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DISSERTATION ABSTRACT

Dewi Yokelson

Doctor of Philosophy in Computer Science

Title: Online Performance Observation for HPC Applications

The exascale computing era is providing faster and more powerful systems for advanced HPC

applications. However, it is increasingly challenging for programmers to utilize the range of hardware

resources that make up these platforms to their fullest extent. Enabling larger, faster, and more

diversified simulations requires performance monitoring tools that can integrate seamlessly with

applications and operate efficiently in all desired configurations. In addition to critical computational

bottlenecks, data movement and I/O performance issues are also important to monitor as data can

quickly grow to terabytes and beyond. Thus, a major challenge in high-performance computing

is maximizing the performance of many diverse simulations on expensive, energy consuming, and

heterogeneous hardware. Furthermore, the landscape of scientific simulations is changing to include

increasingly diverse and complex systems, such as coupled applications and workflows. This creates

additional considerations in the performance analysis space, where dependencies and task scheduling

can play a larger role. This dissertation presents an approach to addressing these issues, wherein we

enable performance observability during runtime for different applications and workflows running on

heterogeneous architectures. The framework we have created to support this valuable functionality

is called Service-based Observability, Monitoring, and Analytics (SOMA). We show how it addresses

diverse application and workflow needs across systems, while supporting many useful performance

monitoring capabilities with reasonable overhead.

This dissertation includes previously published and unpublished coauthored material.
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CHAPTER I

INTRODUCTION

1.1 Main Research Question

High-Performance Computing (HPC) is an integral part of most modern scientific innovation.

We see it everywhere, from achieving ignition to training the artificial intelligence models that are

increasingly incorporated into our day to day lives. Running a simulation on a supercomputer can

not only reduce the cost of experimentation, but enable us to study outcomes of experiments that

would otherwise be too dangerous or impossible to conduct, i.e. nuclear reactions or deep space

calculations. Yet HPC, especially at exascale which can be required for accurate simulations, is not

cheap. Supercomputer clusters are expensive to build and maintain, with complex, custom cooling

systems and high electricity costs. Moore’s Law appears to be ending, which means the gap between

resource capabilities and actual compute speed is widening. Using these systems more efficiently

allows us to continue to scale and grow simulations and their capabilities for further groundbreaking

discoveries while keeping resource usage and costs reasonable.

1.1.1 The Limits of Post Mortem Performance Analysis. There are many tools that

profile, measure, and can describe the performance of an HPC application or of specific hardware.

However, performance data in HPC is notoriously difficult to manage and make sense of because it

is complex, high in volume, and high in dimension. Despite these challenges, performance analysis

and visualization has come a long way in the last decade, including many new tools and novel graphs

that help scientists on this path. Using existing tools and research and being able to bring more

of these supported capabilities online could realize large gains, without requiring reinvention of the

wheel.

Launching into the era of exascale, simulations are growing, as is the accompanying data that

they generate. This can be in the form of the actual scientific simulation data, or the performance

data gathered. One major bottleneck in such cases is moving the data across compute nodes, and

storing it for post mortem processing. There are some online approaches for reducing the amount

of data that needs to be moved and stored. One approach is to generate intermediate results

during runtime, which would allow for changes to, or ending the simulation. Another approach is to

filter or aggregate the data through such intermediate results and only store a subset of the initial
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output. This could amount to something similar to a lossy compression algorithm, with result-aware

compression rules when generic compresssion algorithms do not suffice.

Visualizations are critical in presenting performance data in an understandable format. Yet

knowing what data to present, and how is a challenge in and of itself. As the volume of performance

data grows, there is an increasing need to be able to do more with less data. As one example, if a

full simulation takes days to run, it can be unreasonable to do many runs to tune parameters, i.e.,

different libraries, number of ranks, or number of threads. The ability to know if we have better

performance earlier in the simulation would speed up productivity immensely. Another example is

when a simulation is run on hundreds or thousands of nodes, with multiple of processes and threads

each, and per rank, per thread metrics are gathered. This can actually create I/O or data storage

problems, especially if analysis is done post mortem (after completion). Thus being able to conduct

in situ (during execution) performance analysis becomes necessary.

1.1.2 Performance Observation as a First-Class Citizen. In many cases, it is no

longer enough to only write a parallel version of a program to speed up an otherwise serial code.

On increasingly diverse systems, with new and powerful programming models, more detailed input

data, and longer running simulations, code performance becomes one of the most important things,

sometimes even at the sake of better accuracy. This has elevated the need to consider performance

from the outset, a paradigm shift that has been a long time coming.

Instead of creating a single tool that can do-it-all, and trying to force simulation developers

and users to conform their use cases to that tool, we propose a different approach. Instead, this

dissertation proposes a framework, a new model if you will, that acknowledges the diverse needs for

each specific use case, and enables choice and flexibility. With the increasing importance of code

performance, this framework supports the elevation of that analysis as a top concern. We address

the very real needs for such a framework in an HPC ecosystem to be effective, and we demonstrate

that it works.

1.1.3 Thesis Topic. In the world of exascale computing, with the increasing need for

observation of the performance of the simulations, we must elevate this need to being a primary

consideration for every simulation. My main aim is to answer the high level research question (RQ)

and implementation-specific supporting question (SQ):
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RQ What are the requirements for an approach to online observation of simulation performance

in an HPC environment?

SQ What implementation choices for a monitoring system can support the requirements identified

by answering RQ?

For clarity, we offer a definition of online performance observation in the context of this work.

Online Performance Observation The availability of performance metrics during the runtime

of an application for viewing, storing, and analyzing by a human or computer.

Section 1.2 offers a brief overview of Chapter II, which addresses the conceptual approach for

answering the main question (RQ), including background information and challenges for creating an

observation framework. Sections 1.3, 1.4 and 1.5 introduce the main points of Chapter III, Chapter

IV, and Chapter V, respectively. These chapters address the specifics for answering the supporting

question (SQ) based on the requirements identified in Chapter II. They aim to answer the following

questions:

– Chapter III: How can we run on heterogeneous HPC ecosystems?

– Chapter IV: How do we support different input and output?

– Chapter V: How do we minimize the overhead?

1.2 Requirements for Supporting Performance Observation

HPC simulations are anything but homogeneous; from which language they are written in,

to whether they contain memory-bound or compute-bound regions, to whether they utilize only

CPUs or are GPU accelerated, these are just some of the many ways that they can differ. In this

respect, forcing a one-size-fits-all solution, by creating a single performance monitoring tool with

specific analysis and visualization functionality would be doomed from the start. Many performance

measurement tools exist that attempt to do just this, but the result is that they excel in some

aspects, or are useful for some codes, but they lack enough features to be the best solution across

the board. An example stems from the benefit fully instrumented codes that generate detailed traces
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— if a scientist has taken the time and effort to implement this in their code it would be useful to

support new analysis or visualization without requiring a complete refactor to a new tool.

Background information and related work are described within Chapter II. Then, the three

key requirements that were identified and inspired the three chapter research questions above are

listed as follows, and then they are described in further detail after:

1. Configurable: Accommodating many different setups in order to support the diverse nature of

HPC simulations and ecosystems.

2. Flexible: Both for input — the ability to measure many different metrics and simulations —

and output — the ability to analyze and visualize many different types of data.

3. Performant: Efficient in HPC ecosystems, and producing a reasonable amount of overhead

when observing and analyzing.

Our proposed solution for enabling in situ and online observation is to utilize existing

performance measurement and analysis tools, and enable their online use via a microservice-based

framework. We needed something that would be flexible, configurable, and performant. We propose

the Service-based, Observation, Monitoring, and Analytics (SOMA) framework as a solution for

bringing existing tools for analysis of HPC applications online or in situ as debuted in [157, 158].

See Figure 1 for a high-level view of the interaction between SOMA and existing performance tools,

acting as an enabler for access to online performance data.

1.2.1 Configurable. Configurability is crucial because different simulations will have

different amounts or types of data and our system must be able to adjust to serve it well. We

need to be able to monitor different metrics across HPC ecosystems at different times. Additionally,

running even the same simulation on different hardware with different network connections may

necessitate changes to any of these settings. These requirements inspired the question “How can we

run on heterogeneous HPC ecosystems?" Section 1.3 details the configurable aspects of our service-

based approach in SOMA, and how we used it to support the diverse needs of online observation of

HPC applications.

1.2.2 Flexible. Flexibility is important because only an adaptable service will be able to

interface with the existing tools, and in varying combinations. For example, some performance

measurement tools are geared towards measuring memory usage, while others might focus on I/O.
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Figure 1. SOMA enables online data access from many diverse input sources such as performance
profilers, or the application itself. It make the data available for use by many diverse consumers for
analysis or visualization.

From an analysis perspective, some tools might generate excellent roofline plots, while others provide

algorithms for identifying memory leaks or suggesting kernel optimizations. Being able to integrate

with multiple tools and support the online movement of the data they generate or ingest is necessary

for widespread adoption of an online observation framework. These requirements inspired the

question “How do we support different input and output?" Section 1.4 describes our approach to

providing a canonical data model structure which supports many different performance metrics.

1.2.3 Performant. Performance is important because we need to be able to manage the

large amounts of data generated by the applications with little enough overhead that it is worthwhile

to collect and analyze said data. Making use of existing HPC technologies that support efficient

performance is critical for this endeavour. Since what constitutes an acceptable amount of overhead

may be somewhat subjective based on the developer, we must take this into account. We must

consider the trade-offs between the amount and granularity of data we can collect with the impact

to the application. These requirements inspired the question “How do we minimize the overhead?"

Section 1.5 discusses our approaches to reducing the monitoring overhead.
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1.3 A Microservice Approach

This section outlines how Chapter III answers the question, “How can we run on heterogeneous

HPC ecosystems?" While all three requirements and questions from section 1.2 contributed,

the configurability requirement especially, led us to the decision to use a microservice inspired

architecture that is supported by the existing MOCHI software stack. This eases the composition

of these services by providing the client/server framework and the remote procedure call (RPC)

infrastructure needed for a distributed HPC environment [114]. We can pick and choose from the

SOMA client types to use based on the performance data sources that are needed for the particular

simulation. On the server side, any number of analysis backends can then be initialized to act on

the RPC data stream.

We built on top of the successful ideas behind the SYMBIOMON [110] online monitoring

and SERVIZ [109] shared visualization service projects. We extended the configurability of these

solutions by introducing frequency of data collection and publication in numerous capacities. SOMA

[157, 158] also has the ability to initialize any number of clients or server endpoint instances to meet

the demands of the amount of data being generated and published. The ability to very closely

configure the number of clients, servers, and RPC calls can be especially useful for preventing

disruption by the monitoring system if a simulation is already network-bound.

With the data models for metrics as described in section 1.4, we use a SOMA client to publish

the collected data during the application execution. This data can then be consumed, aggregated,

and analyzed by another SOMA client to generate online results. The benefits of this project not

only lie with the potential for data reduction, but also in the ability to end a simulation early and

relaunch it with different configurations if a problem is identified. Understanding how an application

behaves in real time is telling, when we can identify certain patterns with certain code regions we

can identify specific issues and make improvements to the code. This chapter discusses how we

support different analysis and visualization procedures with the gathered data. Examples of how

our framework works are detailed in this chapter as well as the different computer architectures that

we have successfully used.
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1.4 A Canonical Data Model

This section outlines how Chapter IV answers the question “How do we support different input

and output?" A key aspect for supporting flexibility in this manner is introducing a Conduit data

model [52] into the SOMA framework. Conduit enables any SOMA client to structure data into

Conduit hierarchical “node" structure and submit them via RPC to the server endpoints. Now we

have a shared data model for any input or client side application, and we can take advantage of

the fact that Conduit was made to be performant on HPC ecosystems, with built in serialization

capabilities. We implement Conduit data models in four separate domains which are: performance

profiles, application diagnostics, hardware metrics, and workflow states. These can be used on

their own or in combinations together to contribute to an in-depth understanding of application

performance in HPC ecosystems.

One other major benefit of enabling the SOMA service to collect, monitor, and analyze different

performance data online is the potential for providing feedback to the simulation or workflow. We

demonstrate how we collect and analyze data that can be used in this regard for both the Astaroth

codes, and for a RADICAL-Pilot (RP) workflow. In the case of Astaroth, we identified application

diagnostic metrics that indicated when the simulation is becoming unstable, this could allow the

simulation to be corrected and continue, or stopped if it is too late. Section 1.4.4 introduces the

integration between the RP pilot system and SOMA to collect and analyze not only scientific and

performance data, but workflow state data. We demonstrate case studies enabling online feedback

for making changes to the workflow runtime parameters. For the RP workflow we collect and analyze

data about the state of each task and the corresponding hardware behavior on those compute nodes.

1.4.1 Performance Profiles. The ability to leverage existing tools, where post mortem

data processing limitations can start to be felt, and bringing them online for faster analysis is a

major use case for the SOMA framework. This section describes two such integrations, showcasing
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Figure 2. An example use case of the SOMA stack, conducting both performance and application
data monitoring and publishing the data to server instances. The data can be used in a variety of
different ways with existing tools and interfaces.

the flexibility of SOMA and it’s ability to support very different performance analysis tools making

use of the canonical Conduit data model.

1.4.1.1 TAU. TAU is a performance analysis library that supports both the sampling of

any codes, and more robust instrumentation and tracing [87]. One of the first integrations built into

SOMA was a TAU plugin that can translate a TAU profile into a Conduit data node and publish

the data an configurable intervals for online analysis [157, 158].

1.4.1.2 Caliper. We propose another such pipeline by creating an integration between the

Caliper Performance Analysis Library [23] and the SOMA framework, similar to the integration with

TAU. Caliper data has the advantage of being closely linked with the analysis tool thicket [25] for

robust analysis features.

1.4.2 Application Diagnostics. Domain scientists may have specific metrics within their

codes that they want to monitor to ensure performance. This is not necessarily the intermediate

or final results of the simulation, but rather an intermediate diagnostic that might indicate if the

simulation is successful, though in some cases they may be one and the same. These diagnostics

could indicate the simulation is becoming unstable, or needs to be stopped or reconfigured. We

demonstrate how we can collect application-specific diagnostic data via the service-based SOMA

framework. We discuss results and overhead for both the LULESH proxy application and large-
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scale, multi-GPU astrophysics code, Astaroth [157]. Figure 2 shows an example of the structure of

the SOMA clients and servers and how they can relay information from both the performance profile

and application diagnostic sources to different destinations.

1.4.3 Hardware Metrics. Associating hardware performance with what is happening in

the code can add another layer of understanding to complex HPC ecosystems. We implemented a

SOMA client which gathers cpu utilization hardware metrics from /proc/stat and structures it into

a Conduit node, which allows for a visualization of the cpu utilization over time. This can enable

both fine-tuning of code performance as well as insights about where and when tasks are scheduled

for improved resource utilization.

1.4.4 Heterogeneous Workflow States. RADICAL-Pilot (RP) is a pilot system for

executing ensembles or heterogeneous workflows, that is, multiple concurrent simulations, on HPC

resources [97]. These are useful to scientists for a number of reasons, including executing coupled

simulations or achieving a faster time to solution by running duplicate, or slightly varied versions

of the same simulation at the same time. Creating a SOMA client integrated with RP brings

new functionality to both tools. RP can easily launch numerous SOMA servers, and a simulation

ensemble concurrently on an HPC cluster, in a configurable manner. This allows us to gather the

scientific data, performance data that we normally could with SOMA, but additionally allows for

workflow metadata to be collected and analyzed, all online.
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1.5 An Exascale Performer

This section outlines how Chapter V answers the question “How do we minimize the overhead?"

The act of observing something inherently generates some amount of overhead. However, we chose to

use the existing Mochi and Conduit technologies because they were made to be exceptionally efficient

on HPC systems already. Mochi makes use of the high performance networks that are available

on each cluster to transfer data from client to server. Conduit has highly efficient serialization

procedures for streaming. In addition to the benefits of using these technologies, our configurability
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from section 1.3 makes an impact on the performance front as well. With a nearly unlimited options

of configurations for number of clients, servers, publication rates, etc. we can tweak them many

different ways to reduce monitoring overhead. More is described on this topic in section 1.5.1.

We implemented a robust application programming interface (API) for SOMA that includes

the ability to submit both synchronous and asynchronous RPCs. This functionality allows for the

client to use either blocking, or non-blocking calls, depending on the needs of the application or

system being monitored. The API also allows for each client to commit to it’s own “namespace" in

order to keep the different data sources separated. Similar to a transactional database commit, we

can control the frequency of the RPC calls in this way as well [157, 158].

1.5.1 Monitoring Overhead. We compare usage of different network connections, API

calls, publication rates (i.e. changing the frequency of RPC calls), and number of SOMA servers

— which can enable faster processing of receieved data. These comparisons are carried out using

the LULESH, and Astaroth applications [157, 158]. Results do show there is typically an overhead

cost incurred when monitoring with SOMA, but that it can be minimized by applying thoughtful

strategies. In this section we explore in depth how different configurations of SOMA affect the

measured monitoring overhead.

1.5.2 Adaptive Feedback Potential. One other major benefit of enabling the SOMA

service to collect, monitor, and analyze performance data online is the potential for providing

feedback to the simulation or workflow. We demonstrate how we collect and analyze data that

can be used in this regard for a RADICAL-Pilot (RP) workflow. We collect and analyze data about

the DeepDriveMD Mini-app workflow and analyze the state of each task and the corresponding

hardware behavior on those compute nodes. This opens up the potential for online reconfiguration

of how the workflow is scheduled across resources, or how the workflow tasks are implemented and

run. We show how we can access and analyze the data online, the next steps are to “close the loop"

and feed the data back to the simulation or workflow manager for online adaptation.
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CHAPTER II

STATE OF THE ART IN PERFORMANCE OBSERVATION

This chapter contains unpublished and published material with and without co-authorship.

Sections 2.1, 2.2, 2.3, 2.4, 2.5 contain material from the departmental requirement, the Area Exam,

which is a survey of the state of the art in this research field. For the Area Exam, I was the

only author, and I completed all writing, but received guidance, feedback, and suggestions from my

dissertation committee members: Dr. Boyana Norris, Dr. Allen Malony, and Dr. Hank Childs.

Sections 2.3, 2.4 and 2.6 contain some published material from the a paper that was initially

published at the Cray User Group conference in 2023. An extension of this paper was published in

a special edition journal of Concurrency and Computation: Practice and Experience in June 2024.

The work was a collaboration between the University of Oregon, NVIDIA Corporation, University

of Helsinki, Aalto University, and Academia Sinica. Co-authors include Oskar Lappi, Dr. Srinivasan

Ramesh, Dr. Miikka Väisälä, Dr. Kevin Huck, Touko Puro, Dr. Boyana Norris, Dr. Maarit Korpi-

Lagg, Dr. Keijo Heljanko, and Dr. Allen D. Malony. I was the first author, but some co-authors

helped with writing and figures, all helped with suggestions, and proof-reading. Dr. Malony wrote

most of the subsection on the TAU Performance System 2.3.2.1.

Sections 2.4 and 2.6 also contain some unpublished material from a paper that is is under

review at a 2024 conference. This work was a collaboration between University of Oregon, NVIDIA

Corporation, Brookhaven National Laboratory, and Rutgers University. Co-authors include Dr.

Mikhail Titov, Dr. Srinivasan Ramesh, Dr. Ozgur Kilic, Dr. Matteo Turilli, Dr. Shantenu Jha, and

Dr. Allen D. Malony. I was the first author for the paper, conducted all experiments and completed

the majority of the writing. Some co-authors helped with writing, all helped with suggestions, and

proof-reading.

2.1 Introduction

HPC systems have been driving scientific discovery in many domains, yet utilizing them as

efficiently as possible still poses a major challenge. The benefits of running simulations on HPC

systems are countless. They have made it possible to model extremely intricate scientific systems

that require a large volume of data, complex calculations, and high precision. It is necessary to

expose, and use the parallelism in HPC applications in order to process these volumes of data
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quickly. Scaling these simulations across multiple nodes, each of which contain many cores can

become difficult quickly, even for experts in the HPC domain.

Effectively using the necessary tools and programming models such as CUDA [102],

OpenMP [32], and MPI [48], presents developers with additional challenges. This is especially

true when these are used in conjunction with highly optimized for parallel performance math and

modeling libraries, e.g., BLAS [63], LAPACK [9], and FFTW [41]. The steps to compile and marry

together different versions and implementations of these libraries with the best thread and rank

count can create an prohibitively large search space for optimal parameters.

Performance analysis and visualization of high-performance computing (HPC) codes, while

complex, can be one of the most useful tools for improving HPC application efficiency. Moving

the analysis and visualization earlier in a workflow can save scientists enormous amounts of time

and money when they are optimizing and running their experiments on expensive and in-demand,

HPC resources. This chapter surveys current performance analysis and visualization capabilities

and challenges, and analyzes the current work and existing opportunities of taking a more in

situ approach. This approach would boost efficiency and enable analysis and visualizations that

might otherwise require prohibitively large amounts of data, thus incurring too much I/O overhead.

We look at current work in this area, as well as the neighboring fields of scientific analysis and

visualization, and information visualization.

2.2 Background and Definitions

In order to achieve optimal wall clock time for an application, it is important to monitor and

analyze the performance, which adds yet another layer of data complexity. For an HPC application,

this performance is a crucial consideration. Without sufficient performance of the application, both

time and money are wasted on expensive resources. However, it can be difficult to understand

the performance of such applications and systems. There are many aspects to this, including:

understanding what the current application performance is, figuring out a realistic performance

benchmark to achieve, the optimal parameters, and diagnosing reasons for poor performance so as

to improve it.

One such way to help communicate these concepts and metrics is via data analysis and

visualizations of performance data gathered from many of the different measurement applications.

There are many tools that profile, measure, and can describe the performance of an application or of
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specific hardware. However, performance data in HPC is notoriously difficult to manage and make

sense of because it is complex, and high in volume. Despite these challenges, performance analysis

and visualization has come a long way in the last decade, including many new tools and novel graphs

that help scientists on this path.

K.E. Isaacs et al., provided a taxonomy of performance visualization organized into four

contexts: hardware, software, tasks, and application [61]. Hardware covers physical structures of the

hardware and their performance. The software category encompasses the source code, or application

that is being run. Tasks are similar to software but with the source code context removed, still actions

that are happening, but without any relation to how the code was written. The application context

contains things like linear algebra calculations or the computational aspects of the program. Isaacs

points out that some visualizations are characterized by more than one of these contexts. While

this taxonomy was written for performance visualization specifically, we believe it applies also more

generally to how to understand application performance, thus, also analysis.

The contexts provided by Isaacs et al. help us to understand what kinds of performance

visualizations (and analysis) already exist, what they do well, and where there are opportunities for

improvement. As a general example, some of these visualizations, especially of the hardware nature,

rely on reducing the dimensionality of the data in order to present something easily digested by the

reader. As problem spaces get larger, with increasingly complex code on larger clusters with more

cores per node, reducing the dimensionality proves to be a bigger challenge [61]. These premises

provide a good baseline understanding for discussing new methods for analyzing performance data

and generating hardware-specific understanding and visualizations.

Analysis and visualizations are critical in presenting performance data in an understandable

format. Yet knowing what data to present, and how is a challenge in and of itself. As the volume

of performance data grows, there is an increasing need to be able to do more with less data. As

one example, if a full simulation takes days to run, it can be unreasonable to do many runs to tune

parameters, i.e., different libraries, number of ranks, threads. The ability to know if we have better

performance earlier in the simulation would speed up productivity immensely. Another example

is when a simulation is run on hundreds of nodes, with hundreds of processes and threads, and

per rank, per thread metrics are gathered. This can actually create I/O or data storage problems,
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especially if analysis is done post hoc (after completion). Thus being able to conduct in situ (during

execution) performance analysis becomes necessary.

In this chapter, we contribute discussion on the following recent advances in the field of

performance analysis and visualization:

1. Successful performance analysis and visualization concepts, common challenges, and how they

have been managed.

2. An analysis of many of the current tools and their “readiness" for in situ or online observation.

3. Current in situ and post hoc performance prediction and problem diagnosis techniques and

what opportunities have arisen there.

4. A look into the fields of scientific visualization and information visualization for inspiration.

Further research opportunities are also discussed in terms of the following challenges that are

related to implementing in situ performance analysis and visualization in table 1.

Table 1. Four of the universal challenges associated with implementing in situ performance analysis
and visualization

Challenge Description

(A) Superfluous Data
A direct effect of the high-dimensionality
problem, managing large amounts of data

and analyzing and visualizing only items of interest

(B) Incomplete Data
Because a program has not completed, not all

the possible data will have been collected,
could lead to incorrect conclusions

(C) Distributed Data
The parallel nature of applications means

that performance data could be distributed
across resources and require synchronization

(D) Limited Resources
Collecting performance metrics already

increases overhead, adding analysis and visualization
generation can exacerbate this issue

The following sections provide some background on how performance data of HPC codes is

gathered and structured for use. The structure of the data and it’s many possible dimensions is one

of the largest contributing factors to the challenge of analysis and visualization.

2.2.1 Dimensions. The high-dimensional nature of performance data is one of the

challenges to creating meaningful 2d, 3d or even 4d (showing a change over time) analysis or

visualizations. When thinking about the environment that HPC codes run in, we can quickly see
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why. First, there can be the code logging events and gathering timing data for specific functions

to complete. Then this code could be multi-threaded or multi-processed, with numerous threads or

processes executing simultaneously. It could be a hybrid application with multiple processes and

multiple threads per process. This could then be running across many compute nodes. Parallel-

enabling programs such as MPI and CUDA have their own overhead and sometimes functions that

should be tracked for timing data. Then there are the hardware metrics that can be tracked, such

as the memory bandwidth during an application run. The data can quickly become unwieldy, for a

program running on multiple compute nodes, for multiple days, with multiple ranks and threads.

2.2.2 Profiles. A large subset of performance analysis of HPC codes is done with the use

of profile data. Profiles are essentially metadata about the code running that gets written out during

runtime (dynamic). This metadata usually includes information like the function name, current line

in the code, and performance information such as thread ID that can be used to determine how

long certain sections of code take to run, among other things. These profiles are multi-dimensional

data files, often containing information per thread, or node, etc. They can be tricky to parse into a

format that cooperates with non HPC specific analysis and visualization tools.

Profile data can be gathered either through instrumentation or sampling. Instrumentation of

the code is a more involved method that typically requires annotating and recompiling the code —

the tool used to instrument will insert code that writes out performance data periodically. This is

the most comprehensive method, but it can often be time-consuming to implement and may not

be necessary if sample data is sufficient. Sampling is when the tool interrupts the HPC application

periodically to query for the metadata mentioned above. Sampling usually requires less set up but

offers the programmer less control over when and how the application is monitored. For a large

application that runs for a significant period of time, sampling can often be sufficient as it averages

out to being quite accurate over many timesteps.

2.2.3 Trace Data. The second category of performance data that is widely used in analysis

and visualization tools is trace data. Traces can include the same data as a profile, but contain more

detail, most notably with the addition of a temporal dimension. It can be thought of as a detailed

log of events happening while the codes run. Trace data can be generated at many different levels

including: the application, the compute node, the rank or process, and the thread. While this level

of detail can be extremely useful, it can also quickly become unwieldy.
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Because of this complexity and potential volume of trace data as well as the wide array of

tools that use it. A standardization project has been in place for some time. The current standard

format for trace data is give by Open Trace Format 2 (OTF2) [38]. This built on the predecessor

Open Trace Format (OTF) [71, 85] and the EPILOG format [147]. The main improvements were

adding more flexibility between different use cases and additional scalability.

2.2.4 Important Performance Metrics. One of the most common metrics that is used

when analyzing performance of an application is the wall clock time, often also referred to as

execution time, or time to completion. This is simply the full length of time that it takes for

the application to run from start to finish. While this measurement is an excellent indicator of the

performance of the system, and is often the main target for decreasing, it lacks the nuance that

may be required to gain additional performance. To identify these further opportunities, function

or kernel specific data, or hardware specific data is more helpful. For example, knowing how long a

program spent executing one specific loop can give insight into how it could be optimized.

Hardware performance counters are registers that keep track of the count of certain events

(e.g., number of cache misses). These events imply how efficiently code is executed on the hardware,

and can be gathered by accessing API’s like PAPI [26, 134]. Efforts to standardize this access across

tools have been taken on with projects such as Score-P [72]. Examples of tools used to gather

hardware counter information include: TAU [121], HPCToolkit [1], Caliper [23], Survey [132, 101],

and Likwid [115]. The following sections provide some background on how performance data of

HPC codes is gathered and structured for use. The structure of the data and it’s many possible

dimensions is one of the largest contributing factors to the challenge of analysis and visualization.

2.2.5 Performance Observation v Monitoring v Analysis. An important distinction

we want to make in this dissertation are the differences between how we use the terms online

observation, monitoring, and analysis in relation to performance data. Performance observation,

as discussed in Chapter I involves enabling the availability of performance data online. Online

performance observation thus enables performance monitoring, which is the act of viewing the

performance data that is currently available. Finally, online analysis is the next step, where

calculations, conclusions, or visualizations are drawn from the available data during runtime.
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Tool Trace Profile Arch. CPU PortableThread Rank Inst. Sampling Roofline Loop Function
Intel Advisor X X X
Intel VTune X X X X

NSight Systems X X X X
TAU/Paraprof X X X X X X

Perfetto X X X X X X X
Chrome Tracing X X X X X

HPCToolkit X X X X X X
Ravel X X X X
ERT X X

TAU/Vampir X X X X X X
Hatchet X X X X
CallFlow X X X X
Grafana X X X X

Table 2. Analysis and visualization capabilities of some HPC performance tools

2.3 Offline Performance Analysis and Visualization Tools

This section encompasses the current work and effectiveness within the field of performance

analysis and visualization in general, without online capabilities. First, we discuss what is currently

being measured, analyzed, and visualized, and at what granularity. Second, what makes these tools

effective, including examples of some such successful ones, and a detailed description of TAU and

APEX. Following this is a deep dive into the cache-aware roofline model, one of the most successful

performance analysis concepts that has been adopted into many tools.

2.3.1 Current Performance Analysis and Visualization. Current capabilities for

performance analysis and visualization span across many scopes, including, the actual code

performance, single-node hardware performance (FLOP rates and memory bandwidth), distributed

memory system performance (multiple node), and the relationship between some of these. Table 2

categorizes the different capabilities of some of the existing tools. From an application or software

perspective, we can measure something as high level as the differences between wall clock times,

or as granular as how long a loop takes to execute. Other concepts that are often measured and

visualized are a full call graph of the application, and time spent in each function over the course

of an application run, denoted in the “Profile" column of table 2 (by either instrumentation, or

sampling). Table 2 also specifies in the tools that do trace analysis and visualization, which is

simultaneously the most useful data due to its detail, but the least user-friendly due to its volume.

This is discussed in much further detail within the next section, section 2.3.2.
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Figure 3. An example of four different call graphs generated by the Hatchet tool for data gathered
for the same code, CalcHourglassControlForElems, by three heavily used analysis tools, Caliper,
HPCToolkit, and TAU [28]. There are notable differences between the clarity of the call graphs with
data obtained through instrumentation.
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Call graphs and calling context trees are the two most common formats for structured profile

data acquired through instrumentation or sampling. Call graphs provide a more static view of any

interrelated functions (that call each other), disregarding how the application currently got to the

specific function sampled, see Figure 3. Calling context trees show a more dynamic view by using

the stack trace to expose to the programmer what functions called each other to get to the current

state in this run of the application. Both are extremely important ways to structure the data as the

call graphs are more straightforward but the calling context tree provides more detail and potentially

important context about the application.

Another concept that researchers have been measuring, analyzing, and visualizing is memory

bandwidth, as the majority of applications are memory bound [113]. Two concepts to understand

here are the hardware capacity (maximum), and how well the application is utilizing the full

bandwidth available. MemAxes is a tool developed to target specifically the memory domain

of performance data [44]. Their approach takes into account source code, data structures, and

hardware. They create interactive visualizations to communicate potential bottlenecks or issues

with this complex relationship. Their sunburst-like visualizations are quite unique, which can be

helpful if it can communicate well, yet require the consumer to adapt to a new visualization type.

Hardware performance analysis is often encompassed by measuring the peak performance of

the compute node or cluster. The cache-aware roofline model, which is discussed in detail in section

2.3.3 calculates both the theoretical maximum memory bandwidth of the hardware system (per cache

level), and the theoretical maximum FLOP rates. It also allows for incorporating a calculation of

the actual bandwidth and FLOP rates (arithmetic intensity) achieved by the software for a full

application, function, or loop. Another method of hardware performance analysis and visualization

that is common to see is the stacked bar chart displaying the Top-Down metrics in conjunction

with Top-Down Analysis. This method allows users to visualize at a high level and dive into more

detail on hotspots [154]. This method was developed at Intel and has been incorporated into Intel

VTune [130].

2.3.2 Effective Performance Analysis and Visualization. One of the major challenges

facing the measurement of software trace data today is that they do not scale well with the amount

of data collected.For the complex nature of performance data, the ability to flatten the data into

something digestible by a human is a necessity. Many tools employ approaches to this technique,
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Figure 4. An example of the trace visualizations generated by Ravel, each row represents a thread
and the color represents a procedure. [60]. By nature, trace data can get unwieldy quickly, and
Ravel was built specifically to tackle the challenge A (scalability) in table 1 could be a particular
challenge when visualizing trace data like this.

including but not limited to HPCToolkit [1], TAU [120], and Grafana [129]. To address this issue,

Ravel, structures the typical trace data, into that of logical time [60] based on the happened-before

relation introduced by Lamport [76]. Logical time in this context means looking at relationships

between events, and the order in which they occur, rather than when events occur on a physical

timeline. It takes the code structure into account, as well as making grouping of events easier.

More details about the specific implementation, and topics like lateness can be read in section 3 of

their paper [60]. Through preserving important physical timing data and different applications of

clustering data and color coding, they create visualizations that are more easily understood, even

at a higher processor count.

HPCToolkit is a popular and relatively widely used across domains and platforms. HPCToolkit

gathers performance metrics with only a few percent overhead [1]. The HPCToolkit workflow

includes measurement, analysis, correlation, and presentation.

Google has also created a robust trace analysis and visualization tool called Perfetto. Perfetto

can analyze and visualize data from a number of different sources. It runs completely inside of the

web browser and has interactive zoom and select capabilities. This allows the user to control their
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view and dive deeper into areas of interest. This can even be done offline once the trace file is opened

inside the browser window [131].

2.3.2.1 TAU and APEX. The TAU project began in the early 1990s with the goal of

creating a performance instrumentation, measurement, and analysis framework that could produce

robust, portable, and scalable performance tools for use in all parallel programs and systems

over several technology generations. Today, the TAU Performance System® [120] is a ubiquitous

performance tool suite for shared-memory, message passing, and task-based parallel applications

written in multiple programming languages that can scale to the largest parallel machines available.

It is installed on many HPC systems around the world and is used on a daily basis for performance

analysis and tuning of applications across multiple domains.

The TAU Performance System [120] consists of two toolkits: the tuning and analysis utilities

(TAU ) and the autonomic performance environment for exascale (APEX ). The TAU model of

performance measurement is based on a “worker" (first-person) perspective. Essentially, each thread

of execution in a program will make performance measurements with respect to its operation.

A measurement could occur as a results of an instrumentation probe the thread executes or an

event-based sample interrupt that occurs on that thread. All performance data (e.g., time, HW

counters) are stored within the thread context and retained during execution. All threads output

their performance information when the program terminates. Many HPC performance tools are like

TAU, including HPCToolkit [1], Score-P [73], Scalasca [148], and Caliper [23].

In contrast, APEX [56] is based on a “task" (third-person) perspective, with event-based and

sample-based measurements. APEX uses an event API and event listeners to observe when a task

is created, started, yielded or stopped, and updating timers for measurement. (Note, this is with

respect to what constitutes a task, not necessarily its thread of execution.) Dependencies between

tasks are also tracked, using globally unique identifiers (GUID). APEX periodically and on-demand

interrogates (samples) OS, hardware, or runtime states (e.g., CPU utilization, resident set size, or

memory “high water mark”). This also occurs in TAU, but in a different manner. APEX measurement

includes background buffer processing to record GPU kernel execution and memory transfers to and

from GPUs. Available runtime counters (e.g., idle rate, queue lengths) are also captured on-demand

or on a periodic basis.
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Both TAU and APEX can produce profiles and traces. With this in mind, the TAU profile

data model provides for a type of analysis that can look at individual thread operation and the

performance of particular events across multiple threads. It is possible to compute statistics for

specific events to get a sense of aggregated performance. APEX is particularly appropriate for

task-based runtime environments. Existing and emerging programming models present technical

challenges that first-person measurement systems had not considered: untied task execution and

migration, runtime thread control and execution, state sampling, and runtime performance tuning.

APEX can address these issues while being lightweight enough to be present in an application for

continuous performance introspection and adaptation.

Several programming systems and communication libraries implement a performance interface

that allows tools to observe events and associated data associated with those components (e.g.,

OMPT [103] for OpenMP and PMPI [40] for MPI). Some adopt a plugin design that enables

tool connection at runtime. However, user code instrumentation generally lacks support for tool

interfaces. The PerfStubs library [22] is a thin, stubbed-out, “adapter" interface for instrumenting

library or application code. The PerfStubs library itself does not do any measurement, it merely

provides access to an API that performance tools can implement.

We have mentioned the wealth of robust performance measurement and analysis tools that

have been developed for HPC systems and applications. These include HPCToolkit [1], Score-P [73],

Scalasca [148], Extrae/Paraver [106], Caliper [23], Timemory [83], and others, as well as machine-

specifc vendor offerings. For the most part, these tools were designed for offline performance analysis

and tuning, with a focus on first-person performance measurement of tied task functions on a per-

thread OS thread basis. In addition to capturing time and hardware counter data, some of the tools

also support heterogeneous systems and are able to measure GPU performance. TAU provides a

comprehensive set of performance measurement and analysis capabilities that covers practically all

HPC environments and parallel computing models.

In contrast, there are fewer performance tools that address existing/emerging programming

models and runtime systems where there exists untied task execution and migration, runtime thread

control and execution, third-person observation, and runtime performance tuning. What also sets

APEX apart from runtime-specific solutions is that it has been refactored from its HPX-centric

design [64] to a more general purpose asynchronous multi-tasking runtime profiling library. TAU
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Figure 5. An example roofline plot displaying multiple cache levels (diagonal lines), multiple peak
flop rates (horizontal lines), and some example application data points (dots) from [47]. Once an
architectural roofline is created (lines), application points from functions or kernels could be plotted
as soon data becomes available, which could integrate well into an in situ visualization workflow.

and APEX form a powerful combination (as the TAU Performance System) for HPC application

performance analysis and engineering that is not replicated in other performance toolkits.

2.3.3 Rooflines: A Performance Analysis Success Story. The Roofline model is one

of the most successful analysis and visualization concepts of hardware performance to come out of the

literature in recent history. It has taken off like not many other concepts have, being incorporated

into professional tools and used in the majority of papers discussing hardware performance. It’s

success is owed in part to the simplicity of the visualization, with a straightforward shape that is

easily understood. Part of it’s success is due to it’s relatively portable and flexible nature, though

some challenges still exist to be comparable across different architectures [46, 47]. The Cache-aware

Roofline model (CARM) incorporates multiple cache levels [57]. Rooflines can also include multiple

peak flop rates (roofs), for example, when looking at differences between scalar and vectorized peaks

and/or enabling Fused Multiply Add (FMA). A Roofline model also lends itself well to customization,
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allowing additional plotting of measured application performance or kernel performance in regards

to the theoretical peaks.

The original roofline model was outlined by Williams et al. out of Berkeley Labs in [146].

First emerging in 2009, it was instrumental in assisting scientists moving to parallel programming

from serial programming. The basic concept behind roofline analysis is that it calculates and plots

GFLOPs per second on the y-axis, and Arithmetic Intensity on the x-axis. Arithmetic intensity is

defined as the total number of FLOPs computed, divided by the total number of bytes transferred

between the processor and the specified memory level. Plotted on a log-log scale, this creates

the visual of a sloped roof, connected to a flat roof, indicating the peak values achievable on this

particular hardware. The ability to evaluate how a kernel is performing based on the limits of the

hardware was a key for scientists porting their code to new hardware, or improving their code on

existing hardware. It was now easier than ever to answer questions about performance and work

towards greater optimization of codes.

Ilic et al. made some extremely useful updates to the original Roofline model when they

introduced the Cache-aware Roofline model (CARM). They take into account the different cache

levels, not just the DRAM, and thus the different bandwidth measurements for each of these cache

levels. The bandwidth to the L1 cache is higher than the bandwidth to DRAM and thus there is now

opportunity for understanding performance within the two bounds. The result is an improvement

on the older model, and has been widely adopted, often replacing the original Roofline model.

Intel Advisor is one of the tools that has incorporated the CARM into it’s suite of offerings [89,

90], see table 2 in the “Architecture (Roofline)" column. Expanding and building on the models

proposed in [58] which focus on understanding the memory access can affect the energy efficiency.

Intel Advisor’s capabilities extend to plotting the kernels on the graphical CARM, and whether

those kernels are vectorized. Intel Advsior has made it more straightforward to profile an application

and generate a graphical CARM bringing the concept to the forefront. It is easier, especially for

domain scientists who do not have the time or expertise to dig into the specifics of the machine and

application, to create these results and visualizations and understand the performance of their code.

The Roofline Model tools have been extended to support GPU architectures as well, using the

same Roofline concept [153, 152, 143]. This is another example of how flexible and portable the

roofline concept is, that without significant changes to the approach and visualization, it can be
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extended to different architectures. The extension to GPUs from CPUs allows for far more robust

comparisons of application performance. With the increasing use of GPUs to accelerate code it is

crucial to be able to characterize application performance on these architectures.

A recent extension includes the Instruction Roofline Model, which deviates from the traditional

floating point metric approach, and instead focuses on representing integer operations. The

Instruction Roofline Model incorporates the number of instructions issued, and can help to highlight

bottlenecks, instead of just overall performance. A couple of Instruction Roofline Models have

recently been proposed for both NVIDIA and AMD GPU architectures [34, 80]. In general

the Instruction Roofline Model allows for deeper insight into the memory performance, enabling

identification of issues with shared memory conflicts and memory access patterns.

2.4 Performance Observation, Monitoring, and Analysis

Concurrent with the significant research and development work in the performance tools

community, there has been long-term interest in parallel performance monitoring. There are

numerous systems that can help with gathering the data required to conduct performance analysis

online, but many opportunities remain [108]. Wood also provides an excellent survey in the area

of online monitoring [149]. Analysis and visualization of this data ranges in these systems from

very basic text/table output to more comprehensive graphs. The term “monalytics" was used as a

combination of the terms “monitoring" and “analysis", referencing the approach for detecting and

managing system and applications behaviors in a data center [75].

2.4.1 Application Monitoring. One example of a performace monitoring tool is SosFlow

[151]. SosFlow shows how the Scalable Observation System (SOS) can collect low-level data from

instrumented software for use in analysis. SOSFlow supports complex scientific workflows running

on clusters by implementing an integration with TAU (called TAUflow) which intermittently submits

the regularly collected TAU data to SOSflow. This is a useful integration as it makes use of existing

tools for collecting performance metrics and couples it with an in situ analysis framework. They

evaluated the overhead for this extra processing in the general range of 1%-3% of the total walltime

of the application. Visualization of this data was extended using Alpine, mapping the performance

data to the geometry of simulation data [150].

Tools like Falcon [50], Autopilot [111], Periscope [43], ActiveHarmony [127], and

WOWMON [159] utilized monitoring to provide online analysis and/or support for adapting and
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steering the application. Chimbuko [69], utilizing TAU as a performance measurement system,

implemented in situ trace analysis to detect performance anomalies and generate provenance for

root cause analysis.

The Falcon system provides application-specific monitoring, information about the overhead

of the current monitoring, as well as graphical monitoring views [51]. This is useful in steering

the application towards better performance. The visualization capabilities are relatively basic and

two-dimensional, and some custom work was done for their evaluation to be able to create useful

visualizations in a short enough period to enable on-line analysis and steering. While this is a

promising start, realistically, scientists cannot be expected to do custom visualization work for each

application they wish to monitor and analyze online. Additionally, there is a recent python-based

tool [68] that offers a framework for flexible performance data input for HPC applications and has

its own python-based visualizations as output.

DIMVisual Hierarchical Collection Model (DIMVHCM) is perhaps the most visualization

focused of recent monitoring tools. Two major goals were to visualize the behavior of large scale

parallel programs as well as collect this data in an on-line manner. DIMVHCM consists of three

different types of data collectors and a push mechanism, e.g. data sent when certain conditions are

met [135]. The system includes DimVisual [117], which aggregates the data for the visualization

component TRIVA [116]. However, in order to actually run the graphical interface in situ they were

required to implement a workaround client that integrated with TRIVA based on timestamps of the

data. The ultimate effect was essentially in situ graphical monitoring, but with perhaps too many

required steps and workarounds for mass adoption. While TRIVA is capable of some interesting

distributed memory visualization, it is not clear what was taken advantage of in the DIMVHCM

case studies.

OSU INAM is a tool that provides online introspection into application performance through

a visualization dashboard, but it focuses on monitoring Infiniband network traffic as it relates to

the MPI communication between nodes [74, 126]. Some of these metrics overlap with what we can

collect from our TAU plugin, i.e. MPI message size, but they include more network specific metrics

whereas we prioritize hardware and workflow states in this work.

Grafana is an open-source and enterprise tool that offers a dashboard of customizable analysis

and visualizations for a number of different data types, including trace data. This is often used as
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a monitoring dashboard for users to understand the overall health and performance of their system.

Users can build visualizations that make sense for their system, including bar charts for categorical

data and heatmaps. As their interface is an API, it is already used in an in situ fashion, with

live updates as changes happen on the system [129]. Another tool along the lines of Grafana is

DataDog, but DataDog has emerged as a commercial cloud monitoring interface. Online monitoring

for companies who run their technology on cloud infrastructure is becoming increasingly populat

and DataDog provides customizable analysis and visualization dashboards for such companies.

2.4.2 Workflow Monitoring. As HPC workloads have evolved to include complex

heterogeneous workflows [62, 20], the need for online monitoring has grown in importance. Prior work

for HPC workflow monitoring has enabled user-based workflow steering [93], integration of machine-

level data into workflow monitoring [124], integration of ML-based techniques into distributed

workflows for minimizing resource wastage [14], and specialized workflow monitoring systems to

detect execution anomalies [88].

Bader et al. [13] present an architectural blueprint for categorizing monitoring data from the

HPC workflow and application stacks, closely resembling the concept of namespaces implemented by

SOMA. SYMBIOMON [110] introduces a service-based monitoring infrastructure for coupled HPC

applications. SOMA represents a generalized design and data model for service-based monitoring of

heterogeneous HPC workflows. In particular, SOMA’s implementation and architecture are specially

geared towards real-time online monitoring to enable adaptive execution of the workflow.

2.4.3 System-Level Monitoring. Much of the monitoring of HPC applications has

historically been limited to “system-level” monitoring — typically available to HPC system

administrators to view job-level statistics and hardware usage over time. The focus here is on the

behavior and health of the entire cluster, and not of a specific application performance and/or how

to improve it. Examples of such monitoring services include LDMS [2], Ganglia [91], Nagios [67], and

XDMoD [124]. ZeroSum [55] is special in this regard, designed to operate in between the application

and system layer and focused on optimizing the environment configuration of the HPC application.

Typically, such services operate in the background (deployed as daemons on the compute nodes)

and lie outside the scope of the HPC application — both in terms of online, real-time access to the

monitoring data and the configuration of the monitoring service itself.
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Recent work that has made use of the LDMS monitoring data by employing active learning-

based frameworks to diagnose performance anomalies during runtime include [6, 7], and they focus

on reducing the amount of labeled data required for accurate diagnostics. We envision that work in

this vein could be a future integration with our SOMA framework, as a consumer and analyzer of

the performance metrics in order to improve online decision-making, especially at scale.

Ganglia has interesting visualization capabilities though, specifically, it integrates with

RRDtool (Round Robin Database), a circular database, [33] to visualize the time series data that

is collected. The final output is web-based and separated from the performance data, which allows

for customization of the visualizations without accidentally manipulating the collected data. While

this is interesting and necessary for understanding the full context of application performance, it is

not the granularity of information needed for on-line tuning of specific scientific codes.

TACC Stats is similarly focused on a full data center, and can offer insights such as when

an application has idle nodes. [39] Some plotting functionality is included with some optional

scripts/workflows that are designed to be run on a predetermined intermittent basis, not based on

any conditional fulfillment. These plots are useful, but not able to be customized, two-dimensional,

or interactive.

2.5 Neighboring Fields

2.5.1 In Situ Scientific Analysis and Visualization. The analysis and visualization

of scientific simulation data has become increasingly challenging area as the volume of data grows.

Scientists in this field face similar issues to those in performance data, with large amounts of complex

data that needs to be managed and presented in a way that is digestible by the end user. Thus,

the demand for in situ functionality grows, either so that a user or program can draw conclusions

or even sometimes “steer" the application based on these results. One such example of a response

to handling this data is with VisIt [30, 3, 145]. VisIt’s focus is delivering scientific visualization

capabilities for large datasets that have been generated on parallel clusters.

Numerous in situ scientific analysis visualization frameworks have emerged in recent years.

Paraview focuses on generating interactive and exploratory scientific visualizations for large scale

datasets [10, 4]. Paraview Catalyst has been incorporated into in situ scientific work flows as the

visualization component in [5]. Alpine is an in situ scientific visualization infrastructure built upon
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the Strawman prototype [86, 77]. The ALPINE API uses VTK-h, Flow, and Ascent to generate in

situ data analysis and visualizations.

One key difference between the two fields that may be to the advantage of performance

visualization is the fact that it may be more plausible to ignore, or lose performance data. Many

scientific applications must be paused in order for the scientific visualizations to be generated,

because if the simulation were allowed to continue on then important discoveries could be overlooked

or missed completely. However, because of the nature of performance issues, it is much less likely

that any such insight is only able to be made at a single point in the application. This opens the

door to the possibility of reducing the overhead seen by some of these in situ scientific visualizations,

and allowing the simulation to continue while performance metrics are analyzed and produce results.

2.5.2 Exploratory Information Visualization. Exploratory information visualization

or visual analysis is the ability for a user to interact with their data and visualizations in order

to guide what is being analyzed and visualized and uncover new insights. A user may start with a

general hypothesis, and refine the visualization until they have a solution, or uncovered a problem. Or

a user may have an “open ended" approach, without a specific goal in mind. Either way, exploratory

visual analysis is a crucial component of analysis and visualization research, yet because of these

differing goals, can be difficult to implement well [16]. The domain of the data, and goals of the user

may be key in producing an effective tool here.

The increase of big data collected by businesses has given rise to tools like Tableau which can

provides insights into their data through exploratory visual analysis [125, 92, 133]. While business

data is not the exact same as HPC data, there can be multi-dimensional and temporal qualities, i.e.,

number of units of each item sold, across different types of stores, in different regions, within certain

time periods [92]. Tableau’s main approach is to enable exploratory visual analysis via clickable

dashboards that can change what data is viewed to answer different questions, and remove the

need for programming analysis written in Python or R, see Figure 6 [125]. Their VizQL solution

enables the majority of their interactive visualization functionality, allowing the user to learn with

feedback from the visualization, and vice versa [133]. Applying similar technology at this scale in

the performance data domain would be groundbreaking.

Other research projects looking at visual analytics of high-dimensional data can provide other

perspectives. For example, mapping multi-variate data to a concept that people already understand,
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Figure 6. An example of an interactive, clickable dashboard in Tableau, that enables a user to change
the data they are viewing [92]. The data behind these visualizations could be considered post hoc,
as it is gathered from a previously completed time period, yet is made interactive for exploratory
purposes.
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in this case, interactive route planning [160]. This creates a visualization that the user can understand

and interact with more readily from data that might otherwise be unmanageable. Another project

explores the relationship between the data analyst and a machine learning model of the data,

allowing the analyst to interact and refine the model. At the same time the model learns to identify

relationships and patterns in the data, which may be difficult for a human to identify. This project

supports “both model-driven data exploration, as well as data-driven model evolution" [42].

2.6 Requirements for Effective Performance Observation

With the rise of exascale systems and large, data-centric workflows, the need to observe

and analyze high performance computing (HPC) applications during their execution is becoming

increasingly important. While there is growing interest in enabling greater “observability" of HPC

applications, they are typically not designed with online monitoring in mind. Most tools are

tightly integrated with the application’s implementation, reducing their flexibility, extendibility,

and portability. When new functionality, such as runtime performance monitoring or in situ data

analytics is required, approaches are often severely constrained by how the HPC application is

implemented and executed. Therefore, the observability challenge lies in being able to access and

analyze interesting events with low overhead while seamlessly integrating such capabilities into

existing and new applications. Furthermore, the rise of scalable heterogeneous HPC systems is

increasing execution dynamics and the need for improved observational awareness. In particular, the

ability to track, analyze, and interrogate interesting events and phenomena about the application and

system is important to support the next generation of exascale solutions. We explore how SOMA’s

approach to collecting and aggregating both application-specific diagnostic data and performance

data addresses the following identified needs.

2.6.1 Configurable. The diversity in the architecture of HPC clusters has been very

apparent over the years as evidenced by lists such as the TOP500 [36]. Differences span from

physical layout of chips, number of cores per CPU, memory bandwidth, number of cache levels,

GPU accelerators, as just a small fraction of ways they can vary. More recently, with the rise

of larger artificial intelligence (AI) models, hardware has continued to evolve beyond general

purpose computing, and instead to better support the specific needs of AI. In order to create an

effective framework that can run on many or all of these we need to answer the question “How

can we run on heterogeneous HPC ecosystems?" In other words, what are the requirements for
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configurability that must be taken into account. Previous monitoring work has focused on the

architecture design and high-performance implementation, specifically to access TAU performance

data. TAUoverSupermon [100], TAUoverMRNet [99], TAUmon [78], and SOS [151] explored

different approaches and technologies for scalable application-level monitoring. Our recent research

on SYMBIOMON [110] instead chose to build upon the Mochi high-performance microservices

framework [114] thereby adopting a existing development model with well-defined interfaces,

available components, and active users. The modular, microservice-based architecture of Mochi

enables the configurability of SOMA [108]. Seer [49], SERVIZ [109], Colza [37], and other projects

have taken this route to build in situ analysis, visualization, and autotuning.

2.6.1.1 Portability. The crucial difficulty facing all consumers of performance analysis

and visualizations is the ability to use tools or techniques across heterogeneous architectures. A

scientist will find themselves faced with the dilemma of running their codes on a new architecture

anytime they gain access to upgraded equipment, or explore other options for acceleration. It

is very useful to understand performance across different CPU architectures, or analyze their

application’s performance with the addition of GPU acceleration. Vendors will often build analysis

and visualization tools to support their own architecture. Open-source tools like TAU, that use

standard formats such as OTF2 attempt to bridge this gap, yet many vendor-specific tools remain

that do not work across architectures. Considering the differences in the physical hardware and

network components (the interconnect between compute nodes), on modern HPC systems we must

address the challenge of building a portable SOMA framework. Our approach to addressing this is

discussed further in Chapter III, but involves making use of underlying microservice technologies

(Mochi [114]) that provide some measure of portability for us already.

2.6.1.2 Other Configurations. Harvesting unused computing cycles has been explored

in the context of inline visualization and analytics. The TINS [35] package leverages work-

stealing strategies to execute analytics tasks when there are no available simulation tasks scheduled.

GoldRush [161] and Landrush [45] employ smart co-scheduling of analytics routines alongside MPI-

OpenMP and GPU simulation tasks. They combine monitoring data with a scheduler to identify

regions of idle time on the processor that can be used to run these routines demonstrating significant

cost savings without perturbing the execution of the simulation. Our approach is not nearly as

sophisticated as these research results, but nevertheless attempts to take advantage of a situation
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with free CPU resources via either a straightforward MPI-based strategy, or as part of a scheduled

workflow. This is highlighted further in Chapters III and V.

2.6.2 Flexible. In addition to running across heterogeneous HPC ecosystems, SOMA

needs to support heterogeneous scientific applications and performance measurement and analysis

tools. The question “How can we support different input and output?" must be answered. The

SOMA research makes strides in this direction with the additional incorporation of data models

which are necessary for the semantic communication of application and performance data between

microservices. Conduit [52] is an established project born out of the scientific visualization

community for the purpose of describing and sharing data in situ.

As evidenced by the plethora of different performance tools that have been introduced in

this chapter, it would be a weakness to prescribe the use of a specific measurement tool or output

visualization in order to use SOMA. An application developer may not have the time or knowledge

to re-instrument their codes to use a new tool, or they may be limited to using less invasive sampling

methods for their codes. They may be more interested in memory bandwidth bottlenecks as opposed

to network bottlenecks, or be looking for suggestions to optimize specific kernels. Many of the tools

that support these measurements already exist - SOMA’s approach is to make use of these existing

tools and offer support for plugging into any of them. Similarly, if there are specific backends

(analysis or visualization tools) that an application development team already prefers, SOMA should

be flexible enough to support an integration with those. So as to provide flexible support for data

interpretation to any input and output SOMA implements a canonical data model, which is detailed

further in Chapter IV. One of SOMA’s greatest strengths is that it does not prescribe a “One tool

fits all" solution for the diversity of HPC applications and performance tools.

2.6.3 Performant. Our interest in HPC observability is motivated by the problem

of large-scale performance monitoring and analysis. Specifically, given robust technology for

heterogeneous performance measurement (e.g., TAU Performance System ® [84], HPCToolkit [1],

and CALIPER [23]), how can real-time access to performance data and its in situ processing (e.g.,

to identify runtime performance issues and possibly feedback actionable results) be realized, with

minimal impact on the application and efficiency? While building performance monitoring and

analysis technology that can seamlessly integrate with an HPC application is a challenge, the
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objectives are not unique intrinsically, as they are shared with other domains such as simulation

data analytics and visualization.

The challenges of wrangling performance data have been introduced in this chapter, a summary

of these challenges was given in Table 1. From a performance perspective - moving analysis online

helps reduce the volume of data, but we are still generating and sending additional data, possibly

distributed across many compute nodes. Some overhead is unavoidable, but we must consider “How

do we minimize the overhead?" by first measuring it, and then making improvements. Due to the

diversity of HPC applications and ecosystems, what helps in one situation may not help in another

depending on where the bottlenecks exist. In Chapter V we explore different approaches to reducing

the observation overhead of the SOMA framework for a variety of different applications or workflows.

2.7 Summary

Chapter II provided the background and introduction required for understanding and

motivating the rest of this dissertation. Section 2.2 began by offering some definitions of terms

in the performance measurement domain. Section 2.3 provided a comprehensive outlook on current

performance analysis tools and their offline capabilities. Section 2.4 described current advances in

the area of online performance observation, monitoring, and analytics. Section 2.5 offered a glimpse

into two of the neighboring fields and how we might draw some inspiration from them. Ultimately,

Section 2.6 presented a comprehensive view of how all the previous sections led us to identification

of the requirements for SOMA.

47



CHAPTER III

A MICROSERVICE APPROACH

This chapter contains previously published and unpublished material with co-authorship.

Sections 3.2 and 3.3 contain work from a paper initially published at the Cray User Group conference

in 2023. An extension of this paper was published in a special edition journal of Concurrency and

Computation: Practice and Experience in June 2024. The work was a collaboration between the

University of Oregon, NVIDIA Corporation, University of Helsinki, Aalto University, and Academia

Sinica. Co-authors include Oskar Lappi, Dr. Srinivasan Ramesh, Dr. Miikka Väisälä, Dr. Kevin

Huck, Touko Puro, Dr. Boyana Norris, Dr. Maarit Korpi-Lagg, Dr. Keijo Heljanko, and Dr. Allen

D. Malony. I was the first author for both publications, conducted all SOMA-related experiments

and completed the majority of the SOMA-related writing. Some co-authors helped with writing and

figures, all helped with suggestions, and proof-reading.

Section 3.4.2 contains example code from the above project, and also contains example code

from an unpublished research collaboration between University of Oregon and Lawrence Livermore

National Laboratory. I implemented the integration between SOMA and Caliper, conducted all

experiments, created all figures, and wrote all sections with guidance from Dr. David Böhme.

Section 3.4 and section 3.5 contain material from an unpublished paper (under review at a 2024

conference). This work was a collaboration between University of Oregon, NVIDIA Corporation,

Brookhaven National Laboratory, and Rutgers University. I was the first author, conducted all

experiments and completed the majority of the writing. Co-authors include Dr. Mikhail Titov,

Dr. Srinivasan Ramesh, Dr. Ozgur Kilic, Dr. Matteo Turilli, Dr. Shantenu Jha, and Dr. Allen

D. Malony. The background sections on RADICAL-Pilot, Section 3.5.2 and Section 3.5.3.1, were

written primarily by the RADICAL-Pilot co-authors, especially Dr. Matteo Turilli. All co-authors

helped with suggestions, and proof-reading.

3.1 Introduction

The background laid out in Chapter II drove many of our decisions for how to design our

service-based observability, monitoring and analytics (SOMA) framework. In order to answer

the proposed research questions and meet the identified requirements of configurable, flexible, and

performant we had to make very intentional design choices. This chapter focuses on how we addressed
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the need for configurability by choosing a microservice architecture, and designing a useful API.

With this architecture design, we answer the research question “How can we run on heterogeneous

ecosystems?" The organization of this chapter is described here for convenience. Section 3.2 describes

the underlying technologies used to build SOMA and how the software architecture is structured.

Section 3.3 details the SOMA application programming interface (API). Section 3.4 describes how

to integrate SOMA with applications and performance tools in order to monitor data, and shows

examples of how a SOMA client can be implemented. Finally, Section 3.5 depicts how SOMA was

integrated with RADICAL-Pilot to monitor heterogeneous workflows, as workflows are becoming

increasingly popular in HPC environments.

3.2 Technology and Architecture

SOMA is service-based software, this means that it has well-defined functionality specified

by an API, that can be deployed in modular pieces. Additionally, as SOMA executables provide

single-task oriented functionality — that of making specific performance data available online – it

is considered to provide microservice capabilities. One advantage over a more monolithic system is

that only the specific functionality that is needed can be activated and used for any given scenario.

This is especially helpful when running on bleeding-edge HPC ecosystems where deploying complex

codes can more quickly become problematic.

3.2.1 Microservices. Being able to create monitoring processes alongside the HPC

application and place them within the resource allocation (even on additional resources) is a first

step. The question then becomes what code is being run on the monitoring processes and how do

they interact with the application. We can think of a performance monitor as a coupled data service

to an application for the purposes of capturing and processing performance information. HPC data

services have emerged as an essential component of coupled HPC workflow architectures. Mochi [114]

is a software stack for developing data services built by composing individual microservices through

the remote procedure call (RPC) as the communication mechanism. A client instance is the origin of

the RPC and the service provider instance is the target. By providing a set of microservice building

blocks, necessary tools, and a development environment, the Mochi framework enables the rapid

development of customized functionality.

Figure 7 depicts three microservices (A, B, and C) interacting through RPC calls to generate

different call paths through the network. These microservices can be located on the same process, on
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Figure 7. Mochi microservice stack and example microservice.

different processes within the same computing node, or on completely different nodes depending on

how they are configured. The Mochi microservice software stack enabling this interaction consists

of five core components: Mercury RPC library, Argobots, Margo, Thallium, and Scalable Service

Groups. The first four are highlighted here:

Mercury A high-performance RPC library that can utilize remote data memory access (RDMA)

capabilities to transfer large remote procedure call (RPC) arguments efficiently [123].

Argobots A lightweight user-level threading library that enables the development of highly

concurrent software components [119].

Margo The Margo C library provides a convenient abstraction that hides the complexities of

programming the callback-driven Mercury library [114].

Thallium A header-only, C++ interface to Margo and is provided as a convenient wrapper to ease

programming with Mochi [114].

These technologies offer underlying structure to the SOMA microservices that is portable

across heterogeneous hardware. This creates a huge advantage over building the entire software

stack from scratch, which would require expertise across the many different systems, instead of a

focus on collecting and making performance data available. With only some configuration changes
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Supercomputer LUMI-G Mahti Summit Quartz
Organization CSC CSC ORNL LLNL

CPU AMD EPYC AMD Rome IBM Intel Xeon
Architecture 7653 7H12 Power9 E5-2695 v4

GPU AMD NVIDIA NVIDIA NoneArchitecture MI250X A100 V100

Network * HPE Mellanox HDR Mellanox EDR Cornelis Networks
Slingshot 11 Infiniband 100G Infiniband Omni-Path

Table 3. Systems where we have successfully run SOMA. This demonstrates configurability and
portability of the framework. (*There was an issue with the HPE virtual network interface
integration with Mercury at the time we ran these experiments so we resorted to the TCP
interconnect, however, a fix from HPE is on the way.)

during compilation and runtime, the SOMA software can run on many different HPC systems, that

have different network interconnects, different compute nodes, etc. Table 3 demonstrates four of the

clusters where SOMA has successfully been deployed. The noted issue with the HPE Slingshot 11

network actually highlights a benefit of relying on Mercury, where the Mercury development team

and user base was able to interface with HPE to request a fix, a feat that would be much more

difficult in a one-off scenario. Additionally, by building upon existing state-of-the-art HPC software

frameworks, SOMA can take direct and seamless advantage of the improvements made to these

frameworks, while cleanly separating functionality and performance. This design choice arguably

makes SOMA a more maintainable monitoring service than other ad hoc implementations.

3.3 SOMA API

Now that SOMA has a robust microservice architecture, we are left to define the application

programming interface (API) — the core functionality. Table 4 depicts the entirety of the SOMA

Collector API. The core API revolves around the idea of a monitoring namespace, building on

the earlier SYMBIOMON implementation [110]. The creation of the namespace requires the

user to supply a string argument representing the namespace name, following which an empty

Conduit::Node is created inside the collector client’s memory. More on the Conduit [52] technology

will be described in Chapter IV, but it can be considered the data building block structure for

SOMA. Following creation, the namespace can be updated by providing a key:value pair, wherein

the key represents the hierarchy level of the numeric data (e.g., “TAU/MPI/MPI_Allreduce”), and

the value is the numeric data to be stored. Code examples are provided in section 3.4.2. Note that

the top level in the hierarchy is always the namespace name — this name is automatically prefixed

to the key argument and is not required to be supplied by the calling code. If the key exists, the
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Table 4. SOMA API Description

soma_create_namespace
Creates a SOMA namespace and returns a handle to the namespace

soma_update_namespace
Updates the SOMA namespace with hierarchical data in a key:value pair

soma_publish
Publishes a raw Conduit::Node to the SOMA collector service instance,
blocking call, void return

soma_publish_async
Publishes a raw Conduit::Node to the SOMA collector service instance,
non-blocking call, returns a response

soma_publish_namespace
Publishes the Conduit::Node underlying the namespace

soma_commit_namespace
Commits a namespace – akin to closing a file, blocking call

soma_commit_namespace_async
Commits a namespace – non-blocking call returns a response

soma_set_publish_frequency
Sets the monitoring frequency associated with a namespace

soma_analyze
Instructs the collector service to analyze current Conduit::Node data
and then write results to a file

soma_write
Instructs the collector service to write Conduit::Node data to a file

value is either updated or appended to an existing list depending on the operation_type passed

to the soma_update_namespace API call. If the key does not exist, a new Conduit::Leaf object is

created.

A namespace that is updated is left in an uncommitted or open state until the

client explicitly invokes soma_commit_namespace. Committing a namespace decrements a

frequency counter associated with the namespace. When this frequency counter reaches zero,

soma_publish_namespace is triggered internally, resulting in an RPC call to the collector service

instance carrying the payload of the namespace — a Conduit::Node object representing the

data being monitored. The frequency counter is set using the soma_set_publish_frequency

API. The association of a monitoring frequency with a namespace in SOMA is an improvement

over SYMBIOMON — the latter only allowed monitoring frequencies to be set on a per-

metric basis, resulting in a flurry of RPCs in the system and a tendency for the monitoring

system to be more network-latency-sensitive than necessary. SOMA also exposes soma_publish,

an API to publish a raw Conduit::Node object directly to the collector instance. For both

soma_publish and soma_commit_namespace, an asynchronous (non-blocking) version is also
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available, soma_publish_async and soma_commit_namespace_async. Under the hood, these utilize

the Mochi Thallium asynchronous RPC call and return a Thallium response which can be waited

on to ensure completion. The soma_analyze function requests that the service conduct some

online analysis of the current Conduit::Node data and write the results to a file. In the future

the soma_analyze functionality could be moved into a consumer client or analyzer service with

more robust features. In summary, the SOMA API encompasses all of SYMBIOMON’s features,

while simultaneously being simpler, offering better performance, and being more generally applicable

for scientific and performance data monitoring alike.

3.4 Application Monitoring

Now that the architecture and API have been laid out, we describe how the SOMA software is

used in the context of application monitoring. This includes how the client and server are intialized

and interact as well as how a client can use the API in Section 3.4.1. A couple of examples of clients

are provided as well in Section 3.4.2.

3.4.1 Implementation. The SOMA client is a stub that is linked against an application

requiring SOMA monitoring capabilities. The SOMA service instance typically resides on a separate

process and is contacted by means of an RPC call. The client-server abstraction allows SOMA to

be configured in a variety of ways without modifying the client stub code. Figure 2 depicted the

SOMA stack in the context of the Astaroth application. Figures 9 and 10 show a scenario where

each node is executing a SOMA performance data service instance and a SOMA application data

service instance alongside the application, i.e., SOMA service instances share the computing node

resources with the application. SOMA can also be configured to run on a different node or nodes

than the application without any changes to the application or client stub code, this is depicted

in Figures 8 and 10. The only difference between these two scenarios would be the datapath for

the RPC calls — the former would involve shared-memory copies on the node (supported by most

operating systems) while the latter would traverse the system network links. As mentioned, Mochi

microservices automatically support a variety of different communication “plugins” via Mercury —

a few of which are shared-memory, TCP, and verbs. This plugin model allows us to switch between

communication protocols through a simple configuration change, thereby circumventing the need for

any code changes to the application client stub or SOMA service instance. Here we enlist the steps

necessary for an application to establish a connection to SOMA and begin the monitoring workflow:
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– Generation of Server Addresses: The SOMA MPI program is launched first, following

which the division of the processes into the configured number of server instances takes place.

Each process instantiates its SOMA service provider and makes its unique RPC address public

through a file. SOMA implements server instances to support the scenarios depicted in

Figures 9 and 8. One instance can monitor scientific application data from the application,

while another instance can monitor performance data. Once the RPC addresses are written

out to an address file, the service is now ready to accept client requests.

– Service Discovery: The application and performance measurement library connect to SOMA

by reading in the RPC address through the address file and creating a client object to manage

the connection. This logic is housed inside the initialization routines of the client software.

If there are N SOMA service instance ranks and M application (or performance tool) client

ranks such that M>N, our current implementation assigns the N SOMA ranks in a round-robin

fashion to the M client ranks. Other client-server mapping strategies are also possible.

– RPC Invocation: Most SOMA API operations depicted in Table 4 are local operations, i.e.,

they execute directly inside the client stub memory. However, the soma_publish API results

in a Mochi RPC call. When this RPC is invoked, the Conduit::Node underlying the SOMA

namespace is serialized to a string representation using native Conduit routines. The resulting

string representation is passed to Mercury, which serializes the string on the client, manages

the data transfer through the chosen communication plugin, and de-serializes the data back

into a string representation on the collector service instance. Serializing the Conduit::Node

object to a string representation can be expensive if the Conduit::Node is large. In the future,

we plan to explore binary representations as a way to reduce the RPC payload size, thereby

improving performance.

– RPC Execution: The collector service instances can be effectively modeled as workers

executing RPCs from their local work queue. When an RPC for soma_publish is executed on

the server, the string representation is converted back into a Conduit::Node and stored inside

an in-memory queue. This queue is emptied upon receipt of a soma_write call on the collector

service instance.
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1 case PeriodicAction :: PublishToSOMA: {

2 log_from_root_proc_wth_sim_progress(pid ,

3 "Periodic action: publishing data to SOMA\n");

4 conduit ::Node appl_data_node =

5 query_local_diagnostics(pid , info , i, simulation_time );

6 soma_channel.soma_publish(appl_data_node );

7 break;

8 }

Listing 3.1 Snippet example of how Astaroth publishes diagnostics to SOMA

3.4.2 Examples. We provide some example code from two different SOMA clients to better

illustrate a couple of different scenarios. Example 1 is from our application monitoring integration

with the Astrophysics code Astaroth [128]. This example is the most straightforward use-case,

but does not make use of some of the fine-grained control gained from creating a namespace and

committing to the namespace. A code snippet from the Astaroth application is shown in Listing 3.1.

We do not show the code that is required to initialize the SOMA client and connect to a server

instance. However, once our client stub is intialized within the application that we are monitoring,

we can use our client handle (the “soma_channel" object) in the Listing to make API calls. This is

done within Astaroth at regular intervals, which is a configurable number of application timesteps

(line 1). Astaroth collects the metrics that are of interest, structures it into a Conduit::Node (lines

4-5) and publishes the Conduit::Node to the SOMA server (line 6). More information about the

Conduit::Node data structure for Astaroth can be found in Section 4.4.

Example 2 is a bit more complex, and makes use of the namespace and more controlled commit

structure described in the API section. The code example is taken from an integration with the

Caliper performance measurement library [23] where we can make the metrics measured by Caliper

available online via a SOMA plugin. Details about how this integration works and the Conduit::Node

data structure for Caliper will be discussed in Section 4.3.2. In Listing 3.2 we see the general structure

of how the plugin within Caliper works. Again, initialization code is not shown, but that must be

done before this code can execute. Lines 1-2 is the function signature of the function that is called

when a “snapshot" of performance data is taken by Caliper. Lines 4-20 show the restructuring of
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1 void write_soma_record(std:: ostream& os , int mpi_rank ,

2 RegionProfile& profile , Caliper* c, SnapshotView rec)

3 {

4 std::map <std::string , double > region_times;

5 std::tie(region_times , std::ignore , total_time) =

6 profile.exclusive_region_times ();

7 std:: string timestamp = std:: to_string(unix_timestamp );

8 std:: string time_rank_key = timestamp + "/" +

9 std:: to_string(mpi_rank );

10 // Iterate through metrics and add to Conduit ::node

11 for (const auto &p : region_times) {

12 soma_collector.soma_update_namespace(ns_handle ,

13 time_rank_key , p.first , p.second , soma:: OVERWRITE ); }

14 // Get other metrics as part of the record

15 if (!rec.empty ()) {

16 for (const Entry& e : rec) {

17 std:: string metric = c->get_attribute(

18 e.attribute ()). name_c_str ();

19 std:: string value = e.value (). to_string ();

20 soma_collector.soma_update_namespace(ns_handle ,

21 time_rank_key , metric , value , soma:: OVERWRITE );

22 }}}

23 auto response = soma_collector.soma_commit_namespace_async(

24 ns_handle );

25 if (response) {

26 requests.push_back (*std::move(response ));

27 }}

Listing 3.2 Code example of how the Caliper plugin publishes performance data to SOMA
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the Caliper performance metrics into the Conduit::Node data structure and updating the namespace

(i.e., appending or overwriting new data to the Conduit::Node), which is a local function call. On

lines 23-24 we “commit" the namespace, which will trigger the first remote procedure call to publish

the data to the SOMA server asynchronously. How often the remote publishes actually execute

(publishing frequency) is based on a chosen configuration. Finally, in lines 25-26, the asynchronous

responses are stored in a data structure so that they can be checked for successful completion upon

shutdown.

3.5 Workflow Monitoring

HPC workflows require the capture of data from different sources across the workflow and

application software stacks to enable observability. Not only are their storage needs different,

but data from these sources may need to be monitored appropriately, directly impacting their

computational needs within the SOMA service. In response, SOMA takes a leaf out of SERVIZ [109],

a workflow-ready visualization service, to enable the partitioning of monitoring service resources

for a single namespace into one or more independent “instances”, each of which is responsible

for monitoring data from one or more source. While a largely similar approach to application

monitoring, some special considerations were required and Section 3.5.1 describes how we configure

and run SOMA for workflow monitoring. Section 3.5.2 gives details on the RADICAL-Pilot pilot

system for managing heterogeneous HPC workflows. Then, Section 3.5.3 describes how SOMA and

RADICAL-Pilot are integrated in order to successfully monitor heterogeneous HPC workflows.

3.5.1 SOMA Configurations for Workflows. SOMA’s client stub can run within the

address space of the component being instrumented (application or middleware) and require no

additional computational resources to execute, i.e., the application’s main thread is used to drive

the progress of the RPC calls. Alternatively, the client stub can also be implemented within a

separate, standalone executable that does run on additional resources. This is beneficial when

collecting metrics that do not require application instrumentation, such as hardware metrics. Both

types of SOMA clients are demonstrated in this dissertation.

Typically, the SOMA service executes on a set of dedicated resources outside the application or

workflow component being monitored. This clean separation between the client and service libraries

allows significant flexibility in determining where SOMA’s service instances execute while being

completely transparent to the calling client. Previous work [157, 158] has explored the benefits
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Figure 8. One typical layout of the client and service structure of SOMA, with client stubs in
the address space of the application and performance profiler and services on separate, reserved
resources. See the legend in Figure 10.
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Figure 9. Another typical layout of the client and service structure of SOMA, with client stubs in
the address space of the application and performance profiler and services shared, local resources.
See the legend in Figure 10.

Figure 10. A legend describing the components of the figures above.
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of running SOMA’s service instances on the unused cores within the application’s compute node.

However, for HPC workflows, we choose to dedicate a part of the workflow’s total computing

resources to running the SOMA service instances.

3.5.2 RADICAL-Pilot. RADICAL-Pilot [96] is a Python implementation of the pilot

paradigm and architectural pattern [141, 82]. Pilot systems enable users to submit jobs to HPC

platforms and then use those resources to execute the application’s tasks. Those tasks are directly

scheduled via the pilot-system without queueing in the platform’s batch system. In that way, it

is possible to achieve high-throughput task execution on HPC, avoiding the limits imposed by a

centralized, multi-tenant batch queue [141]

Distinctively, RADICAL-Pilot supports executing heterogeneous executable or function tasks

on HPC resources. Both types of tasks can be single/multi-core/GPU/node and MPI/OpenMP.

Executable tasks are programs that run as self-contained entities, while function tasks are functions

or methods written in a specific programming language. Currently, RADICAL-Pilot utilizes a

dedicated subsystem called RAPTOR [95] to execute Python functions at a very large scale.

Uniquely, RADICAL-Pilot supports the concurrent execution of heterogeneous executable and

Python function tasks on up to 193,000 cores and 27,600 GPUs [98].

RADICAL-Pilot implements two abstractions: Pilot and Task. Pilots are placeholders for

computing resources, where resources are represented independently of architecture and platform

details. Tasks are units of work specified by a program’s executable or a language-specific

function/method, alongside resource and execution environment requirements. Fig. 11 depicts

RADICAL-Pilot’s architecture with two subsystems (white boxes), each with several components

(purple and yellow boxes). Purple components manage pilots and tasks, while yellow components

enable communication and coordination. Subsystems can execute locally or remotely, communicating

over TCP/IP and enabling multiple deployment scenarios.

Numbers in Fig. 11 show the resource acquisition and task execution processes. PilotManager

uses PSI/J [53] to queue a pilot as a job on an HPC platform’s batch system (Fig. 11 1 – 2 ). Once

scheduled, the job bootstraps RADICAL-Pilot’s Agent and the Agent’s Updater notifies RADICAL-

Pilot’s Client that tasks can be executed (Fig. 11 3 ). Upon notification, the client’s TaskManager

queues all the available tasks onto the client’s Scheduler and, after staging files when required,

tasks are queued to the Agent’s Scheduler (Fig. 11 4 – 6 ). The Agent’s scheduler assigns tasks
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to suitable portions of the available pilot’s resources and then queues those tasks to an Executor

(Fig. 11 7 ). The Agent’s Executor places each task on the assigned resources, sets up their execution

environment, and then launches each task for execution (Fig. 11 8 ).

RADICAL-Pilot is designed and implemented as a building block [138]. In that way,

RADICAL-Pilot can be more easily integrated with software tools independently developed by

third-party engineering teams. Integration can utilize RADICAL-Pilot’s public or private application

programming interfaces (APIs). For example, RADICAL-Pilot has been successfully integrated with

Parsl [8], Swift [139] and PanDA [94] via its public API, but also with PMIx [140, 137], Flux [107],

Hadoop and Spark [81] via its internal API. This paper uses RADICAL-Pilot’s private API to

integrate it with SOMA.

3.5.3 Workflow Monitoring With SOMA and RADICAL-Pilot. RADICAL-Pilot

introduced the concept of services in its latest API implementation and SOMA is treated as a first-

class citizen within RADICAL-Pilot. A first-class citizen means that a SOMA task is able to be

scheduled and run as any other application task would. This helps support SOMA client binaries

that run outside of the application namespaces for collecting different metrics. This section enlists

the special considerations required to integrate RADICAL-Pilot and SOMA and the methodologies

used to capture various types of monitoring data from across the workflow and application software

stacks.

3.5.3.1 Service Support Inside RADICAL-Pilot. Integrating SOMA and RADICAL-

Pilot required two main capabilities: (1) scheduling and launching SOMA components on dedicated

and shared resources and (2) enabling data exchange between SOMA and RADICAL-Pilot. SOMA

can use a set of dedicated resources to run its service instances. The SOMA service is treated as a

service task within RADICAL-Pilot. While the service task can specify its resource requirements like

any other regular RADICAL-Pilot application task, the SOMA service task needs to be scheduled

before any application tasks. Recall that this stems from the need for the SOMA service instances

to make their remote procedure call addresses publicly known within the workflow for clients to

connect. RADICAL-Pilot enables such capability by scheduling the service tasks immediately after

bootstrapping its Agent component but before any other task. Service tasks communicate their

state to RADICAL-Pilot for the consumers of those services to know where, when, and whether

they are available. RADICAL-Pilot’s Agent components (see Fig. 11) exchange data via queues
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implemented with ZeroMQ [54]. Each component gets its inputs via a queue and pushes its output

to another component’s queue. That enables RADICAL-Pilot to integrate third-party components

via well-defined interfaces and a unified communication and coordination infrastructure.

Service tasks are also special concerning their scope. While regular application tasks execute

and go out of scope, thereby releasing their computing resources, service tasks are long-running, i.e.,

execute for the entire workflow duration. Once the workflow is completed, service tasks are shut

down through an appropriate control command from RADICAL-Pilot. Fig. 12 depicts the timeline

of events and the RADICAL-Pilot-SOMA interaction model during workflow execution.

Initially, RADICAL-Pilot is scheduled via the HPC platform’s batch system as a pilot job [141]

(Fig. 12 1 ). That allows us to execute RADICAL-Pilot Client that, in turn, executes RADICAL-

Pilot Agent on one or more compute nodes (Fig. 12, solid arrows). In this way, we avoid consuming

resources on the cluster’s login node, in accordance to the HPC platform usage policies. Once the

RADICAL-Pilot Agent bootstraps (Fig. 12 2 ), it first schedules and launches the SOMA service

(Fig. 12 3 ), then it schedules the RADICAL-Pilot monitoring task, one for the entire workflow,

co-located with the service (Fig. 12 4 ). Next, RADICAL-Pilot schedules the hardware monitoring

tasks, one on each available compute node (Fig. 12 5 ). Both monitoring tasks run a SOMA client

communicating with the SOMA server via RADICAL-PilotC (Fig. 12, dotted arrows). Finally, once

the monitoring infrastructure bootstrap is completed, RADICAL-Pilot proceeds to schedule the task

of the workflow application Fig. 12 6 . Note that each application task can also run a SOMA client

to enable the SOMA service to receive asynchronous application information. SOMA Clients can

be launched and stopped via RADICAL-Pilot’s task pre/post execution capabilities and/or the task

executable can be wrapped in a script that launches the SOMA client.
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monitoring and application task has a SOMA client per rank. Monitoring tasks collect local node
hardware and workflow profile data and send them to the SOMA server via a SOMA client.
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3.6 Summary

Chapter III presented the technology and architecture used to build SOMA. Utilizing

microservices allows for a modular framework which was configured and built to run on many

different HPC systems. The Mochi software framework [114] is introduced as well as how SOMA

is able to build upon it for better configurability across different use cases. Chapter III describes

the SOMA API in detail and how our implementation enables fine-grained control over how and

when we send data by remote procedure call. We then describe how the application monitoring

and workflow monitoring integrations were built and run. An introduction to the RADICAL-Pilot

workflow management system is provided as well. Chapter III answered the research question, “How

can we run on heterogeneous HPC ecosystems?" by describing our approach and demonstrating the

success across numerous heterogeneous systems, and in multiple use cases. Thus bringing us closer to

our goal of answering “How can we support online performance observation for HPC applications?"
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CHAPTER IV

A CANONICAL DATA MODEL

This chapter contains previously published and unpublished material with co-authorship.

Sections 4.3.1 and 4.4 are from a paper initially published at the Cray User Group conference

in 2023. An extension of this paper was published in a special edition journal of Concurrency and

Computation: Practice and Experience in June 2024. The work was a collaboration between the

University of Oregon, NVIDIA Corporation, University of Helsinki, Aalto University, and Academia

Sinica. Co-authors include Oskar Lappi, Dr. Srinivasan Ramesh, Dr. Miikka Väisälä, Dr. Kevin

Huck, Touko Puro, Dr. Boyana Norris, Dr. Maarit Korpi-Lagg, Dr. Keijo Heljanko, and Dr.

Allen D. Malony. I was the first author for both publications, conducted all experiments and

completed most of the writing. The Astaroth team (Lappi, Puro, Korpi-Lagg, Heljanko) wrote the

majority of the subsection on Astaroth background 4.4.1, as well as the Astaroth scientific analysis

in Subsection 4.4.2.

Section 4.3.2 represents unpublished research work from a collaboration between University

of Oregon and Lawrence Livermore National Laboratory. I implemented the integration between

SOMA and Caliper, conducted all experiments, created all figures, and wrote all sections with

guidance from Dr. David Böhme.

Section 4.5 and section 4.6 contain material from an unpublished paper (under review at a 2024

conference). This work was a collaboration between University of Oregon, NVIDIA Corporation,

Brookhaven National Laboratory, and Rutgers University. I was the first author for all papers,

conducted all experiments and completed the majority of the writing. Co-authors include Dr.

Mikhail Titov, Dr. Srinivasan Ramesh, Dr. Ozgur Kilic, Dr. Matteo Turilli, Dr. Shantenu Jha,

and Dr. Allen D. Malony. Some co-authors helped with writing, all helped with suggestions, and

proof-reading.

4.1 Introduction

In order to make SOMA flexible enough to support integrations with the input and output

tools described in Chapter II we had to solve the problem of mismatched data representations. Data

representation and coupling between scientific code bases is a key challenge to building a vibrant

ecosystem of HPC simulation tools. It requires agreeing on or adapting between data representations.
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This is also true for HPC application monitoring. It is not enough to set up SOMA services using

Mochi on processes and execute RADICAL-Pilot operations, since what data is sent and how it

is represented matters. Thus, SOMA utilizes the Conduit [52] data language to build hierarchical

data models within each namespace, or for certain data sources. With this canonical data model

approach, we demonstrate how we address the requirement of creating a flexible framework that

can support the monitoring from different data sources, at different times. We answer the research

question “How do we support different input and output?"

The structure of this chapter is listed here for convenience. Section 4.2 provides background

on the Conduit technology used for the SOMA data models. Section 4.3 outlines the data models

designed for performance measurement libraries TAU and Caliper. Section 4.4 discusses how we

chose the data model for Astaroth, as a use case for application diagnostic data. It also offers some

results based on collecting data from both the TAU plugin and Astaroth instrumentation and how

said data can be interpreted and used. Section 4.5 details the data model for monitoring specific

hardware metrics, specifically those gathered from each compute node running the simulation or

workflow tasks. Section 4.6 describes the data model chosen for our integration with RADICAL-Pilot

for monitoring workflows. We then provide some results from initial experiments enabling online

data collection from the OpenFOAM workflow using the RADICAL-Pilot integration, hardware

monitoring, and TAU as data sources.

4.2 Conduit

Conduit [52] is an open-source project from Lawrence Livermore National Laboratory (LLNL)

designed to simplify data description and sharing across HPC simulation tools. It provides

an intuitive API for in-memory data description that enables human-friendly hierarchical data

organization. There are commonly shared conventions for exchanging complex data and modular

interfaces (in C++, C, Python, and Fortran) for use across software libraries and simulation

applications. Conduit provides easy-to-use I/O interfaces for moving and storing data, including

support for moving complex data with MPI (serialization). At the heart of Conduit is a hierarchical

variant type called a Node (henceforth referred to as a Conduit::Node so as to easily differentiate

from a compute node). A Conduit::Node can be used to capture and represent arbitrarily nested

numeric data. The Conduit data model was chosen for this ability to capture arbitrary hierarchical

data. Further, Conduit also provides convenient interfaces to serialize Conduit::Nodes — we rely on
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this capability to store and transport monitoring data within the SOMA environment. Conduit is

also gaining support in the scientific computing community as a data model to exchange scientific

data within components in a workflow. SOMA, like SERVIZ and SYMBIOMON, is assembled out

of robust, high-performance Mochi services. The use of a well-supported API and data model in

Conduit is in line with our strategy of building a high-performance monitoring service using “off-the-

shelf” components. This strategy promotes a high degree of code reuse, resulting in a monitoring

service that is (1) easier to maintain and (2) whose functionality is easier to extend compared to

ad-hoc implementations.

4.3 Performance Profiles

For performance profile data models, there are two different performance libraries SOMA is

integrated with. First the TAU data model is described in Subsection 4.3.1, and then Caliper in

Subsection 4.3.2. Both have some similarities in structure, namely, keys for identifying where and

when the data came from, followed by the performance metrics measured by the library. Once the

data is structured appropriately SOMA now has a canonical, understandable data representation

available online.

4.3.1 TAU. TAU was introduced in depth in Section 2.3.2.1, and the integration between

SOMA and performance tools is detailed in Section 3.4.1. Thus, in this section we focus on

describing the data model. We apply the Conduit techniques to create a shared performance

data representation that becomes the basis for data sharing across a SOMA environment. Namely,

creating Conduit::Node data structures to represent the hierarchical data within a TAU profile.

Listing 4.1 is an example of a TAU profile data capture in a Conduit representation for the LULESH

application. In this example, the profile represents the data for MPI rank 0, running on node

b01n45, which form the second and third level of the Conduit::Node hierarchy, the first being the

TAU namespace. The timestamp on the fourth level indicates when the profile data was captured.

Lower levels in the hierarchy represent the event classes, while the Conduit::Leaf nodes hold the

actual interval timer or counter data.

4.3.2 Caliper. Caliper is a performance measurement and analysis library from Lawrence

Livermore National Laboratory [23]. Caliper supports both application instrumentation and

sampling for collection of performance metrics. It has numerous “services" which can be enabled

to customize which metrics are measured. These options include but are not limited to: hardware
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1 { TAU: /* Top -level Namepace tag */

2 b01n45: /* IDENTIFIER: Compute Node */

3 Rank 0: /* IDENTIFIER: MPI Rank */

4 1708566761.261629: /* IDENTIFIER: timestamp */

5 /* TAU Metrics */

6 MPI_Routines:

7 MPI_Barrier () _Calls: fp64

8 MPI_Barrier () _Inclusive: fp64

9 MPI_Barrier () _Exclusive: fp64

10 MPI_Irecv () _Calls: fp64

11 MPI_Irecv () _Inclusive: fp64

12 MPI_Irecv () _Exclusive: fp64

13 MPI_Isend () _Calls: fp64

14 MPI_Isend () _Inclusive: fp64

15 MPI_Isend () _Exclusive: fp64

16 MPI_Waitall () _Calls: fp64

17 MPI_Waitall () _Inclusive: fp64

18 MPI_Waitall () _Exclusive: fp64

19 MPI_Allreduce () _Calls: fp64

20 MPI_Allreduce () _Inclusive: fp64

21 MPI_Allreduce () _Exclusive: fp64

22 TAU:

23 Tau_plugin_mochi_dump_Calls: fp64

24 Tau_plugin_mochi_dump_Inclusive: fp64

25 MPI_Counters:

26 Message size all -reduce_Mean: fp64

27 Message size all -reduce_Min: fp64

28 Message size all -reduce_Max: fp64 }

Listing 4.1 Conduit data model of the TAU performance data.
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performance counters, memory allocations and frees, MPI metrics, and external integrations such

as with NVIDIA Nsight. The typical use case is to produce profiles, but traces are also supported.

Caliper’s architecture is designed to create “snapshots" of performance data, to be taken at

configurable times, i.e., each iteration, or annotated regions of code. These snapshots contain all

of the metrics that Caliper has been configured to measure since the last snapshot. Typical offline

use for Caliper is that these snapshots are aggregated and written to a text report at the end of the

application execution.

We built an integration between SOMA and the Caliper performance analysis library. For an

application to use the integration, it would just need to be run with a SOMA service-enabled caliper

version profiling it. In other words, the application need not be aware of the connection to SOMA.

Another benefit is that any application that is already annotated to use Caliper could make use of

this. It works by implementation of a callback for when caliper takes a snapshot of performance

data. When a snapshot is taken we make a call to our plugin that restructures the data into our

Conduit::Node data model, seen in Listing 4.2, then publishes the Conduit::Node data to the SOMA

service. The effect is that all the Caliper profile data that was originally processed post-hoc is now

available online via SOMA.

Figure 13. SOMA enables the access of Caliper data online by intercepting Caliper’s snapshot
function. Every time Caliper samples data, the SOMA client can restructure the data and publish
it to the server.
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1 {

2 CALIPER: /* SOMA top -level namespace */

3 1708566761.261629: /* IDENTIFIER: timestamp */

4 Rank 5: /* IDENTIFIER: MPI rank */

5 ApplyMaterialPropertiesForElems: fp64

6 CalcEnergyForElems: fp64

7 CalcFBHourglassForceForElems: fp64

8 CalcForceForNodes: fp64

9 lulesh.cycle: fp64

10 main: fp64

11 loop.iterations: int64

12 loop.start_iteration: int64

13 memstat.vmsize: fp64

14 memstat.vmrss: fp64

15 memstat.data: fp64

16 }

Listing 4.2 Conduit data model for Caliper.

4.4 Application Diagnostics

SOMA is by no means limited to capturing performance data from traditional sources such

as performance measurement libraries. In addition, it is of interest for the application to report

custom information to be monitored. Monitoring of application execution state can be insightful to

identify anomalous behavior and other artifacts. In this case, the data is application-specific, and the

knowledge of how to best represent it lies with the application developer. Such custom information

can include (but is not limited to) the scientific rate-of-progress or figure-of-merit self-reported by

the application. For example, a molecular dynamics code might want to capture the atom-timesteps

per second as the figure of merit. At the same time, a DL model is likely interested in monitoring

the training loss. The timely availability of such information to the workflow system is the first step

towards enabling online adaptivity. In Subsection 4.4.1, we demonstrate an application diagnostic

data model for the Astaroth application
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4.4.1 Astaroth. Astaroth is a multi-GPU library designed for high-order stencil

computations on modern HPC systems [105]. Recently, it has been applied to build a simulation

framework for magnetized astrophysical plasmas in the magnetohydrodynamics (MHD) regime, for

details of the physics and first production runs, see [142]. The framework solves the standard

set of partial differential equations for MHD, namely the continuity, angular momentum, entropy,

and induction equations, under conditions that usually occur in astrophysical plasmas. In such

plasmas, the densities and temperatures usually range several orders of magnitude, in which case

non-conservative formulation of the equations is numerically advantageous over flux conserving

schemes. For example, a formulation in terms of logarithmic density, albeit non-conservative, can

be numerically more accurate and faster to compute. In this case, however, there is no guarantee

that the conserved quantities are accurate to the machine precision, but rather conserved up to the

discretisation error of the scheme. Therefore, constant monitoring of the conserved quantities is

necessary, and simulations that do not adequately conserve them should be disregarded. Magnetic

fields are implemented in terms of the magnetic vector potential to ensure that the field remains

divergence-free.

A full-fledged multi-node implementation was taken into production during the LUMI-G pilot

phase to study a setup intended for investigating the solar fluctuation dynamo, the physics and

highest-resolution CPU simulations so far are described in [144]. Astaroth allows for scenarios of

unprecedented resolution, but this comes with the cost of several hundred terabytes per system state.

The analysis and movement of such data has become a major bottleneck of performing large-scale

computations. This motivates the idea to do data analysis in situ, thus reducing the amount of data

that eventually needs to be stored.

Astaroth operates in a single-program, multiple data (SPMD) manner, with one MPI rank per

GPU device. LUMI-G nodes house four AMD MI250x GPUs each, with each GPU consisting of

two Graphics Compute Dies (GCDs). HIP considers each GCD a separate device, and so Astaroth

maximally uses eight MPI ranks per node, one per GCD. During the LUMI pilot, Astaroth ran on

1024 nodes and 8192 GCDs. With Astaroth only using eight processes per node, many CPU cores

remain idle during the computation. These CPU cores could be used for data analysis in situ.

The type of data analysis that is most valuable for large-scale Astaroth runs is determining the

numerical health of the simulation. Simulations sometimes fail due to misconfiguration of numerical

72



Figure 14. Visualization of magnetic field lines (dark red streamlines) and its intensity (volume-
rendered colours) in a dynamo-active Astaroth simulation from [142].

parameters — the simulation becomes unstable or starts behaving nonphysically. For well-tested

schemes this is less likely to occur, but during the development of Astaroth, new numerical methods

are constantly being added. Without the experimential knowledge of how these new methods interact

with Astaroth’s existing system components, it is very difficult to create an intuitive understanding

of the mechanisms that cause simulation failures. Being able to observe and analyze the numerical

state of the simulation improves our ability to build an intuitive understanding of the numerical

processes and how they should be tuned to avoid failures. With increasing number of nodes and

processing elements, in addition, the probability of bit flips and node failures increases, in which
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case monitoring the health of the system becomes of high importance, to avoid unnecessary crashes,

corruption of data, and loss of computing time.

The most common symptom of a numerical failure in Astaroth is that the simulation becomes

numerically unstable. Due to the non-conservative scheme, such an instability will manifest itself as

a loss/gain in the quantity that is required to be conserved. Usually such events occur very localized

in the simulation grid, where locally high gradients or extrema occur, and a numerical quantity will

begin to grow uncontrollably. There are two possible actions once an instability starts developing:

1) the simulation is scrapped and reconfigured or reseeded to avoid the instability, 2) the simulation

is recovered by reconfiguring the simulations parameters on the fly to counteract the instability. In

both cases, instabilities should preferably be caught early. As the instability grows, it becomes harder

and harder to recover any useful data, and if the simulation has to be scrapped, then one can iterate

through simulation parameters more quickly if instabilities are caught early. Recovery is made even

more difficult at high resolutions, where it is not feasible to keep more than two snapshots on disk.

The snapshot frequency then determines the limit of how far back a simulation can be rewound.

The period between snapshots forms a deadline within which Astaroth should detect instabilities.

In order to diagnose numerical instabilities, each Astaroth rank calculates certain reductions on

the computational mesh that act as signals of a developing local instability. There are two kinds of

data that we are interested in: 1) the numerical loss or gain of conserved quantities, 2) extreme values

and their locations. The most important conserved quantity is the mass, on which we concentrate

for this proof-of-concept study. For extrema, we record the minimum and maximum values of each

field, and their corresponding location. Astaroth considers NaN values to be extremum and detects

these as well. It is almost certainly too late to recover once the simulation has produced a NaN

value, as they provide a clear indication that the simulation has failed. The mass is obtained as an

integral over density, for this Astaroth uses a handcrafted reduction operation. The extrema and

NaN locations are obtained using the thrust [19] library, which supports reductions on GPU buffers,

both through CUDA and HIP.

Tracking extrema is useful not only for the detection of numerical instabilities, but also for

identifying points or regions of interest within the simulation domain. By following the locations of

extrema, we could carve out slices or volumes in the simulation domain for visualization and analysis,

which would reduce the total amount of data needed to be stored on disk for post-processing.
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If this was done in situ, the observability of high-resolution Astaroth simulations would improve

considerably.

Astaroth logs these signals, the mass conservation and extrema, but a human needs to interpret

them in order to take action. The end goal in monitoring the signals is for Astaroth to be able to

configure a policy in Astaroth that, e.g., pauses a simulation when one of these signals indicate a

certain likelihood of an instability, or adjusts the simulation parameters on the fly, and continues

computations in a numerically safer regime. Methods for calculating the likelihood of instabilities

will be easier to develop in a separate component outside of Astaroth. A step towards this goal

is to stream the diagnostics from Astaroth through a channel to which analysis components can

subscribe. As examples, the diagnostics stream could be fed into a machine learning model doing

inference, or a signal processing component that detects spikes in the extrema or fluctuations in the

mass conservation.

4.4.2 SOMA and Astaroth Integration. Chapter III detailed the SOMA API through

which structured data can be published. In addition, Chapter III provided an example of how

Astaroth can use its linked SOMA client library. That implementation is used to structure the

diagnostic metrics — demonstrated in this section — and publish them to SOMA. We have set a

publishing interval in Astaroth that determines how often Astaroth publishes diagnostics to SOMA.

As a proof of concept, we write the data to a file and visualize this data later in this section. It

is not difficult to imagine how SOMA could provide on-line analysis of the data through a plugin

system, or forward the data to a completely separate analysis engine.

In this study we use a low magnetic Prandtl number setup, meaning that the molecular

magnetic resistivity in the induction equation is much higher than the viscosity in the Navier-

Stokes equation. This setup is similar to [144], mimicking small-scale dynamo action in the solar

and stellar convection zones. We initiate a non-zero but very small in magnitude seed magnetic field

in the domain, and the crucial physics question is whether the flow field can act as a dynamo and

exponentially amplify its seed? In such a setup, the plasma flow is highly turbulent, and Reynolds

numbers, measuring the vigor of fluid turbulence, are high, while the magnetic Reynolds number

can only be kept slightly above the threshold for dynamo action due to numerical reasons. In

this kind of a system, the dynamo will grow, but very slowly, and the stability properties of the

system are mainly determined by the hydrodynamical part. Hence, in this paper, we concentrate on
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1 {

2 pid: uint32 , /* IDENTIFIER: MPI rank */

3 timestep: uint64 , /* IDENTIFIER: Iteration */

4 simulation_time: fp64 , /* IDENTIFIER: timestamp */

5 local_mass: fp64 ,

6 FIELD_1: {

7 min: { value: fp32 , location: [uint16] x 3 },

8 max: { value: fp32 , location: [uint16] x 3 },

9 nan: { value: boolean , location: [uint16] x 3 }

10 },

11 FIELD_2: { min: ..., max: ..., nan: ... },

12 ...

13 }

Listing 4.3 Conduit pseudoschema of the Astaroth diagnostics data model. The pid and timestep

uniquely identify a node in a data stream. The simulation time and local mass provide important

values for calculating instabilities.

monitoring the conservation of mass and extrema of the flow field, see the example Conduit::Node

data model in Listing 4.3. In the study of [142], systems with magnetic Prandtl numbers of unity

were investigated, see Fig. 14. In such a setup, the magnetic field can grow to a significant strength,

and also participate in the dynamical evolution. In this case, monitoring also the magnetic field

diagnostics becomes important. This is not the case in the setups presented in this paper, however.

SOMA collects the data of interest from Astaroth live during a simulation. At the moment,

for this proof-of-concept, we simply write the application data stream to a file at the end of the

simulation, which we postprocess using Astaroth’s analysis tools. While the analysis in the proof-of-

concept is not done live, there is no fundamental reason why these analysis tools cannot be attached

to the data stream while the simulation is running. Live analysis would allow us to pause or stop the

simulation or in the most ideal case to adjust the simulation parameters and carry on the integration

with numerically safe parameters, if signs of numerical instability would be detected.
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As discussed, an Astaroth simulation can fail due to numerical instabilities, which result from

the simulation encountering an extreme state, for which the chosen simulation parameters do no

longer guarantee numerical stability. Typical cases are the viscosities being too small or the time

integration step being too high to resolve the plasma flow and its evolution. These are the two

example cases investigated here. As the most typical sign of an approaching numerical instability

is the loss/gain of mass, which should be a conserved quantity in a healthy simulation, we will use

this quantity for our proof-of-concept monitoring cases.

In the case of a healthy simulation, the mass as a whole and the isotropic turbulent fluid in

each rank remains constant. Mass diagnostics collected from different ranks from such a simulation

is shown in the leftmost panel of Fig. 15, and the evolution of density over time in each rank in the

leftmost panel of Fig. 16, both showing healthy statistics with constant mass and nearly constant

density extrema amongst all ranks.

Next we demonstrate a case, where the integration over time, which is in this case performed

with 3rd order Runge-Kutta scheme, is done too inaccurately. The simulation does use the Courant-

Friedrichs-Levy (CFL) condition for calculating the maximum allowed time step length during each

iteration, but in addition different physical setups require a safety prefactor around 0.1 ... 0.9 for

stability. The required value of the prefactor is not known a priori for different types of physical

setups, and hence it often happens that the user gives too high a value for it in the simulation

parameter setup. Mass diagnostics collected from such a simulation are shown in Fig. 15 middle

panel. We see that in such a case the mass is systematically lost. The mass loss is global, but happens

isotropically in each rank, giving a clear imprint of the simulation parameters being globally wrong

instead of indicating numerical instability developing due to an extreme condition localized to some

rank/simulated region. Also the middle panel of Fig. 16 consistently agrees with this picture, the

density extrema showing linearly decreasing trend with the same slope.

Next we will study a case, where the viscosity is set to a value that turns out to be too

small to guarantee numerical stability. In this case, some parts of the flow are well resolved, while

more extreme conditions happen only as local fluctuations in the turbulent fluid. These extreme

conditions cause a numerical instability on one individual rank, in this case rank 14, the instability

grows rapidly, and causes the entire simulation to crash. In the mass distribution plot Fig. 15

rightmost panel the local rapid increase of mass in rank 14 is clearly visible.
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Figure 15. Time series of the mass distribution from different types of simulation setups: healthy
(left), too large time step prefactor (middle) and too small viscosity (right). Each shaded region in
the stack plot is the local mass in a rank over the runtime of the simulation. In a healthy simulation
the total mass in the system remains constant to the accuracy of the spatial discretization scheme.
Note: in the rightmost series, for a better visualization of the instability, the y-axis is on a log scale
and the x-axis starts from 10000 .

Even more information can be retrieved by plotting the density evolution in each rank, Fig. 16

rightmost panel. From there one can see that the explosion of mass is clearly preceeded by abnormal

behavior of the minimum density on Rank 14. It starts diminishing abnormally fast in comparison

to the other ranks already 1500 timesteps before the actual crash happens. This gives us a clear hint

of the nature of the numerical instability. In the location of the extreme conditions in the turbulent

flow some mass is actually lost, pressure in the location is decreased, and that causes a rapid inflow

of plasma towards that location. This results in the break-down of the numerical scheme and the

seen mass explosion.

Figure 16. Time series of the density range from different types of simulation setups: healthy
(left), too large a time step prefactor (middle) and too small viscosity (right). Each gray curve is a
minimum or maximum of one rank’s density field over the runtime of the simulation.

4.5 Hardware Metrics

For measuring hardware metrics on each compute node, we created a data model for certain

CPU utilization metrics. Basic information about the state of the hardware, gathered periodically

by reading /proc/ is captured by standalone SOMA client tasks, which can be scheduled on reserved

78



1 {

2 PROC: /* Top -level SOMA namespace */

3 cn4302: /* Hostname tag */

4 3824813742052238: /* Timestamp */

5 Uptime: 49902

6 Num Processes: 3

7 Available RAM: 8422

8 stat:

9 cpu: 10749 865 685 9293 999 745

10 cpu0: 4698 591 262 8953 612 449

11 ...

12 }

Listing 4.4 Conduit::Node of the hardware data model

cores on each compute node within the workflow. RADICAL-Pilot launches these client tasks before

application tasks are scheduled and they run for the duration of the workflow. Granted, such

information can be captured directly by the application task in an alternative design. However,

there is the issue of task scope. Application tasks come and go, but the hardware information is

valid throughout the workflow execution. Therefore, we captured this information through long-

running special SOMA client tasks. See Listing 4.4 for an example of the Conduit data model

implemented to represent some /proc/ data.

4.6 Heterogeneous Workflow States

HPC clusters have continued to grow in size, scale, and complexity, offering degrees of

scale-out parallelism that few scientific applications can take full advantage of using traditional

scaling strategies. In the past decade or so, the type and mix of scientific application workloads

requiring HPC resources have undergone a paradigm shift, moving away from the traditional

single program multiple data (SPMD) model to include a set of heterogeneous tasks working

towards a common scientific goal [20]. The recent advances in machine learning (ML) and artificial

intelligence (AI) technologies have served to motivate their integration into traditional scientific
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applications, accelerating this move away from traditional message-passing-based SPMD execution

models. Heterogeneous workflows, touted to be the new HPC “application” [20], have emerged as a

promising approach to deploying scientific applications on HPC platforms. Heterogeneous workflows

is an umbrella term, covering the broad spectrum of multi-task execution, from ensemble computing,

wherein several instances of the same (parallel) task are launched on a set of HPC resources to

workflows where several instances of different types of tasks asynchronously execute with varying

degrees of concurrency.

The breadth of HPC workflows spans a variety of scientific domains, including, for example,

molecular dynamics, ML applications, material science, climate scienceand drug discovery. Today,

workflows executing on HPC platforms orchestrate 100s to 10000s of individual tasks [62]. The tasks

can be heterogeneous both in terms of the application they execute and the computing resources to

which they are mapped. As HPC workflow scale continues to grow, managing workflow resources

efficiently while simultaneously optimizing for the scientific output or performance of the workflow

assumes vital importance. We argue that the ability of the workflow system to dynamically adapt

task execution based on the information about the tasks that have been completed or the state of the

hardware resources would represent an important step towards enabling optimal workflow resource

management.

Consider, for example, the simplest case of a workload consisting of a set of MPI tasks scheduled

to execute on a set of HPC resources. Most workflow systems place the onus of deciding on the

resource requirements of the individual tasks on the user. The user supplies this information a

priori to the workflow system, typically during the task creation step. However, if the task does

not scale well, assigning too many or too little resources to each individual task may lead to poor

use of the assigned HPC workflow resources. The optimal strategy might well be to run more or

less tasks, each at a smaller or larger scale. In another scenario, involving the concurrent coupling

of machine learning (ML) tasks to traditional ensemble simulations[79], the allocation of computing

resources to the two task types is not always apparent, and a misconfigured allocation can accrue

vast performance penalties. In both these scenarios, enabling adaptive decision-making within the

workflow system would require the timely availability of all the necessary performance information.

Several software challenges need to be addressed before the promise of adaptive workflows

is realized in full effect. This research work focuses on the challenges involved in enabling robust
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performance observability of the workflow execution. First, there is the challenge of understanding

what data to collect and make available online to the workflow such that observability is enabled. The

second challenge pertains to choosing the appropriate data model for monitoring and analysis. Third,

different types of data may require different instrumentation strategies and sampling frequencies

that must serve the goal of observability while not incurring significant overheads during their

measurement and transport. Fourth, there is the related challenge of exporting, storing, and making

available the monitoring data online in a timely fashion to enable adaptive decision-making. Lastly,

there is the question of how to assign resources to the monitoring system, given that it must run as

a part of the workflow. This includes choosing the suitable interaction model between the workflow

and the monitoring system.

This section focuses on the use of SOMA, (Service-based Observability, Monitoring, and

Analysis) [157, 158] in a new approach — for HPC workflows. SOMA’s ability to monitor and

enable adaptive workflow execution is demonstrated through integration with RADICAL-Pilot [98],

an HPC pilot-enabled [141] runtime system, integrated with multiple workflow systems including

RADICAL-EnTK [15] and Parsl [8, 11], and that can be deployed on exascale platforms [12]. Current

projections suggest that scientific workflows for HPC can comprise between 106–109 tasks [62] At

this scale, performance monitoring is (1) likely to be treated as a first-class citizen of the workflow

and (2) likely to require a non-negligible amount of computing resources [62].

In summary, the key contributions of this work are:

1. The design and implementation of SOMA for service-based workflow monitoring with

RADICAL-Pilot as an exemplar use-case

2. Experiments demonstrating that SOMA can enable holistic observability of workflow

performance

3. Experiments demonstrating the costs and benefits of enabling workflow observability through

a service-based monitoring architecture.

This section discusses the data model necessary to monitor heterogeneous HPC workflows

manged by the RADICAL-Pilot pilot system. Background on the two main tools, RADICAL-Pilot

and SOMA, then we discuss the work required to integrate them. Section 3.5.1 discussed SOMA and

the associated service components for workflow monitoring. Section 3.5.2 described the architecture

81



of RADICAL-Pilot and the ensemble environment. Section 3.5.3 presented the novel work on how

SOMA is integrated into RADICAL-Pilot and the special considerations needed to support HPC

workflows (as opposed to traditional MPI-based HPC applications). In Section 4.6.1 the workflow

state data model is shown. Then in Sections 4.6.2, 4.6.3, and 4.6.4 the data model is successfully

used in numerous workflow monitoring experiments.

4.6.1 Capturing Workflow State Data. SOMA’s ability to split its service task

resources between several instances and the concept of logical namespaces finds application in

workflow monitoring. Monitoring data can now be divided into four namespaces — workflow,

application, hardware, and performance. The total of N SOMA service processes within the service

task is divided appropriately among how ever many instances are implemented for a given setup,

each supporting the compute and storage needs of one namespace. For this work specifically, we

required the hardware monitoring data model discussed in 4.5, but also a workflow data model.

In addition, the performance namespace for TAU was improved on from previous work, and the

application namespace is not used. The methodology for capturing data for the workflow namespace

is as follows.

For the first of the two new namespace implementations we created a model for RADICAL-

Pilot’s workflow states. RADICAL-Pilot’s components function as a state machine — the lifecycle

of each component, including application tasks, proceeds through a set of predictable states through

the execution. For example, a task proceeds through the NEW, SCHEDULED, EXECUTING, and

DONE/FAILED states. The transitions between states are further broken down by timestamped

events that indicate a new state, shown in Listing 4.5 are the events within the EXECUTING state.

Likewise, the Pilot component and the RADICAL-Pilot Agents have appropriate state transitions.

Snap-shotting these state transitions and collecting statistics on the total number of pending tasks,

completed tasks, and so on can provide valuable insight into the overall performance of the workflow,

to be used for subsequent analysis (online or offline). SOMA captures workflow-level information

through a service client task launched on a single compute node within the workflow. This client task

launched as a daemon, periodically reads the appropriate profile files generated by RADICAL-Pilot,

summarizes basic statistics about the workflow from this data, and publishes the same to the SOMA

service processes (using RPC) at a configurable monitoring frequency. This client task runs for the
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1 {

2 RADICAL -Pilot: /* Top -level SOMA namespace */

3 task .000000: /* Task name tag */

4 /* Timestamp: "event" */

5 1698435412.6060030: "launch_start"

6 1698435412.6135450: "launch_pre"

7 1698435412.6177090: "launch_submit"

8 1698435412.9642950: "exec_start"

9 1698435412.9681430: "exec_pre"

10 1698435412.9717330: "rank_start"

11 1698435427.9775150: "rank_stop"

12 1698435427.9812500: "exec_post"

13 1698435427.9850750: "exec_stop"

14 1698435428.0497950: "launch_collect"

15 1698435428.0540810: "launch_post"

16 1698435428.0583980: "launch_stop"

17 task .000001:

18 ...

19 }

Listing 4.5 Conduit::Node of the RADICAL-Pilot workflow data model

duration of the workflow. See Listing 4.5 for an example of the Conduit data model implemented

to represent this workflow data.

4.6.2 OpenFOAM Workflow. To demonstrate this case we run the existing real-scale

workflow from the Exascale Additive Manufacturing (ExaAM) project [29], part of the Exascale

Computing Project. The ExaAM project has developed a suite of exascale-ready computational

tools to model the process-to-structure-to-properties (PSP) relationship for additive manufactured

(AM) metal components. The target workflow contains simulations for the melt pool physics and

uses AdditiveFOAM [31], an extension of OpenFOAM [136] for AM processes.
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We created a corresponding workflow using RADICAL-Pilot [12] and will refer to it as the

OpenFOAM workflow. We run this workflow on the Summit supercomputer, monitoring it with

our SOMA service. Each compute node of Summit has 44 physical cores, two of which are reserved

for the system, leaving 42 available to the user. We run four different task configurations within

the OpenFOAM workflow, with either 20, 41, 82 or 164 MPI ranks per task, and with each rank

using one physical core. We turn hardware multi-threading off, and reserve one core per node for the

SOMA hardware monitoring client. Thus, each task utilizes between 0.5 compute node to 4 compute

nodes, respectively. Initially, we run one instance of each task configuration across a workflow with

4 nodes, we refer to this as the “tuning" run, and then we run 20 instances of each across 10 nodes,

which we refer to as the “overloaded" run, see Table 5. In both cases we allocate one extra node (for

5, and 11 total) that is reserved for running the RADICAL-Pilot Agent and SOMA service.

Experiment Tuning Overload
Number of Tasks 4 80
Number of Nodes 10 10

Number of MPI Ranks 20, 41, 82, 164
Monitors proc, rp, tau

SOMA Ranks Per Namespace 1
Configuration exclusive

System SUMMIT
Hardware IBM POWER9

Table 5. OpenFOAM Experiment Summary

4.6.2.1 Monitoring Setup. In these experiments we use the following three SOMA clients

to observe the workflow and collect metrics. The first is workflow task information via our

RADICAL-Pilot monitoring client for SOMA, launched with one client per workflow. At configurable

intervals, the SOMA client gathers RADICAL-Pilot-managed task status information, calculates the

time spent in each state, and sends it via remote procedure call to the SOMA service. This client

setup is shown in Figure 12 by the pink square 3 . We schedule the RADICAL-Pilot monitoring

client onto the same node as the RADICAL-Pilot client and agent, sharing the node resources. This

is an additional node that is not used for any simulation-related tasks, but only by RADICAL-Pilot

and its associated SOMA monitoring client. The second source of metrics is from the hardware

monitoring client shown in Figure 12 by the squares 4 . At configurable intervals, that client reads

memory and CPU usage data from /proc/. As mentioned, this monitoring client runs on one

physical core on each node of the Summit supercomputer.
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The third and final data source for these OpenFOAM experiments is the TAU [84] performance

profiling plugin for SOMA, which samples the running application to gather performance data, e.g.,

time spent in each function or MPI metrics. In this case, the TAU plugin is executed without any

need for instrumentation of the OpenFOAM code. The plugin uses the tau_exec functionality to

sample the code and publishes the sampled performance profiles to the SOMA server. This isn’t

specifically denoted in Figure 12, but is similar to the squares 5 , where a SOMA client is created

within the same task space as the application. However, from OpenFOAM’s perspective, it is just

being profiled by TAU, and all SOMA functionality is encapsulated by the TAU plugin.

The three data sources: RADICAL-Pilot task information, hardware (proc), and TAU

performance profiles, give us a rich understanding of the online performance of the OpenFOAM

workflow. In sections 4.6.3, and 4.6.4 we discuss the OpenFOAM results at two levels of granularity,

local to each task and global to the entire workflow.
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Figure 17. A scaling study of different OpenFOAM configurations. We vary the number of MPI
ranks and run 20 instances of each configuration in one RADICAL-Pilot managed workflow.

4.6.3 OpenFOAM Task Scaling Analysis. Figure 17 shows the results of strong-scaling

the OpenFOAM tasks from one to four nodes. Without any a priori knowledge of the application

execution time we ran multiple configurations. Since we capture performance from 20 different

instances of each configuration, we see a variation in the total execution time, but are able to calculate

averages. An interesting observation that can be made here is that there is limited benefit to scaling
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the OpenFOAM tasks beyond two nodes. This information can be used to inform RADICAL-

Pilot which MPI task configurations to use, and is fundamental in enabling runtime adaptivity.

RADICAL-Pilot could collect information about MPI task performance, and utilize that information

to change the task description, adjusting the number of ranks of each type of task in the workflow. As

shown by our experiments, that would allow to utilize the available resources better, thus reducing

the total time to completion of the entire workflow. Additionally, from monitoring with the TAU

SOMA integration we can also gather the related MPI metrics that correspond for further analysis.

We zoom in on one instance of a task for clarity in Figure 18. We observe that a large portion of

time for each rank is spent in MPI_Recv() and MPI_Waitall(). While this may not be as easy for

on-the-fly adaption, it can be used for further simulation tuning.
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Figure 18. From the TAU SOMA plugin we have access to TAU profile information such as the time
spent in MPI calls here to observe load balancing.

As with the number of ranks per task, RADICAL-Pilot could utilize the information about the

physical location of the MPI ranks across nodes to make adaptive scheduling decisions. Figure 19

shows our results from comparing the execution times when the physical location of the MPI ranks

can differ. In the case of 20, and 41 MPI ranks — where all ranks could fit on one compute node

— RADICAL-Pilot has the option to schedule all of these on one compute node, or spread the

ranks out across any available CPU cores of the allotted nodes. Figure 19 shows a distribution of

20 and 41 rank tasks running on different node distributions based on what was available during
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Figure 19. Comparison of the execution time of OpenFOAM tasks when configured with 20 or 41
ranks and scheduled onto a different number of compute nodes.

the overloaded run. Along the x-axis we see whether each task was run on a single node, or split

across up to 5 nodes. For the 20 rank runs we actually see an execution time improvement as the

ranks are spread across more nodes. This is possibly due to the fact that the smaller rank runs

were typically scheduled later in the workflow, when resources are less utilized. This can be seen

in Figure 20 where non-green sections indicate unused resources. However, in the 41 rank case our

performance improvement is not quite as remarkable as we may be approaching an upper bound.

4.6.4 OpenFOAM Workflow Analysis. Observation of the workflow from a global

perspective offers insights into areas where scheduling of future tasks could be improved. Results

from our overloaded scenario — with twenty instances of each task configuration — are shown in

Figure 20 and in Figure 21. In the CPU utilization graph (Figure 21), we see the cpu percent used on

each node represented by a colored line, this was sampled by the SOMA hardware monitoring client

from /proc/ every 30 seconds. Each rank_start event is denoted by a purple dot at the bottom of the

figure, at the time when the SOMA RADICAL-Pilot monitor records these events. In Figure 20 we

can see the resource utilization from the perspective of RADICAL-Pilot. It marks resources (cores

in this case) as either available or unavailable, but does not look at percent utilized. The green color

on the graph indicates a resource has a task running on it, and the purple sections show when it is

scheduling a new task to be run on that resource. The resources are well used, but using this data
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Figure 20. RADICAL-Pilot resource utilization for the OpenFOAM Overload workflow. The figure
shows the overload workflow with 4 types of tasks, and 20 task instances for each type. The 4 types
of tasks have instances of tasks with different configurations: tasks with 20, 41, 82 and 164 MPI
ranks (80 tasks in total). Light blue indicates RADICAL-Pilot bootstrap time. Purple indicates
RADICAL-Pilot task scheduling time. Green indicates task running time. The time spent by
RADICAL-Pilot preparing the tasks (Prep) is negligible. White space indicates unused resources, a
measure of RADICAL-Pilot scheduling optimization based on information provided by SOMA.
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Figure 21. CPU utilization percentage during our “overloaded" run with 20 instances of each task
configuration (of varying rank counts). The colored lines represent the CPU utilization on each
compute node, sampled every 30 seconds by the SOMA hardware monitor. The purple dots at the
bottom indicate when a rank has started, as observed by the SOMA RADICAL-Pilot monitor.
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in combination with the CPU utilization could lead to even more informed decisions. Currently,

RADICAL-Pilot schedules a task as soon as there are enough free resources, i.e., CPU cores and/or

GPUs. Based on the online information about overall CPU (or GPU) utilization, RADICAL-Pilot

could adapt its scheduling decisions, prioritizing the use of the free CPUs on a node with comparably

lower overall CPU utilization. The benefits of this approach are better appreciated with a run with

a lower overall resource utilization.

Figure 22. RADICAL-Pilot resource utilization for the OpenFOAM Tuning workflows. The figure
shows the Tuning workflow with the same 4 types of task as for the top figure, but with 1 task
instance for each type, for a total of 4 tasks. Light blue indicates RADICAL-Pilot bootstrap time.
Purple indicates RADICAL-Pilot task scheduling time. Green indicates task running time. The time
spent by RADICAL-Pilot preparing the tasks (Prep) is negligible. White space indicates unused
resources, a measure of RADICAL-Pilot scheduling optimization based on information provided by
SOMA.

Figures 22 and 23 provide a simplified version of the results above where we launched only

one instance of each task type. With fewer nodes and tasks it is easier for a human to observe

the specific behavior. We can see on the CPU utilization graph (Figure 23 that as a rank starts,

there is a corresponding spike in CPU utilization. However, we can clearly see an imbalance in

the utilization on each node in roughly the latter half of the runtime, which offers room for better

scheduling decisions on a second go-around. As in Figure 20, in Figure 22 green represents resource

utilization, and white space denotes free cores, or resources that could potentially be utilized. In

this case, once the 164 rank task completed using all of the cores, the other tasks were scheduled to

use the cores simultaneously.
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Figure 23. CPU utilization for an OpenFOAM Tuning workflow with 4 types of tasks, and 1 task
instance for each type. The 4 types of tasks have 20, 41, 82 and 164 MPI ranks respectively, for a
total of 4 tasks. Each colored line shows the CPU utilization on a different compute node, measured
every 30 seconds by the SOMA hardware monitoring client. The orange dots indicate when the
SOMA RADICAL-Pilot monitor observed from RADICAL-Pilot that a task is starting.
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4.7 Summary

The key contributions in Chapter IV revolve around the successful implementations of

Conduit [52] data models for representing performance data. The four paradigms that are supported

so far are:

1. Performance profiles from integrations with existing performance measurement libraries. Both

TAU and Caliper data models were demonstrated.

2. Application diagnostic data by application instrumentation. The usefulness of this data model

was demonstrated with the Astaroth work.

3. Event-based workflow state data which was collected from RADCIAL-Pilot which enables

task-level updates.

4. Hardware metrics from /proc/ for monitoring compute node behavior.

Being able to represent all these different data sources with a canonical model makes SOMA more

flexible. We demonstrated the implementation of combinations of different data collection sources

with both the Astaroth application and the OpenFOAM workflow managed by RADICAL-Pilot.

The research question “How do we support different input and output?" is thus satisfied by the

successful approach and deployments of SOMA’s canonical data model.
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CHAPTER V

AN EXASCALE PERFORMER

This chapter contains previously published and unpublished material with co-authorship.

Section 5.2 contains work from a paper initially published at the Cray User Group conference in

2023. An extension of this paper was published in a special edition journal of Concurrency and

Computation: Practice and Experience in June 2024. The work was a collaboration between the

University of Oregon, NVIDIA Corporation, University of Helsinki, Aalto University, and Academia

Sinica. I was the first author, conducted all experiments, and completed the majority of the writing.

Some co-authors helped with writing, all helped with suggestions, and proof-reading.

Section 5.3 contains material from an unpublished paper (under review at a 2024 conference).

This work was a collaboration between University of Oregon, NVIDIA Corporation, Brookhaven

National Laboratory, and Rutgers University. I was the first author, conducted all experiments

and completed the majority of the writing. Co-authors include Dr. Mikhail Titov, Dr. Srinivasan

Ramesh, Dr. Ozgur Kilic, Dr. Matteo Turilli, Dr. Shantenu Jha, and Dr. Allen D. Malony.

Co-authors helped with suggestions, and proof-reading.

5.1 Introduction

Performing at scale with applications and workflows running in HPC environments is a crucial

requirement for a performance monitoring framework such as SOMA. While some of the architectural

decisions explained in Chapter II contribute to creating a more performant framework we also have to

look for novel and creative ways to make improvements. The differences in application and workflow

characteristics, while posing a challenge due to the heterogeneity, can also present opportunities

for out-of-the-box solutions. We explore some of these ideas, such as sharing compute nodes in

this chapter as well. We discuss the results of our overhead studies and how well they address the

challenge of making SOMA a performant framework. This chapter answers the research question

“How do we minimize the overhead?"

Section 5.2 provides a study of different configurations of SOMA and how it contributed to

monitoring overhead differently in the cases of monitoring LULESH and Astaroth applications.

Along with physical placement and ratio of servers, we also compare publishing rates and SOMA’s

blocking versus non-blocking API calls. Section 5.3 provides additional overhead analysis but with
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the DeepDriveMD Mini-app heterogeneous workflow managed by RADICAL-Pilot. In this section

we look into the perks of reserving or sharing extra nodes allocated for SOMA servers, we also discuss

how the online analysis we can conduct during the workflow could lead to more online adaptations.

5.2 Monitoring Overhead

Our objective in this section was to measure the performance of the integration of the SOMA

framework with Astaroth and TAU to enables online performance monitoring, application-specific

diagnostics, and simulation state data analytics. SOMA’s microservice architectures allows us

significant flexibility concerning how and where to run SOMA in relation to the application. The

most straightforward configuration for monitoring in general would be to launch a job with extra

compute nodes and run the SOMA monitoring service there. However, in the case of Astaroth, since

there were idle CPU cores we also implemented the scenario where the SOMA monitoring service

ran on those idle CPUs.

The dominant computational model for scalable HPC applications, and for Astaroth, is Single

Program, Multiple Data (SPMD). SPMD programs combine distributed-memory parallelism with

some form of shared-memory parallelism. MPI is the leading library for message passing [122],

OpenMP [32] is popular for multi-threading on multi-core CPUs and CUDA [102] or HIP [59] support

accelerator programming. Most HPC performance tools have been developed to support SPMD

applications. Measurement libraries are primarily implemented to execute with the application

code and run on the same processes and computational resources. Performance measurements are

made in the context of processes/threads and stored in the application memory, making them low-

overhead and highly efficient. For the most part, measurements are node-local and performance

data is collected and written at the end of the execution.

Unfortunately, the SPMD model and its implementation with MPI can constrain the

development of new HPC tool functionality. Consider a simple case of wanting to compute

performance statistics from performance data across all MPI processes while the application is

executing. While MPI does offer support for both synchronous and asynchronous methods of

computing these statistics, running MPI in threading mode is notably more difficult than its

traditional synchronous counterpart, either because of the limited support for threaded MPI, or

because it contorts the MPI programming, making it awkward to integrate more advanced analytics

solutions and forcing the “shoe-horning” of arbitrary analytics functionality into an MPI program.
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Further, there is another practical problem encountered on many leadership class clusters — some

large HPC platforms disallow the running of multiple binaries (programs) on the nodes used by an

application. In other cases, MPI environments do not allow the number of application ranks on a

single node to exceed the number of available cores (known as oversubscription).

Therefore, running two different binaries on the same compute node required splitting the

MPI ranks appropriately between the different applications. Figure 24 shows how we split the

MPI_COMM_WORLD communicator between our two applications. In this process, SLURM passes

certain ranks to each application, and it is the responsibility of the application to assign these

ranks to it’s own communicator group. This functionality works without modifications in the case

where all ranks on a node are assigned to one application as well – in this scenario the application

just copies all ranks to its new communicator group. All experiments were carried out on either the

LUMI-G or MAHTI systems detailed in Table 6.

LUMI-G MAHTI
System HPE Cray EX Atos BullSequana XH2000
CPU AMD EPYC 7653 AMD Rome 7H12

Total CPU Cores 64 128
Memory (GB) 512 256

# GPUs 8 4
GPU Arch AMD MI250X NVIDIA A100

Table 6. Architectures used for the Astaroth and LULESH simulations and experiments.

5.2.1 Special Case of Idle Cores. Heterogeneous HPC places an emphasis on the use

of accelerated devices, primarily GPUs, for achieving performance gains. In some heterogeneous

applications that take advantage of GPUs it can be the case that the CPUs (cores) on accelerated

nodes are under-utilized during the execution. One motivation for our monitoring research is to take

advantage of such situations by finding techniques to locate monitoring processes on the same nodes

as the application. Suppose we consider a special case where an MPI application does not use all

of the available cores on each node allocated to it. Instead, the cores remain idle for the entirety of

the execution.

Without loss of generality, consider an MPI-based application configured to run with R total

ranks on N nodes where each node has r = R/N ranks per nodes (assume N evenly divides R). Let

C be the number of CPU cores on a node and c be the number of cores not used by the application

at all during execution. These unused CPU cores could be available to run monitoring processes.
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APP: MPI_Comm_split() Mon: MPI_Comm_split()

MPI_COMM_WORLD

APP Comm MON Comm

Figure 24. Example of how MPI_Comm_split works to run two applications on the same node.

Suppose M total monitoring processes are to run with m = M/N monitoring processes on each

node (assume N evenly divides M). The question is then how to create the monitoring processes

and configure them to run with the application such that m are assigned to each node.

One way of doing this is with the Multiple Program, Multiple Data (MPMD) approach can be

done entirely in MPI. The idea is to run the application with R+M ranks and split MPI_COMM_WORLD

into two communicators: one for the application (call it APP) and one for the monitor (call it MON).

The application code must be modified to do the split and to use the APP communicator in place of

MPI_COMM_WORLD throughout. When launching the computation, r +m ranks must be allocated to

each node. There are two potential downsides to this approach. First, it might be problematic to

modify the application code, for several valid reasons. Second, it might be difficult to integrate the

monitor code with the application code. This is necessary because a single binary that includes the

application and monitor code is being run by the MPI processes. A simple example of this approach

is shown in Figure 24.

A big advantage of the above approach is that it does not require anything special to be done

by the job submission system. Another approach that does not involve changes to the application

or monitor MPI communicators is to launch the application (with R ranks) and the monitor (with

M ranks) as separate binaries at the same time on the same nodes where r application ranks and

m monitor ranks are running on each node. This can be done using a script that is launched on N
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nodes and then executes the monitor and application. Each would be able to use MPI_COMM_WORLD

for MPI operations. Each would be its own binary. A different technique might be needed for the

application to discover the monitor above. For this approach to be viable, the environment must

allow two different binaries to run at the same time on the same resource set. Unfortunately, for

some platforms, this is not the case.

... ... ... ... ...

Application MPI process (rank)
Application compute node

... ... ... ... ...

Collector client (within application process)
Collector service instance (local, own process)

... ... ... ... ...

Collector client (within application process)
Collector service instance (global, own node)

... ... ... ... ...

Collector client (within application process)

Collector service instance (global, own node)
Collector service instance (local, own process)

Figure 25. (Top-Left): Standard MPI application. (Bottom-Left): A SOMA client is embedded
within each MPI rank (i.e., process). The client is called via a TAU plug-in. The application is
launched with an additional node on which a SOMA service instance executes. Each client will
interact with the service. (Top-Right): The client is the same as Bottom-Left. However, the
application is launched with another process on each application node where an service executes.
Each client will interact with the local service instance. The services will interact with each other
for distributed processing. (Bottom-Right): The client and local service are the same as the
Top-Right. An additional node is allocated for a global service instance. The service instances will
interact with each other and with the global service instance.

5.2.1.1 LULESH. It was interesting to us to show the use of microservices in an

application that could be configured similarly to Astaroth. For this purpose, we installed LULESH

hydrodynamics proxy application [66, 65] on the CSC Mahti supercomputer and ran it successfully

with SOMA in both the node-local and remote scenarios shown in Figure 25. In particular, we used

an MPI-only version and allocated up to 64 ranks on each node, leaving 64 or more unused cores of

the 128 cores available. We modified LULESH to launch with additional ranks per node and split

the MPI_COMM_WORLD communicator to use certain ranks for LULESH and the rest for SOMA (see

the top-right configuration in Figure 25).

These LULESH experiments were performed with a problem size of 45 (per domain) which

is the equivalent of 5,832,000 elements. LULESH simulations must be run with a number of ranks
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Figure 26. Synchronous overhead percent (Left) and asynchronous overhead percent (Right) based
on the configuration of our monitoring service with LULESH on Mahti. The baseline is indicated
by the orange dotted line. In the case of the remote configuration, we run the indicated number of
application nodes and an extra node solely for the SOMA servers. When publish more frequently,
and run the SOMA servers locally we see increased overhead. The dashed lines demonstrate our
performance when publishing data in the remote node configuration, which tend to outperforming
the node-local solid lines. Improvements are noted when using the non-blocking asynchronous calls
over the blocking synchronous calls, especially in the four node case, when there are free cores.

that is also the cube of an integer. Because we used up to 64 ranks per node, while we increased

the node count, we also had to calculate the ratio to keep the total ranks equal to the cube of

an integer. We measure SOMA overhead by varying the monitoring frequency (how often both

application and performance data is published to the servers), with every 50 application iterations,

every 5 iterations, and every single iteration. Figure 26 demonstrates a comparison between using

SOMA’s blocking calls — soma_publish, soma_commit_namespace — and SOMA’s non-blocking

calls — soma_publish_async, soma_commit_namespace_async. For both of these experiments,

overhead is calculated against a LULESH baseline, where it is run without any monitoring enabled.

The network protocol used for all Mahti experiments was ofi+verbs. We see that in general, using

a less frequent monitoring interval of every 50 iterations has the least overhead while monitoring

every iteration generates the most overhead. The configuration of running the SOMA monitoring

ranks on a remote node from the application does typically outperform the case where we run the

SOMA monitoring ranks on the local node.

When only running on a single application node, we see a trend of greater overhead percentage

than more nodes, but the total execution time remains within range. This is based on an average

of 5 runs in each configuration. However, as we scale LULESH to run on an increasing number of

compute nodes, we see the overhead begin to converge slightly in the synchronous case. Running the
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SOMA servers on an extra allocated node likely utilizes completely free resources, even though there

are free cores on the local node, perhaps allowing more free cores would yield better performance.

Further tuning can be done when looking at message size, publishing frequency, and the ratio of

SOMA server instances per rank to find the best performance in each scenario.
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Figure 27. Execution time (Left) and percent overhead (Right) based on the configuration of
our monitoring service for Astaroth on LUMI-G. In the case of the remote configuration, we run
the indicated number of application nodes, and an extra node solely for the SOMA servers. We
ran a baseline with no monitoring, application only monitoring, and performance + application
monitoring. We see only a small increase in overhead when we combine performance monitoring with
the application monitoring — when performance monitoring frequency is every 5 or 50 iterations.

5.2.1.2 Astaroth. We analyze the overhead of collecting application data via SOMA for

Astaroth. The description and analysis of the data are in Section 4.4. For the purpose of measuring

overhead, we conducted, first, baseline execution times for Astaroth without any monitoring. This

baseline is pictured in Figure 27 with Monitoring Frequency = 0.

We scale Astaroth from one node up to 16 nodes on LUMI-G, which contains 8 GPUs per

CPU node. In all scenarios we run 8 Astaroth ranks per node to utilize all of the GPUs available.

The grid size of Astaroth must be adjusted for each scaled run, beginning with x, y, z dimensions

of 256, 256, 256 for one rank and multiplying each dimension by the number of ranks starting with

z, e.g., for 8 ranks x,y,z was 512, 512, 512, for 16 ranks it was 1024, 1024, 2048. Application data

is structured as a Conduit node and configured to publish to the SOMA service instance every five

application iterations. Performance data monitoring is conducted via the SOMA TAU plugin which

converts TAU profiles to conduit nodes for the SOMA RPC calls. Publishing frequency is varied

between every 5 iterations and every 50 iterations for the performance data. The communication

protocol used for publishing SOMA data between nodes used was ofi+tcp — we are investigating

other high-performance communication protocols for Mochi on LUMI-G.
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We launch the Astaroth jobs in the same configurations as the baseline, but with SOMA ranks

on either an extra ranks on an extra node, or extra ranks on each node already allocated. These ranks

are reserved for the SOMA service instances, whether that be the application data or performance

data service. On this additional node, we use the number of ranks equal to the number of Astaroth

nodes, giving us an 8:1 ratio of Astaroth ranks to each type of SOMA service rank. This allows

us to compare the results with the node-local version. For the node-local version, we run a SOMA

service instance with an extra rank on each Astaroth node, also at an 8:1 process count ratio.

We can see in Figure 27 that for both configurations, there is a non-negligible amount of

monitoring overhead. One potential reason for this is due to the use of the lower-performance ofi+tcp

interconnect. Based on the significantly lower overheads we saw with the ofi+verbs network in our

Mahti/LULESH experiments we anticipate significant performance improvement when we use the

high-performance Cray network (ofi+cxi) on LUMI-G. On a positive note, we see very little increase

in overhead when we conduct the performance data monitoring simultaneously with the application

data monitoring, even at more frequent publication rates. Although these results may seem a bit

underwhelming, we are early in our design, and there are many opportunities for optimization,

beyond the network changes, that we believe will have a significant impact. For example, we are

further scrutinizing the size of the data being sent, the serialization protocol used for the data, the

frequency of publication, and the ratios of SOMA server instances per application rank, node count,

and problem size. Analysis of the application telemetry data that we collect for Astaroth in these

experiments with SOMA was described in Section 4.4.

5.3 Adaptive Feedback Potential

Chapter IV discussed the increase in heterogeneous machine learning workflows as an

acceleration technique for domain science, and the importance of the ability to monitor and improve

such a workflow with SOMA. While Section 5.2 focused on overhead analysis for an individual

application, in this section we look at the monitoring overhead and also potential for adaptive

feedback with a Deep Learning heterogenous workflow mini-app managed by RADICAL-Pilot. An

advantage gained from the RADICAL-Pilot integration was that the splitting of MPI communicator

groups that was required for the experiments in section 5.2 is no longer necessary. Since SOMA is

treated as a first-class citizen, RADICAL-Pilot is able to create and schedule both SOMA tasks and

multiple application tasks per compute node, each within their own MPI scopes as needed.
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5.3.1 DeepDriveMD Mini-app Workflow. The DeepDriveMD workflow mini-app [70]

models the computational patterns and behaviors of a Deep Learning oriented Moleculer Dynamics

simulation workflow using DeepDriveMD (deep-learning driven molecular dynamics) [79]. The

DeepDriveMD workflow mini-app consists of phases, each phase made up of four stages. The stages

are (1) Simulation, (2) ML Training, (3) Model Selection, and (4) Agent (Inference), which must be

run in order. The baseline workflow uses 12 simulation tasks and 1 task each for training, selection,

and agent. We do not modify the number of tasks except for the training tasks as explicitly stated

in Table 7. The simulation, training, and agent stages use both CPU cores and one GPU resource

per task, whereas the selection stage runs only on the CPU. This is configured and managed by

the RADICAL-EnTK (Ensemble Toolkit), which is a higher-level abstraction of RADICAL-Pilot

functionality [12]. We use EnTK to schedule n number of phases in a row, within m number of

concurrent pipelines, this can be done for any combination of n ×m, see Figure 28. We run three

different experiment setups with the DeepDriveMD workflow mini-apps.
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phase 1

pipeline 1

phase n

rp monitor

proc monitorproc monitorproc monitor
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Figure 28. An illustration of how RADICAL-EnTK can launch SOMA monitoring tasks, one or
more pipelines, and one or more phases of the DeepDriveMD mini-app workflow. Each phase is one
full DDMD mini-app workflow comprised of multiple tasks, shown in the inset.

The first experiment is a tuning study, where we alter the number of cores allocated per task.

We run n = 6 phases, and m = 1 pipelines. We can compare each phase of the workflow for
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the effects the core assignment has on the runtime of each stage of the workflow. Details of the

configurations for this experiment can be found in Table 7 under the “Tuning" column.

The second DeepDriveMD mini-app experiment involves conducting SOMA analysis to identify

free resources during runtime. While EnTK cannot make adaptive changes during runtime, we can

use SOMA to learn more about how to configure the workflow during each successive phase. We

run n = 4 phases, and m = 1 pipelines. The setups that were run during the second experiment can

be found in Table 7 under the “Adaptive" column. The number of training tasks listed in the Table

are set a priori, as in the original workflow, but we conduct online SOMA analysis to be available

between phases. Figure 28 depicts where the SOMA analysis fits within the flow of the adaptive

experiments.

The third experiment set for the DeepDriveMD mini-app was scaling it up to more compute

nodes to ensure SOMA monitoring could keep pace. In Scaling A and B we run n = 1 phases for

m = a pipelines of the workflow, where a is the number of application nodes. With one task for

each of the training, selection, and agent stages and 12 tasks per simulation stage, this creates an

over-subscription during the simulation stage, where each simulation stage (per pipeline) requires

12 GPUs, but there are only 6 available per node. In Scaling A we vary the ratio of SOMA server

ranks to pipelines, and in Scaling B we keep the ratio steady, see Table 7.

Experiment Tuning Adaptive Scaling A Scaling B
Phases (n) 6 4 1 1

Pipelines (m) 1 1 64 64, 128, 256, 512
Application Nodes 2 2 64 64, 128, 256, 512

SOMA Nodes 1 1 1, 2, 4 4, 7, 13, 25
Num Simulation Tasks 12 12 12 12

Cores Per Simulation Task 1, 3 , 7 6 3 3
Num Training Tasks 1 1, 2, 4, 6 1 1

Cores Per Training Task 1, 3, 7 1 7 7
SOMA Ranks Per Namespace 2 2 16, 32, 64 64, 128, 256, 512

Monitoring Frequency (s) 60 60 60 60, 10
Configuration shared shared shared, exclusive shared, exclusive

Monitors proc, RADICAL-Pilot
System SUMMIT

Hardware 2 IBM Power 9 CPU + 6 NVIDIA Tesla V100 GPUs

Table 7. DeepDriveMD Mini-app Experiment Summary

5.3.1.1 Monitoring Setup. In the DeepDriveMD Miniapp experiments, we implemented

data collection from two sources. Similar to the OpenFOAM workflow in Section 4.6.2, we initialized
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one RADICAL-Pilot monitoring client per workflow, scheduled onto the same node as the RADICAL-

Pilot agent. Also similarly, we initialize one /proc/ monitoring client per compute node for collection

of CPU usage data, which takes a reading every minute, and calculates the current CPU utilization

online. We did not use the TAU monitoring client in the DeepDriveMD Mini-app experiments. In

most experiments, we sampled and published the performance data every 60 seconds. In Scaling B,

to push the limits of SOMA, we increased the frequency to every 10 seconds. We also run baseline

workflows with no SOMA nodes or monitoring for comparison.

5.3.2 DeepDriveMD Mini-app Analysis. For the DeepDriveMD mini-app experiments

we use the collected data from the hardware (/proc/) and RADICAL-Pilot monitors. In section

5.3.2 we first discuss the results from the tuning and adaptive workflows. We then look at the scaling

workflows and illustrate our discoveries about the overhead and effects of SOMA monitoring at scale.
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Figure 29. CPU utilization for the DeepDriveMD mini-app Tuning experiment shows low CPU
utilization. The gray background shows phases where we assign 7 cores per training task, and green
background we assign 3 cores per training task. The shading changes from light to medium to dark
for 1, 3, and 7 cores per simulation task, respectively.

The tuning experiment results — where we have 6 phases of the workflow and change the

number of cores per simulation and training task — are in Figure 29. We see that even when

changing the number of cores that can be used per task, CPU utilization remains low. This is due to

the fact that most of the work for the two longest stages, simulation and training, is done on the GPU.

Therefore, learning that the effect of using fewer CPU cores per task was minimal, we next explored
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Figure 30. CPU utilization for the DDMD Adaptive Workflow.

parallelizing the training tasks in order to use more GPUs per node. Figure 30 shows the results

of these other configuration changes. To parallelize the training tasks appropriately, we also resized

the data and added additional MPI_Reduce calls to the tasks. While the full-scale DeepDriveMD

workflow does not yet support such parallelization, we determined this a good use of the mini-app,

to model potential changes without having to implement it in the full-scale workflow unless deemed

worthwhile. SOMA can calculate the current CPU utilization online, but the integration to utilize

that feedback with RADICAL-Pilot is still in progress.

Figure 31 depicts the pipeline execution times from the Scaling A experiment where we

increased the number of pipelines to SOMA ranks from 1:1 to 8:1 to pinpoint any significant

bottlenecks. Because we allocated extra nodes for SOMA and did not necessarily need to use

every single core on those nodes for SOMA ranks we ran in two configurations. The shared

configuration allowed RADICAL-Pilot to make use of any free cores on the SOMA nodes. The

exclusive configuration reserved the nodes only for SOMA ranks and did not allow RADICAL-

Pilot to schedule any application tasks on any available cores. Because of the oversubscription of

simulation tasks in the workflow, each pipeline requires 12 GPUs during the simulation stage but

there are only 6 per node. In the shared cases, RADICAL-Pilot was able to make use of the some of

the free GPUs and cores on the SOMA nodes as SOMA runs on CPU-only and did not completely
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Figure 31. Runtimes for 64 pipelines of the DDMD Mini-app Scaling A experiment workflow. The
oversubscription of GPUs causes more variability in scheduling and execution times in the shared
configuration, but the ratio of SOMA ranks to pipelines does not have much effect.

fill the allocated SOMA nodes. This caused more variance in overall execution times but reduced

the execution time for many of the pipelines.

Figure 32 demonstrates the distribution of pipeline execution times when we kept the ratio of

SOMA ranks to pipelines at 1:1 and scaled up SOMA ranks and nodes, and application pipelines and

nodes. Details of our configurations are given by the Scaling B column in table 7. We again make

use of the flexible integration between RADICAL-Pilot and SOMA to run in both the shared and

exclusive configurations described previously. We compare these with the baseline none configuration

which was only m DeepDriveMDmini-app workflow pipelines running on m applications nodes with

no SOMA monitoring or SOMA nodes. Again, we can actually see potential benefit from running

with extra SOMA nodes in the shared configuration as RADICAL-Pilot’s opportunistic scheduling

system can make use of the available cores. The higher outliers in the shared configurations are

due to the fact that RADICAL-Pilot is non-deterministic in scheduling and may make an inefficient

placement during runtime that delays one or more pipelines.

Furthermore, when pushing SOMA to a higher monitoring frequency — every 10 seconds, up

from every 60 seconds — we do start to see increased overhead costs. This is shown in Figure 32

under the frequent-exclusive label. In these results, the frequent-exclusive experiments are also

exclusive in configuration, i.e., the extra cores on the SOMA nodes cannot be used by the application
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Figure 32. Runtimes for each pipeline of the DDMD Mini-app Scaling B experiment workflow.
Shared indicates that free cores on SOMA allocated nodes were available to the application
(RADICAL-Pilot can schedule application tasks on them), Exclusive: means that SOMA nodes
were reserved for SOMA only. None indicates our baseline, where no SOMA monitoring was done
and no SOMA nodes were allocated. (Note the x-axis — number of nodes — is a log scale).

tasks. This gives us a better direct comparison to the exclusive execution times because only

the monitoring frequency changes. Some of this overhead can be mitigated when we run in the

frequent-shared configuration. This allows for RADICAL-Pilot to utilize any extra cores during

scheduling, thus increasing the variability, but reducing some execution times. When comparing the

worst performance, frequent-exclusive, with the baseline we see approximately 1.4, 3.4, 3.2, and 4.6

percent runtime overhead for 64, 128, 256, and 512 nodes respectively. In the shared configuration,

we actually see a reduction in runtime for 64, 128, and 256 nodes (6.5, 3.8, 1.1 percent, respectively)

and an overhead cost of about 1.8 percent at 512 nodes.
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5.4 Summary

Chapter V provided an overview of the performance of the SOMA monitoring framework.

First, Section 5.2 presetend results on the monitoring overhead when running on remote or local

compute nodes as well as comparing the blocking and non-blocking API calls. These experiments

were completed with the Astaroth and Lulesh applications. Then Section 5.3 moved into how

performance relates to adaptive feedback potential. While it is still important to measure the

overhead in these scenarios, this step forward in enabling adaptive feedback gets closer to the ultimate

goal of stopping or improving the simulation or workflow earlier, which will then realize performance

gains. Figure 33 illustrates this end goal — a fully adaptive system with flexible inputs and outputs

allowing for reconfiguration of the simulation. Both low overhead and the potential for adaptive

feedback contribute to a more performant SOMA framework and answer the research question “How

do we minimize the overhead?"

Figure 33. How SOMA adaptive feedback integration would work.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

6.1 Conclusion

The challenge of online performance observation for HPC applications remains an important

one to consider as simulations grow in size and complexity. This dissertation presented a solution

for enabling performance observation for many different HPC applications across varying computer

architectures. Chapter I provided an introduction to the research questions in the dissertation and

an overview of the layout of each chapter of the dissertation. We introduced the definition for online

performance observation and the requirements identified to support it in an HPC environment. This

dissertation sought to answer the main research question (RQ) and subquestion (SQ):

RQ What are the requirements for an approach to online observation of simulation performance

in an HPC environment?

SQ What implementation choices for a monitoring system can support the requirements identified

by answering RQ?

In Chapter II we provided the background information necessary to both understand and

properly motivate the importance of this dissertation work. Chapter II lays out the challenges

associated with monitoring performance in an HPC environment. It explored the capabilities of

current performance analysis, monitoring, and visualization tools. It also expands upon how we

arrived at the three framework requirements listed in Chapter I, of (1) configurable, (2) flexible, and

(3) performant.

In Chapter III we discussed the research direction we pursued in the design and development

of a configurable microservices-based monitoring framework called SOMA and its deployment with

HPC applications. We described how our design choices answer the question “How can we run on

heterogeneous HPC ecosystems?" Based on the robust Mochi infrastructure, the SOMA monitoring

system targets in situ performance and application observation, data collection, and analysis. We

described the architecture and functionality of our SOMA prototype provide some examples for how

it is implemented and used. The high degree of configurability possible with SOMA allows it to be
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flexibly deployed to address in situ objectives. We demonstrated different SOMA configurations and

where we have successfully run it to show the collection of data for diagnostics.

Chapter IV answered the question “How do we support different input and output?" The unique

research contribution was the design of a flexible performance data model for the performance metrics

to enable data representation and sharing, in this case, between SOMA client/server processes. An

application data model was also created for in situ transmission and processing within SOMA. It

was important to engage with the application team to define the application diagnostic data of

interest. We also implemented data models for performance profile data, hardware metrics, and

heterogeneous workflow state data. The Conduit [52] technology was used to implement all data

models. We demonstrated collection and analysis of all of the data, with great future potential to

optimize simulations and workflows.

Chapter V answered the question “How do we minimize the overhead?" We discussed the

different techniques implemented to reduce the overhead of the SOMA monitoring service and make

it performant. We compared blocking and non-blocking remote procedure calls when publishing

data from client to server. We also compared the effects of different performance data publication

rates on the time to solution for the application. Furthermore, we explored the different behavior

and overhead when SOMA resources are local to the application or on reserved remote nodes. In

the case of Astaroth, the opportunity to utilize idle CPU cores for SOMA operations was favorable.

In the workflow experiments, tangible benefit was found when allowing RADICAL-Pilot to utilize

idle cores on allocated SOMA nodes for the application tasks. All of these techniques showcase the

configurable overhead reduction options based on the needs of the application team.

6.2 Future Work

For future work there are four main thrusts for building on the work done so far. The first

is creating a more robust visualization integration. The second is using SOMA as a shared service,

across independent tasks and workflows. The third is making use of machine learning models or

performance modeling technology to fully automate the adaptive decision making. The fourth is

extending the overhead analysis and finding specific recommended settings based on application or

workflow characteristics. We detail these further in the next three subsections.

6.2.1 Robust Visualization Integration. Current advances in effective performance

analysis and visualization have trended towards more exploratory and interactive approaches, as
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Figure 34. Future Visualization Integration Possibilities for SOMA

evidenced by [21, 24, 118, 89], and many more. These aid the user in performing visual analytics,

diagnosing performance issues and finding opportunities for speedup. These also lend themselves

to interfacing with in situ performance data in a way that could make the best use of real-time

decisions by a user. Addressing the complications, i.e., superfluous data, lack of data, distributed

data, and limited resources, listed in Table 1 with a new perspective could warrant exciting results.

The integration between SOMA and Caliper [23] opens up potential for online analysis of

metrics from sources that Caliper is already integrated with, such as Variorum, Raja [17] and Umpire.

It would be beneficial to have the ability to “check in” on your application and see visualizations

of these metrics in a user-friendly dashboard or jupyter notebook. This could be done through

integrations with tools like Grafana [129], Hatchet [21] and Thicket [25] tools in conjunction with

timeseries analysis and visualization functionality [155] that we recently introduced into Hatchet

and Thicket, see Figure 34 .

This allows for analysis and visualization over time, before the simulation has completed.

It discusses the straightforward approach of utilizing existing performance measurement tools,

integrating with SOMA and it’s canonical data model to bring the tools online, and visualizing

that data in real time. The benefits of this project are to reduce data storage needs over the lifecycle

of the application and also to be able to get a current “status" report of a long running application.

6.2.2 SOMA as a Shared Service. Another use case where SOMA would be useful is

as a shared monitoring service across a cluster. It could gather application or workflow specific
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performance data and provide it to a resource scheduling model such as fluxion [104]. One of the

goals of the fluxion project is to implement elasticity of resources allocated to workflows. Because

SOMA could provide real-time data from any of its sources to fluxion, an integration would enable

application-specific or workflow-specific online decision making by the scheduling model.

6.2.3 Machine Learning for SOMA Adaptive Feedback. We would like to build on

SOMA’s capabilities for adaptive feedback purposes. It is technically possible to build an integration

between SOMA and the application or workflow that allows feedback, and for example, Astaroth or

RADICAL-Pilot could take advantage of this for runtime adaptation. Additionally, there is numerous

work in the area of using machine learning (ML) for automated and fast empirical performance

modeling [27, 112, 18, 156]. Many of these works could serve as an analysis model for SOMA to

integrate with and use to provide feedback to the application. This could provide a generic approach

for suggesting improvements to the application or workflow without requiring a built-in rule engine

or user intervention.

6.2.4 SOMA Tuning Study. Now that SOMA functionality has been validated with

both applications and workflows, we hope to find optimal configurations for minimal overhead,

and test its performance in larger-scale scenarios. An extensive overhead and tuning analysis to find

“recommended” settings or bottlenecks for SOMA based on application characteristics and additional

factors such as Conduit::Node payload size would be extremely beneficial.

Another consideration in this area is the speed at which the application or workflow

management system can consume any recommendations for adaptation. Considering how often

an application can either be checkpointed or use additional processes to digest feedback is an open

question. This solution becomes less of an issue when the workflow is managed with RADICAL-

Pilot, which can use its own allocated resources to consume the feedback, and decide whether to

interrupt any currently running tasks to make a change or not. There are also natural intervention

points that make a lot of sense, such as right before a new task or phase begins executing.
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