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DISSERTATION ABSTRACT

Qiuhao Lu

Doctor of Philosophy

Department of Computer Science

September 2023

Title: Advancing Clinical Natural Language Processing through Knowledge-Infused
Language Models

Pre-trained Language Models (PLMs) have shown remarkable success

in general-domain text tasks, but their application in the clinical domain

is constrained by specialized language, terminology, and a lack of in-depth

understanding of scientific and medical knowledge. As the adoption of Electronic

Health Records (EHRs) and intricate clinical documents continues to grow, the

need for domain-adapted PLMs in healthcare research and applications becomes

increasingly vital. This research proposes innovative strategies to address these

challenges, integrating domain-specific knowledge into PLMs to enhance their

efficacy in healthcare. Our approach includes (i) fine-tuning models with knowledge

graphs and domain-specific textual data, using graph representation learning

and data augmentation techniques, and (ii) directly injecting domain knowledge

into PLMs through the use of adapters. By employing these methods, the study

aims to improve the performance of clinical language models in tasks such as

interpreting EHRs, extracting information from clinical documents, and predicting

patient outcomes. The advancements achieved in this work hold the potential to

significantly influence the field of clinical Natural Language Processing (NLP) and

contribute to improved patient care and healthcare innovation.
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This dissertation includes previously published and unpublished co-authored

material.
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CHAPTER I

INTRODUCTION

The majority of the content in this chapter is derived from my dissertation

proposal, with me as its principal author. Thien Huu Nguyen contributed by

offering invaluable editorial guidance.

1.1 Dissertation Statement

Pre-trained Language Models (PLMs) have emerged as a powerful tool

for natural language processing (NLP) in recent years, showing remarkable

performance on a wide range of general-domain text tasks. However, they often

struggle when applied to domain-specific text due to the problem of domain shift.

This is particularly relevant in the clinical domain, where specialized language and

terminology are commonly used.

As the use of Electronic Health Records (EHRs) and other clinical data

sources becomes more widespread, the need for domain-specific NLP methods has

become increasingly apparent. To address this need, a range of domain-specific

pre-trained language models has been developed for the clinical domain. These

models are trained on large amounts of clinical text data, including EHRs and

clinical documents, enabling them to better understand and process technical and

specialized language used in the field.

While there have been significant efforts to produce stronger and larger

domain-specific pre-trained language models in the clinical domain, most of these

models rely on self-supervised pre-training over large amounts of textual data.

Recently, ChatGPT has gained attention due to its remarkable performance on

various NLP-related tasks across multiple domains, including the biomedical and

clinical fields. However, the model is still considered “unhelpful” for medicine
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by human experts compared to other domains, indicating a lack of in-depth

understanding of domain knowledge. This has led to a growing interest in

incorporating external domain-specific knowledge sources into these models to

improve their accuracy and efficiency.

In this proposed research work, we aim to innovate in the field of clinical

NLP by developing and evaluating novel techniques for knowledge integration into

clinical language models and their downstream applications. Our approach to this

objective bifurcates into two main strategies:

(i) Fine-tuning the models with knowledge data: We will explore two types of

resources for this fine-tuning: knowledge graphs and textual data, leading to

two distinct chapters in the dissertation:

– Harnessing Knowledge Graphs: Integration Techniques for Language

Models in Healthcare (Chapter III): Here, we will exploit graph

representation learning to enhance the performance of clinical language

models and applications.

– Text-Based Knowledge Infusion: Strategies for Data Augmentation

and Beyond (Chapter IV): In this chapter, we will delve into various

strategies to augment the training data of clinical language models with

external domain-specific knowledge sources and synthetic data.

(ii) Injecting adapters into pre-trained language models: This strategy, presented

in Chapter V, titled “Domain Adaptation with Adapters: Parameter-

Efficient Approaches to Knowledge Incorporation,” aims to directly integrate

domain knowledge into pre-trained language models, thereby improving their

performance on clinical language tasks.
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Through rigorous examination and evaluation of these approaches, our objective is

to significantly enhance the efficacy of clinical language models. This improvement

is expected to broaden the range of their applications, including but not limited to,

efficient interpretation of EHRs, proficient extraction of information from clinical

documents, and more accurate prediction of patient outcomes like readmission and

mortality rates. These substantial contributions hold the potential to significantly

advance the field of clinical NLP, ultimately leading to improved patient outcomes

and fostering innovation in healthcare.

1.2 Dissertation Outline

The dissertation unfolds as follows. Chapter II offers an exhaustive review

of clinical pre-trained language models (PLMs), assessing their effectiveness

and suggesting strategies for their improvement. Chapter III delves into the

integration of knowledge graphs into machine learning models in healthcare,

with graph representation learning techniques, showcasing three distinct studies

that underscore the value of such integration. In Chapter IV, we introduce two

innovative text-based data augmentation methods to enhance clinical language

models: the generation of synthetic clinical notes and the development of

ClinicalT5, a specialized transformer model yielding improved performance in

clinical tasks. Lastly, Chapter V investigates a parameter-efficient method for

domain knowledge integration into PLMs using adapters, which results in enhanced

performance on diverse biomedical NLP tasks without compromising the models’

general-domain knowledge.
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CHAPTER II

LITERATURE REVIEW: CLINICAL NATURAL LANGUAGE PROCESSING

AND PRE-TRAINED LANGUAGE MODELS

This chapter is an adapted version of my area exam, otherwise known as the

candidacy exam. As the main author of the initial document, I made substantial

contributions, while Thien Huu Nguyen offered indispensable editorial advice.

Pre-trained Language Models (PLMs) have become a crucial tool for natural

language processing over the past few years, showcasing remarkable performance

on a wide range of applications. However, applying general-domain PLMs to

domain-specific text, such as clinical language, has its challenges, leading to the

development of domain-specific pre-trained models.

This chapter provides a comprehensive review of the clinical PLMs. We

start with a brief overview of foundational concepts of language modeling, including

architectures, data sources, training methods, and more. We then examine the

current state-of-the-art clinical PLMs and their corresponding methodologies for

downstream tasks in the field, including clinical text classification, named entity

recognition, relation extraction, and more. Additionally, we discuss the advantages

and limitations of each model, as well as their performance compared to general-

domain PLMs and other domain-specific models.

Overall, this literature review aims to provide a comprehensive

understanding of the current state-of-the-art clinical PLMs and their associated

methodologies, as well as the challenges and opportunities for further improving

their performance in the future.
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2.1 Introduction

Text representation is a crucial task in natural language processing (NLP),

forming the basis of nearly all text-related applications Geigle, Mei, and Zhai

(2018); P. Liu et al. (2021). Traditionally, to transform the input text into a

vector of numerical data, one can represent the words using bag-of-words or tf-

idf (term frequency-inverse document frequency) scores Salton (1991); Salton

and Buckley (1988) with one-hot encoding. Such methods can suffer from the

curse of dimensionality problem as the length of vectors usually equals the size

of the vocabulary, and decreased efficiency with increasing data size. Moreover,

these representations fail to capture the syntactic or semantic information of the

text as they only provide a statistical measure of word importance in a corpus.

To overcome these issues, researchers propose word embedding techniques, e.g.,

Word2Vec Mikolov, Chen, Corrado, and Dean (2013), GloVe Pennington, Socher,

and Manning (2014) and FastText Bojanowski, Grave, Joulin, and Mikolov

(2017), to represent each word in the vocabulary with a fixed embedding vector.

With the development of deep learning LeCun, Bengio, and Hinton (2015),

researchers use convolutional neural networks (CNNs) and recurrent neural

networks (RNNs) to process the text Y. Kim (2014); Lai, Xu, Liu, and Zhao

(2015), with the initialization of word vectors from the aforementioned embedding

methods Bojanowski et al. (2017); Lu et al. (2020); Mikolov, Chen, et al. (2013);

Pennington et al. (2014). This paradigm achieves significant success over a variety

of downstream tasks, e.g., named-entity recognition Chiu and Nichols (2016);

Sienčnik (2015), text classification Y. Wang, Huang, Zhu, and Zhao (2016),

relation classification Zhou et al. (2016) and question answering Xiong, Zhong, and

Socher (2017), etc. However, despite their success, word embeddings are limited
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in capturing polysemous words, syntactic structures, and semantic roles, hindering

their full potential for use in NLP tasks X. Qiu et al. (2020). For instance, the word

apple has two different meanings in “eat an apple” and “apple computer”, but it is

only assigned a fixed vector according to the pre-trained word embeddings as they

do not consider the contextual information during vectorization, i.e., they are non-

contextualized or static embeddings.

To address the limitations of non-contextualized word embeddings,

researchers have turned to the development of contextualized representations.

With the development and emergence of the transformer architecture Vaswani et

al. (2017), considerable efforts have been put into developing transformer-based

pre-trained language models Brown et al. (2020); Clark, Luong, Le, and Manning

(2020); Devlin, Chang, Lee, and Toutanova (2019); Lan et al. (2019); M. Lewis

et al. (2020); Y. Liu et al. (2019); Radford, Narasimhan, Salimans, Sutskever,

et al. (2018); Radford et al. (2019); Raffel et al. (2020); Z. Yang et al. (2019).

Essentially, the attention mechanism within the transformer allows for more GPU-

based parallel computation than Long Short-Term Memory (LSTM) Hochreiter

and Schmidhuber (1997), one of the most popular and successful recurrent neural

networks for text encoding, and it further facilitates large-scale pre-training and

leads to the success of the aforementioned language models. The “pre-train and

fine-tune” paradigm has also been a standard approach in modern NLP for a long

time. Mascio et al. present a comparative analysis on the impact of different text

representation methods, i.e., BOW, traditional methods, and BERT Devlin et al.

(2019), on selected classification tasks of clinical significance Mascio et al. (2020).

There have been plenty of pre-trained language models over the last few

years, e.g., BERT Devlin et al. (2019), GPT-1&2&3 Brown et al. (2020); Radford
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et al. (2018, 2019), RoBERTa Y. Liu et al. (2019), ALBERT Lan et al. (2019),

T5 Raffel et al. (2020), BART M. Lewis et al. (2020), etc. These models roughly

fall into three categories based on their different pre-training frameworks: decoder,

encoder, and encoder-decoder. BERT (Bidirectional Encoder Representations from

Transformers) drives large-scale self-supervised pre-training on extensive text

corpora through the use of Masked Language Modeling (MLM). This involves

masking a random subset of tokens in pre-training text and asking the model to

predict the original value of the masked tokens. The self-supervised pre-training

approach allows the model to learn contextualized text representations from large

unannotated text corpora, such as the web, without human supervision H. Wang,

Li, Wu, Hovy, and Sun (2022). BERT also introduces Next Sentence Prediction

(NSP) which aims to predict whether a given sentence follows the previous sentence

or not (i.e., by [CLS]). Although NSP is intended to help the model understand

longer-term dependencies and relationships across sentences, it is often considered

unnecessary and dropped in follow-up works Gu et al. (2021); Joshi et al. (2020);

Y. Liu et al. (2019). Unlike BERT, GPT (Generative Pre-trained Transformer)

utilizes a decoder-only transformer architecture and performs an autoregressive pre-

training task where they seek to predict the next token given existing ones Radford

et al. (2018). Moreover, BART (Bidirectional and Autoregressive Transformers)

uses an encoder-decoder architecture and employs a denoising sequence-to-

sequence pre-training task where the decoder reconstructs the original sentence

from a corrupted input, and the model essentially combines bidirectional and

autoregressive transformers M. Lewis et al. (2020). Generally, these models differ

in their architectures, pre-training objectives, and the data they use. We will delve

deeper into these differences in Section 2.2.”
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In spite of the success of these pre-trained language models on general-

domain text, they struggle with domain-specific text due to the problem of domain

shift Ma, Xu, Wang, Nallapati, and Xiang (2019). As the modern “pre-train and

fine-tune” paradigm is a natural fit to domains where large-scaled unannotated

textual data is available P. Liu et al. (2021), domain-specific pre-trained language

models are been proposed to bridge the gap. In the biomedical and clinical domain,

a variety of domain-specific PLMs have been explored and released, including

BioBERT Lee et al. (2020), SciBERT Beltagy, Lo, and Cohan (2019), BlueBERT

Y. Peng, Yan, and Lu (2019b), ClinicalBERT Huang, Altosaar, and Ranganath

(2019), BioClinicalBERT Alsentzer, Murphy, Boag, Weng, Jindi, et al. (2019),

ClinicalXLNet Huang et al. (2020), umlsBERT Michalopoulos, Wang, Kaka, Chen,

and Wong (2020), diseaseBERT Y. He, Zhu, Zhang, Chen, and Caverlee (2020a),

ouBioBERT Wada et al. (2020), PubMedBERT Gu et al. (2021), SciFive Phan

et al. (2021), BioBART H. Yuan et al. (2022), ClinicalT5 Lu, Dou, and Nguyen

(2022), etc.

Besides obtaining domain knowledge via pre-training, another line of

research is knowledge infusion where domain knowledge is deliberately injected

into language models to enhance their representation capability Y. He, Zhu,

Zhang, Chen, and Caverlee (2020b); B. Kim, Hong, Ko, and Seo (2020); Levine

et al. (2020); Lu, Dou, and Nguyen (2021a); T. Sun et al. (2020b); X. Wang et

al. (2021); Yao, Mao, and Luo (2019b); Z. Zhang et al. (2019). One approach is

to incorporate additional knowledge during pre-training. This can be achieved

through an auxiliary knowledge-driven training objective. For example, KG-BERT

Yao et al. (2019b) integrates factual knowledge from Wikipedia into its model

through a knowledge graph completion task, while KEPLER X. Wang et al. (2021)
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Figure 1. The Transformer model architecture Vaswani et al. (2017).

combines a language modeling objective with a Knowledge Embedding objective

for joint optimization. In the clinical domain, there is also some exploration of

this direction. For instance, DiseaseBERT seeks to enhance BERT and ALBERT

by incorporating disease information through additional pre-training Y. He et al.

(2020b). DAKI (Diverse Adapters for Knowledge Integration) incorporates adapters

to infuse domain knowledge of multiple sources and formats into PLMs, facilitating

the integration of this knowledge in an efficient manner Lu, Dou, and Nguyen

(2021a).
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It is worth noting that, though the two domains (i.e., biomedical and

clinical) are relatively close and the two types of text are similar in many ways,

they have some important differences. Clinical text refers to text that is related

to the practice of medicine and healthcare service, such as EHRs, physician notes,

and other types of text that are commonly used in clinical settings. In contrast,

biomedical text refers to text that is related to the field of biomedicine, which

includes research articles, textbooks, scientific reports, and other types of text that

are used in the study and advancement of biomedicine. In addition, clinical text

has unique specific linguistic characteristics, such as the prevalent use of technical

jargon, abbreviations, acronyms, passive verbs, and omitted subjects and verbs,

which make it distinct from standard language Smith, Megyesi, Velupillai, and

Kvist (2014). In this report, we focus on clinical PLMs and will discuss them in

Section 2.3.

We also summarize the downstream NLP tasks in the clinical domain, as

demonstrated in Section 2.4. For intrinsic tasks, we cover Information Extraction,

Text Classification, Semantic Textual Similarity, Question Answering, Question

Answering, Text Summarization, Natural Language Inference, etc. For extrinsic

tasks, we discuss a bit about patients’ outcomes prediction, e.g., readmission,

mortality, etc, and clinical predictive tasks, e.g., diagnosis prediction. In the end,

we discuss the limitations and potential future directions in Section 2.5.

2.2 Pre-trained Language Models

In this section, we first introduce the key component of modern pre-trained

language models, i.e., the transformer architecture Vaswani et al. (2017), and then

discuss the most well-known general-domain PLMs in detail, e.g., BERT Devlin et

al. (2019), GPT-1&2&3 Brown et al. (2020); Radford et al. (2018, 2019), RoBERTa

27



Figure 2. (left) Scaled Dot-Product Attention. (right) Multi-Head Attention
consists of several attention layers running in parallel Vaswani et al. (2017).

Y. Liu et al. (2019), ALBERT Lan et al. (2019), T5 Raffel et al. (2020), BART

M. Lewis et al. (2020), etc.

2.2.1 Transformer. Recurrent neural networks (RNNs), e.g., long

short-term memory networks (LSTM) Hochreiter and Schmidhuber (1997) and

gated recurrent neural networks (GRUs), are widely adopted for sequence modeling

problems such as language modeling Bengio, Ducharme, and Vincent (2000);

Mikolov, Karafiát, Burget, Cernockỳ, and Khudanpur (2010). However, the

sequential nature of recurrent models often impedes parallelization within training

examples, particularly with longer sequences Vaswani et al. (2017). To overcome

this limitation, Vaswani et al. introduce the Transformer, a novel transduction

model architecture based solely on the attention mechanism, eliminating the

need for recurrence Vaswani et al. (2017). The transformer architecture allows for

significantly more parallel computation and has been one of the key components of

large-scale pre-trained language models.
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Encoder and Decoder Stacks The architecture of the transformer model

is shown in Figure 1. Generally, it consists of an encoder and a decoder, both of

which are stacks of transformer modules. The encoder consists of Nx identical

modules and each module has two sublayers, i.e., a multi-head self-attention layer

and a position-wise fully connected feed-forward network. Within each sublayer,

there is also a residual connection K. He, Zhang, Ren, and Sun (2016) and a layer

normalization operation Ba, Kiros, and Hinton (2016) that are leveraged to improve

the performance and training efficiency (i.e., Add&Norm). The decoder has a

similar architecture to the encoder, except for an additional multi-head attention

sublayer over the output of the encoder. The self-attention sublayer in the decoder

is a bit different from that in the encoder, where future values are masked out to

avoid information leakage and preserve the autoregressive property.

Attention The attention mechanism is a core component in many deep

learning models, especially in the field of natural language processing. It allows

a model to focus its attention on specific parts of an input, such as words or

phrases in a sentence when making predictions. The attention mechanism

works by computing a weight for each element of the input and then using

these weights to calculate a weighted sum of the elements as the output. The

weights are determined by a compatibility function that measures the similarity

between a query vector and key vectors associated with each element. In the

Transformer architecture, attention is implemented using a combination of linear

transformations and softmax activation functions. Unlike recurrent neural networks

(RNNs), which use sequential computations, the linear transformations used in

the Transformer’s attention mechanism are relatively simple, allowing for efficient

parallel computation.
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In particular, self-attention is a mechanism used in deep learning models

to capture dependencies between elements in a sequence of inputs. Essentially, it

represents each input token as a weighted sum of all the token vectors in the input

where the weights are computed based on the relationships between them.

In the transformer, the self-attention is implemented as “Scaled Dot-Product

Attention” as shown in Figure 2. Generally, they compute the dot products of the

query Q with all keys K and divide each by
√
dk, and apply a softmax function to

obtain the weights on the values V :

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (2.1)

Multi-head attention is a mechanism that allows a model to attend to

multiple, different parts of the input sequence at once, instead of focusing on just

one part as in single-head attention where the meaning of a word may largely

depend on itself Kalyan, Rajasekharan, and Sangeetha (2021). In multi-head

attention, the input sequence is transformed into multiple separate, parallel

representations, each of which is passed through a separate attention mechanism,

i.e., attention is applied multiple times in parallel. Consequently, this mechanism

allows the model to capture multiple types of relationships between elements in the

sequence.

MultiHead(Q,K, V ) = Concat(head1, . . . , headh)WO

where headi = Attention(QWQ
i , KWK

i , V W V
i )

(2.2)

Where the projections are parameter matrices WQ
i ∈ Rdmodel×dk ,WK

i ∈

Rdmodel×dk ,W V
i ∈ Rdmodel×dv and WO ∈ Rhdv×dmodel .

The Transformer uses multi-head attention in three different ways. The first

type is the self-attention layer in the encoder where each position attends to all
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the words in the input sequence. The second type is the self-attention layer in the

decoder. Similarly, each position attends to all positions up to that position where

the future values are masked out (set to −∞), i.e., masked self-attention. The third

type is cross-attention within the encoder-decoder architecture where each position

in the decoder attends to all positions in the input sequence.

Position-wise Feed-Forward Networks In addition to the multi-head

attention mechanism, each encoder and decoder in the Transformer architecture

also includes a feed-forward neural network, as depicted in Figure 1. The feed-

forward network operates in a position-independent manner, applying the same

linear transformation to each element in the sequence using identical parameters.

The parameters are not shared across different layers.

FFN(x) = max(0, xW1 + b1)W2 + b2 (2.3)

Positional Encoding As there are no recurrent neural networks (RNNs)

that are supposed to preserve the positional information of the input sequence in

the transformer, the architecture incorporates the technique Positional Encoding

Gehring, Auli, Grangier, Yarats, and Dauphin (2017) that injects a position

embedding vector into individual input embeddings. This is achieved by adding

a position-specific embedding vector to the embedded representation of each word.

These position embedding vectors follow a learned periodic function that allows the

model to determine the relative position of each word in the sequence.

2.2.2 Methods of PLMs. There has been a surge of interest in

developing different pre-trained language models in the past few years, e.g., BERT

Devlin et al. (2019), GPT-1&2&3 Brown et al. (2020); Radford et al. (2018,

2019), RoBERTa Y. Liu et al. (2019), ALBERT Lan et al. (2019), T5 Raffel et
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Model Framework Pre-training Method

BERT Devlin et al. (2019) Encoder MLM, NSP
RoBERTa Y. Liu et al. (2019) Encoder MLM
ALBERT Lan et al. (2019) Encoder MLM, SOP
XLM-R Conneau et al. (2020) Encoder MLM
ELECTRA Clark et al. (2020) Encoder RTD
XLNet Z. Yang et al. (2019) Decoder PLM
GPT Radford et al. (2018) Decoder CLM
T5 Raffel et al. (2020) Encoder-Decoder Seq2seq MLM

Table 1. Representative general-domain PLMs. Underexplored models in the
clinical scenario are omitted for simplicity.

al. (2020), BART M. Lewis et al. (2020), etc. These models can be classified

into three categories based on their pre-training frameworks: decoder, encoder,

and encoder-decoder. In this subsection, we introduce some of the prevalent pre-

training frameworks that lay the foundations of clinical PLMs and discuss their

corresponding applications.

Decoder-only models (or autoregressive models) refer to models pre-

trained based on the language modeling task, i.e., predicting the next token given

observed ones, which also corresponds to the decoder of the transformer model.

As mentioned above, GPT is a typical decoder-only pre-trained language model

Radford et al. (2018). Essentially, GPT computes the probability distribution

of the next token given previous tokens, with the decoder module of the original

transformer, for pre-training. The model is pre-trained on the Book Corpus dataset

and demonstrates new SOTA results on several NLP benchmarks Radford et al.

(2018). GPT-2 Radford et al. (2019) and GPT-3 Brown et al. (2020) are the

2nd and 3rd release of GPT, which generally share the same architecture with

the original version, i.e., the transformer decoder, and have 1.5 billion and 175
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billion model parameters, respectively. Both GPT-2 and GPT-3 can be applied to

downstream tasks without fine-tuning, demonstrating the potential of large PLMs

with updated SOTA performance.

Encoder-only models (or autoencoding models) refer to models pre-trained

based on the reconstruction objective of corrupted input sentences, which also

corresponds to the encoder of the transformer model. Besides BERT which depends

on Masked Language Modeling and Next Sentence Prediction as mentioned

above, RoBERTa is another typical example of such type Y. Liu et al. (2019).

Essentially, RoBERTa tackles some of BERT’s issues and proposes the dynamic

masking technique where they seek to randomly generate the mask at each epoch,

as opposed to BERT’s static masking strategy. RoBERTa also drops the NSP

pre-training task due to its lack of impact and instead puts two consecutive

full sentences together as input without asking the model to predict their

consecutiveness. ALBERT Lan et al. (2019) generally follows BERT, and it also

proposes some useful tricks. Essentially, ALBERT is a light and efficient variant

of BERT that differs in three aspects: factorized embedding parameterization,

cross-layer parameter sharing and NSP replaced by sentence ordering prediction.

Empirically, the performance is better than BERT on a variety of tasks in many

aspects. ELECTRA is another pre-training framework for BERT whose key

innovation is Replaced Token Detection (RTD, as a replacement for MLM). The

task is to simultaneously optimize a generator-discriminator architecture where the

generator is trained using the MLM objective given a randomly masked sentence

as input, and the discriminator (ELECTRA) aims to predict whether each token is

original or generated Clark et al. (2020). ELECTRA demonstrates efficiency and

better performance than BERT/RoBERTa across multiple benchmarks.
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Encoder-decoder models refer to models pre-trained based on a sequence-

to-sequence objective, which also corresponds to the encoder-decoder architecture

of the original transformer. As a typical example, BART M. Lewis et al. (2020)

takes as input to the encoder a corrupted text with an arbitrary noising function

(Token Masking, Token Deletion, Text Infilling, Sentence Permutation, Document

Rotation), and the decoder is enforced to reconstruct the original text. The model

can be viewed as a combination of a bidirectional encoder (e.g., BERT) and

an autoregressive decoder (e.g., GPT), and this architecture makes it better at

generative tasks while keeping the bidirectional encoding capabilities. Another

example is T5 Raffel et al. (2020) which casts different NLP tasks as a text-to-

text problem by assigning a specific prefix. T5 has self-supervised and supervised

training. For the self-supervised pre-training, T5 takes a corrupted sentence as

input and the self-supervised pre-training task is to generate the dropped-out

tokens. The supervised pre-training tasks are transformed downstream tasks from

the GLUE and SuperGLUE benchmarks.

Generally, there have been numerous studies on PLMs in the past few years.

Some of them are CTRL Keskar, McCann, Varshney, Xiong, and Socher (2019),

Transformer-XL Z. Dai et al. (2019), Reformer Kitaev, Kaiser, and Levskaya

(2020), XLNet Z. Yang et al. (2019), DistilBERT Sanh, Debut, Chaumond, and

Wolf (2019), ConvBERT Z.-H. Jiang et al. (2020), Funnel Transformer Z. Dai, Lai,

Yang, and Le (2020), Longformer Beltagy, Peters, and Cohan (2020), ProphetNet

Qi et al. (2020), Switch Transformer Fedus, Zoph, and Shazeer (2021), GLaM Du

et al. (2022), Gropher Rae et al. (2021), some multi-lingual models like mT5 L. Xue

et al. (2021), ERNIE Y. Sun et al. (2021), and so forth. As these models are rarely

adopted in the clinical domain, they are not covered in this report.
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Model Type Initialization EHR

BEHRT Y. Li et al. (2020) patient visits (code) scratch CPRD
Med-BERT Rasmy, Xiang, Xie, Tao, and Zhi (2021) patient visits (code) scratch Cerner, Truven
BRLTM Meng, Speier, Ong, and Arnold (2021) patient visits (code) scratch private
G-BERT Shang, Ma, Xiao, and Sun (2019) patient visits (code) scratch MIMIC-III

Table 2. Summary of EHR-based clinical PLMs.

2.3 Clinical PLMs

The rapid increase in Electronic Health Records (EHRs) and the wealth of

digitized longitudinal clinical data they contain have sparked significant interest in

using machine learning techniques to tackle medical challenges Wen et al. (2019).

In response to this trend, various domain-specific pre-trained language models have

been developed for the clinical domain, in addition to the already existing general-

domain models. In this section, we will provide a brief overview of the motivation

behind developing and utilizing domain-specific pre-trained language models in

the clinical field and then delve into a more in-depth examination of the different

clinical PLMs available.

2.3.1 Motivation. In the clinical domain, the reasons for developing

and utilizing domain-specific pre-trained language models are straightforward.

In general, the use of domain-specific PLMs in the clinical field is motivated

by the need for improved accuracy and efficiency in language-based tasks. Training

on large amounts of textual data specific to the clinical domain, such as electronic

health records (EHRs) and clinical documents, enables these models to better

understand and process the technical and specialized language commonly used in

this field, including medical terminology and abbreviations. This can be useful for

tasks such as the interpretation of EHRs, extraction of relevant information from

clinical documents, generation of clinical summary reports, etc.
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2.3.2 Data Resources. A variety of unannotated and free textual

resources are used in pre-training a clinical PLM, such as clinical notes in EHRs,

relevant social media posts, scientific literature, external knowledge bases, etc. We

refer the readers to Gonzalez-Hernandez, Sarker, O’Connor, and Savova (2017);

Kalyan and Sangeetha (2020) for a more detailed treatment of biomedical and

clinical textual corpora.

Moreover, as most domain PLMs in the biomedical and clinical domains are

variants of BERT, the biggest difference among them is their pre-training data.

As a result, we will cover these models, especially the less popular ones, in this

subsection.

Electronic Health Records Electronic Health Records have been widely

adopted by healthcare providers to electronically record patients’ visits and health

information in the last few years Henry, Pylypchuk, Searcy, Patel, et al. (2016).

There are several reasons why clinical pre-trained language models are often trained

on electronic health records (EHRs). First, EHRs contain a wealth of information

about patients’ health histories and treatment plans, which can be valuable for

language models to learn from. This information can include demographics,

diagnoses, medications, laboratory test results, radiology images, and more. Second,

EHRs are widely used in the healthcare industry, so clinical language models

trained on EHRs may be more applicable and useful in real-world settings. Finally,

since many healthcare providers use EHR systems, it is often possible to access

large amounts of data from these systems for research purposes, although certain

privacy and ethical issues must be considered.

The MIMIC-III Critical Care (Medical Information Mart for Intensive Care

III) Database is a large, freely-available database composed of de-identified EHR
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data Johnson et al. (2016) and has been widely used for clinical NLP research

Feng et al. (2022); Lu, Nguyen, and Dou (2021); Rajkomar et al. (2018); Shorten,

Khoshgoftaar, and Furht (2021). It is also one of the most popular EHR datasets

that are used to train clinical language models, which consists of the EHRs of

patients in the intensive care unit (ICU) of the Beth Israel Deaconess Medical

Center between 2001 and 2012.

ClinicalBERT1 is one of the most popular domain variants which initializes

from BioBERT Lee et al. (2020) and is further pre-trained on MIMIC-III

clinical notes Alsentzer, Murphy, Boag, Weng, Jindi, et al. (2019). Another

ClinicalBERT has similar settings Huang et al. (2019), where the authors also

propose ClinicalXLNet Huang et al. (2020), an XLNet Z. Yang et al. (2019) variant

that is further pre-trained on MIMIC-III clinical notes. Similarly, Yang et al.

propose BERT-MIMIC, ELECTRA-MIMIC, XLNET-MIMIC, RoBERTa-MIMIC,

DeBERTa-MIMIC, Longformer-MIMIC based on further pre-training on MIMIC

text X. Yang, Bian, Hogan, and Wu (2020). ClinicalT5 further pre-trains SciFive

Phan et al. (2021) on MIMIC notes and produces a clinical variant of T5 Lu, Dou,

and Nguyen (2022). In general, such models mostly depend on further pre-training

on unstructured clinical notes in MIMIC-III. In fact, the MIMIC database consists

not only of unstructured textual data but also structured information, including

different kinds of numerical features of patients, disease and procedure codes,

demographics, etc.

BEHRT Y. Li et al. (2020) is a language model trained from scratch using

EHRs, with MLM as the pre-training task. The authors use code, position, age,

and segment embeddings to improve the model’s performance. Med-BERT Rasmy

1Also known as BioClinicalBERT.
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et al. (2021) is another language model trained from scratch with MLM and LOS

(Length of Stay) as pre-training tasks. The authors use code, serialization, and

visit embeddings to further improve the model’s ability to handle medical data.

BRLTM Meng et al. (2021) is trained from scratch using multi-modal data with

MLM. MedGPT Kraljevic et al. (2021) is a GPT-like language model trained on

patients’ medical histories in the format of EHRs. Given a sequence of past medical

events, MedGPT aims to predict future events.

Scientific literature Some clinical pre-trained language models are trained

on scientific publications, such as research articles and medical journals because

these texts can provide valuable information about current medical knowledge and

practices. Scientific publications often contain detailed descriptions of medical

conditions, treatments, and research findings, which can be useful for language

models to learn from. Training a language model on scientific publications can also

help the model to understand medical terminology and concepts more accurately

and in greater depth. This can be particularly useful for tasks that involve

analyzing or summarizing medical information. Finally, scientific publications

may be easier to obtain than other types of clinical data, such as electronic health

records (EHRs). Many scientific publications are freely available online, making it

possible to create large datasets for training language models.

PubMed is a free online database that provides access to millions of

scientific articles and abstracts related to medicine, biology, and life sciences.

PubMed Central (PMC) is an open-access digital archive of scientific articles that

contains full-text articles in the biomedical and life sciences, making it a valuable

resource for researchers. PubMed abstracts (PubMed) and PubMed Central (PMC)
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are widely adopted for training language models in the biomedical field. B. Wang

et al. (2021).

BioBERT is the first biomedical pre-trained language model which is

obtained by further pre-training general BERT on biomedical literature Lee et

al. (2020). Similarly, BioMedBERT is obtained by further pretraining BERT-

large on the BREATHE dataset Chakraborty et al. (2020). BlueBERT further

pre-trains on the PubMed text and de-identified clinical notes from MIMIC-III

Y. Peng et al. (2019b), so as BioALBERT Naseem, Dunn, Khushi, and Kim (2022).

BioMed-RoBERTa Gururangan et al. (2020) is obtained by further pre-training

on 2.68 million full-text papers from S2ORC Lo, Wang, Neumann, Kinney, and

Weld (2020), a large corpus of academic papers spanning many academic disciplines

including the biomedical domain. Unlike these models, SciBERT builds its own

vocabulary and pre-trains from scratch on scientific papers from Semantic Scholar,

in which 82% are from the biomedical domain and 18% are from the computer

science domain Beltagy et al. (2019). PubMedBERT is obtained by domain-specific

pre-training from scratch on PubMed text Gu et al. (2021).

Social media Clinical pre-trained language models may also be trained on

social media posts, such as those from Reddit, Twitter, AskAPatient, WebMD,

in order to learn about common language usage and slang in the context of

healthcare. These platforms can provide a large amount of real-world data

that can be used to train language models to understand how people discuss

healthcare-related topics in everyday language. Training on social media posts can

also provide the model with a better understanding of the context which could

benefit sentiment or opinion-related tasks. However, it is important to ensure the

representativeness and suitability of the data before using it for model training.
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Reddit and Twitter are commonly used social media sources for training

language models. Reddit is a social media platform that allows users to share news,

images, and links, as well as participate in forums and discussions on a wide range

of topics. Reddit is considered a valuable resource for language model training

because it provides a large and diverse dataset of written content, ranging from

informal conversations to in-depth discussions on a wide range of topics. Twitter

is a microblogging platform that allows users to post short messages, images, and

videos. Similar to Reddit, Twitter also provides a vast amount of textual data,

which can help models learn to understand conversational text.

For example, BERTweet Nguyen, Vu, and Tuan Nguyen (2020) is obtained

by training on Twitter posts. COVID-twitter-BERT Müller, Salathé, and

Kummervold (2020) is a natural language model to analyze COVID-19 content

on Twitter. The COVID-twitter-BERT model is initialized from BERTweet and

trained on tweets about COVID-19. BioRedditBERT Basaldella, Liu, Shareghi, and

Collier (2020) is initialized from BioBERT and further pre-trained on health-related

Reddit posts.

External knowledge bases External medical knowledge bases can be

complementary to clinical pre-trained language models, as they are often not fully

exposed to structured domain knowledge, which may not be sufficiently encoded

in the pre-training text. The external knowledge bases often serve more as an

auxiliary training objective that works along with typical self-supervised pre-

training on large amounts of textual data.
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One of the most important knowledge resources is the Unified Medical

Language System (UMLS)2, which is a comprehensive and standardized

terminology repository that is widely used in the field of biomedical research and

healthcare Bodenreider (2004). It includes a wide range of medical and health-

related vocabularies and terminologies, such as NCBI, MeSH, SNOMED CT,

ICD-10, Gene Ontology, OMIM, and many others. The UMLS is designed to help

researchers, clinicians, and other healthcare professionals communicate effectively

and accurately by providing a common language and set of terms that can be used

across different systems and contexts. It is maintained and updated by the National

Library of Medicine (NLM) in the United States, and all vocabularies are freely

available for research purposes under a corresponding license agreement.

For example, Hao et al. propose to enhance clinical BERT embedding

using a joint further pre-training strategy, where they incorporate a joint loss of

masked language modeling, next sentence prediction, and triplet classification

on MIMIC-III notes and UMLS relations to obtain Clinical KB-BERT and

Clinical KB-ALBERT Hao, Zhu, and Paschalidis (2020). UmlsBERT further

pre-trains ClinicalBERT Alsentzer, Murphy, Boag, Weng, Jindi, et al. (2019) on

MIMIC-III notes with a specifically designed multi-label loss that incorporates

UMLS information Michalopoulos et al. (2020). SapBERT further pre-trains

PubMedBERT Gu et al. (2021) on UMLS synonyms under a scalable metric

learning framework F. Liu, Shareghi, Meng, Basaldella, and Collier (2021).

KeBioLM incorporates UMLS entity information by linking PubMed abstracts

to the knowledge base and adopts an entity detection/linking objective Z. Yuan,

Liu, Tan, Huang, and Huang (2021). Coder injects medical knowledge from UMLS

2http://umlsks.nlm.nih.gov
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Model Type Initialization Corpora Publicly Available

ClinicalBERT Huang et al. (2019) clinical notes BERT MIMIC-III Y
ClinicalBERT Alsentzer, Murphy, Boag, Weng, Jindi, et al. (2019) clinical notes BioBERT MIMIC-III Y
UmlsBERT Michalopoulos et al. (2020) clinical notes, KG ClinicalBERT MIMIC-III, UMLS Y
DiseaseBERT Y. He et al. (2020a) Wiki articles BERT Wikipedia Y
PubMedBERT Gu et al. (2021) scientific literature scratch PubMed, PMC Y
BERT-MIMIC X. Yang et al. (2020) clinical notes BERT MIMIC-III Y
ELECTRA-MIMIC X. Yang et al. (2020) clinical notes ELECTRA MIMIC-III Y
XLNET-MIMIC X. Yang et al. (2020) clinical notes XLNet MIMIC-III Y
RoBERTa-MIMIC X. Yang et al. (2020) clinical notes RoBERTa MIMIC-III Y
DeBERTa-MIMIC X. Yang et al. (2020) clinical notes DeBERTa MIMIC-III Y
Longformer-MIMIC X. Yang et al. (2020) clinical notes Longformer MIMIC-III Y
ClinicalXLNet Huang et al. (2020) clinical notes XLNet MIMIC-III Y
DiseaseALBERT Y. He et al. (2020a) Wiki articles ALBERT Wikipedia Y
BioMedBERT Chakraborty et al. (2020) scientific literature BERT BREATHE N
BlueBERT Y. Peng et al. (2019b) scientific literature, clinical notes BERT PubMed, MIMIC-III Y
SciBERT Beltagy et al. (2019) scientific literature scratch Semantic Scholar Y
MedGPT Kraljevic et al. (2021) clinical notes GPT KCH, MIMIC-III Y
BioMed-RoBERTa Gururangan et al. (2020) scientific literature RoBERTa S2ORC Y
COVID-twitter-BERT Müller et al. (2020) social media posts BERTweet Twitter Y
BioRedditBERT Basaldella et al. (2020) social media posts BioBERT Reddit Y
SapBERT F. Liu et al. (2021) KG PubMedBERT UMLS synonyms Y
CODER Z. Yuan et al. (2022) KG BioBERT UMLS Y
KeBioLM Z. Yuan et al. (2021) KG PubMedBERT UMLS Y
Clinical KB-BERT Hao et al. (2020) KG BioBERT UMLS Y
Clinical KB-ALBERT Hao et al. (2020) KG ALBERT UMLS Y
SciFive Phan et al. (2021) scientific literature T5 PubMed, PMC Y
BioALBERT Naseem et al. (2022) scientific literature ALBERT PubMed, PMC Y
EhrBERT F. Li et al. (2019) clinical notes BioBERT private N
RoBERTa-PubMed-MIMIC P. Lewis, Ott, Du, and Stoyanov (2020) scientific literature, clinical notes RoBERTa PubMed, PMC, MIMIC-III Y
GatorTron X. Yang et al. (2022) scientific literature, clinical notes, articles scratch UF Health, PubMed, Wikipedia Y
UCSF-BERT Sushil, Ludwig, Butte, and Rudrapatna (2022) clinical notes scratch UCSF Health N
CLIN-X-en Lange, Adel, Strötgen, and Klakow (2022) clinical PubMed abstracts XLM-R PubMed Y
CLIN-X-es Lange et al. (2022) clinical notes XLM-R Scielo archive, MeSpEn Y
MedGTX S. Park, Bae, Kim, Kim, and Choi (2022) EHR BERT MIMIC-III Y
Clinical-Longformer Y. Li, Wehbe, Ahmad, Wang, and Luo (2022) clinical notes Longformer MIMIC-III Y
Clinical-BigBird Y. Li et al. (2022) clinical notes BigBird MIMIC-III Y
BioMedLM3 scientific literature GPT PubMed, PMC Y
DRAGON Yasunaga, Bosselut, et al. (2022) scientific literature, KG BioLinkBERT PubMed, UMLS Y
Med-PaLM Singhal et al. (2022) instructions and exemplars Flan-PaLM MultiMedQA, human input N

ClinicalT5 Lu, Dou, and Nguyen (2022) clinical notes SciFive MIMIC-III Y
DAKI-BERT Lu, Dou, and Nguyen (2021a) Wiki articles, KG BERT Wikipedia, UMLS Y
DAKI-ALBERT Lu, Dou, and Nguyen (2021a) Wiki articles, KG ALBERT Wikipedia, UMLS Y
DAKI-ClinicalBERT Lu, Dou, and Nguyen (2021a) Wiki articles, KG ClinicalBERT Wikipedia, UMLS Y

KG = knowledge graph

Table 3. Summary of Clinical PLMs.

into BioBERT Lee et al. (2020) through contrastive further training Z. Yuan et al.

(2022). DiseaseBERT and DiseaseALBERT are obtained by further pre-training on

disease-related articles from Wikipedia Y. He et al. (2020a).

2.3.3 Pre-training Strategies. According to a recent survey on

biomedical pre-trained language models, Kalyan et al. point out that existing

biomedical PLMs roughly fall into the following two categories, i.e., mixed-domain

pre-training, and domain-specific pre-training Kalyan et al. (2021).

The situation in the clinical domain is quite similar. In fact, most of the

aforementioned clinical/biomedical domain-specific pre-trained language models are

based on the mixed-domain pre-training strategy (or continual pre-training), as pre-
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training on large amounts of general-domain text is proven beneficial. Essentially,

the mixed-domain pre-training strategy initializes with a pre-trained model and

continues the pre-training process with domain-specific data and objectives. For

example, BioBERT Lee et al. (2020) initializes from BERT Devlin et al. (2019),

ClinicalBERT Alsentzer, Murphy, Boag, Weng, Jindi, et al. (2019) initializes from

BioBERT Lee et al. (2020), ClinicalT5 Lu, Dou, and Nguyen (2022) initializes

from SciFive Phan et al. (2021), etc. This strategy demonstrates the issue of

inconsistent vocabularies, which results in less representative capability of continual

pre-trained models in the target domain Gu et al. (2021). However, existing PLMs

mostly use subword tokenization algorithms which effectively alleviate the issue

by decomposing rare words into meaningful subwords, such as Byte-Pair Encoding

(BPE) Sennrich, Haddow, and Birch (2016), WordPiece Schuster and Nakajima

(2012), Unigram Kudo (2018), SentencePiece Kudo and Richardson (2018), etc.

It is important to point out that the mixed-domain pre-training approach

is particularly useful when the target domain has a limited amount of text and

can benefit from being pre-trained using general-domain text like Wikipedia and

BookCorpus Devlin et al. (2019) as well as related-domain text. However, this

is not the case for the biomedical domain, as it has a large and growing corpus

of text, with over 30 million texts in PubMed and this motivates PubMedBERT

which is trained from scratch Gu et al. (2021). Conversely, the clinical domain

presents a different scenario. Due to the sensitive nature of the clinical text, such as

clinical notes in EHRs, and the difficulties in obtaining such data, most clinical pre-

trained language models rely on mixed-domain pre-training, such as ClinicalBERT

Alsentzer, Murphy, Boag, Weng, Jindi, et al. (2019), ClinicalBERT Huang et al.

(2019), SciFive Phan et al. (2021), ClinicalT5 Lu, Dou, and Nguyen (2022), etc.
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There are also variants that are trained from scratch, such as PubMedBERT

which is trained from scratch on PubMed abstracts and PMC full-text articles

Gu et al. (2021), and SciBERT which is trained from scratch on scientific papers

from Semantic Scholar Beltagy et al. (2019). Essentially, the domain-specific pre-

training (training from scratch) method aims to fix the vocabulary inconsistency

issue between the general domain and the biomedical domain Kalyan et al. (2021).

It is also worth noting that EHR-based language models are generally pre-trained

from scratch such as BEHRT Y. Li et al. (2020), Med-BERT Rasmy et al. (2021),

BRLTM Meng et al. (2021), etc., as they depend on code, demographics, visits, etc.

instead of clinical narratives.

In order to gain a deeper understanding and provide a comprehensive

overview of the training objectives of clinical pre-trained language models, this

subsection will explore the various pre-training strategies in detail. It is worth

noting that most existing clinical PLMs rely on continual pre-training, which

means they would typically use similar pre-training tasks as general-domain models

such as BERT Devlin et al. (2019) but fine-tune on a large corpus of clinical data.

This is done to capture the specific language and structure of the clinical domain,

and improve the models’ performance on downstream tasks such as named entity

recognition, relation extraction, and de-identification.

In this subsection, we would cover some of the most popular pre-training

tasks as well as those adopted in the aforementioned clinical PLMs.

Masked Language Modeling (MLM) This is a task where a random subset

of the tokens in a sentence are replaced with a [MASK] token and the model is

trained to predict the original token based on the context provided by the observed

tokens in the sentence. Many models such as BERT Devlin et al. (2019), BioBERT

44



Lee et al. (2020) and ClinicalBERT Alsentzer, Murphy, Boag, Weng, Jindi, et

al. (2019) use this pre-training task. As arguably one of the most popular and

well-explored pre-training techniques, researchers have proposed several tricks to

improve its performance. For example, instead of token masking, Cui et al. propose

whole word masking for Chinese BERT which demonstrates better performance

Cui, Che, Liu, Qin, and Yang (2021). Besides, RoBERTa uses dynamic masking to

replace BERT’s static masking, where they randomly generate the mask at each

epoch Y. Liu et al. (2019) and this trick is also applied in their domain variants,

e.g., BioMed-RoBERTa Gururangan et al. (2020). ERNIE incorporates entity-level

masking and phrase-level masking which is beneficial to infuse entity knowledge

into the model Z. Zhang et al. (2019).

Next Sentence Prediction (NSP) This task involves training the model to

predict whether two sentences are contiguous or not. The objective is to learn the

sentence-level context in the corpus and it’s used by most of the pre-trained models

derived by BERT Devlin et al. (2019). Although NSP is intended to help the model

understand longer-term dependencies and relationships across sentences, its real

impact on the model has been questioned in several studies Gu et al. (2021); Joshi

et al. (2020); Y. Liu et al. (2019), as mentioned above.

Replaced Token Detection (RTD) This is a pre-training task that is

leveraged to improve robustness to word replacement and text-to-text transfer. In

this task, words in a sentence are replaced with other words that have a similar

meaning, and the model is trained to detect which words have been replaced.

This task helps the model learn to understand the meaning of words and their

relationships to other words in a sentence. One example of a model that uses RTD
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for pre-training is ELECTRA Clark et al. (2020). The model uses RTD to generate

masked tokens and then trains a generator model to predict the original tokens

based on the context. The generator is then fine-tuned on a downstream task and

the encoder is used for the final classification. The main idea behind ELECTRA is

to make the pre-training task more challenging and to reduce the risk of overfitting,

by replacing some of the tokens with fake ones. It is worth noting that this task is

not being widely used in the clinical domain yet. Some biomedical domain variants

of ELECTRA that depend on continual pre-training naturally inherit this method,

such as Bio-ELECTRA Ozyurt (2020), BioELECTRA Kanakarajan, Kundumani,

and Sankarasubbu (2021), etc.

Sentence Order Prediction (SOP) This task aims to make the model

predict the correct order of a set of sentences. Essentially, the key idea is to use

two consecutive sentences from the same document as a positive sample, and to

swap the two consecutive sentences to make a negative sample. This task helps

the model to understand the sequential nature of language and the relationships

between sentences in a document. It is worth noting that this task is motivated

by the fact that NSP is often dropped by researchers due to its ineffectiveness,

as mentioned above. As a replacement, ALBERT proposes SOP based on their

conjecture that NSP is not very effective because it mixes both topic prediction

and coherence prediction, the former of which is comparatively easy to handle

which hinders the optimization of the other task Lan et al. (2019). SOP is applied

in domain variants of ALBERT, such as Clinical KB-ALBERT Hao et al. (2020),

DiseaseALBERT Y. He et al. (2020a), etc.
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Permutation Language Modeling (PLM) This pre-training task aims

to train the model to predict the correct order of a sentence given the context

provided by the rest tokens of the sentence. Essentially, the input sentence is

randomly permuted and the model has to reconstruct the original order by

maximizing the expected log-likelihood over all possible permutations of the input.

This task aims to train the model to capture bidirectional context to predict all the

tokens instead of just one, which makes it more challenging than MLM. This task

is applied in XLNet Z. Yang et al. (2019) and its domain variants ClinicalXLNet

Huang et al. (2020).

Causal language modeling (CLM) This is another name for the traditional

autoregressive language modeling task, i.e., the model is trained to predict the

next token given the previous tokens of the sentence. This task is typically used

in autoregressive language models, e.g., GPT Radford et al. (2018) and MedGPT

Kraljevic et al. (2021).

Sequence-to-sequence MLM This pre-training task is similar to MLM but

performed in a sequence-to-sequence manner. Essentially, the input of the encoder

is the corrupted sentence where random tokens are replaced by sentinel tokens, and

the target is to make the decoder generate the masked tokens in an autoregressive

fashion. This task is adopted in MASS Song, Tan, Qin, Lu, and Liu (2019) and

T5 Raffel et al. (2020), and inherited in their domain variants SciFive Phan et al.

(2021) and ClinicalT5 Lu, Dou, and Nguyen (2022).

Denoising Autoencoder (DAE) This pre-training task aims to reconstruct

the original sentence from a corrupted version of it, where any type of document
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corruption functions can be applied such as token masking, token deletion, text

infilling, sentence permutation, document rotation, etc. M. Lewis et al. (2020).

Essentially, the decoder reconstructs the corrupted input sentence from the output

representations of the encoder (i.e., a denoising autoencoder), and the model

essentially combines bidirectional and autoregressive transformers. This task

is similar to some extent to seq2seq MLM in the sense that they both involve

masking out or distorting a portion of the input text and then trying to predict

or reconstruct that portion. This task is used in BART M. Lewis et al. (2020),

BioBART H. Yuan et al. (2022).

Document Relation Prediction (DRP) This is a novel pre-training task

introduced by a recent study Yasunaga, Leskovec, and Liang (2022). Essentially,

this task aims to learn the relevance and existence of bridging concepts between

documents by classifying the text segment pairs into contiguous, random, or linked.

This task can be considered a variation of NSP.

Other Tasks There are other pre-training tasks that are used in specific

clinical PLMs. For example, MedGTX S. Park et al. (2022) claims to be the first

work to propose graph-text multi-modal pre-training on EHR data. Essentially,

they use a Graph Attention Networks (GAT) Velickovic et al. (2017) based encoder

to encode the structured information of an EHR, use a BERT-like model to encode

the unstructured information (clinical notes), use a cross-model encoder to learn

a joint representation space. Moreover, recent studies try to encode domain

knowledge into PLMs. For example, UmlsBERT Michalopoulos et al. (2020)

continually pre-trains ClinicalBERT Alsentzer, Murphy, Boag, Weng, Jindi, et al.
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(2019) on MIMIC-III notes with a specifically designed multi-label loss to inject

UMLS knowledge into the model.

2.4 Downstream Tasks

In this section, we introduce the downstream tasks in the clinical domain,

along with the corresponding datasets, that have been widely used in recent

years. We first discuss the intrinsic tasks, including information extraction, text

classification, word/sentence similarity, question answering, text summarization,

natural language inference, etc. Then we introduce some popular extrinsic tasks,

such as patient readmission prediction, mortality prediction, diagnosis prediction,

and other clinical predictive tasks. It is worth noting that the distinction between

intrinsic and extrinsic tasks is not always black and white, as some tasks can be

considered as both intrinsic and extrinsic, e.g., text-based readmission prediction

Lu, Nguyen, and Dou (2021).

2.4.1 Intrinsic Tasks. Intrinsic tasks are tasks that are primarily

focused on understanding the meaning and structure of the text. These tasks are

not necessarily the ones that are directly applicable to a specific domain. Examples

of intrinsic tasks include, but are not limited to: information extraction, text

classification, semantic textual similarity, question answering, text summarization,

natural language inference, and others.

Named Entity Recognition Named Entity Recognition (NER) is the

most popular downstream NLP task in the clinical domain for the last few years,

according to a recent survey Y. Gao et al. (2022). The task refers to identifying

and classifying named entities in text into pre-defined categories such as person

names, organizations, locations, medical codes, etc, and it is particularly useful for

extracting structured information from unstructured text. As a specific application
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of NER in the clinical domain, Clinical Named Entity Recognition (CNER) aims

to extract clinically relevant information, such as diseases, symptoms, treatments,

medications, etc., from unstructured medical texts, e.g., clinical notes in EHRs.

A typical solution to NER is to fine-tune the PLMs to classify each token

into one of the pre-defined named entity classes with a linear layer (or more

advanced structures such as a LSTM layer) on top of the PLMs. This approach is

often referred to as a sequence labeling task. This task has been used for evaluation

for a variety of clinical and biomedical PLMs, including BioBERT Lee et al. (2020),

SciBERT Beltagy et al. (2019), PubMedBERT Gu et al. (2021), etc.

Relation Extraction As is the case with NER, Relation Extraction (RE) is

one of the fundamental IE tasks in the clinical scenario. Essentially, the task refers

to identifying and extracting semantic relationships between two or more entities

from unstructured text. And in the clinical domain, as a specific application of RE,

Clinical Relation Extraction (CRE) aims to extract clinically relevant relationships

between medical entities, such as causal relationships (e.g., Patient’s high blood

pressure caused by obesity.), symptom-disease relationships, medication-disease

relationships, etc. depending on the specific task and context.

Essentially, the task is often cast as a classification problem. For example,

a common approach to CRE is to fine-tune the PLMs to predict the relationships

between two identified entities based on the contextual representations of the [CLS]

token Su and Vijay-Shanker (2020); Thillaisundaram and Togia (2019).

Event Extraction Event Extraction (EE) is the task that aims to identify

and extract event information from text. An event can be defined as a situation

or occurrence that happens at a certain point in time and has a specific set of
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actors, actions, and outcomes. In text, events are often described using verbs or

verb phrases, and the entities involved in the event are typically described using

nouns or noun phrases. For example, given a sentence “On Sunday, a protester

stabbed an officer with a paper cutter.”, a EE system should be able to identify

an Attack event which consists of an event trigger stabbed and event arguments

Sunday, protester, officer, paper cutter J. Liu, Chen, Liu, Bi, and Liu

(2020).

Similarly, Clinical Event Extraction (CEE) is a specific application of EE in

the clinical domain, which aims to extract medical events from clinical text, e.g.,

EHRs. Medical events are occurrences or situations that happen in the medical

domain, such as diagnoses, treatments, admissions, etc. For example, a CEE

system should extract from the sentence “Patient diagnosed with pneumonia.” an

event with diagnosed as the trigger and Patient, pneumonia as the arguments.

Event extraction is a challenging task, especially in the clinical domain, due to the

complex and private nature of this field. There have been several biomedical event

extraction studies in recent years, including DeepEventMine Trieu et al. (2020),

BEESL Ramponi, van der Goot, Lombardo, and Plank (2020), etc.

Entity Linking Entity Linking (EL) is a task that aims to link the entity

mention in a text to its corresponding entity in a knowledge base, e.g., Wikipedia

H. Jiang et al. (2021); Lu and Du (2017); Lu, Gurajada, et al. (2022). In the

clinical domain, the task is also referred to as Medical Concept Normalization,

which maps medical terms and concepts used in clinical text to a standardized

terminology, such as SNOMED CT, ICD-10, or UMLS. There are some tools for

this task, e.g., MetaMap Aronson and Lang (2010), SciSpacy Neumann, King,

Beltagy, and Ammar (2019), etc.
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Coreference Resolution Coreference Resolution is the task of identifying

mentions in a text that refer to the same entity. This task is important for a wide

range of NLP applications, such as information extraction, machine translation,

and question answering, as it helps to understand the structure of the context and

to capture the relationships between entities. In the clinical domain, coreference

resolution is utilized in analyzing clinical notes, helping to support the decision-

making of healthcare professionals by presenting a holistic picture of the patient

and the relationships among relevant entities.

Temporal Information Extraction Temporal Information Extraction (TIE)

is a task that aims to extract events or facts in the text and link them to specific

times. Essentially, this task involves recognition of events and temporal expressions,

recognition of temporal relations among them, and timeline construction

Leeuwenberg and Moens (2018). TIE in the clinical domain (CTIE) aims to

extract temporal information from the clinical text to understand detailed clinical

observations.

De-identification : This task is to extract and mask Personal Identifiable

Information (PII) from clinical notes, in order to protect patient privacy. The

extracted information includes details like patient name, address, Social Security

number, etc. This is a particularly important task in the clinical domain as the

clinical data must comply with the Health Insurance Portability and Accountability

Act (HIPAA).

Text Classification Text Classification is the second most popular

downstream task in the clinical domain in recent years Y. Gao et al. (2022).
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Essentially, it aims to classify input text into pre-defined categories, such as

text-based readmission prediction where they propose to predict ICU patient

readmission risk using the clinical notes in EHRs Lu, Nguyen, and Dou (2021).

Semantic Textual Similarity Semantic Textual Similarity (STS) refers to the

task of predicting the degree of semantic similarity between words or sentences.

The task is useful for a wide range of applications in the clinical domain, as it

helps to remove redundant information that could decrease the cognitive load and

enhance the clinical decision-making process Y. Wang et al. (2020). Typically,

PLMs are used to encode the word/sentence pairs and the cosine distance is used

to measure the similarity score.

Question Answering Question Answering (QA) is a task that aims to extract

and generate a natural language answer to a given question. Essentially, there are

Extractive QA which extracts the answer from the input text, and Open/Closed

Generative QA which directly generates a free-text answer to the question based

on the input text. Clinical Question Answering (CQA) is a specific application of

QA in the clinical domain, and it generates answers to questions related to medical

information, such as diagnosis, treatment, medication, etc. CQA systems can be

useful in a variety of scenarios, such as hospitals, clinics, and research institutions,

to help physicians, nurses, and other healthcare professionals quickly access

information and make informed decisions. CQA (or medical QA) is a challenging

task as it demands comprehension of medical context, recall of appropriate medical

knowledge, and reasoning with expert information Singhal et al. (2022).

There has been a surge of interest in developing PLMs that are capable

of answering questions automatically. Recently, Med-PaLM Singhal et al. (2022)
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achieves state-of-the-art results on multiple medical QA benchmarks, surpassing

previous models including BioMedLM, DRAGON Yasunaga, Bosselut, et al. (2022),

BioLinkBERT Yasunaga, Leskovec, and Liang (2022), Galactica Taylor et al.

(2022), PubMedBERT Gu et al. (2021), etc. Meanwhile, ChatGPT4 has attracted

huge attention across the world and has demonstrated superior performance over a

variety of tasks, leading to a new direction for NLP research.

Text Summarization Text Summarization is the task of extracting the

key information of a document and generating a shorter version of it. Similar to

other tasks, Clinical Text Summarization refers to the specific application of text

summarization in the clinical domain, e.g., clinical notes in EHRs, etc. There are

various techniques for text summarization, including extractive summarization

and abstractive summarization. Extractive summarization refers to selecting

and extracting the most important sentences or phrases from the original text,

while abstractive summarization refers to generating a new and shorter text that

summarizes the original text.

Natural Language Inference Natural Language Inference (NLI) is a task

that aims to predict the relationship between two sentences, i.e., a premise and

a hypothesis. The goal of NLI is to classify the relationship between them as

either “entailment”, “contradiction”, or “neutral”. Clinical Natural Language

Inference (CNLI) is a specific application of NLI in the clinical domain, with the

goal of classifying the relationship between two pieces of clinical text. For example,

given the premise “Patient has a history of hypertension and diabetes” and the

hypothesis “The patient has a high risk of heart disease,” the CNLI system should

4https://chat.openai.com/chat
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predict the relationship as “entailment” as the hypothesis logically follows from the

premise. However, if the premise is “Patient has a history of taking aspirin for pain

relief” and the hypothesis is “The patient is allergic to penicillin,” the relationship

should be “neutral” as there is no logical relationship between them. This task is

usually cast as a ternary classification problem.

2.4.2 Extrinsic Tasks. Extrinsic tasks are tasks that are primarily

focused on using the understanding of the text to make predictions or decisions in a

specific domain. These tasks are more focused on practical or real-world problems

or aspects in the specific domain. Examples of extrinsic tasks in the clinical domain

include, but are not limited to: readmission prediction, mortality prediction, length

of stay prediction, diagnosis prediction, and others Lu et al. (2019); Lu, Dou, and

Nguyen (2021b).

2.5 Discussion

2.5.1 Limitations.

Insufficient Domain Expertise There have been tremendous efforts in

producing stronger, faster, and larger domain-specific pre-trained language models

in the clinical domain. However, most of these models depend on self-supervised

pre-training over large amounts of textual data, e.g., ChatGPT uses 175 billion

parameters and Med-PaLM has 540 billion parameters Singhal et al. (2022).

Recently, ChatGPT has attracted attention all over the world as the model shows

remarkable performance on different kinds of NLP-related tasks across multiple

domains, including the biomedical and clinical fields. However, the model is

still considered “unhelpful” for medicine as judged by human experts as against

other domains, revealing that the seemingly almighty model lacks an in-depth

understanding of domain knowledge Guo et al. (2023). In fact, there has been
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a surge of interest in proposing novel methods to inject domain knowledge into

existing PLMs Y. He et al. (2020a); Lu, Dou, and Nguyen (2021a); Michalopoulos

et al. (2020). Nevertheless, these works mostly focus on empirical improvement over

different benchmarks without providing an in-depth and clear explanation of how

the infused knowledge actually affects the model inference, which could limit their

impact.

Data Scarcity Another limitation of the clinical PLMs is the limited

availability of their pre-training data. Essentially, most of the aforementioned

clinical PLMs depend on clinical notes, e.g., the MIMIC database Alsentzer,

Murphy, Boag, Weng, Jindi, et al. (2019); Huang et al. (2020), which is relatively

small in size and does not support the training of larger models Johnson et al.

(2016). This scarcity of data can negatively impact the performance of the models

and limit their ability to generalize to real-world scenarios.

Interpretability Despite the impressive performance of clinical PLMs, their

lack of interpretability remains an issue, as it can limit the trust placed in the

models and their ability to be used in real-world clinical settings.

Privacy, Security and Ethical considerations Clinical PLMs often work

with sensitive patient information, making privacy and security a major concern.

There is a need to ensure that patient data is protected and kept confidential,

which can be challenging in the context of Clinical NLP. The use of clinical PLMs

also raises important ethical considerations, such as the potential for algorithmic

bias and discrimination, the responsibility for the outputs of the models, and the

potential impact on patient care and outcomes.
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2.5.2 Future Directions. One promising avenue of future research

is to investigate novel pre-training methods that incorporate large amounts of

domain knowledge from knowledge bases and limited amounts of clinical notes.

The “big knowledge, small data” approach may provide a solution to the challenges

of insufficient domain expertise and data scarcity that are faced by current clinical

PLMs.

Another important direction is to delve deeper into the interpretability issue

of clinical PLMs and their applications. Understanding the thought process and

reasoning behind physician diagnoses can provide valuable insights into the use

of clinical PLMs. Furthermore, exploring the impact of diverse sources of domain

knowledge on model inference can help to better understand how to effectively

incorporate knowledge into clinical PLMs. This can lead to improved model

performance and increased trust in applying machine learning techniques in the

clinical setting.

2.6 Summary

In this chapter, we provide a comprehensive overview of pre-trained

language models in the clinical domain. We begin by introducing the key concepts

of pre-training methods, model architectures, pre-training data, and other

relevant information. Next, we present an extensive list of current clinical PLMs,

highlighting their key features and characteristics. Finally, we delve into the

limitations of current clinical PLMs, including issues related to the lack of domain

knowledge and data scarcity. Finally, we conclude by exploring future directions

for Clinical NLP, including the development of novel pre-training methods and a

deeper understanding of model interpretability and its applications in the clinical

setting.
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CHAPTER III

HARNESSING KNOWLEDGE GRAPHS: INTEGRATION TECHNIQUES FOR

LANGUAGE MODELS IN HEALTHCARE

This chapter contains materials from the published papers “Qiuhao Lu,

Nisansa de Silva, Sabin Kafle, Jiazhen Cao, Dejing Dou, Thien Huu Nguyen,

Prithviraj Sen, Brent Hailpern, Berthold Reinwald, and Yunyao Li. ‘Learning

electronic health records through hyperbolic embedding of medical

ontologies.’ In Proceedings of the 10th ACM International Conference on

Bioinformatics, Computational Biology and Health Informatics, pp. 338-346.

2019”, “Qiuhao Lu, Nisansa De Silva, Dejing Dou, Thien Huu Nguyen, Prithviraj

Sen, Berthold Reinwald, and Yunyao Li. ‘Exploiting node content for

multiview graph convolutional network and adversarial regularization.’

In Proceedings of the 28th International Conference on Computational Linguistics,

pp. 545-555. 2020”, and “Qiuhao Lu, Thien Huu Nguyen, and Dejing Dou.

‘Predicting patient readmission risk from medical text via knowledge

graph enhanced multiview graph convolution.’ In Proceedings of the

44th International ACM SIGIR Conference on Research and Development

in Information Retrieval, pp. 1990-1994. 2021”. In these publications, the

experiments were conducted solely by the author of the dissertation, Qiuhao

Lu. The other co-authors provided feedback regarding the results. Qiuhao took

complete responsibility for writing all the papers, while Dejing Dou and Thien Huu

Nguyen contributed significantly by offering editorial feedback to enhance their

quality.

In the previous chapter, we provide an in-depth review of existing clinical

pre-trained language models, scrutinizing their architectures, training data, and
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more. However, these models, despite exposure to clinical text during pre-training,

still struggle with limited domain expertise, hindering their performance in domain-

specific tasks. As a solution, this chapter explores the infusion of domain-specific

knowledge into these models, with an emphasis on knowledge graphs as a key

knowledge source.

In particular, this chapter delves into the utilization of graph representation

learning techniques to enhance machine learning models through the integration of

both internal and external knowledge graphs in clinical settings. It focuses on three

key studies that showcase the potential of knowledge graph integration in clinical

applications.

Firstly, we propose a novel approach that incorporates information from

EHRs by utilizing hyperbolic embeddings of medical ontologies (with specific

reference to ICD-9), within the prediction model Lu et al. (2019). Our results

demonstrate the efficacy of this approach, highlighting the promising performance

achieved by leveraging hyperbolic embeddings of ontological concepts in clinical

applications.

The second study introduces a cutting-edge network embedding method that

captures consistency across multiple network views Lu et al. (2020). To achieve

this, we generate a secondary view from the input network that reflects node

relationships based on content and enforce consistency between the two views

by incorporating a multiview adversarial regularization module. Experimental

studies conducted on benchmark datasets validate the effectiveness of our method,

showcasing superior performance compared to state-of-the-art algorithms in

demanding tasks such as link prediction and node clustering. Moreover, when

applied to a real-world scenario involving the prediction of 30-day unplanned ICU
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readmissions, our method demonstrates promising results in comparison to various

baseline approaches.

Lastly, we propose a novel approach that leverages the medical text within

EHRs for the prediction of patient outcomes, providing an alternative to prior

research that predominantly relied on numerical and time-series patient features

Lu, Nguyen, and Dou (2021). Specifically, we extract patients’ discharge summaries

from EHRs and represent them as multiview graphs, which are further enriched by

incorporating an external knowledge graph. Graph convolutional networks are then

employed for representation learning. Experimental results validate the effectiveness

of this method, showcasing state-of-the-art performance for the given task.

3.1 Learning Electronic Health Records through Hyperbolic

Embedding of Medical Ontologies

Patients who are readmitted to intensive care units (ICU) after transfer or

discharge are at high risk of mortality, and readmissions are usually costly for both

patients and hospitals. Therefore, efficiently and accurately identifying patients

who are prematurely discharged or transferred from ICU can not only reduce the

risk of mortality but also help decrease the high but avoidable costs of healthcare.

According to a recent study Baechle, Agarwal, Behara, and Zhu (2017), unplanned

hospital readmission was estimated to have cost nearly $26 billion annually in the

U.S. In addition to hospital readmission, ICU readmission is also a major problem.

Around 10% of ICU patients are readmitted during the same hospitalization

Ponzoni et al. (2017), due to premature discharge or premature transfer from

ICU. This highlights the importance of predicting the ICU readmission risk for

healthcare systems.
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In the past few years, there have been several published studies Krompaß,

Esteban, Tresp, Sedlmayr, and Ganslandt (2015); Lin, Zhou, Faghri, Shaw, and

Campbell (2019); Rumshisky et al. (2016); Y. Xue, Klabjan, and Yuan (2018) on

this unplanned readmission prediction task. Most of the studies are conducted

by physicians and medical researchers, and they generally focus on selecting

statistically significant features from ICU patients’ Electronic Health Records

(EHRs) and combining them with traditional machine learning methods, such

as logistic regression Y. Xue et al. (2018). These studies prove effectiveness by

achieving good prediction accuracy, but they still can be improved by incorporating

more sophisticated features, such as the latent embeddings of ontological medical

concepts in the patients’ EHRs.

Similar to the unplanned readmission prediction task, for in-hospital

mortality prediction, there are studies Harutyunyan, Khachatrian, Kale, and

Galstyan (2017); Johnson, Kramer, and Clifford (2014) that outperform the

traditional scoring systems JR, S, and F (1993); WA, JE, DP, EA, and DE (1981)

with machine learning methods. However, they have common limitations: They

are not using any external knowledge to improve their models. Therefore, their

approaches can be improved by incorporating external knowledge such as medical

ontologies.

Medical ontologies are primarily characterized by hierarchical relationships

and textual descriptions, along with non-hierarchical features. While Euclidean

space is the default geometry for word-based embedding methods Mikolov,

Sutskever, Chen, Corrado, and Dean (2013), embeddings learned in hyperbolic

spaces Nickel and Kiela (2017) are capable of representing the hierarchies more

efficiently. Although there has been some progress in learning word embeddings
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in hyperbolic spaces Dhingra, Shallue, Norouzi, Dai, and Dahl (2018), effective

leveraging of hierarchies with other data sources remains an open problem.

Hyperbolic space-based representation learning provides an effective way to

learn latent embeddings for medical ontologies, which are inherently hierarchical

in nature. This significantly helps solve the problem of learning medical ontology

embeddings by providing more efficiency and lower dimensions. However, this also

poses a significant challenge to medical applications. It is a well-discovered fact

that in Euclidean spaces, the learned embeddings are the function of context, which

is defined during training. When syntactic structures are taken as the context,

words are considered semantically similar when they are surrounded by that

same context. Comparable analogies can also be drawn for medical concepts. For

example, medical concepts are used by medical providers for billing purposes; thus,

similar concepts for such tasks are concepts that co-occur in a diagnosis as well as

in a similar hierarchical structure.

In this study, we propose a new method to leverage latent information in the

textual data from ICU patients’ EHRs, by training and combining the hyperbolic

embeddings of the medical concepts in them. We implement our method based

on the state-of-the-art method Lin et al. (2019) on ICU readmission prediction

and the widely accepted benchmark Harutyunyan et al. (2017) on in-hospital

mortality prediction, and we show improvement in both tasks. We also evaluate the

hyperbolic embeddings of medical concepts by comparing them with other popular

graph embedding methods, both intrinsically and extrinsically. All the experiments

are conducted on the MIMIC-III dataset Johnson et al. (2016).

Our contributions are summarized as follows:
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– Our method of adding embeddings of ICD-9 codes from discharge summaries

proves effective and it helps improve the performance of the state-of-the-art

method on ICU readmission prediction with different graph embeddings. It

also outperforms the benchmark results in the task of mortality prediction.

– We prove that the hyperbolic embeddings of medical concepts give promising

performance in different evaluations, outperforming Euclidean-based graph

embeddings in intrinsic evaluation and give comparable performance in

extrinsic evaluation.

3.1.1 Related Work.

Hyperbolic Representation Learning Representation learning is one of

the fundamental characteristics of deep learning advances, with representation

learning of words as vectors enabling significant advantages over traditional feature

engineering methods. While it is common to use the output of the layer before the

last layer of a Convolutional Neural Network (CNN) as an image representation

for downstream tasks, it is no surprise to see similar approaches for representation

learning being applied to other data sources such as knowledge bases (KBs) Bordes,

Usunier, Garcia-Duran, Weston, and Yakhnenko (2013). Recently, a similar idea,

in which representation learning of medical concepts which are represented in a

large scale KB (e.g., UMLS, SNOMED) Choi, Chiu, and Sontag (2016) are included

in the process, has been applied to the medical domain. This has enabled the

application of deep learning advances into the medical domain and at the same

time increased the range of applications of medical KBs.

It has been shown that linear representations need a much higher number

of dimensions in order to represent the hierarchies, which is the most common
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aspect in the KB Nickel and Kiela (2017). Consequently, representation learning

in hyperbolic spaces as opposed to Euclidean spaces has been proposed, with

hyperbolic space embedding found to perform better in the representation of

hierarchies, especially with a lower dimension of features Sala, De Sa, Gu, and Ré

(2018). There have been several methods proposed for learning representations in

hyperbolic spaces, where it has also been found that data that are not inherently

hierarchical (e.g., words) do not yield significant performance gain in hyperbolic

spaces Dhingra et al. (2018); Leimeister and Wilson (2018).

Medical ontologies are usually hierarchically organized. This kind of tree-

like structure can be well represented in hyperbolic space. To better illustrate,

we visualize the Poincaré embedding by training a 2-D embedding of a subtree

of the ICD-9 ontology Slee (1978). As shown in Figure 3, the embedding looks

like a continuous version of a “tree” and the low-level nodes (leaf) are on the edge

and the high-level nodes (root) are on the center area. This is consistent with the

feature of hyperbolic space.

Unplanned ICU Readmission Prediction Unplanned ICU readmission

prediction, along with unplanned hospital readmission prediction, is an important

task in the healthcare field. Apart from research work that is conducted by

physicians which is usually based on specific feature engineering and traditional

machine learning methods Y. Xue et al. (2018), there is also some solid work

that is from the angle of natural language processing which focuses on predicting

readmissions based on medical textual notes from EHRs Rumshisky et al. (2016).

Some exploit representation learning techniques to solve this problem, where

they learn either embeddings of patients or embeddings of medical concepts from

patients’ data Krompaß et al. (2015); Lin et al. (2019).
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(a) Hierarchical Structure of the Subtree

(b) Visualization of the 2-D Hyperbolic
Embeddings of the Subtree

Figure 3. Hierarchy and Corresponding 2-D Hyperbolic Embeddings of “140-239”
Subtree of ICD-9.

To the best of our knowledge, Lin et al. (2019) proposes the best Area

Under the Receiver Operating Characteristics curve (AUROC) score of 0.791

for the ICU readmission prediction task on the MIMIC-III dataset Johnson

et al. (2016). They take three types of information as input, i.e., chart events

information, basic demographic information and diagnosis information (in the

form of ICD-9 codes). All the 3 types of features are concatenated and put into

the prediction model, which is a sequential combination of two LSTM layers and

one multi-filter CNN layer. They also utilize the embeddings of diagnosis (in the

form of ICD-9 codes) to improve the prediction Choi et al. (2016).
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Though their work proves effective, they completely overlook the important

information that is encoded in the medical text notes in patients’ EHRs.

Researchers have proved that the medical text notes in patients’ EHRs contain

enough information that can be used to support the readmission prediction task

Rumshisky et al. (2016). In this study, we incorporate the important textual

information by extracting ICD-9 codes from the medical notes and embed them

into the hyperbolic space, which proves to be a better fit with the ICD-9 medical

ontology.

In-hospital Mortality Prediction In-hospital mortality prediction is another

important task in the medical domain which aims at predicting the mortality of

patients when they are in hospital. Early studies develop systems that calculate

the predictions based on expert knowledge or data-driven approaches, such as the

APACHE WA et al. (1981), the APACHE II WA, EA, and DP (1985), the SAPS

JR et al. (1984), and the SAPS II JR et al. (1993).

Recently, researchers use machine learning techniques to deal with this

problem. Johnson et al. Johnson et al. (2014) use three traditional methods to

solve this task, i.e., Logistic Regression, SVM, and Random Forest. The benchmark

Harutyunyan et al. (2017) we use also compares different approaches with

traditional scoring systems which includes Logistic Regression and LSTM-based

models. Although these works advance the current state-of-the-art performance in

mortality prediction, few of them utilize external knowledge like medical ontologies.

Hence, in this study, we make use of the ICD-9 codes and represent them with

hyperbolic embeddings to see whether it can improve the performance of in-hospital

mortality prediction.
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ICD-9 and other Medical Ontologies There are multiple medical

ontologies:

– UMLS: The Unified Medical Language System is a compendium of many

controlled vocabularies in the biomedical sciences Bodenreider (2004).

– SNOMED CT: SNOMED Clinical Terms is a systematically organized

computer processable collection of medical terms providing codes, terms,

synonyms and definitions used in clinical documentation and reporting

Stearns, Price, Spackman, and Wang (2001).

– ICD-9: ICD-9 is the 9-th revision of the International Statistical

Classification of Diseases and Related Health Problems (ICD), a medical

classification list by the World Health Organization (WHO) Slee (1978).

Besides ICD-9, more recent versions (i.e., ICD-10 and ICD-11) are widely

used as well.

– MeSH: Medical Subject Headings (MeSH) is a comprehensive controlled

vocabulary for the purpose of indexing journal articles and books in the life

sciences; it serves as a thesaurus that facilitates searching Lipscomb (2000).

In this study, we conduct experiments on the MIMIC-III dataset, which

takes ICD-9 as their coding ontology. ICD-9 Clinical Modification (ICD-9-CM) is

a modification of ICD-9. This national variant of ICD-9 is provided by the Centers

for Medicare and Medicaid Services (CMS) and the National Center for Health

Statistics (NCHS), and the use of ICD codes is now mandated for all inpatient

medical reporting requirements.

3.1.2 Method.
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3.1.2.1 Hyperbolic Medical Concept Embeddings. We refer the

readers to Dhingra et al. (2018); Leimeister and Wilson (2018); Nickel and Kiela

(2017) for a more detailed treatment of hyperbolic spaces and their characterization

and differences with respect to the Euclidean space geometry. Any metric space is

characterized by the distance between two points, with the distance being defined

in hyperbolic space, specifically for Poincaré ball model for two points u, v ∈ Bd is

dH(u, v) = arcosh

(
1 + 2

||u− v||2

(1 − ||u||2)(1 − ||v||)2)

)
(3.1)

For a unit Poincaré ball space, ||u|| < 1. As is evident from Equation 3.1, the

distances between two points near the boundary of Poincaré ball tend to ∞. Also,

for a hierarchical structure (e.g., a tree) that is embedded into the space, the root

node will be placed in the center area of the space while the leaf nodes will be

placed near the boundary area.

In order to learn embeddings from hierarchical medical ontologies, we follow

the work of Nickel and Kiela (2017) to use Riemannian-SGD to optimize the loss

function:

L =
∑

(u,v)∈S

log
exp−dH(u,v)∑

v′∈N(u) exp−dH(u,v′)
(3.2)

where (u, v) ∈ S is a hierarchical (i.e., subclassof) relationship in a Knowledge

Base (KB) S and N(u) = {v|(u, v) /∈ S} ∪ {u} is a set of negative examples for u.

Equation 3.2 can be observed as a soft ranking loss where related objects should be

closer than objects for which we do not observe a relationship.

There are different kinds of medical ontologies that hierarchically organize

medical concepts including diseases, articles, medicines, etc. Since we conduct

experiments on the MIMIC-III dataset, which encodes disease information of

patients based on the 9-th revision of the International Statistical Classification
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Figure 4. Framework of Readmission Prediction

of Diseases and Related Health Problems (ICD-9), we explore embeddings of the

ICD-9 medical concepts for further evaluation.

3.1.2.2 Incorporating Textual Information from EHRs for

Readmission Prediction. In this study, we propose to incorporate the medical

text notes, i.e., the discharge summaries, to improve the prediction. We extract

ICD-9 codes from the discharge summaries of ICU patients’ EHRs using an

automatic medical code assignment tool for ICD-9 Perotte et al. (2013). The

extracted ICD-9 codes are then embedded into hyperbolic space with the method

described in Section 3.1.2.1, the embeddings of which are used to reconstruct the

input for the prediction model. Inspired by the use of deep learning models in
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Lin et al.’s approach Lin et al. (2019), the framework of our method is shown in

Figure 4.

Note that in Figure 4, the reconstructed input contains “medical notes

ICD-9” which is the embeddings of the list of medical codes extracted from the

textual notes (i.e., discharge summaries) in ICU patients’ EHRs. Just like the

“diagnosis ICD-9” of the original input Lin et al. (2019), they are also in the

form of embeddings Choi et al. (2016). But unlike the “diagnosis ICD-9” which is

generated manually by professional coders, the “medical notes ICD-9” tends to be

redundant but more informative for predicting ICU readmission. Thus, though it

is possible that there exists some overlapping between the two lists, our hypothesis

is that adding a new list of related ICD-9 codes will help improve the model. The

experimental results show that the reconstructed input demonstrates an advantage

over the original one Lin et al. (2019).

3.1.2.3 Incorporating Embeddings for Mortality Prediction.

Harutyunyan et al.’s work Harutyunyan et al. (2017) is a widely accepted

benchmark in in-hospital mortality prediction. We use their benchmark model

for our experiment, which is a LSTM network that takes a 48-hour sequence of

numerical features (e.g., Glascow coma scale, Heart Rate, etc.) as input. To test

our method of incorporating embeddings, we simply concatenate the embeddings of

diagnoses of patients (in the form of ICD-9 codes) to the original input and see if

any performance gain can be achieved. The framework is shown in Figure 5.

3.1.3 Evaluation. In this section, we evaluate our proposed method

both intrinsically and extrinsically. For intrinsic evaluation, we test different

embeddings of the ICD-9 ontology by comparing the similarities between medical

concepts in the embedding spaces, to prove that the hyperbolic embedding method
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Figure 5. Framework of Mortality Prediction

is a good fit for hierarchical representations, i.e., the ICD-9 ontology. For extrinsic

evaluation, we test our method based on the state-of-the-art ICU readmission

prediction model Lin et al. (2019) and the in-hospital mortality prediction

benchmark Harutyunyan et al. (2017) on the MIMIC-III dataset, with different

graph embeddings, to see (1) whether our method improves the performance of ICU

readmission prediction and in-hospital mortality prediction; and (2) whether the

hyperbolic embeddings of medical concepts from ICD-9 show any advantage over

other prevalent embedding algorithms.

3.1.3.1 Intrinsic Evaluation. In this subsection, we intrinsically

evaluate the different embeddings over the ICD-9 ontology. Basically, we want to

compare and demonstrate how the similarities of medical concepts from ICD-9 are

retained in the embedding spaces.

Setup Since we do not have a publicly available gold standard test where the

similarities of medical concepts are assigned by professionals, nor the expertise

to assign them by ourselves, we take an alternative by randomly selecting a
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certain number of pairs of medical concepts from ICD-9 (20, 000 in our test), and

computing the similarities between them based on several prevalent ontology-

based similarity measurements, i.e., the Wu & Palmer similarity Wu and Palmer

(1994), the Leacock & Chodorow similarity Leacock and Chodorow (1998), the

Resnik similarity Resnik (1995), and the RADA similarity Rada, Mili, Bicknell, and

Blettner (1989). Thus, we have 4 sequences of ontology-based term pair similarities

over the same set of selected medical concepts.

We then compute the distance-based term pair similarities in the embedding

spaces, and we evaluate the embeddings by comparing the Pearson Correlation

Coefficients between the sequences of distance-based term pair similarities

and the sequences of ontology-based term pair similarities. Note that for the

hyperbolic embeddings (Poincaré), we compute the Poincaré distance to denote the

dissimilarity based on Equation 3.1, and we use the negative value of it to denote

the similarity. For Euclidean embeddings, we use the Euclidean distance as the

dissimilarity, and convert it to similarity based on s = 1
1+d

.

Intuitively, higher correlation coefficients imply that the similarities between

concepts are better retained in the corresponding embedding space.

The 4 ontology-based similarity measurements are defined as follows:

SimWUP(C1, C2) =
2 ∗N3

N1 + N2 + 2 ∗N3

(3.3)

where N1 and N2 are the distance from the least common subsumer (LCS) to C1

and C2 respectively. N3 is the depth of the least common subsumer. The least

common subsumer of two concept nodes C1 and C2 is the lowest node that can

be a parent for C1 and C2.

SimLCH(C1, C2) = − log

(
ShortestPath(C1, C2)

2 ∗ depthmax

)
(3.4)
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where depthmax is the maximum depth of any node in the tree and

ShortestPath(C1, C2) is the length of the shortest path between C1 and C2.

SimRESNIK(C1, C2) = IC(LCS(C1, C2)) (3.5)

where LCS refers to the least common subsumer and IC refers to information

content. Note that since we cannot compute the term frequency of the medical

concepts, we use another ontology-based information content as an alternative Seco,

Veale, and Hayes (2004):

IC(c) = 1 − log(hypo(c) + 1)

log(maxnodes)
(3.6)

where hypo(c) refers to the number of hyponyms of concept c and maxnodes refers

to the maximum number of concepts in the taxonomy.

SimRADA(C1, C2) = 2 ∗ depthmax− ShortestPath(C1, C2) (3.7)

where depthmax and ShortestPath(C1, C2) are the same as Equation 3.4.

Experiments We randomly pick 20, 000 concept pairs from the ICD-9 ontology

and compute the mentioned 4 kinds of ontology-based similarities between them.

Then we compute the distance-based similarities over these pairs for the several

compared embeddings. Finally, we calculate the Pearson Correlation Coefficients

between the above two kinds of sequences, as shown in Table 4.

Table 4 shows that the Poincaré embeddings significantly outperform

the TransE Bordes et al. (2013), DistMult B. Yang, Yih, He, Gao, and Deng

(2014), ComplEx Trouillon et al. (2017); Trouillon, Welbl, Riedel, Gaussier, and

Bouchard (2016) and Rescal Nickel, Tresp, and Kriegel (2011) embeddings, in

that the Poincaré embeddings show much higher correlation coefficients with

the ontology-based similarity sequences. Generally it shows that the similarities
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Method Dim
Measurement

WUP LCH RESNIK RADA

Poincaré
10 0.5720 0.6797 0.5784 0.7278
100 0.5866 0.6902 0.5977 0.7351
300 0.6042 0.7046 0.6007 0.7491

ComplEx
10 0.4279 0.3169 0.4320 0.3036
100 0.2265 0.2018 0.2094 0.1774
300 0.1307 0.1432 0.1134 0.1141

DistMult
10 0.4297 0.3621 0.4174 0.3410
100 0.1941 0.1827 0.1964 0.1521
300 0.1204 0.1223 0.1161 0.0922

transE
10 0.0483 0.0269 0.0709 0.0130
100 0.4159 0.3682 0.3494 0.3658
300 0.4355 0.3958 0.3862 0.3912

Rescal
10 0.4108 0.2884 0.4364 0.2952
100 0.2522 0.2756 0.1986 0.2523
300 0.1243 0.1355 0.1166 0.1039

Table 4. Pearson Correlation Coefficients for Different Embeddings of ICD-9

between concepts are better retained in the hyperbolic embedding space than in the

other embedding spaces.

Table 4 also demonstrates that the Poincaré embeddings are capable of

representing information with very few dimensions. As shown in this table, the

Poincaré embeddings with low dimensions give good performance, similar to the

ones with higher dimensions. It thus proves that using hyperbolic-based embedding

approaches is a good way to capture semantics in hierarchical data, such as ICD-9.

To sum up, in this subsection we intrinsically evaluate the hyperbolic

embeddings over the ICD-9 medical ontology by comparing such with other graph

embedding methods. The experimental results demonstrate that the method works

well and outperforms other embedding approaches.
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Embedding Acc Pre-0 Pre-1 Re-0 Re-1 A.R A.P

Poincaré 0.7223 0.9035 0.3740 0.7361 0.6655 0.7786 0.4827
ComplEx 0.6621 0.9141 0.3306 0.6423 0.7454 0.7591 0.4236
Distmult 0.6426 0.9126 0.3172 0.6169 0.7508 0.7534 0.4243
TransE 0.7254 0.9062 0.3789 0.7366 0.6782 0.7876 0.4875
Rescal 0.6544 0.9160 0.3264 0.6303 0.7562 0.7661 0.4456

*Acc: Accuracy, Pre: Precision, Re: Recall, A.R: AUC under ROC, A.P: AUC under PRC

Table 5. Performance on ICU Readmission Prediction Without Discharge
Summaries

Embedding Acc Pre-0 Pre-1 Re-0 Re-1 A.R A.P

Poincaré 0.7481 0.8993 0.4005 0.7766 0.6310 0.7851 0.4819
ComplEx 0.6705 0.9101 0.3342 0.6565 0.7263 0.7602 0.4341
Distmult 0.6678 0.9067 0.3303 0.6565 0.7151 0.7606 0.4327
TransE 0.7536 0.9039 0.4100 0.7779 0.6511 0.7882 0.4957
Rescal 0.6399 0.9209 0.3197 0.6067 0.7801 0.7684 0.4454

*Acc: Accuracy, Pre: Precision, Re: Recall, A.R: AUC under ROC, A.P: AUC under PRC

Table 6. Performance on ICU Readmission Prediction With Discharge Summaries

3.1.3.2 Extrinsic Evaluation 1: 30-day Unplanned ICU

Readmission Prediction. In this subsection, we evaluate our proposed method

described in Section 3.1.2.2, to see whether any performance improvement on 30-

day unplanned ICU readmission prediction can be gained. Moreover, since we apply

the hyperbolic embeddings of the ICD-9 medical ontology in the proposed method,

this subsection can also be regarded as an extrinsic evaluation test for the medical

embeddings.

Setup This portion of our experiments is conducted based on the MIMIC-III

Critical Care (Medical Information Mart for Intensive Care III) Database, which is

a large, freely-available database composed of deidentified health-related EHR data
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Embedding dim Acc Pre-0 Pre-1 Re-0 Re-1 A.R A.P

Poincaré 100 0.7086 0.8769 0.3410 0.7440 0.5590 0.7193 0.4098
Poincaré 10 0.6721 0.8886 0.3214 0.6796 0.6403 0.7165 0.3994
TransE 100 0.7115 0.8787 0.3455 0.7461 0.5655 0.7101 0.4067
TransE 10 0.7218 0.8702 0.3475 0.7710 0.5146 0.7099 0.3930

Table 7. Performance on Readmission Prediction with Different Dimensions of
Poincaré Embeddings

Embedding Acc Pre-0 Pre-1 Re-0 Re-1 A.R A.P

Poincaré 0.8814 0.8977 0.6350 0.9737 0.2912 0.8722 0.5543
ComplEx 0.8947 0.9165 0.6701 0.9662 0.4380 0.8915 0.6104
Distmult 0.8988 0.9152 0.7115 0.9730 0.4243 0.8956 0.6247
TransE 0.8888 0.9019 0.6930 0.9777 0.3211 0.8854 0.5717
Rescal 0.8913 0.9019 0.7239 0.9809 0.3188 0.8954 0.6025

*Acc: Accuracy, Pre: Precision, Re: Recall, A.R: AUC under ROC, A.P: AUC under PRC

Table 8. Performance on Mortality Prediction Without Discharge Summaries

associated with over 40, 000 patients who stayed in the critical care units (ICU) of

the Beth Israel Deaconess Medical Center between 2001 and 2012.

The database contains a large variety of EHR data of ICU patients,

including basic demographic information, bedside vital sign measurements,

laboratory test results, medications, procedures, medical text notes (e.g., discharge

summaries), and so on.

In this experiment, we follow the data preprocessing procedure of

Harutyunyan et al. (2017); Lin et al. (2019) and generate a dataset of 48, 411

ICU stay records. Each ICU stay record corresponds to one ICU patient, and

each patient may have multiple ICU stay records. We then split the entire dataset

into the training set (80%), the validation set (10%), and the testing set (10%) for

further evaluation.
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For fair comparison, we use the same setup and benchmark with Linet al.

Lin et al. (2019) and consider 4 types of positive ICU stay records, including the

patients (and the corresponding ICU stay record) who were transferred to low-level

wards from ICU and readmitted to ICU later; the patients who were transferred

out of ICU and died later; the patients who were discharged and readmitted to ICU

later; and the patients who were discharged and died later. Note that the “later”

here means “within 30 days.”

Experiments We experiment with the hyperbolic embeddings (Poincaré) of

the ICD-9 ontology and several state-of-the-art graph embedding methods, i.e.,

ComplEx, Distmult, TransE and Rescal. The results of using our method, with

different embeddings, on the ICU readmission prediction task are shown in Table 5

and Table 6.

Note that in the readmission prediction task, most researchers are using the

Area Under the Receiver Operating Characteristics curve (AUROC) as the main

metric to evaluate their approaches. Generally, a higher AUROC score means a

better model, for this task. Along with AUROC (A.R), some additional metrics are

proposed, to better illustrate the comparison. However, these additional metrics

can be unstable, and they are better used for additional evaluation.

In Table 5, we present the performance of different embeddings without

ICD-9 codes extracted from discharge summaries. Note that in Table 5 we

only use the human-annotated ICD-9 codes for each patient, without using any

extractions from the discharge summaries. In Table 6, we present the corresponding

results with ICD-9 codes extracted from discharge summaries as described in

Section 3.1.2.2. It shows that adding extra ICD-9 codes from discharge summaries

does improve the overall performance on this readmission prediction task. It
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also shows that the Poincaré embeddings outperform all other graph embedding

methods except TransE. Note that we also test this method with the Claims

embeddings Choi et al. (2016) that are used by Lin et al. Lin et al. (2019), the

results of which (0.7943) also demonstrate an advantage over their best reported

A.R score (0.791). We do not think it is fair to compare Lin et al.’s results Lin et

al. (2019) with the reported graph embedding methods in Table 5 and 6 because

they only use ICD-9 codes to generate embeddings.

As is described in Section 3.1.1, hyperbolic embeddings have the ability

to represent hierarchical data with lower dimensions. So, in Table 7, we test our

method using the Poincaré and TransE embeddings with lower dimensions. The

results are consistent, showing that lower dimensions of Poincaré embeddings give

better performance than that of TransE, especially when in 300 dimensions TransE

actually does better than Poincaré.

To sum up, in this subsection we evaluate our method in the ICU

readmission prediction task, and we also extrinsically evaluate the hyperbolic

embeddings of the ICD-9 ontology. The results prove the effectiveness of our

method by showing a better AUROC over the model without discharge summaries.

The results also demonstrate the good qualities of the hyperbolic embeddings, in

that they give comparable performance with the state-of-the-art graph embedding

methods.

3.1.3.3 Extrinsic Evaluation 2: In-Hospital Mortality

Prediction. In this subsection, we further evaluate our method and the hyperbolic

embeddings of the ICD-9 medical ontology by incorporating the embeddings

into existing methods of in-hospital mortality prediction and comparing their

performance.
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Embedding Acc Pre-0 Pre-1 Re-0 Re-1 A.R A.P

Poincaré 0.8882 0.9128 0.6338 0.9626 0.4128 0.8756 0.5760
ComplEx 0.8972 0.9012 0.8220 0.9895 0.3073 0.8958 0.6312
Distmult 0.8941 0.9267 0.6330 0.9529 0.5183 0.8959 0.6218
TransE 0.8882 0.8995 0.7043 0.9802 0.3004 0.8852 0.5771
Rescal 0.8929 0.9141 0.6654 0.9669 0.4197 0.8979 0.6042

*Acc: Accuracy, Pre: Precision, Re: Recall, A.R: AUC under ROC, A.P: AUC under PRC

Table 9. Performance on Mortality Prediction With Discharge Summaries

Embedding dim Acc Pre-0 Pre-1 Re-0 Re-1 A.R A.P

Poincaré 300 0.8882 0.9128 0.6338 0.9626 0.4128 0.8756 0.5760
Poincaré 100 0.8938 0.9081 0.7061 0.9759 0.3692 0.8789 0.5841
Poincaré 10 0.8904 0.9100 0.6627 0.9691 0.3876 0.8755 0.5900

Table 10. Performance on Mortality Prediction with Different Dimensions of
Poincaré Embeddings

Setup This part of our experiments is also conducted on the MIMIC-III

dataset Johnson et al. (2016). We follow the data preprocessing pipeline with

the benchmark Harutyunyan et al. (2017). The data contains 42, 276 ICU stays

of 33, 798 unique, de-identified patients, who are at least 18 years old. For fair

comparison, we adopt the same split of 15% for validation and 85% for training.

Experiments To be consistent with the experiment on 30-day unplanned ICU

readmission prediction, we experiment with the same group of graph embeddings

(i.e., Poincaré, ComplEx, Distmult, TransE and Rescal). The results of our method

with different embeddings on in-hospital mortality prediction are shown in Table 8

and Table 9.

In the task of in-hospital mortality prediction, Area Under the Receiver

Operating Characteristics curve (AUROC) is still the widely accepted metric for
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evaluation. Higher AUROC indicates better performance of a model for a certain

embedding method. In Table 8 and 9, the same set of metrics is represented for

additional comparison.

The work of Harutyunyan et al. Harutyunyan et al. (2017) is a widely

accepted benchmark for mortality prediction, which gives an A.R score of 0.8607.

As in the readmission experiment, we present the results with and without ICD-9

codes extracted from discharge summaries. Note that in Table 8 we only use the

human-annotated ICD-9 codes for each patient, without using any extractions

from the discharge summaries. It shows that adding ICD-9 codes can generally

improve the performance of mortality prediction with different embeddings.

Every embedding method in the experiment leads to an improvement on the

AUROC (A.R) score over the baseline (0.8607). In Table 10, we test the Poincaré

embeddings with different dimensions, and the results are very stable, which is

consistent with the earlier assumption.

In summary, we extrinsically evaluate our method and the hyperbolic

embeddings of the ICD-9 medical ontology on the task of in-hospital mortality

prediction. The results prove the effectiveness of our method by representing higher

AUROC than the benchmark, though in this task the hyperbolic embeddings do

not outperform all other embeddings. However, adding ICD-9 codes extracted

from discharge summaries does improve the overall performance with almost every

embedding method on the task of mortality prediction, which is consistent with the

readmission prediction experiment.
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3.2 Exploiting Node Content for Multiview Graph Convolutional

Network and Adversarial Regularization

Over the last few years, network representation learning, or node embedding,

has gained increasing interest in the community of machine learning, due to the

popularity of the special data form. In reality, datasets from different fields are

often in the form of networks, such as social networks, drug-target-interaction

networks, mobile phone networks, citation networks, etc. It is therefore very

important to find a way to well represent the networks, which is challenging

because there is no direct way to encode the high-dimensional data into low-

dimensional feature vectors efficiently W. L. Hamilton, Ying, and Leskovec

(2017). Moreover, network embedding techniques benefit a variety of downstream

applications like link prediction, node classification, and node clustering.

In recent years, researchers have developed different kinds of network

embedding approaches, many of which have shown great performance in analytical

evaluation and have been quite effective in downstream applications. These studies

range from traditional machine learning techniques like matrix factorization to

recent deep-learning-based methods like graph autoencoders.

Traditional models, or shallow models, usually optimize the embeddings of

nodes directly. For these shallow models, the mapping from networks to vectors is

simply an embedding lookup, i.e., each node corresponds to a unique embedding

vector W. L. Hamilton et al. (2017). Factorization-based approaches like GraRep

Cao, Lu, and Xu (2015), HOPE Ou, Cui, Pei, Zhang, and Zhu (2016) and random

walk-based approaches like DeepWalk Perozzi, Al-Rfou, and Skiena (2014),

node2vec Grover and Leskovec (2016) all fall into this category. Shallow models
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generally suffer from computational inefficiency and lack of ability to well represent

complex networks.

More recently, deep models, or autoencoder-based approaches, have been

gaining more and more attention, and have shown superior performance in many

applications. Compared with shallow models which use a simple lookup table

as the encoder function, deep models usually use deep neural networks as the

encoder. For example, SDNE D. Wang, Cui, and Zhu (2016) and DNGR Cao,

Lu, and Xu (2016) use deep neural networks as the encoder and decoder functions

to generate low-dimensional representations. GAE and VGAE Kipf and Welling

(2016b) aggregate neighborhood messages based on convolutional encoders, e.g.,

graph convolutional networks (GCN) Kipf and Welling (2016a) and its variants,

to generate node embeddings. The encoders share parameters across nodes and it

leads to better efficiency. Note that GCN variants like GraphSAGE W. Hamilton,

Ying, and Leskovec (2017) and GAT Veličković et al. (2017) are not discussed as

they mostly focus on message passing which is not the main focus of this work.

Another successful variant of graph autoencoders incorporates generative

adversarial networks (GAN) for representation learning. For example, ARGA and

ARVGA Pan et al. (2018) enforce the latent node embeddings to match a prior

normal distribution based on an adversarial training mechanism. The adversarial

training procedure usually provides regularization and results in more robust

and meaningful representations Makhzani, Shlens, Jaitly, Goodfellow, and Frey

(2015). DBGAN Zheng et al. (2020) estimates the prior distribution of latent

representations by prototype learning and aims to balance both sample-level

and distribution-level consistency via a novel bidirectional adversarial learning

framework.
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A common theme among most of the aforementioned approaches is that

they do not explicitly consider the semantic relatedness between nodes. For shallow

models like DeepWalk Perozzi et al. (2014), they mostly only focus on preserving

the topological structure of the network while neglecting the rich information

in node content. For deep models, they implicitly incorporate node content

by aggregating neighborhood node features using powerful encoders like graph

convolutional networks.

In this paper, we propose a novel network embedding method based on

multiview graph convolutional networks and adversarial regularization. The method

aims to preserve the distribution consistency across two views of the network, as

well as shape the output representations to match an arbitrary prior distribution,

by incorporating a multiview adversarial regularization module. More specifically,

we regard the topological structure as the first and main view of the network, and

create a second view that captures the relatedness between nodes based on node

content. Different from DBGAN Zheng et al. (2020) which tries to reconstruct the

node features directly, the proposed method relaxes this requirement and focuses

on preserving the semantic relatedness between them. A multiview reconstruction

loss function is leveraged to optimize the model jointly. We evaluate the proposed

method on three diverse applications. The experimental results on benchmark

datasets demonstrate that the method outperforms the state-of-the-art algorithms

in link prediction and node clustering. We also evaluate our method on a real-

world downstream application, i.e., ICU readmission prediction, and the method

compares favorably with several baseline methods. Our contributions can be

summarized as follows:
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– We propose a novel network embedding method, i.e., Multiview Adversarially

Regularized Graph Autoencoder (MRGAE). Unlike previous studies that

either neglect node content or aim to reconstruct the entire node feature

matrix, we focus on the semantic relatedness between nodes and aim to

preserve the consistency of node presentations across two specific views of

the network. We incorporate a multiview adversarial regularization module to

achieve the objective and enforce the output representations to match a prior

distribution.

– We conduct extensive and diverse experiments for evaluation. The

experimental studies demonstrate the superb performance of our method,

by updating the state-of-the-art results in link prediction and node clustering

on benchmark datasets. Our method also compares favorably with baselines

in the task of ICU readmission prediction.

3.2.1 Method.

Graph Convolutional Networks Most recent graph neural network models

usually use a common architecture, i.e., graph convolutional networks (GCN) Kipf

and Welling (2016a), to encode the input networks. Essentially, graph convolutional

networks transform the original graph or network into a lower-dimensional

representation matrix Z, given the adjacency matrix A and the feature matrix X as

the input. Each of the transformations can be written as a non-linear convolution

function:

H(l+1) = f(H(l),A) (3.8)

where H(0) = X which is the input feature matrix, and H(l) refers to the output

representation matrix (i.e., embeddings) Z(l) for the l-th layer convolutional
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neural network. Essentially, different types of the convolution function f usually

correspond to variants of the GCN model. The standard convolution function can

be written as:

Z(l+1) = H(l+1) = f(H(l),A) = σ(D̂− 1
2 ÂD̂

1
2H(l)W(l)) (3.9)

where Â = A+I, and I is the identity matrix of A. D̂ is the diagonal degree matrix

of Â, and W(l) is the weight matrix for the l-th layer neural network, which is also

the parameter to optimize. We use the ReLU function as the activation function σ

in this paper, and adopt a two-layer GCN as the encoder for all the experiments.

Adversarial Regularization Adversarial regularization has proven effective in

various network representation learning approaches Q. Dai, Li, Tang, and Wang

(2018); Makhzani et al. (2015); Pan et al. (2018). Generally, in the encoder-

decoder framework, one can view the encoder as a generator, and incorporate

a discriminator (e.g., a multi-layer perceptron) to distinguish whether a latent

representation is from the encoder or from an arbitrary prior distribution. By

incorporating this module, one can shape the learned representations to match an

arbitrary prior distribution, e.g., Gaussian distribution. This is similar in spirit

to VGAE, which uses KL divergence instead of adversarial training to achieve

the same purpose Makhzani et al. (2015). In this work, we extend the adversarial

regularization module to a multiview scenario, where we aim to enforce the learned

representations from the two views to be distribution consistent and to match a

prior distribution.

Multiview Adversarially Regularized Graph Autoencoder (MRGAE)

The overall framework of the proposed method contains three main parts, as
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Figure 6. Architecture of MRGAE.

depicted in Figure 6. First, we consider the topological structure as the first and

main view of the input network, and create a second view of it. Next, we use

two graph convolutional networks (GCN) as the encoders to separately encode

the two views of the input network. Then, we incorporate two discriminators,

one to distinguish between the representations from the main view and the prior

distribution, and the other to distinguish between the representations from the

two views. In this paper, we use the Gaussian distribution as the prior distribution

since the Gaussian assumption has been widely adopted in various previous studies

Kipf and Welling (2016b); Makhzani et al. (2015); Pan et al. (2018). Finally, we

design a specific multiview reconstruction loss function, combine it with the two

discriminators, and optimize the model jointly.

Notations Given the undirected input network G = (V,E), we regard it as the

first view G1 and create a second view G2 from it. Specifically, we denote the two
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views of the network G as G1 = (V,E1) and G2 = (V,E2), respectively. Note that

we have E1 = E. Each view Gi(i = 1, 2) has the same node set V with N nodes

(N = |V |) and a different set of edges Ei. Each view has its own adjacency matrix

Ai and degree matrix Di. We further introduce a N × D feature matrix X for V ,

where each row corresponds to the input features of D dimensions for each node.

For featureless networks, we use the identity matrix as a replacement for X. The

goal is to learn a unified representation matrix Z for the nodes.

Second View Construction We aim to construct a second view G2 = (V,E2)

of the network that captures the semantic relatedness between nodes. To define E2,

we adopt a straightforward strategy to calculate cosine similarities between node

content. Essentially, if the cosine similarity between two nodes is greater than a

threshold αprox, then we create a link between them in the second view.

Encoder-Decoder Framework In this paper, we follow the generalized

encoder-decoder framework W. L. Hamilton et al. (2017) for learning network

representations. More specifically, we adopt two-layer GCNs as the encoders, and

each of them encodes one single view of the input multiview network. Essentially,

the encoder model transforms the nodes in the network into low-dimensional

feature representations (i.e., embeddings), and this encoding process can be written

as:

Zi = ENC(X,Ai) = GCN(X,Ai) (3.10)

where Zi refers to the representation matrix learned from the i-th view Gi. Along

with Equation 3.9, the encoding process can then be further explained as:

Z
(0)
i = X (3.11)
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Z
(1)
i = LeakyReLU(D̂

− 1
2

i ÂiD̂
1
2
i XWi

(0)) (3.12)

Z
(2)
i = D̂

− 1
2

i ÂiD̂
1
2
i Z

(1)
i Wi

(1) (3.13)

where Âi and D̂i refer to the adjacency matrix and degree matrix of the i-th view

Gi, respectively. Similarly, Wi
(l) represents the parameter matrix for the l-th layer

graph convolutional network with Gi. Thus, in general this encoding process with

Equation 3.10 can be written as:

Zi = ENC(X,Ai) = q(Zi|X, Âi) = Z
(2)
i (3.14)

With regard to the decoder model, essentially it decodes the learned low-

dimensional representations, and transforms them into some information that can

be evaluated in some way, for example, the existence of edges between nodes or

label predictions on specific downstream tasks. The evaluations are a good way to

measure the quality of the learned representations of nodes. In this paper, we use a

simple yet effective pair-wise inner-product decoder to reconstruct the edges of the

original network, which is shown as follows:

DEC(zp, zq) = zp
⊤zq (3.15)

The inner-product decoder model aims to reconstruct the edge set between nodes

in the input network, where the reconstructed edge set should be as similar as

the original one. In our case, the reconstruction loss is calculated based on each

of the views, i.e., the decoder aims to reconstruct each view from the learned

representations from that view, respectively. The decoding process is shown as

follows:

p(Âi|Zi) =
N∏
p=1

N∏
q=1

p((Âi)pq|zip, ziq) (3.16)
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p((Âi)pq = 1|zip, ziq) = σs(DEC(zip, ziq))

= σs(zip⊤ziq)

(3.17)

where (Âi)pq refers to the edges between nodes, and σs here is the logistic sigmoid

function.

Multiview Adversarial Regularization The intuition is that we want

the latent embeddings learned from different views are consistent, i.e., the same

nodes from different views are close in the embedding space, and the learned latent

embeddings from different views fit a similar distribution. Thus, we propose the

loss function should be in the following form:

L =
2∑

i=1

(αiEq(Zi|X,Âi)
[− log p(Âi|Zi)]) + S (3.18)

where αi are the balancing coefficients. Intuitively, the first term corresponds to

the addition of the individual reconstruction loss from each view. The second term

S is the term that models the consistency across different views, and the specific

methods differ in how this term is chosen and parameterized.

We then introduce a multiview reconstruction loss (MRL) function:

Lmrl =
2∑

i=1

(αiEq(Zi|X,Âi)
[− log p(Âi|Zi)])+βEZ1∼q(X,Â1),Z2∼q(X,Â2)

[− log p(Â1|Z1,Z2)]

(3.19)

where the first term refers to the addition of the individual reconstruction loss from

each view, and the second term is the loss of reconstructing the graph structure

of the main view G1 with the encoded representations from both views, i.e., Z1

and Z2. Here instead of only adding the individual reconstruction loss together, we

use the encoded representations from both views to jointly reconstruct the main

structure, thus achieving better consistency and robustness. More specifically, we

have p((Â1)pq = 1|z1p, z2q) = σs(z1p⊤z2q).
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Method
Cora Citeseer Pubmed

AUC AP AUC AP AUC AP

SC 84.6 ± 0.01 88.5 ± 0.00 80.5 ± 0.01 85.0 ± 0.01 84.2 ± 0.02 87.8 ± 0.01
DW 83.1 ± 0.01 85.0 ± 0.00 80.5 ± 0.02 83.6 ± 0.01 84.2 ± 0.00 84.1 ± 0.00

GAE 91.0 ± 0.02 92.0 ± 0.03 89.5 ± 0.04 89.9 ± 0.05 96.4 ± 0.00 96.5 ± 0.00
VGAE 91.4 ± 0.01 92.6 ± 0.01 90.8 ± 0.02 92.0 ± 0.02 94.4 ± 0.02 94.7 ± 0.02

ARGA 92.4 ± 0.003 93.2 ± 0.003 91.9 ± 0.003 93.0 ± 0.003 96.8 ± 0.001 97.1 ± 0.001
ARVGA 92.4 ± 0.004 92.6 ± 0.004 92.4 ± 0.003 93.0 ± 0.003 96.5 ± 0.001 96.8 ± 0.001

MRGAE 94.0 ± 0.7 94.1 ± 0.6 94.3 ± 0.4 94.9 ± 0.8 97.2 ± 0.2 97.4 ± 0.3

DBGAN 94.5 ± 0.01 95.1 ± 0.05 94.5 ± 0.04 95.8 ± 0.01 96.8 ± 0.01 97.3 ± 0.02

MRGAE* 95.0± 0.3 95.2± 0.4 95.7± 0.5 96.4± 0.4 97.8± 0.1 97.8± 0.2

Table 11. Performance comparison on link prediction.

Unlike previous work, we incorporate two discriminators, namely the

normal discriminator Dn and the view discriminator Dv, to distinguish between

the representations from the main view and the Gaussian distribution, and to

distinguish between the representations from the two views, as depicted in Figure 6.

We share weights between them. The adversarial loss for the two discriminators is

defined as:

Ladv = − (EZn∼N [logDn(Zn)] + Ex∼p(x)[1 −Dn(G1(X,A1))])

− (Ex∼p(x)[logDv(G1(X,A1))] + Ex∼p(x)[1 −Dv(G2(X,A2))])

(3.20)

where G1 and G2 refer to the two GCN encoders, respectively. And finally, we use a

weighted sum of the above losses:

L1 = Lmrl + γLadv + Lreg (3.21)

where Lreg is a regularization term and we have Lreg = EZ1∼q(X,Â1)
[− logDn(Z1)].

We then jointly train the model by minimizing L1, and finally take the encoded

representations from the main view, i.e., Z1, as the output representations.
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3.2.2 Experiments. In this section, we evaluate our proposed method

based on three tasks. First, we conduct the experiment of link prediction on the

benchmark dataset of three citation networks. We also report the experiment of

node clustering on these networks. Finally, we apply the proposed method to a

real-world medical application, i.e., 30-day unplanned ICU readmission prediction.

3.2.2.1 Link Prediction. Link prediction is a popular task in

evaluating network embedding methods. Essentially, a small portion of the edges

are removed for generating the validation and test sets, and the same number of

pairs of unconnected nodes are randomly picked as negative samples. The goal of

the task is to predict whether or not there exists an edge between two nodes.

Dataset and Second View Construction We conduct the experiment

on three popular citation networks, i.e., Cora, Citeseer and Pubmed Sen et al.

(2008). The nodes represent scientific publications from different areas, and the

edges represent the citation links between them. The nodes are represented with

feature vectors, which are described by 0/1-valued word vectors indicating the

absence/presence of the corresponding word (Cora and Citeseer) or tf-idf weighted

word vectors (Pubmed). Each node has a corresponding class label.

In this experiment, we take the original edge set of the input network, i.e.,

the citation links, as the first and main view. We construct the second view based

on textual similarities. Essentially, if the cosine similarity between two publications

is greater than the empirical threshold 0.7, then we create a link between them in

the second view.

Baselines We compare the proposed method with several baseline methods:

Spectral Clustering (SC) Tang and Liu (2011), Deepwalk (DW), Graph
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Autoencoder (GAE), Variational Graph Autoencoder (VGAE), Adversarially

Regularized Graph Autoencoder (ARGA), Adversarially Regularized Variational

Graph Autoencoder (ARVGA) and DBGAN Zheng et al. (2020).

Experiment Settings For all the experiments, we split each of the datasets

into the training set (85%), the validation set (5%), and the test set (10%). To

reduce the influence of randomness, we average the results over five randomly

selected splits as in Zheng et al. (2020).

We use the same set of hyperparameters for the GCN encoder with the

baselines Kipf and Welling (2016b); Pan et al. (2018); Zheng et al. (2020). More

specifically, we use a 32-dim hidden layer and 16-dim latent representations for the

GCN encoder in the link prediction task. We also use two multi-layer perceptrons

(MLP) as the discriminators, each of which consists of two 128-dim hidden layers.

We set the balancing factors α1, α2, γ to 1.0, and set β to 0.8 in all experiments.

The performance of our method is recorded as MRGAE in Table 11.

Note that DBGAN uses a larger embedding size in their experiments. For

a fair comparison, we also set the representation size to 32-dim (Cora) and 64-dim

(Citeseer and Pubmed), the results of which are recorded as MRGAE*.

Results We use the same evaluation metrics with the previous work, i.e., area

under the Receiver Operating Characteristics curve (AUC) and average precision

(AP) scores.

As shown in Table 11, the proposed method (MRGAE) achieves the best

performance on all three citation networks, outperforming the state-of-the-art

method, i.e., DBGAN, indicating the effectiveness of exploiting node content by

incorporating multiview adversarial regularization.
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Method Acc NMI F1 Prec ARI

SC 0.367 0.127 0.318 0.193 0.031
DW 0.484 0.327 0.392 0.361 0.243

RTM 0.440 0.230 0.307 0.332 0.169
RMSC 0.407 0.255 0.331 0.227 0.090
TADW 0.560 0.441 0.481 0.396 0.332

GAE 0.596 0.429 0.595 0.596 0.347
VGAE 0.609 0.436 0.609 0.609 0.346

ARGA 0.640 0.449 0.619 0.646 0.352
ARVGA 0.638 0.450 0.627 0.624 0.374

MRGAE 0.703 0.523 0.681 0.716 0.476

GALA 0.745 0.576 – – 0.531
DBGAN 0.748 0.560 – – 0.540

MRGAE* 0.764 0.559 0.740 0.742 0.570

Method Acc NMI F1 Prec ARI

SC 0.239 0.056 0.299 0.179 0.010
DW 0.337 0.088 0.270 0.248 0.092

RTM 0.451 0.239 0.342 0.349 0.203
RMSC 0.295 0.139 0.320 0.204 0.049
TADW 0.455 0.291 0.414 0.312 0.228

GAE 0.408 0.176 0.372 0.418 0.124
VGAE 0.344 0.156 0.308 0.349 0.093

ARGA 0.573 0.350 0.546 0.573 0.341
ARVGA 0.544 0.261 0.529 0.549 0.245

MRGAE 0.627 0.361 0.587 0.601 0.363

GALA 0.693 0.441 – – 0.446
DBGAN 0.670 0.407 – – 0.414

MRGAE* 0.671 0.403 0.620 0.620 0.418

Table 12. Node clustering performance on Cora (left) and Citeseer (right).

3.2.2.2 Node Clustering. In this experiment, we consider another

unsupervised task of clustering nodes in the network. We first compute the

embeddings of Cora and Citeseer and perform K-means clustering on them, where

K is set to be the number of node classes in each network. Then we follow the

same procedure of previous work Pan et al. (2018); Shi, Fan, and Kwok (2019); Xia,

Pan, Du, and Yin (2014) and match the predicted class labels with the ground-

true labels using the Munkres assignment algorithm Munkres (1957). The results

are evaluated based on accuracy (Acc), normalized mutual information (NMI),

precision (Prec), F-score (F1) and average rand index (ARI).

Baselines Except for the baselines we use in the link prediction task, we

include four more baseline algorithms that are designed for clustering: RTM Chang

and Blei (2009), RMSC Xia et al. (2014), TADW C. Yang, Liu, Zhao, Sun, and

Chang (2015), and GALA J. Park, Lee, Chang, Lee, and Choi (2019).
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Results For a fair comparison, we first set the size of the output

representations to 16-dim and record the results as MRGAE, and since GALA

and DBGAN only report high dimensional performance, we then report the

performance of our method with the same dimensions as DBGAN (i.e., 128-dim

for Cora, 64-dim for Citeseer) and record the result as MRGAE*.

As shown in Table 12, our proposed method MRGAE outperforms the other

methods on both datasets across all metrics. For the Cora dataset, the proposed

method MRGAE* shows superior performance to GALA and DBGAN in almost

all metrics except NMI. For the Citeseer dataset, MRGAE* and DBGAN perform

similarly well while GALA gives the best results. It is mainly because GALA uses a

500-dim node representation which is much larger than DBGAN and MRGAE*.

3.2.2.3 Ablation Study. In this section, we validate the effectiveness

of the multiview adversarial regularization module in our proposed method. We

conduct the ablation experiments on both link prediction and node clustering tasks

with the Cora dataset.

We first remove the view discriminator Dv. By removing this part, the

proposed method loses the ability to preserve the distribution consistency across

the two specific views. We then remove the multiview reconstruction loss (MRL)

and replace it with a simple GAE-based reconstruction loss. By removing this, the

method losses rich information from the generated second view. Finally, we remove

both parts. The three ablated methods are recorded as “w/o Dv”, “w/o MRL” and

“w/o both”, respectively.

As shown in Table 13, removing either part would cause a performance

decrease on both link prediction and node clustering tasks, indicating the
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Method
Link Prediction Node Clustering

AUC AP Acc NMI F1 Prec ARI

w/o Dv 93.8 94.4 0.748 0.540 0.732 0.744 0.526
w/o MRL 94.0 94.1 0.706 0.527 0.686 0.712 0.496
w/o both 92.9 93.2 0.643 0.482 0.645 0.664 0.397

MRGAE 94.4 94.7 0.764 0.559 0.740 0.742 0.570

Table 13. Effectiveness evaluation of Dv and MRL.

effectiveness and necessity of Dv and MRL. The ablated method “w/o both” shows

the biggest performance decrease, which consistently validates the claim.

3.2.2.4 30-day Unplanned ICU Patient Readmission

Prediction. In real-world networks, node content usually carries rich and

important information for downstream applications, which highlights the practical

value of the proposed method. Therefore, to better evaluate, we apply our method

to a real-world application, i.e., unplanned ICU patient readmission prediction,

to test if any performance gain can be achieved, compared with several baseline

embedding methods.

We conduct this experiment based on Lin et al.’s work Lin et al. (2019),

which leverages the embeddings of medical concepts (in the form of ICD-9 codes)

in their method and achieves state-of-the-art performance. According to their

claim, incorporating embeddings of medical concepts can benefit the prediction

performance greatly. In this experiment, we test the 30-day unplanned ICU patient

readmission prediction performance with different network embeddings for the ICD-

9 ontology.

Dataset and Second View Construction In this experiment, we follow the

data preprocessing procedure of previous work Harutyunyan et al. (2017); Lin et
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al. (2019); Lu et al. (2019), and generate a dataset of 48, 410 ICU stay records out

of the freely available MIMIC-III database Johnson et al. (2016). The task is to

predict whether or not a patient in an ICU stay will be readmitted within 30 days

after discharge.

We take the transitive closure of ICD-9 as the first and main view. We first

transform the short textual descriptions of nodes into one-hot representations, and

compute the cosine similarities between them. If the cosine similarity between two

nodes is greater than an empirical threshold of 0.7, we create a link between them

in the second view of ICD-9.

Baselines Apart from the baselines used in the link prediction and node

clustering task, we add one more strong baseline method, i.e., Poincaré Nickel

and Kiela (2017), as the Poincaré method proves to be particularly effective in

embedding hierarchical data, such as the ICD-9 ontology.

Experiment Settings We use the same metrics with Lin et al.’s work Lin et

al. (2019). The area under the Receiver Operating Characteristics curve (AUC or

A.R) is the main metric for evaluation. The recall rate of positive cases (Re-1),

i.e., sensitivity, is also important in screening real patients. Additional metrics are

reported, but they can be unstable and better be used for additional evaluation.

Lin et al. use the embeddings for ICD-9 codes as part of their input. We replace

the embeddings for ICD-9 with different methods.

Results As shown in Table 14, our proposed method achieves the best AUC

score of 0.7807 with the highest sensitivity score of 0.7259. It is worth mentioning

that the best reported AUC of Lin et al. is 0.791, but this is unfair to compare
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Method Acc Pre-0 Pre-1 Re-0 Re-1 A.R A.P

Poincaré 0.7223 0.9035 0.3740 0.7361 0.6655 0.7786 0.4827

GAE 0.7052 0.9061 0.3597 0.7089 0.6901 0.7712 0.4588

VGAE 0.7042 0.9007 0.3554 0.7127 0.6684 0.7653 0.4444

ARGA 0.7075 0.9126 0.3654 0.7057 0.7150 0.7757 0.4593

ARVGA 0.6966 0.9056 0.3518 0.6973 0.6934 0.7693 0.4519

MRGAE 0.7094 0.9157 0.3687 0.7055 0.7259 0.7807 0.4770

*Acc:

Accuracy, Pre: Precision, Re: Recall, A.R: AUC under ROC, A.P: AUC under PRC

Table 14. Performance on 30-day unplanned ICU patient readmission prediction.

with since all the embeddings in the table are trained from the ICD-9 only, while

the Claims embeddings Choi et al. (2016) they use are trained from millions of

textual data.

3.2.3 Related Work. Recently, researchers use specifically designed

encoders to aggregate the local neighborhood information of nodes, to generate

low-dimensional embeddings. For example, GAE and VGAE Kipf and Welling

(2016b) are two methods that use graph convolution networks (GCN) Kipf and

Welling (2016a) as the encoder. VGAE uses the Gaussian distribution as a prior

and pushes the learned representations close to this prior by incorporating a KL

divergence penalty. ARGA and ARVGA incorporate an adversarial regularization

framework for the same purpose, which is essentially similar in spirit to VGAE.

Actually, incorporating adversarial regularization terms and matching the latent

representations to a prior distribution is particularly useful for generating robust

and meaningful representations when dealing with real-world complex graph

data, which is first proposed by Adversarial Autoencoder (AAE) Makhzani et al.

(2015). We extend the adversarial regularization framework to a multiview scenario

where the distribution consistency across graph space and node content space is
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to be preserved. But unlike previous methods like DBGAN Zheng et al. (2020)

and DANE H. Gao and Huang (2018) which aim to reconstruct the node content

directly, we focus on the semantic relatedness among them.

3.3 Predicting Patient Readmission Risk from Medical Text via

Knowledge Graph Enhanced Multiview Graph Convolution

Patients who are readmitted to intensive care units (ICUs) after transfer or

discharge usually have a greater chance of developing dangerous symptoms that

can result in life-threatening situations. Readmissions also put families at higher

financial burden and increase healthcare providers’ costs. Therefore, it is beneficial

for both patients and hospitals to identify patients that are inappropriately or

prematurely discharged from ICU.

Over the past few years, there has been a surge of interest in applying

machine learning techniques to clinical forecasting tasks, such as readmission

prediction Lin et al. (2019), mortality prediction Harutyunyan et al. (2017), length

of stay prediction Ma, Si, Wang, and Wang (2020), etc. Earlier studies generally

select statistically significant features from patients’ Electronic Health Records

(EHRs), and feed them into traditional machine learning models like logistic

regression Y. Xue et al. (2018). Deep learning models have also been gaining

more and more attention in recent years, and have shown superior performance

in medical prediction tasks. For example, Lin et al. select 17 types of chart events

(diastolic blood pressure, capillary refill rate, etc.) over a 48-hour time window and

put them into an LSTM-CNN model Lin et al. (2019) and achieve much better

performance than previous work in readmission prediction.

A common theme among these studies is that they all rely on numerical

and time-series features of patients, while neglecting rich information in the
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Figure 7. Architecture of MedText.

clinical notes of EHRs. This motivates us to tackle this task from a purely

natural language processing perspective, which is not well explored in literature.

Essentially, in this work, we consider the task of ICU readmission prediction

as binary text classification, i.e., for a given clinical note, the model aims to

predict whether or not the patient will be readmitted to ICU within 30 days after

discharge.

Although it is possible to directly apply existing text classification methods

to the readmission prediction task, two major challenges need to be addressed: (1)

clinical notes, e.g., discharge summaries, are generally long and noisy, which makes

it difficult to capture the inherent semantics to support classification; (2) general

methods do not consider domain knowledge in the medical area, which is critical as

medical concepts are hard to interpret with limited training for downstream tasks.

Recently, a useful strategy is proposed to tackle the first challenge, where it

encodes documents with graphs-of-words to enhance the interactions of context,

and to capture the global semantics of the document. The strategy has been
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applied to different NLP tasks, including document-level relation extraction

H. Chen, Hong, Han, Majumder, and Poria (2020); Christopoulou, Miwa, and

Ananiadou (2019); Nan, Guo, Sekulić, and Lu (2020), question answering De Cao,

Aziz, and Titov (2019); L. Qiu et al. (2019), and text classification Nikolentzos,

Tixier, and Vazirgiannis (2020); Yao, Mao, and Luo (2019a); Y. Zhang et al.

(2020). But constructing graphs of clinical notes for patient outcome prediction,

to our knowledge, is underexplored.

Motivated by this, we propose a novel graph-based model that represents

clinical notes as document-level graphs to predict patient readmission risk.

Moreover, to address the second challenge, we incorporate an external knowledge

graph, i.e., the Unified Medical Language System (UMLS) Bodenreider (2004)

Metathesaurus, to construct a four-view graph for each input clinical note. The

four views correspond to intra-document, intra-UMLS, and document-UMLS

interactions, respectively. By constructing such an enhanced graph representation

for clinical notes, we inject medical domain knowledge to improve representation

learning for the model. Our contribution can thus be summarized as follows:

– We propose a novel graph-based text classification model, i.e., MedText, to

predict ICU patient readmission risk from clinical notes in patients’ EHRs.

Unlike previous studies that rely on numerical and time-series features, we

only use clinical notes to make predictions, which provides some insights on

utilizing medical text for clinical predictive tasks.

– We construct a specifically designed multiview graph for each clinical note

to capture the interactions among words and medical concepts. In this way,

we inject domain-specific information from an external knowledge graph, i.e.,

UMLS, into the model. The experimental studies demonstrate the superb
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performance of this method, by updating the state-of-the-art results on

readmission prediction.

3.3.1 Method.

3.3.1.1 Graph Construction. For each document (e.g., clinical

note), we construct a weighted and undirected four-view graph G = (N , E) with

an associated adjacency matrix A, where N and E refer to the vertex set and edge

set respectively. We also denote the representation of vertices by X. Instead of

using unique words in the document as vertices, we first conduct entity linking

over the text and link the entity mentions to UMLS1. Consequently, we consider

two types of vertices in the document-level graph G, i.e., the unique words Nw and

the linked UMLS entities Ne. The vertex set N is thus formed as the union of Nw

and Ne: N = Nw ∪ Ne. Four views are then designed to exploit intra-document,

intra-UMLS, and document-UMLS interactions that will be combined to form the

adjacency matrix as follows.

Intra-Document: V1 V1 is designed to capture the intra-document

interactions among words and entities. Essentially, we expect the edge weights

between vertices to estimate the level of interaction, so that vertices can directly

interact during message passing even if they are sequentially far away from each

other in the document. In this work, we generate the adjacency matrix A1 for V1

by counting the co-occurrences of vertices within a fixed-size sliding window (size 3

in this work) over the text.

Intra-UMLS: V2,V3 In this work, we aim to inject external knowledge from

UMLS to the document-level graph representation. To this end, we consider

1We use ScispaCy Neumann et al. (2019) as the entity linker in this work.
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two types of information, i.e., the internal structure of UMLS and the semantic

similarities between medical concepts. Specifically, we construct V2 by computing

the shortest path lengths between entity vertices as edge weights in A2, where a

shorter path indicates a higher relevance. We further construct V3 by computing

the string similarities based on the word overlap ratios of entity descriptions for A3.

Document-UMLS: V4 V4 is constructed by calculating the cosine similarities

between initial representations of all vertices, including words and entities,

which aims to capture the interactions between the information sources, i.e., the

document itself and the knowledge base. The similarities are used for edge weights

A4.

View Combination By combining the four views, we expect to leverage three

levels of interactions, i.e., intra-document, intra-UMLS, and document-UMLS, to

generate rich interaction structures for documents to aid representation learning.

Intuitively, the four views are combined via a weighted sum of the four adjacency

matrices as the final adjacency matrix A:

A = MASK(
4∑

i=1

αiAi) (3.22)

where Ai refer to each view’s normalized adjacency matrix and αi are the balancing

factors that are determined by cross-validation. The adjacency matrix is then

masked with a threshold, i.e., γ = 0.5, where only edges with larger weights are

kept for further message passing. The motivation for the masking is to improve

robustness and efficiency by decreasing some density.
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The representation of vertices, i.e., X, are initialized with a pre-trained word

embedding BioWordVec Y. Zhang, Chen, Yang, Lin, and Lu (2019). For entity

vertices, we take the average values of word embeddings of the entity names as the

representation for the entity.

3.3.1.2 Encoding and Decoding. In this work, we incorporate a

two-layer graph convolutional network (GCN) Kipf and Welling (2016a) to encode

the graph representation of clinical notes, as depicted in Figure 7. We include an

attention layer after GCN, which serves as a decoder to decode the document-level

representation DG from node embeddings. The encoding process can be described

as:

X(l+1) = LeakyReLU(D̂− 1
2 ÂD̂

1
2X(l)W(l)) (3.23)

where Â = A+I, and I is the identity matrix of A. D̂ is the diagonal degree matrix

of Â, and W(l) is the weight matrix for the l-th layer where l = 0, 1, 2 in this work.

We incorporate a graph summation module Y. Li, Tarlow, Brockschmidt,

and Zemel (2015); Y. Zhang et al. (2020) to decode the document-level

representation DG from the constructed graph, by assigning different attention

weights to the nodes. The decoding process can be described as:

XG = f1(X
(2)) ⊙ f2(X

(2)) (3.24)

DG = mean(XG) + max(XG) (3.25)

where X(2) is the output of the GCN encoder and f1, f2 are two feed-forward

networks with sigmoid and leakyrelu activation, respectively. The f1 network acts

as a soft attention mechanism that indicates the relative importance of nodes,

while f2 serves as feature transformation. The operator ⊙ denotes element-wise
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multiplication. Then the document-level representation DG is summarized as the

addition of the mean and maximum values of the attentive node embeddings.

We also use a two-layer bidirectional LSTM to directly encode the document

and decode the document-level representation DT with a linear decoder, where

linear transformation and max-pooling are applied. Then the two document-level

representations, i.e., DG and DT , are concatenated and fed into an MLP classifier.

The model is optimized with cross-entropy loss.

3.3.2 Experiments.

Dataset The experiment is conducted based on the MIMIC-III Critical Care

(Medical Information Mart for Intensive Care III) Database, which is a large,

freely-available database composed of de-identified EHR data Johnson et al. (2016).

For a fair comparison, we use the same data split with the baseline X. Zhang, Dou,

and Wu (2020), where the discharge summaries are extracted from EHRs and the

generated 48, 393 documents are split into training (80%), validation (10%), and

testing (10%).

Evaluation Metrics We use three metrics for evaluation, i.e., the area under

the receiver operating characteristics curve (AUROC), the area under the precision

recall curve (AUPRC), and the recall at precision of 80% (RP80). AUROC and

AUPRC are widely used for evaluating patient outcome prediction tasks, including

readmission prediction Lin et al. (2019); Lu et al. (2019); X. Zhang et al. (2020).

RP80 is a clinically-relevant metric that helps minimize the risk of alarm fatigue, as

introduced in ClinicalBERT Huang et al. (2019), where we fix the precision at 80%

and calculate the recall rate.

104



Baselines The following baselines are used for comparison.

– BioBERT. BioBERT is a domain-specific BERT variant pre-trained on large

biomedical corpora, e.g., PubMed abstracts and PMC full-text articles Lee et

al. (2020). In the experiment, we use the latest version, i.e., BioBERT v1.1,

with a classification head as the baseline. The last 512 tokens of each note are

used as input to the model.

– ClinicalBERT. ClinicalBERT is initialized from BioBERT v1.0 and pre-

trained on MIMIC notes Alsentzer, Murphy, Boag, Weng, Jin, et al. (2019).

Note that there is another ClinicalBERT Huang et al. (2019) model which

presents a similar idea.

– CC-LSTM. Zhang et al. propose CC-LSTM that encodes UMLS knowledge

into text representations and report state-of-the-art performance on

readmission prediction on the MIMIC-III dataset X. Zhang et al. (2020).

For a fair comparison, we use the same pre-trained word embeddings, i.e.,

BioWordVec Y. Zhang et al. (2019), in our model.

– MedText-x. Specifically, we replace the Bi-LSTM encoder with ClinicalBERT

and BioBERT to demonstrate the effectiveness of the proposed graph-based

knowledge injection strategy. The last two baselines are denoted by MedText-

ClinicalBERT and MedText-BioBERT, respectively.

Results The experimental results are presented in Table 15. Generally, the

proposed method, i.e., MedText, compares favorably with all the other baselines

and outperforms the state-of-the-art method. Besides, directly applying pre-trained

language models, such as BioBERT and ClinicalBERT, to readmission prediction
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Method AUROC AUPRC RP80

BioBERT 0.775 0.538 0.200
MedText-BioBERT 0.811 0.610 0.278

ClinicalBERT 0.781 0.536 0.189
MedText-ClinicalBERT 0.812 0.615 0.277

CC-LSTM X. Zhang et al. (2020) 0.804 0.613 N/A
MedText 0.825 0.632 0.319

Table 15. Performance on 30-day unplanned ICU patient readmission prediction.

Method AUROC AUPRC RP80

w/o V1 0.803 0.605 0.300
w/o V1,2 0.809 0.615 0.296
w/o V1,2,3 0.801 0.607 0.290
w/o V1,2,3,4 0.799 0.601 0.288

w/o DT 0.808 0.601 0.275

Full 0.825 0.632 0.319

Table 16. Ablation analysis of MedText.

does not work well. It is most likely due to the long and noisy nature of clinical

notes, and only the last 512 tokens are taken as input in the experiment. However,

by combining with MedText, the performance gets improved greatly, indicating the

effectiveness of the proposed graph-based knowledge injection method.

Additionally, Lin et al. propose a readmission prediction model that takes

numerical features, e.g., chart events, of patients as input, and claims a state-of-the-

art AUROC of 0.791 with AUPRC of 0.513 on the same dataset Lin et al. (2019).

This is essentially not comparable as they are using numerical features instead of

text, but it highlights the value of clinical notes in EHRs.
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Figure 8. Sensitivity of masking threshold γ.

Ablation and Sensitivity Study We present the ablation study in Table 16.

As shown in the table, removal of the four views will cause the performance to

drop greatly, indicating the effectiveness and necessity of the four views. It is also

worth noticing that the model still performs on par with CC-LSTM if the Bi-LSTM

module is removed, i.e., w/o DT , and it would be more efficient in training. We

also show the AUROC score with different masking thresholds in Figure 8, where

AUROC reaches the peak when γ = 0.5. To further assess the performance of the

model in terms of precision and recall, we show the P-R curve in Figure 9.

Error Analysis Entity linking plays an important role in this method as it is

the first step of graph construction and all four views either directly or indirectly

depend on the linked entities. Since a relatively high linking precision can be

achieved by setting appropriate parameters of the ScispaCy linker, we mainly focus

on the missed entities in the text. After manually examining a subset of notes, we

roughly estimate that 15% to 25% of entities are not recognized or linked, which

may have negatively influenced the prediction model. Some example snippets of

clinical notes include:
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Figure 9. Precision-recall curve of MedText.

“this is a 69 year old man with a history of end stage cardiomyopathy ( nyha class

4 ) and severe chf with an ef of 15 ( ef of 20 on milrinone drip ) as well as severe mr p/w

sob , doe , pnd , weight gain of 6lbs in a week , likely due to chf exacerbation . ”

“he has a history of v-tach which responded to amiodarone . patient also has icd

in place . respiratory : sob and increased o2 requirement were likely secondary to chf

exacerbation and resultant pulmonary edema”

“you were admitted for increasing shortness of breath and oxygen requirements

on increasing doses of lasix”

The texts in bold refer to unrecognized entity mentions. Essentially they

should be linked to UMLS entities C4086268 (Exacerbation), C0034063 (pulmonary

edema) and C0013404 (Dyspnea), respectively. These uncovered entities might

indicate the severity of patients’ conditions and thus are critical for predicting the

readmission risk.

3.3.3 Related Work. Earlier deep text classification models, such as

TextCNN Y. Kim (2014) and TextRNN P. Liu, Qiu, and Huang (2016), mostly rely
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on sequences of words for input representation. These methods focus on locality

and lack the ability to capture long-distance and non-consecutive semantics Minaee

et al. (2020); H. Peng et al. (2018); Y. Zhang et al. (2020), especially when the

document is long. To mitigate this issue, some propose to encode documents with

task-specific document-level graphs for representation learning H. Chen et al.

(2020); Christopoulou et al. (2019); De Cao et al. (2019); Nan et al. (2020); L. Qiu

et al. (2019); Yao et al. (2019a); Y. Zhang et al. (2020).

In this work, we represent documents as graphs of words and entities

and encode them with a GCN-based model. The model is different from the

aforementioned related work in that we construct a carefully designed four-view

graph for each clinical note, and incorporate an external knowledge graph to

enhance the graph representation. It is crucial to inject domain knowledge into

prediction models as medical concepts are usually hard to capture with limited

training for downstream tasks Lin et al. (2019); Lu et al. (2019); X. Zhang et al.

(2020).

It is also worth noting that although large pre-trained language models,

such as BioBERT and ClinicalBERT, have shown superior performance Alsentzer,

Murphy, Boag, Weng, Jin, et al. (2019); Huang et al. (2019); Lee et al. (2020),

applying them for long document classification remains an open problem, due to

their quadratically increasing memory and time consumption Ding, Zhou, Yang,

and Tang (2020). We consider it as a potential direction to take the full capacity of

these models for text-based patient outcome prediction.

3.4 Conclusion

In concluding this chapter, we have examined three pioneering approaches

for incorporating knowledge graphs into pre-trained language models and their
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applications. Initially, we introduce a novel technique that harnesses medical notes

within patients’ EHR data, significantly improving state-of-the-art ICU readmission

and in-hospital mortality prediction models. We specially leverage the hyperbolic

embeddings of the ICD-9 ontology in our proposed method. To the best of our

knowledge, we are the first to do so and achieve promising results.

Subsequently, we propose an innovative network embedding method,

MRGAE, designed to maintain the consistency of node representations across two

specific network views. This is achieved through the introduction of a multiview

adversarial regularization module and a specially designed loss function for joint

optimization. We conduct extensive and diverse experiments for evaluation, and the

results demonstrate the superb performance of the proposed method.

Finally, we introduce MedText, a novel graph-based text classification model

specifically designed to predict ICU patient readmission risk using clinical notes

from patients’ EHRs. The experiments demonstrate the effectiveness of the method

and an updated state-of-the-art performance is observed on the benchmark.

Overall, these studies underscore the potential and effectiveness of leveraging

knowledge graphs for enhancing the capabilities of pre-trained language models

in the realm of healthcare. Moving forward to the next chapter, we pivot our

attention to the other vital source of knowledge - clinical text, exploring the

distinct strategies for its effective incorporation with language models.
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CHAPTER IV

TEXT-BASED KNOWLEDGE INFUSION: STRATEGIES FOR DATA

AUGMENTATION AND BEYOND

This chapter contains materials from the published papers “Qiuhao Lu,

Dejing Dou, and Thien Huu Nguyen. ‘Textual Data Augmentation for

Patient Outcomes Prediction.’ In Proceedings of the IEEE International

Conference on Bioinformatics and Biomedicine (BIBM), pp. 2817-2821. IEEE,

2021”, and “Qiuhao Lu, Dejing Dou, and Thien Huu Nguyen. ‘ClinicalT5:

A Generative Language Model for Clinical Text.’ In Findings of the

Association for Computational Linguistics: EMNLP 2022, pp. 5436-5443. 2022”.

In these publications, the experiments were conducted solely by the author of the

dissertation, Qiuhao Lu. Qiuhao also took complete responsibility for writing all

the papers, and Thien Huu Nguyen contributed significantly by offering editorial

feedback to enhance their quality.

In the previous chapter, we examine strategies for integrating domain

knowledge into pre-trained language models and applications using knowledge

graphs. In this chapter, we shift focus and present two innovative text-based

knowledge infusion methods, leveraging data augmentation techniques.

Firstly, we introduce a novel approach for textual data augmentation to

generate artificial clinical notes within patients’ Electronic Health Records (EHRs).

This serves as supplementary training data for patient outcomes prediction

Lu, Dou, and Nguyen (2021b). Our method involves fine-tuning the generative

language model GPT-2 to synthesize labeled text using the original training data.

We propose a teacher-student framework, where a teacher model is initially pre-

trained on the original data. Subsequently, a student model is trained on the GPT-
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augmented data with guidance from the teacher model. We evaluate our approach

on the widely studied patient outcome of 30-day readmission rates. Experimental

results demonstrate that the augmented data enhances the predictive performance

of deep models, emphasizing the effectiveness of our proposed architecture.

In the second study, we explore the potential of generative language models

such as BART and T5, which have gained significant attention for their impressive

performance in text generation and generative problem-solving tasks. However, the

domain-specific variants of these models in the clinical domain have been relatively

underexplored. To bridge this gap, we introduce ClinicalT5, a T5-based text-to-

text transformer model pre-trained on clinical text Lu, Dou, and Nguyen (2022).

We assess the proposed model intrinsically and extrinsically using various tasks

and datasets. Our results demonstrate that ClinicalT5 outperforms T5 in domain-

specific tasks and performs favorably when compared to closely related baseline

models.

4.1 Textual Data Augmentation for Patient Outcomes Prediction

Patient outcomes, including patients’ readmission risk, mortality rate,

and length of stay (LOS), have been examined as important measurements

for evaluating the quality of hospital care Davison et al. (2016). As the most

commonly reported health outcome in the United States, readmissions are

estimated to cost Medicare $15 billion annually, of which $12 billion is potentially

preventable, according to the Medicare Payment Advisory Committee Hackbarth

(2009). This highlights the importance of identifying patients at high risk of

readmission.

Over the past few years, there has been a surge of interest in making

predictions on patient outcomes using deep learning techniques, such as readmission
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prediction Lin et al. (2019), mortality prediction Harutyunyan et al. (2017), length

of stay prediction Ma et al. (2020), etc. Most of these studies heavily rely on

feature engineering, where they select statistically significant features from patients’

Electronic Health Records (EHRs), and feed them into deep models like a LSTM-

CNN network Lin et al. (2019).

A common theme among these studies is that they all rely on numerical

and time-series features of patients while neglecting the clinical notes of EHRs

which prove to be informative in such predictive tasks. This motivates recent

studies to cast this task as text classification, where the contextual content of

EHRs is leveraged to make predictions. For example, Lu et al. propose a graph-

based method that converts clinical notes to multi-view graphs and use them to

predict ICU patients’ 30-day unplanned readmission risk, surpassing state-of-the-art

numerical-based methods Lu, Nguyen, and Dou (2021).

However, in real-world downstream applications, deep learning models often

suffer from data limitations as they require large amounts of data for effective

training. The situation is even worse in the biomedical domain due to the private

and sensitive nature of this field. Despite data shortage, data imbalance is also an

issue for patient outcomes prediction, e.g., only few patients are readmitted post-

discharge. These data issues make patient outcomes prediction more challenging

than general predictive tasks.

A natural solution to these problems is data augmentation, where new

data is synthesized based on existing training data. This strategy has been

actively applied in the field of computer vision, where researchers alter the training

images to create a larger dataset by introducing random transformations such as

translation, mirroring, rotation, and more McLaughlin, Del Rincon, and Miller
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(2015). However, these augmentation strategies that are successful in computer

vision cannot be easily applied to textual data due to the inherent complexity of

natural language Amin-Nejad, Ive, and Velupillai (2020), where the grammatical or

semantic consistency of text could hardly be preserved after transformation Anaby-

Tavor et al. (2020). As to the specific task of readmission prediction, such issues,

e.g., data imbalance, are either ignored Lu et al. (2019) or processed with sampling

techniques Junqueira, Mirza, and Baig (2019), such as SMOTE Chawla, Bowyer,

Hall, and Kegelmeyer (2002) or ROSE Menardi and Torelli (2014) that do not cope

with textual data.

Recently, natural language generation (NLG) techniques have been leveraged

as a new means for textual data augmentation. With the development of large pre-

trained generative language models like GPT-2 Radford et al. (2019), researchers

are able to generate high-quality and semantic-consistent textual data while

preserving the annotated labels. This augmentation strategy has been applied in

various NLP downstream tasks, such as event detection Veyseh, Lai, Dernoncourt,

and Nguyen (2021), relation extraction Papanikolaou and Pierleoni (2020),

commonsense reasoning Y. Yang et al. (2020), etc. However, in the biomedical

field, leveraging GPT-2 to facilitate clinically-relevant predictive models is under-

explored.

One main challenge of using GPT-2 for textual data augmentation is noise

control. Existing studies typically address this issue in an isolated way, where

they introduce heuristic filtering mechanisms to eliminate low-quality samples

Anaby-Tavor et al. (2020) and feed the rest to the downstream model. However,

such filtering strategies are prone to coverage errors and thus inevitably make

incorrect judgments on the generated samples Veyseh et al. (2021), which would
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cause false inclusion of good samples or false exclusion of bad samples. Moreover,

the combined data samples are treated equally by the to-be-trained downstream

model, and this would negatively impact the model as a consequence.

To overcome this issue, we propose a conceptually different strategy

where all the generated samples are involved during training. We preserve all

the generated samples in the first place and then introduce a teacher-student

framework to regularize the representation learning of the generated samples with

knowledge transferred from the original data. More specifically, we pre-train a

teacher model on the original data and then train a student model on the combined

data adaptively under the guidance of the teacher. The goal is to transfer the

knowledge learned in the teacher model into the student model by enforcing a

knowledge consistency between them, and that eventually the student model can

be improved. We evaluate the framework with the state-of-the-art textual-based

readmission prediction model Lu, Nguyen, and Dou (2021), the results of which

indicate the effectiveness of the method.

The contributions of this work can be summarized as follows:

– We propose a novel architecture that leverages GPT-2 for Medical text

Augmentation (MedAug) in the task of patient outcomes prediction.

Essentially, we introduce a teacher-student framework that aims to control

the noise of the generated text by enforcing knowledge consistency across the

original and artificial texts.

– Taking the readmission prediction task as a case study, we specifically

investigate the performance of MedAug with the state-of-the-art readmission

prediction model as well as a baseline model. Extensive experiments
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demonstrate that both models can improve their performance with the

augmented data, indicating the effectiveness of the proposed architecture.

4.1.1 Method.

Notations In this study, we focus on textual-based readmission

prediction models where the prediction task is cast as a supervised binary text

classification problem. We refer to the original training dataset as Dtrain =

{(x1, y1), (x2, y2), . . . , (xn, yn)} where xi is a clinical note and yi ∈ {0, 1} indicates

whether the patient is readmitted or not. Note that Dtrain is imbalanced where

negative samples are 3x more than the positive ones, as only few patients are

readmitted post-discharge. We similarly denote the test set by Dtest and the

validation set by Dvalid. We also denote the synthesized training set by Dsynthetic,

which is generated by the fine-tuned GPT-2 model Gtuned. We also combine the

original and generated training data together to create a large training dataset

Dcombined = Dtrain ∪Dsynthetic. Finally, we refer to the prediction method as M.

Data Generation We fine-tune the GPT-2 model G on the original training

data Dtrain so that it can synthesize reasonable textual data that can be used

for the training of M. To preserve the class information, we prepend the class

label yi to each note in the training data, i.e., yiSEPxiEOS, where SEP and EOS are

the separation and ending token, respectively. We then fine-tune GPT-2 on the

processed training data with the objective of predicting the next token, the same

way it was pre-trained Radford et al. (2019). The fine-tuned model is regarded as

Gtuned.

For generating new data, we use the class label along with a short context

as the prompt to Gtuned, i.e., prompt = y1SEPw1w2 where the first two tokens
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are included as context, as suggested in Anaby-Tavor et al. (2020). Since in our

case the negative samples are 3x more than the positive ones, we only focus on

generating positive samples to fulfill the gap, i.e., only the positive label y1 is used

for generation. We denote the generated training data by Dsynthetic.

Data Integration As mentioned in the introduction, noise control is one of

the main challenges for textual data augmentation. In this work, we propose a

teacher-student framework for data integration so that all the generated samples

are included for training. We first pre-train a teacher prediction model Mteacher

on Dtrain to capture the inherent knowledge of the original clean training data.

Then we train the student model Mstudent on the combined data Dcombined in a way

that the teacher’s knowledge can be used to guide the student learning. To achieve

this, we aim to enforce knowledge consistency between the student and the teacher,

by incorporating a KL divergence penalty to push the representations learned

in the student model close to that in the teacher. Essentially, we seek to jointly

minimize the KL divergence between the predicted label probability distribution

of the student and the teacher, along with the original training objective of the

student, i.e., L = Lstudent + τLKL. It’s also worth mentioning that in this study

we use the KL divergence to control noise in the labeled data generated by GPT-2,

which is different from knowledge distillation on unlabeled data Hinton, Vinyals,

and Dean (2015). The architecture is defined in Algorithm 1.

4.1.2 Experiments. In this section, we evaluate the proposed

framework on the task of ICU patients readmission prediction where we aim to

show the effectiveness of MedAug. Essentially, we take as input the clinical note of

patients’ EHRs, and predict whether or not the patient will be readmitted within

30 days after discharge or transfer.
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Algorithm 1: MedAug

Input: Dtrain, G, M
Output: Mstudent

1 Fine-tune G on Dtrain to obtain Gtuned

2 Use Gtuned to generate Dsynthetic and combine it with Dtrain to obtain
Dcombined

3 Pre-train a teacher model Mteacher on Dtrain

4 Train the student model Mstudent on Dcombined under the guidance of
Mteacher

5 Return Mstudent

Dataset The experiment is conducted based on the MIMIC-III Critical Care

(Medical Information Mart for Intensive Care III) Database, which is a large,

freely-available database composed of de-identified EHR data Johnson et al. (2016).

Following prior work X. Zhang et al. (2020), we extract the Discharge Summaries

from EHRs as the data. For a fair comparison, we use the same data split with the

baseline Lu, Nguyen, and Dou (2021) where 48, 393 generated documents are split

into training (80%), validation (10%), and testing (10%). Specifically, the original

training set Dtrain consists of 7555 positive samples and 30247 negative samples

which are denoted by Dtrain,1 and Dtrain,0, respectively.

Evaluation Metrics We follow the prior work Lu, Nguyen, and Dou (2021)

and use the area under the receiver operating characteristics curve (AUROC), the

area under the precision-recall curve (AUPRC), and the recall at precision of 80%

(RP80) for evaluation.

Prediction Models We consider the following two prediction models

for evaluation in this experiment. We evaluate with two prediction models to

investigate how MedAug performs when equipped with a base model and an

advanced model.
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– ClinicalBERT. ClinicalBERT is a domain-specific BERT variant initialized

from BioBERT v1.0 Lee et al. (2020) and pre-trained on MIMIC notes

Alsentzer, Murphy, Boag, Weng, Jin, et al. (2019). In this study, we add a

linear classification head on top of it and use it as a baseline.

– MedText. MedText is a textual-based readmission prediction model and

reports state-of-the-art performance on this task Lu, Nguyen, and Dou

(2021).

Augmentation Baselines We consider two augmentation baselines for

comparison.

– base. The base strategy is a baseline that all generated samples are included

while no noise control is applied.

– LAMBADA. LAMBADA is an augmentation method specified for text

classification Anaby-Tavor et al. (2020). Basically, they pre-train a classifier

on the clean data and use it to select confident samples.

Results Table 17 shows the test performance of the two readmission prediction

models, along with three augmentation strategies. We observe that without

controlling the noise, i.e., base, both models demonstrate inferior performance,

indicating the non-negligible level of noise in the generated samples. On the

other hand, with MedAug, both models demonstrate better performance and the

improvement is significant compared with the other two baselines, indicating the

effectiveness of this framework.

4.1.3 Analysis. In this section, we investigate three potential issues

that might have influenced the performance of MedAug, i.e., the number of
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Method AUROC AUPRC RP80

ClinicalBERT 0.782 0.549 0.201
ClinicalBERT-base 0.779 0.550 0.221
ClinicalBERT-LAMBADA 0.782 0.543 0.196
ClinicalBERT-MedAug 0.791 0.565 0.234

MedText 0.823 0.632 0.319
MedText-base 0.803 0.599 0.290
MedText-LAMBADA 0.806 0.604 0.266
MedText-MedAug 0.822 0.633 0.328

Table 17. Test performance on 30-day unplanned ICU patient readmission
prediction.

|Dsynthetic| Method AUROC AUPRC RP80

3k ClinicalBERT 0.777 0.550 0.220
9k ClinicalBERT 0.784 0.567 0.246
12k ClinicalBERT 0.784 0.569 0.245
24k ClinicalBERT 0.783 0.566 0.251

3k MedText 0.812 0.621 0.329
9k MedText 0.811 0.623 0.337
12k MedText 0.806 0.611 0.311
24k MedText 0.809 0.618 0.331

Table 18. Influence of |Dsynthetic| by MedAug.

synthesized samples |Dsynthetic|, the fine-tuning and generation strategy for GPT-

2, and the version of GPT-2.

Number of Synthesized Samples Table 18 shows the validation performance

of different |Dsynthetic|, demonstrating the influence of the size of the synthetic

training set. With the increase of synthesized samples, the general performance

appears to have reached a peak and then begin to drop slightly. We conjecture
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Prompt Balanced Method AUROC AUPRC RP80

w/o ctx N ClinicalBERT 0.771 0.535 0.205
w/o ctx Y ClinicalBERT 0.773 0.536 0.216
w/ ctx N ClinicalBERT 0.767 0.531 0.198
w/ ctx Y ClinicalBERT 0.775 0.551 0.226

w/o ctx N MedText 0.791 0.589 0.296
w/o ctx Y MedText 0.791 0.595 0.313
w/ ctx N MedText 0.791 0.593 0.296
w/ ctx Y MedText 0.795 0.602 0.318

Table 19. Influence of GPT-2 fine-tuning/generation strategies.

that there is a trade-off between size and performance, and it is determined by the

augmentation strategy.

GPT-2 Fine-tuning Strategy It is common that patient outcomes

demonstrate an imbalanced distribution, e.g., only few patients are readmitted

after discharge. In our case, negative samples are 3x more than the positive ones,

i.e., Dtrain,0 = 4 × Dtrain,1. Therefore, when fine-tuning GPT-2 using the original

training data, we explicitly make it balanced to prevent the negative samples from

misleading GPT-2, by performing random under-sampling over Dtrain. As to the

prompt to GPT-2 in generating new samples, we compare two options, i.e., w/ and

w/o context, where context refers to the first two tokens of the text.

We investigate the two issues and show the comparison results on the

validation set in Table 19. Note that to avoid the impact from augmentation

strategies, we use the base method, i.e., simply include all the samples, in this

experiment. Generally, a balanced training set and a prompt with context are the

best options for fine-tuning and generation with GPT-2 in this task.
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GPT-2 version Method AUROC AUPRC RP80

small ClinicalBERT 0.784 0.567 0.246
medium ClinicalBERT 0.783 0.568 0.252

small MedText 0.811 0.623 0.337
medium MedText 0.811 0.623 0.339

Table 20. Influence of the version of GPT-2.

GPT-2 Version Finally, we investigate the version of GPT-2 and its influence

over the quality of synthesized samples. We test with GPT-2-small and GPT-

2-medium and show the results in Table 20. Generally, we observe that GPT-

2-medium has a minor advantage over GPT-2-small. However, considering the

training cost and efficiency, we choose to use GPT-2-small for all the experiments

in this study.

4.1.4 Related Work. Readmission prediction is a challenging task

and has attracted a lot of attention over the years. Lin et al. select numerical chart

event features over a 48-hour time window and feed them to a deep LSTM-CNN

network Lin et al. (2019) and achieve much better performance than traditional

methods. Zhang et al. propose CC-LSTM that encodes external knowledge into

text representations and outperforms Lin’s work X. Zhang et al. (2020). Afterward,

Lu et al. propose to convert clinical notes to multi-view graphs and process them

with graph convolution networks Lu, Nguyen, and Dou (2021). These studies

demonstrate the value of textual content in EHRs and motivate us to apply textual

data augmentation to this task.

Recently, using GPT-2 for augmenting textual training data has been

studied for a variety of tasks in the NLP field, such as event detection Veyseh et

al. (2021), relation extraction Papanikolaou and Pierleoni (2020), commonsense
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reasoning Y. Yang et al. (2020), spoken language understanding B. Peng, Zhu,

Zeng, and Gao (2020), extreme multi-label classification D. Zhang, Li, Zhang, and

Yin (2020), etc. However, none of these works has leveraged GPT-2 for patient

outcomes prediction. This highlights the importance of this study and motivates us

to explore more of this direction.

4.2 ClinicalT5: A Generative Language Model for Clinical Text

In the past few years, large pre-trained language models (PLMs), such

as BERT Devlin et al. (2019), RoBERTa Y. Liu et al. (2019), GPT-3 Brown

et al. (2020), BART M. Lewis et al. (2020), T5 Raffel et al. (2020), etc., have

achieved great success over a variety of downstream tasks in natural language

processing (NLP). These PLMs mainly depend on self-supervised pre-training

on large amounts of general-domain textual data, e.g., Wikipedia, news articles,

web crawl corpus, etc., and are widely adopted in downstream applications.

Despite the superior performance of these PLMs on general-domain text, their

performance over domain-specific text is relatively poor Ma et al. (2019). To

bridge this gap, researchers propose to build domain-specific PLMs through fine-

tuning or pre-training from scratch over domain corpora. For example, in the

biomedical and clinical domains, various domain-specific PLMs have been explored

and released, including BioBERT Lee et al. (2020), SciBERT Beltagy et al. (2019),

BlueBERT Y. Peng, Yan, and Lu (2019a), ClinicalBERT Huang et al. (2019),

BioClinicalBERT1 Alsentzer, Murphy, Boag, Weng, Jindi, et al. (2019), umlsBERT

Michalopoulos et al. (2020), diseaseBERT Y. He et al. (2020a), SciFive Phan et al.

(2021), and BioBART H. Yuan et al. (2022).

1Also known as ClinicalBERT.
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Domain-specific language models have been extensively explored in different

kinds of NLP-related downstream applications, ranging from entity linking

Bhowmik, Stratos, and de Melo (2021) to document classification Allada et al.

(2021). Generally, a typical and popular usage of the aforementioned PLMs is to

leverage them to encode domain text, the learned representations of which are then

fed into some task-specific structures for label prediction. Taking a complicated

real-world task as an example, Huang et al. (2019) predicts patients’ risk of

readmission within 30 days after discharge using clinical notes in the Electronic

Health Records (EHRs). Essentially, they encode discharge summaries of patients

with ClinicalBERT, and put the learned embeddings of the [CLS] token to a linear

layer on top for prediction, leading to better performance than traditional models.

Moreover, Lu, Nguyen, and Dou (2021) constructs a document-level multi-view

graph out of each clinical note and predicts patients’ 30-day readmission risk with

a graph-based model, and they use BioClinicalBERT Alsentzer, Murphy, Boag,

Weng, Jindi, et al. (2019) as the encoder within the graph model.

Recently, generative language models, e.g., BART M. Lewis et al. (2020)

and T5 Raffel et al. (2020), have attracted attention since they are naturally

effective for natural language generation tasks, such as document summarization

J. Chen and Yang (2021), question answering Sachan et al. (2021); Zhu et al.

(2021), data augmentation Lu, Dou, and Nguyen (2021b), etc. Meanwhile, a novel

paradigm of leveraging generative language models has gained popularity, where

researchers cast non-generation tasks as generative problems, e.g., to directly

generate textual labels to incorporate their semantics, and report promising results

De Cao, Izacard, Riedel, and Petroni (2021); De Cao et al. (2022). However, such

approaches are still underexplored in certain domains due to lack of domain-
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specific generative language models, i.e., most of the aforementioned domain-

specific PLMs are notably domain-adapted BERT-style models. In the biomedical

domain, two generative language models SciFive Phan et al. (2021) and BioBART

H. Yuan et al. (2022) have been released, but in the clinical domain, the situation

is worse and no such generative models exist to our knowledge. Though the two

domains are relatively close, clinical text poses unique challenges compared to

general and non-clinical biomedical text due to its specific linguistic characteristics

Alsentzer, Murphy, Boag, Weng, Jindi, et al. (2019). Previous studies list some

of the linguistic features of clinical text, e.g., heavy use of professional technical

terminology, abbreviations and acronyms, passive verbs, omission of subjects and

verbs, etc., and these features make clinical text divergent from standard language

Smith et al. (2014).

Aiming to fulfill this gap, we adapt T5 Raffel et al. (2020) to the clinical

domain by training a domain-specific variant using clinical text, i.e., ClinicalT5.

We demonstrate the capabilities of the model by conducting both intrinsic and

extrinsic evaluations. For intrinsic evaluation, we aim to evaluate its capability

to capture the similarity and relatedness of the Unified Medical Language System

(UMLS) concept pairs, where we measure the correlation coefficient between the

similarity scores of the encoded representations for the concept pairs and those

judged by human experts. For extrinsic evaluation, we evaluate the proposed

model along with baselines over a diverse set of benchmark datasets, ranging from

document classification (DC), named entity recognition (NER), to natural language

inference (NLI). Furthermore, we also evaluate on three more complicated real-

world tasks of clinical importance, i.e., patients’ 30-day readmission risk, 30-day
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and 1-year mortality risk. We show that ClinicalT5 dramatically outperforms T5

and compares favorably with its close baselines across all of these tasks.

4.2.1 Related Work.

Biomedical Domain-Adapted Models The biomedical domain has been

an active area of research in the NLP community for the past few years. Many

relevant studies have been presented, ranging from domain-specific language

models, external knowledge infusion, and various downstream applications, etc.

Beltagy et al. (2019); Y. He et al. (2020a); Lee et al. (2020); Lu, Dou, and Nguyen

(2021a); Michalopoulos et al. (2020); Y. Peng et al. (2019a). Most of the biomedical

language models are BERT Devlin et al. (2019) variants fine-tuned to biomedical

text, e.g., BioBERT is trained on PubMed abstracts and PMC full text articles Lee

et al. (2020) and SciBERT is trained on the full text of biomedical and computer

science papers from the Semantic Scholar corpus Beltagy et al. (2019). Besides,

researchers inject external domain knowledge into adapted biomedical language

models due to the knowledge-intensive nature of this domain, e.g., umlsBERT is

directly trained using UMLS text Michalopoulos et al. (2020), He et al. infuse

disease information from the corresponding Wikipedia passages into language

models Y. He et al. (2020a), and Lu et al. inject biomedical knowledge from

multiple sources into language models via adapters Lu, Dou, and Nguyen (2021a).

For generative language models, SciFive is an adapted T5 model pre-trained

on PubMed abstracts and PMC articles Phan et al. (2021) and BioBART is an

adapted BART model pre-trained on PubMed abstracts H. Yuan et al. (2022).

Clinical Domain-Adapted Models In the clinical domain, there are

mainly two popular BERT models, i.e., ClinicalBERT Huang et al. (2019) and
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BioClinicalBERT Alsentzer, Murphy, Boag, Weng, Jindi, et al. (2019), which are

both trained on the clinical notes in the MIMIC-III database Johnson et al. (2016).

For generative language models, however, the topic is not well explored and this

situation motivates our work.

4.2.2 ClinicalT5. Following prior studies on clinical language

models Alsentzer, Murphy, Boag, Weng, Jindi, et al. (2019); Huang et al. (2019),

we use the textual notes in MIMIC-III to train ClinicalT5, which consists of

approximately 2 million notes. Similarly, only minimal pre-processing is conducted

where unnecessary tokens and characters are removed Huang et al. (2019).

In particular, we initialize the weights from the SciFive-PubMed-PMC

model (base and large) Phan et al. (2021) and further pre-train with the span-

mask denoising objective Raffel et al. (2020) on the pre-processed MIMIC-III notes.

The base and large models have ∼ 220M parameters with 12 layers and ∼ 770M

parameters with 24 layers, respectively. For each of the two versions, we further

pre-train ClinicalT5 on the unlabeled text for extra 10k steps, with a max sequence

length of 512, a batch size of 8, and a learning rate of 1e−4. The pre-training is

performed on 3 Nvidia Tesla V100-32GB GPUs. We refer the readers to Raffel et

al. (2020) for a more detailed treatment of the architecture and training objectives

of T5.

4.2.3 Experiments. In this section, we evaluate ClinicalT5 both

intrinsically and extrinsically, along with the following generative baselines (for

both general and domain-specific texts): BART M. Lewis et al. (2020), BioBART

H. Yuan et al. (2022), T5 Raffel et al. (2020), SciFive Phan et al. (2021), to

demonstrate the capabilities of ClinicalT5 across different applications.
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Model
UMNSRS-Similarity UMNSRS-Relatedness
Pearson Spearman Pearson Spearman

BART-base 0.1456 0.1300 0.0756 0.0625
BioBART-base 0.3753 0.3441 0.3101 0.2929
T5-base 0.2050 0.1448 0.1056 0.0519
SciFive-base 0.1941 0.1488 0.1359 0.0900
ClinicalT5-base 0.2126 0.1611 0.1478 0.0948

BART-large 0.2234 0.1958 0.1706 0.1546
BioBART-large 0.4511 0.4302 0.3517 0.3400
T5-large 0.2379 0.2018 0.1813 0.1564
SciFive-large 0.3176 0.2642 0.3039 0.2618
ClinicalT5-large 0.3391 0.2847 0.2884 0.2468

Table 21. Pearson’s and Spearman’s correlation coefficient scores.

4.2.3.1 Intrinsic Evaluation. We conduct intrinsic evaluation on

the datasets UMNSRS-Sim and UMNSRS-Rel Pakhomov et al. (2010), which

consist of 566 and 587 UMLS term pairs respectively. Each pair comes with a

similarity score and a relatedness score that are manually assigned by human

experts. Similar to previous work Y. Zhang et al. (2019), we encode the terms

with ClinicalT5 and the baselines. Essentially, we use the mean-pooled vectors

of the last hidden states of the encoders as the term embeddings and calculate a

cosine similarity score for each pair. Then we compute the Pearson’s correlation

coefficient and Spearman’s correlation coefficient between the computed scores and

the expert-assigned scores. As shown in Table 21, ClinicalT5 demonstrates a better

ability to capture the similarity of UMLS terms than T5 and Scifive, indicating the

effectiveness of the training.

4.2.3.2 Extrinsic Evaluation. For extrinsic evaluation, we consider

three different tasks, i.e., document classification (DC), named entity recognition

(NER), and natural language inference (NLI). To validate the models’ capability
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Tasks HOC NCBI BC5CDR MEDNLI
Metrics(%) P R F1 P R F1 P R F1 Acc

BART-base 80.30 79.84 79.81 62.23 72.09 66.80 59.24 67.26 63.00 75.60
BioBART-base 84.68 83.54 83.82 63.10 71.77 67.16 61.78 72.05 66.52 80.66
T5-base 82.00 80.98 81.19 86.64 83.00 84.78 80.73 81.68 81.20 81.86
SciFive-base 85.10 84.83 84.70 86.43 88.25 87.33 83.56 81.43 82.48 83.90
ClinicalT5-base 85.44 85.14 85.06 87.28 88.56 87.92 81.55 82.92 82.23 84.95

BART-large 84.89 84.07 84.18 63.39 74.50 68.50 66.45 62.07 64.19 84.53
BioBART-large 84.80 84.51 84.39 67.74 70.51 69.10 65.00 71.93 68.29 86.29
T5-large 85.42 84.75 84.79 84.20 84.99 84.60 78.31 79.75 79.02 83.83
SciFive-large 85.57 85.67 85.34 85.91 85.10 85.50 78.28 79.89 79.08 84.95
ClinicalT5-large 85.37 84.79 84.78 86.37 87.09 86.73 79.24 81.49 80.35 85.86

Table 22. Performance comparison over document classification, named entity
recognition, and medical natural language inference.

on clinical text, we select datasets that are closely relevant to clinical targets rather

than biomedical or chemical related data such as BC5CDR-chemical J. Li et al.

(2016). We fine-tune the evaluating models on 4 corresponding datasets across

these tasks in a single-task text-to-text manner. For all the experiments, we use

a batch size of 16 and a learning rate of 1e−4. Due to different targets, we set the

max source text length to 256, and the max target text lengths to 52, 256, 256, 15

for the datasets HOC, NCBI, BC5CDR and MEDNLI, respectively.

Document Classification We conduct document classification on the HOC

dataset Baker et al. (2016), which consists of 9, 972 samples for training and 4, 947

samples for testing. Essentially, we fine-tune the evaluating models to categorize

the texts into 10 categories by directly generating the class labels, e.g., “empty”,

“evading growth suppressors”, “genomic instability and mutation”, etc.

Named Entity Recognition We conduct named entity recognition on two

popular datasets, i.e., NCBI-disease Doğan, Leaman, and Lu (2014) and BC5CDR-

disease J. Li et al. (2016). The input text sequence may contain a disease term
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and the term should be identified and labeled in the target text, e.g., for the input

text “Genotype and phenotype in patients with dihydropyrimidine dehydrogenase

deficiency”, the target is “Genotype and phenotype in patients with disease*

dihydropyrimidine dehydrogenase deficiency *disease”.

Natural Language Inference We conduct natural language inference

evaluation on the MEDNLI dataset Romanov and Shivade (2018b), which consists

of 11, 232 training samples and 1, 422 testing samples. Essentially, we convert the

premise-hypothesis pair to a sequence and prepend a task-specific prefix to it, e.g.,

“mednli: premise: [...]. hypothesis: [...].” We take the converted sequence as the

input text and fine-tune the evaluating models to generate the target labels, i.e.,

“contradiction”, “neutral”, “entailment”.

Results The results are shown in Table 22. Generally, ClinicalT5 outperforms

T5 and SciFive across most of these metrics, and the advantage indicates the

success of the training over clinical text. However, ClinicalT5-large is on par with

T5-large and has a slightly lower recall than SciFive-large on the HOC dataset. We

conjecture that the large versions of BART and T5 already have enough capacity

for the task which makes domain-specific training less impressive, as reflected

by the fact that BioBART-large is only marginally better than BART-large. For

MEDNLI, ClinicalT5 consistently outperforms T5 and SciFive although BioBART-

large achieves the highest accuracy.

4.2.3.3 Real-world Evaluation. We also evaluate the models

on more complicated real-world applications of clinical importance, i.e., 30-day

unplanned ICU patient readmission risk, 30-day and 1-year patient mortality

risk. The experiment is conducted based on the MIMIC-III dataset Johnson et
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Tasks 30-d Readmission 30-d Mortality 1-y Mortality
Metrics(%) A.R. A.P. RP80 A.R. A.P. A.R. A.P.

T5-base 77.10 52.24 16.97 80.03 23.62 78.52 45.72
SciFive-base 78.12 53.95 18.87 80.38 24.16 78.95 45.38
ClinicalT5-base 77.94 54.25 19.76 81.11 26.70 79.09 46.58

A.R: AUC under ROC, A.P: AUC under PRC, RP80: recall at precision of 80%

Table 23. Performance on patients’ outcomes prediction.

al. (2016). Following previous work Lu, Nguyen, and Dou (2021); X. Zhang et

al. (2020), we extract the discharge summaries from EHRs and generate 48, 393

documents. Essentially, we take the evaluating models to encode the last 512

tokens of each note, the last hidden states of which are fed into a linear layer on

top for prediction. As shown in Table 23, ClinicalT5 shows the best results across

almost all the metrics, demonstrating its potential for real-world applications in the

clinical domain.

4.2.4 Limitations. In this work, we present a generative language

model for clinical texts based on T5. Although our experiments demonstrate the

effectiveness of our method, there are still some limitations that can be improved

in future work. First, our evaluation has not included question answering and

other related tasks for clinical texts. These are important tasks Phan et al. (2021)

and can be further explored in future work. Second, our pre-training method for

ClinicalT5 has mainly inherited the objectives from T5 using direct unlabeled

texts. As such, many important domain-specific knowledge for the clinical domain

(e.g., knowledge bases, concept definition) has not been explored to improve our

generative model, serving as a promising direction for future research.

4.2.5 Ethics Statement. All datasets used in this research are

publicly available and are obtained according to each dataset’s respective data

usage policy. We avoid showing any direct excerpts of the data in the paper. We
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do not attempt to identify or deanonymize users in the data in any way during our

research, thus preventing any bias in our methods toward any specific users.

More specifically, the proposed models are trained on the clinical notes of

the public MIMIC-III database, which are already deidentified in accordance with

Health Insurance Portability and Accountability Act (HIPAA) standards using

structured data cleansing and date shifting. As such, all identifying data elements

in HIPAA, including patient name, telephone number, address, and dates, are

already removed Johnson et al. (2016) from our training data to hinder attempts to

retrieve personal information from our models. Similar to existing pre-trained and

publicly available models for the clinical domain, i.e., ClinicalBERT Huang et al.

(2019) and BioClinicalBERT Alsentzer, Murphy, Boag, Weng, Jindi, et al. (2019),

the proposed models serve as a resource to facilitate future research on clinical text.

4.3 Conclusion

In this chapter, we have examined two innovative strategies for integrating

clinical text as a source of domain knowledge into pre-trained language models.

Firstly, we introduce MedAug, a framework leveraging the power of GPT-2 to

create artificial training data for patient outcome prediction. We evaluate the

method on the task of ICU patients readmission prediction, the results of which

demonstrate that either a baseline or an advanced prediction model can benefit

from the synthesized training data, under the framework of MedAug. Essentially, to

control the noise in the synthesized data, we propose a teacher-student architecture

that enforces knowledge consistency across the original and artificial texts. We

introduce a mechanism for knowledge consistency enforcement to mitigate noises

from generated data based on KL divergence. While the improvement in advanced
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models is less pronounced than in baseline models, this preliminary exploration

provides a foundation for further study.

Next, we explore and propose ClinicalT5, a clinical text-focused variant of

the T5-based text-to-text transformer model. We evaluate the proposed model

both intrinsically and extrinsically, and the results show that ClinicalT5 compares

favorably with its close baselines. Further testing on more complex patient outcome

prediction tasks demonstrates its potential for real-world downstream tasks in the

clinical domain.

These investigations highlight the importance and potential of harnessing

clinical text as a source of domain knowledge in enhancing pre-trained language

models. As we move to the next chapter, we introduce an innovative, parameter-

efficient approach for infusing knowledge from diverse sources and formats into pre-

trained language models, thereby broadening their capabilities in domain-specific

tasks.
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CHAPTER V

DOMAIN ADAPTATION WITH ADAPTERS: PARAMETER-EFFICIENT

APPROACHES TO KNOWLEDGE INCORPORATION

This chapter contains materials from the published paper “Qiuhao

Lu, Dejing Dou, and Thien Huu Nguyen. ‘Parameter-efficient domain

knowledge integration from multiple sources for biomedical pre-trained

language models.’ In Findings of the Association for Computational Linguistics:

EMNLP 2021, pp. 3855-3865. 2021”. In this publication, the experiments were

conducted solely by the author of the dissertation, Qiuhao Lu. Qiuhao also took

complete responsibility for writing the paper, and Thien Huu Nguyen contributed

significantly by offering editorial feedback to enhance its quality.

This chapter investigates the integration of domain knowledge into PLMs

using adapters as a parameter-efficient approach to enhance their performance in

clinical settings.

In particular, we present an architecture specifically designed to efficiently

incorporate domain knowledge from diverse sources into PLMs Lu, Dou, and

Nguyen (2021a). Our approach utilizes adapters, which are small bottleneck feed-

forward networks inserted between intermediate transformer layers in PLMs, to

encode domain-specific knowledge. These knowledge adapters are pre-trained

for individual domain knowledge sources and combined using an attention-based

knowledge controller to enrich PLMs. In the context of the biomedical domain,

we explore three knowledge-specific adapters based on the UMLS Metathesaurus

graph, Wikipedia articles on diseases, and semantic grouping information for

biomedical concepts. Through extensive experiments conducted on various

biomedical Natural Language Processing (NLP) tasks and datasets, we demonstrate
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the advantages of the proposed architecture and knowledge-specific adapters across

multiple PLMs.

The proposed adapter-based approach offers a significant advantage over

traditional full-model fine-tuning, which requires substantial computational

resources and can sometimes lead to “catastrophic forgetting” where the model

may overwrite previously learned general-domain knowledge during the fine-tuning

process. By utilizing adapters, we can efficiently and selectively modify parts of the

pre-trained models to encode the domain-specific knowledge, thus requiring fewer

parameters and less computational power. This approach provides an efficient,

scalable, and effective method for knowledge integration, making it a promising

technique for improving the performance of clinical NLP tasks. With the use of

adapters, we can ensure the models remain adaptable and robust while maintaining

their original general-domain knowledge, thereby promoting a more efficient and

effective application of PLMs in the clinical domain.

5.1 Parameter-Efficient Domain Knowledge Integration from Multiple

Sources for Biomedical Pre-trained Language Models

In the past few years, large pre-trained language models (PLMs) have

demonstrated superior performance over various downstream tasks in natural

language processing (NLP), such as BERT Devlin et al. (2019), RoBERTa Y. Liu

et al. (2019), ALBERT Lan et al. (2019), GPT-3 Brown et al. (2020), etc. These

PLMs mainly depend on self-supervised pre-training on large amounts of textual

data, e.g., Wikipedia, and can be conveniently applied to downstream tasks via

fine-tuning. Despite the great success of these general PLMs, their performance

over domain-specific texts is relatively poor due to domain shifts Ma et al. (2019).

Consequently, recent studies construct domain-specific PLMs through fine-tuning or
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pre-training from scratch over domain corpora, such as BioBERT Lee et al. (2020),

ClinicalBERT Huang et al. (2019), SciBERT Beltagy et al. (2019), etc.

Since these PLMs are mostly pre-trained on unstructured free texts, a

common issue among the aforementioned general and domain-specific PLMs is

their lack of specific structured knowledge, which results in their incompetence

on knowledge-driven tasks Rogers, Kovaleva, and Rumshisky (2020). For instance,

some studies point out PLMs are insufficient to well capture factual knowledge

from text Poerner, Waltinger, and Schütze (2019); R. Wang et al. (2020); X. Wang

et al. (2021).

To enrich PLMs with external knowledge, some efforts have been made

recently B. Kim et al. (2020); Levine et al. (2020); X. Wang et al. (2021); Yao et

al. (2019b); Z. Zhang et al. (2019). A common theme among these approaches

is the incorporation of an auxiliary knowledge-driven training objective. For

instance, KG-BERT Yao et al. (2019b) integrates world/factual knowledge from

Wikipedia via knowledge graph completion; KEPLER X. Wang et al. (2021)

introduces a Knowledge Embedding objective and combines it with the language

modeling objective for joint optimization. Despite the improved performance of

these knowledge-enriched PLMs over downstream tasks, there are three limitations.

First, these approaches, either training from scratch or fine-tuning over off-the-shelf

checkpoints, need to optimize the entire model, which is quite expensive. Second,

they mostly focus on single-source knowledge incorporation, e.g., an encyclopedia,

and neglect knowledge from multiple sources. This limits the utilization of potential

knowledge, especially for knowledge-sensitive areas such as the biomedical domain

where knowledge is stored in multiple sources and formats Jin, Dhingra, Cohen,

and Lu (2019); Lee et al. (2020). Third, most of the existing knowledge integration
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approaches focus on general domain knowledge, while domain knowledge infusion

for PLMs is underexplored.

To address these limitations, we propose to perform knowledge integration

for PLMs via adapters Houlsby et al. (2019); Pfeiffer, Kamath, Rücklé, Cho, and

Gurevych (2021); Pfeiffer et al. (2020); Rebuffi, Bilen, and Vedaldi (2017); R. Wang

et al. (2020). Basically, adapters are lightweight neural networks that are placed

inside PLMs. When fine-tuning a PLM, the original parameters of the PLM are

fixed and only the adapters are fine-tuned. This makes adapters a parameter-

efficient alternative to full model fine-tuning. Another benefit of adapters is their

independent nature, where multiple adapters can be trained independently without

interfering with each other. As such, we propose to enrich PLMs with adapters that

are independently pre-trained for different sources of domain knowledge.

In this paper, we propose an architecture that aims to integrate domain

knowledge from multiple sources via knowledge-specific adapters to enrich PLMs.

We take the biomedical domain as a case study, as it is a knowledge-sensitive area

where domain knowledge is essential for various NLP applications. Specifically,

we explore three knowledge-specific adapters for PLMs based on the UMLS

Metathesaurus graph, the Wikipedia articles for diseases, and the semantic

grouping information for biomedical concepts. We also incorporate an attention-

based knowledge controller module that aims to adaptively adjust the activation

levels of the adapters, which also brings some explainability as it shows the

importance of the adapters for a task. The experimental results show that by

equipping PLMs with domain knowledge from multiple sources via the proposed

architecture, their overall performance gets consistently improved across tasks
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and datasets. Moreover, the pre-trained adapters can be directly integrated with

multiple PLMs, demonstrating transferability of the architecture.

The contributions of this work can be summarized as follows:

– We propose a novel architecture that incorporates Diverse Adapters for

Knowledge Integration (DAKI) into PLMs. It integrates domain knowledge

from multiple sources adaptively via an attention-based knowledge controller.

The architecture demonstrates effectiveness, transferability, explainability as

well as parameter-efficiency in experiments.

– Taking the biomedical domain as a case study, we specifically investigate and

pre-train three knowledge adapters based on the UMLS Metathesaurus graph,

the Wikipedia articles for diseases, and the semantic grouping information for

biomedical concepts. Such adapters serve as off-the-shelf modules and can be

used in a plug-and-play manner via DAKI.

– Extensive experiments on different biomedical NLP tasks and datasets

demonstrate the benefits of the proposed knowledge-specific adapters and

DAKI.

5.1.1 Related Work. This study is essentially related to two lines of

research: knowledge integration for PLMs and domain-specific PLMs (biomedical

PLMs in particular).

There has been a surge of research on knowledge injection for PLMs in

recent years B. He, Jiang, Xiao, and Liu (2020); B. Kim et al. (2020); Lauscher

et al. (2020); Levine et al. (2020); Pereira, Liu, Cheng, Asahara, and Kobayashi

(2020); Peters et al. (2019); T. Sun et al. (2020a); X. Wang et al. (2021); Yao et al.

(2019b); Z. Zhang et al. (2019). These studies aim to integrate knowledge from an
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external knowledge source, e.g., Wikipedia, into PLMs by augmenting the training

objective with a knowledge-driven regularization. As mentioned above, these

methods are limited in the sense that they mostly focus on single-source knowledge,

and require full model training. K-adapter R. Wang et al. (2020) addresses some

of these issues by introducing linguistic and factual adapters into RoBERTa, but

the adapters are treated equally in their work. Also, general domain knowledge,

such as factual knowledge B. He et al. (2020); T. Sun et al. (2020a); X. Wang et

al. (2021); Z. Zhang et al. (2019), commonsense knowledge Lauscher et al. (2020);

Pereira et al. (2020), and linguistic knowledge Levine et al. (2020) are prioritized in

these studies, while domain knowledge is somewhat underexplored Michalopoulos et

al. (2020).

Biomedical NLP continues to be an active area of research in the past few

years. There have been several biomedical PLMs proposed and have proven to be

successful in various domain tasks Alsentzer, Murphy, Boag, Weng, Jindi, et al.

(2019); Huang et al. (2019); Lee et al. (2020); Y. Peng et al. (2019a). As variants of

BERT Devlin et al. (2019) in the biomedical domain, these PLMs are mostly pre-

trained on large amounts of domain-specific corpora, such as the PubMed texts Lee

et al. (2020); Y. Peng et al. (2019a) and clinical notes Alsentzer, Murphy, Boag,

Weng, Jindi, et al. (2019); Huang et al. (2019), and do not explicitly incorporate

domain knowledge in the pre-training stage.

This work differs from the aforementioned studies in that we are the first to

integrate biomedical domain-specific knowledge from multiple sources into PLMs

via an adapter-based architecture. The knowledge integration process is flexible,

efficient, and transferable.
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5.1.2 Diverse Adapters for Knowledge Integration (DAKI). In

this section, we introduce a mechanism, i.e., DAKI, that encodes domain knowledge

from diverse sources into PLMs via knowledge-specific adapters. We first introduce

the adapter module along with the overall architecture of DAKI, and then discuss

the knowledge-specific adapters for the biomedical domain. In the end, we explain

the attention-based knowledge controller that is leveraged to adaptively integrate

these adapters.

5.1.2.1 Pre-trained Language Models with Adapters.

Adapter An adapter module is a simple and lightweight neural network placed

within a large pre-trained base model, and in NLP the base model is usually a pre-

trained language model such as BERT Devlin et al. (2019). Generally, adapters

are placed in or between the intermediate transformer layers in a PLM, and the

placement defines two paradigms. One puts the adapters inside the intermediate

transformer layers Houlsby et al. (2019); Pfeiffer et al. (2021, 2020), and the

other puts the adapter between and outside the intermediate transformer layers

R. Wang et al. (2020). In this work, we choose the latter paradigm for its flexibility

and extensibility, as shown in Figure 11. Instead of updating the entire language

model, only the adapters are updated during fine-tuning on downstream tasks. This

strategy demonstrates parameter-efficiency and scalability while achieving similar

performance to full fine-tuning, and has been actively explored as an alternative for

transfer learning in recent NLP studies Houlsby et al. (2019); Pfeiffer et al. (2021,

2020); Rücklé et al. (2020); R. Wang et al. (2020).

In this work, we leverage a simple yet effective bottleneck feed-forward

network as the adapter module. Essentially, the adapter module consists of a

residual connection and two projection layers with LeakyReLU as the activation,
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Figure 10. Adapter module.

as shown in Figure 10. The size of adapters is controlled by the bottleneck, and is

usually much smaller than that of the base PLM, i.e., dbottleneck ≪ dPLM, where

dPLM refers to the dimension of hidden-states in the base PLM. In our case, the

bottleneck dimension is set to 128 for all experiments. Note that a more complex

adapter is possible, such as two projection layers along with a stack of transformer

layers R. Wang et al. (2020), but at the cost of efficiency.

Architecture Figure 11 illustrates the overall architecture of DAKI.

Essentially, the architecture contains three main components, i.e., the base PLM,

the knowledge-specific adapters, and the adapter integration module. DAKI

theoretically supports any transformer-based structure as the base PLM, such as

BERT Devlin et al. (2019), ALBERT Lan et al. (2019), RoBERTa Y. Liu et al.

(2019), etc. Each knowledge-specific adapter contains several adapter modules and

they are inserted at certain layers of the base PLM. Each adapter module takes

as input the addition of the hidden-states of the transformer layer and the output

of the previous adapter module. The adapter modules do not share weights with
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Figure 11. Architecture of DAKI. CTRL refers to the knowledge controller. Linear
layers are omitted for simplicity.

each other. Motivated by the fact that knowledge from different sources should

have different level of activation over downstream tasks, we incorporate a knowledge

controller to adaptively integrate the knowledge adapters. Details are explained in

Section 5.1.2.3.

When pre-training an adapter, we take the addition of the output of the last

adapter module and the last-hidden-states of the base PLM as the final output,

and use it for the pre-training task. Note that during adapter pre-training, the

knowledge controller is dropped and the base PLM is frozen. When applying

DAKI to downstream tasks, we take the addition of the output of the knowledge

controller and the last-hidden-states of the base PLM as the final output, and use it

for the downstream task.

The benefits of this architecture is threefold. First, adapters are independent

and do not interact during pre-training, which means they have perfect memory of

142



Adapter Source Size Format

KG UMLS Metathesaurus 1, 772, 248 (h, r, t)
DS Wikipedia 14, 617 x
SG Semantic Network 333, 005 (x, y)

Table 24. Statistics of the datasets for pre-training KG, DS, SG. The formats are
triples, passages, and textual definitions with labels, respectively.

the knowledge, thus avoiding the forgetting issue in multi-task learning. Second, it

demonstrates flexibility and extensibility as it is easy to remove, add or replace the

adapters. Third, the usage of DAKI is as simple as a general PLM, since its output

can be considered the last-hidden-states of a PLM.

In this work, we use ALBERT-xxlarge-v2 Lan et al. (2019) as the

base PLM. We investigate three knowledge-specific adapters based on the

UMLS Metathesaurus graph, the Wikipedia articles for diseases, and the

semantic grouping information for biomedical concepts. Details are explained in

Section 5.1.2.2. Each adapter contains three adapter modules and they are placed

at layers {0, 5, 11}. Note that the number and placement of adapter modules can be

flexible, and in this study, we follow the same strategy with R. Wang et al. (2020)

where three modules are distributed at the bottom, middle, and top layer.

5.1.2.2 Adapters Pre-training. In this work, we investigate

three independent adapters based on three sources of knowledge, i.e., the UMLS

Metathesaurus knowledge graph (KG), the Wikipedia articles for diseases (DS),

and the semantic grouping information for medical concepts (SG). The statistics

of the corresponding datasets for pre-training are shown in Table 24. These

knowledge-specific adapters serve as examples for encoding domain knowledge from

various sources, and can be easily extended or replaced with alternative knowledge
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sources. For clarity, we use PLM-KG, PLM-DS and PLM-SG to denote the model

that is used to pre-train the adapters in this section.

Knowledge Graph Adapter (KG) Knowledge graphs encode real-world

knowledge in the form of triples, i.e., (h, r, t) where h and t refer to the head

and tail entity and r is the relation between them. Knowledge graphs have been

actively explored in recent studies of language model pre-training or fine-tuning,

as they reveal the relationships between real-world entities that are hidden from

surface texts.

To leverage the knowledge encoded in the UMLS Metathesaurus graph1,

we pre-train an adapter that aims to capture the connectivity patterns between

medical entities through knowledge graph completion. More specifically, we treat

the triples in UMLS as textual sequences and feed them into the PLM-KG encoder.

Then the representation of the triple is used as input to a binary classification layer

for plausibility prediction.

In particular, given a triple (h, r, t), we first convert it to a textual sequence

by concatenating the words in the names of h, r, and t. For example, for a triple

(diffuse adenocarcinoma of the stomach, disease has normal tissue origin, gastric

mucosa), the constructed input sequence is:

[CLS] diffuse adenocarcinoma of the stomach [SEP] disease has normal tissue

origin [SEP] gastric mucosa [SEP]

We then use the PLM-KG model to encode the sequence and use the

representation for the [CLS] token in the last layer to predict the plausibility of the

triple, i.e., determining whether the triple is valid or not. The adapter parameters

1The data is available at https://www.nlm.nih.gov/research/umls.
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in this model are optimized with a binary cross-entropy loss:

LKG = −
∑

t∈{T +∪T −}

(y log ŷ1 + (1 − y) log ŷ0) (5.1)

where y is the ground-truth label and ŷ0, ŷ1 refer to the output prediction

probabilities. T + and T − are the positive and negative triple set. Here, the

negative set T − is constructed by replacing the head or tail entity in a positive

triple with a random entity.

Disease Adapter (DS) It is crucial to equip pre-trained language models

with disease knowledge for medical NLP tasks, as it bridges the gap between

disease terms and their textual descriptions. For example, in the medical natural

language inference task (NLI), the premise-hypothesis pair (No history of blood

clots or DVTs has never had chest pain prior to one week ago, Patient has angina)

is more likely to be correctly classified as entailment if the model specifically

knows that angina refers to chest pain.

To leverage the disease knowledge, we pre-train an adapter that aims to

infer disease names based on their textual descriptions. More specifically, for

each disease, a new passage is formed by collecting the textual content from its

Wikipedia article2. We then randomly substitute 75% of the disease terms in the

passage with [MASK] in the passage and optimize the PLM-DS model via a masked

language modeling (MLM) objective.

Formally, let Π = {π1, π2, . . . , πK} denote the indexes of the masked tokens

in the passage T , where K is the number of masked tokens. Then TΠ and T¬Π

represent the set of masked and observed tokens in the passage, respectively. Then

2This data is proposed by (Y. He et al., 2020a).
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the training objective for the adapter parameters is described as:

LDS = Lmlm(TΠ|T¬Π) = − 1

K

K∑
k=1

log p(tπk
|T¬Π) (5.2)

where p(tπk
|T¬Π) is the probability of predicting tπk

given the unmasked tokens

T¬Π, estimated by a softmax layer.

Semantic Grouping Adapter (SG) To provide a proper and consistent

categorization of concepts in the Metathesaurus, the UMLS Semantic Network

groups concepts according to the semantic types that have been assigned to

them. Each concept is assigned to at least one semantic type from a total of 127

semantic types. For certain purposes, however, a coarser-grained categorization is

desirable, and hence the semantic types are aggregated into 15 semantic groupings

McCray, Burgun, and Bodenreider (2001). Such aggregation ensures the semantic

coherence between concepts in the same group3. This property would help pre-

trained language models capture the connectivity between medical concepts, as well

as between their descriptive texts.

To leverage the semantic grouping information, we pre-train an adapter that

aims to predict the semantic groupings of concepts in UMLS based on their textual

definitions. More specifically, for a UMLS concept with a corresponding textual

definition, we encode the definition with the PLM-SG model and feed the [CLS]

representation into a linear layer for classification. The model is optimized with

cross-entropy loss:

LSG = −
15∑
i=1

yi log ŷi (5.3)

where yi is the ground-truth label and ŷi refers to the output prediction

probabilities.

3The data is available at https://semanticnetwork.nlm.nih.gov.
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5.1.2.3 Knowledge Controller. The knowledge controller is

essentially a separate adapter with additional linear layers, which is distributed at

the same layers with the knowledge adapters, as shown in Figure 11. This module

aims to adaptively integrate the knowledge adapters by assigning them different

importance weights, as opposed to a simple concatenation of the outputs of

adapters R. Wang et al. (2020). At each layer i where an adapter module is placed,

three linear transformation modules are employed, i.e., Qi, Ki, Vi, as motivated by

Vaswani et al. (2017). Essentially, Qi takes the hidden-states of the controller as

the input, and the output is considered as the query signal. Ki in contrast takes

the hidden-states of the adapters as the input, and the output serves as the key

signal. The value signal is the hidden-states of the adapters. Then the attention

weights are computed for each adapter and the weighted sum of the hidden-states

of adapters are fed into Vi, the output of which is regarded as the final output of

the knowledge controller at layer i:

Qi = WQi
HCi

+ bQi

Ki = WKi
HDi

+ bKi

Ai = softmax(QiK
T
i )HDi

Zi = WVi
Ai + bVi

(5.4)

where HCi
are the hidden-states of the controller and HDi

are the concatenation

of the hidden-states of the adapters at layer i. WQi
,bQi

,WKi
,bKi

,WVi
,bVi

are

trainable parameters of the linear modules at each layer.

5.1.3 Experiments. In this section, we evaluate the DAKI

architecture over three knowledge-driven downstream tasks in biomedical NLP,

where we aim to show the effectiveness of the knowledge integration method. We

also investigate some desirable properties of the architecture.
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5.1.3.1 Setup. We perform evaluation over three knowledge-driven

biomedical NLP tasks, i.e., Question Answering (QA), Natural Language Inference

(NLI) and Named Entity Recognition (NER)4.

QA We conduct the medical QA experiments on MEDIQA-2019 Abacha,

Shivade, and Demner-Fushman (2019) and TRECQA-2017 Abacha, Agichtein,

Pinter, and Demner-Fushman (2017), where the task is cast as a regression

problem. Essentially, for a given question-answer pair, a numerical score ranging

from −2 to 2 is assigned by experts, indicating the quality of the answer to the

question, and the task is to predict the score. We use a simple prediction model,

where each pair is encoded with a PLM or DAKI, and the representation for [CLS]

is fed into a linear layer on top for prediction.

NLI We conduct the medical NLI experiments on MEDNLI Romanov and

Shivade (2018a), where the task is to classify a given premise-hypothesis pair into

a class of entailment, neutral, or contradiction. Similarly, each pair is encoded

with a PLM or DAKI, and the [CLS] representation is fed into a classification head

on top.

NER We conduct the medical NER experiments on NCBI Doğan et al. (2014)

and BC5CDR-disease Wei et al. (2016), where the task is to classify tokens of

sentences into a class of B, I, or O Y. He et al. (2020a); Y. Peng et al. (2019a), with

a PLM or DAKI as the encoder.

Note that our models for downstream tasks QA, NLI, and NER follow

those in dieaseBERT/diseaseALBERT Y. He et al. (2020a) to be comparable. We

4The datasets for downstream tasks are available at https://github.com/heyunh2015/
diseaseBERT.
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also inherit the hyper-parameters for such models from Y. He et al. (2020a). In

particular, we employ AdamW as the optimizer and set learning rates of {1e-5, 1e-

5, 5e-5}, and the batch sizes of {8, 16, 16} respectively for the tasks.

Baselines We take three PLMs, i.e., BERT-base-uncased Devlin et al. (2019),

RoBERTa-base Y. Liu et al. (2019), ALBERT-xxlarge-v2 Lan et al. (2019), as

well as their main biomedical variants as the baselines, including ClinicalBERT

Alsentzer, Murphy, Boag, Weng, Jindi, et al. (2019), SciBERT Beltagy et al.

(2019), BioBERT-v1.1 Lee et al. (2020), umlsBERT Michalopoulos et al. (2020)

and diseaseBERT/diseaseALBERT Y. He et al. (2020a).

Pre-training Adapters When pre-training the adapters KG, DS, SG, we use

the ALBERT-xxlarge-v2 Lan et al. (2019) as the base PLM, and set the adapter

size to 128. We use Adam as the optimizer and set learning rates of {1e-6, 2e-4, 1e-

5}, batch sizes of {256, 16, 256}, maximum sequence lengths of {16, 256, 128} and

training epochs of {2, 10, 1}, respectively for the corresponding adapters.

5.1.3.2 Results. Table 25 shows the performance of our proposed

architecture, i.e., DAKI, over three biomedical NLP tasks across five datasets.

Generally, one main observation from the table is that equipping PLMs with

DAKI significantly improve their performance on these biomedical tasks, as

reflected in DAKI-BERT, DAKI-RoBERTa and DAKI-ALBERT, demonstrating

the effectiveness of the architecture. Moreover, although DAKI-BERT

outperforms BERT across all metrics, it only performs comparably or poorer than

ClinicalBERT, SciBERT and BioBERT. We conjecture that it is due to lack of the

knowledge in their pre-training data, i.e., the MIMIC-III clinical notes Johnson
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Datasets MEDIQA-2019 TRECQA-2017 MEDNLI BC5CDR NCBI
Metrics(%) Accuracy MRR Precision Accuracy MRR Precision Accuracy F1 F1

BERT 64.95 82.72 66.49 74.61 56.17 52.55 75.95 83.09 85.14
ClinicalBERT 67.30 84.78 70.59 77.00 52.56 56.62 81.50 84.90 87.25
SciBERT 68.47 84.47 68.07 77.23 54.57 57.54 80.94 86.16 87.24
BioBERT 68.29 83.61 72.78 77.12 49.84 57.25 81.86 85.99 87.70
diseaseBERT 66.40 83.33 68.94 75.33 56.41 54.01 77.29 83.47 86.81
umlsBERT 62.87 83.91 63.62 70.20 54.17 46.69 81.65 84.54 86.23

RoBERTa 72.49 86.74 74.67 75.33 51.76 54.01 81.65 83.04 85.83

ALBERT 76.54 88.46 81.41 75.09 58.57 53.03 85.48 84.28 87.56
diseaseALBERT 79.49 90.00 84.02 80.10 57.21 62.40 86.15 84.71 87.69

DAKI-BERT 69.47 85.06 70.17 77.95 54.65 58.27 77.85 83.43 85.67
DAKI-BioBERT 72.54 87.33 77.46 78.55 54.17 59.04 83.41 86.51 89.01
DAKI-RoBERTa 73.98 89.22 76.39 77.23 51.92 58.48 81.65 83.36 86.01
DAKI-ALBERT 80.22 91.22 84.36 80.33 58.65 62.31 86.85 84.86 87.86

Table 25. Performance of DAKI over downstream tasks QA, NLI and NER.

et al. (2016), the Semantic Scholar papers Ammar et al. (2018), and the PubMed

articles, respectively.

Transferability Another advantage of DAKI is transferability, due to its

flexible architecture and implementation. In this work, we have three adapters

and they are all pre-trained with ALBERT as the base PLM. All the DAKI

variants in Table 25 are the corresponding PLMs equipped with such pre-trained

adapters (based on ALBERT). As such, the performance gain of the DAKI variants

shows that the knowledge in the adapters is transferable across BERT versions,

making it possible to use adapters as off-the-shelf modules in a plug-and-play

manner. Interestingly, even for the knowledge-augmented BioBERT, incorporating

DAKI yields a performance boost over all tasks, which further demonstrates the

transferability of the architecture.

Ablation Study To investigate the influence of each component of DAKI, we

perform an ablation study and show the results in Table 26. We first remove the
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Datasets MEDIQA-2019 TRECQA-2017 MEDNLI BC5CDR NCBI
A.P C.P

Metrics(%) Acc MRR Pre Acc MRR Pre Acc F1 F1

DAKI 80.22 91.22 84.36 80.33 58.65 62.31 86.85 84.86 87.86 79.63 -
w/o ctrl 78.32 88.27 81.68 79.38 56.09 61.19 86.78 84.58 86.99 78.14 -1.49
w/o KG 79.49 90.72 85.42 80.45 57.85 62.74 85.94 83.93 87.43 79.33 -0.30
w/o DS 78.86 89.61 82.37 79.62 57.85 61.53 85.86 83.99 87.82 78.61 -1.02
w/o SG 73.15 86.33 80.77 79.26 57.61 60.43 85.37 84.29 86.87 77.12 -2.51
w/o ctrl,DS,SG 78.14 89.61 80.11 79.86 59.13 62.11 86.29 83.76 87.37 78.48 -1.15
w/o ctrl,KG,SG 77.78 89.44 83.54 79.98 57.45 61.96 84.18 83.46 87.33 78.34 -1.29
w/o ctrl,KG,DS 77.51 89.83 83.44 80.69 58.01 64.01 86.51 84.25 87.26 79.05 -0.58
ALBERT 76.15 84.67 83.19 77.12 57.93 56.68 86.01 85.38 86.81 77.10 -2.53

A.P means average of performance and C.P means change of performance.

Table 26. Ablation analysis.

knowledge controller from DAKI, and take the addition of the outputs of adapters,

without adaptive adjustment. Then we remove each adapter while keeping the

controller. Finally, we apply accumulative ablation by removing both of them.

Essentially, the results of the ablated versions demonstrate varying degrees of

performance drop, indicating the necessity of each component.

Explainability We expect the knowledge controller to bring some

explainability, as it adaptively activates the adapters when fine-tuning over the

downstream tasks. We show the average softmax attention weights of the adapters

in Figure 12, which we assume to reflect the activation levels of them. Basically, the

activations of adapters are different across tasks and datasets, except that KG and

SG seem to have more impact on BC5CDR and NCBI.

Parameter-efficiency An advantage of using DAKI for incorporating

knowledge is that only one version of the PLM is needed to accommodate multiple

knowledge sources. In particular, without adapters, fine-tuning a PLM with one

knowledge source will produce a new version of PLM. For three knowledge sources

in our work, we will need to have 3 × NPLM parameters. With DAKI, this number
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Figure 12. Activation levels of the adapters KG, DS, SG over the downstream
tasks. We calculate the softmax activations in the last layer for each adapter, and
the activations are averaged over all instances in the test set.

is reduced to NPLM + 3 ×Nadapter + Nctrl. Considering ALBERT as an example, this

amount to a reduction of 2×NPLM − 3×Nadapter −Nctrl ≈ 2× 223M − 4M = 442M

parameters.

5.2 Conclusion

In this section, we propose DAKI, an adapter-based architecture that

adaptively integrates knowledge from multiple sources into pre-trained language

models. We take the biomedical domain as a case study, and specifically explore

three different sources of biomedical knowledge and integrate them with DAKI.

The experimental results prove the effectiveness of the architecture and also

show that the architecture demonstrates parameter-efficiency, transferability, and

explainability to some degree. The objective of this work is not to update state-of-

the-art results on the benchmarks but to provide an alternative method of domain

knowledge integration for PLMs, especially from multiple sources of knowledge.
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CHAPTER VI

CONCLUSION AND FUTURE DIRECTIONS

6.1 Conclusion

In conclusion, this dissertation has investigated a range of approaches to

enhance pre-trained language models in the clinical domain, with a specific focus on

knowledge graphs, data augmentation, and parameter-efficient domain knowledge

integration. These explorations have shed light on the potential of leveraging

these techniques to improve the performance and applicability of language models

in healthcare settings. The focus of this dissertation is to demonstrate effective

techniques for incorporating domain knowledge in healthcare. Each chapter

represents an exploration of different approaches and innovations, each contributing

to the body of knowledge in clinical NLP and healthcare informatics. This final

chapter offers an overview of the major contributions and findings, along with a

discussion of potential directions for future research.

In Chapter II, we perform a comprehensive review of existing clinical

PLMs, scrutinizing their performances and providing a critical analysis of potential

improvement areas. This review serves as a foundation for the subsequent

exploration of enhancement strategies, setting the stage for the experimental

chapters that followed.

In Chapter III, we delve into the application of graph representation

learning techniques to integrate internal and external knowledge graphs into

healthcare machine learning models. We propose three unique studies: the use of

hyperbolic embeddings of medical ontologies, a network embedding method for

maintaining network view consistency, and a method for extracting medical text
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from EHRs for patient outcome prediction. The potential of these methods to

enhance PLMs is thoroughly demonstrated.

In Chapter IV, we explore the potential of clinical text as a source of

domain knowledge, proposing two innovative methods of data augmentation. We

introduce a framework for generating synthetic clinical notes, MedAug, which

demonstrates significant potential to enhance patient outcome prediction models.

Furthermore, we propose ClinicalT5, a domain-specific T5-based transformer model

pre-trained on clinical text, which demonstrates superior performance in various

clinical tasks.

In Chapter V, we present a novel, parameter-efficient approach to

incorporating domain knowledge of multiple sources and formats into PLMs using

adapters. These small, feed-forward networks encode domain-specific knowledge

and improve the performance of various biomedical NLP tasks. Importantly,

this approach allows the language models to retain their original general-domain

knowledge, ensuring their robustness and adaptability.

6.2 Future Directions

Given the contributions and findings of this dissertation, the journey

into improving the performance of PLMs within the clinical domain is far from

complete. Several potential avenues of research can be explored as future directions.

Large Language Models The advent of large language models (LLMs)

like GPT-4 has significantly transformed the landscape of natural language

processing. These models are equipped to discern nuanced patterns and generate

highly context-specific responses. However, there’s a recognized need for a more

specialized approach in the clinical domain. General-domain LLMs, despite their

broad contextual understanding, tend to underperform in comparison with small,
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specialized clinical models in domain-specific tasks Lehman et al. (2023) and lack

the depth of scientific and medical knowledge needed for the intricacies of disease

mechanisms and treatments Ruksakulpiwat, Kumar, and Ajibade (2023). This

observed limitation paves the way for exciting research opportunities focused on

the development of domain-specific clinical LLMs. Although there have been initial

endeavors like Med-PaLM Singhal et al. (2023), the field is far from mature.

The sensitive and private nature of medical data has resulted in a scarcity of

data for training clinical LLMs. To address this, potential approaches could include

the fine-tuning of general LLMs with doctor-patient conversations Yunxiang, Zihan,

Kai, Ruilong, and You (2023), thereby creating domain-specific variants with

limited data. Data augmentation techniques, like the generation of synthetic data

using GPT-4, can also be explored. Nonetheless, these approaches are not without

challenges. One such challenge is hallucination where the model generates incorrect

or misleading information. This could have severe implications in clinical settings,

emphasizing the need for high-quality data and the incorporation of additional

information sources, such as knowledge graphs, to improve model accuracy and

explainability.

Knowledge Graphs Knowledge Graphs (KGs) represent another promising

direction in the field of clinical NLP and health informatics. As structured

representations of interconnected data, KGs provide a powerful means of

organizing, interpreting, and employing domain-specific knowledge. This ability

is particularly pertinent in the medical field, where intricate relationships exist

between entities like diseases, symptoms, medications, and genetic factors.

However, despite their potential, current applications of KGs in the healthcare

sector remain relatively underexplored.
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The main challenge lies in the construction and maintenance of large-

scale, high-quality, and up-to-date KGs that can encompass rapidly evolving

medical knowledge. Current solutions mostly rely on manual curation which

is time-consuming, expensive, and struggle to keep up with the latest research

findings and clinical guidelines. To overcome this issue, one possible solution is

to develop automated methods that can extract relevant knowledge from various

sources, including clinical literature, Electronic Health Records (EHRs), and other

databases. This could facilitate the construction of robust, data-driven KGs.

Moreover, while the existing work on KGs in clinical NLP focuses largely on their

use for enhancing model performance, another potential direction is to improve the

interpretability and explainability of complex models with KGs, which is crucial in

the clinical domain.

Multimodality Multimodality presents another fascinating future direction in

this field, which in this context refers to the incorporation and analysis of diverse

types of data - including text, images, numerical lab results, and more. This

approach aligns well with the heterogeneous nature of healthcare data. Electronic

Health Records (EHRs), for example, are a rich source of multimodal data.

They contain a wide range of information, including physician’s notes, medical

imaging, lab results and patient demographics, all of which could provide valuable

insights when leveraged together in the era of large language models. Two recent

studies, Med-PaLM M Tu et al. (2023) and BiomedGPT K. Zhang et al. (2023),

have indeed shown the potential of integrating multimodal data in healthcare

informatics. However, this direction is far from being comprehensively explored

and thus, presents numerous exciting opportunities for future research.
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Recurrent neural network based language model. In Interspeech (Vol. 2, pp.
1045–1048).

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013).
Distributed representations of words and phrases and their compositionality.
In Advances in neural information processing systems (pp. 3111–3119).

Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N., Chenaghlu, M., & Gao, J.
(2020). Deep learning based text classification: A comprehensive review.
arXiv preprint arXiv:2004.03705 .
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