a complex task. Furthermore, real

users’ behaviors are typically inefficient concerning message dissemination

or information crawling. Therefore, social bots that attempt to mirror

these behaviors may struggle to achieve their intended goals with optimum

efficiency.

BotFlowMon may also be enhanced with new functions and capabilities:

1. We may explore adding more features to BotFlowMon to improve its

accuracy, such as the AS number of an IP, non-OSN traffic from the same

IP, and time of the day.

2. We may add an online learning capability to BotFlowMon to make it

adaptable to possible concept drifts.

3. We may study how to enhance BotFlowMon with adversarial machine

learning techniques such that it is resilient against social bots that try to

mimic real users.
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4.5.2 Methodology Generalizations. To identify social bot traffic

from real user traffic, BotFlowMon proposes several new concepts, techniques, and

traffic processing pipelines. These contributions can potentially be generalized to

other FGTA applications or even other domains.

4.5.2.1 Traffic reassembly. Given that individual NetFlow records

are insufficiently informative for detailed traffic differentiation, BotFlowMon

employs a strategy that reassembles NetFlow records into transactions and further

segments these transactions into actions for a more granular analysis. As detailed

in Section 2.3.1, various existing FGTA systems implement this traffic reassembly

process to obtain a more accurate representation of ongoing application or user

behaviors. Consequently, our proposed traffic reassembly process could potentially

be extended to additional FGTA applications such as website fingerprinting,

application usage analysis, or device identification. This, in turn, would enhance

the feasibility of utilizing flow-level traffic data in FGTA and improve classification

accuracy. Furthermore, we’ve introduced a density-valley-based clustering algorithm

to demarcate the boundaries of actions, as depicted in Algorithm 2 and 5. This

clustering algorithm can be applied as a general-purpose tool for clustering any

kind of data points and is particularly potent for handling datasets with uneven

density distributions.

4.5.2.2 Fingerprint generation. Given the inherent complexity

in directly processing traffic flow records using machine learning algorithms,

BotFlowMon introduces an innovative fingerprint generation process. This process

transforms a set of traffic flow records into a format more conducive to machine

learning algorithms (e.g., CNN, MLP, etc.). The traffic fingerprint generated is

not only easy to interpret but also simple to visualize, thereby aiding network
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administrators in comprehending the traffic patterns within their networks. This

method of fingerprint generation is versatile enough to be adapted to other FGTA

applications that utilize traffic flow records as inputs.

4.5.2.3 CNN for FGTA. BotFlowMon employs a CNN model to

classify traffic fingerprints as either social bot traffic or authentic user traffic. While

CNNs were initially conceived for image classification tasks, BotFlowMon evidences

their potential applicability in the FGTA domain, thereby achieving respectable

classification accuracy. Other FGTA applications may also stand to gain from the

deployment of CNNs, particularly those that necessitate nuanced differentiation

between various traffic classes.

4.6 Conclusions

As social bots become increasingly sophisticated and threatening, it’s crucial

to safeguard our online social ecosystems from potential disruptions or attacks.

In response to this, we propose in this chapter a method named BotFlowMon for

detecting social bots. This approach leverages FGTA and exploits the vast quantity

of networking data to accurately identify the traffic attributable to OSN bots. As

the networking data it processes are only information from network layers two and

three and contain nothing about OSN content and structure, BotFlowMon departs

from previous content-based, structure-based, and crowdsourcing-based solutions

and is a content-agnostic, privacy-preserving, and efficient approach.

BotFlowMon devises several new techniques and algorithms, including

an aggregation technique that derives transaction datasets from network flow

records, a data fusion technique that extracts features from transactions datasets,

and an innovative density-valley-based clustering algorithm that can both divide

a transaction fingerprint into multiple actions and serve as a general clustering
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algorithm like DBSCAN to process other types of data. It can identify traffic flows

from social bots with an accuracy of around 95%. It is also easy to deploy; any

Internet service provider or enterprise networks, as long as they are able to access

the traffic flow records such as NetFlow, can deploy BotFlowMon. Besides, it can

monitor traffic of a network and detect social bots in real time; the study of the

worst case on a testing machine shows BotFlowMon can determine whether a flow

is from a social bot or not within 0.71 seconds on average after it sees the flow.

Additionally, this chapter broadens the application scope of FGTA, further

demonstrating its versatility and effectiveness in the field of cybersecurity. Through

these expanded use cases (Chapter III and IV), we showcase FGTA’s adaptability

to various cybersecurity challenges.
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CHAPTER V

ON EXPLAINABLE AND ADAPTABLE DETECTION OF DISTRIBUTED

DENIAL-OF-SERVICE TRAFFIC

Usability is another crucial aspect of FGTA. In this context, the usability

of FGTA encompasses not only the accuracy, scalability, and efficiency of the

FGTA system, but also its explainability and adaptability. Explainability refers

to the system’s ability to elucidate its decisions or results to users, enabling them

to comprehend the system’s operations, verify its correctness, and, if necessary,

intervene. Adaptability, on the other hand, speaks to the system’s capability to

adjust to new environments or scenarios without necessitating system retraining,

thereby facilitating users to readily deploy the system in novel environments or

situations. Regrettably, these vital elements are often neglected or insufficiently

addressed in existing FGTA literature and systems.

In this chapter, we demonstrate, through a practical case study, how to

augment the explainability and adaptability of FGTA, making it more practical

and applicable in real-world scenarios. Specifically, we introduce a novel FGTA

approach for classifying DDoS traffic, which is characterized by its superior

explainability and adaptability. The proposed detection approach outputs

explanatory information that enables network administrators to easily inspect

detection results and make necessary interventions. Moreover, this approach is

adaptable in that users do not need to retrain the detection model to have it fit

with a new network environment.

This chapter is derived in part from the following published and unpublished

articles:

182



– Unpublished as Yebo Feng, Jun Li, Devkishen Sisodia, and Peter Reiher.

“On Explainable and Adaptable Detection of Distributed Denial-of-Service

Traffic.” IEEE Transactions on Dependable and Secure Computing, 2023. In

submission.

– Published as Yebo Feng, and Jun Li. “Toward explainable and adaptable

detection and classification of distributed denial-of-service attacks.” In

Deployable Machine Learning for Security Defense: First International

Workshop (MLHat 2020), Proceedings 1, pp. 105-121, 2020 [149].

– Published as Yebo Feng, and Jun Li. “Towards explicable and adaptive

DDoS traffic classification.” In The 21st Passive and Active Measurement

Conference as poster, 2020 [150].

I am the leading author of the above articles. Most content of this chapter was

written by me, and I was responsible for conducting all the system designs,

implementations, evaluations, and the presented analyses.

5.1 Introduction

Distributed denial-of-service (DDoS) attacks pose a severe security problem

on today’s Internet and can render servers, network infrastructure, and applications

unavailable to their users. They overwhelm the targeted machine or network

resources with excessive traffic, thereby preventing legitimate traffic from being

processed [14]. Cisco indicated in their March 2020 white paper [29] that the

frequency of DDoS attacks had increased more than 2.5 times and the average size

of DDoS attacks had approached 1 Tbps over the last three years.

Of foremost importance in DDoS defense tasks are to detect DDoS, classify

DDoS sources, and do so accurately and quickly. Decades of research and industry
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efforts have led to a myriad of DDoS detection and classification approaches.

In recent years, many researchers have begun to harness machine learning

algorithms, such as support vector machine (SVM), Naive Bayes, convolutional

neural network (CNN), etc., on big data in detecting and classifying DDoS attacks

(e.g.[361, 435, 131]). The evaluations of such approaches demonstrate their strong

ability in extracting useful knowledge from massive training data and decent recall

scores in detecting a variety of DDoS attacks.

Unfortunately, the negative aspects of most learning-based approaches

are also apparent. Firstly, many learning-based approaches may not be well-

suited for practical applications, as their detection results are often difficult to

interpret, resembling black boxes [138, 100]. As a result, extracting explanatory

information from the detection outputs generated by these methods (e.g., deep

neural networks and deep recurrent neural networks) is challenging. In real-world

deployments, network administrators particularly need good explainability, as

they usually have to manually review and verify DDoS detection results, including

eliminating false alarms and avoiding severe collateral damage due to filtering

traffic from legitimate users. This is especially true for large-scale networks, such

as Internet service providers (ISPs) and Internet exchange points (IXPs), where a

single filtering rule can disconnect a considerable number of IP addresses, making

network administrators hesitant about which actions to take. According to previous

literature [132, 334, 374] and our analysis (Section 5.3), detection approaches

with useful explanatory information should possess three features to help network

administrators make appropriate and timely decisions:
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– Transparency: The detection model should allow users to gain clear insight

into the traffic processing procedures, intuitively illustrating all network

contexts and situations.

– Traceability: The detection outputs should help users quickly understand

the detection logic and indicate root causes.

– Heuristic: The detection outputs should help users make applicable decisions

to address the ongoing attack by quantifying the attack status, attack

intensity, and the mitigation cost-effectiveness.

However, most existing DDoS detection approaches struggle to meet these

requirements.

Secondly, most learning-based approaches lack adaptability. Their

performance is heavily dependent on the coverage and applicability of the training

data. Considering that DDoS attacks are diverse and network traffic regarded as

DDoS in one environment might be considered legitimate in another (and vice

versa), few of the current learning-based approaches can effectively adapt a DDoS

detection model trained in one environment to fit in a new network environment.

This limitation leads to poor detection accuracy or the need for lengthy retraining.

To address these missing gaps, we design a machine-learning-based DDoS

detection and classification approach that is not only effective, but also explainable

and adaptable. Specifically,

1. With network traffic flows summarized into traffic profiles, our approach

can detect an DDoS attack (i.e.detection) and identify DDoS sources

(i.e.classification) accurately and quickly. To detect DDoS, it enhances the

k-nearest neighbors (KNN) algorithm to place traffic profiles into different
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regions into the searching space and can categorize traffic profiles to be

benign or malicious and detect if the current traffic profile corresponds to

a DDoS attack. Furthermore, to improve the efficiency of the detection

process, it introduces a k-dimensional (KD) tree algorithm to convert the

KNN detection model into a semi-decision tree, which significantly reduce

the time complexity of traffic monitoring to O(d) in most cases, where d is

the depth of the semi-decision tree. If a DDoS attack is detected, to identify

DDoS sources, it will sort the traffic sources (i.e.senders’ IP addresses) based

on risk levels to minimize collateral damage, and iteratively identify and

remove the malicious IP addresses until the traffic profile returns to a benign

position in the KNN searching space.

2. Our approach is highly explainable, characterized by its transparency,

traceability, and heuristic qualities. These attributes enable the generation

of intuitive explanatory information, allowing network administrators to easily

understand and act upon them. Upon detecting a DDoS attack, our approach

not only sends an alert message but also provides a risk profile, a visual

detection model, and a status graph to elucidate the attack. The risk profile

represents the shortest Euclidean distance from the current traffic profile to

a benign region in the KNN search space, assisting network administrators in

quantifying the attack’s magnitude and the associated mitigation costs. The

visual detection model clarifies the detection logic, network context, and root

causes by illustrating the relative distances from the current traffic profile

to illegitimate and legitimate groups. Generated using principal component

analysis (PCA) projection, the status graph concisely and intuitively depicts

the attack stage, intensity, and cost-effectiveness of mitigation efforts.
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3. Our approach is adaptable in that the detection and classification model

derived in one environment can port to another environment without re-

training. It allows direct modifications on the KNN searching space and

enables users to leverage a variety of prior knowledge to evolve the detection

model.

We evaluated our approach in both simulated environments and the real

world. We first trained and evaluated our detection model with representative

DDoS datasets in simulation environments. The results indicate that the detection

model can achieve an accuracy of 0.956 and a recall score of 0.920 even when

detecting some application-layer DDoS attacks. We then conducted a human

subject study with questionnaire surveys to evaluate its explainability. The results

demonstrate that the explanatory outputs can effectively help users understand

not only the intensity, stage, and confidence level of the attack, but also can help

them make suitable mitigation strategies quickly. Furthermore, as this approach

is easily adaptable to a new environment, we transferred the model (with merely

some measurement data as input) to a real-world network environment at the Front

Range GigaPoP (FRGP) [5], a regional IXP in USA. We successfully detected

most of the real-world DDoS attacks from February 24 to May 21, 2020, which we

verified with the IXP. The latency of detection is also low—e.g.with a throughput

of 100 Gbps, our approach can complete detection in around five seconds.

The structure of this paper is organized as follows: We commence by

introducing relevant work in Section 5.2, followed by the presentation of the threat

and defense model in Section 5.3. Subsequently, we elucidate our method design in

Section 5.4. Evaluation of our approach is discussed in Section 5.5. We then turn
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our attention to the limitations and potential broad applicability of our approach in

Section 5.6, and we conclude the paper in Section 5.7.

5.2 Related Work

Using network traffic data to detect DDoS attacks is a technique that

is widely used in the security community. From the perspective of operating

principles, we can further classify the existing DDoS detection approaches into

statistical approaches, rule-based approaches, learning-based approaches, and soft-

computing-based approaches. We discuss the advantages and disadvantages of each

approach in detail.

5.2.1 Statistical Approaches. Statistical approaches detect DDoS

attacks by exploiting statistical properties of benign or malicious network traffic.

These approaches are straightforward and dominated the early development of

DDoS detection. Generally, these approaches build a statistical model of normal

or malicious traffic and then apply a statistical inference test to determine if a new

instance follows the model [70]. For example, D-WARD [273] uses a predefined

statistical model for legitimate traffic to detect anomalies in the bidirectional traffic

statistics for each destination with periodic deviation analysis. Chen [91] proposed

a DDoS detection method based on the two-sample t-test, which indicates that the

SYN arrival rate of legitimate traffic follows the normal distribution and identifies

a DDoS attack by testing the distribution compliance. Zhang et al. [438] proposed

a detection method by applying the Auto Regressive Integrated Moving Average

model on the available service rate of a protected server.

Statistical approaches can provide interpretable results by outputting

abundant metrics to describe the current network situation, such as shown in

Figure 50. These metrics primarily function as network measurements, assisting
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Figure 50. Partial outputs of Kentik [6], a popular traffic monitoring tool that can
detect and mitigate DDoS attacks.

network administrators in grasping the network context. However, they are often

not arranged in a concise and heuristic manner that would enable the identification

of root causes and cost-effective mitigation strategies. As a result, skilled analysts

are still indispensable for extracting valuable insights from these metrics to not only

understand the importance of the alarms but also determine the appropriate course

of action. Another limitation of statistical approaches is that as DDoS attacks

evolve, traffic generated by sophisticated DDoS attacks may not always exhibit

significant statistical deviations across various aspects. Consequently, traditional

statistical DDoS detection methods might struggle to accurately identify modern

DDoS attacks.

5.2.2 Rule-based Approaches. Rule-based approaches formulate

noticeable characteristics of known DDoS attacks and detect actual occurrences

of such attacks based on those formulated characteristics. For example,
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NetBouncer [373] detects illegitimate clients by conducting a set of legitimacy tests

on the clients; If a client fails to pass these tests, it will be considered malicious

until a particular legitimacy window expires. Wang et al. [396] detect DDoS with

an augmented attack tree (AAT), which captures incidents triggered by DDoS

traffic and the corresponding state transitions from the view of network traffic

transmissions. Limwiwatkul et al. [253] detect ICMP, TCP and UDP flooding

attacks by analyzing packet headers with well-defined rules and conditions.

However, due to the growing diversity of DDoS attacks, rule-based approaches

face challenges in summarizing and formulating the features of all possible attack

types. Consequently, they are being gradually replaced by learning-based or soft-

computing-based methods.

5.2.3 Learning-based Approaches. Over the past few years, more

and more researchers have begun to leverage machine learning techniques to model,

mitigate, and detect DDoS attacks (e.g., [131, 195, 436, 260, 154, 338, 230, 55, 270,

412]). Some of these methods (e.g., [244, 446, 68]) utilize unsupervised learning

algorithms to distinguish anomalies from normal traffic, as such algorithms do

not require training before the detection. However, unsupervised-learning-based

approaches are sensitive to the selected features and the background traffic. On the

other hand, supervised-learning-based approaches may struggle to provide users

with explainable detection results, as the prevalent machine learning algorithms

(e.g., linear regression [276], multilayer perceptron [172], convolutional neural

network [232], graph convolutional network [86], etc.) often resemble black boxes

in their functionality. In real-world deployments, explainable results are critical for

attack mitigation, because network administrators usually need to manually review
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the detection results in order to eliminate false positives and maintain the usability

of their network infrastructure.

Recently, there has been a surge of efforts aimed at enhancing the

explainability of machine learning algorithms. For example, Nguyen et al. [286]

proposed a machine learning-based anomaly detection approach capable of

informing users about the types of detected anomalies and the significant

features contributing to the detection process. Ribeiro et al. [322] introduced

Local Interpretable Model-agnostic Explanations (LIME), which offers insights

into machine learning model predictions by generating locally interpretable

explanations, enabling users to better comprehend the decision-making process of

complex models. Additionally, Lundberg et al. [262] presented SHapley Additive

exPlanations (SHAP), a unified method for explaining the output of various

machine learning models. Nevertheless, some of these approaches have not been

implemented for DDoS detection, some of their explanations may not be suitable

for DDoS detection scenarios, or some may not completely fulfill the transparency,

traceability, or heuristic requirements.

In addition, the applicability of these machine learning algorithms highly

depend on the training data and training environment, which means it is difficult to

quickly transfer a detection model trained in one network environment to another

network environment.

Therefore, although most learning-based approaches are usually accurate in

detecting DDoS attacks, they are not easily deployable in real-world environments.

As opposed to these previous learning-based approaches, our approach focuses on

the explainability and adaptability of the detection model.
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5.2.4 Soft-computing-based Approaches. Soft computing is a

term for describing the use of approximate calculations to provide imprecise but

usable solutions to complicated computational problems. Such approaches match

the general goal of DDoS detection, which is to identify attack sources while

allowing only a few false positives and false negatives. Soft computing approaches

can be an ensemble of statistical, rule-based, and learning approaches. For example,

Jalili et al. [213] use statistical preprocessing to extract features from the traffic,

and then utilize an unsupervised neural network to classify traffic patterns as either

malicious or legitimate. Kumar et al. [233] utilize a resilient back propagation

neural network as the base classifier, then propose RBPBoost to combine the

outputs, and Neyman Pearson cost minimization strategy to generate the final

classification decision. Shiaeles et al. [344] detect DDoS attacks based on a fuzzy

estimator using mean packet inter-arrival times within 3-second detection windows.

Just like learning-based approaches, soft-computing-based approaches also have the

disadvantage of poor explainability, making them difficult to deploy in real-world

scenarios.

5.3 Threat and defense models

In this section, we begin by presenting the threat models associated with

DDoS attacks, followed by a description of the defense model of the proposed

approach.

5.3.1 Threat model. DDoS attacks are malicious efforts aimed

at disrupting the normal operation of a targeted server, service, or network by

inundating it with an overwhelming volume of internet traffic. These attacks are

carried out by multiple systems, often compromised by malware and controlled

by a single attacker known as a botmaster. The compromised systems, referred to
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as bots, constitute a network called a botnet. The primary objective of a DDoS

attack is to render the target’s resources inaccessible to legitimate users, resulting

in downtime and potential financial or reputational harm.

Regarding attack methodologies, DDoS attacks can be categorized into three

main types:

– Volumetric attacks strive to overwhelm the target’s bandwidth by

generating an immense volume of traffic, impeding legitimate users from

accessing the targeted service. Examples of volumetric attacks include UDP

floods and ICMP floods [441].

– Protocol attacks leverage vulnerabilities in network protocols to consume

resources or cause network disruptions. Examples of such attacks include

SYN floods, which target the TCP handshake process, and Ping of Death

attacks that transmit oversized ICMP packets [329].

– Application-layer attacks focus on specific applications or services,

overloading them with seemingly legitimate requests. These attacks demand

fewer resources for execution but may pose greater challenges in detection and

mitigation. Examples include HTTP GET floods, Slowloris attacks, and DNS

query floods [310].

DDoS attacks can cause significant harm to victims, leading to service

disruptions, revenue loss, reputational damage, and increased security expenses.

Therefore, it is crucial for organizations to implement strong security measures to

minimize the impact of such attacks.

5.3.2 Defense model. The defense model of the proposed approach

operates as follows:

193



1. Initially, the network administrator deploys the proposed approach on the

network to be secured. It is important to note that this network may differ

from the one where the approach was trained.

2. The approach continuously monitors network traffic, identifying any DDoS

attacks aimed at targets within the protected network.

3. Upon detecting a DDoS attack, the approach classifies the DDoS traffic and

sends the classification results as mitigation rules to upstream routers or

Internet service providers.

4. The mitigation rules typically include malicious IP addresses/IP prefixes

or malicious traffic flows. These rules are then applied to network traffic to

alleviate the DDoS attack, preventing it from reaching its intended victim.

5.3.2.1 Adaptability to the network to be secured. The network

requiring protection might not be the same as the one on which the approach was

trained. This can occur when the approach is trained using a public dataset that

may not accurately represent the specific network to be secured. Consequently, it

is essential for the approach to rapidly adapt to the network in need of protection

without necessitating extensive time, a large volume of training data, or numerous

fine-tuning processes.

5.3.2.2 Minimizing Collateral Damage and Verifying Results.

In the context of DDoS attacks, collateral damage refers to the unintended

consequences of mitigation rules on legitimate traffic. If a rule inadvertently blocks

a valid IP address, it can disrupt genuine traffic, potentially causing more harm

than allowing malicious traffic to reach the intended target.
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To minimize collateral damage, network administrators typically need to

manually verify detection results before implementing them as mitigation rules (at

steps 2 or 3). Several factors should be considered during the verification process,

including:

– Network Context: Administrators should evaluate the network context,

taking into account factors such as attack intensity, the number of attack

sources, current network throughput, and more. This information is vital for

understanding the attack’s impact and the necessity of mitigation, allowing

for appropriate planning and next steps.

– Detection Logic: Understanding the detection logic of the chosen

approach is essential for administrators to determine the reliability of the

results. Additionally, this information can help identify the root cause

of the attack, aiding in the elimination of potential false positives. For

example, during high-traffic periods, duplicate user requests may be

misclassified as application-layer DDoS attacks (i.e., flash crowds). This type

of misclassification can be avoided by quick verification.

– Mitigation Cost-Effectiveness: Since mitigation rules can lead to

collateral damage and additional costs, administrators should weigh the cost-

effectiveness of the proposed rules. In some cases, even when the network

is under attack, the system may have enough redundancy to cope during

periods of low activity. In such instances, administrators may opt not to

apply mitigation rules to avoid unnecessary collateral damage.

Thus, the proposed approach should offer adequate explanations to aid

administrators in verifying the results. Specifically, it needs to be transparent for
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Figure 51. Operational model of the proposed approach.

assessing the network context, traceable for understanding the detection logic,

and heuristic for evaluating the mitigation cost-effectiveness and formulating an

appropriate plan.

5.4 Design

In our approach, DDoS detection and classification occurs at the victim

end, on a vantage point that sees all the traffic to and from the victim. It can

stream explanations along with detection results to the network administrator and

allow interventions to the detection pipeline. Figure 51 illustrates our approach’s

operational model. It has three components: the preprocessing module, detection

module, and classification module.
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First, the preprocessing module inputs packet or flow-level traffic data from

the router that runs widely used traffic capture engines, such as NetFlow [102] and

sFlow [307]. It monitors the traffic in batches. Each batch is a uniform time bin, t,

which is also the most basic detection unit of our approach. In our implementation,

we set each batch as 5 seconds. During each batch, the preprocessing module

extracts features from the input data stream to form different types of overall

traffic profiles. A traffic profile can be denoted as s, with s = {f1, f2, f3, ..., fn},

where fn denotes the value of the n-th feature during a batch t. The features in s

depend on the detectors we use, as each detector may need a different traffic profile

with different features.

Our approach then works in two phases: the detection phase (illustrated in

Figure 52) and classification phase. In the detection phase, the detection module

detects whether the network is under a DDoS attack. To provide comprehensive

protection to the victim, our approach can employ multiple detectors, with each

focusing on certain types of DDoS attacks. Once a DDoS attack is detected, the

detection module outputs both detection results and explanations to ongoing

attacks. The network administrators can review and verify the detected attack

according to the explanatory information, thereby choosing to intervene in the

attack defense procedure or allow our approach to automatically deal with the

attack. In the end, the classification phase begins by pinpointing the IP addresses

of attackers for future actions. In this phase, the classification module generates

a traffic profile p for every individual IP address and classifies traffic at a fine

granularity according to IP traffic profiles.

5.4.1 Detection Phase. The goal of the detection phase is to

determine whether a DDoS attack is present according to the current traffic
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profile s. We use the KNN algorithm [442] to achieve the goal, as this algorithm is

straightforward and reliable. The KNN algorithm is a non-parametric method used

for classification, which finds the k nearest neighbors of the traffic profile s and

uses their classifications to vote for the label of s. Users can also choose to build

multiple KNN detection models to detect a variety of DDoS attacks, as Figure 51

and 52 show.

In our implementation, we built four distinct detection models to identify

TCP SYN floods, ICMP floods, UDP reflection and amplification attacks, and

application-layer attacks, respectively. Each model utilizes different features

and training data. The rationale behind constructing multiple KNN models to

address different attacks, rather than developing a single complex KNN model, is

to circumvent the curse of dimensionality [165] and overfitting. A detection model

capable of handling various types of attacks generally needs to process data in

high-dimensional spaces since it must encompass all the essential features of each

individual attack. Nonetheless, an increase in the dataset’s dimensions can render

the search space sparser. Consequently, we would require significantly more training

data to cover the search space; otherwise, the detection model’s accuracy would

be unsatisfactory. To overcome this issue, we build multiple KNN models to cover

different attacks, with each model using only a few features.
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Besides, users are able to adjust the voting mechanism of the KNN

algorithm to get detection results with higher confidence, thereby reducing the

number of false alarms in real deployments. More specifically, our approach labels

the current traffic profile as malicious if more than ρ of the k nearest neighbors in

the KNN searching space are malicious. We can set ρ as a number larger than 0.5

so that the detection standards will be more rigid. For example, we set ρ as 0.75 in

the evaluation to eliminate the false positive rate.

However, the KNN algorithm has a notable drawback. Although the model

training time is minimal, the prediction requires a time complexity of O(nlogn) to

complete, as it needs to enumerate the data points in the search space to find the k

nearest neighbors. To address this issue, we leverage the KD tree [281] to partition

the search space, thus reducing the number of data points to enumerate. With the

KD tree, when an incoming traffic profile arrives, we only need to search a sub-area

to predict the result. Figure 53 illustrates a simple example where only two features

are included in the training and prediction process.

Furthermore, according to our experimental results, most DDoS profiles

exhibit relatively large differences compared to legitimate traffic profiles. This leads

to an intriguing observation that most of the search areas partitioned by the KD

tree contain either benign traffic profiles or malicious traffic profiles. As shown

by the red and green areas in Figure 53, we define a search area as a confirmed

area if one type of traffic profile dominates the area and the number of any other

type of traffic profile is smaller than ρk. If the current traffic profile s falls within a

confirmed area, we can directly label the profile s with the identity of the confirmed

area without conducting any KNN queries. As a result, we transform the original

KNN query process into a semi-decision tree. The detection module will only
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trigger the search for nearest neighbors when the traffic profile s falls within an

unconfirmed area. If anomalies do not occur frequently, this semi-decision tree data

structure can reduce the time complexity for traffic monitoring to nearly O(d),

where d is the depth of the tree.

However, the use of the KD tree may lead to a slight decrease in detection

accuracy. This is because the search space is partitioned into multiple sub-areas,

which may result in inaccurate results when the traffic profile s falls on the

boundary of two sub-areas. Nonetheless, for most DDoS attacks, legitimate traffic

profiles have relatively large distances from malicious traffic profiles, leading to a

significant margin between the two types of traffic profiles, thereby minimizing the

impact caused by the KD tree. Moreover, by employing multiple models to detect

different types of DDoS attacks, we ensure clear decision-making for each detection

model, which further minimizes the impact brought by the KD tree on detection

accuracy.

5.4.2 Explainability & Manual Intervention. Once our approach

detects a DDoS attack, it not only outputs an alert message, but also employs an

interpreter (as shown in Figure 51) to export transparent, traceable, and heuristic

explanatory information to explain and quantify the attack. Such information

includes a risk profile, a visualized KNN model, and a status graph. According

to these outputs, network administrators can know the attack type, detection

logic, intensity, status, confidence level of the alarm, and the cost of mitigations.

Unlike some statistical approaches that provide too many metrics that can easily

overwhelm network administrators, our method aims to output concise information

and intuitive explanations with the help of appropriate visualizations. With a small

amount of training, network administrators can understand the current situation

201



within seconds on the basis of the interpreter’s outputs, and therefore are able to

quickly make manual interventions to the detection decision. Furthermore, network

administrators can choose to either reject or approve the detection results. Of a

particular note is that this manual intervention is optional. If the administrator

does not intervene within a certain amount of time, the system will automatically

execute the decisions of detectors.

5.4.2.1 Risk Profile. The risk profile ∆ (where ∆ = (m, δ)) is a tuple

that provides the network administrators with a quantified and traceable summary

about the current attack, indicating the primary cause and intensity, which meets

the traceability requirement in the paradigm of explainability. Here, m is the name

of the feature in the traffic profile s that primarily causes the DDoS attack. This

attribute helps the network administrator determine the attack type. For example,

if m is the ”number of inbound ICMP packets”, the victim is likely facing an ICMP

attack and being overwhelmed by abundant incoming ICMP packets. δ is the

smallest value by which feature fm needs to be reduced to make the traffic profile

s move to a benign position. In other words, δ is the shortest distance on fm from

the current traffic profile to a legitimate traffic profile in the KNN searching space.

For example, ∆ = (”number of inbound ICMP packets”, 8500) means the victim

is currently under an ICMP flooding attack and we need to eliminate at least 8500

inbound ICMP packets per five seconds to mitigate the attack.

To figure out ∆ for a given traffic profile s that has been labeled as DDoS

attack by a detector D, we need to first find the closest benign traffic profile l in

the KNN searching space of D. To achieve this, we conduct a breadth-first search.

Then, we normalize s and l to ensure that features belonging to both profiles are
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directly comparable. In the end, we use Equation 5.1 to calculate δ and m.

s∆ = snormalized − lnormalized,

m = max(s∆).FeatureName,

δ = max(s∆).

(5.1)

In a few cases, the interpreter may find multiple risk profiles from multiple

detectors, which means ∆ = {(m1, δ1), (m2, δ2), ..., (mn, δn)}. We consider

that the victim is facing either flash crowds or severe hybrid attacks under this

circumstance, as the traffic volume significantly exceeds the infrastructure’s

capacity in multiple aspects. Here, flash crowds are large surges of legitimate traffic

focusing on specific sites on the Internet over a relatively short period of time [248].

5.4.2.2 Visualized KNN Model. To fulfill the transparency

requirement and provide network administrators with a clear understanding of the

detection model, network context, and detection logic, the interpreter will visualize

the KNN detection model in addition to the detection results. As the training and

input datasets are usually of high dimensionality, the interpreter will only include

three most important features of the datasets to draw a three-dimensional plot.

Besides, the network administrator can choose to change the visualized features to

inspect the situation from different aspects.

Such a visualized KNN model is informative. From the visualization,

network administrators can observe relative distances from the current traffic

profile to benign and malicious groups. According to this information, network

administrators can obtain intuitive understandings regarding the detection logic,

attack severity, and victim status. We further evaluate the explainability of the

visualized KNN model in Section 5.5.3.
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5.4.2.3 Status Graph. To facilitate rapid decision-making by network

administrators based on current conditions and the cost-effectiveness of mitigation

measures, the interpreter generates a status graph that provides a concise and

intuitive representation of the attack stage, intensity, and confidence level of the

alarm.

Preparatory
stage

Stalemate
stage Overwhelming stage

3217 464 2288 5040 7793 10545 13297 16050
Value of the principal component

(positively correlated with attack intensity)

0.7
0.8
0.9
1.0
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y
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x

Figure 54. The status graph of a SYN flood detector. Red dots represent attack
traffic profiles. Blue dots represent legitimate traffic profiles. The dark green
vertical line represents the current traffic profile.

Figure 54 shows a status graph example. It consists of two subplots. The

upper one uses principal component analysis (PCA) [415] to map the training

and input datasets to a one-dimensional space. PCA is a technique widely used

for dimensionality reduction by projecting each data point onto only the first

few principal components to obtain lower-dimensional data, while preserving as

much of the data’s variation as possible. More specifically, for a k-dimensional

DDoS training dataset D ∈ RN×k, the interpreter uses PCA to learn a linear

transformation shown in Equation 5.2.

T1 = DW1, T2 ∈ RN×1. (5.2)
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Then, for the incoming traffic profile s, we use Equation 5.3 to map it onto a two-

dimensional space.

r = W T
1 s, s ∈ R1×k, r ∈ R1×1. (5.3)

In the end, our approach visualizes this one-dimensional dataset {r} ∪ T1, labeling

DDoS traffic profiles, legitimate traffic profiles, and the input traffic profile with

different colors. In other words, it is a reduced-dimensional KNN model. Network

administrators can quickly learn relative spatial relationships between the current

traffic profile and attack/legitimate traffic profiles from this plot.

The subplot below illustrates the anomaly index κ. This value indicates the

confidence level of the detection result. The closer this value is to one, the more

likely it is that the detected attack is a true positive. Since all of the alarms are

detected by the KNN model, the base value of κ is equal to ρ. Then, our approach

utilizes a window to move from left to right in the upper subplot, checking the

number of attack and legitimate traffic profiles within the window to calculate κ.

κ = ρ+ (1− ρ)
nm

ni + nm

. (5.4)

Equation 5.4 shows the calculation of the anomaly index κ, where nm denotes the

number of malicious traffic profiles within the window and ni denotes the number

of legitimate traffic profiles within the window.

In addition, by analyzing the training data, our approach divides the status

graph into three stages from left to right:

– Preparatory stage: the attack is still in its infancy. Its intensity is low.

The network administrator can choose to ignore this attack if conducting

conservative defensive measures.

205



– Stalemate stage: the attack is still under the infrastructure’s capacity,

but it is starting to cause a noticeable impact on the network. Network

administrators should mitigate the attack if conducting rigorous defensive

measures. However, network administrators can still ignore this attack if they

are more concerned about collateral damage caused by mitigation.

– Overwhelming stage: the attack is overwhelming the network, the network

administrator should immediately take mitigation measures to protect the

accessibility of the network.

Network administrators can know the attack status by observing which area the

current traffic profile falls in.

From the example in Figure 54, we can discern from the status graph that

the detected attack is in the overwhelming stage. The current traffic profile is much

closer to malicious groups. Moreover, both the attack intensity and anomaly index

are high. Therefore, network administrators should immediately take measures to

mitigate this attack.

5.4.3 Phase Two: Classification. The objective of the classification

phase is to differentiate malicious IP addresses from benign ones, and output

the malicious IPs for DDoS traffic filtering. It is important to note that the

classification module will only be activated after some anomalies have been

detected in the detection phase.

The design philosophy of the traffic classification is that the traffic profile

s is currently in a malicious position, and we need to restrict the traffic from the

most suspicious IP addresses so that the traffic profile can move to a safer position

in the KNN searching space.
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We begin the classification phase by building a traffic profile p for each

IP address that appeared during the attack. The profile p should have the same

attributes as the overall traffic profile s. The only difference is that the values of

features in p are calculated from the traffic of each individual IP, while the values

of features in s are calculated from the overall traffic in the network. Afterwards,

we sort the IP addresses in decreasing order of the risk degree, where the risk

degree is a number that indicates how suspicious an IP is. According to the risk

profile ∆ (∆ = (m, δ)) we obtained from the DDoS detection phase, we define

the risk degree of an IP address as f
(p)
m . Finally, we conduct traffic filtering on IP

addresses such that the overall traffic profile can move to a benign area.

However, legitimate clients may sometimes have significant risk degrees as

well. Classifying the IP addresses only according to the risk degree may cause

significant collateral damage. To address this issue, we also need to minimize

the impact on other features of the overall traffic profile s when determining the

malicious traffic sources. We consider this as an optimization problem with two

constraints, which can be demonstrated by Equation 5.5. Here, G denotes the

complete set of IP addresses we have seen in the network during the DDoS attack,

Gm denotes the set of malicious IP addresses that the classification program will

output for future actions, and p(i) denotes the traffic profile of the ith-IP.

argmax
Gm

f(G,Gm) =
∑

g∈G,g/∈Gm

∑
i∈g

∥∥p(i)
∥∥
2

=
∑

g∈G,g/∈Gm

∑
i∈g

√√√√ n∑
k=1

∣∣∣fp(i)

k

∣∣∣2, (5.5)

subject to:
∑
g∈Gm

∑
i∈g

pim ≥ δ,

Gm ⊆ G.

(5.6)
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Equation 5.6 shows two constraints: (1) after eliminating all the traffic from

malicious IP addresses (set Gm), the overall traffic profile should be reduced by

at least δ on fm in the KNN searching space; (2) the malicious IP set Gm should be

a subset of the complete IP set G.

Algorithm 3 Recognition of malicious IPs with grid sorting

1: input: risk profile ∆ = (m, δ)
2: input: complete IP set G
3: initialize set Gm to store the malicious IP addresses
4: grid partitioning: G = {g1, g2, g3, ..., gn}
5: G.sort() ▷ in decreasing order of feature m and increasing order of other
features

6: for g in G do
7: Gm.add(g.items())

8: val←−
∑

i∈g f
p(i)

m

9: total eliminated←− val + total eliminated
10: if total eliminated >= δ then
11: return Gm

12: end if
13: end for

Deriving the optimal solution of this optimization problem is expensive,

especially when the network we are monitoring is at the ISP-level. Hence, we

designed Algorithm 3 to obtain a near-optimal solution Gm efficiently. Since the

time complexity of sorting the IPs according to the risk degree is O(nlogn), the

algorithm conducts the grid partitioning on the searching space to accelerate the

IP classification. Then, we need to eliminate IP addresses along the m axis and

minimize impacts on other features at the same time. With this grid configuration,

we can always find a corner grid gm that has the largest value on feature m but

also has the smallest values on irrelevant features. The classifier considers the grid

gm as the most suspicious grid and gives it the highest priority in classification.

Afterwards, the algorithm sorts the remaining grids in decreasing order of feature
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m and increasing order of other features. Finally, the algorithm eliminates IPs grid-

by-grid in such order until the overall traffic profile returns to the benign area.

Figure 55 illustrates an example of such procedure.

Feature 1

Grid partition Sort according to
risk profile

Feature 2

Feature 1

Feature 2

Feature 1

Feature 2

Output the
risk profile

Feature 1

Feature 2

f1

f2

sl ∆

Overall traffic profiles Traffic profiles for individual IPs

Figure 55. An example of the classification process, where the classification module
reads the risk profile, partitions the searching space, and find the malicious IP set
Gm grid-by-grid.

5.4.4 Adaptability. The proposed approach offers superior

adaptability compared to other learning-based methods. When deploying a pre-

trained detection model in a new network environment, users are not required to

retrain the model for a suitable fit. Instead, they can leverage a variety of prior

knowledge to evolve the model, thereby enhancing its robustness across different

environments.

Here, we assume the user will have some type of limited information about

the new network environment as prior knowledge. Such information includes the

network traffic measurement results or link bandwidth information about the

network environment, some training samples for online learning, and incomplete

threshold values for DDoS detection. Any type of the above information can evolve

the detection model and help the model adapt to the new environment.

5.4.4.1 Mapping via Traffic Measurement. Assuming that we

have the network traffic measurement results about the new network environment,

we can normalize the KNN searching space from the trained environment to the
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new environment according to the traffic distributions of the two networks. The

easiest way to do this is by using min-max normalization for the conversion process.

l = max(Dnew[:, i])−min(Dnew[:, i])

D̂[:, i] = l · D[:, i]−min(D[:, i])

max(D[:, i])−min(D[:, i])

(5.7)

Equation 5.7 shows the conversion process, where D denotes the original training

dataset and Dnew denotes the sampled traffic from the new network environment.

By mapping the original training data to the new network environment, our

approach is able to conduct DDoS detection without retraining or re-collecting any

new training data.

5.4.4.2 Online Updating for KD-tree. If the traffic monitoring

system can obtain labeled traffic with the system running, we can conduct online

learning on the proposed detection model, thus making it gradually fit a new

environment. The KNN algorithm does not require training, making it very

suitable and efficient to conduct online learning. However, the KD-tree, along with

the confirmed areas, needs to refresh to reflect new knowledge. We can control

the program to update the classifier only during the idle times to reduce the

performance impact on the detection system. Nevertheless, the time complexity

of refreshing the model is only O(n).

5.4.4.3 Integration with Existing Thresholds/Rules. In certain

situations, network administrators may already have imperfect detection rules

(e.g., threshold-based rules) tailored to their network environment. Below are a

few examples of such rules:

if (traffic.packets_per_second > 2_000_000

or traffic.kbs_per_second > 1_800_000

or traffic.in_out_ratio > 80
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Algorithm 4 Integration with existing rules

1: input: existing rule table T as a stack
2: input: detection model D ▷ D is a semi-decision tree
3: while T is not empty do
4: r ←− T.pop()
5: if D(r.condition) exists and overlaps with searching area set S then
6: remove overlapped areas from S
7: T.push(r)
8: else if D(r.condition) exists then
9: D.update(r)
10: else ▷ D(r.condition) not exists
11: D.root.rightChild←− D ▷ right child will be called when not
satisfying the condition

12: D.root←− r.condition
13: D.root.leftChild←− FILTER action
14: end if
15: end while
16: return D

or traffic.external_ips > 15_000):

alert()

else:

pass

Network administrators can integrate our approach with existing rules to enhance

DDoS protection efficacy without disrupting the current detection logic or

significantly increasing the rule budgets. Since the pre-trained DDoS detection

model is a semi-decision tree, users can incorporate existing detection rules into

the pre-trained model by modifying the tree structure. This design allows our

detection approach to adapt to existing knowledge without substantially increasing

rule budgets and detection overhead. Algorithm 4 illustrates an example procedure

for integration, where the existing detection rules have higher priority. Users can

also specify different decision priorities based on the current situation.
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Table 20. Datasets for training and testing.

Dataset Name Format Size Attack Type Background Traffic Used For

DARPA 2009
DDoS [13]

pcap 1.09 GB TCP SYN flood
attack

✓ Training & Testing

CAIDA 2007
DDoS [12]

pcap 12.08 GB ICMP flood attack Training & Testing

FRGP NTP Flow
Data [15]

Argus flows 1.60 TB NTP reflection attack ✓ Training & Testing

DDoS Chargen
2016 [18]

flow-tools 74.05 GB UDP reflection and
amplification attacks

✓ Training & Testing

FRGP Colorado
Traffic [5]

FlowRide &
NetFlow

> 5.00 TB Various ✓ Testing

5.5 Evaluation

In this section, we assess our approach from various perspectives. We tested

our approach not only in simulated environments using multiple publicly-available

DDoS datasets (Subsection 5.5.2), but also deployed it at FRGP [5], a regional

IXP in Colorado State, to examine its adaptability and usability in real-world

scenarios (Subsection 5.5.4). Additionally, we conducted a questionnaire survey

to quantitatively evaluate the explainability of our approach (Subsection 5.5.3).

5.5.1 Features & Training Data. Our learning-based approach

requires labeled training data as input in order to build the detectors for each

attack type. Therefore, we picked several representative DDoS datasets from public

repositories and captured traffic in real-world environments to train and test our

approach. Table 20 shows the public datasets we used and the types of attacks they

contain. These datasets and our captured traffic cover volumetric attacks (e.g.,

ICMP flood, UDP reflection and amplification attacks), protocol attacks (e.g., TCP

SYN flood attacks), and application-layer attacks (e.g., HTTP flood, Slowloris,

etc.). We separately trained four DDoS detection models using the datasets, with

one dedicated to TCP SYN flood, another to ICMP flood, a third one for UDP

reflection and amplification attacks, and a final one for application-layer attacks.

Together, these models can provide comprehensive protection to the victim server.
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Table 21. Features we utilize for detecting and classifying different categories of
DDoS attacks.

Attack Type Features We Use

TCP SYN flood — protocol attack # of inbound TCP packets / # of outbound TCP packets, # of TCP packets,
# of inbound SYN packets, # of outbound ACK packets, # of inbound ACK packets

ICMP flood — volumetric attack # of inbound ICMP packets / # of outbound ICMP packets, # of ICMP packets,
# of inbound echo requests, # of outbound replies (destination unreachable)

UDP reflection & amplification attack — volumetric attack # of inbound UDP bytes / # of outbound UDP bytes, # of UDP bytes,
# of inbound UDP packets / # of outbound UDP packets, # of UDP packets

HTTP GET flood, Slowloris, DNS query attack, etc. — # of inbound bytes / # of outbound bytes, # of bytes, # of sessions,
application-layer attack # of inbound packets / # of outbound packets, # of packets, avg packet interval

The training datasets come in various formats, ranging from packet-level

pcap data to flow-level connection data. Since our approach operates at the flow

level, we preprocess the data by converting the original datasets into traffic profiles

tailored to different detection models with a granularity of five seconds. We also

sampled a small portion (approximately 10%) of the data from the DDoS datasets

for our testing datasets. These testing datasets were not used during model

training but were instead utilized in the testing phase. Moreover, we sampled

network traffic from a router at FRGP to simulate legitimate background traffic,

thereby complementing the dataset. The overall ratio of DDoS training data to

legitimate background training data is 1:2.

As our approach works best with low-dimensional datasets, we selected

the best feature sets based on univariate statistical tests. More specifically, we

performed χ2 tests to the data samples to retrieve only 4-6 best features. Table 21

enumerates the four sets of features we selected to train the four different DDoS

detectors. The most frequently used feature was the ratio of the inbound traffic

volume to the outbound traffic volume. We found that the features listed in

Table 21 are useful in identifying the majority of DDoS attacks.

5.5.2 Detection & Classification Efficacy. To evaluate the

detection and classification efficacy of our approach, we first built a simulation
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environment where a virtual switch continuously streams collected traffic to the

proposed system. Such a simulation environment enables us to conduct convenient

and efficient tests. During the evaluation, we simultaneously replayed legitimate

traffic and a portion of the DDoS test traffic. We also dynamically adjusted the

traffic volume during the test to effectively mimic real-world DDoS scenarios.

5.5.2.1 Detection Efficacy. For comparison tests, we utilized three

additional DDoS detection approaches. One is a DDoS detection model based on a

support vector machine (SVM)[288]. We trained this model using the same training

data and features as shown in Table21. Another is FastNetMon [289], an open-

source commercial DDoS detection program. This threshold-based DDoS detection

approach is widely employed in small to mid-sized enterprises due to its high

efficiency and accuracy. Lastly, we included Rapid [270], a hybrid DDoS detection

method that combines LSTM and multi-layer perceptron. The test dataset consists

of at least 250 episodes of legitimate traffic traces and at least 250 episodes of

traffic traces with attacks. An episode is the most basic detection unit, containing

more than five seconds of replayed network traffic.

Figure 56 illustrates the comparison results for DDoS detection under

the simulated environments. For both SYN flood and ICMP flood attacks, all

the three approaches can achieve very decent detection efficacy. As for UDP and

application-layer attacks, although Rapid and the SVM-based approach are slightly

superior to our approach in terms of recall scores, they perform worse in terms

of the false positive rates. A low false positive rate is essential for the detection

system’s usability in real-world deployments, as a high number of false alarms will

either cause too much collateral damage or force network administrators to ignore

the detection results. Thus, when accuracies are similar, users tend to choose the
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(a) SYN flood.

0.90
0.95
1.00 0.

99
6

0.
99

2

1.
00

0

0.
99

6

0.
00

0

0.
99

4

0.
98

8

1.
00

0

0.
99

4

0.
00

0

0.
99

2

0.
99

6

0.
98

8

0.
99

2

0.
01

2

0.
99

6

1.
00

0

0.
99

2

0.
99

6

0.
00

8

ACC REC PRE F1 FPR0.00

0.01

0.02

0.03

0.
99

6

0.
99

2 1.
00

0

0.
99

6

0.
00

0

0.
99

4

0.
98

8

1.
00

0

0.
99

4

0.
00

0

0.
99

2

0.
99

6

0.
98

8

0.
99

2

0.
01

2

0.
99

6

1.
00

0

0.
99

2

0.
99

6

0.
00

8Our approach
FastNetMon
SVM
Rapid

(b) ICMP flood.
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(c) UDP flood.
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(d) Application-layer DDoS.
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(e) Volumetric and protocol
DDoS (unbalanced training data).
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(f) Application-layer DDoS
(unbalanced training data).

Figure 56. Comparison results of DDoS detection efficacy (ACC: Accuracy, REC:
Recall, PRE: Precision, F1: F1 score, and FPR: False positive rate).
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approach with a significantly lower false positive rate. Compared with FastNetMon,

our approach has a similar false positive rate. However, our approach is superior to

FastNetMon in terms of accuracy and recall score.

We also halved the training data, resulting in a 1:4 ratio between the

DDoS training data and legitimate background training data, to assess the

detection efficacy in the presence of unbalanced and insufficient training data.

Figure 56e and 56f illustrate the results. We can see that when the training data

is unbalanced, FastNetMon works significantly better than the other approaches, as

it is a threshold-based approach. Among the other three approaches, our method

demonstrates superior detection efficacy compared to the SVM-based approach and

exhibits comparable efficacy to Rapid.

5.5.2.2 Classification Efficacy. As for the traffic classification, we

first replayed a collected network traffic dataset in a Mininet-based [7] network

environment. This dataset consists of 25 minutes of network traffic with both

DDoS attack and legitimate packets. Then, we ran FastNetMon and the proposed

approach respectively, conducting mitigation on malicious IP addresses reported by

them throughout each process. Simultaneously, we observed the network situation

to evaluate the classification efficacy. To ensure a fair procedure, we did not

intervene in the detection process during evaluation.

Figure 57 shows the classification efficacy results, where the y-axis indicates

the number of packets. By mitigating all the traffic from the attackers classified by

the two approaches, we can see our approach can eliminate more malicious traffic

than FastNetMon. The only drawback of our approach is that the classification will

only be triggered when an attack is detected. After proceeding with mitigation,

once the traffic profile is no longer labeled as malicious, our approach will stop
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Figure 57. Efficacy of DDoS traffic classification.

classifying IP addresses as malicious, and only begin classification again as soon as

the traffic profile is labeled malicious again. This explains the periodic fluctuations

on the number of packets for our approach as seen in the figure.

5.5.2.3 Timeliness. We measured the runtime of our approach on a

100 Gbps link (please refer to Section 5.5.4 for details of the link) and presented

the results in Figure 58. This figure shows three cumulative step histograms,

illustrating the runtime for pre-processing a batch of traffic (five seconds),

monitoring a batch of legitimate traffic, and monitoring a batch of traffic with

attacks, respectively. Here, the runtime for monitoring legitimate traffic consists of

the time consumption of pre-processing and detection; the runtime for monitoring

traffic with attacks consists of the time consumption of pre-processing, detection,

and classification.

From the figure, we can see that the runtime is short when there are no

attacks present, considering that the program has a five-second time window to

operate. Moreover, as the detection model is a semi-decision tree, it will directly

output the results without conducting any KNN queries if the traffic profile

is situated in a confirmed benign area. Thus, the majority of time is spent on
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Figure 58. Cumulative step histograms of processing time (tested with 100 Gbps
flow-level traffic).

traffic pre-processing when monitoring only legitimate traffic. When there is a

considerable amount of incoming DDoS traffic, the runtime almost doubles since

fine-grained IP classification is time-consuming. Fortunately, when an attack is

detected, the system does not need to complete the calculation within five seconds

to catch the next batch. The top priority at the time an attack is detected is

to mitigate the attack, and therefore, an increased delay in classification is still

acceptable.

In conclusion, our approach is efficient when detecting and classifying DDoS

traffic. With delays of around two seconds during idle time and five seconds during

the DDoS peak, our approach is able to produce timely defense for the victim.

5.5.3 Explainability. To evaluate the explainability of our approach,

we conducted a questionnaire survey, which is a formal and effective method

in Human-Computer Interaction (HCI) research [407], to collect feedback from

participants and assess their understanding of the system’s functionality and

decision-making process.
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Composition of the participants

Participants with DDoS-related expertise 15
Participants with security backgrounds but not DDoS-related expertise 4
Participants without security backgrounds 4
The total number of participants 23

Basic information of the questionnaire survey

Number of questions 25
Approximate time to explain the usage of our approach (min) 15
Approximate time to complete the survey (min) 30

Table 22. Basic information of the questionnaire survey.

We disseminated survey questionnaires to a range of security labs and

individuals without a security background in the USA and China. In total,

23 people participated in the survey. Table 22 provides an overview of the

participants’ basic information as well as essential details about the questionnaire

survey.

Before the questionnaire, we provided a brief introduction to the background

knowledge, our design, and the output explanatory information. We then presented

several examples of the outputs to demonstrate how they explain detected attacks

and how to interpret them. Figure 59 and 60 display a few examples from the

questionnaire.

We proceeded to ask participants questions about the explainability of

our approach, such as the ease of understanding the outputs, the intuitiveness

of the visualizations, and whether the explanatory information met the design

objective. Finally, we administered tests to assess participants’ comprehension

of the explanatory information for various attack types and their ability to make

correct interventions. Specifically, we presented scenarios of different attack types

detected by our approach and asked participants to interpret the explanatory
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(b) Normalized according to the traffic distribution. The dark green
dot is the current traffic profile for inference, whose risk profile ∆ =
(”number of inbound ICMP packets”, 52041).

Figure 59. Examples of visualized KNN detection models for identifying ICMP
attacks.
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(a) Status graph of an attack shown in Figure 59b. Network administrators should
proceed with mitigation as this attack has a high intensity and is already in the
overwhelming stage.

Preparatory
stage Stalemate stage Overwhelming stage

85577 54256 22936 8385 39705 71025 102346 133666
Value of the principal component

(positively correlated with attack intensity)

0.7
0.8
0.9
1.0

An
om

al
y

in
de

x

(b) A detected ICMP flooding attack. This attack is in the stalemate stage. Network
administrators can either ignore this attack if following a conservative protection policy or
proceed with mitigation immediately if following a more aggressive protection policy.

Figure 60. Examples of status graphs for explaining ICMP attacks.
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Figure 61. Selected questionnaire evaluation results on the explainability of our
approach.

information and recommend intervention measures for the next step under varying

circumstances. Responses were collected anonymously to protect privacy and

minimize bias.

Figure 61 presents some key findings from our questionnaire evaluation.

Although a few individuals questioned the explainability aspects of our approach,

the majority of participants agreed that the risk profile helps users understand

the root cause and quantify the attack. Additionally, the visualized KNN model

provides an intuitive explanation of the network context, detection models, and

detection logic for network administrators. The status graph illustrates the
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current attack stage, intensity, confidence level of the alarm, and mitigation cost-

effectiveness, ultimately guiding network administrators in making appropriate

interventions. Therefore, in terms of transparency, traceability, heuristic, and ease

of learning, our proposed approach successfully achieves its design goals.

5.5.4 Case Study: A Real-world Deployment. In addition

to the evaluation under emulation environments, we deployed our approach at

several links in FRGP to further test its deployability and adaptability. This

real-world deployment also provides a good opportunity to demonstrate how

explanatory information can help network administrators adopt conservative tactics

for eliminating false alarms.

5.5.4.1 Measures for Ethical Considerations. As the network

traffic from FRGP contains private information of users and trade secrets of

operators, we take effective measures to address possible ethical considerations.

Data is collected by FRGP operators and their collaborators from a local

educational institution on an ongoing basis. We formulate a Memorandum of

Agreement (MoA) with FRGP operators and their collaborators to stipulate the

correct usage and accessibility of the data. To protect the privacy of users and

prevent data leakage, we set rigorous regulations for data analysis and storage. We

list the regulations below:

1. The IP addresses in the network traffic data are anonymized in a prefix-

preserving manner with CryptoPAN [425], before collection and storage. This

ensures we cannot trace back to individual users during our deployment.

2. All the data is stored on a restricted server. Besides the SSH port, all the

ports on the server are closed, and no connections can be initiated from the

server. This minimizes the risk of accidental leakage of network data.
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3. Our approach can only be deployed on the restricted server.

4. We are only allowed to receive the detection results from the restricted server.

Other information related to the IXP operations have to remain on the

restricted server, such as prefix-level measurements, the trained model, and

pre-processed data.

5.5.4.2 Deployment Setup. The restricted server where our

approach is deployed has an Intel Xeon Silver 4116 processor with 64 GB of RAM.

The flow-level data is collected from multiple routers at FRGP during a 3-month

period between 10:20 MST on February 24 to 21:40 MST on May 21, 2020. At its

peak, the traffic volume usually reaches 100 Gbps during the day. Our approach

can simultaneously obtain access to network traffic flows in three formats, which

are NetFlow, Argus Flow [3], and FlowRide, a newly developed flow-capture tool

that summarizes traffic every five seconds. The pre-processing module converts

the traffic flows into the overall traffic profiles and IP-level traffic profiles for each

detector.

As was true in the evaluation of the simulation environment, the deployed

detection model was pre-trained with datasets shown in Table 20. To adapt the

pre-trained detection model to the FRGP environment, we conducted several

measurements on the network to obtain the data distribution for each traffic

feature used by the detectors. Then, we mapped the pre-trained model to the

FRGP environment according to these distributions. While the program was

running, we were able to receive the detection results for different types of attacks

(i.e.NTP, TCP SYN, ICMP, and UDP attacks). During the evaluation, the FRGP

operators also gave us information about DDoS attacks they discovered using Arbor

Network’s PeakFlow and Threat Mitigation System (TMS) [1]. Of a particular note
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Figure 62. Detection results from 10:20 MST on February 24 to 21:40 MST on May
21, 2020. Red circles indicate the attacks only reported by FRGP operators but
not detected by our approach. Yellow circles indicate the attacks only detected by
our approach but not reported by FRGP operators. Other dots indicate the attacks
detected by both parties. The depth of the background color represents the density
of attacks.

is that the attacks reported by FRGP cannot represent ground truth as the IXP

also suffers from false positives and false negatives, but they have good reference

values for evaluating our approach. In addition, our contract with FRGP operators

does not allow us to alter any traffic flows in their network, so we did not evaluate

the classification efficacy in this deployment.

5.5.4.3 Findings. To better quantify the traffic change during an

anomaly, we define peak intensity index ζ, calculated as ζ = Vpeak/Vexp, where

Vpeak denotes the peak volume of the anomaly and Vexp denotes the expected traffic
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volume. For an anomaly with a short duration (less than 30 minutes), we treat

the traffic volume right before the anomaly as Vexp. For an anomaly with a longer

duration, we calculate Vexp by statistically averaging legitimate traffic volumes

at the same time in the surrounding seven days. Figure 62 shows the anomaly

detection results. The top subplot illustrates the peak intensity indexes ζ of the

anomalies occurring at different times. The bottom subplot illustrates the duration

of the detected anomalies at different times.

Our approach successfully detected over 90% of DDoS attacks reported by

FRGP operators, including all severe attacks with a ζ greater than 2. The five

missed alarms (highlighted with red circles in Figure 62) were all low-intensity

attacks that did not significantly damage the systems.

Furthermore, our approach proved more sensitive in detecting DDoS attacks,

generating 21 alarms that FRGP operators missed (highlighted with yellow circles

in Figure 62). These 21 alarms involved low-intensity, short-duration attacks, which

could represent small-scale floods undetected by FRGP’s system or false positives.

The effective explainability of our approach enabled network administrators to

determine that most of these attacks were in preparatory or stalemate stages

based on their status graphs. Consequently, if network administrators opt for a

conservative mitigation policy, they can quickly review the explanatory information

and choose to disregard these alarms.

In conclusion, the real-world deployment demonstrates the adaptability

and usability of our approach. Besides, the explanatory information can quickly

help the network administrators identify possible false positives or less threatening

attacks, thereby making necessary interventions.
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5.6 Discussions

In this section, we explore the limitations and open Issues tied to our

proposed methodology. Additionally, we deliberate on the potential for broadening

the application of the proposed methodology.

5.6.1 Limitations and Open Issues. A primary contribution of this

approach is to offer a learning-based DDoS detection solution that features a high

level of explainability and adaptability. However, this approach has the following

limitations:

– As a learning-based approach, our method may not be able to tackle zero-day

DDoS attacks. For example, during the FRGP deployment, we missed a SYN-

ACK distributed reflection denial of service (DRDoS) attack that targeted a

stateful firewall at the end of April. The characteristics of this attack were

not contained in the training data, making our approach difficult to capture

it.

– Due to the characteristic of KNN algorithm, our approach may be vulnerable

to certain adversarial attacks. We can utilize some adversarial machine

learning techniques such as data smoothing to fix this problem, but it will

inevitably decrease detection accuracy.

In addition, our approach faces several open issues as possible future

working items:

– We can leverage other explainable machine learning algorithms such as

random forests to enhance our approach. Furthermore, it is meaningful to

compare the current algorithm with random forests.
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– More features may be explored to improve the accuracy for detecting certain

complicated DDoS attacks.

– We can further enhance the evaluation of this work by enhancing the efficacy

evaluation of our traffic classification algorithm.

5.6.2 Methodology Generalization. Some concepts, techniques,

and methodologies introduced in this chapter hold applicability beyond DDoS

detection, FGTA tasks or even disparate domains.

5.6.2.1 Requirements for explainability. This chapter presents

a collection of requirements—–transparency, traceability, and heuristic—–that are

tailor-made for DDoS detection explainability. While these specifications may not

be universally applicable across all machine learning tasks, they could serve as a

benchmark in crafting explainable detection systems for various other forms of

attacks, anomalies, or intrusions.

5.6.2.2 Explainability designs. We have proposed a design for

explainability that adds an additional layer atop an existing machine learning

model to yield interpretable outcomes. While this specific design is currently

tailored for the modified KNN algorithm we proposed, the underlying concept could

potentially be adapted to other scenarios or machine learning algorithms.

5.6.2.3 Adaptability designs. In our methodology, we employ

an array of techniques to customize the detection system for different network

environments. These include model mapping, online updating for KD-tree,

and integration of existing thresholds/rules. These strategies could potentially

be utilized in other FGTA tasks that implement KNN models or necessitate

integration with pre-existing knowledge.
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5.7 Conclusions

In this chapter, we exemplify the enhancement of FGTA’s explainability

and adaptability, making it more practical and applicable in real-world situations.

Specifically, we introduce a learning-based methodology for the detection and

classification of DDoS traffic, serving as a tangible example of these improved

FGTA features.

Compared with the existing approaches, the proposed method offers

(1) explainability and (2) adaptability. With the KD tree and the modified

KNN algorithm, this approach generates a tree-like classifier, which not only

makes predictions fast but also provides network administrators with a clear

perspective of network conditions, detection logic, attack stages, and mitigation

costs. Furthermore, people can easily adapt the detection model to a different

environment by utilizing prior knowledge without retraining the model from

scratch. Benefiting from grid sorting, the classification module can reduce collateral

damage to a large extent and generate the results promptly.

We trained the detection model with representative DDoS datasets from

public repositories in our simulation environment. We then evaluated this approach

in both simulated environments and a real-world setting. The evaluation results

show the efficacy and efficiency of this approach in both settings, as well as its

adaptability from the small simulated environments to a real IXP setting. As for

explainability, the questionnaire evaluation indicates that in terms of transparency,

traceability, heuristic, and ease of learning, our method achieves the expected

design goals.
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CHAPTER VI

APPLICATION-LAYER DDOS DEFENSE WITH REINFORCEMENT

LEARNING

In earlier chapters, we examined FGTA’s capabilities in extracting fine-

grained knowledge from network traffic and identifying complex malicious activities.

Despite this, FGTA is not optimal for detecting specific application-layer malicious

activities (e.g., L7 DDoS) due to its restricted application-layer situational

awareness. Undoubtedly, endpoints possess the most comprehensive knowledge

about application-layer activities. Consequently, in this chapter, we investigate

the joint use of endpoint-based defense and FGTA to effectively combat L7 DDoS

attacks.

In this chapter, we propose a novel reinforcement-learning-based approach

for defending against L7 DDoS attacks. We introduce a multi-objective reward

function that guides a reinforcement learning agent in determining the most

suitable action for mitigating L7 DDoS attacks by incorporating both network

traffic information and endpoint-side operational data. Consequently, the agent

can apply various strategies under different conditions while actively monitoring

and analyzing the victim server to provide protection. During an overwhelming L7

DDoS attack, the agent will aggressively mitigate as many malicious requests as

possible, ensuring the victim server remains operational (even if it means sacrificing

a small number of legitimate requests). In less critical situations, the agent will

adopt a more conservative approach to mitigating malicious requests, prioritizing

the minimization of collateral damage to legitimate requests.

This chapter is derived in part from the following published and unpunished

articles:
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– Published as Yebo Feng, Jun Li, and Thanh Nguyen. “Towards Intelligent

Application-layer DDoS defense with reinforcement learning.” Transactions

on Information Forensics & Security, 2023. In preparation.

– Published as Yebo Feng, Jun Li, and Thanh Nguyen. “Application-

layer DDoS defense with reinforcement learning.” In 2020 IEEE/ACM

28th International Symposium on Quality of Service (IWQoS), pp. 1-10,

2020 [154].

– Published as Yebo Feng. “Towards Intelligent Defense against Application-

Layer DDoS with Reinforcement Learning.” Computer and Information

Science, University of Oregon, Technical Report, DRP-201912-Feng,

2019 [146].

I am the leading author of the above articles. Most content of this chapter was

written by me, and I was responsible for conducting all the system designs,

implementations, evaluations, and the presented analyses.

6.1 Introduction

Application-layer distributed denial of service attacks [310], or layer 7 (L7)

DDoS attacks, represent a type of malicious behavior that attack the application

layer in the network model. These L7 DDoS attacks exploit application-layer

messages (e.g.web requests) to swamp specific application functions or components

of a victim server (e.g.a web server) to disable or degrade their services, impacting

legitimate users’ experience.

L7 DDoS attacks are on the rise and becoming conspicuous threats on

today’s Internet. One of the best-known L7 DDoS attacks happened in March

2015 when a massive number of HTTP requests poured towards GitHub [51],
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causing much reduced availability and higher latency to GitHub’s service. This

attack worked by injecting nefarious JavaScript code pieces into numerous web

pages to redirect a high volume of users’ HTTP traffic to GitHub. More recently,

Imperva reported a notable L7 DDoS attack [347] in July 2019. This attack was the

longest and largest that Imperva has ever seen, lasting 13 days and reaching a peak

volume of 292,000 requests per second.

Unfortunately, the detection and defense of L7 DDoS attacks are still not

well-studied [104, 310]. Worse, attackers continuously evolve their toolkits and

develop more sophisticated L7 DDoS attack techniques. It is therefore compelling

to accurately identify L7 DDoS attacks and generate effective mitigation tactics

against them.

The key to addressing L7 DDoS attacks is to distinguish L7 DDoS traffic

from the legitimate application-layer traffic. This task is difficult, however, given

that an L7 DDoS attacker can purposely fabricate application-layer messages that

look legitimate, as discussed above. An L7 DDoS message can even be identical to

a legitimate application-layer message.

Interestingly, the legitimacy of an application-layer message is heavily

dependent on its environment or context. The same application-layer message may

be legitimate in one environment, but totally malicious in another. Or similarly,

depending on how a client has been interacting with a server in the past, a newly

received request from the client may be legitimate in one case, but illegitimate in

another. For example, an HTTP GET message is totally legitimate during the

routine operation of an HTTP server but could be malicious during an HTTP

flooding attack. In another words, it is a Markov decision process to determine

whether an application-layer message is legitimate or not.
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We thus seek to discover what methodologies would be the most effective

in distinguishing L7 DDoS traffic from the legitimate application-layer traffic by

considering environmental and contextual factors, instead of only inspecting the

messages themselves. This paper proposes the first reinforcement-learning-based

method that incorporates environmental and contextual factors to distinguish

L7 DDoS traffic from the legitimate application-layer traffic. It monitors and

analyzes a variety of environmental and contextual factors including those related

to the system and network load of the victim server (e.g.disk I/O , CPU operation,

memory usage, or link utilization) and the dynamic application-layer behaviors of

clients (e.g.request type, size, frequency, and content).

Furthermore, this method streamlines the L7 DDoS defense by integrating

the operations of attack detection, message classification, and attack mitigation.

Rather than producing labels of each application-layer message for a separate L7

DDoS mitigation module to handle the message, in order to mitigate L7 DDoS

attacks, this method directly outputs the action to take for each application

message under different circumstances. Actions can include blocking the message

upstream, blocking it locally, or postponing its processing.

In addition, this method receives feedback from the actions taken, allowing

it to fine-tune what actions are the best for a given situation. With the design of a

new multi-objective reward function, this method can determine the most suitable

actions to take in a way that (1) minimizes the amount of discarded legitimate

messages to provide the service as much as possible to clients when the victim load

is low and (2) maximizes the amount of filtered L7 DDoS messages to prevent the

server from collapse when the victim load is high.
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The evaluation shows that this approach can identify the majority of DDoS

traffic and significantly increase the capacity of the victim server. At the peak

of L7 DDoS attacks its accuracy is 0.9553 and true positive rate is 0.9873, while

when the attacks are not overwhelming the collateral damage is as low as 0. The

implementation of this method, while not intricate, provides satisfying performance

when running on the server node. With less than 30,000 training episodes, this

method can easily adapt to an unacquainted victim server environment.

The structure of this chapter is organized as follows: Related work is

described in Section 6.2, followed by an introduction to the threat model in

Section 6.3. Subsequently, we elaborate on this approach in Section 6.4 and

present an evaluation of this approach in Section 6.5. Open issues, potential future

work, and generalizations of the methodology are discussed in Section 6.6. The

conclusions drawn from this chapter are encapsulated in Section 6.7.

6.2 Related Work

The current defense models against L7 DDoS primarily follow a two-phase

procedure, which performs detection & classification to identify the malicious

sources or application messages and then mitigates the attack by conducting

access control. These models treat the two phases as two separate modules,

making it difficult to modulate mitigation strategies according to the conditions

of specific attacks. On the contrary, our approach considers attack classification

and mitigation as an integral whole to pursue the best L7 DDoS defense efficacy.

Below we detail the related work in each phase.

6.2.1 Detection & Classification Approaches. We categorize

the previous approaches to L7 DDoS detection & classification into three types:

statistical methods, learning-based methods, and Markov-based methods.
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6.2.1.1 Statistical methods. Researchers build statistical models

on both benign and malicious L7 DDoS traffic and then apply them to detect

and classify L7 DDoS attacks. For example, DDoS Shield [314] characterizes

L7 DDoS attacks on the basis of the application workload parameters that they

exploit. It presets the threshold values on the workload parameters according to

the measurements and labels the behaviors that exceed the thresholds as malicious;

Yatagai et al. [432] proposed a method that detects HTTP GET flood by modeling

the browsing order of webpages and the correlation between browsing time and

page information size. In general, statistical methods are efficient and steerable.

They have decent accuracies in discovering simple L7 DDoS attacks such as HTTP

flood and low-and-slow DDoS attack, however, they may have non-ideal effects on

handling unseen and complicated attacks.

6.2.1.2 Learning-based methods. As machine learning algorithms

are becoming more and more sophisticated, many researchers harness such

techniques on big data for detecting L7 DDoS attacks. Seufert et al. [339]

proposed a three-layer feed-forward neural network to detect L7 DDoS attacks,

using features extracted from the header fields of packets; Yadav et al. [427]

applies Stacked AutoEncoder, a deep learning architecture that aims to receive

high level features, to generate features from web server logs and build a logistic

regression classifier to identify L7 DDoS attacks. Besides, researchers also proposed

unsupervised-learning-based detection methods that can extract knowledge or

patterns from unlabeled data. ARTP [309] detects L7 DDoS by leveraging the

K-means algorithm and performing analysis on features such as request interval,

request chain context, and request length. In summary, while a trend, leveraging
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machine learning in identifying L7 DDoS has mixed results based on the feature

extraction method, the system design, and the learning algorithm.

6.2.1.3 Markov-based methods. A Markov model is a stochastic

model used to model randomly changing events in probability theory [167]. It

assumes that the future state depends only on the current state, and we can

infer the next state by performing probability analysis on its past. Works such

as [421, 434, 420, 422] track the related behavior of the users and utilize hidden

semi-Markov model along with random walk graph to trace the attacks. We

consider Markov-based methods as the state of the art because L7 DDoS attacks

are stateful. As solutions to tackle stateful problems, Markov-based methods can

provide fine-grained detection and classification results with decent accuracies.

Inspired by this idea, we adopt reinforcement learning to the L7 DDoS problem,

which is a Markov decision process that inherits advantages from both learning-

based approaches and Markov models.

6.2.2 Mitigation Approaches. As for the mitigation approaches

of L7 DDoS, there are mainly two research directions [310]. One is to mitigate

attacks on the victim side, such as blocking automated application requests by

utilizing user puzzles (e.g., [439, 350]) and setting up specific IPTables or IDS

rules [280]. They can reach message-level mitigation granularities but may sacrifice

the efficiency of mitigation, since the victim is still required to receive the malicious

packets before mitigation, making the system still vulnerable to volumetric L7

DDoS attacks. Another direction is to mitigate L7 DDoS attacks in the network.

Once the victim determines the attack sources, it can leverage some traffic filtering

or rerouting systems (e.g. [60, 310, 352]) to mitigate attacks from within the

network, without consuming any resources on the victim’s side. However, they may
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cause a considerable amount of collateral damage since traffic from benign IPs may

also be filtered. Our approach, different from the above directions, incorporates

both victim-side mitigations and in-network mitigations for efficient and effective

defense against L7 DDoS attacks.

6.3 Threat Model

An L7-DDoS victim server can be a single-node application server, or

contain many components as illustrated in Figure 63. We assume that

L7-DDoS attackers can form a massive botnet to exploit the vulnerability of

the victim system, with the source IP addresses of the bots distributed over

different autonomous systems (ASes). Also, we assume that the attackers can

systematically measure the victim server’s operation conditions in order to figure

out the vulnerable spot, thus adjusting their attack tactics accordingly.

After investigating the operational models of current L7-DDoS attacks, we

categorize L7 DDoS attacks into three types: request flooding attack, leveraged

attack, and lethal attack.
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6.3.0.1 Request Flooding Attack. In this attack, the attacker

overwhelms the system by sending application-layer requests at a high rate from

different IP addresses. The attacker’s bots may locate in certain IP blocks or

distribute all over the Internet among different ASes to make it challenging to

identify the attack sources. Then, the botmaster can control the bots to generate

requests of any arbitrary frequencies and content to overwhelm the victim.

6.3.0.2 Leveraged Attack. This attack leverages the flaws of the

victim system to amplify the threat. Thus it can take down the application server

with minimal bandwidth and very few requests. For example, low and slow attacks.

The attacker controls bots to utilize tools like R.U.D.Y. [285] or Slowloris [331] to

slowly send out the requests to the victim. This procedure keeps many connections

to the target server open and holds them open as long as possible, tying up

the thread. Other types of leveraged attacks may leverage heavy SQL queries,

unbalanced API calls, or flawed message queues to overwhelm the victim with a

small amount of application-layer requests.

6.3.0.3 Lethal Attack. In this threat, the attacker first scans the

victim system to pinpoint the current performance bottlenecks or vulnerabilities

(e.g., I/O, memory space, or database server), which are also called lethiferous

spots. Then, the attacker formulates the optimal attack tactics to overwhelm the

lethiferous spots. Furthermore, the attacker may adjust attack tactics dynamically

based on the condition variations of the victim server to make the attack even more

effectual. In general, this intelligent attack is highly threatening to all types of

victim systems and difficult to detect due to its dynamics.
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6.4 System Design

6.4.1 Overview. In this paper, we assume that L7 DDoS attacks

cannot be easily identified through flow-level data since malicious messages will

disguise their traffic flows as legitimate. Hence, our solution is on victim-side and

considers many factors, such as clients’ behavioral information, the network load

of the victim server, and the system load of the victim server. We also assume

that launching an L7 DDoS attack is a stateful process, just as the process of

establishing a TCP connection and collectively sending out the HTTP requests.

Thus, we use reinforcement learning (RL) [223], a stateful machine learning

technique based on Markov decision process, to construct the attack classification

model and formulate appropriate tactics to protect the victim.

RL is a burgeoning area of machine learning concerned with how software

agents ought to take actions in an environment to maximize some notions of

cumulative rewards. Once the RL agent has made a decision, it gets a reward

value to sense whether the current move is suitable or not. Then, it revises the

policy to adopt the feedback dynamically. Compared with other L7 DDoS defense

approaches, the following advantages make RL more competent to deal with L7

DDoS attacks:

– As a Markov decision process [207], RL aims to maximize the cumulative

rewards throughout the monitoring process, which takes advantage of

contextual information to infer potential threats.

– In L7 DDoS attacks, the boundary between benign and malicious messages

is blurry. Instead of primitively classifying the message as either benign or

malicious, the RL agent focuses on formulating appropriate defense tactics

that suit current environmental conditions.
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– RL allows us to use a multi-objective reward function to mentor the agent

on constructing an adaptive and dynamic defense strategy against L7 DDoS

attacks.

A typical RL system has five elements: agent, environment, reward, state,

and action. The environment is typically stated in the form of a Markov decision

process (MDP) and the MDP transition function gives a new state for each

incoming application message, processed in sequence. The agent gets the state

from the environment (the environment includes the victim server and some related

network infrastructures in our case), then sends the next action to the environment.

The environment will conduct the action and give feedback to the agent about the

suitability of the action by sending a reward value.

Figure 64 shows the detailed system architecture of our approach. The goal

is to train a defense policy π in the training phase and apply it in the monitoring

phase to defend against L7 DDoS attacks. The victim can be a single node
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webserver or a complicated server cluster discussed in Section 6.3. If the victim

is a large server cluster, the components (e.g., load balancers, databases, and

webservers) need to gather their system information to form an aggregated state

s and forward it to the defense agent. In the training phase, there is a reward

modeling component on the victim-side, which gets access to the ground truth of

the simulated traffic. Therefore, the victim server can evaluate the efficacy of the

mitigation action and generate the reward value r according to the reward function

in real-time. However, once we complete the training phase and put the defense

agent into the monitoring phase, the reward modeling component, as well as the

reward values, are no longer needed. In the monitoring phase, the defense agent

only needs to generate action a according to the observed state s and trained policy

π.

The actions generated by the agent have two categories: the victim-side

mitigation actions, which only need to be conducted on the server-side (e.g.,

scheduling actions), and the in-network mitigation actions, which need to be

conducted on some external network infrastructures for filtering out specific traffic.

The rest of this section elaborates on the design details of our approach.

6.4.2 States. The state is represented by a state vector s. In our

implementation, each state s has twelve dimensions. Each dimension of s is a

value that represents a feature. In this L7 DDoS detection system, we expect s

to comprehensively represent both the environmental situations and the current

application message’s features. Thus, we further divide s into two parts, message

state s′ and environmental state s′′ (s = s′ ∪ s′′). State s′ summarizes the content of

the incoming message and the sender’s historical behaviors. It helps the defense

agent to infer how abnormal the message or the client is. Meanwhile, state s′′
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extracts the information from the victim server’s system situation. It gives the

defense agent a perspective of the whole system’s healthy degree.

To calculate the state vector in real-time, we define time t as the primary

resolution value. For example, if we want to know the average behavior interval

of a client, we only need to sample all its past behaviors during the last time t to

calculate the value.

6.4.2.1 Message state s′. s′ is an eight-dimensional vector that

extracts eight features from the current application message. It is designed to

reflect the historical activities, resource consumption, and behavioral characteristics

of the message. The eight features are shown below:

• bytesm: the number of bytes in a message.

• bytesb: traffic size from the message’s IP block. The victim will predefine

some IP blocks to classify clients’ source IP addresses. bytesb is a numeric value

that indicates the total number of bytes from the incoming message’s IP block

within time t. This feature is useful to identify request flooding attack.

• ave: the average behavior interval of the client. Assume that the client has

sent n messages during the last time t, and each interval is denoted by xi (where

i = 1, 2, ..., n− 1). ave is defined as: ave = 1
n−1

∑n−1
i=1 xi.

• dev: the average absolute deviation of the client’s behavior intervals. This

feature is defined as: dev = 1
n−1

∑n−1
i=1 |xi − ave|.

• numm: the number of messages from the client. This feature is the

number of the message sent by this client during the last time t.

• numsm: the number of all the similar received messages. For each received

message, the server will calculate the number of similar messages within time t

promptly. This value plays a crucial role in identifying request flooding attacks,
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Figure 65. Examples for the general hashing (GH) and Locality Sensitive Hashing
(LSH).

leveraged attacks, and lethal attacks. However, calculating this value is expensive,

as we need to buffer a considerable amount of messages in the memory and perform

complicated string matchings. Thus, we leverage Locality Sensitive Hashing

(LSH) [119] to optimize the calculating process.

Different from traditional hashing functions, LSH can output close or

identical values from similar input strings, making it efficient in the duplicate

checking. Figure 65 shows an LSH example, where the horizontal positions of

the four dots represent the difference in their contents. This method requires

training before conducting queries, so we collect request message strings that can

represent all the application messages that the server can handle, then preprocess

the message strings to make them simplified but still informative enough to outline

the messages’ intentions, behavioral patterns, and the clients’ platforms. For

example, the message below is a typical HTTP GET message:

1 GET /index.html HTTP/1.1

2 Host: localhost

3 User-Agent: Mozilla/4.0 (Windows; U; Windows NT 6.0; en-US; rv:1.9.1.4)

4 Accept: text/html,application/xml;q=0.9,*/*;q=0.8

5 Accept-Language: en-us,en;q=0.5
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6 Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.7

7 Keep-Alive: 300

8 Connection: keep-alive

9 Cookie: PHPSESSID=n465xmdh435may4ib0skrjq360

The preprocessing procedure eliminates redundancies in the strings (strings

with red color). We then concat the rest of the information in a fixed order, and

joint them by deleting all the spaces and line breaks.

1 /index.htmlMozilla/4.0(Windows;U;WindowsNT6.0;en-US;rv:1.9.1.4)text/html,

application/xml;q=0.9,*/*;q=0.8en-us,en;q=0.5ISO-8859-1,utf-8;q=0.7,*;q=0.7300

keep-alivePHPSESSID=n465xmdh435may4ib0skrjq360

The original message string turns out to be the string above after the

preprocessing procedure, and we use such data to train the LSH function for

queries. Whenever there is an input message string m, LSH will input the

preprocessed string and generate an output hashing value h. The system will store

this hashing value h in a set H with an expiration time of t. Every time the system

checks the set H, it will remove all the expired values. We also defined a difference

threshold ∆ to find similar strings. Therefore, the number of similar messages

numsm is defined as:

numsm = |{k|k ∈ H ∧ |k −m.h| ≤ ∆}|.

• cons: request consumption. The sever estimates the consumptions of all

the requests that it can handle in advance and builds a precalculated consumption

score table. Given a message m, the server will extract the request from m and

generate the cons value according to the consumption score table. This feature is

important to identify leveraged attacks.
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• φ: the ratio of incoming traffic size to outgoing traffic size. The server

estimates the outgoing traffic size byteso if it responses this message, then calculate

the ratio by: φ = bytesm/byteso.

6.4.2.2 Environmental state s′′. s′′ is a four-dimensional vector that

extracts four features from the server and network’s current conditions. This vector

is supposed to be a good representative of the environmental metrics so that the

agent can correctly infer how dangerous the server’s condition is and what is the

system bottleneck currently. The four features are shown below:

• utilcpu: CPU utilization. This value is the occupancy rate of the CPU.

If the victim system has multiple servers, utilcpu is equal to the maximum CPU

occupancy rate in the cluster.

• utilmem: memory utilization. This value is the occupancy rate of the

memory. If the victim system has multiple servers, utilmem is equal to the

maximum memory occupancy rate in the cluster.

• utillink: link utilization. This value is the occupancy rate of the link

bandwidth. If the victim system has multiple link, utillink is equal to the maximum

link occupancy rate in the system.

• eutillink: expected link utilization. If the victim has statistical data about

the expected link utilization rates in different periods of the week, this value is the

expected link utilization rate in an ordinary situation. Otherwise, this value is the

utillink during the previous time t.

6.4.3 Actions. As discussed in Section 6.2, individuals can utilize

in-network and victim-side mitigation approaches to defend against L7 DDoS

attacks. We further derived six types of particular actions (shown as below) that
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an agent can take in the defense process. Each of the action a targets some specific

circumstances.

– Action ai: enabling the server to receive and respond the current application

message ordinarily.

– Action aii: enabling the server to receive the current message ordinarily but

postpone the processing procedure.

– Action aiii: drop the current application message on the victim-side.

– Action aiv: drop all the application messages that have the content similar to

the current message on the victim-side.

– Action av: blocking all the traffic from the IP address of the current

application message in the upstream router.

– Action avi: blocking all the traffic from the IP block of the current application

message in the upstream router.

ai and aii are scheduling actions, aiii, aiv, av, and avi are defensive actions.

In another taxonomy, ai, aii, and aiii are single-targeted actions, which only affect

the current application message. aiv, av, and avi are multiple-targeted actions, which

affect a group of application messages.

Conducting defensive actions on particular messages does not necessarily

mean the messages are malicious because the agent can choose to sacrifice some

false positive rates to ensure the functioning of the server during a severe attack.

Similarly, conducting scheduling actions on a particular message does not guarantee

the legitimacy of the message. If the system is on idle time, and the malicious
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message cannot cause some real harm against the server, the agent will take

conservative strategies to minimize collateral damages.

6.4.4 Reward Function. The overall objective of the reward function

is mentoring the defense agent to form a defense policy to fulfill the following

requirements in the training phase:

– When system occupation rate is low, minimize the false positive rate of

mitigation to ensure all the legitimate messages can be properly processed.

– When system occupation rate is high, maximize the true positive rate of

mitigation to block all possible attacks in order to prevent the system from

crushing.

– The agent is encouraged to conduct multiple-targeted actions rather than

single-targeted actions so that the agent can discover rules in the attacks

instead of inefficiently labeling every single message.

In order to address the goals above, we construct a piecewise function

R(a(m)) as the reward function to mentor the agent conduct suitable actions on

correct messages. Here, a(m) denotes conducting action a on message m. In the

training phase, whenever the action a is placed, the reward modeling component

will use R(a(m)) to calculate the reward value r, telling the defense agent how

suitable the current action a is. In this paper, if the agent conducts defensive

actions on the legitimate messages, we consider these messages as false positive

samples, and vice versa. We also define γ the system occupation rate, which is

calculated as:

γ = max(utilcpu, utilmem, utillink).
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Additionally, |fp| denotes the number of false positive samples, |tp| denotes the

number of true positive samples, |fn| denotes the number of false negative samples,

and |tn| denotes the number of true negative samples. We define a policy transition

threshold value α to decide when the agent should adjust the defense policy to

minimize the false positive rate or to maximize the true positive rate. In this paper,

we set α as 0.75.

When γ < α, we set the reward function R1(a(m)) for single-targeted

actions as Equation 6.1.

R1(a(m)) =



−2 for false positive sample

1 for true positive sample

−1 for false negative sample

0 for true negative sample

(6.1)

This reward function gives the agent more penalties when false positive generated,

which aims to constraint the agent to ensure all the possible legitimate messages

can be properly processed when the system load is within a safe zone.

In the scenario that the agent is making multiple-targeted actions, and γ <

α. Assume that the action a will affect a set of messages M = {m1,m2, ...,mn}, we

set the reward function R2(a) as Equation 6.2.

R2(a(M)) = η

n∑
i=1

R1(a(mi))

= η(−2|fp|+ |tp| − |fn|)

(6.2)

Where η is the reward multiples. We can set η as a value more one so that the

agent would get extra rewards or penalties when making multiple-targeted actions.

The larger η is, the more the agent is encouraged by the reward functions to

take multiple-targeted actions for conducting the defense policy effectively. This

mechanism is necessary for the defense agent because monitoring a large amount
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of incoming messages is an expensive operation and could become the a system

vulnerability itself. The agent can fix this problem by frequently generating

multiple-targeted actions.

When γ ≥ α, the victim system is heavily loaded, which means the highest

priority of agent is to mitigate as many L7 DDoS attacks as possible to guarantee

the proper functioning of the server. In this scenario, we set the reward function

R3(a(m)) for single-targeted actions as Equation 6.3.

R3(a(m)) =



− 2
( γ
α
)g

for false positive sample

( γ
α
)g for true positive sample

−( γ
α
)g for false negative sample

0 for true negative sample.

(6.3)

Where g is the hazard index, an input parameter that determines how eager the

victim wants the attack to be mitigated. The larger g is, the more tactics shifts

the agent will have according to the environment, but g should always be larger

or equal to 1. Figure 66 shows the curves of the reward function in this scenario

with different g values (we set α = 0.75 in the curves), we can intuitively see the

variation of the reward functions based on the change of γ. The agent will get less

and less penalties from false positive samples with the increasing of γ. Conversely,

both the rewards from true positive samples and the penalties from false negative

samples will rise significantly. This reward function design will constraint the agent

to identify and block as many malicious application messages as possible, with the

cost of sacrificing a little bit false positive rate.

In the scenario that the agent is making multiple-targeted action a on a set

of message M (M = {m1,m2, ...,mn}), and γ ≥ α, we set the reward function
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Figure 66. Single-targeted Reward Functions for γ ≥ α and α = 0.75.

R4(a(M)) as Equation 6.4:

R4(a(M)) = η
n∑

i=1

R3(a(mi))

= η(− 2

( γ
α
)g
|fp|+ (

γ

α
)g|tp| − (

γ

α
)g|fn|)

(6.4)

R4(a(M)) is in direct proportion to the summation of reward values that returned

by all the affected messages. Still, we use the reward multiples parameter η to

encourage the agent to take multiple-targeted actions rather than single-targeted

actions.

6.4.5 Training. The training of the deep reinforcement learning

agent follows Q-value iteration [410]. For every state s, the agent will generate an

action a, which creates a state-action pair. The reward function will also return

a reward value r based on the state-action pair, therefore, we define a function Q

that calculates the quality of a state-action combination: Q : s× a→ r.

At time i, assuming the agent is located in s′′i and receives a message state

s′i, it will select an action ai to take. After the agent observed the reward ri, it will

enter a new environmental state s′′i+1 and update the value of Q. The core of the

algorithm is the value iteration update, using the weighted average of the old value
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and the new information:

Qnew(si, ai)← (1− β) ·Q(si, ai) + β · (ri + ζ ·max
a

Q(si+1, a)),

where β is the learning rate, and ζ is the discount factor.

However, the state s we use in this schema is a twelve-dimensional vector,

which could generate too large value space for the system to cover in both training

and monitoring phases. To tackle this problem, we use a deep neural network to

serve as a likelihood function for estimating the Q(s, a).

Just as the topology diagram in figure 64 shows, we leverage a five-layer

neural network to approximate the policy function. There are three hidden layers,

one input layer, and one output layer in the neural network. The input layer has 12

nodes to import the state vector s, and the output layer has six nodes to generate

the recommendation rates for six possible actions respectively. The second and

fourth layers have 14 nodes, while the third layer has 15 nodes. A unique aspect

about neural network is that the first and second layer are not fully connected.

Instead, we separate the nodes for s′ from s′′ to ensure that the neural network can

treat the two sub-state vectors differently.

The training of the agent is similar to the training of ordinary neural

networks, in which we define a loss function to measure how good the agent’s tactic

is. The loss is a value that indicates how far our action a is from the actual target:

loss = (r + ϵmax
á

Q̂(s, á)−Q(s, a)),

where ϵ is the decay rate, and r + ϵmaxá Q̂(s, á) is the actual target. The training

of the neural network is also the process of minimizing the loss value with back

propagation.
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Figure 67. Topology of Simulated Network Environment.

Each state s consists of a message state and an environmental state (s = s′ ∪

s′′). The agent will continuously get environmental state s′′ but only get message

state s′ when there is an incoming application message. Thus, the agent will only

be activated when it receives s′ in both training and monitoring phases.

6.5 Evaluation

6.5.1 Implementation and Simulations. We utilized Open

vSwitch [306] and Mininet [237] to construct the simulation environment. Figure 67

shows the basic topology of the simulated network environment. There are n IP

blocks in this network; each of them has 5 legitimate clients and 5 malicious clients.

Besides, we constructed the RL-based L7 DDoS attack defense system with OpenAI

Gym [77] and Keras [98].
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We simulated a victim system by constructing a Node.js web server that

handles HTTP requests and SMTP requests. The server runs on a virtual machine

with 6GB RAM and a 4-core 2.0 GHz CPU. It also maintains an HTTP-based

API that can read its hard disk and return selected images. The API is a designed

performance bottleneck (lethiferous spot) for attackers to exploit.

For L7 DDoS attacks, we used simulated traffic rather than captured traffic

because L7 DDoS attacks are diverse — malicious messages in one environment

can be legitimate in another. Moreover, there are few packet-level L7 DDoS traffic

available in public repositories. The majority of the existing public L7 DDoS

datasets are log files or preprocessed features. Thus, we used the Application Layer

DDoS Simulator [357] to simulate request-flooding attacks. For leveraged attacks,

we used Slowloris [331] to simulate the most typical leveraged attack — low and

slow attack. In the end, we used modified HULK program [346] to generate lethal

attacks towards the known performance bottleneck.

Based on our empirical studies (of which we skip the details for space

considerations), we set some of the parameters in this approach as follows: for the

number of IP blocks n in the evaluation, we set it to be 10; for the policy transition

threshold value α, we set it to be 0.75; the learning rate β for agent training is 0.25

in this implementation; for the hazard index g, we set it to be 3.

6.5.2 Ability of Mitigating Attacks. Although the proposed

method does not need to generate the precise labels of incoming messages, we can

still evaluate its ability to mitigating L7 DDoS attacks by inferring the correctness

of output action a. As indicated in Section 6.4.3, we count messages that trigger

scheduling actions as legitimate requests. Conversely, we count messages that
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trigger defensive actions as malicious messages. All the evaluation metrics in this

section are based on this regulation.

We simulated benign messages and launched the L7 DDoS attacks to the

victim simultaneously for evaluating the agent’s accuracy of mitigating L7 DDoS

attacks. During the test, we firstly ensured the volume of legitimate messages was

always under the victim server’s capacity so that the server would not crash due to

legitimate activities. Afterward, we adjusted the amount of malicious messages

to test the performance of this approach with different system loads. Here, we

consider the system load as the system occupation rate γ defined in Section 6.4.4.

Figure 68 shows the trends of mitigation accuracies, false positive rates, and

true positive rates during different system loads (we consider malicious messages as

positive samples in this paper), where the y-axis represents the system workload,

and the x-axis represents the rate value.

When the system load is at a low rate, we can get a nearly 100% mitigation

accuracy, since the majority of the messages are benign, the agent will minimize

the false positive rate at this point. However, when both the system workload

and the volume of attacks are increasing, the accuracy has some apparent drops.

Although the attack volume increased, the defense agent still uses the defense

tactic that aims at minimizing the false positive, guiding the agent to sacrifice the

true positive rate for letting the server adequately process most of the legitimate

requests. Thus, the false positive rate remains approximately zero within this zone.

On the contrary, the trend for true positive rates fluctuates in low system-load

scenarios, because the volume of malicious requests is still low, making it hard to

reach statistical significance.
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The transition comes in when the system workload is at 0.75. From this

point, the defense agent assumes that the server system is in hazardous conditions,

so it has to mitigate as many attacks as possible to protect the victim server. As

the system load goes higher, the value of ( γ
α
)g in the reward functions becomes

larger, and the false positive rate becomes less and less critical. Hence, we can

distinctly see that the defense agent starts maximizing the true positive rate. This

sacrifices some false positive rates but still increases the overall accuracies. In the

end, when the system load stabilizes at 100%, the accuracy, true positive rate, and

false positive rate are 0.9553, 0.9873, and 0.1756, respectively.

In brief, this evaluation result proofs that the reinforcement learning agent

can intelligently formulate applicable tactics to defend against L7 DDoS attacks,

and the mitigation accuracies of the tactics are satisfactory.

6.5.3 Mitigation efficacy. We evaluated the efficacy of our approach

and presented the results in Figure 69. The x-axis in the figure represents the

number of application messages made to the victim server per second, including

both the legitimate messages and malicious messages. The y-axis of the upper

subplot represents the system load, while the y-axis of the lower subplot represents

the proportion of denied benign messages.

Initially, the resource consumption of the server without protection is lower

than the server with the agent running because the deployment of the defense

agent costs a certain amount of computing resources, especially for maintaining the

LSH function, message monitoring, and the operation of the deep neural network.

However, this consumption will pay back shortly with the increasing number of

receiving messages. We can see that the proportion of denied benign messages

increases observably for the server without protection. If we assume that a server
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Figure 71. Results of Comparison Evaluation.
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is considered to be proper functioning when the deny rate of legitimate messages is

lower than 20%, the capability of the server without protection is approximately

140 messages per second. After reaching 250 messages per second, the server

without protection is almost useless, with the majority of message requests getting

denied. While for the server with the defense agent’s protection, the deny rate of

legitimate messages goes higher than 20% only after the number of messages per

second hitting 440, which is 3.15 times the capability of the unprotected server.

Therefore, this approach can significantly enhance the service capability of

the server and make the victim resilient during some severe L7 DDoS attacks.

Additionally, running the defense agent requires system overheads. Figure 70

shows the system overheads for the defense agent when monitoring different

numbers of messages per second. We experimented by removing the server function

of the victim system. Hence, all of the computing resources were devoted to the

defense agent, and we can directly measure the system overheads. From previous

experiments, we already know that the capability of the server without protection

is approximately 140 messages per second. In this figure, we can see the agent can

monitor 1.5 times the maximum messages that the server can process with less

than 20% of computing resources. Besides, the larger the reward multiples η is, the

more the agent is encouraged to take multiple-targeted actions, thus increasing the

monitoring efficiency. We set η as 2 in other experiments. However, if we increase

the value of η to 4 and devote all the system overheads to the agent, the agent can

monitor nearly 1800 messages per second, which is more than 12 times the server’s

maximum processing capability.

6.5.4 Comparison evaluation. We also compared our approach

with two other DDoS attack detection approaches. One is FastNetMon [289], a
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commercial DDoS detection software that applies statistical methods. Although

this software is not designed for L7 DDoS attacks, it offers good performance

on general DDoS detection. Another is ARTP [309], a learning-based detection

approach particularly designed for L7 DDoS attacks.

To evaluate their performance, we simulated the traffic of HTTP flood,

SMTP flood, low and slow attacks, and lethal attacks. Figure 71a shows the

accuracies of these approaches. Our approach achieves the best accuracy scores for

detecting HTTP flood, low and slow attack, and lethal attack. ARTP only slightly

exceeds our approach in detecting SMTP flood. Although our approach does not

have perfect scores in precision and false positive rate (as shown in Figure 71b and

Figure 71d), it still accomplishes the initial design objective, which is to sacrifice a

little bit false positive rate to block as many malicious requests as possible during

the peaks of attacks. As we can see from Figure 71c, our method achieves the best

recall scores in identifying all types of attacks because it can adjust the mitigation

strategies dynamically based on the condition of the victim server.

6.5.5 Robustness in different environments. We have noticed

the importance of the robustness of RL-based approaches. Therefore, we deployed

the trained agent in different environments to evaluate the adaptability of our

approach. Figure 72 shows the evaluation results of robustness. Environment 2 is

slightly different from the trained environment, which is assigned with a 4GB RAM

and a 3-core 2.0 GHz CPU. Environment 3 has the same hardware as environment

2 but runs different application services, which offers video streaming and download

services with HTML5. Environment 4 has a 12GB RAM and a 8-core 2.7 GHz

CPU, which is quite a different hardware environment compared with others.
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The evaluation results show that the accuracies of our approach only drop

a little bit if the environment changed slightly. Even if the application service

changed in environment 3, the agent could still achieve around a 90% accuracy

at the attack peak. In fact, the design philosophy of our approach promotes

adaptability. For instance, many of the features we designed are proportions rather

than an absolute value; we avoided using the application-specific features in the

state.
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6.5.6 Agent training. In the training phase, we trained the defense

agent in the platform for 80 hours, with nearly 35,000 episodes. We recorded the L7

DDoS attack detection accuracies during different stages to evaluate the efficiency

of agent training. As we can see from the results (Figure 73), the training process

goes relatively slow and precarious during the first 20,000 episodes. Then it evolves

quickly from around 65% accuracy to more than 90% accuracy in the next 7,500

episodes, enabling the defense agent to offer decent protection to the victim server.

Eventually, the accuracy of the agent stabilizes near 96% after 30,000 episodes of

training. This evaluation also proves that it is feasible to retrain the defense agent

within half a week to fit a whole new environment in a real deployment.

6.5.7 Service delay. Since the defense agent will continuously inspect

all the incoming application messages during the server operation, the service delay

could be an underlying concern that impacts the user experience. Therefore, we

measured the lengths of delays under different system workloads and presented the

results in a boxplot (as shown in Figure 74).

Here, we define the length of delay as the time duration from sending out a

message to receiving the whole reply. A delay less than 0.5 seconds is imperceptible
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to the users. As we can see in the Figure 74, the average delay time for the server

remains under 0.5 seconds when the system workload is less or equal to 90%.

Although the delay without any defense approaches implemented is around 0.25

seconds, the presence of the defense agent is still unremarkable to the clients most

of the time. Even when the system workload reaches 100% and the attackers are

trying to overwhelm the victim server, the service delay can still lay within an

acceptable range (0.4 seconds to 1.25 seconds). Meanwhile, the system without

any protections is already in an unusable condition under this circumstance.

6.6 Discussions

In this section, we examine the limitations and potential future

developments related to our approach, while also considering its prospective

suitability for a broad array of other applications.

6.6.1 Limitations and Open Issues. In most cases, this

reinforcement-learning-based approach can accurately identify L7 DDoS attacks

and generate defense tactics simultaneously. However, it has some limitations:

1. Application-layer DDoS attack is highly dependent on the victim system and

the network environment, so are the attack detection and defense solutions.

Thus, this approach may require us to retrain the agent to accommodate the

current victim system when the environment is changed dramatically.

2. This method is a learning-based approach, although the training data of

this approach can be enhanced to cover more attack models, thus improving

the capability of this approach, nonetheless, if the training does not include

information from zero-day attacks, this method probably will not be able to

deal with them.
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This approach also faces several open issues as possible future working

items:

1. Currently, we mainly use HTTP flood, SMTP flood, low and slow attack,

and API-based lethal attack to train the agent. However, there are still

many other types of L7 DDoS attacks existing such as XML-based attack.

It would be a meaningful improvement to simulate more types of attacks in

the training phase to make the reinforcement learning agent more robust.

2. The performance bottleneck of this approach is in the victim server,

because the victim server takes charge of both the message decoding and

environmental information transmission. We can further increase the

efficiency of the RL agent by using more advanced data structures or

algorithms.

3. As a learning-based approach, this method could be vulnerable to adversarial

attacks. It is significative to develop some systematic methodologies to

evaluate and improve the robustness of this method.

6.6.2 Methodology Generalizations. To defend against L7 DDoS,

we have proposed several new algorithms, techniques, and data processing pipelines.

These contributions can potentially be generalized to other FGTA applications.

6.6.2.1 Reinforcement learning for attack defense. In our

proposed methodology, we have incorporated the concept of reinforcement learning

as a mechanism for attack defense. This pioneering approach employs a model

that accrues insights from the surrounding environment and historical actions,

thereby making more enlightened decisions regarding potential attack defense. The

implementation of reinforcement learning in this context serves as an influential
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instrument as it equips the system with the capacity to adapt to evolving attack

patterns and tactics. Its application is not confined to the defense against L7

DDoS attacks; there exists potential for its generalization in defending against

other variants of network attacks. Moreover, this reinforcement learning approach

can also be extended to other FGTA applications that necessitate dynamic and

adaptable response mechanisms.

6.6.2.2 Action-oriented pipeline. The L7 DDoS defense pipeline

that we’ve proposed in this chapter offers a departure from the conventional FGTA

pipeline which initially identifies malicious traffic sources before proceeding to block

them. Our proposed pipeline directly formulates the most apt defense actions

tailored to the current situation, striving to minimize collateral damage when the

victim system load is low, and to optimize the true positive rate when the victim

system load is heavily burdened. Its focus isn’t exclusively on achieving the highest

detection accuracy across all scenarios, but rather on ensuring the most effective

defense. This pipeline could feasibly be extended to other FGTA applications or

defense systems necessitating dynamic and responsive mechanisms.

6.6.2.3 Collaborative defense strategy. In our proposed

methodology, we have further integrated the concept of collaborative defense

as a strategy for attack mitigation. This approach amalgamates FGTA with

endpoint-based defense to guard against L7 DDoS attacks, consequently enhancing

application-layer situational awareness and bolstering the efficacy of attack defense.

This collaborative defense strategy could be extended to encompass other security

applications that necessitate awareness of the environmental context or other

domain-specific data. For instance, in the realm of malware detection, there lies
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potential for researchers to leverage both FGTA and Threat Intelligence Systems

(TISs) to augment the defense against malware invasions.

6.7 Conclusions

L7 DDoS attacks are becoming increasingly sophisticated and threatening,

outpacing the severity of traditional DDoS attacks. Compared to traditional

DDoS attacks, L7 DDoS attacks present a substantial challenge to conventional

FGTA methodologies. This difficulty predominantly stems from these traditional

approaches lacking the essential application-layer situational awareness that’s

crucial for the effective detection and mitigation of such advanced attacks.

Consequently, in this chapter, we investigate the joint use of endpoint-

based defense and FGTA to effectively combat L7 DDoS attacks. Specifically, we

propose a reinforcement-learning-based approach that can self-evolve according

to the interactions with the environment. It continuously monitors and analyzes

a variety of metrics related to the server’s load, the dynamic behaviors of clients,

and the network load of the victim, to detect and mitigate L7 DDoS attacks,

including choosing the most appropriate mitigation tactic. Different from typical

DDoS detection approaches that label the traffic as either legitimate or malicious,

this approach employs a new multi-objective reward function that minimizes false

positive rate to avoid collateral damage when the victim system load is low and

maximizes the true positive rate to prevent the server from collapse when the

victim system load is high. Evaluation shows that this approach protects a victim

server from L7 DDoS attacks effectively; it can mitigate 98.73% of the malicious

application messages when the victim is brought to its knees and achieve minimal

collateral damage when the L7 DDoS attack is tolerable.
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CHAPTER VII

FUTURE RESEARCH AVENUE

In this chapter, we discuss the broader future research directions in the

realm of FGTA for malicious activity detection. Although previous chapters have

addressed open issues and potential advancements specific to individual proposed

methods in corresponding sections, this chapter takes a more overarching view by

concentrating on the overall future research avenues within the FGTA domain.

7.1 Improving the Analysis Coverage and Efficacy

Throughout the years, researchers and developers have introduced a

variety of FGTA-based techniques for detecting an extensive array of malicious

activities, including DDoS attacks, botnet activities, malware infections, and worm

propagation. Despite these advancements, several use cases and scenarios have

yet to be addressed by existing FGTA methods. For example, the emergence of

UAVs has led to the development of novel, UAV-specific attacks that necessitate

detection. The recent SolarWinds supply-chain attacks [416] have underscored the

need for FGTA techniques capable of identifying such threats. Furthermore, FGTA

can be utilized to oversee and protect network traffic in autonomous vehicles.

Consequently, a more extensive detection coverage of FGTA methods is required

to tackle the increasing number of use cases and scenarios, encompassing new

applications, attacks, and communication protocols. To accomplish this, researchers

must first investigate the mechanisms of each novel malicious activity to establish

a comprehensive understanding of the threats. This foundational knowledge will

enable them to identify the unique characteristics and behaviors of these threats.

Subsequently, they can choose to either adapt existing FGTA techniques or create

new ones tailored to the detection of these emerging malicious activities. By
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continuously refining and expanding the scope of FGTA methods, researchers can

ensure that these approaches remain effective and relevant in the ever-evolving

landscape of cyber threats.

Additionally, as discussed in Chapter II, the effectiveness of numerous

current FGTA methods is not optimal for real-world deployment. Based on

observation points, FGTA approaches may encounter millions of traffic flows within

a brief period in real-world settings. Under these circumstances, an FGTA method

could produce a substantial number of false positives or false negatives, even if it

achieves over 95% accuracy in closed-world evaluations. As a result, enhancing

the efficacy of FGTA remains a perennial subject of interest for researchers and

developers. To achieve this, researchers and developers should focus on identifying

factors contributing to false positives and negatives, and leverage appropriate

and optimized data processing algorithms to tackle these factors. Besides, by

integrating domain knowledge and expert insights, more context-aware solutions

can be developed to better handle the complexities of real-world environments,

thereby improving the overall efficacy of FGTA methods.

7.2 Enhancing the Adaptability to Other Network Environments

As the complexity and diversity of network environments continue to grow,

it becomes increasingly vital for FGTA methods to maintain their adaptability

across a broad range of scenarios. While in Chapter V we have proposed a DDoS

detection method demonstrating strong adaptability, many existing FGTA methods

still struggle with this issue. Often, FGTA techniques developed for a specific

network environment may not be directly applicable to others due to differences in

network topology, traffic patterns, and other factors. To address this challenge, we
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suggest the following strategies for enhancing the adaptability of FGTA techniques

across various network environments.

1. Model transferring: Employing model transfer techniques, where

pretrained models are fine-tuned for specific network environments, can help

improve the adaptability of FGTA methods. By leveraging the knowledge

gained from one network setting, researchers can expedite the training process

and enhance detection performance in other, potentially related environments.

This approach promotes efficiency and adaptability in addressing a wide

range of network scenarios.

2. Online or incremental learning: Incorporating online or incremental

learning approaches [341, 163, 202] allows FGTA methods to adapt to

changing network conditions in real-time. These techniques enable continuous

model updates as new data becomes available, ensuring that the detection

methods remain relevant and effective in the face of evolving network

dynamics.

3. Adaptive feature engineering: Developing adaptive feature engineering

techniques can help FGTA methods better capture the unique characteristics

of different network environments. By dynamically selecting and adjusting

relevant features regardless of the network environments, these approaches

can optimize detection performance across a wide range of scenarios.

4. Cross-domain learning: Similar to adaptive feature engineering, leveraging

cross-domain learning techniques can enable FGTA methods to easily transfer

knowledge and insights from one network environment to another. By

exploiting the shared underlying structures and patterns between networks,
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researchers can develop more robust and adaptive models that can generalize

well across various settings.

5. Customizability and modularity: Designing FGTA methods with

customizable components and modular architectures allows for seamless

integration and adaptation to specific network environments. By creating

reusable and interchangeable modules, researchers can more easily tailor the

methods to the unique characteristics and requirements of different networks.

7.3 Enhancing the Explainability

Explainability is another critical aspect of FGTA-based detection methods,

as it facilitates better understanding, trust, and adoption of these techniques by

network administrators or security analysts. However, it is often ignored by most

existing FGTA methods. By providing clear and interpretable explanations of how

a particular method detects malicious activities, users can make more informed

decisions when managing and securing their networks.

One approach to enhancing the explainability of FGTA methods is to

leverage interpretable models. Designing inherently interpretable models, such as

decision trees and linear models, can offer transparent and easily understandable

insights into the decision-making process of FGTA methods. By prioritizing

interpretability in model development, researchers can create solutions that are

more readily adopted by end-users.

Another direction is to develop post-hoc explainability techniques.

Implementing post-hoc explainability techniques, such as LIME [173], SHAP [75],

or counterfactual explanations [278], can help elucidate the decision-making process

of complex models, such as deep learning and ensemble methods. These techniques
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provide insights into the importance and influence of specific features on the

model’s predictions, enabling users to better understand the underlying logic.

Last but not least, researchers can also develop visualization techniques

to represent the inner workings of FGTA-based methods, thereby enhancing the

explainability. By presenting complex data and model structures in a visually

accessible manner, users can more easily grasp the relationships and patterns

driving the detection process.

7.4 Expanding and Diversifying Traffic Data Collection for FGTA

Developments

High-quality, diverse, and representative traffic data is essential for the

development and evaluation of effective FGTA methods. By expanding and

diversifying traffic data collection, researchers and developers can ensure that

FGTA techniques are robust and adaptable to various network environments and

attack scenarios. Nonetheless, there is currently a shortage of high-quality traffic

data representing various malicious activities.

In the future, the security community should encourage collaboration and

data sharing among researchers, network administrators, and security experts,

which can facilitate the collection of diverse and representative traffic data. Besides,

developing techniques for generating realistic synthetic data is also helpful. It

can augment existing traffic datasets and provide additional insights into network

dynamics and attack patterns.

It is particularly important to note that background or benign traffic

data also plays a crucial role in the development and evaluation of FGTA-based

detection methods. The presence of diverse and representative benign traffic data

allows researchers and developers to assess the performance of their detection
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methods more accurately, taking into consideration the wide range of legitimate

network activities. By incorporating realistic benign traffic patterns in the

development and evaluation process, FGTA methods can be better tailored to

minimize false positives and maximize detection accuracy in real-world scenarios.

7.5 Standardizing the Evaluation Pipeline

Another important future research direction is to establish a standardized

evaluation pipeline, which is essential for assessing the performance, robustness,

and generalizability of FGTA methods across different network environments and

attack scenarios. A standardized evaluation pipeline also enables researchers and

developers to compare various FGTA techniques objectively and identify the most

effective approaches for specific use cases.

To accomplish this, researchers and developers can establish benchmarking

frameworks and leaderboards for FGTA methods, promoting competition and

innovation within the field. By offering a platform to compare the performance

of various techniques, researchers can identify best practices and cutting-edge

methods for detecting and mitigating malicious activities in network environments.

Furthermore, akin to ImageNet in computer vision [126], creating and utilizing

shared datasets for evaluating FGTA methods can enable fair and unbiased

comparisons among different techniques. Adopting a consistent set of performance

metrics and evaluation protocols can also contribute to the standardization of the

evaluation process, facilitating the comparison of FGTA methods.

7.6 Integrating FGTA into Other Analytical Systems

While FGTA methods effectively detect various types of malicious activities,

their capacity to deduce accurate application-layer information is constrained

by the coarse-grained nature of the input traffic data. Addressing this challenge
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involves integrating FGTA methods with other analytical systems to enhance their

performance and capabilities. Some potential systems for integration include:

1. Endpoint-based monitoring systems: As demonstrated in Chapter VI,

integrating FGTA methods with endpoint-based monitoring systems can

significantly improve the efficacy of L7 DDoS defense. By combining the

strengths of both approaches, researchers can develop more comprehensive

and accurate detection methods. In the future, researchers can also explore

such integration to tackle other network security challenges, such as malware

detection and intrusion detection.

2. Threat intelligence systems [384]: Incorporating threat intelligence

data into FGTA methods can provide valuable context for identifying and

understanding malicious activities. By leveraging information on known

threats, attack patterns, and threat actors, FGTA methods can be enhanced

to detect and mitigate a broader range of attacks.

3. Security information and event management (SIEM) systems [67]:

SIEM systems collect, analyze, and correlate security event data from

multiple sources to detect and respond to security incidents. Integrating

FGTA methods with SIEM systems can provide a holistic view of network

security and enable more effective detection and mitigation of malicious

activities.

By exploring these integration opportunities, researchers can further

expand the capabilities of FGTA-based methods and enhance their performance in

detecting and mitigating malicious activities across various network environments.
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CHAPTER VIII

CONCLUSION

TA is a commonly employed technique that captures and utilizes network

features from the network or transport layers to infer information about ongoing

communications. It is extensively utilized to detect a variety of malicious activities

within the network. However, TA-based methods are encountering escalating

challenges in detecting advanced malicious activities and providing fine-grained

detection results that are necessary for further action. This highlights the need for

more sophisticated and nuanced approaches to handle the evolving landscape of

cybersecurity threats.

In this dissertation, our objective is to bridge this gap by introducing

several innovative FGTA approaches designed for fine-grained detection of various

malicious activities within the network. We concentrate on identifying hard-to-

detect malicious activities, broadening the use cases of FGTA, enhancing the

system usability, and merging network traffic data with endpoint information to

enhance application-layer situational awareness. These contributions not only

push the boundaries of the field but also tackle some of the urgent issues presently

confronted by traditional TA methodologies.

Throughout this dissertation, we deliver key contributions pertaining to

FGTA for the detection of malicious activities, showcased through the following five

projects:

– We conduct a comprehensive survey of existing FGTA approaches, identifying

the gaps and opportunities in the current state of the art. This survey not

only provides a systematic understanding of the field but also serves as a

roadmap for future research directions.
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– To broaden the use cases of FGTA, we propose CJ-Sniffer, a privacy-aware

cryptojacking detection approach that efficiently detects cryptojacking

traffic by accessing anonymized, content-agnostic metadata of network

traffic from the gateway of the network. To our best knowledge, CJ-Sniffer

is the first approach to distinguish cryptojacking traffic from user-initiated

cryptocurrency mining traffic, allowing for fine-grained traffic discrimination

and improved protection against this growing threat.

– We further expand the application range of FGTA by introducing

BotFlowMon, a learning-based, content-agnostic approach for detecting OSN

bot traffic, relying only on flow-level traffic data as input and utilizing novel

algorithms and techniques to classify OSN bot traffic from real OSN user

traffic. This innovative approach overcomes the limitations of traditional

social bot detection methods, which typically require private payload

information, social relationships, or activity histories.

– We showcase that FGTA can be made more usable, as illustrated by our novel

learning-based DDoS detection approach that underscores both explainability

and adaptability. This method utilizes an enhanced KNN algorithm and

classifies DDoS sources with fine granularity. It not only exhibits high

accuracy and efficiency in detecting DDoS attacks but also provides

explanatory information. This feature enables network administrators

to easily scrutinize detection results and make necessary interventions.

Furthermore, it can adapt to new network environments without the need

for model retraining.
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– In the end, we present a reinforcement learning-based defense approach

against L7 DDoS attacks, which combines FGTA and endpoint-based defense

approaches for better application-layer situational awareness. It actively

monitors and analyzes the victim server and applies different strategies under

different conditions to protect the server while minimizing collateral damage

to legitimate requests. This approach addresses the challenge of detecting and

defending against L7 DDoS attacks, which are difficult for traditional TA-

based methods due to their limited visibility of transport and network layers.

Our evaluation results demonstrate that the proposed FGTA approaches

achieve high accuracy and efficiency in detecting and mitigating various malicious

activities, while maintaining privacy-preserving features, providing explainable and

adaptable results, or providing comprehensive application-layer situation awareness.

These contributions significantly advance both the fields of FGTA and malicious

activity detection. This dissertation can serve as a foundation for future research

and development in these critical areas.

Although our work has addressed several pressing challenges, there remain

areas for further investigation and improvement. Future research could explore the

development of even more advanced FGTA techniques, the application of these

techniques to other malicious activities beyond those covered in this dissertation,

and the enhancement of usabilities in FGTA-based solutions. Additionally, further

exploration of the integration of network traffic data with endpoint information

to provide more comprehensive protection and situational awareness is warranted.

By building on the foundation laid in this dissertation, we believe that the field of

malicious activity detection will continue to evolve and adapt to the ever-changing

landscape of a variety of threats.
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APPENDIX A

EXTENSION FOR THE DENSITY-VALLEY-BASED CLUSTERING

Algorithm 2 only applies to one-dimension datasets since the valley point

competition mechanism only handles circumstances where two clusters share a

valley point. This design is sufficient for processing transaction fingerprint data,

but not able to deal with multi-dimension datasets where there can be more than

two clusters sharing a valley point. We thus designed a more universal valley point

competition mechanism in Algorithm 5 to solve this problem. In particular, if data

point e in Algorithm 2 is a valley point of multiple clusters {c1, c2, ..., cn}, it can

invoke Algorithm 5 instead. It first divides competing clusters into a low-density

group and a high-density group. It then merges all the clusters in the low-density

group, as well as the cluster with the lowest density in the high-density group,

into one cluster, and assigns valley point e to the cluster with the fewest data

points among all clusters. With the help of Algorithm 5, Algorithm 2 can handle

more complicated transaction fingerprint configurations, or even serve as a general

clustering algorithm to process other types of high-dimension and low-dimension

datasets.
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Algorithm 5 Valley point competition for n ≥ 2 clusters.

1: Input: Valley point e, set of competing clusters Cn = {c1, c2, ..., cn}, set C
from Algorithm 2 that stores current clusters, valley point index ρ

2: Clow = ϕ; Chigh = ϕ ▷ two sets to store the low density and high density
clusters from Cn, respectively

3: C = C - Cn ▷ remove Cn from C
4: for cluster c in Cn do
5: if c.density · ρ ≤ e.density then
6: Add c to Clow

7: else
8: Add c to Chigh

9: end if
10: end for
11: if Clow ̸= ϕ then
12: if |Chigh| >= 2 then
13: cborder = the cluster with the lowest density in Chigh

14: remove cborder from Chigh

15: cnew = merge(Clow, {cborder})
16: Call = Chigh ∪ {cnew}
17: Add e to the cluster with the fewest data points in Call

18: Add Call to C
19: else
20: cnew = merge(Clow, Chigh)
21: Add e to cluster cnew
22: Add cnew to C
23: end if
24: else
25: Add e to the cluster with the fewest data points in Chigh

26: Add Chigh to C
27: end if
28: return C
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APPENDIX B

SOCIAL BOTS SIMULATION

There are various types of social bots existing in the world, also, they can

create different traffic flows during operations. BotFlowMon’s design requires

inputting a significant amount of labeled traffic data as ground truth. To derive

the labeled dataset, we categorized the social bots into the following five types and

comprehensively simulated them.

B.1 Chatbot

Chatbots are active in messaging applications such as Twitter Direct

Messages, Facebook Messenger, or WeChat. Either artificial-intelligence-powered

or merely logic-based, they can automatically perform conversations with regular

users.

The simulation of chatbots relies on existing widely used chatbot

frameworks, APIs, and open-source programs such as botmaster [386], Ontbot [43],

BotLibre [30], and python-twitter API. We created many Twitter and Facebook

bot accounts only for research purposes under the OSNs’ terms and conditions

of service. The chatbots we created only talked to the recruited participants

during the data generation process. We collected multitudinous traffic flows of

the conversations between real users and the chatbots, with different frequencies

of interaction, response time and transmission content (image, audio, text, or

hyperlink).

B.2 Post Bot

In part due to the easily usable official and third-party APIs, poster

bots have become the most common social bots in OSN. They distribute spam
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tweets and Facebook posts with malicious URLs in most cases or malicious texts

occasionally [440] [182].

In order to simulate post bots, we downloaded several popular open-source

poster bot software from GitHub [22] and wrote some poster bot programs based

on APIs such as Tweepy [326] and Facebook API [181]. The open-source programs

we used included botmaster [386], BotLibre [30], and TwitterBot [31]. We first set

up OSN accounts on Twitter and Facebook platforms. Then, we ran these bots

programs with different frequencies, including random frequencies, during different

time periods to post some harmless messages that contained texts, videos, images

and external URLs on Twitter and Facebook.

B.3 Amplification Bot

Amplification bot, due to the large volume of messages it can generate, is

often used to create hot topics for commercial promotion, consensus manipulation,

and spam distribution. Without creating new content, amplification bots often

work as fake followers, such as those Twitter or Facebook accounts specifically

created to inflate the number of followers of a target account. Amplification bots

also can serve as forwarding and liking robots, popularize junk information, and

help commercial promotion.

Since the social relationship is unknown in NetFlow data, we only need

to simulate every individual amplification bot’s interactions with OSNs. The

simulation of amplification bots is similar to the post bot simulation. We used

open-sourced programs [30, 31, 386] and implemented API-based bot scripts to

simulate amplification bots. Besides, we used OAuth [188] software for token

management and switching accounts.
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B.4 OSN Crawler

OSN crawlers can exploit OSNs to aggregate data of a large number of OSN

users for re-publication or other nefarious purposes that violate users’ privacy and

security. There are two types of OSN crawlers and we simulated both of them. One

is API-based, which relies on a large botnet to extract users’ private, sensitive data.

Twitter and Facebook used to have powerful APIs such that even a small number

of accounts can fetch a large amount of information from their sites. Recently OSN

operators have taken plenty of measures to limit the APIs’ capacity in crawling

user data, especially after the Facebook-Cambridge Analytica data scandal [24].

Moreover, in OSNs it is common that a user’s information can only be accessed

by their friends or followers. Therefore, a significant amount of social bots are

necessary to overcome the API limitations and retrieve users’ private information.

The following code exemplifies a crawling process.

import twitter

api = twitter.Api()

api.GetUser(user)

api.GetFollowers()

api.GetStatus(status_id)

api.GetFriends(user)

api.LookupFriendship(user)

Another type of OSN crawler is page crawler. Instead of using API, it reads

the HTML files of OSNs and uses regular expressions to extract target information.

The NetFlow traffic of this bot has a strong resemblance to a regular user’s traffic

but still differs in key aspects, such as flow density and operation frequency.
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B.5 Hybrid Bot

The hybrid bot is not a specific type of social bot. Instead, it is an arbitrary

combination of different types of social bots. This characteristic makes the

activities of a hybrid bot hard to detect. However, with BotFlowMon’s subdivision

module, we can subdivide its transactions into actions, thus still able to detect it.

We implemented a hybrid bot that consists of a chatbot, a post bot, an

amplification bot, and an OSN crawler on a single node. During the execution of

the hybrid bot, its chatbot is always active, so it automatically replies whenever

other accounts send it messages. Meanwhile, it randomly conducts actions provided

by other underlying bots. We simulated its activities with both periodic and

random frequencies.
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APPENDIX C

ETHICAL AND HUMAN SUBJECT ISSUES OF BOTFLOWMON

We carefully addressed the ethical and human subject issues involved in

the research of OSN bot traffic detection. As the development and evaluation

of BotFlowMon involved human subjects, we obtained the Institutional Review

Board (IRB) approval to ensure that our procedures are ethical and appropriate in

order to safeguard the welfare of the campus network and the privacy of research

participants. We introduce the main measures we adopted to address the ethical

considerations below.

C.1 Data Generation

In recruiting participants, we adopted an informed consent procedure, which

provided the potential participants with a clear description about the project

before they agree. After the data generation, all their personal data were deleted

immediately. In simulating social bots, we ensured they followed the terms of

service of OSN providers, were harmless to other users and the OSN environments,

and left no traces after each experiment. For example, we used weather reports,

university announcements, and encyclopedic knowledge to simulate fraud and spam

posts for post and amplification bots. The external URLs contained in the bot

messages were well-known innocent URLs, such as google.com and facebook.com.

The chatbots and OSN crawlers only interacted with the informed participants, and

the personal data gathered by them were not stored in any form.

C.2 Data Collection

All the data we collected were content-agnostic NetFlow records, along with

the labels, time stamps, and short descriptions of real user and social bot activities.

No payload or content data were downloaded and stored during the process. For
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the NetFlow records from the campus network, every internal IP address was

anonymized, so it cannot be mapped back to any individual. Using anonymous

IP addresses, however, makes it hard to identify the NetFlow records created by

ourselves. To address this issue, every time we generated legitimate or illegitimate

traffic, we pinged several external IP addresses and recorded their time stamps to

create distinctive features of these traffic, making it easy to identify their NetFlow

records and discard all irrelevant ones. In addition, all the data we collected were

stored in an encrypted form, and any access to the data must have the approval of

the principal investigator of this project.
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APPENDIX D

TIME COMPLEXITY ANALYSIS FOR THE PROPOSED

DENSITY-VALLEY-BASED CLUSTERING ALGORITHM

D.1 Time Complexities for Different Modules

Preprocessing module: This module’s input is all the NetFlow records from

a monitored network. Assume their number is n. This module applies the longest

prefix match to output OSN-related NetFlow records, which takes a linear time. Its

time complexity is therefore O(n).

Flow aggregation module: This module’s input is OSN-related NetFlow

records per OSN account (which can be either a real user or a social bot). Assume

the number of time bins of these records is m. As this module uses DBSCAN to

aggregate related NetFlow records into transactions, it takes O(mlogm) time.

Transaction fingerprint generation module: This module’s input is a set of

NetFlow records that form a single transaction. Its purpose is to produce an f×N

matrix as the fingerprint of the transaction. This module’s time complexity is thus

O(fN).

Transaction subdivision module: This module’s input is the f×N fingerprint

matrix of a single transaction. It applies its density-valley-based clustering

algorithm to subdivide the transaction and output a set of actions in the form of

action fingerprint matrixes. As the time complexity of the clustering algorithm is

similar to DBSCAN, this module’s time complexity is O(NlogN).

Machine learning & classification module: This module’s input is j actions

that a transaction is subdivided into. Assuming the number of layers in CNN or

MLP classification model is l, this module is to classify each action with a time

complexity O(l). This module’s time complexity is thus O(lj).

284



D.2 Overall Time Complexity

As BotFlowMon processes incoming NetFlow records online, its time

complexity is the sum of the time complexity of every module. Assume after

the preprocessing module the selected NetFlow records belong to a OSN

accounts. Also assume the flow aggregation module outputs b transactions per

OSN account. BotFlowMon’s time complexity is thus O(n) + a·O(mlogm) +

a·b·O(fN) + a·b·O(NlogN) + a·b·O(lj). Here, m is a constant as BotFlowMon

receives NetFlow records periodically, f and N are constants as f is 4 or 6

and N is 200 in our setup, and l is a constant with a default value of 9 for

CNN and 7 for MLP. So BotFlowMon’s time complexity can be simplified as

O(n)+O(a)+O(ab)+O(ab)+O(abj), which is equivalent to O(n)+O(abj). Note abj

represents all the actions by all OSN accounts from these n NetFlow records, which

is approximately proportional to n. Therefore, BotFlowMon’s time complexity is

O(n), where n is the total number of input NetFlow records.
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