
REFLECTIONS OF CLOSURES

by

ZACHARY J. SULLIVAN

A DISSERTATION

Presented to the Department of Computer Science
and the Division of Graduate Studies of the University of Oregon

in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy

December 2023

DISSERTATION APPROVAL PAGE

Student: Zachary J. Sullivan

Title: Reflections of Closures

This dissertation has been accepted and approved in partial fulfillment of the requirements
for the Doctor of Philosophy degree in the Department of Computer Science by:

Zena M. Ariola Chair
Boyana Norris Core Member
Michal Young Core Member
Benjamin Young Institutional Representative

and

Krista Chronister Vice Provost for Graduate Studies

Original approval signatures are on file with the University of Oregon Division of
Graduate Studies.

Degree awarded December 2023

2

© 2023 Zachary J. Sullivan
All rights reserved.

3

DISSERTATION ABSTRACT

Zachary J. Sullivan

Doctor of Philosophy

Department of Computer Science

December 2023

Title: Reflections of Closures

The idea that programs are data forms the bedrock of functional programming

languages, but it is also found in object-oriented languages and recent iterations of

systems languages. Since passing and returning programs as data is incompatible with the

architecture of modern machines, implementations of such a feature gives rise to closures,

which package code with the environment that it needs to run. The first implementations

of these objects are as part of the runtime system of an abstract machine. However,

to be able to optimize these structures, compiler writers often choose instead to embed

this structure in their code when compiling to lower-level languages in a transformation

called closure conversion. While this transformation and closures more generally are well

studied with respect to certain types of programming languages, how such a language

interacts with different evaluation strategies still remains unstudied in a theoretical

setting. Moreover, the current approaches to performing, optimizing, and proving correct

this transformation lack the flexibility of other language features.

This thesis develops these ideas by presenting closure conversions for missing

evaluation strategies, specifying a new implementation approach that allows for the

flexible implementation and optimization of closures, and formalizing them in an

intermediate language that captures multiple notions of closures and evaluation strategies

4

in one. Our approach follows from first principles meaning that our closures are a

reflection of the environment-based abstract machines that birth them. We develop an

approach to reasoning about closures that connects their equational properties with the

abstract machines on which they run. Thereby, we can prove not only that closure

conversion does not change the output of programs, but that closure conversion removes

the need for the runtime system to capture closures.

This dissertation includes previously published, co-authored material.

5

CURRICULUM VITAE

NAME OF AUTHOR: Zachary J. Sullivan

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, OR, USA
Indiana University, Bloomington, IN, USA

DEGREES AWARDED:

Master of Science, Computer Science, 2018, University of Oregon
Bachelor of Science, Computer Science, 2016, Indiana University

AREAS OF SPECIAL INTEREST:

Compilation
Design of Programming Languages
Verification

PROFESSIONAL EXPERIENCE:

Year Round Intern. Sandia CA. 2019-Present.
Graduate Employee. University of Oregon. 2017-Present.

PUBLICATIONS:

Zachary J. Sullivan, Paul Downen, and Zena M. Ariola. Closure Conversion in
Little Pieces. International Symposium on Principles and Practice of Declarative
Programming. 2023.

Zachary J. Sullivan, Paul Downen, and Zena M. Ariola. Strictly Capturing Non-strict
Closures. Workshop on Partial Evaluation and Program Manipulation. 2021.

Paul Downen, Zachary Sullivan, Zena M. Ariola, and Simon Peyton Jones. Making a
Faster Curry with Extensional Types. Haskell Symposium. 2019.

6

Paul Downen, Zachary Sullivan, Zena M. Ariola, and Simon Peyton Jones. Codata in
Action. European Symposium on Programming. 2019.

7

ACKNOWLEDGEMENTS

This dissertation would not have been possible without the many people who helped

me out along the way. My advisor, Zena, guided me throughout my entire time in Oregon.

She, more than anyone, drove me to clearly understand and articulate the necessary

parts of my work that I tended to gloss over. Paul Downen helped me not only with

the technical knowledge necessary for this work, but also played a huge role along with

Zena in influencing my research ideas.

Sandia National Laboratory supported most of my PhD financially. Additionally, the

community there played a role in motivating the correctness ideas found in much of my

work. My mentors, Johnson-Freyd and Sam Pollard, each took the time to listen to my

raw, unfiltered thoughts when I was moving towards a new idea. A special thanks to Sam

and Anthony Dario, who provided feedback in polishing and presenting this document.

Lastly, I would like to thank those closest to me. My parents made many sacrifices

to put me in a position to succeed in my schooling while also providing unconditional

support for anything I might do. My older siblings, being successful in their own

endeavours, were role models that motivated me to realize my goals. My friends and

especially my girlfriend, Dewi, made my time in graduate school amazing. For all of this,

I am grateful.

8

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 13

1.1. The Emergence of Closures . 14

1.2. Reflecting Closures in a Language 16

1.3. Reasoning about Closures . 17

1.4. Outline . 18

II. MACHINES AND THEIR CALCULI . 20

2.1. The SECD Machine and Call-by-Value 23

2.2. The Krivine Machine and Call-by-Name 26

2.3. The Sestoft Machine and Call-by-Need 28

III. CLOSURE CONVERSIONS . 33

3.1. The Canonical Closure Conversion 35

3.2. Non-strict Closure Conversions . 45

3.3. Sharing Closure Conversion . 53

IV. ABSTRACT CLOSURES . 61

4.1. Why Abstract Closures . 63

4.2. Closures for Different Evaluation Strategies 66

4.3. Deriving Closure Conversions . 70

4.4. Using Abstract Closures . 71

V. CBPVS: A COMMON INTERMEDIATE LANGUAGE 75

5.1. CBPV . 75

5.2. Adding Sharing . 80

5.3. Subsuming Call-by-Need . 85

9

Chapter Page

VI. CLOSURES AND MACHINES FOR CBPVS 94

6.1. An Environment Machine for CBPV 94

6.2. CBPVS with Closures . 97

6.3. The CBPVS Machine . 99

6.4. Backwards Simulation . 101

6.5. Observational Equivalence . 112

VII. A MODEL OF TYPES OVER THE CBPVS MACHINE 118

7.1. Logical Relations . 119

7.2. Semantic Equality . 135

7.3. Soundness of CBPVS . 186

7.4. Adequacy of Closure Conversions 186

VIII. DISCUSSION . 189

8.1. Related Work . 189

8.2. Future Work . 191

8.3. Conclusion . 192

REFERENCES CITED . 193

10

LIST OF FIGURES

Figure Page

2.1. Church’s 𝜆-calculus . 21

2.2. Types for 𝜆-expressions. 22

2.3. The SECD Machine . 23

2.4. The Call-by-Value Calculus . 26

2.5. The Krivine Machine . 27

2.6. The Call-by-Name Calculus . 27

2.7. The Sestoft Machine . 30

2.8. A Call-by-Need Calculus . 30

3.1. Strict Evaluation . 36

3.2. Closure Conversion Target Language . 37

3.3. Target Language Evaluation . 39

3.4. Canonical Closure Conversion . 40

3.5. Strict Closure Conversion Logical Relations 41

3.6. Non-strict Evaluation . 47

3.7. A Non-strict Closure Conversion . 49

3.8. Non-strict Closure Conversion Logical Relations 50

3.9. Lazy Evaluation . 55

3.10. Target Language extended with Sums and Mutation 57

3.11. Mutable Target Language Evaluation . 58

3.12. Memoizing Non-strict Closure Conversion 59

4.1. Syntactic Environments . 65

4.2. Call-by-Value with Closures . 66

11

Figure Page

4.3. Call-by-Name with Closures . 68

4.4. Call-by-Need with Closures . 69

4.5. Example of Environment Sharing with Abstract Closures 73

5.1. Syntax . 76

5.2. Typing Rules . 76

5.3. CBPV Axioms . 78

5.4. Compiling CBN and CBV to CBPV . 79

5.5. CBPVS: CBPV with Sharing . 80

5.6. CBPVS Typing Rules . 83

5.7. CBPVS Axioms . 84

5.8. Compiling CBNeed to CBPVS . 86

5.9. More Flexible Call-by-Need Axioms . 87

6.1. CBPV Machine Syntax . 95

6.2. Building CBPV Machine Values . 96

6.3. CBPV Machine Transitions . 96

6.4. CBPVS with Closures . 98

6.5. CBPVS Machine Syntax . 100

6.6. Building CBPVS Machine Values and Heap Objects 101

6.7. CBPVS Machine Transitions . 102

6.8. CBPVS Machine Decoding . 103

7.1. CBPVS Logical Relations . 125

12

CHAPTER I

INTRODUCTION

Higher-order functions are those that may take other functions as arguments. These

are the essential feature for functional programming languages based on Church’s 𝜆-

calculus [13]. A canonical example of why this is useful is the map function:

map 𝑓 [] = []

map 𝑓 (𝑥 :: xs) = 𝑓 𝑥 :: map 𝑓 xs

With such a function, which takes any function 𝑓 as an argument, we turn one list into

another considering while applying 𝑓 each element. For example, we may now write

programs like map (+1) [1, 2, 3] and map print [1, 2, 3]. In a language like C, we could

write a similar function using arrays instead of recursively defined lists and assuming the

void type for the elements of the array:

void ∗ map(void (∗𝑓) void, void ∗ 𝑥𝑠, int 𝑙𝑒𝑛) {

for (int 𝑖 = 0; 𝑖 + +; 𝑖 < len){

xs[𝑖] = (∗𝑓) (xs[𝑖]);

}

}

However, there is an important difference between function pointers in C and the function

that can be passed to higher-order functions like map: the former must be defined at the

top level of a program, whereas the latter may be specified by being nested deep within

the structure of a program—i.e. its lexical scope—or even returned as a result of other

programs. For example, we can pass the following function, which is nested within a
13

let-expression, to map as the formal parameter 𝑓 :

let 𝑥 be 21 in 𝜆𝑦. 𝑥 + 𝑦

In evaluation, some representation of the unevaluated function 𝜆𝑦. 𝑥 +𝑦 will be bound to

𝑓 when the body of map is run. Because of its lexical scope, 𝑥 should be bound to 21 and

𝑦 should be found as an argument when the code 𝑥 + 𝑦 is finally run.

It is not only higher-order functions that involve the passing of lexically-scoped,

unevaluated expressions. Indeed, languages with lazy evaluation or non-strictness also

wait to evaluate expressions until later. Laziness can be found in languages as old

as ALGOL-60, but is found today in more popular languages like Haskell or in the

memoizable types of OCaml. For instance, the following Haskell program:

let 𝑥 = 21 in [1, 2, 𝑥 + 2]

will immediately return a list of three elements; however, the third element 𝑥 + 2 will

remain an unevaluated until some other code forces it to become a value, e.g. by printing

it. Therefore, we end up with the same need to maintain the lexical structure of the

unevaluated code when we return.

1.1 The Emergence of Closures

Though C’s code pointers are not as flexible, they can be directly represented

by the instruction-set architecture’s of modern machines. When passing unevaluated

expressions as values in amodernmachine, the nested, lexical structure of these languages

must be captured in some way as fixed machine code. The language’s operational

semantics is often specified with a substitution operation, which is an intuitive, high-level

description; however, using substitutions runs counter to the goal of generating fixed code

14

since it must create new expressions dynamically. To cope with this, implementations

instead keep a local store mapping variables to values; these values are looked up when

the variable is needed. The unevaluated expressions of these languages are encoded as

closures, which are structures containing some code and the environment for which it

needs to run. Closures do not appear explicitly in source code so there is a question of

whether their usage correctly reflects our source semantics.

Landin’s SECD-machine [24] is one of the earliest implementations of the 𝜆-calculus;

it made use of closures. However, Plotkin [46] later found that his implementation did not

actually capture the the semantics of Church’s calculus [13], since it always evaluated

the arguments of functions. Plotkin specified a new calculus that was reified by the

SECD-machine called the call-by-value 𝜆-calculus. Later, Krivine [23] would succeed in

specifying a machine that captured Church’s theory, which a theory we now refer to as

call-by-name. A notable difference between these two machines is their use of closures:

the SECD-machine generated closures only for the functions in the language whereas

the Krivine-machine generated closures for any expression in the language when it was

a function argument. As optimizations of the call-by-name machines, lazy machines

[48] evaluated function arguments at most once by passing closures as a references and

updating them with their evaluated form when forced. Indeed, here the source semantics

did not properly capture what was occurring in the machine. The source semantics that

these machines implemented was described was later specified as call-by-need by Ariola

et al. [9]. We refer to these three methods of computation as evaluation strategies and they

all treat closures differently in their abstract machines.

Another approach to implementation of functional languages is to compile them

to lower-level languages for which we already have a compiler, e.g. C. Therein, a

transformation called closure conversion encodes in the target language a data structure

15

that captures the environment, which the unevaluated code requires, along with a global

function, which knows how to re-instantiate that environment before executing. All

previous work on such a transformation [34, 36, 3, 38, 39] describes the transformation

necessary for compiling call-by-value programs. Thus, like the SECD-machine, their

transformation only builds closures around functions. The first contribution presented

in this thesis is that we describe the missing closure conversions transformations for

the call-by-name and call-by-need evaluation strategies [52]. Like their machines, the

call-by-name closure conversion transformation generates closure code for function

arguments and the call-by-need closure conversion generates extra code that performs the

memoization of closure evaluation. We are sure to emphasize the importance of the effect

the transformation has on the kind of target language it employs: the target language

need not have lexically-scoped passing of delayed computations.

1.2 Reflecting Closures in a Language

Treating closure conversion as a compilation between high- and low-level

intermediate languages—as is the case with previous work—is less than ideal for

optimizing compilers. An effective approach for optimization is to have a core

intermediate language wherein a large amount of optimizations are done by local

transformations [44, 51, 5, 39]. Being a global transformation, closure conversion has been

excluded from this approach. Another contribution in this thesis is that we propose a new

approach to closure conversionwhich enables it toworkwithin such optimizing compilers

[53]. We build on the concept of abstract closures [21, 34, 11], which are reflections

of runtime closures as objects within language itself. Specifically, abstract closures are

delayed code paired with a delayed substitution. Using them allows us to make closure

conversion a local transformation within an intermediate language, instead of between

high- and low-level languages.

16

To formalize the idea, we create a single intermediate language for the optimization

of closures that supports the compilation of call-by-name, call-by-value, and call-by-need

evaluation strategies. To support the first two, we start with call-by-push-value [27], a

language that has a strong enough theory to subsume both call-by-name and call-by-

value. We present a new extension to this language that allows it to support the call-

by-need evaluation strategy as well; this is why it is called CBPVS or call-by-push-value

plus sharing. We then show how to add closures to such a language and specify a closure

conversion transformation. To demonstrate that our language is suitable for optimization,

aside from the strong equational theory that it gets from being derived from call-by-push-

value, we show how closure optimizations that already exist in the literature [50, 19] are

local rewrites.

1.3 Reasoning about Closures

Our new approach to closures gives us strong reasoning properties about the

relationship between our language and our operational semantics. Not only does closure

conversion preserve the evaluation of programs, but its application also allows us to

use a simpler operational semantics. This latter property we refer to as the adequacy of

closure conversion. To prove it, we develop operational semantics for our source and target

languages with delayed runtime environments such that we can precisely show that this

property along with semantics preservation. We believe that closure conversion should be

proved adequate with respect to a particular abstract machine, since closures arise from

their implementation in these machines. An inadequate version of the transformation

would still require that the machine construct closures within its runtime. We extend

previous the logical relation reasoning approaches [3, 34] for closure conversion to work

over this new operational semantics.

17

For our new approach to closure conversion—i.e. within the intermediate language—

verifying the correctness of our approach to the transformation is a corollary of

the soundness of the theory over these delayed runtime environments. That is, all

transformations that are expressible within the equational theory, including closure

conversion, are correct by construction. This is in contrast to previous work including

our extension just mentioned [3, 52, 34] that constructs a bespoke logical relation between

the source and target languages for each new closure conversion.

The final contribution of this work is prove that our language CBPVS is sound with

respect an abstract machine with delayed substitutions. This verifies our new approach

to closure conversion, shows that we correctly added closures to a new language, and

as a corollary that the transformation is adequate. In so doing, we created new proof

techniques using logical relations for working with delayed substitutions, a sharing heap,

and extensional equational theories all at once.

1.4 Outline

Chapter 2 presents important abstract machines and the call-by-name, call-by-value,

and call-by-need 𝜆-calculi that reflect those machines. Chapter 3 describes closure

conversion which embeds closures in a lower-level language. Here, we present our

contribution [52] that extended the transformation to call-by-name and call-by-need

languages. Chapter 4 argues for a new approach to reasoning about closures and

performing closure conversions within a single compiler intermediate language. We

show how this applies to each evaluation strategy separately. Chapter 5 presents a

common compiler intermediate language, CBPVS, that unifies the languages of the

previous chapter. Chapter 6 shows how closures arise in CBPV and CBPVS by developing

environment abstract machines. Chapter 7 proves the correctness of CBPVS’s equational

theory including closures with respect to this abstract machine. Thereafter, it describes

18

what it means for closure conversions to be adequate, proves how our use of abstract

closures satisfies it.

This dissertation is based on the work of two papers—i.e. Strictly Capturing Non-

strict Closures [52] and Closure Conversion in Little Pieces [53]—and their appendices that

were authored by Zachary J. Sullivan, Paul Downen, and Zena M. Ariola. In both of the

published papers, Zachary J. Sullivan was the primary contributor while being closely

advised by Paul Downen and ZenaM. Ariola for the technical aspects, design, and framing

of work.

19

CHAPTER II

MACHINES AND THEIR CALCULI

The earliest approaches to mechanizing the 𝜆-calculus were presented as abstract

machines; that is, state transitions systems represented at a level suitable for easy

mapping to an instruction-set architecture. For various reasons that we will explore,

the machines themselves diverged from the original calculus [13] that they were meant

to implement. As a reflection of the different machine evaluation behavior, different

evaluation strategies, or different source semantics, were created to characterize how the

programswould run. Analogously, the work in this dissertationwill be a further reflection

on these implementations. Specifically, we focus on their closures. This chapter presents

three forms of semantics for the 𝜆-calculus and their interaction: equational theories, type

theories, and abstract machines.

The first kind of semantics are equational theories. Therein, we define a set of axioms

relating two expressions of a language. These axioms are combined with the following

rules to make up the theory:

𝑀 = 𝑀
Refl. 𝑁 = 𝑀

𝑀 = 𝑁
Sym. 𝑀 = 𝑁 𝑁 = 𝐿

𝑀 = 𝐿
Trans. 𝑀 = 𝑁

𝐶 [𝑀] = 𝐶 [𝑁] Comp.

The first three rules make the theory and equivalence relation. The last of these rules is

compatibility; it states that for any context, an expression with a hole, if two expressions

are equal, then they are equal when plugged into that context. Such a rule is essential for

flexibility when optimizing since it allows us to preform local rewrites anywhere within

a program.

20

𝑀, 𝑁, 𝐿 ∈ Expression ::= b | 𝑥 | 𝜆𝑥.𝑀 | 𝑀 𝑁

(a) Syntax

𝜆𝑥 .𝑀 =𝛼 𝜆𝑦.𝑀 [𝑦/𝑥]
(𝜆𝑥. 𝑀) 𝑁 =𝛽 𝑀 [𝑁 /𝑥]
𝜆𝑥 .𝑀 𝑥 =𝜂 𝑀

(b) Axioms

Figure 2.1. Church’s 𝜆-calculus

Let us consider Church’s 𝜆-calculus [13] presented Figure 2.1 as our first example

of an equational theory. It contains only a few syntactic constructions that make up the

expressions of the language. The anonymous function 𝜆𝑥. 𝑀 takes an argument and binds

it to 𝑥 in the expression 𝑀 . The application form 𝑀 𝑁 will call the function 𝑀 with

the argument 𝑁 . Finally, we reference the bound variables with the variable expression.

Along with the syntax, Figure 2.1 specifies three axioms. The first, 𝛼 , states that any two

functions are equivalent if they are the same except for the name of their formal parameter.

The second, 𝛽 , describes howwe compute with functions: if a function is applied, then it is

equal to replacing the occurrence of the variable with the argument within the function’s

body. The third, 𝜂, says that a function is equivalent to a new function that immediately

applies it to its argument. This last is equivalent to function extensionality

𝑀 𝑥 = 𝑁 𝑥 =⇒ 𝑀 = 𝑁

stating that if two functions behave the same when applied to the same arguments, then

they are the same.

The axioms make use of a meta-syntactic function called substitution. Generically,

𝑀 [𝑁 /𝑥] means that we recursively traverse the expressions 𝑀 and replace free

21

Γ ⊢ b : 𝐵𝐵
𝑥 :𝜏 ∈ Γ
Γ ⊢ 𝑥 : 𝜏 var

Γ, 𝑥 :𝜏 ⊢ 𝑀 : 𝜎
Γ ⊢ 𝜆𝑥. 𝑀 : 𝜏 → 𝜎

→𝐼
Γ ⊢ 𝑀 : 𝜎 → 𝜏 Γ ⊢ 𝑁 : 𝜎

Γ ⊢ 𝑀 𝑁 : 𝜏
→𝐸

Figure 2.2. Types for 𝜆-expressions.

occurrences of 𝑥 with 𝑁 to generate a new expression. The set of expressions capable of

being substituted,𝑀 in the definition below, are referred to as the values of the calculus.

Definition 2.1 (Substitution).

b[𝑀/𝑥] = b

𝑥 [𝑀/𝑥] = 𝑀

𝑦 [𝑀/𝑥] = 𝑦

(𝜆𝑥. 𝑁) [𝑀/𝑥] = 𝜆𝑥. 𝑁

(𝜆𝑦. 𝑁) [𝑀/𝑥] = 𝜆𝑦. 𝑁 [𝑀/𝑥]

(𝑁 𝐿) [𝑀/𝑥] = 𝑁 [𝑀/𝑥] 𝐿[𝑀/𝑥]

The second notion of semantics are typing rules. Those for the simply-typed 𝜆-

calculus are presented in Figure 2.2. These are “static” in the sense that they do not change

how we evaluate programs, but we use them to ensure that the program is well formed.

The typing rules are important for 𝜂 axioms, in particular, which only apply when they

are applied to programs of the correct type. This is not a problem in calculi with only

functions types, since everything can be treated as a function; however, it does not make

sense to 𝜂 expand a pair into a function. We codify this restriction by giving the following

definition of syntactic equality:

Γ ⊢ 𝑀 : 𝜏 Γ ⊢ 𝑁 : 𝜏 𝑀 = 𝑁
Γ ⊢ 𝑀 = 𝑁 : 𝜏

22

𝑆 ∈ Stack ::= 𝜀 | V · 𝑆
𝐸 ∈ Machine Environment ::= 𝜀 | 𝐸,V/𝑥
𝐶 ∈ Control ::= 𝜀 | 𝑀 ·𝐶 | ap ·𝐶
𝐷 ∈ Dump ::= 𝜀 | (𝑆, 𝐸,𝐶, 𝐷)
V ∈ Machine Value ::= b | (𝐸, 𝜆𝑥 . 𝑀)

Configuration ::= ⟨⟨𝑆 ∥ 𝐸 ∥ 𝐶 ∥ 𝐷⟩⟩

(a) Machine Syntax

⟨⟨𝑆 ∥ 𝐸 ∥ b ·𝐶 ∥ 𝐷⟩⟩ ↦−→1 ⟨⟨b · 𝑆 ∥ 𝐸 ∥ 𝐶 ∥ 𝐷⟩⟩
⟨⟨𝑆 ∥ 𝐸 ∥ 𝑥 ·𝐶 ∥ 𝐷⟩⟩ ↦−→2 ⟨⟨𝑥 [𝐸] · 𝑆 ∥ 𝐸 ∥ 𝐶 ∥ 𝐷⟩⟩

⟨⟨𝑆 ∥ 𝐸 ∥ 𝜆𝑥 .𝑀 ·𝐶 ∥ 𝐷⟩⟩ ↦−→3 ⟨⟨(𝐸, 𝜆𝑥 . 𝑀) · 𝑆 ∥ 𝐸 ∥ 𝐶 ∥ 𝐷⟩⟩
⟨⟨𝑆 ∥ 𝐸 ∥ 𝑀 𝑁 ·𝐶 ∥ 𝐷⟩⟩ ↦−→4 ⟨⟨𝑆 ∥ 𝐸 ∥ 𝑁 ·𝑀 · ap ·𝐶 ∥ 𝐷⟩⟩

⟨⟨(𝐸′, 𝜆𝑥 . 𝑀) · V · 𝑆 ∥ 𝐸 ∥ ap ·𝐶 ∥ 𝐷⟩⟩ ↦−→5 ⟨⟨𝜀 ∥ 𝐸′,V/𝑥 ∥ 𝑀 · 𝜀 ∥ (𝑆, 𝐸,𝐶, 𝐷)⟩⟩
⟨⟨V · 𝜀 ∥ 𝐸 ∥ 𝜀 ∥ (𝑆′, 𝐸′,𝐶′, 𝐷′)⟩⟩ ↦−→6 ⟨⟨V · 𝑆′ ∥ 𝐸′ ∥ 𝐶′ ∥ 𝐷′⟩⟩

(b) Transitions

Figure 2.3. The SECD Machine

We will only have one type system for expressions, but we will present several

calculi and abstract machines which capture different notions of dynamically evaluating

these expressions. While substitution is useful for intuitive explanations of calculi, it is

not good for implementation on machines since we must generate fixed code sequences

for programs. Thus, our abstract machines will be presented with delayed substitutions,

wherein “substitution” only occurs if the variable is demanded at runtime.

2.1 The SECD Machine and Call-by-Value

The earliest cited 𝜆-calculus abstract machine was Landin’s SECDmachine [24]. The

machine is named for the four parts of its state: 𝑆 , an intermediate result stack; 𝐸, an

environment containing a mapping from variables to values; 𝐶 , a control stack; and 𝐷 , a

dump of a machine state. Evaluation of the machine is a transition, denoted (↦−→), from

machine state to machine state.

23

Figure 2.3 gives the syntax and transition rules for the machine. The result stack

holds only values and the environment maps to values. The notion of value for the

SECDmachine, and many other abstract machines, is different from the notion often used

for reduction theory, structural operational semantics, and equational theories wherein

values are the subset of the whole language which are substitutable. Instead, values refer

to objects that can be mapped to from the machine’s environment; hence, we sometime

refer to them as machine values to contrast them with those of the source language. For

an object that behaves like an integer, constants like 4 are values whereas arithmetic

expressions like 3 + 1 must be evaluated before they can be placed on the result stack

or in the environment. In the case of functions, the SECD machine constructs function

closures, (𝐸, 𝜆𝑥 .𝑦), which pair a 𝜆-expression with some environment.

The control stack is so named because the next state transition always depends on

the value at the top of this stack. When the top of the control stack is an application

expression, the application is deconstructed and an application marker, the function, and

the argument are placed on the control stack, in that order. This deconstruction can be

seen as searching for the next expression to evaluate. In this case, we evaluate the function

argument then the function itself. When both the argument and the function are evaluated

to a value, an application marker will be at the top of the control stack which triggers the

application.

The dump of the SECD machine is used to return from function calls. When a

function is applied, in transition 5, the state of the machine is saved. The state is re-

instantiated when the function returns, in transition 6, and after the machine value

computed by the function call is added to the result stack. Note that returning from a

function call returns to the environment before that call. This means that any unevaluated

code that is returned ought to have saved its environment in a closure.

24

Definition 2.2 (SECD Evaluation). EvalSECD(𝑀) = b where ⟨⟨𝜀 ∥ 𝜀 ∥ 𝑀 · 𝜀 ∥ 𝜀⟩⟩ ↦−→∗

⟨⟨b · 𝜀 ∥ 𝐸 ∥ 𝜀 ∥ 𝜀⟩⟩.

As an example, consider the evaluation trace for the program (𝜆𝑥 . 𝜆𝑦. 𝑥) 4 2 with an

arbitrary starting 𝑆 , 𝐸, 𝐶 , and 𝐷 (i.e. anywhere in a program):

⟨⟨𝑆 ∥ 𝐸 ∥ (𝜆𝑥. 𝜆𝑦. 𝑥) 4 2 ·𝐶 ∥ 𝐷⟩⟩

↦−→ ⟨⟨𝑆 ∥ 𝐸 ∥ 2 · (𝜆𝑥. 𝜆𝑦. 𝑥) 4 · ap ·𝐶 ∥ 𝐷⟩⟩

↦−→ ⟨⟨2 · 𝑆 ∥ 𝐸 ∥ (𝜆𝑥. 𝜆𝑦. 𝑥) 4 · ap ·𝐶 ∥ 𝐷⟩⟩

↦−→ ⟨⟨2 · 𝑆 ∥ 𝐸 ∥ 4 · 𝜆𝑥 . 𝜆𝑦. 𝑥 · ap · ap ·𝐶 ∥ 𝐷⟩⟩

↦−→ ⟨⟨4 · 2 · 𝑆 ∥ 𝐸 ∥ 𝜆𝑥 . 𝜆𝑦. 𝑥 · ap · ap ·𝐶 ∥ 𝐷⟩⟩

↦−→ ⟨⟨(𝐸, 𝜆𝑥 . 𝜆𝑦. 𝑥) · 4 · 2 · 𝑆 ∥ 𝐸 ∥ ap · ap ·𝐶 ∥ 𝐷⟩⟩

↦−→ ⟨⟨𝜀 ∥ 𝐸, 4/𝑥 ∥ 𝜆𝑦. 𝑥 · 𝜀 ∥ (2 · 𝑆, 𝐸, ap ·𝐶, 𝐷)⟩⟩

↦−→ ⟨⟨((𝐸, 4/𝑥), 𝜆𝑦. 𝑥) · 𝜀 ∥ 𝐸, 4/𝑥 ∥ 𝜀 ∥ (2 · 𝑆, 𝐸, ap ·𝐶, 𝐷)⟩⟩

↦−→ ⟨⟨((𝐸, 4/𝑥), 𝜆𝑦. 𝑥) · 2 · 𝑆 ∥ 𝐸 ∥ ap ·𝐶 ∥ 𝐷⟩⟩

↦−→ ⟨⟨𝜀 ∥ 𝐸, 4/𝑥, 2/𝑦 ∥ 𝑥 · 𝜀 ∥ (𝑆, 𝐸,𝐶, 𝐷)⟩⟩

↦−→ ⟨⟨4 · 𝜀 ∥ 𝐸, 4/𝑥, 2/𝑦 ∥ 𝜀 ∥ (𝑆, 𝐸,𝐶, 𝐷)⟩⟩

↦−→ ⟨⟨4 · 𝑆 ∥ 𝐸 ∥ 𝐶 ∥ 𝐷⟩⟩

This machine does not match the behavior of the 𝛽 law in Church’s theory.

If we consider the program (𝜆𝑥.𝑦) Ω, where Ω is the infinitely looping expression

(𝜆𝑥 . 𝑥 𝑥) (𝜆𝑥. 𝑥 𝑥), then it would reduce to the normal form 𝑦 in Church’s calculus,

but would loop forever in the machine. This is because the machine must continue to

evaluate the argument of a function until it reaches a machine value. The property of

evaluating function arguments before continuing is referred to as being strictly evaluated.

Noting the difference in the strictness of the machine and Church’s calculus, Plotkin

[46] specified a new calculus called call-by-value in Figure 2.4. There is a sub-syntax

25

𝑉 ,𝑊 ∈ Value ::= b | 𝑥 | 𝜆𝑥. 𝑀

(a) Syntax

(𝜆𝑥 .𝑀) 𝑉 =𝛽 𝑀 [𝑉 /𝑥]
𝜆𝑥.𝑉 𝑥 =𝜂 𝑉

(b) Axioms

Figure 2.4. The Call-by-Value Calculus

of values that determine when the 𝛽 law is applicable. Just like the SECD machine, a

call-by-value calculus yields no normal form for the program (𝜆𝑥.𝑦) Ω because Ω has

no normal form and must be evaluated. The 𝜂 axiom for functions in call-by-value must

be restricted to values; otherwise, an 𝜂-reduction could turn a value into a non-value

breaking its connection with the SECD machine. That connection is captured in the

following proposition proved by Plotkin [46].

Proposition 2.1. EvalSECD(𝑀) = b if and only if ⊢ 𝑀 =CBV b : 𝐵.

2.2 The Krivine Machine and Call-by-Name

The Krivine machine [23] is the earliest abstract machine that actually captured

Church’s calculus, despite remaining unpublished folklore until 2007. An essential aspect

in this machine is to delay the evaluation of arguments until later. As published, the

machine operates on a special version of DeBruijn indices [14], but we present, instead,

a machine that operates on variables to make it easier to read. The machine’s syntax and

transitions are shown in Figure 2.5. Like the SECD machine, the Krivine machine has a

notion of call stack; but here it contains only arguments to functions. Whereas SECD

has a stack for values and a dump for returning from function calls, the Krivine machine

encodes all of this information with its single stack.

26

𝐾 ∈ Continuation ::= 𝜀 | V · 𝐾
Σ ∈ Machine Env. ::= 𝜀 | Σ,V/𝑥
V ∈ Machine Value ::= (Σ, 𝑀)

Configuration ::= ⟨⟨Σ ∥ 𝑀 ∥ 𝐾⟩⟩

(a) Machine Syntax

⟨⟨Σ ∥ 𝑥 ∥ 𝐾⟩⟩ ↦−→ ⟨⟨Σ′ ∥ 𝑀 ∥ 𝐾⟩⟩ where 𝑥 [Σ] = (Σ′, 𝑀)
⟨⟨Σ ∥ 𝜆𝑥. 𝑀 ∥ V · 𝐾⟩⟩ ↦−→ ⟨⟨Σ,V/𝑥 ∥ 𝑀 ∥ 𝐾⟩⟩

⟨⟨Σ ∥ 𝑀 𝑁 ∥ 𝐾⟩⟩ ↦−→ ⟨⟨Σ ∥ 𝑀 ∥ (Σ, 𝑁) · 𝐾⟩⟩

(b) Transitions

Figure 2.5. The Krivine Machine

(𝜆𝑥. 𝑀) 𝑁 =𝛽 𝑀 [𝑁 /𝑥]
𝜆𝑥 .𝑀 𝑥 =𝜂 𝑀

Figure 2.6. The Call-by-Name Calculus

Since the machine does not evaluate the arguments to functions—making it non-

strict—and unevaluated arguments may contain free variables, the machine must have

closures for everything that is added to its local environment. These closures are

constructed eagerly when they are pushed on the stack; an observation that will become

relevant in later chapters. Unlike the SECD machine, which implements what Plotkin

called call-by-value, the Krivine machine implements call-by-name by avoiding the

evaluation of its argument and proceeding directly to evaluating the left-hand side of the

application. The axioms for call-by-name are indeed those given by Church in Figure 2.1.

Definition 2.3 (Krivine Machine Evaluation). EvalKAM(𝑀) = b where ⟨⟨𝜀 ∥ 𝑀 ∥ 𝜀⟩⟩ ↦−→∗

⟨⟨Σ ∥ b ∥ 𝜀⟩⟩.

27

As an example of execution, consider again the program (𝜆𝑥 . 𝜆𝑦. 𝑥) 4 2:

⟨⟨Σ ∥ (𝜆𝑥. 𝜆𝑦. 𝑥) 4 2 ∥ 𝐾⟩⟩

↦−→ ⟨⟨Σ ∥ (𝜆𝑥 . 𝜆𝑦. 𝑥) 4 ∥ (Σ, 2) · 𝐾⟩⟩

↦−→ ⟨⟨Σ ∥ 𝜆𝑥 . 𝜆𝑦. 𝑥 ∥ (Σ, 4) · (Σ, 2) · 𝐾⟩⟩

↦−→ ⟨⟨Σ, (Σ, 4)/𝑥 ∥ 𝜆𝑦. 𝑥 ∥ (Σ, 2) · 𝐾⟩⟩

↦−→ ⟨⟨Σ, (Σ, 4)/𝑥, (Σ, 2)/𝑦 ∥ 𝑥 ∥ 𝐾⟩⟩

↦−→ ⟨⟨Σ ∥ 4 ∥ 𝐾⟩⟩

An important difference between the SECDmachine and the Krivine machine, which

is evident in their evaluation of the above expression beside how they handle function

arguments, is how they handle functions. Notice that the SECD machine first evaluates

the function and returns it on the stack before applying it, whereas the Krivine machine

merely pushes the argument on the stack and enters the left-hand side and will never

return a function closure. Thus, we never see the Krivine machine create a closure for

the function in this example code, but the SECD machine does even though it is entered

immediately.

Proposition 2.2. EvalKAM(𝑀) = b if and only if ⊢ 𝑀 =CBN b : 𝐵.

2.3 The Sestoft Machine and Call-by-Need

Since it delays the evaluation of function arguments, the Krivine machine will

evaluate those arguments every time that the variable that binds them appears. A more

efficient way to perform this non-strict evaluation is by memoization. Memoization

is a core idea of computer science. It is found in the study of algorithms as dynamic

programming wherein we may make a divide and conquer algorithm significantly faster

when sub-parts of the problem are shared. A simple example of this is computing the nth

28

Fibonacci number with a recursive algorithm:

fib 𝑛 = if 𝑛 = 0 ∨ 𝑛 = 1

then 1

else fib (𝑛 − 1) + fib (𝑛 − 2)

Such a program runs in 𝑂 (𝑛2) time since we perform two recursive function calls for

each 𝑛. Using memoization in a programming language like Haskell, on the other hand,

we may share the work that is redundant in the recursive calls. That is, fib (𝑛 − 2) makes

use of fib (𝑛 − 1).

fibs = 1 : 1 : zipWith (+) fibs (tail fibs)

fib 𝑛 = get 𝑛 fibs

Now the recursive calls to fib will access the same memory cell that has been memoized

and this program runs in 𝑂 (𝑛) time.

Though there have been other machines that implement this memoized non-strict

evaluation, we present the machine of Sestoft [48] in Figure 2.7 because it is the simplest

abstract machine that uses closures and closely matches the way such languages are

implemented today.1 First to note about this machine is that it does not operate directly on

𝜆-expressions; instead a preprocessing to administrative normal form (ANF) [18] is done

first. Essentially, we give names to all function arguments. The machine configurations

are similar to that of the Krivine machine containing a local environment, an expression

(in ANF), and a stack. It is extended to a heap that contains closures for any expression.

Local environments only point to these heap cells; this restriction is possible because

1Another, older approach to these memoized non-strict languages is via graph reduction [54, 22, 12].
Indeed, closures which pair an environment with code is not all that different than considering partial
application of super-combinators.

29

ANF(𝑥) = 𝑥

ANF(𝜆𝑥. 𝑀) = 𝜆𝑥.ANF(𝑀)
ANF(𝑀 𝑁) = let 𝑥 be ANF(𝑁) in ANF(𝑀) 𝑥

(a) Compilation to A-normal Form

Φ ∈ Heap ::= 𝜀 | Φ, 𝑙 ↦→ (Σ, 𝑀)
Σ ∈ Machine Env. ::= 𝜀 | Σ, 𝑙/𝑥
𝑆 ∈ Stack ::= 𝑙 · 𝑆 | #𝑙 · 𝑆

Machine State ::= ⟨⟨Φ ∥ Σ ∥ 𝑀 ∥ 𝐾⟩⟩

(b) Machine Syntax

⟨⟨Φ ∥ Σ ∥ b ∥ #𝑙 · 𝐾⟩⟩ ↦−→1 ⟨⟨Φ, 𝑙 ↦→ (Σ, b) ∥ Σ ∥ b ∥ 𝐾⟩⟩
⟨⟨(Φ, 𝑥 [Σ] ↦→ (Σ′, 𝑀))Φ′ ∥ Σ ∥ 𝑥 ∥ 𝐾⟩⟩ ↦−→2 ⟨⟨ΦΦ′ ∥ Σ′ ∥ 𝑀 ∥ #𝑙 · 𝐾⟩⟩

⟨⟨Φ ∥ Σ ∥ 𝜆𝑥. 𝑀 ∥ #𝑙 · 𝐾⟩⟩ ↦−→3 ⟨⟨Φ, 𝑙 ↦→ (Σ, 𝜆𝑥 . 𝑀) ∥ Σ ∥ 𝜆𝑥. 𝑀 ∥ 𝐾⟩⟩
⟨⟨Φ ∥ Σ ∥ 𝜆𝑥 .𝑀 ∥ 𝑙 · 𝐾⟩⟩ ↦−→4 ⟨⟨Φ ∥ Σ, 𝑙/𝑥 ∥ 𝑀 ∥ 𝐾⟩⟩

⟨⟨Φ ∥ Σ ∥ 𝑀 𝑥 ∥ 𝐾⟩⟩ ↦−→5 ⟨⟨Φ ∥ Σ ∥ 𝑀 ∥ 𝑥 [Σ] · 𝐾⟩⟩
⟨⟨Φ ∥ Σ ∥ let 𝑥 be𝑀 in 𝑁 ∥ 𝐾⟩⟩ ↦−→6 ⟨⟨Φ, 𝑙 ↦→ (Σ, 𝑀) ∥ Σ, 𝑙/𝑥 ∥ 𝑁 ∥ 𝐾⟩⟩

(c) Transitions

Figure 2.7. The Sestoft Machine

𝑉 ,𝑊 ∈ Value ::= b | 𝑥 | 𝜆𝑥 .𝑀
𝐸, 𝐹 ∈ Evaluation Cxt . ::= □ | 𝐸 𝑁 | let 𝑥 be𝑀 in 𝐸 | let 𝑥 be 𝐸 in 𝐹 [𝑥]

(a) Syntax

(𝜆𝑥. 𝑀) 𝑁 =𝛽 let 𝑥 be 𝑁 in𝑀
𝜆𝑥.𝑉 𝑥 =𝜂 𝑉

let 𝑥 be 𝑉 in𝑀 =𝑥 𝑀 [𝑉 /𝑥]
𝐸 [let 𝑥 be𝑀 in 𝑁] =𝜅 let 𝑥 be𝑀 in 𝐸 [𝑁]

let 𝑥 be (let 𝑦 be𝑀 in 𝑁) in 𝐿 =𝜒 let 𝑦 be𝑀 in let 𝑥 be 𝑁 in 𝐿

(b) Axioms

Figure 2.8. A Call-by-Need Calculus

30

we have already converted expressions to ANF before running them on this machine.

Compared to the Krivine machine, there is also another stack frame, denoted #𝑙 ·𝑆 , which

is used for memoizing the evaluation of a heap closure.

Like Krivine, when a function is reached, it merely pulls its argument off the stack.

The argument is pushed on the stack for an application just like the Krivine machine

too; the difference being that we push the heap location of that argument. The argument

already has a heap location because of ANF. We see in the last rule that the argument,

which was given a name by the ANF transformation, is allocated as a closure on the heap.

The rules that memoize are 1, 2, and 3. When a variable is demanded (rule 2), its closure

in the heap is entered and a memoization frame is pushed. When the evaluation of that

closure has reached a memoizable normal form, e.g. a 𝜆-expression, the heap label of the

memoization frame is added back to the heap with the updated closure.

Definition 2.4 (Sestoft Machine Evaluation). EvalSM(𝑀) = bwhere ⟨⟨𝜀 ∥ 𝜀 ∥ 𝑀 ∥ 𝜀⟩⟩ ↦−→∗

⟨⟨Γ ∥ 𝐸 ∥ b ∥ 𝜀⟩⟩.

Ariola et al. [8, 7] and Maraist et al. [28] captured this shared evaluation of function

arguments in the call-by-need axiomitization of the 𝜆-calculus. Therein, a computation

can be shared by constructing a let-expression that binds it, only forcing the reduction of

the bound expression when the evaluation of the variable is required, and substituting its

value thereafter.2 This is apparent in the axioms given in Figure 2.8 wherein the 𝛽 rule

for functions creates a binding and the 𝑥 rule for let-expressions performs a substitution

only when the bound expression is a value. In call-by-need, we can think of values as

expressions that are safe to substitute without duplicating work. In addition to those

axioms, rules for lifting and reassociating let-expressions are required to expose reducible

2Ariola et al. [9] show that the let-expression is not necessary since sharing can be captured by not
reducing the function application.

31

expressions. The 𝜅 rule is required for lifting expressions out of evaluation contexts and

the 𝜒 rule is used to reassociate let-expressions. Note that the calculus has the weaker

function 𝜂 laws of call-by-value; otherwise, a value would be changed to a non-value. In

call-by-need, blurring this distinction means duplicating work.

Conjecture 2.1. EvalSM(𝑀) = b if and only if ⊢ 𝑀 = b : 𝐵.

The connection between the Sestoft machine and the call-by-need 𝜆-calculus is not

found in the literature to our knowledge. In Chapter 7, we will see how to connect a

sharing equational theory with a memoizing environment abstract machine.

Remark 2.1 (Push/Enter versus Eval/Apply). Marlow and Peyton Jones [29] highlight

the distinction of two different methods of treating functions in an operational semantics:

push/enter and eval/apply. The first will place an argument on the stack and enter the

function code; when a function is reached, it merely pull their argument from the stack and

place it in the local environment. On the other hand, eval/apply machines will evaluate a

function and push it on the stack as a closure value before entering its closure. Marlow and

Peyton Jones draw attention to the difference because it matters for fast, curried function calls.

We too are interested in the distinction because they differ with respect to closures; push/enter

does not need to construct a function closure during application because the function can

simply grab its argument from the stack. Of the machines presented above the strict call-

by-value machine, i.e. SECD, is eval/apply whereas the two non-strict machines given are

push/enter. However, there are examples of strict push/enter machines [26] and non-strict

eval/apply machines [29].

32

CHAPTER III

CLOSURE CONVERSIONS

This chapter is a revised version of Strictly Capturing Non-strict Closures [52]

co-authored with Paul Downen and Zena M. Ariola. Zachary J. Sullivan is the

primary author with the guidance of Paul Downen and Zena M. Ariola.

Instead of having a complex runtime system that knows to construct and enter

closures at runtime as we see in the machines from the previous chapter, we now look

at another approach to handling the nested, lexical structure of languages with passable

code: to compile away that structure into a lower-level language. This approach, referred

to as closure conversion, embeds the delayed code of the source as products and global

functions in the target language. A typical target language for such a transformation

is C, which has both of these features. Previous work has investigated the efficiency

[6, 5, 56, 49] and correctness [34, 3, 36, 40, 38] of closure conversion, and explored

its application in more expressive languages with dependent types [11] and mutable

references [30]. This line of work, however, mostly applies to just strict languages.

Non-strict languages are rarely discussed, if at all. Some work [6, 38] focused on

languages in continuation passing style (CPS), which subsumes call-by-value and call-by-

name semantics, but call-by-need is still left out. A call-by-need CPS exists [37], but it

requires a mutable store and is not used in compilers for lazy languages. Rather, these

compilers, such as those for Lazy ML [10] and Miranda [41], rely on other methods such

as lambda-lifting. Haskell’s premier optimizing compiler, GHC [43], does use closures,

but they are only considered as a small part of low-level code generation.

Extending our understanding of the closure conversion transformation to non-strict

languages is not such an easy feat. As we saw in the machines of the previous chapter,
33

non-strict languages create different sorts of closures: every function argument or variable

binding is delayed, creating closures that are not needed in a strict language. But just

making more closures is not enough: closures must be strict. That is to say that in a

low-level language without automatic runtime closure support, the compile-time code

for creating closures cannot be lazily evaluated because by then it is too late to capture

the long-gone static environment. Instead, the environment must be captured now when

it is available, without inadvertently evaluating anything in the environment. Closure

conversion in a non-strict language is a delicate dance between the lazy and the eager.

This chapter examines the canonical approach to this transformation and then

describes our work extending it to non-strict evaluation strategies with and without

sharing. After reviewing the strict closure conversion (Section 3.1), we show how closure

conversion of a non-strict language cannot be embedded into a purely non-strict target

language (Section 3.2), but rather strictness is needed in the target language to create

closures at the right moment. Similarly, we show thereafter how sharing introduces

yet another unintended interaction (Section 3.3): some closures need to be memoized

when they are run, but others don’t. To eliminate unnecessary details, we present both

source and target language’s operation semantics as big-step semantics instead of abstract

machines. The key difference from the machines is that we do need to consider the

continuation or stack. The big-step semantics are described by a judgment of the form

Conf . ⇓ R where R is a final result. We still use a delayed substitution in the semantics

because it is an essential feature in showing how closure conversion impacts how we may

run our program.

34

3.1 The Canonical Closure Conversion

We first look at the closure conversion that is widely discussed in the literature.

Consider the following program:

let 𝑥 be (let 𝑦 be 2 + 1 in 𝜆𝑧.𝑦) in (𝑥 3) + (𝑥 4) (3.1)

Note that when 𝑥 is called, 𝑦 is no longer in scope. To remember it when the function is

called, we can save its value, i.e. 3, in a data structure. In other words, we closure convert

the program to:

let 𝑥 be (let 𝑦 be 2 + 1 in pack ⟨⟨𝑦⟩, 𝜆⟨⟨𝑦⟩, 𝑧⟩. 𝑦⟩) in

(unpack 𝑥 as ⟨𝑒, 𝑓 ⟩ in 𝑓 ⟨𝑒, 3⟩) + (unpack 𝑥 as ⟨𝑒, 𝑓 ⟩ in 𝑓 ⟨𝑒, 4⟩)

Here, the 𝜆-expression 𝜆𝑧.𝑦 in the source is replaced with a data structure containing a

representation of the environment and a closed functionwhich accesses that environment.

Now, unlike the machine from the previous chapter, the function definition and call site

themselves encode in the code the packing and unpacking its local environment to find

the binding of 𝑦.

In this example, we needed to generate both an unpack expression and then case

expression for destructing the generated closure objects. Wemake use of patternmatching

as syntactic sugar for doing a case expression immediately after the binding. So for 𝜆-

expressions, we have

𝜆⟨𝑥0, . . . , 𝑥𝑛⟩. 𝑀
def
= 𝜆𝑧. case 𝑧 of {⟨𝑥0, . . . , 𝑥𝑛⟩ → 𝑀}.

35

Σ ∈ Machine Env. ::= 𝜀 | Σ,V/𝑥
V,W ∈ Machine Value ::= b | (Σ, 𝜆𝑥 . 𝑀)
Conf ∈ Configuration ::= ⟨⟨Σ ∥ 𝑀⟩⟩

(a) Syntax

⟨⟨Σ ∥ 𝑀⟩⟩ ⇓ V

⟨⟨Σ ∥ b⟩⟩ ⇓ b ⟨⟨Σ ∥ 𝑥⟩⟩ ⇓ 𝑥 [Σ] ⟨⟨Σ ∥ 𝜆𝑥 .𝑀⟩⟩ ⇓ (Σ, 𝜆𝑥 . 𝑀)
⟨⟨Σ ∥ 𝑀⟩⟩ ⇓ (Σ′, 𝜆𝑥 . 𝐿) ⟨⟨Σ ∥ 𝑁 ⟩⟩ ⇓W ⟨⟨Σ′,W/𝑥 ∥ 𝐿⟩⟩ ⇓ V

⟨⟨Σ ∥ 𝑀 𝑁 ⟩⟩ ⇓ V

(b) Evaluation Rules

Figure 3.1. Strict Evaluation

And similarly for unpack-expressions. So in our example, unpack 𝑥 as ⟨𝑒, 𝑓 ⟩ in 𝑓 ⟨𝑒, 3⟩

pattern matches on an existential package and then a product. If the pattern match is

nested like this, then there will be nested case expressions.

We use existential types in addition to products here to make closure conversion a

type-preserving transformation. Without existentially quantifying over the type of the

environment (following from Minamide et al. [34]), the two following programs, for

instance, of type int → int would have different types:

𝜆𝑥 .𝑦 𝜆𝑥 . 𝑥

The first would closure convert into a pair with the first component being an empty

product and the second would have a unary product in the first component.

3.1.1 Source Language. The syntax of configurations and evaluation rules for

strictly evaluating an expression are presented in Figure 3.1. In the syntax, notice that

machine values are identical to those of the SECD machine. When evaluating, the 𝜆-

expression rule knows how to automatically construct a closure and the application rule

36

𝜏, 𝜎 ∈ Type ::= 𝐵 | 𝜏 → 𝜎 | 𝜏0 × · · · × 𝜏𝑛 | 𝑋 | ∃𝑋 . 𝜏
Γ ∈ Type Env. ::= 𝜀 | Γ, 𝑥 :𝜏
Δ ∈ TypeVar .Env. ::= 𝜀 | Δ, 𝑋

𝑀, 𝑁, 𝐿 ∈ Expression ::= b | 𝑥 | 𝜆𝑥 .𝑀 | 𝑀 𝑁

| ⟨𝑀0, . . . , 𝑀𝑛⟩ | case𝑀 of {⟨𝑥0, . . . , 𝑥𝑛⟩ → 𝑁 }
| pack𝑀 | unpack𝑀 as 𝑥 in 𝑁

(a) Syntax

Δ; Γ ⊢ b : 𝐵 𝐵
𝑥 :𝜏 ∈ Γ

Δ; Γ ⊢ 𝑥 : 𝜏 var

𝜀, 𝑥 :𝜏 ⊢ 𝑀 : 𝜎
Δ; Γ ⊢ 𝜆𝑥 .𝑀 : 𝜏 → 𝜎

→𝐼
Δ; Γ ⊢ 𝑀 : 𝜏 → 𝜎 Δ; Γ ⊢ 𝑁 : 𝜏

Δ; Γ ⊢ 𝑀 𝑁 : 𝜎
→𝐸

Δ; Γ ⊢ 𝑀0 : 𝜏0 · · · Δ; Γ ⊢ 𝑀𝑛 : 𝜏𝑛
Δ; Γ ⊢ ⟨𝑀0, . . . , 𝑀𝑛⟩ : 𝜏0 × · · · × 𝜏𝑛

×𝐼

Δ; Γ ⊢ 𝑀 : 𝜎0 × · · · × 𝜎𝑛 Δ; Γ ⊢, 𝑥0:𝜎0, . . . , 𝑥𝑛:𝜎𝑛 ⊢ 𝑁 : 𝜏
Δ; Γ ⊢ case𝑀 of {⟨𝑥0, . . . , 𝑥𝑛⟩ → 𝑁 } : 𝜏

×𝐸

Δ; Γ ⊢ 𝑀 : 𝜏 [𝜎/𝑋]
Δ; Γ ⊢ pack𝑀 : ∃𝑋 . 𝜏 ∃𝐼

Δ; Γ ⊢ 𝑀 : ∃𝑋 . 𝜎 Δ, 𝑋 ; Γ, 𝑥 :𝜎 ⊢ 𝑁 : 𝜏
Δ; Γ ⊢ unpack𝑀 as 𝑥 in 𝑁 : 𝜏 ∃𝐸

(b) Typing Rules

Figure 3.2. Closure Conversion Target Language

knows how to unpack it, instantiate its local environment, and jump into the body with

the value of the actual parameter.

Definition 3.1 (Strict Big-Step Evaluation). EvalSBS(𝑀) = b where ⟨⟨𝜀 ∥ 𝑀⟩⟩ ⇓ b.

This approach to evaluation coincides with the SECD machine when they reach a

value. The following is a result by Plotkin [46].

Proposition 3.1. EvalSECD(𝑀) = EvalSBS(𝑀).

3.1.2 Target Language. Such a transformation requires two features in the

target language that we have yet to specify formally: products and existential types.

The syntax and typing rules for these are presented in Figure 3.2. We have new types

37

for products and existential types along with the type variables that are introduced by

the existential types. Elements of the product type are introduced by ⟨𝑀0, . . . , 𝑀𝑛⟩ and

eliminated by case expressions, which bind their sub-components. Note that single angle

brackets ⟨. . . ⟩ are used for expressions and double angle brackets ⟨⟨. . . ⟩⟩ are used for

operational semantics. Elements of existential types are introduced by pack 𝑀 and

eliminated by unpack expressions, which bind a pack expression’s sub-component. The

typing rules have been expanded with Δ which contains the live type variables. There is

an important restriction in the ∃𝐸 rule, where we see that the type variable 𝑋 is available

to type check 𝑁 , but it is not available in the whole unpack expression’s type-variable

environment; without such a restriction, we could leak the type hidden by the existential.

There is another change in the target language’s typing rules that is especially

relevant to the adequacy of closure conversion: the function type is global in the sense

that it only knows about its formal parameter. Before closure conversion, some program

of a function type would implicitly carry around its environment in a closure; but after

closure conversion, some program of a function type is merely an object that we can jump

to at runtime with its formal parameter on the stack. The former requires some runtime

support, whereas the latter is easily implementable on a stack machine.

The evaluation rules for the target language are given in Figure 3.3. In the strict

source semantics, the set of machine values was not a subset of the surface language

because evaluation rules must form and return closures instead of 𝜆-expressions. In

contrast, the closed functions of the target language are already values; they can be

compiled simply into function pointers. For evaluation, the 𝜆-expression simply returns

itself; it does not construct a closure since the function must already be closed except for

its formal parameter as we saw in the typing rules. At the call site, the target application

38

Σ ∈ Machine Env. ::= 𝜀 | Σ,V/𝑥
V ∈ Machine Value ::= b | 𝜆𝑥 .𝑀 | ⟨V0, . . . ,V𝑛⟩ | pack V

Conf ∈ Configuration ::= ⟨⟨Σ ∥ 𝑀⟩⟩

(a) Syntax

⟨⟨Σ ∥ 𝑀⟩⟩ ⇓ V

⟨⟨Σ ∥ b⟩⟩ ⇓ b ⟨⟨Σ ∥ 𝑥⟩⟩ ⇓ 𝑥 [Σ] ⟨⟨Σ ∥ 𝜆𝑥 .𝑀⟩⟩ ⇓ 𝜆𝑥 .𝑀
⟨⟨Σ ∥ 𝑀⟩⟩ ⇓ 𝜆𝑥. 𝐿 ⟨⟨Σ ∥ 𝑁 ⟩⟩ ⇓ V ⟨⟨𝜀,V/𝑥 ∥ 𝐿⟩⟩ ⇓W

⟨⟨Σ ∥ 𝑀 𝑁 ⟩⟩ ⇓W
⟨⟨Σ ∥ 𝑀0⟩⟩ ⇓ V0 · · · ⟨⟨Σ ∥ 𝑀𝑛⟩⟩ ⇓ V𝑛
⟨⟨Σ ∥ ⟨𝑀0, . . . , 𝑀𝑛⟩⟩⟩ ⇓ ⟨V0, . . . ,V𝑛⟩

⟨⟨Σ ∥ 𝑀⟩⟩ ⇓ ⟨V0, . . . ,V𝑛⟩ ⟨⟨Σ,V0/𝑥0, . . . ,V𝑛/𝑥𝑛 ∥ 𝑁 ⟩⟩ ⇓W
⟨⟨Σ ∥ case𝑀 of {⟨𝑥0, . . . , 𝑥𝑛⟩ → 𝑁 }⟩⟩ ⇓W

⟨⟨Σ ∥ 𝑀⟩⟩ ⇓ V
⟨⟨Σ ∥ pack𝑀⟩⟩ ⇓ pack V

⟨⟨Σ ∥ 𝑀⟩⟩ ⇓ V ⟨⟨Σ,V/𝑥 ∥ 𝑁 ⟩⟩ ⇓W
⟨⟨Σ ∥ unpack𝑀 as 𝑥 in 𝑁 ⟩⟩ ⇓W

(b) Evaluation Rules

Figure 3.3. Target Language Evaluation

39

CC(b) = b
CC(𝑥) = 𝑥

CC(𝜆𝑥. 𝑀) = pack ⟨⟨𝑦0, . . . , 𝑦𝑛⟩, 𝜆⟨⟨𝑦0, . . . , 𝑦𝑛⟩, 𝑥⟩.CC(𝑀)⟩
where FV(𝜆𝑥. 𝑀) = {𝑦0, . . . , 𝑦𝑛}

CC(𝑀 𝑁) = unpack CC(𝑀) as ⟨𝑒, 𝑓 ⟩ in 𝑓 ⟨𝑒,CC(𝑁)⟩

(a) Expression Translation

CC𝑉 (𝐵) = 𝐵

CC𝑉 (𝜏 → 𝜎) = ∃𝑋 .𝑋 × (𝑋 × CC𝑉 (𝜏) → CC𝑉 (𝜎))
CCΓ (𝜀) = 𝜀

CCΓ (Γ, 𝑥 :𝜏) = CCΓ (Γ), 𝑥 :CC𝑉 (𝜏)

(b) Type Translations

Figure 3.4. Canonical Closure Conversion

rule correspondingly expects to find just a 𝜆-expression, and jumps into a function body

with only a binding for its parameter in the otherwise empty environment.

Definition 3.2 (Target Big-Step Evaluation). EvalTBS(𝑀) = b where ⟨⟨𝜀 ∥ 𝑀⟩⟩ ⇓ b.

3.1.3 Transformation. The full transformation from a simply-typed 𝜆-calculus

into this target language is shown in Figure 3.4. In the translation of expressions, functions

are transformed into packages containing a closed function and a data structure. The

generated closed function knows how to access this data structure to re-instantiate the

local environment in its body via patter matching. Applications 𝑀 𝑁 are transformed—

assuming𝑀 will evaluate to a closure—into code extracting the environment and function

from 𝑀 , and then calling that function with the environment and argument 𝑁 . Since

functions become data structures, we must translate the type of a program as well.

Function types are translated to an existential which hides the type of environment used.

Thus, two functions with the same type but different environments will still have the same

type after closure conversion.

40

MJ𝜏K = {(Conf𝑠,Conf𝑡) | ∀V𝑠 .Conf𝑠 ⇓ V𝑠 =⇒ ∃(V𝑠,V𝑡) ∈ VJ𝜏K.Conf𝑡 ⇓ V𝑡 }
VJ𝐵K = {(b, b) | b ∈ 𝐵}

VJ𝜏0 → 𝜏1K = {((Σ𝑠, 𝜆𝑥 . 𝑀𝑠), pack ⟨⟨W0, . . . ,W𝑛⟩, 𝜆⟨⟨𝑦0, . . . , 𝑦𝑛⟩, 𝑥⟩. 𝑀𝑡 ⟩)
| ∀(V𝑠,V𝑡) ∈ VJ𝜏0K.

(⟨⟨Σ𝑠,𝑊𝑠/𝑥 ∥ 𝑀𝑠⟩⟩, ⟨⟨𝜀,W0/𝑦0, . . . ,W𝑛/𝑦𝑛,V𝑡/𝑥 ∥ 𝑀𝑡 ⟩⟩) ∈ MJ𝜏1K}
EJΓK = {(Σ𝑠, Σ𝑡) | ∀(𝑥 :𝜏) ∈ Γ. (𝑥 [Σ𝑠], 𝑥 [Σ𝑡]) ∈ VJ𝜏K}

Figure 3.5. Strict Closure Conversion Logical Relations

As a result of using existential types, Minamide et al. showed that such a

transformation preserves well-typed programs. This can be proved by induction over

the typing derivation.

Theorem 3.1 (Type Preservation). If Γ ⊢ 𝑀 : 𝜏 , then CCΓ (Γ) ⊢ CC(𝑀) : CC𝑉 (𝜏).

3.1.4 Operational Semantics Preservation. While the theorem above shows

that our static checks are preserved, in implementation we care that the dynamic behavior

of the program is preserved from the encoding. The common approach to semantic

preservation of typed closure conversion, as seen in Minamide et al. [34], must step

outside of these evaluation theories. They construct a cross-language logical relation over

a substituting big-step semantics; that is, it relates source expressions to their closure

converted form in the target language. Because we are concerned with observing the

difference between the closure-constructing runtime system of the source language and

the simpler target runtime, we have specified environment big-step semantics instead;

thus, we must extend their proof approach to such a setting.

We specify a family of relations in Figure 3.5. First, MJ𝜏K relates closed source and

target configurations that behave like source 𝜏 expressions. When a source configuration

evaluates to a value, then the target must evaluate to a related value. Second,VJ𝜏K relates

machine values that behave like source 𝜏 machine values. For base types, this means they

41

are equivalent after conversion. For functions, it must be the case that when given related

arguments, that we can construct related configurations that enter the functions with

arguments. Third, EJΓK relates environments that behave like source environments Γ.

This just means that the environments contain all related values and completely cover Γ.

Lemma 3.1 (Strengthening). If ⟨⟨Σ Σ′ ∥ 𝑀⟩⟩ ⇓ V and FV(𝑀) ∩ Dom(Σ′) = ∅, then ⟨⟨Σ ∥

𝑀⟩⟩ ⇓ V in the target language.

Proof. By induction on the derivation of ⟨⟨Σ Σ′ ∥ 𝑀⟩⟩ ⇓ V. □

Lemma 3.2 (Fundamental Lemma). If Γ ⊢ 𝑀𝑠 : 𝜏 and (Σ𝑠, Σ𝑡) ∈ EJΓK, then (⟨⟨Σ𝑠 ∥

𝑀𝑠⟩⟩, ⟨⟨Σ𝑡 ∥ CC(𝑀𝑠)⟩⟩) ∈ MJ𝜏K.

Proof. By induction on the typing derivation of Γ ⊢ 𝑀𝑠 : 𝜏 , for a generic (Σ𝑠, Σ𝑡) ∈ EJΓK:

Case Γ ⊢ b : 𝐵:

So𝑀𝑠 = b, CC(b) = b, and we must show that (⟨⟨Σ𝑠 ∥ b⟩⟩, ⟨⟨Σ𝑡 ∥ b⟩⟩) ∈ MJ𝐵K.

The only evaluations are ⟨⟨Σ𝑠 ∥ b⟩⟩ ⇓ b in the source and ⟨⟨Σ𝑡 ∥ b⟩⟩ ⇓ b in the

target.

We have (b, b) ∈ VJ𝐵K by definition.

Therefore, (⟨⟨Σ𝑠 ∥ b⟩⟩, ⟨⟨Σ𝑡 ∥ CC(b)⟩⟩) ∈ MJ𝐵K.

Case Γ ⊢ 𝑥 : 𝜏 because 𝑥 :𝜏 ∈ Γ:

So𝑀𝑠 = 𝑥 , CC(𝑥) = 𝑥 , and we must show that (⟨⟨Σ𝑠 ∥ 𝑥⟩⟩, ⟨⟨Σ𝑡 ∥ 𝑥⟩⟩) ∈ MJ𝜏K.

The only evaluations are ⟨⟨Σ𝑠 ∥ 𝑥⟩⟩ ⇓ 𝑥 [Σ𝑠] in the source and ⟨⟨Σ𝑡 ∥ 𝑥⟩⟩ ⇓ 𝑥 [Σ𝑡]

in the target.

From the assumptions (Σ𝑠, Σ𝑡) ∈ EJΓK and 𝑥 :𝜏 ∈ Γ, we know (𝑥 [Σ𝑠], 𝑥 [Σ𝑡]) ∈

VJ𝜏K by definition of EJΓK.
42

Therefore, (⟨⟨Σ𝑠 ∥ 𝑥⟩⟩, ⟨Σ𝑡 ∥ 𝑥⟩) ∈ MJ𝜏K by the definition.

Case Γ ⊢ 𝜆𝑥.𝑁𝑠 : 𝜏1 → 𝜏2 because Γ, 𝑥 :𝜏1 ⊢ 𝑁𝑠 : 𝜏2:

So 𝜏 = 𝜏1 → 𝜏2,𝑀𝑠 = 𝜆𝑥.𝑁𝑠 , and

CC(𝜆𝑥.𝑁𝑠) = pack ⟨⟨𝑦0, . . . , 𝑦𝑛⟩, 𝜆⟨⟨𝑦0, . . . , 𝑦𝑛⟩, 𝑥⟩.CC(𝑁𝑠)⟩

where FV(𝜆𝑥. 𝑁𝑠) = {𝑦0, . . . , 𝑦𝑛}. We must show that (⟨⟨Σ𝑠 ∥ 𝜆𝑥 .𝑁𝑠⟩⟩, ⟨⟨Σ𝑡 ∥

CC(𝜆𝑥.𝑁𝑠)⟩⟩) ∈ MJ𝜏1 → 𝜏2K.

The unique evaluations are ⟨⟨Σ𝑠 ∥ 𝜆𝑥 .𝑁𝑠⟩⟩ ⇓ (Σ𝑠, 𝜆𝑥 .𝑁𝑠) in the source and

⟨⟨Σ𝑡 ∥ CC(𝜆𝑥.𝑁𝑠)⟩⟩ ⇓ pack ⟨⟨𝑦0 [Σ𝑡], . . . , 𝑦𝑛 [Σ𝑡]⟩, 𝜆⟨⟨𝑦0, . . . , 𝑦𝑛⟩, 𝑥⟩.CC(𝑁𝑠)⟩

in the target.

Proving ((Σ𝑠, 𝜆𝑥 .𝑁𝑠), pack ⟨⟨𝑦0 [Σ𝑡], . . . , 𝑦𝑛 [Σ𝑡]⟩, 𝜆⟨⟨𝑦0, . . . , 𝑦𝑛⟩, 𝑥⟩.CC(𝑁𝑠)⟩) ∈

VJ𝜏1 → 𝜏2K still needs to be shown. Thus, suppose an arbitrary (W𝑠,W𝑡) ∈

VJ𝜏1K:

Note that ((Σ𝑠,W𝑠/𝑥), (Σ𝑡 ,W𝑡/𝑥)) ∈ EJΓ, 𝑥 :𝜏1K by definition of E and the

assumption (Σ𝑠, Σ𝑡) ∈ EJΓK.

From the inductive hypothesis on Γ, 𝑥 :𝜏1 ⊢ 𝑁𝑠 : 𝜏2, we know (⟨⟨Σ𝑠,W𝑠/𝑥 ∥

𝑁𝑠⟩⟩, ⟨⟨Σ𝑡 ,W𝑡/𝑥 ∥ CC(𝑁𝑠)⟩⟩) ∈ MJ𝜏2K.

Assuming ⟨⟨Σ𝑠,W𝑠/𝑥 ∥ 𝑁𝑠⟩⟩ ⇓ V𝑠 in the source, there must be a (V𝑠,V𝑡) ∈

VJ𝜏2K such that ⟨⟨Σ𝑡 ,W𝑡/𝑥 ∥ CC(𝑁𝑠)⟩⟩ ⇓ V𝑡 in the target by the definition

ofMJ𝜏2K.

Expanding, ⟨⟨𝜀,𝑦0 [Σ𝑡]/𝑦0, . . . , 𝑦𝑛 [Σ𝑡]/𝑦𝑛,W𝑡/𝑥 ∥ CC(𝑁𝑠)⟩⟩ ⇓ V𝑡 in the

target as well by strengthening (Lemma 3.1) the evaluation ⟨⟨Σ𝑡 ,W𝑡/𝑥 ∥

CC(𝑁𝑠)⟩⟩ ⇓ V𝑡 .

43

Case Γ ⊢ 𝑁𝑠 𝑂𝑠 : 𝜏 because Γ ⊢ 𝑁𝑠 : 𝜏′ → 𝜏 and Γ ⊢ 𝑂𝑠 : 𝜏′:

So𝑀𝑠 = 𝑁𝑠 𝑂𝑠 , CC(𝑁𝑠 𝑂𝑠) = unpack CC(𝑁𝑠) as ⟨𝑒, 𝑓 ⟩ in 𝑓 ⟨𝑒,CC(𝑂𝑠)⟩. We must

show that (⟨⟨Σ𝑠 ∥ 𝑁𝑠 𝑂𝑠⟩⟩, ⟨⟨Σ𝑡 ∥ CC(𝑁𝑠 𝑂𝑠)⟩⟩) ∈ MJ𝜏K. Thus, we suppose that

⟨⟨Σ𝑠 ∥ 𝑁𝑠 𝑂𝑠⟩⟩ ⇓ V𝑠 :

The conclusion of that derivation must be an instance of the application

evaluation from inversion, which gives us the following evaluation

derivations in the source:

1. ⟨⟨Σ𝑠 ∥ 𝑁𝑠⟩⟩ ⇓ (Σ1𝑠, 𝜆𝑥 .𝐿𝑠),

2. ⟨⟨Σ𝑠 ∥ 𝑂𝑠⟩⟩ ⇓W𝑠 , and

3. ⟨⟨Σ1𝑠,𝑊𝑠/𝑥 ∥ 𝐿𝑠⟩⟩ ⇓ V𝑠 .

From the first inductive hypothesis, we know (⟨⟨Σ𝑠 ∥ 𝑁𝑠⟩⟩, ⟨⟨Σ𝑡 ∥

CC(𝑁𝑠)⟩⟩) ∈ MJ𝜏′ → 𝜏K. It follows by definition ofM that there is some

((Σ1𝑠, 𝜆𝑥 .𝐿𝑠), pack ⟨⟨W′
0, . . . ,W

′
𝑛⟩, 𝜆⟨⟨𝑦0, . . . , 𝑦𝑛⟩, 𝑥⟩. 𝐿𝑡 ⟩) ∈ VJ𝜏′ → 𝜏K

such that ⟨⟨Σ𝑡 ∥ CC(𝑁𝑠)⟩⟩ ⇓ pack ⟨⟨W′
0, . . . ,W

′
𝑛⟩, 𝜆⟨⟨𝑦0, . . . , 𝑦𝑛⟩, 𝑥⟩. 𝐿𝑡 ⟩ in

the target.

From the second inductive hypothesis, we know (⟨⟨Σ𝑠 ∥ 𝑂𝑠⟩⟩, ⟨⟨Σ𝑡 ∥

CC(𝑂𝑠)⟩⟩) ∈ MJ𝜏′K. Likewise, it follows that there is a (W𝑠,W𝑡) ∈ VJ𝜏′K

such that ⟨⟨Σ𝑡 ∥ CC(𝑂𝑠)⟩⟩ ⇓W𝑡 in the target.

We also have (⟨⟨Σ𝑠,W𝑡/𝑥 ∥ 𝐿𝑠⟩⟩, ⟨⟨𝜀,W′
0/𝑦, . . . ,W′

𝑛/𝑦,W𝑡/𝑥 ∥ 𝐿𝑡 ⟩⟩) ∈

MJ𝜏K, from ((Σ1𝑠, 𝜆𝑥 .𝐿𝑠), pack ⟨⟨W′
0, . . . ,W

′
𝑛⟩, 𝜆⟨⟨𝑦0, . . . , 𝑦𝑛⟩, 𝑥⟩. 𝐿𝑡 ⟩) ∈

VJ𝜏′ → 𝜏K. It follows that there is a (V𝑠,V𝑡) ∈ VJ𝜏K such that

⟨⟨𝜀,W′
0/𝑦, . . . ,W′

𝑛/𝑦,W𝑡/𝑥 ∥ 𝐿𝑡 ⟩⟩ ⇓ V𝑡 in the target.

44

Expanding, we get that ⟨⟨Σ𝑡 ∥ unpack CC(𝑁𝑠) as ⟨𝑒, 𝑓 ⟩ in 𝑓 ⟨𝑒,CC(𝑂𝑠)⟩⟩⟩ ⇓

V𝑡 as well by applications of the evaluation rules for unpack, case, and

application.

Therefore, (⟨⟨Σ𝑠 ∥ 𝑁𝑠 𝑂𝑠⟩⟩, ⟨⟨Σ𝑡 ∥ CC(𝑁𝑠 𝑂𝑠)⟩⟩) is in the relation MJ𝜏K by

definition.

□

Corollary 3.1 (Evaluation Preservation). If Γ ⊢ 𝑀 : 𝜏 and EvalSBS(𝑀) = b, then

EvalTBS(CC(𝑀)) = b.

3.2 Non-strict Closure Conversions

Though not emphasized by the work, the closure conversion above is presented for

strict languages alone [34, 36, 3, 38, 39]. The functions of a strict source language, wherein

values coincide with normal forms, are transformed into in a strict target language. Can

we do the same thing for non-strict languages? That is, can we convert a non-strict source

language to a non-strict target language that lacks automatic closure management at run-

time?

To answer these questions, we first need to know how non-strict data types are

evaluated, since closures will be constructed with them when following the common

approach. In strict languages, data are evaluated before they are considered values capable

of substitution; in contrast, non-strict data are not evaluated until forced by their context,

i.e. until they are pattern matched by a case expression. For example, a non-strict

existential package has the following semantics, based on delayed evaluation rules for

data in lazy languages, e.g. Launchbury’s natural semantics extended with constructors

45

[25]:

⟨Σ ∥ pack𝑀⟩ ⇓ (Σ, pack𝑀)
⟨Σ ∥ 𝑀⟩ ⇓ (Σ′, pack 𝐿) ⟨Σ, 𝑥 ↦→ (Σ′, 𝐿) ∥ 𝑁 ⟩ ⇓ R

⟨Σ ∥ unpack𝑀 as 𝑥 in 𝑁 ⟩ ⇓ R

To avoid evaluating inside of the data constructor until pattern matching, a non-strict

evaluator must return a closure to capture the environment needed to evaluate it later.

But this gets us nowhere! The point of closure conversion is to eliminate the need

for automatic closure management at runtime; yet, when trying to eliminate automatic

closure management, we introduced a new type . . . that requires automatic closure

management at runtime.

Our goal is to simulate these non-strict rules above in the text of the program, so the

instructions for capturing and restoring the environment are in the compile-time code, not

the runtime system. The root of the problem for non-strict closure conversion, then, is

that before pack returns, it needs to look up the current definitions of its free variables in

scope, so that these bindings can actually be captured in the environment value it contains.

In other words, pack must be strict—to some degree—in its argument. But we also must

be careful to not introduce too much strictness. In a non-strict evaluation of example (3.1),

let 𝑥 be (let 𝑦 be 2 + 1 in 𝜆𝑧.𝑦) in (𝑥 3) + (𝑥 4)

we must not evaluate the expression 2 + 1 bound to 𝑦 when the closure is formed;

rather, computation of 𝑦 itself must still be delayed until its value is forced. Thankfully,

this complication, too, is solved by closure conversion. In general, bound, delayed

computations, like let 𝑦 be 2 + 1 in . . . might also refer to other free variables, so bound

expressions must be closure converted like functions were for strict closure conversion.

As a consequence, delayed computations bound by let- and 𝜆-expressions will also be

46

Σ ∈ Machine Env. ::= 𝜀 | Σ,V/𝑥
V,W ∈ Machine Value ::= (Σ, 𝑀)
R ∈ Result ::= b | (Σ, 𝜆𝑥 . 𝑀)

Conf ∈ Configuration ::= ⟨⟨Σ ∥ 𝑀⟩⟩

(a) Syntax

⟨⟨Σ ∥ 𝑀⟩⟩ ⇓ R

⟨⟨Σ ∥ b⟩⟩ ⇓ b

𝑥 [Σ] = (Σ′, 𝑀) ⟨⟨Σ′ ∥ 𝑀⟩⟩ ⇓ R
⟨⟨Σ ∥ 𝑥⟩⟩ ⇓ R ⟨⟨Σ ∥ 𝜆𝑥 .𝑀⟩⟩ ⇓ (Σ, 𝜆𝑥 . 𝑀)

⟨⟨Σ ∥ 𝑀⟩⟩ ⇓ (Σ′, 𝜆𝑥 . 𝐿) ⟨⟨Σ′, (Σ, 𝑁)/𝑥 ∥ 𝐿⟩⟩ ⇓ R
⟨⟨Σ ∥ 𝑀 𝑁 ⟩⟩ ⇓ R

(b) Evaluation Rules

Figure 3.6. Non-strict Evaluation

converted to values—in the sense of strict evaluation—ensuring that they are not evaluated

too early.

In brief, a non-strict closure conversion must transform 𝜆-expressions, application

arguments, and let-bound expressions into strictly-constructed packages of their free

variables and a closed function. Applying such a transformation to our example program

would produce the following output (to keep the example simple, we did not construct

closures for 𝑥 , 3, and 4):

let 𝑥 be (let 𝑦 be pack ⟨⟨⟩, 𝜆⟨⟩. 2 + 1⟩ in

pack ⟨⟨𝑦⟩, 𝜆⟨⟨𝑦⟩, 𝑧⟩. unpack 𝑦 as ⟨𝑒, 𝑓 ⟩ in 𝑓 𝑒⟩) in

(unpack 𝑥 as ⟨𝑒, 𝑓 ⟩ in 𝑓 ⟨𝑒, 3⟩) + (unpack 𝑥 as ⟨𝑒, 𝑓 ⟩ in 𝑓 ⟨𝑒, 4⟩)

In addition to the function closures needed in strict closure conversion, we have added a

closure construction for the binding of 𝑦.

47

3.2.1 Source Language. The syntax and evaluation rules for a non-strict

evaluation are given in Figure 3.6. In a non-strict evaluator, all the values in the

environment are thunk closures. In contrast to the strict setting, the values stored in the

environment are different from the results of evaluation; thus, we see a separate notion

of results to which configurations evaluate. Examining the evaluation rules, the variable

rule unpacks and evaluates the thunk that finds in the environment. The application

rule must handle two different types of closures: it must unpack the function closure

returned from evaluating the left-hand side and it must construct a thunk closure for the

formal parameter following closely the closure conversion for this case. This behavior for

applications, and the fact that function closures are results, conveys that this machine is

more closely related to an eval/apply style abstract machine than the Krivine machine.

That being said, such evaluation still has the same termination behavior as the Krivine

machine.

Definition 3.3 (Non-Strict Big-Step Evaluation). EvalNSBS(𝑀) = b where ⟨⟨𝜀 ∥ 𝑀⟩⟩ ⇓ b.

The following proposition is similar to that for the SECD machine that Plotkin [46].

We have not proved it here.

Conjecture 3.1. EvalKAM(𝑀) = EvalNSBS(𝑀).

3.2.2 Target Language. Since every function and let-expression in the target

languagewill be strict and they are generated from those of the source language, the target

language of the non-strict closure conversion is indeed that of strict closure conversion.

3.2.3 Transformation. Non-strict closure conversion is presented in Figure 3.7.

Variables are converted into code for unpacking thunk closures. Applications are

converted into code that turns arguments into thunk closures while unpacking the

function closure and applying it. The non-strict transformation is careful to distinguish
48

CC(b) = b
CC(𝑥) = unpack 𝑥 as ⟨𝑒, 𝑓 ⟩ in 𝑓 𝑒

CC(𝜆𝑥. 𝑀) = pack ⟨⟨𝑦0, . . . , 𝑦𝑛⟩, 𝜆⟨⟨𝑦0, . . . , 𝑦𝑛⟩, 𝑥⟩.CC(𝑀)⟩
where FV(𝑀) − {𝑥} = {𝑦0, . . . , 𝑦𝑛}

CC(𝑀 𝑁) = unpack CC(𝑀) as ⟨𝑒, 𝑓 ⟩ in
𝑓 ⟨𝑒, pack ⟨⟨𝑦0, . . . , 𝑦𝑛⟩, 𝜆⟨𝑦0, . . . , 𝑦𝑛⟩.CC(𝑁)⟩⟩

where FV(𝑁) = {𝑦0, . . . , 𝑦𝑛}

(a) Expression Translation

CC𝑅 (𝐵) = 𝐵

CC𝑅 (𝜏 → 𝜎) = ∃𝑋 .𝑋 × (𝑋 × CC𝑉 (𝜏) → CC𝑅 (𝜎))
CC𝑉 (𝜏) = ∃𝑋 .𝑋 × (𝑋 → CC𝑅 (𝜏))
CCΓ (𝜀) = 𝜀

CCΓ (Γ, 𝑥 :𝜏) = CCΓ (Γ), 𝑥 :CC𝑉 (𝜏)

(b) Type Translations

Figure 3.7. A Non-strict Closure Conversion

thunk closures from function closures. Whereas the former contains a closed function

from some environment, the latter contains a closed function that takes a pair of some

environment and a formal parameter.

Extending the strict type translation to a non-strict language requires a different

translation for values and results. Intuitively, the three type translations can be thought

of as a translation of expressions that we intend to evaluate to results (CC𝑅) versus placing

themdirectly in the environment (CC𝑉), alongwith translation of the environment needed

for evaluating an expression (CCΓ). The result type translation of a function has changed

from the strict closure conversion to reflect that it now accepts only thunks as arguments.

Like strict closure conversion, the non-strict transformation preserves typing

derivations.

Theorem 3.2 (Type Preservation). If Γ ⊢ 𝑀 : 𝜏 , then CCΓ (Γ) ⊢ CC(𝑀) : CC𝑅 (𝜏).

49

MJ𝜏K = {(Conf𝑠,Conf𝑡) | ∀R𝑠 .Conf𝑠 ⇓ R𝑠 =⇒ ∃(R𝑠,V𝑡) ∈ RJ𝜏K.Conf𝑡 ⇓ V𝑡 }
VJ𝜏K = {((Σ𝑠, 𝑀𝑠), pack ⟨⟨V0, . . . ,V𝑛⟩, 𝜆⟨𝑥0, . . . , 𝑥𝑛⟩. 𝑀𝑡 ⟩)

| (⟨⟨Σ𝑠 ∥ 𝑀𝑠⟩⟩, ⟨⟨𝜀,V0/𝑥0, . . . ,V𝑛/𝑥𝑛 ∥ 𝑀𝑡 ⟩⟩) ∈ MJ𝜏K}
RJ𝐵K = {(b, b) | b ∈ 𝐵}

RJ𝜏0 → 𝜏1K = {((Σ𝑠, 𝜆𝑥 . 𝑀𝑠), pack ⟨⟨W0, . . . ,W𝑛⟩, 𝜆⟨⟨𝑦0, . . . , 𝑦𝑛⟩, 𝑥⟩. 𝑀𝑡 ⟩)
| ∀(V𝑠,V𝑡) ∈ VJ𝜏0K.

(⟨⟨Σ𝑠,𝑊𝑠/𝑥 ∥ 𝑀𝑠⟩⟩, ⟨⟨𝜀,W0/𝑦0, . . . ,W𝑛/𝑦𝑛,V𝑡/𝑥 ∥ 𝑀𝑡 ⟩⟩) ∈ MJ𝜏1K}
EJΓK = {(Σ𝑠, Σ𝑡) | ∀(𝑥 :𝜏) ∈ Γ. (Σ𝑠 (𝑥), Σ𝑡 (𝑥)) ∈ VJ𝜏K}

Figure 3.8. Non-strict Closure Conversion Logical Relations

Such a non-strict closure conversion is dependent on the operational semantics of the

target language. For our work in PEPM [52], we used a natural semantics, which must

evaluate programs to results. Therefore, the case of functions must capture a closure as

a final result. However, if we use the Krivine machine, then the evaluation context is

maintained while evaluating the function of an application. Therein, we can get away

with only constructing closures for function arguments since the function’s environment

will still be available! We will see in later chapters how to avoid this redundant closure in

machines with push/enter style function evaluation.

3.2.4 Operational Semantics Preservation. Using a similar delayed evaluation

logical relation technique to the strict case, we may prove that evaluation is preserved by

this conversion. Repeating the theme of distinguishing values and results, the family of

logical relations from strict closure-conversion can be modified to work for the non-strict

transformation with similar modifications to those of the semantics and type translations.

Thus, the non-strict family of relations in Figure 3.8 includes a separate relation for values

and results.

The V relation from the strict closure conversion has become the result relation R

for non-strict closure conversion; it relates source results to target machine values. The

relation for values,V , is wholly new. A source value, which is a thunk closure, is related

50

to a target package when they form related configurations by unpacking and applying

their respective enclosed environments. As before, the fundamental lemma of this logical

relation implies correct evaluation.

Lemma 3.3 (Fundamental Lemma). If Γ ⊢ 𝑀𝑠 : 𝜏 and (Σ𝑠, Σ𝑡) ∈ EJΓK, then (⟨Σ𝑠 ∥

𝑀𝑠⟩, ⟨Σ𝑡 ∥ CC(𝑀𝑠)⟩) ∈ MJ𝜏K.

Proof. By induction on the typing derivation of Γ ⊢ 𝑀𝑠 : 𝜏 , for a generic (Σ𝑠, Σ𝑡) ∈ EJΓK.

The cases for base types and function introduction are analogous to Lemma 3.2. The

remaining two cases are:

Case Γ ⊢ 𝑥 : 𝜏 because 𝑥 :𝜏 ∈ Γ.

So 𝑀𝑠 = 𝑥 , CC(𝑥) = unpack 𝑥 as ⟨𝑒, 𝑓 ⟩ in 𝑓 𝑒 , and we must show that (⟨⟨Σ𝑠 ∥

𝑥⟩⟩, ⟨⟨Σ𝑡 ∥ CC(𝑥)⟩⟩) ∈ MJ𝜏K.

From the assumptions (Σ𝑠, Σ𝑡) ∈ EJΓK and 𝑥 :𝜏 ∈ Γ, we know (𝑥 [Σ𝑠], 𝑥 [Σ𝑡]) ∈

VJ𝜏K by definition of EJΓK. Furthermore, the definition of V yields that

𝑥 [Σ𝑠] = (Σ′𝑠, 𝑀𝑠) and 𝑥 [Σ𝑡] = pack ⟨⟨⟨V0, . . . ,V𝑛⟩, 𝜆⟨⟨𝑥0, . . . , 𝑥𝑛⟩⟩. 𝑀𝑡 ⟩⟩ such

that (⟨⟨Σ′𝑠 ∥ 𝑀𝑠⟩⟩, ⟨⟨𝜀,V0/𝑥0, . . . ,V𝑛/𝑥𝑛 ∥ 𝑀𝑡 ⟩⟩) ∈ MJ𝜏K.

Assume the source evaluation ⟨⟨Σ𝑠 ∥ 𝑥⟩⟩ ⇓ R𝑠 . By inversion on this derivation,

⟨⟨Σ′𝑠 ∥ 𝑀𝑠⟩⟩ ⇓ R𝑠 .

We are guaranteed related results byMJ𝜏K. That is, ⟨⟨𝜀,V0/𝑥0, . . . ,V𝑛/𝑥𝑛 ∥ 𝑀𝑡 ⟩⟩ ⇓

V𝑡 such that (R𝑠,V𝑡) ∈ RJ𝜏K.

Expanding, we have ⟨⟨Σ𝑡 ∥ CC(𝑥)⟩⟩ ⇓ V𝑡 from the above evaluation combined

with unpack, case, and application rules of the target.

Therefore, (⟨⟨Σ𝑠 ∥ 𝑥⟩⟩, ⟨⟨Σ𝑡 ∥ CC(𝑥)⟩⟩) ∈ MJ𝜏K follows by definition.

Case Γ ⊢ 𝑁𝑠 𝑂𝑠 : 𝜏 because Γ ⊢ 𝑁𝑠 : 𝜏′ → 𝜏 and Γ ⊢ 𝑂𝑠 : 𝜏′.
51

So𝑀𝑠 = 𝑁𝑠 𝑂𝑠 , FV(𝑂𝑠) = {𝑦0, . . . , 𝑦𝑛} and CC(𝑁𝑠 𝑂𝑠) is

unpack CC(𝑁𝑠) as ⟨𝑒, 𝑓 ⟩ in 𝑓 ⟨𝑒, pack ⟨⟨𝑦0, . . . , 𝑦𝑛⟩, 𝜆⟨𝑦0, . . . , 𝑦𝑛⟩.CC(𝑂𝑠)⟩⟩.

and we must show thatMJ𝜏K contains (⟨⟨Σ𝑠 ∥ 𝑁𝑠 𝑂𝑠⟩⟩, ⟨⟨Σ𝑡 ∥ CC(𝑁𝑠 𝑂𝑠)⟩⟩)

Suppose that ⟨⟨Σ𝑠 ∥ 𝑁𝑠 𝑂𝑠⟩⟩ ⇓ R𝑠 in the source. The conclusion of that derivation

must be an instance of the application rule by inversion, which gives us

1. ⟨⟨Σ𝑠 ∥ 𝑁𝑠⟩⟩ ⇓ (Σ′𝑠, 𝜆𝑥 .𝐿𝑠) and

2. ⟨⟨Σ′𝑠, (Σ𝑠,𝑂𝑠)/𝑥 ∥ 𝐿𝑠⟩⟩ ⇓ R𝑠 .

From the first inductive hypothesis, we know (⟨⟨Σ𝑠 ∥ 𝑁𝑠⟩⟩, ⟨⟨Σ𝑡 ∥ CC(𝑁𝑠)⟩⟩) ∈

MJ𝜏′ → 𝜏K. Thus, ((Σ′𝑠, 𝜆𝑥 .𝐿𝑠), pack ⟨⟨W0, . . . ,W𝑛⟩, 𝜆⟨⟨𝑧0, . . . , 𝑧𝑛⟩, 𝑥⟩. 𝐿𝑡 ⟩) ∈

RJ𝜏′ → 𝜏K where ⟨⟨Σ𝑡 ∥ CC(𝑁𝑠)⟩⟩ ⇓ pack⟨⟨W0, . . . ,W𝑚⟩, 𝜆⟨⟨𝑧0, . . . , 𝑧𝑚⟩, 𝑥⟩. 𝐿𝑡 ⟩

by definition ofM.

By the pack, product, and variable evaluation rules, we know that ⟨⟨Σ𝑡 ∥

pack ⟨⟨𝑦0, . . . , 𝑦𝑛⟩, 𝜆⟨𝑦0, . . . , 𝑦𝑛⟩.CC(𝑂𝑠)⟩⟩⟩ evaluates to the target machine

value pack ⟨⟨𝑦0 [Σ𝑡], . . . , 𝑦𝑛 [Σ𝑡]⟩, 𝜆⟨𝑦0, . . . , 𝑦𝑛⟩.CC(𝑂𝑠)⟩.

We show ((Σ𝑠,𝑂𝑠), pack ⟨⟨𝑦0 [Σ𝑡], . . . , 𝑦𝑛 [Σ𝑡]⟩, 𝜆⟨𝑦0, . . . , 𝑦𝑛⟩.CC(𝑂𝑠)⟩) ∈ VJ𝜏′K by

showing that (⟨⟨Σ ∥ 𝑂𝑠⟩⟩, ⟨⟨𝜀,𝑦0 [Σ𝑡]/𝑦0, . . . , 𝑦𝑛 [Σ𝑡]/𝑦𝑛 ∥ CC(𝑂𝑠)⟩⟩) ∈ MJ𝜏′K.

Thus, suppose ⟨⟨Σ𝑠 ∥ 𝑂𝑠⟩⟩ ⇓ S𝑠 :

From the second inductive hypothesis, we know (⟨⟨Σ𝑠 ∥ 𝑂𝑠⟩⟩, ⟨⟨Σ𝑡 ∥

CC(𝑂𝑠)⟩⟩) ∈ MJ𝜏′K. And thus, there is some (S𝑠,X𝑡) ∈ RJ𝜏′K such that

⟨Σ𝑡 ∥ CC(𝑂𝑠)⟩ ⇓ X𝑡 .

We can conclude that ⟨⟨𝜀,𝑦0 [Σ]/𝑦0, . . . , 𝑦𝑛 [Σ]/𝑦𝑛 ∥ CC(𝑂𝑠)⟩⟩ ⇓ X𝑡 if ⟨Σ𝑡 ∥

CC(𝑂𝑠)⟩ ⇓ X𝑡 by strengthening (Lemma 3.1).

52

By the property of RJ𝜏′ → 𝜏K with the related values above in VJ𝜏′K, we know

that (⟨⟨Σ′𝑠, (Σ𝑠,𝑂𝑠)/𝑥 ∥ 𝐿𝑠⟩⟩, ⟨⟨𝜀,W0/𝑧0, . . . ,W𝑚/𝑧𝑚,Y/𝑥 ∥ 𝐿𝑡 ⟩⟩) ∈ MJ𝜏K where

Y is the package pack ⟨⟨𝑦0 [Σ𝑡], . . . , 𝑦𝑛 [Σ𝑡]⟩, 𝜆⟨𝑦0, . . . , 𝑦𝑛⟩.CC(𝑂𝑠)⟩. From this

property and (2) above, we know that there is some (R𝑠,V𝑡) ∈ RJ𝜏K such that

⟨⟨𝜀,W0/𝑧0, . . . ,W𝑚/𝑧𝑚,Y/𝑥 ∥ 𝐿𝑡 ⟩⟩) ⇓ V𝑡 .

By the unpack, case, and application evaluation rules, we know that ⟨⟨Σ𝑡 ∥

unpackCC(𝑁𝑠) as ⟨𝑒, 𝑓 ⟩ in 𝑓 ⟨𝑒, pack ⟨⟨𝑦0, . . . , 𝑦𝑛⟩, 𝜆⟨𝑦0, . . . , 𝑦𝑛⟩.CC(𝑂𝑠)⟩⟩⟩⟩ ⇓

V𝑡 .

Therefore, (⟨⟨Σ𝑠 ∥ 𝑁𝑠 𝑂𝑠⟩⟩, ⟨⟨Σ𝑡 ∥ CC(𝑁𝑠 𝑂𝑠)⟩⟩) is in MJ𝜏K by definition.

□

Corollary 3.2 (Evaluation Preservation). If Γ ⊢ 𝑀 : 𝜏 and EvalNSBS(𝑀) = b, then

EvalTBS(CC(𝑀)) = b.

3.3 Sharing Closure Conversion

When we applied strict closure conversion to our non-strict language, we found

that closures need to be strict and that we need to close over arguments of functions.

This forced us to use a strict target language even when closure converting non-strict

programs. Running an analogous experiment, consider the non-strict, sharing evaluation

of the resulting program from non-strict closure conversion (again, avoiding the closures

necessary for 𝑥 , 3, and 4) of the program in (3.1).

let 𝑥 be (let 𝑦 be pack ⟨⟨⟩, 𝜆⟨⟩. 2 + 1⟩ in

pack ⟨⟨𝑦⟩, 𝜆⟨⟨𝑦⟩, 𝑧⟩. unpack 𝑦 as ⟨𝑒, 𝑓 ⟩ in 𝑓 𝑒⟩) in

(unpack 𝑥 as ⟨𝑒, 𝑓 ⟩ in 𝑓 ⟨𝑒, 3⟩) + (unpack 𝑥 as ⟨𝑒, 𝑓 ⟩ in 𝑓 ⟨𝑒, 4⟩)

53

Since the transformation replaces every binding with a strict binding, we are left with a

program with only strict bindings. Thus, the two evaluations of the thunk bound to 𝑦 are

no longer shared. A proper lazy closure conversion should share computations; that is,

thunk closures must be evaluated at most one time.

An obvious solution is to add a restricted form of mutable references to the target

language and replace thunks after their evaluation. Instead of closure converting a

function argument to a thunk, it will be converted into a pointer to a heap-allocated,

tagged thunk. We will use the following shorthand for tagged heap storage:

store𝑀
def
= new (inr𝑀)

At the thunk’s call site, i.e. a variable lookup in the source, we will generate code that

checks the tag to determine whether to simply return a value or to evaluate the thunk

and update the pointer. This, we capture in a memoization macro:

memo 𝑥
def
= case !𝑥 of

inl 𝑣 → 𝑣

inr 𝑡 → unpack 𝑡 as (𝑦, 𝑧) in

let 𝑣 = 𝑧 𝑦 in

let _ = (𝑥 := inl 𝑣) in 𝑣

In our example, applying these ideas to the thunk created for 𝑦 yields the following target

program:

let 𝑥 be (let 𝑦 be store (pack ⟨⟨⟩, 𝜆⟨⟩. 2 + 1⟩) in

pack ⟨⟨𝑦⟩, 𝜆⟨⟨𝑦⟩, 𝑧⟩. memo 𝑦⟩) in

(unpack 𝑥 as ⟨𝑒, 𝑓 ⟩ in 𝑓 ⟨𝑒, 3⟩) + (unpack 𝑥 as ⟨𝑒, 𝑓 ⟩ in 𝑓 ⟨𝑒, 4⟩)

54

Φ ∈ Heap ::= 𝜀 | Φ, 𝑙 ↦→ (Σ, 𝑀) | Φ, 𝑙 ↦→ A
Σ ∈ Machine Env. ::= 𝜀 | Σ, 𝑙/𝑥
A ∈ Answer ::= b | (Σ, 𝜆𝑥 . 𝑀)
R ∈ Result ::= (Φ,A)

Configuration ::= ⟨⟨Φ ∥ Σ ∥ 𝑀⟩⟩

(a) Syntax

𝑙 ∉ Dom(Φ) Φ′(𝑙) = 𝑃 ∀𝑙′ ∈ (Dom(Φ′) − {𝑙}).Φ(𝑙′) = Φ′(𝑙′)
alloc(Φ, 𝑃) = (𝑙,Φ′)

𝑙 ∈ Dom(Φ) Φ′(𝑙) = 𝑃 ∀𝑙′ ∈ (Dom(Φ′) − {𝑙}).Φ(𝑙′) = Φ′(𝑙′)
update(Φ, 𝑙, 𝑃) = Φ′

(b) Heap Semantics

⟨⟨Φ ∥ Σ ∥ 𝑀⟩⟩ ⇓ R

⟨⟨Φ ∥ Σ ∥ b⟩⟩ ⇓ (Φ, b)
Φ(𝑥 [Σ]) = A

⟨⟨Φ ∥ Σ ∥ 𝑥⟩⟩ ⇓ (Φ,A)
Φ(𝑥 [Σ]) = (Σ′, 𝑀) ⟨⟨Φ ∥ Σ′ ∥ 𝑀⟩⟩ ⇓ (Φ′,A) update(Φ′, 𝑥 [Σ],A) = Φ′′

⟨⟨Φ ∥ Σ ∥ 𝑥⟩⟩ ⇓ (Φ′′,A)

⟨⟨Φ ∥ Σ ∥ 𝜆𝑥 .𝑀⟩⟩ ⇓ (Φ, (Σ, 𝜆𝑥 . 𝑀))
⟨⟨Φ ∥ Σ ∥ 𝑀⟩⟩ ⇓ (Φ′, (Σ′, 𝜆𝑥 . 𝐿)) alloc(Φ′, (Σ, 𝑁)) = (𝑙,Φ′′) ⟨⟨Φ′′ ∥ Σ′, 𝑙/𝑥 ∥ 𝐿⟩⟩ ⇓ R

⟨⟨Φ ∥ Σ ∥ 𝑀 𝑁 ⟩⟩ ⇓ R

(c) Evaluation Rules

Figure 3.9. Lazy Evaluation

We arrive at a lazy closure conversion in modifying the non-strict transformation by

inserting these thunk mutating macros at the locations where source variable bindings

are introduced (i.e. let-bound expressions and function arguments) and eliminated (i.e.

variable lookup).

3.3.1 Source Language. As the source operational semantics for our lazy closure

conversion, the syntax and evaluation rules for a sharing non-strict evaluator are

given in Figure 3.9. The major difference in this semantics versus the ones that we

55

presented for strict and non-strict evaluation is the addition of the heap. As a result, we

must now distinguish results, values, and answers. Answers are the set of normalized

expressions and the result of evaluation now contains both an updated heap and an

answer. Configurations include a heap and an environment. Whereas heaps hold thunks

and answers at specified locations, environments are only a mapping from variables to

locations into the heap.

We model heaps as objects for which we only know how to allocate, update, and

lookup. Since our heaps remain abstract, our heap semantics specifies only the properties

that allocation and update operations must satisfy. Allocation requires that we are

allocating a fresh variable, the new heap correctly returns the expression being allocated,

and everything else in the heap remains unchanged. Update requires that the variable is

already in the heap, that the new heap correctly returns the value, and that everything

else in the heap remains unchanged.

Just like the other two big-step evaluators, the rule for 𝜆-expressions must construct

a function closure. Like the non-strict language, the application rule constructs a thunk

closure, but here it is added to the heap and a pointer to it is passed in the environment.

The differential treatment between closure types is more obvious in a shared non-strict

evaluator: function closures are returned from evaluations, whereas thunk closures are

passed as pointers to the heap where they can be updated.

As we noticed with the non-strict big-step semantics, such a semantics acts more

like an eval/apply style machine since the left-hand side of an application is evaluated

to a function closure which is then applied to its argument. For the memoization aspect

of sharing to work, there is no way of avoiding function closures if we wanted a more

push/enter style big-step semantics. This is because it is precisely this normal form, with

its environment, that we must memoize.

56

𝜏, 𝜎 ∈ Type ::= · · · | 𝜏 + 𝜎 | ref 𝜏
𝑀, 𝑁, 𝐿 ∈ Expression ::= · · · | inl𝑀 | inr𝑀 | case𝑀 of {inl 𝑥 → 𝑁 ; inr 𝑦 → 𝐿}

| new𝑀 | !𝑀 | 𝑀 := 𝑁

(a) Additional Syntax

Δ; Γ ⊢ 𝑀 : 𝜏
Δ; Γ ⊢ inl𝑀 : 𝜏 + 𝜎 +𝐼1 Δ; Γ ⊢ 𝑀 : 𝜎

Δ; Γ ⊢ inr𝑀 : 𝜏 + 𝜎 +𝐼2

Δ; Γ ⊢ 𝑀 : 𝜎𝑙 + 𝜎𝑟 Δ; Γ, 𝑥 :𝜎𝑙 ⊢ 𝑁 : 𝜏 Δ; Γ, 𝑥 :𝜎𝑟 ⊢ 𝐿 : 𝜏
Δ; Γ ⊢ case𝑀 of {inl 𝑥 → 𝑁 ; inr 𝑥 → 𝐿} : 𝜏

+𝐸

Δ; Γ ⊢ 𝑀 : 𝜏
Δ; Γ ⊢ new𝑀 : ref 𝜏 ref𝐼

Δ; Γ ⊢ 𝑀 : ref 𝜏
Δ; Γ ⊢ !𝑀 : 𝜏 ref𝐸

Δ; Γ ⊢ 𝑀 : ref 𝜏 Δ; Γ ⊢ 𝑁 : 𝜏
Δ; Γ ⊢ 𝑀 := 𝑁 : 1 Mut

(b) Additional Typing Rules

Figure 3.10. Target Language extended with Sums and Mutation

Definition 3.4 (Shared Non-Strict Big-Step Evaluation). EvalSNSBS(𝑀) = b where ⟨⟨𝜀 ∥

𝜀 ∥ 𝑀⟩⟩ ⇓ b.

Like with the other machines and big-step semantics, we believe this evaluation to

coincide with the Sestoft machine.

Conjecture 3.2. EvalSM(𝑀) = EvalSNSBS(𝑀).

3.3.2 Target Language. In order to handle the added problem of updating

thunks, the strict target language for lazy closure conversion extends the previous target

language with sums and mutable references. The additional typing rules for this target

language are given in Figure 3.10. Heap manipulation in this language is via reference

types, à la Standard ML [33]. This can be seen in the Mut rule wherein a reference to an

integer, for instance, is a different type ref int that can only be updated with another

integer. Assignment expressions will return a value of the empty product type (i.e. 1)

which we denote by ⟨⟩.
57

Φ ∈ Heap ::= 𝜀 | Φ, 𝑙 ↦→ V
Σ ∈ Machine Env. ::= 𝜀 | Σ,V/𝑥
V ∈ Value ::= b | 𝜆𝑥 .𝑀 | ⟨V0, . . . ,V𝑛⟩ | pack V | inl V | inr V | 𝑙
R ∈ Result ::= (Φ,V)

Configuration ::= ⟨⟨Φ ∥ Σ ∥ 𝑀⟩⟩

(a) Syntax

⟨⟨Φ ∥ Σ ∥ b⟩⟩ ⇓ (Φ, b) ⟨⟨Φ ∥ Σ ∥ 𝑥⟩⟩ ⇓ (Φ, 𝑥 [Σ]) ⟨⟨Φ ∥ Σ ∥ 𝜆𝑥 .𝑀⟩⟩ ⇓ (Φ, 𝜆𝑥 . 𝑀)
⟨⟨Φ ∥ Σ ∥ 𝑀⟩⟩ ⇓ (Φ′, 𝜆𝑥 . 𝐿) ⟨⟨Φ′ ∥ Σ ∥ 𝑁 ⟩⟩ ⇓ (Φ′′,V) ⟨⟨Φ′′ ∥ 𝜀,V/𝑥 ∥ 𝐿⟩⟩ ⇓ R

⟨⟨Φ ∥ Σ ∥ 𝑀 𝑁 ⟩⟩ ⇓ R
⟨⟨Φ0 ∥ Σ ∥ 𝑀0⟩⟩ ⇓ (Φ1,V0) · · · ⟨⟨Φ𝑛 ∥ Σ ∥ 𝑀𝑛⟩⟩ ⇓ (Φ𝑛+1,V𝑛)

⟨⟨Φ0 ∥ Σ ∥ ⟨𝑀0, . . . , 𝑀𝑛⟩⟩⟩ ⇓ (Φ𝑛+1, ⟨V0, . . . ,V𝑛⟩)
⟨⟨Φ ∥ Σ ∥ 𝑀⟩⟩ ⇓ (Φ′, ⟨V0, . . . ,V𝑛⟩) ⟨⟨Φ ∥ Σ,V0/𝑥0, . . . ,V𝑛/𝑥𝑛 ∥ 𝑁 ⟩⟩ ⇓ R

⟨⟨Φ ∥ Σ ∥ case𝑀 of {⟨𝑥0, . . . , 𝑥𝑛⟩ → 𝑁 }⟩⟩ ⇓ R
⟨⟨Φ ∥ Σ ∥ 𝑀⟩⟩ ⇓ (Φ′,V)

⟨⟨Φ ∥ Σ ∥ pack𝑀⟩⟩ ⇓ (Φ′, pack V)
⟨⟨Φ ∥ Σ ∥ 𝑀⟩⟩ ⇓ (Φ′, pack V) ⟨⟨Φ′ ∥ Σ,V/𝑥 ∥ 𝑁 ⟩⟩ ⇓ R

⟨⟨Φ ∥ Σ ∥ unpack𝑀 as 𝑥 in 𝑁 ⟩⟩ ⇓ R
⟨⟨Φ ∥ Σ ∥ 𝑀⟩⟩ ⇓ (Φ′,V)

⟨⟨Φ ∥ Σ ∥ inl𝑀⟩⟩ ⇓ (Φ′, inl V)
⟨⟨Φ ∥ Σ ∥ 𝑀⟩⟩ ⇓ (Φ′,V)

⟨⟨Φ ∥ Σ ∥ inr𝑀⟩⟩ ⇓ (Φ′, inr V)
⟨⟨Φ ∥ Σ ∥ 𝑀⟩⟩ ⇓ (Φ′, inl V) ⟨⟨Φ′ ∥ Σ,V/𝑥 ∥ 𝑁 ⟩⟩ ⇓ R
⟨⟨Φ ∥ Σ ∥ case𝑀 of {inl 𝑥 → 𝑁 ; inr 𝑦 → 𝐿}⟩⟩ ⇓ R
⟨⟨Φ ∥ Σ ∥ 𝑀⟩⟩ ⇓ (Φ′, inr V) ⟨⟨Φ′ ∥ Σ,V/𝑥 ∥ 𝐿⟩⟩ ⇓ R
⟨⟨Φ ∥ Σ ∥ case𝑀 of {inl 𝑥 → 𝑁 ; inr 𝑦 → 𝐿}⟩⟩ ⇓ R

⟨Φ ∥ Σ ∥ 𝑀⟩ ⇓ (Φ′,V) alloc(Φ′, 𝑙,V) = (𝑙,Φ′′)
⟨⟨Φ ∥ Σ ∥ new𝑀⟩⟩ ⇓ (Φ′′, 𝑙)

⟨⟨Φ ∥ Σ ∥ 𝑀⟩⟩ ⇓ (Φ′, 𝑙) Φ′(𝑙) = V
⟨⟨Φ ∥ Σ ∥ !𝑀⟩⟩ ⇓ (Φ′,V)

⟨⟨Φ ∥ Σ ∥ 𝑀⟩⟩ ⇓ (Φ′, 𝑙) ⟨⟨Φ′ ∥ Σ ∥ 𝑁 ⟩⟩ ⇓ (Φ′′,V) update(Φ′′, 𝑙,V) = Φ′′′

⟨⟨Φ ∥ Σ ∥ 𝑀 := 𝑁 ⟩⟩ ⇓ (Φ′′′, ⟨⟩)

(b) Evaluation Rules

Figure 3.11. Mutable Target Language Evaluation

58

CC(b) = b
CC(𝑥) = case !𝑥 of

inl 𝑣 → 𝑣

inr 𝑡 → unpack 𝑡 as ⟨𝑒, 𝑓 ⟩ in 𝑥 := inl (𝑓 𝑒); !𝑥
CC(𝜆𝑥. 𝑀) = pack ⟨⟨𝑦0, . . . , 𝑦𝑛⟩, 𝜆⟨⟨𝑦0, . . . , 𝑦𝑛⟩, 𝑥⟩.CC(𝑀)⟩

where FV(𝜆𝑥. 𝑀) = {𝑦0, . . . , 𝑦𝑛}
CC(𝑀 𝑁) = let 𝑥 be (new (inr ⟨⟨𝑦0, . . . , 𝑦𝑛⟩, 𝜆⟨𝑦0, . . . , 𝑦𝑛⟩.CC(𝑁)⟩)) in

unpack CC(𝑀) as ⟨𝑒, 𝑓 ⟩ in 𝑓 ⟨𝑒, 𝑥⟩
where FV(𝑁) = {𝑦0, . . . , 𝑦𝑛}

(a) Expression Translation

CC𝐴 (𝐵) = 𝐵

CC𝐴 (𝜏 → 𝜎) = ∃𝑋 .𝑋 × (𝑋 × CC𝑉 (𝜏) → CC𝐴 (𝜎))
CC𝑉 (𝜏) = ref (CC𝐴 (𝜏) + (∃𝑋 .𝑋 × (𝑋 → CC𝐴 (𝜏))))
CCΓ (𝜀) = 𝜀

CCΓ (Γ, 𝑥 :𝜏) = CCΓ (Γ), 𝑥 :CC𝑉 (𝜏)

(b) Type Translations

Figure 3.12. Memoizing Non-strict Closure Conversion

The operational semantics is given in Figure 3.11. Unlike the syntax and typing rules,

which were a direct extension of the old target language, all of the evaluation rules differ

because they must pass the heap around explicitly. For instance, the product evaluation

rule is limited to left-to-right evaluation of its components. In the non-mutable target

language, this order was irrelevant.

The new mutable references rules make use of the same heap interface as our lazy

semantics. The rule for a new expression evaluates its argument to a value, places that

value in the heap, and returns its location in memory. The dereference rule evaluates its

argument to a location and returns the value at that location. Finally, the mutation rule

will evaluate the left-hand side to get the location where the right-hand side’s value will

go. After the update, a mutation will return the empty product ⟨⟩.

59

3.3.3 Transformation. The lazy closure conversion is found in Figure 3.12.

Our lazy source language’s different variable lookup rules are encoded in a single case

expression: either the heap location contains a thunk or a normal form. The application

case is the same as in the non-strict closure conversion case, but the thunk is tagged as a

thunk with inr and it is placed in the heap with new instead of in the local environment.

The type translation reflects the heap allocation with a ref type and the thunk tagging

with a sum type in the CC𝑉 (𝜏) translation. Interestingly, the cases for already normalized

expressions (i.e. constants of base types and manifest functions) are the same for strict,

non-strict, and lazy closure conversion.

Theorem 3.3 (Type Preservation). If Γ ⊢ 𝑀 : 𝜏 , then CCΓ (Γ) ⊢ CC(𝑀) : CC𝑅 (𝜏).

3.3.4 Operational Semantics Preservation. As part of the PEPM submission

[52] that this chapter is based on, the delayed-substitution logical relation for a sharing

non-strict language was left undone. By PPDP [53], we have discovered how to expand on

the non-strict relation to make them work here. Chapter 7 presents such an extension.

60

CHAPTER IV

ABSTRACT CLOSURES

This chapter contains published and unpublished co-authored material. It is a

revision of the work Closure Conversion in Little Pieces [53] co-authored with

Paul Downen and Zena M. Ariola. Zachary J. Sullivan is the primary author

under the guidance of Paul Downen and Zena M. Ariola.

Abstract machines expressed closures as part of the runtime system of the language

and closure conversion expressed closures by a transformation between a high-level

source language and a different language which does not have the ability to pass nested,

unevaluated code. However, it would be really convenient for the transformation to be

expressed in the same language. Specifically, we would like the following to hold:

Theorem 4.1. If Γ ⊢ 𝑀 : 𝜏 , then Γ ⊢ 𝑀 = CC(𝑀) : 𝜏 .

That is, we want an expression 𝑀 to be axiomatically equal, via the typical 𝛽 and 𝜂

axioms, to its closure converted form CC(𝑀). Such a language enables not only the

simple definition of the transformation but for optimized versions, e.g. those that share

environments, to be implemented locally and incrementally. Indeed, it is the compatibility

and transitivity of equational theories that allow these closures optimizations to compose

with themselves and other optimizations within a compiler. There are also benefits

to reasoning about correctness. Whereas in previous work [34, 52] different closure

conversion techniques correspond to different cross-language logical relations, closure

transformations encoded via the axioms of a compiler intermediate language (IL) are

proven correct merely by the soundness of these axioms. That is, for a sound equational

theory, axiomatic equality implies contextual equivalence.

61

Working within a single equational theory as the main focus of optimizations has

a history of success in compilers [44, 51, 5, 39]. A key idea therein is that a core IL is

modified repeatedly, in a series of passes, by a set of small, local transformations. Some

global transformations, e.g. strictness analysis, are still necessary but are less modular.

Inlining, constant folding, and common sub-expression elimination are all examples of

local transformations. Local transformations may be built from smaller ones, e.g. common

sub-expression elimination is a case of 𝛽 expansion when we give a name to a repeated

sub-program. Such an approach has even been successful for optimization problems that

are typically handled in lower-level code, like join points [31] and unboxed types [42], by

extending the IL to capture some essential properties of these concepts. Once included,

the low-level parts may be optimized with existing optimizations; for instance, redundant

unboxing operations can be eliminated via common sub-expression elimination.

To date, closures have been excluded from this local approach because closure

conversion [34, 36, 3, 38, 39, 52] as a data representation of code does not make this goal

easy. For example, consider using the strict closure conversion from the previous chapter

(Figure 3.4):

CC(𝜆𝑥.𝑦 + 𝑧) = pack ⟨⟨𝑦, 𝑧⟩, 𝜆⟨𝑒, 𝑥⟩. case 𝑒 of {⟨𝑦, 𝑧⟩ → 𝑦 + 𝑧}⟩

If we want Theorem 4.1 to be true, then we immediately run into a problem since the type

has changed from a function to a existential pair. Therefore, to say that something is 𝛽𝜂

equal to its closure converted form is false because we cannot apply an existential pair as

we can a function. Of course, we could remedy this problem by changing all of the calling

contexts of a function, but then we have a global transformation thereby losing the local

reasoning that enables optimization in little pieces. Our solution to this problem is not to

consider closure conversion a data representation for functions, instead we build on the
62

work on abstract closures [21, 34, 11]. These are special objects for which we may give

bespoke semantics, distinct from a usual function’s semantics. An abstract closure object

“knows” about the relationship between the environment and code parts of a closure; that

is, the environment part of the closure will be substituted at the same time as the formal

parameter.

This chapter presents the following contributions: defines closure conversion not

as a global cross-language transformation but in terms of little pieces that correspond to

provable equalities. Thereby, closure conversion is correct by construction and we elevate

closure conversion to be on par with other optimizations. In other words, it is done within

the IL itself; and thus, closure conversion optimizations can be expressed by standard IL

transformations.

4.1 Why Abstract Closures

If our goal is to promote reasoning about closures from a low-level runtime or

code generation phase of compilation to an equational theory suitable for optimizations,

then the canonical closure conversion presents more problems than just being a global

transformation.

Instead of a transformation between a different source and target language, in some

works [39, 3] the two languages are the same. Alas, this still does not work well with

equational theories. If it did, then it should be the case that the transformation preserves

equality, by the transitivity of the theory:

𝑀 = 𝑁 implies CC(𝑀) = CC(𝑁)

For example, let us attempt to preserve the call-by-value 𝛽 axiom:

CC((𝜆𝑥. 𝑀) 𝑉) = CC(𝑀 [𝑉 /𝑥])

63

For any closure conversion, preserving this law is hard since the transformation changes

the number of free variables in the function body; therefore, it does not commute with

substitution:

CC(𝑀) [CC(𝑉)/𝑥] ≠ CC(𝑀 [𝑉 /𝑥])

For an example of why this is not true, let 𝑀 be 𝜆𝑧. 𝑥 and we will need to prove the

following:

CC(𝜆𝑧. 𝑥) [CC(𝑉)/𝑥] ?
= CC((𝜆𝑧. 𝑥) [𝑉 /𝑥])

The variable 𝑥 will be part of the closure on the left but not on the right; and therefore,

the following equation does not hold (assume 𝑉 is closed):

(pack ⟨⟨𝑥⟩, 𝜆⟨⟨𝑥⟩, 𝑧⟩. 𝑥⟩) [CC(𝑉)/𝑥] = pack ⟨⟨CC(𝑉)⟩, 𝜆⟨⟨𝑥⟩, 𝑧⟩. 𝑥⟩

≠ pack ⟨⟨⟩, 𝜆⟨⟨⟩, 𝑧⟩.CC(𝑉)⟩

⟨𝑥⟩ ≠ ⟨⟩

A problem also arises in preserving 𝜂-laws where we need to show that

CC(𝜆𝑥.𝑉 𝑥) = CC(𝑉). If 𝑉 is a 𝜆-expression, then we may prove this with 𝛽 ; but if

𝑉 is a variable, say 𝑧, then we get stuck, as shown below:

pack ⟨⟨𝑧⟩, 𝜆⟨⟨𝑧⟩, 𝑥⟩. unpack 𝑧 as ⟨𝑒, 𝑓 ⟩ in𝑓 ⟨𝑒, 𝑥⟩⟩ ?
= 𝑧

Both of these failures are because closure conversion creates products that have a

distinct relation between the first and second components: the second will always expect

the first as an argument when applied. However, products and functions do not have

this property in general. This is why we step outside of the equational theory and use

64

𝜍 ∈ Environment ::= 𝜀 | 𝜍,𝑉 /𝑥

Γ ⊢ 𝜀 : 𝜀 Γ𝐼𝐵
Γ ⊢ 𝜍 : Γ′ Γ ⊢ 𝑉 : 𝜏
Γ ⊢ (𝜍,𝑉 /𝑥) : (Γ′, 𝑥 :𝜏) Γ𝐼𝐼

Figure 4.1. Syntactic Environments

logical relations, which capture the lost information, to prove the correctness of closure

conversion.

Non-strict closure conversions add more troubles for a local transformation. First,

the target language of non-strict closures is a strict language, so it does not work by

necessity. Moreover, the sharing non-strict closure conversion requires mutation in the

target language. If source and target were the same here, then our ability to reason would

be greatly reduced since mutable languages provide much weaker guarantees than the

𝜆-calculi that we have seen so far.

Working directly in the syntax, abstract closures [21, 34, 11] solve all of the above

problems, though previous work has not given them an equational theory nor specified

them for non-strict calculi. They have the same type as the non-closure versions of

functions and consume the same applicative contexts. Thus, they solve the global

transformation problem and enable type-preserving reductions. Additionally, consuming

the same contexts allows their 𝜂 laws to be preserved. The environment and the

formal parameter of a function are substituted at the same time when entering the

code part. Thus, they solve the disconnection of environment and code that happens

with the product encoding thereby enabling us to equate closures that capture different

environments. Finally, we will be able to specify non-strict semantics for them thereby

allowing us to remain within a non-strict language while doing closure conversion.

65

𝑀, 𝑁, 𝐿 ∈ Expression ::= 𝑉 | 𝑀 𝑁

𝑉,𝑊 ∈ Value ::= b | 𝑥 | {𝜍, 𝜆𝑥 . 𝑀}

(a) Syntax

𝜆𝑥 .𝑀 = {𝜀, 𝜆𝑥 . 𝑀}

(b) Syntactic Sugar

Γ ⊢ 𝜍 : Γ′ ΓΓ′, 𝑥 :𝜏 ⊢ 𝑀 : 𝜎
Γ ⊢ {𝜍, 𝜆𝑥 . 𝑀} : 𝜏 → 𝜎

→𝐼

(c) New Introduction Rule

{𝜍, 𝜆𝑥 . 𝑀} 𝑉 =𝛽 𝑀 [𝜍,𝑉 /𝑥]
𝜆𝑥 .𝑉 𝑥 =𝜂 𝑉

(d) Axioms

Figure 4.2. Call-by-Value with Closures

4.2 Closures for Different Evaluation Strategies

Adding abstract closures to our different calculi begins with a notion of delayed

substitution, which we call environments. Figure 4.1 presents the typing rules and syntax

of these. We have not specified what values 𝑉 are there because the objects in an

environment will differ depending on evaluation strategy.

4.2.1 Call-by-Value. A call-by-value calculus with closures is presented in

Figure 4.2. Abstract closures {𝜍, 𝜆𝑥 . 𝑀} pair a function together with a syntactic

environment. Note that the closure replaces the function form of the original calculus,

but we can recover that using the syntactic sugar of an abstract closure in an empty

environment. We have the same type system as the original simply typed 𝜆-calculus,

but have replaced the typing rule for functions with that of closures. Examining that rule,

we see that the body of the function extends the current environment Γ with the one from

the environment Γ′ and the formal parameter 𝑥 . Since Γ is included in this environment,

abstract closures do not necessarily need to capture all of there free variables in their

environment; this is essential for closure conversion in little pieces.

The 𝛽 law for functions has been replaced with one for closures wherein we merely

perform the delayed substitution when the function is applied along with the substitution

for the formal parameter. Note the similarity to the SECD machine’s step number 5

66

(Figure 2.3) and strict big-step semantics application case (Figure 3.1). The 𝜂 law remains

unchanged and applies only to 𝜆-expressions with an empty environment. Indeed, the

more general 𝜂 law, which we call 𝜂′→, with a non-empty environment:

{𝜍, 𝜆𝑥 .𝑉 𝑥} =𝜂′→ 𝑉 [𝜍]

can be derived as follows:

𝑉 [𝜍] =𝜂→ 𝜆𝑥.𝑉 [𝜍] 𝑥

=subst. 𝜆𝑥. (𝑉 𝑥) [𝜍, 𝑥/𝑥]

=𝛽→ 𝜆𝑥. {𝜍, 𝜆𝑥 .𝑉 𝑥} 𝑥

=𝜂→ {𝜍, 𝜆𝑥 .𝑉 𝑥}

Since we now have a notion of closures that ties the environment and code part

together in both the type system and equational theory, we are able to fix the problem of

syntactically equating closures which have captured different numbers of variables; this

failed before since the canonical closure conversion did not commute with substitution.

For example, we can now equate these two abstract closures where one has an extra

variable:

{(𝜀,𝑦/𝑦), 𝜆𝑥 . 𝑀} =𝜂→ {(𝜀,𝑦/𝑦, 𝑧/𝑧), 𝜆𝑥 . {(𝜀,𝑦/𝑦), 𝜆𝑥 . 𝑀} 𝑥}

=𝛽→ {(𝜀,𝑦/𝑦, 𝑧/𝑧), 𝜆𝑥 . 𝑀}

4.2.2 Call-by-Name. A call-by-name calculus with closures is presented in

Figure 4.3. Matching the Krivine machine, which builds closures for function arguments,

we place abstract closures around function arguments. Contrary to call-by-value that

constructs closures for function introduction, we need them for function elimination; and

67

𝑀, 𝑁, 𝐿 ∈ Expression ::= b | 𝑥 | 𝜆𝑥. 𝑀 | 𝑀 {𝜍, 𝑁 }
𝑉 ,𝑊 ∈ Value = Expression

(a) Syntax

𝑀 𝑁 = 𝑀 {𝜀, 𝑁 }

(b) Syntactic Sugar

Γ ⊢ 𝑀 : 𝜎 → 𝜏 Γ ⊢ 𝜍 : Γ′ ΓΓ′ ⊢ 𝑁 : 𝜎
Γ ⊢ 𝑀 {𝜍, 𝑁 } : 𝜏

→𝐸

(c) New Elimination Rule

(𝜆𝑥 .𝑀) 𝑉 =𝛽 𝑀 [𝑉 /𝑥]
𝜆𝑥 .𝑀 𝑥 =𝜂 𝑀

𝑀 {𝜍, 𝑁 } =cl 𝑀 (𝑁 [𝜍])

(d) Axioms

Figure 4.3. Call-by-Name with Closures

thus, that is the typing rule which we replace. The axioms from call-by-name remain the

same here, but we add a new axiom cl for entering an argument’s closure. We changed the

look of the 𝛽 law, but since call-by-name values are any expression, we have lost nothing.

It may seem unsatisfying to see that the cl axiom “enters” the closure before function

application, whereas the Krivine machine does not enter a function until the variable

evaluation is forced. However, this fits with the flexibility of an equational theory and

we are primarily focused on stating where in our code that the operational semantics will

construct closures. Indeed, a rule more like the Krivine machines evaluation:

(𝜆𝑥. 𝑀) {𝜍, 𝑁 } = 𝑀 [𝑁 [𝜍]/𝑥]

is derivable simply by using cl and then 𝛽 .

4.2.3 Call-by-Need. A call-by-need calculus with closures is presented in

Figure 4.4. With the addition of the memoizing expression, there are now more places

where unevaluated code with free variables may be substituted to other parts of the

program in an environment machine. Although they are not substituted by the axioms

of the theory, the call-by-need evaluation context let 𝑥 be 𝐸 in 𝐹 [𝑥] suggests that

68

𝑀, 𝑁, 𝐿 ∈ Expression ::= 𝑉 | 𝑀 𝑁 | let 𝑥 be {𝜍,𝑀} in 𝑁
𝑉,𝑊 ∈ Value ::= b | 𝑥 | {𝜍, 𝜆𝑥 . 𝑀}

(a) Syntax

𝜆𝑥 .𝑀 = {𝜀, 𝜆𝑥 . 𝑀}
let 𝑥 be𝑀 in 𝑁 = let 𝑥 be {𝜀, 𝑀} in 𝑁

(b) Syntactic Sugar

Γ ⊢ 𝜍 : Γ′ ΓΓ′, 𝑥 :𝜏 ⊢ 𝑀 : 𝜎
Γ ⊢ {𝜍, 𝜆𝑥 . 𝑀} : 𝜏 → 𝜎

→𝐼
Γ ⊢ 𝜍 : Γ′ ΓΓ′ ⊢ 𝑀 : 𝜎 Γ, 𝑥 :𝜎 ⊢ 𝑁 : 𝜏

Γ ⊢ let 𝑥 be {𝜍,𝑀} in 𝑁 : 𝜏 let

(c) New Typing Rules

{𝜍, 𝜆𝑥 . 𝑀} 𝑁 =𝛽 let 𝑥 be 𝑁 in𝑀 [𝜍]
𝜆𝑥.𝑉 𝑥 =𝜂 𝑉

let 𝑥 be 𝑉 in𝑀 =𝑥 𝑀 [𝑉 /𝑥]
𝐸 [let 𝑥 be𝑀 in 𝑁] =𝜅 let 𝑥 be𝑀 in 𝐸 [𝑁]

let 𝑥 be (let 𝑦 be𝑀 in 𝑁) in 𝐿 =𝜒 let 𝑦 be𝑀 in let 𝑥 be 𝑁 in 𝐿
let 𝑥 be {𝜍,𝑀} in 𝑁 =cl let 𝑥 be𝑀 [𝜍] in 𝑁

(d) Axioms

Figure 4.4. Call-by-Need with Closures

69

while we are evaluating 𝐹 [𝑥] inside of the let-binding we will need to “jump” to the

location 𝐸 to evaluate there. In an environment machine, this amounts to entering a

different environment at runtime; therefore, it requires a closure as we see in the lazy

abstract machine of Sestoft [48]. Thus, there are two spaces for abstract closures in the

calculus: one for functions that works like that of the call-by-value closures and one for

let-expressions that can be seen as the memoizing version of the call-by-name closures.

Reflecting the machines as before, we see these two kinds of closures constructed in the

Sestoft machine’s rules 3 and 6 (Figure 2.7).

For the let-expression closure, we add a new law called cl which—like the similarly

named law from call-by-name—allows us to perform the delayed substitution at any time.

For the function closure, we have a new 𝛽 law that performs the delayed substitution of

the function while creating a memoizable binding for the argument. Indeed, we can derive

the call-by-value abstract closure law:

{𝜍, 𝜆𝑥 . 𝑀} 𝑉 =𝛽 let 𝑥 be 𝑉 in𝑀 [𝜍]

=𝑥 𝑀 [𝜍] [𝑉 /𝑥]

=subst. 𝑀 [𝜍,𝑉 /𝑥]

4.3 Deriving Closure Conversions

As an example of Theorem 4.1, we can now construct a naïve closure conversion

transformation syntactically. We do this by deriving a simple rewriting rule that adds

one free variable at a time. In the call-by-value with closure calculus, we would have the

following rule:
𝑦 ∈ FV(𝜆𝑥. 𝑀) − Dom(𝜍)

{𝜍, 𝜆𝑥 . 𝑀} −→CC {(𝜍,𝑦/𝑦), 𝜆𝑥 . 𝑀}

For each application of the rule, the local environment 𝜍 grows by an identity substitution

𝑦/𝑦. If we started from an empty environment, then the entire 𝜍 after closure conversion
70

is the identity. In the case where 𝜍 already had some non-identity part within, e.g.

{(𝜀, 3/𝑥,𝑦/𝑦), 𝜆𝑧. 𝑀}, the delayed substitution is preserved.

We show next that the rewrite rule is derivable, where we let the environment 𝜍 be

𝑉0/𝑧0, . . . ,𝑉𝑛/𝑧𝑛 and 𝑦 be a free variable in FV(𝜆𝑥. 𝑀) − Dom(𝜍):

{𝜍, 𝜆𝑥 . 𝑀} =subst.

{𝜍, 𝜆𝑥 . 𝑀 [𝑧0/𝑧0, . . . , 𝑧𝑛/𝑧𝑛, 𝑦/𝑦, 𝑥/𝑥]} =𝛽→

{𝜍, 𝜆𝑥 . {(𝑧0/𝑧0, . . . , 𝑧𝑛/𝑧𝑛, 𝑦/𝑦), 𝜆𝑥 . 𝑀} 𝑥} =𝜂′→
{(𝑧0/𝑧0, . . . , 𝑧𝑛/𝑧𝑛, 𝑦/𝑦), 𝜆𝑥 . 𝑀}[𝜍] =subst.

{(𝜍,𝑦/𝑦), 𝜆𝑥 . 𝑀}

We say that an expression is closure converted when it is a normal form with respect

to the CC-rule. Such normal forms are unique up to the reordering of the substitutions.

A closure conversion procedure can be derived by applying the transformation until this

normal form is reached.

Definition 4.1 (Naïve Closure Conversion).

NCC(𝐴) = 𝐵 iff 𝐴 −→∗
CC 𝐵 and 𝐵 is in CC-normal form.

We can define similar rules and thus a closure conversion for our call-by-name and

call-by-need closure calculi.

4.4 Using Abstract Closures

The above closure conversion is a flat closure representation containing all of the free

variables in a simple product-like data structure; this is but one approach for choosing

a layout for a closure’s environment. There is a diverse collection of work on closure

analysis and optimizations [39, 19, 50, 34], but they assume a global closure conversion

phase. Using a language with abstract closures allows us to do these locally after the naïve

transformation has been applied. Here, we focus on two of these examples.
71

4.4.1 Choosing an Environment Representation. Minamide et al. [34]

combine the environments of different closures to save space when allocating a closure,

at the cost of possible space leaks [50] and extended lookup times for closure variables. To

do this with abstract closures, we need an easy way to combine sub-parts of environments

together so they may be shared with other closures. Whereas in the closure laws above,

we only substitute a flat environment of values, we now wish to represent environments

with nested structures via pattern matching on finite products.

Like empty closures and let-expressions, pattern matching can be considered

syntactic sugar. For instance, the pattern-matching closure {(𝜀,𝑉 //⟨𝑥, ⟨𝑦, 𝑧⟩⟩), 𝜆𝑤 .𝑀}

desugars into the following:

{(𝜀,𝑉 /𝑣), 𝜆𝑤 . case 𝑣 of {⟨𝑥, 𝑣′⟩ → case 𝑣′ of {⟨𝑦, 𝑧⟩ → 𝑀}}}

Using this sugar, the environment sharing of the example from Shao andAppel [50] is

a derivable equality in our language. Examining the first expression in Figure 4.5, we have

already run our naïve closure conversion. The program allocates three closures named ℎ,

𝑔, and 𝑗 , which all contain the variables 𝑤 , 𝑥 , 𝑦, and 𝑧. To save space, we may derive an

equality wherein these three closures point to a single sub-environment containing those

values. We 𝜂 expand the program saving the same variables in each closure, but this time

we pair the variables that they have in common together. A 𝛽 reduction in the body allows

us to remove the old closure structure. Finally, we 𝛽 expand to have a pointer 𝑒 to share

the product; and therefore, the value of variables will not be duplicated to allocate these

closures in a runtime system that passes products by reference.

This is an example of taking naïve closure conversion as a starting point and

transforming our code further to optimize sub-programs. So not only does𝑀 = NCC(𝑀),

72

let 𝑔 be {(𝜀, 𝑔/𝑔, 𝑣/𝑣,𝑤/𝑤, 𝑥/𝑥,𝑦/𝑦, 𝑧/𝑧), 𝜆𝑞. 𝐴} in
let ℎ be {(𝜀, ℎ/ℎ,𝑢/𝑢,𝑤/𝑤, 𝑥/𝑥,𝑦/𝑦, 𝑧/𝑧), 𝜆𝑞. 𝐵} in
let 𝑗 be {(𝜀, 𝑖/𝑖,𝑤/𝑤, 𝑥/𝑥,𝑦/𝑦, 𝑧/𝑧), 𝜆𝑞.𝐶} in
𝐷

=3
𝜂→

let 𝑔 be

{
(𝜀, 𝑔/𝑔, 𝑣/𝑣, ⟨𝑤, 𝑥,𝑦, 𝑧⟩ //⟨𝑤, 𝑥,𝑦, 𝑧⟩),
𝜆𝑞. {(𝜀, 𝑔/𝑔, 𝑣/𝑣,𝑤/𝑤, 𝑥/𝑥,𝑦/𝑦, 𝑧/𝑧), 𝜆𝑞. 𝐴} 𝑞

}
in

let ℎ be

{
(𝜀, ℎ/ℎ,𝑢/𝑢, ⟨𝑤, 𝑥,𝑦, 𝑧⟩ //⟨𝑤, 𝑥,𝑦, 𝑧⟩),
𝜆𝑞. {(𝜀, ℎ/ℎ,𝑢/𝑢,𝑤/𝑤, 𝑥/𝑥,𝑦/𝑦, 𝑧/𝑧), 𝜆𝑞. 𝐵} 𝑞

}
in

let 𝑗 be

{
(𝜀, 𝑖/𝑖, ⟨𝑤, 𝑥,𝑦, 𝑧⟩ //⟨𝑤, 𝑥,𝑦, 𝑧⟩),
𝜆𝑞. {(𝜀, 𝑖/𝑖,𝑤/𝑤, 𝑥/𝑥,𝑦/𝑦, 𝑧/𝑧), 𝜆𝑞.𝐶} 𝑞

}
in

𝐷

=3
𝛽→

let 𝑔 be {(𝜀, 𝑔/𝑔, 𝑣/𝑣, ⟨𝑤, 𝑥,𝑦, 𝑧⟩ //⟨𝑤, 𝑥,𝑦, 𝑧⟩), 𝜆𝑞. 𝐴} in
let ℎ be {(𝜀, ℎ/ℎ,𝑢/𝑢, ⟨𝑤, 𝑥,𝑦, 𝑧⟩ //⟨𝑤, 𝑥,𝑦, 𝑧⟩), 𝜆𝑞. 𝐵} in
let 𝑗 be {(𝜀, 𝑖/𝑖, ⟨𝑤, 𝑥,𝑦, 𝑧⟩ //⟨𝑤, 𝑥,𝑦, 𝑧⟩), 𝜆𝑞.𝐶} in
𝐷

=𝛽let

let 𝑒 be ⟨𝑤, 𝑥,𝑦, 𝑧⟩ in
let 𝑔 be {(𝜀, 𝑔/𝑔, 𝑣/𝑣, 𝑒 //⟨𝑤, 𝑥,𝑦, 𝑧⟩), 𝜆𝑞. 𝐴} in
let ℎ be {(𝜀, ℎ/ℎ,𝑢/𝑢, 𝑒 //⟨𝑤, 𝑥,𝑦, 𝑧⟩), 𝜆𝑞. 𝐵} in
let 𝑗 be {(𝜀, 𝑖/𝑖, 𝑒 //⟨𝑤, 𝑥,𝑦, 𝑧⟩), 𝜆𝑞.𝐶} in
𝐷

Figure 4.5. Example of Environment Sharing with Abstract Closures

but also 𝑀 = (EnvShare ◦ NCC) (𝑀). Moreover, this transformation preserves the CC-

normal form property of NCC(𝑀).

4.4.2 Choosing Environment Passing Technique. Another optimization

presented for closures is lambda-lifting [19, 39]. In essence, lambda-lifting as an

optimization is meant to pass parts of a code’s environment on the call stack instead of

its closure environment. It is enabled by 𝛽 expansion on the free variables of functions

whose code is visible from the call site, also referred to in the literature as known functions.

For instance, consider the following example where the closure bound to 𝑓 is transformed

73

and whose body𝑀 has the free variable 𝑦:

let 𝑓 be {(𝜍,𝑦/𝑦), 𝜆𝑥 . 𝑀} in . . . 𝑓 3 . . . =𝛽→

. . . {(𝜍,𝑦/𝑦), 𝜆𝑥 . 𝑀} 3 . . . =𝛽→

. . . 𝑀 [𝜍,𝑦/𝑦, 3/𝑥] . . . =𝛽→

. . . {𝜍, 𝜆𝑦, 𝑥 . 𝑀} 𝑦 3 . . . =𝛽let

let 𝑓 be {𝜍, 𝜆𝑦, 𝑥 . 𝑀} in . . . 𝑓 𝑦 3 . . .

Again, we start with a program that is already in CC-normal form. To avoid passing

𝑦 within the closure’s environment, which may require more allocation, the function

closure has it added as an extra formal parameter and at the call site it is added as an

extra argument. In the special case where the rest of the environment 𝜍 is empty, such an

optimization may completely avoid allocating space for the environment part of a closure.

Such a transformation only depends on being able to 𝛽 expand and havingmulti-arity

functions, so many existing ILs can already do this. The advantage of having closures

in our IL is that we may encode both environments sharing and lambda-lifting directly

in the syntax and have the two optimizations interact with one another. Indeed, the

final program here could have been specified incrementally, by first applying the naïve

closure conversion followed by environment sharing and lambda-lifting. Additionally,

transformations unrelated to closures will need to respect them as closures, in contrast to

closure conversions that represent functions as normal products.

74

CHAPTER V

CBPVS: A COMMON INTERMEDIATE LANGUAGE

This chapter contains published and unpublished co-authored material. It

contains revisions of the work Closure Conversion in Little Pieces [53] co-

authored with Paul Downen and Zena M. Ariola. Zachary J. Sullivan is the

primary author under the guidance of Paul Downen and Zena M. Ariola.

We have seen how closures arise from implementing the 𝜆-calculus on modern

machines and we presented a new approach to reasoning about closures as part of the

calculus. However, we presented only a sketch of how it may be done for different

evaluation strategies. Formalizing the relationship between abstract closures and the

abstract machine’s on which they run is a large task for just one language as we will

see in the coming chapters. Thus, instead of doing the work three times for call-by-

value, call-by-name, and call-by-need, we propose a single intermediate language that we

formalize. We base our new intermediate language on Levy’s call-by-push-value (CBPV)

[27], which was originally motivated by a similar duplication of work in the denotational

semantics for the call-by-value and call-by-name evaluation strategies. Unfortunately,

CBPV is not equipped to handle call-by-need. Thus, we first need to describe how to

extend the language to include sharing in a manner that preserves all of the equational

theories of call-by-name, call-by-value, and call-by-need.

5.1 CBPV

CBPV (Figure 5.1) achieves its strong equational theory—thereby making a suitable

target for call-by-name and call-by-value—by separating the objects that have different

𝛽 and 𝜂 laws. There is a syntactic distinction between expressions that are, which we

call values and will write in green, and expressions that do, i.e. computations, which we
75

𝜏, 𝜎 ∈ Type ::= 𝜏 | 𝜏
𝜏, 𝜎 ∈ Value Type ::= 𝐵 | 𝜏 ⊗ 𝜎 | 𝑈 𝜏

𝜏, 𝜎 ∈ Computation Type ::= 𝜏 & 𝜎 | 𝜏 → 𝜎 | 𝐹 𝜏

𝐴, 𝐵,𝐶 ∈ Expression ::= 𝑉 | 𝑀
𝑉,𝑊 ∈ Value ::= b | 𝑥 | ⟨𝑉 ,𝑊 ⟩ | {force → 𝑀}
𝑀, 𝑁 ∈ Computation ::= case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑀} | {fst → 𝑀 ; snd → 𝑁 }

| 𝑀.fst | 𝑀.snd | 𝜆𝑥 .𝑀 | 𝑀 𝑉

| ret 𝑉 | 𝑀 to 𝑥 in 𝑁 | 𝑉.force

Figure 5.1. Syntax

Γ ⊢ b : 𝐵𝐵
𝑥 :𝜏 ∈ Γ
Γ ⊢ 𝑥 : 𝜏 var

Γ, 𝑥 :𝜏 ⊢ 𝑀 : 𝜎
Γ ⊢ 𝜆𝑥. 𝑀 : 𝜏 → 𝜎

→𝐼
Γ ⊢ 𝑀 : 𝜎 → 𝜏 Γ ⊢ 𝑉 : 𝜎

Γ ⊢ 𝑀 𝑉 : 𝜏
→𝐸

Γ ⊢ 𝑀 : 𝜏 Γ ⊢ 𝑁 : 𝜌
Γ ⊢ {fst → 𝑀 ; snd → 𝑁 } : 𝜏 & 𝜌

&𝐼

Γ ⊢ 𝑀 : 𝜏 & 𝜌

Γ ⊢ 𝑀.fst : 𝜏&𝐸1
Γ ⊢ 𝑀 : 𝜏 & 𝜌

Γ ⊢ 𝑀.snd : 𝜌&𝐸2

Γ ⊢ 𝑉 : 𝜏 Γ ⊢𝑊 : 𝜎
Γ ⊢ ⟨𝑉 ,𝑊 ⟩ : 𝜏 ⊗ 𝜎 ⊗𝐼

Γ ⊢ 𝑉 : 𝜎 ⊗ 𝜌 Γ, 𝑥 :𝜎,𝑦:𝜌 ⊢ 𝑀 : 𝜏
Γ ⊢ case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑀} : 𝜏

⊗𝐸

Γ ⊢ 𝑀 : 𝜏
Γ ⊢ {force → 𝑀} : 𝑈 𝜏

𝑈 𝐼
Γ ⊢ 𝑉 : 𝑈 𝜏

Γ ⊢ 𝑉.force : 𝜏𝑈 𝐸

Γ ⊢ 𝑉 : 𝜏
Γ ⊢ ret 𝑉 : 𝐹 𝜏 𝐹 𝐼

Γ ⊢ 𝑀 : 𝐹 𝜎 Γ, 𝑥 :𝜎 ⊢ 𝑁 : 𝜏
Γ ⊢ 𝑀 to 𝑥 in 𝑁 : 𝜏 𝐹𝐸

Figure 5.2. Typing Rules

write in orange. Indeed, there are two different product types: one is a computation, the &

type, which will be the target of a lazy style of product and the other, the ⊗ type, is a value

for the strict products. The former is defined by the projections .fst and .snd, whereas

the latter is constructed as pair that is eliminated by a case expression; the products that

we have used thus far are the latter. Note that we depart from the syntax of Levy for

expressions containing computations that wait for method calls, e.g. thunk 𝑀 is written

as {force → 𝑀}, to emphasize how they behave like objects. This is because we will

introduce more expressions of a similar kind later in this chapter.

76

By the rules of the syntax, arguments to function calls and the interrogated

expression of the case expression are already values and no reduction will be needed;

this—in contrast with call-by-value where wemust evaluate expressions to get to a value—

conveys the idea that values are, and that they can be predicted based on their type alone.

Moreover, as we see from the syntax and typing rules Figure 5.2, variables can only

range over value types, and so substitutions only occur with values. On the other hand,

computations are the only expressions that are allowed to do work to find an answer, so a

computation that returns values of type 𝜏 will have type 𝐹 𝜏 . For example, a computation

returning ⟨4, 2⟩ will be written ret ⟨4, 2⟩ in a manner reminiscent of returning from a

statement in C. A to-expression, which consumes computations of type 𝐹 𝜏 , may need

to evaluate its interrogated computation before being able to match on the pattern and

extract a value to bind it to 𝑥 .

Despite only values being substitutable, the language is still able to pass unevaluated

code because we may delay a computation as a value by shifting it. The object-like shift

for delaying a computation as a value, written as {force → 𝑀}, is eliminated by𝑉.force.

Conversely, the ret- and to-expressions shift from values into computations. We will see

later that these shifts play a key role in both closure conversion and sharing. For now, note

that an important difference between data-like and object-like shifts is that the former

creates a binding upon elimination whereas the latter does not.

5.1.1 Equational Theory. Examining the equational theory in Figure 5.3, we see

that it has much of the same 𝛽 laws as call-by-value. However, the requirement that the

argument of a function and the subject of a case expression is a value becomes a syntactic

restriction, whereas in a call-by-value calculus the requirement is imposed at runtime.

Examining the 𝜂 laws, we see that CBPV has the 𝜂 law for call-by-name functions in

77

(𝜆𝑥 .𝑀) 𝑉 =𝛽→ 𝑀 [𝑉 /𝑥]
{fst → 𝑀 ; snd → 𝑁 }.fst =𝛽&1 𝑀

{fst → 𝑀 ; snd → 𝑁 }.snd =𝛽&2 𝑁

case ⟨𝑉 ,𝑊 ⟩ of {⟨𝑥,𝑦⟩ → 𝑀} =𝛽⊗ 𝑀 [𝑉 /𝑥,𝑊 /𝑦]
{force → 𝑀}.force =𝛽𝑈 𝑀

(ret 𝑉) to 𝑥 in𝑀 =𝛽𝐹 𝑀 [𝑉 /𝑥]

𝜆𝑥 .𝑀 𝑥 =𝜂→ 𝑀

{fst → 𝑀.fst; snd → 𝑀.snd} =𝜂& 𝑀

case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑀 [⟨𝑥,𝑦⟩/𝑧]} =𝜂⊗ 𝑀 [𝑉 /𝑧]
{force → 𝑉.force} =𝜂𝑈 𝑉

𝑀 to 𝑥 in 𝐸 [ret 𝑥] =𝜂𝐹 𝐸 [𝑀]

𝐸 ∈ Evaluation Context ::= □ | 𝐸 𝑉 | 𝐸.fst | 𝐸.snd | 𝐸 to 𝑥 in𝑀

Figure 5.3. CBPV Axioms

contrast to the restrictions that we see in the call-by-value and call-by-need.1 Additionally,

there are laws for the two shift types. The 𝛽 and𝜂 laws for the value shift𝑈 𝜏 are analogous

to those of the & type. For 𝐹 𝜏 , the 𝛽 law is analogous to the pattern matching in a

case expression, but its 𝜂 law is more restricted. That is, it can only be applied when

the reconstructed data appears in an evaluation context; note that this is a slightly more

general law than originally given by Levy.

5.1.2 Subsuming Call-by-Value and Call-by-Name. The compilation to

CBPV for use as an intermediate language is given in Figure 5.4. Both translations are

composed of sub-translations for types, type environments, and expressions. For call-by-

name, arguments are compiled into shifts which delay evaluation until they are forced

in the variable case. Because of the delayed evaluation of all function arguments, we

see that the type environment translation is 𝑈 of the translated argument type. In call-

by-value, we must compile functions, which are treated as values in the source, into

delayed computations since functions are computations in CBPV. This way, a function

1CBPV’s strong 𝜂 laws for computation types and value types follow closely the observations about
call-by-name and call-by-value types in work on the duality of programming languages [55, 15].

78

𝜏 → 𝜌 = 𝑈 𝜏 → 𝜌

𝐵 = 𝐹 𝐵

𝜏 × 𝜎 = 𝜏 & 𝜎

𝜀 = 𝜀

Γ, 𝑥 :𝜏 = Γ, 𝑥 :𝑈 𝜏

𝑥 = 𝑥 .force
𝑏 = ret 𝑏

𝜆𝑥 .𝑀 = 𝜆𝑥. 𝑀

𝑀 𝑁 = 𝑀 {force → 𝑁 }
⟨𝑀, 𝑁 ⟩ = {fst → 𝑀 ; snd → 𝑁 }
fst𝑀 = 𝑀.fst
snd𝑀 = 𝑀.snd

(a) Call-by-Name (CBN)

𝜏 → 𝜎 = 𝑈 (𝜏 → 𝐹 𝜎)
𝑏 = 𝐵

𝜏 × 𝜎 = 𝜏 ⊗ 𝜎
𝜀 = 𝜀

Γ, 𝑥 :𝜏 = Γ, 𝑥 :𝜏

𝑥 = ret 𝑥
𝑏 = ret 𝑏

𝜆𝑥 .𝑀 = ret {force → 𝜆𝑥 .𝑀}
𝑀 𝑁 = 𝑀 to𝑥 in 𝑁 to𝑦 in 𝑥 .force 𝑦

⟨𝑀, 𝑁 ⟩ = 𝑀 to𝑥 in 𝑁 to𝑦 in ret ⟨𝑥,𝑦⟩
case𝑀 of {⟨𝑥,𝑦⟩ → 𝑁 } = 𝑀 to 𝑧 in case 𝑧 of {⟨𝑥,𝑦⟩ → 𝑁 }

(b) Call-by-Value (CBV)

Figure 5.4. Compiling CBN and CBV to CBPV

in the source is turned into 𝐹 of the translated function value. Both translations also

include a notion of product as well, the call-by-name version of a product is treated as

the computation product type & whereas the call-by-value version is treated as the value

product ⊗.

These transformations preserve not only types, but also the equational theories of

the source languages. The following theorems are found in Levy [27] and show that CBPV

is suitable as an intermediate language.

Theorem 5.1 (CBN Compilation Preserves Equations). If Γ ⊢ 𝑀 =CBN 𝑁 : 𝜏 , then Γ ⊢

𝑀 =CBPV 𝑁 : 𝜏 using the call-by-name translation.

Theorem 5.2 (CBV Compilation Preserves Equations). If Γ ⊢ 𝑀 =CBV 𝑁 : 𝜏 , then Γ ⊢

𝑀 =CBPV 𝑁 : 𝐹 𝜏 using the call-by-value translation.

79

𝜏, 𝜎 ∈ Value Type ::= 𝐵 | 𝜏 ⊗ 𝜎 | 𝑈 𝜏 | 𝑈̃ 𝜏

𝜏, 𝜎 ∈ Shared Type ::= 𝑈 𝜏 | 𝐹 𝜏
𝜏, 𝜎 ∈ Comp. Type ::= 𝜏 & 𝜎 | 𝜏 → 𝜎 | 𝐹 𝜏 | 𝐹 𝜏

𝑉 ,𝑊 ∈ Value ::= b | 𝑥 | ⟨𝑉 ,𝑊 ⟩ | {force → 𝑀} | box 𝑉
𝑉 ,𝑊 ∈ Shared Value ::= 𝑎 | val 𝑉 | {enter → 𝑀}
𝑅, 𝑆 ∈ Shared Comp. ::= 𝑉 | 𝑀.eval | 𝐵 [𝑅]
𝑀, 𝑁 ∈ Comp. ::= {fst → 𝑀 ; snd → 𝑁 } | 𝑀.fst | 𝑀.snd | 𝜆𝑥.𝑀 | 𝑀𝑉

| 𝑉.force | ret 𝑉 | 𝐵 [𝑀] | 𝑅.enter | {eval → 𝑅}
𝐵 ∈ Block Ctxt . ::= 𝑃 to𝑥 in□ | 𝑅 memo𝑎 in□

| case 𝑉 of {⟨𝑥,𝑦⟩ → □} | case 𝑉 of {box 𝑎 → □}
𝑃,𝑄 ∈ Comp. Expr . ::= 𝑅 | 𝑀
𝜍 ∈ Env. ::= 𝜀 | 𝜍,𝑉 /𝑥 | 𝜍,𝑉 /𝑎

Figure 5.5. CBPVS: CBPV with Sharing

5.2 Adding Sharing

To serve as a suitable intermediate language for a call-by-need source, we need to

support sharing within CBPV itself. Our new language, which we refer to as CBPVS for

short (“S” for sharing), is shown in Figure 5.5.

The first place to start when extending our intermediate language with sharing is

to, like in call-by-need, add a binding construct that gives names to the computation

that we wish to share and only evaluates it when needed. Such a binding may look like

𝑀 memo 𝑎 in 𝑁 . Of course, wewould like to save computations that return values (those of

type 𝐹 𝜏): imagine having𝑀 be the program 1 + 2 to 𝑥 in ret 𝑥 . Tomaximize sharing, we

also need to be able to memoize the evaluation of intermediate computations of all types.

For instance, we would only want to perform the 𝛽 reduction on the argument 42 once,

where 𝑀 is (𝜆𝑥.𝜆𝑦. ret 𝑥) 42, if we were to bind it to a variable and apply it in multiple

parts of the program. In general, the point at which we may substitute without work

duplication is when an introduction form for a computation type is reached, i.e. ret 𝑉 ,

80

{fst → 𝑀 ; snd → 𝑁 }, and 𝜆𝑥. 𝑀 . We could merely declare these forms “computational

values” that are substituted without duplicating work. However, we would then have to

sacrifice our strong 𝜂 law for CBPV function types for the weaker one found in call-by-

need, which would mean that the compilation of the other evaluation strategies would no

longer be equivalence preserving. Instead, we package computations that will be shared

under a third syntactic category which stands apart from values and computations. This

way, computations can keep their axioms from CBPV.

The new syntactic category that we introduce, which we write in purple, is for

shared computations and its substitutable forms are the subset of shared values. Shared

computations will be 𝛽 reducible similar to computations, but with the addition of

variables that refer only to them. There is an overlap of the block structures of the

languagewhere both computations and shared computations can patternmatch on values,

sequence computations, and bind shared computations. This is captured in the idea

of block contexts, which contain one of these structures with a hole at the bottom.

Where computations and shared computations overlap, we describe them as computable

expressions and write them in the color black.

Since we will not be using computation introduction forms for sharing, like in

𝜆𝑥. ret 42, we need a shift from computations to shared values, which we write

{enter → 𝜆𝑥. ret 42} and give the type 𝑈 (𝜏 → 𝐹 N). Similarly, we want a shift from

values, which we write val 42 and give the type 𝐹 N. The introduction forms of these

shifts are thememoizable sub-syntax of shared computations: shared values. The opposite

direction is true as well. We will want to embed shared computations within a data

structure; this we do with the shift box 𝑉 with the type 𝑈̃ 𝜏 . And we want shared

computations to be capable of being embedded within the normal computations to make

use of computation types within a program: {eval → 𝑅} with the type 𝐹 𝜏 . Indeed,

81

computational types like functions and & can only contain shared sub-computations

through such a shift; for example, {fst → {eval → 𝑅}; fst → {eval → 𝑆}}. In

summary, the new shifts into shared expressions, 𝑈 𝜏 and 𝐹 𝜏 , are used to capture the

CBPV values and computations that a shared expression reduced to, whereas that new

shifts from shared expressions 𝑈̃ 𝜏 and 𝐹 𝜏 are there so thatwe canmake use of the existing

value and computation types when building shared computations.

5.2.1 Typing Rules. The typing rules for CBPVS are given in Figure 5.6; for the

subset that is CBPV, the rule remain the same except that the typing context Γ is now

composed of both value and shared variables. For sharing, we must break the convention

that CBPV only substitutes values; note that Levy himself breaks the convention with

complex values [27] and other work adding memoization to CBPV does as well [32].

The type system reveals the similarities between the shared shifts and the ones that

already existed in CBPV. Like the sequencing to-expression consuming values shifted to

computations, the shared to-expression will bind a shifted value of type 𝐹 𝜏 in another

computation or shared computation.

5.2.2 Equational Theory. The axioms for CBPVS are given in Figure 5.7. The

rules are divided into three sets wherein the first two are the usual 𝛽 and 𝜂 laws and

the last includes rules for lifting and reassociating shared binders as in call-by-need. In

general, we see that the 𝛽 and 𝜂 laws for shared computations and values operate in a

similar manner to the other𝑈 and 𝐹 types already in CBPV.

Concerning𝜂, there is a notable difference between the laws for the 𝑈̃ types and those

for 𝐹 and 𝐹 even though they all reconstruct a data-like expression; that is, the former does

not have a restriction that the reconstructed data appears within an evaluation context.

This lack of a restriction in the axiom, despite containing a shared expression, is possible

because of the syntactic restriction to shared values for box 𝑉 . Without the syntactic

82

Γ ⊢ b : 𝐵𝐵
𝑥 :𝜏 ∈ Γ
Γ ⊢ 𝑥 : 𝜏 var

Γ ⊢ 𝑉 : 𝜏 Γ ⊢𝑊 : 𝜎
Γ ⊢ ⟨𝑉 ,𝑊 ⟩ : 𝜏 ⊗ 𝜎 ⊗𝐼

Γ ⊢ 𝑉 : 𝜎 ⊗ 𝜌 Γ, 𝑥 :𝜎,𝑦:𝜌 ⊢ 𝑃 : 𝜏
Γ ⊢ case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑃} : 𝜏

⊗𝐸

Γ ⊢ 𝑀 : 𝜏
Γ ⊢ {force → 𝑀} : 𝑈 𝜏

𝑈𝐼
Γ ⊢ 𝑅 : 𝑈 𝜏

Γ ⊢ 𝑅.force : 𝜏𝑈𝐸

Γ ⊢ 𝑉 : 𝜏
Γ ⊢ ret 𝑉 : 𝐹 𝜏 𝐹𝐼

Γ ⊢ 𝑀 : 𝐹 𝜎 Γ, 𝑥 :𝜎 ⊢ 𝑃 : 𝜏
Γ ⊢ 𝑀 to 𝑥 in 𝑃 : 𝜏 𝐹𝐸

Γ ⊢ 𝑉 : 𝜏
Γ ⊢ box 𝑉 : 𝑈̃ 𝜏

𝑈̃𝐼
Γ ⊢ 𝑉 : 𝑈̃ 𝜎 Γ, 𝑎:𝜎 ⊢ 𝑃 : 𝜏

Γ ⊢ case 𝑉 of {box 𝑎 → 𝑃} : 𝜏 𝑈̃𝐸

𝑎:𝜏 ∈ Γ
Γ ⊢ 𝑎 : 𝜏 svar

Γ ⊢ 𝑅 : 𝜎 Γ, 𝑎:𝜎 ⊢ 𝑃 : 𝜏
Γ ⊢ 𝑅 memo 𝑎 in 𝑃 : 𝜏 H

Γ ⊢ 𝑉 : 𝜏
Γ ⊢ val 𝑉 : 𝐹 𝜏

𝐹𝐼
Γ ⊢ 𝑅 : 𝐹 𝜎 Γ, 𝑥 :𝜎 ⊢ 𝑃 : 𝜏

Γ ⊢ 𝑅 to 𝑥 in 𝑃 : 𝜏 𝐹𝐸

Γ ⊢ 𝑀 : 𝜏
Γ ⊢ {enter → 𝑀} : 𝑈 𝜏

𝑈𝐼
Γ ⊢ 𝑅 : 𝑈 𝜏

Γ ⊢ 𝑅.enter : 𝜏𝑈𝐸

Γ ⊢ 𝑀 : 𝜏 Γ ⊢ 𝑁 : 𝜎
Γ ⊢ {fst → 𝑀 ; snd → 𝑁 } : 𝜏 & 𝜎

&𝐼
Γ ⊢ 𝑀 : 𝜏 & 𝜎
Γ ⊢ 𝑀.fst : 𝜏&𝐸1

Γ ⊢ 𝑀 : 𝜏 & 𝜎
Γ ⊢ 𝑀.snd : 𝜎&𝐸2

Γ, 𝑥 :𝜏 ⊢ 𝑀 : 𝜎
Γ ⊢ 𝜆𝑥 .𝑀 : 𝜏 → 𝜎

→𝐼
Γ ⊢ 𝑀 : 𝜏 → 𝜎 Γ ⊢ 𝑉 : 𝜏

Γ ⊢ 𝑀 𝑉 : 𝜎
→𝐸

Γ ⊢ 𝑅 : 𝜏
Γ ⊢ {eval → 𝑅} : 𝐹 𝜏

𝐹𝐼
Γ ⊢ 𝑀 : 𝐹 𝜏

Γ ⊢ 𝑀.eval : 𝜏 𝐹𝐸

Figure 5.6. CBPVS Typing Rules

83

(𝜆𝑥 .𝑀) 𝑉 =→ 𝑀 [𝑉 /𝑥]
{fst → 𝑀 ; snd → 𝑁 }.fst =&1 𝑀

{fst → 𝑀 ; snd → 𝑁 }.snd =&2 𝑁

case ⟨𝑉 ,𝑊 ⟩ of {⟨𝑥,𝑦⟩ → 𝑃} =⊗ 𝑃 [𝑉 /𝑥,𝑊 /𝑦]
{force → 𝑀}.force =𝑈 𝑀

(ret 𝑉) to 𝑥 in 𝑃 =𝐹 𝑃 [𝑉 /𝑥]
case (box 𝑉) of {box 𝑎 → 𝑃} =𝑈̃ 𝑃 [𝑉 /𝑎]

(val 𝑉) to 𝑥 in 𝑃 =𝐹 𝑃 [𝑉 /𝑥]
{enter → 𝑀}.enter =𝑈 𝑀

{eval → 𝑅}.eval =𝐹 𝑅

(a) 𝛽-laws

𝜆𝑥. 𝑀 𝑥 =→ 𝑀

{fst → 𝑀.fst; snd → 𝑀.snd} =& 𝑀

case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑃 [⟨𝑥,𝑦⟩/𝑧]} =⊗ 𝑃 [𝑉 /𝑧]
{force → 𝑉.force} =𝑈 𝑉

𝑀 to 𝑥 in 𝐸 [ret 𝑥] =𝐹 𝐸 [𝑀]
case 𝑉 of {box 𝑎 → 𝑃 [box 𝑎/𝑥]} =𝑈̃ 𝑃 [𝑉 /𝑥]

𝑅 to 𝑥 in 𝐸 [val 𝑥] =𝐹 𝐸 [𝑅]
{enter → 𝑉 .enter} =𝑈 𝑉

{eval → 𝑀.eval} =𝐹 𝑀

(b) 𝜂-laws

𝐸 [𝑅 memo 𝑎 in 𝑃] =𝜅 𝑅 memo 𝑎 in 𝐸 [𝑃]
(𝑅 memo 𝑏 in 𝑆) memo 𝑎 in 𝑃 =𝜒 𝑅 memo 𝑏 in (𝑆 memo 𝑎 in 𝑃)

𝑉 memo 𝑎 in 𝐶 [𝑎] =deref 𝑉 memo 𝑎 in 𝐶 [𝑉]
𝑅 memo 𝑎 in 𝑃 =GC 𝑃

𝑅 =name 𝑅 memo 𝑎 in 𝑎

(c) Other laws

where 𝐸, 𝐹 ::= □ | 𝐸 𝑉 | 𝐸.fst | 𝐸.snd | 𝐸 to 𝑥 in 𝑃
| 𝐸.enter | 𝐸.eval | 𝑅 memo 𝑎 in 𝐸 | 𝐸 memo 𝑎 in 𝐹 [𝑎]

Figure 5.7. CBPVS Axioms

84

restriction, a program like the following will duplicate work:

case ⟨42, box 𝑅⟩ of {⟨𝑥,𝑦⟩ → . . . 𝑦 . . . 𝑦 . . . } −→𝛽

. . . box 𝑅 . . . box 𝑅 . . .

This duplication will happen whenever a box-shift is nested inside of another value. Note

that we can still describe a program like the one above where 𝑅 is shared, but this time

we will need to bind the non-duplicated part to a memo-expression first:

𝑅 memo 𝑎 in case ⟨42, box 𝑎⟩ of {⟨𝑥,𝑦⟩ → . . . 𝑥 . . . 𝑥 . . . } −→𝛽

𝑅 memo 𝑎 in . . . box 𝑎 . . . box 𝑎 . . .

Now the shared computation 𝑅 is shared among the various places where 𝑎 may occur.

Whereas 𝜂 for 𝑈̃ is flexible because of a syntactic restriction, the law for𝑈 types has

a value restriction. This is for the same reason as the call-by-need value restriction for

function type 𝜂: we must preserve that the expression is a shared value before and after

an 𝜂 reduction.

In CBPV, we were able to derive the sequencing laws of to-expressions with the

generalized 𝜂 law for 𝐹 ; we may do this for 𝐹 as well. This is not true for lifting shared

memoization bindings out of an evaluation context since the expression does not force

its bound expression and that expression may be of any shared type. Therefore, the

equational theory has a 𝜅 law specifically for this as in call-by-need.

5.3 Subsuming Call-by-Need

Figure 5.8 shows how a call-by-need source program will be compiled into our

intermediate language. The transformation turns both types and expressions into their

shared version in CBPVS. Those familiar with the subsumption of call-by-name and call-

by-value into CBPV may see the transformation as merging the two: functions must

85

𝜏 → 𝜎 = 𝑈 (𝑈̃ 𝜏 → 𝐹 𝜎)
N = 𝐹 N

𝜏 × 𝜎 = 𝐹 (𝑈̃ 𝜏 ⊗ 𝑈̃ 𝜎)
𝜀 = 𝜀

Γ, 𝑥 :𝜏 = Γ, 𝑥 :𝜏

𝑥 = 𝑥

b = val b
𝜆𝑥. 𝑀 = {enter → 𝜆𝑦. case 𝑦 of

{box 𝑥 → {eval → 𝑀}}}
𝑀 𝑁 = 𝑀 memo 𝑎 in 𝑁 memo 𝑏 in

(𝑎.enter (box 𝑏)) .eval
let 𝑥 be𝑀 in 𝑁 = 𝑀 memo 𝑥 in 𝑁

⟨𝑀, 𝑁 ⟩ = 𝑀 memo 𝑎 in 𝑁 memo 𝑏 in

val ⟨box 𝑎, box 𝑏⟩
case𝑀 of {⟨𝑥,𝑦⟩ → 𝑁 } = 𝑀 to 𝑧 in case 𝑧 of

{⟨box 𝑥, box 𝑦⟩ → 𝑁 }

Figure 5.8. Compiling CBNeed to CBPVS

delay their argument type with 𝑈̃ instead of 𝑈 , return their result with 𝐹 instead of 𝐹 ,

and the whole computation must be delayed with 𝑈 instead of 𝑈 . For expressions, the

transformation has striking similarities to the call-by-value compilation. First, functions

are placed in an enter-expression and expect their argument to come in a box-value; this

means that arguments of a function must be given a shared binding before entering the

function. Second, in an application, we must give names to the parts whose evaluation we

want to share; in the call-by-value transformation, it is the parts that we simply want to

evaluate. Though it is only the argument part that we wish to share, we must also give a

name to the function part in order to preserve the ordering of memoized binders from the

source. Similarly, we must give memoized binders to the sub-components of products. In

so doing, we have preserved the Haskell-like product property that the sub-components

will share their evaluation.

For brevity, the compilation from call-by-need makes use of nested pattern matching

in the case expression transform, i.e. in unpacking a box-value inside of a product. Like

with CBPV, nested pattern matching is equivalent to doing a pattern match one at a time

in CBPVS.

86

(𝜆𝑥 .𝑀) 𝑁=𝛽→ let 𝑥 be 𝑁 in𝑀
case ⟨𝑀, 𝑁 ⟩ of {⟨𝑥,𝑦⟩ → 𝐿}=𝛽⊗ let 𝑥 be𝑀 in let 𝑦 be 𝑁 in 𝐿

𝜆𝑥.𝑉 𝑥=𝜂→ 𝑉

case𝑀 of {⟨𝑥,𝑦⟩ → 𝐸 [⟨𝑥,𝑦⟩]}=𝜂⊗ 𝐸 [𝑀]

(let 𝑥 be𝑀 in 𝑁) 𝐿=lift1 let 𝑥 be𝑀 in (𝑁 𝐿)
𝑀 (let 𝑥 be 𝑁 in 𝐿)=lift2 let 𝑥 be 𝑁 in (𝑀 𝐿)
𝜆𝑥. let 𝑦 be 𝑉 in𝑀=lift3 let 𝑦 be 𝑉 in 𝜆𝑥. 𝑀

case (let 𝑥 be𝑀 in 𝑁) of {⟨𝑥,𝑦⟩ → 𝐿}=lift4 let 𝑥 be𝑀 in (case 𝑁 of {⟨𝑥,𝑦⟩ → 𝐿})

let 𝑥 be (let 𝑦 be𝑀 in 𝑁) in 𝐿=mergelet 𝑦 be𝑀 in let 𝑥 be 𝑁 in 𝐿
let 𝑥 be 𝑉 in 𝐶 [𝑥]=deref let 𝑥 be 𝑉 in 𝐶 [𝑉]
let 𝑥 be𝑀 in 𝑁=GC 𝑁

𝑀=name let 𝑥 be𝑀 in 𝑥

where 𝑉 ,𝑊 ∈ Value ::= 𝑥 | b | 𝜆𝑥. 𝑀 | ⟨𝑉 ,𝑊 ⟩
𝐸, 𝐹 ∈ EvalCxt ::= □ | 𝐸 𝑁 | case 𝐸 of {⟨𝑥,𝑦⟩ → 𝑁 }

| let 𝑥 be𝑀 in 𝐸 | let 𝑥 be 𝐸 in 𝐹 [𝑥]

Figure 5.9. More Flexible Call-by-Need Axioms

Lemma 5.1 (Compilation Commutes with Substitution). Syntactically, we have Γ ⊢

𝑀 [𝑉 /𝑥] = 𝑀 [𝑉 /𝑥] : 𝜏 .

Proof. Follows by the definitions of substitution for the two languages and induction on

the structure of the expression. □

Lemma 5.2 (CBNeed Compilation Preserves Values). For some source value 𝑉 , there is

some target value𝑊 such that CBPVS ⊢ 𝑉 =𝑊 : 𝜏 .

Proof. By the induction on the syntax of source values. The cases for 𝑥 , b, and 𝜆𝑥. 𝑀 hold

immediately with reflexivity. The case for ⟨𝑉 ,𝑊 ⟩ follows by its inductive hypotheses

followed by deref reductions. □

Note that we prove our subsumption theorem with respect to the call-by-need

calculus in Figure 5.9. It presents a more flexible call-by-need than that of Figure 2.8,

87

which includes more lifting rules from Ariola and Felleisen [7] and the garbage collection

rules fromMaraist et al. [28]. Wewanted CBPVS to preserve the most laws possible. Since

the laws of the original CBPV part of CBPVS were left unchanged, the call-by-name and

call-by-value compilations to CBPV still preserve equations for CBPVS.

Theorem 5.3 (CBNeed Compilation Preserves Equations). If Γ ⊢ 𝑀 =CBNeed 𝑁 : 𝜏 , then

Γ ⊢ 𝑀 =CBPVS 𝑁 : Γ.

Proof. By induction on the equality derivation. The cases for reflexivity, symmetry,

transitivity, and compatibility follow by their inductive hypotheses and the respective

rule for CBPVS. Thus, we need only show it holds for the axioms; in each case, we show

that the translation of left side of the equation is equal to the translation of the right side:

Case 𝛽→:

(𝜆𝑥 .𝑀) 𝑁 = let 𝑥 be 𝑁 in𝑀

(𝜆𝑥 .𝑀) 𝑁 =defn.

{enter → 𝜆𝑦. case 𝑦 of {box 𝑥 → {eval → 𝑀}}} memo 𝑎 in

𝑁 memo 𝑏 in (𝑎.enter (box 𝑏)) .eval
=deref=GC

𝑁 memo 𝑏 in

({enter→ 𝜆𝑦. case𝑦 of {box 𝑥 → {eval → 𝑀}}}.enter (box 𝑏)) .eval
=𝛽𝑈̌

𝑁 memo 𝑏 in (𝜆𝑦. case 𝑦 of {box 𝑥 → {eval → 𝑀}} (box 𝑏)) .eval =𝛽→

𝑁 memo 𝑏 in (case (box 𝑏) of {box 𝑥 → {eval → 𝑀}}).eval =𝛼

𝑁 memo 𝑥 in (case (box 𝑥) of {box 𝑥 → {eval → 𝑀}}).eval =𝛽
𝑈̃

𝑁 memo 𝑥 in {eval → 𝑀}.eval =𝛽
𝐹

𝑁 memo 𝑥 in𝑀 =defn.

let 𝑥 be 𝑁 in𝑀

88

Case 𝛽⊗:

case ⟨𝑀, 𝑁 ⟩ of {⟨𝑥,𝑦⟩ → 𝐿} = let 𝑥 be𝑀 in let 𝑦 be 𝑁 in 𝐿

case ⟨𝑀, 𝑁 ⟩ of {⟨𝑥,𝑦⟩ → 𝐿} =defn.

𝑀 memo 𝑎 in 𝑁 memo 𝑏 in val ⟨box 𝑎, box 𝑏⟩

to 𝑦 in case 𝑦 of {⟨box 𝑥, . . . , box 𝑥⟩ → 𝐿}
=𝜅

𝑀 memo 𝑎 in 𝑁 memo 𝑏 in

(val ⟨box 𝑎, box 𝑏⟩ to 𝑦 in case 𝑦 of {⟨box 𝑥, box 𝑦⟩ → 𝐿})
=𝛽

𝐹

𝑀 memo 𝑎 in 𝑁 memo 𝑏 in

case ⟨box 𝑎, box 𝑏⟩ of {⟨box 𝑥, box 𝑦⟩ → 𝐿}
=𝛼

𝑀 memo 𝑥 in 𝑁 memo 𝑦 in

case ⟨box 𝑥, box 𝑦⟩ of {⟨box 𝑥, box 𝑦⟩ → 𝐿}
=𝛽⊗=𝛽𝑈̌

𝑀 memo 𝑥 in 𝑁 memo 𝑦 in 𝐿 =defn.

let 𝑥 be𝑀 in let 𝑦 be 𝑁 in 𝐿

Case 𝜂→:

𝜆𝑥.𝑉 𝑥 = 𝑉

89

𝜆𝑥 .𝑉 𝑥 =defn.enter→ 𝜆𝑦. case𝑦 of

box 𝑥→
eval→

𝑉 memo 𝑎 in 𝑥 memo 𝑏 in

(𝑎.enter (box 𝑏)) .eval



 =deref=GC

enter→ 𝜆𝑦. case𝑦 of

box 𝑥→
eval→

𝑥 memo 𝑏 in

(𝑉 .enter (box 𝑏)) .eval



 =deref=GC

{enter→ 𝜆𝑦. case 𝑦 of {box 𝑥 → {eval → (𝑉 .enter (box 𝑥)) .eval}}} =𝜂
𝐹

{enter → 𝜆𝑦. case 𝑦 of {box 𝑥 → 𝑉 .enter (box 𝑥)}} =𝜂
𝑈̃

{enter → 𝜆𝑦.𝑉 .enter 𝑦} =𝜂→

{enter → 𝑉 .enter} =𝜂𝑈̌

𝑉

Case 𝜂⊗:

case𝑀 of {⟨𝑥,𝑦⟩ → 𝐸 [⟨𝑥,𝑦⟩]} = 𝐸 [𝑀]

case𝑀 of {⟨𝑥,𝑦⟩ → 𝐸 [⟨𝑥,𝑦⟩]} =defn.

𝑀 to 𝑧 in case 𝑧 of

{⟨box 𝑥, box 𝑦⟩ → 𝐸 [𝑥 memo 𝑎 in 𝑦 memo 𝑏 in val ⟨box 𝑎, box 𝑏⟩]}
(=deref=GC)2

𝑀 to 𝑧 in case 𝑧 of {⟨box 𝑥, box 𝑦⟩ → 𝐸 [val ⟨box 𝑥, box 𝑦⟩]} =𝜂⊗=𝜂𝑈̃

𝑀 to 𝑧 in 𝐸 [val 𝑧] =𝜂
𝐹

𝐸 [𝑀]

Case lift1:

(let 𝑥 be𝑀 in 𝑁) 𝐿 = let 𝑥 be𝑀 in (𝑁 𝐿)

(let 𝑥 be𝑀 in 𝑁) 𝐿 =defn.

(𝑀 memo 𝑥 in 𝑁) memo 𝑎 in 𝐿 memo 𝑏 in (𝑎.enter (box 𝑏)) .eval =𝜒

𝑀 memo 𝑥 in 𝑁 memo 𝑎 in 𝐿 memo 𝑏 in (𝑎.enter (box 𝑏)) .eval =defn.

let 𝑥 be𝑀 in (𝑁 𝐿)

90

Case lift2:

𝑀 (let 𝑥 be 𝑁 in 𝐿) = let 𝑥 be 𝑁 in (𝑀 𝐿)

𝑀 (let 𝑥 be 𝑁 in 𝐿) =defn.

𝑀 memo 𝑎 in (𝑁 memo 𝑥 in 𝐿) memo 𝑏 in (𝑎.enter (box 𝑏)) .eval =𝜅

𝑁 memo 𝑥 in𝑀 memo 𝑎 in 𝐿 memo 𝑏 in (𝑎.enter (box 𝑏)) .eval =defn.

let 𝑥 be 𝑁 in (𝑀 𝐿)

Case lift3:

𝜆𝑥. let 𝑦 be 𝑉 in𝑀 = let 𝑦 be 𝑉 in 𝜆𝑥 .𝑀

𝜆𝑥. let 𝑦 be 𝑉 in𝑀 =defn.

{enter → 𝜆𝑧. case 𝑧 of {box 𝑥 → {eval → 𝑉 memo 𝑦 in𝑀}}} =∗
deref=GC

{enter → 𝜆𝑧. case 𝑧 of {box 𝑥 → {eval → 𝑀 [𝑉 /𝑥]}}} =GC=
∗
deref

𝑉 memo 𝑦 in {enter → 𝜆𝑧. case 𝑧 of {box 𝑥 → {eval → 𝑀}}} =defn.

let 𝑦 be 𝑉 in 𝜆𝑥 .𝑀

Case lift4:
case (let 𝑥 be𝑀 in 𝑁) of {⟨𝑥,𝑦⟩ → 𝐿} =

let 𝑥 be𝑀 in (case 𝑁 of {⟨𝑥,𝑦⟩ → 𝐿})

case (let 𝑥 be𝑀 in 𝑁) of {⟨𝑥,𝑦⟩ → 𝐿} =defn.

(𝑀 memo 𝑥 in 𝑁) to 𝑧 in case 𝑧 of {⟨box 𝑥, box 𝑦⟩ → 𝐿} =𝜅

𝑀 memo 𝑥 in 𝑁 to 𝑧 in case 𝑧 of {⟨box 𝑥, box 𝑦⟩ → 𝐿} =defn.

let 𝑥 be𝑀 in (case 𝑁 of {⟨𝑥,𝑦⟩ → 𝐿})

Case merge:

let 𝑥 be (let 𝑦 be𝑀 in 𝑁) in 𝐿 = let 𝑦 be𝑀 in let 𝑥 be 𝑁 in 𝐿

91

let 𝑥 be (let 𝑦 be𝑀 in 𝑁) in 𝐿 =defn.

(𝑀 memo 𝑦 in 𝑁) memo 𝑥 in 𝐿 =𝜒

𝑀 memo 𝑦 in (𝑁 memo 𝑥 in 𝐿) =defn.

let 𝑦 be𝑀 in let 𝑥 be 𝑁 in 𝐿

Case deref:

let 𝑥 be 𝑉 in 𝐶 [𝑥] = let 𝑥 be 𝑉 in 𝐶 [𝑉]

Note that Lemma 5.2 gives us that 𝑉 =𝑊 .

let 𝑥 be 𝑉 in 𝐶 [𝑥] =defn.

𝑉 memo 𝑥 in 𝐶 [𝑥] =deref

𝑉 memo 𝑥 in 𝐶 [𝑉] =defn.

let 𝑥 be 𝑉 in 𝐶 [𝑉]

Case GC:

let 𝑥 be𝑀 in 𝑁 = 𝑁

let 𝑥 be𝑀 in 𝑁 =defn.

𝑀 memo 𝑥 in 𝑁 =GC

𝑁

Case name:

𝑀 = let 𝑥 be𝑀 in 𝑥

92

𝑀 =name

𝑀 memo 𝑎 in 𝑎 =defn.

let 𝑎 be𝑀 in 𝑎

□

93

CHAPTER VI

CLOSURES AND MACHINES FOR CBPVS

This chapter contains published and unpublished co-authored material. It

contains revisions of the work Closure Conversion in Little Pieces [53] co-

authored with Paul Downen and Zena M. Ariola. Zachary J. Sullivan is the

primary author under the guidance of Paul Downen and Zena M. Ariola.

While CBPVS captures call-by-name, call-by-value, and call-by-need in a single

intermediate language, we have not yet specified an operational semantics in the manner

of the abstract machines presented earlier in this dissertation. Moreover, we do not yet

know how to extend our intermediate language with closures that are connected to this

machine. This chapter does both. To start, we design an environment abstract machine

for CBPV to inform where we will need closures in such a language. Thereafter, we

are able to describe where abstract closures must be included in CBPVS. We extend the

CBPV machine to include sharing and show how abstract closures in the CBPVS are a

superset of machine representations of closures. Finally, we begin to formally connect the

calculus with the machine by proving a backwards simulation and defining observational

equivalence of CBPVS expressions.

6.1 An Environment Machine for CBPV

The first place to start when designing an environment abstract machine for CBPV

is discovering where closures are required. In Section 1.4, we saw that call-by-value

required closures for functions alone, whereas call-by-name and call-by-need required

closures for arguments of functions. In general, closures need to save the values that

would otherwise be substituted by the operational semantics and that occur in reducible

code. In CBPV, this quality is dictated by the syntactic categories: only values have the
94

Conf ∈ Configuration ::= ⟨⟨Σ ∥ 𝑀 ∥ 𝐾⟩⟩
Σ ∈ Machine Environment ::= 𝜀 | Σ,V/𝑥

V,W ∈ Machine Value ::= b | ⟨V,W⟩ | (Σ, {force → 𝑀})
𝐾 ∈ Stack ::= ★ | 𝐹 · 𝐾
𝐹 ∈ Frame ::= □ V | □.fst | □.snd | (Σ,□ to 𝑥 in𝑀)

Figure 6.1. CBPV Machine Syntax

potential to be bound to variables and passed to other parts of the program. Indeed,

the only location where these expressions contain unevaluated code is in the shift from

computations: {force → 𝑀}. Thus, this is where we must add closures. Surprisingly, we

do not need closures for functions. A function is a computation and therefore is never

bound to a variable unless it is shifted to a value. Compiling a call-by-value program

will put the function into a thunk and that instead is where the free variables need to

be captured. Compiling a call-by-name program will put a function argument into a

thunk, thus creating a closure in the same location as we would’ve seen when running

the program on the Krivine machine.

Our machine is essentially Levy’s CK-machine [27] augmented with an environment

that delays substitutions. Its syntax is presented in Figure 6.1. Machine environments

Σ are local, i.e. they may disappear when an intermediate result is returned, which is

why we use closures. The continuation part of the machine is a list of stack frames

which for the most part are evaluation contexts. Exceptionally, the to-expression frame

(Σ,□ to 𝑥 in𝑀) also contains a local environment to re-instantiate when we evaluate𝑀

after an intermediate result is returned. Such a frame may be implemented using stack

pointers in a C-like runtime; that is, returning to one of these saved environments is

simply moving the stack frame back to that location.

The machine uses machine values instead of the ones in the full equational theory.

Syntactic values can contain variables, but machine ones only refer to objects that can

95

Build𝑉 : Machine Environment × Value → Machine Value
Build𝑉 (Σ, 𝑥) = 𝑥 [Σ]
Build𝑉 (Σ, b) = b

Build𝑉 (Σ, ⟨𝑉 ,𝑊 ⟩) = ⟨Build𝑉 (Σ,𝑉), Build𝑉 (Σ,𝑊)⟩
Build𝑉 (Σ, {force → 𝑀}) = (Σ, {force → 𝑀})

Figure 6.2. Building CBPV Machine Values

⟨⟨Σ ∥ case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑀} ∥ 𝐾⟩⟩ ↦−→1 ⟨⟨Σ,W/𝑥,W′/𝑦 ∥ 𝑀 ∥ 𝐾⟩⟩
where Build𝑉 (Σ,𝑉) = ⟨W,W′⟩

⟨⟨Σ ∥ 𝑀 to 𝑥 in 𝑁 ∥ 𝐾⟩⟩ ↦−→2 ⟨⟨Σ ∥ 𝑀 ∥ (Σ,□ to 𝑥 in 𝑁) · 𝐾⟩⟩
⟨⟨Σ ∥ ret 𝑉 ∥ (Σ′,□ to 𝑥 in𝑀) · 𝐾⟩⟩ ↦−→3 ⟨⟨Σ′, Build𝑉 (Σ,𝑉)/𝑥 ∥ 𝑀 ∥ 𝐾⟩⟩

⟨⟨Σ ∥ 𝑀.fst ∥ 𝐾⟩⟩ ↦−→4 ⟨⟨Σ ∥ 𝑀 ∥ □.fst · 𝐾⟩⟩
⟨⟨Σ ∥ 𝑀.snd ∥ 𝐾⟩⟩ ↦−→5 ⟨⟨Σ ∥ 𝑀 ∥ □.snd · 𝐾⟩⟩

⟨⟨Σ ∥ {fst→𝑀 ; snd→𝑁 } ∥ □.fst · 𝐾⟩⟩ ↦−→6 ⟨⟨Σ ∥ 𝑀 ∥ 𝐾⟩⟩
⟨⟨Σ ∥ {fst→𝑀 ; snd→𝑁 } ∥ □.snd · 𝐾⟩⟩ ↦−→7 ⟨⟨Σ ∥ 𝑁 ∥ 𝐾⟩⟩

⟨⟨Σ ∥ 𝑀 𝑉 ∥ 𝐾⟩⟩ ↦−→8 ⟨⟨Σ ∥ 𝑀 ∥ □ Build𝑉 (Σ,𝑉) · 𝐾⟩⟩
⟨⟨Σ ∥ 𝜆𝑥. 𝑀 ∥ □ V · 𝐾⟩⟩ ↦−→9 ⟨⟨Σ,V/𝑥 ∥ 𝑀 ∥ 𝐾⟩⟩

⟨⟨Σ ∥ 𝑉.force ∥ 𝐾⟩⟩ ↦−→10 ⟨⟨Σ′ ∥ 𝑀 ∥ 𝐾⟩⟩
where Build𝑉 (Σ,𝑉) = (Σ′, {force → 𝑀})

Figure 6.3. CBPV Machine Transitions

be pattern matched or forced; indeed, values are a superset of machine values and thus

environments are a superset of machine environments as well. To transform between

syntactic values and machine values, we must apply the delayed substitution manipulated

by the machine; this is given by the build rules in Figure 6.2. In most cases, this is

a standard substitution application; however, the case for force-expressions is different

since they contain unevaluated code. To generate a fixed sequence of code for the body,

building a machine value cannot perform a substitution on it. Therefore, we capture the

current machine environment Σ in a closure.

The evaluation transitions are given in Figure 6.3. Since in CBPV values are and

computations do, there are only rules for evaluating computations. Values, on the other

96

hand, are built from the local environment when needed. In a manner similar to the

Krivine machine, when evaluating a function application, we push the argument on the

call stack (capturing a closure if necessary) and jump into the function body; when a 𝜆-

expression is encountered, we can add that machine value to the local environment. The

to-expression and projection-expressions operate in a similar manner by pushing a stack

frame, which will be consumed when an introduction form of the computation is reached.

Note that anywhere Build is called is a location where our runtime system may have to

create a closure. Closures are entered only when we force a value in the transition 10.

6.2 CBPVS with Closures

In the CBPV environment machine, we must create closures force-expressions since

they delay unevaluated code within a substitutable variable. Similarly, the CBPVS enter-

expression delays a computation within a shared computation may be substituted and

thus will need to be a closure. Additionally, since the memo-expressions of CBPVS will

behave in the same manner as call-by-need let-expressions, we will have closures like

{𝜍, 𝑅} memo 𝑎 in 𝑃 . The new syntax for CBPVS with closures is given in Figure 6.4.

We merely replace force-, enter-, and memo-expressions with forms that contain an

environment. Note that environments now contain a mixture of values and shared

values. As with abstract closures from Section 3.3.4, there is syntactic sugar for when

the environment of a closure is empty: {force → 𝑀}, {enter → 𝑀}, and 𝑅 memo 𝑎 in 𝑃 .

The typing rules for the new closure forms Figure 6.4c follow the same pattern as

those that we saw in Chapter 4: the local environment 𝜍 : Γ′ extends the current type

environment Γ for the body of the closure. All of the other typing rules for CBPVS remain

unchanged.

The closure axioms for CBPVS are presented in Figure 6.4d. We have only new 𝛽-laws

as the 𝜂-laws remain unchanged. The 𝛽 laws for force- and enter-closures work similar to

97

𝑉 ,𝑊 ∈ Value ::= b | 𝑥 | ⟨𝑉 ,𝑊 ⟩ | {𝜍, force → 𝑀} | box 𝑉
𝑉 ,𝑊 ∈ Shared Value ::= 𝑎 | val 𝑉 | {𝜍, enter → 𝑀}
𝑅, 𝑆 ∈ Shared Comp. ::= 𝑉 | 𝑀.eval | 𝐵 [𝑅]
𝑀, 𝑁 ∈ Comp. ::= {fst → 𝑀 ; snd → 𝑁 } | 𝑀.fst | 𝑀.snd | 𝜆𝑥.𝑀 | 𝑀𝑉

| 𝑉.force | ret 𝑉 | 𝐵 [𝑀] | 𝑅.enter | {eval → 𝑅}
𝐵 ∈ Block Ctxt . ::= 𝑃 to𝑥 in□ | {𝜍, 𝑅} memo𝑎 in□

| case 𝑉 of {⟨𝑥,𝑦⟩ → □} | case 𝑉 of {box 𝑎 → □}
𝑃,𝑄 ∈ Comp. Expr . ::= 𝑅 | 𝑀
𝜍 ∈ Env. ::= 𝜀 | 𝜍,𝑉 /𝑥 | 𝜍,𝑉 /𝑎

(a) Syntax

{force → 𝑀} = {𝜀, force → 𝑀}
{enter → 𝑀} = {𝜀, enter → 𝑀}
𝑅 memo 𝑎 in 𝑃 = {𝜀, 𝑅} memo 𝑎 in 𝑃

(b) Syntactic Sugar

Γ ⊢ 𝜍 : Γ′ ΓΓ′ ⊢ 𝑀 : 𝜏
Γ ⊢ {𝜍, force → 𝑀} : 𝑈 𝜏

𝑈𝐼
Γ ⊢ 𝜍 : Γ′ ΓΓ′ ⊢ 𝑀 : 𝜏

Γ ⊢ {𝜍, enter → 𝑀} : 𝑈 𝜏
𝑈𝐼

Γ ⊢ 𝜍 : Γ′ ΓΓ′ ⊢ 𝑅 : 𝜎 Γ, 𝑎:𝜎 ⊢ 𝑃 : 𝜏
Γ ⊢ {𝜍, 𝑅} memo 𝑎 in 𝑃 : 𝜏 H

Γ ⊢ 𝜀 : 𝜀 Γ𝐼𝐵

Γ ⊢ 𝜍 : Γ′ Γ ⊢ 𝑉 : 𝜏
Γ ⊢ (𝜍,𝑉 /𝑥) : (Γ′, 𝑥 :𝜏) Γ𝐼𝐼 1

Γ ⊢ 𝜍 : Γ′ Γ ⊢ 𝑉 : 𝜏
Γ ⊢ (𝜍,𝑉 /𝑎) : (Γ′, 𝑎:𝜏) Γ𝐼𝐼 2

(c) Closure Typing Rules

{𝜍, force → 𝑀}.force =𝛽𝑈 𝑀 [𝜍]
{𝜍, enter → 𝑀}.enter =𝛽𝑈̌ 𝑀 [𝜍]

{𝜍, 𝑅} memo 𝑎 in 𝑃 =cl 𝑅 [𝜍] memo 𝑎 in 𝑃

where 𝐸, 𝐹 ::= □ | 𝐸 𝑉 | 𝐸.fst | 𝐸.snd | 𝐸 to 𝑥 in 𝑃
| 𝐸.enter | 𝐸.eval | {𝜍, 𝑅} memo 𝑎 in 𝐸 | {𝜍, 𝐸} memo 𝑎 in 𝐹 [𝑎]

(d) Closure Axioms

Figure 6.4. CBPVS with Closures

98

the call-by-value function closures fromChapter 4: the delayed environment is substituted

as part of the 𝛽 axiom. On the other hand, the cl law for the memo-closures, which is in

addition to the memoization laws of CBPVS, allows the closure to be entered at any time

like the call-by-name argument closures and the call-by-need memo-closures. Using the

syntactic sugar, we see that the memo-expression laws are all restricted to the case where

the environment is empty; this is sufficient to subsume call-by-need and perform closure

conversion in little pieces.

As in Section 4.3, we can derive a naïve closure conversion from the equational

theory. For each of the three closure locations, we have a similar rule for incrementally

adding free variables:

𝑥 ∈ FV(𝑀) − Dom(𝜍)
{𝜍, force → 𝑀} −→CC {(𝜍, 𝑥/𝑥), force → 𝑀}

𝑥 ∈ FV(𝑀) − Dom(𝜍)
{𝜍, enter → 𝑀} −→CC {(𝜍, 𝑥/𝑥), enter → 𝑀}

𝑥 ∈ FV(𝑅) − Dom(𝜍)
{𝜍, 𝑅} memo 𝑎 in 𝑃 −→CC {(𝜍, 𝑥/𝑥), 𝑅} memo 𝑎 in 𝑃

Note that we use black 𝑉 and 𝑥 here for values and variables that may be shared or not.

6.3 The CBPVS Machine

Extending the CBPV environment machine to handle shared expressions requires

a heap to manage memoization and extra rules for the shared expressions. We also

need to support abstract closures within the machine itself. Figure 6.5 presents the

syntax for this machine. Since they are a reflection of the runtime closures, the abstract

closures from our equational theory are a superset of the machine closures used by the

abstract machines. Heaps are mappings from labels to closures, which will include both

unevaluated and evaluated shared expressions. Machine environments are extended

99

Conf ∈ Configuration ::= ⟨⟨Φ ∥ Σ ∥ 𝑃 ∥ 𝐾⟩⟩
Φ ∈ Heap ::= 𝜀 | Φ, 𝑙 ↦→ {Σ, 𝑅}
I ∈ Machine Shared Intro. ::= val V | {Σ, enter → 𝑀}

V,W ∈ Machine Shared Value ::= 𝑙 | I
Σ ∈ Machine Environment ::= 𝜀 | Σ,V/𝑥 | Σ,V/𝑎

V,W ∈ Machine Value ::= 𝑏 | ⟨V,W⟩ | {Σ, force → 𝑀}
| box V

𝐾 ∈ Stack ::= ★ | 𝐹 · 𝐾
𝐹 ∈ Frame ::= □ V | □.fst | □.snd

| (Σ,□ to 𝑥 in 𝑃) | (Σ,□ to 𝑥 in 𝑃)
| □.enter | □.eval | (Φ, 𝑙)

Figure 6.5. CBPVS Machine Syntax

to include substitutions of shared variables to either machine-shared introductions or

pointers to memoizable heap objects. Machine-shared introductions are the shared

expressions in the machine that may be safely duplicated. Stack frames are extended

to include evaluation contexts for the new shifts and a memoization frame (Φ, 𝑙), which

corresponds to the evaluation context 𝐸 memo 𝑎 in 𝐹 [𝑎].

Figure 6.6 gives new building definitions extending the previous definitions to

include box-expressions, environments that include shared values, and adding in a

definition for buildingmachine-shared values and heap objects. For the closure cases now,

we can make use of the abstract closure objects since they are runtime objects. We return

the whole machine environment as well as build the syntactic environment. Therefore, it

is possible that we have duplicated bindings when capturing the closure. This version of

the rule is necessary for our abstract machine to accept programs both before and after

a closure conversion. However, after closure conversion we will not need anything from

the existing machine environment that is not specified in the closure (Theorem 7.2).

Figure 6.7 specifies the additional machine transitions for the sharing extensionwhile

making use of all of the rules from the CBPV machine. We have divided it into the

additional rules that do not manipulate the heap and the ones that do. Amemo-expression

100

Build𝑉 : Machine Env. × Value → Machine Value
Build𝑉 (Σ, b) = b
Build𝑉 (Σ, 𝑥) = 𝑥 [Σ]

Build𝑉 (Σ, ⟨𝑉 ,𝑊 ⟩) = ⟨Build𝑉 (Σ,𝑉), Build𝑉 (Σ,𝑊)⟩
Build𝑉 (Σ, {𝜍, force → 𝑀}) = {Σ Build𝜍 (Σ, 𝜍), force → 𝑀}

Build𝑉 (Σ, box 𝑉) = Build𝑉 (Σ,𝑉)

Build𝜍 : Mach. Env. × Env. → Mach. Env.
Build𝜍 (Σ, 𝜀) = 𝜀

Build𝜍 (Σ, (𝜍,𝑉 /𝑥)) = Build𝜍 (Σ, 𝜍), Build𝑉 (Σ,𝑉)/𝑥
Build𝜍 (Σ, (𝜍,𝑉 /𝑎)) = Build𝜍 (Σ, 𝜍), Build𝑉 (Σ,𝑉)/𝑎

Build𝑉 : Mach. Env. × Shared Value → Mach. Shared Value
Build𝑉 (Σ, 𝑎) = 𝑎[Σ]

Build𝑉 (Σ, val 𝑉) = val Build𝑉 (Σ,𝑉)
Build𝑉 (Σ, {𝜍, enter→𝑀}) = {Σ Build𝜍 (Σ, 𝜍), enter → 𝑀}

Build𝑎 : Mach. Env. × {{𝜍, 𝑅}} → {{Σ, 𝑅}}
Build𝑎 (Σ, {𝜍, 𝑅}) = {Σ Build𝜍 (Σ, 𝜍), 𝑅}

Figure 6.6. Building CBPVS Machine Values and Heap Objects

will build a heap object with the Build𝑎 rules before evaluating the body. When a shared

variable is evaluated and it points to a heap object, then a memoization frame is added and

the closure it points to is evaluated. Otherwise, the shared variablewill point to amachine-

shared value that is in the local environment, which is returned. Memoization frames

are consumed when evaluating a shared expression that may be built into a machine

introduction; in that case, the built object is added to the reconstructed heap.

Definition 6.1 (CBPVS Evaluator). EvalS(𝑃) = b where ⟨⟨𝜀 ∥ 𝜀 ∥ 𝑃 ∥ ★⟩⟩ ↦−→∗ ⟨⟨Φ ∥ Σ ∥

ret b ∥ ★⟩⟩.

6.4 Backwards Simulation

Taking steps in our environment machine reflects to equalities in our calculus. This

we prove by first defining a decoding of configurations to expressions (Figure 6.8) and

then show that every transition in both abstract machines corresponds to a derivable
101

⟨⟨Σ ∥ case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑅} ∥ 𝐾⟩⟩ ↦−→11 ⟨⟨Σ,W/𝑥,W′/𝑦 ∥ 𝑅 ∥ 𝐾⟩⟩
where Build𝑉 (Σ,𝑉) = ⟨W,W′⟩

⟨⟨Σ ∥ case 𝑉 of {box 𝑎 → 𝑃} ∥ 𝐾⟩⟩ ↦−→12 ⟨⟨Σ,V/𝑎 ∥ 𝑃 ∥ 𝐾⟩⟩
where Build𝑉 (Σ,𝑉) = box V

⟨⟨Σ ∥ 𝑃 to 𝑥 in 𝑄 ∥ 𝐾⟩⟩ ↦−→13 ⟨⟨Σ ∥ 𝑃 ∥ (Σ,□ to 𝑥 in 𝑄) · 𝐾⟩⟩
⟨⟨Σ ∥ ret 𝑉 ∥ (Σ′,□ to 𝑥 in 𝑃) · 𝐾⟩⟩ ↦−→14 ⟨⟨Σ′, Build𝑉 (Σ,𝑉)/𝑥 ∥ 𝑃 ∥ 𝐾⟩⟩
⟨⟨Σ ∥ val 𝑉 ∥ (Σ′,□ to 𝑥 in 𝑃) · 𝐾⟩⟩ ↦−→15 ⟨⟨Σ′, Build𝑉 (Σ,𝑉)/𝑥 ∥ 𝑃 ∥ 𝐾⟩⟩

⟨⟨Σ ∥ 𝑅.enter ∥ 𝐾⟩⟩ ↦−→16 ⟨⟨Σ ∥ 𝑅 ∥ □.enter · 𝐾⟩⟩
⟨⟨Σ ∥ {𝜍, enter → 𝑀} ∥ □.enter · 𝐾⟩⟩ ↦−→17 ⟨⟨Σ′ ∥ 𝑀 ∥ 𝐾⟩⟩

where Build𝑉 (Σ,𝑉) = {Σ′, enter → 𝑀}
⟨⟨Σ ∥ 𝑀.eval ∥ 𝐾⟩⟩ ↦−→18 ⟨⟨Σ ∥ 𝑀 ∥ □.eval · 𝐾⟩⟩

⟨⟨Σ ∥ {eval → 𝑅} ∥ □.eval · 𝐾⟩⟩ ↦−→19 ⟨⟨Σ ∥ 𝑅 ∥ 𝐾⟩⟩
⟨⟨Σ ∥ 𝑎 ∥ 𝐾⟩⟩ ↦−→20 ⟨⟨𝜀 ∥ I ∥ 𝐾⟩⟩

where 𝑎[Σ] = I

(a) Additional Stateless Transitions

⟨⟨Σ ∥ 𝑃 ∥ 𝐾⟩⟩ ↦−→ ⟨⟨Σ′ ∥ 𝑃 ′ ∥ 𝐾′⟩⟩
⟨⟨Φ ∥ Σ ∥ 𝑃 ∥ 𝐾⟩⟩ ↦−→21 ⟨⟨Φ ∥ Σ′ ∥ 𝑃 ′ ∥ 𝐾′⟩⟩

⟨⟨Φ ∥ Σ ∥ {𝜍, 𝑅} memo 𝑎 in 𝑃 ∥ 𝐾⟩⟩ ↦−→22 ⟨⟨Φ, 𝑙 ↦→ Build𝑎 (Σ, {𝜍, 𝑅}) ∥ Σ, 𝑙/𝑎 ∥ 𝑃 ∥ 𝐾⟩⟩
⟨⟨(Φ0, 𝑎[Σ] ↦→ {Σ′, 𝑅})Φ1 ∥ Σ ∥ 𝑎 ∥ 𝐾⟩⟩ ↦−→23 ⟨⟨Φ0 ∥ Σ′ ∥ 𝑅 ∥ (Φ1, 𝑙) · 𝐾⟩⟩

⟨⟨Φ ∥ Σ ∥ 𝑉 ∥ (Φ′, 𝑙) · 𝐾⟩⟩ ↦−→24 ⟨⟨(Φ, 𝑙 ↦→ {𝜀, I})Φ′ ∥ Σ ∥ 𝑉 ∥ 𝐾⟩⟩
where Build𝑉 (Σ,𝑉) = I

(b) Stateful Transitions

Figure 6.7. CBPVS Machine Transitions

102

⟨⟨Φ ∥ Σ ∥ 𝑃 ∥ 𝐾⟩⟩ = Φ[⟨⟨Σ ∥ 𝑃 ∥ 𝐾⟩⟩]
⟨⟨Σ ∥ 𝑃 ∥ 𝐾⟩⟩ = 𝐾 [𝑃 [Σ]]

★ = □
𝐹 · 𝐾 = 𝐾 [𝐹]

Φ, 𝑙 ↦→ {Σ, 𝑅} = Φ[{Σ, 𝑅} memo 𝑙 in □]
𝜀 = □

□ V = □ V
□.fst = □.fst
□.snd = □.snd

(Σ,□ to 𝑥 in 𝑃) = (□ to 𝑥 in 𝑃) [Σ]
□.enter = □.enter
□.eval = □.eval
(Φ, 𝑙) = □ memo 𝑙 in Φ[𝑙]

Figure 6.8. CBPVS Machine Decoding

equality. Since machine values are included in values andmachine environments included

in environments, the decoding is a simple unfolding of the stack followed by applying the

delayed substitution of the configuration. There are two properties essential to proving

backwards simulation. First, the decoding of a machine configuration must be well typed

because we must use 𝜂 in order equate the different closure forms of type 𝑈 𝜏 . Second,

the decoding of any stack is an evaluation context; we must be able to commute heaps

with stacks via the 𝜅 law of memo-expressions.

Lemma 6.1 (Built Values equal Applied Substitutions).

Γ ⊢ Build𝑉 (Σ,𝑉) =CBPV 𝑉 [Σ] : 𝜏

Proof. Follows by induction on 𝑉 . For 𝑥 , 𝑏, and ⟨𝑊,𝑊 ′⟩, the definition of substitution

and Build𝑉 are identical; thus, built values are equal to substituted values by reflexivity in

the equational theory and the inductive hypotheses in the case for products. For the final

103

case, we have

Build𝑉 (Σ, {𝜍, force → 𝑀}) =defn.

{Σ Build𝜍 (Σ, 𝜍), force → 𝑀} =subst.

{Σ Build𝜍 (Σ, 𝜍), force → 𝑀 [𝜍id.]} =𝛽𝑈

{Σ Build𝜍 (Σ, 𝜍), force → {𝜍id., force → 𝑀}.force} =𝜂𝑈

{Build𝜍 (Σ, 𝜍), force → 𝑀 [Σ]} =I.H.

{𝜍 [Σ], force → 𝑀 [Σ]} =subst.

{𝜍, force → 𝑀}[Σ]

□

Theorem 6.1 (Backward Simulation). If Γ ⊢ Conf : 𝜏 and Conf ↦−→ Conf ′, then Γ ⊢

Conf =CBPV Conf ′ : 𝜏 .

Proof. Follows by the cases of the machine transitions:

Case:
⟨⟨Σ ∥ case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑀} ∥ 𝐾⟩⟩ ↦−→1

⟨⟨Σ,W/𝑥,W′/𝑦 ∥ 𝑀 ∥ 𝐾⟩⟩

where Build𝑉 (Σ,𝑉) = ⟨W,W′⟩.

⟨⟨Σ ∥ case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑀} ∥ 𝐾⟩⟩ =defn.

𝐾 [case 𝑉 [Σ] of ({⟨𝑥,𝑦⟩ → 𝑀}[Σ])] =Lemma 6.1

𝐾 [case ⟨W,W′⟩ of ({⟨𝑥,𝑦⟩ → 𝑀}[Σ])] =𝛽⊗

𝐾 [𝑀 [Σ,W/𝑥,W′/𝑦]] =defn.

⟨⟨Σ,W/𝑥,W′/𝑦 ∥ 𝑀 ∥ 𝐾⟩⟩

104

Case:

⟨⟨Σ ∥ 𝑀 to 𝑥 in 𝑁 ∥ 𝐾⟩⟩ ↦−→2 ⟨⟨Σ ∥ 𝑀 ∥ (Σ,□ to 𝑥 in 𝑁) · 𝐾⟩⟩

⟨⟨Σ ∥ 𝑀 to 𝑥 in 𝑁 ∥ 𝐾⟩⟩ =defn.

𝐾 [(𝑀 to 𝑥 in 𝑁) [Σ]] =subst.

𝐾 [𝑀 [Σ] (to 𝑥 in 𝑁) [Σ]] =defn.

⟨⟨Σ ∥ 𝑀 ∥ (Σ,□ to 𝑥 in 𝑁) · 𝐾⟩⟩

Case:
⟨⟨Σ ∥ ret 𝑉 ∥ (Σ′,□ to 𝑥 in𝑀) · 𝐾⟩⟩ ↦−→3

⟨⟨Σ′, Build𝑉 (Σ,𝑉)/𝑥 ∥𝑀 ∥ 𝐾⟩⟩

⟨⟨Σ ∥ ret 𝑉 ∥ (Σ′,□ to 𝑥 in𝑀) · 𝐾⟩⟩ =defn.

𝐾 [(ret (𝑉 [Σ])) (to 𝑥 in𝑀) [Σ′]] =Lemma 6.1

𝐾 [(ret Build𝑉 (Σ,𝑉)) (to 𝑥 in𝑀) [Σ′]] =𝛽𝐹

𝐾 [𝑀 [Σ′, Build𝑉 (Σ,𝑉)/𝑥]] =defn.

⟨⟨Σ′, Build𝑉 (Σ,𝑉)/𝑥 ∥𝑀 ∥ 𝐾⟩⟩

Case:

⟨⟨Σ ∥ 𝑀.fst ∥ 𝐾⟩⟩ ↦−→4 ⟨⟨Σ ∥ 𝑀 ∥ □.fst · 𝐾⟩⟩

⟨⟨Σ ∥ 𝑀.fst ∥ 𝐾⟩⟩ =defn.

𝐾 [(𝑀.fst) [Σ]] =subst.

𝐾 [(𝑀 [Σ]).fst] =defn.

⟨⟨Σ ∥ 𝑀 ∥ □.fst · 𝐾⟩⟩

Case:

⟨⟨Σ ∥ 𝑀.snd ∥ 𝐾⟩⟩ ↦−→5 ⟨⟨Σ ∥ 𝑀 ∥ □.snd · 𝐾⟩⟩

Follows in a similar manner to the case above.
105

Case:

⟨⟨Σ ∥ {fst→𝑀 ; snd→𝑁 } ∥ □.fst · 𝐾⟩⟩ ↦−→6 ⟨⟨Σ ∥ 𝑀 ∥ 𝐾⟩⟩

⟨⟨Σ ∥ {fst→𝑀 ; snd→𝑁 } ∥ □.fst · 𝐾⟩⟩ =defn.

𝐾 [({fst→𝑀 ; snd→𝑁 }[Σ]).fst] =subst.

𝐾 [{fst→𝑀 [Σ]; snd→𝑁 [Σ]}.fst] =𝛽&1

𝐾 [𝑀 [Σ]] =defn.

⟨⟨Σ ∥ 𝑀 ∥ 𝐾⟩⟩

Case:

⟨⟨Σ ∥ {fst→𝑀 ; snd→𝑁 } ∥ □.snd · 𝐾⟩⟩ ↦−→7 ⟨⟨Σ ∥ 𝑁 ∥ 𝐾⟩⟩

Follows in a similar manner to the case above.

Case:

⟨⟨Σ ∥ 𝑀 𝑉 ∥ 𝐾⟩⟩ ↦−→8 ⟨⟨Σ ∥ 𝑀 ∥ □ Build𝑉 (Σ,𝑉) · 𝐾⟩⟩

⟨⟨Σ ∥ 𝑀 𝑉 ∥ 𝐾⟩⟩ =defn.

𝐾 [(𝑀 𝑉) [Σ]] =subst.

𝐾 [𝑀 [Σ] 𝑉 [Σ]] =Lemma 6.1

𝐾 [𝑀 [Σ] Build𝑉 (Σ,𝑉)] =defn.

⟨⟨Σ ∥ 𝑀 ∥ □ Build𝑉 (Σ,𝑉) · 𝐾⟩⟩

Case:

⟨⟨Σ ∥ 𝜆𝑥. 𝑀 ∥ □ V · 𝐾⟩⟩ ↦−→9 ⟨⟨Σ,V/𝑥 ∥ 𝑀 ∥ 𝐾⟩⟩

⟨⟨Σ ∥ 𝜆𝑥. 𝑀 ∥ □ V · 𝐾⟩⟩ =defn.

𝐾 [(𝜆𝑥. 𝑀) [Σ] V] =𝛽→

𝐾 [𝑀 [Σ,V/𝑥]] =defn.

⟨⟨Σ,V/𝑥 ∥ 𝑀 ∥ 𝐾⟩⟩
106

Case:

⟨⟨Σ ∥ 𝑉.force ∥ 𝐾⟩⟩ ↦−→10 ⟨⟨Σ′ ∥ 𝑀 ∥ 𝐾⟩⟩

where Build𝑉 (Σ,𝑉) = {Σ′, force → 𝑀}.

⟨⟨Σ ∥ 𝑉.force ∥ 𝐾⟩⟩ =defn.

𝐾 [(𝑉.force) [Σ]] =subst.

𝐾 [(𝑉 [Σ]).force] =Lemma 6.1

𝐾 [{Σ′, force → 𝑀}.force] =𝛽𝑈

𝐾 [𝑀 [Σ′]] =defn.

⟨⟨Σ′ ∥ 𝑀 ∥ 𝐾⟩⟩

Case:
⟨⟨Σ ∥ case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑅} ∥ 𝐾⟩⟩ ↦−→11

⟨⟨Σ,W/𝑥,W′/𝑦 ∥ 𝑅 ∥ 𝐾⟩⟩

where Build𝑉 (Σ,𝑉) = ⟨W,W′⟩.

⟨⟨Σ ∥ case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑅} ∥ 𝐾⟩⟩ =defn.

𝐾 [case 𝑉 [Σ] of ({⟨𝑥,𝑦⟩ → 𝑅}[Σ])] =Lemma 6.1

𝐾 [case ⟨W,W′⟩ of ({⟨𝑥,𝑦⟩ → 𝑅}[Σ])] =𝛽⊗

𝐾 [𝑅 [Σ,W/𝑥,W′/𝑦]] =defn.

⟨⟨Σ,W/𝑥,W′/𝑦 ∥ 𝑅 ∥ 𝐾⟩⟩

Case:

⟨⟨Σ ∥ case 𝑉 of {box 𝑎 → 𝑃} ∥ 𝐾⟩⟩ ↦−→12 ⟨⟨Σ,V/𝑎 ∥ 𝑃 ∥ 𝐾⟩⟩

where Build𝑉 (Σ,𝑉) = box V.

107

⟨⟨Σ ∥ case 𝑉 of {box 𝑎 → 𝑃} ∥ 𝐾⟩⟩ =defn.

𝐾 [case 𝑉 [Σ] of ({box 𝑎 → 𝑃}[Σ])] =Lemma 6.1

𝐾 [case box V of ({box 𝑎 → 𝑃}[Σ])] =𝛽
𝑈̃

𝐾 [𝑃 [Σ,V/𝑎]] =defn.

⟨⟨Σ,V/𝑥 ∥ 𝑃 ∥ 𝐾⟩⟩

Case:

⟨⟨Σ ∥ 𝑃 to 𝑥 in 𝑄 ∥ 𝐾⟩⟩ ↦−→13 ⟨⟨Σ ∥ 𝑃 ∥ (Σ,□ to 𝑥 in 𝑄) · 𝐾⟩⟩

⟨⟨Σ ∥ 𝑃 to 𝑥 in 𝑄 ∥ 𝐾⟩⟩ =defn.

𝐾 [(𝑃 to 𝑥 in 𝑄) [Σ]] =subst.

𝐾 [𝑃 [Σ] (to 𝑥 in 𝑄) [Σ]] =defn.

⟨⟨Σ ∥ 𝑃 ∥ (Σ,□ to 𝑥 in 𝑄) · 𝐾⟩⟩

Case:
⟨⟨Σ ∥ ret 𝑉 ∥ (Σ′,□ to 𝑥 in 𝑃) · 𝐾⟩⟩ ↦−→14

⟨⟨Σ′, Build𝑉 (Σ,𝑉)/𝑥 ∥ 𝑃 ∥ 𝐾⟩⟩

⟨⟨Σ ∥ ret 𝑉 ∥ (Σ′,□ to 𝑥 in 𝑃) · 𝐾⟩⟩ =defn.

𝐾 [(ret (𝑉 [Σ])) (to 𝑥 in 𝑃) [Σ′]] =Lemma 6.1

𝐾 [(ret Build𝑉 (Σ,𝑉)) (to 𝑥 in 𝑃) [Σ′]] =𝛽𝐹

𝐾 [𝑃 [Σ′, Build𝑉 (Σ,𝑉)/𝑥]] =defn.

⟨⟨Σ′, Build(Σ,𝑉)/𝑥 ∥ 𝑃 ∥ 𝐾⟩⟩

Case:
⟨⟨Σ ∥ val 𝑉 ∥ (Σ′,□ to 𝑥 in 𝑃) · 𝐾⟩⟩ ↦−→15

⟨⟨Σ′, Build𝑉 (Σ,𝑉)/𝑥 ∥ 𝑃 ∥ 𝐾⟩⟩
108

Follows in a similar manner to the case above.

Case:

⟨⟨Σ ∥ 𝑅.enter ∥ 𝐾⟩⟩ ↦−→16 ⟨⟨Σ ∥ 𝑅 ∥ □.enter · 𝐾⟩⟩

⟨⟨Σ ∥ 𝑅.enter ∥ 𝐾⟩⟩ =defn.

𝐾 [(𝑅.enter) [Σ]] =subst.

𝐾 [(𝑅 [Σ]).enter] =defn.

⟨⟨Σ ∥ 𝑅 ∥ □.enter · 𝐾⟩⟩

Case:

⟨⟨Σ ∥ {enter → 𝑀} ∥ □.enter · 𝐾⟩⟩ ↦−→17 ⟨⟨Σ ∥ 𝑀 ∥ 𝐾⟩⟩

⟨⟨Σ ∥ {enter → 𝑀} ∥ □.enter · 𝐾⟩⟩ =defn.

𝐾 [({enter → 𝑀}[Σ]) .enter] =subst.

𝐾 [({enter → 𝑀}.enter) [Σ]] =𝛽𝑈̌

𝐾 [𝑀 [Σ]] =defn.

⟨⟨Σ ∥ 𝑀 ∥ 𝐾⟩⟩

Case:

⟨⟨Σ ∥ 𝑀.eval ∥ 𝐾⟩⟩ ↦−→18 ⟨⟨Σ ∥ 𝑀 ∥ □.eval · 𝐾⟩⟩

⟨⟨Σ ∥ 𝑀.eval ∥ 𝐾⟩⟩ =defn.

𝐾 [(𝑀.eval) [Σ]] =subst.

𝐾 [(𝑀 [Σ]) .eval] =defn.

⟨⟨Σ ∥ 𝑀 ∥ □.eval · 𝐾⟩⟩

109

Case:

⟨⟨Σ ∥ {eval → 𝑅} ∥ □.eval · 𝐾⟩⟩ ↦−→19 ⟨⟨Σ ∥ 𝑅 ∥ 𝐾⟩⟩

⟨⟨Σ ∥ {eval → 𝑅} ∥ □.eval · 𝐾⟩⟩ =defn.

𝐾 [({eval → 𝑅}[Σ]).eval] =subst.

𝐾 [({eval → 𝑅}.eval) [Σ]] =𝛽
𝐹

𝐾 [𝑅 [Σ]] =defn.

⟨⟨Σ ∥ 𝑅 ∥ 𝐾⟩⟩

Case:

⟨⟨Σ ∥ 𝑎 ∥ 𝐾⟩⟩ ↦−→20 ⟨⟨𝜀 ∥ I ∥ 𝐾⟩⟩

where 𝑎[Σ] = I.

⟨⟨Σ ∥ 𝑎 ∥ 𝐾⟩⟩ =defn.

𝐾 [𝑎[Σ]] =

𝐾 [I] =subst.

𝐾 [I[𝜀]] =defn.

⟨⟨𝜀 ∥ I ∥ 𝐾⟩⟩

Case:
⟨⟨Σ ∥ 𝑃 ∥ 𝐾⟩⟩ ↦−→ ⟨⟨Σ′ ∥ 𝑃 ′ ∥ 𝐾′⟩⟩

⟨⟨Φ ∥ Σ ∥ 𝑃 ∥ 𝐾⟩⟩ ↦−→21 ⟨⟨Φ ∥ Σ′ ∥ 𝑃 ′ ∥ 𝐾′⟩⟩

⟨⟨Φ ∥ Σ ∥ 𝑃 ∥ 𝐾⟩⟩ =defn.

Φ[⟨⟨Σ ∥ 𝑃 ∥ 𝐾⟩⟩] =I.H.

Φ[⟨⟨Σ′ ∥ 𝑃 ′ ∥ 𝐾′⟩⟩] =defn.

⟨⟨Φ ∥ Σ′ ∥ 𝑃 ′ ∥ 𝐾′⟩⟩
110

Case:
⟨⟨Φ ∥ Σ ∥ 𝑅 memo 𝑎 in 𝑃 ∥ 𝐾⟩⟩ ↦−→22

⟨⟨Φ, 𝑙 ↦→ Build𝑎 (Σ, 𝑅) ∥ Σ, 𝑙/𝑎 ∥ 𝑃 ∥ 𝐾⟩⟩

Note that stacks are decoded into evaluation contexts.

⟨⟨Φ ∥ Σ ∥ 𝑅 memo 𝑎 in 𝑃 ∥ 𝐾⟩⟩ =defn.

Φ[𝐾 [(𝑅 memo 𝑎 in 𝑃) [Σ]]] =subst.

Φ[𝐾 [𝑅 [Σ] memo 𝑎 in 𝑃 [Σ]]] =𝜅

Φ[𝑅 [Σ] memo 𝑎 in 𝐾 [𝑃 [Σ]]] =

Φ, 𝑎 ↦→ Build𝑎 (Σ, 𝑅) [𝐾 [𝑃 [Σ]]] =𝛼

Φ, 𝑙 ↦→ Build𝑎 (Σ, 𝑅) [𝐾 [𝑃 [Σ, 𝑙/𝑎]]] =defn.

⟨⟨Φ, 𝑙 ↦→ Build𝑎 (Σ, 𝑅) ∥ Σ, 𝑙/𝑎 ∥ 𝑃 ∥ 𝐾⟩⟩

Case:
⟨⟨(Φ0, 𝑎[Σ] ↦→ {Σ′, 𝑅})Φ1 ∥ Σ ∥ 𝑎 ∥ 𝐾⟩⟩ ↦−→23

⟨⟨Φ0 ∥ Σ′ ∥ 𝑅 ∥ (Φ1, 𝑙) · 𝐾⟩⟩

Note that stacks are decoded into evaluation contexts.

⟨⟨(Φ0, 𝑎[Σ] ↦→ {Σ′, 𝑅})Φ1 ∥ Σ ∥ 𝑎 ∥ 𝐾⟩⟩ =defn.

Φ0, 𝑎[Σ] ↦→ {Σ′, 𝑅}[Φ1 [𝐾 [𝑎[Σ]]]] =

Φ0, 𝑙 ↦→ {Σ′, 𝑅}[Φ1 [𝐾 [𝑙]]] =𝜅

Φ0 [𝐾 [{Σ′, 𝑅} memo 𝑙 in Φ1 [𝑙]]] =cl.

Φ0 [𝐾 [𝑅 [Σ′] memo 𝑙 in Φ1 [𝑙]]] =defn.

⟨⟨Φ0 ∥ Σ′ ∥ 𝑅 ∥ (Φ1, 𝑙) · 𝐾⟩⟩

Case:

⟨⟨Φ ∥ Σ ∥ 𝑉 ∥ (Φ′, 𝑙) · 𝐾⟩⟩ ↦−→24 ⟨⟨(Φ, 𝑙 ↦→ {𝜀, I})Φ′ ∥ Σ ∥ 𝑉 ∥ 𝐾⟩⟩

111

where Build𝑉 (Σ,𝑉) = I.

⟨⟨Φ ∥ Σ ∥ 𝑉 ∥ (Φ′, 𝑙) · 𝐾⟩⟩ =defn.

Φ[𝐾 [𝑉 [Σ] memo 𝑙 in Φ′[𝑙]]] =deref .

Φ[𝐾 [𝑉 [Σ] memo 𝑙 in Φ′[𝑉 [Σ]]] =

Φ[𝐾 [I memo 𝑙 in Φ′[𝑉 [Σ]]]] =𝜅

Φ[I memo 𝑙 in Φ′[𝐾 [𝑉 [Σ]]]] =defn.

⟨⟨(Φ, 𝑙 ↦→ I)Φ′ ∥ Σ ∥ 𝑉 ∥ 𝐾⟩⟩ =sugar

⟨⟨(Φ, 𝑙 ↦→ {𝜀, I})Φ′ ∥ Σ ∥ 𝑉 ∥ 𝐾⟩⟩

□

Corollary 6.1. If EvalS(𝑀) = b, then ⊢ 𝑀 = ret b : 𝐹 𝐵.

6.5 Observational Equivalence

Since the machine forms our operational semantics for CBPVS, we define a notion

of observational equivalence on top of it. And since this notion of equivalence is the

semantics for which we will verify the correctness of our closure theory, it must support

the whole language and be fine-grained enough to discuss parts of sharing. As with the

evaluators seen previously, we consider only running computable expressions that return

base values. We will begin by defining observationally equivalent machine configurations

as configurations that mutually imply the same base value computations; intuitively,

Conf 1 ≃ Conf 2 if and only if their behaviors imply each other. On top of this, we define

a notion of observably equivalent expressions, wherein we place expressions in a closing

context that returns a base value; intuitively, 𝐴 ≃ 𝐵 if and only if the behaviors of 𝐶 [𝐴]

and 𝐶 [𝐵] in the machine imply each other for any closing computation.

Making this work with sharing means muddying this common notion of

observational equivalence. The notion of equivalent expressions is similar in that we
112

place them in closing computation contexts, but we must add more information to the

notion of equivalent configurations. If we are evaluating a shared computation within

a stack that demands an introduction form—as it will if we are memoizing or pattern

matching, then equivalent configurations must evaluate to an intermediate state that

includes a machine introduction if and only if the other does; those future configurations

must also be observably equivalent. The stacks that will force a shared computation are

the elimination forms for each shared type and the memoization frame. We refer to this

notion as strict stacks; they consume introduction forms.

Definition 6.2 (Introductions and Strict Stacks).

𝐼 ∈ Introduction = Shared Value − {𝑎}

K ∈ VStack ::= (Σ,□ to 𝑥 in 𝑃) · 𝐾 | □.enter · 𝐾 | (Φ, 𝑙) · K

Formally, we define this observational equivalence with two relations. A base

relation on configurations B and a shared introduction configuration IB .

113

Definition 6.3 (Observably Equivalent Configurations).

Confl ≃ Confr
def
= Confl B Confr

∧ Confl = ⟨⟨Φ𝑙 ∥ Σ𝑙 ∥ 𝑅𝑙 ∥ K𝑙⟩⟩

Confr = ⟨⟨Φ𝑟 ∥ Σ𝑟 ∥ 𝑅𝑟 ∥ K𝑟 ⟩⟩

=⇒ Confl IB Confr

Confl B Confr
def
= ∀𝑖, 𝑗 ∈ {𝑙, 𝑟 }.Confi ↦−→∗ ⟨⟨Φ𝑖 ∥ Σ𝑖 ∥ ret b ∥ ★⟩⟩

=⇒ Confj ↦−→∗ ⟨⟨Φ 𝑗 ∥ Σ 𝑗 ∥ ret b ∥ ★⟩⟩

⟨⟨Φ𝑙 ∥ Σ𝑙 ∥ 𝑅𝑙 ∥ K𝑙⟩⟩ IB ⟨⟨Φ𝑟 ∥ Σ𝑟 ∥ 𝑅𝑟 ∥ K𝑟 ⟩⟩
def
= ∀𝑖, 𝑗 ∈ {𝑙, 𝑟 }.

⟨⟨Φ𝑖 ∥ Σ𝑖 ∥ 𝑅𝑖 ∥ K𝑖⟩⟩ ↦−→∗ ⟨⟨Φ′
𝑖 ∥ Σ′𝑖 ∥ 𝐼 𝑖 ∥ K𝑖⟩⟩

=⇒ ⟨⟨Φ 𝑗 ∥ Σ 𝑗 ∥ 𝑅 𝑗 ∥ K 𝑗 ⟩⟩ ↦−→∗ ⟨⟨Φ′
𝑗 ∥ Σ′𝑗 ∥ 𝐼 𝑗 ∥ K 𝑗 ⟩⟩

∧ ⟨⟨Φ𝑖 ∥ Σ𝑖 ∥ 𝐼 𝑖 ∥ K𝑖⟩⟩ B ⟨⟨Φ 𝑗 ∥ Σ 𝑗 ∥ 𝐼 𝑗 ∥ K 𝑗 ⟩⟩

Definition 6.4 (Observably Equivalent Expressions).

𝐴 ≃ 𝐵 def
= ∀𝐶 ∈ Context . 𝜀 ⊢ 𝐶 [𝐴] : 𝐹 𝐵 ∧ 𝜀 ⊢ 𝐶 [𝐵] : 𝐹 𝐵

=⇒ ⟨⟨𝜀 ∥ 𝜀 ∥ 𝐶 [𝐴] ∥ ★⟩⟩ ≃ ⟨⟨𝜀 ∥ 𝜀 ∥ 𝐶 [𝐵] ∥ ★⟩⟩

What follows are extra properties that follow from our definition of observationally

equivalent configurations. First, we have a recursive definition that allows us to build up a

call stack given an evaluation context. This is used in observational equivalence property

number (4) below.

114

Definition 6.5 (Building Stacks and Bindings).

Build𝐾 (Φ, Σ,□, 𝐾) = (Φ, Σ, 𝐾)

Build𝐾 (Φ, Σ, 𝐸 𝑉 , 𝐾) = Build𝐾 (Φ, Σ, 𝐸,□ Build𝑉 (Σ,𝑉) · 𝐾)

Build𝐾 (Φ, Σ, 𝐸.fst, 𝐾) = Build𝐾 (Φ, Σ, 𝐸,□.fst · 𝐾)

Build𝐾 (Φ, Σ, 𝐸.snd, 𝐾) = Build𝐾 (Φ, Σ, 𝐸,□.snd · 𝐾)

Build𝐾 (Φ, Σ, 𝐸 to 𝑥 in 𝑃, 𝐾) = Build𝐾 (Φ, Σ, 𝐸, (Σ,□ to 𝑥 in 𝑃) · 𝐾)

Build𝐾 (Φ, Σ, 𝐸.enter, 𝐾) = Build𝐾 (Φ, Σ, 𝐸,□.enter · 𝐾)

Build𝐾 (Φ, Σ, 𝐸.eval, 𝐾) = Build𝐾 (Φ, Σ, 𝐸,□.eval · 𝐾)

Build𝐾 (Φ, Σ, 𝑅 memo 𝑎 in 𝐸, 𝐾) = Build𝐾 ((Φ, 𝑙 ↦→ Build𝑎 (Σ, 𝑅)), (Σ, 𝑙/𝑎), 𝐸, 𝐾)

Build𝐾 (Φ, Σ, 𝐸 memo 𝑎 in 𝐹 [𝑎], 𝐾) = Build𝐾 (Φ, Σ, 𝐸, (Φ′, 𝑙) · 𝐾′)

where Build𝐾 (𝜀, (Σ, 𝑙/𝑎), 𝐹 , 𝐾) = (Φ′, Σ′, 𝐾′)

Proposition 6.1 (Observational Equivalence Properties).

1. Conf ↦−→∗ Conf ′ implies Conf ≃ Conf ′.

2. Observational equivalence relations for configurations (≃), expressions (≃), base

value configurations (B), and shared introduction configurations (IB) are reflexive,

symmetric, and transitive.

3. (Conf0 ≃ Conf1) ∧ (Conf0 ↦−→∗ Conf0′) implies Conf0′ ≃ Conf1.

4. ⟨⟨Φ ∥ Σ ∥ 𝐸 [𝑃] ∥ 𝐾⟩⟩ ≃ ⟨⟨Φ′ ∥ Σ′ ∥ 𝑃 ∥ 𝐾′⟩⟩ where Build𝐾 (Σ, 𝐸, 𝐾) = (Φ′, Σ′, 𝐾′).

5. IB ⊆ (≃).

6. ⟨⟨Φ ∥ Σ ∥ 𝑅 ∥ (Φ′, 𝑙) · K⟩⟩ ≃ ⟨⟨Φ ∥ Σ ∥ 𝑅 ∥ K⟩⟩ where Dom(Φ′) ∩ Dom(Φ) = ∅.

Proof.

115

1. Suppose that Conf ↦−→∗ Conf ′, we may conclude that Conf ≃ Conf ′ by the

determinism of (↦−→).

2. These, we prove for Conf B Conf ′ as Conf IB Conf ′ is proved in a similar manner

to B. The property for (≃) of configurations and expressions is derived therefrom.

Reflexivity: Conf B Conf then follows immediately by its assumptions.

Symmetry: Suppose Conf 0 B Conf 1. Then Conf 1 B Conf 0 by definition, by

swapping the choice of indexes in the underlying implications.

Transitivity: Suppose Conf 0 B Conf 1 and Conf 1 B Conf 2. Then Conf 0 B Conf 2

follows by composing the underlying implications from the assumptions:

Conf 0 ↦−→∗ ⟨⟨Φ0 ∥ Σ0 ∥ ret b ∥ ★⟩⟩

=⇒ Conf 1 ↦−→∗ ⟨⟨Φ1 ∥ Σ1 ∥ ret b ∥ ★⟩⟩

=⇒ Conf 2 ↦−→∗ ⟨⟨Φ2 ∥ Σ2 ∥ ret b ∥ ★⟩⟩

Conf 2 ↦−→∗ ⟨⟨Φ2 ∥ Σ2 ∥ ret b ∥ ★⟩⟩

=⇒ Conf 1 ↦−→∗ ⟨⟨Φ1 ∥ Σ1 ∥ ret b ∥ ★⟩⟩

=⇒ Conf 0 ↦−→∗ ⟨⟨Φ0 ∥ Σ0 ∥ ret b ∥ ★⟩⟩

3. Follows by the first property of (≃) and transitivity.

4. Follows by induction on the evaluation context and the first property of (≃). Each

evaluation context has a rule for constructing a larger stack, which is exactly

replicated by the Build function for evaluation contexts.

5. Follows from assumptions and backwards closure.

116

6. We show ⟨⟨Φ ∥ Σ ∥ 𝑅 ∥ (Φ′, 𝑙) · 𝜅⟩⟩ IB ⟨⟨Φ ∥ Σ ∥ 𝑅 ∥ 𝜅⟩⟩. The rest follows from

property (5).

Suppose ⟨⟨Φ0 ∥ Σ ∥ 𝑅 ∥ (Φ1, 𝑙) · 𝜅⟩⟩ ↦−→∗ ⟨⟨Φ′
0 ∥ Σ′ ∥ 𝐼 ∥ (Φ1, 𝑙) · 𝜅⟩⟩. The

configuration takes one more step where Build𝑉 (Σ′, 𝐼) = I:

⟨⟨Φ′
0 ∥ Σ′ ∥ 𝐼 ∥ (Φ1, 𝑙) · 𝜅⟩⟩ ↦−→

⟨⟨(Φ′
0, 𝑙 ↦→ {𝜀, I})Φ1 ∥ Σ′ ∥ 𝐼 ∥ 𝜅⟩⟩

By the determinism of (↦−→) and the fact that value stacks only consume

introductions, we know ⟨⟨Φ0 ∥ Σ ∥ 𝑅 ∥ 𝜅⟩⟩ ↦−→∗ ⟨⟨Φ′
0 ∥ Σ′ ∥ 𝐼 ∥ 𝜅⟩⟩. By

reflexivity and that 𝐼 and Σ′ cannot reference anything in the extended heap, we

know ⟨⟨(Φ′
0, 𝑙 ↦→ {{Σ′, 𝐼 }})Φ1 ∥ Σ′ ∥ 𝐼 ∥ 𝜅⟩⟩ IB ⟨⟨Φ′

0 ∥ Σ′ ∥ 𝐼 ∥ 𝜅⟩⟩. Backwards

closure of IB yields ⟨⟨Φ0 ∥ Σ ∥ 𝑅 ∥ (Φ1, 𝑙) · 𝜅⟩⟩ IB ⟨⟨Φ0 ∥ Σ ∥ 𝑅 ∥ 𝜅⟩⟩.

The other direction follows with a similar determinism reasoning with the fact that

value stacks only consume introductions. We conclude by IB ⊆ (≃).

□

117

CHAPTER VII

A MODEL OF TYPES OVER THE CBPVS MACHINE

This chapter is a revision the appendix of Closure Conversion in Little Pieces

[53] co-authored with Paul Downen and Zena M. Ariola. The proof structure is

authored by Zachary J. Sullivan under the guidance of Paul Downen.

We would like to know that our equational theory for CBPVS with closures is

indeed reified by our CBPVS machine, especially since our call-by-name, call-by-value,

and call-by-need approaches to closures rests on compiling the languages to CBPVS first.

Specifically, we would like to show not only that the theory is sound with respect to the

CBPVS machine (Theorem 7.1), but also that the abstract closures in the theory have a

meaningful impact on the machine (Theorem 7.2) which we call the adequacy of closure

conversion. This, we will do by constructing a semantic model over the CBPVS machine,

which we will denote Γ ⊨ 𝑀 ≈ 𝑁 : 𝜏 . Like the syntactic equational and typing rules,

semantic equality should be reflexive, transitive, symmetric, and compatible; in other

words, it should be a congruence relation. The semantic model should imply that 𝑀 and

𝑁 are observationally equivalent in the machine. And since it is defined over the machine,

we should be able to discuss the impact of closure constructed equalities on the machine.

Such a model over an abstract machine or any other form of operational semantics is

not an uncommon approach to proving correctness of compiler transformations, proving

type safety (e.g. type-preserving mutable state [2]), normalization of programs (e.g.

simply-typed call-by-need with control is normalizing [35]), and many other properties

about the runtime system. What makes this work unique is that we wish to combine the

following:

118

– our operational semantics is a delayed substitution semantics so that closures are

visible sub-components,

– our operational semantics includes a memoizing heap,

– our operational semantics is stack based, and

– we are interested in equational theories which contain non-computational axioms

like 𝜂.

The main structure of our model follows the ⊤⊤-closure approach of Pitts [45]. That

is, we base our model on two families of relations defined inductively over the types in

our language: the first is over computational units and the other is over stacks. Such an

approach handles both the stack-based operational semantics and aids in reasoning about

𝜂 axioms. To handle delayed substitutions as we saw in Chapter 3, computational units

are closed pairs of computational expressions and the local environment that they need

to run. To handle the memoizing heap, these two families of relations are extended to

Kripke relations, where the world is the heap which they depend on and an accessible

world is a heap extended with new cells. After defining these two families of relations,

we will define exactly the notion of semantic equivalence upon it.

7.1 Logical Relations

We base our relations on the notion of observational equivalent configurations from

the previous chapter (Definition 6.3). We wish to construct a relation on the expressions

in CBPVS that have the same behavior when placed in a configuration. For instance,

two computations 𝑀 and 𝑁 should be related in R when they produce observationally

equivalence configurations in an empty machine:

(𝑀, 𝑁) ∈ R iff ⟨⟨𝜀 ∥ 𝜀 ∥ 𝑀 ∥ ★⟩⟩ ≃ ⟨⟨𝜀 ∥ 𝜀 ∥ 𝑁 ∥ ★⟩⟩

119

Since our typing rules and equational theory works over open terms, our logical

relation ought to as well. Usually, this is done by developing a notion of related

environments for a typing environment Γ and then substituting thereafter to get

closed expressions. In our context, however, substitution is delayed in the operational

semantics. Ignoring for now the memoizing heap, we have relations over closures of local

environments and computations like the following:

((Σ𝑙 , 𝑀), (Σ𝑟 , 𝑁)) ∈ R iff ⟨⟨𝜀 ∥ Σ𝑙 ∥ 𝑀 ∥ ★⟩⟩ ≃ ⟨⟨𝜀𝑟 ∥ Σ𝑟 ∥ 𝑁 ∥ ★⟩⟩

Such a relation is now open for expressions 𝑀 and 𝑁 , but they are still for top-

level programs in the sense that they occur in the empty stack. For our model to be

compatible, we must be able to bury these related expressions within any context. Of

course, stacks can vary across machine configurations like computations expressions;

imagine, for example, that we push a differently closure converted expression on the stack.

Thus, our relations should consider an additional relation on stacks:

((Σ𝑙 , 𝑀), (Σ𝑟 , 𝑁)) ∈ R iff ∀(𝐾𝑙 , 𝐾𝑟) ∈ K . ⟨⟨𝜀 ∥ Σ𝑙 ∥ 𝑀 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨𝜀 ∥ Σ𝑟 ∥ 𝑁 ∥ 𝐾𝑟 ⟩⟩

This approach to constructing relations is referred to as bi-orthogonality [35, 17, 16]. For

each type, we will have a notion of stack and expression relations; the two different

notions of relations will depend on each other. Since values and shared values are built

into machine values and shared values before being placed on the stack making them

closed, the relation on stacks does not need to be paired with a local environment.

Note that since expressions paired with an environment and stacks may have free

heap locations, these relations must be closed by a notion of heap as well. We include

120

them in the relations as well:

((Φ𝑙 , Σ𝑙 , 𝑀), (Φ𝑟 , Σ𝑟 , 𝑁)) ∈ R iff ∀((Φ𝑙 , 𝐾𝑙), (Φ𝑟 , 𝐾𝑟)) ∈ K .

⟨⟨Φ𝑙 ∥ Σ𝑙 ∥ 𝑀 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ𝑟 ∥ Σ𝑟 ∥ 𝑁 ∥ 𝐾𝑟 ⟩⟩

See that the related stacks are paired with a heap; this is because stacks may have free

heap locations like local environments. Thus, we have arrive at the final structure of the

relations that we will use to model types. Of course, shared computations are runnable as

well, so we generalize from the exposition thus far.

Definition 7.1 (Expression and Stack Relations). An expression relation is a relation P ⊆

(Heap × Mach. Env. × Computable Exp.)2 such that the machine environment closes over

the free variables of computable expression and the heap closes over the free locations of the

machine environment.

A stack relation is a relation K ⊆ (Heap × Stack)2 such that the heap closes over the

free locations of the stack.

Our logical relations should be closedwhenever we replace the current heapwith one

in the future. For instance, if (Φ𝑙 , Σ𝑙 , 𝑀), (Φ𝑟 , Σ𝑟 , 𝑁)) ∈ R are related computations that

are stored within thunks in the heap, then they should still be related when we perform

an update to the heap Φ𝑙 . Heap updates are frequent in shared code. We define precisely

the notion of future heap as the following:

Definition 7.2 (Accessible Heap). Φ′ ⊒ Φ iff for any division (Φ0, 𝑙 ↦→ {Σ, 𝑅})Φ1 of Φ, we

know Φ′ is (Φ′
0, 𝑙 ↦→ {Σ, 𝑅})Φ′

1 such that Φ′
0 ⊒ Φ0 and Φ′

1 ⊒ Φ1.

Proposition 7.1. (Heap, ⊒) is an antisymmetric preorder.

121

Closing relations over a preorder captures the idea of a Kripke relation. We take the

pair of heaps (Φ𝑙 ,Φ𝑟) to be a world and say that a relation has a Kripke property if it is

closed under any accessible world.

Definition 7.3 (Kripke Relation). A relation R is a Kripke relation if and only if Φ′
𝑙
⊒ Φ𝑙 ,

Φ′
𝑟 ⊒ Φ𝑟 , and ((Φ𝑙 , 𝐴), (Φ𝑟 , 𝐵)) ∈ R implies ((Φ′

𝑙
, 𝐴), (Φ′

𝑟 , 𝐵)) ∈ R. We have a similar

definition for triples.

Note that, Kripke logical relations for operational semantics with a heap are not new.

In previous approaches like that of Ahmed et al. [4], we see that the world is modeled with

a single heap typing among other things. Here, it is important that we have a part of the

world for each side of the relation; this is because laws like 𝜒 show that thunks in the

heap may be evaluated at different times, but still be related. This property appears to be

unique to our shared evaluation setting.

To build up our logical relations, we define orthogonality operations CompRel

x

and

StackRelx over relations for computable expressions and stacks. The former operationwill

give us all of the computations that when combined with the related stacks in StackRel

will produce observationally equivalent configurations; similarly for the latter definition.

Definition 7.4 (Kripke Orthogonal Operations).

P

x

= {((Φ𝑙 , 𝐾𝑙), (Φ𝑟 , 𝐾𝑟)) | ∀Φ′
𝑙
⊒ Φ𝑙 .∀Φ′

𝑟 ⊒ Φ𝑟 .∀((Φ′
𝑙
, Σ𝑙 , 𝑃), (Φ′

𝑟 , Σ𝑟 , 𝑄)) ∈ P .

⟨⟨Φ′
𝑙
∥ Σ𝑟 ∥ 𝑃 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑄 ∥ 𝐾𝑟 ⟩⟩}

Kx = {((Φ𝑙 , Σ𝑙 , 𝑃), (Φ𝑟 , Σ𝑟 , 𝑄)) | ∀Φ′
𝑙
⊒ Φ𝑙 .∀Φ′

𝑟 ⊒ Φ𝑟 .∀((Φ′
𝑙
, 𝐾𝑙), (Φ′, 𝐾𝑟)) ∈ K .

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑃 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑄 ∥ 𝐾𝑟 ⟩⟩}

These orthogonal operations have important qualities necessary for us to use them

for our logical relations. First, they construct Kripke relations for arbitrary expression

122

and stack relations. Second, they are both contravariant. Third, their double application

is an inclusion. And fourth, their triple application is equal to single application.

Proposition 7.2 (Orthogonal Relations are Kripke Relations). For any P and K , P

x

and

Kx are Kripke relations.

Proof. Given Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and some ((Φ𝑙 , 𝐾𝑙), (Φ𝑟 , 𝐾𝑟)) ∈ P

x

. ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈

P

x

is shown by considering some Φ′′
𝑙
⊒ Φ′

𝑙
, Φ′′

𝑟 ⊒ Φ′
𝑟 and ((Φ′′

𝑙
, Σ𝑙 , 𝑃), (Φ′′

𝑟 , Σ𝑟 , 𝑄)) ∈ P and

then show ⟨⟨Φ′′
𝑙
∥ Σ𝑙 ∥ 𝑃 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′′

𝑟 ∥ Σ𝑟 ∥ 𝑄 ∥ 𝐾𝑟 ⟩⟩. This follows from the property

of ((Φ𝑙 , 𝐾𝑙), (Φ𝑟 , 𝐾𝑟)) ∈ P

x

since Φ′′
𝑙
⊒ Φ𝑙 by transitivity, Φ′′

𝑟 ⊒ Φ𝑟 by transitivity also, and

((Φ′′
𝑙
, Σ𝑙 , 𝑃), (Φ′′

𝑟 , Σ𝑟 , 𝑄)) ∈ P.

The proof follows similarly for the second conjunct. □

Proposition 7.3 (Orthogonal Inclusion). For Kripke relations P and K , P ⊆ P

xx and

K ⊆ Kx
x

.

Proof. Considering an arbitrary pair ((Φ𝑙 , 𝐾𝑙), (Φ𝑟 , 𝐾𝑟)) ∈ K , we must show that it is also

inKx

x

. Thus, consider further some Φ′
𝑙
⊒ Φ𝑟 , Φ′

𝑟 ⊒ Φ𝑟 , and ((Φ′
𝑙
, Σ𝑙 , 𝑃), (Φ′

𝑟 , Σ𝑟 , 𝑄)) ∈ Kx,

we must show ⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑃 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑄 ∥ 𝐾𝑟 ⟩⟩. This follows from the property

of ((Φ′
𝑙
, Σ𝑙 , 𝑃), (Φ′

𝑟 , Σ𝑟 , 𝑄)) ∈ Kx with Φ′
𝑙
⊒ Φ′

𝑙
, Φ′

𝑟 ⊒ Φ′
𝑟 , and ((Φ′

𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ K

(closed under accessible worlds).

The first proposition is proved in a similar manner. □

Proposition 7.4 (Orthogonal Contravariance). For Kripke relations P, P′, K , and K′,

– P ⊆ P′ implies P

x

⊇ P′ x.

– K ⊆ K′ implies Kx ⊇ K′x.

Proof. Given P ⊆ P′ and ((Φ𝑙 , 𝐾𝑙), (Φ𝑟 , 𝐾𝑟)) ∈ P′ x, we prove ((Φ𝑙 , 𝐾𝑙), (Φ𝑟 , 𝐾𝑟)) ∈ P

x

, by

considering further some Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and ((Φ′
𝑙
, Σ𝑙 , 𝑃), (Φ′

𝑟 , Σ𝑟 , 𝑄)) ∈ P:
123

((Φ′
𝑙
, Σ𝑙 , 𝑃), (Φ′

𝑟 , Σ𝑟 , 𝑄)) ∈ P′, by P ⊆ P′.

((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ P′ x, by closure over future worlds.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑃 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑄 ∥ 𝐾𝑟 ⟩⟩, by the property of P′ xwith worlds Φ′
𝑙
⊒ Φ′

𝑙

and Φ′
𝑟 ⊒ Φ′

𝑟 and the expressions ((Φ′
𝑙
, Σ𝑙 , 𝑃), (Φ′

𝑟 , Σ𝑟 , 𝑄)) ∈ P′.

□

Proposition 7.5 (Triple Orthogonal Elimination).

For Kripke relations P and K , P

x

= P

xx

x

and Kx = Kx

xx.

Proof. First, considering an arbitrary ((Φ𝑙 , Σ𝑙 , 𝑃), (Φ𝑟 , Σ𝑟 , 𝑄)) ∈ Kx, we must show that

the triple is inKx

xx. This follows by double orthogonal inclusion on the Kripke relation.

Note that Kx is a Kripke relation because K is.

Second, from ((Φ𝑙 , Σ𝑙 , 𝑃), (Φ𝑟 , Σ𝑟 , 𝑄)) ∈ Kx
xx, we must show that the pair is inKx;

that is, ⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑃 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑄 ∥ 𝐾𝑟 ⟩⟩ for any Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and

((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ K . By double orthogonal inclusion with the Kripke relation K , we

know that ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ Kx

x

. Thus, we may conclude this case by the property of

((Φ𝑙 , Σ𝑙 , 𝑃), (Φ𝑟 , Σ𝑟 , 𝑄)) ∈ Kx

xx with Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ Kx

x

.

The second part of this proposition follows in a similar manner. □

Without further ado, our logical relation definitions of types is presented in

Figure 7.1. Since value types require no reduction, we do not need to make use of the

orthogonal operations in order to specify related elements of a type. The interesting

case for this work is that of machine values of type 𝑈 𝜏 , since abstract closures will

have this type. Indeed, this relation is simple since abstract closures are—by design—

the exact objects that the abstract machine will generate at runtime. Thus, it does not

matter here whether the closure was captured via compilation or at runtime; we merely

124

ValJ𝐵K = {((Φ𝑙 , b), (Φ𝑟 , b))}
ValJ𝑈 𝜏K = {((Φ𝑙 , {𝜍𝑙 , force → 𝑀}), (Φ𝑟 , {𝜍𝑟 , force → 𝑁 })) |

((Φ𝑙 , Σ𝑙 , 𝑀), (Φ𝑟 , Σ𝑟 , 𝑁)) ∈ CompJ𝜏K}
ValJ𝜏 ⊗ 𝜎K = {((Φ𝑙 , ⟨V𝑙 ,W𝑙⟩), (Φ𝑟 , ⟨V𝑟 ,W𝑟 ⟩)) |

((Φ𝑙 ,V𝑙), (Φ𝑟 ,V𝑟)) ∈ ValJ𝜏K ∧ ((Φ𝑙 ,W𝑙), (Φ𝑟 ,W𝑟)) ∈ ValJ𝜎K}
ValJ𝑈̃ 𝜏K = {((Φ𝑙 , box V), (Φ𝑟 , boxW)) | (Run(Φ𝑙 ,V), Run(Φ𝑟 ,W)) ∈ SharedJ𝜏K}

where
Run(Φ, 𝑙) = (Φ, (𝜀, 𝑙/𝑎), 𝑎)
Run(Φ, I) = (Φ, 𝜀, I)

ElimJ𝜏 → 𝜎K = {((Φ𝑙 ,□ V · 𝐾𝑙), (Φ𝑟 ,□W · 𝐾𝑟)) |
((Φ𝑙 ,V), (Φ𝑟 ,W)) ∈ ValJ𝜏K ∧ ((Φ𝑙 , 𝐾𝑙), (Φ𝑟 , 𝐾𝑟)) ∈ StackJ𝜎K}

CompJ𝜏 → 𝜎K = ElimJ𝜏 → 𝜎Kx
StackJ𝜏 → 𝜎K = CompJ𝜏 → 𝜎K

x

ElimJ𝜏 & 𝜎K = {((Φ𝑙 ,□.fst · 𝐾𝑙), (Φ𝑟 ,□.fst · 𝐾𝑟)) | ((Φ𝑙 , 𝐾𝑙), (Φ𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K}
∪ {((Φ𝑙 ,□.snd · 𝐾𝑙), (Φ𝑟 ,□.snd · 𝐾𝑟)) | ((Φ𝑙 , 𝐾𝑙), (Φ𝑟 , 𝐾𝑟)) ∈ StackJ𝜎K}

CompJ𝜏 & 𝜎K = ElimJ𝜏 & 𝜎Kx
StackJ𝜏 & 𝜎K = CompJ𝜏 & 𝜎K

x

IntroJ𝐹 𝜏K = {((Φ𝑙 , Σ𝑙 , ret 𝑉), (Φ𝑟 , Σ𝑟 , ret𝑊)) |
((Φ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)), (Φ𝑟 , Build𝑉 (Σ𝑟 ,𝑊))) ∈ ValJ𝜏K}

StackJ𝐹 𝜏K = IntroJ𝐹 𝜏K
x

CompJ𝐹 𝜏K = StackJ𝐹 𝜏Kx

ElimJ𝐹 𝜏K = {((Φ𝑙 ,□.eval · 𝐾𝑙), (Φ𝑟 ,□.eval · 𝐾𝑟)) | ((Φ𝑙 , 𝐾𝑙), (Φ𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K}
CompJ𝐹 𝜏K = ElimJ𝐹 𝜏Kx

StackJ𝐹 𝜏K = CompJ𝐹 𝜏K

x

IntroJ𝐹 𝜏K = {((Φ𝑙 , Σ𝑙 , val 𝑉), (Φ𝑟 , Σ𝑟 , val𝑊)) |
((Φ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)), (Φ𝑟 , Build𝑉 (Σ𝑟 ,𝑊))) ∈ ValJ𝜏K}

VStackJ𝐹 𝜏K = IntroJ𝐹 𝜏K

x

∩ {((Φ𝑙 ,K𝑙), (Φ𝑟 ,K𝑟))}
SharedJ𝐹 𝜏K = VStackJ𝐹 𝜏Kx

StackJ𝐹 𝜏K = SharedJ𝐹 𝜏K

x

ElimJ𝑈 𝜏K = {((Φ𝑙 ,□.enter · 𝐾𝑙), (Φ𝑟 ,□.enter · 𝐾𝑟)) |
((Φ𝑙 , 𝐾𝑙), (Φ𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K}

ValJ𝑈 𝜏K = ElimJ𝑈 𝜏Kx ∩ {((Φ𝑙 , Σ𝑙 ,𝑉), (Φ𝑟 , Σ𝑟 ,𝑊))}
VStackJ𝑈 𝜏K = ValJ𝑈 𝜏K

x

∩ {((Φ𝑙 ,K𝑙), (Φ𝑟 ,K𝑟))}
SharedJ𝑈 𝜏K = VStackJ𝑈 𝜏Kx

StackJ𝑈 𝜏K = SharedJ𝑈 𝜏K

x

EnvJΓK = {((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) |
(∀𝑥 :𝜏 ∈ Γ. ((Φ𝑙 , 𝑥 [Σ𝑙]), (Φ𝑟 , 𝑥 [Σ𝑟])) ∈ ValJ𝜏K) ∧
(∀𝑎:𝜏 ∈ Γ. ((Φ𝑙 , Σ𝑙 , 𝑎), (Φ𝑟 , Σ𝑟 , 𝑎)) ∈ SharedJ𝜏K)}

Figure 7.1. CBPVS Logical Relations
125

check that the environment and computation pairs are in CompJ𝜏K. For each computable

type in general, we begin with a base definition of either their introduction or elimination

forms and build up the rest of the relation with the orthogonal operations. Whereas the

computation types are built from only the double orthogonal of the base definition, the

shared computation types are built from more applications of the orthogonal operations.

For instance, the ValJ𝑈 𝜏K relation is the orthogonal of ElimJ𝑈 𝜏K restricted to values. And

we take the orthogonal of that for VStackJ𝑈 𝜏K but restrict it to value stacks. These extra

steps are essential for capturing both memoization and 𝜂 laws within the same relation.

At the end of Figure 7.1, we include a relation on typing environments Γ. It says that

related environments will have related variables. For shared variables, we must consider

running the variables since they can either point to a value in the local environment, an

unevaluated thunk, or an evaluated thunk.

Proposition 7.6 (Logical Relations are Kripke Relations).

– For any computation type 𝜏 , CompJ𝜏K is a Kripke relation.

– For any shared type 𝜏 , SharedJ𝜏K is a Kripke relation.

– For any value type 𝜏 , ValJ𝜏K is a Kripke relation.

– For any type environment Γ, EnvJΓK is a Kripke relation.

These in addition to their sub-components.

Proof. By mutual induction on the structure of types:

Case 𝐵:

Considering Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and ((Φ𝑙 , b), (Φ𝑟 , b)) ∈ ValJ𝐵K, ((Φ′
𝑙
, b), (Φ′

𝑟 , b)) ∈

ValJ𝐵K follows trivially by definition.
126

Case 𝜏 ⊗ 𝜎 :

Considering future heaps Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and ((Φ𝑙 , ⟨V𝑙 ,W𝑙⟩), (Φ𝑟 , ⟨V𝑟 ,W𝑟 ⟩)) ∈

ValJ𝜏 ⊗ 𝜎K. By definition, we know that ((Φ𝑙 ,V𝑙), (Φ𝑟 ,V𝑟)) ∈ ValJ𝜏K and also

that ((Φ𝑙 ,W𝑙), (Φ𝑟 ,W𝑟)) ∈ ValJ𝜏K. From the inductive hypotheses, we know that

((Φ′
𝑙
,V𝑙), (Φ′

𝑟 ,V𝑟)) ∈ ValJ𝜏K and ((Φ′
𝑙
,W𝑙), (Φ′

𝑟 ,W𝑟)) ∈ ValJ𝜏K. By definition, we

may conclude that ((Φ′
𝑙
, ⟨V𝑙 ,W𝑙⟩), (Φ′

𝑟 , ⟨V𝑟 ,W𝑟 ⟩)) ∈ ValJ𝜏 ⊗ 𝜎K.

Case𝑈 𝜏 :

Considering the future heaps Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and that

((Φ𝑙 , {Σ𝑙 , force → 𝑀})

, (Φ𝑟 , {Σ𝑙 , force → 𝑁 })) ∈ ValJ𝑈 𝜏K.

By definition, ((Φ𝑙 , Σ𝑙 , 𝑀), (Φ𝑟 , Σ𝑟 , 𝑁)) ∈ CompJ𝜏K. By the inductive hypothesis,

((Φ′
𝑙
, Σ𝑙 , 𝑀), (Φ′

𝑟 , Σ𝑟 , 𝑁)) ∈ CompJ𝜏K. Therefore, we may conclude this case by

definition.

Case 𝑈̃ 𝜏 :

Given Φ′
𝑙

⊒ Φ𝑙 , Φ′
𝑟 ⊒ Φ𝑟 , and ((Φ𝑙 , box V), (Φ𝑟 , boxW)) ∈ ValJ𝑈̃ 𝜏K.

(Run(Φ𝑙 ,V), Run(Φ𝑟 ,W)) ∈ SharedJ𝜏K follows by definition. By the inductive

hypothesis, we know that (Run(Φ′
𝑙
,V), Run(Φ′

𝑟 ,W)) ∈ SharedJ𝜏K. Thus, by

definition, ((Φ′
𝑙
, box V), (Φ′

𝑟 , boxW)) ∈ ValJ𝑈̃ 𝜏K.

Case 𝜏 :

Similar to the cases above, we prove that IntroJ𝐹 𝜎K and ElimJ𝑈 𝜎K using the

inductive hypothesis. The rest of the relations are constructed with orthogonal

127

operations, which are Kripke relations. Note that the restrictions do not pose any

problem for proving the Kripke property.

Case 𝜏 :

Similar to the cases for shared types.

Case Γ:

Follows because shared and value types are Kripke relations.

□

Proposition 7.7 (Shared Logical Relation Inclusion Properties).

For𝑈 𝜏 , ElimJ𝑈 𝜏K ⊆ VStackJ𝑈 𝜏K ⊆ StackJ𝑈 𝜏K and ValJ𝑈 𝜏K ⊆ SharedJ𝑈 𝜏K.

For 𝐹 𝜏 , IntroJ𝐹 𝜏K ⊆ SharedJ𝐹 𝜏K and VStackJ𝐹 𝜏K ⊆ StackJ𝐹 𝜏K

Proof. Given ((Φ𝑙 ,□.enter · 𝐾𝑙), (Φ𝑟 ,□.enter · 𝐾𝑟))∈ElimJ𝑈 𝜏K, we must show that the

pair is also in VStackJ𝑈 𝜏K. By definition, this is to show the pair is ValJ𝑈 𝜏K

x

restricted

to value stacks. Note that these stacks are syntactically value stacks. Thus, consider some

Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and ((Φ′
𝑙
, Σ𝑙 ,𝑉), (Φ′

𝑟 , Σ𝑟 ,𝑊)) ∈ ValJ𝑈 𝜏K:

By definition, ((Φ′
𝑙
, Σ𝑙 ,𝑉), (Φ′

𝑟 , Σ𝑟 ,𝑊)) ∈ ElimJ𝑈 𝜏Kx.

((Φ′
𝑙
,□.enter · 𝐾𝑙), (Φ′

𝑟 ,□.enter · 𝐾𝑟)) ∈ ElimJ𝑈 𝜏K, by the closure over future heaps.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑉 ∥ □.enter · 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑊 ∥ □.enter · 𝐾𝑟 ⟩⟩, by the property of the

related values with the eliminations in the worlds Φ′
𝑙
⊒ Φ′

𝑙
and Φ′

𝑟 ⊒ Φ′
𝑟 .

Considering an arbitrary ((Φ𝑙 ,K𝑙), (Φ𝑟 ,K𝑟)) ∈ VStackJ𝑈 𝜏K, we must show that the

pair is also in StackJ𝑈 𝜏K. By definition, this is to show the pair is SharedJ𝑈 𝜏K

x

. Thus,

consider some Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and ((Φ′
𝑙
, Σ𝑙 , 𝑅), (Φ′

𝑟 , Σ𝑟 , 𝑆)) ∈ SharedJ𝑈 𝜏K:

128

By definition, ((Φ′
𝑙
, Σ𝑙 , 𝑅), (Φ′

𝑟 , Σ𝑟 , 𝑆)) ∈ VStackJ𝑈 𝜏Kx.

((Φ′
𝑙
,K𝑙), (Φ′

𝑟 ,K𝑟)) ∈ VStackJ𝑈 𝜏K, by closure over future heaps.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑅 ∥ K𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑆 ∥ K𝑟 ⟩⟩), by the property of the related expressions

with the related shared stacks in the worlds Φ′
𝑙
⊒ Φ′

𝑙
and Φ′

𝑟 ⊒ Φ′
𝑟 .

Considering an arbitrary ((Φ𝑙 , Σ𝑙 ,𝑉), (Φ𝑟 , Σ𝑟 ,𝑊)) ∈ ValJ𝑈 𝜏K, we must show that the

pair is also in SharedJ𝑈 𝜏K. By definition, this is to show the pair is VStackJ𝑈 𝜏Kx. Thus,

consider some Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and ((Φ′
𝑙
,K𝑙), (Φ′

𝑟 ,K𝑟) ∈ VStackJ𝑈 𝜏K:

By definition, ((Φ′
𝑙
,K𝑙), (Φ′

𝑟 ,K𝑟) ∈ ValJ𝑈 𝜏K

x

.

((Φ′
𝑙
, Σ𝑙 ,𝑉), (Φ′

𝑟 , Σ𝑟 ,𝑊)) ∈ ValJ𝑈 𝜏K, by closure over future heaps.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑉 ∥ K𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥𝑊 ∥ K𝑟 ⟩⟩, by the property of the related value stacks

with the related values in the worlds Φ′
𝑙
⊒ Φ′

𝑙
and Φ′

𝑟 ⊒ Φ′
𝑟 .

The proofs for 𝐹 𝜏 relations follow in a similar manner. □

Proposition 7.8 (Orthogonal Completeness of the Logical Relations).

– For any computable type 𝜏 , both CompJ𝜏K

x

= StackJ𝜏K and StackJ𝜏Kx = CompJ𝜏K.

– For any shared type 𝜏 , both

SharedJ𝜏K

x

= StackJ𝜏K and StackJ𝜏Kx ⊇ SharedJ𝜏K.

Proof. By induction on the structure of the computable type. Herein, we use triple

orthogonal elimination liberally; this we may do because all semantic types are Kripke

relations.

129

Case 𝜏 → 𝜎 :
CompJ𝜏 → 𝜎K =defn. ElimJ𝜏 → 𝜎Kx

=tri. orth. ElimJ𝜏 → 𝜎Kx

xx

=defn. CompJ𝜏 → 𝜎K

xx

=defn. StackJ𝜏 → 𝜎Kx

and

StackJ𝜏 → 𝜎K =defn. CompJ𝜏 → 𝜎K

x

.

Case 𝜏 & 𝜎 follows in a similar manner to the case above since they were both defined

via their eliminations.

Case 𝐹 𝜏 :

CompJ𝐹 𝜏K =defn. StackJ𝐹 𝜏Kx

and
StackJ𝐹 𝜏K =defn. IntroJ𝐹 𝜏K

x

=tri. orth. IntroJ𝐹 𝜏K

xx

x

=defn. StackJ𝐹 𝜏Kx

x

=defn. CompJ𝐹 𝜏K

x

.

Case 𝐹 𝜏 :
SharedJ𝐹 𝜏K =defn. VStackJ𝐹 𝜏Kx

⊆contra. StackJ𝐹 𝜏Kx

and

StackJ𝐹 𝜏K =defn. SharedJ𝐹 𝜏K

x

130

Case𝑈 𝜏 :
SharedJ𝑈 𝜏K = VStackJ𝑈 𝜏Kx

⊆contra. StackJ𝑈 𝜏Kx

and

StackJ𝑈 𝜏K =defn. SharedJ𝑈 𝜏K

x

□

Lemma 7.1 (Related Heap Extension).

(Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟) ∈ EnvJΓK and ((Φ𝑙 , Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍𝑙), 𝑅), (Φ𝑟 , Σ𝑟 Build𝜍 (Σ𝑟 , 𝜍𝑟), 𝑆)) ∈

SharedJ𝜏K imply

(((Φ𝑙 , 𝑙𝑎 ↦→ {Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍𝑙), 𝑅}), (Σ𝑙 , 𝑙𝑎/𝑎))

, ((Φ𝑟 , 𝑙𝑎 ↦→ {Σ𝑟 Build𝜍 (Σ𝑟 , 𝜍𝑟), 𝑆}), (Σ𝑟 , 𝑙𝑎/𝑎))) ∈ EnvJΓ, 𝑎:𝜏K.

Proof. We only need to show that

(((Φ𝑙 , 𝑙𝑎 ↦→ {Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍𝑙), 𝑅}), (Σ𝑙 , 𝑙𝑎/𝑎), 𝑎)

, ((Φ𝑟 , 𝑙𝑎 ↦→ {Σ𝑟 Build𝜍 (Σ𝑟 , 𝜍𝑟), 𝑆}), (Σ𝑟 , 𝑙𝑎/𝑎), 𝑎)) ∈ SharedJ𝜏K

given our assumption and the definition of EnvJΓ, 𝑎:𝜏K. By definition for any shared type,

it is enough to show that the pair is in VStackJ𝜏Kx. Thus, suppose Φ′
𝑙
⊒ (Φ𝑙 , 𝑙𝑎 ↦→

{Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍𝑙), 𝑅}), Φ′
𝑟 ⊒ (Φ𝑟 , 𝑙𝑎 ↦→ {Σ𝑟 Build𝜍 (Σ𝑟 , 𝜍𝑟), 𝑆}), and ((Φ′

𝑙
,K𝑙), (Φ′

𝑟 ,K𝑟)) ∈

VStackJ𝜏K:

By the definition of heap extension, we know Φ′
𝑙
= (Φ′

𝑙0, 𝑙𝑎 ↦→ {Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍𝑙), 𝑅})Φ′
𝑙1

and Φ′
𝑟 = (Φ′

𝑟0, 𝑙𝑎 ↦→ {Σ𝑟 Build𝜍 (Σ𝑟 , 𝜍𝑟), 𝑆})Φ′
𝑟1. Additionally, we know Φ′

𝑙0 ⊒ Φ𝑙 and

Φ′
𝑟0 ⊒ Φ𝑟 .

131

On the left side, there is the transition

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑎 ∥ K𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙0 ∥ Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍𝑙) ∥ 𝑅 ∥ (Φ′

𝑙1, 𝑙𝑎) · K𝑙⟩⟩

And similarly on the right.

((Φ′
𝑙0, Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍𝑙), 𝑅)

, (Φ′
𝑟0, Σ𝑟 Build𝜍 (Σ𝑟 , 𝜍𝑟), 𝑆)) ∈ SharedJ𝜏K

follows from our initial assumption with closure over accessible heaps.

⟨⟨Φ′
𝑙0 ∥ Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍𝑙) ∥ 𝑅 ∥ K𝑙⟩⟩ ≃

⟨⟨Φ′
𝑟0 ∥ Σ𝑟 Build𝜍 (Σ𝑟 , 𝜍𝑟) ∥ 𝑆 ∥ K𝑟 ⟩⟩

by the the property of the related expressions immediately above with Φ′
𝑙
⊒ Φ′

𝑙0,

Φ′
𝑟 ⊒ Φ′

𝑟0, and ((Φ′
𝑙
,K𝑙), (Φ′

𝑟 ,K𝑟)) ∈ VStackJ𝜏K.

⟨⟨Φ′
𝑙0 ∥ Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍𝑙) ∥ 𝑅 ∥ K𝑙⟩⟩ ≃

⟨⟨Φ′
𝑙0 ∥ Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍𝑙) ∥ 𝑅 ∥ (Φ′

𝑙1, 𝑙𝑎) · K𝑙⟩⟩

by the memoizing closure property of (≃). We have a similar fact on the right side.

⟨⟨Φ′
𝑙
∥ Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍𝑙) ∥ 𝑎 ∥ K𝑙⟩⟩ ≃

⟨⟨Φ′
𝑟 ∥ Σ𝑟 Build𝜍 (Σ𝑟 , 𝜍𝑟) ∥ 𝑎 ∥ K𝑟 ⟩⟩

by the closure properties of (≃).

□

132

Lemma 7.2 (Build then Run). If ((Φ𝑙 , Σ𝑙 ,𝑉), (Φ𝑟 , Σ𝑟 ,𝑊)) ∈ SharedJ𝜏K, then

(Run(Φ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)), Run(Φ𝑟 , Build𝑉 (Σ𝑟 ,𝑊))) ∈ SharedJ𝜏K.

Proof. Follows from definitions. Note that the run function places locations in the smallest

environment necessary. □

What follows are three lemmas that behave similarly to show that inlining, garbage

collection, and substitutions yield logically related expressions. They describe properties

of our delayed substitution semantics; that we may eagerly substitute values and not

change the observable behavior and that we may remove unused variables. Note that

this second property is implied by the first.

Lemma 7.3 (Contextual Inlining). Given any typed substitutable value Γ ⊢ 𝑉 : 𝜏 and

related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK, we know the following:

Γ, 𝑥 :𝜏 ⊢ 𝐶 [𝑥] : 𝜎
((Φ𝑙 , (Σ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)/𝑥),𝐶 [𝑥]), (Φ𝑟 , (Σ𝑟 , Build𝑉 (Σ𝑟 ,𝑉)/𝑥),𝐶 [𝑉])) ∈ CompJ𝜎K

Γ, 𝑥 :𝜏 ⊢ 𝐶 [𝑥] : 𝜎
((Φ𝑙 , Build𝑉 ((Σ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)/𝑥),𝐶 [𝑥])), (Φ𝑟 , Build𝑉 (Σ𝑟 ,𝐶 [𝑉]))) ∈ ValJ𝜎K

Γ, 𝑥 :𝜏 ⊢ 𝐶 [𝑥] : 𝜎
((Φ𝑙 , (Σ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)/𝑥),𝐶 [𝑥]), (Φ𝑟 , Σ𝑟 ,𝐶 [𝑉])) ∈ SharedJ𝜎K

Γ, 𝑥 :𝜏 ⊢ 𝐶 [𝑥] : 𝜎
(((Φ𝑙 , 𝑙 ↦→ Build𝑉 (Σ𝑙 ,𝑉)), (Σ𝑙 , 𝑙/𝑥),𝐶 [𝑥]), (Φ𝑟 , Σ𝑟 ,𝐶 [𝑉])) ∈ SharedJ𝜎K

Γ, 𝑥 :𝜏 ⊢ 𝜍 [𝑥] : Γ′

((Φ𝑙 , Build𝜍 ((Σ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)/𝑥), 𝜍 [𝑥])), (Φ𝑟 , Build𝜍 (Σ𝑟 , 𝜍 [𝑉]))) ∈ EnvJΓ′K

Proof. By mutual induction on the typing derivations. □

133

Lemma 7.4 (Garbage Collection). Given related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈

EnvJΓK, we know the following:

Γ ⊢ 𝑀 : 𝜎
((Φ𝑙 , (Σ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)/𝑥), 𝑀), (Φ𝑟 , Σ𝑟 , 𝑀)) ∈ CompJ𝜎K

Γ ⊢ 𝑉 : 𝜎
((Φ𝑙 , Build𝑉 ((Σ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)/𝑥),𝑉)), (Φ𝑟 , Build𝑉 (Σ𝑟 ,𝑉))) ∈ ValJ𝜎K

Γ ⊢ 𝑅 : 𝜎
((Φ𝑙 , (Σ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)/𝑥), 𝑅), (Φ𝑟 , Σ𝑟 , 𝑅)) ∈ SharedJ𝜎K

Γ ⊢ 𝑅 : 𝜎
(((Φ𝑙 , 𝑙 ↦→ Build𝑉 (Σ𝑙 ,𝑉)), (Σ𝑙 , 𝑙/𝑥), 𝑅), (Φ𝑟 , Σ𝑟 , 𝑅)) ∈ SharedJ𝜎K

Γ ⊢ 𝜍 : Γ′

((Φ𝑙 , Build𝜍 ((Σ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)/𝑥), 𝜍)), (Φ𝑟 , Build𝜍 (Σ𝑟 , 𝜍))) ∈ EnvJΓ′K

Proof. By mutual induction on the typing derivations. □

Corollary 7.1 (Substitutive Inlining). Given any typed substitutable value Γ ⊢ 𝜍 : Γ′ and

((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK, we know the following:

ΓΓ′ ⊢ 𝑀 : 𝜎
((Φ𝑙 , Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍), 𝑀), (Φ𝑟 , Σ𝑟 , 𝑀 [𝜍])) ∈ CompJ𝜎K

ΓΓ′ ⊢𝑊 :𝜎
((Φ𝑙 , Build𝑉 (Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍),𝑊)), (Φ𝑟 , Build𝑉 (Σ𝑟 ,𝑊 [𝜍]))) ∈ ValJ𝜎K

ΓΓ′ ⊢ 𝑅 : 𝜎
((Φ𝑙 , Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍), 𝑅), (Φ𝑟 , Σ𝑟 , 𝑅 [𝜍])) ∈ SharedJ𝜎K

ΓΓ′ ⊢ 𝜍 ′ : Γ′′

((Φ𝑙 , Build𝜍 (Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍), 𝜍 ′)), (Φ𝑟 , Build𝜍 (Σ𝑟 , 𝜍 ′[𝜍]))) ∈ EnvJΓ′′K

Lemma 7.5 (Building Related Stacks from Eval Contexts). If ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈

EnvJΓK, ((Φ𝑙 , 𝐾𝑙), (Φ𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K, Build𝐾 (Φ𝑙 , Σ𝑙 , 𝐸, 𝐾𝑙) = (Φ′
𝑙
, Σ′

𝑙
, 𝐾′

𝑙
), and

Build𝐾 (Φ𝑟 , Σ𝑟 , 𝐸, 𝐾𝑟) = (Φ′
𝑟 , Σ

′
𝑟 , 𝐾

′
𝑟), then ((Φ′

𝑙
, 𝐾′

𝑙
), (Φ′

𝑟 , 𝐾
′
𝑟)) ∈ StackJ𝜏K.

Proof. By induction on the evaluation context. □

134

7.2 Semantic Equality

Semantic equivalence is built from the logical relations by considering related

instantiations of the type environment and then having related expressions for the type.

Definition 7.5 (Semantic Equality).

Γ ⊨ 𝑀 ≈ 𝑁 : 𝜏 def
= ∀((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK. ((Φ𝑙 , Σ𝑙 , 𝑀), (Φ𝑟 , Σ𝑟 , 𝑁)) ∈ CompJ𝜏K

Γ ⊨ 𝑅 ≈ 𝑆 : 𝜏 def
= ∀((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK. ((Φ𝑙 , Σ𝑙 , 𝑅), (Φ𝑟 , Σ𝑟 , 𝑆)) ∈ SharedJ𝜏K

Γ ⊨ 𝑉 ≈𝑊 : 𝜏 def
= ∀((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK.

((Φ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)), (Φ𝑟 , Build𝑉 (Σ𝑟 ,𝑊))) ∈ ValJ𝜏K

Γ ⊨ 𝜍𝑙 ≈ 𝜍𝑟 : Γ′ def
= ∀((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK.

((Φ𝑙 , Build𝜍 (Σ𝑙 , 𝜍𝑙)), (Φ𝑟 , Build𝜍 (Σ𝑟 , 𝜍𝑟))) ∈ EnvJΓ′K

From here, we prove compatibility propositions that align with all of the typing rules

for CBPVS in Figure 5.6. These propositions will be enough to show that our semantic

equivalence relations are indeed a partial semantic congruence relation; partial in the

sense that expressions need to be well-typed. This sections ends with a proof of the

fundamental lemma that syntactic equivalence implies semantic equivalence; the proof

of which has a case for each axiom of our theory.

Proposition 7.9 (Compatibility var). If 𝑥 :𝜏 ∈ Γ, then Γ ⊨ 𝑥 ≈ 𝑥 : 𝜏 .

Proof. Consider an arbitrary 𝑥 :𝜏 ∈ Γ and ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK. By the definition

of EnvJΓK, ((Φ𝑙 , 𝑥 [Σ𝑙]), (Φ𝑟 , 𝑥 [Σ𝑟])) ∈ ValJ𝜏K. Finally, from the definition of Build𝑉 , we

may conclude that ((Φ𝑙 , Build𝑉 (Σ𝑙 , 𝑥)), (Φ𝑟 , Build𝑉 (Σ𝑟 , 𝑥))) ∈ ValJ𝜏K. □

Proposition 7.10 (Compatibility b). Γ ⊨ b ≈ b : 𝐵.

Proof. If ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK, then, immediately from definitions, we know

((Φ𝑙 , Build𝑉 (Σ𝑙 , b)), (Φ𝑟 , Build𝑉 (Σ𝑟 , b))) ∈ ValJ𝐵K. □

135

Proposition 7.11 (Compatibility →𝐼). If Γ, 𝑥 :𝜏 ⊨ 𝑀 ≈ 𝑁 : 𝜎 , then Γ ⊨ 𝜆𝑥. 𝑀 ≈ 𝜆𝑥 . 𝑁 :

𝜏 → 𝜎 .

Proof. Considering an arbitrary Γ, 𝑥 :𝜏 ⊨ 𝑀 ≈ 𝑁 : 𝜎 , we show Γ ⊨ 𝜆𝑥. 𝑀 ≈ 𝜆𝑥. 𝑁 :

𝜏 → 𝜎 by further supposing arbitrary environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK then

showing ((Φ𝑙 , Σ𝑙 , 𝜆𝑥 . 𝑀), (Φ𝑟 , Σ𝑟 , 𝜆𝑥 . 𝑁)) ∈ CompJ𝜏 → 𝜎K. By definition, this is equivalent

to showing that the pair is in ElimJ𝜏 → 𝜎Kx. Thus, let us consider an arbitrary Φ′
𝑙
⊒ Φ𝑙 ,

Φ′
𝑟 ⊒ Φ𝑟 , ((Φ′

𝑙
,□ V · 𝐾𝑙), (Φ′

𝑟 ,□W · 𝐾𝑟)) ∈ ElimJ𝜏 → 𝜎K:

By definition, we have that ((Φ′
𝑙
,V), (Φ′

𝑟 ,W)) ∈ ValJ𝜏K and ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈

StackJ𝜎K.

On the left, we have the transition

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝜆𝑥. 𝑀 ∥ □ V · 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ,V/𝑥 ∥ 𝑀 ∥ 𝐾𝑙⟩⟩

and similarly on the right side.

((Φ′
𝑙
, (Σ𝑙 ,V/𝑥)), (Φ′

𝑟 , (Σ𝑟 ,W/𝑥))) ∈ EnvJΓ, 𝑥 :𝜏K by definition with our assumed related

environments. Note that ((Φ′
𝑙
, Σ𝑙), (Φ′

𝑟 , Σ𝑟)) ∈ EnvJΓK because the relation is closed

over accessible worlds.

((Φ′
𝑙
, (Σ𝑙 ,V/𝑥), 𝑀), (Φ′

𝑟 , (Σ𝑟 ,W/𝑥), 𝑁)) ∈ CompJ𝜎K from our initial assumption about

the function bodies with the related extended environments above.

And by Proposition 7.8 with Φ′
𝑙
⊒ Φ′

𝑙
, Φ′

𝑟 ⊒ Φ′
𝑟 , and ((Φ′

𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜎K, we

have ⟨⟨Φ′
𝑙
∥ Σ𝑙 ,V/𝑥 ∥ 𝑀 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ,W/𝑥 ∥ 𝑁 ∥ 𝐾𝑟 ⟩⟩.

With our closure properties of (≃), we have ⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝜆𝑥 .𝑀 ∥ □ V ·𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥

𝜆𝑥. 𝑁 ∥ □W · 𝐾𝑟 ⟩⟩.
136

□

Proposition 7.12 (Compatibility →𝐸). If Γ ⊨ 𝑀 ≈ 𝑁 : 𝜎 → 𝜏 and Γ ⊨ 𝑉 ≈ 𝑊 : 𝜎 , then

Γ ⊨ 𝑀 𝑉 ≈ 𝑁 𝑊 : 𝜏 .

Proof. Given Γ ⊨ 𝑀 ≈ 𝑁 : 𝜎 → 𝜏 and Γ ⊨ 𝑉 ≈ 𝑊 : 𝜎 , we show Γ ⊨

𝑀 𝑉 ≈ 𝑁 𝑊 : 𝜏 by considering ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK and then proving

((Φ𝑙 , Σ𝑙 , 𝑀 𝑉), (Φ𝑟 , Σ𝑟 , 𝑁 𝑊)) ∈ CompJ𝜏K. Since this by Proposition 7.8 is equivalent to

showing that the pair is in StackJ𝜏Kx, we further consider an arbitrary Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 ,

and ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K:

By our initial assumptions with the related environments ((Φ′
𝑙
, Σ𝑙), (Φ′

𝑟 , Σ𝑟)) ∈ EnvJΓK

(using the Kripke property to advance to a future world), we may conclude both

that ((Φ′
𝑙
, Σ𝑙 , 𝑀), (Φ′

𝑟 , Σ𝑟 , 𝑁)) ∈ CompJ𝜎 → 𝜏K and

((Φ′
𝑙
, Build𝑉 (Σ𝑙 ,𝑉)), (Φ′

𝑟 , Build𝑉 (Σ𝑟 ,𝑊))) ∈ ValJ𝜎K.

On the left side, we have the transition

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀 𝑉 ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀 ∥ □ Build𝑉 (Σ𝑙 ,𝑉) · 𝐾𝑙⟩⟩

Similarly on the right side.

((Φ′
𝑙
,□ Build𝑉 (Σ𝑙 ,𝑉) · 𝐾𝑙), (Φ′

𝑟 ,□ Build𝑉 (Σ𝑙 ,𝑊) · 𝐾𝑙)) ∈ ElimJ𝜎 → 𝜏K by definition.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀 ∥ □ Build𝑉 (Σ𝑙 ,𝑉) · 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑁 ∥ □ Build𝑉 (Σ𝑟 ,𝑊) · 𝐾𝑟 ⟩⟩ by the

definition of CompJ𝜎 → 𝜏K with Φ′
𝑙
⊒ Φ′

𝑙
, Φ′

𝑟 ⊒ Φ′
𝑟 , and the above related stacks.

By our closure properties of (≃), we may conclude that ⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀 𝑉 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥

Σ𝑟 ∥ 𝑁 𝑊 ∥ 𝐾𝑟 ⟩⟩.

137

□

Proposition 7.13 (Compatibility &𝐼). If Γ ⊨ 𝑀𝑙 ≈ 𝑀𝑟 : 𝜏 and Γ ⊨ 𝑁𝑙 ≈ 𝑁𝑟 : 𝜎 , then

Γ ⊨ {fst → 𝑀𝑙 ; snd → 𝑁𝑙 } ≈ {fst → 𝑀𝑟 ; snd → 𝑁𝑟 } : 𝜏 & 𝜎 .

Proof. Given Γ ⊨ 𝑀𝑙 ≈ 𝑀𝑙 : 𝜏 and Γ ⊨ 𝑁𝑟 ≈ 𝑁𝑟 : 𝜎 , we prove Γ ⊨ {fst → 𝑀𝑙 ; snd → 𝑁𝑙 } ≈

{fst → 𝑀𝑟 ; snd → 𝑁𝑟 } : 𝜏 & 𝜎 by considering ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK and then

proving that

((Φ𝑙 , Σ𝑙 , {fst → 𝑀𝑙 ; snd → 𝑁𝑙 })

, (Φ𝑟 , Σ𝑟 , {fst → 𝑀𝑟 ; snd → 𝑁𝑟 })) ∈ CompJ𝜏 & 𝜎K.

By definition, this is equivalent to showing that the pair is in ElimJ𝜏 & 𝜎Kx. Thus,

considering an arbitrary Φ′
𝑙
⊒ Φ𝑙 ,Φ′

𝑟 ⊒ Φ𝑟 , and element of ElimJ𝜏 & 𝜎K there are two

cases to consider:

Case ((Φ′
𝑙
,□.fst · 𝐾𝑙), (Φ′

𝑟 ,□.fst · 𝐾𝑟)):

((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K follows from the definition of ElimJ𝜏 & 𝜎K.

By the first of our initial assumptions with ((Φ′
𝑙
, Σ𝑙), (Φ′

𝑟 , Σ𝑟)) ∈ EnvJΓK

(closed with accessible worlds), ((Φ′
𝑙
, Σ𝑙 , 𝑀𝑙), (Φ′

𝑟 , Σ𝑟 , 𝑀𝑙)) ∈ CompJ𝜏K follows.

Proposition 7.8 with Φ′
𝑙
⊒ Φ′

𝑙
, Φ′

𝑟 ⊒ Φ′
𝑟 , the related stacks above, we have that

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀𝑙 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑀𝑟 ∥ 𝐾𝑟 ⟩⟩.

On the left side, we have the transition

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ {fst → 𝑀𝑙 ; snd → 𝑁𝑙 } ∥ □.fst · 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀𝑙 ∥ 𝐾𝑙⟩⟩

Similarly on the right.

By the closure properties of (≃), we have ⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ {fst → 𝑀𝑙 ; snd → 𝑁𝑙 } ∥

□.fst · 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′
𝑟 ∥ Σ𝑟 ∥ {fst → 𝑀𝑟 ; snd → 𝑁𝑟 } ∥ □.fst · 𝐾𝑟 ⟩⟩.

138

Case ((Φ′
𝑙
,□.snd · 𝐾𝑙), (Φ′

𝑟 ,□.snd · 𝐾𝑟)):

This follows in a similar manner to the case above by using the second initial

assumption.

□

Proposition 7.14 (Compatibility &𝐸1). If Γ ⊨ 𝑀 ≈ 𝑁 : 𝜏 & 𝜎 , then Γ ⊨ 𝑀.fst ≈ 𝑁 .fst : 𝜏 .

Proof. Given Γ ⊨ 𝑀 ≈ 𝑁 : 𝜏 & 𝜎 , we show Γ ⊨ 𝑀.fst ≈ 𝑁 .fst : 𝜏 by first considering

((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK and then proving ((Φ𝑙 , Σ𝑙 , 𝑀.fst), (Φ𝑟 , Σ𝑟 , 𝑁 .fst)) ∈

CompJ𝜏K. Using Proposition 7.8, this is the same as showing that the pair is in StackJ𝜏Kx.

Thus, consider further an arbitrary Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K:

((Φ′
𝑙
, Σ𝑙 , 𝑀), (Φ′

𝑟 , Σ𝑟 , 𝑁)) ∈ CompJ𝜏 & 𝜎K, by our initial assumption with the related

environments (note closure over accessible worlds).

On the left side, we have the transition

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀.fst ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀 ∥ □.fst · 𝐾𝑙⟩⟩

And similarly on the right.

((Φ′
𝑙
,□.fst ·𝐾𝑙), (Φ′

𝑟 ,□.fst ·𝐾𝑟)) ∈ StackJ𝜏 & 𝜎K by definition. This and Proposition 7.8

with Φ′
𝑙
⊒ Φ′

𝑙
, Φ′

𝑟 ⊒ Φ′
𝑟 , and ((Φ′

𝑙
, Σ𝑙 , 𝑀), (Φ′

𝑟 , Σ𝑟 , 𝑁)) ∈ CompJ𝜏 & 𝜎K yields that

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀 ∥ □.fst · 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑁 ∥ □.fst · 𝐾𝑟 ⟩⟩.

By the closure properties of (≃), we have ⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀.fst ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥

𝑁 .fst ∥ 𝐾𝑟 ⟩⟩.

□

139

Proposition 7.15 (Compatibility &𝐸2). If Γ ⊨ 𝑀 ≈ 𝑁 : 𝜏 & 𝜎 , then Γ ⊨ 𝑀.snd ≈ 𝑁 .snd : 𝜎 .

Proof. Follows in a similar manner to compatibility for &𝐸1. □

Proposition 7.16 (Compatibility ⊗𝐼). If Γ ⊨ 𝑉𝑙 ≈ 𝑉𝑟 : 𝜏 and Γ ⊨ 𝑊𝑙 ≈ 𝑊𝑟 : 𝜎 , then

Γ ⊨ ⟨𝑉𝑙 ,𝑊𝑙⟩ ≈ ⟨𝑉𝑟 ,𝑊𝑟 ⟩ : 𝜏 ⊗ 𝜎 .

Proof. Given Γ ⊨ 𝑉𝑙 ≈ 𝑉𝑙 : 𝜏 and Γ ⊨𝑊𝑟 ≈𝑊𝑟 : 𝜎 , we show Γ ⊨ ⟨𝑉𝑙 ,𝑊𝑙⟩ ≈ ⟨𝑉𝑟 ,𝑊𝑟 ⟩ : 𝜏 ⊗ 𝜎

by considering related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK and then showing that

((Φ𝑙 , Build𝑉 (Σ𝑙 , ⟨𝑉𝑙 ,𝑊𝑙⟩))

, (Φ𝑟 , Build𝑉 (Σ𝑟 , ⟨𝑉𝑟 ,𝑊𝑟 ⟩))) ∈ ValJ𝜏 ⊗ 𝜎K.

Next, Build𝑉 (Σ𝑙 , ⟨𝑉𝑙 ,𝑊𝑙⟩) = ⟨Build𝑉 (Σ𝑙 ,𝑉𝑙), Build𝑉 (Σ𝑙 ,𝑊𝑙)⟩ and similarly for the right

side, follow by definition of building values. From our first initial assumption with

the assumed related environments, we know ((Φ𝑙 , Build𝑉 (Σ𝑙 ,𝑉𝑙)), (Φ𝑟 , Build𝑉 (Σ𝑟 ,𝑉𝑟))) ∈

ValJ𝜏K and similarly for the other sub-component. We can conclude by the definition of

ValJ𝜏 ⊗ 𝜎K. □

Proposition 7.17 (Compatibility ⊗𝐸). If Γ ⊨ 𝑉 ≈ 𝑊 : 𝜎 ⊗ 𝜌 and Γ, 𝑥 :𝜎,𝑦:𝜌 ⊨ 𝑃 ≈ 𝑄 : 𝜏 ,

then Γ ⊨ case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑃} ≈ case𝑊 of {⟨𝑥,𝑦⟩ → 𝑄} : 𝜏 .

Proof. Given that Γ ⊨ 𝑉 ≈𝑊 : 𝜎 ⊗ 𝜌 and Γ, 𝑥 :𝜎,𝑦:𝜌 ⊨ 𝑃 ≈ 𝑄 : 𝜏 , Γ ⊨ case 𝑉 of {⟨𝑥,𝑦⟩ →

𝑃} ≈ case𝑊 of {⟨𝑥,𝑦⟩ → 𝑄} : 𝜏 is true by considering ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK and

then proving

((Φ𝑙 , Σ𝑙 , case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑀})

, (Φ𝑟 , Σ𝑟 , case𝑊 of {⟨𝑥,𝑦⟩ → 𝑁 })) ∈ CompJ𝜏K.

We have chosen 𝜏 to be a computation type, 𝑃 = 𝑀 , and 𝑄 = 𝑁 , but the proof follows

the same for shared types since we have the same transitions. By Proposition 7.8, this is

140

the same as showing that the pair is in StackJ𝜏Kx. Thus, we suppose an arbitrary Φ′
𝑙
⊒ Φ𝑙 ,

Φ′
𝑟 ⊒ Φ𝑟 , and ((Φ′

𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K:

By the first initial assumption with the related environments ((Φ′
𝑙
, Σ𝑙), (Φ′

𝑟 , Σ𝑟)) ∈

EnvJΓK (using the Kripke property to advance to a future world), we know

((Φ′
𝑙
, Build𝑉 (Σ𝑙 ,𝑉))

, (Φ′
𝑟 , Build𝑉 (Σ𝑟 ,𝑊))) ∈ ValJ𝜎 ⊗ 𝜌K.

By this definition, we also know Build𝑉 (Σ𝑙 ,𝑉) = ⟨V,V⟩ and Build𝑉 (Σ𝑟 ,𝑊) =

⟨W,W′⟩ where the sub-parts are related in world Φ′
𝑙
and Φ′

𝑟 respectively.

On the left side, we have the transition

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑀} ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ,V/𝑥,V′/𝑦 ∥ 𝑀 ∥ 𝐾𝑙⟩⟩

And similarly on the right side.

((Φ′
𝑙
, (Σ𝑙 ,V/𝑥,V′/𝑦))

, (Φ′
𝑟 , (Σ𝑟 ,W/𝑥,W′/𝑦))) ∈ EnvJΓ, 𝑥 :𝜎,𝑦:𝜌K,

by definition. And thus, wemay use our second initial assumptionwith these related

environments to conclude that

((Φ′
𝑙
, (Σ𝑙 ,V/𝑥,V′/𝑦), 𝑀),

(Φ′
𝑟 , (Σ𝑟 ,W/𝑥,W′/𝑦), 𝑁)) ∈ CompJ𝜏K.

141

By Proposition 7.8, the property of our related stacks in combination with Φ′
𝑙
⊒ Φ′

𝑙
,

Φ′
𝑟 ⊒ Φ′

𝑟 , these related computations, gives us ⟨⟨Φ′
𝑙
∥ Σ𝑙 ,V/𝑥,V′/𝑦 ∥ 𝑀 ∥ 𝐾𝑙⟩⟩ ≃

⟨⟨Φ′
𝑟 ∥ Σ𝑟 ,W/𝑥,W′/𝑦 ∥ 𝑁 ∥ 𝐾𝑟 ⟩⟩.

We may conclude ⟨⟨Φ′
𝑙

∥ Σ𝑙 ∥ case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑀} ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′
𝑟 ∥ Σ𝑟 ∥

case𝑊 of {⟨𝑥,𝑦⟩ → 𝑁 } ∥ 𝐾𝑟 ⟩⟩ by the closure rules for (≃).

□

Proposition 7.18 (Compatibility 𝑈𝐼). If Γ ⊨ 𝜍𝑙 ≈ 𝜍𝑟 : Γ′ and ΓΓ′ ⊨ 𝑀 ≈ 𝑁 : 𝜏 , then

Γ ⊨ {𝜍𝑙 , force → 𝑀} ≈ {𝜍𝑟 , force → 𝑁 } : 𝑈 𝜏 .

Proof. Given Γ ⊨ 𝜍𝑙 ≈ 𝜍𝑟 : Γ′ and ΓΓ′ ⊨ 𝑀 ≈ 𝑁 : 𝜏 , we show that Γ ⊨ {𝜍𝑙 , force → 𝑀} ≈

{𝜍𝑟 , force → 𝑁 } : 𝑈 𝜏 by considering related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK

then proving

((Φ𝑙 , Build𝑉 (Σ𝑙 , {𝜍𝑙 , force → 𝑀}))

, (Φ𝑟 , Build𝑉 (Σ𝑟 , {𝜍𝑟 , force → 𝑁 }))) ∈ ValJ𝑈 𝜏K.

By the definition of building machine values and ValJ𝑈 𝜏K, this can be proved by showing

((Φ𝑙 , Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍𝑙), 𝑀)

, (Φ𝑟 , Σ𝑟 Build𝜍 (Σ𝑟 , 𝜍𝑟), 𝑁)) ∈ CompJ𝜏K.

Since we already know ((Φ𝑙 , Build𝜍 (Σ𝑙 , 𝜍𝑙)), (Φ𝑟 , Build𝜍 (Σ𝑟 , 𝜍𝑟))) ∈ EnvJΓ′K from our first

initial assumption with the environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK, the definition of

EnvJΓΓ′K allows us to conclude ((Φ𝑙 , Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍𝑙)), (Φ𝑟 , Σ𝑟 Build𝜍 (Σ𝑟 , 𝜍𝑟))) ∈ EnvJΓΓ′K.

We may then conclude this proof by our second initial assumption with these extended,

related environments. □

Proposition 7.19 (Compatibility 𝑈𝐸). If Γ ⊨ 𝑉 ≈𝑊 : 𝑈 𝜏 , then Γ ⊨ 𝑉.force ≈𝑊.force :

𝜏 .
142

Proof. Given Γ ⊨ 𝑉 ≈𝑊 : 𝑈 𝜏 , showing Γ ⊨ 𝑉.force ≈𝑊.force : 𝜏 requires considering

((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK and then proving ((Φ𝑙 , Σ𝑙 ,𝑉.force), (Φ𝑟 , Σ𝑟 ,𝑊.force)) ∈

CompJ𝜏K. By Proposition 7.8, it suffices to show that the pair is in StackJ𝜏Kx. Thus,

consider some Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K:

By our initial assumption with the related environments ((Φ′
𝑙
, Σ𝑙), (Φ′

𝑟 , Σ𝑟)) ∈ EnvJΓK

(using the Kripke property), we have ((Φ′
𝑙
, Build𝑉 (Σ𝑙 ,𝑉)), (Φ′

𝑟 , Build𝑉 (Σ𝑟 ,𝑊))) ∈

ValJ𝑈 𝜏K. By the definition of building values and ValJ𝑈 𝜏K, Build𝑉 (Σ𝑙 ,𝑉) =

{Σ′
𝑙
, force → 𝑀} and Build𝑉 (Σ𝑟 ,𝑊) = {Σ′𝑟 , force → 𝑁 } where we know the

computations are related, i.e. ((Φ′
𝑙
, Σ′

𝑙
, 𝑀), (Φ′

𝑟 , Σ
′
𝑟 , 𝑁)) ∈ CompJ𝜏K.

On the left side, we have the transition

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑉.force ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ′

𝑙
∥ 𝑀 ∥ 𝐾𝑙⟩⟩

And similarly for the right side.

And by Proposition 7.8, the property of the related stacks with Φ′
𝑙
⊒ Φ′

𝑙
, Φ′

𝑟 ⊒ Φ′
𝑟 , and

the related computations above, we can conclude that ⟨⟨Φ′
𝑙
∥ Σ′

𝑙
∥ 𝑀 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥

Σ′𝑟 ∥ 𝑀 ∥ 𝐾𝑟 ⟩⟩.

We may conclude that ⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑉.force ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑊.force ∥ 𝐾𝑟 ⟩⟩ by the

closure properties of (≃).

□

Proposition 7.20 (Compatibility 𝐹𝐼). If Γ ⊨ 𝑉 ≈𝑊 : 𝜏 , then Γ ⊨ ret 𝑉 ≈ ret𝑊 : 𝐹 𝜏 .

Proof. Given Γ ⊨ 𝑉 ≈ 𝑊 : 𝜏 , showing Γ ⊨ ret 𝑉 ≈ ret𝑊 : 𝐹 𝜏 requires considering

((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK and then proving ((Φ𝑙 , Σ𝑙 , ret 𝑉), (Φ𝑟 , Σ𝑟 , ret𝑊)) ∈
143

CompJ𝐹 𝜏K. By the definition of CompJ𝐹 𝜏K and double orthogonal inclusion, it is enough

to show that this triple is in IntroJ𝐹 𝜏K. This follows by combining our initial assumption

with the related environments. □

Proposition 7.21 (Compatibility 𝐹𝐸). If Γ ⊨ 𝑀 ≈ 𝑁 : 𝐹 𝜎 and Γ, 𝑥 :𝜎 ⊨ 𝑃 ≈ 𝑄 : 𝜏 , then

Γ ⊨ 𝑀 to 𝑥 in 𝑃 ≈ 𝑁 to 𝑥 in 𝑄 : 𝜏 .

Proof. Given Γ ⊨ 𝑀 ≈ 𝑁 : 𝐹 𝜎 and Γ, 𝑥 :𝜎 ⊨ 𝑃 ≈ 𝑄 : 𝜏 , showing Γ ⊨ 𝑀 to 𝑥 in 𝑃 ≈

𝑁 to 𝑥 in 𝑄 : 𝜏 requires considering some ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK and then proving

that ((Φ𝑙 , Σ𝑙 , 𝑀 to 𝑥 in 𝑅), (Φ𝑟 , Σ𝑟 , 𝑁 to 𝑥 in 𝑆)) ∈ SharedJ𝜏K. We pick 𝜏 to be a shared

computation, 𝑃 = 𝑅, and 𝑄 = 𝑆 , but the proof follows the same for computations types

since we have the same transitions. By Proposition 7.8, it suffices to show that the pair

StackJ𝜏Kx. Thus, consider an arbitrary Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈

StackJ𝜏K:

On the left side, we have the transition

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀 to 𝑥 in 𝑅 ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀 ∥ (Σ𝑙 ,□ to 𝑥 in 𝑅) · 𝐾𝑙⟩⟩

And similarly on the right.

((Φ′
𝑙
, Σ𝑙 , 𝑀), (Φ′

𝑟 , Σ𝑟 , 𝑁)) ∈ CompJ𝐹 𝜏K by our first initial assumption with the

environments ((Φ′
𝑙
, Σ𝑙), (Φ′

𝑟 , Σ𝑟)) ∈ EnvJΓK (closure under accessible worlds).

((Φ′
𝑙
, (Σ𝑙 ,□ to 𝑥 in 𝑅 · 𝐾𝑙)), (Φ′

𝑟 , (Σ𝑟 ,□ to 𝑥 in 𝑆) · 𝐾𝑟)) ∈ StackJ𝐹 𝜏K, by considering an

arbitrary Φ′′
𝑙
⊒ Φ′

𝑙
, Φ′′

𝑟 ⊒ Φ′
𝑟 , and ((Φ′′

𝑙
, Σ′

𝑙
, ret 𝑉), (Φ′′

𝑟 , Σ
′
𝑟 , ret𝑊)) ∈ IntroJ𝐹 𝜏K:

((Φ′′
𝑙
, Build𝑉 (Σ′𝑙 ,𝑉)), (Φ

′′
𝑟 , Build𝑉 (Σ′𝑟 ,𝑊))) ∈ ValJ𝜏K, by the definition of

IntroJ𝐹 𝜏K.

144

On the left side, there is the transition

⟨⟨Φ′′
𝑙
∥ Σ′

𝑙
∥ ret 𝑉 ∥ (Σ𝑙 ,□ to 𝑥 in 𝑅) · 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′′
𝑙
∥ Σ𝑙 , Build𝑉 (Σ′𝑙 ,𝑉)/𝑥 ∥ 𝑅 ∥ 𝐾𝑙⟩⟩

And similarly on the right.

By the definition of related environments:

((Φ′′
𝑙
, (Σ𝑙 , Build𝑉 (Σ′𝑙 ,𝑉)/𝑥)),

(Φ′′
𝑟 , (Σ𝑟 , Build𝑉 (Σ′𝑟 ,𝑊)/𝑥))) ∈ EnvJΓ, 𝑥 :𝜎K.

Note ((Φ′′
𝑙
, Σ𝑙), (Φ′′

𝑟 , Σ𝑟)) ∈ EnvJΓK by closure under accessible worlds.

((Φ′′
𝑙
, (Σ𝑙 , Build𝑉 (Σ′𝑙 ,𝑉)/𝑥), 𝑅)

, (Φ′′
𝑟 , (Σ𝑟 , Build𝑉 (Σ′𝑟 ,𝑊)/𝑥), 𝑆)) ∈ SharedJ𝜏K,

follows by the second initial assumption with the related environments

immediately above.

By Proposition 7.8 on ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K with Φ′′
𝑙
⊒ Φ′

𝑙
, Φ′′

𝑟 ⊒ Φ′
𝑟 , and

the related shared expressions above, we have ⟨⟨Φ′′
𝑙

∥ Σ𝑙 , Build𝑉 (Σ′𝑙 ,𝑉)/𝑥 ∥

𝑅 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′′
𝑟 ∥ Σ𝑟 , Build𝑉 (Σ′𝑟 ,𝑊)/𝑥 ∥ 𝑆 ∥ 𝐾𝑟 ⟩⟩.

⟨⟨Φ′′
𝑙

∥ Σ′
𝑙

∥ ret 𝑉 ∥ (Σ𝑙 ,□ to 𝑥 in 𝑅) · 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′′
𝑟 ∥ Σ′𝑟 ∥ ret𝑊 ∥

(Σ𝑟 ,□ to 𝑥 in 𝑆) · 𝐾𝑟 ⟩⟩ by the closure properties of (≃).

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀 ∥ (Σ𝑙 ,□ to 𝑥 in 𝑅) · 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑁 ∥ (Σ𝑟 ,□ to 𝑥 in 𝑆) · 𝐾𝑟 ⟩⟩ by

Proposition 7.8 with the related computation and stacks above with Φ′
𝑙
⊒ Φ′

𝑙
and

Φ′
𝑟 ⊒ Φ′

𝑟 .

145

Finally, ⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀 to 𝑥 in 𝑅 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑁 to 𝑥 in 𝑆 ∥ 𝐾𝑟 ⟩⟩ by the closure

properties of (≃).

□

Proposition 7.22 (Compatibility svar). If 𝑎:𝜏 ∈ Γ, then Γ ⊨ 𝑎 ≈ 𝑎 : 𝜏 .

Proof. Consider an arbitrary 𝑎:𝜏 ∈ Γ and ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK. We may conclude

((Φ𝑙 , Σ𝑙 , 𝑎), (Φ𝑟 , Σ𝑟 , 𝑎)) ∈ SharedJ𝜏K by the definition of EnvJΓK. □

Proposition 7.23 (Compatibility H). If Γ ⊢ 𝜍𝑙 ≈ 𝜍𝑟 : Γ′, ΓΓ′ ⊨ 𝑅 ≈ 𝑆 : 𝜏 and Γ, 𝑎:𝜏 ⊨ 𝑃 ≈

𝑄 : 𝜎 , then Γ ⊨ {𝜍𝑙 , 𝑅} memo 𝑎 in 𝑃 ≈ {𝜍𝑟 , 𝑆} memo 𝑎 in 𝑄 : 𝜎 .

Proof. Considering some arbitrary Γ ⊢ 𝜍𝑙 ≈ 𝜍𝑟 : Γ′, ΓΓ′ ⊨ 𝑅 ≈ 𝑆 : 𝜏 , and Γ, 𝑎:𝜏 ⊨ 𝑃 ≈

𝑄 : 𝜎 , we show Γ ⊨ {𝜍𝑙 , 𝑅} memo 𝑎 in 𝑃 ≈ {𝜍𝑟 , 𝑆} memo 𝑎 in 𝑄 : 𝜎 by considering

((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK and showing

((Φ𝑙 , Σ𝑙 , {𝜍𝑙 , 𝑅} memo 𝑎 in𝑀)

, (Φ𝑟 , Σ𝑟 , {𝜍𝑟 , 𝑆} memo 𝑎 in 𝑁)) ∈ CompJ𝜎K.

Note that we have picked 𝜎 to be a computation type 𝜎 , 𝑃 = 𝑀 , and𝑄 = 𝑁 ; the proof will

follow similarly for a shared type since the same transitions exist. By Proposition 7.8, it

is sufficient to show that the pair is in the set StackJ𝜎Kx. Note that for shared types, we

show the pair is in VStackJ𝜎Kx by definition. Thus, consider some Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and

((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜎K:

On the left side, there is the transition:

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ {𝜍𝑙 , 𝑅} memo 𝑎 in𝑀 ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
, 𝑙 ↦→ {Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍𝑙), 𝑅} ∥ Σ𝑙 , 𝑙/𝑎 ∥ 𝑀 ∥ 𝐾𝑙⟩⟩

And similarly on the right.
146

((Φ𝑙 , Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍𝑙), 𝑅)

, (Φ𝑟 , Σ𝑟 Build𝜍 (Σ𝑟 , 𝜍𝑟), 𝑆)) ∈ SharedJ𝜏K

by the first and second initial assumption together with our assumed related

environments.

Using Lemma 7.1, we know

(((Φ′
𝑙
, 𝑙𝑎 ↦→ {Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍𝑙), 𝑅}), (Σ𝑙 , 𝑙𝑎/𝑎))

, ((Φ′
𝑟 , 𝑙𝑎 ↦→ {Σ𝑟 Build𝜍 (Σ𝑟 , 𝜍𝑟), 𝑆}), (Σ𝑟 , 𝑙𝑎/𝑎))) ∈ EnvJΓ, 𝑎:𝜏K.

By the third initial assumption with the environment above,

(((Φ′
𝑙
, 𝑙𝑎 ↦→ {Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍𝑙), 𝑅}), (Σ𝑙 , 𝑙𝑎/𝑎), 𝑀)

, ((Φ′
𝑟 , 𝑙𝑎 ↦→ {Σ𝑟 Build𝜍 (Σ𝑟 , 𝜍𝑟), 𝑆}), (Σ𝑟 , 𝑙𝑎/𝑎), 𝑁)) ∈ CompJ𝜎K.

⟨⟨Φ′
𝑙
, 𝑙 ↦→ {Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍𝑙), 𝑅} ∥ Σ𝑙 , 𝑙/𝑎 ∥ 𝑀 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 , 𝑙 ↦→ {Σ𝑟 Build𝜍 (Σ𝑟 , 𝜍𝑟), 𝑆} ∥

Σ𝑟 , 𝑙/𝑎 ∥ 𝑁 ∥ 𝐾𝑟 ⟩⟩, by Proposition 7.8 on ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K

with the future heaps (Φ′
𝑙
, 𝑙 ↦→ {Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍𝑙), 𝑅}) ⊒ Φ′

𝑙
and (Φ′

𝑟 , 𝑙 ↦→

{Σ𝑟 Build𝜍 (Σ𝑟 , 𝜍𝑟), 𝑆}) ⊒ Φ′
𝑟 , and the related computations immediately above. (For

shared types, we apply the property of the related shared expressions to the value

stacks.)

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ {𝜍𝑙 , 𝑅} memo 𝑎 in𝑀 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ {𝜍𝑟 , 𝑆} memo 𝑎 in 𝑁 ∥ 𝐾𝑟 ⟩⟩ by the

closure properties of (≃).

□

Proposition 7.24 (Compatibility 𝑈̃𝐼). If Γ ⊨ 𝑉 ≈𝑊 : 𝜏 , Γ ⊨ box 𝑉 ≈ box𝑊 : 𝑈̃ 𝜏 .

147

Proof. Given Γ ⊨ 𝑉 ≈ 𝑊 : 𝜏 , we show Γ ⊨ box 𝑉 ≈ box𝑊 :

𝑈̃ 𝜏 by considering some ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK and then proving that

((Φ𝑙 , Build𝑉 (Σ𝑙 , box 𝑉)), (Φ𝑟 , Build𝑉 (Σ𝑟 , box𝑊))) ∈ ValJ𝑈̃ 𝜏K. By the definition of

building, we may conclude that Build𝑉 (Σ𝑙 , box 𝑉) = box Build𝑉 (Σ𝑙 ,𝑉) and similarly for

the right side. Our initial assumption with ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK allows us to

conclude that ((Φ𝑙 , Σ𝑙 ,𝑉), (Φ𝑟 , Σ𝑟 ,𝑊)) ∈ SharedJ𝜏K. We may conclude by the definition of

ValJ𝑈̃ 𝜏K and Lemma 7.2. □

Proposition 7.25 (Compatibility 𝑈̃𝐸). If Γ ⊨ 𝑉 ≈ 𝑊 : 𝑈̃ 𝜎 and Γ, 𝑎:𝜎 ⊨ 𝑃 ≈ 𝑄 : 𝜏 , then

Γ ⊨ case 𝑉 of {box 𝑎 → 𝑃} ≈ case𝑊 of {box 𝑎 → 𝑄} : 𝜏 .

Proof. Given that Γ ⊨ 𝑉 ≈ 𝑊 : 𝑈̃ 𝜎 and Γ, 𝑎:𝜎 ⊨ 𝑃 ≈ 𝑄 : 𝜏 , we prove Γ ⊨

case 𝑉 of {box 𝑎 → 𝑃} ≈ case 𝑊 of {box 𝑎 → 𝑄} : 𝜏 , by first considering

((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK and then showing

((Φ𝑙 , Σ𝑙 , case𝑉 of {box 𝑎 → 𝑀})

, (Φ𝑟 , Σ𝑟 , case𝑊 of {box 𝑎 → 𝑁 })) ∈ CompJ𝜏K.

We have chosen 𝜏 to be a computation type, 𝑃 = 𝑀 , and𝑄 = 𝑁 , but the proof follows the

same for shared types since we have the same transitions. By Proposition 7.8, this is the

same as showing that the triple is in StackJ𝜌Kx. Thus, we suppose an arbitrary Φ′
𝑙
⊒ Φ𝑙 ,

Φ′
𝑟 ⊒ Φ𝑟 , and ((Φ′

𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜌K:

((Φ′
𝑙
, Build𝑉 (Σ𝑙 ,𝑉)), (Φ′

𝑟 , Build𝑉 (Σ𝑟 ,𝑊))) ∈ ValJ𝑈̃ 𝜎K by the first initial assumption

with the related environments ((Φ′
𝑙
, Σ𝑙), (Φ′

𝑟 , Σ𝑟)) ∈ EnvJΓK (making use of the

Kripke property). By this definition, we also know Build𝑉 (Σ𝑙 ,𝑉) = box V

and Build𝑉 (Σ𝑟 ,𝑊) = boxW with the property that (Run(Φ′
𝑙
,V), Run(Φ′

𝑟 ,W)) ∈

SharedJ𝜏K.

148

On the left side, we have the transition

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ case 𝑉 of {box 𝑎 → 𝑀} ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ,V/𝑎 ∥ 𝑀 ∥ 𝐾𝑙⟩⟩

And similarly on the right side.

((Φ′
𝑙
, (Σ𝑙 ,V/𝑎)), (Φ′

𝑟 , (Σ𝑟 ,W/𝑎))) ∈ EnvJΓ, 𝑎:𝜎K, by definition and that running them

gives related shared expressions. And thus, we may use our second initial

assumption with these related environments to conclude that

((Φ′
𝑙
, (Σ𝑙 ,V/𝑎), 𝑀)

, (Φ′
𝑟 , (Σ𝑟 ,W/𝑎), 𝑁)) ∈ CompJ𝜏K.

By Proposition 7.8, the property of our related stacks in combination with Φ′
𝑙
⊒ Φ′

𝑙
,

Φ′
𝑟 ⊒ Φ′

𝑟 , and these related computations, gives us ⟨⟨Φ′
𝑙
∥ Σ𝑙 ,V/𝑎 ∥ 𝑀 ∥ 𝐾𝑙⟩⟩ ≃

⟨⟨Φ′
𝑟 ∥ Σ𝑟 ,W/𝑎 ∥ 𝑁 ∥ 𝐾𝑟 ⟩⟩.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ case 𝑉 of {box 𝑎 → 𝑀} ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ case𝑊 of {box 𝑎 → 𝑁 } ∥

𝐾𝑟 ⟩⟩ by the closure rules for (≃).

□

Proposition 7.26 (Compatibility 𝑈𝐼). If Γ ⊢ 𝜍𝑙 ≈ 𝜍𝑟 : Γ′ and ΓΓ′ ⊨ 𝑀 ≈ 𝑁 : 𝜏 , then

Γ ⊨ {𝜍𝑙 , enter → 𝑀} ≈ {𝜍𝑟 , enter → 𝑁 } : 𝑈 𝜏 .

Proof. Given Γ ⊢ 𝜍𝑙 ≈ 𝜍𝑟 : Γ′ and ΓΓ′ ⊨ 𝑀 ≈ 𝑁 : 𝜏 , showing Γ ⊨

{𝜍𝑙 , enter → 𝑀} ≈ {𝜍𝑟 , enter → 𝑁 } : 𝑈 𝜏 requires that we consider related

149

environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK and show that

((Φ𝑙 , Σ𝑙 , {𝜍𝑙 , enter → 𝑀})

, (Φ𝑟 , Σ𝑟 , {𝜍𝑟 , enter → 𝑁 })) ∈ SharedJ𝑈 𝜏K.

As ValJ𝑈 𝜏K ⊆ SharedJ𝑈 𝜏K, it will suffice to show that the triple is in ValJ𝑈 𝜏K. Thus,

consider an arbitrary Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and ((Φ′
𝑙
,□.enter · 𝐾𝑙), (Φ′

𝑟 ,□.enter · 𝐾𝑟)) ∈

ElimJ𝑈 𝜏K:

On the left side, there is the transition:

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ {𝜍𝑙 , enter → 𝑀} ∥ □.enter · 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍𝑙) ∥ 𝑀 ∥ 𝐾𝑙⟩⟩

And similarly on the right.

((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K, by definition.

((Φ′
𝑙
, Build𝜍 (Σ𝑙 , 𝜍𝑙)), (Φ′

𝑟 , Build𝜍 (Σ𝑟 , 𝜍𝑟))) ∈ EnvJΓ′K from our first initial assumption

with the related environments ((Φ′
𝑙
, Σ𝑙), (Φ′

𝑟 , Σ𝑟)) ∈ EnvJΓK (using the Kripke

property).

The extended environments are related

((Φ′
𝑙
, Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍𝑙))

, (Φ′
𝑟 , Σ𝑟 Build𝜍 (Σ𝑟 , 𝜍𝑟))) ∈ EnvJΓΓ′K

by definition.

150

((Φ′
𝑙
, Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍𝑙), 𝑀)

, (Φ′
𝑟 , Σ𝑟 Build𝜍 (Σ𝑟 , 𝜍𝑟), 𝑁)) ∈ CompJ𝜏K

from these related environments with our second initial assumption.

It follows that ⟨⟨Φ′
𝑙
∥ Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍𝑙) ∥ 𝑀 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 Build𝜍 (Σ𝑟 , 𝜍𝑟) ∥ 𝑁 ∥ 𝐾𝑟 ⟩⟩,

by Proposition 7.8 with the related computations above in the worlds Φ′
𝑙
⊒ Φ′

𝑙
, Φ′

𝑟 ⊒

Φ′
𝑟 , and ((Φ′

𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ {𝜍𝑙 , enter → 𝑀} ∥ □.enter · 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ {𝜍𝑟 , enter → 𝑁 } ∥

□.enter · 𝐾𝑟 ⟩⟩, by the closure properties of (≃).

□

Proposition 7.27 (Compatibility𝑈𝐸). If Γ ⊨ 𝑅 ≈ 𝑆 : 𝑈 𝜏 , then Γ ⊨ 𝑅.enter ≈ 𝑆.enter : 𝜏 .

Proof. Given Γ ⊨ 𝑅 ≈ 𝑆 : 𝑈 𝜏 , showing that Γ ⊨ 𝑅.enter ≈ 𝑆.enter : 𝜏 requires

considering further the related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK and then

proving ((Φ𝑙 , Σ𝑙 , 𝑅.enter), (Φ𝑟 , Σ𝑟 , 𝑆 .enter)) ∈ CompJ𝜏K. By Proposition 7.8, it suffices to

show that the pair is in the set StackJ𝜏Kx. Thus, further consider some Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 ,

and ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K:

On the left side, there is the transition:

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑅.enter ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑅 ∥ □.enter · 𝐾𝑙⟩⟩

And similarly on the right.

((Φ′
𝑙
,□.enter · 𝐾𝑙), (Φ′

𝑟 ,□.enter · 𝐾𝑟)) ∈ StackJ𝑈 𝜏K, by definition.

151

((Φ′
𝑙
, Σ𝑙 , 𝑅), (Φ′

𝑟 , Σ𝑟 , 𝑆)) ∈ SharedJ𝑈 𝜏K, by the initial assumption with the related

environments ((Φ′
𝑙
, Σ𝑙), (Φ′

𝑟 , Σ𝑟)) ∈ EnvJΓK (closure under accessible worlds).

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑅 ∥ □.enter · 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑅 ∥ □.enter · 𝐾𝑟 ⟩⟩ by the property of

((Φ′
𝑙
, Σ𝑙 , 𝑅), (Φ′

𝑟 , Σ𝑟 , 𝑆)) ∈ SharedJ𝑈 𝜏K with Φ′
𝑙
⊒ Φ′

𝑙
, Φ′

𝑟 ⊒ Φ′
𝑟 , and ((Φ′

𝑙
,□.enter ·

𝐾𝑙), (Φ′
𝑟 ,□.enter · 𝐾𝑟)) ∈ StackJ𝑈 𝜏K.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑅.enter ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑆.enter ∥ 𝐾𝑟 ⟩⟩ by the closure properties of

(≃).

□

Proposition 7.28 (Compatibility 𝐹𝐼). If Γ ⊨ 𝑉 ≈𝑊 : 𝜏 , then Γ ⊨ val 𝑉 ≈ val𝑊 : 𝐹 𝜏 .

Proof. Given Γ ⊨ 𝑉 ≈ 𝑊 : 𝜏 , showing both Γ ⊨ val 𝑉 ≈ val𝑊 : 𝐹 𝜏 and

Γ ⊨ val 𝑉 ≈ val𝑊 : 𝐹 𝜏 require considering related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈

EnvJΓK. By our initial assumption with these related environments, we may conclude

that ((Φ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)), (Φ𝑟 , Build𝑉 (Σ𝑟 ,𝑊))) ∈ ValJ𝜏K. This is enough to conclude

((Φ𝑙 , Σ𝑙 , val 𝑉), (Φ𝑟 , Σ𝑟 , val𝑊)) ∈ IntroJ𝐹 𝜏K and by the inclusion properties of,

with the definitions of the relations for this type, ((Φ𝑙 , Σ𝑙 , val 𝑉), (Φ𝑟 , Σ𝑟 , val𝑊)) ∈

SharedJ𝐹 𝜏K. □

Proposition 7.29 (Compatibility 𝐹𝐸). If Γ ⊨ 𝑅 ≈ 𝑆 : 𝐹 𝜎 and Γ, 𝑥 :𝜎 ⊨ 𝑃 ≈ 𝑄 : 𝜏 , then

Γ ⊨ 𝑅 to 𝑥 in 𝑃 ≈ 𝑆 to 𝑥 in 𝑄 : 𝜏 .

Proof. Given Γ ⊨ 𝑅 ≈ 𝑆 : 𝐹 𝜎 and Γ, 𝑥 :𝜎 ⊨ 𝑃 ≈ 𝑄 : 𝜏 , showing Γ ⊨ 𝑅 to 𝑥 in 𝑃 ≈

𝑆 to 𝑥 in 𝑄 : 𝜏 requires considering related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK

and then proving that ((Φ𝑙 , Σ𝑙 , 𝑅 to 𝑥 in𝑀), (Φ𝑟 , Σ𝑟 , 𝑆 to 𝑥 in 𝑁)) ∈ CompJ𝜏K. We have

chosen 𝜏 to be a computation, 𝑃 = 𝑀 , and𝑄 = 𝑁 , but the proof follows the same for shared

types since we have the same transitions. By Proposition 7.8, it suffices to show that the
152

pair is in StackJ𝜏Kx. Thus, consider an arbitrary Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈

StackJ𝜏K:

On the left side, we have the transition

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑅 to 𝑥 in𝑀 ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑅 ∥ (Σ𝑙 ,□ to 𝑥 in𝑀) · 𝐾𝑙⟩⟩

And similarly on the right.

((Φ𝑙 , Σ𝑙 , 𝑅), (Φ𝑟 , Σ𝑟 , 𝑆)) ∈ SharedJ𝐹 𝜏K by our first initial assumption with the related

environments ((Φ′
𝑙
, Σ𝑙), (Φ′

𝑟 , Σ𝑟)) ∈ EnvJΓK (closure under accessible worlds).

((Φ′
𝑙
, (Σ𝑙 ,□ to 𝑥 in𝑀 · 𝐾𝑙)), (Φ′

𝑟 , (Σ𝑟 ,□ to 𝑥 in 𝑁) · 𝐾𝑟)) ∈ VStackJ𝐹 𝜏K and thus

StackJ𝐹 𝜏K with the inclusion properties of the relation, by considering an arbitrary

Φ′′
𝑙
⊒ Φ′

𝑙
, Φ′′

𝑟 ⊒ Φ′
𝑟 , and ((Φ′′

𝑙
, Σ′

𝑙
, val 𝑉), (Φ′′

𝑟 , Σ
′
𝑟 , val𝑊)) ∈ IntroJ𝐹 𝜏K:

((Φ′′
𝑙
, Build𝑉 (Σ′𝑙 ,𝑉)), (Φ

′′
𝑟 , Build𝑉 (Σ′𝑟 ,𝑊))) ∈ ValJ𝜏K by the definition of IntroJ𝐹 𝜏K.

On the left side, there is the transition

⟨⟨Φ′′
𝑙
∥ Σ′

𝑙
∥ val 𝑉 ∥ (Σ𝑙 ,□ to 𝑥 in𝑀) · 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′′
𝑙
∥ Σ𝑙 , Build𝑉 (Σ′𝑙 ,𝑉)/𝑥 ∥ 𝑀 ∥ 𝐾𝑙⟩⟩

And similarly on the right.

((Φ′′
𝑙
, (Σ𝑙 , Build𝑉 (Σ′𝑙 ,𝑉)/𝑥))

, (Φ′′
𝑟 , (Σ𝑟 , Build𝑉 (Σ′𝑟 ,𝑊)/𝑥))) ∈ EnvJΓ, 𝑥 :𝜎K,

by definition; note ((Φ′′
𝑙
, Σ𝑙), (Φ′′

𝑟 , Σ𝑟)) ∈ EnvJΓK by closure under accessible

worlds.

153

((Φ′′
𝑙
, (Σ𝑙 , Build𝑉 (Σ′𝑙 ,𝑉)/𝑥), 𝑀)

, (Φ′′
𝑟 , (Σ𝑟 , Build𝑉 (Σ′𝑟 ,𝑊)/𝑥), 𝑁)) ∈ CompJ𝜏K,

by the second initial assumption with the related environments immediately

above.

By Proposition 7.8 on ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K with future heaps Φ′′
𝑙
⊒ Φ′

𝑙

and Φ′′
𝑟 ⊒ Φ′

𝑟 , and the related shared expressions immediately above allow

us to conclude that ⟨⟨Φ′′
𝑙

∥ Σ𝑙 , Build𝑉 (Σ′𝑙 ,𝑉)/𝑥 ∥ 𝑀 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′′
𝑟 ∥

Σ𝑟 , Build𝑉 (Σ′𝑟 ,𝑊)/𝑥 ∥ 𝑁 ∥ 𝐾𝑟 ⟩⟩.

By the closure properties of (≃), ⟨⟨Φ′′
𝑙
∥ Σ′

𝑙
∥ val 𝑉 ∥ (Σ𝑙 ,□ to 𝑥 in𝑀) · 𝐾𝑙⟩⟩ ≃

⟨⟨Φ′′
𝑟 ∥ Σ′𝑟 ∥ val𝑊 ∥ (Σ𝑟 ,□ to 𝑥 in 𝑁) · 𝐾𝑟 ⟩⟩.

By Proposition 7.8 with the related shared computation and stacks above in the world

Φ′
𝑙
⊒ Φ′

𝑙
, Φ′

𝑟 ⊒ Φ′
𝑟 , we know ⟨⟨Φ′

𝑙
∥ Σ𝑙 ∥ 𝑅 ∥ (Σ𝑙 ,□ to 𝑥 in𝑀) ·𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑆 ∥

(Σ𝑟 ,□ to 𝑥 in 𝑁) · 𝐾𝑟 ⟩⟩.

Finally, ⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑅 to 𝑥 in𝑀 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑆 to 𝑥 in 𝑁 ∥ 𝐾𝑟 ⟩⟩ by the closure

properties of (≃).

□

Proposition 7.30 (Compatibility 𝐹𝐼). If Γ ⊨ 𝑅 ≈ 𝑆 : 𝜏 , then Γ ⊨ {eval → 𝑅} ≈

{eval → 𝑆} : 𝐹 𝜏 .

Proof. Given Γ ⊨ 𝑅 ≈ 𝑆 : 𝜏 , we prove that Γ ⊨ {eval → 𝑅} ≈ {eval → 𝑆} : 𝐹 𝜏 by

considering ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK and proving that

((Φ𝑙 , Σ𝑙 , {eval → 𝑅}), (Φ𝑟 , Σ𝑟 , {eval → 𝑆})) ∈ CompJ𝐹 𝜏K.

154

By definition, this is equivalent to showing that the pair is in ElimJ𝐹 𝜏Kx. Thus,

considering an arbitrary Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ, and ((Φ′
𝑙
,□.eval · 𝐾𝑙), (Φ′

𝑟 ,□.eval · 𝐾𝑟)) ∈

ElimJ𝐹 𝜏K:

By definition of ElimJ𝐹 𝜏K, we know ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K.

By the first of our initial assumptions with related environments ((Φ′
𝑙
, Σ𝑙), (Φ′

𝑟 , Σ𝑟)) ∈

EnvJΓK (closed with accessible worlds), we know ((Φ′
𝑙
, Σ𝑙 , 𝑅), (Φ′

𝑟 , Σ𝑟 , 𝑆)) ∈

SharedJ𝜏K.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑅 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑆 ∥ 𝐾𝑟 ⟩⟩, by the definition of ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈

StackJ𝜏K in the worlds Φ′
𝑙
⊒ Φ′

𝑙
and Φ′

𝑟 ⊒ Φ′
𝑟 , with the related expressions above.

On the left side, we have the transition

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ {eval → 𝑅} ∥ □.eval · 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑅 ∥ 𝐾𝑙⟩⟩

Similarly on the right.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ {eval → 𝑅} ∥ □.eval · 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ {eval → 𝑆} ∥ □.eval · 𝐾𝑟 ⟩⟩, by

the closure properties of (≃).

□

Proposition 7.31 (Compatibility 𝐹𝐸). If Γ ⊨ 𝑀 ≈ 𝑁 : 𝐹 𝜏 , then Γ ⊨ 𝑀.eval ≈ 𝑁 .eval : 𝜏 .

Proof. Given Γ ⊨ 𝑀 ≈ 𝑁 : 𝐹 𝜏 , we show Γ ⊨ 𝑀.eval ≈ 𝑁 .eval : 𝜏 by first considering

((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK and then proving ((Φ𝑙 , Σ𝑙 , 𝑀.eval), (Φ𝑟 , Σ𝑟 , 𝑁 .eval)) ∈

SharedJ𝜏K. By definition, this is the same as showing that the pair is in VStackJ𝜏Kx. Thus,

consider some Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and ((Φ′
𝑙
,K𝑙), (Φ′

𝑟 ,K𝑟)) ∈ VStackJ𝜏K:

155

On the left side, we have the transition

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀.eval ∥ K𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀 ∥ □.eval · K𝑙⟩⟩

And similarly on the right.

((Φ′
𝑙
, Σ𝑙 , 𝑀), (Φ′

𝑟 , Σ𝑟 , 𝑁)) ∈ CompJ𝐹 𝜏K, by our initial assumption with the related

environments above (note closure over accessible worlds).

((Φ′
𝑙
,K𝑙), (Φ′

𝑟 ,K𝑟)) ∈ StackJ𝜏K, since VStackJ𝜏K ⊆ StackJ𝜏K.

((Φ′
𝑙
,□.eval ·K𝑙), (Φ′

𝑟 ,□.eval ·K𝑟)) ∈ StackJ𝐹 𝜏K by definition. This and Proposition 7.8

with Φ′
𝑙
⊒ Φ′

𝑙
, Φ′

𝑟 ⊒ Φ′
𝑟 , and the related computations above yields that ⟨⟨Φ′

𝑙
∥ Σ𝑙 ∥

𝑀 ∥ □.eval · K𝑙⟩⟩ ≃ ⟨⟨Φ′
𝑟 ∥ Σ𝑟 ∥ 𝑁 ∥ □.eval · K𝑟 ⟩⟩.

By the closure properties of (≃), we have ⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀.eval ∥ K𝑙⟩⟩) ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥

𝑁 .eval ∥ K𝑟 ⟩⟩.

□

Proposition 7.32 (Compatibility Γ𝐼𝐵). Γ ⊨ 𝜀 ≈ 𝜀 : 𝜀.

Proof. Since the captured environment is empty, this case holds trivially for any related

environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK. □

Proposition 7.33 (Compatibility Γ𝐼𝐼1). If Γ ⊨ 𝑉 ≈ 𝑊 : 𝜏 and Γ ⊨ 𝜍𝑙 ≈ 𝜍𝑟 : Γ′, then

Γ ⊨ (𝜍𝑙 ,𝑉 /𝑥) ≈ (𝜍𝑟 ,𝑊 /𝑥) : (Γ′, 𝑥 :𝜏).

Proof. Given Γ ⊨ 𝑉 ≈ 𝑊 : 𝜏 and Γ ⊨ 𝜍𝑙 ≈ 𝜍𝑟 : Γ′, we show Γ ⊨ (𝜍𝑙 ,𝑉 /𝑥) ≈ (𝜍𝑟 ,𝑊 /𝑥) :

(Γ′, 𝑥 :𝜏) by considering arbitrary related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK then

156

proving that

((Φ𝑙 , Build𝜍 (Σ𝑙 , (𝜍𝑙 ,𝑉 /𝑥)))

, (Φ𝑟 , Build𝜍 (Σ𝑟 , (𝜍𝑟 ,𝑊 /𝑥)))) ∈ EnvJΓ′, 𝑥 :𝜏K.

By our first initial assumption with the related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈

EnvJΓK, we know ((Φ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)), (Φ𝑟 , Build𝑉 (Σ𝑟 ,𝑊))) ∈ ValJ𝜏K. And by the second,

((Φ𝑙 , Build𝜍 (Σ𝑙 , 𝜍𝑙)), (Φ𝑟 , Build𝜍 (Σ𝑟 , 𝜍𝑟))) ∈ EnvJΓ′K. Considering some arbitrary 𝑦:𝜎 ∈

Γ′, 𝑥 :𝜏 , there are two cases to prove depending on whether 𝑥 = 𝑦. If so, then we have the

related values at hand. Otherwise, we find the related shared expressions or values by

looking further back in the constructed environment. □

Proposition 7.34 (Compatibility Γ𝐼𝐼2). If Γ ⊨ 𝑉 ≈ 𝑊 : 𝜏 and Γ ⊨ 𝜍𝑙 ≈ 𝜍𝑟 : Γ′, then

Γ ⊨ (𝜍𝑙 ,𝑉 /𝑎) ≈ (𝜍𝑟 ,𝑊 /𝑎) : (Γ′, 𝑎:𝜏).

Proof. Follows in a similar manner to compatibility for the Γ𝐼𝐼1 rule. □

Proposition 7.35 (Semantic Congruence). Semantic equivalence forms a congruence

relation; it is:

1. Reflexive: If Γ ⊢ 𝐴 : 𝜏 then Γ ⊨ 𝐴 ≈ 𝐴 : 𝜏 ,

2. Symmetric: If Γ ⊨ 𝐴 ≈ 𝐵 : 𝜏 then Γ ⊨ 𝐵 ≈ 𝐴 : 𝜏 ,

3. Transitive: If Γ ⊨ 𝐴 ≈ 𝐵 : 𝜏 and Γ ⊨ 𝐵 ≈ 𝐶 : 𝜏 then Γ ⊨ 𝐴 ≈ 𝐶 : 𝜏 , and

4. Compatible: If Γ ⊨ 𝐴 ≈ 𝐵 : 𝜏 and Γ′ ⊢ 𝐶 [𝐷] : 𝜎 for all Γ ⊢ 𝐷 : 𝜏 , then Γ′ ⊨ 𝐶 [𝐴] ≈

𝐶 [𝐵] : 𝜎 .

Lemma 7.6 (Fundamental Lemma). If Γ ⊢ 𝐴 = 𝐵 : 𝜏 , then Γ ⊨ 𝐴 ≈ 𝐵 : 𝜏 .

Proof. By induction on the equality derivation:

157

Case 𝛽→:

Γ ⊢ (𝜆𝑥 .𝑀) 𝑉 = 𝑀 [𝑉 /𝑥] : 𝜏

Considering related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK, we show

((Φ𝑙 , Σ𝑙 , (𝜆𝑥 .𝑀) 𝑉), (Φ𝑟 , Σ𝑟 , 𝑀 [𝑉 /𝑥])) ∈ CompJ𝜏K. By Proposition 7.8, it is enough

to show that the pair is in StackJ𝜏Kx. Thus, further consider some Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 ,

and ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K:

On the left, there are the transitions:

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ (𝜆𝑥. 𝑀) 𝑉 ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝜆𝑥 .𝑀 ∥ □ Build𝑉 (Σ𝑙 ,𝑉) · 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)/𝑥 ∥ 𝑀 ∥ 𝐾𝑙⟩⟩

Note that Γ ⊢ 𝑀 : 𝜎 → 𝜏 and Γ ⊢ 𝑉 : 𝜎 follows from the equality.

((Φ′
𝑙
, (Σ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)/𝑥), 𝑀)

, (Φ′
𝑟 , Σ𝑟 , 𝑀 [𝑉 /𝑥])) ∈ CompJ𝜏K,

by Corollary 7.1 with the related environments above (considering closure

under accessible heaps). And this pair is in StackJ𝜏Kx by Proposition 7.8.

⟨⟨Φ′
𝑙

∥ Σ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)/𝑥 ∥ 𝑀 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′
𝑟 ∥ Σ𝑟 ∥ 𝑀 [𝑉 /𝑥] ∥ 𝐾𝑟 ⟩⟩

by the property of the related computations with Φ′
𝑙
⊒ Φ′

𝑙
, Φ′

𝑟 ⊒ Φ′
𝑟 , and

((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ (𝜆𝑥 .𝑀) 𝑉 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑀 [𝑉 /𝑥] ∥ 𝐾𝑟 ⟩⟩ by the closure

properties of (≃).

Case 𝛽&1:

Γ ⊢ {fst → 𝑀 ; snd → 𝑁 }.fst = 𝑀 : 𝜏
158

Considering related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK, we must show

((Φ𝑙 , Σ𝑙 , {fst → 𝑀 ; snd → 𝑁 }.fst)

, (Φ𝑟 , Σ𝑟 , 𝑀)) ∈ CompJ𝜏K.

By Proposition 7.8, it is enough to show that the pair is in StackJ𝜏Kx. Thus, further

consider some Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K:

On the left, there is the transition sequence:

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ {fst → 𝑀 ; snd → 𝑁 }.fst ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ {fst → 𝑀 ; snd → 𝑁 } ∥ □.fst · 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀 ∥ 𝐾𝑙⟩⟩

Note that Γ ⊢ 𝑀 : 𝜏 follows from the equality. And by the reflexivity of (≈)

with the related environments, ((Φ𝑙 , Σ𝑙 , 𝑀), (Φ𝑟 , Σ𝑟 , 𝑀)) ∈ CompJ𝜏K. Using

Proposition 7.8, this pair is in the set StackJ𝜏Kx.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑀 ∥ 𝐾𝑟 ⟩⟩ follows from the property of the

related computations above with Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈

StackJ𝜏K.

The closure properties of (≃) yield that ⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ {fst → 𝑀 ; snd → 𝑁 }.fst ∥

𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′
𝑟 ∥ Σ𝑟 ∥ 𝑀 ∥ 𝐾𝑟 ⟩⟩.

Case 𝛽&2:

Γ ⊢ {fst → 𝑀 ; snd → 𝑁 }.snd = 𝑁 : 𝜏

Follows in the same manner as the case immediately above.

159

Case 𝛽⊗:

Γ ⊢ case ⟨𝑉 ,𝑊 ⟩ of {⟨𝑥,𝑦⟩ → 𝑃} = 𝑃 [𝑉 /𝑥,𝑊 /𝑦] : 𝜏

Note that we prove this for the shared computation case where 𝜏 = 𝜏 and 𝑃 = 𝑅,

but the proof follows in a similar manner for the computation case since the same

transitions exist. Considering arbitrary related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈

EnvJΓK, we must show that

((Φ𝑙 , Σ𝑙 , case ⟨𝑉 ,𝑊 ⟩ of {⟨𝑥,𝑦⟩ → 𝑅})

, (Φ𝑟 , Σ𝑟 , 𝑅 [𝑉 /𝑥,𝑊 /𝑦])) ∈ SharedJ𝜏K.

By Proposition 7.8, it is enough to show that the pair is in StackJ𝜏Kx. Thus, further

consider some Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K:

On the left, there is the transition:

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ case ⟨𝑉 ,𝑊 ⟩ of {⟨𝑥,𝑦⟩ → 𝑅} ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)/𝑥, Build𝑉 (Σ𝑙 ,𝑊)/𝑦 ∥ 𝑅 ∥ 𝐾𝑙⟩⟩

Note that Γ ⊢ ⟨𝑉 ,𝑊 ⟩ : 𝜎 ⊗ 𝜌 and Γ, 𝑥 :𝜎,𝑦:𝜌 ⊢ 𝑅 : 𝜏 follows from the equality.

By inversion on the former, we know Γ ⊢ 𝑉 : 𝜎 and Γ ⊢ 𝑊 : 𝜌 . Applying

Corollary 7.1 with our related environments, we know

((Φ𝑙 , (Σ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)/𝑥, Build𝑉 (Σ𝑙 ,𝑊)/𝑦), 𝑅)

, (Φ𝑟 , Σ𝑟 , 𝑅 [𝑉 /𝑥,𝑊 /𝑦])) ∈ SharedJ𝜏K.

By Proposition 7.8, the pair is in the set StackJ𝜏Kx.

160

⟨⟨Φ′
𝑙

∥ Σ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)/𝑥,Build𝑉 (Σ𝑙 ,𝑊)/𝑦 ∥ 𝑅 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′
𝑟 ∥ Σ𝑟 ∥

𝑅 [𝑉 /𝑥,𝑊 /𝑦] ∥ 𝐾𝑟 ⟩⟩, by the above related expressions with Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 ,

and ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ case ⟨𝑉 ,𝑊 ⟩ of {⟨𝑥,𝑦⟩ → 𝑅} ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑅 [𝑉 /𝑥,𝑊 /𝑦] ∥

𝐾𝑟 ⟩⟩, by the backwards closure of (≃).

Case 𝛽𝑈 :

Γ ⊢ {𝜍, force → 𝑀}.force = 𝑀 [𝜍] : 𝜏

Considering related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK, we must be able to

show that

((Φ𝑙 , Σ𝑙 , {𝜍, force → 𝑀}.force), (Φ𝑟 , Σ𝑟 , 𝑀)) ∈ CompJ𝜏K.

By Proposition 7.8, it is enough to show that the pair is in StackJ𝜏Kx. Thus, further

consider some Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and ((Φ′
𝑙
, 𝐾𝑙), (Φ𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K:

On the left, there is the transition:

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ {𝜍, force → 𝑀}.force ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍) ∥ 𝑀 ∥ 𝐾𝑙⟩⟩

Note that Γ ⊢ {𝜍, force → 𝑀} : 𝑈 𝜏 follows from the equality. By inversion, we

know Γ ⊢ 𝜍 : Γ′ and ΓΓ′ ⊢ 𝑀 : 𝜏 . Applying Corollary 7.1 with the assumed

related environments, we know

((Φ𝑙 , Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍), 𝑀), (Φ𝑟 , Σ𝑟 , 𝑀 [𝜍])) ∈ CompJ𝜏K.

161

By Proposition 7.8, this pair is in the set StackJ𝜏Kx.

⟨⟨Φ′
𝑙
∥ Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍) ∥ 𝑀 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑀 [𝜍] ∥ 𝐾𝑟 ⟩⟩, by the related

computations above with Φ′
𝑙
⊒ Φ, Φ′

𝑟 ⊒ Φ𝑟 , and ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ {𝜍, force → 𝑀}.force ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑀 [𝜍] ∥ 𝐾𝑟 ⟩⟩, by the

backwards closure of (≃).

Case 𝛽𝐹 :

Γ ⊢ (ret 𝑉) to 𝑥 in 𝑃 = 𝑃 [𝑉 /𝑥] : 𝜏

Note that we prove this for the computation case where 𝑃 = 𝑀 and 𝜏 = 𝜏 , but

the proof follows in the same manner for shared computations since the same

transitions exist. Considering related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK,

we must show that
((Φ𝑙 , Σ𝑙 , (ret 𝑉) to 𝑥 in𝑀)

, (Φ𝑟 , Σ𝑟 , 𝑀 [𝑉 /𝑥])) ∈ CompJ𝜏K.

By Proposition 7.8, we may just show that the pair is in the set StackJ𝜏Kx. Thus,

further consider some Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑙)) ∈ StackJ𝜏K:

On the left, there is the transition sequence:

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ (ret 𝑉) to 𝑥 in𝑀 ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ ret 𝑉 ∥ (Σ𝑙 ,□ to 𝑥 in𝑀) · 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)/𝑥 ∥ 𝑀 ∥ 𝐾𝑙⟩⟩

Note that Γ ⊢ (ret 𝑉) to 𝑥 in𝑀 : 𝜏 follows from the equality. By inversion, we

can conclude that Γ ⊢ 𝑉 : 𝜎 and Γ, 𝑥 :𝜎 ⊢ 𝑀 : 𝜏 . By Corollary 7.1 with our

162

related environments, we know

((Φ𝑙 , (Σ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)/𝑥), 𝑀)

, (Φ𝑟 , Σ𝑟 , 𝑀 [𝑉 /𝑥])) ∈ CompJ𝜏K.

And further, Proposition 7.8 says that the pair is in the set StackJ𝜏Kx.

⟨⟨Φ′
𝑙
∥ Σ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)/𝑥 ∥ 𝑀 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑀 [𝑉 /𝑥] ∥ 𝐾𝑟 ⟩⟩, by the

property of the related computations above with Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and

((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ (ret 𝑉) to 𝑥 in𝑀 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑀 [𝑉 /𝑥] ∥ 𝐾𝑟 ⟩⟩, by the closure

properties of (≃).

Case 𝛽𝑈̃ :

Γ ⊢ case (box 𝑉) of {box 𝑎 → 𝑃} = 𝑃 [𝑉 /𝑎] : 𝜏

Note that we prove this for the computation case where 𝜏 = 𝜏 and 𝑃 = 𝑀 , but

the proof follows in a similar manner for the computation case since the same

transitions exist. Considering related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK,

we must show that

((Φ𝑙 , Σ𝑙 , case (box 𝑉) of {box 𝑎 → 𝑀})

, (Φ𝑟 , Σ𝑟 , 𝑀 [𝑉 /𝑥])) ∈ CompJ𝜏K.

It is enough to show that the pair is in StackJ𝜏Kx by Proposition 7.8. Thus, further

consider some Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K:

163

On the left, there is the transition:

⟨⟨Φ𝑙 ∥ Σ𝑙 ∥ case (box 𝑉) of {box 𝑥 → 𝑀} ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ𝑙 ∥ Σ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)/𝑥 ∥ 𝑀 ∥ 𝐾𝑙⟩⟩

Note that Γ ⊢ box 𝑉 : 𝑈̃ 𝜎 and Γ, 𝑥 :𝜎 ⊢ 𝑀 : 𝜏 follows from the equality. By

inversion on the former, we know Γ ⊢ 𝑉 : 𝜎 . Applying Corollary 7.1 with the

assumed related environment, we know

((Φ′
𝑙
, (Σ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)/𝑥), 𝑀)

, (Φ′
𝑟 , Σ𝑟 , 𝑀 [𝑉 /𝑥])) ∈ CompJ𝜏K.

By Proposition 7.8, the pair is in the set StackJ𝜏Kx.

⟨⟨Φ′
𝑙
∥ Σ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)/𝑥 ∥ 𝑀 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑀 [𝑉 /𝑥] ∥ 𝐾𝑟 ⟩⟩ by the above

related expressions with Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ case (box 𝑉) of {box 𝑥 → 𝑀} ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑀 [𝑉 /𝑥] ∥ 𝐾𝑟 ⟩⟩

by the backwards closure of (≃).

Case 𝛽𝐹 :

Γ ⊢ (val 𝑉) to 𝑥 in 𝑃 = 𝑃 [𝑉 /𝑥] : 𝜏

Note that we prove this for the shared computation case where 𝑃 = 𝑅 and 𝜏 = 𝜏 ,

but the proof follows in the same manner for shared computations since the same

transitions exist. Considering arbitrary related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈

EnvJΓK, we must show that

((Φ𝑙 , Σ𝑙 , (val 𝑉) to 𝑥 in 𝑅), (Φ𝑟 , Σ𝑟 , 𝑅 [𝑉 /𝑥])) ∈ SharedJ𝜏K.

164

By Proposition 7.8, it is enough to show that the pair is in the set StackJ𝜏Kx. Thus,

further consider some Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑙)) ∈ StackJ𝜏K:

On the left, there is the transition sequence:

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ (val 𝑉) to 𝑥 in 𝑅 ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ val 𝑉 ∥ (Σ𝑙 ,□ to 𝑥 in 𝑅) · 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)/𝑥 ∥ 𝑅 ∥ 𝐾𝑙⟩⟩

Note that Γ ⊢ (val 𝑉) to 𝑥 in 𝑅 : 𝜏 follows from the equality. By inversion, we

can conclude that Γ ⊢ 𝑉 : 𝜎 and Γ, 𝑥 :𝜎 ⊢ 𝑅 : 𝜏 . By Corollary 7.1 with our

related environments, we know that

((Φ𝑙 , (Σ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)/𝑥), 𝑅), (Φ𝑟 , Σ𝑟 , 𝑅 [𝑉 /𝑥])) ∈ SharedJ𝜏K.

And further, Proposition 7.8 says that the pair is in the set StackJ𝜏Kx.

⟨⟨Φ′
𝑙
∥ Σ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)/𝑥 ∥ 𝑅 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑅 [𝑉 /𝑥] ∥ 𝐾𝑟 ⟩⟩, by the

property of the related computations above with Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and

((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ (val 𝑉) to 𝑥 in 𝑅 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑅 [𝑉 /𝑥] ∥ 𝐾𝑟 ⟩⟩, by the closure

properties of (≃).

Case 𝛽𝑈 :

Γ ⊢ {𝜍, enter → 𝑀}.enter = 𝑀 [𝜍] : 𝜏

165

Follows in a similar manner to the 𝛽𝑈 case, except for the fact that there is an

evaluation context for □.enter. Thus, we have an extra step on the left side:

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ {𝜍, enter → 𝑀}.enter ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ {𝜍, enter → 𝑀} ∥ □.enter · 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍) ∥ 𝑀 ∥ 𝐾𝑙⟩⟩

The transitivity of (≃) permits this extra step without issue.

Case 𝛽𝐹 :

Γ ⊢ {eval → 𝑅}.eval = 𝑅 : 𝜏

Follows in a similar manner to the 𝛽𝑈 case and the case above, except that there is

no closure to enter as well. The transitions on the left side look like the following:

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ {eval → 𝑅}.eval ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ {eval → 𝑅} ∥ □.eval · 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑅 ∥ 𝐾𝑙⟩⟩

Case 𝜂→:

Γ ⊢ 𝜆𝑥. 𝑀 𝑥 = 𝑀 : 𝜏 → 𝜎

Considering related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK, we must prove

((Φ𝑙 , Σ𝑙 , 𝜆𝑥 . 𝑀 𝑥), (Φ𝑙 , Σ𝑟 , 𝑀)) ∈ CompJ𝜏 → 𝜎K. By definition, we must show that

the pair is in ElimJ𝜏 → 𝜎Kx. Thus, further consider an arbitrary Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 ,

and ((Φ′
𝑙
,□ V · 𝐾𝑙), (Φ′

𝑟 ,□W · 𝐾𝑟)) ∈ ElimJ𝜏 → 𝜎K:

By definition, we know ((Φ′
𝑙
,V), (Φ′

𝑟 ,W)) ∈ ValJ𝜏K and ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈

StackJ𝜎K.
166

Double orthogonal inclusion yields that ((Φ′
𝑙
,□ V · 𝐾𝑙), (Φ′

𝑟 ,□W · 𝐾𝑟)) ∈

StackJ𝜏 → 𝜎K.

The left side has the following transition sequence:

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝜆𝑥 .𝑀 𝑥 ∥ □ V · 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ,V/𝑥 ∥ 𝑀 𝑥 ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ,V/𝑥 ∥ 𝑀 ∥ □ V · 𝐾𝑙⟩⟩

Note that Γ ⊢ 𝑀 : 𝜏 → 𝜎 follows from the equality. By the reflexivity of (≈), we

know that Γ ⊨ 𝑀 ≈ 𝑀 : 𝜏 → 𝜎 .

With ((Φ′
𝑙
, (Σ𝑙 ,V/𝑥)), (Φ′

𝑟 , Σ𝑟)) ∈ EnvJΓK (which are related by Lemma 7.4 with

our assumed environments and closure under accessible worlds), we know

that ((Φ′
𝑙
, (Σ𝑙 ,V/𝑥), 𝑀), (Φ′

𝑟 , Σ𝑟 , 𝑀)) ∈ CompJ𝜏 → 𝜎K.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ,V/𝑥 ∥ 𝑀 ∥ □ V · 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑀 ∥ □W · 𝐾𝑟 ⟩⟩ by the property the

stacks ((Φ′
𝑙
,□ V · 𝐾𝑙), (Φ′

𝑟 ,□W · 𝐾𝑟)) ∈ StackJ𝜏 → 𝜎K with Φ′
𝑙
⊒ Φ′

𝑙
, Φ′

𝑙
⊒ Φ′

𝑙
,

and the related expressions above.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝜆𝑥. 𝑀 𝑥 ∥ □ V · 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑀 ∥ □W · 𝐾𝑟 ⟩⟩ by our closure

properties of (≃).

Case 𝜂&:

Γ ⊢ {fst → 𝑀.fst; snd → 𝑀.snd} = 𝑀 : 𝜏 & 𝜎

Considering related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK, and then showing

that
((Φ𝑙 , Σ𝑙 , {fst → 𝑀.fst; snd → 𝑀.snd})

, (Φ𝑟 , Σ𝑟 , 𝑀)) ∈ CompJ𝜏 & 𝜎K

167

requires that the pair is in ElimJ𝜏 & 𝜎Kx by definition. Thus, further consider an

arbitrary Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and an element in ElimJ𝜏 & 𝜎K, there are two sub-cases

to consider:

case the element is ((Φ′
𝑙
,□.fst · 𝐾𝑙), (Φ′

𝑟 ,□.fst · 𝐾𝑟)) where ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈

StackJ𝜏K:

By double orthogonal inclusion and the definition of StackJ𝜏 & 𝜎K, we know

((Φ′
𝑙
,□.fst · 𝐾𝑙), (Φ′

𝑟 ,□.fst · 𝐾𝑟)) ∈ StackJ𝜏 & 𝜎K and thus the pair is in

the set CompJ𝜏 & 𝜎K‚.

On the left side, we have the following transition sequence:

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ {fst → 𝑀.fst; snd → 𝑀.snd} ∥ □.fst · 𝐾𝑙 ⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀.fst ∥ 𝐾𝑙 ⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀 ∥ □.fst · 𝐾𝑙 ⟩⟩

Note that Γ ⊢ 𝑀 : 𝜏 & 𝜎 follows from the equality. By the reflexivity of

(≈), we have Γ ⊢ 𝑀 ≈ 𝑀 : 𝜏 & 𝜎 . This in combination with the related

environments ((Φ′
𝑙
, Σ𝑙), (Φ′

𝑟 , Σ𝑟)) ∈ EnvJΓK (closure under accessible

worlds), we can now conclude ((Φ′
𝑙
, Σ𝑙 , 𝑀), (Φ′

𝑟 , Σ𝑟 , 𝑀)) ∈ CompJ𝜏 & 𝜎K.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀 ∥ □.fst·𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑀 ∥ □.fst·𝐾𝑟 ⟩⟩ by the definition of

the stacks ((Φ′
𝑙
,□.fst · 𝐾𝑙), (Φ′

𝑟 ,□.fst · 𝐾𝑟)) ∈ StackJ𝜏 & 𝜎K with Φ′
𝑙
⊒ Φ′

𝑙
,

Φ′
𝑟 ⊒ Φ′

𝑟 , and the related computations above.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ {fst → 𝑀.fst; snd → 𝑀.snd} ∥ □.fst · 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑀 ∥

□.fst · 𝐾𝑟 ⟩⟩ by the closure properties of (≃).

case the element is ((Φ′
𝑙
,□.snd · 𝐾𝑙), (Φ′

𝑟 ,□.snd · 𝐾𝑟)) where ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈

StackJ𝜎K:

This follows in the same manner as the sub-case above.

168

Case 𝜂⊗:

Γ ⊢ case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑃 [⟨𝑥,𝑦⟩/𝑧]} = 𝑃 [𝑉 /𝑧] : 𝜏

Considering related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK and then showing

that
((Φ𝑙 , Σ𝑙 , case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑀 [⟨𝑥,𝑦⟩/𝑧]})

, (Φ𝑟 , Σ𝑟 , 𝑀 [𝑉 /𝑧])) ∈ CompJ𝜏K,

can be done by proving that the pair is in StackJ𝜏Kx by the Proposition 7.8. We

prove this for the case that 𝑃 = 𝑀 and 𝜏 = 𝜏 , but the proof follows similarly for a

shared computation in SharedJ𝜏K. Thus, further consider some Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 ,

and ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K:

Note that Γ ⊢ 𝑉 : 𝜎 ⊗ 𝜌 , and Γ, 𝑥 :𝜎,𝑦:𝜌 ⊢ 𝑀 [⟨𝑥,𝑦⟩/𝑧] : 𝜏 follow from the equality.

By the reflexivity of (≈), we know that Γ ⊨ 𝑉 ≈ 𝑉 : 𝜎 ⊗ 𝜌 . With environments

((Φ′
𝑙
, Σ𝑙), (Φ′

𝑟 , Σ𝑟)) ∈ EnvJΓK (note closure under accessible worlds),

we may conclude ((Φ′
𝑙
, Build𝑉 (Σ𝑙 ,𝑉)), (Φ′

𝑟 , Build𝑉 (Σ𝑟 ,𝑉))) ∈ ValJ𝜎 ⊗ 𝜌K.

Furthermore, we know by this definition that Build𝑉 (Σ𝑙 ,𝑉) = ⟨V𝑙 ,W𝑙⟩ and

Build𝑉 (Σ𝑟 ,𝑉) = ⟨V𝑟 ,W𝑟 ⟩.

On the left side, we have the transition:

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑀 [⟨𝑥,𝑦⟩/𝑧]} ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ,V𝑙/𝑥,W𝑙/𝑦 ∥ 𝑀 [⟨𝑥,𝑦⟩/𝑧] ∥ 𝐾𝑙⟩⟩

⟨⟨Φ′
𝑙
∥ Σ𝑙 ,V𝑙/𝑥,W𝑙/𝑦 ∥ 𝑀 [⟨𝑥,𝑦⟩/𝑧] ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑙
∥ Σ𝑙 ∥ 𝑀 [⟨V𝑙 ,W𝑙⟩/𝑧] ∥

𝐾𝑙⟩⟩ follows by Corollary 7.1 with the assumed environments then using the

reflexively related stack (Φ′
𝑙
, 𝐾𝑙).

169

We have the following chain of reasoning:

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑀 [⟨𝑥,𝑦⟩/𝑧]} ∥ 𝐾𝑙⟩⟩ ≃

⟨⟨Φ′
𝑙
∥ Σ𝑙 ,V𝑙/𝑥,W𝑙/𝑦 ∥ 𝑀 [⟨𝑥,𝑦⟩/𝑧] ∥ 𝐾𝑙⟩⟩ ≃

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀 [⟨V𝑙 ,W𝑙⟩/𝑧] ∥ 𝐾𝑙⟩⟩ ≃

⟨⟨Φ′
𝑙
∥ Σ𝑙 , ⟨V𝑙 ,W𝑙⟩/𝑧 ∥ 𝑀 ∥ 𝐾𝑙⟩⟩ ≃

⟨⟨Φ′
𝑟 ∥ Σ𝑟 , ⟨V𝑟 ,W𝑟 ⟩/𝑧 ∥ 𝑀 ∥ 𝐾𝑟 ⟩⟩ ≃

⟨⟨Φ′
𝑟 ∥ Σ𝑟 , Build𝑉 (Σ𝑟 ,𝑉)/𝑧 ∥ 𝑀 ∥ 𝐾𝑟 ⟩⟩ ≃

⟨⟨Φ′
𝑟 ∥ Σ𝑟 ∥ 𝑀 [𝑉 /𝑧] ∥ 𝐾𝑟 ⟩⟩

We may conclude by the closure properties of (≃) that ⟨⟨Φ′
𝑙

∥ Σ𝑙 ∥

case 𝑉 of {⟨𝑥,𝑦⟩ → 𝑀 [⟨𝑥,𝑦⟩/𝑧]} ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′
𝑟 ∥ Σ𝑟 ∥ 𝑀 [𝑉 /𝑧] ∥ 𝐾𝑟 ⟩⟩.

Case 𝜂𝑈 :

Γ ⊢ {force → 𝑉.force} = 𝑉 : 𝜏

Considering related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓ′K, we must show that

((Φ𝑙 , Build𝑉 (Σ𝑙 , {force → 𝑉.force}))

, (Φ𝑟 , Build𝑉 (Σ𝑟 ,𝑉))) ∈ ValJ𝑈 𝜎K.

By the reflexivity of (≈), we know that Γ ⊨ 𝑉 ≈ 𝑉 : 𝑈 𝜎 . By that definition with

our related environments, we know ((Φ𝑙 , Build𝑉 (Σ𝑙 ,𝑉)), (Φ𝑟 , Build𝑉 (Σ𝑟 ,𝑉))) ∈

ValJ𝑈 𝜎K. Unfolding the definition further, we have that Build𝑉 (Σ𝑙 ,𝑉) =

{Σ′
𝑙
, force → 𝑀} and Build𝑉 (Σ𝑟 ,𝑉) = {Σ′𝑟 , force → 𝑁 } such that their bodies are

related computations ((Φ𝑙 , Σ′𝑙 , 𝑀), (Φ𝑟 , Σ′𝑟 , 𝑁)) ∈ CompJ𝜎K.

170

By the definition of building, we know also that

Build𝑉 (Σ𝑙 , {force → 𝑉.force}) = {Σ𝑙 , force → 𝑉.force}.

We have left to show that ((Φ𝑙 , Σ𝑙 ,𝑉.force), (Φ𝑟 , Σ′𝑟 , 𝑁)) ∈ CompJ𝜎K. By

Proposition 7.8, we need only show that the pair is in StackJ𝜎Kx. Thus, consider

some Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K:

On the left side, we have the following transition

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑉.force ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ′

𝑙
∥ 𝑀 ∥ 𝐾𝑙⟩⟩

⟨⟨Φ′
𝑙
∥ Σ′

𝑙
∥ 𝑀 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ′𝑟 ∥ 𝑁 ∥ 𝐾𝑟 ⟩⟩, by Proposition 7.8 with our

related computations ((Φ′
𝑙
, Σ′

𝑙
, 𝑀), (Φ′

𝑟 , Σ
′
𝑟 , 𝑁)) ∈ CompJ𝜏K (note closure under

accessible world) with Φ′
𝑙
⊒ Φ′

𝑙
, Φ′

𝑙
⊒ Φ′

𝑙
, and ((Φ′

𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑉.force ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ′𝑟 ∥ 𝑁 ∥ 𝐾′⟩⟩, by the closure properties of

(≃).

Case 𝜂𝐹 :

Γ ⊢ 𝑀 to 𝑥 in 𝐸 [ret 𝑥] = 𝐸 [𝑀] : 𝜏

Considering related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK and then showing

that
((Φ𝑙 , Σ𝑙 , 𝑀 to 𝑥 in 𝐸 [ret 𝑥])

, (Φ𝑟 , Σ𝑟 , 𝐸 [𝑀])) ∈ CompJ𝜏K,

it will suffice to show that the pair is in StackJ𝜏Kx by Proposition 7.8. Note that

we consider only the computation case here, but the shared computation case
171

follows similarly. Thus, consider further an arbitrary Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and

((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K:

On the left side, there is the following transition:

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀 to 𝑥 in 𝐸 [ret 𝑥] ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀 ∥ (Σ,□ to 𝑥 in 𝐸 [ret 𝑥]) · 𝐾𝑙⟩⟩

On the right side, the properties of (≃) give us that ⟨⟨Φ′
𝑟 ∥ Σ𝑟 ∥ 𝐸 [𝑀] ∥ 𝐾𝑟 ⟩⟩ ≃

⟨⟨Φ′′
𝑟 ∥ Σ′𝑟 ∥ 𝑀 ∥ 𝐾′

𝑟 ⟩⟩ where Build𝐾 (Φ′
𝑟 , Σ𝑟 , 𝐸, 𝐾𝑟) = (Φ′′

𝑟 , Σ
′
𝑟 , 𝐾

′
𝑟). Note that Σ′𝑟

is Σ𝑟 extended with more bindings.

Note that Γ ⊢ 𝑀 : 𝐹 𝜎 follows from the typing derivation. By the reflexivity

of (≈), we have Γ ⊨ 𝑀 ≈ 𝑀 : 𝐹 𝜎 . With related environments

((Φ′
𝑙
, Σ𝑙), (Φ′′

𝑟 , Σ
′
𝑟)) ∈ EnvJΓK (note closure on accessible worlds), we know that

((Φ′
𝑙
, Σ𝑙 , 𝑀), (Φ′′

𝑟 , Σ
′
𝑟 , 𝑀)) ∈ CompJ𝐹 𝜎K.

Next, we prove that ((Φ′
𝑙
, (Σ𝑙 ,□ to 𝑥 in 𝐸 [ret 𝑥]) · 𝐾𝑙), (Φ′′

𝑟 , 𝐾
′
𝑟)) ∈ StackJ𝐹 𝜎K,

by considering Φ′′
𝑙
⊒ Φ′

𝑙
, Φ′′′

𝑟 ⊒ Φ′′
𝑟 , and ((Φ′′

𝑙
, Σ′

𝑙
, ret 𝑉), (Φ′′′

𝑟 , Σ
′′
𝑟 , ret𝑊)) ∈

IntroJ𝐹 𝜎K:

((Φ′′
𝑙
, Build𝑉 (Σ′𝑙 ,𝑉)), (Φ

′′′
𝑟 , Build𝑉 (Σ′′𝑟 ,𝑊))) ∈ ValJ𝜎K follows from the

assumption that IntroJ𝐹 𝜎K. From this, we have

((Φ′′
𝑙
, Build𝑉 ((Σ′𝑙 , Build𝑉 (Σ′𝑙 ,𝑉)/𝑥), 𝑥))

, (Φ′′′
𝑟 , Build𝑉 (Σ′′𝑟 ,𝑊))) ∈ ValJ𝜎K.

172

And it follows by definition that

((Φ′′
𝑙
, (Σ′

𝑙
, Build𝑉 (Σ′𝑙 ,𝑉)/𝑥), ret 𝑥)

, (Φ′′′
𝑟 , Σ

′′
𝑟 , ret𝑊)) ∈ IntroJ𝐹 𝜎K.

On the left side, there is the transition:

⟨⟨Φ′′
𝑙
∥ Σ′′

𝑙
∥ ret 𝑉 ∥ (Σ𝑙 ,□ to 𝑥 in 𝐸 [ret 𝑥]) · 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′′
𝑙
∥ Σ′

𝑙
, Build𝑉 (Σ𝑙 ,𝑉)/𝑥 ∥ 𝐸 [ret 𝑥] ∥ 𝐾𝑙⟩⟩

And this is observationally equivalent to the following by the closure

properties of (≃): ⟨⟨Φ′′
𝑙

∥ Σ𝑙 , Build(Σ′
𝑙
,𝑉)/𝑥 ∥ 𝐸 [ret 𝑥] ∥

𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′′′
𝑙

∥ Σ′′
𝑙

∥ ret 𝑥 ∥ 𝐾′
𝑙
⟩⟩ where building the stack

Build𝐾 (Φ′′
𝑙
, (Σ𝑙 , Build(Σ′

𝑙
,𝑉)/𝑥), 𝐸, 𝐾𝑙) is equal to (Φ′′′

𝑙
, Σ′′

𝑙
, 𝐾′

𝑙
).

We know ((Φ′′′
𝑙
, 𝐾𝑙), (Φ′′′

𝑟 , 𝐾𝑟)) ∈ StackJ𝐹 𝜎K by Lemma 7.5. This with Φ′′′
𝑙

⊒

Φ′′′
𝑙
, Φ′′′

𝑟 ⊒ Φ′′′
𝑟 , and the related introductions (note closure over accessible

heaps) yields ⟨⟨Φ′′′
𝑙

∥ Σ′′
𝑙
∥ ret 𝑥 ∥ 𝐾′

𝑙
⟩⟩ ≃ ⟨⟨Φ′′′

𝑟 ∥ Σ′′𝑟 ∥ ret𝑊 ∥ 𝐾′
𝑟 ⟩⟩.

⟨⟨Φ′′
𝑙
∥ Σ′′

𝑙
∥ ret 𝑉 ∥ (Σ𝑙 ,□ to 𝑥 in 𝐸 [ret 𝑥]) · 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′′′

𝑟 ∥ Σ′′𝑟 ∥ ret𝑊 ∥

𝐾′
𝑟 ⟩⟩ by the closure properties of (≃).

By Proposition 7.8 with Φ′
𝑙
⊒ Φ′

𝑙
, Φ′′

𝑟 ⊒ Φ′′
𝑟 , and the related computations above, we

know ⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀 ∥ (Σ𝑙 ,□ to 𝑥 in 𝐸 [ret 𝑥]) · 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′′

𝑟 ∥ Σ′𝑟 ∥ 𝑀 ∥ 𝐾′
𝑟 ⟩⟩.

By the closure properties of (≃), we have ⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀 to 𝑥 in 𝐸 [ret 𝑥] ∥ 𝐾𝑙⟩⟩ ≃

⟨⟨Φ′
𝑟 ∥ Σ𝑟 ∥ 𝐸 [𝑀] ∥ 𝐾𝑟 ⟩⟩.

Case 𝜂𝑈̃ :

Γ ⊢ case 𝑉 of {box 𝑎 → 𝑃 [box 𝑎/𝑥]} = 𝑃 [𝑉 /𝑥] : 𝜏

Proved in a similar manner to 𝜂⊗.
173

Case 𝜂𝐹 :

Γ ⊢ 𝑅 to 𝑥 in 𝐸 [val 𝑥] = 𝐸 [𝑅] : 𝜏

Proved in a similar manner to 𝜂𝐹 .

Case 𝜂𝑈 :

Γ ⊢ {enter → 𝑉.enter} = 𝑉 : 𝑈 𝜏

Considering related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK, we must show that

((Φ𝑙 , Σ𝑙 , {enter → 𝑉.enter}), (Φ𝑟 , Σ𝑟 ,𝑉)) ∈ SharedJ𝑈 𝜏K.

Note that this equality gives Γ ⊢ 𝑉 : 𝑈 𝜏 . By the reflexivity of (≈), we have thus Γ ⊨

𝑉 ≈ 𝑉 : 𝑈 𝜏 . We will show ((Φ𝑙 , Σ𝑙 , {enter → 𝑉.enter}), (Φ𝑟 , Σ𝑟 ,𝑉)) ∈ ValJ𝑈 𝜏K

and this concludes the proof in this case because ValJ𝑈 𝜏K ⊆ SharedJ𝑈 𝜏K. By

definition, this is to show that the pair is in ElimJ𝑈 𝜏Kx; we already satisfy the

requirement that the expressions be shared values. Consider further some Φ′
𝑙
⊒ Φ𝑙 ,

Φ′
𝑟 ⊒ Φ𝑟 , and ((Φ′

𝑙
,□.enter · 𝐾𝑙), (Φ𝑟 ,□.enter · 𝐾𝑟)) ∈ ElimJ𝑈 𝜏K:

On the left, there is the transition sequence:

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ {enter → 𝑉.enter} ∥ □.enter · 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑉.enter ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑉 ∥ □.enter · 𝐾𝑙⟩⟩

((Φ′
𝑙
, Σ𝑙 ,𝑉), (Φ′

𝑟 , Σ𝑟 ,𝑉)) ∈ ValJ𝑈 𝜏K from our initial assumption with the relate

environments (closed under future heaps).

174

Since ElimJ𝑈 𝜏K ⊆ VStackJ𝑈 𝜏K, we may conclude that ((Φ′
𝑙
,□.enter ·

𝐾𝑙), (Φ′
𝑟 ,□.enter · 𝐾𝑟)) ∈ VStackJ𝑈 𝜏K.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑉 ∥ □.enter · 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑉 ∥ □.enter · 𝐾𝑟 ⟩⟩, by the above

related value stacks with Φ′
𝑙
⊒ Φ′

𝑙
, Φ′

𝑟 ⊒ Φ′
𝑟 , and the related environments

above.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ {enter → 𝑉 .enter} ∥ □.enter ·𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑉 ∥ □.enter ·𝐾𝑟 ⟩⟩

by the closure properties of (≃).

Case 𝜂𝐹 :

Γ ⊢ {eval → 𝑀.eval} = 𝑀 : 𝐹 𝜏

Considering related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK, and then showing

that

((Φ𝑙 , Σ𝑙 , {eval → 𝑀.eval}), (Φ𝑟 , Σ𝑟 , 𝑀)) ∈ CompJ𝐹 𝜏K

requires that the pair is in ElimJ𝐹 𝜏Kx by definition. Thus, further considering an

arbitrary Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and ((Φ′
𝑙
,□.eval · 𝐾𝑙), (Φ′

𝑟 ,□.eval · 𝐾𝑟)) ∈ ElimJ𝐹 𝜏K:

By double orthogonal inclusion and the definition of StackJ𝐹 𝜏K, we may conclude

that ((Φ′
𝑙
,□.eval ·𝐾𝑙), (Φ′

𝑟 ,□.eval ·𝐾𝑟)) ∈ StackJ𝐹 𝜏K and therefore the pair is

in the set CompJ𝐹 𝜏K‚ by Proposition 7.8.

On the left side, we have the following transition sequence:

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ {eval → 𝑀.eval} ∥ □.eval · 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀.eval ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀 ∥ □.eval · 𝐾𝑙⟩⟩

175

Note that Γ ⊢ 𝑀 : 𝐹 𝜏 follows from the equality. By the reflexivity of

(≈), we have Γ ⊢ 𝑀 ≈ 𝑀 : 𝐹 𝜏 . With the related environments

((Φ′
𝑙
, Σ𝑙), (Φ′

𝑟 , Σ𝑟)) ∈ EnvJΓK (closure under accessible worlds), we can now

conclude that ((Φ′
𝑙
, Σ𝑙 , 𝑀), (Φ′

𝑟 , Σ𝑟 , 𝑀)) ∈ CompJ𝐹 𝜏K.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑀 ∥ □.eval · 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑀 ∥ □.eval · 𝐾𝑟 ⟩⟩, by the property

of our related stacks with Φ′
𝑙
⊒ Φ′

𝑙
, Φ′

𝑟 ⊒ Φ′
𝑟 , and the related computations

immediately above.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ {eval → 𝑀.eval} ∥ □.eval · 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑀 ∥ □.eval · 𝐾𝑟 ⟩⟩, by

the closure properties of (≃).

Case 𝜅:

Γ ⊢ 𝐸 [𝑅 memo 𝑎 in 𝑃] = 𝑅 memo 𝑎 in 𝐸 [𝑃] : 𝜏

Considering related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK and then showing

that
((Φ𝑙 , Σ𝑙 , 𝐸 [𝑅 memo 𝑎 in𝑀])

, (Φ𝑟 , Σ𝑟 , 𝑅 memo 𝑎 in 𝐸 [𝑀])) ∈ CompJ𝜏K

requires that we show the pair is in StackJ𝜏Kx by Proposition 7.8. Note we pick

the computation case; the shared case follows similarly except we make use of the

definition SharedJ𝜏K = VStackJ𝜏Kx. Thus, further consider an arbitrary Φ′
𝑙
⊒ Φ𝑙 and

Φ′
𝑟 ⊒ Φ𝑟 , and ((Φ′

𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K:

On the left, ⟨⟨Φ′
𝑙

∥ Σ𝑙 ∥ 𝐸 [𝑅 memo 𝑎 in𝑀] ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′′
𝑙

∥ Σ′
𝑙
, ∥

𝑅 memo 𝑎 in𝑀 ∥ 𝐾′
𝑙
⟩⟩ where we know Build𝐾 (Φ′

𝑙
, Σ, 𝐸, 𝐾𝑙) = (Φ′′

𝑙
, Σ′

𝑙
, 𝐾′

𝑙
) by

176

the closure properties of (≃). Thereafter, there is the transition:

⟨⟨Φ′′
𝑙
∥ Σ′

𝑙
∥ 𝑅 memo 𝑎 in𝑀 ∥ 𝐾′

𝑙
⟩⟩ ↦−→

⟨⟨Φ′′
𝑙
, 𝑙𝑎 ↦→ {Σ′

𝑙
, 𝑅} ∥ Σ′

𝑙
, 𝑙𝑎/𝑎 ∥ 𝑀 ∥ 𝐾′

𝑙
⟩⟩

On the right side, there is the transition

⟨⟨Φ′
𝑟 ∥ Σ𝑟 ∥ 𝑅 memo 𝑎 in 𝐸 [𝑀] ∥ 𝐾𝑟 ⟩⟩) ↦−→

⟨⟨Φ′
𝑟 , 𝑙𝑎 ↦→ {Σ𝑟 , 𝑅} ∥ Σ𝑟 , 𝑙𝑎/𝑎 ∥ 𝐸 [𝑀] ∥ 𝐾𝑟 ⟩⟩

Additionally, the fourth closure property of (≃) yields ⟨⟨Φ′
𝑟 , 𝑙𝑎 ↦→ {Σ𝑟 , 𝑅} ∥

Σ𝑟 , 𝑙𝑎/𝑎 ∥ 𝐸 [𝑀] ∥ 𝐾𝑟 ⟩⟩ ≃ ⟨⟨Φ′′
𝑟 ∥ Σ′𝑟 ∥ 𝑀 ∥ 𝐾′

𝑟 ⟩⟩ on the right, where we know

that Build𝐾 ((Φ′
𝑟 , 𝑙𝑎 ↦→ {Σ𝑟 , 𝑅}), (Σ𝑟 , 𝑙𝑎/𝑎), 𝐾𝑟) is equal to (Φ′′

𝑟 , Σ
′
𝑟 , 𝐾

′
𝑟).

Note that Γ ⊢ 𝑅 : 𝜎 , Γ, 𝑎:𝜎 ⊢ 𝐸 [𝑀] : 𝜏 , and (Γ, 𝑎:𝜎)Γ′ ⊢ 𝑀 : 𝜌 follows from the

equality. Γ′ are extra shared variables that are added to the environment from

other memo-expressions. It follows by the reflexivity of (≈) that Γ ⊢ 𝑅 ≈ 𝑅 : 𝜎

and (Γ, 𝑎:𝜎)Γ′ ⊢ 𝑀 ≈ 𝑀 : 𝜌 .

((Φ′
𝑙
, Σ𝑙 , 𝑅), (Φ′

𝑟 , Σ𝑟 , 𝑅)) ∈ SharedJ𝜎K follows from the above fact with our related

environments.

(((Φ′′
𝑙
, 𝑙𝑎 ↦→ {Σ′

𝑙
, 𝑅})

, (Σ′
𝑙
, 𝑙𝑎/𝑎)), (Φ′′

𝑟 , Σ
′
𝑟)) ∈ EnvJ(Γ, 𝑎:𝜎)Γ′K

by Lemma 7.1 using empty local environments and that building stacks

produces future heaps and environments.

(((Φ′′
𝑙
, 𝑙𝑎 ↦→ {Σ′

𝑙
, 𝑅})

, (Σ′
𝑙
, 𝑙𝑎/𝑎), 𝑀), (Φ′′

𝑟 , Σ
′
𝑟 , 𝑀)) ∈ CompJ𝜌K

177

follows with the environment above.

(((Φ′′
𝑙
, 𝑙𝑎 ↦→ {Σ′

𝑙
, 𝑅}), 𝐾′

𝑙
), (Φ′′

𝑟 , 𝐾
′
𝑟)) ∈ StackJ𝜌K by Lemma 7.5.

⟨⟨Φ′′
𝑙
, 𝑙𝑎 ↦→ {Σ′

𝑙
, 𝑅} ∥ Σ′

𝑙
, 𝑙𝑎/𝑎 ∥ 𝑀 ∥ 𝐾′

𝑙
⟩⟩ ≃ ⟨⟨Φ′′

𝑟 ∥ Σ′𝑟 ∥ 𝑀 ∥ 𝐾′
𝑟 ⟩⟩, by our related

stacks with the same heaps Proposition 7.8 and the above related expressions.

Note that for the shared case, we make use of the definition of shared stacks,

i.e. SharedJ𝜏K

x

.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝐸 [𝑅 memo 𝑎 in𝑀] ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑅 memo 𝑎 in 𝐸 [𝑀] ∥ 𝐾𝑟 ⟩⟩ by

the closure properties of (≃).

Case 𝜒 :

Γ ⊢ (𝑅 memo 𝑏 in 𝑆) memo 𝑎 in 𝑃 = 𝑅 memo 𝑏 in (𝑆 memo 𝑎 in 𝑃) : 𝜏

Considering related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK and then showing

that
((Φ𝑙 , Σ𝑙 , (𝑅 memo 𝑏 in 𝑆) memo 𝑎 in𝑀)

, (Φ𝑟 , Σ𝑟 , 𝑅 memo 𝑏 in (𝑆 memo 𝑎 in𝑀))) ∈ CompJ𝜏K

requires that we show the pair is in StackJ𝜏Kx by Proposition 7.8. As before, the

proof for the shared case follows similarly but we show the pair is in VStackJ𝜏Kx by

the definition of SharedJ𝜏K. Thus, further consider an arbitrary Φ′
𝑙
⊒ Φ′

𝑟 , Φ′
𝑟 ⊒ Φ𝑟 ,

and ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K:

On the left side, there is the transition:

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ (𝑅 memo 𝑏 in 𝑆) memo 𝑎 in𝑀 ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
, 𝑙𝑎 ↦→ {Σ𝑙 , 𝑅 memo 𝑏 in 𝑆} ∥ Σ𝑙 , 𝑙𝑎/𝑎 ∥ 𝑀 ∥ 𝐾𝑙⟩⟩

178

On the right side, there is the transition sequence:

⟨⟨Φ′
𝑟 ∥ Σ𝑟 ∥ 𝑅 memo 𝑏 in (𝑆 memo 𝑎 in𝑀) ∥ 𝐾𝑟 ⟩⟩ ↦−→

⟨⟨Φ′
𝑟 , 𝑙𝑏 ↦→ {Σ𝑟 , 𝑅} ∥ Σ𝑟 , 𝑙𝑏/𝑏 ∥ 𝑆 memo 𝑎 in𝑀 ∥ 𝐾𝑟 ⟩⟩ ↦−→

⟨⟨Φ′
𝑟 , 𝑙𝑏 ↦→ {Σ𝑟 , 𝑅}, 𝑙𝑎 ↦→ {(Σ𝑟 , 𝑙𝑏/𝑏), 𝑆} ∥ Σ𝑟 , 𝑙𝑏/𝑏, 𝑙𝑎/𝑎 ∥ 𝑀 ∥ 𝐾𝑟 ⟩⟩

From the equality, we know that Γ ⊢ 𝑅 : 𝜎 , Γ, 𝑏:𝜎 ⊢ 𝑆 : 𝜌 , and Γ, 𝑎:𝜌 ⊢ 𝑀 : 𝜏 .

Thus, the reflexivity of (≈) yields Γ ⊨ 𝑅 ≈ 𝑅 : 𝜎 , Γ, 𝑏:𝜎 ⊨ 𝑆 ≈ 𝑆 : 𝜌 , and

Γ, 𝑎:𝜌 ⊨ 𝑀 ≈ 𝑀 : 𝜏 .

We next prove

((Φ′
𝑙
, Σ𝑙 , 𝑅 memo 𝑏 in 𝑆)

, ((Φ′
𝑟 , 𝑙𝑏 ↦→ {Σ𝑟 , 𝑅}), (Σ𝑟 , 𝑙𝑏/𝑏), 𝑆)) ∈ SharedJ𝜌K

by its definition where we show that the pair is in VStackJ𝜎Kx. Thus, consider

future worlds Φ′′
𝑙
⊒ Φ′

𝑙
and Φ′′

𝑟 ⊒ (Φ′
𝑟 , 𝑙𝑏 ↦→ {Σ𝑟 , 𝑅}), and some value stack

((Φ′′
𝑙
,K𝑙), (Φ′′

𝑟 ,K𝑟)) ∈ VStackJ𝜌K:

On the left side, there is the transition:

⟨⟨Φ′′
𝑙
∥ Σ𝑙 ∥ 𝑅 memo 𝑏 in 𝑆 ∥ K𝑙⟩⟩ ↦−→

⟨⟨Φ′′
𝑙
, 𝑙𝑏 ↦→ {Σ𝑙 , 𝑅} ∥ Σ𝑙 , 𝑙𝑏/𝑏 ∥ 𝑆 ∥ K𝑙⟩⟩

((Φ′′
𝑙
, Σ𝑙), (Φ′′

𝑟 , Σ𝑟)) ∈ EnvJΓK, by closure over accessible worlds and the

transitivity of accessibility.

((Φ𝑙 , Σ𝑙 , 𝑅), (Φ𝑙 , Σ𝑙 , 𝑅)) ∈ SharedJ𝜎K by the typing derivation and the

reflexivity of (≈). And for all future worlds.

179

(((Φ′′
𝑙
, 𝑙𝑏 ↦→ {Σ𝑙 , 𝑅}), (Σ𝑙 , 𝑙𝑏/𝑏))

, (Φ′′
𝑟 , (Σ𝑟 , 𝑙𝑏/𝑏))) ∈ EnvJΓ, 𝑏:𝜎K

follows from Lemma 7.1 and closure under future worlds. Note that

Φ′′
𝑟 ⊒(Φ′

𝑟 , 𝑙𝑏 ↦→ {Σ𝑟 , 𝑅}) and thus Φ′′
𝑟 will contain the same mapping for

𝑙𝑏 .

(((Φ′′
𝑙
, 𝑙𝑏 ↦→ {Σ𝑙 , 𝑅}), (Σ𝑙 , 𝑙𝑏/𝑏), 𝑆)

, (Φ′′
𝑟 , (Σ𝑟 , 𝑙𝑏/𝑏)), 𝑆) ∈ SharedJ𝜌K,

follows from Γ, 𝑏:𝜎 ⊨ 𝑆 ≈ 𝑆 : 𝜌 with the related environments immediately

above.

⟨⟨Φ′′
𝑙
, 𝑙𝑏 ↦→ {Σ𝑙 , 𝑅} ∥ Σ𝑙 , 𝑙𝑏/𝑏 ∥ 𝑆 ∥ K𝑙⟩⟩ ≃ ⟨⟨Φ′′

𝑟 ∥ Σ𝑟 , 𝑙𝑏/𝑏 ∥ 𝑆 ∥

K𝑟 ⟩⟩ follows from the above fact with the property of related shared

expressions, i.e. SharedJ𝜌K = VStackJ𝜌Kx, with the future worlds

(Φ′′
𝑙
, 𝑙𝑏 ↦→ {Σ𝑙 , 𝑅}) ⊒ Φ′′

𝑙
and Φ′′

𝑟 ⊒ Φ′′
𝑟 , and the pair of value stacks

(((Φ′′
𝑙
, 𝑙𝑏 ↦→ {Σ𝑙 , 𝑅}),K𝑙), (Φ′′

𝑟 ,K𝑟))∈VStackJ𝜌K. Again note the closure

over accessible heaps for the value stack.

⟨⟨Φ′′
𝑙
∥ Σ𝑙 ∥ 𝑅 memo 𝑏 in 𝑆 ∥ K𝑙⟩⟩ ≃ ⟨⟨Φ′′

𝑟 ∥ Σ𝑟 , 𝑙𝑏/𝑏 ∥ 𝑆 ∥ K𝑟 ⟩⟩, by the closure

properties of (≃).

Therefore,

(((Φ′
𝑙
, 𝑙𝑎 ↦→ {Σ𝑙 , 𝑅 memo 𝑏 in 𝑆}), (Σ𝑙 , 𝑙𝑎/𝑎))

, ((Φ′
𝑟 , 𝑙𝑏 ↦→ {Σ𝑟 , 𝑅}, 𝑙𝑎 ↦→ {(Σ𝑟 , 𝑙𝑏/𝑏), 𝑆}), (Σ𝑟 , 𝑙𝑏/𝑏, 𝑙𝑎/𝑎)))

∈ EnvJΓ, 𝑎:𝜌K

180

follows by definition with the previous fact relating the expressions pointed

to by 𝑎 and Lemma 7.1.

From this,

(((Φ′
𝑙
, 𝑙𝑎 ↦→ {Σ𝑙 , 𝑅 memo 𝑏 in 𝑆}), (Σ𝑙 , 𝑙𝑎/𝑎), 𝑀)

, ((Φ′
𝑟 , 𝑙𝑏 ↦→ {Σ𝑟 , 𝑅}, 𝑙𝑎 ↦→ {(Σ𝑟 , 𝑙𝑏/𝑏), 𝑆}), (Σ𝑟 , 𝑙𝑏/𝑏, 𝑙𝑎/𝑎), 𝑀))

∈ CompJ𝜏K

follows from the property of Γ, 𝑏:𝜎 ⊨ 𝑀 ≈ 𝑀 : 𝜏 .

Thus, ⟨⟨Φ′
𝑙
, 𝑙𝑎 ↦→ {Σ𝑙 , 𝑅 memo 𝑏 in 𝑆} ∥ Σ𝑙 , 𝑙𝑎/𝑎 ∥ 𝑀 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 , 𝑙𝑏 ↦→

{Σ𝑟 , 𝑅}, 𝑙𝑎 ↦→ {(Σ𝑟 , 𝑙𝑏/𝑏), 𝑆} ∥ Σ𝑟 , 𝑙𝑏/𝑏, 𝑙𝑎/𝑎 ∥ 𝑀 ∥ 𝐾𝑟 ⟩⟩ by our related stacks

with Proposition 7.8. Note that our heaps are future heaps of assumed stack

heaps. For the case where 𝑃 and 𝑄 are shared expressions, we instead use of

the definition of SharedJ𝜏K and that we would have assumed value stacks at

the beginning.

Finally, ⟨⟨Φ′
𝑙

∥ Σ𝑙 ∥ (𝑅 memo 𝑏 in 𝑆) memo 𝑎 in𝑀 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′
𝑟 ∥ Σ𝑟 ∥

𝑅 memo 𝑏 in (𝑆 memo 𝑎 in𝑀) ∥ 𝐾𝑟 ⟩⟩ follows by the closure properties of (≃).

Case cl:

Γ ⊢ {𝜍, 𝑅} memo 𝑎 in 𝑃 = 𝑅 [𝜍] memo 𝑎 in 𝑃 : 𝜏

Considering related environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK, we must be able to

show
((Φ𝑙 , Σ𝑙 , {𝜍, 𝑅} memo 𝑎 in 𝑃)

, (Φ𝑟 , Σ𝑟 , 𝑅 [𝜍] memo 𝑎 in 𝑃)) ∈ SharedJ𝜏K.

By Proposition 7.8, it is enough to show that this pair is in StackJ𝜏Kx. Thus, further

consider Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K:
181

On the left, there is the transition:

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ {𝜍, 𝑅} memo 𝑎 in 𝑆 ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
, 𝑙 ↦→ {Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍), 𝑅} ∥ Σ𝑙 , 𝑙/𝑎 ∥ 𝑆 ∥ 𝐾𝑙⟩⟩

On the right, there is the transition:

⟨⟨Φ′
𝑟 ∥ Σ𝑟 ∥ 𝑅 [𝜍] memo 𝑎 in 𝑆 ∥ 𝐾𝑟 ⟩⟩ ↦−→

⟨⟨Φ′
𝑟 , 𝑙 ↦→ {Σ𝑟 , 𝑅 [𝜍]} ∥ Σ𝑟 , 𝑙/𝑎 ∥ 𝑆 ∥ 𝐾𝑟 ⟩⟩

Note that both Γ ⊢ 𝜍 : Γ′, ΓΓ′ ⊢ 𝑅 : 𝜌 , and Γ, 𝑎:𝜌 ⊢ 𝑆 : 𝜏 follow from the equality.

By application of Corollary 7.1 with related environments, we are able to conclude

that
((Φ′

𝑙
, Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍), 𝑅)

, (Φ′
𝑟 , Σ𝑟 , 𝑅 [𝜍])) ∈ SharedJ𝜏K.

From Γ, 𝑎:𝜌 ⊨ 𝑆 ≈ 𝑆 : 𝜏 , we know

(((Φ′
𝑙
, 𝑙 ↦→ {Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍), 𝑅}), (Σ𝑙 , 𝑙/𝑎), 𝑆)

, ((Φ′
𝑟 , 𝑙 ↦→ {Σ𝑟 , 𝑅 [𝜍]}), (Σ𝑟 , 𝑙/𝑎), 𝑆)) ∈ SharedJ𝜏K

by applying Lemma 7.1 with the above related expressions.

⟨⟨Φ′
𝑙
, 𝑙 ↦→ {Σ𝑙 Build𝜍 (Σ𝑙 , 𝜍), 𝑅} ∥ Σ𝑙 , 𝑙/𝑎 ∥ 𝑆 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 , 𝑙 ↦→

{Σ𝑟 , 𝑅 [𝜍]} ∥ Σ𝑟 , 𝑙/𝑎 ∥ 𝑆 ∥ 𝐾𝑟 ⟩⟩ by Proposition 7.8 together with the above

related expressions and the related stacks in the future worlds (Φ′
𝑙
, 𝑙 ↦→

{Σ𝑙Build𝜍 (Σ𝑙 , 𝜍), 𝑅}) ⊒ Φ′
𝑙
and (Φ′

𝑟 , 𝑙 ↦→ {Σ𝑟 , 𝑅 [𝜍]}) ⊒ Φ′
𝑟 .

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ {𝜍, 𝑅} memo 𝑎 in 𝑆 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑅 [𝜍] memo 𝑎 in 𝑆 ∥ 𝐾𝑟 ⟩⟩, by the

closure properties of (≃).

182

Case deref:

Γ ⊢ 𝑉 memo 𝑎 in 𝐶 [𝑎] = 𝑉 memo 𝑎 in 𝐶 [𝑉] : 𝜏

Note that we take𝐶 [𝑎] = 𝐶 [𝑎] and𝐶 [𝑉] = 𝐶 [𝑉] to be computations and 𝜏 = 𝜏 ; the

proof will follow similarly for shared computations. From the equality, we know

both that Γ ⊢ 𝑉 memo 𝑎 in 𝐶 [𝑎] : 𝜏 and Γ ⊢ 𝑉 memo 𝑎 in 𝐶 [𝑉] : 𝜏 . By inversion

on these, we may conclude further that Γ, 𝑎:𝜎 ⊢ 𝐶 [𝑎] : 𝜏 and Γ, 𝑎:𝜎 ⊢ 𝐶 [𝑉] : 𝜏 . By

further inversion, we know (Γ, 𝑎:𝜎)Γ′ ⊢ 𝑎 : 𝜎 and (Γ, 𝑎:𝜎)Γ′ ⊢ 𝑉 : 𝜎 where 𝐶 binds

the extended environment Γ′. Considering some arbitrary ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈

EnvJΓK, we must show ((Φ𝑙 , Σ𝑙 ,𝑉 memo 𝑎 in 𝐶 [𝑎]), (Φ𝑟 , Σ𝑟 ,𝑉 memo 𝑎 in 𝐶 [𝑉])) ∈

CompJ𝜏K. By Proposition 7.8, this is to show that the pair is in StackJ𝜏Kx. Thus,

consider some Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K:

On the left there is the transition,

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑉 memo 𝑎 in 𝐶 [𝑎] ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
, 𝑙𝑎 ↦→ Build𝑎 (Σ𝑙 ,𝑉) ∥ Σ𝑙 , 𝑙𝑎/𝑎 ∥ 𝐶 [𝑎] ∥ 𝐾𝑙⟩⟩

And similarly on the right.

(((Φ′
𝑙
, 𝑙𝑎 ↦→ Build𝑎 (Σ𝑙 ,𝑉)), (Σ𝑙 , 𝑙𝑎/𝑎),𝐶 [𝑎])

, ((Φ′
𝑟 , 𝑙𝑎 ↦→ Build𝑎 (Σ𝑟 ,𝑉)), (Σ𝑟 , 𝑙𝑎/𝑎)),𝐶 [𝑉]) ∈ CompJ𝜎K,

by Lemma 7.3.

(((Φ′
𝑙
, 𝑙𝑎 ↦→ Build𝑎 (Σ𝑙 ,𝑉)), 𝐾𝑙)

, ((Φ′
𝑟 , 𝑙𝑎 ↦→ Build𝑎 (Σ𝑟 ,𝑉)), 𝐾𝑟)) ∈ StackJ𝜏K,

183

by closure under future heaps. And by Proposition 7.8, we know this pair is in

CompJ𝜏K

x

.

⟨⟨Φ′
𝑙
, 𝑙𝑎 ↦→ Build𝑎 (Σ𝑙 ,𝑉) ∥ Σ𝑙 , 𝑙𝑎/𝑎 ∥ 𝐶 [𝑎] ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 , 𝑙𝑎 ↦→ Build𝑎 (Σ𝑟 ,𝑉) ∥

Σ𝑟 , 𝑙𝑎/𝑎 ∥ 𝐶 [𝑉] ∥ 𝐾𝑟 ⟩⟩, by the combination of the expressions and stacks above

from the property of CompJ𝜏K

x

.

Case GC:

Γ ⊢ 𝑅 memo 𝑎 in 𝑃 = 𝑃 : 𝜏

Note that we take 𝑃 = 𝑀 and 𝜏 = 𝜏 ; the proof will follow similarly for shared

computations. From the equality, we know that Γ ⊢ 𝑀 : 𝜏 . Considering

some arbitrary environments ((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK, we must show that

((Φ𝑙 , Σ𝑙 , 𝑅 memo 𝑎 in𝑀), (Φ𝑟 , Σ𝑟 , 𝑀)) ∈ CompJ𝜏K. It is enough to show that the pair

is in StackJ𝜏Kx by Proposition 7.8. Thus, further consider some Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 ,

and ((Φ′
𝑙
, 𝐾𝑙), (Φ′

𝑟 , 𝐾𝑟)) ∈ StackJ𝜏K:

On the left side, there is the transition:

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑅 memo 𝑎 in𝑀 ∥ 𝐾𝑙⟩⟩ ↦−→

⟨⟨Φ′
𝑙
, 𝑙𝑎 ↦→ Build𝑎 (Σ𝑙 , 𝑅) ∥ Σ𝑙 , 𝑙𝑎/𝑎 ∥ 𝑀 ∥ 𝐾𝑙⟩⟩

(((Φ′
𝑙
, 𝑙𝑎 ↦→ Build𝑎 (Σ𝑙 , 𝑅)), Σ𝑙 , 𝑙𝑎/𝑎,𝑀), (Φ′

𝑟 , Σ𝑟 , 𝑀)) ∈ CompJ𝜏K by Lemma 7.4.

Moreover, it follows by Proposition 7.8, this pair is in StackJ𝜏Kx.

⟨⟨Φ′
𝑙
, 𝑙𝑎 ↦→ Build𝑎 (Σ𝑙 , 𝑅) ∥ Σ𝑙 , 𝑙𝑎/𝑎 ∥ 𝑀 ∥ 𝐾𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑀 ∥ 𝐾𝑟 ⟩⟩, by the

property of above related expression in the heaps Φ′
𝑙
, 𝑙𝑎 ↦→ Build𝑎 (Σ𝑙 , 𝑅) ⊒

Φ′
𝑙
and Φ′

𝑟 ⊒ Φ′
𝑟 with the assumed related stacks (note closure under future

worlds).

184

Case name:

Γ ⊢ 𝑅 = 𝑅 memo 𝑎 in 𝑎 : 𝜏

Wemust prove that ((Φ𝑙 , Σ𝑟 , 𝑅), (Φ𝑟 , Σ𝑟 , 𝑅 memo 𝑎 in 𝑎)) ∈ SharedJ𝜏K for an arbitrary

((Φ𝑙 , Σ𝑙), (Φ𝑟 , Σ𝑟)) ∈ EnvJΓK. By definition, this is to show that the pair is in

the set VStackJ𝜏Kx. Thus, we further consider some Φ′
𝑙
⊒ Φ𝑙 , Φ′

𝑟 ⊒ Φ𝑟 , and

((Φ𝑙 ,K𝑙), (Φ𝑟 ,K𝑟)) ∈ VStackJ𝜏K:

On the right side, there is the transition sequence:

⟨⟨Φ′
𝑟 ∥ Σ𝑟 ∥ 𝑅 memo 𝑎 in 𝑎 ∥ K𝑟 ⟩⟩ ↦−→

⟨⟨Φ′
𝑟 , 𝑙𝑎 ↦→ {Σ𝑟 , 𝑅} ∥ Σ𝑟 , 𝑙𝑎/𝑎 ∥ 𝑎 ∥ K𝑟 ⟩⟩ ↦−→

⟨⟨Φ′
𝑟 ∥ Σ𝑟 ∥ 𝑅 ∥ (𝜀, 𝑙𝑎) · K𝑟 ⟩⟩

Γ ⊢ 𝑅 : 𝜏 follows from the equality. And thus, Γ ⊨ 𝑅 ≈ 𝑅 : 𝜏 , by the reflexivity

of semantic equivalence. ((Φ′
𝑙
, Σ𝑙 , 𝑅), (Φ′

𝑟 , Σ𝑟 , 𝑅)) ∈ SharedJ𝜏K, by the above

semantic equality with the related environments.

((Φ′
𝑙
,K𝑙), (Φ′

𝑟 ,K𝑟)) ∈ StackJ𝜏K, since VStackJ𝜏K is include in StackJ𝜏K and closure

over accessible heaps.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑅 ∥ K𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑅 ∥ K𝑟 ⟩⟩, by the property of the related stacks

with the heaps Φ′
𝑙
⊒ Φ′

𝑙
, Φ′

𝑟 ⊒ Φ′
𝑟 , and the related expressions above.

⟨⟨Φ′
𝑟 ∥ Σ𝑟 ∥ 𝑅 ∥ K𝑟 ⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑅 ∥ (𝜀, 𝑙𝑎) · K𝑟 ⟩⟩ by the last closure property of

(≃) for shared expressions.

⟨⟨Φ′
𝑙
∥ Σ𝑙 ∥ 𝑅 ∥ K𝑙⟩⟩ ≃ ⟨⟨Φ′

𝑟 ∥ Σ𝑟 ∥ 𝑅 memo 𝑎 in 𝑎 ∥ K𝑟 ⟩⟩, by the closure properties

of (≃).

185

Cases reflexivity, symmetry, transitivity, and compatibility follow by their inductive

hypotheses and the properties of (≈).

□

7.3 Soundness of CBPVS

Theorem 7.1 (Soudness). If Γ ⊢ 𝐴 = 𝐵 : 𝜏 , then 𝐴 ≃ 𝐵.

Proof. By Lemma 7.6, we know that Γ ⊨ 𝐴 ≈ 𝐵 : 𝜏 . We know that (≈) is compatible; and

thus with a closing context 𝐶 , we have ⊨ 𝐶 [𝐴] ≈ 𝐶 [𝐵] : 𝐹 𝐵. With the related empty

environments, we have that ((𝜀, 𝜀,𝐶 [𝐴]), (𝜀, 𝜀,𝐶 [𝐵])) ∈ CompJ𝐹 𝐵K. By Proposition 7.8,

we know that ⟨⟨𝜀 ∥ 𝜀 ∥ 𝐶 [𝑀] ∥ ★⟩⟩ ≃ ⟨⟨𝜀 ∥ 𝜀 ∥ 𝐶 [𝑁] ∥ ★⟩⟩ if we can show that

((Φ𝑙 ,★), (Φ𝑟 ,★)) ∈ StackJ𝐹 𝐵K for any Φ𝑙 ⊒ 𝜀 and Φ𝑟 ⊒ 𝜀. This is true, since trivial to show

termination considering an arbitrary ((Φ𝑙 , Σ𝑙 , ret b), (Φ𝑟 , Σ𝑟 , ret b)) ∈ IntroJ𝐹 𝐵K. □

Corollary 7.2. If ⊢ 𝑀 = ret b : 𝐹 𝐵, then EvalS(𝑀) = b.

7.4 Adequacy of Closure Conversions

A question left to answer, especially in a language for which closure conversion

is novel, is whether or not the transformations we have specified have an effect on the

machine. More specifically, are closures still left unspecified at runtime if we have done

closure conversion?

As mentioned earlier, any rule in the machine that uses the build function to

construct machine data may need to build its own closure if it was not specified. For

instance:

Build𝑉 (Σ, {𝜍, force → 𝑀}) = {Σ Build𝜍 (Σ, 𝜍), force → 𝑀}

The environment Σ is completely captured in the closure; it has only the flat structure

that the machine uses for its environment and may contain more variables than needed

186

for evaluating𝑀 later. If our closure conversionwere adequate, then the buildingmachine

values ought to be equal to a restricted form of substitution:

Buildcl
𝑉 (Σ, {𝜍, force → 𝑀}) = {Build𝜍 (Σ, 𝜍), force → 𝑀}

Now building machine values for closures only looks up the variables in the environment

specified in the syntax. For the Build𝑉 and Build𝑎 , we can construct similar rules for their

closure cases. Since it does not go into the body of the closure (as substitution would), we

may generate a fixed code sequence for it.

To show that a conversion is adequate, we construct a new abstract machine, denoted

(↦−→CC), that uses Buildcl instead of Build. If a program has been closure converted, then

it should be able to run on this machine and produce the same result as the larger machine

that creates closures dynamically.

Definition 7.6 (Closure Converted CBPVS Machine Evaluator).

EvalSCC(𝑃) = b where ⟨⟨𝜀 ∥ 𝜀 ∥ 𝑃 ∥ ★⟩⟩ ↦−→∗
CC ⟨⟨Φ ∥ Σ ∥ ret b ∥ ★⟩⟩.

Theorem 7.2 (Adequacy). If 𝑃 is a well-typed expression in CC-normal form, then

EvalS(𝑃) = EvalSCC(𝑃).

Proof. Because of garbage collection (Lemma 7.4), for any closure we build in themachine,

we can show that it is related to using the closed builder. For instance, consider some sub-

expression of 𝑃 where𝑉 = {𝜍, force → 𝑀} in CC-normal form. We know Build𝑉 (Σ,𝑉) =

{Σ Build𝜍 (Σ, 𝜍), force → 𝑀} by definition for an arbitrary Σ covering the free variables

of 𝑉 . And by definition, we also have Buildcl
𝑉 (Σ,𝑉) = {Build𝜍 (Σ, 𝜍), force → 𝑀}

for the closed version. By the definition of CC-normal form, 𝑀 only depends on

Build𝜍 (Σ, 𝜍). Therefore, by repeated application of the garbage collection lemma, we

have ((Φ, Build𝑉 (Σ,𝑉)), (Φ, Buildcl
𝑉 (Σ,𝑉))) ∈ ValJ𝑈 𝜏K. By the compatibility lemmas, we

187

can do this for each closure converted sub-part of 𝑃 . This with the knowledge that our

evaluators run 𝑃 in the empty environment and stack (which are trivial related) allows us

to conclude. □

There is still a sense in which abstract closures are less adequate than the canonical

closure conversion. Whereas our approach keeps the contexts that consume closures (i.e.

the application case for call-by-value closure conversion), a full closure conversion in the

application case generates code for entering a function. Thus, a machine that accepts

our closures need not have special rules for capturing environment—they are built the

same as data—but will need special rules for closure entry which will instantiate the

environment captured. This instantiation amounts to a pattern match followed by a jump;

the canonical closure conversion is fine grained enough to detach these two operations,

but at the expense of being a global transformation.

188

CHAPTER VIII

DISCUSSION

8.1 Related Work

Abstract closures have been used in the past for reasoning and optimization. Hannan

[21] used abstract closures in an IL to implement the optimizations of Wand and Steckler

[56] which reduce the variables in a closure. Minamide et al. [34] used them as an

intermediate step in their typed closure conversion. These two works use big-step

semantics and global transformations. The work most similar to ours is that of Bowman

and Ahmed [11] because they give a language with local rewriting rules instead. For

them, abstract closures were necessary for their main goal: proving the correctness of

a closure conversion for the Calculus of Construction. Unlike their theory, we did not

need to give special 𝜂 laws for abstract closures, only 𝛽 laws. Our work can be seen as

promoting abstract closures further by considering their use in an optimizing compiler’s

IL. Specifically, we treat the process of closure conversion itself as a rewriting theory

capable of being integrated into the optimization passes.

Explicit substitution calculi have a similar goal to ours: to close the gap between

an equational theory and a practical implementation. Indeed, after adding our abstract

closures, we arrived at a calculus that contains explicit substitutions like that of Abadi

et al. [1] and that of the later extension to sharing by Seaman and Iyer [47]. A major

difference is that we restrict where environments—for them substitutions—can occur in

an expression, whereas they allow environments in any expression. For us, they can

only occur for computations being delayed to values or shared values and over shared

computations bound in a memo-expression; these are directly informed by where closures

are constructed in our abstract machines. Moreover, we still make use of a substitution

189

function over the syntax of our language, instead of embedding the entire system in our

equational theory. As a result, we can easily specify what it means for a term to be in

a closure converted form. The notion of 𝛽 reduction in Abadi et al. and their Krivine

machine always construct closure objects. In our system, we can show that a closure

converted term does not do this.

Like us, McDermott and Mycroft [32] extend CBPV with sharing. Their approach is

to use computation variables of type 𝐹 𝜏 for sharing whereas we add another syntactic

class for shared objects. In both cases, sharing required the addition of special binders to

reference the shared computation as in call-by-need. Theirmotivationwas not specifically

focused on using CBPV as a compiler IL and thus their language falls short for us. First,

we needed to show the soundness of our theory with respect to an abstract machine

because we wanted to use the language for optimization. Second, their approach does

not subsume the full equational theory of call-by-need. Since we were interested in these

goals, our language takes many ideas from Beyond Polarity (BP) [16] instead. As ANF [18]

can be seen as a focalized variant of the 𝜆-calculus, our language can be seen as a focalized

variant of BP; that is, we must give names to all intermediate computations. We pursued

a focalized language because it eliminates syntactic differences between programs; and

thus, it is effective in compilation.

Our approach to proving the soundness of our equational theories follows from

⊤⊤-closure of [45]. It follows the standard application of the approach, but is extended

for environment machines. The correctness of the sharing portion is more novel. We

are aware of three other approaches to logical relations for lazy languages [35, 20, 16].

Miquey and Herbelin [35] is only interested in normalization and thus constructs a

logical predicate, but makes use of similar multi-level orthogonality operations in order

to build up notions of types; their positive characterization of function types will become

190

a problem if they extend their predicate to relation and attempt to prove the soundness

of extensional axioms. The relation of Hackett and Hutton [20] is over expressions in the

language which imply evaluation in a machine, in a manner similar to us; though it is not

clear whether the approach is strong enough to prove the soundness of the extensionality

axioms or lifting rules from our equational theories. Their relation does consider two

aspects of lazy evaluation that we do not: polymorphism and computational cost. Finally,

Downen and Ariola in their BP language [16] prove the soundness of a sharing equational

theory with similar axioms including extensionality; it differs in that our operational

semantics is an environment machine whereas theirs is a standard reduction theory with

substitutions. Our environment machine semantics is why we developed a Kripke logical

relation since heaps are part of the related expressions. There is other work by Ahmed

[2] on Kripke logical relations for languages with heaps in the operational semantics. The

languages that she considers are those with mutable state. Call-by-need heaps are better

behaved than those with type-safe mutable references and thus we have a simpler Kripke

relationship; hers require step indexing.

8.2 Future Work

As future work, we wish to extend our equational theory of CBPVS to a reduction

theory. We generalized Levy’s CBPV axioms in order to make the theory more flexible

for optimization and we do not know exactly which changes need to be made to the

equations to get a reduction theory. Additionally, we want to implement some version

of this approach to closure conversion within GHC’s intermediate language, since it is

organized around the small, local transformations [44] that inspired this paper. In so

doing, we would also need to extend our theory of closures to handle polymorphism

and mutual recursion. Both cases have already received special attention with regard

to closure conversion by Minamide et al. [34] and Appel [5], respectively. Preliminary

191

work by us with respect to recursion shows that fixpoints out to be added to 𝑈 𝜏 types

so that they can form a recursive closure; this differs from Levy who adds fixpoints as

computations.

8.3 Conclusion

This thesis started by examining the abstract machines used to implement different

evaluation strategies. We saw that the strictness of a language influenced the closures that

were necessary in abstract machines. We first filled a hole in the literature with respect

to non-strict closure conversion as an approach to compilation. As a reflection of the

machines, we described new closure conversions for these different evaluation strategies.

To add flexibility and higher-level reasoning to the transformation, we describe a new

approach to compiling closures for these different evaluation strategies that allows us to

perform the transformation locally in the intermediate language as well as optimizations

thereof. We show how to combine all of these into a single intermediate language based

on call-by-push-value that has the strongest 𝛽 and 𝜂 laws for optimization and preserves

the equational theories of call-by-name, call-by-value, and call-by-need. To validate our

work, we developed a model of types over abstract machines that show that our new

approach is both sound and sufficient to remove runtime constructed closures from the

machine.

192

REFERENCES CITED

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Levy. Explicit substitutions. In
Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’90, pages 31–46, 1989.

[2] Amal Ahmed. Semantics of Types for Mutable State. PhD thesis, Princeton University,
2004.

[3] Amal Ahmed and Matthias Blume. Typed closure conversion preserves observational
equivalence. In Proceeding of the 13th ACM SIGPLAN international conference on
Functional programming, ICFP 2008, Victoria, BC, Canada, September 20-28, 2008,
pages 157–168, 2008.

[4] Amal Ahmed, Derek Dreyer, and Andreas Rossberg. State-dependent representation
independence. In Zhong Shao and Benjamin C. Pierce, editors, Proceedings of the
36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2009, Savannah, GA, USA, January 21-23, 2009, pages 340–353. ACM, 2009.

[5] Andrew W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[6] Andrew W. Appel and Trevor Jim. Continuation-passing, closure-passing style. In
Conference Record of the Sixteenth Annual ACM Symposium on Principles of
Programming Languages, Austin, Texas, USA, January 11-13, 1989, pages 293–302,
1989.

[7] Zena M. Ariola and Matthias Felleisen. The call-by-need lambda calculus. J. Funct.
Program., 7(3):265–301, 1997.

[8] Zena M. Ariola, Matthias Felleisen, John Maraist, Martin Odersky, and Philip Wadler.
The call-by-need lambda calculus. In Conference Record of POPL’95: 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San
Francisco, California, USA, January 23-25, 1995, pages 233–246, 1995.

[9] Zena M. Ariola, John Maraist, Martin Odersky, Matthias Felleisen, and Philip Wadler.
A call-by-need lambda calculus. In Proceedings of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’95, pages 233–246, 1995.

[10] Lennart Augustsson. Compiling pattern matching. In Proceedings Of a Conference on
Functional Programming Languages and Computer Architecture, pages 368–381, 1985.

[11] William J. Bowman and Amal Ahmed. Typed closure conversion for the calculus of
constructions. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2018, Philadelphia, PA, USA, June 18-22,
2018, pages 797–811, 2018.

193

[12] G. L. Burn, Simon L. Peyton Jones, and J. D. Robson. The spineless g-machine. In
Proceedings of the 1988 ACM Conference on LISP and Functional Programming, LFP
’88, pages 244–258, 1988.

[13] Alonzo Church. The calculi of 𝜆-conversion, volume 6. Princeton University Press,
1941.

[14] Nicolaas Govert de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the church-rosser theorem.
In Indagationes Mathematicae (Proceedings), volume 75, pages 381–392, 1972.

[15] Paul Downen and Zena M. Ariola. The duality of construction. In Programming
Languages and Systems - 23rd European Symposium on Programming, ESOP 2014,
Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings, pages 249–269, 2014.

[16] Paul Downen and Zena M. Ariola. Beyond polarity: Towards a multi-discipline
intermediate language with sharing. In 27th EACSL Annual Conference on Computer
Science Logic, CSL 2018, September 4-7, 2018, Birmingham, UK, pages 21:1–21:23,
2018.

[17] Paul Downen, Philip Johnson-Freyd, and Zena M. Ariola. Abstracting models of
strong normalization for classical calculi. J. Log. Algebraic Methods Program.,
111:100512, 2020.

[18] Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence of
compiling with continuations. In Proceedings of the ACM SIGPLAN’93 Conference on
Programming Language Design and Implementation (PLDI), Albuquerque, New
Mexico, USA, June 23-25, 1993, pages 237–247, 1993.

[19] Sebastian Graf and Simon Peyton Jones. Selective lambda lifting. CoRR,
abs/1910.11717, 2019.

[20] Jennifer Hackett and Graham Hutton. Parametric polymorphism and operational
improvement. Proc. ACM Program. Lang., 2(ICFP):68:1–68:24, 2018.

[21] John Hannan. Type systems for closure conversions. The Workshop on Types for
Program Analysis, pages 64–83, 1995.

[22] Richard B. Kieburtz. The g-machine: A fast, graph-reduction evaluator. In
Functional Programming Languages and Computer Architecture, FPCA 1985, Nancy,
France, September 16-19, 1985, Proceedings, pages 400–413, 1985.

[23] Jean-Louis Krivine. A call-by-name lambda-calculus machine. Higher-Order and
Symbolic Computation, 20(3):199–207, 2007.

194

[24] Peter J. Landin. The mechanical evaluation of expressions. The Computer Journal,
6(4):308–320, 1964.

[25] John Launchbury. A natural semantics for lazy evaluation. In Conference Record of
the Twentieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Charleston, South Carolina, USA, January 1993, pages
144–154, 1993.

[26] Xavier Leroy. The ZINC experiment: an economical implementation of the ML
language. Technical report 117, INRIA, 1990.

[27] Paul Blain Levy. Call-by-push-value. PhD thesis, Queen Mary University of London,
UK, 2001.

[28] John Maraist, Martin Odersky, and Philip Wadler. The call-by-need lambda calculus.
J. Funct. Program., 8(3):275–317, 1998.

[29] Simon Marlow and Simon L. Peyton Jones. Making a fast curry: push/enter vs.
eval/apply for higher-order languages. In Proceedings of the Ninth ACM SIGPLAN
International Conference on Functional Programming, ICFP 2004, Snow Bird, UT, USA,
September 19-21, 2004, pages 4–15, 2004.

[30] Phillip Mates, Jamie Perconti, and Amal Ahmed. Under control: Compositionally
correct closure conversion with mutable state. In Ekaterina Komendantskaya,
editor, Proceedings of the 21st International Symposium on Principles and Practice of
Programming Languages, PPDP 2019, Porto, Portugal, October 7-9, 2019. ACM, 2019.

[31] Luke Maurer, Paul Downen, Zena M. Ariola, and Simon L. Peyton Jones. Compiling
without continuations. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain,
June 18-23, 2017, pages 482–494, 2017.

[32] Dylan McDermott and Alan Mycroft. Extended call-by-push-value: Reasoning about
effectful programs and evaluation order. In Programming Languages and Systems -
28th European Symposium on Programming, ESOP 2019, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech
Republic, April 6-11, 2019, Proceedings, pages 235–262, 2019.

[33] Robin Milner, Mads Tofte, and Robert Harper. The Definition of Standard ML. MIT
Press, Cambridge, MA, USA, 1990.

[34] Yasuhiko Minamide, J. Gregory Morrisett, and Robert Harper. Typed closure
conversion. In Conference Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, Papers Presented at the
Symposium, St. Petersburg Beach, Florida, USA, January 21-24, 1996, pages 271–283,
1996.

195

[35] Étienne Miquey and Hugo Herbelin. Realizability interpretation and normalization
of typed call-by-need lambda-calculus with control. In Christel Baier and Ugo Dal
Lago, editors, Foundations of Software Science and Computation Structures - 21st
International Conference, FOSSACS 2018, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece,
April 14-20, 2018, Proceedings, volume 10803 of Lecture Notes in Computer Science,
pages 276–292, 2018.

[36] J. Gregory Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to
typed assembly language. In POPL ’98, Proceedings of the 25th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Diego,
CA, USA, January 19-21, 1998, pages 85–97, 1998.

[37] Chris Okasaki, Peter Lee, and David Tarditi. Call-by-need and continuation-passing
style. LISP Symb. Comput., 7(1):57–82, 1994.

[38] Zoe Paraskevopoulou and Andrew W. Appel. Closure conversion is safe for space.
Proc. ACM Program. Lang., 3(ICFP):83:1–83:29, 2019.

[39] Zoe Paraskevopoulou, John M. Li, and Andrew W. Appel. Compositional
optimizations for certicoq. Proc. ACM Program. Lang., 5(ICFP):1–30, 2021.

[40] James T. Perconti and Amal Ahmed. Verifying an open compiler using
multi-language semantics. In Programming Languages and Systems - 23rd European
Symposium on Programming, ESOP 2014, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April
5-13, 2014, Proceedings, pages 128–148, 2014.

[41] Simon L. Peyton Jones. The Implementation of Functional Programming Languages.
Prentice-Hall, 1987.

[42] Simon L. Peyton Jones and John Launchbury. Unboxed values as first class citizens
in a non-strict functional language. In Functional Programming Languages and
Computer Architecture, 5th ACM Conference, Cambridge, MA, USA, August 26-30,
1991, Proceedings, pages 636–666, 1991.

[43] Simon L. Peyton Jones and Jon Salkild. The spineless tagless g-machine. In
Proceedings of the Fourth International Conference on Functional Programming
Languages and Computer Architecture, FPCA ’89, pages 184–201, 1989.

[44] Simon L. Peyton Jones and André L. M. Santos. A transformation-based optimiser
for haskell. Sci. Comput. Program., 32(1-3):3–47, 1998.

[45] Andrew M. Pitts. Parametric polymorphism and operational equivalence. Math.
Struct. Comput. Sci., 10(3):321–359, 2000.

196

[46] Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor.
Comput. Sci., 1(2):125–159, 1975.

[47] Jill Seaman and S. Purushothaman Iyer. An operational semantics of sharing in lazy
evaluation. Sci. Comput. Program., 27(3):289–322, 1996.

[48] Peter Sestoft. Deriving a lazy abstract machine. J. Funct. Program., 7(3):231–264,
1997.

[49] Zhong Shao and Andrew W. Appel. Space-efficient closure representations. In
Proceedings of the 1994 ACM Conference on LISP and Functional Programming,
Orlando, Florida, USA, 27-29 June 1994, pages 150–161, 1994.

[50] Zhong Shao and Andrew W. Appel. Efficient and safe-for-space closure conversion.
ACM Trans. Program. Lang. Syst., 22(1):129–161, 2000.

[51] Guy L. Steele. Rabbit: A compiler for scheme. Master’s thesis, Massachusetts
Institute of Technology, 1978.

[52] Zachary J. Sullivan, Paul Downen, and Zena M. Ariola. Strictly capturing non-strict
closures. In Proceedings of the 2021 ACM SIGPLAN Workshop on Partial Evaluation
and Program Manipulation, PEPM@POPL 2021, Virtual Event, Denmark, January
18-19, 2021, pages 74–89. ACM, 2021.

[53] Zachary J. Sullivan, Paul Downen, and Zena M. Ariola. Closure conversion in little
pieces. In Santiago Escobar and Vasco T. Vasconcelos, editors, International
Symposium on Principles and Practice of Declarative Programming, PPDP 2023,
Lisboa, Portugal, October 22-23, 2023, pages 10:1–10:13. ACM, 2023.

[54] D. A. Turner. A new implementation technique for applicative languages. Softw.,
Pract. Exper., 9(1):31–49, 1979.

[55] Philip Wadler. Call-by-value is dual to call-by-name. In Proceedings of the Eighth
ACM SIGPLAN International Conference on Functional Programming, ICFP 2003,
Uppsala, Sweden, August 25-29, 2003, pages 189–201, 2003.

[56] Mitchell Wand and Paul Steckler. Selective and lightweight closure conversion. In
Proceedings of the 21st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’94, pages 435–445, 1994.

197

	 Introduction
	The Emergence of Closures
	Reflecting Closures in a Language
	Reasoning about Closures
	Outline

	 Machines and their Calculi
	The SECD Machine and Call-by-Value
	The Krivine Machine and Call-by-Name
	The Sestoft Machine and Call-by-Need

	 Closure Conversions
	The Canonical Closure Conversion
	Source Language
	Target Language
	Transformation
	Operational Semantics Preservation

	Non-strict Closure Conversions
	Source Language
	Target Language
	Transformation
	Operational Semantics Preservation

	Sharing Closure Conversion
	Source Language
	Target Language
	Transformation
	Operational Semantics Preservation

	 Abstract Closures
	Why Abstract Closures
	Closures for Different Evaluation Strategies
	Call-by-Value
	Call-by-Name
	Call-by-Need

	Deriving Closure Conversions
	Using Abstract Closures
	Choosing an Environment Representation
	Choosing Environment Passing Technique

	 CBPVS: A Common Intermediate Language
	CBPV
	Equational Theory
	Subsuming Call-by-Value and Call-by-Name

	Adding Sharing
	Typing Rules
	Equational Theory

	Subsuming Call-by-Need

	 Closures and Machines for CBPVS
	An Environment Machine for CBPV
	CBPVS with Closures
	The CBPVS Machine
	Backwards Simulation
	Observational Equivalence

	 A Model of Types over the CBPVS Machine
	Logical Relations
	Semantic Equality
	Soundness of CBPVS
	Adequacy of Closure Conversions

	 Discussion
	Related Work
	Future Work
	Conclusion

	REFERENCES CITED

