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DISSERTATION ABSTRACT

Christopher H. Misa

Doctor of Philosophy in Computer Science

Title: Traffic Structure-Aware Network Telemetry Systems: Foundations, Designs,
and Applications

Real-time traffic monitoring is a mission-critical capability for engineers and

administrators tasked with managing modern computer networks. To cope with the

challenges of extremely large traffic volumes, the emergence of programmable switch

hardware promises the possibility of traffic monitoring systems with high packet

processing efficiency, low energy and capital costs, and the ability to produce detailed

results for a wide range of tasks. However, the high efficiency of programmable

switch hardware necessitates a constrained programming model with access to only

a small amount of high-speed memory, a limited number of primitive operations per

packet, and tens of seconds of network downtime each time the program is changed.

Despite significant research effort on developing efficient traffic monitoring systems

within these constraints, current approaches are critically limited in light of real-world

traffic structure and task requirements.

To address these limitations and to pave the way for principled approaches in

future research, we leverage the observation that real-world network traffic is not

generated uniformly at random, but exhibits complex statistical structure resulting

from human and machine communications. By developing characterizations of this

structure, we propose a novel refocusing of state-of-the-art towards investigation

of structure-aware telemetry systems to improve the efficiency and practicality of

real-world traffic monitoring tasks. In particular, we develop novel contributions in
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characterizing traffic structure, designing algorithms for traffic monitoring capabilities

on programmable switch hardware, and leveraging these capabilities for practical real-

world traffic monitoring tasks.

This dissertation includes previously published co-authored material as well as

previously unpublished co-authored material.
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CHAPTER I

INTRODUCTION

Fast and reliable computer networks are a critical service for a wide range of

present-day Internet-connected enterprises (e.g., banks, universities, governments

etc.). For engineers and administrators tasked with the deployment, expansion,

maintenance, and security of such networks, real-time monitoring of packet traffic

flowing through the network is a mission-critical capability. In particular, outputs

in the form of traffic metrics or events detected from real-time traffic monitoring

systems are necessary inputs for network management tasks ranging from detecting

and debugging performance issues to attack detection and mitigation to short-term

traffic engineering to long-term capacity planning. For example, network traffic

monitoring may be used to detect and understand the causes of high latency [123].

Alternatively, network traffic monitoring may be used to detect and mitigate malicious

attack traffic to prevent it from impacting benign users [70].

To effectively satisfy the requirements of management tasks in real-world

networks, traffic monitoring systems must efficiently process large traffic volumes,

remain robust when faced with the complex structure of real traffic, and provide

specific, actionable results for a wide range of tasks. Recently, the emergence of

programmable switch ASICs 1 that can be configured to compute traffic monitoring

results directly in the network hardware substrate raises the promise of network

traffic monitoring systems with high packet processing efficiency, low energy and

capital costs, and the ability to produce detailed results for a wide range of tasks.

However, the high efficiency of programmable switch ASICs necessitates a constrained

programming model with access to only a small amount of high-speed memory, a

1ASIC stands for Application-Specific Integrated Circuit. See Appendix D for a complete glossary
of all abbreviated terms.
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limited number of primitive operations per packet, and tens of seconds of network

downtime each time the program is changed. As a result, significant research effort

investigates designs and algorithms required to realize this promise.

Despite significant effort, particular directions taken by current research on traffic

monitoring systems has led to critical limitations in light of real-world traffic structure.

Designs and algorithms are proposed based on superficial understanding of what

network traffic can be expected to look like in the real world and what particular

tasks network management may require. This leads to a pattern where particular

design decisions become entrenched and much effort is devoted to making them work

for a wider variety of cases rather than questioning their fundamental suitability for

particular traffic monitoring problems.

To address current limitations of traffic monitoring system research and to pave

the way for principled approaches in future research, we adopt the following.

Thesis Statement. Real-world network traffic is not generated uniformly

at random, but exhibits complex statistical structure resulting from human

and machine communications. By understanding the statistical structure of

network traffic, we realize a novel refocusing of state-of-the-art approaches

through proposing and building structure-aware telemetry systems to improve

the efficiency and practicality of traffic monitoring tasks.

1.1 Background: Network Traffic Monitoring

Network traffic monitoring involves (i) observing packets passing through the

network (e.g., as they are transmitted through a router or switch), (ii) aggregating

packets into groups (e.g., based on source IP address), and (iii) computing per-

group metrics that enable making group-level decisions (e.g., deciding to block

traffic from source addresses associated with a network-based attack). These
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three elements are typically combined in a logically-centralized system that allows

network administrators to specify the particular groupings and computations for their

monitoring tasks and presents the results in a human- or machine-readable format.

We refer to such systems as telemetry systems and refer to the computations

required for particular monitoring tasks as traffic queries or queries for short.

Traffic queries embody particular questions a network administrator may want to ask

about traffic flowing through their network and can produce their results based on

detection of certain events (e.g., when an attack is detected) or periodic intervals

(e.g., every 5 seconds). We envision deployment of telemetry systems on campus or

enterprise networks between internal computers and the external Internet with as

illustrated in Figure 1. Once deployed, network administrators “ask” the telemetry

system queries about their traffic and receive real-time results.

Telemetry System

How many packets did
each computer send?

Computer 1 sent x1 packets,
...

Computer 1
Computer 2

...
Computer n

Switch 1 . . . Switch M Internet

Query
Results

Figure 1. Simple example of a network setting, telemetry system deployment, traffic
queries, and results.

The design and implementation of telemetry systems entail (i) specification of a

query interface that network administrators use to define and submit queries, (ii)

programming network devices to observe network packets as they are forwarded

through the network and compute per-group metrics, and (iii) delivering the

results from each group in realtime to interactive dashboards, automated network

management systems, or other consumers of information about network traffic. This
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dissertation focuses on (ii), how network devices are programmed to implement

telemetry systems, and adopts common models for (i) and (iii).

Implementing telemetry systems involves two logically-distinct processes.

• Traffic probes observe packets flowing through the network. n

• Query processors perform grouping, filtering, and aggregation computations

required by traffic queries.

As shown in Figure 2, traffic probes must be “plugged” or “built” in to

the network dataplane (e.g., switches forwarding packets between computers) in

order to observe live network traffic. Query processors, on the other hand, can

either be completely separate from network switches (as shown in Figure 2a),

completely integrated into the switch ASIC (as shown in Figure 2b), or somewhere

in between with some computations running in the switch ASIC and post-processing

computations run on an external server. For example, in most switches the hardware

ASIC responsible for forwarding packets also counts the number of packets ingressing

and egressing each switch port. This can be understood as executing a simple query

that groups packets by switch port and computes the number of packets observed

in each group. In other telemetry systems, probes and processors are physically

distinct equipment. For example, many intrusion detection systems (IDSs) use the

switch hardware ASIC purely as a traffic probe to forward a copy of each packet to

a dedicated cluster of query processors (e.g., [129, 20]).

For systems that use separate query processors, a key challenge is handling the

high packet rates encountered in real networks. As illustrated in Figure 2a, this

challenge often requires distributing the computation across an expensive and power-

hungry cluster of servers. Systems that implement query processors directly in the

network hardware eliminate this overhead and may only require a single light-weight
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Switch M ASIC

Cluster of Servers

Traffic probe

Query processor

Packets
from
Switch
M − 1

Packets
Queries Results

(a) Separate traffic probe implemented on
switch and external query processor.

Prog. Switch ASIC

Traffic probe

Query processor

Runtime Controller

Server CPU

Packets
from
Switch
M − 1

Queries Results

(b) Traffic probe and query processor
combined in single switch ASIC.

Figure 2. Example of placement of traffic probes and query processors in two different
telemetry systems.

server to control query computations and collect the results as illustrated in Figure 2b.

We next introduce programmable switch ASICs which are a type of network hardware

that can implement some query processor functionalities.

1.2 Background: Programmable Switch Hardware

One of the most important trends in network system design and a key focus of

this dissertation is the emergence (around 2013) of “programmable” switch hardware

ASICs [40, 8]. Programmable switches (as such ASICs are more colloquially known

in the community) extend the match-action model of software-defined networking

(SDN) [111] to include user-defined actions that can edit packet headers, perform

simple ALU-based computations, and read and write to a limited amount of high-

speed SRAM memory for every packet forwarded through the device.

As shown in Figure 3, packets enter the programmable switch through input

ports (left), pass through the ingress pipeline, queuing stages, and the egress pipeline

before being transmitted from output ports (right). Both ingress and egress pipelines

typically consist of a parser to extract particular fields from each packet’s header,
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a number of homogeneous processing stages, and a deparser which reconstructs the

packet headers to include any editing performed by the processing stages. Each

processing stage performs a set of primitive computations based on table lookups

(e.g., using ternary content-addressable memory or TCAM) from packet metadata

and values read in from a per-stage SRAM block.

Parser DeparserStage � Stage � Stage N

TCAM
SRAM

M A
ALUs

Metadata bus

Queues

...

In
pu

t p
or

ts

O
ut

pu
t p

or
ts

Ingress
pipeline

Egress
pipeline

Programmable Switch

Figure 3. Example packet processing architecture of a modern programmable switch
ASIC.

Designers of telemetry systems (or of other network functions) program the

switch ASIC in two phases: the hardware-specification phase and the runtime-

controller phase. First, the hardware-specification phase uses a DSL (e.g., P4 [39])

to specify how hardware primitives like TCAM, SRAM, and ALUs will be configured

and connected together. In particular, they specify (i) how the parsers extract packet

header fields, (ii) which header fields each (logical) match-action stage can match

against, and (iii) the particular “actions” or functions which will be used in each

stage to modify header fields and SRAM. Actions can also take arbitrary arguments

specified in the runtime-controller phase. A hardware-specific compiler then takes

this specification and produces two artifacts: (i) a low-level configuration that can
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be loaded onto the ASIC and (ii) a runtime API specification that describes the

particular match fields and action parameters that can be manipulated at runtime.

Next, the runtime-controller phase uses a general purpose programming language

(e.g., Haskell [9]) to dynamically add and remove match-action rules based on the

runtime API generated for the particular hardware-specification. For example, to

implement a query that counts the number of packets sent from a set of particular

source addresses, the hardware-specification could define a single match-action table

that matches based on the source address of each packet and then executes a single

action that updates a counter associated with that packet’s source address in SRAM.

The runtime-controller phase could then install rules in this table to match against

the particular set of source addresses to monitor and then read the counter values

from SRAM for each monitored source address. Note that changes made to the

hardware-specification require reloading the switch which leads to tens of seconds of

network downtime whereas changes made through the runtime API have no impact on

traffic processing. One can imagine (at a high level of abstraction) that the hardware-

specification is a compiled function implementation and the runtime-controller invokes

that function with different arguments to select different per-packet behaviors.

1.2.1 Benefits. Using programmable switch hardware to implement query

processors directly on the switch ASIC (as shown in Figure 2b) drastically improves

the performance of telemetry systems. In particular, recent research [123, 70] shows

that all or part of the query processor can be implemented directly in switch hardware

for a wide variety of traffic monitoring queries (well beyond simple per-port packet

counts). This reduces or eliminates the need for sending packets to CPU-based query

processors and, in-turn, can lead to orders of magnitude reduction in cost (e.g., capital

expense, power utilization) [103] while enabling finer-grain, more detailed traffic
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monitoring. Since CPU-based systems are almost always still required to coordinate

switch hardware operations, collect intermediate results, and perform any remaining

query processing, we refer to such systems as hybrid telemetry systems.

1.2.2 Constraints. Programmable switch hardware achieves high

efficiency for extremely high traffic rates at the cost of a constrained programming

model as summarized below.

• Programmable switches can only make use of a limited amount of high-speed SRAM

(e.g., tens of megabytes per pipeline) to compute aggregate metrics for each group.

Given physical wiring and thermal constraints it is non-trivial to simply “plug”

more memory into the switch ASIC.

• For each packet, programmable switches can only execute limited primitive

operations subject to constraints induced by the pipelined computational model

shown in Figure 3. In particular, the graph of the computation can have no

backward edges, has a maximum width determined by the number of ALUs per

stage, and a maximum depth determined by the number of stages in the pipeline.

• Telemetry systems must fix allocation of memory and processing operations,

typically when the switch hardware program is compiled. Any aspects of query

processing which must be modified at runtime, must be anticipated at compile

time and included as runtime parameters in the hardware program definition.2

1.3 The Current State of Telemetry System Research

1.3.1 Areas of Investigation. Recent research investigates three distinct

areas in relation to the design and implementation of telemetry systems that use

programmable switch hardware to implement all or part of the query processor. As

2Several recent proposals suggest modification to the underlying switch ASIC hardware
architecture that could enable more runtime flexibility [173, 59], but it is unclear if and when
such proposals will yield viable hardware products for implementing real-world telemetry systems.
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shown in Figure 4, these areas are strongly related in that findings in one area have

key technical implications for efforts in one or more other areas. In the following, we

precisely define each area and describe connections between areas.

Area 1: Characterizing
the structure of network
traffic.

Area 2: Designing algorithms
for traffic monitoring.

Area 3: Solving practical
real-world monitoring tasks.

Explain performance,
motivate new designs.

Provide primitive
computations.

Motivate what to
characterize.

Figure 4. Areas of research related to the challenges of using programmable switch
hardware to implement telemetry systems and concrete examples of connections
between them.

Area 1: Characterizing the structure of network traffic. Flows of packets

observed in network traffic are generated by human activities, such as visiting a

website or checking email, as well as by machine processes, such as automatic updates

or clock synchronizations. The behavior of these flows (e.g., packet rate) is influenced

by the particular path of devices traversed through the network as well as cross

traffic from other flows traversing the same devices. Traffic from multiple such flows

aggregated at the scale of medium to large enterprises can be understood as a highly-

structured stochastic process with distinct statistical patterns and distributions.

Understanding these patterns and distributions is a foundational requirement for

design and operation of many network components including telemetry systems.

In particular, due to limited memory available on programmable switch hardware,

for telemetry systems the key structural features of concern are how many traffic
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groups (e.g., IP addresses) are observed over time and how the keys of these groups

are distributed in the key space (e.g., the space of all possible IP addresses). In

considering this connection a key open questions is what particular aspects of traffic

structure are important to characterize and how can state-of-the-art statistical tools

be used for such characterizations and understood in networking terms?

Area 2: Designing algorithms for traffic monitoring. Telemetry system design

requires careful selection and development of algorithms to efficiently compute query

results over large volumes of traffic in real-time. When leveraging programmable

switch hardware in particular, the designs and algorithms chosen to implement traffic

queries must be mapped into the constrained programming or configuration model

described above. On the one hand, statistical characterizations of traffic structure

(e.g., the number of expected groups observed per time window) directly inform

algorithm design decisions. On the other hand, designs and algorithms for telemetry

systems are only useful insofar as they are able to effectively apply to relevant traffic

monitoring tasks on real-world traffic. When considering these connections, a critical

open question is how to come up with designs and algorithms that leverage traffic

structure and support practical real-world monitoring requirements?

Area 3: Solving practical real-world monitoring tasks. Network

administrators, at the end of the day, care about high-level questions about network

traffic to drive network management decisions. In many cases it is non-trivial to map

such high-level questions from their semantically ambiguous representation in human

language into concrete traffic queries as defined above. Multiple different queries could

all be construed to produce results for a single high-level task or a single high-level task

could require multiple queries and careful combination of query results. For example,

suppose a network administrator wants to know when a volumetric DDoS attack
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might be happening on their network. Depending on the types of attacks launched

by adversaries and the baseline traffic profile of the defending network, either a simple

query that reports when the total aggregate traffic volume exceeds a threshold could

suffice or more complex queries based on distinct counts [70] or entropy [52] could

be required. When considering these connections, a critical open problem is how to

refine real-world network management tasks into concrete well-defined traffic queries?

1.3.2 Limitations of Prior Efforts. Three critical limitations in prior

telemetry system research efforts can be understood as failure to fully consider the

deep connections between the areas outlined above.

Limitation 1: characterizations of traffic structure lack insights into

traffic features relevant to real-world tasks (Area 3 ↔ Area 1). Most

practical tasks involve detecting particular IP addresses (e.g., addresses associated

with network-based attacks or particular performance problems), but the structure of

observed IP addresses has limited formal characterization. As a result, algorithms for

detecting particular IP addresses start from excessively general assumptions (i.e., that

they must work for any arbitrary distribution of observed IP addresses) and miss

opportunities for optimization based on structural knowledge. Efforts to characterize

traffic structure, on the other hand, have focused on time-domain metrics like packet

and byte rates, but do not provide detailed or high-confidence characterization of

metrics like how many addresses are observed at a given time and what are their

spatial distributional structure.

Limitation 2: query processor algorithms are not informed by real-world

traffic structure (Area 1 ↔ Area 2). Most state-of-the-art traffic monitoring

algorithms rely on sketch-based approximation methods [50, 178], but the accuracy

of these methods results from interaction between the amount of memory allocated
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and the number of distinct groups (e.g., IP addresses) observed. On the one hand, as

mentioned above, the amount of memory available on programmable switch hardware

is small and fixed. On the other hand, findings from Area 1 firmly establish that

traffic rate time-series are self-similar or highly bursty over a wide range of time

scales [97, 34, 22, 171]—a finding which our efforts in Area 1 extend to the number

of observed groups per time unit. As a result, such approximation methods are

highly limited in their ability to maintain reasonable accuracy through the normal

fluctuations in number of observed groups.

Limitation 3: proposals for real-world solutions inherit limitations of

existing algorithms (Area 2 ↔ Area 3). Practical system proposals often use

heuristic-based methods built atop simple traffic metrics and do not consider designs

and algorithms that could enable richer, more effective sets of metrics. As a result,

research proposals for particular monitoring tasks focus on optimizing efficiency of

particular well-known algorithms (e.g., sketches), but are limited in their practical

utility when faced with real-world task and traffic workloads.

1.4 Organization of This Dissertation: Focusing on the Connections

In order to firmly identify the above limitations in existing research efforts,

this dissertation first reviews prior work in Chapter II. In § 2.1 we review prior

characterizations of traffic structure (Area 1) and describe how they fall short of

providing solid foundations for the design of telemetry systems. In § 2.2 we review

existing designs and algorithms used in state-of-the-art telemetry system proposals

(Area 2) and describe how they are limited in practice by lack of consideration of

traffic structure. In § 2.3 we review proposed uses of traffic queries to answer practical

real-world questions about traffic (Area 3) and discuss how these uses are limited
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by a lack of insight into how the designs and algorithms they adopt interact with the

structure of the traffic they consider.

In light of these limitations of prior work, we present focused research

contributions that leverage connections between areas as illustrated in Figure 5 and

described in the following. Since these connections have already been hinted at in prior

work, our primary contribution is not the establishment of this connective structure

per se, but the demonstration of how deeper exploitation of these connections can

lead to new advances in each particular research area.

Area 1 Area 2 Area 3

• # of groups per time
unit (§ 3.1).

• # of addresses per
prefix (§ 3.2)

• Sub-epoch sampling
(§ 4.1).

• Prefix-level
refinement (§ 4.2).

• Dynamic query
workloads (§ 5.1).

• Volumetric DDoS traffic
detection (§ 5.2).

# of groups has
high variance.

Observed addresses
are multifractal.

Sub-epoch scheduling.

Zoom-in on attack sources.

Figure 5. Structure of the principled approach taken in this dissertation highlighting
the connections exploited between the areas of Figure 4.

• In Chapter III we present foundational characterizations of specific aspects of traffic

structure that are relevant to telemetry system design. We show that the number

of traffic groups observed has high time-domain variance, but falls short of full

self-similarity (§ 3.1) and that Internet addresses (which group packets in address

space) follow multifractal scaling (§ 3.2). The contributions in this chapter address

Limitation 1 by characterizing aspects of traffic relevant to real-world traffic

monitoring requirements and providing key insights to the next chapter.
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• In Chapter IV we present designs and algorithms that leverage our characterizations

of traffic structure. We develop a sub-time-window (or sub-epoch) approach

to sampling and scheduling traffic query computations which exhibits better

robustness in the face of high-variance time structure (§ 4.1) and algorithms for

prefix-level iterative refinement which reduce required switch hardware memory

by exploiting the multifractal spatial structure (§ 4.2). The contributions in this

chapter address Limitation 2 by developing designs and algorithms that are

informed by characterization of relevant aspects of traffic structure.

• In Chapter V we connect our designs and algorithms to practical traffic

monitoring tasks and evaluate their performance under realistically-structured

traffic workloads. We develop a system called DynATOS [118] that answers a

large and dynamic set of per-group time-series queries (§ 5.1) and a system called

ZAPDOS [117] that efficiently detects the sources of volumetric DDoS attack traffic

(§ 5.2). The contributions in this chapter address Limitation 3 by implementing

and evaluating practical telemetry systems for real-world traffic monitoring tasks.

Finally, we conclude in Chapter VI by considering potential for future work to further

strengthen the connections between the three research areas.

1.5 Previously Published and Co-Authorship Statement

Content in Chapter II is intended to be published with co-authors Reza

Rejaie and Ramakrishnan Durairajan. Content in Chapter III, Appendix A, and

Appendix B is intended to be published with co-authors Reza Rejaie, Ramakrishnan

Durairajan, Arpit Gupta, and Walter Willinger. Content in Chapter III, Chapter IV,

Chapter V, and Appendix C is published with co-authors Walt O’Connor, Reza

Rejaie, Ramakrishnan Durairajan, Arpit Gupta, and Walter Willinger. To clearly
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separate from technical content, details of publication status and co-authorship are

denoted in an italic font at the beginning of each chapter or appendix.

36



CHAPTER II

PRIOR WORK

The organization of prior work described in § 2.2 and § 2.3 was developed in

collaboration with Ramakrishnan Durairajan and Reza Rejaie. I did the primary

work of reading all papers, catagorization of papers, and composition of text.

This chapter describes the three research areas identified in Chapter I by

establishing a detailed internal structure of each area and reviewing the findings of

relevant research within these internal structures. In particular, we review work

on traffic structure characterization in § 2.1, work on designs and algorithms in

§ 2.2, and work applying telemetry system designs and algorithms to real-world traffic

monitoring problems in § 2.3.

2.1 Characterizations of Traffic Structure

We first discuss prior efforts to characterize the structure of network traffic

(Area 1 from Figure 4). Though there are many different aspects of traffic to

characterize, in this work focus on two aspects with particular relevance for design

and implementation of telemetry systems. In particular, § 2.1.1 discusses work on

characterizing time-domain aspects and § 2.1.2 discusses work on characterizing

address-space-domain aspects. Because the particular aspects of traffic structure

relevant to the design and implementation of telemetry systems are less well studied

in recent work, we take a less structured approach than in later sections of this

chapter.

2.1.1 Temporal Structure Characterizations. Historically, characterizations

of the temporal structure of network traffic focuses on aggregate traffic rates

(e.g., total number of packets transmitted or total number of new flows per time

unit). Accordingly, raw traffic data can be summarized in the form of a time series
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(or “signal”) X = (Xt : t = 0, 1, 2, . . .) where for example X(t) denotes the number

of packets or bytes observed in the measured traffic during the t-th time interval and

statistical analysis tools used for time series in other domains are applied. A long line

of work in the late 1990s seeking to identify the correct analysis tool and to justify that

tool in terms of networking-specific concepts led to the high-level understanding that

traffic rate time series are asymptotically self-similar or mono-fractal [97, 34, 22, 171].

Intuitively, this means that these time series are highly irregular or “bursty” regardless

of their time-domain resolution or aggregation level.

The foundational characterizations established by these works were motivated

by, and ultimately lent critical insights to, a key problem in networking at the time

of determining the optimal queue length. Queue length has a significant impact on

performance in real network settings and an optimal queue length would prevent

excessive packet loss (from too short of a queue) and excessive latency (from too long

of a queue) [57]. However, the eventual confirmation of asymptotic self-similarity

in observed time series implies that there is no optimal queue length (because there

may always be a larger burst) [97] and led to a refocusing of efforts around congestion

management. Such efforts continue in more recent efforts to leverage capabilities of

programmable switches for automated queue management [93, 68].

What time series are relevant for telemetry system design? For telemetry

systems implemented using programmable switches, this time-domain structure

of aggregate traffic rate is not critical because query processing is executed

deterministically at high-rate in the switch’s ASIC. In particular, programmable

switch ASICs typically use a pipe-lined processing model with a fixed clock

provisioned to achieve aggregate throughput near or exceeding the combined

throughput of all ports into and out of the switch. Packets are only lost when queues
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associated with egress ports become full and hence such burst-induced packet loss has

minimal impact on query processor functions which are typically implemented on the

main (high throughput, deterministic) ingress or egress pipelines.

Unfortunately, the key aspect of time-domain structure that has significant

bearing on the design of telemetry systems—in particular, the number of traffic

groups observed per time unit—has received less direct research attention. To

understand the significance of this particular aspect let X ′(t) denote the number of

distinct source addresses observed during the t-th time interval and consider a traffic

query that counts the number of packets sent from each source address. It is easy to

see that the amount of memory required to compute this query exactly in the t-th

time interval is directly proportional to X ′(t). As a result, the dynamics of how X ′(t)

evolves over time directly impact the question of how much memory the query needs

to be allocated. If more sources are observed than fit in the memory allocated, the

query’s results will be inaccurate. Note that this particular aspect is subtly different

from the flow arrival rate considered in some prior work [74, 76] because it is a result

not only of when a particular flow arrives (or a particular source is first observed),

but also of how long that particular flow remains active.

The closest prior work comes to characterizations of “number of groups per time

unit” is through constructive approaches that model network traffic as the sum of an

underlying flow arrival process [75, 125, 73]. Such works form a core component of the

explanation for why observed data rates are self-similar (and not better described by

some other, e.g., multifractal model) by connecting the observed statistical behavior

to well-known facts about how networks operate (i.e., packets are transmitted in

groups associated with flows). However, they also establish that the underlying flow-

arrival process does not need to have self-similar structure. For example, the authors
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of [75] demonstrate that self-similarity of data rates is not dependent on a particular

time-domain structure of flow arrivals and can be replicated realistically using a simple

Poisson flow arrival process. Given the close relationship between flow arrivals and

arrival of new groups for a telemetry system to monitor, this initial result suggests

that the time-domain structure of the number of groups is perhaps less variable, and

hence expected to have less impact on telemetry system operations, compared to the

parallel line of work investigating data rates and queue management.

The resulting implication for telemetry system research thus far is that

researchers assume the number of groups per time unit will remain relatively constant

over time and little effort is invested in fully characterizing this aspect of temporal

structure. In § 3.1 we will challenge this notion, demonstrating that in real network

traffic the number of groups per time unit is a dynamic, high-variance metric, and in

§ 4.1 we develop algorithms for query processors that remain more robust compared

to state-of-the-art in the face of this variance.

2.1.2 Spatial Structure Characterizations. Characterizations of the

spatial structure of traffic focus on understanding the locations of the computers

generating the traffic and how these locations are distributed in different “spaces”.

These spaces include physical space (in which location corresponds to geographic

location) [92], topological space (in which case location corresponds to position in

the network graph) [30], or address space (in which case location corresponds to

a particular address used to identify the computer in a particular communication

protocol) [77]. Of course locations in different types of spaces are not independent

and often ranges of locations in one space corresponds to ranges of locations in

another space. Consider for example regional Regional Internet Registries which
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are associated with networks in a particular geographic regions and assign addresses

from particular contiguous blocks to these networks.

This dissertation focuses in particular on structure of the address space because

(i) programmable switches directly observe addresses in the headers of packets

they forward, (ii) many telemetry queries use addresses to separate packets into

groups associated with particular computers, clients, or attackers, and (iii) addresses

typically have strong correlation with location in the other spaces (though inferring

these correlations is often non-trivial and outside the scope of this dissertation).

Formally, locations in the address space are 32- or 128-bit integers (for IPv4 or

IPv6, the two currently used versions of the Internet Protocol, respectively) and

are organized in a hierarchy based on common prefix bits. For an observed set of

addresses (e.g., all addresses observed by a switch during the t-th time interval),

we quantify its spatial structure by considering the measure µA that assigns to the

subset defined by each prefix the number of observed unique addresses that fall in

that subset.

Characterization of the spatial structure of µA is important for telemetry

system design because for common queries which group traffic based on address,

it corresponds directly to the structure of group identifiers or keys which must be

tracked and reported with query results. For example, suppose it can be shown that

all addresses observed in a particular network by a particular query will have distinct

8-bit prefixes. In this case, the telemetry system can simply observe the first 8 bits

of the addresses in each packets header and allocate 28 = 256 memory entries to keep

track of all possible groups.

A brief cluster of work in the early 2000s [90, 91, 31] were the first to

statistically analyze the spatial structure of addresses in uni-directional measured
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network traffic, providing preliminary evidence that this structure is multifractal in

nature. Intuitively, µA is said to be amultifractal measure (multifractal, for short) if it

exhibits a scale-invariance property in the address space whereby clusters of observed

IP addresses at any spatial scale (e.g., /16 subnet granularity) tend to fragment into

sub-clusters at finer scales (e.g., /17 or finer subnet granularity). It is this qualitative

“cluster-within-cluster” or “nesting of structure” property that results in the absence

of a “typical” size of a cluster and causes the observed IP addresses to be very unevenly

or highly intermittently distributed across the overall IPv4 space.

Despite being published ∼20 years ago, a lack of clearly articulated reasons for

why such structure matters has led to limited progress in establishing a rigorous

foundational basis for this reported evidence. This lack of progress and associated

lack of awareness in the research community in turn engendered wide proliferation

of techniques that are address space agnostic in state-of-the-art telemetry system

design. As such, the community investigating applied designs and algorithms

miss opportunities to leverage this structure in their designs and the community

investigation traffic structure is un-motivated to complete the remaining effort

required to establish multifractal scaling of observed addresses at a similar depth

of certainty as has been established for the self-similar behavior of traffic rate time

series.

In § 3.2 we present an initial effort towards establishing the foundationality of

multifractal scaling based on examination of address allocation policies and in § 4.2

we will demonstrate how novel algorithm designs can leverage multifractal scaling to

improve performance of certain types of telemetry queries.
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2.2 Designs and Algorithms for Traffic Monitoring

Next, we describe prior efforts in designing algorithms for traffic monitoring

(Area 2 in Figure 4). Work in this area can be further divided between efforts that

use sketch-based algorithms for approximate query processing (§ 2.2.1) and work that

uses a stream-processing model for exact query processing (§ 2.2.2).

2.2.1 Sketches. Sketch-based algorithms (or “sketches” for short) refer

to a family of approximate algorithms for computing aggregate metrics over a

stream of data elements [50, 46, 114]. In the case of telemetry systems, the data

elements are typically packets and the metrics are typically count-based summaries

like (approximate) number of packets per flow, total entropy over all flows, or a list

of “heavy” flows.

Sketches are built using the same primitive operations as hash tables—computing

a hash value for a given key and using this hash value as an index into an array of

counters. Rather than avoiding hash collisions by using linked-list buckets, probing,

or other methods like Cuckoo hashing [127] which all require non-constant operations

per update, sketches embrace hash collisions and find creative ways to deal with

the consequences. The canonical example, known as count-min sketch [50], updates

several hash tables with pair-wise independent hash functions in parallel and takes

the minimum value across all hash tables as the estimate of a particular key. The

core intuition behind why sketches work is that if the hash functions are (near)

independent, then the probability that all hash functions collide for the same pair

of keys decreases (near) exponentially in the number of hash functions used.

2.2.1.1 Single (Fixed) Aggregation Granularity. We first consider

the simplest case of sketch algorithms designed for implementation on programmable

switch hardware that compute a single metric for a fixed grouping of packets.
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Common design patterns. These works all have some high-speed, hash-based update

method which is compiled into switch hardware to produce tables of counters for a

fixed granularity and a fixed metric. These counters are periodically pulled to a CPU-

based collector which performs additional statistical procedures on counter values to

produce the final estimated traffic profile metrics.

A key challenge in this design space is the fact that sketch algorithms don’t store

the observed flow keys by default. In particular, the classic solution of maintaining

a heap or other tree-like set data structure used in other applications of sketch

algorithms (e.g., in databases [66, 72]) requires non-constant operations per update

and is hence not possible in switch hardware. The works in this section develop

novel solutions to this problem when addressing metrics that require flow keys such

as heavy hitters, or define metrics over all flow keys such as entropy.

Key contributions. Perhaps the first solution to compute a traffic profiling metric

entirely in switch hardware, in particular heavy-hitters, is HashPipe [147]. HashPipe

starts with a well-known algorithm to approximately computes the top-n elements in

a data stream [113], then makes several modifications and relaxations of the original

algorithm—in particular, sampling to estimate the minimum value and pipelining

to fit the minimum estimation into a fixed number of switch hardware stages.

Several subsequent works further improve heavy hitter detection on switch hardware

to coordinate detection of network-wide heavy hitters by dynamically adjusting

thresholds at each switch [71] and to use limited recirculation of packets [33] to fix

the critical inefficiency in HashPipe of always evicting an entry (even for flows with

a single packet).

Whereas HashPipe and the works mentioned above focus on packet or byte count

heavy hitters, SpreadSketch [157] focuses on heaviness in terms of distinct entities
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associated with each flow (e.g., distinct sources contacted by each destination),

adopting a similar approach of maintaining candidate flow keys associated with sketch

counters. Snappy [47] also extends the notion of packet or byte count heavy hitters

to include subtraction in order to identify which flows make the largest contribution

to long queues. However, Snappy does not maintain flow keys in switch memory, but

acts directly on packets given the current estimate of the packet’s flow’s rate from

the sketch counters.

Beyond variants of heavy-hitters, several other metrics have been computed in

switch hardware. Following a similar methodology as HashPipe, QPipe [83] uses

a near-optimal existing algorithm called SweepKLL [82] for computing quantiles.

However, instead of modifying or relaxing SweepKLL, QPipe instead develops a novel

technique of using unsampled packets as “workers” to facilitate the required arg-min

computation between stages. A similar methodology is followed in [94] to implement

a near-optimal entropy-estimation algorithm using a look-up approximation to the

required maximally skewed alpha-stable distribution. Dart [142], on the other hand,

develops a new approach using heuristics and lazy cache eviction to decide which

SEQ packets in one direction of a TCP flow are most likely to produce valuable

RTT estimates when paired with their corresponding ACK packets from the opposite

direction.

Open problems. The first clear open problem is that of coverage: there are many more

traffic profiling metrics (e.g., bandwidth estimation [49, 62, 55]) that could be useful

even when computed in the limited single-aggregation form assumed in this section.

The second open problem is a less obvious consequence of the prevalent use of

sketch-based techniques in these works. As discussed in § 1.3.2 (Limitation 1), while

sketch-based techniques do have rigorously-defined statistical error guarantees [50,
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46], the accuracy of most sketches actually is a function of the total number of

distinct keys tracked. In order to both decide on an appropriate memory allocation

for particular sketches as well as to interpret the accuracy of retrieved sketch counters,

network administrators first need to know the ground truth number of keys collected

in the sketch. This leads to critical problems in real network settings where the

number of distinct keys (e.g., the number of currently active flows) changes rapidly

and is hard to measure directly. Sketch-based approaches must be made more robust

against changes in the number of keys, or that other approximation methods must

be considered.

2.2.1.2 Multiple Aggregation Granularities. In several cases, network

administrators need to compute the same metrics over different sets of traffic and/or

at different granularities. For example traffic could be aggregated both by source

addresses and (independently) by destination addresses in the same system whereas

single aggregation granularity systems would require one instance for aggregating

source addresses and a separate, independent instance for aggregating destination

addresses. Here we consider works that address this need head on by computing

single, fixed traffic profiling metrics, but exposing interfaces to allow collecting these

metrics over different traffic slices and aggregations.

Common design patterns. The works in this section define a limited universe of

possibilities which can be understood as a global key space. Individual monitoring

tasks or queries all compute the same metrics, but can be parameterized by

different subsets as well as different aggregation granularities within this global

key space. The key challenge faced in these works is how to design, implement,

and analyze data structures that can collect profiling data for multiple aggregation
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granularities simultaneously with greater efficiency that simply capturing each

granularity independently (e.g., with methods from § 2.2.1.1).

Key contributions. Beaucoup [48] makes perhaps the first contribution in this space

by developing an approach to answer multiple threshold-based heavy-distinct-count

queries where each query has a different aggregation granularity. For example,

Beaucoup can simultaneously monitor for source addresses that contact more than

a given number of destinations as well as destination addresses that contact more

than a given number of sources. The key enabling idea is to interpret the heavy-

distinct-count metric computation as a coupon-collector problem where each packet is

associated with a hash-based “coupon” and each query, key pair is a coupon-collector.

Given a fixed number of coupons and query, key pairs, Beaucoup then describes a

simple mapping of the coupon collector problem into programmable switch hardware.

CocoSketch [182], on the other hand, addresses the problem of computing per-

flow packet and byte counts for a flexible range of flow definitions (e.g., five-tuple-

based flows, source-based flows, etc.). The key idea is to map the per-flow counting

problem into the subset-sum estimation problem and apply the Unbiased SpaceSaving

algorithm [159]. As with HashPipe [147], CocoSketch also applies modifications and

relaxations to remove circular dependencies in the Unbiased SpaceSaving algorithms

making it computable in switch hardware.

Open problems. Similar to fixed-granularity approaches discussed in § 2.2.1.1, a

fundamental open problem in these works is how to apply variable granularity

approaches to more types of metrics. The relative sparsity of this section is a

testament to the fact that this is a significantly harder challenge compared to

computing traffic profiling metrics at fixed granularity.
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Also similar to the fixed-granularity approaches, the works in this section

compile fixed-sized data structures (e.g., for a given fixed number of coupon-collectors

in Beaucoup) into programmable switch hardware while the underlying number

of monitored keys inherently varies leading to resource allocation and accuracy

estimation challenges. For works supporting multiple aggregation granularities, this

problem is even more challenging to address because each monitored aggregation

granularity may have different numbers of distinct aggregate groups (e.g., a different

number of sources and destinations) so allocation must be made per aggregation

granularity.

2.2.1.3 Select Metrics From Post-Processing of Fixed Dataplane

Results. Several works leverage the observation that in addition to per-flow packet

and/or byte count estimates, sketch counters collected from switch hardware can also

be used to estimate several higher-level metrics through CPU-based post processing.

These works enable network administrators to compute a fixed set of a few traffic

profiling metrics simultaneously through the same switch hardware computations.

Common design patterns. The works in this section develop single sketch-based data

structures that are updated directly in switch hardware, then post process the

resulting sketch counters on CPU-based systems to estimate a fixed set of metrics

typically including heavy hitters, flow-size distribution summaries, entropy estimates,

and cardinality estimates (e.g., the number of distinct flows). Note that all of these

estimates are limited to the aggregation granularity at which the data plane sketch is

compiled. For example, if the sketch is compiled per-destination address, then post

processing can extract heavy destination addresses, entropy of estimations, or the

number of distinct destinations, but cannot extract metrics w.r.t. other aggregations

(e.g., w.r.t. source addresses).
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Key contributions. UnivMon [102] heralded the idea of being able to produce

multiple metrics through post-processing a single simple data structure through the

idea of “universal sketching”. Universal sketching builds on streaming algorithms

research [41, 42] and essentially allows estimating a class of metrics that can be

expressed as sums of a function of the frequencies of individual elements in the

data stream (with the additional requirement that these functions must be upper-

bounded by the second frequency moment). In practice, the set of metrics computable

through this method corresponds to heavy-hitter-type metrics as well as global metrics

like cardinality and entropy. Note that several further optimizations of the switch

hardware implementation of UnivMon are discussed in [103, 104, 172].

Despite the novel theoretic underpinning, UnivMon has several limitations

which were picked up in subsequent works. SketchLearn [78] develops a method to

automatically extract flow keys from a multi-level sketch using statistical modeling

techniques. ElasticSketch [176] explicitly deals with changes in the number of keys and

distribution of traffic across keys commonly observed in network traffic by splitting

the sketch data structure into heavy and light parts with different update policies.

Most recently FCMSketch [151] and [79] develop methods for further improving the

accuracy of similar sketch-based approaches using a hierarchical tree-like organization

of sketch counters and a correspondence with compressive sensing respectively.

Another approach taken in StarFlow [150] and TurboFlow [149] takes the late-

binding principle farther, using switch hardware only to group packet-level data

into aggregates (e.g., flows), then exporting succinct summaries of all packets in

each aggregate (e.g., StarFlow’s “grouped packet vectors”). Although this approach

enables a wider variety of metrics compared to sketch-based works, it also imposes
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higher load on the CPU-based post processing system and makes limited use of switch

hardware’s aggregation capabilities.

Open problems. As with the single, fixed aggregation solutions described in § 2.2.1.1,

the works in this section all statically fix a particular aggregation granularity in the

switch hardware program. In many ways this limits the universality of proposals

like UnivMon [102] since separate independent instances must be maintained for all

aggregation groups network administrators wish to profile. In a similar way, the

use of sketches in may of these works is still plagued by the fundamental connection

between sketch accuracy and the variable and unpredictable number of flows observed

in network traffic. Importantly, although ElasticSketch [176] appears to address this

issue head-on, their solution is still somewhat brittle (using a strict two-tier hierarchy)

and focuses more on adapting to changes in traffic rate in software versions of the

same algorithms.

2.2.1.4 Select Metrics From Fixed Menu. The works in this section

allow network administrators to construct custom traffic monitoring switch hardware

programs by selecting different types of metrics (e.g., heavy hitters, cardinality) from

a fixed menu and parameterizing each selection to look at particular slices of traffic

and at particular aggregation granularities.

Common design patterns. These works start by defining a set of metrics typically

implemented through sketch-based algorithms then define methods for combining

multiple algorithms in a single switch hardware program. The key challenge faced

in these approaches is how to minimize the switch hardware resources required to

implement a given set of metrics or sketches. Although sketches on the surface

seem to perform essentially the same types of computations and should be trivial to
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merge, when differing traffic slices, keys, and sketch algorithms are involved, creative

combination strategies are required.

Key contributions. OpenSketch [178] demonstrated the first such system defining a

flexible FPGA-based data plan that performs hashing, TCAM-based classification,

and counting primitives and a library-based control plane containing preset formula

for how to configure the data plan primitives for a variety of traffic profiling metrics.

OpenSketch also proposed an active “sketch manager” which performs additional

traffic profiling to tune memory allocations of the currently running profiling queries.

For example, the sketch manager might run distinct-count profiling to automatically

adjust the number of counters assigned to a heavy hitters query as the underlying

number of keys changes.

Several recent works including HeteroSketch [23] and SketchLib [122] propose

similar methods for coordinating execution of multiple sketch-based traffic profiling

queries in a common system and for managing their resource allocations. In

addition to targeting the modern generation of P4-programmable switches (instead

of requiring an FPGA) and incorporating support for sketch algorithms adopted

after OpenSketch (e.g., UnivMon [102]), these works also make several targeted

resource usage improvements [122] and propose a unified framework for understanding

the processing performance of sketch algorithms on diverse hardware and software

targets [23].

Open problems. As with other traffic profiling works, there is a continuous open

problem of incorporating support for more diverse metrics into the the “fixed menus”

of works in this category. Also, although OpenSketch [178] proposed an approach

to dynamically adjust sketch counter allocation in response to changing numbers of

flows, this approach requires extra overhead and does not address technical challenges
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faced when deploying such an approach on programmable switches. More recent

works [23, 122] do not provide adequate solutions to the general challenges with

provisions sketch counters and estimating accuracy of sketch-based results.

2.2.1.5 Takeaway. Although sketch-based algorithm design can be

adapted to implement several different types of queries, it is fundamentally limited

by consideration of the real-wold high-variance structure of the number of groups per

time unit (i.e., connection betweenArea 1 andArea 2). This high-variance structure

combined with the relationship between number of groups and sketch accuracy implies

that sketch-based approaches will always fall into one of two extremes: being over-

provisioned for the actual number of groups and wasting SRAM or being under-

provisioned for the actual number of groups and suffering accuracy degradation.

2.2.2 Stream-Processing Framework. Another approach to designing

algorithms for telemetry systems that collect multiple metrics is to allow network

administrators to specify the metrics they seek to collect by combining a fixed set

of primitive operations and combinators in a domain specific language. Rather than

providing a fixed menu of metrics, the works in this section develop more flexible

primitive operations, often specified in a stream-processing-like language, and define

algorithms for how these primitives can be composed on switch hardware. Note that

such stream-processing queries are a superset of the traffic queries defined in Chapter I

because they can have multiple, pipelined grouping and aggregation stages.

2.2.2.1 Static Traffic Queries. The first type of work accepts a list of

stream processing queries when the system is initially deployed. During the systems

deployment, results from these queries are returned to network administrators, but

the queries cannot be changed without reloading the system, which also induced tens

of seconds of network down time.
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Common design patterns. The primary technique in this type of work is to compile

query specifications from a stream-processing language (e.g., Apache Flink [1]) to

a switch hardware program, the associated control-plan scripts, and a program to

complete any post-processing for operations that cannot be computed in switch

hardware. The key challenges then are (i) how to define these languages to be

expressive enough to allow useful metric computations but limited enough to still

be compilable to the limited switch hardware processing model and (ii) given such

a language and compiling method, how to optimize hardware resource usage in the

face of unknown and unpredictable traffic loads.

Key contributions. Marple [123] initiated the DSL-based approach considered in this

group by proposing “language-directed hardware design”. In particular, Marple

defines a stream-processing language with functional “map”, “filter”, “group-by”, and

“zip” primitives and describes how each of these primitives can be mapped into switch

hardware programs (or in the case of “group-by” a combined hardware, software

construct). Sonata [70] extends Marple by partitioning the language primitives of

given queries between the switch hardware program and a CPU-based post-processor,

thus breaking the strict limits on query complexity imposed by switch hardware

limits in Marple. Concerto [99], DynamiQ [36], and DynaMap [146] further build

on Sonata adding support for deploying queries across distributed programmable

switches and enhanced supported for automatically adjusting resource allocations in

response to changes in traffic composition respectively. EQuery [132] also proposes an

expressive event-based language which can be compiled to efficient non-deterministic

finite automata (NFA), but does not appear to poses a concrete switch hardware

implementation.
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Open problems. Although the works in the section follow a programming-language-

based approach to network traffic profiling, they connect only superficially to the rich

literature on programming language theory. In particular, providing formal semantics

as well as investigating other compiler-level optimization techniques remain open

problems. Given the recent interest in formalizing low-level switch programming

interfaces [88, 53, 139, 25], this may be a promising direction for future work.

Additionally, since aggregation operators are still implemented with sketch-

based primitives (e.g., Sonata’s [70] “reduce” operator), these works also face issues

with provisioning and error estimation. While works like DynamiQ [36] make some

progress in this direction, they still focus on optimizing processing performance

(e.g., reducing the volume of tuples exported to the CPU-based collector) and

leave result accuracy as a secondary concern. The flexibility provided by these

language-based approaches further complicates sketch error estimation since reduction

operations can be performed on arbitrarily filtered substreams and/or pipelined for

multiple levels of aggregation.

2.2.2.2 Support Runtime Changes. Whereas works in the previous

categories focus on statically configuring switch hardware to collect particular sets of

metrics, another type of work seeks to enable network administrators to dynamically

add and remove metrics or queries during runtime.

Common design patterns. In this approach, switch hardware acts more as an

interpreter which is dynamically configured by a control plan to execute different

aggregation computations over time. In particular, the programs compiled into

switch hardware employ an extra level of indirection to allow switching between

different computations based on the values of different ASIC “control” registers. A
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software controller can then control the per-packet computation without reinstalling

the hardware program by simply writing different values to the control registers.

These works face similar challenges in balancing expressiveness of their

query interfaces with feasibility of implementation through register-controlled

computations. Additionally, whereas in previous approaches switch resources are

statically allocated at compile time, works in this section face a dynamic resource

allocation and/or scheduling challenge.

Key contributions. Initial efforts in DREAM [120] and SCREAM [121] leveraged

fixed sets of TCAM-based counters in the previous generation of SDN-programmed

switches to allow runtime control of multiple parallel instances of three types of queries

(heavy hitters, hierarchical heavy hitters, and change detection) parameterized by

traffic slice and aggregation granularity. In addition to supporting addition and

removal of queries, these works actively adjust resource allocation among all running

queries based on accuracy signals derived for the three particular query types.

More recently, works like Newton [187] and Flymon [184] developed methods for

dynamically adding and removing arbitrary queries written in Sonata-like [70] stream

processing languages from switch hardware during runtime. The key contribution of

these works is the design of switch hardware programs that bake enough flexibility

into the hardware pipeline so as to allow a network administrator to execute arbitrary

stream processing queries simply by runtime configuration. DynATOS [118] further

extends these works by developing a novel approximation and resource scheduling

approach to execute the first aggregation stage in such runtime-controlled query

systems while adapting to changes in query work load as well as changes in the

underlying network traffic.
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Open problems. A key open problem in this research direction is how to implement

more generic approximation and resource management techniques that can adapt to

complex query definitions with multiple levels of aggregation (note that the methods

described in DynATOS [118] only apply to the first level of aggregation regardless

of the complexity of the target query). This challenge also relates to the previously

mentioned challenges with sketches: either methods to dynamically adjust sketch

counter allocations must be developed, or entirely new approximation approaches

must be explored (e.g., based on sampling theory as proposed in DynATOS [118]).

2.2.2.3 Takeaway. Although stream-processing-based design approaches

enable a large number of different traffic queries, it is unclear how useful these types

of queries will be for real-world network traffic monitoring needs (i.e., connection

between Area 3 and Area 2). In particular, these works inherit the limitations

of the sketch-based primitives on which they are often based without considering

how the surrounding stream-processing operators (e.g., different filters, different

grouping definitions, pipe-lining of primitive operations) may impact sketch accuracy.

Moreover, fine-grained traffic monitoring tasks required to solve real-world networking

problems often require complex order-dependent aggregation metrics in each group

(e.g., duration between the TCP three-way handshake and connection teardown)

which cannot be easily computed given the limited fixed set of (typically commutative)

metrics considered in state-of-the-art stream-processing-based efforts.

2.3 Applications to Real-World Tasks

Prior work providing concrete application of the capabilities of telemetry systems

to real-world traffic monitoring tasks typically consider tasks that seek to understand

performance issues (described in § 2.3.1) or tasks that seek to detect security issues

and assist with mitigation of on-going attacks (described in § 2.3.2). Though real-
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wold telemetry systems may also be leveraged for other purposes (e.g., long-term

capacity planning), these two types of tasks have clear high-stakes implications for

network administrators and hence have attracted the bulk of research effort in this

area.

2.3.1 Performance Monitoring. A large body of work develops systems

to detect when performance events such as packet loss or increased latency occur and

to identify the particular subsets of traffic (e.g., a particular set of flows) impacted.

The results of this monitoring often take the form of alert-producing systems that

log performance events for network administrators to use when debugging reported

application-level performance issues. For example, if a client is experiencing issues

with freezing video conferencing, the network administrator might check the logs of

the network performance monitoring system to determine if lost packets of increased

forwarding latency were the cause of the freeze or if a software-level issue is at fault.

This section focuses in particular on the recent subset of performance monitoring

systems that leverage programmable switch hardware for in-network aggregation.

2.3.1.1 Detecting performance events. The first group of performance

monitoring systems relies entirely on switch hardware to observe network traffic and

to perform initial aggregation computations, typically grouping packets into flows

and reporting flow-level performance information to a collector for post-processing

and event reporting.

Common design patterns. The systems in this section filter and aggregate particular

performance-related events in switch hardware, then use CPU-based software

(running on the switch’s CPU and/or on a centralized collector) to correct for

possible errors made by the lossy hardware approximations (e.g., hash collisions).

The network-wide perspective along with inherent redundancy in the targeted data
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center networks allows disentangling such errors in way which are not possible in the

single-switch scenarios considered in § 2.2.

Key contributions. FlowRadar [100] and LossRadar [101] make the primary

contributions in this group leveraging Invertible Bloom filter Lookup Tables [69] and

Invertible Bloom filters [56] respectively. These works capture per-fivetuple counters

over very short time scales (e.g., 10 ms) using encoded flowsets collected in switch

hardware and network-wide decoding. The fine aggregation as well as temporal

granularity enables detecting a wide range of performance events (in the CPU-based

post processing layer) including transient block holes, forwarding errors, ECMP load

imbalance.

Rather than exporting flow-level metrics and performing event detection in

post-processing, several more recent works seek to execute event detection logic

directly in the data plane and only export records describing particular detected

events to a central collector. BurstRadar [85] initiates this trend by detecting

microbursts at port-level in the egress pipeline and emitting grouped burst snapshots

summarizing all packets responsible for the burst. HyperSight [185] and NetSeer [186]

extend this idea to several other performance events (including excessive forwarding

delay, degraded throughput, long queues, out-of-order packets, and packet loss)

by using a novel Bloom filter queue algorithms and circular-buffer aggregation

respectively. PacketScope [158] offers even deeper visibility into performance events

on a single switch by extending Sonata’s [70] stream processing language with

primitives connected to different pipelines and queuing stages within the switch ASIC.

Open problems. A key open problem with works in this category is how to connect

performance events detected at the network level to higher-level performance metrics

(e.g., at the application level). A somewhat related open problem is that although the
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works in this section target data center networks in particular, they do not provide

comprehensive support for integrating with and interpreting the complex layered

logical structure of data center traffic, for example virtual private clouds as discussed

in [128].

The second group of performance monitoring systems observes network traffic

both in switch hardware programs as well as in the network stacks of end hosts. This

allows the system to augment the packet processing and aggregation capabilities of

switch hardware (which have strict limits on memory and number of operations) with

more flexible CPU and memory resources on end hosts.

Common design patterns. Works in this group coordinate per-flow, per-switch

monitoring by using in-band methods initiated from and collected at end host

network stacks. Packets leaving end hosts may be tagged with instructions for

what performance metrics are required encoded in custom-designed header fields.

In addition to in-network aggregation computations, switches parse and exchange

information via these header fields. Ultimately packets returning to end hosts carry

the desired performance data up to the CPU-based network stack where further

aggregation and post processing can occur. In addition to expanding the processing

flexibility and memory capacity via computation at distributed end-host CPUs, this

approach also enables integrating network-stack and application-layer information

into the performance monitoring results.

Key contributions. The first work in this category OmniMon [80] develops a careful

method of splitting per-flow, per-switch packet count monitoring across switches

and end hosts with a focus on maintaining per-epoch consistency across different

observation points. In particular, they propose a hybrid consistency model (where

each packet belongs to the same epoch) as a practical yet useful relaxation of strict
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consistency. This enables detailed detection and localization of performance events

such as packet loss. LightGuardian [183], on the other hand focuses on reducing

communication overheads between switches and end hosts by transmitting aggregate

per-flow, per-switch performance metrics collected on switches to hosts in a novel

“sketchlet” format. End hosts can incrementally aggregate received sketchlets to

construct a detailed view of packet loss, latency, and jitter metrics in the network.

BufScope [64] further leverages end-host participation to attach application-layer

metrics (in particular, request ids) to per-flow, per-switch metrics aggregated on

switch hardware. They integrate these methods in a comprehensive system that

ultimately provides queuing latency measurements for every buffer along the path of

an application request.

Open problems. Although works in this section demonstrate that leveraging end-host

participation in network performance monitoring has some significant advantages, it

also potentially introduces new issues. In particular, the increased system complexity

leads to an increased number of potential problems that could impact network

performance monitoring such as end host hardware and/or software failures.

2.3.1.2 Diagnosing performance events. In addition to detecting

the occurrence of and connections impacted by network performance anomalies, a

complementary group of efforts seek to provide a basis for identifying the root-cause

of such anomalies. Such root causes typically go beyond the detailed performance

metrics of other works by attempting to find larger-scale correlations between

performance-related events.

Common design patterns. Works in this sections trigger collection and/or reporting of

telemetry data only when a performance event occurs via automatic or manual trigger

conditions. Though these systems may compute metrics continuously in switches,
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computations and communications specific to debugging the root cause are only

executed when debugging is activated. The key challenge is to strike a balance such

that a minimal amount of computation overhead is required in the non-debugging

state, but a maximal amount of information can be gathered and correlated when the

debugging state is entered.

Key contributions. The first work in this area, SwitchPointer [156], builds on previous

state-less tracing approaches [154, 155] to combine aggregation in switch hardware

with path-based debugging. In particular, SwitchPointer uses switches as a “directory

service”: when a performance event occurs and the system enters debugging mode,

the pointers stored in each switch along the problematic path are used to lookup per-

flow counters maintained in relevant end hosts. Combined with a novel hierarchical

division of time, this enables quick answers to questions such as which other flows

were sharing a link with flow X at time t (e.g., when flow X experienced unusual

queuing delay).

SpiderMon [166], on the other hand, automatically detects when flows experience

high cumulative queuing latency by summing the time spent by individual packets

in each queue along their network paths. When a path experiences abnormally high

latency, SpiderMon triggers export of flow-level metrics along all paths intersecting the

impacted path by using novel “spider” control packets exchanged between switches. A

central controller receives reports generated from switches that process spider packets

and (re)constructs debugging results for the impacted path.

Open problems. A key open problem in this group of works is justifying the need

for extra complexity to answer questions that are theoretically already covered by

simpler performance monitoring systems like FlowRadar [100]. Intuitively as networks

increase in scale and complexity (e.g., total number of nodes), the overheads of
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always-on systems increase at a much faster rate compared to the on-demand systems

considered in this section. However, it’s unclear where the advantages tip from always-

on to on-demand and what other aspects of the network setting may impact this

trade-off (e.g., presence of virtual routing [128], software gateways [167]).

2.3.1.3 Takeaway. Although the efforts described in this section provide

effective performance monitoring solutions for certain types of data center networks,

it is unclear how their contributions can be applied to more complex types of traffic

observed on edge, enterprise, and ISP networks (i.e., connection between Area 1 and

Area 3). In particular, common techniques proposed in these works, like leveraging

end-host CPUs and distributing query processing over a large number of on-path

switches, may not be feasible in these other network settings. Even in the data center

context, it is unclear how these proposals relate to the known multi-layered structure

of real-world data center traffic (e.g., with virtual routing, heterogeneous network

processing devices, large numbers of application-layer protocols).

2.3.2 Security. Despite supporting a wide range of mission-critical

services, modern networks are not built with security as a primary design concern. As

a result, organizations must carefully monitor traffic flowing through their networks

to identify potentially malicious activities. Given the promise of highly efficient traffic

monitoring, a large body of work seeks to leverage programmable switch hardware

as the primary processor for network security event detection systems. In § 2.3.2.1

we first consider how several security event detection tasks have been expressed and

implemented using stream-processing telemetry systems (introduced in § 2.2.2), then

consider the particular task of mitigating volumetric DDoS attacks in § 2.3.2.2.

2.3.2.1 Detecting security events. Particular forms of malicious traffic,

such as network-based attacks, can be understood as producing distinct traffic
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signatures that can be detected by carefully crafted queries. A particular collection

of such queries developed as part of the Sonata project [70] and publicly released [16]

has become an unofficial standard bench mark for telemetry systems that are capable

of computing this particular type of stream-processing query [80, 116, 187]. As shown

in Table 1, these queries are based on detecting particular types of suspicious behavior

by using different packet filterings, groupings, aggregation metrics, and thresholds.

Query Name Description # in [16]

DDoS Find dests. that recv. from large
number of sources.

5

Port Scan (PS) Find sources that send to large
number of ports.

4

Super Spreader (SS) Find sources that send to large
number of dests.

3

TCP New Cons. (TNC) Find dests. that recv. large
number of TCP SYN packets.

1

Table 1. Examples from the “Sonata” [70] security event detection queries.

Key contributions. The key advantage of the Sonata queries is that they provide

several concrete examples of how high-level security event detection goals can be

translated into low-level traffic query specifications. This enables direct performance

comparisons between different approaches to implement query processors in terms of

accuracy and overheads.

Open problems. The Sonata queries only provide a single, highly-specific traffic query

example for each of the security event detection tasks considered. Because of this,

they lack in-depth consideration of the particular high-level security events evoked

and in many cases may also detect traffic patterns that are not actually associated

with the chosen security event (i.e., high false-positive rates). For example, the

DDoS query simply detects servers that receive traffic from a large number of clients,

which in certain network settings could also be observed under normal, non-suspicious
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circumstances like flash-crowds. Because of this, the real-world utility of the Sonata

queries is uncertain.

2.3.2.2 Volumetric DDoS Defense. Volumetric distributed denial of

service (DDoS) attacks sever or degrade network connections by flooding particular

network links or end hosts with large volumes of traffic sent from a large number of

distributed sources [160, 138, 137, 168, 165, 164]. A variety of closed-loop systems have

been proposed to defend against volumetric DDoS attacks by monitoring traffic to

detect particular subsets of traffic associated with DDoS techniques and actively rate-

limiting or blocking this traffic directly in programmable switch hardware. Volumetric

DDoS related tasks on programmable switch hardware have seen disproportional

research effort compared to other security tasks due to the inherently large traffic

volumes associated with volumetric DDoS attacks and the high packet-processing

efficiency of programmable switch hardware.

Fine-Grained, CPU-Controlled Languages. The first group of works seeking

to develop in-network DDoS defense using programmable switch hardware leverages

hardware to aggregate and detect attack traffic, but also relies on a logically

centralized controller (running in a CPU-based system) to coordinate deployment

of attack mitigation operations in switch hardware.

Common design patterns. The works in this section propose policy languages or

APIs with several primitive operations (e.g., SYN cookies, block-lists) which

network administrators can use to construct DDoS mitigation mechanisms tailored

to particular attack behaviors. The switch hardware implementations of these

mechanisms typically use similar sketch-based approximate algorithms to deal with

constrained resources.
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Key contributions. Poseidon [181] introduced the first policy-language for switch

hardware-based DDoS defense which includes flexible predicates to identify common

attack packets (e.g., SYN packets, UDP response packets), counters to group and

aggregate matching packets, and a set of threshold-based actions including dropping

and rate-limiting detected attack traffic. Similar to Sonata [70], defense policies

are implemented by partitioning primitive operations across programmable switch

hardware and CPU-based servers. Jaqen [103] extends the approach put forth

in Poseidon by adding resource-efficient approximate switch hardware primitives

tailored for particular attack vectors such as “UnmatchAndAction” for reflection-

based attacks and two custom SYN-proxy designs. Ripple [174] also implements a

stream-processing style mitigation policy language on programmable switch hardware,

but leverages the concept of a global panoramic view of traffic (maintained by a

distributed synchronization protocol between switches) to realize distributed defense

against a particular class of dynamic link-flooding attacks (in particular attacks like

Coremelt [153] and Crossfire [86]).

Open problems. Although Poseidon [181] and Jaqen [103] both discuss the need to

dynamically reconfigure attack mitigation in the face of modern dynamic DDoS

attacks, neither provides adequate mechanisms for doing so. Jaqen does include

attack detection through a refined version of UnivMon [102], but it’s unclear how this

detection capability pairs with the proposed mitigation mechanisms. Both methods

require compiling and installing defense mechanisms in switch hardware which induces

several seconds of downtime during which no traffic can be processed on the switch

requiring re-routing during downtime.

These methods also propose developing finely-tuned mitigation mechanisms for

specific attack types, leaving open the more fundamental issue of how to defeat the
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inherent imbalance the underlies DDoS’s effectiveness—it’s very easy for the attacker

to come up with a new attack vector (or modify a known vector) whereas it’s very

hard for a network administrator using one of the systems discussed in this section

to anticipate and deploy mitigation methods for all possible attack vectors.

Coarser-Grained, Switch-Only Policies. The second group of works seeking to

develop in-network DDoS defense implements all stages of attack traffic aggregation,

detection, and mitigation entirely in the switch hardware pipeline. The key advantage

of these approaches is the ability to quickly react to attack occurrences and changes

in attack traffic without control plane involvement and/or needing to re-compile and

reload new mitigation mechanisms.

Common design patterns. These works propose comparatively generic methods to

both detect attack occurrences and to separate attack and benign traffic (that can

still be implemented entirely in switch hardware). Due to the possibility of false

positives, they propose rate-limiting the detected attack traffic rather than outright

blocking or allowing as considered in the previous subsection.

Key contributions. Euclid [52] describes the first DDoS detection and mitigation

method that operates entirely in a single switch hardware program. The proposed

method uses sketches to estimate source and destination address entropy (following a

similar design as [94]). Relative changes in entropy trigger attack detection after which

Euclid applies rate limiting to the set of source, destination pairs identified as being

most responsible for the change in entropy. ACCTurbo [24] describes an alternative

approach to attack mitigation entirely within switch hardware by adapting the idea of

aggregate-based congestion control [107]. In particular, ACCTurbo performs simple

clustering in switch hardware and leverages a CPU-based control plane to install

rate-limiting rules on large aggregates that may be associated with attack traffic.
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Open problems. Although the works considered in this section effectively develop

DDoS mitigation approaches that can function at runtime without interrupting

packet forwarding, they do not offer the same level of precision as Poseidon [181] or

Jaqen [103] or a path towards distributed mitigation as in Ripple [174]. A key open

question then is how to improve the precision of these methods while still working in

the confines of switch hardware.

Additionally, the design pattern of maintaining all attack mitigation related state

entirely in the data plane has a side effect of preventing network administrators from

observing the mitigation system’s actions (e.g., to ensure mission-critical traffic is not

accidentally blocked by mitigation). Since Euclid acts on a packet-by-packet level and

does not store particular source and destination addresses, it is literally impossible to

assess what traffic it will rate-limit or block. ACCTurbo improves on this situation

somewhat by exposing aggregate-level information to the control plane, but does not

offer motivation for why particular aggregates should be considered attack traffic—

in particular, the aggregates reported by ACCTurbo may contain a mix of both

attack and benign traffic since switch resource limitations require relatively coarse-

grained aggregates compared to the source, destination level considered in Euclid.

Overall, these observations motivate an additional open problem of how to balance

interpretability of decisions made by these types of defense systems with sufficient

precision of mitigation actions.

2.3.2.3 Takeaway. Although the efforts described in this section provide

novel applications of telemetry system capabilities to address important security

problems, their practical discriminative value and robustness in the face of real-

world traffic are unclear (e.g., connection between Area 1 and Area 3). In

particular, tuning thresholds (e.g., for the security event detection queries proposed in
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Sonata [16]) induces non-trivial effort for network administrators and may ultimately

still not be precise enough to detect important security events. Moreover, proposals

to leverage sketches-based approximate defense methods directly in switch hardware

lead to highly unpredictable effects on the traffic of benign users.

This section examined state-of-the-art research efforts in each of the three areas

outlines in Chapter I and described how limitations or open problems in each area can

be understood as “missing links” between areas. In the next three chapters, we will

outline several concrete contributions made to state-of-art by more deeply leveraging

these connections.

68



CHAPTER III

FOUNDATIONS: CHARACTERIZING TRAFFIC STRUCTURE

The content around Figure 6 and Figure 7 are from [116]. Application of the

method of moments for multifractal analysis of IP addresses discussed in § 3.2 was

originally developed by Walter Willinger and Arpit Gupta. The text in § 3.2.1 was

initial composed by Walter Willinger and adapted for this context. Walt O’Connor

helped develop the implementation used to produce Figure 17 and Figure 18. I wrote

all other analysis code, figures, and text in § 3.2.2. Ramakrishnan Durairajan, Reza

Rejaie, Arpit Gupta, and Walter Willinger assisted with editing.

This chapter presents statistical characterizations of two different aspects of

network traffic that are critical to telemetry system design and implementation. In

particular, § 3.1 studies the time series formed by the number of distinct groups per

time unit and § 3.2 studies the distribution of observed IP addresses in the address

space. As discussed in § 1.4, the outcomes of both studies shape design strategies

pursued in Chapter IV.

3.1 Temporal Structure

As discussed in § 2.1.1, the time-domain structure of the number of distinct

traffic groups observed per time unit has received little to no attention in prior research

efforts despite its direct relevance to telemetry system design. To study this structure,

we examine a simple random sample of 28 days drawn from MAWILab’s [61] 2015

dataset. Each day consists of a 15 min trace starting at 2 pm of all packets observed

on a trans-Pacific link between the US and Japan. To preserve user privacy, packet

payloads are not included and all addresses are anonymized.

We consider three different groupings of packets based on the example Sonata

queries shown in Table 1, in particular (i) the number of distinct source address,
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destination port pairs for the “port scan” (PS) query, (ii) the number of distinct

source, destination address pairs for the “DDoS” and “super-spreader” (SS) queries,

and (iii) the number of distinct destination addresses that receive at least one TCP

SYN packet for the “tcp new connections” (TNC) query. For each grouping, we count

the number of distinct groups that are observed in contiguous 5-second time windows

or epochs.

To illustrate a case with extreme changes in the number of groups, we consider

a member of our sample from Nov. 14th. As shown in Figure 6, this excerpt starts

with relatively stable traffic, then suddenly, due to an actual DDoS attack or other

causes (which we do not claim to identify), around the 20th time window contains an

order of magnitude large number of sources sending regular pulses of traffic.

Figure 6. Number of distinct sources and destinations in excerpt from MAWILab
data on Nov. 14th, 2015.

To summarize the extent of temporal dynamics in the number of groups over our

entire sample of 28 traces, we compute the CV of number of groups per-epoch and

number of packets per-epoch for each trace. Figure 7 shows the distribution of CVs

over all traces in our sample for group-based counts (Figure 7a) and packet counts

(Figure 7b). The CVs of the number of groups for PS and DDoS/SS cluster around

∼10%, however, group-based CVs have a much longer tail including traces with CV

over 100%. (For reference, the CV of the single trace of sources per time unit shown

in Figure 6 is ∼52%.) In the case of TNC, the group-based CV is consistently high

(median of ∼84%), likely a product of how this query only looks at SYN packets and
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each SYN packet is typically associated with a new flow. These results illustrate that

contrary to the assumptions of prior work outlined in § 2.1, in real network traffic

there is significant variance in the number of distinct groups observed each epoch.
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Figure 7. Distribution of CVs over our sample of 28 traces from MAWILab [61].

Given the well-establish self-similar structure of traffic rates (e.g., packets per

time unit), a logical next step is to investigate whether or not the number of distinct

groups per time unit might also exhibit self-similar structure. Following common

methods [97], we define the aggregate time series X ′(m)(t) to be the number of groups

in non-overlapping blocks of size m at time t. Then, X ′(m) is asymptotically self-

similar if the correlation structure of X ′(m) approaches the correlation structure of

X ′(1) = X ′ as m → ∞. Intuitively, this implies that X ′(m) will look qualitatively

similar for different values of m.

To illustrate, we focus on a different trace in our sample from MAWILab captured

on March 3rd (which has more typical traffic compared to Nov. 14th) and let X ′(m)

be the number of distinct source addresses per time unit with the smallest time

division m = 1 corresponding to 1 ms. Figure 8a shows X ′(m) for a few selected

values of m over the first 250 s of the trace. We observe that the relatively rough,

71



bursty appearance of the finest time granularity m = 1 gradually flattens out under

increasing time aggregation as we increase m. To confirm, in Figure 8b we draw a

variance-time plot [97] ofX ′(m) for a wide range of values ofm and show that the slope

of the normalized variance is close to -1 on a log-log plot which indicates statistically

evidence for X ′(m) not being self-similar.
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(b) Variance-time plot
showing slope near -1.

Figure 8. Initial analysis of the number of distinct source addresses per time unit.
The qualitative “flattening” of the timeseries for larger m indicates lack of self-similar
structure.

We applied the same analysis of Figure 8 to all traces in our sample from

MAWILab and confirmed that in typical cases where there are no large, sudden

changes in the number of observed addresses, X ′ is not self-similar. Cases with large

changes, such as the Nov. 14th example shown in Figure 6, are harder to analyze

because the observed changes are highly localized to particular time windows which

likely correspond to particular non-typical events (e.g., network-based attacks). As a
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result, variance-time plots do not show consistent asymptotic behavior asm increases,

but expose different scaling regimes at different intermediate values of m based on

position and duration of the changes within the 15-minute trace excerpt.

The key implication of this initial analysis is that although typical-case behavior

of the number of groups per time unit (X ′) does not exhibit the same complex self-

similar structure of data rates like packet count per time unit (X), pervasiveness

of atypical events in real network traffic implies that the number of groups per

time unit still has significantly high variance. Further analytic work is required to

establish a more satisfactory statistical characterization of the time-domain structure

of the number of groups per time unit. In particular, such analysis will likely

need to revisit existing physical models of network time series (e.g., the Poisson

cluster model proposed in [75]) with an eye towards more realistic distributions

of address-arrival and address-departure processes instead of the current focus on

flow-arrival processes. Moreover, longer-duration traces (lasting days or weeks) will

also be critical for understanding the dynamics faced by telemetry systems deployed

in real-world networks which would be expected to remain accurate and efficient

for comparable durations. This dissertation leaves such analysis for future work

and focuses instead on an initial goal of leveraging the observation of time-domain

structure from Figure 7a—that the number of groups has high variance (regardless

of its scaling behavior). Even if these time series do “flatten out” at some particular

longer duration of aggregation, telemetry systems will still have to cope with these

persistent and extreme short-term changes in number of distinct groups. In § 4.1 we

will develop several key techniques to handle these kinds of short-term dynamics in

telemetry system design through a generic and non-parametric method that does not

require a priori analysis of their temporal structure.
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3.2 Spatial Structure

This section develops an initial characterization of the spatial structure of

observed IP addresses, which, as discussed in § 2.1.2, has received little research

attention since initial results some 20 years ago. We first provide the necessary

background for understanding the multifractal structure of IP addresses in § 3.2.1.

Next, we investigate data sets associated with the IP address allocation process to

show how IP allocation is consistent with conservative cascade statistical models in

§ 3.2.2. Finally, we present empirical evidence for multifractal scaling in a range of

real-world data sets in § 3.2.3.

3.2.1 An Echo from the Past. The preliminary findings about the

multifractal structure of the observed IP addresses in measured network traffic

originally reported in [90, 91, 31] rely on traffic traces that have been collected some

20-25 years ago. To address the dated nature of these traces, we first set out to

assemble our own repository of more recently collected Internet traffic traces. A

detailed description of this repository can be found in Appendix A, with Table A.1

listing all the traces and associated metadata.

3.2.1.1 A picture is worth a thousand words. For effective 1D

visualizations involving IPv4 addresses, it is common to identify the entire IPv4 space

with the unit interval [0, 1) using the standard CIDR notation. Per this notation,

the unit interval [0, 1) represents the entire IPv4 space, or /0, and there is a 1-1

correspondence between the l-th dyadic partition Pl of [0, 1) (i.e., the collection of

intervals El,i = [i2−l, (i + 1)2−l); i = 0, 1, . . . , 2l − 1 and the set of all 2l prefixes of

length l (0 ≤ l ≤ 32). A similar identification of the IPv6 address space is likewise

constructed with 0 ≤ l ≤ 128.
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With this mapping between the IPv4 space and the unit interval in 1D, we

consider for illustrative purposes one of our traces, CAIDA-dir-A, listed in Table A.1

in Appendix A and form the dataset CAIDA-dir-A100 that consists of the first

100, 000 unique source IP addresses observed in CAIDA-dir-A. We also generate a

same-sized synthetic dataset UNIFORM100 by casting 100K 32-bit integers as IP

addresses and drawing them from the uniform distribution on the unit interval.

Next, building on the intuitive notion that multifractal structure manifests itself in

a pronounced “cluster-within-cluster” or “nesting of structure” property, we realize

this intuition pictorially with a series of “zoom-in” steps that reveal how clusters of

observed IP addresses at a given scale (e.g., /16 subnet granularity) appear when

viewed under a microscope; that is, when examined at finer scales (e.g., /17 or finer

subnet granularity). Figure 9 illustrates seven steps of this “zoom-in” process for

the measure µA that counts the number of observed IP addresses in each subset

(e.g., prefix) of the set CAIDA-dir-100A derived from for the real-world traffic

trace CAIDA-dir-A (Figure 9a) and the synthetic set UNIFORM100 (Figure 9b),

respectively.
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Figure 9. 1D Pictorial evidence of multifractal vs not-multifracatal IP address
structure, using the dataset CAIDA-Dir-A100 (left) and UNIFORM100 (right),
respectively.
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In the case of the CAIDA-dir-A100 dataset (Figure 9a), with the possible

exception of the top row where artifacts due to real-world IP allocation (e.g.,

unassigned address space) are visible and the bottom row where the discrete nature

of the IPv4 space imposes a strict limit to the described fragmentation process

(i.e., the largest possible prefix length is 32 which defines individual IP addresses),

the zoom-in’s for the intermediate stages look qualitatively similar, exhibit visually

apparent cluster-within-cluster behavior that defies the identification of a “typical”

cluster size, and provides pictorial evidence that the observed IP addresses are highly

intermittently or irregularly distributed across the entire IPv4 space, consistent with

a multifractal address structure. When compared with the UNIFORM100 dataset

(Figure 9b), we also observe qualitatively similar-looking zoom-in’s across the different

rows, but the appearance of the zoom-in’s is noticeably “less irregular” – the cluster-

within-cluster behavior is more regular, allows for discerning a “typical” cluster size

for each row, and results in the observed IP addresses being evenly distributed across

the IPv4 space.

3.2.1.2 From “visual” to statistical evidence. The “pictorial proof”

in Figure 9 suggests that the observed IP addresses in measured Internet traffic

are distributed across the IPv4 space in a highly irregular or intermittent manner,

symptomatic for an address structure that exhibits the hallmarks of multifractals.

These visuals could therefore be viewed as a strong argument for pursuing as obvious

next step an in-depth statistical analysis of the listed traffic traces so as to determine

more objectively whether or not the shown visual evidence is indeed consistent with

a multifractal address structure. In theory, such an analysis would allow us to state

more confidently whether or not the obtained visual evidence can be assumed to

have resulted from an underlying mathematical model that supposedly generated
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the observations behind the shown visual evidence in the first place and can be

theoretically shown to be multifractal.

However, rather than pursuing this obvious next step and performing an in-

depth statistical analysis of our collection of recent traffic traces, we decide to instead

embark on an in-depth physical explanation that attempts at getting at the root cause

of why observed IP addresses in measured Internet traffic might exhibit multifractal

scaling behavior. This strategy has numerous advantages over the more conventional

approaches that emphasize utilizing state-of-the-art statistical theory and the latest

statistical toolboxes to perform an in-depth statistical analysis of the new traffic traces

and obtain “hard” statistical evidence whether or not the traces are consistent with

multifractal IP address structure. For one, the development of a statistical theory

for a multifractal analysis of real-world data is still in its infancy, with only few

known results for quantifying the confidence in computed estimates (e.g., determining

confidence intervals) or computing the power of hypothesis tests (e.g., assessing

a chosen model’s goodness-of-fit). As a result, in practice, multifractal analysis

of real-world data relies on empirical techniques and toolboxes, which leave the

obtained findings open to interpretation, makes them sensitive to known or unknown

idiosyncrasies in the data, and produce in general inconclusive results. On the other

hand, a mathematically rigorous and empirically validated physical explanation of

observed multifractal structure in real-world data that can withstand scrutiny by

domain experts generally eclipses statistical arguments and is typically viewed as

providing a conclusive if not the final answer.

Mathematical interlude: multifractal analysis in a nutshell. Investigations of

the spatial aspects of measured network traffic are typically concerned with entities

such as (finite) measures µ defined on a subset E of the real line. Following [140],
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it is common to study the irregularities or singularities of such measures at a point

x ∈ E mathematically in terms of a pointwise scaling exponent called the Hoelder

exponent α(x) satisfying µ(B(r, x)) ≈ rα(x) for sufficiently small r-values, where

B(r, x) denotes a ball of radius r > 0 around x ∈ E. The measure µ is called

multifractal if this Hoelder exponent varies as x varies; µ is monofractal if a single

Hoelder exponent α0 describes the singularities of µ [126]. multifractal analysis is

concerned with effectively summarizing the complex and seemingly erratic nature in

which the Hoelder exponent can fluctuate for different values of x ∈ E and providing

practitioners with a succinct global description of these fluctuations.

One such description is geometrical in nature and is based on the so-called

histogram method that uses the concept of fractal dimension, computes the

multifractal spectrum f(α) as the fractal dimension of the iso-scaling set Eα =

{x ∈ E, x has Hoelder exponent α}, and can thus be understood as providing a

parsimonious quantitative digest and microscopic characterization of the complex

scaling behavior exhibited by the measure µ. Unfortunately, accurately inferring the

multifractal spectrum by reliably estimating the Hoelder exponent point by point

from real-world data and then computing the fractal dimension of each resulting

iso-scaling set Eα is fraught with problems to the point of being impractical.

An alternative description that is statistical in nature and also practical, known

as the method of moments, is concerned with computing the so-called structure

function τ(q) that describes the scaling behavior of the higher-order sample moments

of µ. This method can be understood as providing a compact but macroscopic

characterization of the scaling behavior of the measure µ [140].

The two descriptions are related thanks to the so-called multifractal

formalism [126, 135] that asserts that under certain technical conditions, the

78



multifractal spectrum f(α) is the Legendre transform of the structure function

τ(q) (and vice versa); that is, f(α) = infq(qα − τ(q)). This relationship is especially

useful in practice when all that is needed from a multifractal analysis of real-world

data is plausible evidence whether or not the data is consistent with multifractal

scaling behavior. Indeed, by virtue of being the Legendre transforms of one another,

a non-linear structure function τ(q) implies a non-degenerate multifractal spectrum

f(α) that is defined for some continuous range of α-values on the real line. Thus, to

obtain plausible evidence of multifractal vs monofractal, it suffices to check whether

the structure function τ(q) is not linear (evidence for multifractal scaling) or linear

(evidence for monofractal scaling).

3.2.1.3 Conservative or semi-random cascades. Mathematical

modeling of observed multifractal scaling behavior in various real-world datasets was

pioneered by B. Mandelbrot who first introduced a class of prescriptive or evocative

models known as multiplicative cascades [109]. Following [134], a multiplicative

cascade is an iterative process that fragments a given set into smaller and smaller

pieces according to some rule and, at the same time, distributes the total mass of

the given set according to another rule. The cascade’s generator determines the

redistribution of the set’s total mass at every iteration and can be either deterministic

(as, for example, in the “Cantor dust” model considered in [90]) or random as in

the case of the multiplicative, multiscale innovation model (e.g., see [124, 67, 31]).

Multiplicative cascades with the property that the generator preserves the total mass

of the initial set at each stage of the construction are called conservative cascades or

semi-random cascades, are of particular interest for capturing the complex scaling

behavior observed in actual measurements of many naturally occurring phenomena.

Under certain technical conditions, they can be shown mathematically to result in
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limiting objects that represent well-defined multifractals that can be characterized in

terms of the cascade’s generator, which in turn can be inferred for real-world data

(e.g., see [134] and references therein).

Though conservative cascades have been extensively explored [58, 98, 110, 136]

and debunked [162] in the analysis of the temporal nature of Internet traffic, their

potential to model spatial aspects of addresses observed in Internet traffic, which is

the focus of our work, has received less attention.

IP address allocation as a conservative cascade process. The impetus of

our efforts comes from a speculation in [90] that the fact that multifractals can be

constructed by means of certain conservative cascade processes brings to mind the

way that IPv4 addresses are typically allocated in the Internet: ICANN assigns big

IP prefixes to the Regional Internet Registries (RIRs), the RIRs allocate blocks to

ISPs, who further allocate sub-prefixes to their customers, and so forth. While the

way of allocating IP addresses may differ for each of these stakeholders and may

reflect historical, social, or economics-based aspects, it is plausible to assume that

the root cause of the observed multifractal scaling behavior in the sets of encountered

IP addresses in measured Internet traffic is indeed an underlying conservative cascade

process that captures the essential features of IPv4 address allocation in the modern

Internet.

3.2.2 Physical Explanation and Validation. In this section, we

investigate the root cause of observed multifractal IP address structure and argue

that the processes behind allocation are fundamentally aligned with the conservative

cascade model, making it an ideal tool for analysis of observed address structure. We

follow the classic “three-level” story of how IP addresses are allocated in the modern

Internet shown in Figure 10: IANA makes “global” allocations to RIRs (§ 3.2.2.1),
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RIRs make “first-level” allocations to particular organizations (§ 3.2.2.2), and large

organizations (ISPs, CSPs, etc.) make allocations to their customers (§ 3.2.2.3). At

each level, we illustrate how the conservative cascade model can be viewed as a direct

result of the allocation policies made by the particular entities in control of that level.

IANA

AFRINIC
APNIC
ARIN

LACNIC
RIPE

Comcast
Cogent
Amazon...

/�'s /��'s - /��'s /��'s - /��'s

Customer �

Customer �

...

Global RIR first-level Org. Customer-level

Figure 10. High-level “cascade” process of Internet address allocations.

3.2.2.1 ICANN/IANA and the RIRs: IPv4 space at coarse

granularity. The top-level authority on IPv4 addresses is the Internet Assigned

Numbers Authority (IANA) which is an affiliate of the Internet Corporation for

Assigned Names and Numbers (ICANN). For the IPv4 address space, IANA publishes

an authoritative list of how each possible top-level /8 prefix is allocated [10] known

as the “IPv4 Address Space Registry”. After allocation of the last free /8 block in

2011 [81], the registry now covers the entire IPv4 address space.

Clustering of blocks allocated to particular RIRs. The fact that all IANA

assignments are made at /8 granularity may appear to imply a lack of any structure

above this in the prefix tree. However, closer inspection of how /8’s are allocated

reveals a significant degree of clustering along boundaries implied by shorter prefix

lengths (e.g., the /1, /2, and /3 clusters leftover from class-full network allocation or

induced by reserved spaces).
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Figure 11. Global view of IANA IPv4 Address Space Registry showing which
regions of the space are allocated to several primary RIRs and the maximum possible
aggregation of each contiguous per-RIR block.

Figure 11 shows which RIR is associated with each /8 block allocated by IANA1

(x-axis) and how much aggregation is possible in each contiguous cluster of blocks

allocated to the same RIR (y-axis). Note that smaller Max Aggregation Lengths

indicate shorter prefixes with more aggregation. The largest possible aggregation

(outside of reserved space) is RIPE’s cluster around 80.0.0.0/4 and both ARIN and

APNIC also have large /5 clusters. Our analysis also shows that type of allocation

has clear clustering along the historic class-full network boundaries and that several

clusters were allocated sequentially over several years indicating that IANA likely

pre-allocated regions for particular RIRs (at shorter than /8 granularity).

3.2.2.2 Allocation policies of ARIN: IPv4 space at medium

granularity. We next investigate how the allocation policies of a particular RIR,

in this case ARIN, can be understood in terms of the conservative cascade model.

Allocation decisions made by RIRs are kept track of in the WHOIS database which

records which organizations are responsible for which network address ranges. We

1We use the WHOIS field of each block instead of the Designation field here since several /8
prefixes are still listed as allocated to individual companies or organizations (e.g., the US Department
of Defense) while delegating WHOIS record management to a parent RIR.
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collect the bulk WHOIS dataset from ARIN [3] which currently contains ∼3.2M IPv4

networks with network sizes ranging from /8 to /32 with median at /29.

WHOIS records registered with ARIN can be broadly grouped into two

categories: “first-level” assignments which represent allocations of address ranges

to particular organizations and “organization-level” assignments which are registered

on behalf of ARIN’s clients and represent internal divisions in how these organizations

use their assigned regions (e.g., different address prefixes often correspond to

different geographic regions) or customers of these organizations. Here, we focus

on first-level assignments to understand how ARIN divides its assigned range to

client organizations, then in § 3.2.2.3 we leverage organization-level assignments to

understand how client organizations divide up their assigned address ranges.

Clustering of first-level assignments. First-level records account for ∼2.6%

of ARIN’s WHOIS records and are primarily direct allocations to a variety of

different types of organizations including public universities, medium to large scale

corporations, communications companies, and service providers. They tend to have

shorter prefix lengths (median 23) compared to records with two or more parents.

However, similar to IANA allocations they tend to cluster in implicit groups that

imply larger-scale structure down to /10 level granularity. Such implicit clustering of

the published first-level allocations reflects how ARIN internally manages its assigned

address space as a prefix tree representing an addition step in the cascade process.

To illustrate, we visualize a /7 region of address space managed by ARIN in

Figure 12. In this visualization, we draw a rectangle for each first-level network

record with the width of the rectangle corresponding to the range of addresses covered

on the x-axis, the vertical position corresponding to its prefix length, and the color

corresponding to the year of registration. The resulting figure shows not only that
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ARIN has different policies in different regions but also that these regions fall precisely

on prefix boundaries (shown as vertical grid lines) indicating prefix-level clustering.

For example, allocations in 68.0.0.0/10 are large blocks given to large companies like

AT&T, Comcast, T-Mobile, and Microsoft where as allocations in 69.0.0.0/11 are

smaller blocks given to regional ISPs and smaller non-communications companies.
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Figure 12. Pattern of first-level network registrations in a region managed by ARIN.
(X-axis ticks show /10 blocks.)

Figure 13 further illustrates this prefix-level clustering by drawing the common

ancestor prefix tree for 68.128.0.0/10 (outlined in Figure 12). Note that the position

of rectangles in this figure are only related to the ordering of addresses while rectangle

width is determined by the number of descendants. The strongly unbalanced shape

of the tree drawn in this figure illustrates how mass is unevenly distributed in

ARIN’s allocations with certain intermediate prefixes receiving disproportionately

more mass compared to others—a pattern directly consistent with the conservative

cascade model.

The WHOIS record tree. A key feature of WHOIS network records is optional

inclusion of a “parent” pointer which explicitly identifies another WHOIS network

record as being higher in the prefix tree. We use parent pointers to organize the
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ARIN WHOIS records into a tree that explicitly describes a cascade process among

registered networks. Though our analysis suggests that this tree is wide (with the

majority of parents having two or more children) and shallow (with the majority

of nodes registered at depth 2), it nonetheless directly confirms the presence of a

non-trivial hierarchical cascade in WHOIS records.
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Figure 13. Visualization of common ancestor prefixes for a subset of the region shown
in Figure 12.

Temporal stability of ARIN’s WHOIS record structure. Given the scarcity

of IPv4 addresses in the modern Internet transfer of regions between organizations is

a common-place phenomena that could potentially change the prefix-level structure

over time. Our analysis reveals that though there are ∼3.5k transfers per year after

2017, the overall impact of these transfers on the prefix-level structure of ARIN

WHOIS records is minimal at less than 0.05% annual change in the set of allocated

prefixes.

3.2.2.3 Allocation policies of Internet-scale organizations. Beyond

the first-level allocations considered in the previous section, we next investigate the

structure of allocation policies within individual organizations. We focus on a sample

of six large prefixes from different types of organizations since their policies have a
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large impact on the overall structure of the address space. In particular, we selected

prefixes based on manual inspection of prefixes of 10 bits and shorter, excluding

records associated with /8-level RIR structure and ordering by total number of

children directly below the prefix. For each selected prefixes we extract all their

descendant prefixes from the ARIN bulk whois dataset.

Table 2 lists the six prefixes chosen along with the organization they are

(currently) assigned to and the total number of descendant networks. Different types

of organizations have different overall numbers of descendant networks; from the

telco / ISP companies with O(10K) networks down to the CSP / CDN networks with

O(100) networks. Based on “parent pointer” fields in these organization-level WHOIS

records, we reconstruct the full record tree for each organization and observe these

trees are generally wide (large number of descendants per ancestor node) and shallow

(median depth of 3).

Company Name Prefix # nets

Comcast Cable Comm., LLC. 50.128.0.0/9 21127
Verizon Business 63.64.0.0/10 28011
Cogent Comm. 38.0.0.0/8 2195
Level 3 4.0.0.0/9 1478
Amazon Tech., Inc. 3.0.0.0/8 356
Akamai Tech., Inc. 104.64.0.0/10 369

Table 2. Summary of prefixes selected for finer-grained analysis in this subsection.

Despite this “wide and shallow” characterization of the WHOIS records, we

observe each organization also has a level of prefix-nesting structure implicit in the

placement of their descendant records. We discuss results for the Comcast prefix

50.128.0.0/9 from our sample, but observed qualitatively similar results for other

companies investigated.

Figure 14 shows the placement of all descendant records of 50.128.0.0/9 using

the same visualization technique as Figure 12. This region of Comcast’s address
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space shows strong clustering of small /15 through /30 prefixes within several distinct

larger prefixes. Moreover these larger-scale clusters appear to correspond to different

bursts of allocations though out the period where Comcast controls this space clearly

demonstrating that Comcast’s internal policy involves dividing their space into prefix-

based regions and distributing “mass” (in this case their customer networks) over

this larger-scale structure. We also note several empty blocks, e.g., 50.128.0.0/11 and

50.160.0.0/12, which maybe used for internal addresses and hence for which Comcast

does not publish public WHOIS records.
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Figure 14. Pattern of network allocations in a /9 prefix registered to Comcast. (X-
axis ticks show /11 blocks.)

To further illustrate Comcast’s internal prefix-level allocation policy, we explicitly

draw the common ancestor prefix tree of 50.198.0.0/15 (outlined in Figure 14) using

the same visualization technique as Figure 13 Note that unlike the first-level tree

shown in Figure 13, in Figure 15 several parents in the common ancestor tree are

also registered in the WHOIS records providing explicit confirmation of our inferences

into Comcast’s internal policies. For example, the two /18 records with explicit prefix

labels in Figure 15—50.198.0.0/18 and 50.198.64.0/18—are named CBC-ILLINOIS-

14 and CBC-NEW-ENGLAND-24 respectively and their children are named for
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Figure 15. Visualization of the common ancestor prefix tree for a /15 subset of the
region shown in Figure 14.

enterprise businesses (e.g., law firms, medical groups, schools) within the metros

implied by their names. Though space limitations prevent us from showing more

examples here, we observed similar patterns across all selected prefixes.

3.2.2.4 Initial population of IPv6. Similar to IPv4, IANA manages

global allocations in the IPv6 address space and maintains, in particular, a registry of

which global unicast IPv6 address ranges have been allocated with which RIRs2 [12].

Figure 16 shows which particular blocks have been allocated thus far (x-axis)

along with their allocation dates (y-axis) for a small region where the oldest allocations

are clustered. In addition to the clear per-RIR structure with large subblocks

allocated to particular RIRs (e.g., APNIC was allocated all of 2001:8000::/10 in

2005) shown here, we observe that in 2006 IANA outlined large /7 blocks for each

RIR (not shown) even though as of today, only a few /12s in these blocks have

been allocated. We also confirmed that WHOIS IPv6 network records follow similar

hierarchical organization at the RIR and organization level through analysis of∼290K

2Currently IANA only allocates addresses from 2000::/3 and other ranges are reserved for different
purposes or future use.
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(a) The non-reserved regions of the global unicast IPv6 space 2000::/3 showing how
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(b) Zoomed-in view of the most densely populated cluster at the lowest addresses of the
global unicast IPv6 space which includes a mix of RIRs.

Figure 16. Timeline of initial allocation of IPv6 global unicast address space from
IANA to RIRs.

IPv6 records in the ARIN bulk WHOIS dataset. Overall, we conclude that the same

forces that shaped IPv4 allocations are at play in IPv6 and hence similar observation

about the importance of the conservative cascade model and multifractal scaling are

relevant for observed IPv6 addresses as well.

3.2.3 Multifractal IPv4 Address Structure: Fait Accompli. The

mathematically rigorous and empirically validated physical explanation in § 3.2.2

implies that as far as observed IPv4 addresses in measured Internet traffic are
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concerned, encountering multifractal is neither a mystery nor a surprise but a “fait

accompli”—a new invariant of modern Internet traffic. It results from an underlying

conservative cascade model that is assumed to have generated the observed address

structure in the first place and can be theoretically shown to generate multifractal

measures, assuming the cascade generator satisfies certain rather weak technical

conditions. Equipped with this new understanding, we fully expect that this invariant

is indeed present in each of the recently collected Internet traffic traces listed in

Table A.1 in Appendix A.

To confirm this expectation, we apply the statistical method of moment technique

to each of these traces, mainly because this technique is known to be more robust than

the geometrical histogram method, but also because the macroscopic characterization

it provides for a given dataset is sufficient for making a binary inference decision; i.e.,

concluding that the given data is consistent with multifractal scaling behavior or it

is consistent with monofractal scaling.

3.2.3.1 Inferring IP address structure with the method of

moments. To apply the method of moment to a dataset that consists of the observed

IPv4 addresses in a given traffic trace, we consider the measure µA on [0, 1) that

assigns to each subset C ⊂ [0, 1) the number of observed addresses that fall in C

and compute for a range of q-values the partition functions Z(l, q) (0 ≤ l ≤ 32)

and the structure function τ(q) according to the step-by-step procedure described in

Appendix B. Note that this procedure also outputs generalized dimensionsD0, D1,

and D2.

In contrast to the microscopic quantification of multifractals provided by the

multifractal spectrum, these quantities can be interpreted as providing a macroscopic

quantitative assessment of observed multifractal scaling behavior. For example, D0
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is the fractal dimension of the support of µA and quantifies how much the data fills

its physical support; D1 is the information dimension, relates to Shannon’s entropy,

and provides information about how even the data density is, with higher values of

D1 indicating a more uniform density; and D2 is related to the correlation dimension

and measures how scattered the data is, with larger values of D2 indicating more

compactness and less scattering. As a sanity check, the procedure’s output also

includes τ̂(1) so we can check if it is 0 as per the definition of τ(1).

In practice, since inferring multifractal scaling behavior by means of the method

of moments concerns examining large-l asymptotics of the partition functions Z(l, q),

we are not really interested in the behavior of Z(l, q) for short prefix lengths and do

not consider l-values that are smaller than 8. At the same time, given the hard upper

limit of 32 (128) on the prefix lengths imposed by the finiteness of the IPv4 (IPv6)

space, due to expected finite-limit effects, we also avoid considering l-values that are

larger than a certain length (e.g., 28 for IPv4). As a result, checking for straight

line behavior in the plots of logZ(l, q) vs l in Step 2 typically involves the range of

scales l between 8 ≤ l ≤ 28 (for IPv4) and similar for computing the slopes of the

straight lines corresponding to different values of q. Fortunately, being able to use

some 15− 20 different scales or l-values is often sufficient to ensure that the obtained

results are largely robust and not overly sensitive to common sources of error such as

edge effects (i.e., not considering the coarsest and finest scales) and the choice of the

range for linear fitting.

3.2.3.2 Multifractal IP address structure as a new invariant of

Internet traffic. We first apply the method of moments to the real-world dataset

CAIDA-dir-A100 and the synthetically generated dataset UNIFORM100 that we used

in Figure 9 to demonstrate visually the presence and absence of multifractal scaling
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behavior in the dataset CAIDA-dir-A and UNIFORM, respectively. In particular,

Figure 17 shows the log-log plots of the partition functions Z(l, q) for integer-valued

q’s (−4 ≤ q ≤ 4) across the entire spectrum of possible scales 0 ≤ l ≤ 32 for

CAIDA-dir-A100 (left) and UNIFORM100 (right). In these figures, vertical dotted

lines indicate the range of scales 8 ≤ l ≤ 24 and 1 ≤ l ≤ 16, respectively, used for

linear fitting to estimate the structure function τ̂(q) : −4 ≤ q ≤ 4 for CAIDA-Dir-

A100 and UNIFORM100; the resulting structure functions are shown in the left plot

(for CAIDA-Dir-A100) and right plot (for UNIFORM100) in Figure 18.
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Figure 17. Partition functions for dataset CAIDA-Dir-A100 (left) and UNIFORM100
(right), respectively.
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Figure 18. Structure functions for dataset CAIDA-Dir-A100 (left) and UNIFORM100
(right), respectively.

We observe that in agreement with the “visual proof” in Figure 9, Step 3.1 of

the step-by-step procedure given in Appendix B implies that while UNIFORM100
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is consistent with mono-fractal scaling (i.e., results in a linear structure function),

the real-world dataset CAIDA-dir-A100 is consistent with multifractal scaling. Using

Step 3.2 to quantify the multifractal nature of CAIDA-Dir-A100, Table 3 gives the

estimates for the generalized dimensions D0, D1, and D2 and also shows that the

estimated τ(1)-value is zero in agreement with theory. To compare, in Table 3 we

also include the estimated generalized dimensions for UNIFORM100 and note that

they are degenerate in the sense that D0 = 1 (i.e., the data fill the unit interval);

D1 = 0.8 (more uniform density); D2 = 1 (i.e., less scattered); and τ(1) = 0. This

comparison succinctly quantifies the visible differences between the top and bottom

plots in Figure 9: multifractal data does not fill the physical space (i.e., D0 < 1), is

highly unevenly distributed (i.e., D1 is small), and exhibits more clustering or less

scattering (i.e., D2 is large).3

ToI D0 D1 D2

Instances
(fractal

dimension)
(information
dimension)

(correlation
dimension)

τ(1)
= 0?

CAIDA100 0.8 0.6 0.6 ✓
UNIFORM100 1.0 0.8 1.0 ✓

Table 3. Estimated generalized dimensions.

Lastly, we repeat the above-described limited statistical analysis for each of the

datasets listed in Table A.1 in Appendix A. The results of this comprehensive but

purposefully limited analysis are summarized in Table A.2 in Appendix A and support

our main finding that the obtained statistical evidence for a multifractal IP address

structure is not limited to a specific time, place, or type of traffic. All measured

traces produce partition and structure function plots (not show) that are similar to

Figures 17 and 18, respectively, and yield generalized dimension estimates that are

similar those obtained for CAIDA-dir-A100 and distinctly not like those obtained

3We also checked (not shown) that the obtained results are largely insensitive w.r.t. data size.
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for RANDOM100 (see Table A.2 in Appendix A). As expected, these results are

consistent with our new understanding of the root cause underlying multifractal IPv4

address structure and confirm it to be an invariant of measured traffic, a facet of

behavior of measured Internet traffic which has been empirically shown to hold in a

wide range of environments and include such properties as diurnal patterns of activity,

(asymptotic) self-similar scaling of temporal traffic rate processes, and heavy-tailed

distributions for protocol-related entities such as TCP connection or IP flow duration

and size (e.g., see [60] and references therein).
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CHAPTER IV

DESIGNS: TOOLS TO LEVERAGE STRUCTURE FOR TRAFFIC QUERIES

The content in § 4.1 is adapted from [118] and [116]. The content in § 4.2 is

adapted from [117].

This chapter presents technical algorithms and system design components built

around traffic structure characterizations obtained in Chapter III. First, we leverage

the high-variance characterization of the number of distinct groups per time unit

(described in § 3.1) to develop novel time-domain tools of sub-epoch sampling and

scheduling in § 4.1. Next, we leverage the multifractal characterization of observed IP

addresses (described in § 3.2) to develop several novel address-space-domain tools that

improve on state-of-the-art prefix-level refinement algorithms in § 4.2. As discussed in

§ 1.4, the design elements and algorithms developed in this chapter serve as building

blocks for the real-world systems constructed in Chapter V.

4.1 Temporal Tools

This section considers a class of traffic queries that group packets based on

arbitrary header fields and compute per-group metrics. First, in § 4.1.1 we describe

our approach to running such traffic queries in a subset of time-divisions (or sub-

epochs) of a given time-window (or epoch) and how cluster sampling theory allows

deriving similar accuracy bounds as for state-of-the-art sketch-based approximation

methods (discussed in § 2.2.1). We then discuss in § 4.1.2 the principle algorithmic

components required to translate the abstract idea of time-division approximation

into a concrete telemetry system design.

4.1.1 Time-Division Approximation. At a high-level, our time-division

approximation technique observes that query operations do not need to run all the

time. Instead, operations can execute during strategically placed sub-windows of
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the overall time window (e.g., an operation could execute for 3 of 8 equal-duration

sub-windows of a 5 s overall time window). Non-parametric cluster sampling theory

then allows us to estimate error and future resource requirements without making

assumptions about the number of observed traffic groups. In particular, § 4.1.1.1

describes how this formal connection enables a controlled tradeoff of query result

accuracy for reduced resource requirements and § 4.1.1.2 describes a similar tradeoff of

query result latency. After establishing these foundational designs, § 4.1.1.3 describes

an extension to enable relative accuracy goals, § 4.1.1.4 describes how the same

approach can apply to distinct-count queries, and § 4.1.1.5 considers how the error

bounds derived for our time-division method relate to the error bounds of sketch-

based methods.

4.1.1.1 Accuracy tradeoff. Given fixed scheduling epochs, time-division

approximation trades off accuracy for reduced resource requirements by sampling a

subset of the subepochs in which to execute a particular query. Suppose the query

executes in a total of E epochs and that each epoch is divided into N equal-duration

subepochs. Let ti,j be the query’s result in the i-th subepoch of the j-th epoch, Sj

be the set of which subepochs are actually sampled in the j-th epoch, nj = |Sj| be

the number of subepochs sampled in the j-th epoch, and s2tj be the sample variance

of the ti,j’s in the j-th epoch. Using results from cluster sampling theory [105], the

estimator

t̂E =
1

E

E∑
j=1

N

nj

∑
i∈Sj

ti,j (4.1)

can be shown to be unbiased for the mean (tE = 1
E

E∑
j=1

N∑
i=1

ti,j) and has standard error
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SE(t̂E) =
N

E

√√√√ E∑
j=1

(
1− nj

N

) s2tj
nj

. (4.2)

We use Equation 4.1 to estimate query results after E epochs and Equation 4.2 to

determine when accuracy goals have been fulfilled. Assuming the query has already

executed in E − 1 epochs without achieving the target standard error σ, we can

rearrange Equation 4.2 as

nacc =
s2tEN

2

E2σ2 −

(
E−1∑
j=1

Var
(
t̂j
))

+Ns2tE

(4.3)

to estimate nacc, the number of subepochs in which a query should execute in the

E-th epoch. Note that if σ = 0, then nacc = N and the query will be executed in

all of the subepochs in its first epoch. As σ increases, nacc decreases freeing more

of the subepochs for other queries. For example, Figure 19a shows the result of

evaluating Equation 4.3 for the first epoch of a query, indicating that if the accepted

standard error is large enough, the scheduler only needs to execute the query in a

single subepoch.

(a) Increasing σ reduces nacc

in the first epoch.

E

(b) nlat increases as deadline
Ẽ = 6 approaches.

Figure 19. Numeric evaluations of Eqs. 4.3 and 4.4 assuming fixed variance s2t = 8,
N = 5, and queries get 3/5th of the subepochs.
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4.1.1.2 Latency tradeoff. In addition to the accuracy tradeoff discussed

above, we can tradeoff latency for reduced resource requirements by executing a

query’s operations across several epochs. The key observation enabling this tradeoff is

that by spreading the sampled subepochs over several epochs, the query can reduce its

per-epoch requirements while still attaining its accuracy goal. Network administrators

leverage this tradeoff by specifying larger latency goals on queries that do not require

fast returns.

Suppose a particular query has a latency goal of Ẽ epochs. Again, assuming

the query has already executed in E − 1 epochs, we need to estimate the number

of subepochs in which the query should be allocated nlat in the E-th epoch with

1 ≤ E ≤ Ẽ. First, we break the sum in Equation 4.2 into past (1 ≤ j < E) and

future (E < j ≤ Ẽ) components. We then have,

nlat =
s2tEN

2

Ẽ2σ2 −N2 (past+ future) +Ns2tE
. (4.4)

While the past component can be calculated directly using observations from prior

epochs, the future component must be estimated based on the number of subepochs

the query expects to receive in future epochs. Administrators can tune this expected

number of subepochs based on current and expected query workloads. Figure 19b

shows the result of evaluating Equation 4.4 in each epoch leading up to a query’s

target latency of Ẽ = 6 assuming that the operation gets 3/5th of the number of

subepochs requested in each epoch. Since in this case, the query is not given its

full requested number of subepochs, the target nlat increases dynamically to meet

the deadline indicating that Equation 4.4 can dynamically drive scheduling decisions

even when its results are not taken literally in each epoch (as may be the case when

multiple queries compete for resources).
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4.1.1.3 Approximation based on relative error goals. A key challenge

with the formulation described in Equations 4.3 and 4.4 is that s2tj (and hence SE(t̂E))

varies based on several aspects of traffic (e.g., burstiness) and system parameters

(e.g., epoch duration). As a result, it is often challenging to determine an appropriate

value of target standard error σ before a query is run. We address this challenge for

the common scenario where network administrators submit the same (or similar)

query (queries) in contiguous epochs by accepting relative accuracy goals which we

express using the coefficient of variation, 1 call the target coefficient of variation, and

denote by cv. For queries submitted with cv (instead of σ) as their accuracy goal,

we maintain an internal estimated target standard error σ̂. When making scheduling

decisions before each epoch, we uses the current value of σ̂ in place of σ in the same

methods described previously in this section and in § 4.1.2. After each epoch, compute

a new target standard error σ̂′ = cv · t̂E and updates σ̂ to follow the new target using

EWMA (i.e., σ̂new = α · σ̂′+(1−α) · σ̂old). Note that, although we could have directly

adapted Equations 4.1-4.4 using the definition of cv, we found that doing so translated

the inter-epoch burstiness of the point estimate t̂E into nacc and nlat, making them

too unstable to drive consistent scheduling decisions. The EWMA-based approach

smooths over local burstiness while still removing dependence of the target accuracy

goal on the relative magnitude of query results.

4.1.1.4 Correcting distinct operators. While the previous sections

discuss foundations for making sound approximations of packet/byte counts, many

useful queries also involve identifying and counting distinct elements. To correct

estimates for a common class of such distinct queries (including several queries in

Table 1), we leverage the Chao estimator without replacement [45, 44]. The intuition

1Coefficient of variation is a standard statistic defined as the ratio of standard deviation to mean.
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behind the Chao estimator is that the number of rare elements in the sample (e.g., the

number of flow keys observed exactly once or twice across all subepochs of a query)

give an approximation of the number of rare elements in the underlying traffic and

hence can be used to remove the bias induced by flow keys missed due to sampling.

Similar to the cluster sampling estimators described earlier in this section, the Chao

estimator can be used to obtain point and standard error estimates based only on the

observed samples.

4.1.1.5 Comparison with sketch-based methods. As discussed

in § 2.2.1, state-of-the-art telemetry systems primarily rely on sketch-based

approximation. However, we argue that the cluster sampling method described in this

section is preferred for situations where traffic composition may change in unexpected

and unpredictable ways. Consider again the scenario shown in Figure 6 where the

number of distinct sources observed increases suddenly. Suppose another telemetry

system was using count-min sketch [50] (which computes similar point estimates as the

approach described in this section) in the same scenario. The accuracy of query results

produced by count-min sketch is given by t̂i < ti+ε||t||1 where t̂i is the estimated query

result for the i-th distinct element (source-destination pair in the example), ti is the

ground-truth query result, ||t||1 =
∑

i |ti| is the ground-truth L1-norm of all observed

elements, and ε is a constant based on the number of sketch counters allocated. When

the number of sources observed increases, ||t||1 also increases proportionally loosening

the upper bound on t̂i. However, ||t||1 is a ground-truth value (depending on ti, not the

estimate t̂i) which must be estimated offline and cannot easily be extracted from the

sketch counters. As a result, the network administrator would receive no indication

from the telemetry system that the error of results may be critically compromised.

On the other hand, in our approach each sampled subepoch will reflect the increased

100



number of sources and estimated query results (Equation 4.1) and result accuracy

(Equation 4.2) will continue to accurately reflect observed traffic.

4.1.2 Subepoch-Level Scheduling. This section describes concrete

optimization-based scheduling techniques that utilize the formalizations introduced

in § 4.1.1 to decide which query operations should run in each sub-epoch. We first

present core elements of the scheduler in § 4.1.2.1, then in § 4.1.2.2 consider several

additional scheduling policies to deal with inherent challenges in using optimization

frameworks directly.

4.1.2.1 Optimization Formulation. We cast the task of generating

query schedules as an optimization problem and adapt well-known techniques to

generate schedules through this casting. We apply our optimization formulation

every epoch to determine which queries should execute in each of the N subepochs

as shown in Algorithm 1. First, in line 2 we use the Disentangle method of Yuan

et al. [179] to break the submitted queries Q into disjoint traffic slices K (based on

their filter predicates) and save the mapping between queries and slices in si,k. Line

3 then computes the minimum number of stateful update operations required by the

reduce operators of all queries in each particular slice. These steps ensure that, even

when the filter predicates of multiple submitted queries overlap, we can use combined

update operations in U and disjoint traffic slices in K to compute all queries on

a single switch hardware stage. Next, lines 4 through 6 compute estimates of the

memory and subepoch requirements of each query. Finally line 7 creates and solves

the optimization problem described below. If a feasible solution cannot be found,

line 9 falls back to a heuristic scheduling method described in our Supplementary

Materials.
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Algorithm 1 Method for determining subepoch schedule

1: procedure Get-Schedule(Q, u, SE)
2: K, s← Disentangle(Q)
3: U ← Combine-Updates(u,K, s)
4: m← Estimate-Memory
5: nacc ← Equation 4.3(σ)
6: nlat ← Equation 4.4(σ,E)
7: d← Solve-Optimization
8: if d is infeasible then
9: d← Get-Heuristic-Schedule
10: end if
11: return d
12: end procedure

Inputs. Table 4 shows the particular inputs and outputs of this optimization

problem. Of the input variables, tk, ui, si,k, T , A, and M are known exactly based on

submitted query requirements and available switch resources, while mi, n
acc
i , and nlat

i

must be estimated based on observation of past epochs. Our current implementation

uses EWMA to estimate mi and s2tE (as required by nacc
i and nlat

i ) independently for

all update operation types. We leave exploration of more sophisticated estimation

approaches to future work. Scheduling decisions are encoded in the di,j indicator

variables which determine which queries should execute in each subepoch. We do not

consider the division of switch memory between queries since memory is dynamically

allocated during the aggregation operation (see § 5.1.1.5).

Constraints. We impose the constraints shown in Table 5 to satisfy two high-

level requirements: (i) respecting switch resource limits (C1, C2, C3) and (ii) forcing

minimal progress in each query and ensuring variance estimates are well-defined (C4).

Note that C2 captures the fact that if two queries rely on the same update operation,

they can be merged to use a single ALU. In the case that the estimated quantity mi
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Variable Description
Q index set of queries ready for

execution
SE index set of subepochs
K index set of all disjoint traffic slices
Uk index set of all update operations in

slice k
tk number of TCAM entries required

by slice k
ui index of update operation required

by query i
si,k indicator that query i requires slice

k
mi memory required in each subepoch

by query i
nacc
i number of subepochs required for

accuracy goal for query i (§ 4.1.1.1)
nlat
i number of subepochs required for

latency goal for query i (§ 4.1.1.2)
T total available TCAM entries
A total number of available switch

ALUs
M total available SRAM counters
di,j indicator that query i executes in

subepoch j

Table 4. Variables used in optimization formulation of scheduling problem. The sole
outputs di,j determine the schedule for the next epoch.

C1: ∀j ∈ SE,
∑
k∈K

tkI

[ ∨
i∈Q

di,jsi,k = 1

]
≤ T

C2: ∀j ∈ SE, k ∈ K,
∑

u∈Uk

I

[ ∨
i∈Q

di,jsi,kI [ui = u] = 1

]
≤ A

C3: ∀j ∈ SE,
∑
i∈Q

di,jmi ≤M

C4: ∀i ∈ Q,
∑

j∈SE
di,j ≥ 2

Table 5. Scheduling problem constraints to respect (C1) TCAM capacity requirement,
(C2) switch ALU capacity, (C3) SRAM capacity, and (C4) query minimal progress
requirement. I [] is the indicator function.
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O1: minimize
∑
i∈Q

∣∣∣∣∣
( ∑

j∈SE
di,j

)
− nacc

i

∣∣∣∣∣
O2: minimize

∑
i∈Q

∣∣∣∣∣
( ∑

j∈SE
di,j

)
− nlat

i

∣∣∣∣∣
O3: minimize

∑
i∈Q,j∈SE

di,jmi

Table 6. Objective functions considered in the multi-objective formulation.

turns out to be violated by traffic conditions in the subsequent epoch, we simply drop

new aggregation groups once the available switch memory is totally consumed.

Objectives. In computing the schedule of each epoch, we consider the objective

functions listed in Table 6. O1 seeks to satisfy accuracy goals by minimizing the

distance to the value of nacc computed in Equation 4.3, O2 seeks to satisfy latency

goals by minimizing the distance to the value of nlat computed in Equation 4.4, and

O3 seeks to limit the maximum volume of data that needs to be returned from the

switch in a single subepoch. We expose the Pareto front of these objective functions

using linear scalarization which allows administrators to express the importance of

each objective by submitting weights and is computationally efficient.

Problem shape and size. Note that the only variables that are solved during

evaluation of the optimization problem are the di,j which determine which queries

execute in each subepoch. Also, the number of constraints is linear in the maximum

of the number of subepochs and the number of queries. For example, if 100 queries

are to be executed in 8 subepochs, the resulting optimization problem has 800 binary

variables and 124 constraints. Overall, the on-line optimization problems in our

method are much smaller and simpler compared to the off-line optimization problems

considered in, e.g., Sonata [70] (since Sonata considers the product of all possible

query partitionings and different prefix-level refinement plans). We observe that off-

the-shelf optimization solvers (e.g., [6]) are able to solve our problems in a number
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of milliseconds (compared to the 20 minute time limit set on the optimization solver

in Sonata) making their use in our on-line system feasible.

Additionally, since the number of queries ready for execution in each epoch

is given by the particular query arrival process, the only system parameter that

impacts problem size is the number of subepochs per epoch. Intuitively, configuring

our approach to run with more subepochs per epoch exposes more opportunities

in the optimization problem to multiplex larger numbers of queries on the given

processing resources. However, the number of subepochs is directly linked with both

epoch duration and subepoch duration (in particular epoch duration is subepoch

duration times number of subepochs). Assuming network administrators fixed epoch

duration based on their particular monitoring requirements (since epoch duration

fixes minimum latency across all queries), adding more subepochs also leads to

shorter subepochs reducing the fraction of time spent actually monitoring traffic

compared to the fixed amount of time required to reconfigure switch hardware between

each subepoch. In light of these facts, the number of subepochs (or, equivalently,

subepoch duration) must be configured carefully to avoid either too constrained

optimization problems (too few subepochs) or too much reconfiguration overhead (too

many subepochs). We provide an empirical illustration of this tuning requirement in

§ 5.1.3.5 which demonstrates that between 4 and 8 subepochs per epoch achieves a

sort of sweet spot between these two extremes regardless of epoch duration.

4.1.2.2 Challenges of Online Optimization. Unlike prior work

(e.g., [70]), the inputs to our optimization problem are dependent on task dynamics

(e.g., the set Q can vary each epoch) and traffic dynamics (e.g., the suggested nacc
i

could increase in response to increased traffic variability). Hence, we must solve the

optimization problem independently in each epoch. However, although our problems
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are usually simple enough to be solved in a number of milliseconds as mentioned above,

invoking an optimization solver in an online scheduling method is still fraught with

challenges. First, certain combinations of inputs and constraints can lead to infeasible

problems where it is impossible to satisfy all constraints. Second, since integer

programming is a well known NP-complete problem, finding an optimal solution

can take exponential time in the worst case. In what follows, we describe several

precautions that we take in the design of our scheduler to ensure these challenges do

not adversely affect the performance of the telemetry system.

Dealing with infeasible queries. Our first strategy to deal with infeasible

optimization problems is to require that all submitted queries can be executed on the

given switch resources in the absence of other queries. In particular, if a query requires

more than T TCAM entries, A ALUs, or M counters, the scheduler must reject that

query outright, since it will not be able to execute on the given switch hardware.

This ensures that our scheduler can always make progress on the current pool of

submitted queries by selecting a single query and allocating the full switch resources

for all subepochs. We note that a query partition scheme similar to Sonata [70] could

be added to our system to handle this case more elegantly, but leave this to future

work.

Dealing with slow optimizations. To deal with the potentially exponential time

that could be required to converge to an optimal solution, we limit the duration of

time spent in the optimization algorithm to an acceptable fraction of total epoch time.

This method, known as early stopping, is a well-known technique to gather feasible,

good, if not fully optimal solutions [131, 133]. When the optimization process stops

due to this time limit, the current solution must still be checked for feasibility and

only allowed to execute if it is, in fact, feasible.
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Fail-safe. In cases where the optimization problem is either proven infeasible or times

out before converging, we fall back to a simple heuristic “fail-safe” mode of scheduling.

We also deny all new query submissions when in fail-safe mode to notify network

administrators that the system is currently saturated and to prevent the accumulation

of a large backlog which could cause the optimization problem to remain infeasible

in future epochs. Our simple heuristic fail-safe scheduling scheme greedily selects the

query closest to its deadline and allocates this query fully to switch resources. To

increase progress in fail-safe mode, we also add other queries that use the same or a

subset of the selected query’s traffic slices until either the memory or ALU limit is

reached. Since queries scheduled in this mode execute for each subepoch, nj/N = 1

for that epoch ensuring progress towards accuracy targets (i.e., that the standard

error SE(t̂E) decreases as E increases: see Equation 4.2), though some queries may

suffer increased latency.

Another approach to dealing with situations where a feasible schedule cannot be

found is to send slices of traffic to the collector and compute query results in software.

In this approach queries running during fail-safe mode could still meet tight latency

goals at the expense of increased load on the collector. Depending on the nature of

situation triggering fail-safe mode, this could impose infeasible processing loads on the

collector or lead to excessive congestion between switch and collector. In future work,

we plan to investigate solutions to this problem including combinations of heuristic

scheduling and moving query operations to software.

4.2 Spatial Tools

This section considers a class of traffic queries that seek to detect particular

sets of addresses (e.g., addresses responsible for sending volumetric DDoS attack

traffic). Rather than monitoring all addresses directly, which may be infeasible due
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to limited SRAM, our approach leverages prefix-level metric (or feature) collection

and iterative refinement. We first describe how our novel “scheduling” approach to

prefix-level refinement “zooms-in” on the target prefixes in § 4.2.1, then describe two

key algorithmic components to improve the efficiency and robustness of prefix-level

refinement in § 4.2.2.

4.2.1 Iterative Prefix Refinement. To describe our approach to prefix-

level refinement, we first consider limitations of several baseline approaches (§ 4.2.1.1),

then introduce several key policies of our design (§ 4.2.1.2), and finally consider how

to leverage a result of multifractal scaling of observed addresses (see § 3.2)—that

there is no “ideal” prefix length—by dynamically deciding at what prefix length to

terminate refinement (§ 4.2.1.3).

4.2.1.1 Baseline Approaches. In general, approaches to prefix-level

iterative refinement [120, 179] maintain a list of monitored prefixes F . Packets are

grouped by these prefixes and aggregate features computed for each prefix (e.g., by

submitting dataflow queries [70, 187, 118]) during a monitoring window or epoch

(e.g., 1 s). Between epochs a set of decisions are made about how to update F for

the next epoch based on features computed in the previous epoch. Typically these

decisions are to “zoom-in” on a particular prefix (e.g., replace 10.10.0.0/16 with

10.10.0.0/17 and 10.10.8.0/17) or to “zoom-out” by combining two sibling prefixes.

In the case of volumetric DDoS signature detection, the goal is to zoom-in on prefixes

that contain attack sources and zoom-out on benign prefixes.

Existing approaches to prefix-based refinement have one of two undesirable

properties. First, approaches like MRT [179] use tree-like data structures to

implement prefix matching on CPUs and zoom-in on every suspected attack prefix,

leading to an exponential increase in the number of prefixes whose features must be

108



collected and processed during each epoch. Second, approaches like DREAM [120]

use a fixed number of TCAM entries on programmable switches and every time they

zoom in on a prefix, they also choose another pair of siblings to zoom out on.

Our initial experiments quickly confirmed that neither of these approaches are

sufficient for volumetric DDoS attack signature detection. The MRT approach of

zooming in on every prefix classified as suspicious quickly exhausts the limited number

of TCAM slots. The proposed algorithms in DREAM [120] also struggle to effectively

zoom in to sufficiently long prefix lengths. Consider the simple example where there

is only one attack prefix, 10.0.0.0/8. As shown in Figure 20, DREAM requires

monitoring eight other prefixes even though they may be entirely empty.

128.0.0.0/1
64.0.0.0/2

32.0.0.0/3
16.0.0.0/40.0.0.0/5
12.0.0.0/68.0.0.0/7 11.0.0.0/810.0.0.0/8

Figure 20. Monitoring one attack prefix 10.0.0.0/8 in DREAM [120] requires
monitoring an additional 8 benign or empty prefixes in order to maintain a complete
cover of the address space.

4.2.1.2 Scheduling Prefixes on Fixed Monitoring Slots. To address

these algorithmic short-comings in the light of volumetric DDoS attack signature

detection, we develop a novel approach based on the high-level idea of scheduling

which prefixes to monitor each epoch. We augment the set of prefixes F with two

other sets: R which contains prefixes which have already been reported as part of

the attack signature, and H which contains non-scheduled prefixes “held-out” in

CPU memory for consideration in future epochs. During each epoch, we use a fixed

number of prefix monitoring slots compiled into switch hardware to compute features

for prefixes in F (each slot computes all features for a single prefix). Between epochs,
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we apply a procedure called EpochUpdate() to update all three sets to zoom in

on attack signatures. The key decisions of our approach stem from two high-level

scheduling policies, children-first and never-zoom-out as illustrated in Figure 21.

Prev. Epoch EpochUpdate Next Epoch

f1'
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f3'
f4'

f1
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Figure 21. Iterative prefix refinement to zoom-in on suspicious prefixes while using
fixed monitoring resources.

Children-first. The children-first policy is based on the intuition that if the model

classifies a prefix as containing attack traffic, it is more likely that a child of that prefix

will also contain attack traffic in the next epoch compared to any other prefix. As a

result, we schedule all newly-zoomed-in-on children before any other prefixes under

consideration. Only once these child prefixes have been cleared as non-suspicious, do

we remove them from F to H.

Never-zoom-out. The never-zoom-out policy is based on the intuition that even if

a prefix does not look suspicious in a particular epoch, it may still become suspicious

in the future (e.g., due to changes in attack source, or fluctuations in benign traffic).

As a result, instead of zooming out as in DREAM, we collect all prefixes ever zoomed

in on in H. This way, even if the attack vectors or sources change, our approach can

quickly recall its previous progress and continue zooming in where it left off, thus

110



avoiding the slow control loop vulnerability [24] associated with approaches that do

not maintain this kind of longer-term state (e.g., Jaqen [103]).

Note that although F is constant in size, R ∪H grows after most epochs during

the active-attack phase. We leave questions of how to interpret and ultimately reset

F , R, and H in the post-attack phase and/or how to optimally pre-condition these

sets in the pre-attack phase to future work.

Key parameters. Our approach includes two key parameters that effect the iterative

refinement process. First, prefixesPerEpoch determines the number of feature

monitoring slots available in switch hardware (i.e., an upper bound on |F |). Increasing

prefixesPerEpoch enables our approach to observe a larger region of the address

space each epoch and can in some cases reduce the number of epochs to reach an

accurate attack signature, but increases our approaches hardware resource footprint.

Second, bitsPerEpoch determines how many bits are added to the length of prefixes

when we zooms in on them. Although intuitively larger value of bitsPerEpoch

allow us to zoom-in faster, since each zoom-in decision generates 2^bitsPerEpoch

children, setting bitsPerEpoch too high generates too many children to monitor

and can actually cause our approach to zoom-in slower due to the limit imposed by

prefixesPerEpoch.

4.2.1.3 Deciding Length of Reported Prefixes. Given that prefix

lengths increase monotonically in our approach (by the never-zoom-out policy), a key

consideration is when a prefix flagged by the model as potentially containing attack

traffic should be reported in the attack signature. On the one hand, reporting at too

short of prefix lengths leads to high false-positives. On the other hand, reporting at

too long of prefix lengths leads to wasting monitoring resources and increase detection
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time. Ultimately, as shown in Figure 22 optimal prefix-level partitions of attack and

benign sources require a wide range of prefix lengths (e.g., /10 to /25).
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Figure 22. Distribution of lengths of prefixes used for optimal separation between
attack and benign traffic in realistic attack scenarios with varying numbers of attack
sources. (See § C.1 for details of the scenarios.)

To better approximate these optimal prefix-level partitions, we develop an “early

stopping” method to decide when prefixes that are flagged by the model should be

included in the report set R (and hence removed from active consideration in F

and H). Since the primary concern is to avoid reporting prefixes that also contain

benign sources, early stopping leverages a profile of benign traffic collected during the

pre-attack phase.

In particular, we define Benign-Proximity(y, p) = n/232−p for a given prefix

y of length p where n is the number of benign sources observed in y during the

pre-attack phase. During the active-attack phase, if the model flags a prefix f

of length ℓf as suspicious, we report f and move it to R if and only if Benign-

Proximity(f, ℓf ) is less than a threshold. Computing Benign-Proximity(y, p)

requires monitoring distinct sources for the most recent m seconds in the pre-attack

phase. In our evaluation, we found that m=120 s yields sufficiently accurate results

while requiring modest resources. For example, in our hardware prototype we used a

∼131 KB Bloom filter.
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4.2.2 Improving Refinement Speed and Robustness. Although

the children-first and never-zoom-out policies are key to realizing our refinement

techniques, they require additional algorithmic components (beyond those described

in § 4.2.1) to cope with dynamic changes to the set of target address (e.g., changes

to attack sources observed in modern volumetric DDoS attacks). We first discuss

our “look-ahead” technique which reduces the number of prefixes which must be

monitored when “zooming-in” (§ 4.2.2.1), then discuss our “look-back” technique

which keeps a low-overhead view of regions of the address space not currently

scheduled for monitoring (§ 4.2.2.2).

4.2.2.1 Look-Ahead to Avoid Empty Children. The children-first

policy requires allocating monitoring slots for all children of any prefix flagged by

the model as suspicious but not yet ready for reporting. However, due to the relative

sparsity of observed addresses, some of these children almost always turn out to be

inactive and hence waste precious switch resources. For example, with bitsPerEpoch

= 4 and a parent prefix with only one active child, we would waste 15/16 monitoring

slots.

To address this problem, we develop a novel look-ahead method that encodes

information about which children are active in the features gathered for each parent

prefix. In particular, as shown in Figure 23a we add a per-prefix “child bitmap”

where each bit represents a potentially active child. When a packet matches prefix f

of length ℓf , we extract the ℓf + bitsPerEpoch bits of that packet’s source address

and use them as an index into f ’s child bitmap. During EpochUpdate(), if f is

identified as suspicious by the model, we then read f ’s child bitmap and only select

the children of f whose bits were set for monitoring in the next epoch. The child

bitmap requires adding an extra feature with 2^bitsPerEpoch bits per prefix. For
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example, at bitsPerEpoch = 4, this only adds 16 bits (compared to the several 32

fields already required for the other features).

f1

1
0
1
0

Risk Model
Susp.

child bitmap f1'
f2'

Switch CPU

(a) Look-ahead increases zoom-in
rate by focusing on active children.

f1
Risk Model

Lookup

Non-susp. f1'

h1 hnh2 ...

B

Switch CPU
h1'

(b) Look-back brings back
active hold-out prefixes when attack
changes.

Figure 23. Extensions to the scheme of Figure 21 to deal with dynamic changes in
the set of attack sources.

4.2.2.2 Look-Back to Catch Changes. Although the never-zoom-out

policy ensures that our approach can always make progress towards refining attack

signatures even when the attack sources change, a critical consideration not addressed

in § 4.2.1 is which prefixes from H should be added to F when extra monitoring slots

are available. Again, due to relatively sparse population of the observed address

space, simplistic methods like taking the first prefixesPerEpoch from H lead to

wasting monitoring slots on empty prefixes.

To address this problem, we develop a look-back method that casts a wide net

over all regions of the address space not monitored in F . Our key observation is that

we do not necessarily need to discover exact regions sourcing new attack traffic, but

only need to re-focus the refinement process on currently active regions of the address

space. In particular, as shown in Figure 23b we use a simple Bloom filter [37] B to

build an (approximate) list of distinct sources that don’t match prefixes in F . Then

when extra monitoring slots are available, we select prefixes from H based on their

membership in B.
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CHAPTER V

APPLICATIONS: ALGORITHMS IN ACTION

The content in § 5.1 is adapted from [118] and [116]. The content in § 5.2 is

adapted from [117].

This chapter describes how we combine characterizations of traffic structure from

Chapter III and design elements from Chapter IV into practical telemetry systems

targeting real-world traffic monitoring tasks. First, in § 5.1 we describe a system

named DynATOS, which leverages our time-domain designs to process large numbers

of dynamically-submitted traffic queries while remaining robust in the face of the time-

domain structure of traffic. Second, in § 5.2 we describe a system named ZAPDOS,

which leverages our space-domain designs to quickly detect prefix-level signatures of

volumetric DDoS attacks.

5.1 Handling Query and Traffic Dynamics with DynATOS

This sections describes how we leverage the temporal design elements and

algorithms introduced in § 4.1 to develop a concrete telemetry system for dynamically-

submitted traffic queries that remains robust under realistic time-domain traffic

structure. In particular, § 5.1.1 describes the concrete design decisions made to realize

DynATOS, § 5.1.2 describes our implementation and evaluation of a prototype version

of DynATOS build on real programmable switch hardware, and § 5.1.3 describes an

extended evaluation of the performance of DynATOS based on simulation over real-

world packet traces.

5.1.1 DynATOS System Design.

5.1.1.1 Overview. At its core, DynATOS is composed of three main

components as shown in Figure 24. Network administrators submit queries along with

accuracy and latency goals to the scheduler via a high-level REST API. The scheduler
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then translates queries into their primitive operations and constructs schedules for

how these operations should be run on switch hardware given a stateful awareness

of current traffic compositions based on observed results of previously executed

queries. These schedules are then handed to a (state-less) runtime component which

communicates with switch hardware to execute the primitive operations and collect

intermediate results. Once ready, the runtime component gathers all results and

passes them back to the scheduler and network administrators.

Scheduler

Runtime

Switch Hardware

Epoch
Schedules

Subepoch
Operations

Subepoch
Results

Epoch
Results

Queries

Network
Administrators

Collector REST API

Figure 24. Architecture of DynATOS.

Following the designs outlined in § 4.1, accuracy goals in DynATOS can be

expressed either in relative or absolute terms. Relative accuracy goals are specified

using target coefficient of variation (CV) and absolute accuracy goals are measured

using target standard error. From a network administrator’s perspective, using the

relative accuracy measured by CV may be a more reasonable and practical choice

because CV is independent of the magnitude of the underlying values computed,

that is, it is “unit-less” or “dimension-less”. By basing accuracy goals on CV

and automatically converting to standard error based on current traffic conditions,

DynATOS frees network administrators from a potentially painful accuracy goal

tuning process. For example, a network administrator can simply specify an accuracy
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goal by setting a CV target of ±10% for all queries submitted and then let DynATOS

automatically find the corresponding standard error over several epochs.

5.1.1.2 Scheduling horizon. Since queries can arrive at any time, we

must decide when and for how far into the future resources should be scheduled. We

first examine several possible approaches to this problem, then describe our approach

in the next paragraph. One option is to compute the schedule each time a new

query arrives and adjust all existing queries to the new schedule. While this option

minimizes the time a query has to wait before it can start executing, it complicates

the realization of accuracy and latency goals since the duration of the scheduling

horizon (i.e., until the next query arrives) is unknown when forming the schedule.

Alternatively, we could compute the new schedule each time all queries in the prior

schedule terminate. While this option ensures schedules can be executed exactly as

planned, newly submitted queries may experience a longer delay.

We choose, instead, to make scheduling decisions at fixed windows of time

which we call epochs (e.g., every 5 s). This allows a balance between the two

schemes mentioned above: queries must wait at most the duration of one epoch

before executing and during an epoch queries are ensured to execute according to

the schedule. In particular, we divide the scheduling epoch into N subepochs and

our scheduler assigns subsets of the submitted queries to each subepoch as shown in

Figure 25. Subepochs provide flexibility to schedule different queries at different times

while also providing concrete resource allocation units. Queries submitted during

an epoch are checked for feasibility and only considered in the following epoch. For

example, in the figure, Q4 is added sometime during epoch 2, but cannot be scheduled

until epoch 3. During the epoch, the scheduler collects intermediate results for each

subepoch in which a query is executed and aggregates these subepoch results based
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on the query’s aggregation operation. Once an epoch completes, results of complete

queries are returned, while new and incomplete queries (e.g., queries that have not

yet met their accuracy goal, or queries that have a longer latency goal) are considered

for the next epoch. For example, in Figure 25 Q3 completes execution in the second

subepoch of epoch 2 and its results are returned during the scheduler invocation before

epoch 3. We further assume that each query executes over traffic in a single epoch and

telemetry tasks requiring longer measurement durations than our scheduling epoch

can simply re-submit queries.

Q4 added

Time

Epoch 1 Epoch 2 Epoch 3

Subepochs

Q3 results returned

Scheduling decision points

Q1
Q2
Q3
Q4

Legend

Figure 25. Example of scheduling 4 queries with N = 3 subepochs per epoch.

5.1.1.3 Design Challenges. In order to successfully leverage the ideas

introduced in § 5.1.1.1, we must solve several concrete design challenges discussed

below.

D1: Approximating generic query results. Efforts like Marple and

Sonata develop expressive query description languages which map into data plane

computation models. However, approximation of query operations is often necessary

due to limited data plane resources and massive traffic volumes. It is unclear

how state-of-the-art approximation methods can be leveraged to work with queries

expressed in languages like Marple or Sonata. As discussed in § 2.2.1, the currently

proposed baseline approach of simply replacing stateful reductions in Sonata queries
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with sketch-based primitives requires prior knowledge of worse-case traffic conditions

and does not perform well under dynamic traffic scenarios.

On the other hand, directly setting a fixed number of subepochs in which to run

query operations as discussed in § 5.1.1.1 does not consistently translate into query

result accuracy. To illustrate, Figure 26 shows the accuracy (as F1 score) of four

queries on a single trace with a fixed allocation of 6 out of 8 subepochs (details of

the queries, metrics, and settings used in this experiment are given in § 5.1.2). The

accuracy of each query is clearly different with median over the trace ranging from

∼0.48 for TNC to ∼0.93 for DDoS demonstrating the challenge in reasoning about

query accuracy from the number of subepochs in which the query is executed.

0.00
0.25
0.50
0.75
1.00

DDoS PS SS TNC
Query

F1

Figure 26. Median F1 score of various queries on a single trace (MAWILab [61] 2022-
08-30) under fixed allocation of 6 out of 8 subepochs in all epochs. The different
accuracy achieved by each query illustrates the challenge of translating the number
of subepochs executed to query accuracy.

D2: Estimating accuracy of approximations. Approximate query results must

be accompanied with a sound estimate of their accuracy. This is critical for network

administrators to understand the system’s confidence in detecting a particular event

or reporting a particular metric and equally critical in dynamic telemetry systems to

inform the balance of resources between approximate queries. Prior efforts have made

progress towards this goal [120, 121, 78], but none anticipate accuracy estimation for

current state-of-the-art generic query descriptions in dynamic telemetry systems.
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We extend the illustration of Figure 26 by considering a single port scan (PS)

query run in a fixed number of subepochs. Each line in Figure 27 shows distribution

of accuracy achieved by PS (run with the corresponding number of subepochs) over

a sample of 28 traces from MAWILab [61]. The wide spread of each distribution on

the x-axis indicates that query accuracy varies significantly in response to different

traffic compositions in the sampled traces, regardless of number of subepochs. Even

when all 8 subepochs are allocated, the query still achieves less than perfect accuracy

on some traces due to the brief system down times during reconfiguration between

subepochs. As a result, even if the relationship between number of subepochs and

accuracy could be captured statically for individual queries, query accuracy would

still vary greatly depending on the underlying traffic composition.

0.00
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0.50
0.75
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0.25 0.50 0.75 1.00
F1 score

C
D
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# subepochs 2 4 6 8

Figure 27. Distribution of F1 score (w.r.t. ground truth) of the port scan query for
different (fixed) numbers of subepochs over sample of 28 traces from MAWILab. For
each fixed number of subepochs, the query achieves a wide range of F1 scores over
different traces implying the system must dynamically estimate accuracy.

D3: Allocating finite hardware resources among variable sets of queries

under traffic dynamics. Very few prior efforts address the need of a telemetry

system to evaluate multiple concurrent queries on finite hardware resources. In

order to handle traffic dynamics, such a system must dynamically update resource

allocations based on the estimated accuracy of each query. Moreover, since it is
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possible that the given resources will be insufficient to meet the accuracy of all queries,

such a system must enable network administrators to express query priorities and

allocate resources with respect to these priorities.

5.1.1.4 Our Solutions. We develop a novel approximation method based

on cluster sampling theory and runtime programmable capabilities to address D1

and D2. Cluster sampling is known to be a good fit for scenarios where the

overheads (e.g., cost) of sampling large groups of the population (e.g., subepochs)

are significantly lower than the overheads of sampling individual population members

(e.g., packets) [105]. Runtime programmability exposes exactly such a scenario: large

groups of packets can be sampled each subepoch and only (small) aggregate results

need to be reported to the collector. In contrast, per-packet sampling, where each

packet needs to be considered a candidate for sampling, incurs non-trivial per-packet

overheads (in switch hardware) and a copy of each sampled packet needs to be sent

to the collector resulting in non-trivial communication overheads.

We leverage cluster sampling to address D1 by applying it to the first aggregation

operator in multistage queries. For example, in the DDoS query we only approximate

computation of the distinct source-destination pairs list and execute all subsequent

operations exactly. The intuition behind this is that each aggregation operator

in a telemetry query reduces the volume of data passed to the next operator.

Therefore, reducing the resource requirements and volume of data emitted from the

first aggregation reduces the load on all subsequent operators.

Cluster sampling naturally addresses D2. As the underlying traffic composition

changes, each sampled subepoch presents a snapshot of the changed traffic

composition. § 4.1.1 describes the details of how we use the formal error bounds of

cluster sampling to actively adapt resource allocations as traffic composition changes
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across multiple epochs. Compare this with sketch-based traffic monitoring. Because

a sketch’s accuracy degrades as the number of keys increases, it is difficult to tell from

the sketch counters alone if the traffic composition has changed. Moreover, without

knowing the ground truth traffic composition, it is difficult to determine the accuracy

of a sketch-based result in order to drive allocation decisions in future epochs.

To address D3, we integrate our approximation technique in a scheduler that

determines how a number of concurrent queries should be executed on a single switch

hardware, balancing resources between queries to satisfy accuracy and latency goals

set by network administrators. As described in § 4.1.2, our scheduler uses a novel

multi-objective optimization formulation of the problem of when to run which queries

given query priorities and resource constraints. This formulation allows the scheduler

to balance between the goals of multiple concurrent queries, sometimes allocating less

than the exact number of subepochs when queries have lower priority and resources

are scarce (e.g., due to a large number of concurrent queries).

Finally, we develop a runtime system leveraging these ideas to efficiently execute

schedules on switch hardware, gather intermediate results, apply factors to correct

for sampling, and return results to network administrators in a high-level format.

Based on these results, administrators can then decide to execute new queries in the

subsequent epoch, or to re-execute the same queries.

To illustrate how our key ideas apply to telemetry system design, we return to the

examples introduced in Table 1. First, cluster sampling method can be applied to the

first aggregation stage of a wide range of queries including the DDoS, port scanning,

and TCP latency queries. Second, if the number of sources increase (e.g., as shown in

Figure 6), each sampled subepoch in our system will return a proportionally increased

number of tuples thereby increasing the volume of reports exported while maintaining
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high accuracy. Compare this to sketches where the increased number of sources would

increase the number of hash collisions reducing accuracy of results. Note that state-

of-the-art approaches [189, 188] dynamically allocate new sketches when the number

of keys changes (to preserve sketch accuracy). However, this approach is infeasible in

current switch hardware. Finally, if the network administrator needs to dig into root

causes (e.g., of TCP latency), our scheduling approach handles the burst of queries

by adapting the optimization problem to account for the new query’s accuracy and

latency goals while assigning query operations to limited switch hardware.

5.1.1.5 Limitations and Assumptions. Monitoring problems

addressed by DynATOS. As shown in Figure 28, DynATOS can monitor

traffic queries whose first steps (in the Sonata [70] paradigm) are filter, key-by,

reduce followed by arbitrary post-processing. In the current work we only apply

approximation to the first three operators (i.e., to the first aggregation) and compute

post-processing exactly. Moreover, DynATOS’s approximation method implies the

traffic features computed by these queries satisfy the following assumptions.

• Feature values do not fluctuate excessively over measurement durations of one or

two seconds.

• The monitoring task can be implemented using features gathered at a single point

in the network.

• Features are constructed from packet header fields and/or other switch-parsable

regions of the packet.

• Features can be computed using atomic filter, map, and reduce operations.

Under these assumptions monitoring tasks like detecting microbursts [47], identifying

global icebergs [63], and detecting patterns in TCP payloads [38] cannot be efficiently

executed using DynATOS. However, tasks like the DDoS, port-scanning, and latency
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detection examples of Table 1 along with a wide range of tasks considered in prior

efforts with similar assumptions (e.g., [120, 123, 70]) can be effectively executed using

DynATOS.

Filter pred → KeyBy key → Reduce op → Post-proc.

Figure 28. Visualization of type of queries supported by DynATOS as a pipeline of
atomic operations.

Switch hardware model. In the following, we assume a restricted runtime

programmable switch hardware model. In this model, switch hardware is able to

execute the first Filter, KeyBy, and Reduce operators shown in Figure 28 for

a number of independent queries maintaining dynamic allocation of per-key state

between queries. Similar to Newton [187], our switch hardware allows arbitrary

parameterization of these operators at runtime. For example, switch hardware could

execute the filter and reduce commands required by the Sonata TCP new connections

queries for a period of time, then quickly (e.g., within a few milliseconds) be re-

programmed to execute the filter and reduce commands required by the Sonata

DDoS query. We note that our scheduling methods are independent of this particular

switch hardware model and could readily be applied to more fully programmable

ASICs [39, 8].

Network-wide scheduling. Ultimately, administrators need to query traffic across

different logical or physical domains of their network. This implies that telemetry

systems should collect information from a distributed set of switches (or other

monitoring points) and provide a global view of network traffic. In this work, we

consider only a single monitoring point (e.g., a critical border switch) and leave

the challenges of distributed scheduling of telemetry operations to future work.
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Nonetheless, a single switch deployment on a enterprise or data center border switch

can still be highly effective in executing the types of queries considered.

5.1.2 Hardware Prototype Evaluation. In this section, we describe our

evaluation of DynATOS and demonstrate the following key results.

• The time-division approximation technique in DynATOS is more robust than state-

of-the-art in the face of traffic dynamics and offers comparable performance to

state-of-the-art sketch-based approximate techniques (§ 5.1.2.2).

• The scheduling method in DynATOS handles dynamic query workloads with up to

one query every second and leverages specific accuracy and latency goals to reduce

per-query resource usage (§ 5.1.2.3).

• Latency overheads in DynATOS are minimal and dependent on the load on the

collector and the number of queries which must be updated in switch hardware

(§ 5.1.2.4).

5.1.2.1 Experimental Setup. Setting. We evaluate DynATOS on a

BCM 56470 series [18] System Verification Kit (SVK) switch running BroadScan [2]

which implements the telemetry operations described in § 5.1.1.5. Our version of

BroadScan has A = 8 parallel ALU operators, and a flow table with M ≈ 9MB of

memory. A software agent on the switch’s CPU manages reconfiguration of hardware

in response to requests from the collector. Our collector and scheduling software runs

on a server with an Intel Xeon Gold 5218 CPU at 2.3Ghz and 383GB memory. This

server is equipped with a 40Gb Mellanox MT27700-family network card connected

directly to the SVK’s data plane. A separate 10Gb Intel X550T network card on

the same server connects to the SVK’s management interface to manage updates to

hardware configuration as schedules execute.
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Traces. Unless otherwise stated, we replay a trace from the MAWILab traffic data

set (Sept. 1st, 2019) [61] using tcpreplay [17]. We selected this trace as a baseline

because some of its features are static while others are more dynamic.

Default parameters. We use five-second scheduling epochs to allow sufficient

measurement duration without incurring excessive delay of results which must wait

for epoch boundaries. We divide epochs into N = 8 subepochs so that the schedule

has sufficient options for arranging queries without making subepochs too short to

generate useful samples. We set objective weights to balance between priorities and

suppose queries will get all future subepochs when evaluating Equation 4.4. Queries

are submitted with realistic values of σ based on baseline measurements of their

variances in the trace. We set α = 1/2 in the EWMA estimation described in

§ 4.1.2.1. Bars show median and error bars show 5th and 95th percentiles over all

epochs of the trace.

Query workloads. We use DynATOS to implement four of the telemetry queries

originally introduced by Sonata [70] and used in several recent efforts. Our hardware

model handles a fixed sequence of filter and reduction operations so we implement the

remaining query operations in software. This scenario is equivalent to Sonata with a

limited number of switch hardware stages. We report the accuracy of approximate

implementations of these queries as F1 score (the harmonic mean of precision and

recall) by comparing against ground truth computed offline. In addition to static

queries, we generate dynamic query workloads based on random processes to evaluate

DynATOS (see § 5.1.2.3). To the best of our knowledge, there is no comparable

publicly-available dynamic query workload benchmark. Our workloads are publicly

released at [13] to support validation of our results and to facilitate benchmarking of

similar systems in the future.
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Implementation. We implement the DynATOS scheduler in ∼14k lines of C and

C++. Following ProgME [179], we use BDDs to represent query filter conditions in

our implementation of the Disentangle algorithm (§ 4.1.2.1). We use the open

source CBC implementation [6] to solve the optimization problems described in

§ 4.1.2.1. Our implementation also defers some result processing operations to the

time spent waiting for results from switch hardware to improve efficiency.

Comparisons. We compare DynATOS with ElasticSketch [176], Newton [187],

and SketchLearn [78]. We modified the implementations of both ElasticSketch

and SketchLearn to support the filter and reduce operations required by several

of the Sonata [70] queries. Though we were unable to locate a publicly

available implementation of Newton, we implemented its sketch-based approach

to approximating Sonata’s primitive operators. In particular, we use count-min

sketch [50] to approximate the reduce operator and a bloom filter [65] to approximate

the distinct operator.

5.1.2.2 Performance of Time-Division Approximation. Robustness

in the face of traffic dynamics. To address the question of what happens when

traffic composition changes significantly we consider an excerpt from the MAWILab

dataset taken on Nov. 14th, 2015. As shown in Figure 6, this excerpt features

nominally static traffic followed by a dramatic surge in the number of sources around

100 seconds into the trace.

To understand how different methods handle this change in traffic dynamics,

we first tune each method’s parameters to achieve high accuracy (F1 ¿ 0.9) on the

first 100 seconds of the excerpt, then run the method with these parameters over the

entire excerpt. Since it is possible that this anomaly was cause by some form of DDoS

attack, we run the DDoS query in this scenario to locate the victim of the attack.
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This is intended to reflect a realistic situation where a method was deployed and

tuned for a particular traffic composition, which then changes. In real deployments,

such changes could be caused by attacks or performance anomalies and represent the

moments when data collected from a telemetry system is most critical.
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Figure 29. Performance of different methods on the 2015 MAWILab excerpt shown
in Figure 6.

Figure 29 shows the F1 score and number of tuples returned to the collector in

each epoch over the trace excerpt. All methods achieve high accuracy for the first

20 epochs, but then when the number of sources increases after the 20th epoch, they

diverge significantly. First, we note that DynATOS is able to maintain high accuracy

where other methods suffer by dynamically increasing the load on the collector. This

is a result of the natural robustness of our non-parametric sampling method: when the

underlying traffic composition changes, those changes are reflected in each sampled

subepoch causing the volume of data reported for each subepoch to increase to ensure

steady accuracy.

The sketch-based methods in ElasticSketch and Newton, on the other hand, are

limited by the static table sizes configured for the first 20 epochs: once the traffic

composition changes, these tables become saturated and excessive hash collisions lead
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to F1 scores below 0.5. We confirm that the average number of hash collisions per

epoch jumps by 2× when the traffic distribution changes in epoch 21. We note that

these sketch-based methods also offer no easy way to estimate the accuracy of returned

results, so while an operator may become suspicious due to the slight increase in load

on the collector, they would have no way to verify that the accuracy of these methods

is compromised.

Sketchlearn differs from other methods in that it reconstructs flow keys based on

data stored in a multi-level sketch. Sketchlearn guarantees only that it will be able

to extract all flows that make up more than 1/c of the total traffic where c is the

fixed number of columns in the sketch. We confirm that in this trace, the increased

number of sources is caused by a large number of small flows (one to two packets).

As such, the threshold to be extracted increases, but none of the added flows are able

to meet it and so SketchLearn is unable to extract existing as well as new flows with

high enough confidence. SketchLearn does associate accuracy estimates with these

results so an operator could be notified of this situation, but would have to reload

their switch’s pipeline with a larger value of c in order to achieve acceptable accuracy.

Overall accuracy-load tradeoff. As in previous efforts [70], we consider the volume

of data returned from switch hardware to the collector (i.e., load on the collector) as

a critical resource. Each approximation method can reduce this load while reducing

accuracy of query results, leading to a performance curve in accuracy vs. load space.

To empirically estimate this curve, we determine several different parameterizations

of each method, execute the method with each parameterization over all epochs of

the trace, then compute the accuracy and load on collector in each epoch. For some

queries the sketch-based methods must export their full sketches to the collector so

we report load in terms of both tuples (the number of records or events) and bytes
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(the total size of data). We use the median of each value over all epochs to estimate

the empirical performance curves.
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Figure 30. Empirically measured accuracy vs. overhead curves of DynATOS and
sketch-based alternatives for several queries from Table 1.

Figure 30 shows performance curves for four different queries with two plots for

each query showing overhead as tuples and bytes on the y-axis. Here we use the

baseline MAWILab trace so these results represent a mostly static traffic scenario.

Note that the lower right-hand corner of these plots is ideal with maximal accuracy

and minimal load. We observe that DynATOS’ novel approximation method (§ 4.1.1)

performs as well as, if not better than other methods. The sketch-based method
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proposed by Newton achieves slightly better performance in terms of total data

volume on the DDoS and Super Spreader queries because it only sends flow keys from

the first distinct operator whereas other methods also return a counter. SketchLearn

requires relatively large multi-level sketches to be exported each epoch in order to

achieve comparable accuracy on these queries despite it’s lower tuple counts. In the

case of TCP new connections, we were unable to run a large enough sketch to reach

the accuracy range shown here for other methods. We observe that for the TCP

new connections query Newton’s count-min sketch is highly sensitive to sketch size.

For example, adding a single additional counter moves the F1 score across the entire

range shown in the plot. DynATOS, on the other hand, achieves comparable if not

higher performance and offers a wider range of load savings.

5.1.2.3 Performance of Scheduling Algorithm. Dynamic query

workload. Real telemetry system deployments must deal with dynamics in the

number and types of queries submitted to the network over time. Since, to the

best of our knowledge, no representative dynamic query workloads are available, we

synthesize such workloads based on the following scheme. First, we generate a series of

base queries with random aggregation keys and granularities and arrival times based

on a Poisson process with rate λ. We suppose these base queries are submitted by

a human operator or automated process which then submits followup queries based

on base query results. In particular, when each base query terminates, we submit

between 0 and 3 followup queries with the same aggregation as the base query, but

filters added to select a single aggregation group from the base query’s results. For

example, if a base query with aggregation key source IP address at 8 bit granularity

returned results for 0.0.0.0/8, 10.0.0.0/8, and 192.0.0.0/8, we might submit followup

queries to monitor just 10.0.0.0/8 and 192.0.0.0/8. To provide contrasting accuracy
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and latency goals, base queries are submitted with looser accuracy goals (σ = 100)

and latency goals randomly chosen within a range of 1 to 5 epochs, while followup

queries are submitted with tighter accuracy goals (σ = 50) and a latency goal of 1

epoch.
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Figure 31. Example time-series of a dynamic query workload (3/5 queries per second).

Figure 31 shows the evolution of the number of queries submitted by one of our

dynamic query workloads (top plot) and traces of different operating metrics (lower

three plots). In this workload, the maximum number of queries is submitted in epoch

8 which leads to an infeasible schedule since too many TCAM entries are required

to keep track of all filter groups of followup queries. This causes our scheduler to

enter fail-safe mode for two epochs to dispatch with the excess queries. Note that the

heuristic algorithm currently used to select queries in fail-safe mode only selects a few

queries based on fully disjoint traffic slices leading to reduction of load on collector and

TCAM utilization. Under the software-based fail-safe mode mentioned in § 4.1.2.2,

the load on collector would continue increasing here while TCAM utilization would

drop.
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To understand how DynATOS scales with the rate of dynamic query workloads,

we generate a set of five workloads with different base query arrival rates. Figure 32

shows how these different workload intensities affect the performance of DynATOS

in terms of queries served (Queries), tuples emitted to the collector (Tuples), TCAM

entries used (TCAM), epochs spent in fail-safe mode (% Fail-s.), and the percentage

of satisfied queries (% Sat.) all per-epoch. We count the number of queries satisfied

as the total number of queries that received valid results during the workload run.

Note that some queries submitted when the scheduler is in fail-safe mode are denied

at submission time allowing an operator to re-submit these queries later. In these

experiments we observe that all successfully submitted queries receive results within

their target accuracy and latency goals.

We observe that, as expected, the number of queries serviced, load on collector,

and number of TCAM entries required all scale linearly with the base query rate.

As also expected, the number of queries satisfied decreases as more epochs are spent

in fail-safe mode. We observe that the main contributor to infeasible scheduling

problems in this scenario is the number of TCAM entries required to satisfy followup

queries’ filter conditions. We plan to investigate integration of more efficient TCAM

allocation algorithms in future work to address this bottleneck.

Relaxation of accuracy & latency goals. Next, we evaluate how our

approximation and scheduling method is able to reduce the per-query resource

requirements in response to relaxed accuracy and latency goals. We execute the

TCP new connections query with varying accuracy and latency goals and measure

resource usage over 10 epochs at each setting. Here we report ALU-seconds and

counter-seconds which combine both the number of ALUs (or counters) used by the

query and the duration for which these resources were used.
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Figure 32. Performance of DynATOS on dynamic query workloads.
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Figure 33. Evaluation of median resource usages for selected accuracy (y-axis) and
latency (x-axis) targets for a single query. Lighter colors indicate lower resource
usages.

Figure 33 show the resulting resource usages as both accuracy and latency goals

vary in the form of heatmaps. These results demonstrate that both accuracy and

latency goals can help DynATOS leverage our time-division approximation method

to reduce resource requirements.
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5.1.2.4 Scheduling loop overheads. Closed-loop systems like DynATOS

must quickly gather results and update switch hardware configurations between each

subepoch in order to avoid missing potentially critical traffic. We define the inter-

epoch latency as the total time spent not waiting for results from switch hardware. In

other words, the inter-epoch latency is the total time taken by our system to gather

results, reconfigure hardware operations, and decide which operations to execute in

the next epoch. We observe two distinct factors that contribute to the inter-epoch

latency: the load on the collector and the number of queries installed in switch

hardware.

Latency vs. load on collector. The first factor contributing to inter-epoch latency

is the volume of data that must be returned and processed after each subepoch. To

isolate this effect, we generate synthetic traffic consisting of a certain number of

sources each sending a steady stream of packets controlled by a Poisson process. We

then run a query that returns a single record for each source so that by varying the

number of sources in the traffic, we directly control the number of records returned

and hence the load on collector.
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Figure 34. Distribution of inter-epoch latency in our DynATOS prototype for different
loads on the collector.

Figure 34 shows the distribution of total latency for two different loads. We

observe that the median inter-epoch latency in both cases is less than 130 ms, but
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that with higher load the tail latencies grow to over a second. This is likely due to

that fact that the collector code must allocate larger memory blocks to process the

increased number of tuples returned from the switch. We leave a full investigation of

the performance of our software collector to future work.
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Figure 35. Software overheads in our DynATOS prototype as function of tuples
exported.

We further investigate how the different components of our query scheduler

impact this overall inter-epoch latency by instrumenting the scheduler. Figure 35

shows the latency break down as a function of the number of records processed for

three key components: the time to generate a schedule for the epoch (Schedule Gen.),

the time spent processing intermediate results at the end of the epoch (Proc. Results),

and the time spent sending results back to the query-submitting process (Result

Delivery). The results demonstrate that the main variable software latency is the

time to process results which scales nearly linearly with the number of records. A

more significant bottleneck is imposed by the result delivery time due to the use of

a simple REST protocol which requires new TCP connections and data marshaling

via JSON. We leave exploration of more efficient IPC mechanisms for this interface

to future work.

Latency vs. number of queries. The second main factor contributing to inter-

epoch latency is the time required to install and remove query operations on switch

hardware. This factor is influenced primarily by the amount of state which must be
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written into hardware memory which is a function of the number of queries to be

installed or removed. We generate synthetic workloads containing different numbers

of disjoint queries based again on the TCP new connections query and instrument

our switch agent to measure the time taken by writes into hardware memory.
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Figure 36. Hardware overheads in our DynATOS prototype as function of number of
queries.

Figure 36 shows the time taken by the hardware writes to add and remove

operations (Add Hw. and Remove Hw.) as well as the total time taken by the

switch agent (Add Tot. and Remove Tot.) which includes the time to deserialize

and validate configurations sent from the collector. These results show that up to

100 queries can be added or removed on our prototype in ∼10 ms (comparable to

latencies reported in prior efforts [120, 187]). We also observe that the deserialization

and validation conducted by the switch agent imposes minimal overhead. Finally, the

total contribution of switch hardware to the overall inter-epoch latency is dominated

by operation removal. This is because when removing operations, the switch agent

must also reset the entire flow table used by these operations so as to avoid future

operations anomalously reporting leftover results.

5.1.3 Simulation-Based Evaluation.

5.1.3.1 Experimental Setup. Setting. We extend our previous

evaluation in this work using packet-level simulation.
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Default parameters. All default parameters are the same as in § 5.1.2 with the

additional parameter of target CV set to cv = 5% by default.

Query workloads. As shown in Table 1, we use DynATOS to implement four of

the telemetry queries originally introduced by Sonata [70] and used in several recent

efforts. We report the accuracy of approximate implementations of these queries as

F1 score (the harmonic mean of precision and recall) by comparing against ground

truth computed offline. In addition to static queries, we generate dynamic query

workloads based on random processes to evaluate DynATOS. To simulate workloads

with different levels of bursty query arrivals, we use a fractional Poisson process [95,

130] to generate query arrival times. Fractional Poisson processes generalize the

classic Poisson process by adding a parameter µ which controls the spread of the

inter-arrival distribution. When µ = 1 the fractional Poisson process converges to the

classic Poisson process. As µ goes to zero, the inter-arrival distribution spreads out

inducing long-term dependencies or burstiness in the query arrival rate. To illustrate,

Figure 37 shows synthetically generated fractional Poisson processes with the same

mean rate, but different values of µ. We normalize query arrival times so that all

workloads have a mean query arrival rate of 1 query per second over a 900 s workload

duration. Our workloads are publicly released at [13] to support validation of our

results and to facilitate benchmarking of similar systems in the future.

Traces. To understand how DynATOS performs on a wider variety of representative

traffic, we took a simple random sample of 28 days fromMAWILab’s [61] 2015 dataset.

Each day consists of a 15 min trace starting at 2 pm. To illustrate changes in traffic

composition, we compute the CV of number of keys per-epoch and number of packets

per-epoch for each trace. Figure 7 shows the distribution of CVs over all traces in

our sample. The distribution of key-based CVs (Figure 7a) and count-based CVs
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Figure 37. Number of queries submitted each 5-second epoch for example fractional
Poisson query arrival processes with different “burstiness” parameter µ. (Only first
50 epochs are shown for clarity.)

(Figure 7b) are wider for 2015 compared to other recent years indicating these traces

provide higher diversity in traffic composition for evaluating DynATOS.

Implementation. The simulation used in this section is built on the same software

components implemented for our hardware prototype system (see § 5.1.2). At a

high-level the only modification we make is to substitute a separate software module

which implements the same interfaces as the switch hardware controller. This software

module also simulates the impact of time spent reconfiguring hardware by dropping

r seconds worth of traffic each time it is re-programmed. Based on our previous

evaluation of hardware latency overheads [118], we set r to be 10 ms.

5.1.3.2 Impact of Traffic Dynamics. To evaluate the impact of traffic

dynamics, we run each query from Table 1 over each of the 28 traces sampled from

MAWILab. To demonstrate the tradeoff between accuracy (F1 score) and load on

collector (tuples, bytes) each query is run over each trace for four settings of target

CV cv ∈ {0.1, 0.5, 1.0, 1.5}.

Figure 38 shows load on collector as a percentage of total number of bytes

required to compute ground truth (y-axis) against F1 score (x-axis) for each setting

of cv summarized over all 28 traces. With the exception of the TCP new connections
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query, all queries achieve similar accuracy ranges for each cv value. For example, at

cv = 1.5 DDoS and super spreader achieve median F1 score of ∼0.9 while port scan

achieves median F1 score of ∼0.8 for ∼20% median reduction in bytes sent to the

collector. As shown in Figure 7a, the underlying CV of the number of keys observed

in each epoch is much higher for TCP new connections (median of ∼84%), likely a

product of how this query only looks at SYN packets and each SYN packet is typically

associated with a new flow. As a result, the relationship between cv and F1 score is

quantitatively different, though qualitatively follows a similar pattern as for the other

queries. For example, at cv = 0.5 TCP new connections achieves median F1 score

of ∼0.9 and an ∼11% reduction in bytes sent to the collector. Overall, as a rule-

of-thumb, we note that for distinct-count queries (e.g., DDoS, Port Scan, and Super

Spreader), cv of up to 1.5 results in reasonable accuracy whereas for count-based

queries like TCP new connections, cv should be kept lower (e.g., up to 0.5).

Given that Figure 38 shows a relatively large range of F1 scores over all traces for

each particular cv, we further investigate how different properties of the underlying

traces impact F1 score. In particular, we compute the CV of the number of keys in

each epoch across each trace in our sample as a metric to summarize the trace’s level

of traffic composition dynamics.

Figure 39 compares the level of dynamics in each trace (x-axis) with the F1 score

achieved by DynATOS for a fixed setting of cv = 0.1 (we observe qualitatively similar

trends for other values of cv). As expected, different queries observe different levels

of traffic composition dynamics (e.g., CV between 0.03 and 0.42 for DDoS compared

to 0.38 and 1.15 for TCP new connections). We note that for most queries, F1 score

is only weakly correlated with underlying trace dynamics demonstrating DynATOS’s

ability to provide consistent accuracy in the face of trace dynamics. The TCP new
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Figure 38. Performance tradeoff for single queries over sample of 28 15-minute
MAWILab traces for different target CV goals (colors show different target cv).

connections query is again a bit of an exception for similar reasons as in Figure 38:

since each key is typically only associated with a single SYN packet, when the number

of keys varies, DynATOS has little opportunity to catch keys that arrived during un-

sampled subepochs.

5.1.3.3 Impact of Query Workload Dynamics. To evaluate the

impact of query workload dynamics on DynATOS, we run dynamic query workloads

generated by a fractional Poisson arrival process as described in § 5.1.3.1. To minimize

the impact of trace dynamics, we use a single trace from our sample with relatively

low CV across all query key types (in particular we use the trace from Feb. 22). To

compare the two options for specifying accuracy goals, we use DynATOS+ to refer

to results based on relative accuracy goals and DynATOS to refer to results based on

absolute accuracy goals (recall § 4.1.1.3). We configure the relative accuracy queries
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Figure 39. Performance for single queries at a fixed CV goal (0.1). Each point
compares F1 score and CV of the number of keys per epoch (relative to each particular
query type) for a single trace from our sample.

(DynATOS+) to target cv = 0.1 and compare against absolute accuracy queries

(DynATOS) with fixed σ set based on baseline measurements of observed standard

deviation in the trace as in [118].

Figure 40 shows query satisfaction (defined as the fraction of queries in the

workload that achieve standard error less than σ) over 10 independent query

workloads generated at each setting of arrival burstiness parameter µ. In addition

to query workload satisfaction (top), we also plot the number of bytes returned to

the collector (middle) and the number of queries executed per epoch (bottom). We

observe that by automatically adjusting σ based on the target cv, DynATOS+ finds

a more optimal value for σ and is able to achieve consistently higher satisfaction

compared to DynATOS (a median difference of 18% to 21% for all workload

burstinesses) while inducing minimal increased load on collector (a median difference

of less than 8 KB per epoch for all workload burstinesses). Note that the number of
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Figure 40. Query satisfaction, bytes sent to collector each epoch, and number of
queries each epoch as a function of workload burstiness (smaller µ indicates more
bursty workloads) for a single trace showing the improvement of DynATOS over
DynATOS.

queries per epoch is larger for burstier workloads because we ignore epochs where no

queries were run. Also, in some cases the query workload consists of a single burst

of queries over the entire 15 m trace so that DynATOS+ does not have a sufficient

number of epochs in which to tune the cv to σ translation. This causes the lower

error bar for DynATOS+ at µ = 0.5 compared to DynATOS which uses a fixed (in

this case higher) σ. In a real deployment where DynATOS+ is run for longer periods

(e.g., several hours), we expect query satisfaction would converge closer to the median

in these plots.

5.1.3.4 Interaction Between Traffic and Query Workload

Dynamics. To understand the interaction between traffic dynamics and query

workload dynamics, we run the same query workloads used in Figure 40 over all 28

traces in our sample fromMAWILab. Figure 41 summarizes the results by showing the
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minimum and maximum median query satisfaction and bytes sent to the collector over

all 28 traces for each workload burstiness setting µ. As in Figure 40, quantiles (shown

here as different colors) are over the same 10 independently-generated workloads at

each µ.
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Figure 41. Minimum and maximum over all traces of query satisfaction (for same
quantiles as in Figure 40). The differences between different workload burstiness
(across x-axis) is much larger compared the the differences among different traces
(y-axis ranges) indicating workload burstiness has more impact on DynATOS’s
performance.

Similar to Figure 40, we observe that burstier workloads achieve lower satisfaction

(∼73% for µ = 0.5 compared to ∼89% for µ = 1.0). On the other hand, the distance

between minimum and maximum satisfaction across all traces (vertical height of

the bars in Figure 41) is relatively consistent and small for all query workloads (an

absolute difference of median from ∼4% to ∼13% for all workload burstinesses). The

relatively larger range of bytes returned to the collector (∼68% difference in median

across all workload burstinesses) demonstrates how DynATOS’s sampling method

automatically adjusts load on the collector to meet the different number of keys
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in different traces. Considering the fact that the per-epoch CV of number of keys

considered ranges from ∼0.04 to ∼0.4 across the traces in our sample, these results

indicate the methods in DynATOS are more robust to dynamics of traffic composition

compared to burstiness of query workloads. We envision developing new methods to

improve DynATOS’s handling of bursty query workloads as future work.

5.1.3.5 Sensitivity to Epoch and Subepoch Duration. The two most

critical parameters in DynATOS are the duration of epochs and the duration of

subepochs. Since epoch duration determines the lower bound on how quickly query

results can be delivered, we assume network administrators fix epoch duration based

on their particular monitoring requirement. The key remaining parameter is then the

duration of subepochs or equivalently the number of subepochs per epoch.

To understand the impact of subepoch duration on DynATOS’s performance, we

run DynATOS over the same trace considered in § 5.1.3.3 and the ten independent

query workloads with µ = 1. To expose the impact of query operation multiplexing,

we limit the number of queries that can be assigned to run in a single epoch to twice

the mean expected number of queries (e.g., because the mean query arrival rate is 1

per second, for 8 s epochs we limit to 16 concurrent queries in each subepoch). Our

query workload driver does not attempt to resubmit queries that are rejected when

DynATOS is in “fail-safe” mode leading to some fraction of queries going unanswered

in some runs.

Figure 42 shows the resulting F1 score (top), bytes sent to the collector (middle),

and fraction of queries submitted by the workload that actually receive answers,

regardless of their accuracy goals (bottom). Note that due to the minimal progress

constraint (C4 in Table 5), we are limited to a minimum of two subepochs per epoch.

Overall, F1 score is not significantly impacted by epoch duration indicating that
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Figure 42. Impact of epoch and subepoch duration on query accuracy, volume of
traffic to collector each epoch, and fraction of queries answered.

network administrators can confidently choose the epoch duration best suited for

their monitoring requirements without impacting DynATOS’s performance.

Subepoch duration has a more complex effect on all metrics observed. First,

longer subepochs tend to yield slightly higher accuracy (e.g., median F1 scores

increases from 90% to 94% for 8 s epochs) for queries that receive an answer. Second,

shorter subepochs cause more bytes to be sent to the collector each epoch because

intermediate results must be sent after each subepochs (e.g., from 81K up to 192K

for 8 s epochs). These two facts may seem to suggest that simply setting subepoch

duration as long as possible yields optimal performance. However the bottom plot

in Figure 42 exposes the cost of having fewer longer subepochs: due to the limited

ability to multiplex query operations, a larger number of queries are rejected due

to DynATOS being in “fail-safe” mode. Moreover, fewer queries are answered for
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shorter epoch durations (e.g., with two subepochs, a median of ∼90.8% for 1 s epochs

compared to ∼99.9% for 8 s epochs) due to the fact that longer epoch durations

smooth over bursts of queries that otherwise lead to infeasible scheduling problems at

shorter epoch durations. In summary, we find that using between 4 and 8 subepochs

exposes a sweet spot between (i) higher error and traffic to collector with more than

8 subepochs and (ii) reduced possibilities for multiplexing which cause more queries

to go unanswered with fewer than 4 subepochs.

5.1.3.6 Comparison with Sketch Methods. We compare the empirical

performance of DynATOS to two relevant sketch-based proposals: ElasticSketch [176],

which includes provisions for dealing with changes in traffic composition, and

Newton [187], which includes provisions for running dynamic query workloads by

allow queries to be changed at runtime.

ElasticSketch. Although ElasticSketch can adapt to some types of change in traffic

composition (e.g., flow-size distribution), it does not support efficient changing of

queries at runtime. To illustrate, we consider a simple query workload which runs the

DDoS query for 7.5 minutes, then switches to the TCP new connections query for the

next 7.5 minutes. Note that this workload represents a wide range of scenarios where

two or more queries with different filter conditions and different keys are required

to run in sequence. We run two independent instances of ElasticSketch in parallel

(one for each query). Since ElasticSketch does not support runtime reconfiguration

on switch hardware, both instances run throughout the workload even though only

one query output is used at a time. DynATOS, on the other hand, can simply switch

between queries after 7.5 minutes so only one query is run at a time.

We run this scenario over traffic from the May 29 trace in our sample since

this trace has relatively dynamic composition (as measured by CV of number of
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Figure 43. Performance of DynATOS and ElasticSketch on dynamic query scenario
where the network administrator changes between DDoS and TCP New Connections
queries. ElasticSketch requires sending >2× more bytes to the collector while
achieving lower accuracy compared to DynATOS because it cannot adapt to the
change in queries.

keys per epoch). We set cv = 0.1 and adjust the size of ElasticSketch to achieve

slightly lower accuracy compared to DynATOS as measured by F1 score. Figure 43a

shows the actual F1 score achieved (top) as well as the number of bytes sent to

the collector (bottom) over all epochs for the two methods described above. Even

though it achieves lower accuracy for both queries, the overheads of maintaining

parallel sketches in ElasticSketch require sending over 2× more bytes to the collector

compared to DynATOS (∼240KB compared to ∼110KB). As shown in Figure 43b,

DynATOS achieves lower load on collector by only sending results for one query

at a time. In general, this example illustrates that even for simple dynamic query

workloads, the ability to switch between queries at runtime leads to significantly lower

overheads.
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Newton. Newton [187] develops methods to dynamically change queries on-the-

fly (similar to DynATOS), but the Newton dataplane uses fixed-size sketch-based

primitives which cannot adapt to changes in traffic composition.1 To illustrate, we

consider a scenario where the network administrator runs the Port Scan query over

a trace from our MAWILab sample with pronounced changes in traffic composition

(in particular Aug. 12). In particular, this trace has a relatively constant number

of keys per epoch (∼18K) until the 135-th epoch when the number of keys spikes up

by an order of magnitude (to ∼273K). We set the sketch sizes in Newton to achieve

high accuracy on the first part of the trace and choose cv = 1.5 so that DynATOS

achieves slightly lower accuracy compared to Newton for the first part of the trace.

Figure 44 shows, for each epoch of the trace (x-axis), the F1 score (top), fraction

of bytes sent to collector compared to ground-truth (middle), and total number of keys

in the underlying (ground-truth) traffic (bottom). Before the change in composition

at epoch 135, Newton achieves high F1 score (median of 1.0) compared to DynATOS

(median of 0.8). However, when the number of keys changes, Newton’s sketches

become full leading to a significant reduction in F1 score (median of 0.24). The

middle plot shows that the root cause of this is the relatively smaller number of bytes

Newton sends to the collector compared to ground truth. DynATOS, on the other

hand, achieves consistent F1 score (median of 0.8) during the increase in number of

keys by maintaining a consistent load on collector w.r.t. the total number of ground-

truth keys that need to be reported.

5.1.4 Takeaway. In this section we presented DynATOS, an end-to-

end telemetry system design that leverages the temporal-structure-aware designs

described in § 4.1. We showed how DynATOS achieves better performance compared

1In particular, the Port Scan query considered here uses a Bloom filter [37] with a fixed number
of bits to approximate the first “distinct” operator.
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Figure 44. Performance of DynATOS and Newton running the Port Scan query on
a excerpt from our sample of MAWILab traces with heavy traffic dynamics. Even
though Newton is tuned for high accuracy, when the number of keys in the underlying
traffic changes it suffers significant accuracy loss.

to sketch-based alternatives in real-world traffic scenarios where the number of groups

changes dramatically. Moreover, we showed how our approximation and scheduling

methods can achieve robust accuracy on a wide range of different traffic and query

workloads. In doing to, we close the line of investigation stemming from the observed

high-variance structure of the number of groups per time unit (§ 3.1) with a practical

telemetry systems that demonstrates improved performance over state-of-the-art for

queries that compute per-group metrics. We next describe a system that detects

particular groups suspected of sending malicious attack traffic.
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5.2 Detecting DDoS Attack Traffic with ZAPDOS

This section describes how we leverage the spatial design elements and algorithms

introduced in § 4.2 to develop a concrete system to automatically identify the

signature of volumetric DDoS attack traffic. In particular, in § 5.2.1 we describe

the problem space of volumetric DDoS attack signature detection and the design

choices made in ZAPDOS. Then, § 5.2.2 describes several non-trivial engineering

techniques used in our implementation of a ZAPDOS prototype for programmable

switch hardware and § 5.2.3 describes our evaluation of ZAPDOS on realistic attack

scenarios. Finally, § 5.2.4 considers several potential ways a skilled adversary could

circumvent the protections offered by ZAPDOS and how minor extensions of our

designs could mitigate these circumventions.

5.2.1 ZAPDOS Overview and System Design. In this section, we first

describe our threat model and then provide a brief overview of ZAPDOS, highlighting

its key contributions and challenges.

5.2.1.1 Threat Model. Volumetric Distributed Denial of Service (DDoS)

attacks [115] are a persistent threat for Internet-connected devices caused by the

inherently open property of the Internet that any device can send traffic to any other

device (so long as both devices have public-facing IP addresses). In a volumetric DDoS

attack, a skilled adversary uses this property to send a large volume of unwanted

“attack” traffic from a large number of sources towards a victim device or network.

Intuitively, if the attacker is able to send more traffic than the victim is able to

process, benign traffic to the victim will experience increased loss and, in the worst

case, the victim will be completely disconnected from the Internet. Volumetric

DDoS attacks continue to grow in volume and complexity, achieving multi-terabit

traffic volumes [160] and changing attack sources and vectors dynamically to avoid
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detection [106, 103]. We formalize the problem of detecting volumetric DDoS attack

signatures through considering the attacker’s and victim’s metrics of success in the

following.

Attacker’s metrics of success. We assume a rational attacker whose goal during

the active-attack phase is to inflict maximum damage (i.e., loss) on the targeted

network’s benign traffic while minimizing the cost of launching the attack.

If the victim network has no defense, damage is measured in how much benign

traffic is lost due to attack-induced congestion. Based on recent studies [163, 87], we

assume the attacker uses one of several reflection attack vectors (e.g., DNS, NTP,

SSDP) and/or botnets sending flooding attacks (e.g., SYN, ICMP, UDP). To launch

these attacks the main cost for the attacker lies in acquiring sufficient attack sources

(e.g., bots) to maximize attack volume.

If the victim network deploys signature-based defenses, the notion of damage

as well as cost of attack is more complex. First, effective signature-based defenses

increase the cost for the attacker since extra effort is required to evade detection.

In particular, the attacker can combine several different attack vectors and change

attack vectors and attack sources dynamically.2 Second, signature-based defenses also

introduce an additional type of damage in that the reported signatures may falsely

include benign sources. The attacker can potentially leverage this by intelligently

selecting attack sources to confuse or mislead signature detection. We assume the

adversary uses one of three methods to select attack sources: (i) based on the actual

IP address of the reflector3 or bot; (ii) based on a fixed uniform random sample of

2Due to the overheads of precise clock synchronization (e.g., access to GPS receivers) we assume
a lower bound on how fast the adversary can coordinate these changes across their bots (e.g., can
only change attack parameters once every second).

3Note that, although reflection attacks do require bots to spoof source addresses, the adversary
is unable to spoof the addresses of reflectors which are observed at the victim network.
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the source address space; or (iii) based on proximity to benign traffic through the

cost-based method. In the later case, we assume the adversary cannot guess exactly

which sources will appear in benign traffic, but can pay a higher cost (in terms of

effort during the pre-attack phase) to infer attack sources that have longer prefix

overlap with benign sources.

Victim’s metrics of success. The goal of the victim is to prevent as much attack-

induced damage as possible, from either flooding loss or false-positive signatures. We

assume the victim is able to detect when a volumetric DDoS attack occurs but does

not have any additional information about the attack (i.e., the victim has no prior

knowledge of the attack vector or the attack sources). Anecdotal evidence suggests

that for small to medium scale edge networks, volumetric DDoS attacks often cause

spikes in packet and bit rates which can be detected using simple counters (e.g., on

the border switch in Figure 1). A variety of other volumetric DDoS occurrence

metrics have been proposed and implemented on switch hardware [70, 52] and could

be integrated with ZAPDOS. Finally, we assume the victim has the ability to deploy

traffic monitoring for signature detection and the ability to mitigate detected attack

traffic (e.g., rate-limit, re-route through a scrubbing service).

Note that the assumptions made in our threat model about the type of attacks

and methods for detecting attack occurrences are consistent with others (e.g., [103,

52, 24]).
5.2.1.2 Overview of ZAPDOS. As shown in Figure 45, ZAPDOS is a

closed-loop hybrid hardware-software approach to detecting prefix-level volumetric

DDoS attack signatures. Operating during the active-attack phase, ZAPDOS uses a

fixed set of prefix monitoring slots implemented in programmable switch hardware,

control software, and a set of operator-defined mitigation policies. ZAPDOS uses

the prefix monitoring slots to collect features for a fixed number of prefixes at a
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time, reacts to the results by updating which prefixes to monitor, and reports attack

prefixes as soon as they are known to be separate from benign prefixes with sufficient

confidence.
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Figure 45. Overview of ZAPDOS.

The key contributions in ZAPDOS are concrete and novel solutions to the

following challenges.

C1: How to determine if aggregate prefix-level traffic contains an attack

source? The per-source or per-flow feature vectors used in prior ML-based

approaches [54, 32] supply detailed signals directly correlated to the traffic entities

to be classified. The per-prefix feature vectors considered in ZAPDOS, on the other

hand, may contain signals from a variety of attack and benign sources and ZAPDOS’s

model must be able to “see through” these ambiguous prefixes in order to effectively

refine and detect an accurate attack signature.

ZAPDOS trains a classification model over prefix-level features from a large

number of scenarios with realistic packet-level attack traffic as well as attack and

benign source address distributions, as described in Appendix C. In order to increase

the model’s ability to detect the presence of attack traffic in ambiguous prefixes, we
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develop a prefix length weighting method to explicitly bias the model’s FNR vs. FPR

tradeoff at different prefix lengths.

C2: How to use fixed switch resources to monitor a variable number of

variable-length prefixes? The simplest iterative refinement approach simply zooms

in or expands any prefixes that appear to contain any amount of volumetric DDoS

attack traffic; however, this approach quickly leads to a large and infeasible number

of prefixes to monitor. Since the total number and length of prefixes involved in an

attack signature is unknown in the pre-attack phase, prior work which partitions the

address space into a fixed number of prefixes (e.g., DREAM [120]) is also insufficient.

ZAPDOS leverages the refinement algorithm described in § 4.2.1 to carefully

decide which prefixes are worth monitoring and when particular prefixes can be

reported as sourcing attack-only traffic with high confidence. The core idea of this

algorithm is to partition prefixes as they are zoomed in on between a fixed-sized set

of high priority prefixes to assign to monitoring slots and a variable-size set of less

suspicious “held-out” prefixes. A recent snapshot of the structure of benign sources

from the pre-attack phase is used to determine when a suspicious prefix has been

zoomed in on enough to minimize false positives.

C3: How to ensure the refinement process remains robust when the

adversary changes attack sources and vectors? A key limitation of iterative

refinement approaches, including the base-line approach describe above, is that they

assume the attack signature does not change rapidly. Modern DDoS attacks, on the

other hand, may rapidly (e.g., every 30 s) change attack sources in order to confound

such approaches.

ZAPDOS leverages the two improved refinement techniques discussed in § 4.2.2

to allow the refinement process to quickly adapt to changes in the underlying attack
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traffic. First, ZAPDOS uses “look-ahead” to detect which child prefixes are active

(whether with attack traffic or benign traffic) before allocating precious monitoring

resources in the next epoch. Second, ZAPDOS uses “look-back” to keep a low-

overhead approximate record of which non-monitored prefixes were active to guide

resource allocation in the next epoch when the attack sources change.

5.2.2 ZAPDOS Prototype. We prototype ZAPDOS using a Tofino-

enabled Wedge 100BF-32QS switch4. The switch ASIC runs a P4 [39] program that

computes per-prefix features in hardware registers (Table C.3), maintains look-ahead

and look-back components (§ 4.2.2), and classifies packets associated with reported

attack prefixes in R. Table 7 shows that ZAPDOS has a relatively small footprint

compared to the available hardware resources for key resource types like SRAM and

TCAM, comparable to the footprint of Jaqen5.

Crossbar SRAM TCAM VLIW Hash Bits ALU Gateways
6.70 % 7.29% 11.11% 9.38% 17.11% 26.04% 15.62%

Table 7. Switch hardware resources used by the ZAPDOS data plane as percentage
of total available on Tofino.

The switch CPU runs the ZAPDOS control plane, a Haskell [9] program which

evaluates the per-prefix classification model (Appendix C) and refinement algorithm

(§ 4.2.1), interacting with the ASIC through the bfruntime gRPC interface and

ASIC’s CPU port. A key challenge in prototyping ZAPDOS in hardware is optimizing

the communication between ASIC registers and the switch’s CPU to minimize the

update time overhead. In addition to carefully multi-threading the ZAPDOS control

4https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=770

5Note that Jaqen only reports hardware resource usage of their detection module, but their
mitigation modules, which actually generate source-level attack signatures, require unknown
additional resources.
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plane, we leverage two other techniques to optimize this communication: (i) batch-

round-robin epochs and (ii) packet ferries.

5.2.2.1 Batch-Round-Robin Epochs. Näıvely reading the features of all

prefix monitoring slots in one shot at the end of each epoch (as shown in Figure 46a)

requires a significant amount of time. For example, writing a new set of 1500 prefixes

to monitor in hardware takes ∼0.5 s, implying traffic would only be monitored half

of the time with 1-second epochs. On the other hand, incremental updates that cycle

through prefixes in round-robin order (as shown in Figure 46b) cause the iterative

refinement process to fall behind due to the constant overhead associated with each

RPC. For example, an RPC updating a single prefix takes ∼5 ms, implying one cycle

through all 1500 prefixes would take ∼7.5 s.
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...

per-prefix
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constant
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Time
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f1

f6

...

Time

Epoch � Epoch �

(c) Batch-Round-
Robin

Figure 46. Illustration of different possible approaches to updating prefix monitoring
slots in ZAPDOS.

In ZAPDOS, we develop an approach called batch-round-robin which updates

batches of prefixes in a single RPC and cycles through batches in round-robin order

as shown in Figure 46c. This combines the benefits of synchronous epochs and

round-robin updates because the constant overhead of each RPC is amortized over

all prefixes in a batch and each batch is much faster to update compared to the entire

set of monitoring slots. Updating a batch of 100 prefixes in our prototype takes ∼25
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ms so the 15 batches required to update all 1500 prefixes takes 375 ms implying

batch-round-robin can easily keep up with 1-second epochs.

5.2.2.2 Packet Ferries for Feature Collection. To implement the

modeling and iterative refinement methods, the ZAPDOS control plane needs to read

features of all 1500 prefix monitoring slots back to the CPU each epoch, but a näıve

batch-read RPC request takes ∼1.3 s. Instead, ZAPDOS implements a technique

called packet ferries, inspired by in-band network telemetry [89, 35] and further

developed in [146]. As shown in Figure 47, packet ferries send specially-marked

request packets through the ZAPDOS data plane using the switch CPU’s backplane

port which bypasses gRPC and driver layers allowing ZAPDOS to read all 1500

prefixes in ∼50 ms.

ZAPDOS Control Plane

gRPC
switchd
driver driver

PCIe Backplane

Bulk
RPC
Path

Packet
Ferries
Path

Switch
CPU

Switch ASIC f1 fn
... Feature

Registers
Reflect

ZAPDOS Data Plane

Response
Pfx id = i
    f� ... fn

Request
Pfx id = i

Figure 47. Packet ferries enable fast reads by bypassing the gRPC and driver layers.

5.2.2.3 Asynchronous updates to R and H. The policies for how

to select the set of prefixes to monitor F described in § 4.2.1 and § 4.2.2 require

zooming-in on and partitioning a monotonically increasing set of prefixes based on

classification results produces by the model described in Appendix C. At first glance,

batch-round-robin can be applied to implement these policies by simply passing each

batch through the algorithm independently and concatenating the results. However,

several more subtle challenges arise: (i) the number of newly zoomed-in-on children
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exceeds the batch size; (ii) the held-out prefixes in H need to be looked up in the

look-back Bloom filter B; and (iii) newly reported prefixes in R need to be sent to

network administrators.

Look-Back Thread
active H

active children
R

inactive H

Main Thread

Report Thread non-suspicious,
inactive children

in B

not in B

gRPC
Packet Ferries

Look-Back Digests

HW Iface.

Figure 48. Distinct threads and inter-thread communication patterns in the ZAPDOS
control plane.

Our approach, summarized in Figure 48, splits the refinement process into several

independent threads that run in parallel and communicate via asynchronous multi-

reader, multi-writer queues.6

Main thread. The main thread implements batch-round-robin over a fixed set

of hardware prefix monitoring slots. After reading features from hardware using

packet ferries, applying the model, zooming-in on suspicious prefixes, and partitioning

the results based on look-ahead, this thread installs the first batchSize prefixes to

monitor in hardware using gRPC and pushes the remaining prefixes to several queues.

In cases where fewer than batchSize prefixes were selected as suspicious, this thread

pulls new prefixes to monitor from the queues based on which queues are non-empty.

Finally, when prefixes are determined to be ready for inclusion in R (§ 4.2.1.3), they

are pushed to a dedicate report queue.

Look-back thread. A naive approach to implementing look-back in ZAPDOS would

be to wait until fewer than batchSize prefixes are available from other sources,

then to query the hardware Bloom filters for prefixes in H until an active prefix is

6In particular, we use unagi-chan [19].
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discovered. However, given the non-negligible latency of directly reading ASIC tables

and the need to have multiple Bloom filters in hardware (one for each possible prefix

length) this approach is highly inefficient. In our ZAPDOS prototype, we implement

a single /32 Bloom filter in the ASIC and use digests7 to report each time a new

/32 source is observed. The look-back thread receives these digests and uses them to

update a look-back table tracking which prefixes have been observed each epoch. At

the end of each epoch (e.g., every 1 second), the look-back thread pulls all held-out

prefixes from H and partitions based on their membership in the look-back table.

Prefixes from H which were active are pushed to an active queue while prefixes that

were inactive are pushed back to H. In order to implement look-back as described in

§ 4.2.2.2, the main batch-round-robin thread simply empties the active queue before

pulling from the inactive prefixes in H.

Report thread. A key advantage of ZAPDOS is that network administrators can

respond to attack prefixes reported in R in a wide variety of different ways. However,

realizing these responses may induce additional latency (e.g., additional RPC or

REST requests) which could impact progress towards iterative refinement. To address

this, we implement a dedicated attack report queue and attack report thread which

executes custom attack responses independently from iterative refinement. In our

current prototype, the attack report thread simply writes each reported prefix to a

file along with metadata (e.g., timestamps) for scoring against ground-truth after

each trial run.

5.2.3 Evaluation. We build a large dataset of realistic attack traces using

the methodology described in § C.1 and use this dataset to evaluate ZAPDOS. We

show that ZAPDOS

7Digests are short messages pushed from the ASIC to the switch CPU through the gRPC interface
and commonly supported in P4 platforms like Tofino.
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• quickly detects attack signatures with high accuracy in our hardware prototype

implementation and we provide a breakdown of the latency overhead (§ 5.2.3.2),

• accurately detects signatures of modern multiple-vector and dynamic attacks with

a single model (§ 5.2.3.3),

• maintains low error rates for changes to attack parameters (e.g., numbers

of sources), system parameters (e.g., prefixesPerEpoch), and loss scenarios

(e.g., flooded border links) (§ 5.2.3.4), and

• is robust against attackers who can spoof attack traffic to come from the same

prefixes as benign traffic maintaining orders of magnitude lower error rates

compared to prior approaches when given comparable traffic monitoring resources

(§ 5.2.3.5).

5.2.3.1 Setup. We next describe our experimental setup.

Success metrics. The goal of ZAPDOS’s attack signatures are to effectively reduce

the amount of damage caused by an attack regardless of how much effort the adversary

spends on the attack as described in § 5.2.1.1. To measure potential damage, we

measure the accuracy of given attack signatures w.r.t. ground-truth in terms of

per-byte false positive (FPR) and false negative (FNR) rates. Smaller FPR and

FNR indicate more accurate attack signatures and in turn less damage for the target

network. To measure how fast an attack is detected, we use the detection time metric

that we define to be the time difference between when an attack starts and when

ZAPDOS reports more than a certain fraction of the attack prefixes. Note that we

classify each packet as a false-positive or false-negative based on the current value of

R when that packet arrived and compute aggregate FPR and FNR over the entire

attack scenario. As a result, these metrics also reflect how quickly ZAPDOS was

able to refine accurate attack signatures (e.g., if ZAPDOS takes longer to detect a
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particular attack prefix, it will make a larger contribution to FNR). The shown error

bars mark the 5th percentile, the median, and the 95th percentile, respectively over

independent trials.

Other DDoS defense approaches. We compare ZAPDOS with two state-of-

the-art switch-based approaches to volumetric DDoS defense in edge networks: (i)

Euclid [52] uses a sketch-based method to detect attack sources by estimating their

contributions towards the increase in the entropy associated with the attack, and (ii)

Jaqen [103] is a library of sketch-based detection and mitigation primitives that can

be deployed on switch hardware with a CPU-based controller. We use an exact heavy-

hitter computation to represent the best-case scenario for Jaqen, which originally used

universal sketching to estimate heavy hitters. We do not compare with approaches

like Poseidon [181] as it focuses on local solutions with no clear separation of detection

and mitigation. We also do not compare with ML approaches like LUCID [54] since

their feature-gathering overheads are infeasible for edge networks.

Default parameters. As discussed in § 4.2.1 and § 4.2.2, the two main parameters

controlling efficiency of iterative refinement in ZAPDOS are prefixesPerEpoch,

and zoomInBits. Unless otherwise noted, we set prefixesPerEpoch to 1500 and

zoomInBits to 4 since these values yielded acceptably low error rates in initial

experiments and acceptably low overheads in our hardware prototype. We use a

Bloom filter with 220 bits and a single hash function in our prototype for look-back.

We set a default epoch duration of one second. The pre-attack phase lasts for 120 s

to allow ZAPDOS to compute the benign traffic profile described in § 4.2.1.3 and we

set the benign proximity threshold to 0. Unless otherwise noted, the active-attack

phase lasts for 120 s with an aggregate attack rate of 1 Gbps (enough to flood an

access link of a small or medium-sized campus network) using 50k attack sources from
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Mirai data [21] (distinct from the training sources) comparable in size to real-world

volumetric DDoS attacks [141].

5.2.3.2 ZAPDOS Prototype Performance. To evaluate our prototype,

we replay an independent UDP-flood attack trace from the test partition of our

dataset containing a mix of attack and benign traffic.8 The prototype is switched

from collecting the benign traffic profile (§ 4.2.1.3) to actively zooming in on attack

prefixes when the trace enters the active-attack phase at 120 s. We collect the list of

reported attack prefixes in a file which also includes a timestamp of when each prefix

was reported, then compute per-byte FPR and FNR in each 1 s time window based

on the timing of these reports offset relative to the original trace.

Figure 49a shows the evolution of FPR and FNR in our prototype over the

duration of the attack in comparison with simulated implementations of Euclid and

Jaqen on the same trace with similar resource budgets. In ZAPDOS, FNR quickly

drops below 1% after 25 s (going down to ∼0.05% by 120 s) as more attack prefixes

are correctly reported. FPR remains low and stable around 0.2%. In comparison,

Jaqen deploys mitigation after 15 s due to overheads of installing the particular

mitigation module for UDP flood attacks, then achieves higher FPR (∼4%) and

FNR (∼1%). Euclid’s pure data plane approach begins mitigating attack traffic

within 1 s and identifies nearly all attack sources, but also produces erratic FPR (up

to 50%) indicating significant impact on benign traffic. This result demonstrates

that ZAPDOS not only effectively detects volumetric DDoS attack signatures in

switch hardware, but also consistently achieves lower error rates compared to best-

case simulation performance of Jaqen and Euclid.

8In particular, we use cost-based attack sources with attack cost ℓ = 16 combined with MAWILab
2019-02-05 benign traffic.
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Figure 49. Performance of our ZAPDOS prototype on a realistic attack scenario.

We also measured the median absolute difference in accuracy between our

ZAPDOS prototype and ZAPDOS simulator over all epochs considered in Figure 49a

to be ∼4.1e-04% for FPR and ∼0.17% for FNR. We attribute the slightly larger

gap in FNR to inaccuracies outside of ZAPDOS in the tool used to replay attack

and benign attack traffic.9 Given this close correspondence between prototype and

simulator, in the rest of this section we show results from our simulation since it

enables higher-confidence accuracy computation and evaluation of multiple traces in

parallel.

9In particular we use tcpreplay which appears to fall behind realtime during the active-attack
phase leading to delayed timestamps from the prototype which inflate FNR.
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Finally, we measure the latency overhead of our batch-round-robin method

(§ 5.2.2.1) with 100 prefixes per batch. Figure 49b shows the median total per-

batch latency overhead over all epochs of the attack scenario as well as break down

across three main operations. Latency overhead is clearly dominated by hardware

update time which could be optimized using, for example, DMA rather than gRPC.

5.2.3.3 Performance Against Modern Attacks. Simple attacks:

Single-vector and static. Modern volumetric DDoS attacks leverage diverse vectors

to generate large volumes (i.e., data rates) of attack traffic toward their victims. To

demonstrate ZAPDOS’s ability to identify attack sources regardless of the attack

vector used, we generate an independent single-attack scenario for each of the attack

vectors described in Table C.2. For each attack we draw a sample of 50k distinct

attack sources from the Mirai [21] dataset, the Booters [141] dataset, or “spoofed”

sources from a uniform random distribution (Rnd.). Due to iterative refinement in

ZAPDOS, we report in Figure 50 FPR and FNR of the attack signature detected by

ZAPDOS for each attack vector at three different points in time after the start of the

attack. For all attacks, FNR decreases down to ∼0.1% after 60 s as ZAPDOS reports

more attack prefixes. FPR, on the other hand, does not follow a clear trend beyond

stabilizing between 0.1% and 0.3% for all attacks. We attribute this to the inherent

burstiness of benign traffic which causes burstiness in the FPR time series (e.g., see

Figure 49a). Practically, this result demonstrates that the single trained model in

ZAPDOS is able to generate highly-accurate attack signatures for a wide range of

modern volumetric DDoS vectors within a couple minutes of the onset of that attack.

Complex attacks: Multi-vector and dynamic. In addition to using diverse

attack vectors individually, modern DDoS attacks are also known to combine

multiple concurrent attack vectors and change them over time [103, 181, 86, 174].
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Figure 50. Performance of ZAPDOS on different single-vector, static attacks with
50k distinct sources.

To demonstrate ZAPDOS’s ability to handle such complex attacks, we generate

multi-vector dynamic attack scenarios by selecting nine distinct attack-vectors from

Table C.2 and attack source sets from the Mirai dataset (using the discrete set sizes

described in § C.1). During the attack scenarios, at regular intervals the attacker

randomly selects three attack vector, attack source set pairs from these nine and

combines the traffic of all three against the victim. We generate several such scenarios

with different intervals between attack changes, in particular 1 s (fast), 5 s (medium),

and 10 s (slow). Figure 51 shows the evolution of attack signatures generated by

ZAPDOS during the first 120 s of each scenario. ZAPDOS is relatively slower to

refine attack signatures compared to previous experiments because these attacks

contain roughly three times the number of distinct sources. However, we note that

the rate of signature refinement remains the same regardless of how fast the attack

changes between attack sets. This illustrates the effectiveness of both “look-ahead”
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and “look-back” methods (§ 4.2.2) to quickly focus limited monitoring resource on

target prefixes and to switch prefixes when the underlying attack changes.
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Figure 51. Performance of ZAPDOS in refining signatures of multi-vector, dynamic
attacks with varying numbers of sources.

5.2.3.4 Sensitivity Analysis. Since ZAPDOS uses a limited amount of

switch hardware memory to monitor attack prefixes, we evaluate how changes to

the amount of memory used and to the number of distinct attack sources impact

performance. We repeat these evaluations over all 6 attack vectors from Table C.2

and show the minimum, median, and maximum values in Figure 52.

Impact of resource constraints. In Figure 52a, we vary prefixesPerEpoch while

keeping the number of attack sources constant at 50 k. In all cases, ZAPDOS achieves

low FPR (0.3% to 0.4%) independent of prefixesPerEpoch. On the other hand, FNR

as well as time until FNR is less than 10% decreases as prefixesPerEpoch increases

since monitoring more prefixes each epoch enables faster progress towards identifying

all attack sources.
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(b) Varying attack parameter.

Figure 52. Performance of ZAPDOS while varying prefixesPerEpoch (left) and the
number of distinct attack sources (right).

Impact of attack sources. In Figure 52b, we vary the number of distinct sources in

attack traffic while keeping prefixesPerEpoch at 8 k. ZAPDOS achieves consistently

low error rates (∼ 0.5% FPR and ∼3.5% FNR) for a wide range of number of sources

(500 through 10 k). However, as the number of sources increases, both total FNR

and the time until per-epoch FNR drops below 10% begin increasing. We recall that

the total attack traffic rate is held constant across these scenarios so that with more

sources, the per-source attack rate is significantly reduced. As reflected in Figure 52b,

this decrease in per-source attack rate makes the detection problem harder by reducing

the relative strength of the attack signals compared to benign traffic hence increasing

ZAPDOS’s latency and FNR.
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Handling Flooded Border Links A volumetric DDoS attack against a small

enterprise or campus network at the edge of the Internet can flood the network’s main

border link, rendering in-network mitigation methods (e.g., Jaqen, Euclid) ineffective

and degrading the accuracy of traffic monitoring performed at the edge network. To

demonstrate the utility of ZAPDOS’s attack signatures in this scenario, we simulate a

1 Gbps border link inserted in front of where ZAPDOS performs its traffic monitoring

computations (using a simulated 100 KB FIFO queue). We generate DNS reflection

attacks using random samples of 10k sources10 from the Booters [141] dataset and

varying the per-source attack data rate so that the overall attack rate varies from 500

to 2000 Mbps. We simulate upstream mitigation by dropping all packets matching

ZAPDOS’s reported attack signature.
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Figure 53. Impact of DNS refl. attack volume on defense performance given a 1 Gbps
upstream bottleneck link. ZAPDOS reduces benign traffic loss to less than 10% in
less than 10 s for the strongest attack (2 Gbps).

Figure 53 shows the performance of ZAPDOS over 10 independent attacks at

each attack volume in terms of total damage (volume of benign traffic dropped by

the flooded link) and the time it takes before ZAPDOS reduces per-epoch damage

to below 10%. We observe that with no defense, the volume of dropped benign

10Note that we use a smaller number of sources compared to, e.g., Figure 50 due to the smaller
number of sources available in the Booters dataset.
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traffic increases consistently with increasing attack volume. On the other hand,

Figure 53a shows that signature-based upstream mitigation enabled by ZAPDOS

reduces flooding-induced loss to below 10% (median over 10 attacks), even for the

largest attack volume (which is 2× the border link’s throughput and incurs ∼85%

loss without defense). For all attack volumes, ZAPDOS reduces benign loss more

than 10×.

Figure 53b shows that larger attacks require longer refinement time before the

attack signature is specific enough to reduce loss to below 10%. We observe a similar

trend for other percentages of benign traffic loss. This is due to the fact that even

though ZAPDOS refines signatures at a similar rate for all attack volumes, in larger

attacks, individual attack sources send larger volumes of attack traffic so that a

larger number of sources must be blocked before the overall reduction in attack traffic

(and hence damage to benign traffic) reaches the same level as for smaller attacks.

Nonetheless, even for the 2 Gbps attack, ZAPDOS reduces loss to below 10% in less

than 10 s on average.

5.2.3.5 Impact of Proximity of Attack Sources. A fundamental

concern with prefix-level attack signatures as detected in ZAPDOS compared with

source-level signatures as detected in Euclid and Jaqen is that a resourceful adversary

could spoof attack sources to fall into known benign prefixes thereby triggering high

false-positive rates.11 We evaluate this concern by generating 10 independent UDP

flooding attack scenarios. Each scenario uses cost-based attack sources as described

in § C.1 at four different settings of cost parameter ℓ and distinct benign traffic from

MAWILab. Recall that higher-cost attack sources are chosen to share longer prefixes

11Note that since Euclid and many of the mitigation primitives in Jaqen are still source-level,
cases where attack and benign traffic comes from the same source, e.g., due to NAT, are a common
problem across all these methods.
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with benign traffic (e.g., for cost ℓ = 24 all attack sources share a /24 prefix with at

least one benign source). We use these scenarios to empirically quantify the impact

of cases where attack sources are intentionally crafted to induce high FPR and to

compare this impact with performance of Euclid and Jaqen on the same traces using

the same methodology as in § 5.2.3.2 above.
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Figure 54. Aggregate performance comparison over 10 independent attacks. Higher
attack cost ℓ indicates longer prefix overlap between attack and benign sources.

Figure 54 shows FPR and FNR over all 10 attacks at each setting of cost

parameter ℓ. Performance of ZAPDOS does depends on attack cost, with cheaper

attacks yielding lower error rates (e.g., median FPR of ∼ 8 · 10−6% at ℓ = 8 bits

compared to 0.06% at ℓ = 24 bits). However, we note that this trend is concave-down

and there is no apparent breakdown of ZAPDOS’s prefix-level signatures even up to

ℓ = 24. Although the FPR of Euclid and Jaqen are not impacted by attack cost, they

are orders of magnitude higher (∼9% and ∼6% respectively) compared to ZAPDOS’s

prefix-level signatures.

Interestingly, we observe that attack cost also has an impact on ZAPDOS’s

FNR which ranges from ∼0.07% to ∼17% as ℓ increases. This is a result of longer

detection time required by higher-cost attacks as discussed below. In comparison,

Jaqen achieves relatively constant FNR around 13% and Euclid’s FNR is highly
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dependent on characteristics (e.g., entropy) of each trace though uncorrelated with

attack cost.
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Figure 55. Detection time of ZAPDOS’s attack signature coverage.

Intuitively, due to ZAPDOS’s benign-proximity method for deciding the length

of reported attack prefixes (see § 4.2.1.3), when attack sources are closer to benign

sources, ZAPDOS must zoom-in to longer prefix lengths requiring more iterations.

Figure 55 quantifies this effect by showing the time between the beginning of the

attack and when ZAPDOS’s FNR line falls below 10%, 50%, and 90%—in other

words, the detection time from when the attack starts until when ZAPDOS’s attack

signature matches 10%, 50%, and 90% of all attack traffic each time window. For

the lowest cost attacks ZAPDOS detects 90% of attack traffic within the first 1 s

epoch. However, since for higher-cost attacks, attack and benign sources share longer

prefixes, ZAPDOS takes longer (up to 24 s in the worst case) to produce sufficiently

refined attack signatures. The key takeaway is that if the attacker expends extra

effort to place attack sources closer to benign sources, ZAPDOS does not falsely

block benign sources, but drills down deeper into the prefix tree to maintain low FPR

at the cost of increased signature detection time.

5.2.4 Adversarial Considerations. In addition to attackers who

intelligently spoof source addresses to fall within benign prefixes as considered in

§ 5.2.3.5, several other aspects of ZAPDOS could potentially result in vulnerabilities
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which attackers could exploit to thwart detection. We raise several possibilities and

note that the severity of each depends on details of a production deployment of

ZAPDOS.

Securing communication in ZAPDOS. Since ZAPDOS uses the switch data plane

to collect feature results, an attacker could potentially spoof these request or response

packets and jeopardize the accuracy of ZAPDOS’s features. ZAPDOS’s data plane

could be modified to include distinct signatures on all result packets (e.g., adding a

secret written only through the PCIe channel) allowing the ZAPDOS control plane

to verify all received feature results.

Timing-based attacks. A skilled attacker could use knowledge about the epoch

duration used in ZAPDOS to craft attacks that inhibit iterative refinement (e.g., by

changing attack sources faster than ZAPDOS’s epoch duration). In addition to

keeping actual parameters used in ZAPDOS private, production deployments of

ZAPDOS could also dynamically adjust epoch duration following cryptographically-

secure random patterns to mitigate the effectiveness of such attacks.

Model-based attacks. Attackers with detailed knowledge of the data used to train

the inference model used in ZAPDOS could discover ways to trick the model into

making false positive or false negative decisions. In addition to keeping training data

used in production private, the models used in ZAPDOS could be periodically re-

trained based on the most recent features of benign traffic observed on the victim’s

network to reduce the opportunity for such model-based attacks.

5.2.5 Takeaway. In this section we presented ZAPDOS, an end-to-end

system for automatically detecting the prefix-level signature of modern volumetric

DDoS attack traffic that leverages the spatial-structure-aware designs described in

§ 4.2. We showed how ZAPDOS achieves better performance compared to state-of-
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the-art programmable switch hardware attack detection and mitigation proposals and

how ZAPDOS effectively handles a wide range of different types of modern attacks.

In doing so, we close the line of investigation stemming from the observed multifractal

structure of real-world IP addresses (§ 3.2) with a practical traffic monitoring system,

thereby demonstrating the real-world significance of the connections between research

areas proposed in Chapter I. We next consider several interesting open problems in

each of the areas of research touched on in this dissertation.

174



CHAPTER VI

CONCLUSION & FUTURE OUTLOOK

This dissertation developed contributions to state-of-the-art in network traffic

monitoring by leveraging the connections between three interrelated research areas:

characterizing the structure of network traffic, designing algorithms for traffic

monitoring, and solving real-world traffic monitoring tasks. In Chapter II we

discussed prior work related to network telemetry system design and showed how

key open problems relate to insufficient consideration of connection between related

research areas. In Chapter III we developed particular characterizations of temporal

and spatial structure of network traffic relevant to telemetry system design. In

Chapter IV we demonstrated how these characterizations of traffic structure inspire

and motivate new approaches to designing traffic monitoring algorithms for two

particular types of traffic queries. Finally, in Chapter V we showed how our design

approaches can be integrated in real-world telemetry systems and how the resulting

systems achieve higher performance in terms of accuracy and efficiency compared to

prior approaches.

Our work demonstrates how strengthening connections between areas can

improve state-of-the-art for particular types of traffic structure, queries, and system

deployment settings. However, the particular contributions we made in and between

each area are only points in the larger space exposed by the proposed paradigm of

seeking solutions through strengthening connections between areas. We believe this

paradigm itself lends value to telemetry system research by showing the way forward

for future work in a wider range of research problems. To illustrate, the following

considers several example future directions in each research area considered.
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6.1 Future Characterizations of Traffic Structure

As discussed in § 2.1.1, the primary focus of efforts to characterize the temporal

structure of network traffic focus on data rates like packet count per time unit.

Though § 3.1 provides an initial characterization of the time-domain structure of

the number of distinct groups per time unit, more investigation is necessary to

fully describe the observed patterns of non-fractal periods with rare, but significant

increases in the numbers of certain types of groups (e.g., the spike in number of

source addresses described in Figure 6). Additionally, longer-term views of these time

series are known to exhibit various forms of seasonality (e.g., daily patterns based

on business ours, weekly patterns based on workdays, etc.). Fully characterizing the

time-domain behavior of the number of distinct groups observed will likely require a

novel combination of existing statistical techniques to account for this diverse set of

factors.

Though § 3.2 updates a critically lacking aspect of our understanding of the

spatial structure of observed addresses, it focuses more on the processes which

motivate the cascade construction as an appropriate multifractal model and the

connections to telemetry system design. Further exploration of different techniques

of statistical analysis, such as discrete wavelet leaders [84], which have been

shown to provide higher-confidence characterizations (e.g., including empirically

derived confidence intervals [169, 170]) are left for future work. Similarly, more

formal and wide-scale analysis of the same types of address assignment policy data

(e.g., bulk whois records) to further solidify the cascade construction and foundational

multifractal scaling of observed addresses are necessary.

Finally, although the independent temporal and spatial traffic structure

characterizations established in Chapter III do provide useful insights for design and
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implementation of telemetry systems, an ideal characterization of traffic structure

would provide for modeling the joint distribution of multiple spatial and temporal

aspects. For example, such combined characterization might model the distribution

of observed source IP addresses, observed destination IP addresses, and the number

of packets sent from each source to each destination in each time window. In addition

to potentially deeper insights for telemetry system design, such characterizations of

traffic structure could also enable improvements in privacy-preserving realistic packet-

level traffic synthesis [177]. Unfortunately, the particular joint distributions involved

in network traffic structure are challenging to model under current state-of-the-art

in statistics because (i) the spatial structure is relatively stable with a long-term

memory for which particular regions are active and (ii) the marginal spatial and

temporal distributions exhibit fundamentally different scaling behaviors (multifractal

and monofractal respectively). As a result, work in this direction requires close

collaboration with statistical theoreticians in order to develop the prerequisite models

and analytic techniques.

6.2 Future Innovations in Designs and Algorithms for Query Processors

The designs and algorithms described in Chapter IV all suppose a fixed rhythm

where traffic is monitored for a certain duration of time (referred to as an “epoch”),

then all results are collected and acted upon. The the number of results is large

(e.g., due to a large number of traffic groups monitored), reporting all results after

each epoch in this manner leads to highly bursty results traffic which is challenging

to transport and process efficiently. Moreover, although fixed-duration epochs work

well for the typical case where the number of groups (and hence the number of results

collected) has more uniform structure (as suggested by the initial result discussed in

§ 3.1), the atypical cases where telemetry results are most critical (e.g., to detect
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and respond to attacks) are likely to have less uniform structure. As a result, one

potential approach to leveraging less predictable time-domain behaviors for future

work would be to abandon the strict fixed-duration epoch rhythm and investigate

approaches to either dynamically varying the epoch duration (e.g., in response to

observed changes in number of groups) or abandoning the fixed time-window design

entirely and investigating event-based, flow-based, or session-based traffic queries.

More flexible query models have already been proposed in other time series analysis

contexts (e.g., quantitative regular expressions [108, 27] and associated automata

models [28, 26]) and can potentially be leveraged for traffic monitoring [180].

6.3 Future Traffic Monitoring Applications

Although in this dissertation we only consider application of the iterative

refinement methods described in § 4.2 to the task of detecting volumetric DDoS

attack traffic (§ 5.2), these methods can potentially be applied to a wide range of

event detection tasks. For example, security events that have prominent network-level

signatures like brute-force attacks or port-scanning can be detected by a more-or-less

direct application of these methods. Performance events like transient latency induced

by microbursts [47] may be more challenging since the traffic signatures they produce

are likely harder to detect under prefix-level aggregation and hence may require non-

trivial modification of the classification model set up or refinement algorithms.
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APPENDIX A

DATASETS

The content of this appendix is intended to be published with co-authors

Ramakrishnan Durairajan, Reza Rejaie, Arpit Gupta, and Walter Willinger along

with content from § 3.2. Walt O’Connor assisted with collecting metrics about traces.

Our efforts to assemble our own collection of measured Internet traffic traces are

driven by three requirements. First, to ensure the relevance of our work for today’s

Internet, we require our traces to reflect “modern” Internet traffic (e.g., recorded

within the last ten years). Second, following [60] and using the term “traffic invariant”

to mean some facet of behavior of traffic which has been empirically shown to hold

in a very wide range of network settings or environments, to examine whether or not

an empirical property such as the multifractal structure of observed IP addresses in

measured network traffic can be viewed as such an “invariant”, we require the different

traces to be collected from different network locations (e.g., backbone links vs. access

links) and over periods of time that span a few years. Lastly, to further examine such

invariants and their presence/absence in particular portions of network traffic, we also

want our collection to include traces that differ by type of traffic (e.g., Darknet vs

generic).

To this end, we amassed a collection of publicly available datasets, alongside

a number of privately collected datasets recorded from different university campus

border switches (e.g., University of Oregon, UCSB) and other datasets that were

provided by a third party (e.g., Darknet traffic). These datasets are shown in

Table A.1 where the different traces are grouped into backbone-link traffic traces,

access-link traffic traces, and Darknet traffic traces. In particular, CAIDA refers

to CAIDA’s uni-directional traffic traces which were recorded from an Internet

179



backbone link in 2019 [4] and which are anonymized using CryptoPan prefix-

preserving anonymization [7]; MAWI refers to (bi-directional) traffic traces from the

MAWILab traffic anomaly archive [61] that were recorded at the border between

the WIDE project and its parent ISP, span a period of six years (2015-2021) and

are anonymized with tcpdpriv [14]; UO (UCSB) refers to captures of network traffic

at the edge of the University of Oregon’s (University of California Santa Barbara’s)

campus network (data from both campus networks were anonymized prior to analysis

using the prefix-preserving anonymization method CryptoPan [7], thus ensuring that

running our analysis of the observed IP addresses before and after anonymization

yields identical results); and Miscellaneous refers to Darknet traces collected by Merit

Network, Inc. during 2021-2023.

Table A.2 shows the results of applying the method of moments (see § 3.2.3)

to estimate the three generalized dimensions for each trace in our repository. These

quantities refine the binary decision “multifractal: yes or no” that results from an

application of the method of moments (i.e., Step 3.1 or Step 3.2) and produces a ”yes”

for all the listed traces. Despite some variation in these quantities across the different

traces, they consistently provide evidence for multifractal scaling (e.g., all dimensions

less than one), in stark contrast to their counterparts for the synthetic monofractal

trace UNIFORM100 (see Table 3 in Section 4.2). Also note these estimates are

numerically computed and the existing statistical theory does not provide techniques

for computing meaningful confidence intervals for the computed values. As such,

more precise values of the reported results would have little meaning and therefore

we only show them rounded to one decimal.
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ToI/ToI Instances Date Duration Type IP Count Packet Count

ToI: Backbone-link
(uni-directional)

CAIDA-dir-A 2019-01-17 5:00AM 900s pcap 2,381,306 566M
CAIDA-dir-B 2019-01-17 5:00AM 900s pcap 3,863,987 1.23B

ToI: Backbone-link
(bi-directional)
MAWI-20150202 2015-02-02 2:00PM 900s pcap 5,571,625 99M
MAWI-20150710 2015-07-10 2:00PM 900s pcap 4,415,599 191M
MAWI-20151002 2015-10-08 2:00PM 900s pcap 4,818,370 135M
MAWI-20180316 2018-03-16 2:00PM 900s pcap 4,567,614 69M
MAWI-20180807 2018-08-07 2:00PM 900s pcap 4,635,311 73M
MAWI-20181107 2018-11-07 2:00PM 900s pcap 4,677,191 80M
MAWI-20190901 2019-09-01 2:00PM 900s pcap 4,689,835 87M
MAWI-20210110 2021-01-10 2:00PM 900s pcap 265,794 52M
MAWI-20210614 2021-06-14 2:00PM 900s pcap 180,532 74M
MAWI-20211212 2021-12-12 2:00PM 900s pcap 149,572 55M

ToI: Access-link (UCSB)
(incoming)

UCSB-20220428 2022-04-28 12:15 900s pcap 194,498 1.02B
UCSB-20220921 2022-09-21 19:25 900s pcap 112,164 1.05B
UCSB-20221205 2022-12-05 20:15 900s pcap 186,575 1.1B

ToI: Access-link (UO)
(incoming)
UO-20181106 2018-11-16 00:00 1 day netflow 1,805,085 9B
UO-20190829 2019-08-29 00:00 1 day netflow 1,497,311 12B
UO-20200213 2020-02-13 00:00 1 day netflow 786,607 36B
UO-20211106 2021-11-06 00:00 1 day netflow 1,288,775 26B
UO-20220517 2022-05-17 00:00 1 day netflow 668,817 23B

ToI: Miscellaneous
Darknet-2023-6am 2023-03-31 06:00 1 hour pcap * *
Darknet-2023-2pm 2023-03-31 14:00 1 hour pcap * *
Darknet-2023-8pm 2023-03-31 20:00 1 hour pcap * *

Table A.1. Our collection of recent traffic traces. (*We omit IP and packet counts
for the Darknet-2023 datasets to respect privacy of the data holder.)
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ToI D0 D1 D2 τ(1) = 0?
Instances (fractal dimension) (information dimension) (correlation dimension)

CAIDA-dir-A 0.8 0.8 0.7 ✓
CAIDA-dir-B 0.5 0.7 0.7 ✓

MAWI-20150202 0.6 0.9 0.6 ✓
MAWI-20150710 0.6 0.9 0.6 ✓
MAWI-20151008 0.6 0.9 0.6 ✓
MAWI-20180316 0.6 0.9 0.6 ✓
MAWI-20180807 0.6 0.9 0.6 ✓
MAWI-20181107 0.6 0.9 0.6 ✓
MAWI-20190901 0.6 0.9 0.6 ✓
MAWI-20210110 0.5 0.6 0.5 ✓
MAWI-20210614 0.5 0.6 0.4 ✓
MAWI-20211212 0.5 0.5 0.4 ✓

UCSB-20220428 0.5 0.6 0.5 ✓
UCSB-20220921 0.5 0.5 0.5 ✓
UCSB-20221205 0.5 0.6 0.5 ✓

UO-20181116 0.6 0.7 0.6 ✓
UO-20190829 0.5 0.7 0.5 ✓
UO-20200213 0.5 0.7 0.5 ✓
UO-20211106 0.5 0.7 0.5 ✓
UO-20220517 0.5 0.7 0.5 ✓

Darknet-2023-6am 0.5 * 0.4 ✓
Darknet-2023-2pm 0.5 * 0.4 ✓
Darknet-2023-8pm 0.5 * 0.4 ✓

Table A.2. Multifractal analysis results for all traffic traces listed in A.1. (*We only
had access to Darknet-2023 for a limited duration and did not have an opportunity
to compute D1 for this dataset.)
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APPENDIX B

STEP-BY-STEP PROCEDURE FOR APPLYING THE METHOD OF MOMENTS

The content of this appendix is intended to be published with co-authors

Ramakrishnan Durairajan, Reza Rejaie, Arpit Gupta, and Walter Willinger along

with content from § 3.2.

Consider the multi-resolution decomposition {Pl : l = 0, 2, . . . , 32} of the unit

interval [0, 1) in 1D where for 0 ≤ l ≤ 32, Pl is the l-th dyadic partition of [0, 1);

i.e., Pl = {El,i = [i2−l, (i + 1)2−l); i = 0, 1, . . . , 2l − 1}. Let µA be the finite measure

on [0, 1) that counts for each subset C ∈ [0, 1) the number of observed IP addresses

that fall into C. Multifractal analysis of real-world data by means of the method of

moment entails applying the following steps:

Step 1: For different values of q, compute for each 0 ≤ l ≤ 32, the partition

functions Z(l, q) =
∑

i µA(El,i)
q) where the sum is taken over all non-empty El,i

Step 2: For each q-values, plot logZ(l, q) vs. l (0 ≤ l ≤ 32), fit a straight line

over some range of sufficiently large l-values, and compute the estimate τ̂(q) of

the structure function τ(q) as the slope of this straight line.

Step 3.1: Interpret a linear inferred structure function τ̂(q) (as a function of

q) as statistical evidence that the data is consistent with mono-fractal scaling

but inconsistent with multifractal scaling.

Step 3.2: If based on Step 3.1, the data is found to be consistent with

multifractal scaling, then compute estimators of the generalized dimensions
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D0, D1, and D2 (we use the convention r = 2−l) by setting

D̂0 := lim
r→0

(− logZ(r, 0)

log r
) = τ̂(0), (B.1)

D̂1 := lim
r→0

−
∑

i µ(El,i) log µ(El,i)

log r
, (B.2)

D̂2 := lim
r→0

(
logZ(r, 2)

log r
) = −τ̂(2), (B.3)
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APPENDIX C

PREFIX-LEVEL MACHINE LEARNING

The content of this appendix is adapted from [117].

This appendix describes the per-prefix risk model trained to report when a

monitored prefix contains one or more volumetric DDoS attack sources in ZAPDOS.

Why use machine learning (ML)? To understand why we use an ML-based per-

prefix risk model, consider a simpler method that decides if a prefix is suspicious

based on applying a threshold to a single metric such as the difference between DNS

requests and DNS responses as proposed at source-level in [103]. A key challenge

with using a threshold in prefix-level detection is that the baseline volume of traffic

changes drastically with prefix length and differently in different prefixes (i.e., due to

clustering [31, 90, 91]). A non-linear model trained on features from a diverse range of

prefixes at different lengths as used in ZAPDOS, on the other hand, can capture the

complex correlation between prefix length, traffic volume and other more descriptive

features (e.g., inter-packet gap statistics).

The challenge of appropriate data. As with other ML-based methods, the

success of ZAPDOS’s model depends first and foremost on the availability of a

large and representative dataset of observed feature vectors and labels from both

classes. However, limited availability of appropriate data is a persistent and well-

established problem when applying ML classification techniques to network security

tasks [148, 96]. In developing ZAPDOS, this problem is particularly pronounced

because the model must be trained over observations that capture the realistic

blending of attack and benign features under prefix aggregation. Datasets and

methodologies used in prior efforts are insufficient because they either contain no

benign traffic [5, 141, 52], lack high-confidence labels [175, 163], or do not provide
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realistic address-space distributions [143, 103]. To illustrate, consider for example the

CIC datasets [143] used to both train and evaluate several proposed approaches to

classifying volumetric DDoS attack flows [54, 29]. When viewed at the five-tuple flow

level, these datasets are quite large, containing millions of flows. However, as shown

in Table C.1, when viewed at the source address or source address prefix level, their

size quickly collapses to an extremely small number of distinct observations. The

largest (ISCX’12) contains 14 attack sources distributed in 6 /16 prefixes.

Dataset # Benign # Attack
/8 /16 /24 /32 /8 /16 /24 /32

CAIDA (’07) [5] 0 0 0 0 117 4 k 8.7 k 9 k
ISCX (’12) [145] 123 1590 2041 2129 6 6 9 14
Booters (’15) [141] 0 0 0 0 42 961 3 k 4.4 k
Mirai (’16) [21] 0 0 0 0 162 3.5 k 9.8 k 10 k
CIC (’17) [143] 156 922 2125 3432 1 1 1 1
CSECIC (’18) [11] 1 1 6 446 2 4 10 10
MAWILab (’19) [61] 211 30 k 3.3 m 5.3 m 0 0 0 0
CAIDA (’19) [4] 250 27 k 323 k 1.3 m 0 0 0 0
Proposed “data-fusion” method 216 30 k 3.2 m 4.8 m 179 7 k 45 k 50 k

Table C.1. Number of distinct attack and benign prefixes in datasets commonly used
for training and testing ML-based approaches to DDoS traffic detection.

C.1 Data-fusion for Realistic Prefix-level Features

Given the insufficiency of existing datasets, we develop a novel data-fusion

approach to training and evaluating ZAPDOS. As shown in Figure C.1, our method

involves several real-life and synthetic data sources which provide realistic attack

address distributions as well as packet-level data. This method allows us to generate

multiple, independent attack scenarios, each with realistic, disjoint sets of attack and

benign sources and hence representative blending of features under prefix aggregation.

In particular, we take extra caution to ensure proper separation of prefix-level features

between training and testing sets to avoid model overfitting. Overall we generate
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84 distinct attacks with varying numbers of sources and attack vectors, 42 training

scenarios and 42 test scenarios, using the following steps.

Attack Src. Sets
Mirai Botnet
Booters
Cost-based

Attack Pkt Sets
Refl./Amp.
Flood

Benign Traffic (pcap)
MAWILab ����
(~��� days)

Merge (pcap)

Gen. Features + Labels (csv)
Attack Traffic (pcap)

Model Training

Packet-level Testing

Train
split

Test
split

Train, Test

Train, Test

Data-fusion Modeling

St
ep

 �
St

ep
 �

St
ep

 �

Figure C.1. Diagram of dataset preparation and modeling methodology used in
ZAPDOS.

Step 1: Generate attack source sets. We use three methods of obtaining realistic

sets of attack source addresses: Mirai botnet [21] (∼18 M distinct sources), Booters

dataset [141] (∼18 K distinct sources), and a synthetic cost-based method. For our

training data, we extract disjoint sets with varying numbers of sources from the

Mirai data set (for simplicity we use sets of 500, 1k, 2k, 5k, 10k, 20k, and 50k

sources). Booters sources are used in our evaluation to demonstrate how ZAPDOS

can generalize to entirely unseen source distributions.

We also develop a cost-based method to understand how ZAPDOS reacts when

the adversary invests effort to infer benign prefixes during the pre-attack phase and

spoofs attack sources to come from these prefixes. In particular, we define cost for the

attacker in terms of how many prefix bits ℓ attack sources share with benign sources.

Then, given a set of benign sources, to generate attack sources for a particular cost

ℓ, we identify the set of /ℓ prefixes that share a /(ℓ− 1) prefix with a benign source,

then select attack sources uniformly at random in these identified prefixes. In this
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way the clustering of attack sources is closer to (farther from) benign sources for

larger (smaller) values of ℓ.

Step 2: Generate attack traffic. Next, we generate packet-level attack traffic

for each enumerated attack source based on attack vectors. Table C.2 shows the six

different attack vectors as well as packet-level sources or parameters considered in

this work. We fix the target bit rate of the aggregate attack traffic (e.g., 1 Gbps) and

the number of attack sources to compute the per-source bit rate which determines

the arrival time of attack packets. Here, an attack A1 with the same target bit rate

as A2, but with more attack sources, will have lower per-source bit rates (and vice

versa). To mimic a real attack [141], each source generates packets at a constant bit

rate with a uniform ±1% variance around the target per-source rate.

Type Attack Vector Packet Source/Type

Refl./Amp.
DNS “Booter1” [141]
NTP CIC DDoS “day two” [144]
SSDP Sucuri analysis [119]

Flood
SYN TCP with SYN flag set
ICMP ICMP Echo request
UDP UDP random payload

Table C.2. Attack vectors generated for evaluation of ZAPDOS and the sources or
types of attack packets used.

Step 3: Merge attack and benign traffic. Finally, we interleave the packets

of each generated attack with benign traffic from the 2019 MAWILab dataset [61]

(preserving the relative packet arrival times of both traces). The MAWILab dataset

provides packet-level data for a large number of benign traffic excerpts allowing us

to assign a unique excerpt to each generated attack scenario. Although using a

single supplier of benign traffic does not allow us to reason about a trained model’s

ability to generalize to other network settings, our data-fusion methodology can be
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replicated with any other source of benign traffic in order to produce datasets and

models tailored for particular networks.

C.2 Modeling Setup

Feature selection. To train the classification model used in ZAPDOS, we compute

the features described in Table C.3 for each prefix in each of the training attack

scenarios. At a high level, we carefully selected features that on the one hand

intuitively capture differences in traffic patterns between attack and benign behaviors

and on the other can be computed in switch hardware at line rate. Though similar

features have been used for flow-level attack classification [161, 112, 152, 54], we

reiterate that in ZAPDOS, all features are aggregate over all traffic from the prefix

being classified. As a result, we only require maintaining feature state during each

epoch for a small, limited number of prefixes using queries described in § 4.2.1 instead

of over all flows as in prior efforts.

Feature Description

Prefix length Number of leading bits defining prefix.

D
ir
e
ct
io
n
a
l

Bytes from Number of bytes from this prefix.
Bytes to Number of bytes to this prefix.
Packets from Number of packets from this prefix.
Packets to Number of packets to this prefix.

S
ta
ti
st
ic
a
l min/max/ave. len. Minimum, maximum, and moving average of length of

packets from or to this prefix.
min/max/ave. IPG Minimum, maximum, and moving average of time

between consecutive packets from or to this prefix.
Last active Number of epochs since any packets were last observed

from or to this prefix.

G
e
n
e
ri
c rrDiff Maximum (responses - requests) over a number of

known amplification protocols (e.g., DNS, NTP, etc.),
see § C.3.

Table C.3. List of features computed each epoch for each monitored prefix for use in
ZAPDOS’s model.

Model selection. We use a random forest (RF) model [43, 51] with 500 trees and

other defaults as set in [15] to predict if a prefix sources attack traffic based on
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the observed features. We chose to use RF due to its observed high accuracy and

fast training and classification times compared to more complex methods like neural

networks.

Weighted training. Initial experiments suggested that the per-prefix false-negative

and false-positive rates of our model do not directly correspond to the error rates

of ZAPDOS’s end-to-end iterative refinement approach. In particular, we found that

false-negative decisions made at shorter prefix lengths had a disproportional impact on

the overall false-negative rate because they caused the refinement process to miss large

prefixes potentially containing many attack sources. To counteract this effect, when

training our model, we use a weighted sample of our training set which contains more

observations of attack prefixes at shorter prefix lengths (e.g., less than /16) compared

to longer prefix lengths. This weighting of the training set causes the model to be

more suspicious (i.e., make more false-positive decisions) at shorter prefix lengths,

making it more likely that ZAPDOS will continue zooming in and not miss large

regions that include attack sources.

C.3 Request-Response Difference

In this section we describe the generic rrDiff feature which summarizes multiple

well-known signatures at the prefix-level. Intuitively, rrDiff captures patterns where

attack traffic tends to have a larger number of packets of one class (e.g., responses)

compared to another class (e.g., requests). (Note that we will refer to these two

classes as “responses” and “requests” in the following.)

In particular, for each prefix p and each attack vector v, we compute the

total number of request packets (reqp,v) and the total number of response packets

(respp,v), respectively. Table C.4 shows the set of response and request entries for

the attack vectors considered in this work along with details about how we classify
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packets as being requests or responses for each vector. Given these sums that the

switch hardware computes for a given prefix p, we consider the feature rrDiffp that

summarizes the degree of response-request imbalance in that prefix and is defined as

rrDiffp = max
v

(respp,v − reqp,v)

Intuitively, the value of rrDiffp will be high if p sources attack traffic and close to

zero if p sources only benign traffic.

Protocol Request Response

DNS refl. UDP to port 53 UDP from port 53
NTP refl. UDP to port 123 UDP from port 123
SSDP refl. UDP to port 1900 UDP from port 1900
SYN flood1 TCP, SYN+ACK set TCP, only SYN set

Table C.4. List of currently considered reflection vectors.

Feature IncNodePurity

prefixLength 759.0381
bytesFrom 41200.3716
bytesTo 2066.1812
respReqDiff 6761.4385
lastActiveDiff 1010.9086
minIPG 2039.5534
maxIPG 4436.0248
aveIPG 1274.9780
pktsFrom 17092.2162
pktsTo 1558.1276
minLen 0.0000
maxLen 5569.0806
aveLen 11052.1292

Table C.5. Feature importance of the trained random forest model used in ZAPDOS.

1Note that SYN floods are not technically a reflection attack, but we can still capture their
asymmetry with our response/request difference feature.
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APPENDIX D

GLOSSARY OF SELECTED ABBREVIATIONS

The following is a list of commonly used abbreviations in this dissertation.

• ALU. Arithmetic Logic Unit.

• API. Application Programming Interface.

• ASIC. Application-Specific Integrated Circuit.

• BDD. Binary Decision Diagram.

• CDN. Content Delivery Network.

• CIDR. Classless Inter-Domain Routing.

• CPU. Central-Processing Unit.

• CSP. Cloud Service Provider.

• CV. Coefficient of Variation.

• DDoS. Distributed Denial of Service (a type of network-based attack).

• DMA. Direct Memory Access.

• DNS. Domain Name System.

• DSL. Domain-Specific Language.

• ECMP. Equal-Cost Multi-Path (a routing policy that distributes traffic over

multiple links).

• EWMA. Exponentially Weighted Moving Average.

• FPR. False-Positive Rate.

• FNR. False-Negative Rate.

• IANA. Internet Assigned Numbers Authority.

• ICANN. Internet Corporation for Assigned Names and Numbers.

• ICMP. Internet Control Message Protocol.
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• IDS. Intrusion Detection System.

• IP. Internet Protocol.

• ISP. Internet Service Provider.

• JSON. JavaScript Object Notation.

• REST. REpresentational State Transfer.

• RIR. Regional Internet Registry.

• RPC. Remote Procedure Call.

• SDN. Software-Defined Networking.

• SRAM. Static Random Access Memory.

• SVK. System Verification Kit.

• TCAM. Ternary Content-Addressable Memory.

• TCP. Transmission Control Protocol.

• UDP. User Datagram Protocol.
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