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DISSERTATION ABSTRACT
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Title: Improving Cross-Lingual Transfer Learning for Event Detection

The widespread adoption of applications powered by Artificial Intelligence

(AI) backbones has unquestionably changed the way we interact with the world

around us. Applications such as automated personal assistants, automatic question

answering, and machine-based translation systems have become mainstays of

modern culture thanks to the recent considerable advances in Natural Language

Processing (NLP) research. Nonetheless, with over 7000 spoken languages in the

world, there still remain a considerable number of marginalized communities that

are unable to benefit from these technological advancements largely due to the

language they speak. Cross-Lingual Learning (CLL) looks to address this issue

by transferring the knowledge acquired from a popular, high-resource source

language (e.g., English, Chinese, or Spanish) to a less favored, lower-resourced

target language (e.g., Urdu or Swahili). This dissertation leverages the Event

Detection (ED) sub-task of Information Extraction (IE) as a testbed and presents

three novel approaches that improve cross-lingual transfer learning from distinct

perspectives: (1) direct knowledge transfer, (2) hybrid knowledge transfer, and (3)

few-shot learning.
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CHAPTER I

INTRODUCTION

Most content for this chapter comes from my dissertation proposal. I was the

primary author for this chapter and Thien Nguyen provided editorial suggestions.

1.1 Introduction

Recent years have seen the development and widespread adoption of

applications powered by Artificial Intelligence (AI) with Natural Language

Processing (NLP) backbones. For example, applications such as automatic question

answering, automated personal assistants, fake news identification, and product

review sentiment analysis all make use of NLP-based models. These models are

usually trained in a supervised manner by leveraging large amounts of labeled data.

However, large annotated datasets are a luxury reserved for a handful of widely-

spoken popular languages (e.g., English, Chinese, or Spanish) due in large part to

the higher availability of potential annotators and the corresponding decrease in

annotation costs. In consequence, a vast majority of research efforts focus on these,

so-called, high-resource languages. This biased focus marginalizes communities

where low-resource languages are primarily spoken as they are unable to take

advantage of the aforementioned technological innovations.

Cross-Lingual Learning (CLL) provides an alternative to address the lack of

labeled data in low-resource languages. The main idea behind CLL is to harness

the knowledge acquired from annotated data from a high-resource source language

and transfer such knowledge into a so-called target language. Cross-lingual learning

then opens up the possibility of creating entirely new NLP models for languages

suffering from data scarcity or increasing the performance of already existing ones,

allowing their communities to benefit from the aforementioned NLP-based tools.

1



Nonetheless, it should be evident that a cross-lingual setting poses a much more

complex scenario than its monolingual counterpart as it must address additional

complications. More often than not, there exist substantial differences between

the desired source and target languages. Both major differences, such as having

distinct word orders or even entirely disjoint alphabets, and more subtle ones, like

polysemous or non-existing words, pose significant hurdles for CLL approaches to

overcome.

Despite these difficulties, CLL has been successfully applied to several NLP

tasks (Pikuliak, Šimko, & Bieliková, 2021a). One of the most prominent among

such tasks is Information Extraction (IE). Information extraction, as a whole, can

be thought of as taking raw, unstructured texts and producing structured versions.

It has acquired great significance in the past couple of decades due to the increasing

amount of unstructured information available from online platforms (e.g., social

media posts, discussion forums, crowd-maintained archives, etc). Being able to

perform computations on the previously-unstructured data is the ultimate goal

of IE. Nonetheless, such a final objective is highly complex which is why the IE

task has been broken down into the following simpler sub-tasks: Entity Mention

Detection (EMD), Co-Reference Resolution (CRR), Relationship Extraction (RE),

and Event Extraction (EE) which is subsequently subdivided into Event Detection

(ED) and Event Argument Extraction (EAE),

1.1.1 Overarching Dissertation Theme. The holistic objective

of this research work is to advance the field of cross-lingual learning. For such

purposes, we select the ED sub-task as the main focus of our efforts. Event

Detection is a highly challenging problem due to its heavy reliance on contextual

information. This characteristic makes ED an ideal testbed for our proposed cross-

2



lingual approaches. As such, the central theme for this dissertation is to

design strategies for improved event-detection performance tailored

specifically for a cross-lingual setting. We propose to address this overarching

objective from three distinct perspectives: (1) Chapter III presents an approach

based on the direct knowledge transfer paradigm in which cross-lingual models are

trained via language-agnostic features; (2) Chapter IV then introduces a hybrid

method that employs both the aforementioned direct transfer paradigm as well as

the data transfer approach that trains cross-lingual models in the target language

directly; (3) Chapter V discusses the entirely novel Few-Shot Cross-Lingual setting

for ED and introduces an original Few-Shot Learning (FSL) method customized for

cross-lingual learning. The remaining chapters of this dissertation are structured

as follows: Chapter II provides an overview of CLL terminology and concepts,

as well as a comprehensive review of the state of modern research efforts into

Cross-Lingual Information Extraction (CLIE). Finally, Chapter VI includes our

conclusions and a discussion on potential future CLIE research directions.
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CHAPTER II

BACKGROUND: STATE OF MODERN CROSS-LINGUAL INFORMATION

EXTRACTION

The content for this chapter is a modified version of my area exam

(candidacy exam). I was the primary author of the original document with editorial

suggestions from Thien Nguyen.

2.1 Introduction

This chapter provides a review of modern cross-lingual learning efforts

in each of the information extraction sub-tasks, including event detection. We

begin by discussing the usual terminology employed in cross-lingual works and

providing some background on the resources they leverage. Then, we describe

the knowledge-transfer paradigms that characterize them. Finally, the current

state-of-the-art methods are organized into a taxonomy based on the information

extraction sub-task they tackle and the knowledge-transfer archetype they employ.

We discuss their strengths and weaknesses with respect to each other and provide a

performance comparison when adequate.

2.2 Cross-Lingual Concepts

Before delving into the details of modern CLIE approaches, this section

presents a brief description of relevant cross-lingual concepts that are used

throughout this work.

2.2.1 Cross-Lingual Resources. Depending on the chosen pair, the

differences between the source and target languages can be quite significant. For

example, the languages could have different word orders, vocabularies, syntax, or

even use completely distinct sets of characters. As such, when creating cross-lingual

models, it is necessary to have resources that show how the two languages relate to
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one another. This section describes the most commonly used of such cross-lingual

resources.

2.2.1.1 Parallel Corpus. A parallel corpus is one of the most useful,

but also the most scarce, bilingual resources. Creating a parallel corpus can, in

some cases, be even more expensive than creating a labeled dataset for a specific

task (Langedijk et al., 2022). Though parallel corpora have been created for specific

domains (e.g., the Bible has been translated for multiple languages) this domain-

specificity limits their general application.

2.2.1.2 Pseudo-parallel Corpus. Automated machine translation

has witnessed great advances in recent years by leveraging encoder-decoder

models (Bahdanau, Cho, & Bengio, 2015; Y. Liu et al., 2020) and, of course,

Google’s translation API (Y. Wu et al., 2016) continues to make state-of-the-art

translation available for the general public. As such, machine-translation systems

can be leveraged to obtain pseudo-parallel text. Afterward, words in pseudo-

parallel sentences can be aligned using automatic tools such as GIZA++ (Och &

Ney, 2003), Fast-align (Dyer, Chahuneau, & Smith, 2013) and Awesome-align (Dou

& Neubig, 2021). A pseudo-parallel corpus via machine translation is an attractive

option for cross-lingual models. However, it is limited by the availability of a

translation system for the required target language. Furthermore, the quality of

the translations plays a crucial role in cross-lingual model performance.

2.2.1.3 Bilingual Dictionaries/Gazetteers. Bilingual dictionaries,

also called lexicons, are collections of pairs of matching words from two different

languages. They provide a very natural way of linking the source and target

languages and are commonly used to guide the training process of other cross-

lingual resources such as bilingual embeddings. Though they are readily available
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for many language pairs (Mayhew, Tsai, & Roth, 2017), they also have significant

drawbacks as they are frequently incomplete or are plagued with incorrect

translations which can lead to noisy cross-lingual results.

2.2.1.4 Multilingual Word Embeddings. Monolingual word

embeddings such as Word2Vec (Mikolov, Sutskever, Chen, Corrado, & Dean,

2013) and Glove (Pennington, Socher, & Manning, 2014) are collections of dense,

high-dimensional, real-valued vectors that capture the semantic of words in a

language by training them on large amounts of unlabeled monolingual text. These

embeddings were the de facto standard for word representations in machine

learning models for several years (Pikuliak et al., 2021a). Multilingual word

embeddings, also called bilingual word embeddings, are obtained by having the

representations of multiple languages share the same semantic vector space. This

is usually achieved by either (1) training monolingual embeddings individually

for each language and then learning a projection into a single shared space, or (2)

by jointly training using unlabeled data from multiple languages directly (Ruder,

Vulić, & Søgaard, 2019). In a sense, multilingual embeddings are secondary cross-

lingual resources since they need additional cross-lingual resources, e.g., a bilingual

dictionary, to guide the alignment process. There have been, however, proposals for

entirely unsupervised multilingual embeddings (Artetxe, Labaka, & Agirre, 2018;

Bojanowski, Grave, Joulin, & Mikolov, 2017; X. Chen & Cardie, 2018).

2.2.1.5 Multilingual Language Models. A Language Model (LM)

is a probability distribution over sequences of words in a particular language.

Language models are trained so that word sequences that appear more frequently

in a language will have a higher probability. In recent years, large transformer-

based (Vaswani et al., 2017) language models trained on large amounts of unlabeled
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data have obtained state-of-the-art results in several NLP tasks. BERT Devlin,

Chang, Lee, and Toutanova (2019) and GPT (Radford & Narasimhan, 2018)

and their variations (RoBERTa, GPT-2, GPT-3, GPT-4) are probably the

most well-known monolingual LMs. Multilingual Language Models (MLMs)

are just extensions of their monolingual counterparts. They are trained using

unlabeled data from multiple languages, e.g, multilingual BERT was trained on

Wikipedia content from 104 different languages, and can be leveraged to obtain

contextualized multilingual representations that display language-independent

features to an extent. Multilingual BERT (mBERT, Devlin et al., 2019) and XLM-

RoBERTa Conneau et al. (2020) are two of the most popular pre-trained MLMs.

2.2.2 Cross-Lingual Transfer Paradigms. With some exceptions,

cross-lingual learning methods can be broadly classified into two categories based

on the approach to transfer knowledge from source to target: Data transfer and

Direct transfer.

2.2.2.1 Data Transfer. Cross-lingual learning data transfer methods

train a model directly in the target language. Given the unavailability of labeled

target-language data under the usual zero-shot setting, this requires projecting

the labels from the annotated source data to unlabeled target data. Many

approaches in this category rely on the availability of either sentence-aligned

parallel corpora (Ehrmann, Turchi, & Steinberger, 2011; Fu, Qin, & Liu, 2014; Hwa,

Resnik, Weinberg, Cabezas, & Kolak, 2005; Yarowsky, Ngai, & Wicentowski, 2001;

Zeman & Resnik, 2008), or neural machine translation systems (Jain, Paranjape, &

Lipton, 2019; Shah, Lin, Gershman, Frederking, & Translatortm, 2010; Tiedemann,

Agić, & Nivre, 2014). In both cases, obtaining good word alignments is key for

successful annotation projection as method performance is highly correlated with
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the quality of the generated data. As such, they usually make use of state-of-the-art

automated alignment methods (Dou & Neubig, 2021; Dyer et al., 2013; Och & Ney,

2003) or employ manually-crafted alignments (Jain et al., 2019). An alternative

to get around the need for word alignments is to instead do word-by-word, or

phrase-to-phrase, translations (Mayhew et al., 2017; Xie, Yang, Neubig, Smith, &

Carbonell, 2018b). However, these methods do not consider factors such as different

word orders in the source and target languages which can introduce noisy training

signals.

Data transfer methods can have several advantages over direct transfer

methods. In particular, they can directly exploit the lexical features, and other

language-specific information, of the target language. Lexical features are very

important for several tasks and can be particularly useful if the target language is

close to the training/source language Tsai, Mayhew, and Roth (2016). However,

model performance will ultimately depend on how well these language-specific

features are explored.

Yarmohammadi et al. (2021) present an in-depth analysis of the benefits of

data projection for zero-shot cross-lingual learning on several tasks. They point out

that, even though using multilingual pre-trained encoders, e.g., mBERT Devlin et

al. (2019) or XLM-R (Conneau et al., 2020), leads to strong cross-lingual results,

their performance on target languages is usually below that of source languages.

The core idea in their work is to augment the training data with so-called “silver”

data generated by (1) translating the source sentences into the target language,

(2) aligning the words between the original and translated parallel sentences,

and (3) projecting the labels using the obtained alignments. Then, the obtained

silver data is used alongside the original gold (source) data to train a cross-lingual
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model. To evaluate the usefulness of their data projection scheme, they compare

against a self-training approach in which a zero-shot cross-lingual model trained

solely on source data is used to obtain the labels of the translated sentences. For

machine translation, they compare a publicly available one (Tiedemann, 2020)

with several of their own models that incorporate using pre-trained encoders. For

the word alignment, they compare using the statistical model Fast-align (Dyer et

al., 2013) and Awesome-align (Dou & Neubig, 2021) which computes alignments

based on contextualized-embedding similarity. They evaluate their approach in

five downstream tasks: event extraction, using ACE05 Walker, Strassel, Medero,

and Maeda (2006) and BETTER1, Named Entity Recognition (NER), Part-of-

Speech (POS) tagging, and dependency parsing. Their results show that the best-

performing model is task dependent given that none of the configurations clearly

outperformed the rest. An important finding is that the large versions of multi-

lingual encoders do not seem to benefit from the additional training data as it is

the case for their base counterparts.

2.2.2.2 Direct Transfer. In contrast to data transfer, direct transfer

methods train models exclusively on labeled source-language data and rely on

developing delexicalized language-independent features so that the task knowledge

acquired from the training data can be directly applied to unlabeled target data.

A common approach for direct transfer cross-lingual models is to exploit a

shared representation for the source and target languages (Bharadwaj, Mortensen,

Dyer, & Carbonell, 2016; Chaudhary et al., 2018; Kozhevnikov & Titov, 2014;

Täckström, McDonald, & Uszkoreit, 2012). For instance, Ni, Dinu, and Florian

(2017) propose to project monolingual word embeddings into a common space as

1https://www.iarpa.gov/index.php/research-programs/better
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language-independent features. More recently, it is usual to leverage the encoding

capabilities of pre-trained multilingual language models such as mBERT (Devlin et

al., 2019) or XLM-R Conneau et al. (2020).

The greater appeal of direct transfer models is evident: they do not require

any labeled data for the target language which is a highly-desirable characteristic,

especially for low-resource languages. Furthermore, by not relying on translations

or word alignments, they avoid introducing noise into the training signals which

can deteriorate model performance. In their work, Artetxe, Labaka, and Agirre

(2020) found that the translation process can introduce subtle artifacts that have a

notable impact on cross-lingual transfer learning. For example, for the Natural

Language Inference (NLI) task, they found that translating the premise and

hypothesis independently reduces the lexical overlap between them which devolves

into lower classification performance.

Nonetheless, direct transfer techniques have disadvantages as well. Mainly

that they cannot leverage target-language lexical features or learn from word-

label relations. This puts them at a clear disadvantage when applied to markedly

dissimilar languages. Lauscher, Ravishankar, Vulić, and Glavaš (2020) found that

zero-shot transfer is most successful when applied among typologically similar

languages, and less so for languages distant from each other.

To address this limitation, some direct transfer methods have started

leveraging unlabeled target data as a means to integrate target-language-

specific information into the training process via using adversarial learning for

instance (Z. Ahmad, Varshney, Ekbal, & Bhattacharyya, 2019; W. Chen, Jiang,

Wu, Karlsson, & Guan, 2021; Guzman-Nateras, Nguyen, & Nguyen, 2022; Keung,

Lu, & Bhardwaj, 2019; Phung, Tran, Nguyen, & Nguyen, 2021).
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2.2.2.3 Hybrid Transfer. The data transfer and direct transfer

paradigms are orthogonal and can be used in tandem (Tsai et al., 2016). That is, a

cross-lingual model can benefit from training with language-agnostic features and

also exploit target-language-specific lexical features via annotation projection.

An example of such hybrid training is the work by Yarmohammadi et al.

(2021) described above (Section 2.2.2.1) where they leverage the language-invariant

capabilities of pre-trained multilingual encoders and so-called silver target-data

generated with annotation projection.

Knowledge distillation (W. Chen et al., 2021; Liang et al., 2021; Q. Wu, Lin,

Karlsson, Lou, & Huang, 2020; Q. Wu, Lin, Karlsson, Huang, & Lou, 2020) has

also been leveraged for hybrid cross-lingual training: a source-trained multilingual

teacher model (direct transfer) annotates unlabeled target data which is then used

to train a student model (data transfer).

A direct transfer model can still benefit from data transfer even if a

translation system for the target language does not exist. Some studies have shown

that learning from multiple source languages can be ultimately beneficial for cross-

lingual models Moon, Awasthy, Ni, and Florian (2019). As such, the original source

data can be projected into a second source language (ideally a language close to the

desired target) and the cross-lingual model can be trained on both sets of data.

The work by Singh, McCann, Keskar, Xiong, and Socher (2019) exemplifies

this approach. They propose XLDA: a simple but effective approach to improve

the performance of cross-lingual NLP models by using bilingual training samples.

Such bilingual examples are created by translating mono-lingual training data

into a second augmentor language and combining both the original text and its

translation into a single sample. They evaluate their approach on the Question

11



Answering (QA) and NLI tasks. In NLI, for example, they create the inputs to

the model by either translating the premise or the hypothesis. Their experiments

use language pairs created from 14 different languages ranging from high (English,

Chinese) to very low-resource (Urdu, Swahili). Some interesting findings from their

work are: (1) for every language they tested, there is an augmentor language that

improves performance over the mono-lingual setting; (2) most languages, other than

very low-resource ones, work as suitable augmentors; and (3) low-resource languages

benefit the most from XLDA.

2.3 Entity Mention Detection

2.3.1 Task Definition. Entity Mention Detection (EMD), also

referred to as entity extraction or recognition, is an NLP task for detecting entities

in unstructured text and classifying them into a discrete set of classes defined by

a particular ontology. Commonly used categories include names for organizations,

locations, persons, companies, and numerical values such as monetary amounts,

percentages, time expressions, and codes. For example, in the sentence:

John bought a Dell computer in 2018.

an EMD system would recognize John as a Person entity, Dell as an

Organization/Company entity, and 2018 as a Time entity type.

EMD is a complex task that is usually decomposed as two distinct sub-

tasks: segmentation and classification (Carreras, Màrquez, & Padró, 2003).

The segmentation sub-task deals with identifying contiguous spans of tokens

representing an entity. A common restriction EMD systems assume is that there

can be no nesting. For instance, in the sentence:

Bank of America closed its doors permanently.
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the tokens Bank of America should be considered as a single entity, disregarding

that the token America could be regarded as an entity itself. As for the

classification sub-task, once entity candidates have been identified, they are

categorized into ontology-specific types. This means the same entity can be

designated to a different type when another ontology is used.

A cross-lingual setting implies additional complexity for the EMD task.

While some entities such as proper names can remain unchanged in different

languages, other, more nuanced, entities can have significant differences. For

example, in the English sentence:

Mark Zuckerberg testified before the US Senate.

Mark Zuckerberg should be identified as a Person entity and US Senate

should be identified as an Organization entity. However, the same sentence in

Spanish becomes:

Mark Zuckerberg testificó ante el Senado de los Estados Unidos.

and while the Person entity remains the same, the Organization entity is very

different: it is composed of five tokens instead of two.

2.3.2 Data Transfer Cross-lingual EMD. Mayhew et al. (2017)

refer to their approach as “Cheap Translation” as it is not based on large parallel

corpora. Instead, they leverage smaller bilingual dictionaries called lexicons which

contain word-to-word translations as well as word-to-phrase, phrase-to-word, and

phrase-to-phrase translations. Using these lexicons they create target-language

training data by doing one-to-one word translations from the labeled source-

language data. The limited size of the lexicons (not every word from the source

language is covered) and the simplicity of their approach (their translations do
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not account for word re-ordering) means that the translated data contains several

issues: some words are not translated or translated incorrectly. Nonetheless, the

authors argue that despite these problems, most of the context around entities is

reasonably preserved which still leads to good entity detection performance. In

their experiments, they also notice that their approach works better when the

source and target languages have similar properties (e.g., word order, alphabets) or

belong to the same language family.

In semi-concurrent work, Feng, Feng, Qin, Feng, and Liu (2018) propose to

enrich the representations of target-language words by incorporating information

from their corresponding source-language translations. Their intuition is that

different languages provide complementary information about entities and that

these cues can be transferred via bilingual dictionaries. Thus, they generate

a translation memory unit for each target-language word by stacking together

the embeddings of all suitable translation candidates obtained from a bilingual

dictionary (a single word usually has several translation candidates). Additionally,

the embeddings in these translation units are weighted by an attention network

that estimates the semantic relatedness of each translation candidate with the

target word. To deal with out-of-lexicon words, they introduce a lexicon extension

strategy in which they learn a linear transformation between the target-word

embeddings and the translation-unit embeddings. Finally, to perform entity

detection, the target-word embeddings are concatenated with their corresponding

translation units and fed into a Bi-LSTM with a CRF layer on top.

Following on the work by Ni et al. (2017), Xie et al. (2018b) present an

approach that combines the use of Bilingual Word Embeddings (BWE) with word-

by-word translation. They assert that, while BWE-based approaches have small
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cross-lingual resource requirements, approaches that attempt to model such shared

space directly fail to obtain better results due to the differences in each language’s

linguistic properties. These differences lead to an imperfect alignment between the

two embedding spaces which results in reduced model performance. Furthermore,

they also state that translation-based approaches can leverage lexical information

from the target language which complements the BWE approach. Thus, in their

Bilingual-Word-Embedding-based Translation (BWET) model, they obtain BWE

for the source and target languages but then use this shared space to perform

word-by-word sentence translations via nearest neighbor search. Their EMD model

is then trained on the translated target-language data. Furthermore, in order to

account for word order, they propose incorporating self-attention (Vaswani et al.,

2017) which allows their model to consider the most relevant context for each word

in the sentence. Their architecture consists of a hierarchical Bi-LSTM-CRF model.

A character-level Bi-LSTM is followed by a word-level Bi-LSTM that incorporates

self-attention. Finally, a CRF layer makes the label predictions.

Another translation-based approach is presented by Jain et al. (2019).

They focus on so-called medium-resource languages that do not have large task-

specific annotated datasets (EMD in their case) but for which there are off-the-

shelf machine translation systems. As such, instead of performing word-to-word

translations like previous approaches (Mayhew et al., 2017; Xie et al., 2018b),

they leverage Google Translate2 to generate a target-language version of the

annotated source-language data. Then labels are projected onto the translated

data by matching the annotating entities with their corresponding translations.

The matching process consists of several steps. First, they translate each annotated

2https://cloud.google.com/translate/
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entity into the target language by itself. This is done because translation results

vary depending on the context and there are instances in which the translation

for an instance by itself is different from its translation within a full sentence.

They also augment each entity’s translation set using publicly-available bilingual

dictionaries. In the next step, they perform token-level matching where each token

in an entity’s translation set is matched with a token in the translated target-

language sentence. This matching is performed using a heuristic that incorporates

orthographic (character affixes) and phonetic features (transliterations using the

International Phonetic Alphabet). After token-level matching, they generate a

list of potential entity spans by grouping adjacent tokens in the target sentence

above a certain threshold. Afterward, the best matching pair of entities is selected

by greedily aligning each source entity with the span that has the least character

edit distance. Source entities that are not aligned after the first three steps are

annotated by constructing a set of top-k potential matches using their tf-idf scores

where term frequency is calculated over all sentences that contain at least one

unmatched entity and the inverse document frequency is computed over the entire

dataset. The unmatched entity is aligned with the candidate with the highest score.

Finally, a self-attention-assisted BiLSTM-CRF tagger is trained on the annotated

target data.

2.3.3 Direct Transfer Cross-lingual EMD. Tsai et al. (2016)

present an interesting approach in which they leverage Wikipedia as their sole

multilingual resource. Their model depends on the existence of a cross-lingual

wikifier. However, the wikifier only requires a multilingual Wikipedia section

for the target language, with no sentence or word alignments at all. Their core

contribution is to make use of wikification (i.e., the process of linking an entity
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to its corresponding Wikipedia page) and entity linking and applying them to

EMD. They use wikification to obtain language-independent features that provide

useful information for EMD classification such as FreeBase (a now-deprecated

knowledge base, succeeded by Wikidata (Vrandečić & Krötzsch, 2014)3) types and

Wikipedia categories. Their model also makes use of both non-lexical (e.g., previous

tags) and lexical features (word form, capitalization, affixes, word type). Their

approach obtained state-of-the-art performance at the time and did so without the

requirement for parallel texts or interactions with a target-language native speaker.

They also show that the obtained language-independent features are beneficial

for monolingual training as they improve the performance of monolingual models.

Moreover, their approach is particularly interesting as wikification is traditionally

considered a downstream task of EMD, i.e., entities are first identified and then

linked to their respective Wikipedia pages.

Ni et al. (2017) instead propose a transfer-learning approach based on

bilingual word embeddings (BWE). Their core idea is to project the monolingual

embeddings (Bojanowski et al., 2017; Mikolov, Sutskever, et al., 2013; Pennington

et al., 2014) from the source and target languages into a shared space to create a

universal representation of the words. Such projection is guided by relatively small

bilingual dictionaries (5K entries). Afterward, their EMD model is trained using

the labeled data from the source language and can be directly applied to the target

language without having to re-train the model.

S. Wu and Dredze (2019) present one of the first efforts addressing the zero-

shot, cross-lingual capabilities of pre-trained multilingual language models. They

evaluate the performance of multilingual BERT Devlin et al. (2019) in five different

3www.wikidata.org
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NLP tasks, including entity detection, under cross-lingual settings. They find

that using mBERT as the encoder alongside simple, task-specific, neural-network

architectures displays strong cross-lingual performance across all five tasks, in

some cases even state-of-the-art performance for the time, without additional cross-

lingual training signals. For entity detection in particular, they use a simple linear

classification layer with softmax. Given that mBERT splits words into multiple

sub-words, to perform the word-level predictions they utilize the representation of

the first sub-word.

An extension of the previous work is proposed by Keung et al. (2019)

where they introduce adversarial training which encourages the model to generate

language-independent embeddings. The authors leverage unlabeled data in the

target language by introducing a language discriminator which is trained to predict

whether a sample sentence belongs to the source or the target languages. To

force the encoder to generate embeddings that do not contain language-specific

information, the authors include a generator loss that is only applied to the

encoder parameters and works in the opposite direction of the discriminator loss.

In their implementation, their EMD model follows S. Wu and Dredze (2019), and

the language discriminator is a simple linear binary classifier.

In their work, Moon et al. (2019) do not propose a novel model architecture.

Instead, their effort focuses on testing different training schemes for the usual

mBERT + classifier model. Their experiments show that training a model with

data from multiple source languages can be beneficial even if the languages used are

not from the same language family or use the same script. They also experiment

with multi-task learning, i.e., training the model with additional objectives to solve

different tasks. However, their results with additional tasks, such as Language
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Identification or the Cloze task, do not show generalized improvements for every

tested target language. Instead, some task/target-language pairs seem to be

beneficial while others deteriorate the baseline performance.

Bari, Joty, and Jwalapuram (2020) propose a model that leverages two

distinct BiLSTM-based encoders, one for each language. They argue that separate

encoders allow them to explicitly model specific characteristics, such as word order

or morphology, of each language. These encoders are linked together by sharing

character-level embeddings. They then learn a mapping between the source and

target embedding spaces through word-level adversarial training. Furthermore,

since the adversarially-learned mapping does not provide task-specific information,

they propose a fine-tuning method where they jointly train the source and target

encoders. This approach seems somewhat out of place as its method is fairly

complex but reports lower performance than other previous efforts (Keung et al.,

2019; S. Wu & Dredze, 2019) that leverage simpler model architectures.

A meta-learning-based approach for EMD is presented by Q. Wu, Lin,

Wang, et al. (2020). Though it can still be classified as a direct transfer method,

the authors argue that source-trained models can be further improved if meta-

learning is used to learn good parameter initializations. Meta-learning is split

into two phases: 1) meta-training and 2) adaptation. During the meta-training

phase, the model is trained on a set of tasks so that it can quickly adapt to new

tasks with only a small number of training examples. They simulate these tasks by

leveraging the fact that, in the mBERT Devlin et al. (2019) generated latent space,

sentence representations that are close to each other display similar structural

and/or semantic properties. Thus, for each source training example xi ∈ DT
train

a task Ti is defined by a pseudo testing set DTi
test = xi, and a pseudo training set
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DTi
train comprised by K of xi most similar examples in the latent space. Then the

model is trained on a randomly-sampled task Ti to minimize the loss computed on

DTi
train (inner update) to obtain an updated set of parameters θ′. These updated

parameters θ′ are then evaluated on DTi
test and another update is made (meta

update). During the adaptation phase, the model is applied to target languages.

Here, each target-language test example xj ∈ DT
test is used as the test set D

Tj

test for

a target task Tj. The task training set D
Tj

train is again obtained by retrieving the

top-k similar examples of xj from DT
train. Once more, the model is first fine-tuned

to minimize the error on D
Tj

train using a single gradient update and then used to

predict the labels for xj. A noteworthy observation from the authors is that, as

entity-related words have a considerably lower frequency than common words in

the training corpus, their representations are not well-aligned across languages

in the shared space. Thus, to address this issue they propose to randomly mask

some entity tokens during the meta-training phase to encourage the model to make

predictions using context information instead of relying on their representations.

As for their tagging model, they use the same architecture as S. Wu and Dredze

(2019): a linear classifier on top of mBERT.

2.3.4 Hybrid Transfer Cross-lingual EMD. Q. Wu, Lin, Karlsson,

Lou, and Huang (2020) propose a teacher-student learning model to distill

knowledge directly from single and multiple language sources. They propose

to address the limitations of previous EMD approaches, both entity projection

and direct transfer models. Mainly, they argue that (1) entity projection efforts

require labeled data in the source language which may not be readily available and

(2) direct transfer models do not leverage unlabeled data in the target language

which is cheap to obtain and contains useful language information. As such, they
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propose to leverage previously trained EMD models for the source language as

the teacher model. These teacher models must, nonetheless, be able to generate

multilingual representations as they are then used to predict the label distributions

(soft labels) for unlabeled data in the target language. Such distributions are then

used to train a student model in the target language using the pseudo-labeled

data obtained from the teacher model. They claim that their method does not rely

on annotated data in the source language, however, it does indirectly depend on

it as a core requirement is the existence of a previously trained EMD model to

use as a teacher. They also experiment with multi-source learning by leveraging

several teacher models (trained on distinct source languages) at once. In order

to do so, they propose a weighting scheme in which they leverage the language

similarity McClosky, Charniak, and Johnson (2010) between the target language

and each corresponding source language.

The UniTrans model (Q. Wu, Lin, Karlsson, Huang, & Lou, 2020) attempts

to unify the model transfer and projection approaches. The authors argue that

both approaches provide complementary information as the language-independent

features used by direct-transfer models allow making predictions through contextual

information while data-projection models benefit from word-label relations in the

target language. Their approach consists of several steps. First, they create a

pseudo training set in the target language by performing word-to-word translations

and then projecting the labels directly from the annotated source data, similar to

Mayhew et al. (2017). However, unlike Mayhew et al. (2017), their translations are

not guided by a bilingual dictionary. Instead, they generate a dataset-specific seed

dictionary by leveraging identical “character strings” (Smith, Turban, Hamblin, &

Hammerla, 2017) in both languages. Then, they learn a linear mapping between
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the multilingual embeddings of such identical character strings. To perform

word-to-word translations, a source-word embedding is mapped into the target-

language embedding space, and its corresponding translation is obtained by

the nearest-neighbor search. A teacher EMD model is then trained using the

annotated source data (Θsrc) and fine-tuned on the translated target data. In

this manner, the teacher model (Θteach) is expected to obtain the advantages

of both model transfer and data projection. Afterward, they leverage a teacher-

student learning setup similar to (Q. Wu, Lin, Karlsson, Lou, & Huang, 2020): the

teacher model is applied to unlabeled target-language data, and the generated

label distributions are used to train a student model. This allows the student

model(Θstu) to capture target-language-specific information and improve upon

the teacher model. Additionally, the student model training is complemented by

incorporating hard-label training. Since no ground-truth labels are available for the

target-language data, the authors propose a voting scheme to generate pseudo-hard

labels. First, a new model (Θtrans) is trained exclusively on the translated target

data. Then, its predictions are compared with the predictions from (Θsrc) and

(Θteach) models. A “hard label” is only generated if the predictions of such three

models coincide. Finally, the student model (Θstu) is trained using the generated

hard labels.

RIKD (Liang et al., 2021) introduces a reinforcement-learning-based

approach that smartly selects instances to improve teacher-student knowledge

transfer. Their teacher-student framework has a similar structure as Q. Wu, Lin,

Karlsson, Lou, and Huang (2020) where the initial EMD teacher model leverages

a multilingual encoder and is trained using annotated source-language data. A

student model, with the same architecture, is then trained to mimic the probability
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distributions (soft labels) generated by the teacher model on unlabeled target-

language data. The distinctive feature of their approach is that not all pseudo-

labeled target-language examples are used to train the student model. Instead,

they first perform a reinforcement-learning-guided selection of target-language

examples to filter out noisy predictions from the teacher model. States, actions,

and rewards for their reinforcement learning approach are modeled as follows: (1)

The state of each target-language instance is modeled by a continuous real-valued

vector. These state vectors are created from the concatenation of features such as

the number of predicted entities, the length of the instance, and the inference loss

of the source model on the instance. (2) Their action space is binary ai ∈ {0, 1}

(to either select the example for training or discard it) and the policy network π

is implemented by a two-layer linear network. (3) Delayed rewards are assigned

using the improvement, or deterioration, between the training loss reported by the

current and previous step models. Furthermore, as the student model outperforms

the teacher thanks to the smart selection of training examples, the authors propose

a bootstrapping-inspired scheme in which the student becomes a new teacher and

the whole process is repeated for K iterations.

AdvPicker (W. Chen et al., 2021) improves upon the approach presented

by Keung et al. (2019) by leveraging adversarial training and knowledge distillation

in complementary ways. First, a teacher EMD model is trained on the source-

language annotated data with adversarial training so as to encourage the encoder

to produce language-independent token representations. It is relevant to point

out that, while the approach proposed by Keung et al. (2019) deals with sentence-

level adversarial training (i.e., sentence-level representations are presented to the

discriminator), the AdvPicker model deals with token-level adversarial training.
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Once the teacher model is trained, it is used on unlabeled target-language data

to produce pseudo-labels. However, not all of these pseudo-labeled examples

are utilized to train the student model. Instead, they are first passed through

the language discriminator and only the most language-independent samples are

selected. An example’s language independence is measured by the discriminator’s

confidence in classifying it as coming from either the source or target languages.

Examples that are hard for the discriminator to classify contain less language-

specific information which is helpful for cross-lingual learning. Finally, the student

model is trained on the selected target-language data using the soft labels produced

by the teacher model as ground truth.

Appendix B includes a comparison between the performance of the works

described in this section.

2.4 Event Extraction

Event Extraction (EE) task aims to obtain structure from text by answering

WH questions related to events that are present in it, i.e. What happened? Who

did it? When did it happen? Where did it happen? Why did it happen?, etc.

An event can be described as the occurrence of an activity or, in more

general terms, as a change of state. Nonetheless, the concept of what is considered

an event is domain-dependent and context-dependent as something that is

admissible in one domain might not be pertinent in a different one. As such,

there are general domain datasets, e.g., ACE05 (Walker et al., 2006) and

MAVEN (X. Wang et al., 2020), but there also are domain-specific datasets, such

as BRAD (V. Lai, Nguyen, Kaufman, & Nguyen, 2021) for historical events and

SuicideED (Guzman-Nateras, Lai, Pouran Ben Veyseh, Dernoncourt, & Nguyen,
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2022) for suicide-related events, each with its own event definition and event-type

categories.

Altogether, event extraction is a complex task which is why it is further

divided into two main sub-tasks: Event Detection (ED) and Event Argument

Extraction (EAE).

2.4.1 Event Detection.

2.4.1.1 Task Definition. Event Detection (ED), EE’s first main

sub-task, consists in, first, selecting the words or phrases, commonly referred to

as triggers, that denote the occurrence of events in a sentence. This first step

is often referred to as trigger identification. In a second step, known as trigger

classification, the event triggers are allocated into a discrete set of categories called

event types. In the literature, the term event detection refers to performing both

the identification and classification of the trigger words simultaneously (e.g. using

sequence labeling). For example, in the sentence:

John recently bought a house.

an ED system should first identify the word bought as a candidate event trigger

and then classify it as a Transaction:Transfer-Ownership event type4.

As is the case for EMD, the cross-lingual setting brings with it additional

complexities for a CLED model to tackle. For instance, event triggers are known

to be frequently related to the verb a sentence (Majewska, Vulić, Glavaš, Ponti,

& Korhonen, 2021a). In a cross-lingual setting, the target language could have

verb tenses/conjugations that do not exist in the source language, or vice versa.

Spanish, for example, has 18 distinct verb tenses while English only has 12 of them.

4This type example is taken from the ACE05 dataset event types.
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Complications such as this one have nudged CLED research efforts to favor direct

transfer approaches to take advantage of their language-agnostic training.

2.4.1.2 Data Transfer Cross-lingual ED. The only recent data-

transfer-based method for CLED we could find is the work by J. Liu, Chen, Liu,

and Zhao (2019). They present an approach that aims at addressing the different-

order problem of cross-lingual ED. Languages such as English and Chinese can

have rather different word orders, however, they share similar syntactic structures.

As such, in their approach, they first train monolingual word embeddings via the

skip-gram model Mikolov, Sutskever, et al. (2013) and then compute a context-

depending lexical mapping for the source and target languages. In order to

create such mapping, they first learn a multilingual alignment leveraging a small

seed bilingual dictionary. Notably, the alignment parameters are not learned

through training, instead, a closed-form solution is computed using singular

value decomposition (SVD). Next, a set of translation candidates is retrieved for

each token in the sentence via the cross-domain similarity local scaling (CSLS)

metric (Lample, Conneau, Ranzato, Denoyer, & Jégou, 2018). Finally, a translation

candidate is selected via a contextual self-attention mechanism (Vaswani et al.,

2017). With this procedure, the authors obtain a translated version of the original

sentence. The last step in their approach is to generate order-independent token

representations which they achieve by feeding the syntactic tree of the sentence to

a Graph Convolutional Neural Network (GCN, Kipf & Welling, 2017) where the

initial node representations are set as the translated-word embeddings. Then their

model is co-trained on both the source and target languages at the same time via

cross-entropy loss. Their results show that their approach outperforms monolingual

state-of-the-art models at the time by training on both the translated data from
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the source language and labeled data in the target language. Furthermore, the

authors acknowledge that their approach depends on the availability of syntactic

parsers for each language which could potentially affect its applicability.

2.4.1.3 Direct Transfer Cross-lingual ED. The work by Caselli

and Ustun (2019) is probably the first to evaluate the generalization abilities

of Multilingual BERT (mBERT, Devlin et al., 2019) for the ED task in a zero-

shot cross-lingual setting. They do not report their performance on the ACE

datasets and instead make use of the TempEval-3 corpus (UzZaman et al., 2013)

for English, and the EVENTI dataset (Caselli, Sprugnoli, Speranza, & Monachini,

2014) in Italian. Both of these datasets share the same annotation scheme and are

annotated with only 7 event categories. Their straightforward approach consists of

an mBERT-based encoder and a softmax classifier over each token. For multi-token

words, they take the first token of each word to make the predictions. In their

experiments, they found that their simple multilingual approach lagged behind its

state-of-the-art monolingual counterparts but still achieved acceptable performance,

especially when a minimal amount of target-language labeled data was introduced.

In a concurrent approach for the Cross-Lingual Event Detection (CLED)

task, M’hamdi, Freedman, and May (2019b) also cast the task as a sequence-

labeling problem and compare the performance of two different neural architectures

harnessing distinct multilingual resources. In their first approach, they make use

of the MUSE bilingual word embeddings (Conneau, Lample, Ranzato, Denoyer,

& Jégou, 2017) alongside a bidirectional-LSTM encoder with a CRF (Lafferty,

McCallum, & Pereira, 2001) layer on top of a classifier linear layer. The second

model shares the same classifier/CRF setup but instead leverages a pre-trained

multilingual language model (mBERT) as the encoder. Their experiments
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exemplify the advantages of using contextualized word representations versus static

word embeddings as the representations from mBERT greatly outperform the ones

generated by the bi-LSTM on the CLED task.

D. Lu et al. (2020) present a cross-lingual structure transfer approach

in which sentences are represented by language-universal structures: either

dependency trees or fully connected graphs. The nodes of these structures are the

multilingual embeddings (Lample, Denoyer, & Ranzato, 2017) of the words in each

sentence. The structure is then fed to an encoder which produces contextualized

representations for the words in the sentence. They do not really do ED and

instead tackle the simpler Event Trigger Labeling (ETL) task in which triggers are

already identified and must only be classified. Each candidate trigger representation

is passed through a linear layer followed by a Softmax transformation to predict

its class. The dependency parsers for each language are manually trained using

Treebanks (Nivre et al., 2016). They experiment with both Tree-LSTM (Tai,

Socher, & Manning, 2015) and Transformer-based (Vaswani et al., 2017) encoders

and find the best model performance using a transformer encoder and a fully-

connected graph structure. Their results also show that their model, trained

exclusively on English data, achieves comparable performance on the target

languages (Spanish, Russian, Ukrainian) as a supervised model trained on about

1,500 annotated sentences.

Another effort that addresses the CLED task via direct transfer is the work

by Majewska et al. (2021a). The key contribution of their work is incorporating

external, language-specific, verb knowledge into the training process. The intuition

behind their proposal is that, as verbs are prominently related to events in

sentences, incorporating specific verb-processing information should be beneficial
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for event-related tasks. As such, they use VerbNet Kipper, Korhonen, Ryant,

and Palmer (2006) and FrameNet Baker, Fillmore, and Lowe (1998) as external

knowledge sources and utilize dedicated adapter modules (Pfeiffer et al., 2020) to

seamlessly incorporate the new knowledge while avoiding catastrophic forgetting

during training. Verb-knowledge injection is performed through an intermediate

binary classification task: using verb pairs, their model predicts if they belong to

the same class (according to either VerbNet of FrameNet). They follow a similar

architecture to M’hamdi et al. (2019b) using an mBERT encoder with a CRF layer

on top. They experiment with two training settings: full-model training, where the

encoder’s parameters are trained alongside the adapters; and adapter-only training,

where they freeze the encoder’s parameters. Their results show that their approach

does improve performance over a zero-shot mBERT/CRF setting. However, their

results on trigger detection and classification are below those reported by M’hamdi

et al. (2019b). This could be due to the fact that their model concurrently performs

both the ED and EAE tasks instead of following a training objective specifically

designed for event detection.

Inspired by Du and Cardie (2020), which re-frames the event extraction

task as a question-answering one, the authors of Fincke, Agarwal, Miller, and

Boschee (2021) present a language-agnostic method of incorporating task-specific

information for cross-lingual event extraction. Their IE-PRIME approach consists

in including augmented inputs for a pre-trained multilingual transformer encoder

so that it learns to generate task-specific word representations. For event detection,

the priming is performed by concatenating each token from the sentence to the

input as a candidate trigger. Their model then targets two training objectives

from two different modules: (1) a BIO-label-based span prediction performed
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by a bi-LSTM with a CRF layer on top, and (2) an event-type classification

objective performed with a linear layer that takes as input the concatenation of the

representations of the candidate trigger and [CLS] token. An important drawback

of their approach is its efficiency as it must perform a forward pass for each word in

the sentence.

The work by M. V. Nguyen, Nguyen, Min, and Nguyen (2021) proposes to

refine the alignment of cross-lingual word representations by conditioning on class

information and language-universal word categories. They argue that previous

cross-lingual approaches suffer from monolingual bias as they are trained exclusively

on source language data and that, even when leveraging unlabeled target data

with adversarial training (X. Chen, Sun, Athiwaratkun, Cardie, & Weinberger,

2018; He, Yan, & Xu, 2020; Joty, Nakov, Màrquez, & Jaradat, 2017; Keung et

al., 2019), a target language example from a class can be incorrectly aligned with

source examples from a different class, thus hindering the model performance on

downstream tasks. Their core intuition is that class information can be used to

bridge the representation vectors between languages. As such, they obtain two

representation vectors for each class: one from the source and one from the target

language. The source class representations are computed as the average of the

source examples belonging to each class. However, as the class information for

target examples is unknown, the target class representations are obtained via a

weighted aggregation of examples by estimating the probability that each example

belongs to any of the classes. Then, during training, they encourage these two

representations to be closer to each other which serves as a class-aware cross-lingual

alignment mechanism. Additionally, they also propose to exploit dependency

relations and universal parts of speech as language-independent information
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that can further improve the learned representations. Similar to the class-aware

alignment, they encourage the representations from words in the source and target

languages that belong to the same part-of-speech category, or dependency relation,

to be closer to each other. They test the performance of their CCAR model on

three downstream tasks: ED, EAE, and RE. Their experiments show that their

approach effectively addresses the cross-class alignment issue which translates into

improved task performance.

2.4.1.4 Hybrid Transfer Cross-lingual ED. Similar to the

previously-described work by D. Lu et al. (2020). The work by Muis et al. (2018a)

does not really address the ED task and focuses instead on the simpler ETL

task. Thus, they tackle event-type classification task with 11 categories that

are referred to as Situation Frames (SF): issues or needs being described in text

extracts. They compare two distinct approaches: (1) a keyword-matching system

that leverages a small bilingual dictionary and (2) a neural-network-based model

that generates bilingual word representations. In their keyword-based approach,

they first build a list of keywords for each SF using the source language and

then translate such words into the target language with the bilingual dictionary.

The keyword lists are generated in a two-step process: an initial candidate list

is created by taking the top 100 words with the highest tf-idf scores for each

class, and for each of these candidate words the 30 most similar words (based

on word2vec Mikolov, Chen, Corrado, & Dean, 2013 cosine similarity) are added

to the list. Then, for each candidate in the extended list, they compute a label-

affinity score with the labels of each SF class using the cosine similarity between

their embeddings. The final keyword set contains only those words whose label-

affinity scores are above a threshold. For their neural-network-based approach,
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they first train bilingual word embeddings for the words in the source and target

languages using XlingualEmb (Duong, Kanayama, Ma, Bird, & Cohn, 2016): a

cross-lingual extension of word2vec. Then, they use a CNN encoder to generate

contextualized word embeddings. These contextualized representations are then fed

to a classifier that performs the prediction. However, they note that the bilingual

word embeddings fail to capture the ground-truth mapping between the source and

target languages and propose to minimize this issue via standard ALA training. As

these two approaches show similar performances, the authors also propose a data

augmentation approach in which the keyword-based system is used to generate new

training data to be used by the neural-network system. They found that they could

considerably improve the performance of their neural network model using the such

bootstrapping approach.

2.4.2 Event Identification. Event Identification (EI), not to be

confused with the aforementioned trigger identification step in the ED task, is a

binary classification task for predicting whether or not an event is present in a

text sample. As such, it is sometimes also referred to as Event Presence Prediction

(EPP). EI is usually performed at the sentence level. For instance, the sentence:

John recently bought a house.

should be classified as containing an event (positive instance). Meanwhile, the

prediction for the sentence:

John likes to eat pizza.

should be that it does not contain an event (negative instance).

Event identification is a simple, low-level task which is why there are not

many research efforts that focus solely on it. Instead, EPP can be useful for other,
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higher-level tasks. Awasthy, Naseem, Ni, Moon, and Florian (2020) show, for

instance, that including an additional EI-based training signal can improve the

performance of an event detection system. Although their work does not present a

cross-lingual setting, they report monolingual settings for three languages showing

that their approach is language agnostic.

A cross-lingual data-transfer effort focused on EI is presented by

Hambardzumyan, Khachatrian, and May (2020a). The authors leverage Google’s

translation API to translate English and Arabic sections of the ACE05 dataset into

German to obtain a parallel corpus. They then train their encoder (multilingual

BERT Devlin et al., 2019) to generate representations that are aligned (i.e., close to

each other in the embedding space) for pairs of parallel sentences. Their intuition

is that training the encoder in such a manner can help with zero-shot cross-lingual

transfer for event presence prediction. Their results, however, show that while their

approach does generate aligned sentence-level representations, using such aligned

representations does not provide significant performance improvements.

2.4.3 Event Argument Extraction.

2.4.3.1 Task Definition. The Event Argument Extraction (EAE)

task consists in identifying the participants of an event (argument identification)

and classifying them into a discrete set of categories called roles (Argument Role

Labeling (ARL)). For example in the sentence:

John recently bought a house.

an EAE system should recognize the word John as a Buyer argument and the

word house as the Object argument for the event denoted by the bought trigger.
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The cross-lingual-associated adversities mentioned for EMD and ED apply

to cross-lingual EAE as well: different word orders, distinct character sets, non-

existing words, polysemous words, etc.

2.4.3.2 Direct Transfer Cross-Lingual EAE. Though not

exclusive to the EAE task, Subburathinam et al. (2019) present an approach

based on cross-lingual structure transfer. The key idea behind their work is to take

advantage of the observation that some relational facts, such as the relationship

between an event and its arguments, are expressed through identifiable patterns

that display some consistency across languages. Hence, these patterns can be

considered language-universal features. They propose dependency trees as one

of such language-independent features as similar event-argument relations in

different languages share common dependency paths. As such, the first step in

their approach is to convert sentences in both the source and target languages

into language-universal dependency tree structures. Each node in the tree is

represented by a vector made from the concatenation of each word’s multilingual

word embedding, POS embedding, entity-type embedding, and dependency-role

embedding. Then, they leverage a Graph Convolutional Network (GCN, Kipf &

Welling, 2017) encoder to obtain a contextualized representation for each node that

takes into account information from the node’s neighbors in the dependency tree.

They train their EAE system using these language-independent representations

using labeled data from the source language which can then be seamlessly applied

to target-language data that has been encoded in a similar manner. For the

EAE task, a full-sentence representation hs is obtained by max-pooling over

the representations of all nodes in the tree. Then, argument ha and trigger ht

representations are obtained by max pooling over the representations of the nodes
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comprising the candidate argument a and the corresponding event trigger t. Their

classifier is trained using the concatenation of these three vectors ([ht;hs;ha]). In

their experiments, they use the MUSE (Joulin, Bojanowski, Mikolov, Jégou, &

Grave, 2018) multilingual embeddings which are, in turn, obtained by aligning

monolingual embeddings learned with FastText (Bojanowski et al., 2017) from

Wikipedia; 17 universal POS tags and 27 dependency relations defined by the

Universal Dependencies program (Nivre et al., 2016); and the seven entity types

defined in the ACE05 dataset.

A very similar, though more straightforward, work is presented by D. Lu

et al. (2020) who also propose to leverage language-universal structures such as

dependency trees and fully connected graphs. In their approach, they feed these

structures into a Tree-LSTM (Tai et al., 2015) or a Transformer (Vaswani et al.,

2017) encoder to obtain contextualized representations for each word in a sentence.

Then a concatenation of the representations of the event trigger and a candidate

argument are passed through a linear layer and a softmax transformation to predict

the argument’s role.

The work by Majewska et al. (2021a) (section 2.4.1 also addresses the EAE

task. As a reminder, their approach integrates verb lexical knowledge into the

training process as verbs and their arguments are commonly related to the events

in a sentence. They do so by training dedicated adapters (Pfeiffer et al., 2020)

to predict whether two verbs belong to the same class according to an external

knowledge base. Then, these pre-trained verb adapters are integrated into their

model when fine-tuning for the downstream EAE task. Though their experiments

show an improvement when the verb adapters are used, their reported results for

EAE are well below other contemporary efforts.
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In M. V. Nguyen and Nguyen (2021), the authors propose to incorporate

language-independent knowledge to improve transfer learning for cross-lingual

EAE. They utilize 3 distinct sources of information: syntax-based, semantic-

based, and relation-based. For syntax information, they use the adjacency matrix

obtained from the sentence dependency tree. The semantic information is a

similar matrix whose values are obtained by learning a semantic-similarity score

between the multilingual representation vectors of pairs of words in the sentence.

Such multilingual representation vectors are obtained through the concatenation

of a word’s MUSE embedding, POS tag embedding, entity type embedding,

and dependency-relation embedding. Finally, relation-based information is

incorporated by creating another matrix whose values are learned using embedding

vectors for each dependency relation between a word and its governor. These

three matrices are then linearly combined and passed through a GCN to obtain

the final representation for each word in the sentence which is then used to

predict the distribution over all possible argument roles. Their results show that

incorporating these additional sources of information leads to better cross-lingual

EAE performance as it allows their model to assign more nuanced importance

scores to each word in the sentence with respect to the event trigger.

W. Ahmad, Peng, and Chang (2021) present the Graph Attention

Transformer Encoder (GATE) model that, similar to previous works, leverages

universal dependency parses to capture long-rage dependencies and mitigate

the word-order difference issue in cross-lingual transfer. However, unlike the

efforts by Subburathinam et al. (2019) and M. V. Nguyen and Nguyen (2021),

they use self-attention mechanisms (Vaswani et al., 2017), instead of GCNs, to

encode the dependency trees as GCNs tend to perform poorly in capturing long-
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distance dependencies and disconnected words in the tree (H. Tang, Ji, Li, & Zhou,

2020; C. Zhang, Li, & Song, 2019). Their key idea is to allow attention between

inter-connected words in the dependency tree and aggregate information across

layers. Furthermore, they propose a revision of the self-attention mechanism

in order to incorporate syntactic structure and distances into the computation.

They use a non-parameterized function to modify the attention weights that, in

essence, divides each of them by the syntactic distance between the related tokens

as computed from the universal dependency parse. When encoding the input

sentences, they first utilize multilingual pre-trained language models (mBERT,

XLM-RoBERTa) to obtain contextualized word embeddings which are then

concatenated with POS tag embeddings, dependency-relation embeddings, and

entity-type embeddings, similar to the approach by M. V. Nguyen and Nguyen

(2021). To perform classification, they generate fixed-length vectors for the

candidate argument ea, the event trigger et and the full sentence s, each of which is

obtained by max-pooling over their respective set of contextual representations.

Afterward, the concatenation of these three vectors [et; ea; s] is fed to a linear

classifier that predicts the role label.

As discussed in detail in section 2.4.1, the IE-PRIME model (Fincke et al.,

2021) leverages model priming : augmenting a model’s input with task-specific

information. For argument extraction, IE-PRIME augments the input in two

distinct ways: (1) by pre-pending the trigger to the input sentence and (2) by

also pre-pending one of the argument roles associated with the trigger event type.

The argument roles are codified as integer numbers to keep their system language

agnostic. This second approach obtains better EAE performance, however, it has
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the considerable drawback of requiring one forward pass for each possible argument

role.

The CCCAR model M. V. Nguyen, Nguyen, et al. (2021) seeks to improve

cross-lingual representation learning by conditioning on class information and

universal word categories such as POS and dependency relations. Section 2.4.1

provides further details on the model.

K.-H. Huang, Hsu, Natarajan, Chang, and Peng (2022a) present their X-

GEAR model that leverages generative models to perform cross-lingual EAE,

instead of the more commonly used classification-based models such as CL-

GCN Subburathinam et al. (2019) and GATE W. Ahmad et al. (2021). Their

key idea is to fine-tune a pre-trained multilingual generative language model

such as mBART (Y. Tang et al., 2020) or mT5 (Xue et al., 2021) with training

samples where the input has been augmented with a template. Their proposal

entails two main challenges: (1) in the cross-lingual setting, the input language

changes during training and testing, and (2) the generated outputs must be parsed

into final predictions. To address these challenges they design language-agnostic

templates. A template includes the event trigger and all possible argument roles

associated with the corresponding event type, encoded as special tokens, with the

appropriate arguments. By formatting the templates in such a manner, the event

type information does not need to be explicitly included as such information is

implicitly included. Furthermore, by using special tokens to represent the argument

roles, the templates are completely language agnostic. Their model is then trained

to generate output strings that conform to the template format. The inputs to their

model are composed by the original passages and a prompt that includes the event

trigger and the type-specific template. In these input templates, each argument role
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is filled with a special [None] token that is to be replaced by the generative model.

For their experiments on the ACE05 and ACE05-ERE datasets, they compare

against their own implementations of CL-GCN and GATE and found that their

approach outperforms these classification-based cross-lingual EAE models, and

even other generative models that use language-dependent templates such as

TANL (Paolini et al., 2021).

2.4.3.3 Hybrid Transfer Cross-Lingual EAE. Z. Ahmad et al.

(2019) present a hybrid multilingual effort for EAE. The core of their approach

is to learn a mapping between monolingual word embeddings obtained with

fastText (Bojanowski et al., 2017) via adversarial language adaptation. Then,

they use a hybrid CNN-LSTM encoder to obtain the representation of each word

in a sentence. These representations are then passed to a feed-forward network

to obtain a shared representation for the EAE task. Afterward, they propose

adding a separate language layer for each language they consider (English, Hindi,

and Bengali). Each of these language layers is only trained when the input data

matches their corresponding language. Finally, after each language layer, they

use six independent fully connected layers, one for each argument type, for a

total of 18. The reasoning behind this decision is that argument types are not

mutually exclusive and, consequently, a single word could display multiple roles

simultaneously. For their experiments, they use their own human-annotated

dataset crawled from popular news websites in each language. Their results

show that multi-lingual training generally improves their model’s performance

for argument types with fewer training examples. However, they also notice that

it can deteriorate the performance of types with lots of training examples in which
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the monolingual models perform better. Though they focus their experiments on a

domain-specific dataset, their approach can be readily applied to any domain.

2.5 Relation Extraction

2.5.1 Task Definition. Relation Extraction (RE) is the task of

identifying and classifying the semantic relations that exist between entities

(organizations, persons, locations, events) in a text sample. For example, in the

sentence:

John was born in Eugene, Oregon.

an RE system would predict that the entities John and Eugene participate in a

bornInCity type relation and that Eugene and Oregon participate in a locatedIn

type relation. Relation extraction is a useful task for other higher-level tasks such

as question answering, text summarization, text mining, and knowledge base

population.

As is the case with other tasks, traditional RE models relied on feature

engineering by combining syntactic, lexical, and semantic features (Kambhatla,

2004; Q. Li & Ji, 2014; Zelenko, Aone, & Richardella, 2003). These methods were

later replaced by approaches that make use of deep neural networks trained in

a supervised manner (dos Santos, Xiang, & Zhou, 2015; Miwa & Bansal, 2016;

T. H. Nguyen & Grishman, 2015a; L. Wang, Cao, de Melo, & Liu, 2016; Zeng, Liu,

Lai, Zhou, & Zhao, 2014). Regarding cross-lingual efforts for RE, over the past

decade there have been approaches based on active learning (Qian, Hui, Hu, Zhou,

& Zhu, 2014), knowledge bases (Verga, Belanger, Strubell, Roth, & McCallum,

2016), and bilingual representations learned through language-independent

concepts (Min, Jiang, Freedman, & Weischedel, 2017).
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2.5.2 Data Transfer Cross-lingual RE. Earlier methods for cross-

lingual RE relied on the data transfer paradigm and were based on annotation

projection using either parallel corpora (Kim, Jeong, Lee, & Lee, 2014) or pseudo-

parallel corpora obtained via machine translation (Faruqui & Kumar, 2015).

2.5.3 Direct Transfer Cross-lingual RE. Ni and Florian (2019)

propose an approach that relies on embedding projections instead of parallel

corpora or machine translation. Their approach consists in, first, generating

monolingual Word2Vec (Mikolov, Sutskever, et al., 2013) word embeddings for both

the source and target languages and, then, learning a linear mapping between the

two latent spaces by minimizing the mean squared error between the representation

vectors of aligned word pairs obtained from a small (1K words) bilingual dictionary.

Their model has four main layers. An embedding layer maps every word in an

input sentence to its corresponding monolingual vector representation. They also

make use of entity-label embeddings: randomly initialized, real-valued vectors to

represent entity types. Next, a context layer whose purpose is to create context-

aware representations for each word in the sentence. Here, they experiment with

both LSTM-based and CNN-based context encoders. A summarization layer

generates a single fixed-length vector to be used for classification purposes. They

perform element-wise max pooling among the context-aware vectors of all words

that appear before the first entity, the words that comprise the first entity, the

words in-between the first and second entity, the words comprising the second

entity, and the words appearing after the second entity. Then, these five vectors

are concatenated into a single vector that is used as the input for the output layer.

Finally, the output layer returns a probability distribution over the set of relation

types. To perform cross-lingual classification, the sentence word embeddings in
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the target language are projected into the source language embedding space using

the learned linear mapping, and the model is applied normally to the projected

embeddings. The authors mention that they specifically do not use language-

specific resources such as dependency parsers as their availability cannot be

guaranteed for low-resource target languages. They experiment with both an in-

house dataset with six languages and 56 entity types and ACE05 dataset that has

seven entity types. Their monolingual results on source data (English) lag behind

the state-of-the-art ensemble model VOTE-BW (T. H. Nguyen & Grishman, 2015a).

Their performance on cross-lingual RE also seems to be lacking with respect to the

previously released CNN-GAN (Zou, Xu, Hong, & Zhou, 2018) as their reported

F1 scores on the En-Zh language pair 20% lower. However, this might be due to

the use of a distinct data split from previous works. From their experiments, they

also recognize that their approach works best with languages that share the same

syntactic structure as the source language. In the case of English, for example,

languages such as German, Spanish, Italian, and Portuguese that follow the

same SVO (subject, verb, object) structure perform considerably better than, for

instance, Japanese which has an SOV convention. While the performance reported

in this work seems to be lacking, it has several characteristics that work in its favor

such as its simplicity and its general applicability due to its low requirements of

cross-lingual resources.

The work by Subburathinam et al. (2019), described in greater detail in

section 2.4.3 for the EAE task, also addresses the RE task. For relation extraction,

the authors train a classification layer using a concatenation of the representations

of each entity in the relation pair under consideration, hm1 and hm2 , with the full

sentence representation hs. Recall that, in their approach, these representations are
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obtained by max-pooling over the language-universal representations obtained by a

GCN-based encoder of the nodes in a dependency tree.

The authors of Köksal and Özgür (2020) present the first transformer-based

approach for the cross-lingual RE task. Their model leverages a multilingual pre-

trained transformer (mBERT Devlin et al., 2019) as its encoder which is then

pre-trained on a proxy task via distant supervision. To this end, they collect

a large number of sentences from Wikipedia in several languages with entities

marked by hyperlinks. Afterward, sentences including entity pairs with Wikidata

relations (Vrandečić & Krötzsch, 2014) are selected. They generate positive samples

by selecting pairs of sentences that share the same entities and relation type in

two distinct languages. Negative examples are created by selecting sentences

that share one entity but that do not belong to the same relation type. Then,

mBERT is trained on the binary classification task of predicting whether the two

sentences in a pair show the same relation or not. Furthermore, in the collected

sentence pairs, the entities are replaced by a special token [BLANK] with a fixed

probability, so that mBERT learns to capture text patterns instead of memorizing

the entities. In essence, they finetune mBERT using the standard masked-language

modeling objective and their matching the multilingual blanks (MTMB) objective

– a multilingual version of the approach proposed by Baldini Soares, FitzGerald,

Ling, and Kwiatkowski (2019). They publicly release the two new cross-lingual

RE datasets used in their experiments: RELX and RELX-Distant. In their

experiments, the authors compare a baseline model – a standard mBERT encoder

with a classification layer on top – with their proposed with their version that

pre trained using MTMB and find that the pre-training improves cross-lingual

RE performance by as much as 4.5% in some languages (Spanish). In additional
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experiments, they show that their approach greatly outperforms the baseline in

low-resource settings. In Spanish, for instance, the MTMB-trained model achieves

the same performance as a vanilla mBERT model using only around 20% of the

training data. Unfortunately, their results are not directly comparable with other

previous efforts as they only report their performance on their proposed datasets.

The GATE model (W. Ahmad et al., 2021), described in detail in

section 2.4.3 also addressed the RE task. Similar to their EAE approach, for RE

they obtain fixed-length representations for the full sentence s, and each entity

in an entity pair (es, eo) by performing a max-pooling over their contextualized

word representations. Then, a concatenation of these vectors [es; eo; s] is passed

through a linear classifier that outputs the predicted relation types (if any). Their

RE classifier is trained with the standard cross-entropy loss.

The authors of M. V. Nguyen, Nguyen, et al. (2021) also test the

performance of their CCAR model on the RE task. As mentioned in section 2.4.1,

their intuition is to improve the alignment of cross-lingual representations by

conditioning on language-invariant information: class information, POS category,

and dependency relation.

2.5.4 Hybrid Transfer Cross-lingual RE. In their work, Zou et

al. (2018) propose utilizing two twin encoder networks – for source and target

languages – that learn to extract language-invariant features that remain indicative

of relation information but not of originating language. They obtain pseudo-parallel

target-language sentences by leveraging Google’s machine translation API5. Then

they transform both the original and translated sentences into vector sequences

by utilizing bilingual word embeddings (Shi, Liu, Liu, & Sun, 2015) alongside

5https://translate.google.com/
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randomly-initialized positional and entity-type embeddings. These sequences are

then used as the input for the twin encoder networks. Their encoders output a

single vector which is then fed into a discriminator network tasked with identifying

the originating language. During training the source-language representations are

also fed to a classifier network that predicts the relation contained in the sample.

The target encoder is trained in an adversarial manner in an attempt to fool the

discriminator. As such, as the source encoder learns to generate representations

that are informative for the relation extraction task, the target encoder learns to

generate similar features stemming from target-language samples which should

share the aforementioned informative qualities. At testing time, target-language

samples are fed into the corresponding encoder, and its output is passed to the

classifier. In their experiments, they explore both CNN-based and LSTM-based

encoder networks with CNNs coming slightly on top. They compare their model

performance against the state-of-the-art model at the time BI-AL (Qian et al.,

2014) which they substantially improve upon (∼ 4%improvement). Supplemental

experiments also show that their unsupervised approach outperforms a supervised

model when the size of the available labeled training data is small (< 700 samples)

and that their model is able to make effective use of the available source training

data as training with limited amounts – only 10% of the data, for instance, – led to

small performance declines (∼ 6%) compared to the BI-AL baseline (∼ 20%).

2.6 Co-Reference Resolution

2.6.1 Task Definition. A co-reference occurs when there are several

expressions (mentions) in a text sample that mention the same entity. For example,

in the sentence:

John said he did not got to the party.
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the words “John” and “he” refer to the same person.

The definition of an entity in the context of this task is different from that

of the EMD task as it has a broader interpretation: it includes persons, things,

and organizations, but it can also involve events, concepts, or other intangible

abstractions. For example, in the sentence:

This year there wasn’t much inflation, but it will get much worse.

the words “inflation” and “it” should be identified as referring to the same

entity even though such entity is just a concept. A Co-Reference Resolution

(CRR) system should then be able to identify any co-references that occur in a

text sample.

Systems that use entity-related features to make mention-wise linking

decisions are called entity-mention. Whereas, mention-pair models use only local

information to determine mention co-reference Cruz, Rocha, and Cardoso (2018).

2.6.2 Data Transfer Cross-Lingual CRR. Cross-lingual data-

transfer-based approaches for CRR are limited to a couple of shared tasks (Ji,

Nothman, Hachey, & Florian, 2015) and are primordially based on annotation

projection.

2.6.3 Direct Transfer Cross-Lingual CRR. For the purposes

of this survey, we focus on direct-transfer-based CRR efforts which has been the

favored approach in recent years.

Kundu, Sil, Florian, and Hamza (2018) propose an entity-mention approach

that gradually merges the mentions in a document to produce entities leveraging

a zero-shot Entity Linking system (Sil & Florian, 2016). They train their own

monolingual word embeddings for the source and target languages and then build

a cross-lingual embedding space following Mikolov, Le, and Sutskever (2013).
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Their system receives entity pairs (not mention pairs) as inputs. Since each entity

represents a set of mentions, the entity-pair embedding is obtained from the

embeddings of mention pairs produced using the cross-product of the entity pairs.

Then, for each mention pair in the cross-product, a set of features is computed

and embedded as a real-numbered vector. Among the features they use are: string

matching, word/sentence distance between mentions, mention types, entity types,

and whether one mention is an acronym of the other. The embedded features

are concatenated with the average of the mentions’ word embeddings and passed

through an attention layer before the classifier.

Cruz et al. (2018) present instead a mention-pair approach in which they

leverage a large coreferentially-annotated Spanish corpora (Recasens & Marti, 2010)

to create a cross-lingual model for the lower-resourced Portuguese (Fonseca et

al., 2017) language. In their approach, they leverage FastText (Bojanowski et al.,

2017) multilingual embeddings along with language-agnostic features such as the

sentence/word distance between mentions. The mentions’ word-level embeddings

are combined by either non-parametric methods (e.g., summation) or using neural

encoders (CNNs, LSTMs, dense layers) and then concatenated with the distance

features before being passed to a dense-layer-based binary classifier network.

Urbizu, Soraluze, and Arregi (2019) work on a CRR for the Basque language.

Being a language spoken only on specific regions of Spain and France, Basque is a

low-resource language for which not many monolingual CRR efforts exist (Soraluze,

Arregi, Arregi, & Diaz De Ilarraza, 2017; Soraluze et al., 2016). The authors

explore leveraging a large English corpus (OntoNotes) to create a cross-lingual

Basque model given that the largest CRR corpora for Basque (Cerberio, Aduriz,

Diaz de Ilarraza, & Garcia-Azkoaga, 2018) are insufficient to effectively train a
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monolingual neural model. They use a straightforward neural model comprised of

three dense layers (500, 300, and 100 neurons, respectively) with ReLU activations.

As inputs, they utilize FastText multilingual embeddings and are complemented

by a few independent features such as the distance in words between mentions, the

distance in mentions between the mentions, whether or not the mentions are in

the same sentence, and string matching. They report improved CRR results from

their cross-lingual model compared to those of a monolingual model trained in a

supervised manner with the Basque corpus. These results assert the usefulness of

a CLL approach when target language resources are limited resources. In cases

such as Basque, the smaller-sized annotated Basque corpora can be leveraged to

fine-tune the cross-lingually trained model.

Phung, Tran, et al. (2021) present the first cross-lingual effort focused on

Event Co-Reference Resolution (ECR). Event co-reference resolution is considered

a more challenging task than entity co-reference resolution because of the more

complex structures of event mentions (B. Yang, Cardie, & Frazier, 2015). They cast

the ECR problem as a binary classification task where their model receives as input

a sequence of words that contains two event mentions and aims at determining

whether the two mentions refer to the same event or not. Being the first work

on this problem, they first establish a baseline model that uses a multilingual

transformer (XLM-RoBERTa, Conneau et al., 2020) as the encoder and augments

the input sequence with two special tokens (<e></e>) that are used to identify the

location of event triggers. To predict the co-reference, they use the concatenated

representations of the special tokens surrounding both triggers as the input for their

classifier. Then they propose three main improvements upon their baseline. First,

the use of adversarial training (Ganin & Lempitsky, 2015) to improve the language-
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invariance properties of the representations generated by the encoder. Second, they

argue that, given the lack of co-reference labels for pairs of event mentions in the

target languages, the discriminator can potentially align co-referential with non-co-

referential examples. To address this issue, they propose to generate two separate

representation vectors for each example for both the source and target languages

via two independent neural networks. Then, the target-language representations are

regularized to be similar to each other while the source-language representations are

regularized to be different from each other. These two opposing regularizations help

penalize unexpected alignments as they implicitly inject into the loss function the

difference between source and target examples with different co-reference labels.
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CHAPTER III

OPTIMIZING ADVERSARIAL TRAINING FOR CROSS-LINGUAL EVENT

DETECTION

This Chapter contains materials from the published paper “Luis F. Guzman-

Nateras, Minh V. Nguyen, and Thien H. Nguyen. ‘Cross-Lingual Event

Detection via Optimized Adversarial Training.’ In Proceedings of the 2022

Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies, 2022”(Guzman-Nateras, Nguyen, &

Nguyen, 2022). As the first author of this publication, Luis was responsible for

most areas of the project including development, experimentation, and document

writing. Minh provided a starting code base and meaningful discussions and

insights. Thien had input on the initial project conceptualization and made

editorial suggestions for the final document. The original publication contents

have undergone some editorial updates to comply with this document’s format and

purpose.

After the review of modern approaches to cross-lingual information

extraction and their associated terminology presented in the previous chapter,

this chapter introduces our first contribution to Cross-Lingual Event Detection

(CLED). Our proposed methodology follows a direct-transfer-based approach

to cross-lingual learning. As discussed in Section 2.2, under such a paradigm, a

model is trained using language-invariant features and then directly applied to

the target language. Many recent works in CLED have harnessed the language-

invariant qualities displayed by pre-trained Multilingual Language Models. Their

performance, however, reveals there is room for improvement as they still struggle
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with the particular challenges entailed by a cross-lingual setting. As such, we

leverage Adversarial Language Adaptation (ALA) to train a language discriminator

to discern between the source and target languages using unlabeled data. The

discriminator is trained in an adversarial manner so that the encoder learns

to produce refined, language-invariant representations that lead to improved

performance. More importantly, we propose to optimize the adversarial training

process by only presenting the discriminator with the most informative samples.

We base our intuition about what makes a sample informative on two disparate

metrics: sample similarity and event presence. Thus, we propose leveraging

Optimal Transport (OT) (Villani, 2008) as a solution to naturally combine these

two distinct information sources into the selection process. Extensive experiments

on 8 different language pairs, using 4 languages from unrelated families, show the

flexibility and effectiveness of our model.

3.1 Introduction

Event Detection (ED) is an important sub-task within the broader

Information Extraction (IE) task. Event detection consists of being able to identify

the words, commonly referred to as triggers, that denote the occurrence of events

in a sentence, and classify them into a discrete set of event types. For example, in

the sentence “Jamie bought a car yesterday.”, bought is considered the trigger of a

TRANSACTION:TRANSFER-OWNERSHIP1 event type. It is a very well-studied

task in which there have been lots of previous research efforts that have recently

been primarily deep learning-based (Y. Chen, Xu, Liu, Zeng, & Zhao, 2015; J. Liu,

Chen, Liu, Bi, & Liu, 2020; T. H. Nguyen, Cho, & Grishman, 2016; T. H. Nguyen,

Fu, Cho, & Grishman, 2016; T. H. Nguyen & Grishman, 2015b; T. M. Nguyen

1Event type taken from the ACE05 dataset.
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& Nguyen, 2019; Sha, Qian, Chang, & Sui, 2018; Wadden, Wennberg, Luan, &

Hajishirzi, 2019; S. Yang, Feng, Qiao, Kan, & Li, 2019a; J. Zhang, Qin, Zhang, Liu,

& Ji, 2019; Y. Zhang et al., 2020).

Nonetheless, ED remains quite a challenging task as the context in which a

trigger occurs can change its corresponding type completely. Furthermore, the same

event might also be expressed by entirely different words/phrases. Additionally,

the vast majority of the aforementioned efforts are limited to a monolingual

setting — performing ED on text belonging to a single language — and usually

focused on a small set of popular languages. This is mainly due to the fact that

most of the available annotated data belongs to these high-resource languages.

This problem becomes critical for low-resource languages for which the amount of

available training data is minimal or non-existent. Consequently, some approaches

have proposed taking advantage of the widely available unlabeled data in a semi-

supervised manner (Muis et al., 2018b).

Alternatively, CLED proposes the scenario of creating models that

effectively perform ED on data belonging to more than one language, which

brings about additional challenges. For instance, trigger words present in one

language might not exist in another one. Frequent examples of this phenomenon

are verb conjugations where some tenses only exist in some languages. Accurate

verb handling is of particular importance for the ED task as event triggers are

usually related to the verbs in a sentence. Some recent work (Majewska, Vulić,

Glavaš, Ponti, & Korhonen, 2021b) has attempted to address this issue by injecting

external verb knowledge into the training process. Another similar problematic

issue for CLED is triggers with different meanings that are each distinct words in

different languages. For instance, the word “juicio” in Spanish can either mean
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“judgement” or “trial” in English, depending on the context. These, and other

similar, issues make CLED a challenging task.

A compelling approach to creating a cross-lingual model is to use direct

transfer learning which carries the performance of a model trained on a source

language over onto a second target language. The general idea is leveraging the

existing high-quality annotated data available for a high-resource language to train

a model in a way that allows it to learn the language-invariant characteristics

of the task at hand, ED in this case, so that it also performs effectively on text

from a second language. Prior works on direct transfer learning for CLED have

relied on pre-trained Multilingual Language Models (MLMs), such as multilingual

BERT (mBERT) (Devlin et al., 2019), to take advantage of their innate language-

invariant qualities. Yet, their performance still shows room for improvement as they

sometimes struggle to handle the difficult instances, unique to cross-lingual settings,

mentioned earlier. We identify a significant shortcoming of previous CLED efforts

in that they do not exploit the abundant supply of unlabeled data: even though

MLMs are trained on immense amounts of it, unlabeled data is not used when

fine-tuning for the ED task. It is our intuition that by integrating unlabeled target-

language data into the training process, the model is exposed to more language

context which should help deal with issues such as verb variation and multiple

connotations.

As such, we propose making use of Adversarial Language Adaptation

(ALA) (X. Chen et al., 2018; Joty et al., 2017) to train a CLED model. The key

idea is to generate language-invariant representations that are not indicative of

language but remain informative for the ED task. Unlabeled data from both

the source and target languages is used to train a Language Discriminator (LD)
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network that learns to discern between the two. The adversarial part comes from

the fact that the encoder and discriminator are trained with opposing objectives: as

the LD becomes better at distinguishing between languages, the encoder learns to

generate more language-invariant representations in an attempt to fool the LD. An

overview of the ALA framework is shown in Figure 1. To the best of our knowledge,

our work is the first one proposing the use of ALA for the CLED task.

Labeled

Source


Data

Unlabeled

Target

Data

Encoder

Event

Classifier


Language

Discriminator


Figure 1. Overview of ALA framework. A multilingual encoder is presented with
both labeled data from the source language and unlabeled target data. Then the
sentence-level encodings are presented to the language discriminator, whose task
is to determine their originating language. The discriminator outputs are then
used to train the encoder in an adversarial manner, resulting in language-invariant
representations.

Nonetheless, contrary to past uses of ALA where the same importance is

given to all unlabeled samples, we recognize that such a course of action is sub-

optimal as certain samples are bound to be more informative for the discriminator

than others. For example, we would like to present the LD with the samples

that allow it to learn the fine-grained distinctions between the source and target

languages, instead of relying on syntactic differences. Moreover, in the context

of ED, we suggest it would be beneficial for the LD to be trained with examples
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containing events, instead of non-event samples, as the presence of an event can

then be incorporated into the generated representations.

Hence, we propose refining the adversarial training process by only keeping

the most informative examples while disregarding less useful ones. Our intuition

as to what makes samples more informative for CLED is two-fold: First, we

presume that presenting the LD with examples that are too different makes the

discrimination task too simple. As mentioned previously, we would like the LD to

learn a fine-grained distinction between the source and target languages which, in

turn, improves the language-invariance of the encoder’s representations. Thus, we

suggest presenting the LD with examples that have similar contextual semantics,

i.e., similar contextualized representations. Second, we consider that sentences

containing events should provide an ED system with additional task-relevant

information when compared to non-event samples. Accordingly, we argue that

event-containing sentences should have a larger probability of being selected for

ALA training.

With these intuitions in mind, we propose Optimal Transport (OT) (Villani,

2008) as a natural solution to simultaneously incorporate both the similarity

between sample representations and the likelihood of the samples containing

an event into a single framework. Therefore, we cast sample selection as an OT

problem in which we attempt to find the best alignment between the samples from

the source and target languages.

For our experiments, we focus on the widely used ACE05 Walker et al.

(2006) and ERE (Song et al., 2015) datasets which, in conjunction, contain event-

annotations in 4 different languages: English, Spanish, Chinese, and Arabic. We

work on 8 different language pairs by selecting different languages as the source
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and target. Our proposed model obtains considerable performance improvements

(+ 2-3% in F1 scores) over competitive baselines and previously published

results (M’hamdi et al., 2019b). We believe these results demonstrate our model’s

efficacy and applicability in creating CLED systems.

The rest of this chapter is organized as follows: section 3.2 provides a

thorough description of our proposed model, section 3.3 presents and analyses

the results from our experiments, section 3.4 provides a brief review of related work,

and section 3.5 presents a summary of our findings.

3.2 Model

3.2.1 Problem Definition. Following prior works (Majewska et al.,

2021b; M’hamdi et al., 2019b), we treat ED as a sequence labeling problem. Given

a set D of word sequences wi = {wi1, wi2, ..., win−1, win} and their corresponding

label sequences yi = {yi1, yi2, ..., yin−1, yin}, we use an encoder network E to obtain

a contextualized vector representation of the words in the input sequence hi =

E(wi) = {hi1, hi2, ..., hin−1, hin}. Using such representations as input, a prediction

network P computes a distribution over the set of possible labels and is trained in a

supervised manner using the negative log-likelihood function LP :

LP = −
|D|∑
i=1

n∑
j=1

logP (yij|hij) (3.1)

In the cross-lingual transfer-learning setting, the data used to train the

model and the data on which the model is tested come from different languages

known as the source and target, respectively. As such, we deal with two datasets

Dsrc and Dtgt. Furthermore, we assume a zero-shot setting, i.e., we do not have

access to the gold labels of the target language ytgt, other than to evaluate our

CLED model at testing time.
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Our goal is to define a model able to generate language-invariant word

representations that are refined enough so that cross-lingual issues, such as the ones

described in section 3.1, are properly handled.

3.2.2 Baseline Model. Here, we briefly describe the BERT-CRF

model proposed by M’hamdi et al. (2019b) which was the previous state-of-the-art

and serves as our main baseline. Using multilingual BERT (mBERT, Devlin et al.,

2019) as its encoder, BERT-CRF generates robust, contextualized representations

for words from different languages. For words that are split into multiple word-

pieces, the average of the representation vectors for all comprising sub-pieces is

used as the representation of the full word.

For classification purposes, instead of assigning the labels of each token

independently, BERT-CRF uses a Conditional Random Field (CRF) (Lafferty et

al., 2001) layer on top of the prediction network to better capture the interactions

between the label sequences. In summary, the contextualized representation vectors

hi generated by the mBERT encoder from the words in the sequence are then fed

to a CRF layer which finds the optimal label sequence.

3.2.3 Adversarial Language Adaptation. The pre-trained

versions of MLMs like mBERT or XLM-RoBERTa (Conneau et al., 2019) generate

contextualized representations with a certain degree of language invariance. This

can be confirmed by their successful application in cross-lingual settings (Majewska

et al., 2021b; M’hamdi et al., 2019b). However, a lingering issue is the difficulty

of learning the nuances of the target language such as verb variations that do

not exist in the source language used to train them. Majewska et al. (2021b), for

instance, propose to address this issue by injecting external verb knowledge into the

encoder via task-specific adapter modules (Pfeiffer et al., 2020).
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It is our intuition, however, that these issues can be mitigated by achieving

a more refined level of language invariance in word representations. As such, we

propose using Adversarial Language Adaptation (ALA) (Joty et al., 2017), a

technique used to create language-invariant models. The ALA framework consists

in including a Language Discriminator (LD) whose purpose is to learn language-

dependent features and be able to differentiate between the samples from either the

source or the target languages.

A fundamental characteristic of the ALA approach is its lack of

requirements for annotated data in the target language. As such, we can use data

from both Dsrc and Dtgt. An auxiliary dataset Daux = {(w1, l1), . . . , (w2m, l2m)} is

created where wi is a text sequence from either Dsrc or Dtgt, and li is a language

label. The cardinality of Daux is |Daux| = 2m, where m is equal to the batch size.

Text samples w1 . . . wm ∈ Dsrc, and samples wm+1 . . . w2m ∈ Dtgt. As described

earlier, the encoder E receives the text sequences and produces a sequence of

contextualized representations E(wi) = hi = {hi0, hi1, hi2, . . . , hin} where hi0 is the

representation of the [CLS] token added at the beginning of every input sequence.

In our work, the LD is a simple Multi-Layer Perceptron(MLP) network that

takes hi0 as input and produces a single sigmoid output. It’s trained with the usual

binary cross-entropy loss function objective:

LDloss = argmin
LD

L(LD(hi0), li) (3.2)

As the LD learns to distinguish between the source and target languages,

we concurrently train the encoder to “fool” the discriminator. In other words, the

encoder must learn to generate representations that are language-invariant enough

that the LD is unable to classify them while still remaining predictive for event-
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trigger classification. We optimize the following loss:

argmin
E,C

n∑
j=1

(L(C(hij), yij))− λL(LD(hi0, li)) (3.3)

Where C refers to the CRF-based classifier network and λ is a hyperparameter.

Equation 3.3 is implemented by using a Gradient-Reversal Layer (GRL)

(Ganin & Lempitsky, 2015) which acts as the identity during the forward pass, but

reverses the direction of the gradients during the backward pass. The first term

in Equation 3.3 can, of course, only be applied to annotated data from the source

language as target data labels are unavailable.

The GRL is applied to the input vectors, hi0, of the LD. This way, the LD

is being trained to differentiate between the two languages while the encoder is

trained in the opposite direction, i.e. to generate sequence representations that are

harder to discriminate.

3.2.4 Adversarial Training Optimization. ALA has already been

shown to be effective at generating language-invariant models (X. Chen et al., 2018;

Joty et al., 2017). However, in regular ALA training, all samples in a batch, from

both the source and target domains, are treated equally. That is, all samples are

used as examples for the discriminator to learn how to better discern between

the two domains. We propose that ALA effectiveness can be further improved by

carefully selecting the samples with which to train the discriminator. We argue that

some samples might be more informative than others and that better adaptation

results can be achieved by only using such informative samples during training.

We base our notion as to what makes a sample more informative on two

factors. First, we argue that presenting the LD with examples from the source and

target language that are too dissimilar makes its task easier which, in turn, leads

to the LD not learning the fine-grained distinctions between the languages. Instead,
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we propose using samples whose vector representations hi0 are close to each other in

the embedding space. The intuition for this being that, as representations capture

the contextual semantics of the samples, closer representations correspond to

more similar examples. Second, we suggest that presenting the LD with samples

containing events should make the encoder incorporate task-specific information

into its representations.

3.2.4.1 Optimal Transport. One challenge of using the two

mentioned criteria for the ALA sample selection process is that they come with

two different measures which are hard to combine. To address this, we propose

using Optimal Transport (OT, Villani, 2008) as a natural way to combine these

two metrics into a single framework for sample selection. Optimal transport is,

in broad terms, the problem of finding out the cheapest transformation between

two discrete probability distributions. It requires a cost function to determine

the cost of transforming a data point in one distribution into a data point in the

second distribution. When the cost function is based on a valid distance function,

the minimum cost is known as the Wasserstein distance. Formally, it solves the

following optimization problem:

π∗(s, t) = min
π∈

∏
(s,t)

∑
s∈S

∑
t∈T

π(s, t) C(s, t) ds dt (3.4)

s.t. s ∼ p(s) and t ∼ q(t)

where S and T are the two domains to be transformed; p(s) and q(t) are the

probability distributions of S and T , respectively; C is a cost function for mapping

S to T , C(s, t) : S × T −→ R+; and finally, π∗(s, t) is the optimal joint

distribution over the set of all joint distributions
∏
(s, t). The problem described

by Equation 3.4 is, of course, intractable. Therefore, we use instead the Sinkhorn
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algorithm (Cuturi, 2013) which is an entropy-based relaxation of the discrete OT

problem.

3.2.4.2 Problem Formulation. We formulate the OT problem as

follows: the domains S and T are defined as the representation vectors of the text

samples in either the source hs
i0 or the target ht

j0 languages. We use the L2 distance

between these representations as the cost function:

C(hs
i0, h

t
j0) = ||hs

i0 − ht
j0||22 (3.5)

To define the marginal probability distributions p(s) and q(t) for the S

and T domains, we propose including an Event-Presence (EP) prediction module

and use its normalized likelihood scores as the probability distributions for S and

T . Thus, the auxiliary dataset Daux is augmented to include an event-presence

label ei for each sample. Of course, this can only be done for samples in the source

language as the labels for the target-language data are unavailable:

Daux = {(w1, l1, e1), . . . , (wm, lm, em),

(wm+1, lm+1), . . . , (w2m, l2m)}

The EP module is then trained to optimize the following loss:

EPloss = argmin
EP

L(EP (hi0), ei) (3.6)

where i <= m, i.e., only using samples from the source language.

The probability distributions p(s) and p(t) are the computed as follows:

p(s) = Softmax(EP (hs
i0) | li == s) (3.7)

p(t) = Softmax(EP (ht
i0) | li == t) (3.8)

3.2.4.3 Sample Selection. Once the OT optimization problem is

solved, we leverage the solution matrix π∗, where an entry π∗(s, t) represents the
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optimal cost of transforming data point s ∈ S into t ∈ T , to compute an the overall

similarity score vi of a sample hi0 ∈ S to the samples in the target domain T by

using the average distance:

vi =

∑m
j π∗(hs

i0, h
t
j0)

m
(3.9)

Correspondingly, we compute an overall similarity score vj of each sample hj0 ∈ T

to the samples in the source domain S:

vj =

∑m
i π∗(hs

i0, h
t
j0)

m
(3.10)

Finally, we select a fraction (determined by hyperparameter γ) of samples

with the best similarity scores from both the source and target languages and only

utilize these selected samples during ALA training.

3.2.5 OACLED Model. The architecture of our Optimized

Adversarial Cross-Lingual Event Detection (OACLED) model is shown in Figure 2.

The model is then trained end-to-end with the following loss objective:

Lfull = CRFloss + αLDloss + βEPloss (3.11)

where α and β are trade-off hyperparameters. Figure 3 visualizes the loss

computation.

3.3 Experiments

3.3.1 Datasets. We evaluate our model on the ACE05 (Walker et al.,

2006) dataset which includes annotated event-trigger data in 3 languages: English,

Chinese and Arabic. To include an additional language in our experiments, we

also evaluate on the ACE05-ERE (Song et al., 2015) dataset which has annotated

data in English and Spanish. Note that the ACE05 and ERE datasets do not share

the same label set: ACE05 involves 33 distinct event types while ERE involves
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Figure 2. OACLED model architecture. Word representations generated by the
encoder are fed to a CRF layer which generates label predictions. The sentence-
level representations are fed to the EP predictor and the LD to obtain their
corresponding logits outputs.

38 event types. We follow the same data pre-processing and splits as in previous

work M’hamdi et al. (2019b) to ensure a fair comparison. Table 1 presents the data

statistics.

3.3.2 Main Results. In our experiments, we work with 8 distinct

language pairs by selecting each of the available languages as either the source or

target language: English-Chinese, Chinese-English, English-Arabic, Arabic-English,

Chinese-Arabic, Arabic-Chinese, English-Spanish, and Spanish-English. The

Chinese-Spanish, Spanish-Chinese, Arabic-Spanish, and Spanish-Arabic language

combinations are unavailable due the previously mentioned incompatibility between

the event type sets in ACE05 and ACE05-ERE.
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Figure 3. OACLED model loss computation. The sentence-level representations and
the EP logits are used as inputs to the OT optimization. Then the LD logits from
the selected samples are used to compute the adversarial loss.

We compare our OACLED model against 3 relevant baselines. First, the

previous state-of-the-art CLED model BERT-CRF (M’hamdi et al., 2019b) as

described in section 3.2.2. Second, the mBERT-2TA model (Majewska et al.,

2021b) that aims at improving cross-lingual performance by incorporating language-

independent verb knowledge via task-specific adapters. And third, XLM-R-CRF,

a model that is equivalent in all regards to BERT-CRF except that it uses XLM-

RoBERTa Conneau et al. (2019) as the encoder.

Table 2 and Table 3 show the results of our experiments on the ACE05 and

ERE datasets, respectively. In all our experiments, we use the base transformer

versions bert-base-cased and xlm-roberta-base as the encoders, parameters are tuned

on the development data of the source language, and all entries are the average of

five runs.

From Tables 2 and 3, it should be noted that there is a substantial

performance increase by performing the trivial change of replacing mBERT with

XLM-RoBERTa as the encoder. Furthermore, our OACLED model clearly, and

consistently, outperforms the baselines for all language pairings, with the exception

of the Chinese-Arabic pair. We attribute this to the impaired performance of
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Dataset Language Split Sentences Events

ACE05

English
Train 19,240 4,419
Dev 902 468
Test 676 424

Chinese
Train 6,841 2,926
Dev 526 217
Test 547 190

Arabic
Train 2,555 1,793
Dev 301 230
Test 262 247

ERE

English
Train 14,219 6,419
Dev 1,162 552
Test 1,129 559

Spanish
Train 7,067 3,272
Dev 556 210
Test 546 269

Table 1. Dataset statistics.

XLM-RoBERTa as the encoder for that specific pair as can be confirmed by the

poor performance of the XLM-R-CRF baseline on the same configuration. Most

importantly, OACLED’s improvement over the XLM-R-CRF baseline is present in

every configuration, which validates the effectiveness of our optimized approach to

ALA training.

The model implementation details can be found in Appendix C.

3.3.3 Ablation Study. We identify 2 main components in our

approach: (1) leveraging ALA to create refined language-invariant representations

and (2) optimizing the adversarial training process by selecting a subset of samples

chosen with OT to incorporate our measures of informativeness into the sample-

selection process. As expected, removing ALA training entirely restores the model

to the baseline. However, adversarial training optimization via OT has various

aspects to it. In order to understand the contribution of these aspects, we explore

four different configurations: OACLED-OT presents the effects of removing sample
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Target
Source Model English Chinese Arabic

English

BERT-2TA X 46.9* 29.3*
BERT-CRF X 68.5* 30.9*
XLM-R-CRF X 70.49±0.85 43.54±2.77
OACLED X 74.64±0.73 44.86±3.1

Chinese
BERT-CRF 37.52±1.73 X 35.05±2.85
XLM-R-CRF 41.72±1.4 X 32.76±2.31
OACLED 45.77±1.45 X 34.48±2.43

Arabic
BERT-CRF 40.1±3.26 58.78±2.33 X
XLM-R-CRF 45.22±1.82 61.76±1.57 X
OACLED 47.98±2.07 63.13 ±1.7 X

Table 2. Results on the ACE05 dataset with standard deviation across random
seeds. Entries marked * are taken directly from the original publications.

Target
Source Model English Spanish

English
BERT-CRF X 43.28±2.01
XLM-R-CRF X 46.79±1.34
OACLED X 47.69±1.63

Spanish
BERT-CRF 39.8±2.27 X
XLM-R-CRF 45.61±1.76 X
OACLED 47.5±1.89 X

Table 3. Results on ACE05-ERE dataset with standard deviation across random
seeds.

selection entirely and using all available samples to train the LD; OACLED-L2

uses a constant distance between the unlabeled samples instead the standard L2

distance used in the Sinkhorn algorithm; OACLED-EP completely removes the EP

module and a uniform distribution is used as the probability distributions for both

languages; finally, OACLED-ED-Loss keeps the EP module, but removes its EPloss

term from Equation 3.11. The performance results of these models are presented in

Table 4. In this and the following sections (3.3.4, 3.3.5.2), we present the results of

experiments using English as the sole source language as it is the source language

most ubiquitously used. We, however, found consistency in the displayed effects for

different source/target language configurations.
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Model version Target Language
English Chinese Arabic Spanish

OACLED-OT 70.94 40.55 44.96
OACLED-L2 71.35 41.79 44.39
OACLED-EP 73.08 42.81 46.99

OACLED-EP-Loss 72.93 43.4 46.35
OACLED (full) 74.64 44.86 47.69

Table 4. Ablation experiment results

As expected, removing the sample selection through OT leads to the worst

performance drop. This highlights the importance of selecting informative examples

for the LD. Furthermore, removing the cost function also hurts performance greatly,

which shows that a proper distance function is needed for the OT algorithm to

work effectively. While the effects of removing the EP module and its corresponding

loss term are not of the same magnitude, they are still significant. These results

support our claim for the need and utility of all the components in our approach,

showing that their inclusion is crucial in achieving state-of-the-art performance.

3.3.4 Language Model Finetuning. A key contribution of our

approach is to exploit unlabeled data in the target language, which is usually

abundant, by introducing it into the training process to improve our model’s

language-invariant qualities.

To confirm the utility of our approach, Table 5 contrasts our model’s

performance against a baseline whose encoder has been finetuned with the same

unlabeled data using the standard masked language model objective.

Model Version Target Language
English Chinese Arabic Spanish

Finetuned XLM-R 71.06 43.71 47.82
OACLED 74.64 44.86 47.69

Table 5. OACLED performance versus a baseline using an encoder finetuned with
unlabeled data.
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It can be observed that our model outperforms the finetuned baseline in two

out of the three target languages. Additionally, the difference in performance in

those two instances is considerably larger (3.58% and 1.15%), than the setting in

which the baseline performs better (0.13%).

3.3.5 Analysis. This section analyzes our model’s outputs to gain

insights into its strengths and weaknesses.

3.3.5.1 Learned Representation Distances. First, we look at the

distance between the sentence-level representations hi0 generated by the encoder for

different source/target language pairs. Figure 4 shows a plot of such distances using

cosine distance as the distance function.

English Chinese Arabic

English

Chinese

Arabic

0

1

2

3

4

5
1e 5

Figure 4. Distance between sentence representations for different language pairs.

When computing the correlation with the performance results in Table 2,

we obtain a score R = −0.6616, meaning there is moderate negative correlation

between the distance of the representations and model performance, i.e. closer

representations lead to better performance.
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Similarly, Table 6 shows a comparison of the distances between the

representations generated by OACLED and those obtained by the XLM-R-CRF

baseline.

Cosine Distance
Source/Target Baseline OACLED
English/Chinese 3.64e-3 3.93e-6
English/Arabic 7.71e-2 2.08e-5
English/Spanish 5.4e-3 5.3e-6
Chinese/English 3.62e-3 3.87e-6
Arabic/English 4.16e-2 1.02e-5
Spanish/English 6.87e-3 1.49e-5

Table 6. Comparison of representation-vector distances for language pairs between
our model and the baseline.

We observe that OACLED representations are closer, by several orders of

magnitude, than those obtained by the baseline. This supports our claim that our

model’s encoder generates more refined language-invariant representations than

those obtained by the default version of XLM-RoBERTa.

3.3.5.2 Access to Labeled Target Data. It was previously discussed

that a key feature of our approach is that it does not require annotated data in the

target language and, instead, leverages the use of unlabeled data which is readily

available. Nonetheless, we also explore the performance of our model in the event

that there exists a small amount of annotated target data available. Figure 5 shows

the results of our experiments when using different amounts of labeled target data

during training.

It can be observed that OACLED consistently outperforms the baseline

even when there is some availability of annotated data. Additionally, performance

steadily increases as more and more data is used. This conforms to expectations,

69



0 2 4 6 8 10

72

74

76

F1
 S

co
re

English - Chinese

OACLED
XLM-R-CRF

0 2 4 6 8 10

44

45

46

F1
 S

co
re

English - Arabic
OACLED
XLM-R-CRF

0 2 4 6 8 10
Percentage

47.0

47.5

48.0

48.5

49.0

F1
 S

co
re

English - Spanish
OACLED
XLM-R-CRF

Figure 5. Model performance when training on small quantities of labeled target
data. The X axis presents the percentage (0 - 10%) of data used out of the entire
training set of the target language.

and confirms that having labeled data in the target language available for training

is ultimately beneficial to the model’s performance.

3.3.5.3 Case Study. Next, we look into our model’s predictions and

analyze instances where it outperforms the baseline to exemplify the advantages

of dealing with optimized language-invariant representations. We identify two

important patterns.

First, our model seems to better classify events in the target language that

involve trigger words that have distinct connotations that depend on context.

Especially those that are two distinct words in the source language. For example,
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the Spanish word “juicio” can have two distinct meanings that are different

words in English: “trial” and “judgment”. Our model correctly classifies it as a

JUSTICE:TRIAL-HEARING trigger in the sentence “Dos llamados a juicio fueron

hechos por un jurado federal investigador”. Meanwhile, the baseline fails to even

recognize it as a trigger. Another example is the word “detenido”, an adjective

that can mean both “detained”, in a criminal context, and “stopped”, as in halted.

Our model correctly classifies it in the sentence “Padilla no debeŕıa permanecer

detenido durante meses alejado de otros reos” as a JUSTICE:ARREST-JAIL

trigger while the baseline fails to detect the event. We manually identified 23

of these polysemous triggers in the Spanish2 test set and found that 19 (82.6%)

were correctly classified by our OACLED model versus 14 (60.8%) by the baseline

(27.8% improvement).

Additionally, we found our model correctly classifies verb conjugation

variants that do not exist in the source language. For instance, our model

correctly recognizes the words “venderlos”, “vender”, “vendes”, and “vendedor”

(variants of the verb “to buy”) as TRANSACTION:TRANSFER-OWNERSHIP

triggers whereas the baseline incorrectly classifies them as being of the

TRANSACTION:TRANSFER-MONEY type. As previously mentioned, Majewska

et al. (2021b) propose injecting external verb-knowledge into the training to help

with verb interpretation for event extraction. Our empirical results, however,

outperform their reports which appears to imply that, at least for CLED,

holistically learning the language-invariant features shared between the target

and source languages works better than injecting language-specific verb knowledge.

2We use Spanish for the analysis as it is the mother tongue of the first author.
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Another similar example are the trigger words “matar”, “mató”,

“homicidio”, “asesinato”, all of which are variations that refer to the act of killing

or murdering. Our model correctly tags them as LIFE:DIE events while the

baseline incorrectly classifies them as CONFLICT:ATTACK.

We believe these findings illustrate how, by introducing additional context

in the form of unlabeled data, the model is able to learn fine-grained word

representations that better capture the semantics of the words in the target

language, and successfully deal with difficult cross-lingual issues.

3.4 Related Work

Research efforts on monolingual ED are extensive and varied. Hand-

crafted, feature-based, language-specific methods were the basis of early ED

approaches (Ahn, 2006; Hong et al., 2011; Ji & Grishman, 2008; Q. Li, Ji, & Huang,

2013; Liao & Grishman, 2010a, 2010b; McClosky, Surdeanu, & Manning, 2011;

Miwa, Thompson, Korkontzelos, & Ananiadou, 2014; Patwardhan & Riloff, 2009;

B. Yang & Mitchell, 2016). More recent efforts have primarily made use of deep

learning techniques such as convolutional neural networks (Y. Chen et al., 2015;

T. H. Nguyen, Fu, et al., 2016; T. H. Nguyen & Grishman, 2015b), recurrent

neural networks (V. D. Lai, Nguyen, & Nguyen, 2020; T. H. Nguyen, Cho, &

Grishman, 2016; Sha et al., 2018), graph convolutional networks (M. V. Nguyen,

Lai, & Nguyen, 2021; T. H. Nguyen & Grishman, 2018; Yan, Jin, Meng, Guo,

& Cheng, 2019), adversarial networks (Hong, Zhou, Zhang, Zhou, & Zhu, 2018;

T. Zhang, Ji, & Sil, 2019), and pre-trained language models (J. Liu et al., 2020;

Pouran Ben Veyseh, Lai, Dernoncourt, & Nguyen, 2021; Pouran Ben Veyseh,

Nguyen, Ngo Trung, Min, & Nguyen, 2021; Wadden et al., 2019; S. Yang et al.,

2019a; J. Zhang et al., 2019; Y. Zhang et al., 2020).
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Works on cross-lingual ED are not as prevalent and generally make use of

cross-lingual resources employed to address the differences between languages such

as bilingual dictionaries or parallel corpora (J. Liu et al., 2019; Muis et al., 2018b)

and, more recently, pre-trained multilingual language models (Hambardzumyan,

Khachatrian, & May, 2020b; Majewska et al., 2021b; M’hamdi et al., 2019b).

Unlike these previous efforts, our method leverages unlabeled data to further refine

the language-invariant qualities of the language models.

Adversarial Language Adaptation, inspired by models in domain adaptation

research (Ganin & Lempitsky, 2015; Naik & Rose, 2020; Ngo Trung, Phung, &

Nguyen, 2021), has been successfuly applied at generating language-invariant

models (X. Chen et al., 2018; Joty et al., 2017; M. V. Nguyen, Nguyen, et al., 2021).

Our method improves upon these approaches optimizing the adversarial training

process by selecting the most informative examples from the unlabeled data.

Additional examples of downstream applications of cross-lingual learning

are document classification (Holger & Xian, 2018), named entity recognition (Xie,

Yang, Neubig, Smith, & Carbonell, 2018a) and part-of-speech tagging (Cohen,

Das, & Smith, 2011). For a thorough review on cross-lingual learning, we refer the

reader to Pikuliak, Šimko, and Bieliková (2021b).

3.5 Summary

In summary, we consider the main contributions of this chapter to be the

following:

– We propose a novel deep-learning-based model for CLED that leverages the

use of unlabeled data to learn fine-grained language-invariant representations

by optimizing the standard ALA training through optimal-transport-based

sample selection.
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– We perform extensive experiments on 4 different languages from unrelated

language families, used both as source and target for a total of 8 language

pairings. Our state-of-the-art results confirm our model’s effectiveness across

languages of diverse characteristics and structures. We believe these results

demonstrate our model’s robustness and effectiveness at generating refined

language-invariant representations that allow for better event detection

results.

– An insightful analysis of our model’s intermediate outputs and predictions

confirms that OACLED’s representations are indeed closer to each other

and this proximity translates into better handling of difficult cross-lingual

instances.

– We also note that, while we focus our experiments on the ED task, our

proposed optimization of the adversarial training process is task-independent

and can be generalized to other related cross-lingual tasks when leveraging

ALA is deemed beneficial.
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CHAPTER IV

LEVERAGING HYBRID TRANSFER FOR CROSS-LINGUAL EVENT

DETECTION

This Chapter contains materials from the unpublished paper “Luis

F. Guzman-Nateras, Franck Dernoncourt, and Thien H. Nguyen. ‘Hybrid

Knowledge Transfer for Improved Cross-Lingual Event Detection via

Hierarchical Sample Selection.’ To appear in the Proceedings of the 61st

annual meeting of the Association for Computational Linguistics, 2023” (Guzman-

Nateras, Dernoncourt, & Nguyen, 2023). As the first author of this publication,

Luis was responsible for all areas of the project from initial conceptualization to

development, experimentation, and final document writing. Thien and Franck

made editorial suggestions for the final document. The original paper contents

have undergone some editorial updates to comply with this document’s format and

purpose.

Most recent CLED efforts, including our approach discussed in Chapter III,

follow a direct-transfer approach. However, we argue that these methods fail

to take advantage of the benefits of the data-transfer approach where a cross-

lingual model is trained on target-language data and is able to learn task-specific

information from syntactical features or word-label relations in the target language.

As such, in this chapter, we propose a hybrid knowledge-transfer approach that

leverages a teacher-student framework where the teacher and student networks are

trained following the direct and data transfer approaches, respectively. Our method

is complemented by a hierarchical training-sample selection scheme designed to

address the issue of noisy labels being generated by the teacher model. We evaluate
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our model on 9 morphologically-diverse target languages across 3 distinct datasets,

highlighting the importance of exploiting the benefits of hybrid transfer.

4.1 Introduction

Event Detection (ED) is a sub-task of the encompassing Information

Extraction (IE) Natural Language Processing (NLP) task. The main objective

of ED is to detect and categorize the event triggers in a sentence, i.e., the words

that most clearly indicate the occurrence of an event. Event triggers are known to

be frequently related to the verb in a sentence (Majewska et al., 2021b). However,

they can also be other parts of speech such as nouns or adjectives. For instance,

in the sentence “The ceremony was chaired by the former Secretary of State”, an

ED system should recognize former as the trigger of a Personnel:End-Position

event1.

Generating labeled data for IE tasks such as ED can be a long and

expensive endeavor. As such, most labeled ED datasets pertain to a small set of

popular languages (e.g., English, Chinese, Spanish). In turn, labeled data is scarce

or non-existent for a vast majority of languages. This imbalance in annotated data

availability has prompted many research efforts into zero-shot cross-lingual transfer

learning which attempts to transfer knowledge obtained from annotated data in

a high-resource source language to a low-resource target language for which no

labeled data is available. There are two predominant knowledge-transfer paradigms

employed by such cross-lingual methods: Data transfer and Direct transfer.

Approaches that adhere to the data transfer paradigm generate pseudo-

labeled data in the target language and then train a model on such data. This

pseudo-training data can be constructed by mapping the gold source labels into

1Event type taken from ACE05 dataset.
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parallel, or translated, versions of the source data, or by leveraging source-trained

models to annotate unlabeled target data. Since models in this category are

trained on the target language, they can directly exploit word-label relations

and other target-language-specific information such as word order and lexical

features (Xie et al., 2018b). However, annotated parallel corpora are extremely

scarce, and misaligned or incorrect translations introduce noise that affects the

model performance.

In contrast, direct-transfer-based approaches aim at creating cross-lingual

models by training them with delexicalized, language-independent features obtained

from the labeled, source-language data. The resulting language-agnostic models can

then be applied directly to unlabeled data in the target language.

In recent years, direct transfer has become the favored transfer paradigm

as such models have less need for cross-lingual resources and can be applied

to a broader range of languages. As such, previous research efforts on Cross-

Lingual Event Detection (CLED) have mostly focused on the direct transfer

approach (Majewska et al., 2021b; M’hamdi et al., 2019b) and, in consequence,

have failed to exploit the aforementioned advantages of training with target-

language data.

More recent approaches have attempted to address this issue by

incorporating unlabeled target-language data into the training process. For

example, M. V. Nguyen, Nguyen, et al. (2021) propose a class-aware, cross-lingual

alignment mechanism where they align examples from the source and target

languages based on class information. Our OACLED model (Guzman-Nateras,

Nguyen, & Nguyen, 2022) discussed in Chapter III proposes instead to improve

standard Adversarial Language Adaptation (ALA) (X. Chen et al., 2018; Joty et
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al., 2017) by only presenting the language discriminator with informative samples.

Despite their improved results, these models only learn task-related information

from the source language and fail to make use of the potentially useful information

contained in word-label relations in the target language. Furthermore, previous

studies on similar tasks have shown that, even for direct transfer methods, lexical

features are useful if the source and target languages are close to each other (Tsai

et al., 2016).

Given that the data transfer and direct transfer paradigms are orthogonal,

in this chapter we present a hybrid transfer approach for cross-lingual event

detection that (1) exploits the desirable features of both and (2) minimizes their

respective shortcomings. For this purpose, we propose a knowledge distillation

framework which has already been proven effective on similar cross-lingual

tasks (W. Chen et al., 2021; Liang et al., 2021; Q. Wu, Lin, Karlsson, Lou, &

Huang, 2020; Q. Wu, Lin, Karlsson, Huang, & Lou, 2020). In our proposed

framework, a teacher model is trained using a direct transfer approach (i.e., with

language-invariant features obtained from annotated source data) and applied

to unlabeled target-language data. Then, this pseudo-labeled data is utilized to

train a student model so that it benefits from the advantages of the data transfer

paradigm.

Nonetheless, we recognize that the pseudo-labels obtained from the

teacher model are prone to containing noisy predictions which can be hurtful

for student training. To address this issue, we argue that the teacher model

should produce more dependable predictions on target-language examples that

share some similarities with their source-language counterparts. As such, we

propose to improve the teacher-student learning process by restricting student
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training to samples with such desirable characteristics. We perform our training-

sample selection in a hierarchical manner: First, we leverage Optimal Transport

(OT, Villani, 2008) to compute similarity scores between batch samples in

the source and target languages. Only samples with similarity scores above a

certain threshold are selected in this first step. OT has already been shown to

be effective at estimating cross-lingual similarities for sample selection (Guzman-

Nateras, Nguyen, & Nguyen, 2022; Phung, Minh Tran, Nguyen, & Nguyen, 2021).

Then, in the second step, we make use of Cross-domain Similarity Local Scaling

(CSLS, Conneau, Lample, Ranzato, Denoyer, & Jégou, 2018) to refine our sample

selection. CSLS provides an enhanced measure to obtain reliable matches between

samples in the source and target languages by addressing the hubness phenomenon

that plagues nearest-neighbor-based pair-matching methods. The student model is

then trained on the hierarchically-selected target-language samples exclusively.

In order to validate our approach, we compare our model’s performance

against current state-of-the-art models for CLED. For this purpose, we report our

results on the most commonly used CLED benchmarking datasets: ACE05 Walker

et al. (2006) and ACE05-ERE (Song et al., 2015). These datasets, in conjunction,

contain ED annotations for 3 distinct target languages. Our experimental results

show that our approach consistently outperforms such state-of-the-art CLED

models. Additionally, we further evaluate the flexibility and applicability of our

model by leveraging the recently released MINION dataset (Pouran Ben Veyseh et

al., 2022) which contains ED annotations for 8 typologically different languages.

The remainder of this chapter is organized as follows: section 4.2 presents

the definition of the ED task and an in-depth description of our model and

approach, section 4.3 includes the main results from our experiments and related
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analysis, section 4.4 provides a review of previous relevant work, and finally,

section 4.5 presents a summary of our conclusions.

4.2 Model

4.2.1 Event Detection: Problem Definition. We follow a similar

approach to previous CLED efforts (Guzman-Nateras, Nguyen, & Nguyen, 2022;

Majewska et al., 2021b; M’hamdi et al., 2019b) and model the ED task as a

sequence labeling problem.

Given a group of sentences S = {s1, s2, . . . , sn} where each of such sentences

is considered as a sequence of tokens si = {ti1, ti2, . . . , tim} accompanied by a

corresponding label sequence yi = {yi1, yi2, ..., yim}, the main idea is to train a

model to generate token-level contextualized representations which can then be

used to predict token-level labels.

In broad terms, a sequence labeling model consists of an encoder E and a

classifier C. The encoder consumes a sequence of input tokens ti and outputs a

sequence of contextualized representations hi (Eq. 4.1). These representations are

then fed to the classifier which produces a probability distribution over all of the

possible types. A candidate label is selected by choosing the type with the largest

probability. The model loss LC is then computed via negative log-likelihood with

the classifier-selected labels and the expected gold labels (Eq. 4.2).

hi1, hi2, . . . , him = E(ti1, ti2, . . . , tim) (4.1)

LC = − 1

n ∗m

n∑
i=1

m∑
j=1

log C(yij|hij) (4.2)

4.2.1.1 Zero-shot Cross-lingual Event Detection. In a cross-

lingual setting, different languages are utilized during the training and testing
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phases. The language utilized during training is referred to as the source language.

Once training is complete, the model is tested on the so-called target language.

A zero-shot setting further assumes that there is no labeled data in the

target language to be leveraged during training. Nonetheless, raw, unlabeled target-

language text can usually be collected without major difficulties. As such, in our

work, we assume the availability of two distinct sets of sentences during training:

the labeled source sentences Ssrc and unlabeled target sentences Sunl
tgt . For model

evaluation purposes, we leverage a set of labeled target-language sentences Stgt.

4.2.2 Hybrid Knowledge Transfer. As mentioned in Section 4.1, we

propose to combine the direct transfer and data transfer approaches by leveraging a

Knowledge Distillation framework. Knowledge distillation was originally proposed

as a way to compress models by transferring knowledge from a larger teacher

model onto a smaller student model (Bucilua, Caruana, & Niculescu-Mizil, 2006).

However, knowledge distillation has since been applied to several different tasks

such as machine translation Weng, Yu, Huang, Cheng, and Luo (2020), automated

machine learning (Kang, Mun, & Han, 2020), cross-modal learning (Hu, Xie,

Hong, & Tian, 2020), and cross-lingual named entity recognition (W. Chen et

al., 2021; Liang et al., 2021; Q. Wu, Lin, Karlsson, Lou, & Huang, 2020; Q. Wu,

Lin, Karlsson, Huang, & Lou, 2020).

To the best of our knowledge, our approach is the first effort into leveraging

a knowledge-distillation framework for CLED. The following sections present the

details of our teacher and student models as well as our hierarchical data-sample

selection strategy for student-model training.

4.2.2.1 Teacher Model. Our teacher model architecture follows that

of previous direct-transfer-based models for CLED (Guzman-Nateras, Nguyen,
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& Nguyen, 2022; Majewska et al., 2021b; M’hamdi et al., 2019b). We leverage a

transformer-based pre-trained multilingual language model as the encoder ET . In

particular, we make use of XLM-R Conneau et al. (2019) as it often outperforms

multilingual BERT (Devlin et al., 2019) on the CLED task (Pouran Ben Veyseh et

al., 2022). For the classifier CT , we employ a simple Feed-Forward Neural Network

(FFNN) with 2 hidden layers (Eq. 4.3). A softmax operation is applied to the

resulting predictions to obtain a probability distribution over the event types.

CT (yij) = softmax(WCT 2 ReLU(WCT 1hij)) (4.3)

where WCT 1 and WCT 2 are parameter matrices to be learned and CT (yij) ∈ R|C| is

the probability distribution over the event type set C for token tij ∈ Ssrc.

Some related works use a Conditional Random Field (CRF) layer on top

of the FFNN classifier in an attempt to capture the interactions between the

label sequences (M’hamdi et al., 2019b). However, we did not find substantial

performance differences when using a CRF layer and choose not to include it to

keep our model as simple as possible.

4.2.2.2 Teacher Adversarial Training. Pre-trained multilingual

language models such as mBERT or XLM-R provide contextualized representations

for word sequences in multiple languages by embedding the words into a shared

multilingual latent space. However, several studies have shown that, in such

multilingual latent space, words from the same language group together, creating

language clusters (M. V. Nguyen, Nguyen, et al., 2021; Yarmohammadi et al.,

2021). As such, the word representations generated by these encoders are not

language invariant. For a cross-lingual model, however, it is beneficial for similar

words in the source and target languages to have similar (i.e. close) representations

in the latent space. For instance, an English-trained Spanish-tested cross-lingual
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model would benefit if the representations for the words dog and perro were similar

to each other as then the model could adequately handle the Spanish sample

provided it learns how to handle its English counterpart during training.

A technique that has been frequently used to promote the generation of

such language-invariant representations is Adversarial Language Adaptation

(ALA) (X. Chen et al., 2018; Joty et al., 2017). ALA introduces a language

discriminator network D whose objective is to differentiate between the source

and target languages. It learns language-dependent features that allow it to

classify word representations as belonging to either the source or target languages.

Concurrently, the encoder network is trained in an adversarial manner: it attempts

to fool the discriminator by generating language-independent representations that

are difficult to classify. A key feature of ALA is that it only requires unlabeled

target-language data and, as such, it can be applied in a zero-shot setting using the

available Sunl
tgt sentence set.

Other works that have leveraged ALA perform adversarial training at

the sequence level (Guzman-Nateras, Nguyen, & Nguyen, 2022). That is, they

only present the discriminator with sequence-level representations (e.g., the

representation for the [CLS] token in mBERT). However, in this work we leverage

token-level adversarial training which has been found to be more effective at

generating language-invariant representations (W. Chen et al., 2021)

We again use a two-layer FFNN for the discriminator network D. Instead

of a softmax operation to generate a probability distribution, we employ a sigmoid

function σ to predict the associated language l (Eq. 4.4).

D(li) = σ(WD2 ReLU(WD1hij)) (4.4)
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where WD1 and WD2 are parameter matrices to be learned and D(lij) is a scalar

∈ [0, 1] that indicates how likely it is that the current token representation hij

belongs to the source (li = 0) or target (li = 1) languages.

Thus, besides the ED classification loss LC described in Equation 4.2,

adversarial training introduces the discriminator loss LD (Eq. 4.5) as an additional

training signal.

LD = (4.5)

1

n ∗m

n∑
i=1

m∑
j=1

li · D(hij) + (1− li) · (1−D(hij))

Our adversarial training is achieved by minimizing the following term:

argmin
E,C

n∑
i=1

m∑
j=1

(LC(yij|hij)− λLD(li|hij)) (4.6)

We leverage a Gradient-Reversal Layer (GRL) Ganin and Lempitsky (2015)

to implement Equation 4.6 by applying the GRL to the discriminator input vectors

hij. A GRL acts as the identity function during the forward pass and reverses

the direction of the gradients during the backward pass. As such, the encoder

parameters are trained in the opposite direction to those of the discriminator,

effectively learning to generate token representations with language-invariant

features.

Figure 6 shows the architecture of the teacher model.

4.2.2.3 Student Model. As described in the previous section, the

teacher model is trained using a direct transfer approach: it learns to generate

language-independent representations from the labeled source-language data so

that it can be directly applied to unlabeled target-language data. However, in our

proposed hybrid knowledge transfer approach, we expect the student model to reap

the benefits of the data transfer paradigm. Hence, we train the student model using
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XLM-R Encoder

Language
Discriminator

Labeled
Source Data

Unlabeled
Target Data

Teacher

Figure 6. Adversarially-trained Teacher model. Source and target (unlabeled)
data is passed through the encoder and fed at a token-level to the language
discriminator. The discriminator gradients are then used to update the encoder
parameters in an adversarial manner. The ED classifier is trained with the labeled
source samples exclusively.

target-language data so that it may learn from syntactical features and word/label

relations.

First, we apply the teacher model Teach to the unlabeled target dataset

Sunl
tgt to obtain a pseudo-labeled training set STeach

tgt . Afterward, the student model

Student is trained in a supervised manner using the obtained pseudo-labels.

The model architecture of our student model mirrors the one of the teacher

model: a pre-trained multilingual language model as the encoder ESTU and a two-

layer FFNN for a classifier CSTU .

CSTU(yij) = softmax(WCS2 ReLU(WCS1hij)) (4.7)
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Previous works on knowledge distillation have found that using soft labels

(i.e., probability distributions over class types) is beneficial for student learning as

they contain richer and more helpful information than hard labels (Hinton, Vinyals,

& Dean, 2015). As such, we train the student model to minimize the Mean Squared

Error (MSE) between the student-predicted and teacher-generated event-type

distributions (Eq. 4.8).

LStudent = (4.8)

1

n ∗m

n∑
i=1

m∑
j=1

(CSTU(ESTU(tij))− CT (ET (tij)))2

4.2.3 Student-Training Sample Selection. An important challenge

in our teacher-student framework is that the target pseudo-labels obtained from

the teacher model are prone to contain noisy predictions. The teacher model is

trained with a direct transfer approach and, even though its word representations

are encouraged to be language-independent through adversarial training, it learns

task-related information exclusively from the source-language labels. We argue

this prevents the teacher from learning task-specific information in the target

language as it is unable to exploit the word-label relations specific to such language.

Furthermore, even though the student model should be able to benefit from being

trained in the target language, any potential benefits can be nullified if the quality

of the teacher-generated pseudo-labels is too poor.

To address the aforementioned issue, we argue that the teacher model should

produce more reliable pseudo-labels on target-language examples that share some

similarities (structural or otherwise) with the source-language examples. Hence,

we suggest improving the knowledge-distillation process by restricting student-

model training to target-language examples with such desirable characteristics.

86



We implement this idea by designing a two-step hierarchical sample-selection

scheme: First, we leverage Optimal Transport (OT) Villani (2008) to generate

an alignment score between source and target samples and select samples above

a defined alignment threshold. Then, using the selected source and target

samples, we compute their pairwise Cross-domain Similarity Local Scaling scores

(CSLS, Conneau et al., 2018) and only keep the pairs with the highest similarities.

The following subsections describe each step in further detail.

Figure 7 presents an overview of our teacher-student framework.

Unlabeled
Target Data Teacher

Soft-labeled
Target Data Student

Hierarchical
Sample

Selection

Figure 7. Teacher-student framework. The adversarially trained Teacher is used to
annotate unlabeled target samples. Our hierarchical sample selection process picks
a subset of samples to be used to train the Student model.

4.2.3.1 Optimal-Transport-based Selection. Recent

research efforts have successfully leveraged OT for cross-lingual language

adaptation (Guzman-Nateras, Nguyen, & Nguyen, 2022; Phung, Minh Tran, et

al., 2021) and word-label alignment for event detection (Pouran Ben Veyseh &

Nguyen, 2022). OT relies on a distance-based cost function to compute the most

cost-effective transformation between two discrete probability distributions by

solving the following optimization problem:

π∗(x, z) = min
π∈

∏
(x,z)

∑
x∈X

∑
z∈Z

π(x, z) D(x, z) (4.9)

s.t. x ∼ P (x) and z ∼ P (z)
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In Eq. 4.9, D is a cost function that maps X to Z, D(x, z),X × Z −→ R+,

P (x) and P (z) are probability distributions for the X and Z domains, and π∗(x, z)

is the optimal joint distribution over the set of all joint distributions
∏
(x, z) (i.e.,

the optimal transformation between X and Z).

For our work, we consider the source and target languages as the X to Z

domains to be aligned. Each training sample corresponds to a data point in a

distribution and is represented by its sentence-level encoding h 0. Following prior

work (Pouran Ben Veyseh & Nguyen, 2022), we estimate probability distributions

P (x) and P (z) using a single-layer FFNN and use Euclidean distance as the cost

function:

D(hx
i0, h

z
j0) = ||hx

i0 − hz
j0||22 (4.10)

where hx
i0 is the i-th source-language sample and hz

j0 is the j-th target-language

sample.

Once the OT algorithm converges, we leverage the solution matrix π∗ to

compute an overall similarity score k for each sample h 0 by averaging the optimal

cost of transforming it to the other domain:

kx
i =

∑m
j π∗(hx

i0, h
z
j0)

m
(4.11)

Finally, a hyperparameter α determines the proportion of samples with the

highest similarity scores k to be selected for use in the next step.

4.2.3.2 CSLS-based Selection. The OT-based similarity score

described previously captures the global alignment of a sample with the alternate

language, e.g., how well a source-language sample aligns with the target language

and vice versa. Nonetheless, we propose to further refine our sample selection by

considering the pairwise similarity between source and target samples.
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To this end, we make use of the Cross-domain Similarity Local Scaling

(CSLS, Conneau et al., 2018) similarity measure which was originally designed

to improve word-matching accuracy in word-to-word translation (Q. Wu, Lin,

Karlsson, Huang, & Lou, 2020). CSLS addresses a fundamental issue of pair-

matching methods based on Nearest Neighbors (NN): NNs are asymmetric by

nature, i.e. if a is a NN of b, b is not necessarily a NN of a. In high-dimensional

spaces, this asymmetry leads to hubness, a detrimental phenomenon for pair

matching: samples in dense areas have high probabilities of being NN to

many others, while samples that are isolated will not be a NN to any other

sample (Conneau et al., 2018).

As such, when computing the similarity between a pair of samples,

CSLS (Eq. 4.12) computes mean similarity r of a sample to its neighborhood N

(i.e., its K nearest neighbors) in the alternate language and leverages it to increase

the similarity scores of isolated samples while decreasing the scores of so-called hub

samples. For example, the mean similarity rZ for source sample hx
i is computed

with its target neighborhood NZ (Eq. 4.13).

CSLS(hx
i , h

z
j) = (4.12)

2cos(hx
i ,h

z
j)− rZ(h

x
i )− rX(h

z
j)

rZ(h
x
i ) =

1

|NZ |
∑
NZ

cos(hx
i , h

z
j) (4.13)

rX(h
z
j) =

1

|NX |
∑
NX

cos(hz
j , h

x
i ) (4.14)

where cos is the cosine similarity. In our work, the source NX and target NZ

neighborhoods are defined as the corresponding sample sets kept by the previous

selection step. Again, we keep a proportion of the samples with the best pairwise

similarity scores determined by a hyperparameter β.
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Figure 8 presents an overview of our proposed hierarchical sample-selection

strategy.

Selected 
Target DataCSLS Selection

Soft-labeled
Target Data OT Selection

Figure 8. Hierarchical sample selection scheme. The target-language samples
annotated by the Teacher model are first filtered by OT-based selection. The
remaining samples are then further refined via CSLS. The final subset of samples is
used to train the Student model.

4.3 Experiments

4.3.1 Datasets. For our experiments, we leverage the ACE05 Walker

et al. (2006) and ACE05-ERE (Song et al., 2015) datasets as they are the most

commonly used benchmarking datasets for CLED. ACE05 contains ED annotations

in 3 languages: English (En), Chinese (Zh), and Arabic (Ar). ACE05-ERE includes

annotations in both English and Spanish (Es).

To further test the applicability of our model, we also make use of the

recently released MINION dataset (Pouran Ben Veyseh et al., 2022) which contains

annotations for 8 morphologically and syntactically distinct languages: English,

Spanish, Hindi (Hi), Japanese (Ja), Korean (Ko), Polish (Pl), Portuguese (Pt), and

Turkish (Tr).

Appendix A.2 presents additional details about the aforementioned datasets.

4.3.2 Main results. In order to evaluate our Hybrid Knowledge

Transfer for Cross-Lingual Event Detection (HKT-CLED) model, we first

present our results on the ACE05 and ACE05-ERE datasets in Table 7. We

compare against 6 recent CLED efforts including the current state-of-the-art
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model (Guzman-Nateras, Nguyen, & Nguyen, 2022). All the baseline results are

taken directly from the original papers and our model’s results are the average of

5 runs with different seeds. English is used as the sole source language and Arabic,

Chinese, and Spanish are employed as target languages. Following previous works,

we report F1 scores.

Target Language
Model Zh Ar Es

J. Liu et al. (2019) 27.0 - -
M’hamdi, Freedman, and May (2019) 68.5 30.9 -

D. Lu et al. (2020) - - 41.77
Majewska et al. (2021b) 46.9 29.3 -

M. V. Nguyen, Nguyen, et al. (2021) 72.1 42.7 -
Guzman-Nateras, Nguyen, and Nguyen (2022) 74.64 44.86 47.69

HKT-CLED (Ours) 75.22 46.37 48.58

Table 7. Cross-lingual event detection model performance comparison. English
is used as the source language. ACE05 is used for Chinese (Zh) and Arabic (Ar),
ACE05-ERE is used for Spanish (Es).

Our proposed approach obtains new state-of-the-art performance across all

3 target languages with improvements of +0.58, +1.51, and +0.89 F1 points for

Chinese, Arabic, and Spanish, respectively. We believe these results demonstrate

the importance of hybrid knowledge transfer as it gives HKT-CLED an edge over

previous works that follow a direct transfer approach (Guzman-Nateras, Nguyen,

& Nguyen, 2022; Majewska et al., 2021b; M’hamdi et al., 2019; M. V. Nguyen,

Nguyen, et al., 2021).

To validate the effectiveness and general applicability of our approach,

Table 8 presents the performance of our HKT-CLED model on the more diverse

MINION dataset. Once again, we employ English as the source language and test

our model’s performance on the remaining 7 languages. For a fair comparison, we

use their best XLM-R results. Our model consistently outperforms their reported

baseline with an average performance improvement of +7.74 F1 points for all target
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languages (+5.25 if the highest and lowest improvements are not considered). In

the case of Japanese, HKT-CLED obtains a massive performance improvement

of over 25 F1 points. Also of note is that HKT-CLED performance is a lot more

uniform across target languages than the baseline. There is a difference of 23.43

F1 points between the best-performing (Pt, 77.28) and the worst-performing (Tr,

53.85) target languages, as opposed to a 37.65 point difference in the baseline case

(Pt, 72.77 and Ja, 35.12).

Target Language
Model Es Hi Ja Ko Pl Pt Tr

Baseline* 62.83 58.19 35.12 56.78 60.13 72.77 47.21
HKT-CLED 66.03 68.63 61.84 58.24 61.35 77.28 53.85
Improvement +3.2 +10.44 +26.72 +1.46 +1.22 +4.51 +6.64

Table 8. Cross-lingual ED performance on the MINION dataset. F1 scores are
reported. English is used as the source language. Baseline* performance was
obtained directly from the original MINION paper (Pouran Ben Veyseh et al.,
2022). HKT-CLED results are the average of 3 runs.

The model implementation details can be found in Appendix C.

4.3.3 Analysis.

4.3.3.1 Ablation Study. We first explore the contribution of each

model component by performing an ablation study (Table 9). In particular, we

evaluate the impact of three aspects: teacher adversarial training, OT-based sample

selection, and CSLS-based sample selection. The Teacher (Vanilla) results were

obtained with a standard sequence-labeling model without any adversarial training.

Its performance leaves room for improvement as its word representations do not

display any language-invariant qualities. A considerable improvement is achieved

when training the teacher model with token-level adversarial training (Teacher

+ Adv). Then, the Student (Vanilla) row shows the result of training a student

network on the teacher-generated pseudo-labels without any sample selection. We
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argue its performance is worse than the adversarially-trained teacher due to the

noisy pseudo-labels. By incorporating OT-based selection, Student + OT is able to

outperform its teacher. However, it is only by performing our hierarchical sample

selection that the student model achieves new state-of-the-art performance.

Target Language
Model Zh Ar Es

HKT-CLED 75.22 46.37 48.58
Student + OT 74.37 45.53 47.63

Student (Vanilla) 73.48 44.10 46.81
Teacher + Adv 73.85 44.42 47.37

Teacher (Vanilla) 70.51 43.59 46.75

Table 9. Ablation experiment results.

4.3.3.2 Impact of Sample-Selection Ratios. Figure 9 shows the

impact of hyperparameter α on model performance. α determines the proportion

of student-training samples kept by the OT-based selection step. An α = 1 value

performs no sample selection and α = 0.25 only keeps a fourth of the batch samples

with the highest similarity scores.

Best results are obtained when half of the samples are kept (α = 0.5)

exemplifying the importance of removing training examples with potentially noisy

pseudo-labels. However, if too few samples are chosen (e.g., α = 0.25) the student

performance drops below its vanilla version (α = 1).

Similarly, Figure 10 presents the effect on performance of hyperparameter β

which defines the proportion of samples kept by the CSLS-selection step. A β = 1

value uses all of the samples selected by the previous step.

Removing about a quarter (β = 0.75) of the previously-selected samples

improves performance across all languages. Of note is the fact that the OT and

CSLS similarity scores complement each other. From Figure 9 it would seem that
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Figure 9. Performance impact of hyperparameter α.

removing more than half of the training samples would only hurt performance.

However, given CSLS pairwise focus, it is able to effectively remove some remaining

noisy samples and obtain better results.

4.4 Related Work

Cross-lingual event detection has recently gained traction as a research area.

The work by J. Liu et al. (2019) presents a data transfer method that learns a

mapping between monolingual word embeddings, translates the source training

data on a word-by-word basis and uses a graph convolutional network to generate

order-independent representations. M’hamdi et al. (2019b) leverage mBERT as

an encoder to perform zero-shot transfer learning and a CRF layer to account for

label dependency. D. Lu et al. (2020) present a cross-lingual structure transfer

approach that represents sentences as language-universal structures (trees, graphs).

In their work, Majewska et al. (2021b) argue that event triggers are usually related

to the verb in a sentence and propose to incorporate external verb knowledge
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Figure 10. Performance impact of hyperparameter β.

by pre-training their encoder to classify whether two verbs belong to the same

class according to two distinct ontologies VerbNet, (Kipper et al., 2006) and

FrameNet, (Baker et al., 1998). Model priming (Fincke et al., 2021) is a simple, yet

effective method that consists in augmenting the encoder inputs by concatenating

a candidate trigger to the input sentence so that the encoder learns to generate

task-specific representations. M. V. Nguyen, Nguyen, et al. (2021) leverage class

information and word categories as language-independent sources of information

and condition their encoder to generate representations that are consistent in both

the source and target languages. Finally, Guzman-Nateras, Nguyen, and Nguyen

(2022) propose to optimize standard adversarial language adaptation by restricting

the language discriminator training to informative examples.

Our approach is also closely related to knowledge distillation models for

cross-lingual Named Entity Recognition (NER). Q. Wu, Lin, Karlsson, Lou,

and Huang (2020) were the first to train a NER student model on the label
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distributions obtained from a teacher model. Q. Wu, Lin, Karlsson, Huang,

and Lou (2020) improved upon this initial approach with a multi-step training

method that involves fine-tuning the teacher model with pseudo-labeled data

and generating hard labels that are later used for student training. More recent

proposals improve the knowledge distillation process with either reinforcement

learning (Liang et al., 2021) or adversarial training (W. Chen et al., 2021).

Nonetheless, our approach is the first to leverage a knowledge distillation

framework for the CLED task, and our novel hierarchical training-sample selection

scheme further differentiates our work from the aforementioned efforts.

4.5 Summary

In summary, we consider the main contributions of this chapter to be the

following:

– We present the first effort to leverage a hybrid knowledge-transfer approach

for the cross-lingual event detection task which benefits from the advantages

of both the direct transfer and the data transfer knowledge transfer

paradigms and minimizes their shortcomings.

– We address the issue of noisy pseudo-labels in our teacher-student framework

by proposing an entirely novel a hierarchical training-sample selection

scheme that effectively constrains the student-training process to pseudo-

labeled target-language samples that are similar to their source-language

counterparts.

– Our HKT-CLED model sets a new state-of-the-art performance on the

most popular benchmarking datasets ACE05 and ACE05-ERE, and obtains

substantial performance improvements on the recently-released, and more
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diverse, MINION dataset with an average improvement of +7.74 F1 points

across 7 distinct target languages.

– We provide an ablation study and complementary analysis to validate the

contribution of each of our model’s comprising elements and confirm the

efficacy of our hierarchical sample selection scheme.

– Our results demonstrate our model’s robustness and applicability and validate

our claim that combining the benefits of the direct transfer and data transfer

approaches is beneficial for cross-lingual learning.
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CHAPTER V

EXPLOITING SUPPORT/QUERY SET GLOBAL ALIGNMENT FOR

FEW-SHOT CROSS-LINGUAL EVENT DETECTION

This Chapter contains materials from the published paper “Luis F. Guzman-

Nateras, Viet D. Lai, Franck Dernoncourt, and Thien H. Nguyen. ‘Few-Shot

Cross-Lingual Learning for Event Detection’ In Proceedings of the The

2nd Workshop on Multi-lingual Representation Learning (MRL), 2022”(Guzman-

Nateras, Nguyen, & Nguyen, 2022). As the first author of this publication, Luis was

responsible for most areas of the project including development, experimentation,

and document writing. Viet provided a starting code base and meaningful

discussions and insights. Thien had input on the initial project conceptualization,

and he and Franck made editorial suggestions for the final document. The original

publication contents have undergone some editorial updates to comply with this

document’s format and purpose.

After exploring a direct-transfer-based approach in Chapter III and a hybrid-

transfer approach in Chapter IV, in this chapter we switch our attention to a

different learning paradigm. Training of CLED models is usually performed in

a standard supervised-learning setting with labeled data available in the source

language. The Few-Shot Learning (FSL) paradigm is yet to be explored for

CLED despite its inherent advantage of allowing models to better generalize to

unseen event types. As such, in this chapter, we study the novel setting of FSL for

CLED. Our contribution is threefold: first, we introduce a novel FSL classification

method based on Optimal Transport (OT, Villani, 2008); second, we present a

novel regularization term to incorporate the global distance between the support

and query sets; and third, we adapt our approach to the cross-lingual setting by
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exploiting the alignment between source and target data. Our experiments on 3,

syntactically-different, target languages show the applicability of our approach and

its effectiveness in improving the cross-lingual performance of few-shot models for

event detection.

5.1 Introduction

Event Detection (ED) is a significant sub-task within the larger task

of Information Extraction (IE) in Natural Language Processing (NLP). Its

core purpose is to identify the words, or phrases, that most clearly express the

occurrence of an event, known as event triggers, and to correctly categorize them

into a discrete set of classes. For instance, in the sentence:

Frank purchased his dream house yesterday.

the word “purchased” should be identified by an ED system as the trigger of

a Transaction:Transfer-Ownership event type1. Event detection is a highly

active research area which has been lately dominated by deep-learning-based

approaches J. Liu et al. (2020); Y. Lu et al. (2021); T. M. Nguyen and Nguyen

(2019); Sha et al. (2018); Wadden et al. (2019); S. Yang et al. (2019a); J. Zhang

et al. (2019); Y. Zhang et al. (2020). Most of these works use the standard

supervised learning paradigm in which lots of labeled data is required during

training. However, a significant limitation of models trained in this manner is their

inability to properly generalize to new event types that were unobserved during

training V. D. Lai, Nguyen, and Dernoncourt (2020).

5.1.1 Few-Shot Learning. In contrast to the supervised approach,

Few-Shot Learning (FSL) proposes a training setting in which a model must quickly

learn new concepts from just a few examples, similar to how humans can learn to

1Event type example taken from ACE05 dataset.
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detect and identify new objects after having observed only a couple of instances.

During an FSL training iteration, a model is given a support set and a query set,

each of which contains only a handful of examples for a set of classes. Then, the

model is trained to predict the classes for the query samples based on the labeled

support samples. Under these constrained training settings, supervised training

easily results in model overfitting due to the limited availability of training data.

Furthermore, in FSL, a model is evaluated on its ability to generalize to new,

unobserved types. To achieve this, during testing an FSL model is provided with

new support and query sets whose samples belong to entirely new classes never

observed during training.

Typical FSL approaches consist of obtaining a vector representation for

each sample and then performing classification based on the distance between such

vectors, e.g., Matching Networks Vinyals, Blundell, Lillicrap, Kavukcuoglu, and

Wierstra (2016), Relation Networks Sung et al. (2018), and Prototypical Networks

Snell, Swersky, and Zemel (2017). The key differences between these approaches

often come down to the way the sample representations are generated, and how the

distance between such representations is determined.

FSL training allows a model to easily extend to new classes as it only needs

to see a few labeled examples in order to successfully classify them. FSL has been

applied successfully for many tasks. Recently, there have been several efforts that

explore event detection under a few-shot learning setting (FSLED) J. Chen, Lin,

Han, and Sun (2021); Cong et al. (2021); Deng et al. (2020); V. Lai, Dernoncourt,

and Nguyen (2021); V. D. Lai, Dernoncourt, and Nguyen (2020); V. D. Lai,

Nguyen, Nguyen, and Dernoncourt (2021); V. D. Lai, Nguyen, and Dernoncourt

(2020); Shen et al. (2021).
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5.1.2 Cross-Lingual Event Detection. Cross-Lingual Learning

(CLL) is a paradigm that aims at transferring the knowledge from one language

to another (Pikuliak et al., 2021b). CLL can help overcome the lack of data

availability that plagues many languages and allow for the creation of NLP-based

tools that can benefit their communities.

As such, Cross-lingual Event Detection (CLED) aims at detecting and

classifying event triggers with the added complexity of operating on two separate

languages. These two languages are referred to as source and target, respectively.

In standard zero-shot training, a CLED model is trained using labeled data

belonging to the source language exclusively. Then, at testing time, data from

the target language is used to evaluate the model’s performance Guzman-Nateras,

Nguyen, and Nguyen (2022); Majewska et al. (2021b); M’hamdi et al. (2019b);

M. V. Nguyen, Nguyen, et al. (2021).

A proper effort on CLED under FSL conditions has yet to be explored

despite the potential advantages it could contribute to cross-lingual models. Hence,

we recognize this opportunity and propose the novel Few-Shot Cross-Lingual Event

Detection (FSCLED) task to integrate these two settings.

The rest of the chapter is organized as follows: Section 5.2 provides a

formal definition for FSCLED task, Section 5.3 describes the details our proposed

approach, Section 5.4 presents the results of our experiments, and finally, we

present our conclusions in Section 5.6.

5.2 Problem Definition

5.2.1 Few-shot Event Detection. We follow the same problem

formulation as in prior work for few-shot ED Deng et al. (2020); V. Lai,

Dernoncourt, and Nguyen (2021); V. D. Lai, Nguyen, and Dernoncourt (2020). In
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particular, we cast event detection as a token classification task in which a model

must learn to correctly classify the trigger tokens. In a standard FSL setting, an

iteration involves a support set S and a query set Q that cover sample sentences for

N distinct classes; each class is represented by K ∈ [1, 10] examples. Additionally,

for event detection, S and Q are extended with an additional negative, or non-

event, type NULL (also with K examples) V. Lai, Dernoncourt, and Nguyen (2021).

In this manner, given an input sentence along with an trigger candidate, an FSL

model for ED should be able to predict whether the candidate is an event trigger as

well as which event type is evoked by the trigger (if any).

Hence, the formal definition of the FSL task is as follows. The S and Q sets

are defined by:

S = {(sj(S)i , t
j(S)
i , y

j(S)
i )} (5.1)

Q = {(sj(Q)
i , t

j(Q)
i , y

j(Q)
i )} (5.2)

where i ∈ [1, K]2, j ∈ [0, N ] (j = 0 is used for the non-event type), and a single

sample (s
j(·)
i , t

j(·)
i , y

j(·)
i ) contains a sentence s

j(·)
i , a trigger candidate word t

j(·)
i in s

j(·)
i ,

and an event label type y
j(·)
i . As per FSL requirements, the label set used when

training the model must be disjoint from those used when evaluating the model to

properly assess the model’s ability to generalize to unobserved classes.

5.2.2 Few-shot Cross-lingual Event Detection. Cross-Lingual

Learning (CLL) methods Pikuliak et al. (2021b) emerged from the need to create

NLP models for low-resource target languages that lack the required labeled data

to perform supervised learning. The core idea is to train models using available

labeled data from a high-resource source language with techniques that allow them

to learn task-specific language-invariant features. The models are then evaluated on

2We use the same number of samples for each class in both the support and query sets.
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the desired target language without access to target-language labeled data during

training. This setting is known as zero-shot cross-lingual transfer learning3.

As such in the zero-shot cross-lingual ED task, the labeled samples used

during training Dtrain and development Ddev belong to the source language while

the ones used for testing Dtest correspond to the target languages Majewska et al.

(2021a); M’hamdi, Freedman, and May (2019a).

In this work, we combine the aforementioned zero-shot approach to cross-

lingual evaluation with the added intricacy of the standard few-shot setting. During

training, the models are presented with a support set Ssrc and a query set Qsrc

that belong to the source language. Then, at testing time, the support set Stgt

and query set Qtgt are taken from the target language for evaluation. Furthermore,

given the FSL setting, the label set used during training is disjoint from the label

set for development and testing. We designate this novel task as Few-Shot Cross-

Lingual Event Detection (FSCLED).

5.3 Model

As done in prior FSL models for ED V. Lai, Dernoncourt, and Nguyen

(2021), our model for FSCLED involves two main components: an encoder E and a

classifier C.

5.3.1 Encoder. The encoder’s purpose is to obtain a representation

vector v
j(·)
i for each sample in the support S and query Q sets:

v
j(·)
i = E(s

j(·)
i , t

j(·)
i ) ∈ Rd (5.3)

where d is the vector size, and · can be either S or Q.

3Not to be confused with standard zero-shot learning where zero data for a new class is used
by models to perform prediction.
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Following recent work on CLED, we leverage the pretrained multilingual

language model (mLM) mBERT Devlin et al. (2019) for our encoder to take

advantage of its ability to induce language-invariant representations Majewska et al.

(2021b). Additionally, we stack a Multi-Layer Perceptron (MLP) layer on top of the

transformer outputs to create our multilingual encoder, called BERTMLP S. Yang,

Feng, Qiao, Kan, and Li (2019b). Then, we employ the vector representation for

t
j(·)
i generated by BERTMLP to serve as the representation v

j(·)
i .

5.3.2 Classifier. For convenience, let vs and vq be the representation

vectors for the sample s ∈ S and q ∈ Q, and V (S) and V (Q) be the sets of

representation vectors for all samples in the support and query sets, respectively.

The classifier C aims to predict a label yq for each instance q in the query

set based on its representation vq and the representations of the samples in the

support set V (S):

yq = C(vq, V (S)) (5.4)

Given the multilingual representations v
j(·)
i , a feasible approach is to employ

existing FSL models (e.g., Matching, Relation, or Prototypical networks) to

perform classification in FSCLED. The models can then be trained using the

standard cross-entropy loss.

5.3.2.1 Optimal Transport. We recognize, nonetheless, a potential

issue with traditional FSL models in that they only consider local distances

between individual pairs of samples in the support and query sets. In the case

of Prototypical Networks (Snell et al., 2017), for example, the distance is between

a query sample and a class prototype. Hence, if the overall global distance between

the support and query sets is large, a small difference between the distances of two

individual samples becomes less reliable to determine the label assignments. In
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turn, we argue that the global distances between S and Q should be minimized

to improve the reliability of the distances between individual pairs for accurate

FSCLED.

To this end, we propose utilizing Optimal Transport (OT) Villani (2008)

to estimate the distance between the support S and query Q sets for FSCLED. In

broad terms, OT aims to find the most cost-effective transformation between two

discrete probability distributions. Optimal transport employs a cost function to

compute the cost of transforming data points from one distribution to the other.

If a distance function (Euclidean, Cosine, etc.) is used as such cost function, the

obtained minimum cost is known as the Wasserstein distance. Formally, OT solves

the following optimization problem:

π∗(s, q) = min
π∈

∏
(s,q)

∑
s∈S

∑
q∈Q

π(s, q) D(s, q) (5.5)

s.t. s ∼ P (S) and q ∼ P (Q)

where P (x) and P (z) are probability distributions for the X and Z domains,

and D is a distance-based cost function for mapping X to Z, D(x, z) : X ×

Z −→ R+. Finally, π
∗(x, z) is the optimal joint distribution over the set of all

joint distributions
∏
(x, z) (i.e., the optimal transformation between Z and X ).

The described OT optimization problem is, however, intractable as it requires

optimizing over the infinite set
∏
(x, z). In practice, we instead solve an entropy-

based relaxation of the discrete OT problem using the Sinkhorn algorithm Cuturi

(2013).

5.3.2.2 Few-Shot Classification via OT. To adapt FSL

classification into an OT formulation we consider the support S and query Q sets

as the two domains to be transformed. Each sample in S and Q represents a data
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Figure 11. OT-based classification procedure example for a 3-way, 3-shot setting.
Optimal Transport is used to obtain a the optimal similarity matrix π∗. Then, the
likelihood vectors α are obtained via class-based pooling. Finally, the softmax the
similarity vectors is leveraged for training and final class prediction.

point in the corresponding distribution. The probability distributions P (S) and

P (Q) are estimated using an event-presence module F . In our work, F is a feed-

forward neural network (FFNN) with a single output and sigmoid activation that

scores the likelihood that a trigger candidate word is actually an event trigger. F

receives as input the vector representation of a trigger v(·) from either S or Q, and

outputs a scalar in the range [0-1]. Then, the probability distributions for S and Q

are obtained by computing the Softmax over F ’s outputs for the samples in each

set:

P (S) = Softmax(F (V (S))) (5.6)

P (Q) = Softmax(F (V (Q))) (5.7)

To supervise the event-presence module F , we include the cross-entropy loss

for event identification into the overall loss function:

Lident = (5.8)∑
s∈S

is · σ(F (vs)) + (1− is) · σ(1− F (vs))
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where is is the golden binary variable to indicate if s corresponds to an event

trigger or not, and σ is the sigmoid function.

In our model, the distance D(q, s) between a sample in q ∈ Q and a sample

s ∈ S is based on the Euclidean distance between their representation vectors vs

and vq:

D(q, s) =

√∑
i∈d

(vqi − vsi )
2 (5.9)

Once the OT algorithm converges, or the maximum number of iterations

is reached, the obtained optimal alignment matrix π∗ is a squared matrix with

dimensions ((N + 1) ∗ K) × ((N + 1) ∗ K) where each entry π∗
r,c represents the

alignment score between the r-th query sample and c-th support sample.

The conversion from matrix index (r, c) to event type (j) and sample

number (i) can be computed in a straightforward manner as all samples from the

same class (event type) are contiguous: j = r//K, i = r % K where // and % are

the integer division and modulo operators.

To perform sample classification and train our FSCLED model, we first use

the optimal alignment matrix π∗ to compute a likelihood vector α for each query

sample (i.e., the r-th) by performing class-based pooling with respect to the N + 1

classes:

αj
r =

∑
i∈[0,K−1]

π∗
r,(j∗K)+i (5.10)

where j ∈ [0, N ]. As such, the resulting αr vectors have N + 1 dimensions.

And the complete α matrix has a ((N + 1) ∗ K) × (N + 1) size. We then apply

a Softmax operation over αr to obtain a class distribution Pr for the r-th query

sample: Pr = Softmax(αr). Pr will then be used for training and inference in our

model. In particular, we use the negative log-likelihood loss as the main term of our
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overall training loss:

Lclass = −
∑
r

Pr(yr) (5.11)

where yr is the golden class for the r-th query example. Figure 11 shows a

visualization of the described procedure for a 3-way, 3-shot setting. As such, a

key distinction is that the class distribution Pr in our FSL method is obtained from

the support-query alignment scores π∗ in optimal transport. This is in contrast to

previous FSL models where the class distributions tend to be computed directly

from sample representations.

5.3.3 Support-Query Distance. In addition to our optimal-

transport-based FSL classifier, we propose computing the Wasserstein distance

between S and Q and including it into the loss function as a regularization term

to minimize the overall distance between the support and query sets for reliable

predictions. We obtain the aforementioned Wasserstein distance using the optimal

alignment matrix π∗:

Ldist =
∑
s∈S

∑
q∈Q

π∗
r,c D(q, s) (5.12)

where r and c are the matrix indexes for q and s, respectively.

5.3.4 Cross-Lingual Distance. To adapt our approach to the cross-

lingual setting, we aim to encourage language-invariant representation learning by

regularizing our model so the representation vectors of samples in the source and

target languages are closer to each other in the embedding space.

Following our approach discussed in Chapter III Guzman-Nateras, Nguyen,

and Nguyen (2022), which leveraged OT to successfully align samples taken from

the source and target languages to improve adversarial language adaptation, we

propose to further use OT to estimate the distance between samples in the source
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and target languages so that it can be included in the overall loss function as an

additional regularization term for minimization.

To this end, given the unavailability of labeled data in the target language,

we make use of unlabeled data – often readily available for most languages –

instead. For convenience, let R and T represent the source-language and target-

language data set respectively. In any given FSL training iteration, the support

S and the query Q sets comprise the R set for the source language. To constitute

the set representing the target language T , we collect enough unlabeled samples to

match the size of R.

Thus, similarly to the OT formulation described in section 5.3.2.2 that

computes the optimal alignment between two domains S and Q, in this context

we consider the source- and target-language data set R and T as the domains to

be transformed. Subsequently, we employ our BERTMLP multilingual encoder to

obtain representation vectors for the samples in both R and T that will serve as

the inputs for the OT algorithm.

It is important to note that, due to the unavailability of the class

information for the target-language samples T for training, it is less reliable

to estimate the probability distribution P (T ) for the target language using the

event-presence prediction module F as performed for P (S) and P (Q). Hence, we

initialize P (R) and P (T ) as uniform distributions for the OT computation in this

case.

Under this setting, we solve the OT equation to obtain the optimal

alignment matrix ρ∗ between R and T . The Wasserstein distance Lcross is then
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computed and integrated into the overall loss function for regularization:

Lcross =
∑
r∈R

∑
t∈T

ρ∗n,m D(r, t) (5.13)

where n and m are the matrix indexes for r and t, respectively.

5.3.4.1 Full Model. Finally, the overall loss function L used to train

our Optimal-Transport-based Event Detection (OTED) model is:

L = Lclass + αLident + βLdist + γLcross (5.14)

where α, β, and γ are trade-off hyperparameters.

5.4 Experiments

5.4.1 Datasets. We use the ACE05 Walker et al. (2006) and ACE05-

ERE Song et al. (2015) datasets, which are frequently used as the standard

benchmarks in cross-lingual event detection efforts (Guzman-Nateras, Nguyen,

& Nguyen, 2022; Majewska et al., 2021b; M’hamdi et al., 2019b; M. V. Nguyen,

Nguyen, et al., 2021), to evaluate our FSCLED models. In particular, we utilize

data in three languages (English, Chinese, and Arabic) from ACE05 and two

languages (English and Spanish) from ERE. Both ACE05 and ERE organize their

event classes in a hierarchical structure of types and subtypes. For example, in the

Transaction:Transfer-Ownership class, Transaction is the main event type and

Transfer-Ownership is the subtype. The two datasets have distinct label sets as

ACE05 includes 33 event subtypes and ACE05-ERE has 38 event subtypes. Each

language in the datasets has its own training/development/test split.

5.4.1.1 FSL Preprocessing. Standard datasets used for supervised

learning, such as ACE05 and ERE05, can also be exploited for FSL by simulating

a limited-data-availability setting via episodic training (V. Lai, Dernoncourt, &

Nguyen, 2021). An episode is created by sampling a set of K examples from a small
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subset of classes N out of the total number of classes in the dataset. This setting is

referred to as N-way, K-shot and N and K are usually selected in the range of 1 to

10.

Following previous work on FSL for ED V. D. Lai, Nguyen, and

Dernoncourt (2020), we further truncate the training, development, and testing

portions of the datasets for each language to satisfy the conditions for FSL: (1)

the set of event types in the training data must be disjoint from those for the

development and test data; (2) the types in each set must contain at least 5

samples (to facilitate 5+1-way 5-shot learning with the additional +1 class being

used for non-triggers); and (3) the training set should have as many samples as

possible.

Adapting these criteria to cross-lingual FSL, we separate the samples

belonging to the Business, Contact, Conflict, and Justice types to be used

for training purposes. Meanwhile, we leave the samples belonging to the Life,

Movement, Personnel, and Transaction event types for development and testing.

Furthermore, we remove any subtypes that do not contain enough samples to

construct an episode (5 samples minimum). Table 10 shows the total number of

remaining classes for each portion of data in different languages for our FSCLED

setting. We also list the event subtypes that are removed to meet the criteria in

each dataset portion. Note that, while the training label set must be disjoint from

the development and testing label sets, there is no requirement for the latter two to

be disjoint as done in V. D. Lai, Nguyen, and Dernoncourt (2020).

As the final step in our data preprocessing, we obtain the samples for the

non-event type by selecting words, other than the actual triggers, from annotated
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sentences similar to the approach taken by V. D. Lai, Nguyen, and Dernoncourt

(2020).

Dataset # Types Removed Types

ACE05-English (train) 19
Justice:Extradite
Justice:Pardon

ACE05-English (dev) 12
ACE05-Chinese (test) 11 Life:Divorce

ACE05-Arabic (test) 9
Life:Be-Born
Life:Divorce

Personnel:Nominate
ERE05-English (train) 22 Business:Bankrupcy
ERE05-English (dev) 15
ERE05-Spanish (test) 14 Personnel:Nominate

Table 10. Dataset preparation for FSCLED. The total number of remaining types
is shown for each data section alongside the removed subtypes without a sufficient
number of samples for episodic training.

5.4.2 Training Details.

5.4.2.1 Episode Composition. In all our experiments, English is

considered the sole source language as it is often used as the benchmark source

language in cross-lingual efforts. As such, training and development episodes

are constructed from English data. However, given the FSL constraints, their

samples must come from disjoint label sets. Hence, in any training iteration,

the samples used for both the support S and query Q sets are in English and

belong to the training subtypes of the Business, Contact, Conflict, or Justice

types. In contrast, during validation, S and Q will still be in English but their

samples belong to the validation subtypes of the Life, Movement, Personnel, or

Transaction types.

Furthermore, as cross-lingual models are evaluated on the target language,

during testing, episodes are created from target-language data and their samples
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belong to the same types as the development episodes, i.e., the Life, Movement,

Personnel, or Transaction types.

5.4.3 Results. We compare our Optimal-Transport-based Event

Detection (OTED) model, against three typical FSL models adapted to

FSCLED as the baselines: Matching networks Vinyals et al. (2016), Prototypical

networks Snell et al. (2017), and Relation networks Sung et al. (2018). All models

utilize the same mBERT-based encoder for a fair comparison. We use English as

the source language during training as it is recurrently utilized the source-language

benchmark (Majewska et al., 2021b; M’hamdi et al., 2019b) due to its high-resource

availability.

Our main experiment results are presented in Table 11 which shows that our

OTED model consistently outperforms the best-performing baselines in every target

language: Chinese (+0.21%), Arabic (+0.59%), and Spanish (+1.35%). We believe

these results validate OTED as a suitable and effective alternative for FSCLED.

Target Language
Chinese Arabic Spanish

Model Version P R F1 P R F1 P R F1
Relation 78.62 79.1 78.86 52.89 53.35 53.12 48.53 48.77 48.65
Matching 85.44 85.79 85.64 66.21 65.92 66.06 56.77 56.95 56.86

Prototypical 85.81 86.12 85.96 70.02 70.44 70.23 60.87 61.17 61.02
OTED (ours) 86.05 86.29 86.17 70.66 70.98 70.82 62.25 62.49 62.37

Table 11. Performance for cross-lingual few-shot event detection. English is the
source language used for training. The experiments for Chinese and Arabic are
done over ACE05 while ERE05 is used for Spanish.

Furthermore, an additional benefit of OTED’s training signals (i.e., the

loss terms Lident, Ldist, and Lcross) is that they can be directly integrated into

any existing FSL methods. Thus, we conduct a supplementary set of experiments

where we integrate the loss function terms from OTED into Relation, Matching,

and Prototypical networks (i.e., combining our training signals in OTED with
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the standard cross-entropy losses of such FSL baselines). The performance for

these integrated models are presented in Table 12. Comparing the corresponding

performance in Tables 11 and 12, it is evident that integrating OTED with

traditional FSL methods leads to overall performance improvement across

different target languages and FSL models, further demonstrating the benefits

and applicability of OTED for FSCLED.

Target Language
Model Version Chinese Arabic Spanish
Relation + OTED 79.36 53.41 48.89
Matching + OTED 85.88 66.21 56.97

Prototypical + OTED 86.42 71.11 62.43

Table 12. Model performance for integrating OTED into traditional FSL methods.
F1 scores are reported.

The model implementation details can be found in Appendix C.

5.4.4 Ablation study. To evaluate the contribution of the different

proposed components (i.e., Lident, Ldist, and Lcross), we perform an ablation study

whose outcomes are presented in Table 13. The left-most column indicates the

components being removed from the overall loss L. The first two rows show

the performance when either the Wasserstein-distance loss term, i.e., Ldist or

Lcross is removed. As expected, removing any of them hurts the performance of

OTED across different target languages. This demonstrates the importance of

considering the global distances between query and support sets, and the necessity

of adapting to the cross-lingual setting by leveraging unlabeled target-language

data. Furthermore, the performance of OTED suffers even more when both Ldist

and Lcross are excluded.

Similarly, when Lident is removed in the last row, the performance is also

further reduced, dropping significantly by more than 1.5% for Chinese and Arabic
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Target Language
Model Chinese Arabic Spanish

OTED (full) 86.17 70.82 62.37
-Ldist 85.63 70.57 61.85
-Lcross 85.45 70.22 61.78

-Ldist -Lcross 85.25 69.44 61.19
-Lident - Ldist - Lcross 84.67 68.21 60.65

Table 13. Ablation results over the test data.

compared to the full model. Note that removing Lident has deeper implications as,

in such case, the event-presence module F is not trained. In turn, the P (S) and

P (Q) distributions for the support and query sets cannot be estimated reliably and

are instead initialized using uniform distributions in the OT computation. These

results thus confirm the usefulness of the event identification loss to support the OT

computation in our model.

5.5 Related Work

Event detection has been thoroughly studied over the years. Early ED

efforts were based on hand-crafted features (Ahn, 2006; Hong et al., 2011;

Ji & Grishman, 2008; Q. Li et al., 2013; Liao & Grishman, 2010a, 2010b;

McClosky et al., 2011; Miwa et al., 2014; Patwardhan & Riloff, 2009; B. Yang

& Mitchell, 2016). More recently, deep learning techniques such as recurrent

neural networks (T. H. Nguyen, Cho, & Grishman, 2016; T. M. Nguyen &

Nguyen, 2019; Sha et al., 2018), convolutional neural networks (Y. Chen et al.,

2015; T. H. Nguyen, Fu, et al., 2016; T. H. Nguyen & Grishman, 2015b), graph

convolutional networks (T. H. Nguyen & Grishman, 2018; Yan et al., 2019),

adversarial networks (Hong et al., 2018)T. Zhang et al. (2019), pre-trained language

models (J. Liu et al., 2020; Wadden et al., 2019; S. Yang et al., 2019a; J. Zhang

et al., 2019; Y. Zhang et al., 2020), and generative models (Y. Lu et al., 2021)
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have been prevalent. Nevertheless, these works study ED under a supervised or

semi-supervised setting.

Alternatively, ED was recently formulated as a few-shot task V. Lai,

Dernoncourt, and Nguyen (2021). In a short time, several methods have been

proposed using a variety of techniques such as meta-learningDeng et al. (2020);

Shen et al. (2021), cross-task prototyping V. Lai, Dernoncourt, and Nguyen (2021),

dependency graphs V. D. Lai et al. (2021), causal modeling Cong et al. (2021), and

label dependency via conditional random fields J. Chen et al. (2021).

Previous works on cross-lingual ED generally make use of cross-lingual

resources such as bilingual dictionaries or parallel corpora (J. Liu et al., 2019; Muis

et al., 2018b) to address the differences between languages. More recent approaches

exploit the language-invariant characteristics of pre-trained multilingual language

models (Hambardzumyan et al., 2020b) along with complementary features such

as label dependency (M’hamdi et al., 2019b), verb-class knowledge Majewska et

al. (2021b), and class-aware cross-lingual alignment (M. V. Nguyen, Nguyen, et al.,

2021).

Optimal transport has also been recently used in cross-lingual settings

for information extraction tasks such as event co-reference resolution (Phung,

Minh Tran, et al., 2021) and event detection (Guzman-Nateras, Nguyen, & Nguyen,

2022). However, the amalgamation of the few-shot and cross-lingual settings creates

unique challenges that have not been tackled by any related work. Consequently,

our proposed use of OT differs from related works as it addresses the global

alignment between the support and query sets for few-shot learning and between

source and target languages for the cross-lingual setting.
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5.6 Summary

In summary, we consider the main contributions of this chapter to be the

following:

– To the best of our knowledge, this is the first effort at integrating the few-shot

and cross-lingual settings for the event detection task. This novel setting

combines the limited training-data conditions of FSL with zero-shot cross-

lingual transfer learning.

– To provide foundation for future research, we first evaluate the performance of

representative FSL methods Snell et al. (2017); Sung et al. (2018); Vinyals et

al. (2016) in this task.

– We propose a novel optimal-transport-based method for FSL classification

that leverages the optimal alignment between the support and query samples.

– We address a limitation of traditional FSL methods by incorporating a novel

regularization term that considers the global distance between the support

and query sets.

– To adapt our approach to the cross-lingual setting, we promote language-

invariant representation learning by integrating the distance between source

and target data into our model.

– Our experiments on three diverse target languages (Arabic, Chinese, and

Spanish) show that our approach improves the best-performing FSL methods

in the new FSCLED setting and that our proposed training signals can be

seamlessly incorporated with other FSL models to improve their performance

on the challenging FSCLED task.
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CHAPTER VI

CONCLUSIONS AND FUTURE DIRECTIONS

I was the primary author for this chapter and Thien Nguyen provided

editorial suggestions.

Finally, in this chapter, we discuss our conclusions and present several

suitable directions for future CLED research efforts.

6.1 Conclusions

As stated in Chapter I, the holistic objective of this dissertation was to

advance the field of cross-lingual learning by designing strategies that improve

event-detection performance under a cross-lingual setting. In consequence, in

this work, we explored three novel cross-lingual event detection approaches by

addressing the task from diverse perspectives.

First, we proposed a direct-transfer-based approach whose characterizing

trait is to refine the standard adversarial language-adaptation scheme via mindful

selection of the samples used to train the language discriminator. We perform

such sample selection by taking into account each sample’s overall similarity with

the alternative-language samples and its likelihood to contain an event. This

method generates fine-grained language-invariant word representations that result

in improved cross-lingual performance, as confirmed by its superior handling of

complex cross-lingual complications such as polysemous triggers.

Our second approach expands upon this idea by leveraging a knowledge

distillation framework to reap the benefits of the data-transfer paradigm. In this

method, a teacher network is trained to generate language-invariant representations

via standard adversarial language adaptation. Afterward, such teacher network

is used to obtain soft labels (i.e., probability distributions) for unlabeled target-
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language samples. Then, these soft-labeled samples go through a hierarchical

selection process in which both global and pairwise similarity measures are

considered. This selection procedure is meant to filter out potentially noisy labels

generated by the teacher network. Then, the selected soft-labeled samples are used

to train a student network. Since the student network is trained using target data

directly, it is able to learn from language-specific lexical information and word-

label relations. At the time of this writing, this method achieves state-of-the-art

performance for the cross-lingual event detection task.

Next, in our third approach, we present the entirely novel setting of few-

shot cross-lingual event detection. This setting combines the limited training data

requirements of few-shot learning with the zero-shot limitation of cross-lingual

learning. We begin by proposing an innovative few-shot learning method based on

the optimal-transport-obtained similarity between the support and query samples

which is further regularized by including the global distance between these sets in

the loss function computation. Lastly, we adapt our method to the cross-lingual

setting by also incorporating the distance between source and target data samples

into the loss, which encourages the learning of language-invariant representations.

Our method outperforms traditional few-shot learning methods and our proposed

regularization terms can be combined with such traditional methods to improve

their performance.

Furthermore, we would like to highlight that, while we leverage the event

detection task as a testbed for our proposed cross-lingual methods, they can be

naturally applied to other information-extraction tasks, such as entity mention

detection or event argument extraction, with minimal or no changes at all. In
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summary, we consider to have successfully accomplished the proposed dissertation

objective.

6.2 Future Research Directions

We devote this section to discussing a number of promising research

directions for future cross-lingual information extraction efforts.

6.2.1 Generative/Prompting Models. With the recent

advancements in generative language models like BART (Lewis et al., 2020),

T5 (Raffel et al., 2019), or GPT-3 (Brown et al., 2020) and GPT-4 (OpenAI, 2023),

several NLP tasks have been formulated as text-generation tasks in monolingual

settings. Information extraction tasks have not been the exception and generative-

based approaches have been proposed for relation extraction Paolini et al. (2021),

argument extraction (S. Li, Ji, & Han, 2021), and end-to-end event extraction Hsu

et al. (2022); Y. Lu et al. (2021). These approaches have since shown remarkable

performances that are competitive or even better than the state-of-the-art

traditional efforts. Given that some of these models already have multilingual

versions (e.g., mBART, mT5), cross-lingual variants of such approaches have

already started to appear. For instance, K.-H. Huang, Hsu, Natarajan, Chang,

and Peng (2022b) formulate EAE as a generative prompt-filling task. They design

language-agnostic templates that represent the event argument structures and

leverage pre-trained multilingual generative language models to generate sentences

that fill such templates. Furthermore, despite the widespread adoption of LLM-

powered tools like ChatGPT1 and their undeniable success on many complex

NLP-related tasks, recent studies (V. D. Lai et al., 2023) have revealed that their

1https://chat.openai.com/
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multilingual performance on is still not on par with task-specific models. These

findings suggest that further research into multilingual understanding is needed.

Another way in which generative models can be exploited for IE tasks is

to generate, or augment, the existing annotated datasets. Efforts like the one

by Pouran Ben Veyseh, Lai, et al. (2021) have already shown the value of this

approach for tasks like event detection. This approach could be particularly useful

in cross-lingual settings where annotated target-language data scarcity is usually

assumed.

6.2.2 Multimodality. Leveraging non-textual sources of information

could help improve the performance of zero-shot cross-lingual models. Images can

be regarded as language-independent so, for instance, visual features extracted from

pictures of recognizable entities could be integrated into a cross-lingual model and

be beneficial for entity mention detection.

Furthermore, the recently released Contrastive Language-Image Pre-training

model (CLIP Radford et al., 2021) from OpenAI provides a bridge between text

and images and offers an unprecedented opportunity to link these two, usually

separate, domains. Image-generation models that make use of CLIP’s capabilities

such as Dall-E (Ramesh et al., 2021) and Dall-E2 (Ramesh, Dhariwal, Nichol, Chu,

& Chen, 2022) are already being used by artists, researchers, and the general public

to generate high-quality realistic images from textual descriptions. Their public

release and widespread use could foster the creation of hybrid text-image datasets

for cross-lingual information extraction tasks such as event extraction or coreference

resolution. There already have been efforts at creating a multilingual version of

CLIP by re-training its textual encoder for various non-English languages (Carlsson,

Eisen, Rekathati, & Sahlgren, 2022).
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6.2.3 Lexical/syntactic target-language information integration.

The motivation behind the vast majority of cross-lingual works is to provide low-

resource target languages with NLP tools that could not be created otherwise due

to the lack of annotated data. In turn, cross-lingual approaches usually refrain from

leveraging potentially-useful information from lower-level tasks, such as Part-of-

Speech (POS) tagging or dependency parsing, under the assumption that these

tools are not available for the target language.

However, as cross-lingual research gains traction and public interest, there

are more tools available for an increasing amount target languages. For instance,

Google’s translation API 2 supports 133 languages at various levels and tool-kits

such as Trankit (M. V. Nguyen, Lai, Pouran Ben Veyseh, & Nguyen, 2021) provide

fundamental NLP tasks for over 100 languages. Thus, research efforts focusing on

these medium resource languages (Jain et al., 2019) can benefit from incorporating

target-language lexical/syntactic information derived from such lower-level features.

6.2.4 Meta-learning/Few-shot learning. In standard supervised

training tasks, models are trained on large quantities of data with the expectation

that they will learn to generalize and work adequately on unseen samples. On the

contrary, Few-Shot Learning (FSL) is a setting where a model is trained using very

limited amounts of data. For this reason, FSL models cannot be trained in the

traditional supervised setting as the limited availability of training data leads to

poor generalization. This training-data limitation is something FSL shares with

CLL where target-language data is scarce.

Few-shot training is performed via episodes (Vinyals et al., 2016). An

episode is constructed by sampling a subset out of the entire set of training classes

2https://cloud.google.com/translate
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and selecting a few examples belonging to such classes. In this sense, training is

performed in N-way, K-shot settings where N refers to the number of classes and

K refers to the number of examples for each class (K is usually low in the [1− 10]

range). The N ×K samples that compose an episode are called the support set.

Additionally, there are further examples belonging to the same classes that are

used to evaluate the performance of the model while training, these are called the

query set. When the model is done training, at testing time, new episodes are

constructed using samples from entirely different classes never seen during training.

The model is then evaluated on its performance on the episode’s query set based on

the knowledge of its support set.

As such, FSL can be thought of as a type of Meta Learning where the

purpose is to teach a model to learn how to learn. Meta-learning-based approaches

have already been proven successful in cross-lingual IE tasks like EMD (Q. Wu,

Lin, Wang, et al., 2020) and could make a significant impact in CLL given their

capability of learning from just a few labeled examples which can be easily

obtained, even for the most obscure target languages.

6.2.5 Robust Training. Robust training aims at creating models

that are not affected by noise or perturbations in the input data (Goodfellow,

Shlens, & Szegedy, 2015). Robust models are created as a means to defend against

adversarial attacks which are input samples with small perturbations designed to

fool classifiers into making wrong predictions:

c(x̃) = c(x+∆) ̸= c(x)

where c is a classifier, ∆ is a small perturbation, and x̃ is a perturbed sample.

Multilingual encoders such as mBERT or XLM-R have a shared embedding

space for words in different languages (S. Wu & Dredze, 2019). In such space, the
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representations of similar words are close to each other, e.g., the representations

for the word cat and its Spanish equivalent (gato) should be similar. These

representations, however, are not completely aligned. In this sense, the differences

between the representations of the same word in the source and target languages

can be considered as perturbations, similar to that of an adversarial example. Thus,

cross-lingual learning can be approached as a robustness perspective.

For instance, K. Huang, Ahmad, Peng, and Chang (2021) propose the

idea of treating cross-lingual transfer as a representation-alignment issue. It is

their intuition that by training a cross-lingual model to be robust against such

perturbations, the model becomes able to better transfer the learned knowledge

from one language to the other. They explore two robust training methods:

adversarial training and randomized smoothing. In this context, adversarial

training means considering the most effective adversarial perturbation at each

iteration, i.e., the perturbation that is most likely to change the prediction, while

at the same time ensuring the model remains able to classify it correctly. On

the other hand, randomized smoothing focuses on expectation and uses random

perturbations instead. They evaluate their training scheme on two cross-lingual

classification tasks: paraphrase detection and Natural Language Inference (NLI). In

their experiments, they found that randomized smoothing usually leads to better

performance than adversarial training. They argue that the reason behind such

behavior is that, even though adversarial training is more suitable to defend against

examples specifically designed to attack the classifier, for cross-lingual knowledge

transfer the average of randomized perturbations better reflects the difference

between languages.
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APPENDIX A

DATASETS

A.1 Language Key

am - Armenian, ar - Arabic, bn - Bengali, de - German, en - English, es -

Spanish, eu - Basque, hi - Hindi, it - Italian, ja - Japanese, ko - Korean, nl - Dutch,

no - Norwegian, or - Oromo, pt - Portuguese, ru - Russian, ta - Tamil, ti - Tigrinya,

tl - Tagalog, tr - Turkish, yr - Yoruba, zh - Chinese

A.2 Dataset Statistics

Table 14. Number of entity instances in the CoNLL-2002 and CoNLL 2003
datasets.

Language Train Dev Test
German-de

(CoNLL-2003)
11,851 4,833 3,673

English-en
(CoNLL-2003)

23,499 5,942 5,648

Spanish-es
(CoNLL-2002)

18,798 4,351 3,558

Dutch-nl
(CoNLL-2002)

13,344 2,616 3,941
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Table 15. Number of instances for ED, RE, and EAE in the ACE05 and ACE05-
ERE datasets.

Language Data
RE

(#rels)
ED

(#trgs)
EAE

(#args)

Arabic-ar
Train 2,918 1,986 3,959
Dev 357 112 495
Test 378 169 495

English-en
Train 4,974 4,420 7,018
Dev 626 505 877
Test 620 424 878

Chinese-zh
Train 4,767 2,213 5,931
Dev 572 111 741
Test 605 197 742

English-en
(ERE)

Train 5,045 6,419 X
Dev 424 552 X
Test 477 559 X

Spanish-es
(ERE)

Train 1,698 3,272 X
Dev 120 210 X
Test 108 269 X

Table 16. ACE05/ERE and MINION dataset ED stats: number of sentences and
triggers that the ACE05, ACE05-ERE, and MINION datasets contain for each
language.

Dataset Lang # Sent # Trig # Tr/St

ACE05
En 20,818 5,311 0.255
Zh 7,914 3,333 0.421
Ar 3,118 2,270 0.728

ERE
En 16,510 7,530 0.456
Es 8,169 3,751 0.459

MINION

En 65,000 17,644 0.271
Tr 22,400 8,394 0.374
Pl 22,395 11,891 0.531
Es 16,340 6,063 0.371
Ja 7,500 1,730 0.231
Ko 7,500 1,526 0.203
Pt 7,500 1,875 0.25
Hi 7,495 1,811 0.241
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APPENDIX B

MODEL PERFORMANCE COMPARISON

B.1 Entity Mention Detection

Table 17 presents the cross-lingual EMD performance of the works discussed

in section 2.3 when tested on the commonly-used CoNLL-2002 (Tjong Kim Sang,

2002) and CoNLL-2003 (Tjong Kim Sang & De Meulder, 2003) datasets. Detailed

information about these datasets can be found in Appendix A.2.

Target Language
Model ES NL DE

Tsai et al. (2016) 60.55 61.56 48.12
Ni et al. (2017) 65.10 65.40 58.50

Mayhew et al. (2017) 65.95 66.50 59.11
Xie et al. (2018b) 72.37 71.25 57.76
Jain et al. (2019) 73.5 69.9 61.5
Bari et al. (2020) 75.93 74.61 65.24

S. Wu and Dredze (2019) 74.96 77.57 69.56
Keung et al. (2019) 74.3 77.6 71.9
Moon et al. (2019) 75.67 80.38 71.42

Q. Wu, Lin, Wang, et al. (2020) 76.75 80.44 73.16
Q. Wu, Lin, Karlsson, Lou, and Huang (2020) 76.94 80.89 72.32
Q. Wu, Lin, Karlsson, Huang, and Lou (2020) 77.30 81.20 73.61

Liang et al. (2021) 77.84 82.46 75.48
W. Chen et al. (2021) 79.00 82.90 75.01

Table 17. EMD model performance comparison on the CoNLL-2002 & 2003
datasets. English is used as the source language.

B.2 Event Detection

Table 18 presents the CLED performance of the works discussed in

section 2.4.1 when tested on the commonly-used ACE05 Walker et al. (2006)

and ACE05-ERE (Song et al., 2015) datasets. Detailed information about these

datasets can be found in Appendix A.2.

B.2.1 Event Argument Extraction. Table 19 presents a

comparison between the cross-lingual EAE performance of the works discussed
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Target
Model ZH AR ES

J. Liu et al. (2019) 27.0 - -
M’hamdi et al. (2019) 68.5 30.9 -
D. Lu et al. (2020) - - 41.77
Fincke et al. (2021) - 51.0 -

Majewska et al. (2021a) 46.9 29.3 -
M. V. Nguyen, Nguyen, et al. (2021) 72.1 42.7 -

Guzman-Nateras, Nguyen, and Nguyen (2022) 74.64 44.86 47.69
Guzman-Nateras et al. (2023) 75.22 46.37 48.58

Table 18. Model performance comparison on the ED for the ACE05 dataset.
English is used as the source language.

in section 2.4.3when tested on the commonly-used ACE05 Walker et al. (2006)

and ACE05-ERE (Song et al., 2015) datasets. Detailed information about these

datasets can be found in Appendix A.2.

Target
Model ZH AR ES

Subburathinam et al. (2019) 59.0 61.8 -
D. Lu et al. (2020) - - 17.35

Majewska et al. (2021a) 1.9 7.1 -
M. V. Nguyen and Nguyen (2021) 58.4 62.9 -

W. Ahmad et al. (2021) 63.2 68.5 -
Fincke et al. (2021) - 74.7 -

M. V. Nguyen, Nguyen, et al. (2021) 65.5 69.4 -
K.-H. Huang et al. (2022a) 54.0 44.8 59.7

Table 19. Model performance comparison on the EAE for the ACE05 dataset.
English is used as the source language.

B.3 Relation Extraction

Table 20 presents a comparison between the cross-lingual RE performance

of the works discussed in section 2.5 when tested on the commonly-used

ACE05 Walker et al. (2006) dataset. Detailed information about this dataset can

be found in Appendix A.2.
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Target
Model ZH AR

Zou et al. (2018) 68.4 -
Subburathinam et al. (2019) 42.5 58.7

Ni and Florian (2019) 46.8 36.4
W. Ahmad et al. (2021) 55.1 66.8

M. V. Nguyen, Nguyen, et al. (2021) 58.1 67.9

Table 20. Model performance on the RE for the ACE05 dataset. English is used as
the source language.

B.4 Co-Reference Resolution

The research efforts discussed in section 2.6 address different languages or

even have distinct focus (e.g., entity co-reference vs event co-reference). As such,

they do not evaluate their results using a common dataset and cannot be directly

compared.
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APPENDIX C

MODEL IMPLEMENTATION DETEAILS

C.1 OACLED (Chapter III)

We fine-tune the hyper-parameters for our OACLED model using the

development data. We apply the following values based on the fine-tuning process:

– AdamW (Loshchilov & Hutter, 2017) as the optimizer.

– 5 warm up epochs.

– A learning rate of 1e−5 for the transformer parameters and of 1e−4 for the rest

of the parameters.

– A batch size of 16.

– 300 for the dimensionality of the layers in feed-forwards networks.

– A γ = 0.5 for the percentage of samples used in adversarial training.

– A λ = 0.001 as the scaling factor of the GRL layer.

– An α = 1 and β = 0.001 as the trade-off parameters of the LD loss and ED

loss, respectively.

– A dropout of 10% for added regularization during training.

– We follow the same train/val/test splits as prior works (M’hamdi et al.,

2019; Pouran Ben Veyseh et al., 2022). We tune all hyperparameters on

the validation sets and report the performance on the test sets.
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C.2 HKT-CLED (Chapter IV)

– A single Tesla V100-SXM2 GPU with 32GB memory and PyTorch 1.7.0 was

used to implement the models.

– Our full model has 278.5M parameters. The vast majority of these come from

XLM-Roberta (278M parameters), the rest of our model accounts for < 500K

parameters.

– We use AdamW (Loshchilov & Hutter, 2017) as the optimizer.

– We report label F1 scores computed using seqeval 1.

– We approximate the solution to the intractable problem described by

Equation 4.9 by instead solving its entropy-based relaxation using the

Sinkhorn iterative algorithm (Cuturi, 2013).

– Following prior works (Q. Wu, Lin, Karlsson, Huang, & Lou, 2020), we freeze

the embeddings and first three layers of the XLM-R encoder for student

training.

– Representations of words split into multiple word-pieces by the tokenizer are

the average of representation vectors for all comprising sub-pieces.

– Learning rate for the transformer parameters is set at 2e−5 and was found

through greedy search over [2e−6, 5e−6, 1e−5, 2e−5, 5e−5, 1e−4, 2e−4]

– Learning rate for non-transformer parameters is set at 1e−4 and was found

through greedy search over [5e−5, 1e−4, 2e−4, 5e−4, 1e−3].

1https://github.com/chakki-works/seqeval
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– The α hyperparameter is set at 0.5 and was found through greedy search over

[0.25, 0.5, 0.75, 1.0].

– The β hyperparameter is set at 0.75 and was found through greedy search

over [0.25, 0.5, 0.75, 1.0].

– We employ a batch size of 32 for our experiments on the ACE05 and ACE05

datasets and a batch size of 16 on the MINION experiments. Batch size was

chosen through greedy search over [8, 16, 24, 32].

– The linear layer sizes where set at 300 and chosen through greedy search over

[100, 300, 500, 1000]

– We train the teacher model for 20 epochs and the student model for 100

epochs.

– We use a learning rate linear scheduler with 5 warm-up epochs for teacher

models and 10 warm-up epochs for student models.

– We use a parameter weight decay of 1e−4 for non-transformer parameters

chosen greedily from [1e−3, 1e−4, 5e−4]

– We use a parameter weight decay of 0.5 for transformer parameters chosen

greedily from [0.01, 0.05, 0.1, 0.3, 0.5].

– Depending on the dataset, language, and selected batch size our teacher

model training takes between 45 min and 2 hours in a single GPU. Student

models take between 2 and 4 hours to train. Our overall developing and

parameter tuning process took around ∼ 600 GPU hours.
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– We follow the same train/val/test splits as prior works (M’hamdi et al.,

2019; Pouran Ben Veyseh et al., 2022). We tune all hyperparameters on

the validation sets and report the performance on the test sets.

C.3 OTED (Chapter V)

– We use a single Tesla V100-SXM2 GPU with 32GB memory operated by Red

Hat Enterprise Linux Server 7.8 (Maipo). PyTorch 1.4.0 is used to implement

the models.

– We report F1 for trigger token classification complying with previous

work V. Lai, Dernoncourt, and Nguyen (2021). The reported results are

the average performance of five model runs with different random seeds.

– Our full model has 178.5M parameters. However, the vast majority of these

come from the mBERT transformer encoder (178M parameters), the rest of

our model accounts for < 500K parameters.

– We utilize a fixed 6-way (5 event types plus the non-event), 5-shot setting for

all the experiments.

– Following prior work V. Lai, Dernoncourt, and Nguyen (2021), we use a larger

subset of classes during training (10 + 1) as its been found to improve model

performance.

– We initialize our encoder E with the pre-trained bert-base-multilingual-cased

transformer model Devlin et al. (2019) and add a single linear layer followed

by a hyperbolic tangent non-linearity on top.

– Our final encoder representations have 512 dimensions.
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– AdamW Loshchilov and Hutter (2017) as the optimizer.

– Using 5 warm up epochs.

– Learning rate is set to 3e−4.

– The α, β and γ hyper-parameters are set to 0.1, 0.01, and 0.01 respectively.

– The batch size is set to 16.

– 512 for the dimensionality of the layers in the feed-forward networks.

– A dropout of 10% for added regularization during training.

– All hyperparameters were tuned on the development data of the source

language, and all reported values are the average obtained from five runs

with different random seeds.
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