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DISSERTATION ABSTRACT

Minh Nguyen

Doctor of Philosophy

Department of Computer Science

April 2024

Title: Enhancing Multilingual Information Extraction Towards Global Linguistic
Inclusivity

In our interconnected world, the diversity of around 7,000 languages presents

challenges and opportunities for bridging language barriers. Multilingual information

extraction (Multilingual IE) is crucial in natural language processing (NLP) for

extracting information from texts across languages, facilitating global understanding

and information equity. Despite advancements, the focus on high-resource languages

has marginalized speakers of less-represented languages. Multilingual IE seeks to

correct this by embracing linguistic diversity and inclusivity. This dissertation

enhances Multilingual IE to address challenges of linguistic diversity, data scarcity,

and model generalization, aiming to make IE technologies more accessible. It focuses

on developing sophisticated algorithms for tasks like event trigger detection, event

argument extraction, entity mention recognition, and relation extraction. The goal is

to create a system capable of accurate information extraction across diverse languages,

supporting global communication and cultural preservation. Furthermore, the

importance of IE in the era of large language models (LLMs) remains significant. While

LLMs have broadened NLP’s capabilities, the precise, context-specific information

provided by IE is essential, especially in retrieval-augmented generation (RAG) settings.
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This underscores IE’s ongoing relevance, ensuring LLMs retrieve accurate, relevant

information and highlighting IE’s critical role in advancing NLP.

This dissertation includes both previously published and co-authored material.
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CHAPTER I

INTRODUCTION

The majority of this chapter’s content is derived from my dissertation proposal,

where I served as the primary author, while Thien Huu Nguyen contributed through

editorial recommendations.

1.1 Overview

In our modern world, language plays a crucial role in shaping cultures and identities.

With about 7,000 languages spoken worldwide, each carrying its unique expressions

and meanings, we face a significant challenge in the field of information technology,

especially in communication and information access (Joshi, Santy, Budhiraja, Bali,

& Choudhury, 2020; Zaugg, 2020). As global interaction intensifies, the demand for

technologies that can overcome language barriers has reached new heights. Among

these technologies, multilingual information extraction (Multilingual IE), a field

within natural language processing (NLP), stands out as a key player (Névéol et al.,

2017; Poibeau, Saggion, Piskorski, & Yangarber, 2013; Pouran Ben Veyseh, Nguyen,

Dernoncourt, & Nguyen, 2022; Ro, Lee, & Kang, 2020).

Multilingual IE is a vital area within NLP tasked with extracting structured

information from unstructured text across a variety of languages (Y. Lin, Ji, Huang, &

Wu, 2020b; Luan et al., 2019b; M. V. Nguyen, Lai, & Nguyen, 2021; M. V. Nguyen, Min,

Dernoncourt, & Nguyen, 2022a, 2022b). This capability is essential; in a time when

information equates to power, being able to understand and process information across

languages is invaluable. This is not just about technology but about bridging gaps

in understanding, facilitating cultural exchanges, and making knowledge accessible

to all. However, reaching these goals is filled with challenges, complexities, and

nuances that require a thorough exploration of the field’s current state, its obstacles,
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and the potential solutions it offers (V. Lai, Man, Ngo, Dernoncourt, & Nguyen,

2022; V. D. Lai, Veyseh, Nguyen, Dernoncourt, & Nguyen, 2022; Pouran Ben Veyseh,

Ebrahimi, Dernoncourt, & Nguyen, 2022).

Traditionally, the bulk of NLP research has focused on a few high-resource

languages, with English being the primary focus (Hovy & Prabhumoye, 2021; Søgaard,

2022). This concentration on a select few languages leaves speakers of less-resourced

languages at a disadvantage, missing out on the full benefits that NLP technologies can

provide (Adelani et al., 2021). This imbalance not only limits global communication

and information access but also contributes to inequality in knowledge distribution

and technological progress (Zaugg, 2020). The development of Multilingual IE is a

critical step towards addressing these issues. By aiming to process text in a wide range

of languages, Multilingual IE strives to ensure no language community is overlooked

in the digital era.

At the core of Multilingual IE are several interconnected challenges that reflect

the complexity of human language. Languages differ in their vocabulary, grammar,

meaning conveyance, information structure, and world conceptualization (Blommaert,

2013; Evans, 2018; Giunchiglia, Batsuren, Bella, et al., 2017; Pacheco Coelho et

al., 2019). These differences pose significant challenges to creating algorithms and

models that can accurately extract information across languages. The lack of

digital resources and annotated datasets for many languages further complicates

the ability to train models with high precision and accuracy (V. Lai et al., 2022;

V. D. Lai et al., 2022; Pouran Ben Veyseh, Ebrahimi, et al., 2022; Pouran Ben Veyseh,

Nguyen, et al., 2022). Despite these challenges, the field of Multilingual IE has

made considerable progress (Y. Lin et al., 2020b; Minh Tran, Phung, & Nguyen, 2021;

Pouran Ben Veyseh, Dernoncourt, Dou, & Nguyen, 2020), driven by several factors. For
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example, multilingual transformer-based language models have significantly improved

text processing and understanding, laying the groundwork for multilingual capabilities

(Conneau et al., 2019; Devlin, Chang, Lee, & Toutanova, 2019b). Additionally,

advances in active learning and cross-lingual model training have started to mitigate

the issue of data scarcity, enabling efficient development of IE models for low-resource

languages (X. Chen, Awadallah, Hassan, Wang, & Cardie, 2019; Huang, Ji, & May,

2019; Lange, Iurshina, Adel, & Strötgen, 2020b; Shelmanov et al., 2021).

This dissertation is set against this backdrop in NLP and Multilingual IE research.

It aims to contribute to Multilingual IE by tackling the main challenges of linguistic

diversity, data scarcity, and model generalizability. By focusing on improving upstream

models, developing language-agnostic downstream architectures, and advancing cross-

lingual transfer learning and active learning for IE, this work seeks to extend the

boundaries of Multilingual IE. In doing so, the dissertation not only aims to push

forward technical advancements but also to contribute to a more inclusive, equitable,

and linguistically diverse digital future. Moreover, the dissertation underscores the

potential of IE in the evolution of large language models (LLMs) (Achiam et al., 2023;

Brown et al., 2020; Chowdhery et al., 2023; Chung et al., 2022) by introducing a novel

retrieval-augmented generation (RAG) framework, where IE has a pivotal contribution

to improving the retrieval system that ensures LLMs can offer accurate and reliable

responses to user queries.

In conclusion, as we navigate the challenges and opportunities of technological

advancement and global linguistic diversity, the role of Multilingual IE has become

increasingly important. This dissertation recognizes the complexity of the tasks ahead

but is driven by the potential impact that advancements in this area could have on

global communication, information accessibility, and cultural preservation. Through
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Figure 1. An example with annotations for four main IE tasks: event trigger detection,
event argument extraction, entity mention recognition, and relation extraction
(M. V. Nguyen, Lai, & Nguyen, 2021).

dedicated research, innovative approaches, and a commitment to inclusivity, this work

intends to play a part in the ongoing development of NLP technologies, ensuring they

serve a wide and diverse global audience.

1.2 Problem Definitions

The pivotal role of multilingual information extraction (Multilingual IE) is

underscored by the challenge of interpreting and structuring the vast and varied

information embedded in text. The complexity of the field is multiplied when

considering the diversity of the world’s languages and the nuances inherent in each.

To automate the understanding and extraction of information across languages,

Multilingual IE encompasses several key tasks, each with its unique challenges and

methodologies. These tasks include event trigger detection (ETD), event argument

extraction (EAE), entity mention recognition (EMR), and relation extraction (RE).

Figure 1 illustrates a sentence annotated with these tasks, showcasing the intricate

interplay between different elements within a text.

– Event trigger detection (ETD): involves identifying words or phrases that

signal the occurrence of an event. In the figure, the word “came” serves as a

trigger for the transportation event, indicating the action of moving towards a

destination. The ability to detect such triggers is fundamental to understanding
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the dynamics within a text, as it sets the stage for further extraction tasks. The

challenge lies in accurately pinpointing these triggers across different contexts

and linguistic structures, where the same word may not always signify the same

event type in every instance.

– Event argument extraction (EAE): is the process of identifying and

classifying the entities associated with an event trigger. Once an event trigger

is detected, EAE seeks to determine the participants, objects, and attributes

related to that event. For example, the man driving and the checkpoint in the

provided figure are arguments related to the transportation event triggered by

“came”. The difficulty in EAE is two-fold: correctly associating entities with the

correct event and correctly classifying their roles, which can vary widely across

languages and contexts.

– Entity mention recognition (EMR): focuses on identifying and categorizing

entities (persons, organizations, locations, etc.) within a text. In the sentence

from the figure, “a man” and “soldiers” are recognized as persons, “taxicab” as a

vehicle, and “checkpoint” as a facility. EMR is a foundational task in NLP, as it

allows systems to distinguish and categorize the key components of information.

The challenge with EMR, especially in a multilingual context, is dealing with

the vast array of entity types and the subtleties of their mention, which can be

heavily influenced by cultural and linguistic factors.

– Relation extraction (RE): involves identifying the relationships between

entities within a text. The figure shows several relationships: between the

man and the taxicab (the man is driving the taxicab), between the man and

the checkpoint (the man is moving towards the checkpoint), and between the
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soldiers and the checkpoints (the soldiers are physically at the checkpoint). RE is

crucial for building a comprehensive picture of the interactions and connections

between entities, allowing for a deeper understanding of the text. The primary

challenge in RE is the complexity of relationships that can exist and the subtlety

with which they can be expressed, particularly in texts with intricate sentence

structures or in languages with less rigid syntax.

To address these challenges within Multilingual IE, we need models that are

not only robust and scalable but also nuanced and adaptable to the wide range of

linguistic cues and subtleties found across different languages. This involves developing

sophisticated algorithms that can handle the ambiguity and variability of natural

language, while also being sensitive to the cultural and contextual elements that

influence meaning. The overarching problem this dissertation will tackle is developing

a system that can integrate these tasks into a coherent framework capable of accurately

performing Multilingual IE across diverse linguistic landscapes.

1.3 Research Questions

This dissertation is anchored on a set of research questions that aim to address

the intricacies and challenges of Multilingual IE. The forthcoming chapters of the

dissertation will delve into each question in detail, offering a thorough exploration of

our proposed methods and their implications for Multilingual IE. In particular, the

research questions that we would like to answer are:

– RQ1: How can upstream models in Multilingual IE be enhanced to improve

linguistic feature extraction across languages?

– RQ2: What architecture can be developed for downstream IE models to be

effectively language-agnostic?
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– RQ3: Given target languages with limited or no training data, how can we

build effective IE models?

The first question investigates the improvement of upstream processes that form

the foundation for accurate downstream information extraction, such as sentence

segmentation and part-of-speech tagging. The second question seeks to establish

a robust framework for downstream models that remain effective regardless of the

language input for the four main tasks of IE. The third will explore methodologies for

training IE models for low-resource languages through either cross-lingual transfer

learning or active learning. Furthermore, we would like to explore the question:

– RQ4: What is the role of IE in recent advancements of LLMs?

The final question aims to identify how IE can be employed to enhance LLMs’ ability

to provide accurate and reliable responses. Each of these questions will be meticulously

addressed in the dissertation, with dedicated chapters that provide an in-depth analysis

and discussion. These chapters will collectively form a comprehensive approach to

tackling the multifaceted challenges of Multilingual IE, with the goal of contributing

valuable knowledge and innovative solutions to the field.

1.4 Dissertation Outline

In the exploration of Multilingual IE, this dissertation delineates a comprehensive

approach across four distinct research directions (RDs) toward answering the four

research questions (RQ1, RQ2, RQ3, and RQ4) respectively. Each direction targets a

specific aspect of Multilingual IE, aiming to collectively enhance the field’s capability

and application across multiple languages:

1.4.1 RD1: Advancements in Linguistic Feature Processing for

Multilingual IE. The first direction delves into enhancing upstream models that
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process fundamental linguistic features such as sentence boundaries, word tags, and

dependency trees, crucial for the performance of downstream IE models on the four IE

tasks (see Figure 1). Previous work such as those of Manning et al. (2014) and Straka,

Hajič, and Straková (2016) provide a foundation for understanding these models.

To improve upstream models in terms of speed, performance, and linguistic diversity,

we propose Trankit (M. V. Nguyen, Lai, Pouran Ben Veyseh, & Nguyen, 2021), a novel

transformer-based toolkit designed for multilingual NLP. Trankit provides a trainable

NLP pipeline across over 100 languages, alongside 90 pretrained pipelines covering

56 languages. Anchored by a state-of-the-art pretrained language model (Conneau

et al., 2019), Trankit surpasses existing multilingual NLP pipelines in performance

across several key tasks, including sentence segmentation, part-of-speech tagging,

morphological feature tagging, and dependency parsing. Despite incorporating a large

pretrained transformer model, Trankit maintains efficiency in terms of memory use and

processing speed. This efficiency is achieved through a novel plug-and-play mechanism

featuring Adapters (Pfeiffer, Vulić, Gurevych, & Ruder, 2020), allowing for a single

multilingual pretrained transformer to be utilized across different language pipelines.

Details of Trankit are presented in chapter II.

1.4.2 RD2: Language-Agnostic Models for Joint Information

Extraction. Shifting the focus from linguistic feature processing to the architecture

of IE models themselves, this direction aims to develop models that can be universally

applied across languages without requiring language-specific modifications. This

includes a comparative analysis of traditional pipelined approaches (T. H. Nguyen &

Grishman, 2015b; G. Zhou, Su, Zhang, & Zhang, 2005b) against joint models, known

as Joint Information Extraction (JointIE), which perform a suite of IE tasks within a

single model architecture. The comparative study assesses how these models manage
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error propagation and leverage the interdependencies between tasks, with references to

the works of Luan et al. (2019b), Y. Lin et al. (2020b), and Zhang and Ji (2021b). The

development and testing of new language-agnostic models are integral to this direction,

with a focus on models that minimize the need for language-specific adjustments.

Furthermore, enhancing the models’ ability to generalize across languages is crucial,

emphasizing the importance of leveraging language differences and similarities for

improved multilingual training and performance.

In this direction, chapter III introduces FourIE (M. V. Nguyen, Lai, & Nguyen,

2021), our novel model developed to tackle the four tasks of IE within a unified

framework. Unlike previous efforts that have attempted to jointly address these four

IE tasks (Y. Lin et al., 2020b; Luan et al., 2019b; Zhang & Ji, 2021b), FourIE stands

out by offering two innovative contributions designed to capture the interdependencies

between tasks effectively. The first contribution is at the representation level, where we

introduce an interaction graph that connects instances across the four tasks. This graph

is utilized to enhance the prediction representation of one instance by incorporating

insights from related instances of the other tasks. The second contribution is at the

label level, where we present a dependency graph specifically for the information types

involved in the four IE tasks. This graph delineates the relationships between the

types found within an input sentence, thereby capturing the intricate connections

among them. Following this, we propose other innovative models that can jointly

perform the four IE tasks, namely, DepIE, and GraphIE that offer more advanced

mechanisms to capture such cross-task dependencies better.

1.4.3 RD3: Learning Methods for IE in Low-Resource Languages.

The third direction addresses the challenge of non-existent or limited training data in

target languages. In case the training data in target languages do not exist, previous
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work tackles this by using multilingual word embeddings (X. Chen & Cardie, 2018;

Heyman, Verreet, Vulić, & Moens, 2019) and pre-trained language models (Conneau

et al., 2019; Devlin et al., 2019b) to generate crosslingual representation vectors,

examining their efficacy in adapting knowledge from high-resource languages to improve

IE in the target languages (J. Liu, Chen, Liu, & Zhao, 2019a; M’hamdi, Freedman,

& May, 2019; Subburathinam et al., 2019). Moreover, addressing monolingual bias

becomes a pivotal aspect of this research direction, employing strategies such as

language adversarial training to combat biases originating from the predominance

of source language data in model training (X. Chen et al., 2019; Huang et al., 2019;

Lange et al., 2020b). In the other case where limited training data in target languages

is available, active learning can be employed to effectively annotate more training

examples for maximizing the performance of the model in the target languages (Shen,

Yun, Lipton, Kronrod, & Anandkumar, 2017b).

To deal with the first scenario, chapter IV presents our novel learning method called

CCCAR for class- and word category-based crosslingual alignment of representations

(M. V. Nguyen, Nguyen, Min, & Nguyen, 2021). Our main idea behind is to ensure

similar representations of the same concepts (i.e., word categories and class labels)

across source and target languages for improving the cross-lingual transferability of

the model. If the training data for the target languages is limitedly available, we

offer our novel active learning framework called FAMIE (M. V. Nguyen, Ngo, Min, &

Nguyen, 2022). The framework employs a small proxy model for fast training and

data selection, effectively building IE models for target languages through iterative

annotations of more training examples.

1.4.4 RD4: Potential Applications of Information Extraction for

Enhancing Large Language Models. Recent research (Achiam et al., 2023; Brown
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et al., 2020; Chowdhery et al., 2023; Chung et al., 2022) highlights the importance

of large language models (LLMs) in the field of NLP, owing to their exceptional

capabilities across different tasks. While these LLMs have acquired a degree of world

knowledge through their training process (Petroni et al., 2019; Roberts, Raffel, &

Shazeer, 2020a), they are prone to generating false or imaginary information (Maynez,

Narayan, Bohnet, & McDonald, 2020; C. Zhou et al., 2021a). To mitigate this

issue, enhancing LLMs with the capability to retrieve accurate information from

external databases has been identified as a promising approach (Izacard et al., 2022;

Khandelwal, Levy, Jurafsky, Zettlemoyer, & Lewis, 2020). This method suggests that

the effectiveness of LLMs could significantly rely on the quality of the data retrieved. IE

has proven to be an invaluable asset in refining these retrieval processes by converting

unstructured text into structured data, thereby facilitating the development of more

sophisticated retrieval systems (Borisov, Aliannejadi, & Crestani, 2021; Corcoglioniti,

Dragoni, Rospocher, & Aprosio, 2016) that ultimately benefit retrieval-augmented

generation (RAG)-based LLMs.

In light of this, we introduce an innovative RAG framework - KARP (M. Nguyen,

C, Nguyen, Chadha, & Vu, 2023) in chapter V, comprising a novel knowledge retrieval

component and a LLM for open domain question answering. Given a user question,

our framework employs the knowledge retriever to extract relevant words from each

potential web context to assess their relevance and determine the most suitable contexts

for the LLM to generate answers. Furthermore, we propose a novel finetuning method

for training the LLM to efficiently exploit both external and internal knowledge for

answer generation.

This dissertation contains materials from published and co-authored papers. We

acknowledge all the co-authors: Thien Huu Nguyen, Amir Pouran Ben Veyseh, Viet
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Dac Lai, Bonan Min, Tuan Ngo Nguyen, Nghia Trung Ngo, Franck Dernoncourt, Toan

Quoc Nguyen, Kishan KC, Ankit Chadha, and Thuy Vu.
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CHAPTER II

ADVANCEMENTS IN LINGUISTIC FEATURE PROCESSING FOR

MULTILINGUAL IE

This chapter contains materials from the published paper “Minh Nguyen, Viet Dac

Lai, Amir Pouran Ben Veyseh, and Thien Huu Nguyen. ‘Trankit: A Light-Weight

Transformer-based Toolkit for Multilingual Natural Language Processing’

In Proceedings of the 16th Conference of the European Chapter of the Association

for Computational Linguistics: System Demonstrations, 2021” (M. V. Nguyen, Lai,

Pouran Ben Veyseh, & Nguyen, 2021). Minh was responsible for the system design

and implementation, experiments, evaluation and writing as the first author. Thien,

Viet and Amir provided meaningful discussion and analysis. Thien provided editorial

writing for the paper submission. The paper was revised to comply with the dissertation

format and purposes.

In the exploration of Multilingual IE, this dissertation delineates a comprehensive

approach across four distinct research directions (RDs) toward answering the four

research questions (RQ1, RQ2, RQ3, and RQ4) stated in chapter I. The first direction

(RD1) delves into enhancing upstream models that process fundamental linguistic

features such as sentence boundaries, word tags, and dependency trees, crucial for the

performance of downstream IE models on the four IE tasks.

To improve upstream models in terms of speed, performance, and linguistic

diversity, this chapter introduces Trankit, a novel transformer-based toolkit designed for

multilingual NLP. Trankit provides a trainable NLP pipeline across over 100 languages,

alongside 90 pretrained pipelines covering 56 languages. Anchored by a state-of-the-art

pretrained language model, Trankit surpasses existing multilingual NLP pipelines

in performance across several key tasks, including sentence segmentation, part-of-
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speech tagging, morphological feature tagging, and dependency parsing. Despite

incorporating a large pretrained transformer model, Trankit maintains efficiency in

terms of memory use and processing speed. This efficiency is achieved through a

novel plug-and-play mechanism featuring Adapters, allowing for a single multilingual

pretrained transformer to be utilized across different language pipelines.

2.1 Introduction

Many efforts have been devoted to developing multilingual NLP systems to

overcome language barriers (Aharoni, Johnson, & Firat, 2019; Kanayama & Iwamoto,

2020; J. Liu, Chen, Liu, & Zhao, 2019b; M. V. Nguyen & Nguyen, 2021a; Taghizadeh

& Faili, 2020; Zhu, 2020). A large portion of existing multilingual systems has

focused on downstream NLP tasks that critically depend on upstream linguistic

features, ranging from basic information such as token and sentence boundaries for

raw text to more sophisticated structures such as part-of-speech tags, morphological

features, and dependency trees of sentences (called fundamental NLP tasks). As such,

building effective multilingual systems/pipelines for fundamental upstream NLP tasks

to produce such information has the potentials to transform multilingual downstream

systems.

There have been several NLP toolkits that concerns multilingualism for fundamental

NLP tasks, featuring spaCy1, UDify (Kondratyuk & Straka, 2019), Flair (Akbik et

al., 2019), CoreNLP (Manning et al., 2014), UDPipe (Straka, 2018b), and Stanza

(Qi, Zhang, Zhang, Bolton, & Manning, 2020b). However, these toolkits have their

own limitations. spaCy is designed to focus on speed, thus it needs to sacrifice

the performance. UDify and Flair cannot process raw text as they depend on

external tokenizers. CoreNLP supports raw text, but it does not offer state-of-

1https://spacy.io/
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Figure 2. Overall architecture of Trankit. A single multilingual pretrained transformer
is shared across three components (pointed by the red arrows) of the pipeline for
different languages.

the-art performance. UDPipe and Stanza are the recent toolkits that leverage word

embeddings, i.e., word2vec (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013) and

fastText (Bojanowski, Grave, Joulin, & Mikolov, 2017), to deliver current state-of-

the-art performance for many languages. However, Stanza and UDPipe’s pipelines for

different languages are trained separately and do not share any component, especially

the embedding layers that account for most of the model size. This makes their memory

usage grow aggressively as pipelines for more languages are simultaneously needed and

loaded into the memory (e.g., for language learning apps). Most importantly, none of

such toolkits have explored contextualized embeddings from pretrained transformer-

based language models that have the potentials to significantly improve the performance

of the NLP tasks, as demonstrated in many prior works (Conneau et al., 2020; Devlin

et al., 2019b; Y. Liu et al., 2019).

In this paper, we introduce Trankit, a multilingual Transformer-based NLP Toolkit

that overcomes such limitations. Our toolkit can process raw text for fundamental
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NLP tasks, supporting 56 languages with 90 pre-trained pipelines on 90 treebanks of

the Universal Dependency v2.5 (Zeman et al., 2019). By utilizing the state-of-the-art

multilingual pretrained transformer XLM-Roberta (Conneau et al., 2020), Trankit

advances state-of-the-art performance for sentence segmentation, part-of-speech (POS)

tagging, morphological feature tagging, and dependency parsing while achieving

competitive or better performance for tokenization, multi-word token expansion, and

lemmatization over the 90 treebanks. It also obtains competitive or better performance

for named entity recognition (NER) on 11 public datasets.

Unlike previous work, our token and sentence splitter is wordpiece-based instead of

character-based to better exploit contextual information, which are beneficial in many

languages. Considering the following sentence:

“John Donovan from Argghhh! has put out a excellent slide show on what was

actually found and fought for in Fallujah.”

As such, Trankit correctly recognizes this as a single sentence while character-based

sentence splitters of Stanza and UDPipe are easily fooled by the exclamation mark

“!”, treating it as two separate sentences. To our knowledge, this is the first work to

successfully build a wordpiece-based token and sentence splitter that works well for 56

languages.

Figure 2 presents the overall architecture of Trankit pipeline that features three

novel transformer-based components for: (i) the joint token and sentence splitter,

(ii) the joint model for POS tagging, morphological tagging, dependency parsing,

and (iii) the named entity recognizer. One potential concern for our use of a large

pretrained transformer model (i.e., XML-Roberta) in Trankit involves GPU memory

where different transformer-based components in the pipeline for one or multiple

languages must be simultaneously loaded into the memory to serve multilingual tasks.
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This could extensively consume the memory if different versions of the large pre-

trained transformer (finetuned for each component) are employed in the pipeline. As

such, we introduce a novel plug-and-play mechanism with Adapters to address this

memory issue. Adapters are small networks injected inside all layers of the pretrained

transformer model that have shown their effectiveness as a light-weight alternative

for the traditional finetuning of pretrained transformers (Houlsby et al., 2019; Peters,

Ruder, & Smith, 2019b; Pfeiffer, Rücklé, et al., 2020; Pfeiffer, Vulić, et al., 2020). In

Trankit, a set of adapters (for transfomer layers) and task-specific weights (for final

predictions) are created for each transformer-based component for each language while

only one single large multilingual pretrained transformer is shared across components

and languages. Adapters allow us to learn language-specific features for tasks. During

training, the shared pretrained transformer is fixed while only the adapters and task-

specific weights are updated. At inference time, depending on the language of the

input text and the current active component, the corresponding trained adapter and

task-specific weights are activated and plugged into the pipeline to process the input.

This mechanism not only solves the memory problem but also substantially reduces

the training time.

2.2 Related Work

There have been works using pre-trained transformers to build models for character-

based word segmentation for Chinese (Che, Feng, Qin, & Liu, 2020; Tian et al., 2020;

H. Yang, 2019); POS tagging for Dutch, English, Chinese, and Vietnamese (Che

et al., 2020; de Vries et al., 2019; D. Q. Nguyen & Tuan Nguyen, 2020; Tenney,

Das, & Pavlick, 2019; Tian et al., 2020); morphological feature tagging for Estonian

and Persian (Kittask, Milintsevich, & Sirts, 2020; Mohseni & Tebbifakhr, 2019);

and dependency parsing for English and Chinese (Che et al., 2020; Tenney et al.,
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2019). However, all of these works are only developed for some specific language, thus

potentially unable to support and scale to the multilingual setting.

Some works have designed multilingual transformer-based systems via multilingual

training on the combined data of different languages (Kondratyuk & Straka, 2019;

Tsai et al., 2019; Üstün, Bisazza, Bouma, & van Noord, 2020). However, multilingual

training is suboptimal (see Section 2.5). Also, these systems still rely on external

resources to perform tokenization and sentence segmentation, thus unable to consume

raw text. To our knowedge, this is the first work to successfully build a multilingual

transformer-based NLP toolkit where different transformer-based models for many

languages can be simultaneously loaded into GPU memory and process raw text inputs

of different languages.

2.3 Design and Architecture

Add & Norm

Add & Norm

Add & Norm

Adapter

Feed-forward

Multi-Head Attention Add & Norm

FF Up

FF Down

Adapter

Figure 3. Left: location of an adapter (green box) inside a layer of the pretrained
transformer. Gray boxes represent the original components of a transformer layer.
Right: the network architecture of an adapter.

Adapters. Adapters play a critical role in making Trankit memory- and time-efficient

for training and inference. Figure 3 shows the architecture and the location of an

adapter inside a layer of transformer. We use the adapter architecture proposed

by (Pfeiffer, Rücklé, et al., 2020; Pfeiffer, Vulić, et al., 2020), which consists of two
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projection layers Up and Down (feed-forward networks), and a residual connection.

ci = AddNorm(ri), hi = Up(ReLU(Down(ci))) + ri (2.1)

where ri is the input vector from the transformer layer for the adapter and hi is

the output vector for the transformer layer i. During training, all the weights of

the pretrained transformer (i.e., gray boxes) are fixed and only the adapter weights

of two projection layers and the task-specific weights outside the transformer (for

final predictions) are updated. As demonstrated in Figure 2, Trankit involves six

components described as follows.

Multilingual Encoder with Adapters. This is our core component that is shared

across different transformer-based components for different languages of the system.

Given an input raw text s, we first split it into substrings by spaces. Afterward,

Sentence Piece, a multilingual subword tokenizer (Kudo, 2018; Kudo & Richardson,

2018), is used to further split each substring into wordpieces. By concatenating

wordpiece sequences for substrings, we obtain an overall sequence of wordpieces

w = [w1, w2, . . . , wK ] for s. In the next step, w is fed into the pretrained transformer,

which is already integrated with adapters, to obtain the wordpiece representations:

xl,m1:K = Transformer(w1:K ; θl,mAD) (2.2)

Here, θl,mAD represents the adapter weights for language l and component m of the

system. As such, we have specific adapters in all transformer layers for each component

m and language l. Note that if K is larger than the maximum input length of the

pretrained transformer (i.e., 512), we further divide w into consecutive chunks; each

has the length less than or equal to the maximum length. The pretrained transformer

is then applied over each chunk to obtain a representation vector for each wordpiece

in w. Finally, xl,m1:K will be sent to component m to perform the corresponding task.
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Joint Token and Sentence Splitter. Given the wordpiece representations xl,m1:K

for this component, each vector xl,mi for wi ∈ w will be consumed by a feed-forward

network with softmax in the end to predict if wi is the end of a single-word token, the

end of a multi-word token, or the end of a sentence. The predictions for all wordpieces

in w will then be aggregated to determine token, multi-word token, and sentence

boundaries for s.

Multi-word Token Expander. This component is responsible for expanding each

detected multi-word token (MWT) into multiple syntactic words2. We follow Stanza

to deploy a character-based seq2seq model for this component. This decision is

made based on our observation that the task is done best at character level, and the

character-based model (with character embeddings) is very small.

Treebank System Tokens Sents. Words UPOS XPOS UFeats Lemmas UAS LAS

Overall (90 treebanks)
Trankit 99.23 91.82 99.02 95.65 94.05 93.21 94.27 87.06 83.69
Stanza 99.26 88.58 98.90 94.21 92.50 91.75 94.15 83.06 78.68

Arabic-PADT
Trankit 99.93 96.59 99.22 96.31 94.08 94.28 94.65 88.39 84.68
Stanza 99.98 80.43 97.88 94.89 91.75 91.86 93.27 83.27 79.33
UDPipe 99.98 82.09 94.58 90.36 84.00 84.16 88.46 72.67 68.14

Chinese-GSD
Trankit 97.01 99.7 97.01 94.21 94.02 96.59 97.01 85.19 82.54
Stanza 92.83 98.80 92.83 89.12 88.93 92.11 92.83 72.88 69.82
UDPipe 90.27 99.10 90.27 84.13 84.04 89.05 90.26 61.60 57.81

English-EWT

Trankit 98.48 88.35 98.48 95.95 95.71 96.26 96.84 90.14 87.96
Stanza 99.01 81.13 99.01 95.40 95.12 96.11 97.21 86.22 83.59
UDPipe 98.90 77.40 98.90 93.26 92.75 94.23 95.45 80.22 77.03
spaCy 97.44 63.16 97.44 86.99 91.05 - 87.16 55.38 37.03

French-GSD

Trankit 99.7 96.63 99.66 97.85 - 97.16 97.80 94.00 92.34
Stanza 99.68 94.92 99.48 97.30 - 96.72 97.64 91.38 89.05
UDPipe 99.68 93.59 98.81 95.85 - 95.55 96.61 87.14 84.26
spaCy 99.02 89.73 94.81 89.67 - - 88.55 75.22 66.93

Spanish-Ancora

Trankit 99.94 99.13 99.93 99.02 98.94 98.8 99.17 94.11 92.41
Stanza 99.98 99.07 99.98 98.78 98.67 98.59 99.19 92.21 90.01
UDPipe 99.97 98.32 99.95 98.32 98.13 98.13 98.48 88.22 85.10
spaCy 99.95 97.54 99.43 93.43 - - 80.02 89.35 83.81

Table 1. Systems’ performance on test sets of the Universal Dependencies v2.5
treebanks. Performance for Stanza, UDPipe, and spaCy is obtained using their public
pretrained models. The overall performance for Trankit and Stanza is computed as
the macro-averaged F1 over 90 treebanks. Detailed performance of Trankit for 90
supported treebanks can be found at our documentation page.

2For languages (e.g., English, Chinese) that do not require MWT expansion, tokens and words
are the same concepts.
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Joint Model for POS Tagging, Morphological Tagging and Dependency

Parsing. In Trankit, given the detected sentences and tokens/words, we use a single

model to jointly perform POS tagging, morphological feature tagging and dependency

parsing at sentence level. Joint modeling mitigates error propagation, saves the memory,

and speedups the system. In particular, given a sentence, the representation for each

word is computed as the average of its wordpieces’ transformer-based representations

in xl,m1:K . Let t1:N = [t1, t2, . . . , tN ] be the representations of the words in the sentence.

We compute the following vectors using feed-forward networks FFN∗:

rupos1:N = FFNupos(t1:N ), rxpos1:N = FFNxpos(t1:N )

rufeats1:N = FFNufeats(t1:N ), rdep0:N = [xcls; FFNdep(t1:N )]

Vectors for the words in rupos1:N , rxpos1:N , rufeats1:N are then passed to a softmax layer to make

predictions for UPOS, XPOS, and UFeats tags for each word. For dependency parsing,

we use the classification token <s> to represent the root node, and apply Deep Biaffine

Attention (Dozat & Manning, 2017) and the Chu-Liu/Edmonds algorithm (Chu, 1965;

Edmonds, 1967) to assign a syntactic head and the associated dependency relation to

each word in the sentence.

Lemmatizer. This component receives sentences and their predicted UPOS tags to

produce the canonical form for each word. We also employ a character-based seq2seq

model for this component as in Stanza.

Named Entity Recognizer. Given a sentence, the named entity recognizer

determines spans of entity names by assigning a BIOES tag to each token in the

sentence. We deploy a standard sequence labeling architecture using transformer-based

representations for tokens, involving a feed-forward network followed by a Conditional

Random Field.
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2.4 Usage

Detailed documentation for Trankit can be found at: https://trankit

.readthedocs.io.

Trankit Installation. Trankit is written in Python and available on PyPI: https://

pypi.org/project/trankit/. Users can install our toolkit via pip using:

pip install trankit

Initialize a Pipeline. Lines 1-4 in Figure 4 shows how to initialize a pretrained

pipeline for English; it is instructed to run on GPU and store downloaded pretrained

models to the specified cache directory. Trankit will not download pretrained models

if they already exist.

Multilingual Usage. Figure 4 shows how to initialize a multilingual pipeline and

process inputs of different languages in Trankit:

from trankit import Pipeline

# initialize a multilingual pipeline
p = Pipeline(lang='english', gpu=True, cache_dir='./cache')
langs = ['arabic', 'chinese', 'dutch']
for lang in langs:

p.add(lang)

# tokenize English input
p.set_active('english')
en = p.tokenize('Rich was here before the scheduled time.')

# get ner tags for Arabic input
p.set_active('arabic')
ar = p.ner(' .وكان كنعان قبل ذلك رئيس جهاز الامن والاستطلاع للقوات السورية العاملة في لبنان ')

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Figure 4. Multilingual pipeline initialization.

Basic Functions. Trankit can process inputs which are untokenized (raw) or

pretokenized strings, at both sentence and document levels. Figure 5 illustrates

a simple code to perform all the supported tasks for an input text. We organize

Trankit’s outputs into hierarchical native Python dictionaries, which can be easily
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inspected by users. Figure 6 demonstrates the outputs of the command line 6 in

Figure 5.

from trankit import Pipeline

p = Pipeline(lang='english', gpu=True, cache_dir='./cache')

doc = '''Hello! This is Trankit.'''
# perform all tasks on the input
all = p(doc)

1
2
3
4
5
6
7

Figure 5. A function performing all tasks on the input.

// Output
{

'text': 'Hello! This is Trankit.', // input string
'sentences': [ // list of sentences

{
'id': 1, 'text': 'Hello!', 'dspan': (0, 6), 'tokens': [...]

},
{
'id': 2, // sentence index
'text': 'This is Trankit.', 'dspan': (7, 23), // sentence span
'tokens’: [ // list of tokens

{
'id': 1, // token index
'text': 'This', 'upos': 'PRON', 'xpos': 'DT',
'feats': 'Number=Sing|PronType=Dem',
'head': 3, 'deprel': 'nsubj', 'lemma': 'this', 'ner': 'O',
'dspan': (7, 11), // document-level span of the token
'span': (0, 4)    // sentence-level span of the token

},
{'id': 2...},
{'id': 3...},
{'id': 4...}

]
}

]
}

Figure 6. Output from Trankit. Some parts are collapsed to improve visualization.

Training your own Pipelines. Trankit also provides a trainable pipeline for 100

languages via the class TPipeline. This ability is inherited from the XLM-Roberta

encoder which is pretrained on those languages. Figure 7 illustrates how to train a

token and sentence splitter with TPipeline.

Demo Website. A demo website for Trankit to support 90 pretrained pipelines is

hosted at: http://nlp.uoregon.edu/trankit. Figure 8 shows its interface.

2.5 System Evaluation

2.5.1 Datasets & Hyper-parameters. To achieve a fair comparison, we

follow Stanza (Qi et al., 2020b) to train and evaluate all the models on the same
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from trankit import TPipeline

tp = TPipeline(training_config={
'task': 'tokenize',
'save_dir': './saved_model',
'train_txt_fpath': './train.txt',
'train_conllu_fpath': './train.conllu',
'dev_txt_fpath': './dev.txt',
'dev_conllu_fpath': './dev.conllu'})

trainer.train()

1
2
3
4
5
6
7
8
9
10
11

Figure 7. Training a token and sentence splitter using the CONLL-U formatted data
(Nivre et al., 2020).

Figure 8. Demo website for Trankit.

canonical data splits of 90 Universal Dependencies treebanks v2.5 (UD2.5)3 (Zeman

et al., 2019), and 11 public NER datasets provided in the following corpora: AQMAR

(Mohit, Schneider, Bhowmick, Oflazer, & Smith, 2012), CoNLL02 (Tjong Kim Sang,

2002), CoNLL03 (Tjong Kim Sang & De Meulder, 2003), GermEval14 (Benikova,

Biemann, & Reznicek, 2014), OntoNotes (Weischedel et al., 2013), and WikiNER

(Nothman, Ringland, Radford, Murphy, & Curran, 2012). Hyper-parameters for all

models and datasets are selected based on the development data in this work.

3We skip 10 treebanks whose languages are not supported by XLM-Roberta.
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System Tokens Sents. Words UPOS XPOS UFeats Lemmas UAS LAS
Trankit (with adapters) 99.05 95.12 98.96 95.43 89.02 92.69 93.46 86.20 82.51
Multilingual 96.69 88.95 96.35 91.19 84.64 88.10 90.02 72.96 68.66
No-adapters 95.06 89.57 94.08 88.79 82.54 83.76 88.33 66.63 63.11

Table 2. Model performance on 9 different treebanks (macro-averaged F1 score over
test sets).

2.5.2 Universal Dependencies performance. Table 1 compares the

performance of Trankit and the latest available versions of other popular toolkits,

including Stanza (v1.1.1) with current state-of-the-art performance, UDPipe (v1.2),

and spaCy (v2.3) on the UD2.5 test sets. The performance for all systems is obtained

using the official scorer of the CoNLL 2018 Shared Task4. On five illustrated languages,

Trankit achieves competitive performance on tokenization, MWT expansion, and

lemmatization. Importantly, Trankit outperforms other toolkits over all remaining

tasks (e.g., POS and morphological tagging) in which the improvement boost is

substantial and significant for sentence segmentation and dependency parsing. For

example, English enjoys a 7.22% improvement for sentence segmentation, a 3.92% and

4.37% improvement for UAS and LAS in dependency parsing. For Arabic, Trankit

has a remarkable improvement of 16.16% for sentence segmentation while Chinese

observes 12.31% and 12.72% improvement of UAS and LAS for dependency parsing.

Over all 90 treebanks, Trankit outperforms the previous state-of-the-art framework

Stanza in most of the tasks, particularly for sentence segmentation (+3.24%), POS

tagging (+1.44% for UPOS and +1.55% for XPOS), morphological tagging (+1.46%),

and dependency parsing (+4.0% for UAS and +5.01% for LAS) while maintaining the

competitive performance on tokenization, multi-word expansion, and lemmatization.

2.5.3 NER results. Table 3 compares Trankit with Stanza (v1.1.1), Flair

(v0.7), and spaCy (v2.3) on the test sets of 11 considered NER datasets. Following

4https://universaldependencies.org/conll18/evaluation.html
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Stanza, we report the performance for other toolkits with their pretrained models on

the canonical data splits if they are available. Otherwise, their best configurations are

used to train the models on the same data splits (inherited from Stanza). Also, for

the Dutch datasets, we retrain the models in Flair as those models (for Dutch) have

been updated in version v0.7. As can be seen, Trankit obtains competitive or better

performance for most of the languages, clearly demonstrating the benefit of using the

pretrained transformer for multilingual NER.

Language Corpus Trankit Stanza Flair spaCy
Arabic AQMAR 74.8 74.3 74.0 -
Chinese OntoNotes 80.0 79.2 - 69.3

Dutch
CoNLL02 91.8 89.2 91.3 73.8
WikiNER 94.8 94.8 94.8 90.9

English
CoNLL03 92.1 92.1 92.7 81.0
OntoNotes 89.6 88.8 89.0 85.4

French WikiNER 92.3 92.9 92.5 88.8

German
CoNLL03 84.6 81.9 82.5 63.9
GermEval14 86.9 85.2 85.4 68.4

Russian WikiNER 92.8 92.9 - -
Spanish CoNLL02 88.9 88.1 87.3 77.5

Table 3. Performance (F1) on NER test sets.

System
GPU CPU

UD NER UD NER

Trankit 4.50× 1.36× 19.8× 31.5×
Stanza 3.22× 1.08× 10.3× 17.7×
UDPipe - - 4.30× -

Flair - 1.17× - 51.8×

Table 4. Run time on processing the English EWT treebank and the English Ontonotes
NER dataset. Measurements are done on an NVIDIA Titan RTX card.

2.5.4 Speed and Memory Usage. Table 4 reports the relative processing

time for UD and NER of the toolkits compared to spaCy’s CPU processing time5.

For memory usage comparison, we show the model sizes of Trankit and Stanza for

5spaCy can process 8140 tokens and 5912 tokens per second for UD and NER, respectively.
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Model Package Trankit Stanza

Multilingual Transformer 1146.9MB -

Arabic 38.6MB 393.9MB

Chinese 40.6MB 225.2MB

English 47.9MB 383.5MB

French 39.6MB 561.9MB

Spanish 37.3MB 556.1MB

Total size 1350.9MB 2120.6MB

Table 5. Model sizes for five languages.

several languages in Table 5. As can be seen, besides the multilingual transformer,

model packages in Trankit only take dozens of megabytes while Stanza consumes

hundreds of megabytes for each package. This leads to the Stanza’s usage of much

more memory when the pipelines for these languages are loaded at the same time.

In fact, Trankit only takes 4.9GB to load all the 90 pretrained pipelines for the 56

supported languages.

2.5.5 Ablation Study. This section compares Trankit with two other

possible strategies to build a multilingual system for fundamental NLP tasks. In

the first strategy (called “Multilingual”), we train a single pipeline where all the

components in the pipeline are trained with the combined training data of all the

languages. The second strategy (called “No-adapters”) involves eliminating adapters

from XLM-Roberta in Trankit. As such, in “No-adapters”, pipelines are still trained

separately for each language; the pretrained transformer is fixed; and only task-specific

weights (for predictions) in components are updated during training.

For evaluation, we select 9 treebanks for 3 different groups, i.e., high-resource,

medium-resource, and low-resource, depending on the sizes of the treebanks. In

particular, the high-resource group includes Czech, Russian, and Arabic; the

medium-resource group includes French, English, and Chinese; and the low-resource

group involves Belarusian, Telugu, and Lithuanian. Table 2 compares the average
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performance of Trankit, “Multilingual”, and “No-adapters”. As can be seen,

“Multilingual” and “No-adapters” are significantly worse than the proposed adapter-

based Trankit. We attribute this to the fact that multilingual training might suffer

from unbalanced sizes of treebanks, causing high-resource languages to dominate

others and impairing the overall performance. For “No-adapters”, fixing pretrained

transformer might significantly limit the models’ capacity for multiple tasks and

languages.

2.6 Summary

We introduce Trankit, a transformer-based multilingual toolkit that significantly

improves the performance for fundamental NLP tasks, including sentence segmentation,

part-of-speech, morphological tagging, and dependency parsing over 90 Universal

Dependencies v2.5 treebanks of 56 different languages. Our toolkit is fast on GPUs

and efficient in memory use, making it usable for general users.
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CHAPTER III

LANGUAGE-AGNOSTIC MODELS FOR JOINT INFORMATION EXTRACTION

This chapter contains materials from the published papers: “Minh Nguyen,

Viet Dac Lai, and Thien Huu Nguyen. ‘Cross-Task Instance Representation

Interactions and Label Dependencies for Joint Information Extraction

with Graph Convolutional Networks’ In Proceedings of the 2021 Conference of

the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, 2021” (M. V. Nguyen, Lai, & Nguyen, 2021); “Minh Nguyen,

Bonan Min, Franck Dernoncourt, and Thien Nguyen. ‘Learning Cross-Task

Dependencies for Joint Extraction of Entities, Events, Event Arguments,

and Relations’ In Proceedings of the 2022 Conference on Empirical Methods in

Natural Language Processing, 2022” (M. V. Nguyen, Min, et al., 2022b); and “Minh

Nguyen, Bonan Min, Franck Dernoncourt, and Thien Nguyen. ‘Joint Extraction

of Entities, Relations, and Events via Modeling Inter-Instance and

Inter-Label Dependencies’ In Proceedings of the 2022 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies, 2022” (M. V. Nguyen, Min, et al., 2022a). Minh was responsible for the

model design, experiments, evaluation and writing as the first author. Thien, Viet,

Bonan, and Franck provided meaningful discussion and analysis. Thien contributed

to the model design and editorial writing for the paper submissions. The papers were

revised to comply with the dissertation format and purposes.

After introducing Trankit to enhance the upstream models for multilingual IE

in chapter II, this chapter shifts the focus from linguistic feature processing to

the architecture of IE models themselves (RD2). RD2 aims to develop models

that can be universally applied across languages without requiring language-specific
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modifications. In this chapter, we introduce FourIE, DepIE, and GraphIE, our novel

language-agnostic models developed to tackle the four tasks of IE within a unified

framework. These models offer innovative contributions designed to capture the

interdependencies between tasks effectively, improving upon previous efforts in joint

IE. FourIE introduces an interaction graph and a dependency graph to capture cross-

task dependencies at both the representation and label levels. DepIE improves upon

FourIE by learning cross-task dependencies from data instead of manually defining

them based on heuristics. GraphIE addresses limitations in prior joint IE models to

better capture dependencies between task instances and their labels, utilizing learned

dependency graphs, Conditional Random Fields, and Simulated Annealing for optimal

performance. The models achieve state-of-the-art performance for joint IE on both

monolingual and multilingual learning settings across various datasets and languages.

3.1 FourIE

3.1.1 Introduction. Information Extraction (IE) is an important and

challenging task in Natural Language Processing (NLP) that aims to extract structured

information from unstructured texts. Following the terminology for IE in the popular

ACE 2005 program (Walker, Strassel, Medero, & Maeda, 2006), we focus on four

major IE tasks in this work: entity mention extraction (EME), relation extraction

(RE), event trigger detection (ETD), and event argument extraction (EAE).

Given an input sentence, a vast majority of prior work has solved the four tasks in IE

independently at both instance and task levels (called independent prediction models).

First, at the instance level, each IE task often requires predictions/classifications for

multiple instances in a single input sentence. For instance, in RE, one often needs to

predict relations for every pair of entity mentions (called relation instances) in the

sentence while multiple word spans in the sentence can be viewed as multiple instances
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  Person																																																										Vehicle	Transport														Facility		
A man driving what appeared to be a taxicab came to the checkpoint , 
            Person
waved soldiers over , appeared to be having mechanical problems of 

some kind .

PHYS

ART

00Artifact
Destination

PHYS

Figure 9. A sentence example with the annotations for the four IE tasks. Blue words
corresponds to entity mentions while red words are event triggers. Also, orange edges
represent relations while green edges indicate argument roles.

where event type predictions have to be made in ETD (trigger instances). As such,

most prior work on IE has performed predictions for instances in a sentence separately

by treating each instance as one example in the dataset (Y. Chen, Xu, Liu, Zeng, &

Zhao, 2015a; V. D. Lai, Nguyen, & Nguyen, 2020; T. H. Nguyen & Grishman, 2015a,

2015c; Santos & Guimaraes, 2015; G. Zhou, Su, Zhang, & Zhang, 2005a). Second,

at the task level, prior work on IE tends to perform the four tasks in a pipelined

approach where outputs from one task are used as inputs for other tasks (e.g., EAE

is followed by EME and ETD) (Y. Chen et al., 2015a; Q. Li, Ji, & Huang, 2013a;

Veyseh, Nguyen, & Nguyen, 2020a).

Despite its popularity, the main issue of the independent prediction models is that

they suffer from the error propagation between tasks and the failure to exploit the

cross-task and cross-instance inter-dependencies within an input sentence to improve

the performance for IE tasks. For instance, such systems are unable to benefit from

the dependency that the Victim of a Die event has a high chance to also be the Victim

of an Attack event in the same sentence (i.e., type or label dependencies). To address

these issues, some prior work has explored joint inference models where multiple tasks

of IE are performed simultaneously for all task instances in a sentence, using both

feature-based models (Q. Li et al., 2013a; Miwa & Sasaki, 2014; Roth & Yih, 2004a;
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Span Detection

Mention

Trigger

A man driving what appeared to be a taxicab came to the checkpoint , waved soldiers over , …

BERT Encoder + Two Conditional Random Fields for event trigger and entity mention sequence labeling

Instance Interaction

A man driving what appeared to be a taxicab came to the checkpoint , waved soldiers over , …

came

man taxicab checkpoint soldiers

Event trigger

Entity mention

Event argument

Relation

(Candidates)

Type Prediction &
Regularization

Instance representations:

Soft predicted labels:

Gold labels:

Gumbel-Softmax

One-hot samples:

Figure 10. Overall architecture of our proposed model. At the representation level,
GCNinst is used to enrich the representations for instances of the four tasks. At the
label level, GCNtype is responsible for capturing the connections between the types in
the dependency graphs, thus helping the model learn the structural difference between
the gold graph Ggold and the predicted graph Gpred.
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B. Yang & Mitchell, 2016a) and recent deep learning models (Miwa & Bansal, 2016;

Zhang, Qin, Zhang, Liu, & Ji, 2019). However, such prior work has mostly considered

joint models for a subset of the four IE tasks (e.g., EME+RE or ETD+EAE), thus

still suffering from the error propagation issue (with the missing tasks) and failing to

fully exploit potential inter-dependencies between the four tasks. To this end, this

work aims to design a single model to simultaneously solve the four IE tasks for each

input sentence (joint four-task IE) to address the aforementioned issues of prior joint

IE work.

Few recent work has considered joint four-task IE, using deep learning to produce

state-of-the-art (SOTA) performance for the tasks (Y. Lin, Ji, Huang, & Wu, 2020a;

Wadden, Wennberg, Luan, & Hajishirzi, 2019a). However, there are still two problems

that hinder further improvement of such models. First, at the instance level, an

important component of deep learning models for joint IE involves the representation

vectors of the instances that are used to perform the corresponding prediction tasks for

IE in an input sentence (called predictive instance representations). For joint four-task

IE, we argue that there are inter-dependencies between predictive representation

vectors of related instances for the four tasks that should be modeled to improve the

performance for IE. For instance, the entity type information encoded in the predictive

representation vector for an entity mention can constrain the argument role that

the representation vector for a related EAE instance (e.g., involving the same entity

mention and some event trigger in the same sentence) should capture and vice versa.

As such, prior work for joint four-task IE has only computed predictive representation

vectors for instances of the tasks independently using shared hidden vectors from

some deep learning layer (Y. Lin et al., 2020a; Wadden et al., 2019a). Although

this shared mechanism helps capture the interaction of predictive representation
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vectors to some extent, it fails to explicitly present the connections between related

instances of different tasks and encode them into the representation learning process.

Consequently, to overcome this issue, we propose a novel deep learning model for joint

four-task IE (called FourIE) that creates a graph structure to explicitly capture the

interactions between related instances of the four IE tasks in a sentence. This graph

will then be consumed by a graph convolutional network (GCN) (Kipf & Welling,

2017; T. H. Nguyen & Grishman, 2018a) to enrich the representation vector for an

instance with those from the related (neighboring) instances for IE.

Second, at the task level, existing joint four-task models for IE have only exploited

the cross-task type dependencies in the decoding step to constrain predictions for

the input sentence (by manually converting the type dependency graphs of the input

sentence into global feature vectors for scoring the predictions in the beam search-based

decoding) (Y. Lin et al., 2020a). The knowledge from cross-task type dependencies

thus cannot contribute to the training process of the IE models. This is unfortunate

as we expect that deeper integration of this knowledge into the training process could

provide useful information to enhance representation learning for IE tasks. To this

end, we propose to use the knowledge from cross-task type dependencies to obtain an

additional training signal for each sentence to directly supervise our joint four-task IE

model. In particular, our motivation is that the types expressed in a sentence for the

four IE tasks can be organized into a dependency graph between the types (global

type dependencies for the sentence). As such, in order for a joint model to perform

well, the type dependency graph generated by its predictions for a sentence should

be similar to the dependency graph obtained from the golden types (i.e., a global

type constraint on the predictions in the training step). A novel regularization term

is thus introduced into the training loss of our joint model to encode this constraint,
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employing another GCN to learn representation vectors for the predicted and golden

dependency graphs to facilitate the graph similarity promotion. To our knowledge,

this is the first work that employs global type dependencies to regularize joint models

for IE.

Finally, our extensive experiments demonstrate the effectiveness of the proposed

model on benchmark datasets in three different languages (e.g., English, Chinese, and

Spanish), leading to state-of-the-art performance on different settings.

3.1.2 Problem Statement and Background. The joint four-task IE

problem in this work takes a sentence as the input and aims to jointly solve four

tasks EAE, ETD, RE, and EAE using an unified model. As such, the goal of EME

is to detect and classify entity mentions (names, nominals, pronouns) according to

a set of predefined (semantic) entity types (e.g., Person). Similarly, ETD seeks to

identify and classify event triggers (verbs or normalization) that clearly evoke an event

in some predefined set of event types (e.g., Attack). Note that event triggers can

involve multiple words. For RE, its concern is to predict the semantic relationship

between two entity mentions in the sentence. Here, the set of relations of interest is

also predefined and includes a special type of None to indicate no-relation. Finally, in

EAE, given an event trigger, the systems need to predict the roles (also in a predefined

set with a special type None) that each entity mention plays in the corresponding

event. Entity mentions are thus also called event argument candidates in this work.

Figure 9 presents a sentence example where the expected outputs for each IE task are

illustrated.

Graph Convolutional Networks (GCN): As GCNs are used extensively in our

model, we present their computation process in this section to facilitate the discussion.

Given a graph G = (V,E) where V = {v1, . . . , vu} is the node set (with u nodes)
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and E is the edge set. In GCN, the edges in G are often captured via the adjacency

matrix A ∈ Ru×u. Also, each node vi ∈ V is associated with an initial hidden vector

v0
i . As such, a GCN model involves multiple layers of abstraction in which the hidden

vector vl
i for the node vi ∈ V at the l-th layer is computed by (l ≥ 1):

vl
i = ReLU(

∑u
j=1 AijW

lvl−1
j + bl∑u

j=1 Aij

)

where Wl and bl are trainable weight and bias at the l-th layer. Assuming N GCN

layers, the hidden vectors for the nodes in V at the last layer vN
1 , . . . ,v

N
u would

capture richer and more abstract information for the nodes, serving as the outputs of

the GCN model. This process is denoted by: vN
1 , . . . ,v

N
u = GCN(A;v0

1, . . . ,v
0
u;N).

3.1.3 Model. Given an input sentence w = [w1, w2, . . . , wn] (with n words),

our model for joint four-task IE on w involves three major components: (i) Span

Detection, (ii) Instance Interaction, and (iii) Type Dependency-based Regularization.

Span Detection: This component aims to identify spans of entity mentions and

event triggers in w that would be used to form the nodes in the interaction graph

between different instances of our four IE tasks for w. As such, we formulate the span

detection problems as sequence labeling tasks where each word wi in w is associated

with two BIO tags to capture the span information for entity mentions and event

triggers in w. Note that we do not predict entity types and event types at this step,

leading to only three possible values (i.e., B, I, and O) for the tags of the words.

In particular, following (Y. Lin et al., 2020a), we first feed w into the pre-trained

BERT encoder (Devlin, Chang, Lee, & Toutanova, 2019a) to obtain a sequence

of vectors X = [x1,x2, . . . ,xn] to represent w. Here, each vector xi serves as the

representation vector for the word wi ∈ w that is obtained by averaging the hidden

vectors of the word-pieces of wi returned by BERT. Afterward, X is fed into two

conditional random field (CRF) layers to determine the best BIO tag sequences for
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event mentions and event triggers for w, following (Chiu & Nichols, 2016). As such, the

Viterbi algorithm is used to decode the input sentence while the negative log-likelihood

losses are employed as the training objectives for the span detection component of

the model. For convenience, let Lent
span and Ltrg

span be the negative log-likelihoods of the

gold tag sequences for entity mentions and event triggers (respectively) for w. These

terms will be included in the overall loss function of the model later.

Instance Interaction: Based on the tag sequences forw from the previous component,

we can obtain two separate span sets for the entity mentions and event triggers inw (the

golden spans are used in the training phase to avoid noise). For the next computation,

we first compute a representation vector for each span (i, j) (1 ≤ i ≤ j ≤ n) in these

two sets by averaging the BERT-based representation vectors for the words in this

span (i.e., xi, . . . ,xj). For convenience, let Rent = {e1, e2, . . . , enent} (nent = |Rent|)

and Rtrg = {t1, t2, . . . , tntrg} (ntrg = |Rtrg|) be the sets of span representation vectors

for the entity mentions and event triggers in w1. The goal of this component is to

leverage such span representation vectors to form instance representations and enrich

them with instance interactions to perform necessary predictions in IE.

Instance Representation: Prediction instances in our model amount to the specific

objects that we need to predict a type for one of the four IE tasks. As such, the

prediction instances for EME and ETD, called entity and trigger instances, correspond

directly to the entity mentions and event triggers in Rent and Rtrg respectively (as

we need to predict the entity types for ei ∈ Rent and the event types for ti ∈ Rtrg

in this step). Thus, we also use Rent and Rtrg as the sets of initial representation

vectors for the entity/event instances for EME and ETD in the following. Next,

for RE, the prediction instances (called relation instances) involve pairs of entity

1We will also refer to entity mentions and event triggers interchangeably with their span
representations ei and ti in this work.
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mentions in Rent. To obtain the initial representation vector for a relation instance,

we concatenate the representation vectors of the two corresponding entity mentions,

leading to the set of representation vectors relij for relation instances: Rrel = {relij =

[ei, ej] | ei, ej ∈ Rent, i < j} (|Rrel| = nent(nent − 1)/2). Finally, for EAE, we form

the prediction instances (called argument instances) by pairing each event trigger

in Rtrg with each entity mention in Rent (for the argument role predictions of the

entity mentions with respect to the event triggers/mentions). By concatenating the

representation vectors of the paired entity mentions and event triggers, we generate

the initial representation vectors argij for the corresponding argument instances:

Rarg = {argij = [ti, ej] | ti ∈ Rtrg, ej ∈ Rent} (|Rarg| = ntrgnent)
2. We also use the

prediction instances and their representation vectors interchangeably in this work.

Instance Interaction: The initial representation vectors for the instances so far do

not explicitly consider beneficial interactions between related instances. To address

this issue, we explicitly create an interaction graph between the prediction instances

for the four IE tasks to connect related instances to each other. This graph will

be consumed by a GCN model to enrich instance representations with interaction

information afterward. In particular, the node set Ninst in our instance interaction

graph Ginst = {Ninst,Einst} involves all prediction instances for the four IE tasks,

i.e., Ninst = Rent ∪ Rtrg ∪ Rrel ∪ Rarg. The edge set Einst then captures instance

interactions by connecting the instance nodes in Ninst that involve the same entity

mentions or event triggers (i.e., two instances are related if they concern the same

entity mention or event trigger). As such, the edges in Einst are created as follows:

(i) An entity instance node ei is connected to all relation instance nodes of the

forms relij = [ei, ej] and relki = [ek, ei] (sharing entity mention ei).

2In our implementation, Rrel and Rarg are transformed into vectors of the same size with those
in Rent and Rtrg (using one-layer feed forward networks) for future computation.
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(ii) An entity instance node ej is connected to all argument instance nodes of the

form argij = [ti, ej] (sharing entity mention ej).

(iii) A trigger node ti is connected to all argument instance nodes of the form

argij = [ti, ej] (i.e., sharing event trigger ti).

GCN: To enrich the representation vector for an instance in Ninst with the information

from the related (neighboring) nodes, we feed Ginst into a GCN model (called GCNinst).

For convenience, we rename the initial representation vectors of all the instance nodes

in Ninst by: Ninst = {r1, . . . , rni
} (ni = |Ninst|). Also, let Ainst ∈ {0, 1}ni×ni be the

adjacency matrix of the interaction graph Ginst where Ainst
ij = 1 if the instance nodes ri

and rj are connected in Ginst or i = j (for self-connections). The interaction-enriched

representation vectors for the instances in Ninst are then computed by the GCNinst

model: rinst1 , . . . , rinstni
= GCNinst(Ainst; r1, . . . , rni

;Ni) where Ni is the number of layers

for the GCNinst model.

Type Embedding and Prediction: Finally, the enriched instance representation

vectors rinst1 , . . . , rinstni
will be used to perform the predictions for the four IE tasks.

In particular, let tk ∈ {ent, trg, rel, arg} be the corresponding task index and yk be

the ground-truth type (of the task tk) for the prediction instance rk in Ninst. Also,

let T = T ent ∪ T trg ∪ T rel ∪ T arg be the union of the possible entity types (in T ent

for EME), event types (in T trg for ETD), relations (in T rel for RE), and argument

roles (in T arg for EAE) in our problem (yk ∈ T tk). Note that T rel and T arg contain

the special types None. To prepare for the type predictions and the type dependency

modeling in the next steps, we associate each type in T with an embedding vector (of

the same size as ei and ti) that is initialized randomly and updated during our training

process. For convenience, let T = [t̄1, . . . , t̄nt ] where t̄i is used interchangeably for

both a type and its embedding vector in T (nt is the total number of types). As such,
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to perform the prediction for an instance rk in Ninst, we compute the dot products

between rinstk and each type embedding vectors in T tk ∩T to estimate the possibilities

that rk has a type in T tk . Afterward, these scores are normalized by the softmax

function to obtain the probability distribution ŷk over the possible types in T tk for

rk: ŷk = softmax(rinstk t̄
T |t̄ ∈ T tk ∩ T ). In the decoding phase, the predicted type ŷk

for rk is obtained via the argmax function (greedy decoding): ŷk = argmax ŷk. The

negative log-likelihood over all the prediction instances is used to train the model:

Ltype = −
∑ni

k=1 log ŷk[yk].

Type Dependency-based Regularization: In this section, we aim to obtain the

type dependencies across tasks and use them to supervise the model in the training

process (to improve the representation vectors for IE). As presented in the introduction,

our motivation is to generate global dependency graphs between types of different IE

tasks for each input sentence whose representations are leveraged to regularize the

model during training. In particular, starting with the golden types y = y1, y2, . . . , yni

and the predicted types ŷ = ŷ1, ŷ2, . . . , ŷni
for the instance nodes in Ninst, we build

two dependency graphs Ggold and Gpred to capture the global type dependencies for

the tasks (called the golden and predicted dependency graphs respectively). Afterward,

to supervise the training process, we seek to constrain the model so the predicted

dependency graph Gpred is similar to the golden graph Ggold (i.e., using the dependency

graphs as the bridges to inject the global type dependency knowledge in Ggold into

the model).

Dependency Graph Construction. Both Ggold and Gpred involve the types of

all the four IE tasks in T as the nodes. To encode the type dependencies, the

connections/edges in Ggold are computed based on the golden types y = y1, y2, . . . , yni

for the instance nodes in Ninst as follows:
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(i) For each relation instance node rk = [ei, ej] ∈ Ninst that has the golden type

yk ̸= None, the relation type node yk is connected to the nodes of the golden entity

types for the corresponding entity mentions ei and ej (called entity relation type

edges).

(ii) For each argument instance node rk = [ti, ej ] that has the role type yk ̸= None,

the role type node yk is connected to both the node for the golden event type of ti

(called event argument type edges) and the node for the golden entity type of ej

(called entity argument type edges).

The same procedure can be applied to build the predicted dependency graph Gpred

based on the predicted types ŷ = ŷ1, ŷ2, . . . , ŷni
. Also, for convenience, let Agold and

Apred (of size nt × nt) be the binary adjacency matrices of Ggold and Gpred (including

the self-loops) respectively.

Regularization: In the next step, we obtain the representation vectors for the

dependency graphs Ggold and Gpred by feeding them into a GCN model (called

GCNtype). This GCN model has Nt layers and uses the initial type embeddings

T = [t̄1, . . . , t̄nt ] as the inputs. In particular, the outputs of GCNtype for the two

graphs involve t̄
gold
1 , . . . , t̄

gold
nt

= GCNtype(Agold; t̄1, . . . , t̄nt ;Nt) and t̄
pred
1 , . . . , t̄

pred
nt

=

GCNtype(Apred; t̄1, . . . , t̄nt ;Nt) that encode the underlying information for the type

dependencies presented in Ggold and Gpred. Finally, to promote the similarity of

the type dependencies in Ggold and Gpred, we introduce the mean square difference

between their GCNtype-induced representation vectors into the overall loss function for

minimization: Ldep =
∑nt

i=1 ||t̄
gold
i − t̄

pred
i ||22.

Our final training loss is thus: L = Lent
span + Ltrg

span + Ltype + λLdep (λ is a trade-off

parameter).
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Approximating Apred: We distinguish two types of parameters in our model so far,

i.e., the parameters used to compute instance representations, e.g., those in BERT

and Ginst (called θinst), and the parameters for type dependency regularization, i.e.,

those for the type embeddings t̄1, . . . , t̄nt and Gtype (called θdep). As such, the current

implementation only enables the training signal from Ldep to back-propagate to the

parameters θdep and disallows Ldep to influence the instance representation-related

parameters θinst. To enrich the instance representation vectors with type dependency

information, we expect Ldep to be deeper integrated into the model by also contributing

to θinst. To achieve this goal, we note that the block of back-propagation between

Ldep and θinst is due to their only connection in the model via the adjacency matrix

Apred, whose values are either one or zero. As such, the values in Apred are not directly

dependent on any parameter in θinst, making it impossible for the back-propagation

to flow. To this end, we propose to approximate Apred with a new matrix Â
pred

that

directly involves θinst in its values. In particular, let Iinst be the index set of the non-

zero cells in Apred: Iinst = {(i, j)|Apred
ij = 1}. As the elements in Iinst are determined

by the indexes i1, . . . , ini
in T of the predicted types ŷ1, ŷ2, . . . , ŷni

(respectively), we

also seek to compute the values for the approximated matrix Â
pred

based on such

indexes. Accordingly, we first define the matrix B = {bij}i,j=1..nt where the element

bij at the i-th row and j-th column is set to bij = i ∗ nt + j. The approximated matrix

Â
pred

is then obtained by:

Â
pred

=
∑

(i,j)∈Iinst

exp
(
−β(B− int − j)2

)
(3.1)

Here, β > 0 is a large constant. For each element (i, j) ∈ Iinst, all the elements in the

matrix (B− int − j)2 are strictly positive, except for the element at (i, j), which is

zero. Thus, with a large value for β, the matrix exp(−β(B− int − j)2) has the value

of one at cell (i, j) and nearly zero at other cells. Consequently, the values of Â
pred
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at the positions in Iinst are close to one while those at other positions are close to

zero, thus approximating our expected matrix Apred and still directly depending on

the indexes i1, . . . , int .

Addressing the Discreteness of Indexes: Even with the approximation Â
pred

, the

back-propagation still cannot flow from Ldep to θinst due to the block of the discrete

and non-differentiable index variables i1, . . . , int . To address this issue, we propose

to apply the Gumbel-Softmax distribution (Jang, Gu, & Poole, 2017) that enables

the optimization of models with discrete random variables, by providing a method to

approximate one-hot vectors sampled from a categorical distribution with continuous

ones.

In particular, we first rewrite each index ik by: ik = hkc
T
k , where ck is a vector

whose each dimension contains the index of a type in T tk in the joint type set T , and

hk is the binary one-hot vector whose dimensions correspond to the types in T tk . hk is

only turned on at the position corresponding to the predicted type ŷk ∈ T tk (indexed

at ik in T ). In our current implementation, ŷk (thus the index ik and the one-hot

vector hk) is obtained via the argmax function: ŷk = argmax ŷk, which causes the

discreteness. As such, the Gumbel-Softmax distribution method helps to relax argmax

by approximating hk with a sample ĥk = ĥk,1, . . . , ĥk,|T tk | from the Gumbel-Softmax

distribution:

ĥk,j =
exp((log(πk,j) + gj)/τ)∑|T tk |

j′=1 exp((log(πk,j′) + gj′)/τ)
(3.2)

where πk,j = ŷk,j = softmaxj(r
inst
k t̄

T |t̄ ∈ T tk ∩ T ), g1, . . . , g|T tk | are the i.i.d samples

drawn from Gumbel(0,1) distribution (Gumbel, 1948): gj = −log(−log(uj)) (uj ∼

Uniform(0, 1)), and τ is the temperature parameter. As τ → 0, the sample ĥk would

become close to our expected one-hot vector hk. Finally, we replace hk with the

approximation ĥk in the computation for ik: ik = ĥkc
T
k that directly depends on rinstk
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and is applied in Â
pred

. This allows the gradients to flow from Ldep to the parameters

θinst and completes the description of our model.

3.1.4 Experiments. Datasets. Following the prior work on joint four-task

IE (Y. Lin et al., 2020a; Wadden et al., 2019a), we evaluate our joint IE model

(FourIE) on the ACE 2005 (Walker et al., 2006) and ERE datasets that provide

annotation for entity mentions, event triggers, relations, and argument roles. In

particular, we use three different versions of the ACE 2005 dataset that focus on three

major joint inference settings for IE: (i) ACE05-R for joint inference of EME and

RE, (ii) ACE05-E for joint inference of EME, ETD and EAE, and (iii) ACE05-E+

for joint inference of the four tasks EME, ETD, RE, and EAE. ACE05-E+ is our main

evaluation setting as it fits to our model design with the four IE tasks of interest.

Datasets Split sents ents rels events

ACE05-R
Train 10,051 26,473 4,788 -
Dev 2,424 6,362 1,131 -
Test 2,050 5,476 1,151 -

ACE05-E
Train 17,172 29,006 4,664 4,202
Dev 923 2,451 560 450
Test 832 3,017 636 403

ACE05-E+
Train 19,240 47,525 7,152 4,419
Dev 902 3,422 728 468
Test 676 3,673 802 424

ERE-EN
Train 14,219 38,864 5,045 6,419
Dev 1,162 3,320 424 552
Test 1,129 3,291 477 559

ACE05-CN
Train 6,841 29,657 7,934 2,926
Dev 526 2,250 596 217
Test 547 2,388 672 190

ERE-ES
Train 7,067 11,839 1,698 3,272
Dev 556 886 120 210
Test 546 811 108 269

Table 6. Numbers of sentences (i.e., sents), entity mentions (i.e., ents), relations (i.e.,
rels), and events (i.e., events) in the datasets.

For ERE, following (Y. Lin et al., 2020a), we combine the data from three datasets

for English (i.e., LDC2015E29, LDC2015E68, and LDC2015E78) that are created

under the Deep Exploration and Filtering of Test (DEFT) program (called ERE-EN).
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Similar to ACE05-E+, ERE-EN is also used to evaluate the joint models on four IE

tasks.

To demonstrate the portability of our model to other languages, we also apply

FourIE to the joint four-IE datasets on Chinese and Spanish. Following (Y. Lin

et al., 2020a), we use the ACE 2005 dataset for the evaluation on Chinese (called

ACE05-CN) and the ERE dataset (LDC2015E107) for Spanish (called ERE-ES).

To ensure a fair comparison, we adopt the same data pre-processing and splits

(train/dev/test) in prior work (Y. Lin et al., 2020a) for all the datasets. As such,

ACE05-R, ACE05-E, ACE05-E+, and AC05-CN involve 7 entity types, 6 relation

types, 33 event types, and 22 argument roles while ERE-ES and ERE-EN include 7

entity types, 5 relation types, 38 event types, and 20 argument roles. The statistics

for the datasets are shown in Table 6.

Hyper-parameters and Evaluation Criteria. We fine-tune the hyper-parameters

for our model using the development data. The suggested values are shown in the

appendix. To achieve a fair comparison with (Y. Lin et al., 2020a), we employ the

bert-large-cased model for the English datasets and bert-multilingual-cased model for

the Chinese and Spanish datasets. Finally, we follow the same evaluation script and

correctness criteria for entity mentions, event triggers, relations, and argument as in

prior work (Y. Lin et al., 2020a). The reported results are the average performance of

5 model runs using different random seeds.

Performance Comparison. We compare the proposed model FourIE with two prior

models for joint four-task IE: (i) DyGIE++ (Wadden et al., 2019a): a BERT-based

model with span graph propagation, and (ii) OneIE (Y. Lin et al., 2020a): the

current state-of-the-art (SOTA) model for joint four-task IE based on BERT and type

dependency constraint at the decoding step. Table 7 presents the performance (F1
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scores) of the models on the test data of the English datasets. Note that in the tables,

the prefixes “Ent”, “Trg”, “Rel”, and “Arg” represent the extraction tasks for entity

mentions, event triggers, relations, and arguments respectively while the suffixes “-I”

and “-C” correspond to the identification performance (only concerning the offset

correctness) and identification+classification performance (evaluating both offsets and

types).

Datasets Task DyGIE++ OneIE FourIE ∆%

ACE05-R
Ent-C 88.6 88.8 88.9 0.1
Rel-C 63.4 67.5 68.9† 1.4

ACE05-E

Ent-C 89.7 90.2 91.3† 1.1
Trg-I - 78.2 78.3 0.1
Trg-C 69.7 74.7 75.4† 0.7
Arg-I 53.0 59.2 60.7† 1.5
Arg-C 48.8 56.8 58.0† 1.2

ACE05-E+

Ent-C - 89.6 91.1† 1.5
Rel-C - 58.6 63.6† 5.0
Trg-I - 75.6 76.7† 1.1
Trg-C - 72.8 73.3† 0.5
Arg-I - 57.3 59.5† 2.2
Arg-C - 54.8 57.5† 2.7

ERE-EN

Ent-C - 87.0 87.4 0.4
Rel-C - 53.2 56.1† 2.9
Trg-I - 68.4 69.3† 0.9
Trg-C - 57.0 57.9† 0.9
Arg-I - 50.1 52.2† 2.1
Arg-C - 46.5 48.6† 2.1

Table 7. F1 scores of the models on the test data of English datasets. ∆ indicates
the performance difference between FourIE and OneIE. Rows with † designate the
significant improvement (p < 0.01) of FourIE over OneIE.

As can be seen from the table, FourIE is consistently better than the two baseline

models (DyGIE++ and OneIE) across different datasets and tasks. The performance

improvement is significant for almost all the cases and clearly demonstrates the

effectiveness of the proposed model.

Finally, Table 8 reports the performance of FourIE and OneIE on the Chinese

and Spanish datasets (i.e., ACE05-CN and ERE-ES). In addition to the monolingual

setting (i.e., trained and evaluated on the same languages), following (Y. Lin et
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al., 2020a), we also evaluate the models on the multilingual training settings where

ACE05-CN and ERE-ES are combined with their corresponding English datasets

ACE05-E+ and EAE-EN (respectively) to train the models (for the four IE tasks),

and the performance is then evaluated on the test sets of the corresponding languages

(i.e., ACE05-CN and ERE-ES). It is clear from the table that FourIE also significantly

outperforms OneIE across nearly all the different setting combinations for languages,

datasets and tasks. This further illustrates the portability of FourIE to different

languages.

Test Data Train Data Task OneIE FourIE ∆%

ACE05-CN

ACE05-CN

Ent-C 88.5 88.7 0.2
Rel-C 62.4 65.1† 2.7
Trg-C 65.6 66.5† 0.9
Arg-C 52.0 54.9† 2.9

ACE05-CN
ACE05-E+

Ent-C 89.8 89.1 -0.7
Rel-C 62.9 65.9† 3.0
Trg-C 67.7 70.3† 2.6
Arg-C 53.2 56.1† 2.9

ERE-ES

ERE-ES

Ent-C 81.3 82.2† 0.9
Rel-C 48.1 57.9† 9.8
Trg-C 56.8 57.1 0.3
Arg-C 40.3 42.3† 2.0

ERE-ES
ERE-EN

Ent-C 81.8 82.7† 0.9
Rel-C 52.9 59.1† 6.2
Trg-C 59.1 61.3† 2.2
Arg-C 42.3 45.4† 3.1

Table 8. F1 scores on Chinese and Spanish test sets. † marks the significant
improvement (p < 0.01) of FourIE over OneIE.

Effects of GCNinst and GCNtype. This section evaluates the contributions of the two

important components in our proposed model FourIE, i.e., the instance interaction

graph with GCNinst and the type dependency graph with GCNtype. In particular, we

examine the following ablated/varied models for FourIE: (i) “FourIE-GCNinst”: this

model excludes the instance interaction graph and the GCN model GCNinst from FourIE

so the initial instance representations rk are directly used to predict the types for

the instances (replacing the enriched vectors rinstk ), (ii) “FourIE-GCNtype”: this model
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eliminates the type dependency graph and the GCN model GCNtype (thus the loss term

Ldep as well) from FourIE, (iii) “FourIE-GCNinst-GCNtype”: this model removes both

the instance interaction and type dependency graphs from FourIE, (iv) “FourIE-

GCNtype+TDDecode”: this model also excludes GCNtype; however, it additionally applies

the global type dependencies features to score the joint predictions for the beam

search in the decoding step (the implementation for this beam search is inherited

from (Y. Lin et al., 2020a) for a fair comparison), and (v) “FourIE-Â
pred

”: instead

of employing the approximation matrix Â
pred

in FourIE, this model directly uses

the adjacency matrix Apred in the Ldep regularizer (Ldep thus does not influence the

instance representation-related parameters θinst). Table 9 shows the performance of

the models on the development dataset of ACE05-E+ for four IE tasks.

Models Ent-C Rel-C Trg-C Arg-C

FourIE 89.6 64.3 71.0 59.0

FourIE-GCNinst 89.1 62.3 70.3 57.5

FourIE-GCNtype 88.5 61.8 69.9 56.6

FourIE-GCNinst-GCNtype 88.2 59.3 68.9 56.1

FourIE-GCNtype+TDDecode 88.8 59.6 70.8 56.8

FourIE-Â
pred

89.0 62.3 70.2 57.6

Table 9. F1 scores of the models on the ACE05-E+ dev data.

The most important observation from the table is that both GCNinst and GCNtype

are necessary for FourIE to achieve the highest performance for the four IE tasks.

Importantly, replacing GCNtype in FourIE with the global type dependency features

for decoding (i.e., “FourIE-GCNtype+TDDecode”) as in (Y. Lin et al., 2020a) or

eliminating the approximation Â
pred

for Ldep produces inferior performance, especially

for relation and argument extraction. This clearly demonstrates the benefits for deeply

integrating knowledge from type dependencies to influence representation learning

parameters with Ldep for joint four-task IE.
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Contributions of Type Dependency Edges. Our type dependency graphs Ggold

and Gpred involves three categories of edges, i.e., entity relation, entity argument, and

event argument type edges. Table 10 presents the performance of FourIE (on the

development data of ACE05-E+) when each of these edge categories is excluded from

our type dependency graph construction.

Models Ent-C Rel-C Trg-C Arg-C

FourIE 89.6 64.3 71.0 59.0

FourIE - entity relation 88.7 61.9 71.0 57.5

FourIE - entity argument 89.3 63.2 70.0 56.9

FourIE - event argument 89.5 64.1 69.8 57.7

Table 10. F1 scores of the ablated models for type dependency edges on the ACE05-E+
dev data.

The table clearly shows the importance of different categories of type dependency

edges for FourIE as the elimination of any category would generally hurt the

performance of the model. In addition, we see that the contribution level of the

type dependency edges intuitively varies according to the tasks of consideration. For

instance, entity relation type edges are helpful mainly for entity mention, relation

and argument extraction. Finally, an error analysis is conducted in the appendix to

provide insights about the benefits of the type dependency graphs Ggold and Gpred for

FourIE (i.e., by comparing the outputs of FourIE and “FourIE-GCNtype”).

3.1.5 Related Work. The early joint methods for IE have employed feature

engineering to capture the dependencies between IE tasks, including Integer Linear

Programming for Global Constraints (Q. Li, Anzaroot, Lin, Li, & Ji, 2011; Roth &

Yih, 2004a), Markov Logic Networks (Riedel, Chun, Takagi, & Tsujii, 2009; Venugopal,

Chen, Gogate, & Ng, 2014), Structured Perceptron (Judea & Strube, 2016; Q. Li, Ji,

Hong, & Li, 2014; Q. Li et al., 2013a; Miwa & Sasaki, 2014), and Graphical Models

(B. Yang & Mitchell, 2016a; Yu & Lam, 2010a).
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Recently, the application of deep learning has facilitated the joint modeling for IE

via shared parameter mechanisms across tasks. These joint models have focused on

different subsets of the IE tasks, including EME and RE (Bekoulis, Deleu, Demeester,

& Develder, 2018a; T.-J. Fu, Li, & Ma, 2019; Katiyar & Cardie, 2017; Luan et al.,

2019a; C. Sun et al., 2019; Veyseh, Dernoncourt, Dou, & Nguyen, 2020a; Veyseh,

Dernoncourt, Thai, Dou, & Nguyen, 2020a; Zheng et al., 2017a), event and temporal

RE (Han, Ning, & Peng, 2019), and ETD and EAE (T. H. Nguyen, Cho, & Grishman,

2016a; T. M. Nguyen & Nguyen, 2019a; Zhang et al., 2019). However, none of these

work has explored joint inference for four IE tasks EME, ETD, RE, and EAE as we

do. The two most related works to ours include (Wadden et al., 2019a) that leverages

the BERT-based information propagation via dynamic span graphs, and (Y. Lin et

al., 2020a) that exploits BERT and global type dependency features to constrain the

decoding step. Our model is different from these works in that we introduce a novel

interaction graph for instance representations for four IE tasks and a global type

dependency graph to directly inject the knowledge into the training process.

3.1.6 Summary. We present a novel deep learning framework to jointly

solve four IE tasks (EME, ETD, RE, and EAE). Our model attempts to capture

the inter-dependencies between instances of the four tasks and their types based on

instance interaction and type dependency graphs. GCN models are employed to induce

representation vectors to perform type predictions for task instances and regularize

the training process. The experiments demonstrate the effectiveness of the proposed

model, leading to SOTA performance over multiple datasets on English, Chinese, and

Spanish.
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3.2 DepIE

3.2.1 Introduction. Entity mention recognition (EMR), event trigger

detection (ETD), event argument extraction (EAE), and relation extraction (RE)

are four main challenging tasks in information extraction (IE), which aim to extract

entities (e.g., a person), events (e.g., an attack), event arguments (e.g., a victim in

an attack), and relations (e.g., work-for) mentioned in text. These IE tasks have

been solved mostly in pipelined approaches (Y. Chen, Xu, Liu, Zeng, & Zhao, 2015c;

Du & Cardie, 2020; V. D. Lai et al., 2020; F. Li et al., 2020b; Q. Li, Ji, & Huang,

2013b; M. V. Nguyen, Nguyen, et al., 2021; T. H. Nguyen & Grishman, 2015a; Pouran

Ben Veyseh, Lai, Dernoncourt, & Nguyen, 2021; Veyseh, Nguyen, & Nguyen, 2020a),

where input to a model performing an IE task involves predictions from other models

performing other IE tasks. As a result, errors in predictions by a model can be

propagated to subsequent models in the pipeline to hurt overall performance.

To avoid error propagation, the four IE tasks can be solved jointly (JointIE) in

a single model (Y. Lin et al., 2020b; M. V. Nguyen, Lai, & Nguyen, 2021; Zhang

& Ji, 2021b). As such, a key challenge for JointIE models is to effectively capture

dependencies between the IE tasks to boost overall extraction performance. In

particular, two types of task dependencies are important for JointIE, i.e., cross-

instance and cross-type dependencies. First, for cross-instance dependencies, JointIE

models use instances to refer to word spans for event triggers/entity mentions (for EMR

and ETD) or pair of word spans of event triggers/entity mentions (for EAE and RE)

that should be classified according to predefined information types for IE. Accordingly,

an important insight from previous JointIE models is to enrich the representation

for one instance with those from related instances in different IE tasks to facilitate

the type prediction (Y. Lin et al., 2020b; M. V. Nguyen, Lai, & Nguyen, 2021). To
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this end, a typical approach to encode cross-instance dependencies for representation

learning in previous work involves creating dependency graphs between instances to

connect related instances to facilitate representation learning (M. V. Nguyen, Lai,

& Nguyen, 2021; Zhang & Ji, 2021b). However, as the instance dependency graphs

in previous work are only created manually using some heuristics, e.g., connecting

instances that share an entity mention or event trigger (M. V. Nguyen, Lai, & Nguyen,

2021), they might be suboptimal for a given dataset and hinder further performance

improvement for IE.

Consequently, to improve representation enrichment with information from related

instances for JointIE, our work proposes to automatically learn cross-instance

dependency graphs for IE tasks from data. To enable maximal flexibility, we explore

a fully connected graph between all task instances in a sentence where a dependency

weight is assigned to each edge to quantify the relatedness between two instances.

In our method, we argue that dependency weights between task instances should be

computed over multiple sources of information to produce optimal and comprehensive

dependency graphs. To this end, motivated by the encoding of different linguistic

structures (e.g., semantics, syntax) in the layers of pre-trained language models

(PLMs), e.g., BERT (Devlin et al., 2019b; Jawahar, Sagot, & Seddah, 2019), we

propose to leverage the representations of instances at different layers of PLMs to

compute dependency weights for the instances. In particular, given two instances

for JointIE, their representation vectors at each layer of a PLM are consumed to

produce a layer-specific dependency weight, which will be combined across layers to

obtain an overall weight for our dependency graph. Graph Convolutional Networks

(GCNs) (Kipf & Welling, 2017; T. H. Nguyen & Grishman, 2018a) will then be used to
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induce enriched representations for the instances based on the computed cross-instance

dependency graph.

In addition, cross-type dependencies/patterns in JointIE systems characterize co-

occurrences/co-relations of information types of different IE tasks (e.g., entity/event

types and argument roles) in a single input sentence. For instance, in the ACE 2005

dataset (Walker et al., 2006), a “Victim” argument for an “Attack” event is likely

to be the “Victim” argument for a “Die” event in the same sentence. Accordingly,

previous JointIE models have leveraged cross-type dependencies either in the decoding

phase, i.e., to form global type patterns/graphs to constrain the type prediction

(Y. Lin et al., 2020b), or in the training phase, i.e., to form type dependency graphs

to aid consistency regularization of golden and predicted types (M. V. Nguyen, Lai, &

Nguyen, 2021). However, as in cross-instance dependencies, the dependency graphs

between information types in IE in previous work are also designed manually, e.g., by

linking types that are involved in the same instance for some IE task (M. V. Nguyen,

Lai, & Nguyen, 2021). This is not desirable as manual designs might miss important

cross-type patterns that cannot guarantee optimal performance for JointIE.

To this end, we propose to further learn cross-type dependencies/patterns from

data to better support type predictions of JointIE instances. As such, we view each

information type in our IE tasks as a binary random variable, which is 1 if the type

appears in the sentence, and 0 otherwise. This formulation enables us to employ

Bayesian structure learning algorithms to infer dependency structures from data. In

particular, we propose to leverage the Chow-Liu algorithm (Chow & Liu, 1968) that

measures mutual information between any two types (variables) in training data

to learn a first-order dependency tree, aiming to approximate the underlying joint

distribution of the information types (types) for JointIE. Afterward, the resulting
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Chow-Liu tree containing induced dependencies between information types will be

used to generate global cross-type patterns for JointIE.

To incorporate the learned cross-type dependencies into the JointIE model, our

goal is to leverage such global patterns to obtain additional features to further enrich

the GCN-induced representations for type prediction. Our intuition is to treat the

induced cross-type patterns as anchor knowledge to which the information types,

representations, and dependencies of IE instances in a sentence should adhere to

exploit consistency and improve predictions for JointIE in the data. To this end, for

each learned cross-type pattern, we seek to compute a similarity score between the

computed cross-instance dependency graph for an input sentence and the cross-type

pattern that can be included into the representations for the instances to predict types.

Accordingly, we propose to leverage random walk graph kernels (Feng, You, Wang, &

Tassiulas, 2022; Gärtner, Flach, & Wrobel, 2003) that facilitate similarity computation

between two graphs (i.e., the cross-instance dependency graph and cross-type pattern)

via counting common random walks on the graphs to enrich representations for

JointIE. Finally, we evaluate the proposed model with induced cross-task and cross-

type dependencies for JointIE in both monolingual and cross-lingual learning settings.

Experimental results show that our model consistently outperforms strong baselines

in all the settings across four different datasets and languages.

3.2.2 Model. There are four tasks in our IE pipeline, i.e., entity mention

recognition (EMR), event detection (ED), event argument extraction (EAE), and

relation extraction (RE). EMR and ED seek to identify word spans and types for

entities (e.g., a “Person”) and events (e.g., an “Attack”) in text, respectively. On the

other hand, EAE aims to identify whether each entity mention plays an argument role

(e.g., an “Attacker”) in a given event mention. A special type “Other-role” is used
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Figure 11. Overview of our JointIE model.

to indicate that an entity does not play any role in a given event. For RE, the task

is to determine if a relation (e.g., an “Affiliation” relation) exists between two given

entity mentions. Similar to EAE, an special type “Other-relation” is used in RE to

indicate no relation between two given entities. Joint information extraction (JointIE)

is the joint task of EMR, ED, EAE, and RE (Y. Lin et al., 2020b; M. V. Nguyen,

Lai, & Nguyen, 2021; Zhang & Ji, 2021b), which aims to simultaneously predict

entity mentions, event triggers, event arguments and relations for an input text in an

end-to-end fashion.

Our proposed model (called “DepIE”) for JointIE consists of three main

components: (i) Instance Detection, (ii) Cross-Instance Dependencies, and (iii) Cross-

type Dependencies. Figure 11 presents an overview for our model.
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3.2.2.1 Instance Detection. The first step in our model is to identify

candidate instances for all the four IE tasks. In particular, candidate instances for

EMR and ED involve spans of words for entity mentions and event triggers in text. For

EAE, a candidate instance is formed by a pair of an event trigger span and an entity

mention span. Similarly, we can obtain candidate instances for RE by pairing entity

mention spans. Note that this step only performs candidate instance identification.

Information types for the instances will be predicted in the next steps.

Event Triggers and Entity Mentions: Given an input sentence w = [w1, . . . , wN ]

with N words, we employ a pretrained language model (PLM), e.g., RoBERTa (Y. Liu

et al., 2019), to produce a sequence of contextualized embeddings X = [x1, . . . ,xN ]

for the words (using average of hidden vectors for word-pieces in the last layer of

the PLM). The vector sequence X is then consumed by two different conditional

random fields (CRFs) layers to predict two BIO tag sequences; each sequence aims to

captures spans of event triggers (or entity mentions) for ED (or EMR). The negative

log-likelihoods Lt and Le returned by the CRFs for the ground-truth tag sequences

of the spans for EMR and ED will then be included into the overall loss function.

At test time, Viterbi algorithm is used to search for most probable tag sequences to

find spans for event triggers Vt = {vt} and entity mentions Ve = {ve} (i.e., candidate

instances) in the sentence. Each event trigger/entity mention is represented by a

vector v∗ (∗ ∈ {t, e}), computed via the average of contextualized embeddings for the

words inside its corresponding spans v∗.

Event Arguments and Relations: While it is possible to use all pairs of entity

mention and event trigger spans for the candidate instances of EAE and RE for type

prediction, the large number of possible pairs will increase necessary computational

resources. To this end, we first send the pairs into binary classifiers to determine if
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they are positive examples (i.e., corresponding to some actual types of interest for

EAE and RE). In particular, to decide if an entity mention ve ∈ Ve plays any role with

an event trigger vt ∈ Vt, we concatenate their span vectors (i.e., ve and vt) and feed

the concatenation into a feed-forward network (FFN) with a sigmoid function in the

end: pa = σ(FFNa([ve;vt])). Here, the score pa ∈ (0, 1) represents the likelihood for

ve to be an argument of some role for vt. Similarly, we can compute a score pr ∈ (0, 1)

for all pairs of entity mentions ve1 , ve2 ∈ Ve to estimate the likelihood that there

exists a relation between the entity mentions. In the training process, we obtain the

binary cross-entropy losses La and Lr computed with the probability scores pa, pr to

include in the overall loss function. In test time, we employ a threshold of 0.5 for the

scores pa, pr to determine positive pairs Va = {va = (vt, ve)} for event arguments and

Vr = {vr = (ve1 , ve2)} for relations. Only positive pairs are retained for our next steps

of type prediction. Finally, each positive event argument/relation is also represented

by the average of representations of the involving event trigger and entity mention

instances, called va and vr.

3.2.2.2 Cross-Instance Dependencies. Given the detected instances for

the four IE tasks in w, we aim to enrich the representation for each instance with

information from other related instances to facilitate type prediction. As such, our

model first learns a dependency graph Ginst = (V,E) to capture the relatedness for

the instances (called cross-instance dependency graph). In particular, the node set

V of Ginst involves all the detected instances, i.e., V = Vt ∪ Ve ∪ Va ∪ Vr. To enable

information flow across different instances, our edge set E will include an edge for

each possible pair of instances in V ; a weight αij will be assigned to each pair (vi, vj)

to quantify the dependency between vi and vj in V .

79



To learn the dependency weights αij, our intuition is to exploit information

from different sources (e.g., semantics, syntax) to ensure comprehensive coverage of

relatedness aspects for JointIE. Motivated by different linguistic features encoded in

different transformer layers of PLMs (Jawahar et al., 2019), we propose to treat each

layer of BERT (with L layers) as a source of information. In particular, each word in

the input sentence will be represented by L different embeddings returned by each

layer of the PLM. In this way, for each node in V , we can obtain L different node

representations computed at each layer of BERT (by averaging representations for

word-pieces). Let vl
i,v

l
j be the representations for the nodes vi, vj ∈ V at layer l of

the PLM. The dependency weight αl
ij ∈ (0, 1) between the instance nodes vi, vj at

layer l of BERT is computed by: αl
ij = FFN l

σ([v
l
i;v

l
j ]), where FFN

l
σ is a feed-forward

network with a sigmoid function in the end.

To this end, each instance vi ∈ V is associated with L sets of weights {αl
ij} capturing

its dependencies on the other instances according to L different sources of information

from BERT. The importance of the l-th information source to representation learning

of vi is then measured by sending its l-th representation vl
i to a feed-forward network

FFNsrc(v
l
i). Afterward, we normalize the layer-specific importance scores for vi across

layers with softmax, leading to sli = softmaxl(FFNsrc(v
1:L
i )). The dependency weight

between vi and vj in our cross-instance graph is then determined via: αij =
∑

l s
l
iα

l
ij.

Finally, the induced dependency graph with weights αij is used to enhance the

representations for vi ∈ V via a Graph Convolutional Network (GCN) (Kipf & Welling,

2017; T. H. Nguyen & Grishman, 2018a) with K layers:

hk
i = ReLU(

∑
vj∈V αijW

khk−1
j + bk∑

vj∈V αij

), 1 ≤ k ≤ K
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where hk
i is the representation for vi at the k-th layer of GCN (h0

i = vi). For

convenience, let hi be the representation for the instance vi at the final layer of the

GCN, i.e., hi = hK
i .

3.2.2.3 Cross-Type Dependencies. As discussed in the introduction, to

further improve the representations for the instances vi for type prediction, our method

proposes to induce global dependencies between information types for different IE tasks

(called cross-type dependencies) from data and use them as knowledge to generate

additional features for instance representations.

Cross-type Dependency Induction: For convenience, let T be the set of all

information types for our four IE tasks, i.e., including entity types, event types, event

argument roles, and relations. To infer dependencies/patterns between the types

in T , our goal is to leverage their co-occurrences in the sentences of training data

for the computation. As such, we consider the information types in T as random

variables and leverage the well-known Chow-Liu algorithm (Chow & Liu, 1968) in

Bayesian structure learning to find meaningful relationships/patterns among the types.

The Chow-Liu algorithm approximates the underlying joint distribution of random

variables by finding a first-order dependency tree among the variables (i.e., tree nodes

correspond to the variables).

Let Xi ∈ {0, 1} be the binary random variable for the information type ti ∈ T

where Xi = 1 if there exists one instance with type ti in the current sentence, and

Xi = 0 otherwise. The algorithm then computes mutual information (MI) scores

between any two random variables Xi, Xj via:

I(Xi, Xj) =
∑

xi,xj∈{0,1}

P̂ (xi, xj)log
P̂ (xi, xj)

P̂ (xi)P̂ (xj)

where P̂ (xi, xj) =
count(Xi=xi,Xj=xj)

M
is the empirical joint distribution between Xi and

Xj computed by counting across training data (M is the total number of sentences in
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the training data). Similarly, we can compute the marginal distributions P̂ (xi) and

P̂ (xj). Afterwards, we construct a cross-type dependency tree Gctp for information

types as the spanning tree over the random variables that achieves maximum sum of

the MI scores. The maximum spanning tree can be solved via Kruskal (Kruskal, 1956)

or Prim (Prim, 1957) algorithms.

To make it more manageable, we collect the set of connected sub-graphs (i.e.,

trees) U that have at least two nodes and less than n nodes in Gctp (2 ≤ n ≤ |T | is a

hyper-parameter) to serve as the global cross-type patterns/dependencies induced by

our method for JointIE.

Feature Generation with Graph Kernels: Using the induced cross-type patterns

Gctp
d ∈ U from data as anchor knowledge, we expect the information types, instance

representations, and instance dependencies in an input sentence w to follow the

patterns to exploit consistency in the data. In particular, instance representations

and dependencies in an input sentence will have higher quality for type prediction if

they are more similar to the induced cross-type patterns from data. Accordingly, we

propose to leverage similarity scores between the cross-instance dependency graph for

w and the cross-type patterns in U as additional features to improve representations

for JointIE. Here, we can employ the cross-instance dependency graph Ginst with

dependency weights αij computed in the previous step for the feature computation.

As such, to compute the similarity between Ginst and Gctp
d , we propose to employ

random walk graph kernels (Gärtner et al., 2003) that can facilitate similarity

measurement between two graphs with different number of nodes. In particular,

the random walk kernel is computed by counting the number of common random

walks on the two graphs, which has been shown to be equivalent to performing a random

walk on the direct product of the graphs (Vishwanathan, Borgwardt, Schraudolph, et
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al., 2006). This enables the p-step random walk kernel between two graphs G1 and

G2 to be efficiently computed via: (Feng et al., 2022; Vishwanathan et al., 2006):

Kp(G1, G2) =
∑
i,j

[
(V1V

T
2 )⊙ (Ap

1V1(A
p
2V2)

T )
]
ij

where V1 and V2 are the node embedding matrices for the node sets; A1 and A2

are adjacency matrices for the graphs G1 and G2 respectively; ⊙ is the element-wise

product, and Ap
∗ is the p-th power of the matrix A∗ (∗ ∈ {1, 2}).

To adapt this random walk kernel for Ginst and Gctp
d , we can obtain the adjacency

matrix Ainst for Ginst from the dependency weights αij, i.e., A
inst
ij = αij. The node

embedding matrixVinst forGinst can leverage the GCN-induced vectors by setting the i-

th row of Vinst to hi for instance vi ∈ V . Also, for each induced cross-type pattern/tree

Gctp
d ∈ U , we can use its binary adjacency matrix Actp

d for the kernel computation.

Its node embedding matrix Vctp
d will be produced by looking up the corresponding

types in a type embedding matrix T for all types in T . In our method, T is initialized

randomly so its embedding dimension is equal to those for the instance representation

hi. In this way, we can compute a kernel-based similarity score ksd = Kp(G
inst, Gctp

d )

between the cross-instance dependency graph Ginst and each cross-type pattern in U .

Finally, the concatenation of such similarity scores, i.e., mctp = [ks1, ks2, . . . , ks|U |],

can be used to provide additional global features for the instance representations for

type predictions. Note that in this way, our cross-type patterns can support both

training and test phases for JointIE models. This is in contrast to previous methods

that can only utilize manually designed patterns in either training (e.g., FourIE) or

decoding (e.g., OneIE) phase.

Training: To predict type for each instance vi ∈ V , we compute an overall

representation vector ri for vi by concatenating its GCN-induced representation

hi and the global features mptn: ri = FFNpred(concat(hi,m
ptn)). Here, FFNpred is a
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Model
ACE05-E+ (English) ACE05-CN (Chinese) ACE05-AR (Arabic) ERE-ES (Spanish)
Ent Rel Trg Arg Ent Rel Trg Arg Ent Rel Trg Arg Ent Rel Trg Arg

Text2event - - 71.8 54.4 - - - - - - - - - - - -

DEGREE-E2E - - 71.7 56.8 - - - - - - - - - - - -

Query&Extract - - 73.6 55.1 - - - - - - - - - - - -

GTEE-DYNPREF - - 74.3 54.7 - - - - - - - - - - - -

OneIE 90.8 60.4 72.5 56.3 88.5 64.9 67.3 54.8 81.2 59.0 56.6 37.2 83.7 57.5 58.3 42.5

AMRIE 91.0 62.8 72.7 57.7 - - - - - - - - - - - -

FourIE 91.1 63.1 72.8 58.3 88.8 66.0 69.1 57.5 81.7 61.4 57.9 42.1 83.8 59.0 63.4 45.1

DepIE (Ours) 91.7 64.9 74.6 61.2 89.2 68.3 74.3 60.0 82.7 63.5 63.1 46.4 86.5 61.2 65.9 51.9

Table 11. Monolingual performance on test data of the datasets. “Ent”, “Rel”, “Trg”,
and “Arg” indicate F1 scores for identification and classification of entity mentions,
relations, event triggers, and arguments respectively. All results are reported by the
original papers or produced by running the official code. All JointIE models use large
RoBERTa. Underlined numbers indicate that DepIE is significantly better than the
baselines (p < 0.01).

feed-forward network to ensure that ri has the same dimension as the type embeddings

T. The type distribution vi is then estimated by normalizing the similarity of ri and

the type embeddings: ŷi = softmax(rit
T |t ∈ Ti) where Ti is the set of embeddings

for all possible types Ti for vi in T . The negative log-likelihood of the ground-truth

types ti is then used to train our model: Lcls = −
∑

vi∈V log(ŷi[ti]). In summary, the

overall training loss for our model is: L = Lt + Le + La + Lr + Lcls.

3.2.3 Experiments. Datasets: Following previous work (Y. Lin et al.,

2020b; M. V. Nguyen, Lai, & Nguyen, 2021), we conduct experiments on four datasets

with different languages, i.e., ACE05-E+ (English), ACE05-CN (Chinese), ACE05-AR

(Arabic), and ERE-ES (Spanish). The three ACE05 datasets are created by the

Automatic Content Extraction program (Walker et al., 2006) with 33 event types,

7 entity types, 6 relation types, and 22 argument roles; and the ERE-ES dataset is

from the Deep Exploration and Filtering of Text program (DEFT) (Song et al., 2015)

with a similar schema to ACE05 datasets. For a fair comparison, we use the same

preprocessing and train/dev/test splits for ACE05-E+, ACE05-CN, and ERE-ES as

provided by prior work (Y. Lin et al., 2020b; M. V. Nguyen, Lai, & Nguyen, 2021). The
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ACE05-AR dataset does not have a standard split for JointIE so we follow the data

split by (M’hamdi et al., 2019) for ETD in Arabic and apply the same preprocessing

code from previous work (Y. Lin et al., 2020b) to produce the train/dev/test sets for

ACE05-AR. Additionally, we perform experiments on the IARPA BETTER program3’s

Basic Event Extraction datasets, which feature 118 event types, 3 mention types, and

3 argument roles. The BETTER-EN dataset is obtained by respectively combining

the official training, development, and test parts of Phase 1, 2, and 3 English data.

For the BETTER-FA dataset, we randomly split the Phase 2 Farsi evaluation data

into training, development, and test portions with a ratio of 70/15/15 as no standard

split is provided. Statistics for all the datasets are shown in Table 12.

Datasets Split #sents #ents #rels #events

ACE05-E+
Train 19,240 47,525 7,152 4,419
Dev 902 3,422 728 468
Test 676 3,673 802 424

ACE05-CN
Train 6,841 29,657 7,934 2,926
Dev 526 2,250 596 217
Test 547 2,388 672 190

ACE05-AR
Train 1,915 28,113 4,063 1,198
Dev 108 1,892 275 112
Test 152 2,495 374 169

ERE-ES
Train 7,067 11,839 1,698 3,272
Dev 556 886 120 210
Test 546 811 108 269

BETTER-EN
Train 5,617 18,815 - 16,594
Dev 1,163 3,958 - 3,177
Test 1,173 3,707 - 3,311

BETTER-FA
Train 2,932 11,612 - 10,100
Dev 592 2,377 - 2,061
Test 658 2,468 - 2,054

Table 12. Dataset statistics. #sents, #ent, #rels, and #events represent the
numbers of sentences, entity mentions, relations, and events respectively.

Hyper-Parameters: For the PLMs, we use RoBERTa large (Y. Liu et al., 2019)

and its multilingual version XLM-RoBERTa large (Conneau et al., 2020) for English

and non-English datasets respectively. We tune hyper-parameters for our model

3https://www.iarpa.gov/index.php/research-programs/better
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on ACE05-E+ development data and apply the best hyper-parameters to the other

datasets for consistency. In particular, we select: 5e-6 for learning rate with Adam

optimizer; 10 for batch size; 300 for the hidden vector sizes for all the feed-forward

networks and the GCN model; 2 for the number of layers for the feed-forward and

GCN networks; n = 4 for the sizes of cross-type patterns in U ; and p = 2 for the

kernel computation. The model performance is obtained by averaging over three runs

with different random seeds.

Baselines: We compare our method (i.e., DepIE) with recent models that jointly

perform our four IE tasks, including OneIE (Y. Lin et al., 2020b), AMRIE (Zhang &

Ji, 2021b), and FourIE (M. V. Nguyen, Lai, & Nguyen, 2021). FourIE is the current

state-of-the-art method for JointIE. Among models, OneIE, FourIE, and our model

DepIE are language-agnostic so they can be directly applied to non-English datasets. In

contrast, AMRIE is only designed for English as it requires an English AMR parser. To

be comprehensive, we also consider recent event extraction methods, i.e., Text2event

(Lu et al., 2021b), DEGREE-E2E (I. Hsu et al., 2021), Query&Extract (S. Wang,

Yu, Chang, Sun, & Huang, 2022), GTEE-DYNPREF (X. Liu, Huang, Shi, & Wang,

2022), which perform only ETD and EAE.

Datasets Task OneIE FourIE DepIE (Ours)

BETTER-EN
(English)

Ent 75.1 75.3 76.5
Trg 63.6 63.9 65.6
Arg 62.4 64.5 65.6

BETTER-FA
(Farsi)

Ent 65.1 65.7 66.5
Trg 57.0 57.6 59.1
Arg 55.2 56.3 58.1

Table 13. Monolingual performance (F1 scores) on test data of BETTER datasets.

Monolingual Performance: We first compare the models in monolingual settings

across the four datasets in Tables 11 and 13 where models are trained and tested on

data of the same language. As can be seen, our model performs significantly better
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Test Data Task OneIE FourIE DepIE (Ours)

ACE05-CN

Ent 70.2 70.8 71.8
Rel 31.1 32.6 35.7
Trg 58.4 60.5 62.1
Arg 37.9 39.2 41.5

ACE05-AR

Ent 64.2 65.4 66.5
Rel 27.1 30.6 31.7
Trg 35.4 36.9 40.6
Arg 25.0 26.5 28.0

ERE-ES

Ent 75.5 76.5 76.6
Rel 27.7 28.6 33.0
Trg 45.3 47.0 49.9
Arg 34.2 35.4 37.4

BETTER-FA
Ent 74.1 74.2 74.8
Trg 56.5 57.3 58.7
Arg 59.8 61.7 63.0

Table 14. Cross-lingual performance (F1 scores) on test data of non-English datasets.
For the BETTER-FA setting, the models are trained on training data of BETTER-EN
only. For the other settings, only training data of ACE05-E+ is used for training.

than the baselines across the datasets. Among the four IE tasks, the EAE and RE

tasks appear to gain largest performance improvements. Further, as the improvements

are consistent across languages, it highlights the portability to different languages

of the induced cross-instance and cross-task dependencies in our proposed model for

JointIE.

Crosslingual Performance: To further investigate the cross-lingual generalization

of the JointIE models, we compare OneIE, FourIE, and DepIE in the cross-lingual

transfer learning settings where the models are trained on training data of English

datasets and evaluated on the test data of the other languages. As shown in Table

14, our model DepIE is still the best performer in the crosslingual settings over

different tasks and test languages. The performance improvement is significant on

almost all tasks (p < 0.01), thus demonstrating language-invariant advantages of our

designed cross-task dependencies for JointIE. In addition, we note that this is the first

comprehensive evaluation of JointIE models in cross-lingual transfer learning. As the

performance of the current models is still not satisfactory, it emphasizes the challenges
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of JointIE with cross-lingual transfer learning and call for future research efforts in

this important direction.

Models
ACE05-E+

Ent Rel Trg Arg
DepIE 89.1 65.6 73.3 65.3
- cross-instance 87.4 62.7 71.7 62.0
+ single-source graph 88.6 64.3 72.7 63.7
+ heuristic graph 88.1 63.1 72.2 62.9
- GCN 88.3 63.8 72.4 63.1

- cross-type 88.2 64.1 72.0 64.1
+ naive cross-type 87.8 63.5 71.6 63.7
+ cosine similarity 88.4 64.5 72.8 64.3
+ type regularization 88.2 64.6 72.4 64.5
+ global features 87.7 63.1 72.0 64.0

Table 15. Model performance (F1) of ablated models.

Example DepIE FourIE

In the January attack, two Palestinian suicide bombers blew themselves
up in central Tel Aviv, killing 23 other people.

Analysis: DepIE can successfully predict “blew” as a “Die” event trigger
due to the recognized connections with “suicide” and “themselves” while
FourIE fails to do so.

A second rocket landed in farmlands and the other hit a house inside
the refugee camp, …

Analysis: DepIE can successfully predict “other” as an “Instrument” for
the event trigger “hit” due to its ability to connect to the important
related instance “rocket” while FourIE fails to do so.

themselves

suicide

(blew, bombers)

(blew, Tel Aviv)

Event:Die

blew

themselves

suicide

(blew, bombers)

(blew, Tel Aviv)

Event:Attack

blew

Argument:Instrument
hit

other
rocket

(hit, other)

Argument:Attacker
hit

other
rocket

(hit, other)

Figure 12. Some task instances along with their dependency connections produced by
DepIE and FourIE.

Ablation Study: To study the impact of each proposed component for DepIE, Table

15 evaluates the ablated models over ACE05-E+ development data.

In particular, for cross-instance dependencies, we first remove the cross-instance

dependency graph from DepIE. The ablated model “- cross-instance” shows significant

performance drops across all the four IE tasks, demonstrating the importance of

the cross-instance dependency component to our model. In addition, we evaluate a

simplified version of this component where a single source of information is used to
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induce dependencies between instances. Particularly, the cross-instance dependency

weights αij in this case are computed with only the last layer of the PLM instead

of all the layers. As the performance of the ablated model “+single-source graph”

is substantially worse than the full model, it confirms the benefits of using multiple

information sources from PLM to compute cross-instance dependencies for FourIE.

Moreover, we replace our induced dependency weights for instances with the heuristic-

based dependency weights produced by the best baseline model FourIE (i.e., αij = 1 if

instances vi and vj share an event trigger or entity mention). The inferior performance

of the resulting model “+heuristic graph” compared to “+single-source graph” and

DepIE strongly indicates the strength of automatically learned dependency graphs

for JointIE. Finally, we report the performance of DepIE where the GCN model is

removed while still preserving the cross-instance and cross-type dependencies (i.e.,

“- GCN”). As such, the contextualized embeddings xi will replace the GCN-induced

vectors hi in the computation. It is clear from the table that the GCN model is

necessary for DepIE as “- GCN” has significantly worse performance.

Next, we study the effect of the cross-type dependency component for DepIE. As

shown in the table, removing cross-type dependencies from DepIE (i.e., “- cross-type”)

significantly hurts model performance. To understand the benefit of the Chow-Liu

algorithm, we examine a simpler method to produce the cross-type dependency graph

Gctp where two information types in T are connected if they are both expressed

in a sentence in training data. The resulting model (i.e., “+ naive cross-type”)

performs much poorer than our full model with the Chow-Liw tree. To investigate

the effectiveness of the random walk kernels, we examine a similar method to the

type dependency regularization in FourIE to compute the similarity between the

cross-instance graph Ginst and the cross-type patterns Gcpt
d for the global features mcpt.
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Event:Attack Role:Instrument

Role:Defendant Role:Adjudicator

Role:Instrument Entity:Weapon

Relation:Affiliation Entity:Organization

Event:End-Organization Entity:Organization

Event:Declare-Bankruptcy

Role:Defendant Event:Charge-Indict

Event:Trial-HearingEvent:Convict

Figure 13. Cross-type patterns learned DepIE on ACE05-E+. Blue, red, green, and
orange circles represent entity, event, argument role, and relation types respectively.

In particular, we use a GCN model to consume the graphs Ginst and Gcpt
d along with

their node embeddings; the resulting vectors for each graph are then max-pooled to

obtain a representation vector for the graph. The similarity between the two graphs

is then computed via the cosine similarity between their representations. As the

corresponding model “+ cosine similarity” is worse than the full model over different

tasks, it demonstrates the necessity of the random walk kernels for DepIE.

Finally, we remove the cross-type dependency component (i.e., with Chow-Liu and

graph kernels) and integrate alternative methods to generate and apply cross-type

dependencies from previous JointIE methods into DepIE, i.e., the type regularization in

FourIE for training or the global type features for decoding in OneIE. Both the models

“+type regularization” and “+global features” in Table 15 observe large decreased

performance, further confirming the benefit of the cross-type dependency components

for JointIE in DepIE.

Analysis: To understand the effect of the cross-instance dependency graph learned

by DepIE compared to the heuristic-based dependency graph produced by FourIE, we

examine examples on the ACE05-E+ development data for which DepIE can have

correct predictions while FourIE fails to do so. Figure 12 presents some examples of
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this type. As can be seen, by computing dependency weights for all possible pairs

of instances, DepIE can discover important related instances that do not share any

entity mentions/event triggers with the instance of interest (e.g., the related instance

“suicide” for “blew”), thus allow DepIE to correct the wrong predictions in FourIE to

improve the performance.

Finally, Figure 13 presents some cross-type patterns learned DepIE. We observe

that 3-node and 4-node patterns can capture subtle structures between information

types for JointIE (e.g., the “Charge-Indict”, “Convict”, and “Trial-Hearring” event

types and the “Defendant” argument role).

3.2.4 Related Work. IE tasks have been performed jointly to capture

dependency between the tasks via feature engineering (Q. Li et al., 2013b; Roth & Yih,

2004b; B. Yang & Mitchell, 2016b; Yu & Lam, 2010b) or deep learning (Bekoulis, Deleu,

Demeester, & Develder, 2018b; Luan et al., 2019b; T. H. Nguyen, Cho, & Grishman,

2016b; Zheng et al., 2017b) methods. However, most previous work only jointly solves

two or three IE tasks (Lu et al., 2021b; T. M. Nguyen & Nguyen, 2019a). Recently,

there have been growing interest in performing all the four IE tasks jointly (i.e.,

JointIE) (M. V. Nguyen, Min, et al., 2022a; Wadden, Wennberg, Luan, & Hajishirzi,

2019b; Zhang & Ji, 2021b) to exploit manually designed dependency graphs for IE

instances (M. V. Nguyen, Lai, & Nguyen, 2021) or handcrafted global features for

information types (Y. Lin et al., 2020b). Our work is different from previous JointIE

models as we learn cross-instance and cross-type dependencies from data to provide

better structures for representation learning. Finally, we note that our cross-type

dependency component is related to structure learning methods for Bayesian networks

(Banerjee & Ghosal, 2015; Eaton & Murphy, 2012; Scutari, Graafland, & Gutiérrez,

2019) and graph kernels to compute graph similarity (Feng et al., 2022; Gärtner et
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al., 2003; Kondor & Pan, 2016; Shervashidze, Vishwanathan, Petri, Mehlhorn, &

Borgwardt, 2009; Vishwanathan et al., 2006). However, these approaches have not

been explored for JointIE.

3.2.5 Summary. We present a novel model to jointly solve four IE tasks

(EMR, ETD, EAE, and RE). Our model learns cross-instance dependencies through

different layers of a PLM and cross-type dependencies via the Chow-Liu algorithm.

The cross-task dependencies are exploited via GCNs and random walk kernels to

improve representation learning. Extensive experiments demonstrate the state-of-

the-art performance of our model across four datasets with different languages and

settings.

3.3 GraphIE

3.3.1 Introduction. To extract structured information from unstructured

text, a typical information extraction (IE) pipeline involves four major tasks: event

trigger detection (ETD), event argument extraction (EAE), entity mention recognition

(EMR), and relation extraction (RE). Previous work has performed such IE tasks via

pipelined approaches (Y. Chen et al., 2015a; Du & Cardie, 2020; F. Li et al., 2020a;

Q. Li et al., 2013a), where a model for one task uses output predictions from other

models performing other tasks. Consequently, errors from the predictions can be

propagated between the models in the pipeline.

Recently, ETD, EMR, EAE, and RE have been solved jointly in a single model,

i.e., Joint Information Extraction - JointIE (Y. Lin et al., 2020a; M. V. Nguyen, Lai,

& Nguyen, 2021; Wadden et al., 2019a; Zhang & Ji, 2021a), to avoid error propagation

and leverage dependency between prediction instances of the four IE tasks (i.e., event

trigger, entity mention, relation, and event argument candidates in a sentence). For

example, if a Person entity mention is a Victim argument for a Die event, it is
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Figure 14. Overview of the three stages in our proposed model: i) identifying task
instances, ii) inducing instance dependency, and iii) joint modeling and decoding of
instance labels. Each node represents an instance for one of the four IE tasks, and
edges (with weights ¿ 0.3) between nodes represent induced instance dependency.

likely that the same entity mention is also a Target argument for an Attack event

in the same sentence. To implicitly exploit instance dependency for representation

learning, Wadden et al. (2019a) and Y. Lin et al. (2020a) employ a shared encoder to

obtain representation vectors to classify instances of different IE tasks. Later work

heuristically captures dependency between IE task instances via explicitly connecting

the task instances that share an entity mention or event trigger (M. V. Nguyen, Lai, &

Nguyen, 2021) or aligning the task instances that share text spans with some nodes on

a semantic graph (Zhang & Ji, 2021a) to aid representation learning. While natural,

these manual designs for dependency between task instances might not be optimal for

representation learning of JointIE.

In addition to representation learning, at the prediction level, previous work

tends to factorize the joint distribution of labels for all the task instances in JointIE

into the product of label distributions for each individual instance (i.e., performing

local normalization), thus hindering the ability to fully exploit the interactions of

instance labels across IE tasks. (Y. Lin et al., 2020a) and (Zhang & Ji, 2021a)

mitigate this problem by decoding instance labels with handcrafted global features

93



while (M. V. Nguyen, Lai, & Nguyen, 2021) focuses on encoding label interactions

via consistency regularization over global type dependency graphs. However, these

approaches still assume a factorization of the joint label distribution for prediction

instances, thus unable to fundamentally address the label dependency encoding issue.

Recently, some works have attempted to directly model the joint distribution of

instance labels by reformulating JointIE tasks as text generation problems using

state-of-the-art pre-trained seq2seq models, e.g., BART or T5 (Lewis et al., 2020;

Raffel et al., 2020a). In such generative models, text spans and labels for task instances

are generated by the decoder in an autoregressive fashion to encode label dependency

for joint distribution computation (I. Hsu et al., 2021; Lu et al., 2021a). Unfortunately,

this approach needs to assume an order of the task instances to be decoded (e.g., from

left to right) that disallows later instances in the order to interfere/correct predictions

for earlier instances, causing suboptimal performance for JointIE.

In this work, we aim to overcome these issues by inducing dependency between

the task instances for JointIE from data to boost representation learning, and directly

modeling the joint distribution of the labels for all the task instances to fully enable

label interactions. To this end, we consider each task instance as a node in a fully

connected dependency graph; the weight for each edge is then learned to capture the

dependency level between two corresponding instances. Note that this is different

from prior work (M. V. Nguyen, Lai, & Nguyen, 2021; Zhang & Ji, 2021a) that

heuristically designs sparser dependency graphs with disconnected task instance pairs,

thus failing to explore all possible interactions between instance pairs for optimal

representations. In our method, the induced dependency graph for instance nodes

is then employed by Graph Convolutional Networks (GCNs) (Kipf & Welling, 2017;

T. H. Nguyen & Grishman, 2018a) to enhance the representation for each instance
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node with information from all the other nodes according to their dependency levels.

Afterwards, the enhanced instance representations and the induced dependency graph

are utilized to estimate the joint distribution of instance labels via Conditional Random

Fields (CRFs) (Lafferty, McCallum, & Pereira, 2001). This formulation enables us to

approximately maximize the intractable joint likelihood of the ground-truth instance

labels via Noise Contrastive Estimation (NCE) (Gutmann & Hyvärinen, 2012), which

converts the maximization problem into the nonlinear logistic regression discriminating

between the true labels and the noise labels.

Finally, previous work for JointIE has employed a greedy or beam search for

decoding instance labels, which is not optimal due to their greedy nature. In this

work, we propose a novel decoding algorithm for JointIE via Simulated Annealing

(SA) (Kirkpatrick, Gelatt Jr, & Vecchi, 1983), which has been shown to be able to

approximate the global optimum of a function (Kirkpatrick et al., 1983; Van Laarhoven

& Aarts, 1987). Experimental results show that our proposed model for JointIE

significantly outperforms previous models on multiple tasks with large margins across

5 datasets and 2 languages.

3.3.2 Problem Statement. Given an input sentence, ETD aims to predict

text spans and event types for event triggers based on a predefined set of event types,

e.g., “Attack” and “Transport” (V. D. Lai et al., 2020). Similarly, EMR seeks to

determine text spans and entity types (e.g., “Person”, “Organization”) for entity

mentions in the sentence (T. H. Nguyen, Sil, Dinu, & Florian, 2016). Different from

the first two tasks, EAE and RE involves predictions for a pair of objects at a time.

Given an event trigger and an entity mention, EAE aims to predict the argument

role (e.g, “Victim”) of the entity mention for the event trigger (Veyseh, Nguyen, &

Nguyen, 2020a). An argument role can be “Not-an-argument” indicating that the
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entity mention is not an argument for the trigger. For RE (Veyseh, Dernoncourt, Dou,

& Nguyen, 2020a; Veyseh, Dernoncourt, Thai, et al., 2020a), the task focuses on the

classification of relation (e.g, “Work for”) for a given pair of entity mentions. There is

also a special type “No-relation” to specify no relation between two entity mentions.

As such, we call the union set C of the predefined event types, entity types, argument

roles, and relation types as the information types (excluding “Not-an-argument” and

“No-relation”).

3.3.3 Model. To capture dependency among task instances for JointIE, an

approach is to obtain all text spans for entity/event mention candidates along with

their possible pairs to form the nodes for a dependency graph to improve representation

learning. However, this approach will retain many text spans for non-entity/event

mentions to introduce noise into the modeling. It will also entail a large dependency

graph that can hinder the efficiency of the model. To this end, our model for JointIE

first identifies text spans for entity mentions and event triggers. Afterwards, all

possible pairs of event-entity and entity-entity mentions are considered to identify

positive pairs for event arguments and relations respectively. The detected entity

mentions, event triggers, event arguments, and relations are called task instances that

should be classified to obtain corresponding information types in C. In our model, a

dependency graph among the detected task instances will be learned to provide inputs

for GCNs to compute dependency-enhanced representations for the task instances.

Finally, the enhanced representations will be used to compute a joint distribution over

labels for all the task instances to train our model. We will also employ Simulated

Annealing to achieve the global optimum for label assignment of the task instances in

the decoding phase.
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3.3.3.1 Identifying event and entity mentions. Given an input sentence

w = [w1, . . . , wN ] with N words, we identify its event triggers and entity mentions by

solving two corresponding sequence tagging problems for event and entity mentions.

In particular, we use the BIO tagging schema to assign two labels to each word in w

to mark the text spans of event triggers and entity mentions, i.e., {“B-TRIGGER”,

“I-TRIGGER”, “O”} labels for event triggers, and {“B-ENTITY”, “I-ENTITY”, “O”}

labels for entity mentions. The pre-trained transformer-based language model BERT

(Devlin et al., 2019a) is first utilized to obtain the contextualized embeddings for the

words in the sentence: X = x1, . . . ,xN = BERT([w1, . . . , wN ]).

Next, the vector sequence X is sent to two different CRF layers (Chiu & Nichols,

2016; Lafferty et al., 2001) to compute two distributions for the tag sequences of w for

event triggers and event mentions. The negative log-likelihoods Lt and Le for golden

trigger and entity tag sequences are then obtained to be included in the overall training

loss. At test time, the Viterbi algorithm (Forney, 1973) is employed to determine the

best tag sequences for event triggers and event mentions in w.

Let V t and V e be the sets of text spans for event triggers and entity mentions

respectively in w (i.e., golden spans in the training time and predicted spans in the

test time). To prepare for the next components, we compute the representations

vectors zti and zej for each event trigger/instance ti ∈ V t and entity mention/instance

ej ∈ V e respectively by averaging over the contextualized embeddings of the words

inside the spans.

3.3.3.2 Identifying event arguments and relations. Given the detected

event triggers and entity mentions, we obtain a representation vector zaij for each pair

of event-entity mentions aij = (ti, ej) (i.e., ti ∈ V t, ej ∈ V e), and a representation

vector zrij for each pair of entity-entity mentions rij = (ei, ej) (i.e., ei, ej ∈ V e) via:
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zaij = FFNdown
a (concat(zti, z

e
j)) and zrij = FFNdown

r (concat(zei , z
e
j)).

Here, we use the feed-forward networks FFNdown
a and FFNdown

r to make sure

that zti, z
e
j , z

a
ij, and zrij have the same dimensionality. Next, the pair representation

vectors zaij and zrij are sent into two different feed-forward networks followed by sigmoid

activations to compute the possibilities for being positive examples for event arguments

and relations of aij and rij respectively: p
a
ij = σ(FFNa(zaij)), and p

r
ij = σ(FFNr(zrij)).

Here, paij ∈ (0, 1) is the probability for the entity mention ej being an actual argument

for the event trigger ti while p
r
ij ∈ (0, 1) is the likelihood that there exists a relation

of interest between the entity mentions ei and ej. At training time, we obtain the

the negative log-likelihoods La and Lr for the golden event argument and relation

identification to be included in the overall loss function for minimization. At test time,

the event-entity pair aij and entity-entity pair rij are retained as positive examples

for event arguments and relations if their likelihooods paij and p
r
ij are greater than 0.5.

For convenience, let V a and V r be the sets of positive event-entity pairs aij (called

argument instances) and entity-entity pairs rij (called relation instances) respectively.

Also, let V = V t ∪ V e ∪ V a ∪ V r be the set of all detected event, entity, argument,

and relation instances. For each instance vi ∈ V , we will use vi for its corresponding

instance representation (i.e., from zti, z
e
j , z

a
ij, or z

r
ij).

3.3.3.3 Inducing Instance Dependency. Given the detected event, entity,

argument, and relation instances in V , it remains to predict the information types in C

for the instances to solve JointIE. While it is possible to directly employ the instance

representations vi for label prediction, our goal is to exploit instance dependency in IE

to enhance the representation vector for one instance with the information from other

instances to facilitate type prediction. In particular, using the instances vi in V as the

nodes in a dependency graph G, we aim to enrich instance representations by feeding
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them into a GCN model. As such, instead of assuming a heuristic manually-designed

dependency graph among the instances as in previous work (M. V. Nguyen, Lai, &

Nguyen, 2021; Zhang & Ji, 2021a), we propose to automatically learn the dependency

graph G for the instances in V . To this end, our dependency graph G is a fully

connected graph among the nodes in V where a weight αij ∈ (0, 1) is learned for

each edge to quantify the dependency between the instances vi and vj in V . In this

work, we present two sources of information that can be used for determining the

dependency between the task instances: (i) semantic and (ii) syntactic information.

Semantic Information: The semantic-based weight αsem
ij for the edge between vi

and vj quantifies their relatedness/dependency based on semantic information, i.e., via

the representation vectors vi and vj : α
sem
ij = FFN sem(concat(vi,vi)). Here, FFN

sem

is a feed-forward network with the sigmoid function in the end.

Syntactic Information: The syntax-based weight αsyn
ij for the edge between vi and

vj is computed in a similar way as αsem
ij . In particular, for each word wk ∈ w, we

retrieve the dependency relation dk between wk and its governor in the dependency

tree of w, which is generated by the Trankit’s dependency parser (M. V. Nguyen,

Lai, Veyseh, & Nguyen, 2021). We then obtain the embedding mk of dk for wk

by looking up the learnable dependency embedding matrix M. Afterwards, the

syntax-based representation vector ui for the instance vi ∈ V is computed via: ui =

max-poolwk∈SPANvi
(mk). Here, SPANvi involves the words in the corresponding text

span of vi in w if vi is an event trigger or entity mention instance. Otherwise, SPANvi

contains the words inside the text spans of the involving event triggers and entity

mentions in the pair for vi. As such, we compute the syntax-based dependency

weight αsyn
ij for vi and vj via: α

syn
ij = FFN syn(concat(ui,ui)) where FFN

syn is also a

feed-forward network with the sigmoid function in the end. Finally, we combine the
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semantic- and syntax-based weights to obtain the overall dependency weight αij for vi

and vj in V : αij = (αsem
ij + αsyn

ij )/2.

3.3.3.4 Enhancing Representations with GCNs. To enhance the

representation vectors for the instances vi ∈ V , a GCN model with K layers is

applied over the induced dependency graph G to compute richer representations for

the instances:

hk
i = ReLU(

∑
vj∈V αijW

khk−1
j + bk∑

vj∈V αij
), 1 ≤ k ≤ K (3.3)

Here, hki is the representation for the instance vi at the k-th layer of the GCN (h0
i ≡ vi),

and Wk,bk are trainable weight and bias for the layer.

In this way, representation information from all the other instances vj (j ̸= i) will be

incorporated into the enhanced representation vector for vi according to their learned

dependency weights. Finally, the last layer’s representation hK
i ≡ hi (we omit K for

simplicity) is used to compute the score vector si ∈ R|C| for vi, where si[c] measure

the possibility for vi to have the c-th label in the label set C: si = FFN score(hi)

(FFN score is a scoring feed-forward network). The score vectors si will later be used

for modeling the joint distribution of the labels for all the instances in V .

3.3.3.5 Computing Joint Distribution of Labels. Let Y be the set

of labels yi for the instances vi in V . To infer the labels for the instances in V ,

we need to estimate the joint distribution P (Y |w, V ). In previous work (Y. Lin

et al., 2020a; M. V. Nguyen, Lai, & Nguyen, 2021; Wadden et al., 2019a; Zhang

& Ji, 2021a), JointIE methods mostly focus on learning representations for the

task instances to compute a label distribution for each instance vi for prediction:

P (yi|w, V ) := softmax(si) . This practice essentially implies the following factorization

for P (Y |w, V ): P (Y |w, V ) =
∏

yi∈Y P (yi|w, V ). As a result, this factorization assumes
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the independence of the instance labels, thus unable to fully capture beneficial label

dependency for IE tasks.

To address this issue, we directly estimate the joint distribution P (Y |w, V ) so that

the dependency between instance labels can be facilitated to improve prediction

performance. To this end, we formulate the joint distribution P (Y |w, V ) with

Conditional Random Fields (Lafferty et al., 2001):

P (Y |w, V ) =
1

Z(V )

∏
(vi,vj)

ψij(yi, yj , V ) (3.4)

where ψij(yi, yj, V ) is a positive potential function defined on the edge (vi, vj) of the

dependency graph G, and Z(V ) =
∑

Y ′∈CV

∏
(vi,vj)

ψij(y
′
i, y

′
j, V ) is the normalization

term to make sure that P (Y |w, V ) is a valid probability distribution (CV is the set

of all possible label assignments Y for the instances in V ). Considering the instance

information, the instance dependency, and the label dependency, we propose the

potential function as:

ψij(yi, yj , V ) := exp(si[yi] + sj [yj ] + αijπyi↔yj ) (3.5)

where si[yi] is the local score for instance vi being assigned with the label yi, αij is

the induced dependency weight for the edge (vi, vj) in G, and πyi↔yj is a learnable

transition score indicating the dependency between the labels yi and yj. With this

formulation, we can derive the joint distribution P (Y |w, V ):

P (Y |w, V ) =
exp(s(Y ))∑

Y ′∈CV
exp(s(Y ′))

(3.6)

where:

s(Y ) = γ
∑
vi∈V

si[yi] +
∑

(vi,vj)

αijπyi↔yj (3.7)

is the global score for the label assignment/configuration Y of the instances. γ is a

hyper-parameter to balance the local and transition scores.

101



To train the model, we need to maximize the joint likelihood in Equation (3.6)

for the golden label configuration Y ∗. However, this requires the computation of

the normalization term
∑

Y ′∈CV
exp(s(Y ′)), which is intractable. To overcome this

issue, we employ Noise Contrastive Estimation (NCE) (Gutmann & Hyvärinen, 2012;

Mikolov et al., 2013). NCE converts the maximization problem into the nonlinear

logistic regression that discriminates between the golden label configurations and the

noise label configurations. In particular, the maximization of P (Y ∗|w, V ) is done with

NCE via minimizing the contrastive loss:

LNC = −logσ(s(Y ∗))−
Nnoi∑
n=1

EY ′
n∼Pnoi

[
logσ(−s(Y ′

n))
]

(3.8)

where σ is the sigmoid function and Nnoi is the number of noise configurations Y ′
n drawn

from Pnoi, assumed to be a uniform distribution. Intuitively, the minimization of LNC

increases the global score s(Y ∗) for the true label configuration Y ∗ while decreasing the

global scores s(Y ′) for the noise label configurations Y ′ to appropriately train the model.

To the end, the overall loss function to train our model is: L = Lt+Le+La+Lr+LNC .

3.3.3.6 Joint Decoding via Simulated Annealing. At inference time, we

need to search for the configuration Ŷ that has the highest global score s(Ŷ ) in CV :

Ŷ = argmaxY ′∈CV
s(Y ′). A brute-force search for Ŷ cannot be done as the search space

CV is exponentially large (|CV | = |C||V |). Previous work has made several attempts to

deal with this issue. (Wadden et al., 2019a) and (M. V. Nguyen, Lai, & Nguyen, 2021)

simply perform greedy decoding for each instance label independently, thus unable to

exploit the label dependency. (Y. Lin et al., 2020a) and (Zhang & Ji, 2021a) resort to

beam search that step by step constructs a complete decoding assignment Y for the

instances in V by expanding an initially empty assignment. Each step corresponds to

an instance in V where only top candidate labels for the instance are considered for

assignment expansion and only top partial assignments produced so far are kept for
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Algorithm 1: Simulated Annealing Search

Input : Ŷ0 where ŷi,0 = argmaxc∈Csi[c].
1 Ŷcur ← Ŷ0; n← 1;
2 while n ≤ Niter do
3 t← T/n;
4 if t < ϵ then

5 return Ŷcur;
6 else

7 Ŷnew = random successor(Ŷcur);

8 δn = s(Ŷnew)− s(Ŷcur);
9 if δn > 0 then

10 Ŷcur ← Ŷnew;
11 else

12 Ŷcur ← Ŷnew with p = exp( δnt ) ;
13 end

14 end
15 n← n+ 1;

16 end

17 return Ŷcur.

the next step. Unfortunately, the selection of top candidate labels for expansion at

each step is based only on the local scores si, which might discard the candidates that

can eventually provide greater global scores. To overcome this issue, we propose to

apply Simulated Annealing (SA) (Kirkpatrick et al., 1983) to search for the optimal

assignment Ŷ for V . SA is a probabilistic algorithm that is able to approximately find

the global optimum of a function (Kirkpatrick et al., 1983; Van Laarhoven & Aarts,

1987). Algorithm 1 presents our implementation for SA to find Ŷ .

The input for the algorithm is the initial configuration Ŷcur = Ŷ0 = {ŷi,0}, which

contains the greedily predicted labels for each instance: ŷi,0 = argmaxc∈Csi[c]. The

algorithm then runs over Niter iterations to improve the global score s(Ŷcur) for the

current label configuration Ŷcur. This is done via updating the current configuration

to a successor configuration Ŷnew that gives a higher global score (i.e., δn > 0). A

successor configuration is obtained via the function random successor() by randomly
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Datasets Split #sents #ents #rels #events

ACE05-R
Train 10,051 26,473 4,788 -
Dev 2,424 6,362 1,131 -
Test 2,050 5,476 1,151 -

ACE05-E
Train 17,172 29,006 4,664 4,202
Dev 923 2,451 560 450
Test 832 3,017 636 403

ACE05-E+
Train 19,240 47,525 7,152 4,419
Dev 902 3,422 728 468
Test 676 3,673 802 424

ERE-EN
Train 14,219 38,864 5,045 6,419
Dev 1,162 3,320 424 552
Test 1,129 3,291 477 559

ERE-ES
Train 7,067 11,839 1,698 3,272
Dev 556 886 120 210
Test 546 811 108 269

Table 16. Data statistics. #sents, #ent, #rels, and #events indicate the number
of sentences, entity mentions, relations, and events respectively.

changing some label ŷi ∈ Ŷcur. Different from beam search decoding with partial

assignments, each searching step in SA examines a complete label assignment for the

instances in V to provide complete information to measure the global scores/quality

of the assignments. Importantly, SA sometimes allows the current configuration to

transition to a successor configuration with a lower global score (i.e., δn ≤ 0) with an

acceptance probability of p = exp( δn
t
). Here, t is the temperature of the algorithm,

gradually decreased via t← T/n (T is a hyper-parameter). This exploration property

enables SA to escape from local optimum configurations, thus increasing the chance

to find the globally optimal configuration Ŷ .

3.3.4 Experiments. Datasets: Following previous work (I. Hsu et al., 2021;

Y. Lin et al., 2020a; Lu et al., 2021a; M. V. Nguyen, Lai, & Nguyen, 2021; Wadden

et al., 2019a; Zhang & Ji, 2021a), we conduct experiments on 5 different datasets

created by the 2005 Automatic Content Extraction (ACE05) (Walker et al., 2006)

and Entity Relation Event (ERE) (Song et al., 2015) programs. The three ACE05

datasets feature ACE05-R, ACE05-E, and ACE-E+, all in English, involving 33
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PLMs Model
ACE05-R ACE05-E ACE05-E+ ERE-EN ERE-ES
Ent Rel Ent Trg Arg Ent Rel Trg Arg Ent Rel Trg Arg Ent Rel Trg Arg

T5 Text2event - - - 71.9 53.8 - - 71.8 54.4 - - 59.4 48.3 - - - -

BART DEGREE - - - 72.2 56.0 - - 71.7 58.0 - - 56.6 51.1 - - - -

BERT

OneIE 88.6 63.4 90.2 74.7 56.8 89.6 58.6 72.8 54.8 87.0 53.2 57.0 46.5 81.3 48.1 56.8 40.3
AMRIE* 88.7 67.2 90.8 75.3 58.2 90.4 62.9 72.8 56.3 86.9 55.5 58.3 44.2 - - - -
FourIE 88.9 68.9 91.3 75.4 58.0 91.1 63.6 73.3 57.5 87.4 56.1 57.9 48.6 82.2 57.9 57.1 42.3
GraphIE 88.9 69.5 90.6 75.7 58.8 91.0 65.4 74.8 59.9 87.2 57.8 61.4 52.2 81.4 58.9 61.3 45.7

RoBERTa

OneIE* 89.0 65.2 90.2 74.7 55.6 90.8 60.4 72.5 56.3 86.3 52.8 57.1 47.1 83.7 57.5 58.3 42.5
AMRIE 89.2* 66.8* 92.1 75.0 58.6 91.0* 62.8* 72.7* 57.7* 87.9 55.2 61.4 45.0 - - - -
FourIE* 89.1 67.5 91.6 74.9 58.7 91.1 63.1 72.8 58.3 88.0 56.2 61.5 49.1 83.9 61.0 62.3 44.2
GraphIE 89.3 68.5 91.4 75.1 59.4 91.6 66.0 73.3 60.2 87.7 57.0 62.0 54.7 84.3 62.3 65.7 46.9

Table 17. Model performance on the test data of 5 datasets. “Ent”, “Rel”, “Trg”,
and “Arg” are the F1 scores for identification and classification of entity mentions,
event triggers, relations, and event arguments respectively. * indicates results that are
not reported in the original papers but produced by their official code. Underlined
numbers designate the tasks where GraphIE is significantly better (p ¡ 0.01) than the
baselines.

event types, 7 entity types, 6 relation types, and 22 argument roles. The two ERE

datasets are ERE-EN (English portion) and ERE-ES (Spanish portion), introducing

38 event types, 7 entity types, 5 relation types, and 20 argument roles. We use the

same data processing and train/dev/test splits as the prior work for a fair comparison.

Detailed statistics for the datasets are shown in Table 16.

Baselines: We compare our method, called GraphIE, with the following baselines for

JointIE:

Generative baselines: Text2event (Lu et al., 2021a) and DEGREE (I. Hsu et al.,

2021). The generative baselines perform ETD and EAE via formulating the tasks as

text generation. The models receive an input sentence and generate an output text

containing text spans and labels for event triggers and event arguments, structured in

a way that a post-processing step can be used to extract ETD and EAE predictions

for the models.

Classification baselines: OneIE (Y. Lin et al., 2020a), AMRIE (Zhang & Ji,

2021a), and FourIE (M. V. Nguyen, Lai, & Nguyen, 2021). The classification baselines

represent the instances for ETD, EMR, EAE, and RE via a shared encoder and
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perform classification for the instances based on task-specific label distributions.

AMRIE and FourIE employ a heuristic dependency graph among task instances to

improve representation learning. Dependency between instance labels is exploited

in OneIE and AMRIE via a beam search decoding with manually-designed global

features, and in FourIE via global type dependency regularization. FourIE and

AMRIE are the current state-of-the-art models for JointIE.

Hyper-parameters: Prior work for JointIE employs two different versions of pre-

trained language models (PLM), i.e., BERT (Devlin et al., 2019a; Y. Lin et al., 2020a;

M. V. Nguyen, Lai, & Nguyen, 2021) and RoBERTa (Y. Liu et al., 2019; Zhang & Ji,

2021a), which might cause incompatible compassion. To this end, we explore both

BERT and RoBERTa to obtain the word representations xi for GraphIE for a fair

comparison. For the Spanish ERE-ES dataset, following prior work (Y. Lin et al.,

2020a; M. V. Nguyen, Lai, & Nguyen, 2021), we utilize the multilingual versions of

BERT and RoBERTa. For each PLM, we fine-tune the hyper-parameter for GraphIE

on the development data.

In particular, the best values for the hyper-parameters of the proposed model are

reported as follows. We employ the learning rate of 1e− 5 for the models with the

BERT-based PLM (i.e., using bert-large-cased and bert-multilingual-cased) and the

learning rate of 5e − 6 for the RoBERTa-based PLM (i.e., using roberta-large and

xlm-roberta-large). For other hyper-parameters, our tuning process results in the same

values for BERT-based and RoBERT-based models: Adam (Kingma & Ba, 2014) for

the optimizer, batch size of 10, 100 for the size of the dependency relation embeddings,

400 for the size of the hidden vector for the feed-forward networks, 200 for the hidden

vector size in the GCN model, 2 for the number of layers for the feed-forward networks

and GCN model, γ = 1 for the trade-off hyper-parameter for the global score, Nnoi = 5
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for the number of noise examples for the contrastive loss (we re-sample the noise

examples every epoch), T = 5 for the initial temperature, Niter = 50 for the number

of iterations of Simulated Annealing (SA), and ϵ = 0.1 for the temperature threshold

for the SA decoding.

Comparison with Baselines: We compare the proposed model GraphIE with the

baselines on test data of the 5 datasets in Table 17. As can be seen, the generative

baselines perform worse than the classification models on most of the settings. This

might be due the implicit modeling of the label distributions and the assumption

of a decoding order for task instances that limit the interactions of instance labels.

Comparing OneIE, FourIE and AMRIE, it is clear that the exploitation of instance

and label dependency in the training phase in FourIE can lead to better performance

for JointIE than using such dependency in the decoding phase as done by OneIE

and AMRIE over most tasks and PLMs. Most importantly, the proposed GraphIE

significantly outperforms all the baselines across a majority of settings for tasks,

datasets and PLMs, thus demonstrating the benefits of induced dependency graph,

joint label distribution estimation, and simulated annealing for decoding in our method.

Model (all use Roberta)
ACE05-E+

Ent Rel Trg Arg

GraphIE 89.8 67.2 72.6 66.3

- induced dep 89.3 65.8 71.3 65.0

- semantic-based dep 89.0 66.4 71.6 65.9

- syntactic-based dep 89.4 66.3 72.0 65.4

- induced dep + heuristic dep 89.3 66.2 71.7 65.5

- GCN 89.4 65.6 70.9 64.6

Table 18. Performance (F1) on the ACE05-E+ development data.

Ablation Study: To understand the contributions of each proposed component to

GraphIE, we conduct ablation experiments where we remove each component from

the full model and evaluate the performance of the remaining models.
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The first three ablated models in Table 18 are “- induced dep”, “- semantic dep”,

and “- syntactic dep”, formed by excluding the dependency weight induction of

αij (i.e., setting αij = 1), the semantic-based dependency αsem
ij , and the syntactic-

based dependency αsyn
ij (respectively) from the model computation. In each case,

the performance of GraphIE decreases significantly; the removal of both semantic-

and syntactic-based dependency in “- induced dep” leads to the largest performance

drop. This shows that the semantic and syntactic weighting captures complementary

information for instance dependency induction that is useful for our model. The

next ablated model “- induced dep + heuristic dep” is obtained by replacing the

induced dependency graph represented by αij with the heuristic dependency graph for

instances from the best baseline FourIE. The decrease in the performance of this model

suggests that the induced dependency graph is better than the heuristic graph for

JointIE. The final ablated model “- GCN” in Table 18 eliminates the GCN component

from our full model. The result shows that GCN is beneficial to exploit the induced

dependency graph to improve representation learning.

Model (all use Roberta)
ACE05-E+

Ent Rel Trg Arg

GraphIE 89.8 67.2 72.6 66.3

- joint distribution 89.3 65.5 70.9 64.5

- SA + greedy 89.2 65.9 71.2 65.2

- SA + beam 89.5 66.0 71.5 65.4

- SA + hill climbing 89.5 66.8 71.7 65.3

OneIE 88.7 64.2 69.5 63.2

- beam + SA 88.1 63.9 69.1 62.7

AMRIE 89.4 65.4 71.2 64.4

- beam + SA 88.8 65.1 70.5 64.1

Table 19. Performance (F1) on the ACE05-E+ development data.

In Table 19, we first eliminate the computation of the joint label distribution

P (Y |w, V ) from GraphIE. As such, the “- joint distribution” model employs the local

label distributions P (yi|w, V ) to train models and infer labels (with greedy decoding).
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Due to the significantly worse performance of “- joint distribution”, it is clear that

directly estimating the joint label distribution is helpful for JointIE. To evaluate

the benefit of the proposed SA, we replace it with other decoding algorithms for

GraphIE, including greedy search, beam search and hill climbing. The beam search

is implemented with our global score function s(Y ) and follows those in (Y. Lin et

al., 2020a; Zhang & Ji, 2021a) while hill climbing is implemented by removing the

configuration exploration in lines 11-12 of Algorithm 1. As reported in Table 19, SA

performs much better than other decoding algorithms for GraphIE, thus demonstrating

SA’s ability to find globally optimal labels. In addition, we also attempt to replace the

beam search decoding in OneIE and AMRIE with SA, which indeed leads to worse

performance for such models as shown in the last four rows of Table 19. We attribute

this to the learning of the global scores for configurations in OneIE and AMRIE that

involves a limited set of predefined global features. Such features do not exist for

many possible assignments Y for V , thus causing poor global score computation and

hindering the configuration ranking critically required by SA.

Label pair Transition score

(Argument:Origin, Argument:Place) 10.02

(Event:Transport, Relation:Physical) 4.33

(Relation:Org-Aff, Relation:Part-Whole) 3.58

(Event:Execute, Event:Sentence) 2.58

(Event:Die, Event:Be-Born) -2.34

(Event:Attack, Argument:Origin) -87.07

(Relation:Per-Soc, Entity:Facility) -93.93

(Transport, Attacker) -99.91

Table 20. Transition scores for some label pairs learned by our model on ACE05-E+.

Analysis: To further understand the advantages of GraphIE over baseline models, we

manually analyze the instances on the ACE05-E+ development data where GraphIE

can make correct predictions, but the best baseline model FourIE fails. Figure 15

presents some instances along with their edges and weights in the dependency graphs.
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Example GraphIE FourIE

In the January attack, two Palestinian suicide bombers blew themselves 

up in central Tel Aviv, killing 23 other people.

Explanation: “blew” is correctly predicted by GraphIE as a “Die” 

event trigger while FourIE incorrectly predicted it as an “Attack” event 

trigger.

We pretty much know that Marinello, while on the board, has arranged to 

get future money from the USCF.

Explanation: The relation between “Marinello” and “USCF” is 

correctly predicted by GraphIE as a “ORG-AFF” relation while FourIE 

incorrectly predicted it as a “GEN-AFF” relation.

A second rocket landed in farmlands and the other hit a house inside the 

refugee camp, …

Explanation: “other” is correctly predicted by GraphIE as an 

“Instrument” for the event trigger “hit” while FourIE incorrectly 

predicted it as an “Attacker” for the event trigger “hit”.

(blew, themselves)

suicide

(blew, bombers)

(blew, Tel Aviv)

Event:Die

blew

(blew, themselves)

suicide

(blew, bombers)

(blew, Tel Aviv)

Event:Attack

blew

0.49

0.56

0.74

0.33

1.0

1.0
1.0

Marinello USCF

board

(Marinello, USCF)

Relation:ORG-AFF

Marinello USCF

board

(Marinello, USCF)

Relation:GEN-AFF

1.0 1.00.86 0.85
0.61

EventArgument:Instrument

hit

other
rocket

(hit, other)

EventArgument:Attacker

hit

other
rocket

(hit, other)

0.75
0.82

0.64

1.0 1.0

1.0

1.0

Figure 15. Instances along with their dependency subgraphs in ACE05-E+. Supporting
instances are underlined.

The most important insight from our analysis is that GraphIE is able to connect an

instance (e.g., blew) with other supporting instances (e.g., suicide) in the dependency

graph to provide vital information to facilitate correct prediction. Such supporting

instances do not share any event trigger or entity mention with the current instance

that cannot establish links in FourIE and lead to failure predictions.

Finally, Table 20 shows the transition scores πyi↔yj learned by GraphIE for some

label pairs in ACE05-E+. The table show that our model is able to learn high scores

for correlated label pairs (e.g., the Execute and Sentence event types) and very low

scores for uncorrelated label pairs (e.g., an argument for a Transport event cannot

play the role Attacker).

3.3.5 Related Work. Capturing dependency between IE tasks has been a

main focus of previous work on Joint IE. Early work employed feature engineering

methods (Q. Li et al., 2013a; Roth & Yih, 2004a; B. Yang & Mitchell, 2016a; Yu &

Lam, 2010a). Later work applied deep learning via shared parameters to facilitate

joint modeling for IE, however, for only two or three tasks (Bekoulis et al., 2018a;
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Luan et al., 2019a; T. H. Nguyen, Cho, & Grishman, 2016a; T. M. Nguyen & Nguyen,

2019a; Zhang et al., 2019; Zheng et al., 2017a). Recently, the four IE tasks have

been solved jointly (Y. Lin et al., 2020a; Lu et al., 2021a; M. V. Nguyen, Lai, &

Nguyen, 2021; Paolini et al., 2021; Wadden et al., 2019a; Zhang & Ji, 2021a). However,

such recent works only employ heuristics to manually design dependency graphs for

instances. Mean-field factorization of the joint label distribution for JointIE instances

is dominant in prior work.

Our work is also related to prior work that uses CRFs (Chiu & Nichols, 2016;

Lafferty et al., 2001) to estimate joint distribution of instance labels. Sequence labeling

is a typical problem that has been solved by CRFs, including part of speech tagging

and named entity recognition (Chiu & Nichols, 2016; Ekbal, Haque, & Bandyopadhyay,

2007; Lafferty et al., 2001; Shishtla, Gali, Pingali, & Varma, 2008; Sobhana, Mitra, &

Ghosh, 2010; K. Xu, Zhou, Hao, & Liu, 2017; Zea, Luna, Thorne, & Glavaš, 2016).

However, these prior work only employ CRFs for simple graph structures (i.e., linear

chains). A few prior work has considered CRFs for more complicated graph structures

(Gao, Pei, & Huang, 2019; Qu, Bengio, & Tang, 2019; X. Sun, Lin, Shen, & Hu, 2017;

H. Yuan & Ji, 2020); however, none of such works has applied CRFs for JointIE as we

do.

3.3.6 Summary. We propose a novel model for jointly solving four IE tasks

(EMR, ETD, EAE, and RE). Our proposed model learns a dependency graph among

the instances of the tasks via a novel edge weighting mechanism. We also estimate

the joint distribution among instance labels to fully enable interactions between

instance labels for improved performance. The experimental results show that our

model achieves best performance for multiple JointIE tasks across 5 datasets and 2

languages.
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CHAPTER IV

LEARNING METHODS FOR IE IN LOW-RESOURCE LANGUAGES

This chapter contains materials from the published papers “Minh Nguyen, Tuan

Ngo Nguyen, Bonan Min, and Thien Huu Nguyen. ‘Crosslingual Transfer

Learning for Relation and Event Extraction via Word Category and

Class Alignments’ In Proceedings of the 2021 Conference on Empirical Methods in

Natural Language Processing, 2021” (M. V. Nguyen, Nguyen, et al., 2021) and “Minh

Nguyen, Nghia Trung Ngo, Bonan Min, and Thien Huu Nguyen. ‘FAMIE: A Fast

Active Learning Framework for Multilingual Information Extraction’

In Proceedings of the 2022 Conference of the North American Chapter of the

Association for Computational Linguistics: Human Language Technologies: System

Demonstrations, 2022” (M. V. Nguyen, Ngo, et al., 2022). Minh was responsible for the

method design, experiments, evaluation and writing as the first author. Tuan, Nghia,

Bonan, and Thien provided meaningful discussions and analysis. Thien contributed

to the method design and editorial revisions for the paper submissions. The papers

were revised to comply with the dissertation format and purposes.

The third research direction (RD3) addresses the challenge of non-existent or

limited training data in target languages for multilingual IE. This chapter focuses

on two scenarios: (1) when training data is unavailable in the target languages, and

(2) when limited training data is available in the target languages. For the first

scenario, we present our novel learning method called CCCAR for class- and word

category-based crosslingual alignment of representations. CCCAR ensures similar

representations of the same concepts across source and target languages, improving

the cross-lingual transferability of the model. For the second scenario, we introduce

FAMIE, a novel active learning framework that employs a small proxy network for
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fast data selection and annotation, maximizing the performance of IE models in the

target languages. Extensive experiments demonstrate the effectiveness of CCCAR

and FAMIE in enhancing multilingual IE in low-resource settings.

4.1 CCCAR

4.1.1 Introduction. Relation and Event Extraction (REE) are important

tasks of Information Extraction (IE), whose goal is to extract structured information

from unstructured text (Walker et al., 2006). Due to their complexity, annotations for

REE tasks are costly and only available in a few languages. Thus, there have been

growing interests on crosslingual learning for REE in which a model is trained on a

language, i.e., source language, and applied to another language, i.e., target language,

where the annotations are not available. Recent approaches for crosslingual REE have

mainly employed multilingual word embeddings, e.g., MUSE, (Joulin, Bojanowski,

Mikolov, Jégou, & Grave, 2018; J. Liu et al., 2019a; Ni & Florian, 2019; Subburathinam

et al., 2019) or multilingual pre-trained language models, e.g., multilingual BERT,

(Ahmad, Peng, & Chang, 2021; Devlin et al., 2019a; M’hamdi et al., 2019; M. V. Nguyen

& Nguyen, 2021b) to learn crosslingual representation vectors for REE.

However, previous work on crosslingual REE suffers from the monolingual bias

issue due to the monolingual training of models on only the source language data,

leading to non-optimal crosslingual performance. A solution for this issue can resort

to language adversarial training (X. Chen et al., 2019; He, Yan, & Xu, 2020; Huang et

al., 2019; Keung, Lu, & Bhardwaj, 2019; Lange, Iurshina, Adel, & Strötgen, 2020a)

where unlabeled data in the target language is used to aid crosslingual representations

via fooling a language discriminator. The underlying principle for this approach is

to encourage the closeness of representation vectors for sentences in the source and

target languages (i.e., aligning representation vectors). However, a critical drawback
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Figure 16. Overall architecture of the proposed models for RE, EAE. For ED, example
representations are the contextualized embeddings.

of language adversarial training is the failure to condition on classes/types of examples

in the alignment process. As such, a target language example of a class could be

incorrectly aligned to a source language example of a different class in REE, causing

confusion and hindering the performance of the models. The middle sub-figure in

Figure 17 demonstrates the class misalignment of representation vectors in crosslingual

REE.

To this end, we propose a crosslingual alignment method that explicitly conditions

on class information of REE tasks to enhance representation alignment and learning.

Our major intuition is that the semantics of the classes in REE tasks (e.g., the event

type of Attack in event extraction) are generally invariant across languages that can

be leveraged as anchors to bridge representation vectors for examples in different

languages. As such, we can obtain two semantic representation vectors for each class

in an REE task based on representation vectors of examples in either source or target

language. Afterward, the representation vectors of the same class can be regulated to

match each other, serving as a mechanism for class-aware crosslingual alignment of
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representation vectors for source and target examples. To implement this idea, we use

multilingual BERT (mBERT) to obtain same-space representations for examples in

both source and target languages to facilitate the alignment process. Afterward, the

source-language representation vector for a class is computed via representation vectors

of source-language examples that belong to the corresponding class. For the target

language, as class information is not provided, we seek to compute target-language

representation vector for a class by aggregating representation vectors for unlabeled

examples, weighted on an estimation of the probabilities for the examples to exhibit

the class.

In addition to class semantics, we propose to further exploit universal parts of

speech and dependency relations in parsing trees (i.e., word categories) to improve

the cross-lingual alignment for representation vectors in REE. As such universal word

categories have been consistently annotated for more than 100 languages (Zeman et

al., 2020) and can be generated with high accuracy via existing toolkits, e.g., the

transformer-based toolkit Trankit for multilingual NLP (M. V. Nguyen, Lai, Veyseh, &

Nguyen, 2021; Qi, Zhang, Zhang, Bolton, & Manning, 2020a; Straka, 2018a), we expect

this information to provide helpful anchor knowledge for cross-lingual representation

learning. To this end, similar to the class-aware alignment, we propose to align

representation vectors of the same universal word categories that are computed using

contextualized representations of examples in the source and target languages to

further improve the language-independence of representation vectors for REE.

A potential issue with the computation of word category representations via

contextualized representations of examples is the preservation of context word

information in representations for word categories that might introduce noise and

hinder the representation alignment. To address this issue, we propose an adversarial
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training model that seeks to explicitly filter context information from word category

representations. This is achieved by using Gradient Reversal Layer (Ganin &

Lempitsky, 2015) to prevent word category representations from being able to recognize

the context words in the original examples. We expect that this filtering mechanism can

improve the word category pureness of the representations, thus providing appropriate

inputs for the alignment process for improved representation learning.

We conduct extensive experiments with different crosslingual settings on English,

Chinese, and Arabic for three REE tasks, i.e., Relation Extraction, Event Detection,

and Event Argument Extraction. The results demonstrate the benefits of the proposed

method that significantly advances the state-of-the-art performance in these settings.

4.1.2 Problem Statement. We study cross-lingual transfer learning for

three REE tasks as defined in the ACE 2005 dataset (Walker et al., 2006), i.e., Relation

Extraction (RE), Event Detection (ED), and Event Argument Extraction (EAE).

Given two entity mentions in an input sentence, the goal of RE is to determine

the semantic relationship between the mentions according to predefined relation

types/classes (e.g., Employment). For ED, its purpose is to identify event triggers,

which can be verbs/normalization with one or multiple words, that express occurrences

of events of predefined types (e.g., Attack). Finally, given an event trigger and an

entity mention, EAE aims to predict the role (e.g., Victim) that the entity mention

plays in the corresponding event. Note that, we have a special type None to indicate

non-relation, non-trigger, or non-argument for RE, ED, and EAE respectively.

For further discussion, let Dsrc = {(xsrc, ysrc)} (|Dsrc| = Nsrc) be the labeled

training set in the source language. As such, for ED, xsrc is an input sentence and ysrc

serves as the golden sequence tag (using BIO) for the words in xsrc. For RE and EAE,

xsrc involves an input sentence along with indexes of the given trigger word and entity
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mentions while ysrc represents the golden relation type or argument role for the input.

We also assume access to an unlabeled dataset Dtgt = {(xtgt)} (|Dtgt| = Ntgt) in the

target language where xtgt consists of similar information as xsrc for the corresponding

task.

4.1.3 Baseline Methods. To prepare for our cross-lingual representation

alignment techniques for REE, we first describe the baseline models explored in this

work.

4.1.3.1 Using Source Language Data Only. In this section, we present

two baselines that train models based only on labeled data in the source language.

These baselines are the current state-of-the-art (SOTA) models for crosslingual transfer

learning for ED, RE, and EAE on the ACE 2005 dataset (Walker et al., 2006).

BERTCRF (M’hamdi et al., 2019): This is the current SOTA model for

crosslingual ED. Given an input sentence w = [w1, w2, . . . , wn] with n words (in xsrc),

the model first sends w to the mBERT encoder to obtain a sequence of contextualized

representations Z = [z1, z2, . . . , zn] where zk is the representation for each wk ∈ w,

computed as the average of its word-piece representations returned by the last layer

of mBERT. The ED task is then done by performing sequence labeling over the words

in w where each word is assigned with a BIO tag to capture boundaries and event

types of event triggers in w. In particular, the final representation vector for trigger

prediction rED
src,k is directly formed from the word representation zk (i.e., rED

src,k = zk).

Afterward, this prediction representation is fed into a feed-forward network FFNED

to obtain a score vector that exhibits the likelihoods for wk to receive possible BIO

tags for the predefined event types: sED
src,k = FFNED(rED

src,k) ∀1 ≤ k ≤ n.

Next, the score vectors are sent to a Conditional Random Field (CRF) layer to

learn the inter-dependencies between the tags and obtain conditional probability for
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possible tag sequences PED(.|w = xsrc). The negative log-likelihood of the golden tag

sequence ysrc is then used to train the model:

LED = −
∑

(xsrc,ysrc)∈Dsrc

log
(
PED(ysrc|xsrc)

)
(4.1)

Finally, Viterbi decoding is employed to perform prediction in inference time.

GATE (Ahmad et al., 2021): This is the current SOTA model for crosslingual RE

and EAE on the ACE 2005 dataset. Given an input sentence w in xsrc, this model

uses the same encoding step with mBERT in BERTCRF to obtain the contextualized

representation zk for each wk ∈ w. Afterward, an overall word representation vector

vk for wk is formed by the concatenation: vk = [zk; z
pos
k ; zdepk ] where zposk and zdepk are

the embeddings of the universal part of speech and the dependency relation for wk.

Here, the dependency relation for a word is obtained by retrieving the dependency

relation between the word and its governor in the dependency tree. For RE, given

two entity mentions, the sequence of vectors V = [v1,v2, . . . ,vn] is then passed to a

Transformer layer (Vaswani et al., 2017) along with a syntax-based attention mask to

compute a final representation vector rRE
src for relation prediction over the input xsrc.

Afterward, a score vector for the possible relations is computed via a feed-forward

network FFNRE: sRE
src = FFNRE(rRE

src ).

The score vector sRE
src is then sent to a softmax layer to obtain a distribution over

possible relation types for xsrc: P
RE(.|xsrc). Finally, to train the model, we minimize

the standard negative log-likelihood of the golden label ysrc:

LRE = −
∑

(xsrc,ysrc)∈Dsrc

log
(
PRE(ysrc|xsrc)

)
(4.2)

For EAE, given an event trigger and an entity mention, we follow the same steps

above for RE to compute the representation vector for role prediction rEAE
src , the score

vector sEAE
src , and the negative log-likelihood for optimization LEAE.
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Finally, for convenience, let rED
tgt,k, r

RE
tgt , and rEAE

tgt be the final representation vectors

for xtgt in the unlabeled data of target language. We also have sED
tgt,k, s

RE
tgt , and sEAE

tgt

for the likelihood score vectors for examples in the target language. These vectors are

computed in the same way as their source language counterparts in this section.

4.1.3.2 Using Unlabeled Target Language Data. To avoid the

monolingual bias in the cross-lingual methods for REE in Section 4.1.3.1, our work

aims to exploit unlabeled data in the target language to improve the cross-lingual

representations for REE. This section presents the typical approaches for leveraging

unlabeled target language data for cross-lingual transfer learning in NLP, offering

additional baselines for our proposed model later.

Language Adversarial Training (LADV): To leverage unlabeled data in the target

language, this method introduces a language discriminator that receives representation

vectors for input sentences and predicts the language identity (i.e., source or target)

of the sentences (Cao, Liu, & Wan, 2020; X. Chen et al., 2019; Huang et al., 2019;

Keung et al., 2019). As such, given an REE task t ∈ {ED,RE,EAE}, the method

seeks to jointly train a model for t (i.e., those described in Section 4.1.3.1) and the

language discriminator so that the induced representation vectors for t can contain

necessary information for the predictions in t and be language-agnostic to better

transfer knowledge across languages at the same time.

To implement this method, we first obtain a representation vector for each input

sentence in the source and target language data by feeding it into mBERT to obtain

word representation vectors [z1, z2, . . . , zn] as in BERTCRF. Following (Keung et al.,

2019), the average of such word vectors is used as the representation for the sentence

in this baseline. For convenience, let asrc and atgt be the sentence representation

vectors for the input sentences in xsrc and xtgt respectively. Also, let f t
lng be the
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language discriminator for task t (implemented by a feed-forward network with

a sigmoid activation in the end). In the next step, the representation vector a∗

(∗ ∈ {src, tgt}) for each sentence is sent to f t
lng to obtain a probability p∗ = f t

lng(a∗),

indicating the likelihood that the input sentence belongs to the source language.

Treating source and target language sentences as positive and negative examples,

the loss for the discriminator Ldisc is then computed via the negative log-likelihood:

Ldisc = −
∑

xsrc∈Dsrc
log(pxsrc) −

∑
xtgt∈Dtgt

log
(
1− pxtgt

)
. The overall joint loss to

train the model for t with LADV is thus: L = Ltask + Ldisc. Note that as LADV

aims to prevent the language discriminator from recognizing the language identity

from sentence representation vectors, we insert the Gradient Reversal Layer (GRL)

(Ganin & Lempitsky, 2015) between a∗ and f task
lng to reverse the gradients during the

backward pass from Ldisc. Overall, fooling the language discriminator in LADV with

GRL eliminates language-specific features to improve generalization across languages

for t.

mBERT Finetuning (FMBERT): Recently, it has been shown that fine-tuning

multilingual pre-trained language models on unlabeled data of the target language

can improve the crosslingual performance for NLP tasks (Pfeiffer, Vulić, et al., 2020).

Motivated by such prior work, this baseline exploits the unlabeled data in the target

language for cross-lingual representation learning by fine-tuning mBERT on the data

using mask language modeling (MLM) (Devlin et al., 2019a). Afterward, the fine-tuned

mBERT model is utilized in the encoders for the baseline models for REE tasks in

Section 4.1.3.1.

4.1.4 Proposed Method.

4.1.4.1 Class-based Alignment. An overview for the proposed model is

shown in Figure 16. As described in the introduction, to avoid the potential cross-class
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alignment of representation vectors in the source and target language, this section

presents a novel method for crosslingual representation alignment in REE where class

information of tasks is explicitly employed to improve the alignment process. In

particular, due to the language-universal nature of the semantics of the classes for

an REE task, semantic representation vectors for a class should match each other no

matter if they are computed with data from the source or target language. To this end,

we seek to obtain two versions of representation vectors for each class in an REE task.

One version is based on representations of examples for the source language while

the other version employs representations from target language examples. The two

representation versions will then be matched to achieve cross-lingual representation

alignment for REE.

As such, let l be a class in an REE task t (e.g., l is a BIO tag for event types in

ED). We compute the source-language representation ctsrc,l for l via the average of

representation vectors for examples with label l in Dsrc. In particular, for t = RE or

EAE, we have:

ctsrc,l =
1

N l
src

∑
(xsrc,ysrc)

⊮[ysrc = l]rtsrc (4.3)

Similarly, for t = ED:

cED
src,l =

1

N l
src

∑
(xsrc,ysrc)

|xsrc|∑
k=1

⊮[ysrc,k = l]rED
src,k (4.4)

Here, ⊮ is the indicator function, and N l
src is the number of examples (for RE and

EAE) or words (for ED) in Dsrc that are annotated with label l.

In the target language, as the golden labels ytgt for the examples xtgt are not

provided, we propose to obtain a target-language representation cttgt,l by aggregating

representation vectors for all examples xtgt ∈ Dtgt. Probability estimations for examples

or words to belong to class l are used as the weights for the aggregation. In particular,

we obtain the probability estimations by sending the score vectors sED
tgt,k, s

RE
tgt , and
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sEAE
tgt to a softmax layer: ŷED

tgt,k = softmax(sED
tgt,k), and ŷt

tgt = softmax(sttgt) (for t = RE

or EAE). As such, we obtain the target-language representation for l via the weighted

sum of rttgt (for RE and EAE):

cttgt,l =

∑
xtgt∈Dtgt

ŷt
tgt,lr

t
tgt∑

xtgt∈Dtgt
ŷt
tgt,l

(4.5)

Similarly, for ED:

cED
tgt,l =

∑
xtgt∈Dtgt

∑|xtgt|
k=1 ŷED

tgt,k,lr
ED
tgt,k∑

xtgt∈Dtgt

∑|xtgt|
k=1 ŷED

tgt,k,l

(4.6)

where ŷt
tgt,l and ŷED

tgt,k,l represent the likelihood score for class l in vectors ŷt
tgt and

ŷED
tgt,k respectively. The alignment for the representations of class l is then achieved by

minimizing the negative cosine similarity of the source- and target-language vectors

(i.e., for task t):

Lt
cls = −

∑
l

cosine(ctsrc,l, c
t
tgt,l) (4.7)

Adaptive Coefficient: In our implementation, we compute the source-language

representations ctsrc,l for l after each training epoch while the target-language

representations cttgt,l are obtained for in each training minibatch. The current

parameters of the models are utilized to perform such calculation. As such, the

quality of the representation vectors for classes might vary along the training process

of the models. In particular, later epochs might correspond to better model parameters,

thus leading to more reliable class representations. To this end, we propose to apply

an adaptive coefficient λcls for the class alignment loss Lt
cls so its impact is gradually

increasing along the training: λcls =
2

1+exp(−e/E)
− 1 where E and e are the total and

current numbers of training epochs, respectively. Note that λcls is small in the early

training stages and gradually increase in the process.

4.1.4.2 Word Category-based Alignment. We further exploit universal

parts of speech (UPOS) and dependency relations as the language-agnostic knowledge
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to align crosslingual representations for REE. To achieve a fair comparison with prior

work (Ahmad et al., 2021; Subburathinam et al., 2019), we employ the UDPipe toolkit

(Straka & Straková, 2017) to obtain parts of speech and dependency relations for the

sentences. Due to their similarity, we will only describe the UPOS-based alignment

process and the dependency-based alignment can be done in the same way.

As such, we utilize an embedding table U (initialized randomly) to capture

representation vectors for the possible UPOS, serving as an anchor knowledge across

languages. Next, to facilitate the UPOS-based representation alignment, we compute

additional representation vectors for UPOS based on representation vectors of examples

in both source and target languages. In particular, for each word wk in an input

sentence w (from xsrc or xtgt), we send its contextualized representation zk from

mBERT into a feed-forward network FFNUPOS to produce a representation vector

qk for the UPOS wpos
k of wk ∈ w: qk = FFNUPOS(zk). Afterward, to leverage the

language-universal of U , we propose to match qk to the embedding vector of wpos
k in U

for qk in both source and target language data. In other words, induced representation

vectors in the source and target languages are both matched to the anchor knowledge

U , providing a mechanism to align source and target representations.

To match qk and U , we seek to maximize the similarity between qk and the

embedding of wpos
k in U while minimizing qk’s similarities with embeddings of other

UPOS at the same time. To implement this idea, we utilize the following function for

minimization:

Lalign
pos =

∑
w∈D,wk∈w

log

(∑
u∈O

eqkU [u]−qkU [wpos
k ]

)
(4.8)

where D = Dsrc ∪Dtgt, O is the set of possible UPOS, and U [u] is the embedding of

u in U .
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Context Information Filtering: Note that Lalign
pos is also the negative log-

likelihood for a feed-forward classifier that uses U as the weight matrix and qk

as the input vector to predict the UPOS wpos
k for wk. As such, minimizing Lalign

pos

also serves to retain relevant information for UPOS prediction in the representation

vector qk. However, due to the direct computation of qk from the contextualized

representation zk, it is possible that qk still preserves context information from the

input sentence w. This might introduce noise into qk as ideally, we expect qk to

focus only on information about UPOS. As such, to improve the quality of qk for

representation alignment, we propose to explicitly filter context information from

vectors qk. Our main idea is to ensure that qk cannot be used to recover the context

words in w. To achieve this goal, we first obtain an aggregated vector for the UPOS

representation vectors in the input sentence w: q = 1
n

∑n
k=1 qk. The resulting vector

is then fed into a Gradient Reversal Layer (GRL) (Ganin & Lempitsky, 2015), followed

by a word classifier (i.e., a feed-forward network FFNctx with a softmax layer in

the end) to compute a probability distribution over the words in our vocabulary:

ŷctx = softmax(FFNctx(GRL(q))). Finally, to filter the context information from qk,

we minimize the negative log-likelihood of the context words wk in the input sentence

w:

Lctx
pos = −

∑
w∈Dsrc∪Dtgt

∑
wk∈w

log
(
ŷctx[wk]

)
(4.9)

where ŷctx[wk] is the probability for word wi in the distribution ŷctx. Note that

while the minimization of the negative log-likelihood generally encourages input

representations to reveal information about the prediction outputs (i.e., context words

in our case), the introduction of GRL in Lctx
pos reverses this process to discourage

the context information in q, thus purifying qk to focus on UPOS knowledge and

facilitating the representation alignment.
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In the next steps for universal dependency relations, we follow the same procedure

for Lalign
pos and Lctx

pos to obtain the losses Lalign
dep and Lctx

dep respectively for minimization.

For convenience, let Lpos = Lalign
pos + Lctx

pos and Ldep = Lalign
dep + Lctx

dep. In summary, the

overall loss function to train our models for a task t ∈ {ED,RE,EAE} with both

class and word category alignment is thus: Lmain = Lt + λclsL
t
cls + λposLpos + λdepLdep

where λcls is the adaptive coefficient, and λpos and λdep are trade-off parameters.

Language Data
RE

(#rels)
ED

(#trgs)
EAE

(#args)

English
Train 4,974 4,420 7,018
Dev 626 505 877
Test 620 424 878

Chinese
Train 4,767 2,213 5,931
Dev 572 111 741
Test 605 197 742

Arabic
Train 2,918 1,986 3,959
Dev 357 112 495
Test 378 169 495

Table 21. Statistics of the multilingual datasets for ED, RE, and EAE in ACE 2005.
#rels, #trgs and #args represent the numbers of relations, event triggers, and
event arguments respectively.

Model
Even Argument Extraction Relation Extraction

EN
ZH

EN
AR

ZH
EN

ZH
AR

AR
EN

AR
ZH

EN
ZH

EN
AR

ZH
EN

ZH
AR

AR
EN

AR
ZH

GATE 63.2 68.5 59.3 69.2 53.9 57.8 55.1 66.8 71.5 61.2 69.0 54.3

GATE+LADV 63.9 67.7 60.3 68.6 55.8 57.8 56.8 64.2 70.2 61.6 68.9 54.8
GATE+FMBERT 63.7 68.7 59.3 69.3 54.6 58.1 55.8 66.9 71.8 61.7 69.2 54.9

GATE+CCCAR 65.5 69.4 62.0 69.3 57.5 59.1 58.1 67.9 72.0 63.5 70.5 57.7

Table 22. Performance (F1 scores) of models on test data for EAE and RE in six
crosslingual settings. Each column corresponds to one setting where source languages are
written above target languages. Underlined numbers designate settings where the proposed
model is significantly better than other models with p < 0.01.

4.1.5 Experiments. Datasets and Hyper-parameters: Following

previous work (Ahmad et al., 2021; M’hamdi et al., 2019; Subburathinam et al.,

2019), we use the multilingual dataset ACE 2005 (Walker et al., 2006) to evaluate

REE models in this work. ACE 2005 annotate documents for entity mentions, event

125



triggers, relations, and arguments in English (EN), Chinese (ZH) and Arabic (AR).

We apply the same data split and preprocessing for ACE 2005 as prior work (Ahmad

et al., 2021; M’hamdi et al., 2019) for a fair comparison. Overall, there are 18 relation

types, 33 event types, and 35 argument roles in this dataset. For each of the language

(i.e., English, Chinese and Arabic) and task (i.e., ED, RE, and EAE), the data split

provides training, development, and test data. In our cross-lingual transfer learning

experiments, the models will be trained on the training data of one language (the

source) and evaluated on the test data of another language (the target). The unlabeled

data for the target language is obtained by removing the labels from its training data.

The statistics of the ACE 2005 dataset for the three tasks are shown in Table 21.

Model
Event Detection

EN
ZH

EN
AR

ZH
EN

ZH
AR

AR
EN

AR
ZH

BERTCRF 68.5 30.9 - - - -

BERTCRF+LADV 70.0 33.5 41.2 20.3 37.2 55.6
BERTCRF+FMBERT 69.4 33.4 42.9 20.0 36.5 56.3

BERTCRF+CCCAR 72.1 42.7 45.8 20.7 40.7 59.8

Table 23. Performance (F1 scores) on test data for ED in six crosslingual settings. Each
column corresponds to one setting where source languages are written above target languages.
“-” indicates results that are not reported in the original work. Underlined numbers designate
settings where the proposed model is significantly better than other models with p < 0.01.

We use the same hyper-parameters for BERTCRF and GATE as provided by

previous work (Ahmad et al., 2021; M’hamdi et al., 2019). Specific hyper-parameters

for our model are tuned on the development data. In particular, we use two layers

for the feed forward networks with 50 hidden units for the layers, 50 dimensions for

the UPOS and dependency embeddings, and 0.1 for the parameters λpos and λdep.

For the baseline FMBERT, we utilize the huggingface library to finetune mBERT on

unlabeled target data with MLM for 100, 000 steps (i.e., batch size of 64 and learning

rate of 5e-5).
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Performance Comparison: We compare the proposed crosslingual method for

REE on two groups of baselines. The first group involve models that only use source

language data for training, i.e., BERTCRF and GATE. These are current SOTA

methods for crosslingual ED, RE, and EAE. The second baseline groups additionally

employ unlabeled data in the target language to support crosslingual representation

learning in REE, i.e., LADV and FMBERT. Our proposed method also leverages

unlabeled data in the target language, called CCCAR for class- and word category-

based crosslingual alignment of representations. Note that LADV, FMBERT, and

CCCAR should be applied on top of a source-only method (i.e., BERTCRF and

GATE) to form a complete model.

Tables 23 and 22 show the test data performance of the models for the three

REE tasks in six crosslingual settings (i.e., with different pairs of languages for the

source and target). It is clear from the tables that the proposed method CCCAR

consistently outperforms other methods in all crosslingual settings for the three REE

tasks. In particular, for EAE, CCCAR substantially improves the baseline model

GATE (i.e., the current SOTA) by 1.9% on average while those improvement for

LADV and FMBERT are only 0.45% and 0.38%. The same trend can be seen for RE

and ED where CCCAR on average improves the baselines by 1.97% for the former and

7.7% for the latter. These results clearly demonstrate the effectiveness of the proposed

method, highlighting the benefits of the class- and word category-based alignment for

crosslingual REE.

Ablation Study: This section conducts an ablation study to understand the

contribution of each designed component in the proposed crosslingual alignment

method CCCAR. In particular, we examine the performance of the following ablated

models: (i) - Class Align.: this model excludes the class-based alignment component
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Model
English → Chinese English → Arabic
RE ED EAE RE ED EAE

CCCAR
- Class Align.
- Adaptive Coeff.
- UPOS Align.
- Dep Align.
- Word Cat Align.
- Context Filtering

58.1 72.1 65.5 67.9 42.7 69.4
56.6 69.9 63.6 66.9 38.8 68.9
57.4 71.5 64.7 67.3 41.3 69.2
57.9 71.4 65.1 66.9 40.4 69.3
57.8 71.7 64.7 67.1 41.5 68.9
57.0 70.9 64.4 67.0 40.0 68.7
57.6 71.2 64.9 67.4 41.6 69.0

Table 24. Performance (F1 scores) of models. In the row for the proposed model CCCAR,
we use BERTCRF as the base model for ED, and GATE as the base model for RE and EAE.

(i.e., the loss Lt
cls) from CCCAR; (ii) - Adaptive Coeff.: instead of using the adaptive

coefficient λcls for the class-based alignment loss Lt
cls, this model utilizes a fixed value

(i.e., 0.2 as tuned on development data) for λcls; (iii) - UPOS Align.: this model

eliminates the UPOS-based alignment component (i.e., the losses Lalign
pos and Lctx

pos)

from CCCAR; (iv) - Dep Align.: the alignment component based on dependency

relations (i.e., the losses Lalign
dep and Lctx

dep) is not utilized in this model; (v) - Word

Cat Align.: this model removes both UPOS-based and dependency-based alignment

from CCCAR (i.e., excluding Lpos and Ldep); and (vi) - Context Filtering: the word

context filtering for the representation vectors of UPOS and dependency relations

(with GRL) is not employed in this model (i.e., eliminating the losses Lctx
pos and L

ctx
dep).

Table 24 presents the test data performance of the models in the English-to-Chinese

and English-to-Arabic settings for the three REE tasks. As can be seen, removing

any component of the proposed model would hurt the performance significantly across

different settings and tasks, thus clearly illustrating the benefits of the designed

components for CCCAR. The performance of the models drops the most when the

class-based alignment is excluded, further demonstrating the importance of class-aware

alignment for crosslingual REE.
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Figure 17. T-SNE visualizations for the representations of 4,000 randomly selected
examples from English (i.e., source language) and Chinese (i.e., target language) data.
Circles and triangles represent English and Chinese examples respectively. Colors represent
different classes in EAE. GATE+CCCAR shows induced representation vectors from our
proposed model.

Source-language Data Usage: Previous experiments show that using unlabeled

data in the target language to align representation vectors in CCCAR can improve

the performance for the source-only baselines for REE. In this section, we seek to

understand how much labeled data in the source language can be saved if unlabeled

data in the target language is employed with CCCAR for an REE task. In particular,

we are interested in the portion of source language data that, once combined with

unlabeled target language data via CCCAR, can produce similar performance as the

source-only baseline trained on full source language data. To this end, we show the

learning curves of the source-only and CCCAR-augmented models for REE tasks when

the size of the source-language training data varies. Figure 18 show the curves for

the English-to-Chinese setting. As can be seen, the proposed CCCAR method with

unlabeled target data only needs to use approximately 60% of the source-language

training data for RE and EAE to achieve comparable performance with the source-only

baselines on full source language data. This portion for ED is less than 80%. These

results thus suggests an additional benefit of CCCAR to significantly reduce necessary
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Figure 18. Performance on test data of the models in the English-to-Chinese setting.
Dash lines represent the performance of the source-only baselines using 100% of the
source-language training data.

data annotation for the source language based on unlabeled target language data in

crosslingual learning for REE.

Alignment Effect of the Proposed Method: As discussed earlier, a major issue

for LADV is that it might align representations of examples with different classes in

the crosslingual setting. CCCAR can address this issue as it explicitly relies on class

information for representation alignment. To demonstrate these arguments, Figure 17

uses the t-Distributed Stochastic Neighbor Embedding (t-SNE) (Van der Maaten &

Hinton, 2008) to visualize the example representations induced by GATE, the LADV

baseline GATE+LADV, and the proposed GATE+CCCAR. This visualization is done

over 4,000 randomly selected examples for the top 5 frequent classes in EAE. Here,

examples are sampled from training data for both source and target languages in

the English-to-Chinese setting. As can be seen, in the source-only model GATE,

representations for examples from the source language are quite separate from those in

the target language. The representation alignment in GATE+LADV can address this

issue by pushing representations from both languages closer. However, representations
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for examples with different classes are unexpectedly aligned in GATE+LADV,

causing suboptimal representations for crosslingual settings. Finally, due to the

explicit condition on class information for alignment, GATE+CCCAR can match

representations for both languages while avoiding the cross-class alignment to improve

crosslingual performance for REE.

4.1.6 Related Work. REE has been extensively studied for English,

featuring traditional machine learning methods (Q. Li et al., 2013a; Liao & Grishman,

2011; Patwardhan & Riloff, 2009; B. Yang & Mitchell, 2016a) and advanced deep

learning models (Y. Chen, Xu, Liu, Zeng, & Zhao, 2015b; Y. Lin et al., 2020a;

M. V. Nguyen, Lai, & Nguyen, 2021; T. H. Nguyen, Cho, & Grishman, 2016a;

T. H. Nguyen & Grishman, 2015a, 2018b; Sahu, Christopoulou, Miwa, & Ananiadou,

2019; Veyseh, Dernoncourt, Dou, & Nguyen, 2020b; Veyseh, Dernoncourt, Thai, Dou,

& Nguyen, 2020b; Veyseh, Nguyen, & Nguyen, 2020b; X. Wang et al., 2019; Zhang et

al., 2019). Recently, several works have considered cross-lingual transfer learning for

three REE tasks (J. Liu et al., 2019a; Ni & Florian, 2019; Subburathinam et al., 2019)

where multilingual pre-trained language models (e.g., mBERT) have been proved as

an important encoding component (Ahmad et al., 2021; M. V. Nguyen & Nguyen,

2021b).

However, a fundamental limitation of existing crosslingual models for REE is

the monolingual bias due to the sole reliance on source language data for training.

In other NLP tasks, LADV has been explored to address this issue by leveraging

unlabeled data in the target language to perform crosslingual representation alignment

(Cao et al., 2020; X. Chen et al., 2019; He et al., 2020; Huang et al., 2019; Lange

et al., 2020a). Unfortunately, LADV suffers from the cross-class alignment issue,

making it less optimal for crosslingual REE. Finally, we note that language-universal
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representation learning is related to domain adaption research where models seek to

learn domain-invariant representations (Adel, Zhao, & Wong, 2017; Cicek & Soatto,

2019; L. Fu, Nguyen, Min, & Grishman, 2017; Ganin & Lempitsky, 2015; Ngo Trung,

Phung, & Nguyen, 2021; Tang, Chen, & Jia, 2020; Xie, Zheng, Chen, & Chen, 2018).

4.1.7 Summary. We present a novel method for crosslingual transfer learning

for REE that leverages unlabeled data in the target language to support language-

universal representation learning. Our method exploits class semantics in REE tasks

and universal word categories (i.e., UPOS and dependency relations) as bridges to

align representation vectors across languages. In our method, representation vectors

for classes and word categories are computed via contextualized representations of

examples to implement representation matching for crosslingual alignment. Extensive

experiments show that the proposed method achieves SOTA performance for three

REE tasks in different crosslingual settings.

4.2 FAMIE

4.2.1 Introduction. Information Extraction (IE) systems provide important

tools to extract structured information from text (V. D. Lai, Nguyen, Nguyen,

& Dernoncourt, 2021; Q. Li et al., 2014; M. V. Nguyen, Lai, & Nguyen, 2021;

T. M. Nguyen & Nguyen, 2019b; Veyseh, Nguyen, Min, & Nguyen, 2021). At the

core of IE involves sequence labeling tasks that aim to recognize word spans and

semantic types for some objects of interest (e.g., entities and events) in text. For

example, two typical sequence labeling tasks in IE feature Named Entity Recognition

(NER) to find names of entities of interest, and Event Detection (ED) to identify

triggers of specified event types (Walker et al., 2006). Despite extensive research effort

for sequence labeling (Lafferty et al., 2001; Ma & Hovy, 2016; Pouran Ben Veyseh,

Nguyen, Ngo Trung, Min, & Nguyen, 2021), a major bottleneck of existing IE methods
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involves the requirement for large-scale human-annotated data to build high-quality

models. As annotating data is often expensive and time-consuming, large-scale labeled

data is not practical for various domains and languages.

To address the annotation cost for IE, previous work has resorted to active learning

(AL) approaches (Settles, 2009; Settles & Craven, 2008) where only a selective set

of examples are annotated to minimize the annotation effort while maximizing the

performance. Starting with a set of unlabeled data, AL methods train and improve

a sequence labeling model via multiple human-model collaboration iterations. At

each iteration, three major steps are performed in order: (i) training the model on

the current labeled data, (ii) using the trained model to select the most informative

examples in the current unlabeled set for annotation, and (iii) presenting the selected

examples to human annotators to obtain labels. In AL, the number of annotated

samples or annotation time might be limited by a budget to make it realistic.

Unfortunately, despite much potentials, existing AL methods and frameworks

are still not applied widely in practice due to their main focus on devising the most

effective example selection algorithm for human annotation, e.g., based on the diversity

of the examples (Shen, Yun, Lipton, Kronrod, & Anandkumar, 2017a; M. Yuan, Lin,

& Boyd-Graber, 2020) and/or the uncertainty of the models (Roth & Small, 2006;

Shelmanov et al., 2021; D. Wang & Shang, 2014). Training and selection time in the

first and second steps of each AL interaction is thus not considered in prior work for

sequence labeling. This is a critical issue that limits the application of AL: annotators

might need to wait for a long period between annotation batches due to the long

training and selection time of the models at each AL iteration. Given the widespread

trend of using large-scale pre-trained language models (e.g., BERT), this problem of

long waiting or training/selection time in AL can only become worse. On the one

133



hand, the long idle time of annotators reduces the number of annotated examples

given an annotation budget. Further, the engagement of annotators in the annotation

process can drop significantly due to the long interruptions between annotation rounds,

potentially affecting the quality of their produced annotation. In all, current AL

frameworks are unable to optimize the available time of annotators to maximize the

annotation quantity and quality for satisfactory performance.

To this end, we demonstrate a novel AL framework (called FAMIE) that leverages

large-scale pre-trained language models for sequence labeling to achieve optimal

modeling capacity while significantly reducing the waiting time between annotation

rounds to optimize annotator time. Instead of training the full/main large-scale model

for data selection at each AL iteration, our key idea is to train only a small proxy

model on the current labeled data to recommend new examples for annotation in

the next round. In this way, the training and data selection time can be reduced

significantly to enhance annotation engagement and quality. An important issue in

this idea is to ensure that the examples selected by the proxy model are also optimal

for the main large model. To this end, we introduce a novel knowledge distillation

mechanism for AL that encourages the synchronization between the proxy and main

models, and promotes the fitness of selected examples for the main model. To update

the main model with new annotated data for effective distillation, we propose to

train the main large model on current labeled data during the annotation time, thus

not adding to the waiting time of annotators between annotation rounds. This is in

contrast to previous AL frameworks that leave the computing resources unused during

annotation time. Our approach can thus efficiently exploit both human and computer

time for AL.
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Figure 19. The overall Proxy Active Learning process.

To evaluate the proposed AL framework FAMIE, we conduct experiments for

multilingual sequence labeling problems, covering two important IE tasks (i.e., NER

and ED) in three languages (i.e., English, Spanish, and Chinese). The experiments

demonstrate the efficiency and effectiveness of FAMIE that can achieve strong

performance with significantly less human-computer collaboration time. Compared to

existing AL systems such as ActiveAnno (Wiechmann, Yimam, & Biemann, 2021) and

Paladin (Nghiem, Baylis, & Ananiadou, 2021), our system FAMIE features important

advantages. First, FAMIE introduces a novel approach to reduce model training

and data selection time for AL via a small proxy model and knowledge distillation

while still benefiting from the advances in large-scale language models. Second, while

previous AL systems only focus on some specific task in English, FAMIE can support

different sequence labeling tasks in multiple languages due to the integration of our

prior multilingual toolkit Trankit (M. V. Nguyen, Lai, Veyseh, & Nguyen, 2021) to

perform fundamental NLP tasks in 56 languages. Third, in contrast to previous AL

systems that only implement one data selection algorithm, FAMIE covers a diverse

set of AL algorithms. Finally, FAMIE is the first complete AL system that allows
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users to define their sequence labeling problems, work with the models to annotate

data, and eventually obtain a ready-to-use model for deployment.

4.2.2 System Description. In AL, we are given two initial datasets, a small

seed set of labeled examples D0 = {(w,y)} and an unlabeled example set U0 = {w}

(the seed set D0 is optional and our system can work directly with only U0). For

sequence labeling, models consume a sequence of K words w = [w1, w2, . . . , wK ] (i.e.,

a sentence/example) to output a tag sequence y = [y1, y2, . . . , yK ] (yi is the label tag

for wi). The tag sequence is represented in the BIO scheme to capture spans and

types of objects of interest.

A typical AL process contains multiple rounds/iterations of model training, data

selection, and human annotation in a sequential manner. Let D and U be the overall

labeled and unlabeled set of examples at the beginning of the current t-th iteration

(initialized with D0 and U0). At the current iteration, a sequence labeling model is

first trained on the current labeled set D. A sample selection algorithm then employs

the trained model to suggest the most informative subset of examples U t in U (i.e.,

U t ⊂ U) for annotation. Afterwards, a human annotator will provide labels for the

sentences in the selected set U t, leading to the labeled examples Dt for U t. The labeled

and unlabeled sets can then be updated via: D ← D ∪Dt and U ← U \ U t.

4.2.2.1 Model. We employ the typical Transformer-CRF architecture for

sequence labeling (M. V. Nguyen, Lai, Veyseh, & Nguyen, 2021). In particular,

given the input sentence w = [w1, w2, . . . , wK ], the state-of-the-art multilingual

language model XLM-Roberta (Conneau et al., 2020) is used to obtain contextualized

embeddings for the words: X = x1, . . . ,xK = XLMR(w1, . . . , wK) (i.e., to support

multiple languages). Afterwards, the word embeddings are sent to a feed-forward

network with softmax in the end to obtain the score vectors: zi = softmax(hi) where
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hi = FFN(xi). Here, each value in zi represents a score for a tag in the tag set V . The

score vectors are then fed into a Conditional Random Field (CRF) layer to compute

a distribution for possible tag sequences for w: P (ŷ|w) = exp(s(ŷ,w))∑
ŷ′∈Y (w) exp(s(ŷ

′,w))
where

Y (w) is the set of all possible tag sequences for w. Also, s(ŷ,w) is the score for a

tag sequence ŷ = [ŷ1, . . . , ŷK ]: s(ŷ,w) =
∑

i zi[ŷi] +
∑

i πŷi→ŷi+1
. Here, πŷi→ŷi+1

is the

transition score from the tag ŷi to the tag ŷi+1. The model is trained by minimizing

the negative log likelihood: Ltask = − logP (y|w). For inference, the Viterbi algorithm

is used for decoding: ŷ∗ = maxŷ′P (ŷ′|w).

Adapter-based Finetuning To further improve the memory and time efficiency,

we incorporate light-weight adapter networks (Houlsby et al., 2019; Peters, Ruder, &

Smith, 2019a) into our model. In form of small feed-forward networks, adapters are

injected in between the transformer layers of XLM-Roberta. For training, we only

update the adapters while the parameters of XLM-Roberta are fixed. This significantly

reduces the amount of learning parameters while sacrificing minimal extraction loss,

or in case of low-resource learning even surpassing performance of fully fine-tuned

models.

4.2.2.2 Data Selection Strategies. To improve the flexibility to

accommodate different problems, our AL framework supports a wide range of data

selection strategies for choosing the best batch of examples to label at each iteration for

sequence labeling. These algorithms are categorized into three groups, i.e., uncertainty-

based, diversity-based, and hybrid. For each group, we explore its most popular

methods as follows.

Uncertainty-based. These methods select examples for annotation according to

the main model’s confidence over the predicted tag sequences for unlabeled examples.
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Early methods sort the unlabeled examples by the uncertainty of the main model.

To avoid the preference over longer examples, the method Maximum Normalized

Log-Probability (MNLP) (Shen et al., 2017a) proposes to normalize the likelihood

over example lengths. In particular, MNLP selects examples with the highest MNLP

scores: MNLP (w) = −maxŷ′ 1
K
logP (ŷ′|w).

Diversity-based. Algorithms in this category assume that a representative set of

examples can act as a good surrogate for the whole dataset. BERT-KM (M. Yuan

et al., 2020) uses K-Means to cluster the examples in unlabeled data based on the

contextualized embeddings of the sentences (i.e., the representations for the [CLS]

tokens in the trained BERT-based models). The nearest neighbors to the K cluster

centers are then chosen for labeling.

Hybrid. Recently, several works have proposed data selection strategies for BERT-

based AL to balance between uncertainty and diversity. The BADGE method (Ash,

Zhang, Krishnamurthy, Langford, & Agarwal, 2019; Kim, 2020) chooses examples

from clusters of gradient embeddings, which are formed with the token representations

hi from the penultimate layer of the main model and the gradients of the cross-entropy

loss with respect to such token representations. The gradient embeddings are then

sent to the K-Means++ to find the initial K cluster centers that are distant from

each other, serving as the selected examples (Kim, 2020).

In addition, we implement the AL framework ALPS (M. Yuan et al., 2020) that

does not require training the main model for data section. ALPS employs the surprisal

embedding of w, which is obtained from the likelihoods of masked tokens from pre-

trained language models (i.e., XLM-Roberta). The surprisal embeddings are also

clustered to select annotation examples as in BERT-KM.
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4.2.2.3 Proxy Active Learning. As discussed in the introduction, model

training and data selection at each iteration of traditional AL methods might consume

significant time (especially with the current trend of large-scale language models), thus

introducing a long idle time for annotators that might reduce annotation quality and

quantity. To this end, (Shelmanov et al., 2021) have explored approaches to accelerate

training and data selection steps for AL by leveraging smaller and approximate models

during the AL iterations. To make it more efficient, the main large model is only

trained once in the end over all the annotated examples in AL. Unfortunately, this

approach suffers from the mismatch between the approximate and main models as they

are separately trained in AL, thus limiting the effectiveness of the selected examples

for the main model (Lowell, Lipton, & Wallace, 2019).

To overcome these issues, our AL framework FAMIE trains a small proxy network

at each iteration to suggest new unlabeled samples. Dealing with the mismatch

between the proxy-selected examples and the main model, FAMIE proposes to involve

the main model in the training and data selection for the proxy model. In particular,

at each AL iteration, the main model will still be trained over the latest labeled data.

However, to avoid the interference of the main large model with the waiting time of

annotators, we propose to train the main model during the annotation time of the

annotators (i.e., main model training and data annotation are done in parallel). Given

the main model trained at previous iteration, knowledge distillation will be employed

to synchronize the knowledge between the main and proxy models at the current

iteration.

The complete framework for FAMIE is presented in Figure 19. At iteration

t, a proxy acquisition model is trained on the current labeled data set Dt−1
0 =

D0 ∪D1 . . . ∪Dt−1. The trained proxy model at the current step is called M t
prx. Also,

139



we use knowledge distillation signals Kt−2
0 that is computed from the main model

M t−1
main trained at the previous iteration t − 1 to synchronize the proxy model M t

prx

and the main model M t−1
main (M1

prx is trained only on D0). Afterwards, a data selection

algorithm is used to select a batch of examples U t from the current unlabeled set U

for annotation, leveraging the feedback from M t
prx. Next, a human annotator will

label U t to produce the labeled data batch Dt for the next iteration t+1. During this

annotation time, the main model will also be trained again over the current labeled

data Dt−1
0 to produce the current version M t

main of the model. The distillation signal

Kt−1
0 for the next step will also be computed after the training of M t

main. This process

is repeated over multiple iterations and the last version of Mmain will be returned for

users.

To improve the fitness of the proxy-based selected examples for Mmain, we leverage

the distilled version miniLM of XLM-Roberta (W. Wang, Bao, Huang, Dong, & Wei,

2021) that employs similar stacks of transformer layers for the proxy model Mprx.

Note that Mprx also includes a CRF layer on top of miniLM.

4.2.2.4 Uncertainty Distillation. Although the proxy and main model

Mprx and Mmain are trained on similar data, they might still exhibit large mismatch,

e.g., regarding decision boundaries. This prompts a demand for regularizing the

proxy model’s predictions to be consistent with those of a trained main model

to improve the fitness of the selected examples for Mmain. Ideally, we expect

the tag sequence distribution Pprx(y|w) learned by the proxy model to mimic

the tag sequence distribution Pmain(y|w) learned by the main model. To this

end, we propose to minimize the difference between the intermediate outcomes

(i.e., the unary and transition scores) of the two distributions. In particular, we

introduce the following distillation objective for each sentence w at one AL iteration:
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Ldist = −
∑

i

∑
v p

main
i [v] log pprxi [v] +

∑
i(π

main
yi→yi+1

− πprx
yi→yi+1

)2 where pmain
i and pprxi

are the tag distributions computed by the main and proxy models respectively for the

word wi ∈ w (i.e., the scores zi). Note that pmain
i and πmain

yi→yi+1
serve as the knowledge

distillation signal that is obtained once the main model finishes its training at each

iteration. Here, we will use the newly selected examples for the current annotation

to compute the distillation signals. The overall objective to train Mprx at each AL

iteration is thus: L = Ltask + Ldist.
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Figure 20. Comparison among data selection strategies.

4.2.3 Usage. Detailed documentation for FaMIE is provided at: https://

famie.readthedocs.io/. The codebase is written in Python and Javascript, which

can be easily installed through PyPI at : https://pypi.org/project/famie/.

Initialization. To initialize a project, users first choose a data selection strategy

and upload a label set to define a sequence labeling problem. Next, the dataset U
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with unlabeled sentences should be submitted. FAMIE then allows users to interact

with the models and annotate data over multiple rounds with a web interface. Also,

FAMIE can detect languages automatically for further processing.

Annotating procedure. Given one annotation batch in an iteration, annotators

label one sentence at a time as illustrated in Figure 21. In particular, the annotators

annotate the word spans for each label by first choosing the label and then highlighting

the appropriate spans. Also, FAMIE designs the size of the annotation batches to

allow enough time to finish the training of the main model during the annotation time

at each iteration.

Output. Unlike previous AL toolkits which focus only on their web interfaces to

produce labeled data, FAMIE provides a simple and intuitive code interface for

interacting with the resulting labeled dataset and trained main models after the AL

processes. The code snippet in Figure 22 presents a minimal usage of our famie

Python package to use the trained main model for inference over new data. This

allows users to immediately evaluate their models and annotation efforts on data of

interest.

Figure 21. Annotation interface in FAMIE.

4.2.4 Evaluation.
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import famie
# access a project via its name
p = famie.get_project('NewProject')
# access the project's labeled data
data = p.get_labeled_data()

# access the project's trained target model
model = p.get_trained_model()
# make predictions with the trained model
doc = '''Nick is happy.'''
output = model.predict(doc)
print(output)
# [('Nick', 'B-Person'), ('is', 'O'), ('happy', 'O'), ('. ', 'O')]

1
2
3
4
5
6
7
8
9
10
11
12
13

Figure 22. Accessing the labeled dataset and the trained main model returned by an AL
project.

Idle CoNLL03-English CoNLL02-Spanish ACE-English ACE-Chinese
mins/iter 10% 20% 30% 40% 50% 100% 10% 20% 30% 40% 50% 100% 10% 20% 30% 40% 50% 100% 10% 20% 30% 40% 50% 100%

Full Data x x x x x x 92.4 x x x x x 89.6 x x x x x 71.9 x x x x x 69.1
Large 41.6 90.3 92.4 93.0 92.4 92.4 x 86.9 88.6 89.4 89.3 89.0 x 67.8 71.1 70.0 72.4 71.3 x 64.8 67.6 71.3 68.7 71.5 x
FaMIE 3.4 90.1 91.7 91.8 91.7 92.7 x 86.5 88.2 88.5 88.1 89.4 x 67.0 69.3 69.5 68.9 70.6 x 61.3 67.9 68.5 69.8 69.6 x
FaMIE-A 5.7 89.7 90.8 91.3 91.9 91.7 x 87.4 87.2 89.0 87.7 89.1 x 67.2 68.0 69.5 68.9 70.6 x 62.8 66.5 67.9 66.3 69.4 x
FaMIE-AD 5.6 87.0 90.1 90.5 90.7 90.5 x 85.5 86.9 87.7 88.8 88.6 x 64.9 65.4 67.7 66.8 69.1 x 58.1 65.4 66.5 64.8 70.3 x
Random x 86.0 89.1 90.6 91.4 91.9 x 80.8 85.3 88.1 88.7 88.6 x 60.4 64.1 66.9 69.0 67.5 x 48.4 58.2 65.1 65.4 66.6 x

Table 25. Main model’s performance on multilingual NER and ED tasks. “Idle” indicate
average waiting time of annotators.

Datasets and Hyper-parameters. To comprehensively evaluate our AL

framework FAMIE, we conduct experiments on two IE tasks (i.e., NER and ED)

for three languages using four datasets: CoNLL03-English (Tjong Kim Sang &

De Meulder, 2003) and CoNLL02-Spanish (Tjong Kim Sang, 2002) for NER, and

ACE-English and ACE-Chinese for ED (i.e., using the multilingual ACE-05 dataset

(T. H. Nguyen & Grishman, 2015a, 2018a; Walker et al., 2006)). The CoNLL datasets

cover 4 entity types while 33 event types are annotated in ACE-05 datasets. We follow

the standard data splits for train/dev/test portions for each dataset (V. D. Lai et al.,

2020; Q. Li et al., 2013a; Pouran Ben Veyseh, Lai, et al., 2021).

For the main target model Mmain, the full-scale XLM-Robertalarge model is used

as the encoder. Our framework for AL thus inherits the ability of XLM-Roberta to

support more than 100 languages. Also, we employ the compact miniLM architecture

(distilled from the pre-trained XLM-Roberta) for the proxy model Mprx. In all

experiments, the main model is trained for 40 epochs while the proxy model is trained
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for 20 epochs at each iteration. We use the Adam optimizer with batch size of 16 and

learning rate of 1e-5 to train the models.

We follow the AL settings in previous work to achieve consistent evaluation (Kim,

2020; M. Liu et al., 2022; Shelmanov et al., 2021). Specifically, the unlabeled pool

is created by discarding labels from the original training data of each dataset; 2%

of which (∼ 242 sentences) is selected for labeling at each iteration for a total of

25 iterations (examples of the first iteration are randomly sampled to serve as the

seed D0). The annotation is simulated by recovering the ground-truth labels of the

corresponding instances. The model performance is measured on the test datasets by

taking average over 3 runs with different random seeds.

Comparing Data Selection Strategies. In this experiment, we aim to determine

the best data selection strategy for our AL framework. To this end, we perform the

standard AL process (i.e., training the full transformer-CRF model with no adapters,

selecting data, and annotating data at each iteration) for different data selection

strategies to measure performance and time. We focus on English datasets in this

experiment. Figure 20 reports the performance across AL iterations of the model for

different data selection methods. As can be seen, “MNLP” is the overall best method

for data selection in AL. We will thus leverage MNLP as the data section strategy for

the evaluation of FAMIE.

Also, Figure 20 shows the annotators’ idle time (the combined time for model

training and data selection) across iterations for each selection strategy. The major

difference comes from ALPS that has significantly less waiting time than other methods

as it does not require model training. However, ALPS’s performance is considerably

worse than MNLP as a result, especially in early iterations. This demonstrates the

importance of training and including the main model during the AL iterations for data

144



section. Importantly, we find that the waiting time of annotators at each iteration is

very high in current AL methods (e.g., more than 30 minutes after the first 8 iterations

with the MNLP strategy), thus affecting the annotators’ productivity.

Performance and Time Efficiency. To evaluate the performance and time

efficiency of FAMIE, Table 25 compares our full proposed framework FAMIE (with

proxy model, knowledge distillation, and adapters) with the following baselines: (i)

“Large”: the best AL baseline from the previous experiment employing the full-scale

transformer encoder and MNLP for data selection; (ii) “Random”: this is the same

as “Large”, but replaces MNLP with random selection; (iii) “FAMIE-A”: this is

the proposed framework FAMIE without adapter-based tuning (all parameters from

the main model are fine-tuned); and (iv) “FAMIE-AD”: we further remove the

knowledge distillation loss from “FAMIE-A” in this method. The experiments are

done for all four datasets of NER and ED.

The first observation is that FAMIE’s performance is only marginally below that

of Large despite only using the small proxy network for data selection. Importantly,

annotators only have to wait for about 3.4 minutes per AL iteration before they can

annotate the next data batch in FAMIE. This is over 10 times faster compared to the

standard AL approaches (e.g., in Large). Second, the adapters in FAMIE not only

boost the overall performance for AL but also reduce the waiting time for annotators.

Also, we note that using adapters, the training time of Mmain only takes 32 minutes at

each iteration (on average). This is reasonable to fit into the time that an annotator

needs to spend to label an annotation batch at each AL iteration, thus accommodating

our proposal for training the main model during annotation time. Finally, FAMIE-AD

performs worst (i.e., similar or even worse than Random) in most cases, which confirms

the necessity of our distillation component in FAMIE.

145



4.2.5 Related Work. Despite the potential of AL in reducing annotation

cost for a target task, most previous AL work focuses on developing data selection

strategies to maximize the model performance (Ash et al., 2019; Kim, 2020; M. Liu

et al., 2022; Margatina, Vernikos, Barrault, & Aletras, 2021; Sener & Savarese, 2017;

D. Wang & Shang, 2014). As such, previous AL methods and frameworks tend to

ignore the necessary time to train models and perform data selection at each AL

iteration that can be significantly long and hinder annotators’ productivity and model

performance. To make AL frameworks practical, few recent works have attempted to

minimize the model training and data selection time by leveraging simple and non

state-of-the-art architectures as the main model, e.g., ActiveAnno (Wiechmann et al.,

2021) and Paladin (Nghiem et al., 2021). However, an issue with these approaches

is the inability to exploit recent advances in large-scale language models to achieve

optimal performance. In addition, some recent works have also explored large-scale

language models for AL (Shelmanov et al., 2021; M. Yuan et al., 2020); however, to

reduce waiting time for annotators, such methods need to exclude the training of the

large models in the AL iterations or employ small models for data selection, thus

suffering from a harmful mismatch between the annotated examples and the main

models (Lowell et al., 2019).

4.2.6 Summary. We introduce FAMIE, a comprehensive AL framework

that supports model creation and data annotation for sequence labeling in multiple

languages. FAMIE optimizes the annotators’ time by leveraging a small proxy network

for data selection and a novel knowledge distillation to synchronize the proxy and

main target models for AL. As FAMIE is task-agnostic, we plan to extend FAMIE to

cover other NLP tasks in future work.
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CHAPTER V

POTENTIAL APPLICATIONS OF INFORMATION EXTRACTION FOR

ENHANCING LARGE LANGUAGE MODELS

This chapter contains materials from the published paper “Minh Nguyen, Kishan

K C, Toan Nguyen, Ankit Chadha, and Thuy Vu. ‘Efficient fine-tuning large

language models for knowledge-aware response planning’ In Proceedings

of the European Conference on Machine Learning and Principles and Practice of

Knowledge Discovery in Databases, 2023” (M. Nguyen et al., 2023). Minh was

responsible for the idea conception, model design, experiment setup, and writing as

the first author. Kishan, Toan, Ankit, and Thuy provided meaningful discussions and

analysis. Kishan and Thuy conducted the evaluation and contributed to the writing.

The paper was revised to comply with the dissertation format and purposes.

The fourth and final research direction (RD4) explores the potential applications

of information extraction (IE) for enhancing large language models (LLMs). This

chapter introduces an innovative retrieval-augmented generation (RAG) framework

called KARP as a case study, which comprises a novel knowledge retrieval component

and an LLM for open-domain question answering. KARP employs IE techniques

to convert unstructured text into structured data, facilitating the development of

sophisticated retrieval systems that benefit RAG-based LLMs. The knowledge retriever

in KARP extracts relevant words from web contexts to assess their relevance and

determine the most suitable contexts for answer generation. We also propose a

novel fine-tuning method for training the LLM to efficiently utilize both kinds of

knowledge: external knowledge from web contexts, and internal knowledge embedded

within the model parameters. Experimental results demonstrate that KARP can

provide natural, concise, and highly accurate answers for open-domain questions
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by leveraging the power of LLMs and the retrieval of relevant external knowledge,

highlighting the potential of IE in enhancing LLMs for more effective and reliable

language understanding and generation. This chapter serves as a starting point for

discussing the broader potential of IE in improving various aspects of LLMs, such as

knowledge retrieval, contextual understanding, and response generation, paving the

way for future research and applications in this area.

5.1 Introduction

General question answering (QA), a crucial natural language processing (NLP)

task, is often regarded as AI-complete (Clark et al., 2016; Weston et al., 2015); that

is, QA will only be considered solved once all the challenging problems in artificial

intelligence (AI) have been addressed. Several virtual response assistants, including

Google Assistant, Amazon Alexa, and Apple’s Siri, have integrated state-of-the-art

QA technologies, allowing them to understand and generate responses in natural

languages, providing valuable services to users. However, general QA still presents

significant challenges, primarily due to the inherent difficulties in reasoning with natural

language, including aspects like commonsense and general knowledge. Past research

has explored the use of Large Language Models (LLMs) for general QA, predominantly

leveraging either parametric (e.g., ChatGPT1) or external (e.g., WebGPT(Nakano

et al., 2021)) knowledge sources. This method, however, can lead to considerable

complications, including hallucination - the generation of plausible but incorrect or

unverified information. To address these challenges, this paper introduces the concept

of Knowledge-Aware Response Planning (KARP) for general QA along with a novel

framework that combines a knowledge retriever with a robust fine-tuning strategy for

LLMs. In particular, the problem of KARP can be defined as follows. Given a user

1https://chat.openai.com/chat
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q: What college offers chiropractic ?

c1: New York Chiropractic College offers 1 Chiropractic Degree program. It’s
a private university in a far away town. In 2015, 173 students graduated in
the study area of Chiropractic with students earning 173 Doctoral degrees.

a1: New York Chiropractic college offers chiropractic.

c2: Chiropractic care is also essential for college students who want to stay
healthy. The central nervous system is based in the spinal column, so
correcting subluxations (misalignments) of the spine is important, no
matter how old you are. Holt Chiropractic in Port Orchard, WA provides
expert chiropractic care to students of all ages.

a2: Holt Chiropractic College offers chiropractic.

c3: Howell Township is a township in Monmouth County, New Jersey, United
States. As of the 2010 United States Census, the township’s population
was 51,075, reflecting an increase of 2,172 from the 48,903 counted in the
2000 Census.

a3: Howell Township College offers chiropractic.

Table 26. Generated answers for a question q with different context passages c1
(relevant), c2 (quasi-relevant), and c3 (irrelevant) from MS MARCO QA NLG test set
(T. Nguyen et al., 2016). Answers a1, a2, and a3 are generated by GenQA (C.-C. Hsu
et al., 2021b).

query and a prompt containing external knowledge, the goal is to develop a model

that can consolidate a response that must be crafted not just from the externally

sourced information, but also from the model’s inherent parametric knowledge. This is

different from the previous work that aim to generate a response by either harnessing

parametric knowledge (e.g., ChatGPT) or retrieving from external knowledge such as

knowledge bases (Bao, Duan, Yan, Zhou, & Zhao, 2016; Bao, Duan, Zhou, & Zhao,

2014; Saxena, Chakrabarti, & Talukdar, 2021; J. Xu et al., 2019), web documents

(D. Chen, Fisch, Weston, & Bordes, 2017; D. Chen & Yih, 2020; Garg et al., 2020;

W. Yang et al., 2019; Y. Yang, Yih, & Meek, 2015a), or a provided context (Devlin et

al., 2019b; Hermann et al., 2015; Rajpurkar, Zhang, Lopyrev, & Liang, 2016; W. Wang,

Yang, Wei, Chang, & Zhou, 2017).

With the emergent abilities of LLMs (Wei et al., 2022), generative QA systems,

in which answers are produced by a generative LLM, have been explored to improve

the performance of QA (Gabburo, Koncel-Kedziorski, Garg, Soldaini, & Moschitti,
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2022; C.-C. Hsu, Lind, Soldaini, & Moschitti, 2021a; Izacard & Grave, 2021; Jiang,

Araki, Ding, & Neubig, 2022; Lewis & Fan, 2019; Muller, Soldaini, Koncel-Kedziorski,

Lind, & Moschitti, 2022; Raffel et al., 2020c; Roberts, Raffel, & Shazeer, 2020b). In

paritcular, previous work typically employs pre-trained LLMs with encoder-decoder

architectures such as BART (Lewis et al., 2020) and T5 (Raffel et al., 2020b), where

the encoder consumes a given question and a required relevant context as input for

the decoder to generate an answer to the question (C.-C. Hsu et al., 2021b; Khashabi

et al., 2020). On one hand, the similarity between generative QA and the pre-training

tasks of LLMs enables transfer learning to improve QA performance. On the other

hand, the generative formulation allows for flexibility in handling various types of QA

problems (e.g., extractive QA, multiple-choice QA) (Khashabi et al., 2020). However,

a well-known issue that has been shown to occur with the generative models is

hallucination (Maynez et al., 2020; Roller et al., 2021; Shuster, Poff, Chen, Kiela,

& Weston, 2021a), where the models generate statements that are plausible looking

but factually incorrect. Additionally, if the answers are composed by a pretrained

LLM without external knowledge, i.e., using parametric knowledge, the information

contained in the answers might be outdated and no longer valid. For example, the

answer for the question “Which country is the reigning World Cup champion?” will

change through time.

Recent works (C.-C. Hsu et al., 2021b; Nakano et al., 2021) mitigate these issues

by employing an information retrieval component, which is responsible for collecting

web content to compose an answer for a given question. Formally, given a question q

and a retrieved web content c, the model is trained to take (q, c) as input to produce a

response a = fθ(q, c), where fθ denotes the corresponding LLM with the parameters θ.

Unfortunately, fθ may merely learn to copy/synthesize information from c to produce
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a if c often contains necessary information for correctly answering the question q in

training data. As a result, the model may fail to provide a correct answer for a given

question if the retrieved content is missing or contains irrelevant information (see

Table 26). In other words, performance of these retrieval-based QA models are limited

to an upper bound by the knowledge retriever.

In this work, we address such issues in building a generative QA model. First,

we utilize a knowledge retriever that employs Optimal Transport to extract relevant

content from web documents or databases for a given user query. Second, we propose

a novel fine-tuning strategy combining external knowledge, i.e., provided by the

knowledge retriever and the intrinsic pre-trained knowledge in LLMs to generate

informed responses. Particularly, we propose a novel knowledge retriever as answer

reranking model. Our proposed model performs an alignment between a given question

and a text passage via Optimal Transport to extract relevant words in web context

for determining its correctness. The relevant words in the context will then be

used to produce a correctness score for ranking. In this way, we can obtain top

K relevant contexts from databases/web documents, which are treated as external

knowledge in our framework. Different from the previous work that follows a single-

stage finetuning strategy, we propose to employ a two-stage finetuning strategy, where

both “a = fθ(q, c)” and “a = fθ(q)” templates are used to train the model. The

latter intentionally excludes the external knowledge c from the input to encourage the

model to exploit its own knowledge from the model parameters θ, which have been

pretrained on massive unlabeled text (FitzGerald et al., 2022; Lewis et al., 2020; Raffel

et al., 2020b; Soltan et al., 2022). To combine the two finetuning stages, we propose

to finetune the LLM with the “a = fθ(q, c)” template, and sequentially finetune the

model with “a = fθ(q)”. At test time, we use the “a = fθ(q, c)” template to make
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Figure 23. Overview of our proposed framework for KARP. The blue and orange
arrows represent the finetuning and inference processes of our model respectively.

predictions, where the context c is provided by our proposed knowledge retriever.

Experimental results show that our proposed framework significantly improves the

performance compared to the baselines on MS MARCO QA NLG (T. Nguyen et al.,

2016), demonstrating the effectiveness of our proposed method. In addition, we also

show that our proposed knowledge retriever contributes significantly to the overall

performance of the system.

5.2 Proposed Method

Our proposed framework - KARP consists of (i) a knowledge retriever and (ii) a

generative LLM-based answer generator. An overview of our framework is shown in

Figure 23. Details regarding the knowledge retriever and the answer generator are

presented in section 5.2.1 and 5.2.2, respectively.

5.2.1 Knowledge Retriever. Our knowledge retriever functions as an

answer reranking model. Given a question q and a group of N web contexts C =

{c1, c2, . . . , cN}, the goal is to determine the contexts containing the correct answer

A ⊂ C by learning a reranking function r : Q × ϕ(C) → ϕ(C), where Q represents

the set of questions and ϕ(C) represents all the possible orderings of C. The intent is

152



to place the relevant contexts A at the top of the ranking produced by the function r.

The reranker r is typically a pointwise network f(q, ci), such as TANDA (Garg et al.,

2020), which learns to assign a relevance/correctness score pi ∈ (0, 1) to each ci for

ranking purposes.

Our knowledge retriever consists of three primary components: i) Encoding, ii)

Question-Context Alignment, and iii) Answer-Context Dependencies. Overview of our

proposed model is provided in Figure 24.

5.2.1.1 Encoding. We are provided with a question represented as q =

[wq
1, w

q
2, . . . , w

q
Tq
] with Tq words and a set of N web contexts C = {c1, c2, . . . , cN}

retrieved from a search engine. Each context, denoted as ci = [wc
1, w

c
2, . . . , w

c
Tc
],

consists of Tc words. In this work, we consider previous and next sentences cprev,

cnext as additional contexts for each context c ∈ C. To create the input for our

model, we concatenate the question, the web context, and context sentences into

a single input sequence: [q; c; cprev; cnext]. This combined sequence is then passed

through a pre-trained language model (PLM), e.g., RoBERTa (Y. Liu et al., 2019), to

obtain contextualized word embeddings. Additionally, we employ distinct segment

embeddings for the question, the web context, and context sentences. These segment

embeddings, which are randomly initialized and trainable during training, are added

to the initial word embeddings in the first layer of the PLM. For simplicity, let

[wq
1,w

q
2, . . . ,w

q
Tq
] and [wc

1,w
c
2, . . . ,w

c
Tc
] represent the sequences of word representations

obtained from the last layer of the PLM for the question q and the web context c ∈ C,

respectively.

5.2.1.2 Question-Context Alignment. In this section, we present our

approach for extracting relevant words within the web context and its surrounding

sentences based on the alignment of words with the question. Specifically, we introduce
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Figure 24. A diagram depicting the knowledge retriever in our framework for KARP.

the use of Optimal Transport (OT) (Cuturi, 2013; Monge, 1781) to address the task

of aligning the question with the context for answer reranking.

OT is a well-established technique used to transfer probability from one distribution

to another by establishing an alignment between two sets of points. In the discrete

setting, we are provided with two probability distributions, denoted as pX and pY ,

defined over two sets of points, namely X = {xi}ni=1 and Y = {yj}mj=1 (
∑

i pxi
= 1

and
∑

j pyj = 1). Additionally, a distance function D(x, y) : X × Y → R+ is given

to quantify the distance between any two points x and y. The objective of OT

is to determine a mapping that transfers the probability mass from the points in

{xi}ni=1 to the points in {yj}mj=1, while minimizing the overall cost associated with this

transportation. Formally, this involves finding the transportation matrix πXY ∈ R+n×m
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that minimizes the following transportation cost:

dXY =
∑

1≤i≤n
1≤j≤m

D(xi, yj)πXY ij, (5.1)

so that πXY 1m = pX and πT
XY 1n = pY . The transportation matrix πXY signifies the

best matching between the sets of points X and Y , where each row i in the matrix

indicates the optimal alignment from a point xi ∈ X to each point yj ∈ Y .

In our problem of aligning the question with the web context, we treat the question

q and the context c as two point sets: {wq
i }

Tq

i=1 and {wc
i}Tc

i=1 respectively (each word

is a point)2. To determine the probability distributions for these word sets, we

propose calculating the word frequencies and then normalizing the sum of frequencies.

Specifically, the probability distribution for the question is obtained by:

pwq
i
=

freq(wq
i )∑Tq

i′=1 freq(w
q
i′)

(5.2)

The frequency freq(wq
i ) corresponds to the number of occurrences of the word

wq
i in the training data. The same approach is applied to compute the probability

distribution for the context. To handle unseen words during testing, we utilize Laplace

smoothing to assign a non-zero probability. Moving on, we estimate the distance

between two words wq
i ∈ q and wc

j ∈ c by measuring their semantic divergence, which

involves computing the Euclidean distance between their contextualized representations

obtained from the PLM: D(wq
i , w

c
j) = ||w

q
i −wc

j||. The Sinkhorn-Knopp algorithm

is then efficiently employed to solve for the optimal transportation matrix πXY (in

this case, πqc for the question q and the context c) (Cuturi, 2013; Sinkhorn & Knopp,

1967). Finally, we obtain the relevant words rc for the context c by taking the union

2Before performing the alignment, we remove stopwords and punctuation marks from both sets of
words.
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of words wc
j that have the highest transportation probabilities:

rc =

Tq⋃
i=1

{wc
j |j = argmax1≤j′≤Tc

πqcij′} (5.3)

To compute the representation for the context c, we take the average sum of the

representations of the relevant words:

rc =
1

|rc|
∑

j|wc
j∈rc

wc
j (5.4)

By incorporating the information of the relevant words, our intention is to eliminate

any disruptive or unrelated details from the web context.

5.2.1.3 Answer-Context Dependencies. For convenience, let [r1, r2, r3]

denote the representations acquired from Equation (5.4) for the web context p1 ≡ c,

the previous context p2 ≡ cprev, and the next context p3 ≡ cnext. To capture the

relationships between these contexts, we view each context as a node in a fully-

connected graph G = (V,E), where V = {pi} (1 ≤ i ≤ 3) is the node set and

E = {(pi, pj)} (1 ≤ i, j ≤ 3) is the edge set. Our objective is to determine a

weight αij ∈ (0, 1) for each edge (pi, pj) that reflects the dependency of pi on pj. To

accomplish this, we propose to leverage their semantic representations ri, rj, and

transportation costs to the question dqpi , dqpj to measure the dependency weight

αij between the contexts pi and pj. Specifically, we first compute the score: uij =

FFNDEP ([ri ⊙ rj; dqpi ; dqpj ]), where ⊙ is the element-wise product, [; ] represents the

concatenation operation, and FFNDEP is a feed-forward network. Subsequently, the

weight αij for the edge (pi, pj) is obtained through a softmax function:

αij =
exp(uij)∑K

j′=1 exp(uij′)
(5.5)
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The derived weights {αij} are subsequently utilized to enrich the passage

representations through L layers of a Graph Convolutional Network (GCN) (Kipf &

Welling, 2017):

hl
i = ReLU(

K∑
j=1

αijW
lhl−1

j + bl) (5.6)

where Wl, bl are learnable weight matrix and bias for the layer l of the GCN

(1 ≤ l ≤ L), and h0
i ≡ ri is the input representation for the context pi. The output

vectors hL
i ≡ hi at the last layer of the GCN serve as the final representations for the

context pi. Intuitively, the weights αij enable each context to decide the amount of

information it receives from the other contexts to improve its representation for the

task. The representation h1 for the web context p1 ≡ c is finally sent to a feed-forward

network with a sigmoid output function to estimate the relevance/correctness score

pc ∈ (0, 1) for the context c: pc = FFNDPR(h1). For training, we minimize the binary

cross-entropy loss with the correctness scores pc. At inference time, consistent with

previous research (Garg et al., 2020), we include all web contexts for each question for

ranking.

5.2.2 LLM-based Answer Generator.

5.2.2.1 Background on Text Generation Finetuning. Text generation

finetuning has become a general approach to solving different NLP tasks, where input

and expected output of a task can be represented as source and target text respectively

for a generative model to learn the task (B. Lin et al., 2022; Lu et al., 2021b; Raffel et

al., 2020b). For example, a pretrained generative LLM such as BART (Lewis et al.,

2020) and T5 (Raffel et al., 2020b) can be finetuned on sentiment analysis by taking a

statement (e.g., “I really like the story”) as the source text to generate a label (i.e.,

“Positive”, ”Negative”, “Neutral”) to indicate the sentiment of the statement. As the
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text generation resembles the LLM’s pretraining task (e.g., next word prediction),

the formulation could facilitate the transfer learning to the target task. In addition,

it enables data augmentation methods where training data for a task may also be

leveraged for another task in the same generative formulation (J. Liu, Chen, Liu, Bi,

& Liu, 2020). These advantages have led to significant performance improvements for

many NLP tasks such as event extraction (J. Liu et al., 2020), named entity recognition

(Yan et al., 2021), and dependency parsing (B. Lin et al., 2022). Similar to other

NLP tasks, the generative methods have been explored for improving QA performance

(Gabburo et al., 2022; C.-C. Hsu et al., 2021a; Izacard & Grave, 2021; Jiang et al.,

2022; Lewis & Fan, 2019; Muller et al., 2022; Raffel et al., 2020c; Roberts et al., 2020b).

To avoid hallucination and improve factual accuracy for the models, recent works on

ODQA employ the retrieval-based methods such as GenQA (C.-C. Hsu et al., 2021b).

GenQA is introduced by Hsu et al. (C.-C. Hsu et al., 2021b) for generating

appropriate answers for user questions given answer candidates retrieved by a reranking

model. This expands the answer retrieval pipeline with an additional generative stage

to produce correct and satisfactory answers, especially in cases where a highly ranked

candidate is not acceptable or does not provide a natural response to the question. In

particular, GenQA employs a pretrained generative LLM to produce an answer by

taking a given question and a list of answer candidates as input, sorted by a trained

reranking model.

5.2.2.2 Our Proposed Finetuning Method. The main goal of a general

text-generation model is to produce an output text sequence y = [y1, y2, . . . , yT ]

based on a given input text sequence x = [x1, x2, . . . , xS], where the lengths of the

input and output sequences are denoted by S and T , respectively. With a pretrained

encoder-decoder LLM such as BART (Lewis et al., 2020) or T5 (Raffel et al., 2020b),
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we can compute the conditional probability of P (y|x) for training the model. At test

time, the decoder merges the previous output and input text to create the current

output. A decoding algorithm such as Greedy or Beam Search (Wiseman & Rush,

2016) can be used to generate an output text with the highest likelihood. For ODQA,

given a question q and a retrieved web content c (e.g., top relevant contexts), previous

works such as GenQA are trained to take (q, c) for as the source sequence to produce a

response as the target sequence a = fθ(q, c), where fθ denotes the corresponding LLM

with the parameters θ. As a result, fθ may merely learn to copy/synthesize information

from c to produce a if c often contains necessary information for correctly answering

the question q in training data. Relying solely on the retrieved content c, the model

may fail to provide a correct answer for a given question if c is missing or contains

irrelevant/noisy information. In other words, performance of these retrieval-based QA

models tend to be limited by an upper bound of the knowledge retriever’s performance.

Different from the previous works that follow a single-stage finetuning method, we

propose to employ a multi-stage finetuning method, where both “a = fθ(q, c)” and

“a = fθ(q)” templates are used to train the model. The latter intentionally excludes

the external knowledge c from the input to encourage the model to retrieve its own

knowledge from the model parameters θ, which have been pretrained on massive

unlabeled text (FitzGerald et al., 2022; Lewis et al., 2020; Raffel et al., 2020b; Soltan

et al., 2022). To combine the two finetuning stages, we propose to finetune the LLM

with “a = fθ(q, c)”, and sequentially finetune the model with “a = fθ(q)”. In this way,

our model does not completely rely on the retrieval results to generate answers for

given questions. At test time, we use the “a = fθ(q, c)” template to make predictions.

The retrieved content c now can be considered as a source of external knowledge along

with the pretrained knowledge contained in the model parameters θ to generate an
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answer for the question. Under this perspective, we consider various QA datasets for

each step in our finetuning process. We call such dataset collection OKQA as they

are publicly available and contains high-quality general knowledge.

MS Marco QA NLG is a specialized version of the MS Marco dataset (T. Nguyen

et al., 2016) that aims to produce natural language responses to user inquiries using

web search result excerpts. This dataset includes 182K queries from Bing search logs,

each is associated with top ten most relevant passages. A human annotator is then

required to look at the passages and synthesize an answer using the content of the

passages that most accurately addresses the query.

Super Natural Instructions (SNI) is a data collection proposed by (Y. Wang

et al., 2022). The corpus consists of 1, 616 diverse NLP tasks and their expert-

written instructions. In this work, we consider only question-answering tasks such as

extractive QA with SQUAD (Rajpurkar et al., 2016) and multiple-choice QA with

MCTest (Richardson, Burges, & Renshaw, 2013). For each task, we consider anything

but a question q provided in the input as context c. Particularly, the context c can be

a passage, a fact, or a set of answer choices associated with the question. As a result,

we obtain 180K examples for finetuning our model.

Anthropic is introduced by (Bai et al., 2022), containing conversations between

a human and a computer assistant. For each conversation, we consider a human

question in the current turn and the (question, answer) pairs in the previous turns

as the input sequence. The answer from the assistant in the current turn is treated

as the output sequence. In this way, the previous turns can be considered as a form

of relevant context c for clarifying the current question q. Consequently, we obtain

280K examples for finetuning our model.
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Answer Reranking datasets, namely, WikiQA (Y. Yang, Yih, & Meek, 2015b)

and WDRASS (Zhang, Vu, Gandhi, Chadha, & Moschitti, 2022a) are also used for

finetuning our model. WikiQA is a collection of questions and answer candidates that

have been manually annotated using Bing query logs on Wikipedia. WDRASS is a

large-scale dataset of questions that are non-factoid in nature, such as questions that

begin with “why” and “how”. The dataset contains around 64, 000 questions and over

800, 000 labeled passages that have been extracted from a total of 30M documents.

Each question in such datasets is associated with a set of answer candidates, in which

some of the candidates are correct answers. As a question can have multiple correct

answers, we select the longest answer as the output sequence for the question, which is

considered as the input sequence. This results in a set of 105K examples for finetuning

our model.

In the end, the datasets where context is available for a question are used in the

first stage of our finetuning process, while the other datasets are used for further

training the model in the subsequent stage. With a huge amount of various QA tasks,

we expect this could teach the model to understand the nature of question answering

and how to utilize its own parametric knowledge (in case no context is provided) and

external knowledge (i.e., relevant context) to answer a given question.

5.3 Experiments

5.3.1 Benchmarking the Knowledge Retriever.

5.3.1.1 Experimental Setup.

Datasets We follow the previous work (Garg et al., 2020; Zhang, Vu, Gandhi,

Chadha, & Moschitti, 2022b) to conduct the evaluation. In particular, we use (i)

WikiQA (Y. Yang et al., 2015b), consisting of questions from Bing query logs and

manually annotated answers from Wikipedia, and (ii) WDRASS (Zhang et al.,
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2022b), a large-scale web-based dataset having factoid and non-factoid questions, to

investigate our retrieval performance. We use the same train/dev/test splits used in

previous work.

Hyper-parameters and Tools In accordance with previous work, we use a small

portion of the WikiQA training data to tune hyper-parameters for our model and

select the best hyper-parameters for all the datasets (Lauriola & Moschitti, 2021).

We employ Adam optimizer to train the model with a learning rate of 1e-5 and a

batch size of 64. We set 400 for the hidden vector sizes for all the feed-forward

networks, L = 2 for the number of the GCN layers. We use Pytorch version 1.7.1 and

Huggingface Transformers version 3.5.1 To implement the models. We use the NLTK

library version 3.5 (Bird, Klein, & Loper, 2009) to preprocess the data and remove

stopwords. The model performance is obtained over three runs with random seeds.

Evaluation Metrics We measure the model performance using the following

standard metrics: Precision-at-1 (P@1) and Mean Average Precision (MAP) on the

entire set of answer candidates for each question.

5.3.1.2 Performance Comparison. We compare our proposed model with

TANDA (Garg et al., 2020), which is the current state-of-the-art model for answer

reranking. Table 27 shows the performance comparison between the models in two

settings: i) using a non-finetuned RoBERTa-Base encoder, and ii) using a fine-tuned

RoBERTa-Base encoder. The non-finetuned RoBERTa-Base is obtained from (Y. Liu

et al., 2019) while the other is produced by fine-tuning TANDA on the ASNQ dataset

(Garg et al., 2020). As can be seen from the table, all the models benefit from using

the finetuned RoBERTa-Base encoder. Across the two settings, our model outperforms

the previous models by large margins, demonstrating its effectiveness for the task.
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Model
WikiQA WDRASS

w/o ASNQ with ASNQ with ASNQ
P@1 MAP P@1 MAP P@1 MAP

TANDA 63.24* 75.00* 78.67* 86.74* 54.60 63.50
Ours 74.16 83.29 83.77 89.28 55.9 61.8

Table 27. Performance comparison on WikiQA and WDRASS, * indicates results
reported by (Lauriola & Moschitti, 2021).

In addition, we show the performance of our proposed model compared to TANDA

on the WDRASS test set. As we can see, our knowledge retriever significantly improves

the performance for P@1 score, however, decreases the performance for MAP score. We

attribute this to the fact that questions in WDRASS dataset usually have more than

1 correct answers for a single question while our model ranks the answer candidates

individually. However, we note that the top-1 answer candidate is often the most

helpful for the answering process.

5.3.1.3 Ablation Study. To understand the impact of each component

in our proposed model, we conduct ablation experiments by removing/replacing

different components in our model and evaluating the ablated models on the WikiQA

development data.

Impact of Individual Components: First, we exclude each component from

our proposed model to obtain the ablated models: “- OT alignment” (removing the

question-candidate alignment via Optimal Transport), and “- GCN dependencies”

(removing the inter-candidate dependencies via GCN). As shown in the Table 28,

the removal of each component results in significant drops in the performance of the

models, demonstrating the contributions of each component to the overall performance

of our model.

Designs for Question-Candidate Alignment: Second, we experimented with

different design choices for our question-candidate alignment component. Specifically,
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Models P@1 MAP MRR
TANDA 81.2 88.6 88.9

Our Model 85.3 89.9 90.6
− OT alignment 83.6 89.1 89.6
− GCN dependencies 84.4 88.7 89.3

Table 28. Performance of ablated models on WikiQA development data for each
component in our proposed answer reranking model.

we tried the following models: “+uniform dist” (replacing the frequency-based

distributions for OT with uniform distributions), and “+cosine distance” (employing

the cosine distance instead of the Euclidean distance for OT). As shown in Table

29, the performance of the ablated models decreases. This validates our design

choices for the question-candidate alignment via OT. Additionally, we incorporated

the question-candidate alignment into the TANDA baseline, where the alignment

happens between a question and an answer candidate. The resulting model obtains

significant improvement, showing the effectiveness of the question-candidate alignment

for the task.

Models P@1 MAP MRR
Our Model 85.3 89.9 90.6
+ uniform dist 84.4 89.5 90.1
+ cosine distance 83.6 89.4 89.9
− OT + cosine 83.6 89.0 89.5

TANDA 81.2 88.6 88.9
+ OT alignment 83.6 89.3 89.6

Table 29. Performance of ablated models on WikiQA development data for the
question-candidate alignment.

Learning Inter-Context Dependencies: Third, we would like to understand

the effects of the following ablated models in capturing the dependencies among the

contexts: “- transportation costs” (removing the OT transportation costs dqci and

dqcj from the computations of the dependency weights), “+ vector concatenation”

(concatenating the candidate representations ri and rj instead of element-wise
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multiplying them), and “+ cosine weights” (computing dependency weights αij via

the cosine similarity between the representations ri, rj for the answer contexts). The

incline of the ablated models’ performance in Table 30 confirms the effectiveness of

our proposed method for learning the dependencies among the answer contexts.

Models P@1 MAP MRR
Our Model 85.3 89.9 90.6
− transportation costs 83.6 89.2 89.8
+ vector concatenation 84.4 89.5 90.3
+ cosine weights 83.6 88.7 89.0

Table 30. Performance of ablated models on WikiQA development data for the inter-
candidate dependencies.

5.3.2 Automatic Evaluation for Knowledge-Aware Answer Planning.

5.3.2.1 Experimental Setup. Dataset: We acquire the evaluation data as

follows. First, we randomly select 2,000 questions from the MS MARCO QA NLG test

set. For each question, we rank all the retrieval contexts using our proposed reranking

model trained on WDRASS to obtain the top 5 candidates. We then concatenate

the question and contexts to form the input, which is used to generate the predicted

answer.

Hyper-parameters and Tools: To train the answer generators, we employ

the Adam optimizer with a learning rate of 1e-5 and a batch size of 128. The

implementation of the models is carried out using Pytorch version 1.7.1 and

Huggingface Transformers version 3.5.1. Unless otherwise specified, all the models

employ the pretrained T5-large as the base model.

Evaluation Metrics: We employ widely-used evaluation metrics, including

ROUGE (C.-Y. Lin, 2004), BLEU (Papineni, Roukos, Ward, & Zhu, 2002), and

BERTScore (Zhang*, Kishore*, Wu*, Weinberger, & Artzi, 2020), for assessing

the quality of generated answers in comparison to human-written natural answers.
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Model BLEU RougeL BERTScore
GenQA (C.-C. Hsu et al., 2021b) 14.6 0.518 0.698

KARP (Ours) 38.3 0.632 0.762

Table 31. Comparison between KARP and GenQA (C.-C. Hsu et al., 2021b) using
automatic evaluation metrics.

These metrics are commonly applied to standard text generation tasks such as

summarization (Zhang, Zhao, Saleh, & Liu, 2020), machine translation (Vaswani

et al., 2017), and answer generation (Raffel et al., 2020c).

It is important to note that these metrics have their own limitations; however, these

can be mitigated by providing more and higher-quality reference texts (Callison-Burch,

Osborne, & Koehn, 2006). In the context of answer generation, we enhance the

reliability of these measurements by employing human-written answers as references.

5.3.2.2 Performance Comparison. Table 31 presents a comparison of

KARP with GenQA in terms of BLEU, RougeL, and BERTScore metrics.

The results demonstrate that KARP outperforms GenQA in all evaluation metrics.

KARP achieves a BLEU score of 39.4, a RougeL score of 0.608, and a BERTScore of

0.752. These results indicate that KARP offers a significant improvement over GenQA

in the context of answer generation, which we attribute to our specialized fine-tuning

method.

5.3.3 Human Evaluation for Knowledge-Aware Response Planning.

In this section, we evaluate KARP in an end-to-end industry-scale scenario.

5.3.3.1 Experimental Setup. We outline the experimental setup to evaluate

the end-to-end performance of KARP in a web-scale scenario, involving tens of millions

of web documents. The configuration allows us to study the scalability and effectiveness

of our approach in a real-world, large-scale setting.
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Web Document Collection: We constructed a large collection of web data,

comprising documents and passages, to facilitate the development of knowledge

retrieval for end-to-end system evaluation. This resource enables us to assess the

impact of our work in an industry-scale ODQA setting. We selected English web

documents from the top 5,000 domains, including Wikipedia, from Common Crawl’s

2019 and 2020 releases. The pages were split into passages following the dense passage

retrieval (DPR) procedure (Karpukhin et al., 2020), limiting passage length to 200

tokens while maintaining sentence boundaries. This produced a collection of roughly

100 million documents and 130 million passages. From this, we built (i) a standard

Lucene/Elasticsearch index and (ii) a neural-based DPR index (Karpukhin et al.,

2020).

Web-scale Knowledge Retrieval: For each question, we retrieved up to 1,000

documents/passages using both indexes. We then rank the passages and applied

a knowledge retriever to select relevant contexts. We used top K = 5 contexts as

external knowledge for a question.

Question Sampling: We randomly selected 2,000 questions from WDRASS test

set as it shows to represent natural questions extracted from the Web. In addition,

the questions were also manually labeled.

Baselines: We employ GenQA (C.-C. Hsu et al., 2021b) as our main baseline in

this experiment.

Evaluation Metrics: We evaluate the performance of the end-to-end QA

system using accuracy metrics, i.e., the percentage of questions that were answered

satisfactorily, judged by human experts. Additionally, we define a correct answer as

one that must not only be factually accurate, but also expressed in a natural and fluent

manner. Answers that are too verbose or oddly phrased are considered unsatisfactory.
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Model Accuracy
TANDA baseline

TANDA → GenQA +2.20%
TANDA → KARP +4.50%
KARP → KARP +6.20%

KARP → KARP (OKQA) +7.40%

Table 32. Relative accuracy of different QA settings: TANDA (Garg et al., 2020),
GenQA (C.-C. Hsu et al., 2021b), and our proposed frame work.

5.3.3.2 Performance Comparison. Table 32 presents the relative accuracy

of different QA settings, including TANDA (Garg et al., 2020), GenQA (C.-C. Hsu

et al., 2021b), and our proposed KARP. As we can see, using GenQA to generate

an answer based on the answer candidates retrieved by TANDA helps improve the

accuracy by +2.2% (TANDA → GenQA). The performance is then improved further

by +4.5% when TANDA is coupled with the model finetuned using KARP for answer

generation (“TANDA → GenQA”), which shows the clear benefit of our two-stage

finetuning method compared to GenQA. If both our proposed knowledge retriever

and finetuning technique are employed, the performance boost compared to TANDA

achieves at +6.2% (“KARP → KARP”). This demonstrates the importance of our

proposed knowledge retriever in providing better answer candidates for the answer

generation of the model. Finally, the best performer among all the models is “KARP

→ KARP (OKQA)”, achieved when we apply KARP with additional training data

from OKQA to improve the performance of TANDA by +7.4%. The result further

demonstrates the efficacy of our proposed method for open domain question answering.

5.4 Related Work

Large Language Models (LLMs): LLMs have transformed NLP technologies

with the advent of the Transformer architecture (Vaswani et al., 2017). Two

fundamental pre-training objectives, Masked Language Modeling (MLM) and Causal
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Language Modeling (CLM), underpin the success of these models. MLM, introduced by

BERT (Devlin et al., 2019b), predicts masked tokens in a sentence using surrounding

context, enabling LLMs to learn bidirectional representations that excel in various

NLP tasks. In contrast, CLM, exemplified by GPT (Radford, Narasimhan, Salimans,

& Sutskever, 2018), predicts the next token in a sequence given its preceding

context, showing remarkable success in text generation and other downstream

applications (Kaplan et al., 2020; Radford et al., 2019; Raffel et al., 2020c). In

this paper, we leverage the CLM architecture for its language generation capabilities

to enhance QA performance.

General Question Answering using LLM: A standard QA system consists of

(i) a retrieval engine that returns relevant knowledge and (ii) a model that generates a

response addressing the question, either through selection (Garg et al., 2020; Severyn

& Moschitti, 2015; Yoon, Dernoncourt, Kim, Bui, & Jung, 2019) or abstractive

summarization of the top-selected answers (Gabburo et al., 2022; C.-C. Hsu et al.,

2021a; Muller et al., 2022). In particular, recent summarization-based approaches,

e.g., GenQA (Gabburo et al., 2022; C.-C. Hsu et al., 2021a; Muller et al., 2022), are

highly susceptible to hallucination due to the absence of special treatment of irrelevant

candidates, which commonly appear among the top-ranked options. As a result, the

generated answer may seem plausible but could be factually incorrect (Ji et al., 2023;

Raunak, Menezes, & Junczys-Dowmunt, 2021; Rebuffel et al., 2021; Shuster, Poff,

Chen, Kiela, & Weston, 2021b; C. Wang & Sennrich, 2020; Xiao & Wang, 2021; Zhao,

Cohen, & Webber, 2020; C. Zhou et al., 2021b). Even though its original goal is to

generate more natural answers, GenQA (Gabburo et al., 2022; C.-C. Hsu et al., 2021a;

Muller et al., 2022) can be considered as a method to ground LLMs for QA as it

decodes an answer from the concatenation of both question and answer candidates.
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This approach, however, requires good answer candidates and careful finetuning to

reduce hallucinations.

We propose, instead, a novel generation-based approach that leverages the emerging

language reasoning capabilities of Large Language Models (LLMs) (Radford et al.,

2018) to enhance quality of generated answers. In particular, KARP is designed to

mitigate the reliance on oracle data by making use of the context, such as all choices

in multiple-choice QA, instead of a correct answer alone, i.e., the correct choice. The

experiments demonstrated that our proposed framework for KARP is highly resilient

to noisy input data, and bring about broader application across different QA tasks.

Fine-tuning Strategies for LLMs: Several fine-tuning strategies have been

specifically proposed for large language models (LLMs). These strategies can be broadly

categorized into two groups: architecture-centric and data-centric. (i) Architecture-

centric fine-tuning aims to improve the model’s robustness and adaptability by

modifying hyper-parameters across layers. Gradual unfreezing (Howard & Ruder,

2018) is one example, involving sequential fine-tuning of model layers to prevent

catastrophic forgetting and better adapt to downstream tasks. Layer-wise learning

rate decay (Radford et al., 2018) is another example, where different learning rates

are assigned to various layers to enable more refined adaptation to the target task.

(ii) Data-centric fine-tuning, on the other hand, concentrates on leveraging data from

different sources or intermediate tasks to enhance model performance. Sequential

fine-tuning (Garg et al., 2020; Gururangan et al., 2020) involves training the model

on intermediate tasks before the final target task, improving its performance on the

latter. Combining several related datasets for multi-task fine-tuning has also been

shown to improve performance on the target task (X. Liu, He, Chen, & Gao, 2019).

Our work is related to data-centric fine-tuning. In particular, we propose a novel
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strategy specifically designed for the question answering context. By leveraging both

external knowledge and intrinsic parametric knowledge of LLMs, our approach aims

to enhance the quality of generated answers in QA tasks.

5.5 Summary

In this chapter, we introduced KARP, a novel Retrieval-Augmented Generation

(RAG) framework for Open-Domain Question Answering (ODQA). KARP consists

of a novel knowledge retriever and an LLM-based answer generation component.

Our experimental results demonstrate that the proposed knowledge retriever can

obtain significantly higher quality contexts compared to TANDA, the state-of-the-

art reranking model for ODQA. This finding highlights the benefit of incorporating

Information Extraction (IE) techniques in building advanced retrieval systems for

Large Language Models (LLMs).

Furthermore, we proposed a two-stage finetuning method that outperforms GenQA,

the standard fine-tuning approach for RAG-based LLMs, in various settings. This

result underscores the importance of leveraging the intrinsic parametric knowledge of

LLMs in addition to the retrieved contexts to enhance their performance in ODQA

tasks. By effectively utilizing the LLMs’ inherent knowledge, our approach achieves

superior results compared to relying solely on the information provided by the retrieval

contexts.
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CHAPTER VI

CONCLUSIONS

I was the main author of this chapter and Thien Nguyen provided editorial

suggestions.

6.1 Summary

This dissertation has undertaken a comprehensive exploration into the domain

of Multilingual Information Extraction (Multilingual IE) within the broader field of

Natural Language Processing (NLP). Through the dedication to understanding and

enhancing upstream models, developing language-agnostic downstream architectures,

and innovating cross-lingual transfer learning and active learning methods, significant

strides have been made towards a more inclusive, equitable, and linguistically diverse

digital future. Notably, the research has underscored the vital role of IE in the

evolution and improvement of large language models (LLMs), especially through

the introduction of a novel retrieval-augmented generation (RAG) framework. The

culmination of this work presents a significant contribution to the field of NLP and

Multilingual IE, aiming at bridging the global communication gap and ensuring

information accessibility and cultural preservation across a myriad of languages.

6.2 Limitations

Despite the considerable progress and achievements, this dissertation acknowledges

several limitations that warrant further discussion:

– Data Scarcity for Low-Resource Languages: While strides have been made

in developing methods for IE in low-resource languages, the scarcity of

digital resources and annotated datasets remains a significant challenge. The

effectiveness of these methods can still be constrained by the availability and

quality of data for training models.
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– Complexity of Linguistic Diversity: The intrinsic complexity and variability of

human language across different cultures and linguistic structures pose ongoing

challenges to creating universally effective IE models. While the research has

made advancements in language-agnostic architectures, capturing the full range

of linguistic nuances remains an area for further enhancement.

– Model Generalizability and Scalability: While efforts have been directed towards

developing scalable and generalizable models, ensuring these models’ robustness

across an extensive array of languages and contexts is an area that requires

continuous refinement and testing.

6.3 Future Works

Looking ahead, the following avenues for future research emerge as critical

steps towards overcoming the limitations identified and pushing the boundaries of

Multilingual IE further:

– Enhanced Data Acquisition and Annotation for Low-Resource Languages:

Innovative approaches to data generation, such as synthetic data creation or

semi-supervised learning methods, could mitigate the impact of data scarcity.

Additionally, collaborative global initiatives to annotate data in low-resource

languages can significantly contribute to this effort.

– Deeper Exploration of Cross-Linguistic and Cultural Nuances: Future research

should delve into more sophisticated models that can better understand and

interpret the subtleties of cultural and linguistic diversity. This includes models

that can dynamically adapt to the context and cultural background of the text

being processed.
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– Further Development of RAG Frameworks for LLMs: Building upon the

introduced RAG framework, future works could focus on enhancing the knowledge

retrieval components to improve the accuracy and relevance of information

sourced by LLMs. This would include the refinement of IE techniques to

structure unstructured data more effectively, thereby improving the quality of

inputs for LLMs.

In conclusion, while this dissertation has made substantial contributions to the

field of Multilingual IE, the path forward invites a collaborative, innovative, and

multifaceted research effort. By addressing the limitations and embracing the proposed

future directions, the next generation of NLP research can continue to make significant

advances towards a more connected, inclusive, and linguistically diverse digital world.
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(2019). Universal dependencies 2.5. Retrieved from
http://hdl.handle.net/11234/1-3105 (LINDAT/CLARIAH-CZ digital
library at the Institute of Formal and Applied Linguistics (ÚFAL), Faculty of
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