
Automatic Code Rewriting for Performance Portability

by

Alister Johnson

A dissertation accepted and approved in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in Computer Science

Dissertation Committee:

Allen Malony, Chair

Boyana Norris, Core Member

Zena Ariola, Core Member

Jon Brundan, Institutional Representative

Michael Wolfe, External Member

Camille Coti, External Member

University of Oregon

Spring 2024

© 2024 Alister Johnson
This work is openly licensed via CC BY 4.0.

2

https://creativecommons.org/licenses/by/4.0/

DISSERTATION ABSTRACT

Alister Johnson

Doctor of Philosophy in Computer Science

Title: Automatic Code Rewriting For Performance Portability

Rewriting code for cleanliness, API changes, and new programming models

is a common, yet time-consuming task. This is important for HPC applications

that desire performance portability in particular, since these applications are

usually very long lived and wish to run on many architectures, so they need to

be written such that they can make good use of all the available hardware with

minimal code changes. Furthermore, it is unknown what future supercomputer

hardware and programming models will be, so they need to be written in such a

way that they are “future proof” and will only need minimal rewrites in the future.

Localized or syntax-based changes are often mechanical and can be

automated with text-based rewriting tools, like sed. However, non-localized or

semantic-based changes require specialized tools that usually come with complex,

hard-coded rules that require expertise in compilers. This means techniques for

source rewriting are either too simple for complex tasks or too complex to be

customized by non-expert users; in either case, developers are often forced to

manually update their code instead.

This work describes a new approach to code rewriting which exposes

complex and semantic-driven rewrite capabilities to users in a simple and natural

way. Rewrite rules are expressed as a pair of parameterized “before-and-after”

source code snippets, one to describe what to match and one to describe what

the replacement looks like. Through this novel and user-friendly interface,

3

programmers can automate and customize complex code changes which require a

deep understanding of the language without any knowledge of compiler internals.

This dissertation includes previously published and unpublished co-authored

material.

4

CURRICULUM VITAE

NAME OF AUTHOR: Alister Johnson

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, OR, USA
Harvey Mudd College, Claremont, CA, USA

DEGREES AWARDED:

Doctor of Philosophy, Computer Science, 2024, University of Oregon
Master of Science, Computer and Information Science, 2020, University of

Oregon
Bachelor of Science, Joint Mathematics and Computer Science, 2017, Harvey

Mudd College

AREAS OF SPECIAL INTEREST:

Compilers
Performance Portability
High Performance Computing

PROFESSIONAL EXPERIENCE:

Graduate Student Research Aide, Argonne National Laboratory, 2021-2022
WJ Cody Research Assistant, Argonne National Laboratory, 2021
TAU Research Group, 2018-2021
GPU Compilers Intern, NVIDIA HPC SDK Team, 2018, 2019, 2020
Teaching Assistant – Computer Science III, University of Oregon, 2017
Harvey Mudd Clinic Program, Environmental Data Resources (EDR), 2016-

2017

GRANTS, AWARDS AND HONORS:

5

Moursund Fellowship, Winter Term 2024

PUBLICATIONS:

Alister Johnson, Camille Coti, Allen D Malony, and Johannes Doerfert.
MARTINI: The little match and replace tool for automatic code
rewriting. Journal of Open Source Software, 7(76), 2022.

Alister Johnson, Camille Coti, Allen D. Malony, and Johannes Doerfert.
MARTINI: The little match and replace tool for automatic application
rewriting with code examples. In Jose Cano and Phil Trinder, editors,
Euro-Par 2022: Parallel Processing, pages 19–34, Cham, 2022. Springer
International Publishing.

Alister Johnson. Area exam: General-purpose performance portable
programming models for productive exascale computing. Technical
report, University of Oregon, Department of Computer and Information
Sciences, June 2020.

Alister Johnson. Scaling collaborative filtering with PETSc. In 2018 IEEE
International Conference on Big Data (Big Data), pages 4237–4244,
December 2018.

6

ACKNOWLEDGEMENTS

Many thanks to my advisors and coauthors, Professors Allen Malony and

Camille Coti, for their help and adivce, and for keeping me on the right track.

Thanks also to Jan Hückelheim and Johannes Doerfert at Argonne National Lab

for funding my work.

I would not have been able to complete this work without the unwavering

support of my friends and family – in particular, my parents, and my dear friends

Sam, Maddy, and Sun-Ae. Thank you all for never doubting me, and for making

sure I know I’m the best to ever do it.

7

DEDICATION

To everyone who walked so I could run.

8

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 19

II. BACKGROUND . 23

2.1. Current Goals in High Performance Computing 23

2.1.1. Goals for Exascale 24

2.1.2. Challenges of Exascale 25

2.1.3. A Brief History of Supercomputing 27

2.1.4. Modern Architectures 29

2.1.5. Why Performance Portability Matters 30

2.2. Performance Portability . 31

2.2.1. Defining Performance Portability 31

2.2.2. Primary Metric . 33

2.2.2.1. Architectural Efficiency 34

2.2.2.2. Application Efficiency 35

2.2.2.3. Platform Set Choice 35

2.2.3. Other Metrics for Performance Portability 36

2.2.3.1. PPMD . 37

2.2.3.2. PD . 38

2.2.4. More History of Performance Portability 39

2.3. Productivity . 39

2.3.1. Defining Productivity 40

2.3.2. Measuring Productivity 40

2.3.3. Productivity and Performance Portability 42

9

Chapter Page

2.4. Some Non-(Performance) Portable Programming Models 43

2.4.1. CUDA . 43

2.4.2. OpenCL . 44

2.4.3. OpenMP 3 . 44

2.4.4. MPI and SHMEM 44

2.5. Performance Portable Programming Models 45

2.5.1. Libraries . 45

2.5.1.1. Skeletons 46

2.5.1.2. Parallel Loop Libraries 48

2.5.2. Application-Specific Libraries 50

2.6. Parallel (C/C++-like) Languages 52

2.6.1. SYCL and DPC++ 53

2.7. Directive-based Models . 56

2.7.1. OpenMP . 57

2.7.1.1. OpenMP 4.x 58

2.7.1.2. OpenMP 5.x 59

2.7.1.3. Future OpenMP 59

2.7.1.4. OpenMP 3 to GPGPU 59

2.7.2. OpenACC . 60

2.7.2.1. OpenACC 2.x 61

2.7.2.2. OpenACC 3.0 and Future Versions 62

2.7.3. Customizable Directives 62

2.7.3.1. Xevolver . 62

2.7.3.2. The CLAW DSL 63

2.8. Source-to-source Translators and Existing Rewriting Tools 64

10

Chapter Page

2.8.1. Early Translators . 65

2.8.1.1. Qilin . 65

2.8.1.2. R-Stream 66

2.8.2. Omni . 67

2.8.3. ROSE . 68

2.8.4. Bones . 69

2.8.5. OpenACC to OpenMP 71

2.8.5.1. Sultana et al.’s Translator 72

2.8.5.2. Clacc . 73

2.8.6. Generic Translators 74

2.8.6.1. Regular Expressions: sed, awk, etc. 75

2.8.6.2. LLVM and Polly 75

2.8.6.3. ClangMR and Clang::Transformer 76

2.8.6.4. Cetus . 77

2.8.6.5. Stratego/XT 77

2.8.6.6. CHiLL . 78

2.8.6.7. Coccinelle 78

2.8.6.8. Orio . 79

2.8.6.9. Nobrainer 80

2.8.6.10. Selected Rewriting Tools for Other Languages . . . 80

2.8.6.11. Summary of Generic Rewriting Tools 82

2.9. Summary . 82

2.9.1. “The Three Ps” . 82

2.9.1.1. Portability 83

2.9.1.2. Performance 85

11

Chapter Page

2.9.1.3. Productivity 85

2.9.2. Performance Portable Models 87

2.9.2.1. Libraries . 87

2.9.2.2. Languages 88

2.9.2.3. Directives 88

2.9.2.4. Translators 88

III. METHODOLOGY . 89

3.1. Motivation . 89

3.2. Design and Implementation of MARTINI 90

3.2.1. Design Philosophy 90

3.2.2. User Interface Design 91

3.2.3. MARTINI Design . 93

3.2.4. MARTINI Implementation 95

3.3. Evaluation Procedure . 98

IV. A BASIC REWRITING TASK 99

4.1. An Example: modernize-use-nullptr 99

V. REWRITING FOR OPTIMIZATION 103

5.1. Introduction . 103

5.2. Loop Peeling . 105

5.3. Loop Fission . 107

5.4. Loop Tiling . 110

5.5. Evaluation . 112

5.5.1. Loop peeling . 113

5.5.2. Loop fission . 113

5.5.3. Loop tiling . 114

12

Chapter Page

5.5.4. Aside: Autotuners 116

VI. PORTING TO NEW PROGRAMMING MODELS 118

6.1. Introduction . 118

6.2. HIPIFY . 119

6.3. Inserting OpenMP Pragmas 122

6.4. OpenMP to Kokkos . 123

6.4.1. TeaLeaf . 124

6.4.1.1. Hand Edits Required 127

6.4.1.2. Summary of TeaLeaf Translation 128

6.4.2. BabelStream . 128

6.4.2.1. Hand Edits Required 134

6.5. Kokkos to SYCL . 134

6.5.1. BabelStream . 134

6.5.1.1. Hand Edits Required 136

6.5.1.2. Summary of BabelStream Translation 136

6.6. Evaluation . 137

6.6.1. HIPIFY . 137

6.6.1.1. Performance 137

6.6.1.2. Usability 138

6.6.2. Inserting OpenMP Pragmas 140

6.6.3. TeaLeaf . 140

6.6.4. BabelStream . 141

VII. REWRITING FOR PERFORMANCE MEASUREMENT 146

7.1. An Example: Basic Instrumentation 146

7.2. Instrumenting Functions . 147

13

Chapter Page

7.3. Arbitrary Instrumentation 148

7.4. Evaluation . 148

7.4.1. -finstrument-functions 148

7.4.2. TAU Clang Plugin 149

7.4.3. PDT . 150

VIII.SUMMARY OF RESULTS . 154

8.1. Summary . 154

8.2. Conclusion . 156

IX. FUTURE DIRECTIONS . 158

9.1. Remaining Development Work 158

9.2. New Features . 159

9.2.1. Custom Directives 159

9.2.2. Control Structures 159

9.2.3. Statistics Reporting 160

9.2.4. Transformation Order and Priority 160

9.3. Future Case Studies . 160

9.3.1. Multiple Precision . 161

9.3.2. Reducing Floating Point Errors 161

9.3.3. More Porting . 162

9.4. Future Integrations . 162

9.4.1. Build Systems . 162

9.4.2. MLIR . 162

9.4.2.1. Flang . 163

REFERENCES CITED . 164

14

LIST OF FIGURES

Figure Page

1. Forty years of processor performance improvements, as
measured by SPECint. Image source: Hennessy and
Patterson (2019). 27

2. A comparison of several code transformation tools. Boxes
with an extra note can be read as “generally yes/no, but it’s
tricky/slow/varies.” . 83

3. The workflow of our tool. Our contributions have bolded,
green outlines. The dashed outline indicates that, while we
reused some existing infrastructure, we also made significant
contributions. 93

4. The C++ attributes used to declare matchers and replacers
in user-provided code snippets. Through use of native
C++, these control attributes are naturally embedded in
the source and can be handled by an otherwise unmodified
Clang. 94

5. Signatures of the functions used as additional control
structures inside matchers and replacers. With familiar
C++ syntax, they allow users to express more types of
transformations in a DSL-like way. 95

6. Example to showcase the “modernize-use-nullptr”
clang-tidy rewrite rule, which replaces 0-literal pointers
with nullptr. While the initialization of a can be
reasonably found with text-based search-and-replace
techniques, the other two replacements require non-local,
semantic reasoning. 99

15

Figure Page

7. The three matcher-replacer pairs we used to mimic (most
of) the functionality of clang-tidy’s “modernize-use-nullptr”
rule. Applied to Fig. 6a, the “modernized” version in Fig.
6b is produced. The variable name var is a parameter
of the matcher block, and the original variable name in
the matched program fragment (e.g., a, b, and c in Fig.
6) is bound to it for use in the replacement. While our
matchers are by default type-agnostic, and hence fully
polymorphic, we enable type-based reasoning for template
type parameters, here T. As a result, the matchers on the
left are restricted to pointer-typed values. 102

8. Loop peeling: performance obtained by the original code
and the generated code. The vertical axis is clock cycles/nanoseconds. . 114

9. Loop fission: performance obtained by the original code and
the generated code. 115

10. Loop fission (compute heavy): performance obtained by the
original code and the generated code.. 115

11. Loop tiling: performance obtained by the original code and
the generated code. The vertical axis is clock cycles/nanoseconds. . . . 116

12. Matcher/replacer pair for CUDA kernel launches with two
kernel arguments and three launch parameters. 143

13. OpenMP pragma insertion: performance obtained by the
original code and the generated code. 144

14. Performance comparison on TeaLeaf kernels between
Kokkos, OpenMP 3.1 and OpenMP 4 implementations,
and our OpenMP-to-Kokkos translation (reported as KOKKOS(T)). . . 144

15. BabelStream benchmark. 145

16. Example of how MARTINI can effectively instrument a
code base with simple example-based rewrite rules that are
semantic context-aware. 151

17. Matcher and replacer examples for modifying functions,
both for instrumentation and general purpose. 152

18. Matcher and replacer pair for inserting instrumentation
around nested for loops. 153

16

Figure Page

19. A comparison of MARTINI and several other code
transformation tools, as described in Section 2.8.6. Boxes
with an extra note can be read as “generally yes/no, but it’s
tricky/slow/varies.” . 157

17

LIST OF TABLES

Table Page

1. Recent supercomputers, from the 2015-2023 Top500 lists and
various announcements. 30

2. Execution time in ms of the HIP output code for the N-body benchmark. 138

18

CHAPTER I

INTRODUCTION

Rewriting and refactoring, for example to optimize performance, port to

a new programming model, update an API, or add error handling, are common

tasks that can take a great deal of time if performed by hand on a large code

base, which is what the vast majority of high-performance computing (HPC)

applications are. Some of these tasks are easily automated with existing text-

based search-and-replace tools, like the sed stream editor or C preprocessor macros.

This is especially true if the rewrite is localized and does not require any semantic

information that is not also present through syntax. However, once rewrites span

code ranges or require semantic reasoning, text-based tooling is inadequate or

requires complex implementations (for example, tracking balanced parentheses with

extended regular expressions).

Traditionally, this is where compiler-based tooling comes in (Quinlan

and Liao (2011)). The compiler’s frontend has parsing and semantic analysis

capabilities that allow more complete understanding of the source code and,

consequently, semantic-based rewriting over most arbitrary code ranges. However,

developing and customizing such tooling has a high barrier to entry, requiring a

deep understanding of the compiler and its rewriting infrastructure (if it even has

one), which restricts the developer pool drastically (Murai, Sato, Nakao, and Lee

(2018); Takizawa, Hirasawa, Hayashi, Egawa, and Kobayashi (2014)). Alternatively,

developers can choose to learn the user interface of one of several existing rewriting

tools, which are of a similar complexity and require similar knowledge to building

a tool in a compiler (see Sec. 2.8.6), again making it difficult for the average

19

developer to get started. In the past, as long as the number of desired rewrites was

small and customization was not required, this was sufficient.

Today, however, language standards are changing more rapidly and new

parallel programming models are constantly being developed, meaning developers

need to expend more effort to keep their applications up to date and use a

streamlined refactoring process (Wright, Jasper, Klimek, Carruth, and Wan

(2013)). Furthermore, recent HPC machines come from a variety of vendors and

don’t always support the same programming models, so developers have to choose

between performance and portability for their application. Many of the new

parallel programming models have begun adopting a philosophy of performance

portability, which attempts to minimize that trade-off (Daniel and Panetta (2019);

Deakin et al. (2019); Dreuning, Heirman, and Varbanescu (2018); Harrell et al.

(2018); Pennycook, Sewall, and Lee (2016, 2019); Wolfe (2016b)). But developers

must still port their applications to these new models, and we return to the

problem of rewriting and refactoring.

Some rewriting tasks might be a simple matter of replacing one API call

with another, but most often complex changes have to be made as well, especially

if the application has any kind of parallelism. We will show that, in many cases,

these changes often follow patterns, and if programmers are able to capture those

patterns in some way, these tasks seem like they should be able to be automated.

A tool to automate code rewriting must have the ability to access and

understand semantic context, allow the user to easily contribute semantic

knowledge, and utilize both in code replacements. For sophisticated code

transformations, this means using a compiler frontend is often the only solution.

However, we believe that this does not preclude a user-friendly approach, since

20

developers can often write what they want to happen, though maybe not how it

should happen.

The problem is essentially one of finding an acceptable balance between

1) minimizing the complexity of expressing the users’ rewriting intentions, 2)

maximizing the variety and customizability of rewrites available, and 3) maximizing

the users’ ability to realize their intentions via automated tooling (e.g., automate

bulk edits on a large codebase). The central research issue is discovering what is

possible with respect to this balance. Previous work has generally emphasized two

of these three goals at the cost of the third (usually at the cost of (1)). We wish

to discover if it is possible to achieve all three goals. To this end, we constrain our

solution methods to those based solely on a high-level programming language (to

meet goal (1)), those that do not hinder customization or variety of transformations

(to meet goal (2)), and those that lend themselves to high levels of automation (to

meet goal (3)), and investigate what can and cannot be done.

We are developing a system based on semantic matching and user-provided

code replacements that are accessible to the average programmer. Similar to regular

expressions, users can describe and customize code transformations naturally as

“before-and-after” snippets of C++ code, which correspond to the two expressions

used in search-and-replace schemes. The available context for searching and

replacing is not restricted to syntax, though; it also contains semantic information

extracted by the compiler. Our interface is designed to be intuitive for C++

developers by restricting its syntax to modern C++ and requiring no knowledge

of compiler internals, unlike previous rewriting tools. It is also designed to give

users a great deal of control over which changes are applied and where. The main

contributions of this work will be:

21

– A C++ user interface, with syntax similar to an embedded DSL, that is both

user-friendly and customizable, unlike many previous similar tools.

– MARTINI, the Little Match and Replace Tool, an open-source1, extensible

code rewriting tool built on top of Clang’s tooling infrastructure and ASTs.

– Case studies that demonstrate the versatility of MARTINI and its

applications to performance and performance portability.

The rest of this dissertation is organized as follows. Chapter II gives relevant

background information on performance portability and a selection of performance

portable programming models. Chapter III describes the methodology used in this

work. Chapter IV gives a basic example of our automated rewriting framework,

while Chapters V, VI, and VII describe several use cases and studies related to

performance portability. Chapter VIII summarizes and concludes, while Chapter IX

describes future work.

Chapter II contains material that was originally published solely by Alister

Johnson (Johnson (2020)). Chapters III, IV, VI, and VII contain material that

was originally published by Johnson, Coti, Malony, and Doerfert (2022). Chapters

V and VI contain material that will be published by Johnson, Coti, Malony, and

Hueckelheim (n.d.). Chapter VII contains material that will be published by Huck,

Coti, Johnson, and Malony (n.d.).

1 https://github.com/ajohnson-uoregon/llvm-project/tree/feature-ajohnson/

clang-tools-extra/clang-rewrite.

22

https://github.com/ajohnson-uoregon/llvm-project/tree/feature-ajohnson/clang-tools-extra/clang-rewrite
https://github.com/ajohnson-uoregon/llvm-project/tree/feature-ajohnson/clang-tools-extra/clang-rewrite

CHAPTER II

BACKGROUND

This chapter contains material that was originally published by Johnson

(2020).

This chapter will provide context and background information for the rest of

this dissertation, including current trends in high performance computing (HPC),

performance portability, productivity, and existing performance portable models

and rewriting tools referenced elsewhere in this dissertation.

2.1 Current Goals in High Performance Computing

Before discussing performance portability, we must first discuss current

trends in HPC, so we can understand why performance portability is important.

The current goal of HPC is to build machines capable of performing 1018

floating point operations per second – 1 exaFLOP. Exascale computing is essential

for doing new research in many domains. It will allow simulations to have higher

resolution, scientific computations to get results more quickly, and machine learning

applications to train on more data.

Current supercomputers can, on the whole, only do on the order of 100

petaFLOPs (1 exaFLOP = 1,000 petaFLOPs). Frontier (Oak Ridge National

Lab) is the first, and so far only, machine that can perform an exaFLOP, clocking

in at roughly 1.2-1.6 exaFLOPs. Fugaku (RIKEN, Japan) can do ∼450-540

petaFLOPs; LUMI (EuroHPC/CSC) can do ∼300-430 petaFLOPs; Leonardo

(EuroHPC/CINECA) can do ∼240-300 petaFLOPs; and Summit (Oak Ridge

National Lab) can do ∼150-200 petaFLOPs (Top500 List (2023)). Aurora, which

arrived at Argonne National Lab in late 2023, will theoretically be a second

23

exascale machine, able to provide 2 exaFLOPs of computation (Aurora Exascale

Supercomputer (2023)).

2.1.1 Goals for Exascale. The U.S. Department of Energy (DoE) set

a goal to build an exascale machine that has a hardware cost of less than $200M

and uses less than 20MW of power (Shalf, Dosanjh, and Morrison (2011)). Aurora

will not meet the cost goal, and it’s unlikely it will meet the power goal, but there

is hope for future machines.

Other (implicit) goals for exascale computing include (1) making exascale

machines “easy” to program, (2) verifying that these machines can do a “useful”

exaFLOP, and (3) verifying they can perform sustained exaFLOPs. The first of

these is also a goal of performance portability, and will be discussed further in Sec.

2.3 (on productivity).

As for goals (2) and (3), the origin of these questions goes back to how

supercomputer performance is measured. The measurement method used by

Top500 is the LINPACK Benchmark, a dense linear algebra solver (The LINPACK

Benchmark (2023)). LINPACK has been criticized for being overly specific and

thus not representative of real applications that will be run on these machines.

For example, LINPACK does not account for data transfers, which is one of

the bottlenecks on current machines. Very few applications can achieve even

close to the peak performance of LINPACK because they cannot make use of all

the floating point units on a chip and/or they have to wait on data movement

(Kindratenko and Trancoso (2011)).

The HPC community wants an exascale machine that can perform a

“useful” exaFLOP with a real application that has these kinds of problems. If the

machine can only do exaFLOPs with highly tuned, compute-bound programs like

24

LINPACK, that isn’t helpful for domain scientists, whose applications are much

more varied. If the machine cannot perform sustained exaFLOPs, but only burst

to an exaFLOP under some circumstances (e.g., the kind of dense math performed

by LINPACK), that also isn’t helpful. Building an exascale machine that can meet

goals (2) and (3) will be a challenge beyond merely building an exascale machine.

2.1.2 Challenges of Exascale. A DoE report on exascale computing

(Lucas et al. (2014)) identified the following as the top ten challenges to building

an exascale supercomputer. Many other works have also identified a subset of these

as major difficulties for exascale systems (Kogge and Shalf (2013); Mo (2018); Shalf

et al. (2011)).

1. Energy efficiency — the goal is to use only 20 MW of power, but simply

scaling up current technology would use far more than this.

2. Interconnect technology — we need communication to be fast and energy

efficient, otherwise an exascale machine “would be more like the millions of

individual computers in a data center, rather than a supercomputer” (Lucas

et al. (2014)).

3. Memory technology — we need to minimize data movement in our programs,

make movement energy efficient, and have affordable high-capacity and high-

bandwidth memory.

4. Scalable system software — current system software was not designed to

handle as many cores and nodes as exascale systems will have. Systems also

need better power management and resilience to faults.

25

5. Programming systems — we need better programming

environments that allow developers to express parallelism, data

locality, and resilience, if they so choose.

6. Data management — our software needs to be able to handle the volume,

velocity, and diversity of data that will be produced by applications.

7. Exascale algorithms — current algorithms weren’t designed with billion-way1

parallelism in mind, and we need to rework them or design completely new

algorithms.

8. Algorithms for discovery, design, and decision — we need software to be

able to reason about uncertainty and optimizations (e.g., error propagation

in physics simulations or the optimal instruction set to use for a machine

learning algorithm).

9. Resilience and correctness — exascale computers will have many more nodes

than current petascale computers, and hardware faults will therefore be more

frequent. We need both machines and applications to be able to recover from

these faults and guarantee correctness.

10. Scientific productivity — we want to increase productivity of

domain scientists with new tools and environments that let them

work on exascale machines easily.

The two bold challenges, (5) and (10), are of particular interest to

performance portability research. Performance portability is concerned

1To get 1018 FLOPs with cores running at 1 GHz (a reasonable approximation of core
frequencies in current petascale supercomputers), we would need at least 1 billion cores.

26

with creating programming models that run equally well on multiple

architectures/machines; the more difficult question is, how can we do so while

allowing developers to express parallelism, data locality, and fault tolerance in ways

that won’t tie them to a particular machine or get them bogged down in details?

2.1.3 A Brief History of Supercomputing. Before discussing how

exascale computing and performance portability impact and inform each other, we

need a brief digression to the history of supercomputer architectures.

Figure 1. Forty years of processor performance improvements, as measured by
SPECint. Image source: Hennessy and Patterson (2019).

In the early years, processor performance improvements were mainly due

to technological advancements, and microprocessor performance doubled roughly

every 3.5 years. In the mid-1980s, further advances in processor development led to

greater increases in processor performance – performance began to double every 2

years (Moore’s law). Dennard scaling, which relates the power density of transistors

to transistor size, allowed chip manufacturers to drastically increase the number of

27

transistors per chip while increasing clock frequency, giving large performance gains

with essentially the same base architecture. Figure 1 shows this steady growth

beginning around 1986. The following decades of steady progress got developers

used to performance improvements for “free” – if their application was too slow,

they could just wait for the next generation of processor to come out, and (without

modifying their code!) it would run faster.

However, in the early to mid-2000s, Dennard scaling began to break down.

Chip designers began hitting physical limits, like the power wall: the power density

of processors grew so high that scaling any further would make it physically

impossible to dissipate the excess heat. Processor and compiler developers began

seeing diminishing returns from instruction-level parallelism, and, as Figure 1

shows, progress began to slow. Processor performance was only doubling every

3.5 years again, and it was clear another solution would be needed, which began the

transition to multicore chips. After this, performance growth came from increasing

the number of cores per chip while clock rates stabilized (Kogge and Shalf (2013);

Shalf et al. (2011)), and we continue to see decreases in performance gains. If the

trend of the mid-2010s continues, processor performance will only double every 10-

20 years.

Before the mid-2000s, supercomputers were made up of simple nodes (if

they had nodes at all) and programmed with regular programming languages

like C and Fortran or, as massively parallel and cluster architectures became

more popular, with C and Fortran plus the MPI message passing library, for

communication between nodes. Afterwards, as intra-node parallelism increased and

MPI’s scalability was called into question (Thakur et al. (2010)), MPI+X (where

“X” is an intra-node parallel programming model) became the default.

28

2.1.4 Modern Architectures. To cope with the end of Moore’s law

and Dennard scaling, three families of supercomputer architectures have emerged:

heavyweight, based on pre-2004 models with a few powerful cores with high clock

speeds; lightweight, with many less powerful cores and slower clock speeds (e.g.,

IBM’s BlueGene architecture); and heterogeneous, a mix of heavy- and lightweight

processors, like a CPU+GPU system. Performance projections from 2013 (Kogge

and Shalf (2013)) implied that only heterogeneous systems had a hope of making

the exascale compute goal within the power limit. Recent developments have borne

this out – 8 out of the current top 10 systems have some kind of accelerator, and 7

of these use GPUs as their accelerator (Top500 List (2023)). All 10 of the top 10

most power efficient machines use GPU accelerators (Green500 List (2023)).

This proliferation of architectures is shown in Table 1, which lists the

architectures of current and future supercomputers from around the world. The

HPC community hasn’t agreed yet on the best way to program these machines,

but we can agree that we don’t know what future exascale (and larger) machines

will look like. Some of the US DoE machines most recently announced, Aurora

(Aurora Exascale Supercomputer (2023)), Perlmutter (Harris (2021)), and Frontier

(Frontier supercomputer debuts as world’s fastest, breaking exascale barrier (2022)),

have very different native programming models, and users will likely want to

run their applications on all of them at some point.2 Future machines may even

have multiple types of accelerators in each node, each specialized for a different

type of computation, or programmable coprocessors, like FPGAs (Yang and Fu

(2018)), that users want to use at the same time. Therefore, the HPC community

2Aurora will have Intel CPUs and Intel GPUs, Perlmutter will have AMD CPUs and Nvidia
GPUs, and Frontier will have AMD CPUs and AMD GPUs. Each type of GPU uses a different
(incompatible) native programming model.

29

wants to “future-proof” its applications by developing new performance portable

programming models.

Lifespan Architecture CPU vendor Accel. vendor
Aurora 2023– Cray EX Intel Intel
Frontier 2022– Cray EX AMD AMD
Fugaku 2021– Fujitsu Fujitsu N/A

Perlmutter 2021– Cray Shasta AMD Nvidia
Frontera 2019– Dell C6420 Intel N/A
Summit 2018– IBM AC922 IBM Nvidia
Sierra 2018– IBM AC922 IBM Nvidia
ABCI 2018– Fujitsu CX2560 M4 Intel Nvidia
Theta 2017– Cray XC40 Intel N/A

TaihuLight 2016– Sunway MPP Sunway N/A
Cori 2016– Cray XC40 Intel N/A

Oakforest-PACS 2016– Fujitsu CX1640 M1 Intel N/A
Trinity 2015– Cray XC40 Intel Intel

Tianhe-2A 2013– TH-IVB-FEP Intel NUDT
Titan 2012–2019 Cray XK7 AMD Nvidia

Piz Daint 2012– Cray XC50 Intel Nvidia
Sequoia 2012– BlueGene/Q IBM N/A
Mira 2012– BlueGene/Q IBM N/A

K computer 2011–2019 Fujitsu Fujitsu N/A

Table 1. Recent supercomputers, from the 2015-2023 Top500 lists and various
announcements.

2.1.5 Why Performance Portability Matters. Currently,

developers need to expend effort to port their applications to a new machine, and

speedup is no longer guaranteed. Sometimes application development teams spend

months porting and optimizing for a new architecture, only to have to repeat all

that work again a year or two later when the next machine comes out. Many HPC

applications have a lifespan measured in decades, while supercomputers usually

last far less than that. Being forced to refactor for new machines every few years

leaves these applications fragile and error-prone, since the time developers have to

test, debug, and otherwise improve their code decreases significantly – the current

30

situation is actively harming work done by domain scientists (Majeed, Dastgeer,

and Kessler (2013); Sedova, Eblen, Budiardja, Tharrington, and Smith (2018)).

The end goal of performance portability is to solve this problem and

minimize the work users need to put into porting and optimizing their programs for

future architectures. Instead of rewriting the same code again and again, developers

will have time to improve the functionality of their application. To quote the

OpenACC website: “more science, less programming” (OpenACC Group (n.d.)).

2.2 Performance Portability

Performance portability is not new, but increased interest in it is. Computer

architectures have gone through (and are continuing to go through) so many shifts

that programmers have had to port or rewrite their code multiple times, which isn’t

sustainable in the long run (see Sec. 2.1.5).

When developers port an application to a new architecture, they do not

want to be locked into that architecture – they want to move between architectures

with minimal porting effort. In addition, they want their application to perform

well on new architectures with minimal optimization and performance tuning.

Developers want their applications to be performance portable.

2.2.1 Defining Performance Portability. Several different

definitions of performance portability have been proposed in recent years. Some

definitions, as listed by Pennycook et al. (2016):

1. An approach to application development, in which developers focus on

providing portability between platforms without sacrificing performance

(Pennycook et al. (2016)).

2. The ability of the same source code to run productively on a variety of

different architectures (Larkin (2016)).

31

3. PP
n (b → t) = St

n

Sb
n
× 100% for program P, base system b, target system t, and

speed-up on n nodes Sn (Zhu, Niu, and Gao (2007)).

4. The ability of an application to achieve a similar high fraction of peak

performance across target devices (McIntosh-Smith, Boulton, Curran, and

Price (2014)).

5. The ability of an application to obtain the same (or nearly the same)

performance as a variant of the code that is written specifically for that

device (Edwards, Trott, and Sunderland (2014)).

While each of these definitions has its strengths, each also has weaknesses.

Definition (1) is intuitive and provides a good baseline for determining if an

application can claim to be performance portable, but it is subjective and provides

no way to measure how performance portable an application is. Definition (2)

restricts the application code to a single version, which is desirable for many

reasons, but suffers from the same problems as (1) (how should we define

“productively?”). Definition (3) does provide a metric, but this metric is difficult

to compare between applications, systems, and program inputs. Definition (4)’s

metric is problematic because it is somewhat subjective, peak efficiency is difficult

to measure (see Sec. 2.2.2 on architectural efficiency), and two architectures might

be sufficiently different that achieving peak on one is simple, but on another is

impossible (e.g., one machine has vector units that the application can’t utilize).

Definition (5) is similarly somewhat subjective, and might be difficult to measure if

code version for a certain device doesn’t exist.

An ideal definition of performance portability would be objective and

provide an easy way to both measure and compare values for different applications.

32

The most commonly utilized performance portability definition is from Pennycook

et al. (2016), because it comes with such a metric. However, there are still several

criticisms of Pennycook et al.’s metric, which will be discussed in the next section.

2.2.2 Primary Metric. Pennycook et al.’s definition of performance

portability is “a measurement of an application’s performance efficiency for a

given problem that can be executed correctly on all platforms in a given set”

(Pennycook et al. (2016)). Pennycook et al. designed their definition to reflect

both the performance and portability aspects. In addition, they specifically

mention executing correctly on a given problem to ensure that applications ported

incorrectly are not considered portable and to note that different inputs can yield

different performance characteristics.

The corresponding metric is defined as the harmonic mean of the efficiency

of the application on all supported platforms in a set (see Smith (1988) for the

logic behind choosing the harmonic mean). When one or more platforms are not

supported, the metric goes to zero:

PP(a, p,H) =


|H|∑

i∈H
1

ei(a, p)

, if i ∈ H is supported

0, otherwise

where a is the application, p is the problem/input, H is the set of platforms,

and ei(a, p) is the efficiency of application a solving problem p on platform

i ∈ H. Higher is better — PP will be high when an application ports well to all

architectures in H, and low when it only ports well to a few (or none) of them.

The PP metric can be used by comparing application performance to

either the theoretical peak performance of the architecture — the architectural

efficiency — or the best known performance of the application on any architecture

33

— the application efficiency. Pennycook et al. note that both these efficiencies are

important since just looking at one can bias results. Only considering architectural

efficiency can give artificially low values for PP if an application physically cannot

take advantage of architectural features (e.g., fused multiply-add instructions or

vectorization), and only looking at application efficiency can give artificially high

results when no truly efficient implementation exists.

The rest of this section will discuss some criticisms and improvements

suggested since Pennycook et al. first published their metric.

2.2.2.1 Architectural Efficiency. Dreuning et al. (2018) note

that, when using architectural efficiency, we must choose between comparing the

application’s achieved FLOPs or achieved memory bandwidth to the architecture’s

theoretical peaks. Choosing the wrong peak can lead to incorrectly high or low

values of PP depending on whether an application is compute or memory bound.

Dreuning et al. suggest fixing this by using a performance portability model similar

to the Roofline model (Williams, Waterman, and Patterson (2009)): compute

bound applications should be compared to the platform’s theoretical peak FLOPs,

and memory bound applications to theoretical peak bandwidth. The operational

intensity (operations per memory access) of the application compared to the

hardware can be used to determine whether applications are compute or memory

bound.

Yang et al. (2018) add that, when using the Roofline model, we need

accurate theoretical ceilings. In particular, they note that vendors can be optimistic

when reporting numbers, so real measurements should be used. In addition,

application FLOPs should not be counted by hand, because compiler optimizations

and special hardware units can make hand-counted FLOPs inaccurate. Yang et al.

34

demonstrate exactly how far off vendor estimates of their hardware’s performance

can be, as well as how different hand-counted FLOPs can be from measured

FLOPs. Ofenbeck, Steinmann, Caparros, Spampinato, and Püschel (2014) similarly

describe why using hardware counters is more accurate than (vendor) estimates,

although still problematic for reasons that are outside the scope of this survey.

Yang et al. also note that we need to choose relevant ceilings when

measuring performance portability. Using an unrealistic theoretical peak will

give artificially bad results. For example, if the application is not using fused

multiply-add (FMA) instructions, the ceiling measurement should also not use

FMA. Knowing how close an application truly is to the platform’s most relevant

roofline will help developers decide how and where to optimize their code.

2.2.2.2 Application Efficiency. Architectural efficiency can give a

theoretical upper bound for application performance, but does not tell us whether

an application is actually efficient. Application efficiency can give us a practical

upper bound and does not require estimation, but can be prone to bias. Sometimes

there is no good, efficient implementation, or the developers are unaware of an

implementation that performs better than their chosen reference. Dreuning et

al. note that the best implementation of an application may be from another

programming model that developers are unfamiliar with (Dreuning et al. (2018)).

There is also a long history in high performance computing of using statistics to

obfuscate application performance results or make numbers appear more favorable

(Bailey (1991); Gustafson (1991); Pakin (2011)), which only makes matters more

murky.

2.2.2.3 Platform Set Choice. Another criticism from Dreuning

et al. is the need for an additional metric for platform set diversity (Dreuning et

35

al. (2018)). If an application does well on one type of architecture (e.g., a Xeon

Phi), then a platform set containing only that architecture will give artificially high

PP. Indeed, in their original paper, Pennycook et al. note that their metric is only

useful when the platform set is known (Pennycook et al. (2016)). Researchers using

Pennycook et al.’s metric need to carefully consider their choice of platform set.

Ideally, applications would support every architecture, but there are often

trade-offs between optimizing for performance and optimizing for performance

portability – what’s good for one platform is not necessarily good for another.

Optimizing for one platform will either improve performance on all platforms, or

improve performance on a subset of the platforms to the detriment of the others.

Optimization is likely to improve performance portability overall, but may actually

decrease it, and there’s no way of knowing what will happen beforehand.

Based on these observations, Dreuning et al. give three ways to improve an

application’s performance portability:

– Add platforms to the set, especially ones similar to platforms it already

performs well on, since the application is more likely to perform well on those,

and/or require less work to perform well.

– Remove poorly performing platforms from the set, if there are sufficiently

few of them and/or the optimization effort required would outweigh the

performance benefits.

– Do the work of improving performance on some or all platforms.

2.2.3 Other Metrics for Performance Portability. Other metrics

for performance portability have been proposed as alternatives or extensions to

Pennycook et al.’s metric. This section will describe two recent proposals.

36

2.2.3.1 PPMD. The PPMD metric is motivated by the experiences of

Sedova et al. (2018) investigating the performance portability of various molecular

dynamics applications. The applications they looked at are all best-of-class (or

nearly so) and get high performance on many HPC platforms (so they all score very

highly in PP under application efficiency). However, these applications got there

with high-effort ports and are thus not truly performance portable, since migrating

to a new platform would likely result in a great deal more work specific to that

platform. Sedova et al. desired a metric that would take different source versions

and program components into account, so they developed their PPMD metric.

Sedova et al.’s metric is based on the sources of speedup in a particular

code. If speedup comes mostly from portable program components, like standard

libraries, the application’s PPMD value will be high. If non-portable components,

such as CUDA kernels, are responsible for most of the speedup, PPMD will be low.

The mathematical definition of their metric is similar to Pennycook et al.’s, using

the harmonic mean of the fraction of speedup from non-portable components:

PPMD(a, p,Q) =



|Q|∑
i∈Q Si(a, p)

, if G ̸= Q and Q ̸= ∅

1, if Q = ∅

0, if G = Q

where G is the set of all program components that contribute to speedup for

application a on input p, Q is the subset of G that is non-portable, and Si is the

speedup over baseline application performance that component i ∈ Q is responsible

for. Ideally, all program components responsible for speedup will be portable,

so Q will be empty and PPMD will be 1. PPMD doesn’t depend on any concept

of “peak performance,” which is helpful since measuring peaks is difficult, but

37

assumes that program components don’t interact with or influence each other

and can be measured independently, which may not be the case. Sedova et al.

calculated PPMD for each of their applications, and none scored particularly

well; the best only got around 40%, which is because many of them use CUDA

or other vendor-specific libraries (vendor implementations of standard libraries can

vary in performance). Sedova et al.’s PPMD metric might be a good companion

to Pennycook et al.’s PP, since it explicitly penalizes applications for using non-

portable programming models (in other words, keeping divergent, machine-specific

code versions), whereas PP does not.

2.2.3.2 PD. Pennycook et al.’s metric gives different values for the

same application on different inputs, which can make it difficult to see whether

an application is truly performance portable, since different platforms might

do better on different problem sizes. Daniel and Panetta (2019) propose an

alternative metric to better cope with problem size variations, which they call PD,

performance portability divergence. They compute PD as the root-mean-square of

the relative error in performance compared to the “best” performance (using either

architectural or application efficiency):

PD =

∑
i∈H ∆RMS

|H|

∆RMS =

√∑
s∈S δ(a, α)

2

|S|

where a and α are the PP values for two applications on the same input, δ(a, α) is

the relative error, S is the set of all input sizes, and H is the set of all platforms.

Ideally, an application will perform identically on all inputs across all architectures,

and performance portability divergence will be zero.

38

While this does give users more information on how an application behaves

across problem sizes, Daniel et al.’s definition of application does not exclude

programs with multiple source versions, so applications can still get good PD scores

by writing code specific to one architecture. A combination of this metric and

PPMD, perhaps, might be a better extension to PP than this metric alone, since it’s

already been decided keeping multiple code versions is not a sustainable solution.

2.2.4 More History of Performance Portability. Past research

placed the burden of performance portability solely on the application, but more

current work has shifted it to languages, compilers, and other programming tools

(Wolfe (2016b)). For example, when the developers of the Weather Research and

Forecast (WRF) model were trying to make the application more performance

portable across vector-based and RISC-based computers in the late 1990s/early

2000s (Michalakes, Loft, and Bourgeois (2001)), they primarily looked into

reordering the loops to improve memory access patterns, not introducing a new

library or compiler that would do it for them.3 However, most application teams

today are looking for solutions that won’t require modifying their code (or at least,

won’t require modifying it more than once), which (interestingly) may involve

writing an application-specific performance portability layer (see Sec. 2.5.2), going

back to placing more of the burden on applications. This chapter will discuss many

other potential solutions.

2.3 Productivity

Developer productivity is an important (though often overlooked) aspect

and motivating factor of performance portability. If it takes years to port an

3Interestingly, they did discuss looking into source-to-source translators that would
automatically reorder loops based on the type of machine, but at the time decided not to since
they were able to get satisfactory performance without translation. This is an avenue new work is
exploring though; see Secs. 2.7.3 and 2.8 for more, as well as the rest of this dissertation.

39

application to a high-performance portable model, that model is not as useful as

another that can be adopted more quickly (even at the cost of lower performance),

especially if the port cannot be done incrementally so the application can still be

used in the meantime. Performance portable models should increase developer

productivity overall and allow developers to spend less time writing (and rewriting)

code during the porting process. This section will discuss issues relating to defining

and measuring productivity, as it relates to HPC and performance portability.

2.3.1 Defining Productivity. Productivity is a very subjective,

qualitative concept and it means different things in different contexts, making it

difficult to define and measure. An intuitive definition might be “getting higher

performance with less time/effort,” but how do we define (and measure) effort?

2.3.2 Measuring Productivity. There have been numerous attempts

to measure software developer effort and productivity across both industry and

academia, but measuring HPC developer productivity is a very different problem.

Most industry productivity measurement tools look at how much code a developer

writes, but in HPC, developer productivity isn’t just time spent writing code – it’s

time spent optimizing, tuning, parallelizing, and porting existing code.

There are two main ways to measure developer effort and productivity:

direct logging (e.g., Wienke, Miller, Schulz, and Müller (2016) and Harrell et al.

(2018)) and indirect approximations. Lines of code (LOC) and code divergence

(how “different” code versions are) are common metrics for approximating code

complexity, and hence, developer effort, but they don’t take into account how

difficult writing a single line of code can be (e.g., a complex OpenMP pragma

versus a simple variable declaration) or development time not spent coding,

such as time spent making performance measurements or designing new features

40

with team members (Wienke et al. (2016)). It is not always clear whether these

approximations are accurate, and they don’t include all of the productivity data we

want, which is why direct logging approaches are also important.

Development time logs would be the best metric for developer effort, since

they contain data on what developers were working on and what their results were,

but this data is very difficult to collect. Developer diaries sound like a good idea in

theory, but in practice there are numerous problems. They require a high level of

commitment from developers to collect the type, regularity, and granularity of data

that would be useful, but this often doesn’t happen because developers don’t want

to take the time, are inconsistent in their entries, or simply forget. At the other

end of the spectrum, automated activity monitoring software that tracks data such

as keystrokes and applications used requires no commitment from developers, but

misses out on development activities that happen away from the computer, such as

planning and training, as well as performance data.

Wienke et al.’s direct logging method (Wienke et al. (2016)) tries to combat

these problems by creating a journal that pops up at predefined intervals (so

it can’t be forgotten) and provides a short form with multiple choice questions

(so a quick entry still has useful data) and an open-ended comment section.

However, their tool doesn’t collect performance data very often, and doesn’t seem

to associate that data with the particular code version it came from.

Harrell et al.’s direct logging method (Harrell et al. (2018)) was motivated

by the desire to keep productivity and performance data with their code and better

track changes over time, improving on Wienke et al. They wanted to minimize

disruption for developers, so they integrated the logging process with their projects’

version control system (git commit). Harrell et al. used these logs to confirm their

41

intuition about using approximations such as LOC and code divergence as proxies

for developer effort; in particular, they demonstrate that low divergence ports

(e.g., adding OpenMP or OpenACC directives) are often less expensive in terms

of developer effort than high divergence ports (e.g., rewriting all compute loops as

CUDA or OpenCL kernels).4

2.3.3 Productivity and Performance Portability. Harrell et

al.’s primary criticism (Harrell et al. (2018)) of PP is similar to Sedova et al.

(2018): it does not penalize applications that keep separate code versions for each

platform, which are difficult to maintain and require much more developer effort

to create. Indeed, one of the primary goals when developers were first porting

applications to the Titan supercomputer (one of the first major accelerator-based

machines) was to avoid “version bifurcation,” which Joubert et al. equated with

a loss of maintainability (Joubert et al. (2015)). Maintaining separate code paths

or separate optimizations in a single version runs into similar problems. This is a

good representation of the trade-off between programming for performance and

programming for productivity and maintainability (Joubert et al. (2015)) – one

goal of performance portability is to do away with this trade-off.

Harrell et al. suggest there is a need for a metric to measure developer

effort to achieve performance. Such a metric could be used to penalize applications

and programming models that require high amounts of developer effort to obtain

and/or maintain performance portability. They note again that there are often

4As an example of this intuition, a survey of the CAAR teams, who were porting applications
to Titan for the first time, revealed that 85% of the developers (most of whom were using CUDA,
which is known for being difficult to adopt) felt the amount of effort to needed to get good
performance on accelerator architectures was “moderate to high.” Many expressed interest in
moving to directive-based models like OpenACC (Joubert et al. (2015)), which is generally
considered easier to adopt, even though there was little evidence to back this interest up at the
time.

42

trade-offs between programming model abstraction levels (a proxy for portability)

and performance. Models with higher abstraction levels are usually easier to

port to new architectures, but have lower performance. Models with low levels of

abstraction have better performance, but are much more difficult to port. A metric

for productivity would help quantify this trade-off.

2.4 Some Non-(Performance) Portable Programming Models

The rest of this chapter will often mention various non-portable

programming models (or non-performance portable models) as comparison points

for the performance portable models discussed. These non-portable models have

generally been highly tuned for their one architecture, and can provide a good

estimate of peak application efficiency and performance. This section will describe

the main non-portable models mentioned.

2.4.1 CUDA. CUDA (Nvidia (2023)) is Nvidia’s proprietary C++-

based GPU programming language, which naturally only works on Nvidia devices.

CUDA allows developers to write compute kernels in extended C++ syntax that

will be run on a machine’s GPU. The downsides of CUDA are that (for optimal

performance) it requires users to manually manage memory movement between the

host and GPU, and the parallelism model for writing kernels can be non-intuitive

for newcomers. This makes CUDA code difficult to read and debug, and porting

an existing application to CUDA requires major changes and restructuring. Nvidia

has released several libraries for CUDA, including cuBLAS (dense linear algebra),

cuSOLVER (linear system solvers), cuDNN (neural networks), and Thrust (Bell

and Hoberock (2012)), a high-level, productivity-oriented library containing general

purpose algorithms, in an attempt to address these problems, however, CUDA is

still not portable.

43

2.4.2 OpenCL. OpenCL (Khronos OpenCL Working Group (2023))

is a programming language similar to CUDA and developed by the Khronos

Group, but as an open standard, it is implemented for far more devices. OpenCL

supports GPUs, CPUs, and FPGAs from multiple vendors, including AMD, Intel,

and Nvidia. OpenCL requires a great deal of boilerplate code to set up data

structures and kernels, and kernels are represented as strings in the application,

which makes debugging difficult. Like CUDA, OpenCL also has many libraries

dedicated to reducing the severity of these problems. Unfortunately, since OpenCL

is so low-level (arguably more so than CUDA), different code is required to get

good performance on different architectures. While OpenCL is portable, it is not

performance portable.

2.4.3 OpenMP 3. OpenMP (OpenMP Architecture Review Board

(2011)) is an open standard for directive-based extensions to C, C++, and Fortran

that enables developers to add parallelism to their applications by annotating

their code with various pragmas. Early versions of OpenMP (≤ 3) were solely for

CPUs, and since it is much simpler than almost every other parallel programming

model available, OpenMP became very popular. Vendors heavily optimized their

implementations, and as a result OpenMP is generally very high performance, but

only on CPUs. OpenMP 4.0 began to add support for other architectures, including

GPUs (mostly Nvidia GPUs) and Intel’s Xeon Phi accelerator, making OpenMP

4+ a good candidate for being performance portable, and this is discussed in more

detail in Sec. 2.7.1.

2.4.4 MPI and SHMEM. MPI (MPI Forum (2015)) is the most

commonly used model for communication between processors and nodes on

supercomputers. It is based on a two-sided message passing model, where both

44

processes need to be involved in sending and receiving messages. MPI is highly

portable, and will generally get high performance on any machine without source

code changes, making it very performance portable by some standards. However,

MPI alone doesn’t allow users to take advantage of all a machine’s hardware (like

accelerators), doesn’t allow users to fine-tune their parallelism, and has some

scalability problems (Thakur et al. (2010)), meaning MPI alone is not enough to

write performance portable exascale programs.

SHMEM, standardized by OpenSHMEM (OpenSHMEM Contributors

Committee (2017)), is a newer communication model, based on the partitioned

global address space (PGAS) model, that is gaining popularity. SHMEM uses a

one-sided message passing model, where only one process puts (or gets) data into

(from) another process’s memory space, without interfering with the other process’s

execution. Like MPI, SHMEM is highly portable, and in some ways performance

portable, but it also cannot access all a machine’s hardware on its own.

Both MPI and SHMEM need to be used with another programming model

to become truly performance portable, but beyond that, both are too low-level to

be very productive programming models. Many of the performance portable models

below are built on top of MPI or SHMEM, but work at an even higher abstraction

level to be productive as well.

2.5 Performance Portable Programming Models

This section will survey several performance portable programming models.

The survey will be restricted to those relevant to the rest of this dissertation. For a

larger survey, see Johnson (2020).

2.5.1 Libraries. This section describes two libraries designed

specifically to provide performance portability across multiple domains.

45

/* Dot product */

/* create skeletons */

SkelCL ::Reduce <float > sum (

"float sum (float x,float y){return x+y;}");

SkelCL ::Zip <float > mult(

"float mult(float x,float y){return x*y;}");

/* allocate , initialize host arrays */

float *a_ptr = new float[ARRAY_SIZE];

float *b_ptr = new float[ARRAY_SIZE];

fillArray(a_ptr , ARRAY_SIZE);

fillArray(b_ptr , ARRAY_SIZE);

/* create input vectors */

SkelCL ::Vector <float > A(a_ptr , ARRAY_SIZE);

SkelCL ::Vector <float > B(b_ptr , ARRAY_SIZE);

/* execute skeletons */

SkelCL ::Scalar <float > C = sum(mult(A, B));

/* fetch result */

float c = C.getValue ();

Listing 2.1 SkelCL code sample.

2.5.1.1 Skeletons. Skeleton programming is a concept borrowed from

functional programming, where higher-order functions can take other functions as

arguments to specialize their operation. Since imperative languages are much more

common in HPC, developers have begun implementing them in these languages

as well (Ernsting and Kuchen (2014)). Skeleton libraries tend to be modeled

as arbitrary task graphs that provide various communication and computation

patterns (skeletons) as higher-order functions. These skeletons generally implement

data parallel patterns, but not loop parallelism, and make use of various distributed

data structures.

46

SkelCL. SkelCL (Steuwer, Kegel, and Gorlatch (2011)) (code sample in Listing

2.1) is a high level library for programming heterogeneous systems, built on top

of OpenCL. The primary design philosophy of SkelCL is to abstract away all the

tricky parts of writing (multi) GPU code to make programming easier. SkelCL

provides a modest set of data parallel skeletons, which users can specialize with

their own C-like functions, including Map (apply a function to all elements of

a collection), Zip (apply a function to a pair of collections), Reduce (condense

the elements of a collection to a single value), and Scan (prefix-sum). Later

works (Breuer, Steuwer, and Gorlatch (2014); Steuwer and Gorlatch (2013)) add

MapOverlap (simple stencil), Stencil (more complex stencils), and AllPairs

(apply a function to each pair of elements in two sets; n-body) skeletons to better

support some linear algebra applications. The two different stencil-like skeletons

allow users more flexibility in defining their stencil computations – e.g., MapOverlap

uses padding around the edges of the vector/matrix to minimize branching, while

Stencil allows users to specify the number of iterations to run the stencil and

various synchronization properties. All skeletons can take additional arguments

aside from the defaults to give users even more flexibility. For example, if a user

wants to define a generic “add x” function for vectors, they can use the map

skeleton plus an additional argument for x.

SkelCL also provides a generic vector class that works with both CPU and

GPU code and hides data transfers from users – the vector class will do data copies

lazily (only when data is actually used) to eliminate unnecessary data transfers.

The vector class can also automatically distribute data to multiple GPUs based

on a set of predefined data distribution patterns, including single (only one GPU

gets a copy), block (split evenly among all GPUs), and copy (each GPU has a full

47

copy) (Steuwer, Kegel, and Gorlatch (2012)). A later paper (Steuwer and Gorlatch

(2013)) adds an overlap distribution that automates halo exchanges for stencils,

as well as a generic 2-dimensional matrix class that supports the same distributions

along the rows of the matrix.

All skeletons support all data distributions, and the GPUs automatically

cooperate on block and overlap distributed data structures. If the user doesn’t

specify a data distribution with multiple GPUs, each skeleton has preferred

distributions for their pre-defined arguments, but the user or runtime can override

this (for additional, user-defined arguments, the user must always specify a

distribution since the runtime can’t reason about the semantics of user-defined

arguments).

2.5.1.2 Parallel Loop Libraries. This section will discuss a library

based on parallel loop abstractions. These types of libraries mostly fall under

the data parallelism and index space abstraction strategies, and many use C++

templating to provide a more generic interface. In general, these libraries do not

provide computational patterns, and users must write all computation themselves.

Kokkos. Kokkos (Edwards and Sunderland (2012); Edwards et al. (2014)) is

a loop-based data parallelism library for performance portability that uses C++

templating capabilities. Kokkos has back ends for various other programming

models, including CUDA, OpenMP, and pthreads, which allow users to target a

wide variety of architectures, such as Intel’s Xeon Phi and Nvidia GPUs, without

modifying their code. These back ends can be swapped out with minimal changes

to application code so users can easily run on multiple architectures.

Kokkos abstracts away parallelism so architecture-specific optimizations

exist outside the main application. Kokkos’ abstractions can be loosely grouped

48

// Heat conduction stencil (TeaLeaf)

#define DEVICE Kokkos :: OpenMP

// initialize a view

Kokkos ::View <double*, DEVICE > p("p", x*y);

// lambda -style loop

Kokkos :: parallel_for(x*y, KOKKOS_LAMBDA (int index) {

const int kk = index;

const int jj = index / x;

// if in view interior ...

if (kk >= pad & kk < x - pad &&

jj >= pad && jj < y - pad) {

// recalculate value

p(index) = beta*p(index) + r(index);

}

});

Listing 2.2 Kokkos code sample.

into memory and execution abstractions. Memory layout and execution

environment are the most common program elements that need to change for each

new architecture, so the Kokkos developers chose to abstract them away to decrease

porting effort.

Kokkos’ abstractions are multidimensional array views (array layouts)

(Edwards, Sunderland, Amsler, and Mish (2011)), memory spaces, and execution

spaces. The array views allow developers to change the memory layout and access

patterns to best suit the underlying architecture at compile time, so the compiler

can make inlining and vectorizing optimizations. Memory spaces keep track of

where data resides in heterogeneous architectures, and similarly, execution spaces

contain information on the type of hardware code should run on. Execution spaces

only have access to memory spaces that make sense; e.g., a CPU execution space

49

cannot access a GPU-only memory space, but can access a host burst buffer

memory space. All of these can be modified to add optimizations for a particular

application on a specific architecture. For example, users could write their own

tiled matrix layout and add it to an application by swapping out array views.

Kokkos keeps these configurations consolidated and out of application code, which

is excellent for portability and productivity.

2.5.2 Application-Specific Libraries. In a recent paper, Holmen,

Peterson, and Berzins (2019) suggest a way for large legacy codes to incrementally

adopt performance portability models by adding a dedicated, application-

specific performance portability layer (PPL), which acts as an application-specific

performance portability library. The primary goal of a PPL is to improve long-term

portability for legacy code, or even a newer application that is expected to have a

long lifetime. A PPL insulates users from changes in the underlying programming

models by consolidating all performance portability-related code into a single

place – the application only needs to port to the PPL once, and all future ports

take place inside the PPL. This allows applications to experiment with multiple

programming models without disrupting users and domain developers. If the user

base for the application’s chosen model(s) dies out (as the user bases for some

early programming models did (Han and Abdelrahman (2009))), the application

can migrate to new models in the PPL, not in the application code. The PPL also

allows an application to specialize its use of performance portable models.

Holmen et al. describe the adoption of a PPL into the Uintah fluid-

structure interaction simulator. The Uintah PPL is based heavily on Kokkos and

contains parallel loop abstractions similar to Kokkos’ (including an iteration range,

execution policy, and lambda kernel function), as well as application-level tags that

50

denote which loops support which back ends (e.g., CUDA vs. OpenMP), and build-

level support for selective compilation of loops that enables incremental refactoring

and even simultaneous use of multiple underlying models. Currently, their PPL

only supports Kokkos, but the authors see no reason why it couldn’t also support

other models.

While their PPL is very similar to Kokkos, the developers didn’t want

to directly adopt Kokkos because they wanted to preserve legacy code, simplify

the abstractions for their domain developers, and make re-working their

implementation or adopting another performance portable model later easier.

They’ve succeeded at some of these goals already, since their domain developers

have liked the new parallel loop interface and haven’t had much trouble with it,

even though they don’t know much about parallel programming. The new portable

implementation also demonstrates better speedup (generally at least 2x) and

scalability on both CPU and GPU architectures.

Since the Uintah code base is so large (over one million lines of code), the

authors did several small-scale refactors to validate their PPL and standardize

an adoption process, and came up with general advice for porting to performance

portable models:

– Put a build configuration system in place before fully migrating to a PPL to

avoid additional refactors.

– Include a tagging system for loops to let the build system know which loops

have PPL implementations for which interfaces; this will make porting go

much smoother.

51

– Have a thorough testing apparatus in place to verify correctness pre-, during,

and post-port.

The Uintah developers also acknowledge that, while adding a PPL solves

many problems, it also raises new questions, including how to use domain libraries

(e.g., PETSc) in both the application and PPL simultaneously, how to manage

increasingly complex build configurations, how to make intelligent, optimal use

of underlying programming models, and how to efficiently manage memory and

execution while potentially using multiple underlying programming models. In

some ways, adding a PPL is moving responsibility for performance portability

back to application teams, where it was originally (see Sec. 2.2.4), though with

a PPL the performance and portability aspects of the code are separated from

its functionality. This raises yet more questions about the roles of applications,

compilers, and programming models in performance portability.

2.6 Parallel (C/C++-like) Languages

In an ideal world, sequential languages could automatically be parallelized

to get high performance on modern machines, but this is an exceptionally difficult

problem, and debatably not one worth solving,5 so numerous explicitly parallel

languages have been created instead. These languages vary widely in their feature

sets and parallel constructs, from high-level languages like Chapel to low-level

languages like OpenCL. The barrier to entry for new languages is higher than for

all the other models discussed in this paper, since developers of new applications

are reluctant to use a language that might not exist in a few years, and incremental

5As some have noted (Chamberlain, Callahan, and Zima (2007)), sequential and parallel
programming are fundamentally different, so why should we try to use the same tools for both?

52

// Buffer example

int b[N], c[N];

// put data in buffers

buffer <int , 1> B(b, range <1>{N});

buffer <int , 1> C(c, range <1>{N});

// submit this to a device queue

myQueue.submit ([&](handler& h) {

// request buffer access

auto accB = B.get_access <access ::mode::read >(h);

auto accC = C.get_access <access ::mode::write >(h);

// create kernel

h.parallel_for <class computeC >(range <1>{N}, [=](id <1> ID)

{

accC[ID] = accB[ID] + 2;

});

});

Listing 2.3 SYCL code sample with buffers.

porting to a new language is difficult if not impossible (Wolfe (2011)). This section

describes a language that is built on C/C++ and beginning to break into HPC.

2.6.1 SYCL and DPC++. SYCL (Wong, Richards, Rovatsou, and

Reyes (2016)) (code sample in Listing 2.3) is a high-level language built on OpenCL

and designed to improve OpenCL’s usability so it can be used to write single-source

C++ for accelerators. This means host and device code live in the same source file,

which can be analyzed and optimized by the same compiler for better performance.

SYCL is built on C++14 and intended to follow the C++ specification as much as

it can, so it does not change or extend C++ syntax in any way (i.e., a CPU-only

implementation could work with any C++ compiler). It allows C++ libraries to

work with OpenCL, and allows OpenCL kernels to work with C++ features, such

as templates and lambdas. SYCL is intended to be easy to use while still giving the

53

performance and control of OpenCL, and focuses on intra-node parallelism, leaving

inter-node parallelism to other models like MPI.

SYCL takes an explicit data parallelism approach, where the user declares

what can be run in parallel with Kokkos-style parallel for templated function

calls. Kernels can be written as lambdas, functors, OpenCL code, or loaded

as SPIR binaries. SYCL can output kernels at compile time as device-specific

executables, or as SPIR, so kernels can be compiled at run time for any device.

To manage data movement, SYCL uses buffers, which are an abstraction over C++

objects, and can represent one or more objects at any given time (as opposed to a

specific memory location). Inside a kernel, users can request access to a buffer with

a set of permissions, and SYCL will automatically handle data movement to and

from the device based on those permissions. While this can be cumbersome, it does

allow SYCL to optimize data transfers to the device, instead of copying “just in

time.”

SYCL kernels are run by submitting them to device queues, which allow

for some task parallelism, since by default there is no ordering enforced between

kernels in different queues. Each device can have multiple queues running

kernels on it (although each queue can only be bound to one device). The data

dependencies and access permissions of each kernel are used to enforce an ordering

on each queue, or users can explicitly specify dependencies between kernels. SYCL

queues only specify which kernels can be run in parallel, but provide no guarantees

about what kernels will be run in parallel.

Data Parallel C++ (DPC++) (Reinders et al. (2019)) (code sample in

Listing 2.4) is a language from Intel built on top of SYCL (it’s “SYCL with

extensions”). Intel’s new oneAPI (Intel Corp. (2020)) is also built primarily on

54

// Shared memory example

// create host and shared arrays

int* hostArray = (int*) malloc_host(N*sizeof(int));

int* sharedArray = (int*) malloc_shared(N*sizeof(int));

// submit this to a device queue

myQueue.submit ([&](handler& h) {

// create kernel

h.parallel_for <class myKernel >(range <1>{N}, [=](id <1> ID)

{

int i = ID[0];

// access shared and host array on device

// shared array will be copied over; host array will

not

sharedArray[i] = hostArray[i] + 1;

});

});

Listing 2.4 DPC++ code sample with shared memory.

DPC++, with many additional libraries and interoperability with languages other

than C++. DPC++ is intended to be a place to experiment with new parallelism

features that could be added to the C++ standard. Some of the features already

added include support for hierarchical parallelism inside kernels, ordered device

queues, per-device versions of kernels, and unified shared memory.

Unified shared memory is perhaps the most interesting of these. It removes

the need for specifying data use permissions or manually managing data movement

by allowing users to create host, device, and shared buffers via malloc host,

malloc device, and malloc shared functions. Device buffers are allocated only on

the device and can’t be accessed by the host, while host buffers are allocated only

the host, but can be accessed by the device without being transferred, so accesses

are likely to be very slow. Data can be explicitly moved by copying a host buffer

55

// Heat conduction (TeaLeaf)

// set up data environment , copy r and p to device

#pragma omp target data map(to: r[:r_len]) map(tofrom:

p[:p_len])

{

// describe loop parallelism

#pragma omp target teams distribute collapse (2)

for (int jj = pad; jj < y-pad; ++jj) {

for (int kk = pad; kk < x-pad; ++kk) {

const inst index = jj*x + kk;

p[index] = beta*p[index] + r[index];

}

}

} // p gets copied back

Listing 2.5 OpenMP code sample.

into a device buffer inside a kernel, or vice versa. Shared buffers can migrate data

automatically between the host and device whenever the data is accessed, so the

first few accesses are slow, but afterwards accesses can happen from fast device

memory. This greatly lessens the burden on the developer, so they can quickly

prototype an application, then optimize memory transfers as necessary.

2.7 Directive-based Models

Directives are language extensions, although sometimes they’re considered

languages in and of themselves. Directives are annotations for base languages,

usually C, C++, and Fortran, that allow users to give the compiler extra

information, such as which loops can be parallelized or what arrays need to be

moved to the GPU. While some (Peccerillo and Bartolini (2017); Steuwer and

Gorlatch (2013)) consider directives to be low-level because users must still specify

data movement and describe parallelism themselves, directives are still more

concise, portable, and high-level than models like OpenCL or pthreads. This

section will describe the two most popular directive-based models.

56

2.7.1 OpenMP. As described in Sec. 2.4, OpenMP (OpenMP

Architecture Review Board (2011, 2015, 2018)) (code sample in Listing 2.5) began

as a way to simplify programming shared memory CPUs, specifically targeting

parallel loops with directives to tell the compiler how loops should be parallelized.

(Version 3 also added directives for task-based parallelism.) Version 4.0 began

adding support for heterogeneous, accelerator-based computing and performance

portability features, a trend which has continued for Version 5.0 – both of these

are discussed further below. OpenMP follows a more “prescriptive” programming

model, where developers explicitly define how their code should be mapped onto

the hardware for parallel execution, but is beginning to add some “descriptive”

directives that give the compiler more freedom. (This idea will be revisited in Sec.

2.7.2 on OpenACC.)

OpenMP’s original goals when it was created in the mid-1990s were to

provide portable, consistent, parallel, shared-memory computing for Fortran,

C, and C++, maintain independence from the base language, make a minimal

specification, and enable serial equivalence (de Supinski et al. (2018)). OpenMP has

mostly kept to these goals, with the exception of adding support for models other

than data parallelism, which has made it difficult to keep the specification small,

and abandoning serial equivalence as unrealistic for modern architectures.6 There

is an ongoing debate about which parallelism models OpenMP should support,

and exactly how many basic programming constructs should be added to OpenMP

to support these other forms of parallelism; some expect that OpenMP will move

closer to becoming a general-purpose language in its own right in the future (de

Supinski et al. (2018)).

6A subset of OpenMP does maintain serial equivalence, but keeping to this subset severely
restricts what programmers can do.

57

2.7.1.1 OpenMP 4.x. As mentioned earlier, OpenMP’s primary

abstraction is parallel loops, and OpenMP provides directives for users to describe

how their loops should be mapped onto parallel hardware. OpenMP 4.0 added

target and map directives to denote that code regions and data should be offloaded

to an accelerator, as well as various clauses to modify how code is mapped to

the device. Version 4.0 also added the simd directive to force vectorization

(auto-vectorization can vary by compiler and greatly influence performance) and

improvements for task-based parallelism and error handling (de Supinski et al.

(2018)).

OpenMP 4.5 further improved accelerator support by adding unstructured

data regions, so map directives can be moved into functions, which improves

readability and usability. However, OpenMP 4.5 also modified how certain types

of data (e.g., scalars) are copied onto the device, which can make porting between

OpenMP 4.0 and 4.5 error-prone, as noted by Martineau and McIntosh-Smith

(2017). The 4.x specification also does not define support for copying pointers

in data structures to the device (“deep copy” support), but some compilers still

support it, which can make porting between compilers difficult.

OpenMP 4+ has been struggling with implementation support. Even

though the 4.0 specification was released in 2013, it has taken many years for some

compilers to offer even basic support for offloading directives, and performance

can still vary wildly between compilers. As Martineau et al. note, developers who

were used to consistent high performance from OpenMP 3 will be in for a surprise,

and may be better served by waiting until compiler vendors have had more time to

improve their implementations.

58

2.7.1.2 OpenMP 5.x. OpenMP 5.0 adds several new features

specifically for performance portability and to make supporting multiple

architectures easier. Version 5.0 adds metadirective, declare variant,

and requires constructs that allow users to denote that some directives or

functions should only be used on certain hardware. While semantically similar

to preprocessor directives like #ifdef, these constructs give the compiler more

information to reason about which version should be used, instead of naively copy-

pasting code (Pennycook, Sewall, and Duran (2018)). Version 5 also adds support

for deep copying (to handle data structures with pointers, as mentioned above),

iterator-based ranges, and interacting with the memory hierarchy, all of which are

becoming more widely used in modern code.

Version 5.0 is also adding some more “descriptive” constructs, such as loop

(similar to OpenACC’s parallel loop construct) and order(concurrent), so

users can opt to let the compiler make choices for them. One goal of OpenMP 5.0

is not to interfere with threading and memory models that are currently being

added to the base languages, so allowing the compiler (which should know more

about these models) to make more choices could be helpful.

2.7.1.3 Future OpenMP. OpenMP is still evolving, and there are

many features that may be added in the future (de Supinski et al. (2018)). Some

of these features include: data transfer pipelining, memory affinity, user-defined

memory spaces, event-driven programming, and lambda support. The standards

committee is also considering adding “free-agent” threads that can help with load

balancing by joining parallel regions.

2.7.1.4 OpenMP 3 to GPGPU. As an interesting aside, even

before OpenMP moved to officially support heterogeneous computing, there were

59

// Head conduction (TeaLeaf)

// set up data environment , copy r and p to device

#pragma acc data copyin(r[:r_len]) copy(p[:p_len])

{

// describe loop parallelism

#pragma acc kernels loop independent collapse (2)

for (int jj = pad; jj < y-pad; ++jj) {

for (int kk = pad; kk < x-pad; ++kk) {

const inst index = jj*x + kk;

p[index] = beta*p[index] + r[index];

}

}

} // copy p back

Listing 2.6 OpenACC code sample.

efforts to enable OpenMP-based GPU computing. Lee et al. (Lee and Eigenmann

(2010); S. Lee, Min, and Eigenmann (2009)) created OpenMPC, a source-to-

source translator from OpenMP 3 to CUDA. Their translator took in OpenMP

code, transformed it so it was better organized for the CUDA programming

model, then translated parallel loops into optimized CUDA kernels with the

appropriate data transfers. They provided extra directives so users could control

and further optimize the translation into CUDA, if desired. Lee et al. compared

their optimized, generated CUDA against hand-tuned CUDA, and found that the

average performance gap was less than 12%. They noted that the generated CUDA

took significantly less effort to make, demonstrating that directives can greatly

increase productivity, if developers are willing to take a small performance hit

(though hopefully in the future, performance will be more similar).

2.7.2 OpenACC. OpenACC (OpenACC Standards Group (2011,

2018, 2019)) (code sample in Listing 2.6) is a directive-based model originally

designed for GPU computing, although there are now implementations that target

multicore, Xeon Phis, and FPGAs (Lambert, Lee, Kim, Vetter, and Malony (2018);

60

S. Lee and Vetter (2014a, 2014b); Wolfe et al. (2017)). OpenACC’s main goals were

to enable easy, directive-based, portable accelerated computing (which OpenMP

didn’t have at the time) and to merge several individual efforts into a single

standard. OpenACC came out of a combination of CAPS’ OpenHMPP (Dolbeau,

Bihan, and Bodin (2007)), PGI Accelerator (Wolfe (2010)), and Cray’s extensions

to OpenMP. Like OpenMP, OpenACC supports C, C++, and Fortran as base

languages.

Unlike OpenMP, however, OpenACC follows a more “descriptive” approach,

whereas OpenMP is “prescriptive.” OpenMP requires developers to explicitly define

how parallelism is mapped onto hardware, while OpenACC leaves most choices up

to the compiler. There has been much discussion about which approach is best for

performance portability, but in truth (as noted by de Supinski et al. (2018)), this

is a false binary, and these models exist on a spectrum. While it would be nice if

users could add a few descriptive directives and have things “just work,” often that

isn’t possible and prescriptive models are still necessary. OpenACC has recently

begun adding more prescriptive constructs so users can have more control over

tuning their code.

2.7.2.1 OpenACC 2.x. The original OpenACC standard had fairly

basic directives for annotating parallel loops and describing data movement.

The 2.x versions added support for asynchronous compute regions, function

calls within compute regions, atomics, an interface for profiling tools, and other

usability improvements, such as modifying the semantics of copy/copyin/copyout

to include checking whether data was already present to minimize unnecessary

data transfers. Basic support for user-defined deep copy operations on data

61

structures containing pointers was also added, which is very important for scientific

applications that use deeply nested data structures.

2.7.2.2 OpenACC 3.0 and Future Versions. Version 3.0 adds

more support for multi-GPU configurations, which are becoming more common,

and lambdas in compute regions. It also introduces somewhat stricter rules for

which parallelism clauses can appear together. OpenACC is generally adding more

prescriptive options, such as loop scheduling policies and optimization directives

(e.g., unroll), to allow users to make decisions where the compiler can’t.

2.7.3 Customizable Directives. In addition to the standardized

and otherwise pre-packaged directives described above, there have been efforts to

allow users to define their own, specialized directives. Allowing users to define their

own directives can give them more control over their application. This section will

describe a framework that helps users define their own directives and an example of

how user-defined directives can improve performance portability.

2.7.3.1 Xevolver. Xevolver (Takizawa et al. (2014)) is a source-to-

source translation tool built on top of ROSE (Quinlan and Liao (2011)) (see Sec.

2.8.3) that allows users to define their own (parameterized) code transformations

and directives to specify where those transformations should be applied. The main

goal of Xevolver is to separate optimizations/transformations from application code

– these transformations can be kept outside application code bases, which removes

the need to keep platform-specific versions of code and consolidates knowledge

about how to optimize for a given platform. Transformations can be shared across

applications as well, which reduces the need to re-implement optimizations for each

program.

62

The authors of Xevolver note that existing solutions for writing specialized

code for each architecture aren’t sufficient, since they generally involve keeping

separate source versions or directly modifying application code. As an example,

using C preprocessor macros to conditionally compile different code versions (even

ones kept in the same file) can quickly devolve into “the so-called #ifdef hell”

(Takizawa et al. (2014)). Users want specialized code, but they don’t want to write

specialized code, so having a set of transformations to pull from could be extremely

helpful.

Performance tests of Xevolver-enhanced applications on various architectures

confirm that adding these transformations helps performance. One motivation

for creating Xevolver was to help users with applications optimized for vector

machines port to other architectures (Xevolver also enables incremental porting).

The authors demonstrated that it takes a set of non-trivial but consistent

transformations to port these codes, and that transformations that help one

architecture can be detrimental to another. Since these transformations don’t

actually modify the source code, they help make applications more performance

portable.

Xevolver has been used to port part of a weather simulation to OpenACC

(Komatsu et al. (2016)) and migrate a numerical turbine code (Suda, Takizawa,

and Hirasawa (2016)), among other things.

2.7.3.2 The CLAW DSL. The CLAW DSL (Clement et al. (2018))

is an example of application specific, user-defined directives meant to enable

performance portability for weather and climate models. CLAW is based on the

Omni source-to-source Fortran translator (Murai et al. (2018)) (see Sec. 2.8.2) and

takes advantage of certain domain properties of most climate modeling programs.

63

The CLAW compiler outputs OpenMP or OpenACC annotated Fortran and is

interoperable with normal OpenMP or OpenACC code to enable incremental

porting.

Climate models have been using OpenMP and OpenACC for performance

portability, but different architectures require different directives for optimal

performance. The differences are consistent, however, so the DSL provides

directives to abstract away these differences.

The CLAW port of a portion of one climate model outperformed the original

serial implementation and a naive OpenMP implementation, and matched the

corresponding hand-tuned OpenACC implementation. This proof of concept

demonstrates how user-defined transformations can improve the performance

portability of an application.

2.8 Source-to-source Translators and Existing Rewriting Tools

This section will discuss source-to-source translators specifically designed to

improve the performance portability of applications, similar to the work done by

the rest of this dissertation. Source-to-source translators are considered here to be

programs that transform one input language into another, but do not themselves

compile it down to an executable; i.e., translators need another base compiler to

work.

Several translators have been mentioned already, particularly when

discussing the implementations of some directive based models in Sec. 2.7. This

section will discuss how those translators work, as well as some other frameworks

for code translation for performance portability. We will compare our work to these

in the summary in Chapter VIII.

64

2.8.1 Early Translators. Source-to-source translators are not a new

concept, and several that did not directly address performance portability were

introduced that could nevertheless improve it. This section will discuss a couple of

those.

2.8.1.1 Qilin. The Qilin compiler (Luk, Hong, and Kim (2009)) was

intended to solve the problem of load balancing computation on heterogeneous

systems – in other words, to decide what fraction of computation should happen

on the CPU vs. on the GPU. Even for a single application, the ideal fraction can

change for different inputs, and, of course, different hardware. Qilin automates this

mapping process by doing it adaptively at run time.

Qilin provides two APIs for writing parallel applications; the compiler

doesn’t have to extract parallelism, only map it to the hardware. The first API

is the stream API, which provides data parallel algorithms (similar to skeleton

libraries), and the second is the threading API, which allows users to provide

parallel implementations in the underlying programming models, Intel TBB and

CUDA. The compiler dynamically translates these API calls into native code and

decides a mapping using an adaptive algorithm.

This algorithm is based on a database of execution time projections that

Qilin maintains for all programs it has seen. The first time Qilin sees a program,

it builds a model of how that code performs when different percentages of work

(per kernel) are run on the CPU vs. the GPU. For future runs (even on different

problem sizes), Qilin refers to that model to find the mapping that will minimize

run time. This adaptive mapping is always faster than GPU-only or CPU-only

execution, and within 94% of the best manual mapping (at granularities of 10%).

This kind of adaptive mapping can improve performance portability by providing

65

good performance regardless of architecture changes, and it improves productivity

by automating the process.

2.8.1.2 R-Stream. The R-Stream compiler and translator for C

(Meister et al. (2009); Schweitz, Lethin, Leung, and Meister (2006)) is somewhat

unique among all the other models discussed here, in that it requires no source code

modifications at all, not even annotations like OpenMP or Bones (see Sec. 2.8.4).

R-Stream has been used to target several processors and accelerators, including

IBM’s Cell processor, ClearSpeed’s processors, and Nvidia GPUs (Leung et al.

(2010)). The compiler takes in unmodified C and outputs C with parallelizable

portions in the chosen parallel back end. R-Stream is based partially on the

polyhedral optimization model.7 Its general compilation flow is as follows:

– Parse in C, translate it to a static single assignment (SSA) internal

representation (IR).

– Run optimizations.

– Run analyses to determine which portions could be mapped onto an

accelerator.

– “Raise” map-able portions into a polyhedral IR and optimize them under the

polyhedral model to find parallelism.

– Lower map-able portions back to SSA IR.

– Emit non-mapped code as part of the master thread, and emit mapped code

in target language (e.g., CUDA).

7It is not important to understand the polyhedral model for this dissertation, but more
information can be found in Griebl, Lengauer, and Wetzel (1998).

66

Interestingly, R-Stream generates the best parallel code when given what

the authors call “textbook” C code – code without any optimizations or clever

implementation strategies, just the basic algorithm as you might find in a textbook.

This implies that, to create performance portable code, less is more, and simple,

high-level expressions of algorithms can be more useful (in some ways, at least)

than optimized versions.

2.8.2 Omni. The Omni compiler (Murai et al. (2018)) is a source-

to-source translator for Fortran and C (C++ is in development) that is used by

XcalableMP (Nakao, Lee, Boku, and Sato (2012)), XcalableACC (Nakao et al.

(2014); Tabuchi, Nakao, Murai, Boku, and Sato (2017)), and the CLAW DSL,

among others. Omni is based on the idea of metaprogramming: it allows users to

write code to transform their code. Not all compilers support every optimization,

or can determine whether an optimization is safe, so metaprogramming allows users

to transform their code so it is easier for compilers to analyze or to directly apply

optimizations themselves.

Omni is composed of three main pieces: a front end, which parses in C and

Fortran and turns them into XcodeML, Omni’s IR (based on XML); a translator,

which turns the XcodeML IR into Xobject (Java-based XML objects) and applies

transformations to it; and a back end, which translates XcodeML back into C or

Fortran which can be compiled by a regular compiler. Omni could theoretically

support multiple “meta-languages” for users to define what transformations should

be done, and where, including an Xobject-based meta-language, an XML-based

meta-language, or a new DSL; however, since the Xobject-based meta-language was

simplest to implement, Murai et al. chose to only implement that one. To define

a transformation in their Xobject-based language, users must write a Java class

67

that implements an Omni-specific interface, which describes the transformation to

perform on the Xobject(s). To choose where that transformation is applied to their

code, users add an Omni directive to their application. This is how XcalableMP

and XcalableACC, two other directive-based models, were implemented.

Unfortunately, this interface isn’t terribly user-friendly, especially for

non-compiler-expert users and domain scientists, although the vast majority of

high-level compiler optimizations, including loop unrolling and array-of-struct to

struct-of-array transformations, can be defined using it. Murai et al. realize this,

though, and note that future work includes building a nicer interface. Perhaps

another solution would be for compiler experts to write an open source collection

of transformations that the HPC community could use and modify for their own

purposes.

2.8.3 ROSE. The ROSE translator (Quinlan and Liao (2011)) is

different from other translators listed here in that it is designed to specifically

support analysis and optimization for source code and binaries. The ROSE front

end supports many languages, including C, C++, Fortran, Python, OpenMP, UPC,

and Java, as well as both Linux and Windows binaries. ROSE is meant to support

rewriting large DoE applications for future architectures and programming models,

as well as research into new compiler optimizations, automatic parallelization,

software-hardware codesign, and proof-based compilation techniques for software

verification. ROSE has multiple levels of interfaces for working with source code

ASTs, and many optimizations and analyses have been implemented to help users

modernize their code.

One of the more interesting features of ROSE, from a compiler design

perspective, is its IR, which is based on the Sage family of IRs. Even though ROSE

68

supports a wide variety of languages with very different feature sets, around 80%

of the IR is shared between all these languages, and only 10% is for special cases.

That such a variety of languages can all be represented by one IR is very promising

for compilers that wish to support multiple programming models.

Some projects that have been built on ROSE include Xevolver (see Sec.

2.7.3.1), a fault-tolerance research tool (Lidman, Quinlan, Liao, and McKee

(2012)), a benchmark suite for data race detection (Liao, Lin, Schordan, and Karlin

(2018)), and more.

2.8.4 Bones. Bones (Nugteren and Corporaal (2014); Nugteren,

Custers, and Corporaal (2013)) is a source-to-source compiler for C, and targeting

OpenMP, OpenCL, and CUDA, based on the concepts of algorithmic species and

skeletons, similar to the skeleton library described earlier in Sec. 2.5.1.1. Nugteren

et al. (Nugteren and Corporaal (2014); Nugteren, Custers, and Corporaal (2013))

criticize existing compilers for parallelism as lacking in one of these three aspects:

they aren’t fully automatic and require users to change their code, they produce

binaries or otherwise non-human-readable code, or they don’t generate highly

efficient code. Bones is intended to fix these problems by using algorithm species8

and knowledge of traditional compiler optimizations to drive a skeleton-based

translation process.

The Bones translation process goes like this:

1. Extract algorithmic species information from source code, either by hand or

(preferably) using an automated tool like A-Darwin (Nugteren, Corvino, and

8Algorithm species are similar to skeletons, but at higher granularity – species describe
memory access patterns on all data structures in a particular loop nest. See Nugteren et al.
(Nugteren and Corporaal (2014); Nugteren, Custers, and Corporaal (2013)) for more.

69

Corporaal (2013)) or Aset (Custers (2012)), and add species annotations to

source code.

2. Pass annotated source code to Bones compiler, which uses species

annotations to pick appropriate algorithmic skeletons.

3. Bones uses skeleton information to perform source code optimizations and

outputs transformed C code.

Bones skeletons are not quite like the skeleton functions found in the library in

Sec. 2.5.1.1, but are more like pieces of template or boilerplate code into which

the compiler can insert pieces of user code; e.g., types are left as parameters, loop

bodies are empty, and so on. Multiple species can map to a single skeleton, since

species provide much higher granularity than skeletons, in general, and the number

of species is near infinite.

Bones can do many different optimizations based on skeleton information,

such as multi-dimensional array flattening, loop collapsing, and thread coarsening.

The optimizations Bones does based on the skeleton information can also be

target-dependent. For example, when targeting a GPU (either with OpenCL

or CUDA), Bones can do data analysis on the species (kernels) identified

to determine which data needs to be moved to the GPU, as well as optimize

data transfers and synchronization events. One uncommon benefit of Bones’

optimizations is that they need not be just permutations of the original code –

Bones can add extra code to, e.g., ensure data accesses on GPUs are properly

coalesced. However, Bones does still rely on the optimizations the underlying

C compiler can do, since not all optimizations (like vectorization) can be written

70

as skeletons, and not all performance relevant data (like register pressure) can be

contained in species or skeletons.

2.8.5 OpenACC to OpenMP. There have been several proposals for

translating between OpenACC and OpenMP, including those from Pino, Pollock,

and Chandrasekaran (2017), Sultana, Calvert, Overbey, and Arnold (2016), and

Denny, Lee, and Vetter (2018). Many current machines have only one of OpenMP

or OpenACC, or have a poor implementation of one but a good implementation of

the other, so being able to translate between them would alleviate the problems

this causes. However, because of semantic differences between OpenMP and

OpenACC, mechanical translation from OpenMP to OpenACC is generally not

possible or advisable (Wolfe (2016a)).

OpenMP was designed when most machines used multi-processor

architectures only (as opposed to the modern CPU+GPU), and processor vendors

wanted to provide a unified interface for programming multi-processors. Therefore,

the meaning of each OpenMP directive was very important and the OpenMP

specification has a detailed, prescriptive definition of what each one means.

OpenACC, on the other hand, was designed when there were many diverse,

heterogeneous architectures, so the OpenACC specification decided to leave

many more (architecture-specific) choices to the compiler and only provide a

descriptive definition of what each directive does/means. OpenMP also has many

synchronization primitives and atomics, which OpenACC does not; some OpenMP

concepts simply cannot be expressed in OpenACC. Going from OpenACC to

OpenMP, though, is possible, as this direction doesn’t have these problems.

While there is a simple, one-to-one mapping for OpenACC and OpenMP

data directives, the same is not so for compute directives. Even though many

71

OpenMP directives seem similar to OpenACC, they have different definitions

and meanings. For example, OpenMP can’t vectorize within a thread with only

parallel for unless the user specifies it (this is why OpenMP needed to add the

simd directive), while OpenACC can – the parallel loop directive guarantees

there are no data dependencies across iterations. This means that translating loops

from OpenMP to OpenACC is non-trivial and requires data dependence analysis,

while going the other way is simple and always valid.

The difficult part of writing an OpenACC to OpenMP translator is adding

the right prescriptive OpenMP keywords to loop nests (to ensure the loops are

effectively mapped to hardware). To make matters more interesting, these keywords

may be different for each particular device, as the next sections describe.

2.8.5.1 Sultana et al.’s Translator. Sultana et al. (2016) made

a prototype tool for automatically translating OpenACC to OpenMP, focusing

on translating for the same target device, e.g., Nvidia GPUs. They demonstrated

that some parts of the translation are indeed mechanical, but others require more

work. One of their goals was to provide a deterministic translation, i.e., the same

set of OpenACC directives will always be translated to the same set of OpenMP

directives. To this end, they created a deterministic set of translation rules for each

OpenACC data and compute directive, as well as deterministic rules for adding

gang, worker, and vector clauses to OpenACC loops that did not already possess

them. This was necessary because, while OpenACC allows the compiler to decide

how to parallelize nested loops, OpenMP requires more direction. In addition,

OpenMP has no equivalent for OpenACC’s seq directive, so the translator needed

to remove directives from these sequential loops, and redistribute any reductions or

private clauses on these loops.

72

However, Sultana et al. ran into problems with changing compilers when

going from OpenACC to OpenMP (specifically, OpenMP offloading), including

large performance differences. Some of this is expected, as both OpenMP and

OpenACC rely heavily on compiler implementation details. They used PGI as their

baseline OpenACC compiler and Clang as their OpenMP compiler, and noticed

that the kernels PGI generated were almost always faster than the kernels Clang

generated. This could be because, at the time, PGI’s OpenACC implementation

was much more mature than Clang’s OpenMP implementation, but it does show

that compiler implementations of these models can have significant impact on

overall performance.

Furthermore, as future work, Sultana et al. believe that they may need to

add device specific translation rules, echoing Wolfe (2016a). For example, the rules

for an Nvidia GPU will probably not be optimal for a Xeon Phi, and vice versa.

2.8.5.2 Clacc. A more recent project, Clacc (Denny et al. (2018)),

desires to build a production-quality, open-source OpenACC compiler, built on

Clang, and to generally improve OpenACC and GPU support in Clang. Clacc

translates OpenACC into OpenMP to take advantage of existing OpenMP support

in Clang. The authors of Clacc note that this both improves code portability

between machines without good OpenACC or OpenMP implementations (as

Sultana et al. (2016) also describe), but also opens up possibilities for using existing

OpenMP tools to analyze OpenACC. As OpenACC is much newer than OpenMP,

tool support for OpenACC is less mature, and this could significantly benefit

OpenACC developers. Many developers are also worried that OpenACC will

soon be subsumed into OpenMP, which is much more popular, and that porting

73

to OpenACC will therefore be a waste of effort, so being able to translate from

OpenACC to OpenMP easily and automatically would ease their concerns.

To implement OpenACC support in Clang, the Clacc developers first

translate OpenACC code to an OpenACC AST inside Clang, then create shadow

OpenMP sub-trees, which can be compiled to an executable or used to output an

OpenMP AST (or source code) equivalent to the OpenACC input.

While their implementation is very new and doesn’t yet fully support GPUs

or languages other than C, the Clacc team has been able to get performance

comparable to PGI’s on multi-core, with the exception of one benchmark, as long

as gang, worker, and vector clauses are specified.

2.8.6 Generic Translators. While not originally designed for

performance portability, the translators described here still have significant

applications to performance portability. They can be used to optimize and

maintain code, making it possible to automate applying different optimizations

for different machines and keeping code updated. They could also theoretically be

used to automate porting from one programming model to another, in the event

that an application’s current model isn’t as performance portable as the developers

would like.

The tools described in this section are closest to the work done on

MARTINI in this dissertation. There are a wide variety of code rewriting tools that

can do some of what MARTINI can do (e.g., other tools that can insert OpenMP

pragmas include DawnCC (Mendonça et al. (2017)), PPCG (Verdoolaege et al.

(2013)), and Par4All (Amini et al. (2012))). However, this section will only cover

more generic rewriting tools that share MARTINI’s varied applications.

74

2.8.6.1 Regular Expressions: sed, awk, etc.. Text editing tools

that use regular expressions, like sed (sed, a stream editor (n.d.)), awk (The GNU

Awk User’s Guide (n.d.)), and others, are mainstays of automated editing due to

their string processing power. At a high level, the user provides a specification for

the “before” string(s) they are looking for and a specification for what the string(s)

should look like “after;” the complexity of providing these specifications as regular

expressions can be anywhere from quite simple to extremely difficult, though.

Regular expressions are purely text-based, and as such these tools have no semantic

understanding of what they’re processing beyond a stream of characters. Despite

this, they can still be useful for simple code changes, such as renaming a function

across all callsites. However, for any change that requires semantic information,

especially information that is syntactically distant from the location of the change,

using regular expressions and other text-based tools becomes extremely difficult if

not impossible.

The rest of the tools discussed in this section are compiler-based so as to

make use of the semantic information available in compilers, which overcomes this

difficulty of text-based tools.

2.8.6.2 LLVM and Polly. The LLVM project (The LLVM Compiler

Infrastructure (n.d.)) is a collection of versatile compiler and compiler toolchain

technologies. The Clang compiler is the C/C++ frontend to LLVM and enables

users to implement their own C/C++ manipulation tools either as operations

on the Clang AST or the LLVM internal representation (IR). The Clang AST is

more high level and closely tied to the source code, and the tools implemented on it

are more separate from the compilation process. See Sec. 2.8.6.3 for more on tools

using the Clang AST.

75

LLVM IR (Lattner and Adve (2004)) is more low level and has more

powerful transformations already implemented over it that are closely integrated

with the compilation process. These are known as “LLVM passes” since they serve

the same purpose as optimization passes in other compilers and are implemented as

C++ classes. A user can implement arbitrary code modifications in an LLVM pass,

but at the cost of working with LLVM IR, which is akin to generalized assembly

and not intended to be seen by non-compiler experts. LLVM’s extensive collection

of libraries eases the burden somewhat, but writing an LLVM pass is still not ideal

for the average C++ developer.

Polly (Grosser, Groesslinger, and Lengauer (2012)) is another part of the

LLVM project which uses the polyhedral model to implement a suite of LLVM

passes for code transformation and optimization. The polyhedral model uses

mathematical representations of loop bounds as definitions of polyhedra to perform

transformations on the user’s code. While powerful, these transformations are not

terribly general, as they require the code to already be in a specific form and only

apply to loop nests. There are many, many other tools, such as PPCG (Verdoolaege

et al. (2013)), that also make use of the polyhedral model, but since they are not as

generic as we desire, they will not be discussed.

2.8.6.3 ClangMR and Clang::Transformer. ClangMR (Wright

et al. (2013)) and the Clang Transformer library (Clang Developers (n.d.)) are

two similar tools that perform transformations based on the Clang AST. Both use

Clang’s AST matchers, which are a functional-style library for finding structural

matches in the AST, as a frontend. ClangMR uses callbacks in the AST matcher

library to perform rewrites and transformations, while the Transformer library

continues to use functional-style calls very similar to the AST matchers themselves

76

to define rewrite rules. As both use the Clang AST as a user interface, neither is

terribly friendly to the average C++ developer, though both are very powerful and

can perform arbitrary code transformations.

2.8.6.4 Cetus. Cetus (Dave et al. (2009); S.-I. Lee, Johnson, and

Eigenmann (2003)) is a research compiler originally intended for automatically

parallelizing C code, though it can also be used to perform arbitrary

transformations. The Cetus IR is implemented as a Java class hierarchy, and

users can manipulate a program by writing their own Java classes. While Cetus

allows users to perform arbitrary transformations and has a full-featured library

of operations and analyses on its IR, this interface is not very user-friendly as it

requires both knowing Java in addition to C and working directly with the source

code’s Cetus IR.

2.8.6.5 Stratego/XT. Stratego/XT (Bravenboer, Kalleberg, Vermaas,

and Visser (2008)) is a powerful suite of tools for program transformation. It

includes a domain-specific language for describing transformations, a compiler

for that language, libraries of transformations, a translator for turning Stratego

programs into C, various analyses, and more. Users can define the language they

wish to use in Stratego, then define transformations on that language and generate

parsers, compilers, and more. Several projects in multiple languages, including

an optimizer for C/C++, have been implemented in Stratego/XT. Stratego/XT

perhaps has the most features of any tool described here, but its use is hindered

by the fact that users must learn its DSL interface, which is based heavily in the

theory of programming languages and thus not overly friendly for the average C++

developer.

77

More recently, Stratego/XT has been integrated into the Spoofax ecosystem

(Kats and Visser (2010)), which is a set of tools for developing domain-specific

languages, though it could (in theory, and with some work) also be used to perform

program transformations on existing languages.

2.8.6.6 CHiLL. CHiLL (Chen, Chame, and Hall (2008)) is an

optimizing compiler for Fortran and C that, unlike most optimizing compilers,

performs code transformations based on user input or compiler decisions, iteratively

measures performance of code variants generated from those transformations, and

finally generates an optimized version of the code. CHiLL makes use of many of the

same loop transformations as polyhedral optimization (see Sec. 2.8.6.2), but is not

limited to those. The transformation scripts that can be either given to CHiLL or

derived by it are essentially a DSL, and each portion of the script can be applied in

any order, or composed with other parts of the script. However, it may not always

be clear to the average developer which part of the script affects which loops in

the code, though the DSL is fairly self-explanatory to those familiar with loop

optimization.

The main goal of CHiLL is to create compiler-optimized code that has

performance equivalent or better than hand-optimized or existing-compiler-

optimized code. In several case studies, it has succeeded at this. MARTINI hopes

to emulate this success but with a more friendly user interface.

2.8.6.7 Coccinelle. Coccinelle (Padioleau, Lawall, Hansen, and

Muller (2008)) was originally created to propagate local patches and other API

changes across the Linux kernel and drivers, but more recently has found use as

a generic refactoring tool in scientific applications. While these use cases may

at first seem quite different, both involve performing systematic transformations

78

over large codebases, which is, at a high level, what Coccinelle was designed for.

Coccinelle uses a variation on the patch syntax to describe rewrite rules; the main

modification Coccinelle makes is to include a set of “metavariables” at the start of

a rule that can match actual variables in the source code. This syntax can be used

to perform arbitrary code transformations, and is well-suited to performing rewrites

en masse – Coccinelle can parse the entire Linux kernel in a matter of minutes.

In their case study (Martone and Lawall (2021)) on performing an Array-

of-Struct (AoS) to Struct-of-Array (SoA) transform on a scientific application,

the Coccinelle developers note that their use of patch syntax to store the

transformations allows developers to continue working with the familiar but lower

performance AoS code while running their application (post-transformation) with

the higher performance SoA code. This separation of concerns leads to code that

is both high performance and easy to maintain and extend. The Coccinelle rewrite

rules that now exist for the AoS to SoA transformation could also, with some work,

be applied to other applications. MARTINI seeks to emulate Coccinelle in these

respects.

2.8.6.8 Orio. Orio (Hartono, Norris, and Sadayappan (2009))

is a performance tuning system that can perform a wide variety of source-to-

source transformations controlled by annotations in an application’s code. Orio

will dynamically load the correct Python modules based on the names in the

annotations, then perform an automated search among those modules for a

sequence of code transformations that gives optimal or near-optimal performance.

These transformations are represented as Python modules that directly

operate on the code’s AST. Orio’s developers have deliberately made it possible

for users to implement their own Python modules, so it could theoretically be

79

used for arbitrary code rewriting as well. However, as it still requires a developer

to go through their application and insert these annotations, it is not well suited

for automating a large number of edits. It also requires the developer to know

Python in addition to C/C++, which, while Python is generally regarded as an

easy language to learn, is not ideal.

2.8.6.9 Nobrainer. The most similar work to that done in this

dissertation is Nobrainer (V. Savchenko et al. (2019); V. V. Savchenko et al.

(2020)), which also uses C/C++ code snippets and Clang’s AST matchers to match

user source code and describe how to modify it. Nobrainer allows developers to

use specialized C/C++ syntax to write before-and-after code snippets describing

the changes they would like to make to their code. The before snippets are used to

generate Clang AST matchers, which can be used to search the code for structural

matches to the before snippet. When a match is found, the actual names from

that match are bound to parameters in the AST matcher, then copied into the

corresponding places in the after snippet.

Savchenko et al. enforce several rules on these snippets (e.g., to match

a single expression, that expression must be returned) so that they can ensure

their transformations are (type-)safe. Nobrainer’s design philosophy for these

transformations is to make matchers as specific as possible and force users to

add generality – they assume all names in a matcher are literals unless they are

specified as parameters and do their best to enforce safety via rules surrounding

types and semantics.

2.8.6.10 Selected Rewriting Tools for Other Languages.

Though this work is necessarily focused on C and C++, as we wish to study

performance portability and other effects of code rewriting technology on HPC

80

applications, there are of course code rewriting tools for other languages. A few of

these are described here, since there are important lessons to be taken from them.

Haskell. Haskell is a functional language with a relatively rare property:

rewrite rules are supported in its most common compiler, and can be written

directly in the language (GHC Team (n.d.)). Since users do not have to learn

another language or use a different compiler to utilize these rewrite rules, Haskell

has perhaps the most friendly user interface out of all described here. MARTINI

seeks to emulate this by having rewrite rules defined in C/C++, while providing

even more powerful and varied transformations than Haskell allows. For example,

it is very difficult if not impossible to change the type of an expression or insert

arbitrary code via Haskell’s rewrite rules.

Java: Sydit and Lase. Sydit (Meng, Kim, and McKinley (2011)) is a plugin

for the Java IDE Eclipse which assists developers in performing systematic edits.

Sydit works somewhat differently to many of the other tools described here:

users provide an example edit that is specific to one class or method, then Sydit

generalizes it into a transformation that can be applied anywhere. The user can

then specify where else they would like this transformation applied.

To generate the transformation, Sydit runs a difference algorithm (similar

to diff) on the original and edited ASTs, then finds any context (e.g., dependent

statements, variables used) relevant to the changes, abstracts away specifics like

class names, types, and line numbers, and finally generates an edit script that can

check a target for suitability and, if it is found suitable, apply the transformation

with specifics from the target inserted.

81

As Sydit is an IDE tool, it is not very well suited to bulk edits, since the

user must select and check every instance where the transformation should be

applied. While acceptable for an IDE-based tool, this is less ideal for situations

such as inserting instrumentation around all function calls or changing the

signature of a commonly used function, where bulk editing should be highly

automated. MARTINI aims to give users the same level of control as Sydit, but

with bulk edits enabled.

Lase (Meng, Kim, and McKinley (2013)) is very similar to Sydit (and in

fact shares several authors) in that it infers edit scripts from examples, but Lase

requires two examples so it can more accurately create an editing script. It then

automatically searches for similar code in a program and suggests edits to the

user. While more suited to bulk editing than Sydit, it does still run into the same

problem of user approval on each edit.

2.8.6.11 Summary of Generic Rewriting Tools. As was

discussed in Chapter I, rewriting tools generally have three goals: to minimize

the complexity of their interface, maximize what users can express, and allow

automating a wide variety of use cases. Figure 2 shows how the tools discussed

in this section measure up. As can be seen, none of the tools mentioned meet all

seven sub-goals, demonstrating a lack in current technology.

2.9 Summary

This section gives a brief summary of the content of this chapter.

2.9.1 “The Three Ps”. Performance, portability, and productivity

are often considered together when discussing performance portability, and are

often known as the “Three Ps.” This section will summarize what was discussed in

this chapter on this subject.

82

Friendly
UI

Custom
rewrites

Bulk
edits

Original
code

preserved

Arbitrary
rewrites

Rewritten
code
visible

UI not
another
language

sed/awk × ✓ ✓ ✓ × ✓ ×
LLVM pass × ✓ ✓ ✓ ✓ × ×
Polly and
polyhedral
model

× ×/varies ✓ ✓ × ×/varies ×

Transformer
library and
ClangMR

× ✓ ✓ ✓ ✓ ✓ ×

Omni × ✓ ✓ ✓ ✓ ✓ ×
ROSE × ✓ ✓ ✓ ✓ ✓ ×
Xevolver × ✓ ✓ ✓ ✓ ✓ ×
Bones × ×/tricky ✓ ✓ × ✓ ✓
Cetus × ✓ ✓ ✓ ✓ ✓ ×
Stratego/XT ✓ ✓ ✓ ✓ ✓ ✓ ×
CHiLL × ✓ ✓ ✓ ✓ ✓ ×
Coccinelle ✓ ✓ ✓ ✓ ✓ ✓ ×
Orio ✓ ✓/tricky ×/slow ✓ ✓ ✓ ×
Nobrainer ✓ ✓ ✓ ✓ × ✓ ✓

Lift × ✓/tricky ✓ ✓ × ✓ ×
Sydit ✓ ✓ ×/slow × ✓ ✓ ✓
Lase ✓ ✓ ×/slow × ✓ ✓ ✓
Haskell ✓ ✓/tricky ✓ ✓ ×/tricky × ✓

Figure 2. A comparison of several code transformation tools. Boxes with an extra
note can be read as “generally yes/no, but it’s tricky/slow/varies.”

2.9.1.1 Portability. Most of the models described here are very

portable, and many of the ones that aren’t are actively working on adding

support for more architectures. Portability is in many ways a prerequisite for

performance portability, since a model can’t be performance portable if it only

runs on one or two architectures. Regardless, all claims of portability should be

taken with a grain of salt. A recent, large-scale study on performance portability

by Deakin et al. (2019) notes that one of the most difficult parts of comparing

performance portability values for different programming models is simply getting

83

applications to run on a variety of architectures in the first place. Immature

implementations or lack of testing mean that, while small benchmarks might run,

larger applications may still fail; Deakin et al.’s analysis had to cope with multiple

failures on some of their applications. In addition, for many models, portability

varies by implementation, and to migrate to a new architecture, users may have

to switch implementations. This can be problematic since the implementations’

support for the standard may vary, and performance can also vary, but this is an

implementation problem and not a problem with the model itself.

Perhaps the most important aspect of the models themselves to consider,

with respect to portability, is how easily they can be extended to support new

architectures – particularly architectures that aren’t just a variation on traditional

CPUs, GPUs, or clusters. We don’t know what HPC machines will look like in the

future, so it’s worth considering how extendable a model is and whether it has the

right abstractions for parallelism, computation, and communication to be “future-

proof,” regardless of what happens to the underlying hardware, including CPUs,

GPUs, the memory hierarchy, configurable computing such as FPGAs, and a host

of other special purpose processors.

Higher-level models that internally utilize other, lower-level models, such

as high-level libraries (e.g., SkelCL, Kokkos) or high-level languages, are a good

example of extensibility – if a new architecture with a new programming model

comes out, they can implement a new back end and their users can automatically

take advantage of it. Other models, like OpenMP and the C++ STL, have had to

work much harder to adapt, but have ultimately succeeded. The users of these

models have also had to work to update their code, however, so this is not a

sustainable path, as it can greatly impact the model’s productivity during the

84

changeover. If a programming model has to go through a major API change every

time there is a shift in supercomputer architectures, it isn’t truly portable.

2.9.1.2 Performance. Most of the models discussed here also give

high performance, but this is much more inconsistent, since performance portability

is still a struggle for many. (See Sec. 2.2 for a discussion of how optimizing for

performance vs. for portability can be at odds.) Furthermore, optimizations that

are good for one architecture might hurt performance on another, and this can be

very difficult to reason about.

Because of this, it’s important for programming models to give users lots of

performance knobs to tune (if they so desire), but to keep those knobs out of the

application code and preferably in one centralized location. Almost all the models

described here do a good job of this, with the exceptions of OpenMP and OpenCL,

to some degree. The primary two ways models abstract out performance tuning are

by providing high-level interfaces with specialized back ends (e.g., OpenACC and

Kokkos) or by allowing users to define their own specialized mappings to hardware

(e.g., PPLs and custom directives). Both of these methods are functional, although

the latter is more flexible at the cost of putting more responsibility on the user.

Better support for parallelism in compilers could reduce this burden by making

it easier for compilers to reason about parallelism, so users don’t have to provide

extra information about hardware mappings.

2.9.1.3 Productivity. Productivity is perhaps the most difficult of

the Three Ps. There isn’t yet a good definition or way to measure it (see Sec. 2.3),

which means most discussion of productivity (even in this paper) is qualitative,

based on individuals’ opinions and experiences. However, there is still a general

consensus that even the performance portable models with the steepest learning

85

curves are still better than device-specific models like CUDA and OpenCL in terms

of productivity, if only because porting from one machine to another takes less

work. Keeping these more portable models productive is good for performance

portability – it forces them to stay higher-level and avoid falling into the “OpenCL

trap” of becoming overly-specific, so they have a better chance of achieving

consistent performance on multiple architectures.

Models that support incremental porting (directives and libraries) are in

many ways the most productive for porting applications, since a small part of the

application can be ported to test out a model without committing to rewriting

thousands of lines of code, even though high-productivity languages like Chapel

(Chamberlain et al. (2007)) might be more succinct. Tools that can automate

the porting process (like Bones and the other translators) are also a boon for

productivity.

Perhaps the best solution for productivity, though, is an application-specific

performance portability layer (see Sec. 2.5.2), since it can allow parallelism experts

to play with different models in the background while domain scientists get on with

their work, and it removes all dependence on a specific performance portable model

from the application code itself. While the concept is still relatively new, separation

of concerns between application programming and application tuning seems to be

a very productive path to take. (And is, in fact, the path taken in the rest of this

dissertation.)

The tools that go with these models, such as debuggers, testing apparatuses,

and performance measurement tools, are also essential for productivity, but they

are outside the scope of this dissertation.

86

To conclude this part of the summary, a list of programming model features

that are good for performance portability and productivity:

– High-level abstractions.

– Simple front end that targets multiple (non-performance portable) back ends.

– Keeping configuration separate from code.

– Multiple abstraction levels.

– Allow users to extend anything and everything.

– Automate, but let users override.

– Scale down as well as up.

– Standardization.

– Separate expressing parallelism from mapping it to hardware.

2.9.2 Performance Portable Models. This section will summarize

the performance portable models discussed in this chapter.

2.9.2.1 Libraries. There are two main classes of libraries designed

for performance portability: skeleton libraries and loop-based libraries. Skeleton

libraries provide higher-order functions based on common parallel patterns users

can customize to run computations in parallel, while loop-based libraries abstract

away iteration spaces and data structures to run loops in parallel. Application-

specific performance portability layers can further insulate users and application

code from the details of parallelism and changes in the underlying performance

portability models.

87

2.9.2.2 Languages. While the barriers to entry for parallel languages

are higher than those for other models, some languages have been successful. These

languages are primarily task-based, but most include data parallelism as well, since

modern hardware relies heavily on vectorization for its performance. Some of these

languages are very high-level while others are less so (e.g., DPC++).

2.9.2.3 Directives. The two most popular directive-based models

are OpenMP and OpenACC, which fall on opposite ends of the prescriptive vs.

descriptive spectrum, although both have been moving closer to the middle. Other

directive-based models, like OpenMC and XcalableACC, haven’t been nearly as

successful, but have unique features OpenMP and OpenACC could learn from.

There are also tools that let users define their own directives, to give them more

control over what transformations and optimizations happen to their code.

2.9.2.4 Translators. Many of the other models in this paper were

built on source-to-source translators like Omni and ROSE, which were both

designed to enhance user productivity by helping users transform their code into

more performance portable versions. Other translators, like Bones and Clacc,

were designed more as compilers than translators, but also provide translation

capabilities so users can further tune their code before compiling it. However, most

translators do not meet all the goals we have set for them. Filling this gap is the

goal of this dissertation.

88

CHAPTER III

METHODOLOGY

This chapter contains material originally published by Johnson et al. (2022).

This chapter will discuss the methodology used in this dissertation,

including motivation, design, and implementation details.

3.1 Motivation

The work in this dissertation was motivated by an existing, specialized

code rewriting tool, PDT (Lindlan et al. (2000)). PDT can be used to insert

calls to a performance measurement library, TAU (Shende and Malony (2006)),

at various predefined places within the user’s code, including function entry and

exits, and around for loops in a given file or function. PDT allows for selective

instrumentation of source code, as opposed to full instrumentation, which is what

most other compiler-based tools provide.

Selective instrumentation is important for two reasons. First, it gives users

more control over the data they collect, so they can only collect data of interest,

instead of being overwhelmed by data on everything. Second, it can significantly

reduce runtime overheads from instrumentation, which can, in some cases, make it

infeasible to run a fully instrumented application. By giving users a manageable

amount of data to work with and allowing them to actually run their instrumented

code, selective instrumentation opens up opportunities in performance measurement

for many codes.

However, PDT can only insert predefined calls at predefined locations, based

on the syntax of a specification file. It cannot insert arbitrary code at arbitrary

locations, and as such it is very limited in its use cases. A tool that could do these

things, that could allow users to perform arbitrary rewrite operations on their code,

89

would be even more useful in even more situations. Unfortunately, existing code

rewriting tools are not exactly user friendly, as discussed in Sec. 2.8.

What might happen if we did have a tool capable of all these things, with a

user-friendly interface?

This dissertation aims to investigate the following questions:

– How can we most intuitively express a wide variety of source-to-source code

transformations natively in C++?

– Can we perform those transformations using only information available at the

AST level in an unmodified mainstream compiler?

– What effect will such transformations (e.g., optimizations, ports to different

models, measurements, refactors, and more) have on the performance and

performance portability potential of high-performance applications?

3.2 Design and Implementation of MARTINI

This section will discuss the particulars of how the tool described in the

previous section was created.

3.2.1 Design Philosophy. We chose to implement MARTINI, the

Little Match and Replace Tool, as a front end, AST-based tool as opposed to

farther along the compilation toolchain because the AST is more closely tied to

the source and contains more detailed source information than even LLVM IR.

In LLVM IR, subtle differences in code structure are obfuscated or disappear

completely; it can be difficult to tell the difference between, for example, a while

loop and a for loop, or a switch statement and an extended if-else if-else chain. To

provide the semantic matching capabilities we do, we need that extra information.

We also wished to make use of Clang’s existing and easily extensible AST matching

90

capabilities. There is little support for performing similar structural matching on

LLVM IR.

It is important to us that our tool be source-to-source, since we want users

to be able to maintain a simple codebase and add complexity via only-as-needed

transformations. While this work deals primarily with performance optimizations

and porting from one programming model to another, there are many other

use cases for MARTINI, such as producing a one-off instrumented version of an

application for performance tuning. In each of these cases, it is important for the

original code to be maintained, so that the user can undo any changes they make.

We want MARTINI to be applicable to as many use cases as possible, hence we

want both the original and transformed code to be visible to the user.

For similar reasons, we chose to leave correctness and verification mostly in

the hands of the user. To enable the widest variety of transformations, we decided

not to enforce any ideas of correctness, since it’s easy to imagine use cases where

correctness is not guaranteed, such as introducing multiple precision calculations.

We want MARTINI to be applicable to those use cases as well.

3.2.2 User Interface Design. The most intuitive starting point was

simple “before and after” code snippets, similar to the regular expressions given to

sed. From there, we’ve begun developing syntax based on these rules:

1. The syntax must be available in vanilla C++.

2. Clang must be able to parse all transformation specifications without

modification.

(a) Minimal modifications, e.g., giving Clang knowledge of new attributes,

are allowed.

91

(b) Including our own additional headers in the specification file, e.g., for

function-like macros, is allowed.

3. The syntax must be minimal so as not to obfuscate the transformation.

4. The syntax should be self-explanatory; every new attribute, macro, etc.

should say what it is.

We’ve taken inspiration (both for what we do and don’t want our syntax to

be) where we can from existing tools. Nobrainer (ref. Sec. 2.8.6.9), the most similar

tool to our own, has been our most useful point of comparison. Sadly, it is not open

source, so we cannot make a direct comparison.

To specify code modifications, users provide two sets of C++ functions

containing parameterized code snippets: matchers and replacers, also called

transformations. Matchers describe which code to modify, and are distinct from

Clang’s AST matchers. We will always refer to the latter as AST matchers in

this work to avoid ambiguity. Replacers describe how matched code should be

rewritten. Figure 3 illustrates the workflow of our tool. Our contributions, which

include the AST matcher generator, the replacer transform generator, and code

rewriting functionality, are highlighted with bold, green outlines. We reused Clang’s

AST generation and AST matcher utilities, as well as some of their rewriting

infrastructure. The user provides the program source (to be rewritten) as well as

the matchers and replacers. The latter is shown as separate files but one file can

contain any number of matchers and replacers.

To declare matchers and replacers, we introduce a few new C++ attributes

(Figure 4) and DSL-like dummy functions (Figure 5) in our clang rewrite

namespace. Through the use of native C++ to embed control structures, we can

92

matchers

replacers

AST
matcher

generator

replacer
transform
generator

clang-rewrite

program
source

clang

code
transform
rewriting

source AST

rewritten
source

find
AST

matches

Figure 3. The workflow of our tool. Our contributions have bolded, green outlines.
The dashed outline indicates that, while we reused some existing infrastructure, we
also made significant contributions.

work with an otherwise unmodified Clang. Similarly, users can verify the validity

of their matchers and replacers through existing verification tools in in the Clang

front end (e.g., clang -cc1 -verify). This is important, as we expect all user-

given code to be valid in its respective language, since a Clang AST can only be

generated for valid inputs.

3.2.3 MARTINI Design. We want any technology we develop

to be “minimally invasive” in the compiler toolchain we use to implement it –

in other words, we don’t want to have to modify the compiler itself to get the

information we need to develop our tool. We also want to preserve the user’s

original application code, and for the transformed code to be compiler independent.

To that end, we’ve chosen to create a source-to-source transformation tool built

on Clang and the Clang AST. Clang’s frontend tooling infrastructure is the most

mature and has the most features out of all the mainstream compilers, making

93

[[clang::matcher("<matcher_name>")]]

for matchers; identifies a function as a matcher specification with the given name.

[[clang::replace("<matcher list>")]]

for replacers; identifies a function as a replacer associated with all listed matchers.

[[clang::insert_before("<matcher list>")]]

for transformations; identifies a function as a replacer that inserts code before a
match.

[[clang::insert_after("<matcher list>")]]

for transformations; identifies a function as a replacer that inserts code after a
match.

[[clang::rewrite_setup]]

for matchers, replacers, and transformations; identifies setup statement(s) (i.e.,
variable declarations) that are required for a matcher block to parse.

[[clang::matcher_block]]

for matchers, replacers, and transformations; identifies statement(s) to be
matched, replaced, or inserted. Outside code can provide declarations to ensure
valid C++. If not present, all statements are used, though support for this is
incomplete.

Figure 4. The C++ attributes used to declare matchers and replacers in user-
provided code snippets. Through use of native C++, these control attributes are
naturally embedded in the source and can be handled by an otherwise unmodified
Clang.

it a very common choice for tool development. Its AST has sufficient ties back

to the source for our needs, while still providing a wealth of information about

code structure. So far, the only modifications to Clang we’ve needed to make are

implementing additional AST matchers (which needn’t actually be in Clang, but

are easiest to implement there, hence our choice to do so) and adding knowledge

of the new attributes from our syntax to Clang’s parser so they will appear in the

AST. We’ve judged this as acceptable, since the modifications are small and don’t

change any of Clang’s functionality otherwise.

94

loop_body()

in a matcher, will match the entire loop body; in a replacer, will copy in the loop
body with no modifications.

loop_body(vector<pair<T,T>>)

overload of the above, where T is a type parameter; in a replacer, will copy in
the loop body with simple modifications expressed as a pair of statements, e.g.,
replacing all uses of a variable i with j.

loop_body(T predicate)

another overload, where T is a type parameter; in a matcher, will check whether
the predicate given is true.

contains(code_structure s)

a predicate for use in the above that will ensure the given code structure is in the
match.

not_contains(code_structure s)

another predicate for use in the above that will ensure the given code structure is
not in the match (implementation incomplete).

Figure 5. Signatures of the functions used as additional control structures inside
matchers and replacers. With familiar C++ syntax, they allow users to express
more types of transformations in a DSL-like way.

3.2.4 MARTINI Implementation. MARTINI uses the previously

mentioned syntax, “compiles” it into Clang AST matchers, and uses the AST

information gathered by those matchers to perform the described transformations.

MARTINI makes heavy use of Clang’s frontend tooling infrastructure, particularly

the AST matchers and Rewriter library. Development has been focused on

incrementally adding support for the full C++ standard via performing case

studies.

Our AST matcher generator, shown in Fig. 3, “compiles” the statements

in the matcher block (ref. [[clang::matcher block]] in Fig. 4) of functions

annotated as matchers (ref. [[clang::matcher("...")]] in Fig. 4) into a Clang

95

AST matcher. These AST matchers will match source code that has the same

semantic structure as the input code snippet, regardless of syntactic differences.

Consequently, potential hazards like arbitrarily complex sub-expressions, line breaks

and spacing, and inline comments, are automatically dealt with. Matchers are by

default parametric, but can also look for literal names (through the hasName()

AST matcher). Parameters are bound (via the bind() AST matcher) to the source

code they match.

To turn a code snippet into an AST matcher, the snippet’s AST is traversed

and converted node-by-node based on the node’s semantics. For example, the

AST matchers generated for the operands of a CallExpr node (function call) are

connected via a hasArgument() AST matcher to the CallExpr’s AST matcher. We

maintain an internal tree data structure with AST matchers as nodes to generate

the final AST matcher.

Replacers are read by the replacer transform generator also shown

in Fig. 3. Only the source code of the matcher block in a replacer (ref.

[[clang::replace("...")]] in Fig. 4) is kept.

Matchers and replacers are tied together through names in their respective

attributes written as string literals (ref. "<matcher name>" and "<matcher list>"

in Fig. 4). Replacers and transformations can be tied to any number of matchers,

and a single matcher can be tied to multiple replacers, e.g., both insert before

and insert after. A match found by a matcher will be rewritten with the code of

the replacer with the matcher’s name in its list, with appropriate names and values

in the code replaced with those from the match.

MARTINI takes in a specification file describing matchers and replacers,

performs AST matcher generation, parses the replacers, then uses the existing

96

AST matcher framework to search the user’s source code for matches. Matches

are processed in the order they are found by the Clang infrastructure, which uses

top-down AST traversal. When it finds a match, it uses Clang’s existing Rewriter

utilities to replace the match with the code from the replacer, and replaces any

identifiers in the replacement code with the code bound to that identifier by the

matcher. An entirely new source file is produced to simplify experimentation with

different transformation specifications and preserve the original source in case of

mishaps. We put very few restrictions on the kinds of transformations users can

write, even those that may produce invalid C++ output, to give users as much

flexibility as possible. We have implemented a few safety checks for insert before

and insert after (for example, we will not insert code into the conditions of an if

statement), but in general users must verify the correctness of their rewritten code.

As mentioned, all identifiers, such as variables and function names, are

treated as matcher parameters unless they are marked as literals by the user. This

means users can choose to, e.g., match all functions that take two arguments and

use the name of the matched function as a parameter in the replacer. Alternatively,

a user can choose to match all calls to a specific function named foo that takes

two arguments by making foo a literal. An identifier is marked as literal through

a declaration in a special namespace (i.a., namespace clang rewrite literals

{ void foo(int a, int b); } – note a and b are not literals as they are

parameters, not explicitly declared in the namespace), or by putting it in a special

vector (i.a., vector<string> clang rewrite literal names {"foo"};). We are

considering adding another attribute for declaring literals for users that do not

want to use the namespace or vector. All non-literal variable names will be bound

97

to the name in the source code that matched, and that name will be used in the

rewritten code wherever that variable appears in the replacer.

3.3 Evaluation Procedure

We evaluate MARTINI in several ways in the rest of this dissertation.

In earlier chapters, we evaluate MARTINI and the code it produces compared

to traditional compiler tools, both in terms of the code required to perform a

transformation and in terms of the correctness of the transformation. In later

chapters, especially where there is no clear tool to compare MARTINI to, we

evaluate the complexity of the code required to perform transformations and the

performance of the resulting code compared to hand-written code. While a true

productivity and usability study is out of the scope of this dissertation, we do

attempt to estimate when MARTINI would provide a productivity gain.

98

CHAPTER IV

A BASIC REWRITING TASK

This chapter contains material originally published by Johnson et al. (2022).

This chapter serves as an introduction to the rest of this dissertation by

describing a seemingly simple rewriting task and how it can be done with both

traditional tools and MARTINI.

4.1 An Example: modernize-use-nullptr

int* test() {

int* a = 0;

double b, *c;

b = 0;

c = 0;

return 0;

}

(a) Example snippet in which the 0-
literal is used for pointer and non-pointer
values.

int* test() {

int* a = nullptr;

double b, *c;

b = 0;

c = nullptr;

return nullptr;

}

(b) The same snippet with the 0-
literal replaced by nullptr in all pointer
contexts.

Figure 6. Example to showcase the “modernize-use-nullptr” clang-tidy rewrite
rule, which replaces 0-literal pointers with nullptr. While the initialization of a
can be reasonably found with text-based search-and-replace techniques, the other
two replacements require non-local, semantic reasoning.

Consider the “simple” rewriting task done by the clang-tidy rule

“modernize-use-nullptr”1. This rule replaces constants, like NULL and 0, assigned

to pointer variables with the C++11 nullptr keyword, which is both safer and

more readable. Figure 6 illustrates the changes clang-tidy can perform. The

first replacement, where a is initialized to 0, could be done with a text-based

tool, like sed, although a generic regular expression to match arbitrary types

and variable names could get very complex, like this sed expression: sed -i

1https://clang.llvm.org/extra/clang-tidy/checks/modernize-use-nullptr.html

99

https://clang.llvm.org/extra/clang-tidy/checks/modernize-use-nullptr.html

’s/\([[:print:]]\+\)*\([[:print:]]\+\)[[:space:]]*=[[:space:]]

0[[:space:]];/\1 * \2 = nullptr;/g’ (where [[:print:]] is all

alphanumeric characters, punctuation, and single-space, and [[:space:]] is all

space characters). However, the other two replacements, in the assignment to c and

the return statement, are difficult if not impossible for a purely text-based tool to

handle, since it does not have semantic context. The physical distance between the

type of the variable and the 0-literal can cross file boundaries, and most languages

allow for various other complexities, like shadowing declarations with different

types. This semantic context is out of reach for purely text-based search-and-

replace tools – we need a tool that can understand more of the complexities of

semantics.

Once a rewriting task reaches a complexity beyond the capabilities of text-

based tools, programmers are often left with no choice but to develop specialized

modules in a compiler, where the semantic information needed is most readily

available. The “modernize-use-nullptr” clang-tidy rule shown above is one of

many such modules implemented using the Clang compiler’s tooling infrastructure,

which provides access to semantic information from the Clang AST. The code for

this rule, though, is roughly 125 lines of complex C++ and Clang AST matchers

(excluding comments and code to handle NULL macros) which require Clang AST

specific knowledge. Other rewriting software (ref. Section 2.8) expects similar

specialized knowledge, as it also operates directly on the AST.

For sophisticated code transformations, using a compiler front end is often

the only solution. However, we believe that this does not preclude a user-friendly

approach, since developers can often write what they want to happen, though

maybe not how it should happen. To this end, we developed a system built on

100

Clang and based on semantic matching and user-provided code replacements that

is accessible to the average programmer. Similar to regular expressions, users

can describe and customize code transformations naturally as “before-and-after”

snippets of C++ code, which correspond to the two expressions used in search-and-

replace schemes. The available context for searching and replacing is not restricted

to syntax, though; it also contains semantic information extracted by a compiler.

Our interface is designed to be intuitive for C++ developers by restricting its

syntax to modern C++ and requiring no knowledge of compiler internals, unlike

previous rewriting tools. It is also designed to give users a great deal of control over

which changes are applied and where.

Continuing the above example, we can mimic most of the functionality of

clang-tidy’s “modernize-use-nullptr” rule (except NULL macros – these require

further checks due to how the Clang preprocessor works) through the three code

pairs shown in Fig. 7. On the left hand side are the “matchers” which describe

what should be replaced, and on the right hand side are corresponding “replacers”

which contain the desired code with references back to the matched input. This

example demonstrates how our approach provides semantic context for code

rewriting and allows the average programmer to automate more complex rewriting

tasks – and does so much more simply than Clang.

101

template <typename T>

[[clang :: matcher("nptr -decl")]]

auto null_match () {

[[clang:: matcher_block]]

T* var = 0;

}

(a) Matcher for initializing a pointer-
typed variable to a 0-literal.

template <typename T>

[[clang:: replace("nptr -decl")]]

auto null_replace () {

[[clang :: matcher_block]]

T* var = nullptr;

}

(b) Replacement using nullptr for the
matcher in (a).

template <typename T>

[[clang :: matcher("nptr -asgn")]]

auto null2_match () {

T* var = nullptr;

[[clang:: matcher_block]]

var = 0;

}

(c) Matcher for a 0-literal assignment to
a pointer-typed variable.

template <typename T>

[[clang:: replace("nptr -asgn")]]

auto null2_replace () {

T* var = nullptr;

[[clang :: matcher_block]]

var = nullptr;

}

(d) Replacement using nullptr for the
matcher in (b).

template <typename T>

[[clang :: matcher("nptr -ret")]]

T* null3_match () {

[[clang:: matcher_block]]

return 0;

}

(e) Matcher for a pointer-typed return
statement using a 0-literal.

template <typename T>

[[clang:: replace("nptr -ret")]]

T* null3_replace () {

[[clang :: matcher_block]]

return nullptr;

}

(f) Replacement using a nullptr for the
matcher in (e).

Figure 7. The three matcher-replacer pairs we used to mimic (most of) the
functionality of clang-tidy’s “modernize-use-nullptr” rule. Applied to Fig. 6a, the
“modernized” version in Fig. 6b is produced. The variable name var is a parameter
of the matcher block, and the original variable name in the matched program
fragment (e.g., a, b, and c in Fig. 6) is bound to it for use in the replacement.
While our matchers are by default type-agnostic, and hence fully polymorphic, we
enable type-based reasoning for template type parameters, here T. As a result, the
matchers on the left are restricted to pointer-typed values.

102

CHAPTER V

REWRITING FOR OPTIMIZATION

This chapter contains work that will be published by Johnson et al. (n.d.).

Alister Johnson did all development on MARTINI and related writing, while

Camille Coti designed and performed the performance experiments, including

creating the figures, and helped with the related writing.

This chapter will discuss how MARTINI can be used to optimize

applications using the lens of loop optimizations.

5.1 Introduction

Loop optimization is an important subset of performance optimization, as

most (if not all) large scientific applications spend most of their time in loops.

However, optimizing for performance portability is often very different from

optimizing for performance, since optimizations that work well on one machine

may not on another. Developers often wish to perform different loop optimizations

per machine, or parameterize their optimizations.

Most loop optimizations are possible, but very difficult and error-prone,

for humans to write, as they involve complex updates to loop indices in the loop

body, so ideally they would be left to the compiler. All mainstream compilers

implement a wide variety of loop optimizations, from unrolling and vectorizing to

loop fusion or fission. The compiler uses heuristics developed by expert engineers

to choose which optimizations to apply and the value of any parameters for that

particular optimization (e.g., the number of times to unroll). However, not all

compilers implement the same optimizations, and furthermore, the heuristics they

use can vary wildly, leading to performance variations across both compilers and

machines. Especially for application developers striving for performance portability

103

(Deakin, Poenaru, Lin, and Mcintosh-Smith (2020); Hollman et al. (2019); Hornung

and Keasler (2013)), this is undesirable, so developers often end up implementing

these optimizations by hand anyway. But an optimization that works well on one

machine may be detrimental on another, so how then does a development team

maintain their codebase?

Many codes do not maintain a single codebase, but rather versions

specific to each machine they wish to run on. This can severely impact developer

productivity though, as any bug fixes and new features must be applied to all

versions, and versions can diverge over time, leading to a serious accumulation

of technical debt if the developers ever decide to unify their codebases. Other

development teams turn to (performance) portability libraries and language

extensions like Kokkos (Edwards et al. (2014)) or OpenMP (OpenMP Architecture

Review Board (2018)). However, these libraries can still have serious performance

variation across different platforms, if they even support the platform at all (Deakin

et al. (2019, 2020)), or in the case of OpenMP, still require different code per

platform. This has improved drastically in recent years as libraries mature and

performance portability features are added (e.g., OpenMP 5’s new metadirective

construct (Pennycook, Sewall, and Hammond (2018))), but is still a concern

for high-performance application developers, who wish to achieve day-one high

performance on the newest machines, often before libraries and compilers fully

support optimizations on those machines.

Of particular concern is maintaining developer productivity in this

environment, especially for domain scientists who may not be expert coders. Many

loop optimizations, particularly ones that introduce extra loops or change indices,

like tiling, fission, or vector intrinsics, can obfuscate the true purpose of a piece of

104

code for anyone not extremely well-versed in performance optimization, such as a

domain scientist. Most domain scientists (and, to be fair, computer scientists too)

would prefer to write and work with the “textbook” version of their algorithms

– the simplest version, with no obfuscating optimizations, as might be seen in a

textbook on the subject.

Our work aims to enable this by separation of concerns: the functionality

of an application can be kept separate from its optimization via automatic code

transformation with MARTINI. Instead of keeping optimizations in the main

codebase, they can be kept separate as matchers and replacers that can be used to

generate an optimized version of the base application at will. These matchers and

replacers can be applied per-platform and are compiler independent, so developers

can optimize their performance on any given machine without depending on a

compiler or library to implement the particular set of optimizations they need,

allowing them to achieve performance portability while maintaining a simple,

“textbook” codebase, along with its rewrite rules.

The rest of this chapter is organized as follows. Sections 5.2, 5.3, and 5.4

will discuss three different kinds loop optimizations and how they can be done with

MARTINI. Our goal is to demonstrate the variety of applications for our tool and

describe its features. These examples were chosen because they are well-known,

but difficult for compilers to consistently apply, either due to safety concerns or

challenging implementation. Section 5.5 will evaluate how these optimizations

impact a selection of benchmarks.

5.2 Loop Peeling

[[clang :: matcher("peel_inner")]]

auto peelinm () {

[[clang:: rewrite_setup]]

int max_i , min_i , max_j , min_j;

105

[[clang:: matcher_block]] {

for (int j = min_j; j < max_j; j++) {

for (int i = min_i; i < max_i; i++) {

clang_rewrite :: loop_body ();

}

}

}

}

[[clang :: replace("peel_inner")]]

auto peelinr () {

[[clang:: rewrite_setup]]

int max_i , min_i , max_j , min_j , x, y;

[[clang:: matcher_block]] {

for (int j = min_j; j < max_j; j++) {

for (int i = min_i; i < max_i - 1; i++) {

clang_rewrite :: loop_body ({{x%y, x}});

}

for (int i = max_i - 1; i < max_i; i++) {

clang_rewrite :: loop_body ({{x%y, x-y}});

}

}

}

}

Listing 5.1 Loop peeling matcher and replacer, inner loop.

Loop peeling, or splitting, moves some iterations outside of the loop to

simplify the treatment inside the loop. For instance, a test on the iteration number

can be removed by taking the iterations that require a specific treatment outside of

the loop.

For example, computing a wavelet transform uses N consecutive elements

of an array, and moves in this array by steps of two elements. Hence, when N >

2, the last elements require wrapping on the elements of this array. Indices can

be computed using a modulo; however, Coti, Falcou, and Matei (2020) show how

computing this modulo at every step harms performance. To avoid this, we can

peel the loop iterations to remove the modulo entirely. For the iterations that do

106

not require wrapping, we can simply use the indices as given, without the modulo.

For iterations that do require wrapping, we can instead subtract the array size from

the indices that would go past the end of the array.

Listing 5.1 shows how this can be done, and showcases a feature of

MARTINI: inline matchers and replacers. The loop body() function is a generic

matcher that will match any set of statements inside the loop. The expressions

given as arguments to the function (inside the double {}) are a nested, inline

matcher and replacer set for simple replacements inside the loop body, such as

renaming indices or, in our case, removing a modulo.

5.3 Loop Fission

Loops can be unrolled automatically and vectorized. However, some

operations prevent this vectorization, for instance, if a test is performed in the

loop. The excerpt shown in Listing 5.2 performs an operation on every element

of an array and searches for the maximum resulting value. The two tests in the

loop body prevent the compiler from vectorizing the loop iterations. The first test

defines a specific instruction for the first iteration. It can be removed by taking

this first iteration outside of the loop, i.e., peeling it. Then the loop body consists

of two steps: computing the new value of A[i], and comparing it to the current

maximum. This can be distributed into two loops: 1) computing the new value and

2) searching for the maximum (Listing 5.3). As a result of splitting this loop, we

expect the compiler to be able to optimize at least the first loop.

In order to transform this code, we need two pairs of matchers and replacers:

one to peel the loop, and one to distribute it. We have already presented how

peeling can be achieved in Section 5.2; the matcher and replacer look quite similar.

Listing 5.6 presents the matcher and replacer for loop fission on this example.

107

for(auto i = 0 ; i < M ; i++){

A[i] = oper(A[i], M);

if(0 == i){

maxsq = A[0];

} else {

if(maxsq < A[i]){

maxsq = A[i];

}

}

}

Listing 5.2 Original loop to be fissioned.

for(auto i = 0 ; i < M ; i++){

A[i] = oper(A[i], M);

}

maxsq = A[0];

for(auto i = 0+1 ; i < M ; i++){

if(maxsq < A[i]){

maxsq = A[i];

}

}

Listing 5.3 Loop after fission.

for (int i = 0; i < M; i++) {

r = calculate(A[i]);

if (r > max) {

max = r;

index = i;

}

sum += r;

}

Listing 5.4 Another loop to be split.

double* tmp = (double *) malloc(sizeof(double) * M);

for (int i = 0; i < M; i++) {

r = calculate(A[i]);

tmp[i] = r;

sum += r;

}

for (int i = 0; i < M; i++) {

if (tmp[i] > max) {

108

index = i;

max = r;

}

}

free(tmp);

Listing 5.5 Second loop after fission.

[[clang :: matcher("fission")]]

auto modm() {

[[clang :: rewrite_setup]]

int max , min;

[[clang :: rewrite_setup]]

double mm;

[[clang :: rewrite_setup]]

double* tab;

[[clang :: matcher_block]] {

for (auto w = min; w < max; w++) {

tab[w] = oper(tab[w], max);

if(min == w){

mm = tab[w];

} else {

if(mm < tab[w]){

mm = tab[w];

}

}

}

}

}

[[clang :: replace("fission")]]

auto modr() {

[[clang :: rewrite_setup]]

int max , min;

[[clang :: rewrite_setup]]

double mm;

[[clang :: rewrite_setup]]

double* tab;

[[clang :: matcher_block]] {

for(auto w = min ; w < max ; w++){

tab[w] = oper(tab[w], max);

}

mm = tab[min];

for(auto w = min+1 ; w < max ; w++){

if(mm < tab[w]){

mm = tab[w];

109

}

}

}

}

Listing 5.6 Fission: matcher and replacer for first example.

We execute these two transformations sequentially, with two invocations

of clang-rewrite, as opposed to writing both as a single transformation or

assuming the transformations will compose correctly if run together with a single

invocation of clang-rewrite. We do plan on adding the capability to compose

transformations in the future, and it can be emulated now by multiple runs of our

tool, or by including both transformations in a single matcher/replacer pair.

A more complex example is given by Listing 5.4: in some cases, the

loop keeps two integers, the index and a maximum. However, the two-loop

implementation (Listing 5.5) has the extra cost of another memory allocation.

5.4 Loop Tiling

Loop tiling is a common optimization to improve code performance by

improving memory locality, particularly in the processor cache. Most caches

load data in blocks, so when one entry in a multi-dimensional array is loaded, so

are entries in the rows and columns around it. Tiling takes advantage of this by

performing loop calculations in the order cache blocks are loaded, instead of in the

order of array indices. While this can give significant performance improvements

due to fewer cache misses, tiling requires major changes to loop structure and

indices, which are difficult for humans to perform and can obfuscate the loop’s

purpose.

Furthermore, the size of the tiles is machine-dependent, as different

processors have different cache layouts. This can lead to users needing multiple,

110

per-machine variants of a loop or having to write a parameterized loop with

different settings for each machine. Our tool can assist with this by allowing users

to keep a single base code version, with the processes for generating variants stored

as matchers and replacers that can be applied based on which machine the code is

being run on.

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

B[i][j] = A[j][i];

}

}

Listing 5.7 Original matrix transposition code.

for (int ii = 0; ii < n; ii+= TILE_SIZE) {

for (int jj = 0; jj < n; jj+= TILE_SIZE) {

for (int i = ii; i < MIN(n, ii + TILE_SIZE); i++) {

for (int j = jj; j < MIN(n, jj + TILE_SIZE); j++) {

B[i][j] = A[j][i];

}

}

}

}

Listing 5.8 Tiled matrix transposition code.

A simple example where loop tiling can be taken advantage of is matrix

transposition: the matrix is transposed block by block in order to exploit data

locality as much as possible. From the simple code given in Listing 5.7, the loops

can be executed by blocks (the tiles) of size TILE_SIZE, with a tile size chosen

small enough to fit in the machine’s cache. TILE SIZE can be a constant chosen

by the user at replacement time, or a parameter set per-machine, as with a

preprocessor macro. Listing 5.8 gives the expected tiled code, with the inner loops

transposing the matrix by tiles.

The corresponding matcher and replacer, given by Listing 5.9, are

straightforward: we replace the original loops with outer loops that progress

111

by bigger steps, and inner loops that work inside of the tiles. The loop body is

unchanged.

[[clang :: matcher("tiling")]]

auto tilingm () {

[[clang :: rewrite_setup]]

int max_i , min_i , max_j , min_j;

[[clang :: rewrite_setup]]

double ** A, **B;

[[clang :: matcher_block]] {

for (int i = min_i; i < max_i; i++) {

for (int j = min_j; j < max_j; j++) {

clang_rewrite :: loop_body ();

}

}

}

}

[[clang :: replace("tiling")]]

auto tilingr () {

[[clang :: rewrite_setup]]

int max_i , min_i , max_j , min_j;

[[clang :: rewrite_setup]]

double ** A, **B;

[[clang :: matcher_block]] {

for (int ii = min_i; ii < max_i; ii+= TILE_SIZE) {

for (int jj = min_j; jj < max_j; jj+= TILE_SIZE) {

for (int i = ii; i < MIN(max_i , ii +

TILE_SIZE); i++) {

for (int j = jj; j < MIN(max_j , jj +

TILE_SIZE); j++) {

clang_rewrite :: loop_body ();

}

}

}

}

}

}

Listing 5.9 Loop tiling matcher and replacer.

5.5 Evaluation

In this section, we examine the performance of the code generated

by MARTINI to evaluate how efficient this approach is on straightforward

112

computation kernels. We compiled both codes (original and transformed) with

gcc’s -O3 optimization level: our goal is to provide optimizations that cannot

be performed by the compiler, and let it optimize what it can optimize. Ideally,

our optimizations will allow the compiler to make better inferences about the

user’s code, leading to higher performance overall. Indeed, in almost all cases,

our automatically-applied optimizations allowed the compiler to generate better

performing code, even compared to -O3.

We ran all our experiments on a machine featuring two 16-core, 32-thread

Intel(R) Xeon(R) CPU E5-2697 v4 CPUs running at 2.30GHz and 128 GB of

memory. All the code was compiled using gcc 12.2.0 on a Linux RHEL running

a kernel v. 4.18. We measured time using either clock_gettime, or reading the

hardware timestamp counter. All the measurements were taken 10 times, and we

present the mean and standard deviation on the plots shown in this section.

5.5.1 Loop peeling. We implemented a straightforward wavelet

transform function of length 4. The basic implementation uses a modulo, as

explained in Section 5.2. We used the matchers and replacers presented in the

aforementioned section to remove these modulos by peeling both the inner and

the outer loops. Computing these modulos takes a high proportion of CPU cycles

in this computation kernel; hence, removing them thanks to loop peeling saves a

high proportion of the computation time, as shown in Fig. 8.

5.5.2 Loop fission. We compared the performance of the maximum

search code presented in Section 5.3 with the generated code that uses loop

fission. In our example, the operation performed in the loop is simple: it computes

ceill(a*a). The performance is shown Figure 9. As expected, the code using

two separate loops takes advantage of the vector capabilities of the CPU, and runs

113

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0
30

00
0

Matrix size

0

2.0 109

4.0 109

6.0 109

8.0 109

1.0 1010

1.2 1010

1.4 1010

1.6 1010

Ti
m

e
(T

SC
)

Original
Generated

Figure 8. Loop peeling: performance obtained by the original code and the
generated code. The vertical axis is clock cycles/nanoseconds.

faster... up to a certain array size, after which the fused-loop implementation is

faster. The two-loop version uses twice as much memory in cache and therefore the

array no longer fits in the cache, resulting in a higher number of cache faults that

make the two-loop implementation slower.

A more computation-intensive loop, which calculates cos(sqrt(fabs(in))),

is evaluated in Figure 10. Since the computational portion of the loop is more

expensive than with the simple maximum search use-case, this computation

takes more advantage of the vector computation capabilities of the CPU, and the

performance gain is higher, even with larger data arrays.

5.5.3 Loop tiling. Figure 11 presents an evaluation of the

performance of the matrix transposition code presented Section 5.4. We compared

the result of the original code (with two simple nested loops) with the generated

114

2.5
10

3

5.0
10

3

7.5
10

3

1.0
10

4

1.2
5

10
4

1.5
10

4

1.7
5

10
4

Array size

0

2.5 103

5.0 103

7.5 103

1.0 104

1.25 104

1.5 104

1.75 104

2.0 104

Ti
m

e
(n

se
cs

)

Original
Generated

Figure 9. Loop fission: performance obtained by the original code and the
generated code.

2.0
10

4

4.0
10

4

6.0
10

4

8.0
10

4

1.0
10

5

1.2
10

5

1.4
10

5

Array size

0

2.0 104

4.0 104

6.0 104

8.0 104

1.0 105

1.2 105

1.4 105

1.6 105

Ti
m

e
(n

se
cs

)

Original
Generated

Figure 10. Loop fission (compute heavy): performance obtained by the original
code and the generated code..

115

0
10

00
0

20
00

0
30

00
0

40
00

0
50

00
0

Array size

0

2.0 1010

4.0 1010

6.0 1010

8.0 1010

1.0 1011

1.2 1011

1.4 1011

1.6 1011

Ti
m

e
(T

SC
)

Original
Generated

Figure 11. Loop tiling: performance obtained by the original code and the
generated code. The vertical axis is clock cycles/nanoseconds.

code (working on tiles), and, as we can see, the generated code outperforms

the original one, once again demonstrating that MARTINI can be useful as an

optimization tool.

5.5.4 Aside: Autotuners. While autotuning frameworks, such

as Orio (Hartono et al. (2009)), can perform many of the same tasks and

optimizations MARTINI can, they still require hand-made edits to the users’ code

to either insert annotations on loops to tune or to add parameters to loops, such

as tile size for tiled code or an unroll factor for loop unrolling. This is less than

ideal, for reasons already mentioned: humans are bad at modifying loops, and an

excess of annotations can obfuscate the purpose of the code. With MARTINI, all

this complexity is hidden in matchers and replacers, and furthermore, users are

not limited by the transformations implemented by the autotuner. MARTINI may

116

in fact be a good companion to existing autotuners, as it can be used to insert

annotations or parameters automatically.

117

CHAPTER VI

PORTING TO NEW PROGRAMMING MODELS

This chapter contains work published by Johnson et al. (2022). It also

contains work that will be published by Johnson et al. (n.d.). Alister Johnson did

all development on MARTINI and related writing, while Camille Coti designed and

performed all performance experiments and helped with related writing.

This chapter will describe how MARTINI can be used to port existing

programs to new programming models.

6.1 Introduction

One of the main challenges facing performance portability today is the sheer

variety of programming models that exist. Not every model is a good fit for every

application, and it can be difficult for new and even existing but evolving models

to gain traction in the community. Developers are wary of porting to a model

that may no longer be developed or supported in a year or two. Furthermore,

even among the most popular, widely-supported models, performance portability

is not guaranteed (Deakin et al. (2019, 2020)), either due to machine-specific

optimizations in the application or the model’s implementation (or lack thereof)

for a given architecture.

The underlying issue here is developer productivity. Even if the ideal

performance portable language or library existed, developers of large, existing

applications would be reluctant to port to it because of the effort involved, even

with incremental ports. The average development team doesn’t have the time or

compiler building expertise required to make a program to automate the port, and

existing tools they could use also require compiler experts.

118

But many of the changes made during porting follow patterns, so it seems

like automation should be possible. MARTINI allows users to capture these

patterns to automate the porting process. MARTINI’s matchers and replacers

allow for separation of concerns with respect to implementing and parallelizing

an application. Developers can write the simplest, “textbook” version of their

algorithms, and then transform it as needed into an optimized, parallel version in

a performance portable model, like OpenMP or Kokkos. Being able to store porting

strategies as transformations allows developers to maintain a simple codebase while

still achieving high performance and performance portability.

The rest of the chapter is organized as follows. Section 6.2 will discuss

an early case study of porting CUDA (Nvidia’s proprietary GPU programming

language) to HIP (AMD’s more portable GPU programming language). Section 6.3

will describe how MARTINI can add OpenMP pragmas to users’ code. Section 6.4

will discuss porting two miniapps from OpenMP to Kokkos, and Section 6.5 will

further discuss porting one of those miniapps from Kokkos to SYCL. Section 6.6

will evaluate these ports.

6.2 HIPIFY

For a realistic first evaluation we performed a case study against HIPIFY

(ROCm Developers (n.d.)), a state-of-the-art source code rewriting tool that ports

CUDA codes to the (very similar, but more portable) HIP programming model.

HIPIFY exists in two versions, as a “legacy” perl script, hipify-perl, and as an

extension to the Clang front end, hipify-clang. Both versions have been used by

researchers and application developers to port code, with generally positive results

(Brown, Abdelfattah, Tomov, and Dongarra (2020); Dufek et al. (2021); Sun et al.

(2018)).

119

// 31 lines of C++ code (removed)

OS << kern;

if (caleeDecl ->isTemplateInstantiation ())

OS << ")";

OS << ", ";

// Next up are the four kernel configuration parameters , the

last two of which are optional and default to 0.

// Copy the two dimensional arguments verbatim.

for (unsigned int i = 0; i < 2; ++i) {

string sArg = readSourceText (*SM ,

config ->getArg(i)->getSourceRange ()).str();

bool bDim3 = equal(sDim3.begin(), sDim3.end(), sArg.c_str());

OS << (bDim3 ? "" : sDim3) << sArg << (bDim3 ? "" : ")") <<

", ";

}

// 31 lines of C++ code (removed)

Listing 6.1 Excerpt of hipify-clang source translating CUDA kernel launches to
HIP. The replacement function alone (HipifyAction::cudaLaunchKernel) is 73
lines (excluding comments and helper functions). This snippet pretty-prints the
grid and block dimensions to the output file. It still inspects the input code string
(e.g., by scanning for the string sDim3 = "dim3("), despite AST matching of
CUDA kernels being done earlier elsewhere. This kind of string matching code is
hard to read, hard to modify, and overall fragile as typedefs or syntactic deviations
(e.g., spaces) impact it easily.

To bootstrap our HIPIFY clone, we used the rewrite rules already defined

in the hipify-clang source. We limited our HIPIFY to CUDA’s runtime API for

now to keep the number of matchers and replacers manageable for debugging our

prototype. The existing tables from hipify-clang allowed us to automatically

generate matcher-replacer pairs for CUDA runtime calls and types, including

all simple renames, such as cudaMalloc to hipMalloc. However, hipify-clang

requires that transformations more complex than renaming, such as kernel calls,

be implemented explicitly with strong coupling to the Clang AST. Listing 6.1

illustrates this with an excerpt of the hipify-clang source code for rewriting

120

CUDA kernel launches. These particular lines pretty-print the thread grid and

block dimensions to the output stream (OS). For brevity we omit 62 lines of this

function, as well as all helpers and the logic that creates and applies the AST

matcher. Still, all of this complexity is required just to replace CUDA kernel calls.

In Figure 12 we illustrate our alternative approach, which does not require

any interaction with an AST, or any other complexity. In Fig. 12a, the matcher

for a CUDA kernel launch with two kernel arguments and three launch parameters

is shown. Since we currently do not support optional arguments, we automatically

generate matchers and replacers for all supported numbers of arguments and launch

parameters explicitly with a script. While we will support such variability more

concisely in the future, one can already see how our approach is fundamentally

simpler and more natural to non-compiler experts. Neither the matcher nor the

replacer require interaction with the AST or other compiler internals, but all

benefits over text-based search-and-replace approaches are preserved. For example,

all matcher parameters (e.g., kern and nthreads) can bind to arbitrary complex

expressions in the user’s code. Figure 12b shows the associated replacer pattern.

The kernel name (kern), together with the launch parameters (nthreads converted

to dim3), are moved to argument positions in HIP’s kernel launch function.

Importantly, the replacer pattern is written directly in the target language,

which makes it easy for any developer to change the argument order, adjust

default values (here, 0 in the HIP kernel launch), or modify the transformation in

other ways. As an example, the shown replacer will not only port a CUDA kernel

launch to HIP, but also double the number of threads to account for the (usually)

larger wave size on AMD GPUs compared to the warp size on NVIDIA GPUs.

121

The two characters added for this modification are the “* 2” in the definition of

nthreads3D in Fig. 12b.

While our prototype emits the literal code in the clang::matcher block,

including the conditional that converts integer grid sizes to dim3 types, we intend

to add further capabilities to replacers such that compile-time constant expressions

like this can be simplified. In this example, the is integer condition can be

determined at replacement time, which would allow the ternary expression to be

simplified.

6.3 Inserting OpenMP Pragmas

A popular way of improving loop performance is by adding parallelism, for

example with a pragma-based programming model such as OpenMP or OpenACC.

These models allow users to add parallelism to their code with minimal changes

that keep the code clean. However, due to the variability in compiler support

and differences in target architectures, the same pragmas may give very different

performance results on different machines. OpenMP in particular requires different

directives to make use of GPU hardware. Some support has been added to

ameliorate this, but a solution such as ours that could automate inserting per-

machine directives would strongly preferable.

We can, for instance, decide to parallelize the outer loop of a nest of three

loops. When we know that the iterations are independent from each other, we can

also insert the keyword simd. For instance, we can parallelize the outer loop of a

matrix-matrix multiplication, after making sure the loops are in the best order.

Listing 6.2 presents the matcher and replacer to insert pragmas.

[[clang :: matcher("omp")]]

auto loopm() {

[[clang :: rewrite_setup]]

int M, N, K;

122

[[clang :: matcher_block]] {

for(int i = 0 ; i < M ; i++){

for(int k = 0 ; k < K ; k++){

for(int j = 0 ; j < N ; j++){

clang_rewrite :: loop_body ();

}

}

}

}

}

[[clang :: replace("omp")]]

auto loopr() {

[[clang :: rewrite_setup]]

int M, N, K;

[[clang :: matcher_block]] {

#pragma omp parallel for simd

for(int i = 0 ; i < M ; i++){

for(int k = 0 ; k < K ; k++){

for(int j = 0 ; j < N ; j++){

clang_rewrite :: loop_body ();

}

}

}

}

}

Listing 6.2 OpenMP: insertion of loop parallelization pragmas.

6.4 OpenMP to Kokkos

This section will discuss porting two miniapps, TeaLeaf and BabelStream,

from OpenMP to Kokkos – Kokkos is often considered more performance

portable than OpenMP because it does not require different code to target GPUs,

only choosing a different back end. TeaLeaf solves a 2-dimensional linear heat

conduction equation on a regular grid using a 5-point stencil and various solvers

(McIntosh-Smith et al. (2017)). BabelStream is a collection of implementations of

the classic STREAM benchmark (McCalpin (n.d.)) in various programming models.

123

6.4.1 TeaLeaf. Despite the seeming complexity of TeaLeaf compared

to BabelStream, because TeaLeaf does not use classes to differentiate between

programming models, it was actually significantly easier to translate. The

translation was done with two matcher/replacer pairs, one for simple loops and

the other for loops with reductions. The matcher and replacer for simple loops are

shown in Listing 6.4; the matcher and replacer for reductions are very similar and

thus omitted for brevity.

In TeaLeaf, the vast majority of computation is done in doubly-nested

for loops (see Listing 6.3 for two examples) that iterate over one dimensional

arrays of size x*y, where x and y are the height and width of a matrix, or sub-

arrays of these. To make a generic matcher and replacer for all these loops, we

used the index arithmetic shown in the replacer, where the x- and y-indices are

calculated from a singular index, and then checked against the old loop bounds.

This index arithmetic was challenging to arrive at and implement correctly (a bug

we encountered will be discussed in Sec. 6.4.1.1), and if a human programmer had

to do this by hand for all of TeaLeaf’s loops, they would almost certainly have

introduced bugs. Since we only had to write this code twice, however, it was easy

for us to verify that both were correct, then apply the transformations globally.

This same index arithmetic is how TeaLeaf was translated by hand. Listing 6.5

shows the result of translating the kernels from Listing 6.3 with our matchers

and replacers, one of which is shown in Listing 6.4. This matcher and replacer

set makes use of our knowledge of the TeaLeaf code, which always uses variables

named x and y for the maximum loop bounds. We use these variables as literals in

the replacer.

#pragma omp parallel for

for(int jj = halo_depth; jj < y-1; ++jj)

124

{

for(int kk = halo_depth; kk < x-1; ++kk)

{

const int index = kk + jj*x;

kx[index] = rx*(w[index -1]+w[index]) /

(2.0*w[index -1]*w[index]);

ky[index] = ry*(w[index -x]+w[index]) /

(2.0*w[index -x]*w[index]);

}

}

double rro_temp = 0.0;

#pragma omp parallel for reduction (+: rro_temp)

for(int jj = halo_depth; jj < y-halo_depth; ++jj)

{

for(int kk = halo_depth; kk < x-halo_depth; ++kk)

{

const int index = kk + jj*x;

const double smvp = SMVP(u);

w[index] = smvp;

r[index] = u[index]-w[index];

p[index] = r[index];

rro_temp += r[index]*p[index];

}

}

// Sum locally

*rro += rro_temp;

Listing 6.3 TeaLeaf: Sample computation kernels.

[[clang :: matcher("kokkos")]]

auto kokkos_m () {

[[clang :: rewrite_setup]]

int k, N, l, M;

[[clang :: matcher_block]] {

#pragma omp parallel for

for (int i = k; i < N; ++i) {

for (int j = l; j < M; ++j) {

clang_rewrite :: loop_body ();

}

}

}

}

125

[[clang :: replace("kokkos")]]

auto kokkos_r () {

[[clang :: rewrite_setup]]

int k, N, l, M, x, y;

[[clang :: matcher_block]] {

Kokkos :: parallel_for(x*y, KOKKOS_LAMBDA (const int

idx) {

const size_t kk = idx % x;

const size_t jj = idx / x;

if (k-1 < jj && jj < N && l-1 < kk && kk < M) {

clang_rewrite :: loop_body ();

}

});

}

}

Listing 6.4 TeaLeaf: OpenMP to Kokkos, doubly-nested for loops.

Kokkos :: parallel_for(x*y, KOKKOS_LAMBDA (const int idx) {

const size_t kk = idx % x;

const size_t jj = idx / x;

if (halo_depth -1 < jj && jj < y-1 && halo_depth -1 < kk

&& kk < x-1) {

const int index = kk + jj*x;

kx[index] = rx*(w[index -1]+w[index]) /

(2.0*w[index -1]*w[index]);

ky[index] = ry*(w[index -x]+w[index]) /

(2.0*w[index -x]*w[index]);

}

});

double rro_temp = 0.0;

Kokkos :: parallel_reduce(x*y, KOKKOS_LAMBDA (const int

idx , double& intermed) {

const size_t kk = idx % x;

const size_t jj = idx / x;

if (halo_depth -1 < jj && jj < y-halo_depth &&

halo_depth -1 < kk && kk < x-halo_depth) {

const int index = kk + jj*x;

const double smvp = SMVP(u);

126

w[index] = smvp;

r[index] = u[index]-w[index];

p[index] = r[index];

intermed += r[index]*p[index];

}

},

rro_temp);

// Sum locally

*rro += rro_temp;

Listing 6.5 TeaLeaf: Example kernels translated to Kokkos.

6.4.1.1 Hand Edits Required. Only minor changes needed to be

done by hand to produce a working, translated application. The main modification

we did by hand was changing all TeaLeaf’s arrays of doubles into Kokkos views,

which was not strictly necessary but enables the application to make better use

of Kokkos’ various back ends. We also added calls to Kokkos::initialize() and

Kokkos::finalize() and added the Kokkos includes.

The other fix required was in fact a bug introduced by MARTINI to the

application, which involved the index arithmetic described above. For the loops

that go from 0 to x*y, this index arithmetic will have kk and jj, both unsigned

size t variables, compared to 0-1, which evaluates as false when it should be true.

We had to manually fix these loops, by commenting out the comparison, to make

the application correct. We could write a matcher/replacer pair specifically for the

case when k and/or l is 0, but since we currently have no way to control whether

that matcher or the one shown in Listing 6.4 has precedence, or a way to omit the

if in the replacer when k or l is 0, we had to make this fix by hand. In the future,

we plan to add more control structures to matchers and replacers so that bugs like

this can be avoided.

127

6.4.1.2 Summary of TeaLeaf Translation. MARTINI correctly

translated 6 out of 7 kernels for TeaLeaf’s CG solver, 3 out of 3 for the Chebyshev

solver, 3 out of 4 for the Jacobi solver, 3 out of 3 for the PPCG solver, and 4

out of 4 for some shared methods, giving us a grand total of 19 out of 21 kernels

translated correctly. The two incorrect translations were due to the bad signedness

comparison discussed above (Sec. 6.4.1.1), and were simple to fix by hand.

6.4.2 BabelStream. Translation of OpenMP to Kokkos was done

with four matcher/replacer pairs, three of which are shown here (the fourth is a

trivial deletion). The first matcher/replacer set, shown in Listing 6.8, transforms

allocation of one of OpenMP’s arrays into allocation (example shown in Listing

6.6) and setup of multiple Kokkos views (for device and host, example shown in

Listing 6.7), illustrating the first challenges we encountered and a new feature

implemented to resolve it. We wished to create variable names (device x and

hostmirror x) based on an existing variable name (x), but had no way to do

so. Thus, we introduced the new code literal() syntax. When binding code

snippets from the original source to parameters in the matcher, MARTINI will

look for declarations assigned a code literal() and create a new binding based

on the strings passed. The to str() dummy function exists to ensure users can

create a new variable name based off a variable of any type and still have it type-

check. While we would prefer to have the code literal() calls embedded in the

matcher block, the requirements of C++ make this extremely difficult, if not

impossible in some cases, so we opted to use the syntax shown instead.

template <class T>

OMPStream <T>:: OMPStream(const int ARRAY_SIZE , int device)

{

array_size = ARRAY_SIZE;

// Allocate on the host

128

this ->a = (T*) aligned_alloc(ALIGNMENT ,

sizeof(T)*array_size);

this ->b = (T*) aligned_alloc(ALIGNMENT ,

sizeof(T)*array_size);

this ->c = (T*) aligned_alloc(ALIGNMENT ,

sizeof(T)*array_size);

}

Listing 6.6 BabelStream: Variable allocation in OpenMP.

template <class T>

OMPStream <T>:: OMPStream(const int ARRAY_SIZE , int device)

{

Kokkos :: initialize ();

array_size = ARRAY_SIZE;

// Allocate on the host

device_a = new Kokkos ::View <T*>("label change me",

array_size);

hostmirror_a = new typename

Kokkos ::View <T*>:: HostMirror ();

hostmirror_a = Kokkos :: create_mirror_view (device_a);

;;

device_b = new Kokkos ::View <T*>("label change me",

array_size);

hostmirror_b = new typename

Kokkos ::View <T*>:: HostMirror ();

hostmirror_b = Kokkos :: create_mirror_view (device_b);

;;

device_c = new Kokkos ::View <T*>("label change me",

array_size);

hostmirror_c = new typename

Kokkos ::View <T*>:: HostMirror ();

hostmirror_c = Kokkos :: create_mirror_view (device_c);

;;

}

Listing 6.7 BabelStream: Automated translation of variable allocation into Kokkos.

This particular matcher/replacer pair is also part of a dummy class

(FakeClass), because of the way BabelStream is implemented. BabelStream uses

classes to determine which programming model is used, so the arrays it operates

on are class members. This means they have different AST nodes from regular

129

variables, and in order to match on them, the variables in the matcher and replacer

must also be class members. Hence, the matcher and replacer are made members of

a simple, dummy class, as is the variable allocation they match.

template <class T>

[[clang :: matcher("alloc")]]

auto FakeClass :: decl_m () {

[[clang :: rewrite_setup]]

int align , array_size;

[[clang :: matcher_block]] {

this ->x = (T*) aligned_alloc(align ,

sizeof(T)*array_size);

}

}

template <class T>

[[clang :: replace("alloc")]]

auto FakeClass :: decl_r () {

[[clang :: rewrite_setup]]

int array_size;

[[clang :: rewrite_setup]]

T* x;

[[clang :: rewrite_setup]]

T* device_x = &clang_rewrite :: code_literal("device_"

+ clang_rewrite :: to_str(x));

[[clang :: rewrite_setup]]

T* hostmirror_x =

&clang_rewrite :: code_literal("hostmirror_" +

clang_rewrite :: to_str(x));

[[clang :: matcher_block]] {

device_x = new Kokkos ::View <T*>("label change me",

array_size);

hostmirror_x = new typename

Kokkos ::View <T*>:: HostMirror ();

hostmirror_x = Kokkos :: create_mirror_view (device_x);

}

}

Listing 6.8 BabelStream: OpenMP to Kokkos, variable allocation.

The second matcher/replacer pair, shown in Listing 6.9, transforms OpenMP

parallel loops (example shown in Listing 6.10) into Kokkos parallel loops, as well

130

as creating Kokkos views for the variables used (utilizing our knowledge of the

variable names used by BabelStream) and inserting a call to Kokkos::fence()

(example shown in Listing 6.11). The latter two transformations are required

because of how BabelStream is implemented; we wished to produce code as close

to the hand-written version as possible, so we respected the developers’ choice

to have the class representing their Kokkos implementation contain pointers to

Kokkos views, and then for each kernel, initialize the actual views used. The call to

Kokkos::fence() ensures that the BabelStream timing infrastructure can record

accurate runtimes for each kernel. The loop body syntax will match whatever is

inside the for loop in the original code and copy it directly into the rewritten code.

[[clang :: matcher("kokkos")]]

auto kokkos_m () {

[[clang :: rewrite_setup]]

int k, N;

[[clang :: matcher_block]] {

#pragma omp parallel for

for (int i = k; i < N; i++) {

clang_rewrite :: loop_body ();

}

}

}

template <class T>

[[clang :: replace("kokkos")]]

auto kokkos_r () {

[[clang :: rewrite_setup]]

int k, N, j;

[[clang :: rewrite_setup]]

Kokkos ::View <T*> *device_a , *device_b , *device_c;

[[clang :: matcher_block]] {

Kokkos ::View <T*> a(* device_a);

Kokkos ::View <T*> b(* device_b);

Kokkos ::View <T*> c(* device_c);

Kokkos :: parallel_for(N-k, KOKKOS_LAMBDA (const int i)

{

131

clang_rewrite :: loop_body ();

});

Kokkos ::fence ();

}

}

Listing 6.9 BabelStream: OpenMP to Kokkos, basic parallel for loop.

template <class T>

void OMPStream <T>:: mul()

{

const T scalar = startScalar;

#pragma omp parallel for

for (int i = 0; i < array_size; i++)

{

b[i] = scalar * c[i];

}

}

Listing 6.10 BabelStream: Example OpenMP kernel.

template <class T>

void OMPStream <T>:: mul()

{

const T scalar = startScalar;

Kokkos ::View <T*> a(* device_a);

Kokkos ::View <T*> b(* device_b);

Kokkos ::View <T*> c(* device_c);

Kokkos :: parallel_for(array_size -0, KOKKOS_LAMBDA (const

int i) {

b[i] = scalar * c[i];

});

Kokkos ::fence ();

}

Listing 6.11 BabelStream: Example kernel translated to Kokkos.

The third matcher/replacer pair, shown in Listing 6.12, translates a

reduction kernel and demonstrates an extra feature of the loop body() syntax,

which is inline matchers and replacers. Since Kokkos requires an intermediate

reduction variable for each thread executing the kernel, we cannot directly copy

132

the OpenMP reduction loop body, we must modify it slightly first. The argument

pair given to loop body() represents a simple matcher/replacer pair, where the

first item in the pair is the matcher and the second is the replacer. In this case the

original reduction variable (red) is replaced with the new intermediate variable

from the lambda arguments (intermed).

[[clang :: matcher("reduction")]]

auto red_m() {

[[clang :: rewrite_setup]]

int k, N;

[[clang :: rewrite_setup]]

double red;

[[clang :: matcher_block]] {

#pragma omp parallel for reduction (+:red)

for (int i = k; i < N; ++i) {

clang_rewrite :: loop_body ();

}

}

}

template <class T>

[[clang :: replace("reduction")]]

auto red_r() {

[[clang :: rewrite_setup]]

int k, N, j;

[[clang :: rewrite_setup]]

double red;

[[clang :: rewrite_setup]]

Kokkos ::View <T*> *device_a , *device_b , *device_c;

[[clang :: matcher_block]] {

Kokkos ::View <T*> a(* device_a);

Kokkos ::View <T*> b(* device_b);

Kokkos ::View <T*> c(* device_c);

Kokkos :: parallel_reduce(N-k, KOKKOS_LAMBDA (const int

i, T& intermed) {

clang_rewrite :: loop_body ({{red , intermed }});

},

red);

}

}

133

Listing 6.12 BabelStream: OpenMP to Kokkos, loop with reduction.

The final matcher/replacer pair, not shown for brevity, simply deletes calls

to free() on the original arrays which are no longer needed now that the arrays

are Kokkos views.

6.4.2.1 Hand Edits Required. Despite the seeming dissimilarity

between OpenMP and Kokkos, very few hand-done edits were required to produce

functioning Kokkos from our automatic translation. The bulk of the edits were

restricted to a single kernel, read arrays, which is drastically different from the

rest of the kernels in BabelStream. We currently have no way to differentiate that

kernel from the rest, so it had to be fixed by hand. We intend to add syntax to

differentiate this kernel from the rest so it can be automatically translated as well.

The rest of the edits required were minor, such as adding the Kokkos includes,

inserting a call to Kokkos::initialize() and Kokkos::finalize(), and changing

the types of variable declarations in the header file.

6.5 Kokkos to SYCL

This section discusses translating BabelStream from Kokkos to SYCL.

TeaLeaf has no SYCL implementation so we chose to restrict our discussion to

BabelStream.

6.5.1 BabelStream. Though Kokkos and SYCL are, at a surface

level, more similar than OpenMP and Kokkos, the Kokkos to SYCL translation

presented more challenges than OpenMP to Kokkos. Many of these are due to the

class structure used to implement BabelStream and heavy reliance on lambdas.

Translation was done primarily with three sets of matchers and replacers. The

first, not shown for brevity, translates the instantiation of a Kokkos view to a

134

SYCL accessor. Ideally, this translation would include setting the requested access

privileges (read, write, or read-write), but since this is intended to be a generic

matcher and replacer we leave that as an optimization the user can make once the

translation is finished.

template <class T>

[[clang :: matcher("kokkos")]]

auto kokkos_m () {

[[clang:: rewrite_setup]]

int array_size;

[[clang:: matcher_block]] {

Kokkos :: parallel_for(array_size , KOKKOS_LAMBDA (const T

idx) {

clang_rewrite :: loop_body ();

});

}

}

template <class T>

[[clang :: replace("kokkos")]]

auto kokkos_r () {

[[clang:: rewrite_setup]]

size_t array_size;

[[clang:: rewrite_setup]]

std:: unique_ptr <sycl::queue > queue;

[[clang:: matcher_block]] {

queue ->submit ([&] (sycl:: handler &cgh) {

cgh.parallel_for(sycl::range <1>{ array_size},

[=](sycl::id <1> idx) {

clang_rewrite :: loop_body ();

});

});

}

}

Listing 6.13 BabelStream: Kokkos to SYCL, kernel translation.

The second matcher/replacer pair, shown in Listing 6.13, and the source

of most challenges we encountered, translates a Kokkos parallel for() kernel

135

into a SYCL kernel. Since we currently have no support for matching a series of

statements (we can only match on one top-level statement), we were unable to

match on the Kokkos view instantiations and Kokkos kernel call to create SYCL

accessors inside the SYCL kernel. Hence, we have separate matchers for turning

Kokkos views into SYCL accessors (see above) and translating the kernels. We

also could not rewrite the names of Kokkos views accessed in the loop body to

their accessor equivalents. All of this had to be fixed by hand, but is comparatively

trivial compared to generating the kernel itself.

The final matcher/replacer pair, not shown for brevity, simply translates

calls to Kokkos::fence() to SYCL’s queue->wait().

6.5.1.1 Hand Edits Required. Similarly to Kokkos, a number of

trivial edits were required, such as changing the type of header file declarations,

adding SYCL includes, and initializing the SYCL queue. As mentioned above,

SYCL also required further, more significant, hand editing to produce working

code. We had to manually move the SYCL accessor declarations inside the kernel

submission, add handlers to the accessor declarations, and rename array accesses

inside kernels to their accessor equivalent. Once again, the read arrays() kernel

was an outlier that required hand-translation, since it is unique among the others.

6.5.1.2 Summary of BabelStream Translation. MARTINI was

able to successfully translate 9 out of 10 OpenMP kernels and functions to Kokkos,

and 7 out of 10 Kokkos kernels and functions to SYCL. While some hand edits

were required in both cases, particularly for SYCL, MARTINI did the bulk of the

translation automatically, with only two or three lines of code needing editing per

kernel for SYCL, and less than that for Kokkos.

136

6.6 Evaluation

This section will evaluate MARTINI and the resulting code for the previous

sections in this chapter.

6.6.1 HIPIFY. Our evaluation machine has two 14-core,

hyperthreaded Intel Xeon(R) E5-2680 v4 CPUs running at 2.40GHz, 128 GB of

RAM, and two AMD Instinct MI100 GPUs. HIP codes were compiled using hipcc

4.4.21432-f9dccde4 based on AMD Clang 13.0.0 and ROCm 4.5.2 and the same

version of hipify-perl. We used hipify-clang with git hash 61241a4 compiled

using gcc 9.3.0 and the same LLVM version as MARTINI, which is hash 4c2b57ae

from LLVM’s main branch.

We compare translating a simple gravitational N-body simulation code1

from CUDA to HIP with MARTINI-HIPIFY and AMD’s HIPIFY. It features four

variants: unoptimized (nbody-orig), struct-of-arrays (SOA) data layout (nbody-

soa), cache blocked (nbody-block), and unrolled loops (nbody-unroll).

6.6.1.1 Performance. Since we cannot compile and run both

CUDA and HIP on the same device on our testing machine, it would be unfair

to compare the performance obtained by the original CUDA and translated HIP

codes. Therefore, we only compare the performance of the automatically translated

HIP codes created by hipify-perl, hipify-clang, and MARTINI.

The performance we obtained for each translation is given in Table 2. Each

version was run for ten iterations, and the average and standard deviation run

times per iteration are presented in ms. As expected, all three translators generate

very similar code with very similar performance for both medium and larger-size

problems, regardless of application version.

1https://github.com/harrism/mini-nbody

137

https://github.com/harrism/mini-nbody

Interestingly, when we generated code that multiplied the number of threads

by two (“#Threads x2” columns in Table 2), as done in Fig. 12, performance

greatly improved on the larger problem size for all versions of the application

except nbody-orig (which is a naive implementation where little performance gain

is expected). Performance also improved on the smaller problem size for nbody-

block and nbody-unroll. These numbers are bolded in the table. This is due to the

wider thread waves on AMD GPUs compared to thread warps on NVIDIA GPUs.

hipify-perl and hipify-clang are unable to make these kinds of changes easily,

as we will discuss in Sec. 6.6.1.2.

MARTINI-HIPIFY AMD HIPIFY
Number Unmodified #Threads x2 hipify-perl hipify-clang

Benchmark Particles Mean Stddev Mean Stddev Mean Stddev Mean Stddev

nbody-block
30000 319.65 5.42 104.62 0.11 319.62 3.44 318.73 6.34
300000 457.65 1.35 210.60 0.90 453.55 1.63 449.20 2.71

nbody-orig
30000 171.99 0.47 172.43 0.35 171.63 0.78 172.63 0.89
300000 415.97 2.11 418.35 0.75 414.98 2.72 416.91 2.38

nbody-soa
30000 198.45 1.66 197.19 1.78 205.60 1.19 205.38 2.40
300000 426.05 0.42 363.84 2.67 429.44 0.54 428.72 2.76

nbody-unroll
30000 332.87 2.08 180.71 0.61 334.45 1.98 335.24 2.36
300000 470.70 0.95 229.27 0.64 471.06 0.51 469.65 1.59

Table 2. Execution time in ms of the HIP output code for the N-body benchmark.

6.6.1.2 Usability. Both MARTINI-HIPIFY and AMD’s

hipify-clang are command line compiler tools, but while the core of

hipify-clang2 is approximately 1,000 lines (excluding comments and newlines)

of AST matchers and C++ making heavy use of Clang internals, MARTINI-

HIPIFY is 5,672 lines of simple CUDA/C++ (again excluding comments and

newlines), the vast majority of which was automatically generated using tables

in hipify-clang that convert CUDA names to HIP names. Of the 712 matchers

and replacers generated, 212 were for kernel launches with varying numbers of

2HipifyAction.cpp/.h and main.cpp.

138

launch parameters and arguments (this will be reduced by at least an order of

magnitude once optional arguments are implemented), and the remaining 500 were

for CUDA runtime functions and types. Of those 500, only 46 needed to be fixed

by hand due to problems our generator script had getting the correct types from

the CUDA headers (this will hopefully be fixed in later versions, as our support for

types improves). As a rough comparison of code complexity, all of the matchers and

replacers in our HIPIFY have a McCabe cyclomatic complexity (McCabe (1976))

of 1, while AMD’s hipify-clang has an average cyclomatic complexity of 6.7

(calculated with pmccabe).

For a more concrete comparison, consider a user who wants to make

a simple modification to the translation of CUDA kernel calls into HIP:

multiplying the number of threads by two to improve performance on

AMD devices, which generally have wider threading than NVIDIA devices.

To do so with hipify-clang, that user would have to 1) determine that

HipifyAction.cpp is where most of the translation is done, 2) find the function

HipifyAction::cudaLaunchKernel(), 3) analyze the 73 lines of code in that

function to find where the kernel configuration is handled, and 4) determine where

in the relevant string manipulation code (shown in Listing 6.1) to insert their * 2.

Without knowledge of the Clang AST and Clang’s source manipulation libraries

this is incredibly difficult, time-consuming, and highly dependent on the (in-source)

documentation of hipify-clang.

To do the same thing with MARTINI-HIPIFY, the user would only have

to modify the kernel call replacers similarly to what is shown in Fig. 12b. The

replacers are easy to find by searching for the HIP kernel launch function name,

and the modification could be done with a traditional search-and-replace tool. No

139

understanding of Clang internals is necessary to modify MARTINI-HIPIFY. (It

was a simple matter for us to modify the script that generated MARTINI-HIPIFY

so all kernel call replacers looked like the one in Fig. 12b.) Other modifications,

for example, printing the size of all arrays allocated on the device, are similarly

intuitive.

6.6.2 Inserting OpenMP Pragmas. We compiled both the original

and transformed matrix multiplication code with gcc’s -O3 optimization level. We

ran all our experiments on a machine featuring two 16-core, 32-thread Intel(R)

Xeon(R) CPU E5-2697 v4 CPUs running at 2.30GHz and 128 GB of memory. All

the code was compiled using gcc 12.2.0 on a Linux RHEL running a kernel v. 4.18.

We measured time using either clock_gettime, or reading the hardware timestamp

counter. All the measurements were taken 10 times, and we present the mean and

standard deviation on the plots shown in this section.

As presented in Section 6.3, we implemented a matrix-matrix multiplication

(with loops in the correct order) and we generated an OpenMP version that

parallelizes the outer loop. A comparison of the performance is shown Figure 13,

executed using 32 threads. As expected, the OpenMP version outpaced the original

version, demonstrating both the power of parallelism and how useful our tool could

be for a first attempt at porting to OpenMP.

6.6.3 TeaLeaf. We evaluated the performance of the transformed code

on a machine equipped with two Intel Xeon CPU E5-2697 v4 processors running

at 2.30GHz and 128 GB of RAM. We used Kokkos cloned from the Git repository

(commit 1a3ea28f6) and compiled with gcc 12.2.0. In order to get fair comparisons

between the CPU OpenMP code and the Kokkos versions, we used the OpenMP

backend of Kokkos.

140

Figure 14 shows a comparison between the execution times of Jacobi and

Chebychev kernels, using the OpenMP 3.1, OpenMP 4, Kokkos, and OpenMP-to-

Kokkos versions, using the OpenMP backend for the Kokkos implementations. We

ran every experiment 50 times, and plots show the mean and standard deviation of

each vlaue.

TeaLeaf’s documentation recommends using OMP_PROC_BIND=spread and

OMP_PLACES=threads with their OpenMP 4 kernel and OMP PROC BIND=true with

OpenMP 3.1. We noticed this was actually harming performance (the execution

time was multiplied by 5 on some kernels), so we used the default configuration

for all the kernels. On Figure 14b, we did not run the OpenMP 4 version since it

was producing a numerical error. The OpenMP 4 implementation also gives very

different performance on the Chebychev kernel (Figure 14a).

For these reasons, we can focus our observation on the OpenMP 3.1, Kokkos

and OpenMP-to-Kokkos translated versions. We can see that their performance is

very close to each other, and the translated code is slightly slower. We have tried to

isolate this difference with microbenchmarks from the BabelStream suite, which are

presented in the next section.

6.6.4 BabelStream. Figure 15 shows a comparison between the

performance obtained by the translated Kokkos code and the original OpenMP

code. We can see that the Kokkos code is slower: this can be explained by the fact

that the translation creates all the Kokkos views for the three main variables, even

though some of the kernels only use 2 out of 3. It adds some latency, which can be

observed consistently on all four kernels.

Translating the Kokkos code is fast and simple, but since we are switching

between parallel models, some approximations are being made and the generated

141

code requires some manual optimizations to reach optimal performance. An

optimization here would be to remove the view creations that are not needed.

MARTINI translations may not always be optimal, but can provide a good starting

point and significant effort reduction for porting an application to a new model.

142

__global__ void kern(int a1 =

0,

int a2 = 0, /* more args

*/) {}

template <int nblocks , int

nthreads ,

int shmem , int a1 ,

int a2 >

[[clang :: matcher("launch2a3p")]]

auto launch_2_3_matcher () {

[[clang:: matcher_block]]

kern <<<nblocks , nthreads ,

shmem >>>(a1 , a2);

}

(a) Matcher for a CUDA kernel launch
with three launch parameters and two
kernel arguments. As our prototype is a
work in progress, we opted to generate the
matchers for varying numbers of launch
parameters and arguments explicitly with
a script. A matcher has to be valid in the
source language, here CUDA, to allow (an
unmodified) Clang to generate an AST.
Depending on the situation, the user also
needs to provide additional declarations,
e.g., the kern (dummy) function, for the
same reason.

template <int nblocks , int

nthreads ,

int shmem , int a1 ,

int a2 >

[[clang :: replace("launch2a3p")]]

auto launch_2_3_replacer () {

[[clang:: matcher_block]] {

bool nthreadsIs1D =

numeric_limits

<decltype(nthreads)>

:: is_integer;

auto nthreads3D =

nthreadsIs1D

? dim3(nthreads * 2)

: nthreads;

hipLaunchKernelGGL(kern ,

nblocks ,

nthreads3D , shmem , 0,

a1, a2);

}}

(b) HIP kernel launch replacement code
for the matcher in Fig. 12a. Replacers
and matchers are linked by the name, here
"launch2a3p". Non-literal variables that
are used in both act like capture groups in
regular expressions. The expression in the
source code that is bound to them by the
matcher is substituted into the end result at
use locations in the replacer.

Figure 12. Matcher/replacer pair for CUDA kernel launches with two kernel
arguments and three launch parameters.

143

0
25

0
50

0
75

0
10

00
12

50
15

00
17

50
20

00

Matrix size

0

1.0 109

2.0 109

3.0 109

4.0 109

5.0 109

6.0 109

7.0 109

8.0 109

Ti
m

e
(T

SC
)

Original
Generated

Figure 13. OpenMP pragma insertion: performance obtained by the original code
and the generated code.

(a) Chebychev (b) Jacobi

Figure 14. Performance comparison on TeaLeaf kernels between Kokkos, OpenMP
3.1 and OpenMP 4 implementations, and our OpenMP-to-Kokkos translation
(reported as KOKKOS(T)).

144

Figure 15. BabelStream benchmark.

145

CHAPTER VII

REWRITING FOR PERFORMANCE MEASUREMENT

This chapter contains material originally published by Johnson et al. (2022).

It also contains material that will be published by Huck et al. (n.d.). Alister

Johnson did all development work on MARTINI and related writing, Camille Coti

assisted with writing related to the Clang plugin.

This chapter will discuss how MARTINI can be used to instrument source

code, in particular for performance measurement.

7.1 An Example: Basic Instrumentation

Profiling, for one reason or another, is something every application developer

wants to do at some point. However, maintaining a program version that performs

any form of logging is costly, especially given the varied kinds of logging one might

want to perform. Most tools that add instrumentation to code do so naively, and

instrument every function, whether or not that function is actually of interest. This

can make it prohibitively slow to run the application, or overwhelm the developers

with data. Even more advanced instrumentation tools that give developers more

control, like PDT (Lindlan et al. (2000)), are still very rigid in how they instrument

and don’t allow for custom instrumentation, leading developers to insert their own

instrumentation code. While abstractions like templates, macros, and #ifdef can

help with this, applications making heavy use of them often redesign a multi-level

DSL with severe implications for long-term maintainability and readability. Given

easy to use, customizable, and fully automatic code rewriting, however, developers

can instead create short-lived, special-purpose code versions on-demand while

keeping the core application code clean.

146

While we do not provide a full-fledged instrumentation suite yet, we

showcase the benefits of MARTINI for instrumentation tasks in Fig. 16. Through

the two simple before-and-after code snippets shown in Fig. 16a, users can easily

create a one-off program version that will log every call, including lambdas. As

shown in Figs. 16b and 16c, function calls and lambda invocations are replaced by

the macros LOG FN and LOG LAMBDA, respectively. Note that, to MARTINI, there is

no semantic difference between declaring a variable as an argument to a matcher or

replacer and declaring it outside a [[clang::matcher block]]. We demonstrate

the former in this example.

Though contrived, this example clearly shows how the power of semantic

matching and the simplicity of example-based rewriting come together. Since the

rules are reusable, easily customizable, and maintainable by non-expert users,

instrumented code can be produced from the original application at any point.

Thus, one-off rewriting effectively reduces the maintenance burden while offering

more powerful capabilities than “baked-in” instrumentation solutions.

7.2 Instrumenting Functions

One of the most common and important parts of instrumenting applications

is the ability to instrument functions. Due to choices made when initially designing

MARTINI’s matcher and replacer syntax, we had to develop special syntax to

be able to match and replace inside function declarations. This syntax is shown

in Figure 17a. The [[clang::function matcher]] attribute denotes that this

matcher is intended to work across the entire function, and the function body()

macro will match all statements in the function body. This syntax is limited to

modifying only the function body, not the function signature. Syntax to modify the

147

function signature (for example, to add a new argument or change the return type)

is under development, and a sample is shown in Fig. 17b.

7.3 Arbitrary Instrumentation

Instrumenting functions is very useful, but sometimes applications need

more granularity in their data collection. MARTINI can also allow users to

instrument arbitrary code structures, such as for loops, if statements, and function

calls. In particular, instrumenting for loops is of interest, since most scientific

applications spend the vast majority of their time in loops (sometimes multiple

loops per function, so function-based profiling is too coarse grained), so knowing

which loops are the performance bottlenecks can help developers better allocate

their time. An example of instrumenting all loops with two or more nests is shown

in Figure 18. Beyond simply inserting instrumentation at arbitrary points, however,

MARTINI can insert arbitrary instrumentation code, so users are not limited in the

data they can collect. The user may also add a conditional to the function body()

(or loop body()) macro to only select functions (or loops) that have interesting

features, such as math or conditionals.

7.4 Evaluation

This section will compare MARTINI’s instrumentation capabilities to those

of three other similar tools with varying degrees of sophistication.

7.4.1 -finstrument-functions. The -finstrument-functions

option (Free Software Foundation, Inc. (n.d.)) is available in most mainstream

compilers, including gcc and Clang. It will add instrumentation calls at the entries

and exits of all functions that the user can then implement to, for example, collect

timing data. The user may specify files and functions to ignore, but in general,

this option will instrument everything, including libraries the user may not want to

148

collect data from. It also adds a great deal of overhead, since all functions now

have additional calls at entry and exit. Specifying files and functions to ignore

to minimize extraneous data and overhead is time consuming and imprecise.

MARTINI takes the opposite approach, where users must specify functions or other

code structures that have characteristics of interest (e.g., they contain math). This

limits instrumentation to code the user cares about, greatly reducing overhead.

7.4.2 TAU Clang Plugin. The TAU Clang plugin (Coti, Denny, et

al. (2020); Huck et al. (2024)) works similarly to -finstrument-functions, but

offers a great deal more control to users in selecting which functions to instrument.

Users provide a selection file to the plugin, which contains the names of files and

functions to include or exclude, and supports wildcard characters, so that, for

example, users could exclude all functions named foo # (where # works as the

wildcard, matching any substring), but include a function named foo bar.

This plugin is implemented as a function pass over the LLVM IR, and has

two modes of operation. The first is function definition instrumentation, which

will insert instrumentation calls at the entries and exits of functions. These calls

can be to any function, but the plugin currently only allows users to insert a single

function call at a time. The second mode is callsite instrumentation, which will find

all places functions of interest are called from and insert instrumentation around

the calls. To avoid instrumenting very small functions (e.g., getters and setters,

which can potentially greatly increase overhead when instrumented), there is also

an environment variable to control the minimum number of instructions a function

must contain to be instrumented. It is also possible to instrument for loops by

selecting the file and line number, though this is somewhat fragile, as line numbers

can change.

149

The main limitations of this plugin are that it cannot instrument arbitrary

code regions or add arbitrary instrumentation code, both of which MARTINI

can do. The only feature the plugin has that MARTINI does not is the ability

to instrument specific line numbers, though as mentioned, this is fragile and

susceptible to errors when the code is edited and line numbers change. However,

if the user can create a matcher for the desired line of code, MARTINI can match

it (and perhaps other, similar lines the user was unaware of) and still instrument it,

emulating the plugin’s functionality in a more robust manner.

7.4.3 PDT. The Performance Database Toolkit (PDT) (Lindlan

et al. (2000)) is an instrumentation tool that also ships as part of TAU (Shende

and Malony (2006)). Users can specify which code they would like to instrument

with the same DSL-like interface that allows them to select files and functions

for instrumentation. It has many of the same features as the Clang plugin

and MARTINI, including selective function instrumentation and for loop

instrumentation, but it is, again, limited in that it cannot instrument arbitrary

code regions or add arbitrary instrumentation code. PDT is perhaps the most

sophisticated of these three tools, with the Clang plugin as a very close second,

but MARTINI is yet more flexible and powerful. The only feature PDT has that

MARTINI does not is, once again, the ability to instrument a specific line of code,

though the user can get around this in the same way as they can with the Clang

plugin.

As mentioned in Chapter III, PDT was in fact the inspiration for MARTINI.

While rewriting PDT to make use of the most recent advances in Clang and LLVM,

the question of “what if we could insert arbitrary instrumentation code?” was

raised. And thus MARTINI was created.

150

auto fn(auto);

auto LOG_FN(auto , auto) {}

auto LOG_LAMBDA(auto , auto) {}

[[clang :: matcher("log_fn")]]

auto fn_call_matcher(int arg) {

fn(arg);

}

[[clang :: replace("log_fn")]]

auto fn_call_replacer(int arg) {

LOG_FN(fn , arg);

}

[[clang :: matcher("log_lambda")]]

auto lambda_call_matcher(int

arg) {

auto lambda = [&](int){};

[[clang:: matcher_block]]

lambda(arg);

}

[[clang :: replace("log_lambda")]]

auto lambda_call_replacer(int

arg) {

auto lambda = [&](int){};

[[clang:: matcher_block]]

LOG_LAMBDA(lambda , arg);

}

(a) Matcher and replacer pairs for
instrumenting a single argument function
("log fn") and a single argument lambda
("log lambda").

int g(int);

void test() {

[&](int _){

g(g(_));

}(g(0));

}

(b) Non-trivial input example with
nested calls and a lambda invocation
which make it complex for text-based
search-and-replace tools. Such tools
would also struggle with newlines,
comments, and (malicious) strings,
such as: f(g("\"),q(\"")).
int g(int);

void test() {

LOG_LAMBDA ([&](int _){

LOG_FN(g, LOG_FN(g,

_));

}, LOG_FN(g, 0));

}

(c) The input from 16b rewritten by
MARTINI with the shown example-
based rewrite rules. All three function
calls are replaced by the "log fn"

rule while the lambda invocation was
modified by the "log lambda" rule.

Figure 16. Example of how MARTINI can effectively instrument a code base with
simple example-based rewrite rules that are semantic context-aware.

151

[[clang :: function_matcher("func")]]

int foo() {

function_body ();

}

[[clang :: replace_in_body("func")]]

int foom() {

[[clang :: matcher_block]] {

TRACE_CALL (&foo);

function_body ();

}

}

(a) Matcher and replacer pair for inserting a call tracing macro into functions.

[[clang :: function_matcher("func")]]

void foo() {

function_body ();

}

[[clang :: function_replace("func")]]

int foo() {

[[clang :: matcher_block]] {

function_body ();

return 42;

}

}

(b) Example matcher and replacer pair to modify a function’s signature. Note that
further matchers and replacers may be needed to replace all the calls to a modified
function.

Figure 17. Matcher and replacer examples for modifying functions, both for
instrumentation and general purpose.

152

[[clang :: matcher("forloop")]]

void foo_m() {

[[clang :: rewrite_setup]]

int n, m, N, M;

[[clang :: matcher_block]] {

for (int i = n; i < N; i++) {

for (int j = m; j < M; j++) {

loop_body ();

}

}

}

}

[[clang :: replace("forloop")]]

void foo_r() {

[[clang :: rewrite_setup]]

int n, m, N, M;

[[clang :: matcher_block]] {

START_INST ();

for (int i = n; i < N; i++) {

for (int j = m; j < M; j++) {

loop_body ();

}

}

STOP_INST ();

}

}

Figure 18. Matcher and replacer pair for inserting instrumentation around nested
for loops.

153

CHAPTER VIII

SUMMARY OF RESULTS

This section will summarize the results from this dissertation and conclude.

8.1 Summary

In Chapter I, we described three goals for our code rewriting tool, and

now we shall see how MARTINI measures up. Goal (1) was minimizing the

complexity of our user interface. While a full usability study is outside the scope

of this work, as can be seen in Chapters IV, V, VI, and VII, MARTINI’s syntax is

minimal and much simpler than the syntax of most other similar tools. It is also

purely in the source language, so users do not have to learn anything new to use

MARTINI. MARTINI does not limit what users can and cannot express, beyond

the limitations imposed by the information available in the AST, which helps

MARTINI meet Goal (2), to maximize what we can express. MARTINI allows for

both custom and arbitrary rewrites. Goal (3) was to allow users to automate a

wide variety of jobs. To this end, MARTINI is source-to-source and makes both the

original and rewritten code available so users can test their rewrites and/or produce

one-off code versions for special purposes. It can also fully automate edits, so bulk

editing is simple. These results and comparisons to other rewriting tools are shown

in Figure 19.

Though we have discovered much can be automated, we have also

determined some things are difficult to automate. On the simpler end of the scale,

many optimizations and instrumentation can be automated. On the other end of

the difficulty scale, at a minimum, basic ports can be automated, though to get

the best performance, hand edits may be needed. We have plans to add features

to MARTINI to ameliorate some of these difficulties, but so far, we see no way

154

around the need for human developers to look for special cases and performance

opportunities. Once those opportunities have been found, however, MARTINI can

greatly increase developer productivity in exploiting them.

But how does MARTINI serve performance portability? At the end of

Chapter II, we listed several goals and pieces of advice for performance portability

systems. MARTINI, as demonstrated in Chapters IV, V, VI, and VII, can help

applications and the programming models they use achieve many of these goals.

For programming models that have a complicated front end, like SYCL and,

to some extent, Kokkos, as shown in Chapter VI, MARTINI can provide an

alternative to directly adopting them by allowing users to rewrite their code from

a simpler programming model, acting in many ways as a performance portability

layer (see Sec. 2.5.2). Similarly, MARTINI can provide another layer of abstraction

on top of an existing model.

Where MARTINI truly shines, however, is in allowing the separation

of concerns between configuring code and (optimizing) mapping parallelism

to hardware. As shown in Chapters V and VI, MARTINI allows developers

to maintain the “textbook” version of their application, and then store

(parameterized) optimizations elsewhere to produce machine-specific versions.

This enables performance portability by allowing users to keep cleaner code that

can automatically be ported and optimized for any architecture. Furthermore,

it can help users automate porting from one programming model to another so

they aren’t locked in as strongly if a model ends up not meeting their needs. And

so they can verify that the model is giving them the performance they want,

MARTINI furthermore allows them to easily produce an instrumented version of

their code, as shown in Chapter VII.

155

8.2 Conclusion

To conclude: this dissertation has presented MARTINI, an automatic

code rewriting tool, and provided several studies of its usefulness. MARTINI

can be used to maintain, optimize, port, and profile a wide variety of C and

C++ applications, but is particularly well suited to larger applications due to its

automation capabilities. There is much work yet to be done, but MARTINI has

been demonstrated to out-perform other similar rewriting tools and be a boon for

performance portability.

156

Friendly
UI

Custom
rewrites

Bulk
edits

Original
code

preserved

Arbitrary
rewrites

Rewritten
code
visible

UI not
another
language

sed/awk × ✓ ✓ ✓ × ✓ ×
LLVM pass × ✓ ✓ ✓ ✓ × ×
Polly and
polyhedral
model

× ×/varies ✓ ✓ × ×/varies ×

Transformer
library and
ClangMR

× ✓ ✓ ✓ ✓ ✓ ×

Omni × ✓ ✓ ✓ ✓ ✓ ×
ROSE × ✓ ✓ ✓ ✓ ✓ ×
Xevolver × ✓ ✓ ✓ ✓ ✓ ×
Bones × ×/tricky ✓ ✓ × ✓ ✓
Cetus × ✓ ✓ ✓ ✓ ✓ ×
Stratego/XT ✓ ✓ ✓ ✓ ✓ ✓ ×
CHiLL × ✓ ✓ ✓ ✓ ✓ ×
Coccinelle ✓ ✓ ✓ ✓ ✓ ✓ ×
Orio ✓ ✓/tricky ×/slow ✓ ✓ ✓ ×
Nobrainer ✓ ✓ ✓ ✓ × ✓ ✓

Lift × ✓/tricky ✓ ✓ × ✓ ×
Sydit ✓ ✓ ×/slow × ✓ ✓ ✓
Lase ✓ ✓ ×/slow × ✓ ✓ ✓
Haskell ✓ ✓/tricky ✓ ✓ ×/tricky × ✓

MARTINI ✓ ✓ ✓ ✓ ✓ ✓ ✓

Figure 19. A comparison of MARTINI and several other code transformation tools,
as described in Section 2.8.6. Boxes with an extra note can be read as “generally
yes/no, but it’s tricky/slow/varies.”

157

CHAPTER IX

FUTURE DIRECTIONS

This chapter will discuss work that remains to be done and some directions

future work could go.

9.1 Remaining Development Work

While MARTINI can do a great deal with the portions of the C++ standard

it currently supports, there is still much of the standard that is not supported,

most notably classes and structs. The syntax around matching these constructs

needs to be developed and implemented. It is likely further AST matchers will need

to be implemented to support this as well. Support for matching types also needs

to be improved. Although having MARTINI be fully polymorphic is currently

a strength, there should be support for matching on specific types (and perhaps

categories of types, e.g., floating point vs integer vs pointer) as well, and the syntax

and semantics surrounding that need to be developed.

The insert before and insert after transformations also require some

work, mostly in the area of safety. For example, if the user wishes to insert some

code before variable declarations, we don’t want to insert code into the bounds of

a for loop, which may contain the declaration of the iteration variable. Some work

has been done here, but there are certainly more cases we have yet to cover.

Support for matching on and transforming functions, while serviceable,

is also still fairly rudimentary. There is much do be done, including developing

syntax for changing a function’s signature (and then changing all or some of the

corresponding calls) and adding an “on exit” transformation attribute that could

modify, for example, all the returns or other code at a function’s exit points. This

will be particularly useful for function instrumentation.

158

Finally, MARTINI is currently limited by its inability to match sequences

of statements. (For example, we can implement loop fission by matching a single,

top level for loop, but not loop fusion – we cannot match two loops in a sequence.)

The basic algorithm to do so exists in the form of pseudocode, but needs to be

implemented and verified to be correct. There are also various hazards, such

as intervening statements inside a list of matched statements, that need to be

handled sensibly. The syntax to handle sequences of statements (and potential

hazards) has been partially developed, but also needs to be completed. Being able

to match sequences of statements will unlock many new and interesting forms of

transformations, including reordering statements, fusing statements (e.g., loop

fusion), and other forms of refactoring.

9.2 New Features

This section will describe some of the features we wish to add to MARTINI.

9.2.1 Custom Directives. As discussed in Sec. 2.7.3, custom

directives are one path to performance portability. Though the Clang compiler

does not currently support adding custom/arbitrary directives to the AST so they

could be matched, this is a feature that could be added in the future, and is one we

are very interested in pursuing. As other tools that support custom directives have

done, applications using MARTINI could have custom directives to give developers

more control over where and when to apply certain transformations, and/or to

provide MARTINI with parameters for transformations.

9.2.2 Control Structures. Some control structures have been added

to MARTINI’s syntax, such as checking whether a loop contains a certain code

structure, but there is much more that can be done here. For example, what if the

user only wishes to apply a transformation if some condition (e.g., more than 5

159

statements inside a loop body) is met? There is currently no way for them to do

so. We would like to add more control structures to MARTINI, such as conditionals

and extra parameters (e.g., number of times to unroll a loop).

9.2.3 Statistics Reporting. One common feature request we have

seen for code analysis tools is the ability to report on various code statistics, such

as the average depth of for loop nesting, conditionals inside of loops, and number

of statements in functions. MARTINI’s ability to translate an archetypal example

of these statistics into an AST matcher makes it a clear choice for collecting these

kinds of statistics, but currently it has no way to do so. We plan to implement a

non-transformation attribute that will collect and report code statistics like these,

so users can see exactly what their code looks like.

9.2.4 Transformation Order and Priority. Currently, MARTINI

has no way to compose transformations, except by running the tool multiple

times with different specification files. We wish to allow users to compose

transformations in a single run, but this would require some notion of ordering

between transformations. Syntax to provide MARTINI with ordering information

has been developed, but needs to implemented.

We also need to implement a priority system for transformations, so

that when a code snippet fits multiple matchers and replacers, but only one

transformation should be applied, it is clear which one that is. This is a problem

we ran into in Secs. 6.4 and 6.5, when one kernel needed special treatment but we

had no way to distinguish it from the others, which had very similar structures.

9.3 Future Case Studies

There are many case studies we would like to perform with MARTINI. This

section will present a selection of them.

160

9.3.1 Multiple Precision. Many applications have begun adopting

different floating point precision arithmetic in the hopes of seeing performance

gains, particularly on GPUs, which often show much better performance on 32-

bit and 16-bit floating point representations, compared to the 64-bit representations

common in scientific applications. However, lowering the precision calculations are

done in can have ramifications for correctness, which developers would like to avoid.

MARTINI could allow users to test using multiple precision both by helping them

programmatically change the types in their code and by inserting correctness checks

for crucial variables. With MARTINI, the original code could be preserved so any

changes could easily be removed. Alternatively, if changes prove beneficial, they

could easily be applied throughout the application with minimal extra work.

9.3.2 Reducing Floating Point Errors. Sometimes applications

will encounter errors in floating point arithmetic, simply due to the fact that not

all numbers can be represented by existing floating point formats. For example,

if a very large number is added to many very small numbers, the small numbers

may just disappear. However, if the ordering of the sum is changed, and the small

numbers are added together first, that partial sum may be large enough to not

disappear when added to the large number. There exist algorithms to minimize

the chance of such errors, and some applications have taken to profiling the values

of variables in their arithmetic so that said arithmetic can be reordered to reduce

errors (Job et al. (2020)). Modifying codes to introduce these algorithms is non-

trivial, though highly programmatic, so MARTINI could easily automate it. These

algorithms also can obscure the true purpose of a line of code, so it may be best to

keep them out of the main source code and as a transformation to be applied just

before compilation. Also, in cases where the optimal ordering of some arithmetic is

161

not constant, MARTINI could insert different variants of the ordering, depending

on the magnitudes of the variables involved.

9.3.3 More Porting. Though Chapter VI discussed several efforts

to port between different programming models, there are still several such porting

efforts we would like to investigate. In particular, porting between OpenACC and

OpenMP is of interest, given the models are so similar. Porting between CUDA

or OpenCL and a higher level model, such as Kokkos or SYCL, is also of interest,

given the models are so dissimilar, and moving from a non-portable model to a

portable model is the goal of many application teams.

9.4 Future Integrations

This section will discuss other applications we would like to integrate

MARTINI into, or would like to integrate into MARTINI.

9.4.1 Build Systems. Ideally, MARTINI would become part

of application build systems, applying transformations as a last step before

compilation. These transformations could be anything, including per-platform

performance optimizations, instrumentation, debugging statements, algorithmic

variations, or parallelism. All of these transformations, however, can obfuscate and

clutter user code, so they are all better kept not as part of the main codebase,

but separately, to be applied only when needed. Having MARTINI as part of

their build system would help user productivity by allowing them to write cleaner,

better, and faster code.

9.4.2 MLIR. The MLIR project (Lattner et al. (2020)) aims to

provide a single, unified compiler IR ecosystem, along with solving many problems

facing the compiler community, such as the difficulty of writing high-quality

DSL compilers and many mainstream compilers defining their own IRs on top

162

of LLVM. Instead of implementing many better compilers, it seems easier to

instead implement a better compiler building infrastructure.1 MLIR is designed

to standardize SSA IRs and includes built in support for documentation generation,

debugging infrastructure, and parsing logic, among other things. MLIR users can

define their own operations, types, rewrite patterns (similar to Haskell’s rewrite

rules), and optimization passes on top of MLIR’s infrastructure, while keeping their

IR extensible for the future.

MARTINI’s methods are not exclusive to the Clang AST, though they are

greatly helped along by Clang’s AST matchers. Porting MARTINI to MLIR, with

its better-defined IR structures, relations, and dialects, would allow for even more

powerful transformations, with even more languages available as front ends.

9.4.2.1 Flang. One of the most common questions we hear is, “can

it work with Fortran?” Once Flang, the new LLVM- and MLIR-based Fortran

compiler’s tooling infrastructure matures, we don’t see why not. All we require

to port MARTINI is a parser and something resembling Clang’s AST matcher

interface. Once Flang implements AST matchers, we would very much like to add

Fortran support to MARTINI.

1The authors of Tapir (Stelle, Moses, Olivier, and McCormick (2017)) agree that it would be
helpful to move the HPC community towards a single, standardized IR. By having standard,
common IRs, we avoid duplicating effort and can have multiple programming models work
together easily.

163

REFERENCES CITED

Amini, M., Creusillet, B., Even, S., Keryell, R., Goubier, O., Guelton, S., . . .
Villalon, P. (2012, January). Par4All: From convex array regions to
heterogeneous computing. In IMPACT 2012: Second International
Workshop on Polyhedral Compilation Techniques HiPEAC 2012. Paris,
France. Retrieved from
https://hal-mines-paristech.archives-ouvertes.fr/hal-00744733 (2
pages)

Aurora exascale supercomputer. (2023). Argonne National Laboratory. Retrieved
from https://www.anl.gov/aurora

Bailey, D. (1991, August). Twelve ways to fool the masses when giving
performance results on parallel computers. Supercomputing Review , 54–55.

Bell, N., & Hoberock, J. (2012). Thrust: A productivity-oriented library for
CUDA. In GPU computing gems Jade edition (pp. 359–371). Elsevier.

Bravenboer, M., Kalleberg, K. T., Vermaas, R., & Visser, E. (2008). Stratego/XT
0.17. a language and toolset for program transformation. Science of
Computer Programming , 72 (1), 52-70. Retrieved from https://

www.sciencedirect.com/science/article/pii/S0167642308000452

(Special Issue on Second issue of experimental software and toolkits (EST))
doi: https://doi.org/10.1016/j.scico.2007.11.003

Breuer, S., Steuwer, M., & Gorlatch, S. (2014). Extending the SkelCL skeleton
library for stencil computations on multi-GPU systems. In Proceedings of
the 1st international workshop on high-performance stencil computations
(pp. 15–21).

Brown, C., Abdelfattah, A., Tomov, S., & Dongarra, J. J. (2020). Design,
optimization, and benchmarking of dense linear algebra algorithms on AMD
GPUs. In High performance extreme computing conference, HPEC. doi:
10.1109/HPEC43674.2020.9286214

Chamberlain, B. L., Callahan, D., & Zima, H. P. (2007). Parallel programmability
and the Chapel language. The International Journal of High Performance
Computing Applications , 21 (3), 291–312.

Chen, C., Chame, J., & Hall, M. (2008). CHiLL: A framework for composing
high-level loop transformations (Tech. Rep.). Citeseer.

164

https://hal-mines-paristech.archives-ouvertes.fr/hal-00744733
https://www.anl.gov/aurora
https://www.sciencedirect.com/science/article/pii/S0167642308000452
https://www.sciencedirect.com/science/article/pii/S0167642308000452

Clang Developers. (n.d.). clang::tooling::Transformer class reference. Retrieved
from https://clang.llvm.org/doxygen/

classclang 1 1tooling 1 1Transformer.html (https://
clang.llvm.org/doxygen/classclang 1 1tooling 1 1Transformer.html.
Accessed March 8 2023)

Clement, V., Ferrachat, S., Fuhrer, O., Lapillonne, X., Osuna, C. E., Pincus, R., . . .
Sawyer, W. (2018, July). The CLAW DSL: Abstractions for performance
portable weather and climate models. In Proceedings of the platform for
advanced scientific computing conference (pp. 2:1–2:10). New York, NY,
USA: ACM. Retrieved from
http://doi.acm.org/10.1145/3218176.3218226 doi:
10.1145/3218176.3218226

Coti, C., Denny, J. E., Huck, K., Lee, S., Malony, A. D., Shende, S., & Vetter, J. S.
(2020). OpenACC profiling support for Clang and LLVM using Clacc and
TAU. In 2020 IEEE/ACM International Workshop on HPC User Support
Tools (HUST) and Workshop on Programming and Performance
Visualization Tools (ProTools) (p. 38-48). doi:
10.1109/HUSTProtools51951.2020.00012

Coti, C., Falcou, J., & Matei, B. (2020). High-performance implementation of
wavelet transforms using SIMD. SIAM PP 20 poster session.

Custers, P. (2012). Algorithmic species: Classifying program code for parallel
computing. Master’s thesis, Eindhoven University of Technology .

Daniel, D., & Panetta, J. (2019, November). On applying performance portability
metrics. In 2019 IEEE/ACM International Workshop on Performance,
Portability and Productivity in HPC (P3HPC) (pp. 50–59).

Dave, C., Bae, H., Min, S.-J., Lee, S., Eigenmann, R., & Midkiff, S. (2009). Cetus:
A source-to-source compiler infrastructure for multicores. Computer , 42 (12),
36-42. doi: 10.1109/MC.2009.385

de Supinski, B. R., Scogland, T. R. W., Duran, A., Klemm, M., Bellido, S. M.,
Olivier, S. L., . . . Mattson, T. G. (2018, November). The ongoing evolution
of OpenMP. Proceedings of the IEEE , 106 (11), 2004-2019. doi:
10.1109/JPROC.2018.2853600

Deakin, T., McIntosh-Smith, S., Price, J., Poenaru, A., Atkinson, P., Popa, C., &
Salmon, J. (2019, November). Performance portability across diverse
computer architectures. In 2019 IEEE/ACM International Workshop on
Performance, Portability and Productivity in HPC (P3HPC) (pp. 1–13).

165

https://clang.llvm.org/doxygen/classclang_1_1tooling_1_1Transformer.html
https://clang.llvm.org/doxygen/classclang_1_1tooling_1_1Transformer.html
https://clang.llvm.org/doxygen/classclang_1_1tooling_1_1Transformer.html
https://clang.llvm.org/doxygen/classclang_1_1tooling_1_1Transformer.html
http://doi.acm.org/10.1145/3218176.3218226

Deakin, T., Poenaru, A., Lin, T., & Mcintosh-Smith, S. (2020, November).
Tracking performance portability on the yellow brick road to exascale. In
Proceedings of P3HPC 2020 (pp. 1–13). United States: Institute of
Electrical and Electronics Engineers (IEEE). doi:
10.1109/P3HPC51967.2020.00006

Denny, J. E., Lee, S., & Vetter, J. S. (2018, November). CLACC: Translating
OpenACC to OpenMP in Clang. In 2018 IEEE/ACM 5th Workshop on the
LLVM Compiler Infrastructure in HPC (LLVM-HPC) (pp. 18–29). doi:
10.1109/LLVM-HPC.2018.8639349

Dolbeau, R., Bihan, S., & Bodin, F. (2007). HMPP: A hybrid multi-core parallel
programming environment. In Workshop on general purpose processing on
graphics processing units (GPGPU 2007) (Vol. 28).

Dreuning, H., Heirman, R., & Varbanescu, A. L. (2018). A beginner’s guide to
estimating and improving performance portability. In R. Yokota,
M. Weiland, J. Shalf, & S. Alam (Eds.), High performance computing (pp.
724–742). Cham: Springer International Publishing.

Dufek, A. S., Gayatri, R., Mehta, N. A., Doerfler, D., Cook, B., Ghadar, Y., &
DeTar, C. (2021). Case study of using Kokkos and SYCL as
performance-portable frameworks for Milc-Dslash benchmark on NVIDIA,
AMD and Intel GPUs. In Workshop on Performance, Portability and
Productivity in HPC, P3HPC@SC. doi: 10.1109/P3HPC54578.2021.00009

Edwards, H. C., & Sunderland, D. (2012, February). Kokkos array
performance-portable manycore programming model. In Proceedings of the
2012 international workshop on programming models and applications for
multicores and manycores (pp. 1–10). New York, NY, USA: ACM.

Edwards, H. C., Sunderland, D., Amsler, C., & Mish, S. (2011, Sep.).
Multicore/GPGPU portable computational kernels via multidimensional
arrays. In 2011 IEEE International Conference on Cluster Computing
(p. 363-370). doi: 10.1109/CLUSTER.2011.47

Edwards, H. C., Trott, C. R., & Sunderland, D. (2014). Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns. Journal of Parallel and Distributed Computing , 74 (12), 3202 –
3216. (Domain-Specific Languages and High-Level Frameworks for
High-Performance Computing)

Ernsting, S., & Kuchen, H. (2014, December). A scalable farm skeleton for hybrid
parallel and distributed programming. International Journal of Parallel
Programming , 42 (6), 968-987.

166

Free Software Foundation, Inc. (n.d.). Program instrumentation options. Retrieved
from https://gcc.gnu.org/onlinedocs/gcc/

Instrumentation-Options.html#index-finstrument-functions

Frontier supercomputer debuts as world’s fastest, breaking exascale barrier. (2022,
May). Oak Ridge National Laboratory. Retrieved from
https://www.ornl.gov/news/frontier-supercomputer-debuts-worlds

-fastest-breaking-exascale-barrier

GHC Team. (n.d.). The glorious Glasgow Haskell compilation system user’s guide,
version 7.0.1. Retrieved from "https://downloads.haskell.org/~ghc/

7.0.1/docs/html/users guide/rewrite-rules.html"

(https://downloads.haskell.org/~ghc/7.0.1/docs/html/users guide/

rewrite-rules.html. Accessed March 8, 2023)

The GNU awk user’s guide. (n.d.). Retrieved from
"https://www.gnu.org/software/gawk/manual/gawk.html"

(https://www.gnu.org/software/gawk/manual/gawk.html. Accessed
March 7, 2023)

Green500 list. (2023, June). Top500. Retrieved from
https://www.top500.org/lists/green500/2023/06/

Griebl, M., Lengauer, C., & Wetzel, S. (1998). Code generation in the polytope
model. In In ieee pact (pp. 106–111). IEEE Computer Society Press.

Grosser, T., Groesslinger, A., & Lengauer, C. (2012). Polly — performing
polyhedral optimizations on a low-level intermediate representation. Parallel
Processing Letters , 22 (04). Retrieved from
https://doi.org/10.1142/S0129626412500107 doi:
10.1142/S0129626412500107

Gustafson, J. (1991, June). Twelve ways to fool the masses when giving
performance results on traditional vector computers.

Han, T. D., & Abdelrahman, T. S. (2009). hiCUDA: A high-level directive-based
language for GPU programming. In Proceedings of 2nd workshop on general
purpose processing on graphics processing units (pp. 52–61). New York, NY,
USA: ACM.

Harrell, S. L., Kitson, J., Bird, R., Pennycook, S. J., Sewall, J., Jacobsen, D., . . .
Robey, R. (2018, November). Effective performance portability. In 2018
IEEE/ACM International Workshop on Performance, Portability and
Productivity in HPC (P3HPC) (p. 24-36). doi: 10.1109/P3HPC.2018.00006

167

https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html#index-finstrument-functions
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html#index-finstrument-functions
https://www.ornl.gov/news/frontier-supercomputer-debuts-worlds-fastest-breaking-exascale-barrier
https://www.ornl.gov/news/frontier-supercomputer-debuts-worlds-fastest-breaking-exascale-barrier
"https://downloads.haskell.org/~ghc/7.0.1/docs/html/users_guide/rewrite-rules.html"
"https://downloads.haskell.org/~ghc/7.0.1/docs/html/users_guide/rewrite-rules.html"
https://downloads.haskell.org/~ghc/7.0.1/docs/html/users_guide/rewrite-rules.html
https://downloads.haskell.org/~ghc/7.0.1/docs/html/users_guide/rewrite-rules.html
"https://www.gnu.org/software/gawk/manual/gawk.html"
https://www.gnu.org/software/gawk/manual/gawk.html
https://www.top500.org/lists/green500/2023/06/
https://doi.org/10.1142/S0129626412500107

Harris, D. (2021, May). Need for speed: Researchers switch on world’s fastest ai
supercomputer. Nvidia. Retrieved from https://blogs.nvidia.com/blog/

2021/05/27/nersc-perlmutter-ai-supercomputer/

Hartono, A., Norris, B., & Sadayappan, P. (2009). Annotation-based empirical
performance tuning using Orio. In 2009 IEEE International Symposium on
Parallel & Distributed Processing (p. 1-11). doi:
10.1109/IPDPS.2009.5161004

Hennessy, J., & Patterson, D. (2019). Computer architecture: A quantitative
approach (6th ed.). Elsevier Science.

Hollman, D., Lelbach, B., Edwards, H. C., Hoemmen, M., Sunderland, D., & Trott,
C. (2019, November). mdspan in C++: A case study in the integration of
performance portable features into international language standards. In 2019
IEEE/ACM International Workshop on Performance, Portability and
Productivity in HPC (P3HPC) (pp. 60–70).

Holmen, J., Peterson, B., & Berzins, M. (2019, November). An approach for
indirectly adopting a performance portability layer in large legacy codes. In
2019 IEEE/ACM International Workshop on Performance, Portability and
Productivity in HPC (P3HPC) (pp. 36–49).

Hornung, R., & Keasler, J. (2013). A case for improved C++ compiler support to
enable performance portability in large physics simulation codes (Tech.
Rep.). Lawrence Livermore National Lab.(LLNL), Livermore, CA (United
States).

Huck, K., Coti, C., Johnson, A., & Malony, A. D. (n.d.). Source alteration for
profiling. (Work in progress.)

Huck, K., Shende, S., Malony, A., Coti, C., Spear, W., Alcaraz, J., . . . Beekman, I.
(2024). Preparing the TAU performance system for exascale and beyond.
International Journal on High Performance Computing Applications . (In
submission)

Intel Corp. (2020, May). Intel oneAPI programming guide (beta). Retrieved from
https://software.intel.com/content/www/us/en/develop/

documentation/oneapi-programming-guide/top.html

Job, V., Grové, T., Fogerty, S., Mauney, C., Neuman, B., Monroe, L., & Robey,
R. W. (2020). Order matters: A case study on reducing floating point error
in sums via ordering and grouping. In 2020 IEEE/ACM 4th International
Workshop on Software Correctness for HPC Applications (Correctness)
(p. 10-19). doi: 10.1109/Correctness51934.2020.00007

168

https://blogs.nvidia.com/blog/2021/05/27/nersc-perlmutter-ai-supercomputer/
https://blogs.nvidia.com/blog/2021/05/27/nersc-perlmutter-ai-supercomputer/
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top.html
https://software.intel.com/content/www/us/en/develop/documentation/oneapi-programming-guide/top.html

Johnson, A. (2020). Area exam: General-purpose performance portable
programming models for productive exascale computing. University of
Oregon, Eugene, OR, USA. Area Exam Report .

Johnson, A., Coti, C., Malony, A. D., & Doerfert, J. (2022). Martini: The little
match and replace tool for automatic application rewriting with code
examples. In J. Cano & P. Trinder (Eds.), Euro-par 2022: Parallel
processing (pp. 19–34). Cham: Springer International Publishing.

Johnson, A., Coti, C., Malony, A. D., & Hueckelheim, J. (n.d.). User-assisted
automatic code translation with MARTINI. (To be submitted to EuroPar
’24.)

Joubert, W., Archibald, R., Berrill, M., Michael Brown, W., Eisenbach, M., Grout,
R., . . . Turner, J. (2015, August). Accelerated application development:
The ORNL Titan experience. Comput. Electr. Eng., 46 (C), 123–138.

Kats, L. C., & Visser, E. (2010). The Spoofax language workbench: Rules for
declarative specification of languages and IDEs. In Proceedings of the ACM
International Conference on Object Oriented Programming Systems
Languages and Applications (p. 444–463). New York, NY, USA: Association
for Computing Machinery. Retrieved from
https://doi.org/10.1145/1869459.1869497 doi:
10.1145/1869459.1869497

Khronos OpenCL Working Group. (2023, April). The OpenCL specification.
Khronos Group. Retrieved from https://registry.khronos.org/OpenCL/

specs/3.0-unified/html/OpenCL API.html

Kindratenko, V., & Trancoso, P. (2011, May). Trends in high-performance
computing. Computing in Science Engineering , 13 (3), 92-95. doi:
10.1109/MCSE.2011.52

Kogge, P., & Shalf, J. (2013, November). Exascale computing trends: Adjusting to
the “new normal” for computer architecture. Computing in Science
Engineering , 15 (6), 16-26. doi: 10.1109/MCSE.2013.95

Komatsu, K., Egawa, R., Hirasawa, S., Takizawa, H., Itakura, K., & Kobayashi, H.
(2016). Translation of large-scale simulation codes for an OpenACC
platform using the Xevolver framework. International Journal of Networking
and Computing , 6 (2), 167–180.

169

https://doi.org/10.1145/1869459.1869497
https://registry.khronos.org/OpenCL/specs/3.0-unified/html/OpenCL_API.html
https://registry.khronos.org/OpenCL/specs/3.0-unified/html/OpenCL_API.html

Lambert, J., Lee, S., Kim, J., Vetter, J. S., & Malony, A. D. (2018, June).
Directive-based, high-level programming and optimizations for
high-performance computing with FPGAs. In Proceedings of the 2018
international conference on supercomputing (pp. 160–171). New York, NY,
USA: ACM.

Larkin, J. (2016, April). Performance portability through descriptive parallelism.
DoE CoE Performance Portability Workshop.

Lattner, C., & Adve, V. (2004). LLVM: a compilation framework for lifelong
program analysis and transformation. In International symposium on code
generation and optimization, 2004. cgo 2004. (pp. 75–86).

Lattner, C., Pienaar, J., Amini, M., Bondhugula, U., Riddle, R., Cohen, A., . . .
Zinenko, O. (2020). MLIR: A compiler infrastructure for the end of Moore’s
law. ArXiv , abs/2002.11054 .

Lee, S., & Eigenmann, R. (2010, November). OpenMPC: Extended OpenMP
programming and tuning for GPUs. In SC ’10: Proceedings of the 2010
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis (p. 1-11). doi: 10.1109/SC.2010.36

Lee, S., Min, S.-J., & Eigenmann, R. (2009, February). OpenMP to GPGPU: A
compiler framework for automatic translation and optimization. In
Proceedings of the 14th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (pp. 101–110). New York, NY, USA:
ACM.

Lee, S., & Vetter, J. S. (2014a, November). OpenARC: Extensible OpenACC
compiler framework for directive-based accelerator programming study. In
2014 first workshop on accelerator programming using directives (p. 1-11).
doi: 10.1109/WACCPD.2014.7

Lee, S., & Vetter, J. S. (2014b, June). OpenARC: Open accelerator research
compiler for directive-based, efficient heterogeneous computing. In
Proceedings of the 23rd international symposium on high-performance
parallel and distributed computing (pp. 115–120). New York, NY, USA:
ACM.

Lee, S.-I., Johnson, T. A., & Eigenmann, R. (2003). Cetus-an extensible compiler
infrastructure for source-to-source transformation. In LCPC (pp. 539–553).

170

Leung, A., Vasilache, N., Meister, B., Baskaran, M., Wohlford, D., Bastoul, C., &
Lethin, R. (2010, March). A mapping path for multi-GPGPU accelerated
computers from a portable high level programming abstraction. In
Proceedings of the 3rd workshop on general-purpose computation on graphics
processing units (pp. 51–61). New York, NY, USA: ACM.

Liao, C., Lin, P.-H., Schordan, M., & Karlin, I. (2018). A semantics-driven
approach to improving DataRaceBench’s OpenMP standard coverage. In
B. R. de Supinski, P. Valero-Lara, X. Martorell, S. Mateo Bellido, &
J. Labarta (Eds.), Evolving OpenMP for Evolving Architectures (pp.
189–202). Cham: Springer International Publishing.

Lidman, J., Quinlan, D. J., Liao, C., & McKee, S. A. (2012). ROSE::FTTransform
– a source-to-source translation framework for exascale fault-tolerance
research. In IEEE/IFIP International Conference on Dependable Systems
and Networks Workshops (DSN 2012) (p. 1-6).

Lindlan, K., Cuny, J., Malony, A., Shende, S., Mohr, B., Rivenburgh, R., &
Rasmussen, C. (2000). A tool framework for static and dynamic analysis of
object-oriented software with templates. In SC ’00: Proceedings of the 2000
ACM/IEEE Conference on Supercomputing (p. 49-49). doi:
10.1109/SC.2000.10052

The LINPACK benchmark. (2023). Top500. Retrieved from
https://www.top500.org/project/linpack/

The LLVM compiler infrastructure. (n.d.). Retrieved from "https://llvm.org/"

(https://llvm.org/. Accessed March 8, 2023)

Lucas, R., Ang, J., Bergman, K., Borkar, S., Carlson, W., Carrington, L., . . .
Laros III, J. (2014, February). DOE Advanced Scientific Computing
Advisory Subcommittee (ASCAC) report: Top ten exascale research
challenges (Tech. Rep.). US Department of Energy. doi: 10.2172/1222713

Luk, C., Hong, S., & Kim, H. (2009, December). Qilin: Exploiting parallelism on
heterogeneous multiprocessors with adaptive mapping. In 2009 42nd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO)
(p. 45-55).

Majeed, M., Dastgeer, U., & Kessler, C. W. (2013). Cluster-SkePU: A
multi-backend skeleton programming library for GPU clusters. In PDPTA
2013.

171

https://www.top500.org/project/linpack/
"https://llvm.org/"
https://llvm.org/

Martineau, M., & McIntosh-Smith, S. (2017). The productivity, portability and
performance of OpenMP 4.5 for scientific applications targeting Intel CPUs,
IBM CPUs, and NVIDIA GPUs. In B. R. de Supinski, S. L. Olivier,
C. Terboven, B. M. Chapman, & M. S. Müller (Eds.), Scaling OpenMP for
Exascale Performance and Portability (IWOMP ’17) (pp. 185–200). Cham:
Springer International Publishing.

Martone, M., & Lawall, J. (2021). Refactoring for performance with semantic
patching: Case study with recipes. In H. Jagode, H. Anzt, H. Ltaief, &
P. Luszczek (Eds.), High performance computing (pp. 226–232). Cham:
Springer International Publishing.

McCabe, T. (1976). A complexity measure. Transactions on Software Engineering ,
SE-2 (4). doi: 10.1109/TSE.1976.233837

McCalpin, J. (n.d.). STREAM: Sustainable memory bandwidth in high performance
computers. Retrieved from https://www.cs.virginia.edu/stream/

McIntosh-Smith, S., Boulton, M., Curran, D., & Price, J. (2014). On the
performance portability of structured grid codes on many-core computer
architectures. In J. M. Kunkel, T. Ludwig, & H. W. Meuer (Eds.),
Supercomputing (pp. 53–75). Cham: Springer International Publishing.

McIntosh-Smith, S., Martineau, M., Deakin, T., Pawelczak, G., Gaudin, W.,
Garrett, P., . . . Beckingsale, D. (2017). TeaLeaf: A mini-application to
enable design-space explorations for iterative sparse linear solvers. In 2017
IEEE International Conference on Cluster Computing (CLUSTER)
(p. 842-849). doi: 10.1109/CLUSTER.2017.105

Meister, B., Leung, A., Vasilache, N., Wohlford, D., Bastoul, C., & Lethin, R.
(2009). Productivity via automatic code generation for PGAS platforms
with the R-Stream compiler. In Workshop on Asynchrony in the PGAS
Programming Model.

Mendonça, G., Guimarães, B., Alves, P., Pereira, M., Araújo, G., & Pereira,
F. M. Q. a. (2017, May). DawnCC: Automatic annotation for data
parallelism and offloading. ACM Trans. Archit. Code Optim., 14 (2).
Retrieved from https://doi.org/10.1145/3084540 doi: 10.1145/3084540

172

https://www.cs.virginia.edu/stream/
https://doi.org/10.1145/3084540

Meng, N., Kim, M., & McKinley, K. S. (2011). Sydit: Creating and applying a
program transformation from an example. In Proceedings of the 19th ACM
SIGSOFT Symposium and the 13th European Conference on Foundations of
Software Engineering (p. 440–443). New York, NY, USA: Association for
Computing Machinery. Retrieved from
https://doi.org/10.1145/2025113.2025185 doi:
10.1145/2025113.2025185

Meng, N., Kim, M., & McKinley, K. S. (2013). Lase: Locating and applying
systematic edits by learning from examples. In 2013 35th International
Conference on Software Engineering (ICSE) (p. 502-511). doi:
10.1109/ICSE.2013.6606596

Michalakes, J., Loft, R., & Bourgeois, A. (2001). Performance-portability and the
weather research and forecast model.

Mo, Z.-y. (2018, October). Extreme-scale parallel computing: bottlenecks and
strategies. Frontiers of Information Technology & Electronic Engineering ,
19 (10), 1251–1260.

MPI Forum. (2015, June). MPI: A message-passing interface standard. MPI
Forum.

Murai, H., Sato, M., Nakao, M., & Lee, J. (2018, November). Metaprogramming
framework for existing HPC languages based on the Omni compiler
infrastructure. In 2018 Sixth International Symposium on Computing and
Networking Workshops (CANDARW) (pp. 250–256). doi:
10.1109/CANDARW.2018.00054

Nakao, M., Lee, J., Boku, T., & Sato, M. (2012, May). Productivity and
performance of global-view programming with XcalableMP PGAS language.
In 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (ccgrid 2012) (p. 402-409). doi: 10.1109/CCGrid.2012.118

Nakao, M., Murai, H., Shimosaka, T., Tabuchi, A., Hanawa, T., Kodama, Y., . . .
Sato, M. (2014, November). XcalableACC: Extension of XcalableMP PGAS
language using OpenACC for accelerator clusters. In 2014 first workshop on
accelerator programming using directives (p. 27-36). doi:
10.1109/WACCPD.2014.6

Nugteren, C., & Corporaal, H. (2014, December). Bones: An automatic
skeleton-based C-to-CUDA compiler for GPUs. ACM Trans. Archit. Code
Optim., 11 (4), 35:1–35:25.

173

https://doi.org/10.1145/2025113.2025185

Nugteren, C., Corvino, R., & Corporaal, H. (2013). Algorithmic species revisited:
A program code classification based on array references. In 2013 IEEE 6th
International Workshop on Multi-/Many-core Computing Systems
(MuCoCoS) (p. 1-8). doi: 10.1109/MuCoCoS.2013.6633604

Nugteren, C., Custers, P., & Corporaal, H. (2013). Automatic skeleton-based
compilation through integration with an algorithm classification. In C. Wu
& A. Cohen (Eds.), Advanced parallel processing technologies (pp. 184–198).
Berlin, Heidelberg: Springer Berlin Heidelberg.

Nvidia. (2023, October). CUDA Toolkit documentation. Nvidia. Retrieved from
https://docs.nvidia.com/cuda/

Ofenbeck, G., Steinmann, R., Caparros, V., Spampinato, D. G., & Püschel, M.
(2014, March). Applying the roofline model. In 2014 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS)
(p. 76-85). doi: 10.1109/ISPASS.2014.6844463

OpenACC Group. (n.d.). OpenACC. Retrieved from https://www.openacc.org/

OpenACC Standards Group. (2011, November). The OpenACC application
program interface, version 1.0. OpenACC Group.

OpenACC Standards Group. (2018, November). The OpenACC application
program interface, version 2.7. OpenACC Group.

OpenACC Standards Group. (2019, November). The OpenACC application
program interface, version 3.0. OpenACC Group.

OpenMP Architecture Review Board. (2011, July). OpenMP application program
interface, version 3.1. OpenMP ARB.

OpenMP Architecture Review Board. (2015, November). OpenMP application
program interface, version 4.5. OpenMP ARB.

OpenMP Architecture Review Board. (2018, November). OpenMP application
program interface, version 5.0. OpenMP ARB.

OpenSHMEM Contributors Committee. (2017, December). OpenSHMEM
application programming interface. Open Source Software Solutions, Inc.

Padioleau, Y., Lawall, J., Hansen, R. R., & Muller, G. (2008). Documenting and
automating collateral evolutions in Linux device drivers. In Proceedings of
the 3rd ACM SIGOPS/EuroSys European Conference on Computer Systems
2008 (p. 247–260). New York, NY, USA: Association for Computing
Machinery. Retrieved from https://doi.org/10.1145/1352592.1352618

doi: 10.1145/1352592.1352618

174

https://docs.nvidia.com/cuda/
https://www.openacc.org/
https://doi.org/10.1145/1352592.1352618

Pakin, S. (2011, December). Ten ways to fool the masses when giving performance
results on GPUs. HPCWire.

Peccerillo, B., & Bartolini, S. (2017). PHAST library — enabling single-source and
high performance code for GPUs and multi-cores. In 2017 International
Conference on High Performance Computing Simulation (HPCS)
(p. 715-718).

Pennycook, S. J., Sewall, J. D., & Duran, A. (2018). Supporting function variants
in OpenMP. In B. R. de Supinski, P. Valero-Lara, X. Martorell,
S. Mateo Bellido, & J. Labarta (Eds.), Evolving OpenMP for Evolving
Architectures (pp. 128–142). Cham: Springer International Publishing.

Pennycook, S. J., Sewall, J. D., & Hammond, J. R. (2018, November). Evaluating
the impact of proposed OpenMP 5.0 features on performance, portability
and productivity. In 2018 IEEE/ACM International Workshop on
Performance, Portability and Productivity in HPC (P3HPC) (pp. 37–46).
doi: 10.1109/P3HPC.2018.00007

Pennycook, S. J., Sewall, J. D., & Lee, V. W. (2016). A metric for performance
portability. In Proceedings of the international workshop on performance
modeling, benchmarking, and simulation.

Pennycook, S. J., Sewall, J. D., & Lee, V. W. (2019). Implications of a metric for
performance portability. Future Generation Computer Systems , 92 , 947 –
958.

Pino, S., Pollock, L., & Chandrasekaran, S. (2017, May). Exploring translation of
OpenMP to OpenACC 2.5: lessons learned. In 2017 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW)
(p. 673-682). doi: 10.1109/IPDPSW.2017.84

Quinlan, D., & Liao, C. (2011). The ROSE source-to-source compiler
infrastructure. In Cetus users and compiler infrastructure workshop, in
conjunction with PACT.

Reinders, J., Ashbaugh, B., Brodman, J., Kinsner, M., Pennycook, J., & Tian, X.
(2019). Data Parallel C++: Mastering DPC++ for programming of
heterogeneous systems using C++ and SYCL. Apress. (Unedited advance
preview of chapters 1-4)

ROCm Developers. (n.d.). HIPIFY: Tools to translate CUDA source code into
portable HIP C++ automatically. Retrieved from
https://github.com/ROCm-Developer-Tools/HIPIFY

175

https://github.com/ROCm-Developer-Tools/HIPIFY

Savchenko, V., Sorokin, K., Pankratenko, G., Markov, S., Spiridonov, A.,
Alexandrov, I., . . . Sun, K. (2019). Nobrainer: An example-driven
framework for C/C++ code transformations. In N. Bjørner, I. Virbitskaite,
& A. Voronkov (Eds.), Perspectives of system informatics. Springer
International Publishing. doi: 10.1007/978-3-030-37487-7\ 12

Savchenko, V. V., Sorokin, K. S., Bronshtein, I. E., Volkov, A. S., Kachanov, V. V.,
Pankratenko, G. A., . . . Aleksandrov, I. V. (2020, 01). NOBRAINER: A
tool for example-based transformation of C/C++ code. Programming and
Computer Software, 46 (5). doi: 10.1134/S0361768820040052

Schweitz, E., Lethin, R., Leung, A., & Meister, B. (2006). R-stream: A parametric
high level compiler. Proceedings of HPEC .

sed, a stream editor. (n.d.). Retrieved from
"https://www.gnu.org/software/sed/manual/sed.html"

(https://www.gnu.org/software/sed/manual/sed.html. Accessed March
7, 2023)

Sedova, A., Eblen, J. D., Budiardja, R., Tharrington, A., & Smith, J. C. (2018,
November). High-performance molecular dynamics simulation for biological
and materials sciences: Challenges of performance portability. In 2018
IEEE/ACM International Workshop on Performance, Portability and
Productivity in HPC (P3HPC) (p. 1-13). doi: 10.1109/P3HPC.2018.00004

Shalf, J., Dosanjh, S., & Morrison, J. (2011). Exascale computing technology
challenges. In J. M. L. M. Palma, M. Daydé, O. Marques, & J. C. Lopes
(Eds.), High Performance Computing for Computational Science – VECPAR
2010 (pp. 1–25). Berlin, Heidelberg: Springer Berlin Heidelberg.

Shende, S. S., & Malony, A. D. (2006). The Tau parallel performance system. The
International Journal of High Performance Computing Applications , 20 (2),
287-311. Retrieved from https://doi.org/10.1177/1094342006064482

doi: 10.1177/1094342006064482

Smith, J. E. (1988). Characterizing computer performance with a single number.
Communications of the ACM , 31 (10), 1202–1206.

Stelle, G., Moses, W. S., Olivier, S. L., & McCormick, P. (2017, November).
OpenMPIR: Implementing OpenMP tasks with Tapir. In Proceedings of the
Fourth Workshop on the LLVM Compiler Infrastructure in HPC (pp.
3:1–3:12). New York, NY, USA: ACM.

176

"https://www.gnu.org/software/sed/manual/sed.html"
https://www.gnu.org/software/sed/manual/sed.html
https://doi.org/10.1177/1094342006064482

Steuwer, M., & Gorlatch, S. (2013). SkelCL: Enhancing OpenCL for high-level
programming of multi-GPU systems. In V. Malyshkin (Ed.), Parallel
computing technologies (pp. 258–272). Berlin, Heidelberg: Springer Berlin
Heidelberg.

Steuwer, M., Kegel, P., & Gorlatch, S. (2011, May). SkelCL - a portable skeleton
library for high-level GPU programming. In 2011 IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd
Forum (p. 1176-1182). doi: 10.1109/IPDPS.2011.269

Steuwer, M., Kegel, P., & Gorlatch, S. (2012, May). Towards high-level
programming of multi-GPU systems using the SkelCL library. In 2012 IEEE
26th International Parallel and Distributed Processing Symposium
Workshops PhD Forum (pp. 1858–1865).

Suda, R., Takizawa, H., & Hirasawa, S. (2016). Xevtgen: Fortran code transformer
generator for high performance scientific codes. International Journal of
Networking and Computing , 6 (2), 263-289.

Sultana, N., Calvert, A., Overbey, J. L., & Arnold, G. (2016, July). From
OpenACC to OpenMP 4: Toward automatic translation. In Proceedings of
the xsede16 conference on diversity, big data, and science at scale (pp.
44:1–44:8). New York, NY, USA: ACM.

Sun, Y., Mukherjee, S., Baruah, T., Dong, S., Gutierrez, J., Mohan, P., & Kaeli,
D. R. (2018). Evaluating performance tradeoffs on the Radeon Open
Compute platform. In International symposium on performance analysis of
systems and software, ISPASS 2018. doi: 10.1109/ISPASS.2018.00034

Tabuchi, A., Nakao, M., Murai, H., Boku, T., & Sato, M. (2017, May).
Implementation and evaluation of one-sided PGAS communication in
XcalableACC for accelerated clusters. In 2017 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGRID)
(p. 625-634). doi: 10.1109/CCGRID.2017.81

Takizawa, H., Hirasawa, S., Hayashi, Y., Egawa, R., & Kobayashi, H. (2014,
December). Xevolver: An XML-based code translation framework for
supporting HPC application migration. In 2014 21st International
Conference on High Performance Computing (HiPC) (p. 1-11). doi:
10.1109/HiPC.2014.7116902

Thakur, R., Balaji, P., Buntinas, D., Goodell, D., Gropp, W., Hoefler, T., . . .
Larsson Träff, J. (2010, January). MPI at exascale. Procceedings of SciDAC
2010 , 2 .

177

Top500 list. (2023, June). Top500. Retrieved from
https://www.top500.org/lists/top500/2023/06/

Verdoolaege, S., Juega, J. C., Cohen, A., Gómez, J. I., Tenllado, C., & Catthoor, F.
(2013, January). Polyhedral parallel code generation for CUDA. ACM
Trans. Archit. Code Optim., 9 (4), 54:1–54:23. doi: 10.1145/2400682.2400713

Wienke, S., Miller, J., Schulz, M., & Müller, M. S. (2016, November). Development
effort estimation in HPC. In SC ’16: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (p. 107-118). doi: 10.1109/SC.2016.9

Williams, S., Waterman, A., & Patterson, D. (2009, April). Roofline: An insightful
visual performance model for multicore architectures. Commun. ACM ,
52 (4), 65–76.

Wolfe, M. (2010, March). Implementing the PGI Accelerator model. In Proceedings
of the 3rd workshop on general-purpose computation on graphics processing
units (pp. 43–50). New York, NY, USA: ACM.

Wolfe, M. (2011, April). Compilers and more: Exascale programming requirements.
HPCwire.

Wolfe, M. (2016a, June). Compilers and more: OpenACC to OpenMP (and back
again). HPCwire.

Wolfe, M. (2016b, April). Compilers and more: What makes performance portable?
HPCwire.

Wolfe, M., Lee, S., Kim, J., Tian, X., Xu, R., Chandrasekaran, S., & Chapman, B.
(2017, May). Implementing the OpenACC data model. In 2017 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW) (pp. 662–672). doi: 10.1109/IPDPSW.2017.85

Wong, M., Richards, A., Rovatsou, M., & Reyes, R. (2016, February). Khronos’s
opencl sycl to support heterogeneous devices for c++.

Wright, H. K., Jasper, D., Klimek, M., Carruth, C., & Wan, Z. (2013). Large-scale
automated refactoring using ClangMR. In International conference on
software maintenance. doi: 10.1109/ICSM.2013.93

Yang, C., Gayatri, R., Kurth, T., Basu, P., Ronaghi, Z., Adetokunbo, A., . . .
Williams, S. (2018, November). An empirical roofline methodology for
quantitatively assessing performance portability. In 2018 IEEE/ACM
International Workshop on Performance, Portability and Productivity in
HPC (P3HPC) (p. 14-23). doi: 10.1109/P3HPC.2018.00005

178

https://www.top500.org/lists/top500/2023/06/

Yang, G.-W., & Fu, H.-H. (2018, October). Application software beyond exascale:
challenges and possible trends. Frontiers of Information Technology &
Electronic Engineering , 19 (10), 1267–1272.

Zhu, W., Niu, Y., & Gao, G. R. (2007, June 01). Performance portability on
EARTH: a case study across several parallel architectures. Cluster
Computing , 10 (2), 115–126.

179

	 Introduction
	 Background
	Current Goals in High Performance Computing
	Goals for Exascale
	Challenges of Exascale
	A Brief History of Supercomputing
	Modern Architectures
	Why Performance Portability Matters

	Performance Portability
	Defining Performance Portability
	Primary Metric
	Architectural Efficiency
	Application Efficiency
	Platform Set Choice

	Other Metrics for Performance Portability
	PPMD
	PD

	More History of Performance Portability

	Productivity
	Defining Productivity
	Measuring Productivity
	Productivity and Performance Portability

	Some Non-(Performance) Portable Programming Models
	CUDA
	OpenCL
	OpenMP 3
	MPI and SHMEM

	Performance Portable Programming Models
	Libraries
	Skeletons
	Parallel Loop Libraries

	Application-Specific Libraries

	Parallel (C/C++-like) Languages
	SYCL and DPC++

	Directive-based Models
	OpenMP
	OpenMP 4.x
	OpenMP 5.x
	Future OpenMP
	OpenMP 3 to GPGPU

	OpenACC
	OpenACC 2.x
	OpenACC 3.0 and Future Versions

	Customizable Directives
	Xevolver
	The CLAW DSL

	Source-to-source Translators and Existing Rewriting Tools
	Early Translators
	Qilin
	R-Stream

	Omni
	ROSE
	Bones
	OpenACC to OpenMP
	Sultana et al.'s Translator
	Clacc

	Generic Translators
	Regular Expressions: sed, awk, etc.
	LLVM and Polly
	ClangMR and Clang::Transformer
	Cetus
	Stratego/XT
	CHiLL
	Coccinelle
	Orio
	Nobrainer
	Selected Rewriting Tools for Other Languages
	Summary of Generic Rewriting Tools

	Summary
	``The Three Ps''
	Portability
	Performance
	Productivity

	Performance Portable Models
	Libraries
	Languages
	Directives
	Translators

	 Methodology
	Motivation
	Design and Implementation of MARTINI
	Design Philosophy
	User Interface Design
	MARTINI Design
	MARTINI Implementation

	Evaluation Procedure

	 A Basic Rewriting Task
	An Example: modernize-use-nullptr

	 Rewriting for Optimization
	Introduction
	Loop Peeling
	Loop Fission
	Loop Tiling
	Evaluation
	Loop peeling
	Loop fission
	Loop tiling
	Aside: Autotuners

	 Porting to New Programming Models
	Introduction
	HIPIFY
	Inserting OpenMP Pragmas
	OpenMP to Kokkos
	TeaLeaf
	Hand Edits Required
	Summary of TeaLeaf Translation

	BabelStream
	Hand Edits Required

	Kokkos to SYCL
	BabelStream
	Hand Edits Required
	Summary of BabelStream Translation

	Evaluation
	HIPIFY
	Performance
	Usability

	Inserting OpenMP Pragmas
	TeaLeaf
	BabelStream

	 Rewriting for Performance Measurement
	An Example: Basic Instrumentation
	Instrumenting Functions
	Arbitrary Instrumentation
	Evaluation
	-finstrument-functions
	TAU Clang Plugin
	PDT

	 Summary of Results
	Summary
	Conclusion

	 Future Directions
	Remaining Development Work
	New Features
	Custom Directives
	Control Structures
	Statistics Reporting
	Transformation Order and Priority

	Future Case Studies
	Multiple Precision
	Reducing Floating Point Errors
	More Porting

	Future Integrations
	Build Systems
	MLIR
	Flang

	REFERENCES CITED

