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DISSERTATION ABSTRACT

Sarah Kinsey

Doctor of Philosophy in Computer and Information Science

Title: Limitations of Data-Based Decision Making: An Multiparadigmic Investigation
of Challenges Faced by Artificial Intelligence

As big data and computing capability continue to grow, an ever-increasing

amount of artificial intelligence approaches are being deployed in the real world,

across various domains. With real world deployments come additional complexities,

challenges, and vulnerabilities, particularly concerning data reliance. Among

others, these data related vulnerabilities include the potential for intelligently

sabotaged data, and incomplete data. This work explores vulnerabilities from three

perspectives: adversarial learning, game theory, and online reinforcement learning.

First, we investigate whether a directly targeted end-to-end poisoning attack on a

data-based decision making learning-planning model is feasible. Next, through the

lens of security games, we investigate how a data-based decision maker can form a

useful behavioral model, despite the observable data being maliciously manipulated.

Lastly, we examine how, in a real world online RL setting, limited and sparse data

can be overcome to build an effective data-based decision making model.

This dissertation includes previously published and coauthored material.
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CHAPTER I

INTRODUCTION

As computing capability grows, and data reigns supreme, artificial

intelligence has been applied to solve problems in a variety of domains. These

include security, conservation, public health, and city planning. In all of these

domains, additional challenges (such as imperfect data and deceptive behavior)

arise when considering real-world deployments. In this work, we examine a

paradigm that we refer to as data-based decision making. At its core, this paradigm

involves taking in a set of data, performing some intermediate work on it to get

another set of data that is, crucially, unavailable at test or deployment time. Then

comes the ultimate goal of the system: making decisions based on this processed,

unobservable at test time, data.

While this approach is powerful, and generalizable, it is far from bulletproof.

The very data that makes a model valuable can also be its greatest vulnerability.

In this work, we study two key weaknesses of data-based decision makers. First,

we look into the possibility of a bad actor intentionally manipulating a model’s

available data, altering its learning outcome. We investigate this both through

adversarial learning, and through a more game theoretic approach. The second

weakness we explore is more organic, namely, missing data. More specifically, we

look into a case where an online reinforcement learning model must make decisions

based on human responses, which may be missing entirely.

1.1 Research Questions

Our first vector of investigation is to explore an attack based on adversarial

learning research in the field of decision focused learning. This field studies

approaches to data-based decision making models, making it of particular interest
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to us. The traditional approach is simple: train a model to maximize prediction

accuracy. However, in real world settings, it’s inevitable that predictions will not

be perfect. Thus, previous work [146, 28, 147] has investigated incorporating the

end goal (high quality decisions) directly into the model’s training process. This

approach is what we refer to as decision focused learning. As this field involves

using AI to make decisions based on real-world data, it’s natural to examine the

data itself as a source of vulnerability [62] but adversarial research in this area is

underexplored, especially adversarial research that explicitly targets the resulting

decisions of such models.

The first research question asked in this work seeks to address that gap in

the literature. Namely, is it feasible to attack data-based decision making

models directly? More specifically, we investigate whether an attacker can devise

a poisoning attack, directly targeting a downstream goal (i.e. altering decisions

made at test time to further its own ends). We explore multiple methods of

creating this attack. First, we seek to directly attack a decision focused model.

Next, we attempt an attack on the more traditional method for solving these

problems, which we call a two-stage model. This approach trains a model solely

to maximize predictive power, then incorporates the decision making component

separately. We then test if such an attack can be transferred effectively to the

decision focused model. Lastly, we devise an attack against a simple end-to-end

proxy model (which seeks to directly make decisions from the observable data

without explicitly including a solver for optimization problems) and investigate

the transfer potential of this attack.

As security games model interactions between adversaries, it is natural

to consider the vulnerabilities of data based decision making models from this

16



perspective. Deceptive behavior on both the attacker and defender sides have

been explored in this field. Most well established is deception from the defender

side [110, 175, 45], for example, concealing the allocation of defensive resources.

More recently, a lot of work has been done investigating deception from the

attacker side [90, 86, 33, 166], such as acting deceptively during a data collection

phase so that the defender will create an exploitable strategy. Naturally, defenses

against such deception (which must rely on the limited data available to the

defender) have also been studied, albeit in a more limited capacity.

In the security game setting we consider [88], there is a single defender and

two forms of attacker present. First is a population of non-deceptive attackers

who are not considering future refinement to the defender’s strategy and are, in

effect, playing honestly. Secondly, there is a deceptive attacker present who is aware

that the defender collects information to refine its strategy, and is thus seeking to

manipulate the learning result.

Furthermore, we consider this to be a game with two phases: a (relatively)

short learning phase, followed by a planning phase. The learning phase is when

the defender is actively collecting data to form a model of attacker behavior,

which it will then use to refine its defense in the planning phase. After which, it

will commit to its strategy for an arbitrary long period of time. This motivates

the deceptive attacker to alter its play during the learning phase in order to gain

advantage against the strategy resulting from the planning phase. However, it has

limitations on its power: it can only make a limited number of attacks, and cannot

alter the attacks of the non-deceptive attackers. The defender, then, knowing that

a deceptive attacker exists, must still deduce the behavior of the non-deceptive

attackers to form its defense.
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This brings us to the second research question to be explored in this

work. Given such a manipulated data set and some knowledge of the

deceptive attacker’s capability, how could a savvy defender model

attacker behavior and formulate an effective defense? Answering this

question requires addressing its two components. First, the defender must

understand the behavior of the non-deceptive attacker, despite the presence of

deception. We accomplish this by finding the possible range of behavior that the

non-deceptive attacker could have demonstrated in the learning phase, given the

deceptive attacker’s capability. The next component is simpler, merely requiring

the defending to create a defense balanced against both the deceptive attacker

(who will begin playing rationally to exploit the strategy it induced) and the non-

deceptive attacker behavior, which was characterized previously.

Lastly, we turn to online reinforcement learning applications to investigate

another perspective data-based decision making models. Namely, that the data

relied upon is inherently limited, can be difficult to collect, and varies highly based

on individual behavior. This makes it difficult to deploy AI applications that will

be useful to a variety of users, and necessitates careful strategies to make effective

use of the data that is available. Specifically, this kind of setting tends towards

sparse rewards, as well as partially observable states. One approach for handling

sparse rewards is return decomposition [113, 8], where rewards obtained over a

trajectory are redistributed to the actions that lead to said rewards, even if that

action and the eventual reward are separated by many timesteps. For addressing

the challenge of partial observability, the standard approach is to include historical

state/action data as input to the model that will decide on actions.
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The combination of these challenges motivates our third and final

research question. How can we improve a reinforcement learning data-

based decision making model to effectively utilize highly limited and

incomplete real-world data? To answer this, we use a combination of methods.

Firstly, we explore creating simulated data using a generative model trained on

the real user data. This allows us to test future models by simulating responses.

Next, seek to devise a reinforcement learning approach that can deal with both

sparse rewards and partial observability. We explore a variety of approaches here,

including a predictive model to handle the partial observability hurdle, and a

reward redistribution model to address the sparse rewards present in our setting.

1.2 Dissertation Statement

In this work, we explore concerns surrounding data-based decision making

models, namely vulnerability to adversarial manipulation and the challenge of

effectively utilizing incomplete data. In the field of decision focused learning, we

explore poisoning attacks against the traditional two-stage models, the direct end-

to-end approach, and the more recently proposed decision focused models. Next,

we investigate a game theoretic perspective through the field of security games,

which models interactions between adversaries. Defenders often rely on attacker’s

past behavior to build defenses against them, meaning that savvy attackers could

manipulate this data nefariously. Our work, then, is to determine how a wary

defender could address this deception. Lastly, we explore a slightly different concern

surrounding data-based decision making through the lens of online reinforcement

learning in a public health setting. Here, we devise a new RL model to address

the combination of challenges (namely reward sparsity and partial observability)

inherent to this setting.
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CHAPTER II

BACKGROUND KNOWLEDGE

Before investigating the diverse areas of artificial intelligence, we provide

some background knowledge surrounding each of the fields we are concerned

with. Primarily, we investigate data-based decision making, security games,

and adversarial learning, as these are the paradigms we study in this work.

Additionally, we briefly discuss the areas of reinforcement learning, meta-learning,

and knowledge tracing, to provide context for methods we utilize in later chapters.

Adversarial learning, which investigates attacks on machine learning models

as well as defenses, is a valuable area for us to study. Through this field, we

gain insight into the ways that nefarious actors may target data-based decision

makers. Of particular interest to us is graph adversarial learning, as graph learning

problems often fall into the data-based decision making paradigm (e.g. predicting

links based on node information and then solving a problem such as bipartite

matching on the predicted graph). However, deep learning in general and computer

vision are more well researched from an adversarial perspective. Understanding

existing adversarial learning research is key to applying these methods to data-

based decision making applications, and being able to create robust approaches in

this field.

This chapter will start by describing data-based decision making and detail

existing applications, paying particular attention to the relatively new decision-

focused approach as well as some social good applications that are adjacent to

this area of research. Next, we will provide an overview of security games and

discussing the current state of deception research in this field. Then, we investigate

adversarial learning. We give special attention to poisoning attacks and graph
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based adversarial learning, as those are of particular relevance to both security

game deception and attacks on data-based decision making. Finally, we cover the

miscellaneous knowledge required to understand the context of each chapter.

2.1 Data-Based Decision Making

As the name implies, data-based decision making is an approach to problem

solving that is reliant on real world data, with the ultimate goal of producing a

decision. In this section, we first give an overview of the field, and then detail the

two most common approaches (two-stage and decision focused) for solving the

problem of interest. Afterwards, we discuss applications using these approaches, as

well as various social good applications that don’t fall neatly into either category.

Data-based decision making refers to a common paradigm in real world

artificial intelligence applications in which we are concerned with three related

pieces of information: directly observable data (denoted by u), data that will

be unobservable at test time (denoted by θ), and a decision that must be made

(denoted by x). The decision, x, depends directly on θ, which in turn can be

predicted based on u. The ultimate goal in a data-based decision making problem

is to find an optimal decision to maximize a utility function, abstractly represented

as follows:

maxx∈X f(x, θ)

where x is the decision variable and X ⊆ RK is the set of all feasible decisions.

Note that the objective, f , depends directly on the unobservable parameter θ,

which must be inferred from the correlated observable data, u.

There are two common ways of solving data based decision making

problems. First, and most well established, is the two-stage approach. Here, the

task is split into two separate steps. The predictive component (i.e. a neural
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Figure 1. Depiction of a two-stage learner

network) is first trained directly to learn the relationship between θ and u, taking

u as the input and outputting a prediction for θ, denoted θ̂. Next, we have the

planning or optimization step, in which θ̂ is used to optimize the final decision, x.

While the two-stage approach would be optimal if we could perfectly predict

θ from u, in realistic settings, errors are inevitable. Using imperfect predictions to

optimize our decision may result in compounding errors, and notably worse decision

quality. To address this shortcoming, an approach called decision focused learning

seeks to bridge the disconnect between the end goal of the system and the learning

result. That is, rather than training a model for predictive accuracy, it is directly

trained to maximize decision quality.

The naive approach to this would be to have the network directly output

x, and bypass prediction of θ entirely. However, in practice, training a neural

network to solve optimization problems is a difficult task. Instead, decision focused

learning approach still uses the model to predict θ. The innovation here, then,

is to differentiate through the solution to an optimization problem, allowing the

model to be trained based on the solution quality, while still incorporating a convex

optimization solver [147].

2.1.1 Two-Stage Formulation. For the two-stage approach, the

first stage is predicting the unknown parameter θ from the observed feature vector

u. The second stage, then, is to compute the optimal x given the predicted θ
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Figure 2. Depiction of a decision focused learner

(Figure 3). Predicting the unknown parameter θ can be done using a parametric

model trained for the task, denoted by θ̂ = g(u,w). Here, w represents the model’s

parameters where the learner seeks an optimal set of model parameters, w∗, that

minimize the training loss, abstractly formulated as follows:

minw L(D, w)

For example, using mean squared error as the training loss:

L(D, w) = 1

n

∑
i
(θi − g(ui, w))

2

Once the model has been trained (yielding w∗), the decision maker can use

observed u values to predict a θ value (θ̂ = g(u,w∗)), then use that prediction to

find an optimal decision by solving the following optimization problem:

maxx∈X f(x, g(u,w
∗))

2.1.2 Decision Focused Formulation. We focus on the problem

setting in which the decision optimization is convex, meaning that the objective

is convex with respect to the decision variable, x. This convexity setting has been

widely considered in previous studies on data-based decision making [147, 146, 28,

1].

Based on this convexity characteristic, we can leverage the implicit function

theorem [65] to differentiate through the decision-optimization component

(computing dx

dθ̂
). The decision-optimization is formulated as a convex optimization
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problem:

max
x

f(x, θ̂) s.t. Ax ≤ b

Since this is a convex optimization problem, any solution that satisfies the following

KKT conditions is optimal:

−∇xf(x, θ̂) + λ · ∇x(Ax− b) = 0

λ · (Ax− b) = 0

Ax ≤ b, λ ≥ 0

where λ is the dual variable. Observe that the first equation indicates that x and

λ are functions of θ̂. Based on the implicit function theorem, we can differentiate

through the first two equations to obtain the following gradient formulation:

dx

dθ̂

dλ

dθ̂

 =

∇2
xf(x, θ̂) AT

diag(λ)A diag(Ax− b)


−1 d∇xf(x,θ̂)

dθ̂

0

 (2.1)

Solving this system gives us dx
dθ

which then allows us to directly optimize

the predictive component of the model for decision quality using standard gradient

descent based methods. The primary disadvantage of decision focused approaches is

the increased computational cost. Every training instance requires both solving and

backpropagating through this optimization, rather than computing the training loss

based directly on the model output as in two-stage methods.

2.1.3 Two-Stage Applications. Data-based decision making

encapsulates a wide range of applications and approaches. In this section, we’ll

begin by covering some works following the two-stage approach.

COPE [140] uses observed data to construct a convex hull containing

expected future traffic demands. Then, they solve a linear program in order to
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optimize traffic routing. Additionally, their method provides a worst-case guarantee

for unprecedented or unpredictable future scenarios.

One application [154] uses a two-stage approach for reducing bias in citizen

science (i.e. models built on crowd sourced data). More specifically, they consider

a bird observation collection app (eBird) and seek to gamify observation collections

so that contributors will provide more balanced data. The learning task here is to

model the user’s preferences (which determine how rewards scale, i.e. less preferred

tasks require higher reward) based on observations of past behavior. Next, the

decision-optimization component incorporates both the user’s and the organizer’s

goals by transforming the user’s goals into constraints on the organizer’s objective.

Finally, solving this optimization problem yields rewards that were shown to

effectively incentivizes the users to explore under-observed areas, resulting in more

balanced observations and lower bias.

In wildlife conservation, PAWS [30] uses a two-stage approach to protect

wildlife and combat poachers. The predictive portion of the task is using past

observations of poacher and animal activity to model the poachers’ behavior

using SUQR. Then, the decision-optimization task is to optimize ranger patrols

using that model. Notably, this was the first deployed security game application

considering imperfectly rational attackers as previous deployments assumed full

rationality.

Another application [82] seeks to optimize allocation of emergency

responders. For the learning task, they use features such as weather, season,

and transportation network details to predict both the timing and severity

of potential incidents requiring emergency services. Then, ask the decision-

optimization component, they use a greedy approach to solve a non-linear, non-
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convex optimization problem to yield desirable placements for emergency responder

facilities.

Two-stage approaches also find application in graph based problems. One

such work [157] considers community detection in the case where edge information

is unknown. First, for the predictive task, they utilize edge prediction based on

vertex similarity to learn the weights in a previously unweighted graph. Then, as

the decision-optimization component, the authors use several standard community

detection algorithms and compare results between them. Overall, this work

demonstrates the value of making predictions in graph optimization tasks, rather

than trying to make do with only the directly observable information.

2.1.4 Decision Focused Applications. While newer than the two-

stage approach, a variety of works have considered decision focused approaches

to solving data-based decision making problems. One [146] introduces a general

formulation for decision focused combinatorial optimization problems, using linear

programming and submodular maximization as examples. To bridge the gap

between the optimization component and the model, the authors leverage the

KKT conditions on the implicit function theorem, as described previously. Their

experimental results across three different problems (budget allocation, bipartite

matching, and diverse recommendations) demonstrate overall better solution

quality than the two-stage approach, despite less accurate predictions from the

predictive model. These results suggest that maximizing predictive accuracy is

often a poor proxy for maximizing the final decision quality.

Similarly, another work investigates a decision focused approach for

stochastic optimization [28]. Once again, they utilize the KKT conditions and the

implicit function theorem to differentiate through the solution to an optimization
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problem, using the derived gradient to train the predictive component. The

author’s experiments consider three different applications. These are a synthetic

data inventory stock problem, and two real world applications: energy scheduling

and battery load arbitrage. Their results demonstrate both higher utility and lower

variance than the corresponding two-stage approaches.

Another paper [147] applies decision focused learning to graph optimization

problems. The approach the authors consider starts with a graph embedding

network that encodes the graph’s adjacency matrix along with any available node

information. Then, as the decision-optimization component, they incorporate

a differentiable optimization layer that performs K-means clustering. This

generalized approach can be seen as an analogous to many common graph

problems, including maximum coverage and community detection. Solving the

backwards pass uses the implicit function theorem to compute gradients. However,

instead of using the KKT conditions of the optimization problem’s solution, they

directly characterize the optimization update process and compute gradients

accordingly. Another contribution of this work is introducing a heuristic for

this computation, significantly reducing the computational complexity of the

backwards pass. Essentially, the authors find that, in practice, the K-means cluster

assignments change little in each optimization step. When that holds, the gradient

of the objective with respect to the cluster assignments can be approximated as the

identity matrix.

Observing the computational complexity of decision-focused learning

approaches, researchers are motivated to examine heuristics. One such work [141]

investigates learning surrogates for decision-focused optimization problems,

seeking to preserve the advantages of the decision-focused approach while
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addressing the discouraging compute requirements. The authors utilize a learnable

reparameterization matrix and incorporate it into the model. This allows for

dramatic (but lossy) simplification of the decision-optimization problem, and allows

loss based on the final solution quality to train both the predictive component and

the reparameterization component. Another advantage of this surrogate approach is

that it’s less prone to getting stuck in local minima than both the decision-focused

and two-stage approaches due to the gradient sparsity alleviating effects of the

reparameterization. Experimentally, their results demonstrate the value of the

surrogate approach, showing significantly lower runtime and/or significantly better

solution quality than the decision-focused approach, and strictly better solution

quality than the two-stage approach.

In the security game domain, researchers [103] leverage a decision focused

approach to optimize defender utility. The predictive component in this setting

is designed to learn the attacker’s behavior (e.g. the target weights in SUQR).

The decision-optimization component, then, is to optimize the defender’s strategy

accordingly. While the optimization problem here is generally non-convex, the

local region is generally convex for boundedly rational attackers. This allows

them to utilize the KKT conditions of the implicit function theorem to compute

the gradient, enabling direct optimization of the predictive component based on

solution quality. Lastly, their experiments show higher quality solutions across

a variety of settings (including real-world human attacker data) than two-stage

approaches.

In wildlife conservation, researchers [153] were motivated to investigate

improving on PAWS by using a decision focused approach rather than the original

two-stage approach. Furthermore, they account for uncertainty in observations of
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poacher behavior by incorporating Gaussian processes into an ensemble learner,

which allows them to quantify the uncertainty of observations in each section of

a park. Leveraging this knowledge allows them to create more robust strategies,

minimizing the harm done by imprecise observations. Experimentally, this end-to-

end method increased detection of poaching by 30%, showing the value of decision

focused approaches when observed data isn’t fully reliable.

2.1.5 Social Good Applications. Though they may not perfectly

fit into the ”predict-then-optimize” framework, a variety of social good applications

follow the general philosophy of data-based decision making. One such work [168]

uses a large language model, RoBERTa [69] to automate triage of pregnant

people with health concerns in Kenya. The model takes in questions sent over

text message and attempts to classify their problem based on a set of pre-defined

common concerns among pregnant people. If the predicted problem isn’t severe,

and the classification confidence is high, an automated response is sent. If either

of these things are not true, the problem is referred to human health desk staff.

The main challenge in this work lies in the text messages - they contain natural

language including slang, and, to further complicate things, mixed English-Swahili

text. Their final system shows high classification performance on problems of

interest and is able to reduce the workload of the health desk workers.

Another work in maternal healthcare [74] also considers an automated

messaging system. However, in this work, the goal is to optimize limited

intervention resources to prevent dropouts. They use restless multi-armed bandits

(RMABs), a reinforcement learning technique, to model the problem. The goal

is to predict which participants will benefit most from an intervention, given

their behavioral history. To deal with scaling issues and lack of data for new
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participants, they cluster participants into groups and use a single RMAB for each

group. Their results show that the selected interventions were significantly better

than randomized interventions, highlighting the benefit of optimizing resources in

similar health applications.

Also in public health, research [59] has investigated a decision focused

approach for targeting interventions for improving adherence to tuberculosis

treatment plans. This is accomplished via using various features (such as recent

call data and demographic information) of the patients to predict which ones

are likely to stop adhering to the treatment plan. The paper considers a random

forest as well as an LSTM based model (which proves more effective), as the data is

comprised of time series information for each participant. Furthermore, the authors

investigate using the same models to predict the effectiveness of the interventions,

which is where decision focused learning comes in (i.e. training a model directly

to maximize the effectiveness of interventions selected, rather than just predicting

what participants may need intervention). The decision-focused learning approach

yields less accurate predictions, but results in 15% higher total intervention utility

than the two-stage counterpart.

Similarly, research [156] has investigated using AI to optimize interventions

among homeless youth to raise HIV awareness. This is done by forming a model

of the community structure within the population of homeless youth, and selecting

individuals who will most effectively spread information to others. Notably, the

models formed of the community are never fully accurate, and uncertainty in some

information (such as exactly how likely individuals are to pass on information to

each other) has to be accounted for. The authors here perform a pilot study in

the real world comparing two methods. First is HEALER [155] which leverages
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Partially Observable Markov Decision Processes (POMDPs) to select optimal

interventions. Notably, using a single POMPD for each possible combination of

interventions results in an intractable problem. Thus, HEALER breaks the graph

down, and uses multiple nested levels of POMDPs to overcome this challenge.

The next method under evaluation is DOSIM [148], which uses a game theoretic

approach with robust optimization. To make the problem tractable, the authors

use the double oracle approach to find an approximate equilibrium. Notably, this

method yields mixed strategies (which allows for more robust policy selection),

while HEALER only gives pure strategies. In practice, both methods gave similar

results, giving 160% more information spread compared to the baseline (degree

centrality).

In AI for education, research often involves predicting student performance.

One such work [127] uses a recurrent neural network (a modified LSTM) to perform

this task, incorporating both the performance history of students as well as the text

of the exercises in question. One of the key challenges in this area is known as the

”cold start” problem, referring to the difficulty of predicting performance of new

students or on new exercises. Their methods outperform baselines, particularly

in the cold start setting, by incorporating correlations between exercises. While

they don’t consider any task after this predictive stage, their predictions could be

used for objectives such as recommending tutoring, sending automated informative

messages, and deciding what subjects should be covered in more depth.

2.2 Security Games

Our second area of interest lies in security games, which is primarily an area

of study using game theory to optimize defensive resources in real-world security

problems. We start by describing some real-world applications motivation further

32



interest in this field. Then, we discuss two key models (Stackelberg Security Games

and their variant Green Security Games) to provide some context. Next, we discuss

some common models of human behavior in these games, which are important

when considering how deception can function. Lastly, we discuss the current state

of deception research in this domain.

Game theoretic AI approaches have been shown effective in a variety of real

world applications, particularly in security and wildlife conservation. One security

application, ARMOR [106], was deployed to protect the Los Angeles International

Airport. This is accomplished via modeling the interaction between adversaries

such as terrorists or drug smugglers and airport security as a Stackelberg game,

considering terminals and checkpoints as targets top be attacked. Solving this game

using their method, DOBSS, yielded strategies that outperformed the existing

human devised schedules, while still allowing for manual overrides within the

scheduling system.

PROTECT [121] has been deployed by the US Coast Guard to optimize

patrols and protect the ports of the United States. Their method models

interactions between the Coast Guard and terrorists as a Stackelberg Security

Game [132] with the Coast Guard as the defender and the terrorists as attackers.

The targets considered are areas of interest in a port (e.g. critical infrastructure)

which must be protected via Coast Guard patrols. To model the attacker’s

behavior, they utilize the Quantal Response model [75, 159] which allows for

modeling of sub-optimal attacker behavior.

One challenge faced in this domain is the sheer number of targets, which

results in an exponential number of potential patrols. To account for this,

PROTECT first divides the port into patrol areas, and restricts patrols to covering
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targets within a single area. Further, they reduce the final number of strategies

considered (each strategy corresponding to a patrol allocation) via removing

equivalent strategies as well as dominated strategies from the list, resulting in

a more compact representation of the strategy space. Patrols created by their

system resulted in more consistent coverage of targets as well as more proportional

coverage (i.e. more valuable targets are patrolled more frequently).

In the conservation domain, PAWS [30] has been deployed in parks in

both Uganda and Malaysia to combat poaching. Its approach divides the parks

into grids and then models the rangers vs poachers dynamic as a Green Security

Game [31], with rangers as the defender and poachers as the attackers. Each grid

cell is considered a target, and the value of that target is determined by the animal

density in that area. To model the attacker/poacher’s behavior, the authors use

Subjective Utility Quantal Response [91] with parameters learned from historical

data. Solving the game yields patrol strategies that were proven effective.

Improving on this work, researchers [153] investigate an end-to-end approach

for creating patrol strategies based on observed poacher data. To do so, they

integrate Gaussian processes into an ensemble learner, quantifying the various levels

of uncertainty in predictions across different sections of the park. Then, they use

this uncertainty in order to build more robust patrol strategies. Experimentally,

this method increased detection of poaching by 30%.

2.2.1 Stackelberg Security Games (SSGs). SSGs [132] consist of

at least two players: a defender (the leader in traditional Stackelberg games) and

one or more attackers (the followers). The defender’s goal is to protect a set of

T targets from these attackers, given a limited number of resources (K, where

K < T ) that each can be allocated to protect a single target. A defender’s pure
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strategy consists of a one-to-one allocation of resources to targets. A mixed defense

strategy, x, is a probability distribution over these pure strategies. This mixed

strategy can be represented as a coverage probability vector: x = {x1, x2, . . . , xT},

where xi ∈ [0, 1] represents the probability that target i is protected by the

defender and
∑

i xi ≤ K. In SSGs, the attacker is fully aware of the defender’s

mixed strategy and chooses a target to attack based on this knowledge.

Suppose the attacker decides to attack target i. This action gives each

player a reward or a penalty, depending on whether the defender is currently

protecting target i. If i is unprotected, the attacker gains reward Ra
i and the

defender receives penalty P d
i . Conversely, if target i is protected, the attacker

takes penalty P a
i < Ra

i and the defender gains reward Rd
i > P d

i . Given coverage

probability xi, the expected utilities for the defender and the attacker resulting from

an attack on target i can be formulated as follows:

Ud
i (xi) = xiR

d
i + (1− xi)P

d
i

Ua
i (xi) = xiP

a
i + (1− xi)R

a
i

2.2.1.1 Solution Concepts and Equilibrium. The standard

solution concept for Stackelberg games is the Strong Stackelberg Equilibium (SSE).

Note that this may be different from the Nash equilibrium as Stackelberg games are

non-simultaneous. To be considered a SSE, a pair of attacker/defender strategies

must satisfy three conditions:

– The defender’s strategy, x, is the best response to the attacker’s strategy, g:

Ud(x, g(x)) ≥ Ud(x
′, g(x′))∀x′

– The attacker’s strategy, g, is the best response to the defender’s strategy, x:

Ua(x, g(x)) ≥ Ua(x, g
′(x))∀g′(x)
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– If any ties exist (strategies with equal expected utility for the attacker), the

attacker breaks ties in favor of the defender:

Ud(x, g(x)) ≥ Ud(x, g
′(x))∀g′(x) ∈ T

Where T is the set of attacker strategies with equal expected attacker utility.

This equilibrium is guaranteed to exist [138]. The Weak Stackelberg

Equilibrium (WSE), on the other hand, is not. This equilibrium concept is the

same as the SSE with the third condition inverted. That is, the attacker breaks

ties by choosing the worst strategy for the defender. As the WSE is not guaranteed

to exist, the SSE is used as the standard solution, with the justification that the

attacker can be induced to choose the best strategy for the defender by trivial

adjustments to the defender’s strategy.

2.2.2 Green Security Games. GSGs [31] define a specialized form of

SSGs designed to be applicable to conservation problems. This model has two key

differences: firstly, GSGs specifically focus on repeated game settings where there

are multiple rounds of the game being played. In each round, there are multiple

episodes. For the duration of a round, the defender commits to a mixed strategy,

while each episode considers a single pure strategy drawn from this mixed strategy.

As in SSGs, the attacker(s) commit to an attack based on their knowledge of the

defender. The second key difference from SSGs in general is that the GSG attacker

does not have a perfect knowledge of the defender’s mixed strategy. Instead, each

attacker is modeled with a memory length parameter, as well as a parameter

controlling how much consideration is given to each historical timestep.

2.2.3 Human Behavior Modeling. While modeling attackers

as perfectly rational is simple, real world adversaries don’t conform to this

assumption. Due to many factors including imperfect knowledge of the world
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and human emotions, attackers are unlikely to choose their targets optimally.

To address this, multiple approaches modeling human behavior have been used,

including MATCH [107] and Quantal Response [75, 159].

MATCH uses robust optimization techniques to create defenses that can

perform well against attackers of various behavior. Furthermore, it doesn’t rely

on any sort of attacker behavior modeling. Instead, it’s singularly controlled by a

parameter which dictates the tradeoff between defender utility when the attacker

plays according to best response and robustness to less predictable attackers.

For our work, we focus on Quantal Response and its variants:

2.2.3.1 Quantal Response (QR).. QR is an well-known model

describing attacker behavior in SSGs [75, 159]. Intuitively, QR provides a mechanism

for partially rational behavior where higher expected utility targets are attacked

more frequently.

Essentially, the probability of attacking target i is given as follows:

qi(x;λ) =
(
eλU

a
i (xi)

)/(∑
j
eλU

a
j (xj)

)
(2.2)

This model describes the attacker with a single parameter, λ, governing its

rationality. As λ approaches 0, the attacker becomes completely random. As λ

approaches ∞, the attacker becomes perfectly rational.

Maximum Likelihood Estimation For computing λ, the traditional method

is to use maximum likelihood estimation over the historical data. This yields the

most likely λ matching the observed attack pattern:

λlearnt = argmaxλ

∑
m

∑
i

zmi log qi(x
m
i , λ)

where xmi is the defender’s coverage probability of target i at timestep m and zmi is

the observed number of attacks at that timestep. This allows the defender to learn
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a single parameter, λ, using historical data. Then, the defender can predict future

attacker behavior using that λ, and optimize its defense accordingly.

Defense Against QR Attacker To defend against such an attacker, BRQR

(Best Response to Quantal Response) was proposed [159]. The defender’s

optimization problem is defined as follows:

max
x

∑
i

qiU
d
i (xi)

s.t.
∑
i

xi ≤ T

0 ≤ xi ≤ 1,∀i

As this objective is generally non-convex, finding the global optimum isn’t feasible.

Instead, the general approach used is to find multiple local optima from different

starting points, and to take the best one found [159].

2.2.3.2 Subjective Utility Quantal Response (SUQR).. In SUQR,

the attacker’s perceived utility of attacking each target is calculated differently.

Rather than computing the actual expected utility, SUQR uses a linear combination

of some information available to the attacker. The attacker considers for each

target the coverage probability, the reward for a successful attack, and the penalty

for a defended attack:

Ûa
i = w1xi + w2R

a
i + w3P

a
i

The attack probabilities, then, are given by:

qi(x;λ) =
(
eλÛ

a
i (xi)

)/(∑
j
eλÛ

a
j (xj)

)
(2.3)
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Intuitively, this allows attackers to give different weights to the defender

coverage, the reward, and the penalty than the objective expected utility

calculation does. This model was shown to outperform both regular QR as well as

MATCH [91].

2.2.3.3 Other Models. Another model called CAPTURE [87] aims

to improve upon the shortcomings of SUQR. Firstly, this model considers attacker

behavior at each time step to be related to behavior at prior time steps, rather

than independent as in QR models. Next, the model incorporates a larger range

of domain features (e.g. slope and habitat) than SUQR does. Third, CAPTURE

incorporates observational uncertainty on the part of the defender, which is

modeled as depending on the domain features, the underlying behavior of the

attackers, and the defense strategies during the observation. Lastly, attack

probabilities are calculated independently per-target. Experimentally (using real

world data), this model was shown to significantly out-perform SUQR.

Noting the complexity and poor interbretability of CAPTURE, researchers

were motivated to create a simpler model, INTERCEPT [57]. Their underlying

approach uses decision trees to produce effective and interpretable models. To

handle the spatial challenges of the space (e.g. addressing the continuous nature

of real world terrain), they draw on criminology’s theory of ”hot spots” which

are points where crime (in this case poaching) is likely to be common. Then, they

utilize the distance from expected hot spots as another input to the decision trees.

Lastly, they utilized ensemble learning by creating different expert models (limited

to 5 for interpretability reasons) that will then vote on the attack likelihood of

each target. Experimentally, their model was shown to significantly outperform

CAPTURE, despite being far simpler and computationally cheaper.
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2.2.4 Game Theoretic Deception. While modeling attacker

behavior allows for a better defense, it does present a vulnerability. Namely, that

the defender must utilize historical attack data to form a model of the attacker. If

a particularly clever attacker were to change its attack pattern, knowing that data

collection was in progress, it could alter the learning results and find advantage in

the resulting strategy. Recently, research has investigated this kind of deception

from the attacker side [34, 90, 166] in SSGs, and the follower side in general

Stackelberg games [33]. This type of attack is analogous to a poisoning attack in

adversarial learning.

One such work considers multiple types of attackers, corresponding to

different rewards and penalties for each target. To deceive the defender, an attacker

could then pretend to be a different type and play accordingly during the learning

phase [90]. Then, after the defender has created its strategy, that attacker can play

optimally, gaining advantage from the earlier deception’s influence on the resulting

strategy.

Addressing this imitative deception has also been studied [85]. This work

introduces an exact equilibrium formulation for repeated SSGs, as well as using

this formulation to devise an optimal counter to the aforementioned deception.

However, the authors note that, given the repeated game setting, considering

both historical data and future expected utility exponentially compounds this

optimization problem. To address this, they introduce limited memory and

limited lookahead heuristics. Their experimental results show that addressing

the deception, with or without heuristics, yields significantly better utility for the

defender, and worse utility for the attacker, than naively ignoring the deceptive

behavior.
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Another approach [88] considers a realistic scenario in which the defender

must contend with multiple attackers of unknown behavior. These attackers are

then modeled by the defender with QR, using a single λ to describe the attacker

population. The deception, then, takes the form of an attacker playing according to

some λ to skew the learning result for the entire population, altering the defender’s

resulting strategy. Again, after the learning phase, the attacker can play optimally

to take advantage of the altered strategy.

Noticing the advantages of this form of deception, researchers were

motivated to study counterstrategies [18]. Their approach relies on characterizing

the possible deceptive space of the attacker and then using a maximin optimization

to form an effective strategy against it. Using binary search, a defender can find

both the minimum and the maximum possible λ parameter for the non deceptive

attacker population (which was concealed by the deceptive attacker polluting the

collected historical data). Then, the defender can optimize its strategy against both

attackers (the deceptive, fully rational one and the boundedly rational population)

using a maximin over the range found by the binary search.

One limitation of the two previously discussed deception approaches is that

they only consider a one-shot game, where the attacker has no incentive to play

dishonestly after the initial learning phase. A newer paper [86] explores a repeated

game setting where the attacker must consider the longer term. The authors use

projected gradient descent to solve the attacker’s nested optimization problem and

find its deception strategy. Their experimental results (on repeated games of 4 and

8 timesteps) show significantly higher utility for the attacker, and lower utility for

the defender, compared to the case where the attacker plays honestly.
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While studying attacker deception is relatively new, deception from the

defender side has been more well considered [175]. One such work [175] described

information concealment by the defender. Their setting was a multiple timestep,

general sum game in which the defender could invest more resources between

timesteps, and the attacker could learn more information based on observing signals

and on results of attacks. Their findings showed that it can be in the best interest

of the defender to conceal information (e.g. leading attackers to believe that targets

are better defended than they actually are).

Similarly, a study shows selectively revealing information can improve

outcomes for the defender [110]. The authors consider a Stackelberg security game

setting in which allocation of defender resources to targets may not be visible

to the attacker. They then investigate what resource assignments the defender

should reveal to the attacker, finding that this selective disclosure can be a powerful

deterrent, improving outcomes for the defender. Furthermore, they note that acting

on this information (updating their strategy) will still be in the attacker’s best

interest, even if they know that it was intentionally revealed as a deterrent.

Another work [45] compared the utility of signaling (openly flaunting

defense resources) to concealment, showing that there they can both be

advantageous depending on the payoff structure of the game itself. The authors

are able to formalize the tradeoff between concealment and signalling/commitment.

Furthermore, their results show that the boundary of this tradeoff is close to zero

sum.

2.3 Adversarial Learning

Our work has considered attacks in both game theoretic and data-based

decision making settings. Specifically, we’ve investigated attack scenarios where
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an adversary can manipulate some portion of the training data. In the field of

adversarial learning, this would be considered a poisoning attack (or backdoor

attack). By way of contrast, an evasion attack (or adversarial example) occurs

at test time, seeking to manipulate the model’s output for specific samples.

Exploratory attacks work in another direction entirely, using their attack

capabilities to learn more details about the system. Here, we pay extra attention

to poisoning attacks as they are the most relevant to our work.

As graph learning problems often follow the data based decision making

paradigm (e.g. using node features to predict edges and then performing bipartite

matching on the edge predictions) we spend more time on this domain than others.

After discussing poisoning attacks and evasion attacks in graph learning and deep

learning, we detail the current research into defense and robustness.

Direct attacks to data-based decision making models are relatively

unexplored. To the best of our knowledge, our work [62] is the only paper in this

domain. We utilize the metagradient method to optimize poisoning attacks against

data-based decision making models, investigating both the two-stage approach and

the decision focused approach as targets. Furthermore, we evaluate the effectiveness

of using a simpler model (i.e. one trained to directly output the decision) as a

vector for generating attacks that will then be transferred. Experimentally, our

results are mixed. Directly attacking the decision-focused learner is infeasible due

to the computational requirements of solving the attacker’s optimization problem.

Attacks from the two-stage learner do transfer effectively to the decision focused

learner, though generating these attacks is still difficult. Due to the complexity and

non-convexity of the attack space, obtaining the global optima is implausible, and

even finding a good local optima isn’t guaranteed. Attacking the simpler model,
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on the other hand, is entirely ineffective. Future work in this area should consider

approximate metagradients or non metagradient based methods for attacking data-

based decision making model.

2.3.1 Attacking Graph Learning. Problems across many domains

including social networks, city planning, network security, and biology can be

modeled as graphs. This has led to significant study of graph learning in recent

years, particularly using deep learning on graphs [63, 13, 64, 79]. Anomaly

detection in this field is well studied [3] based on the observation that learning

results on the entire graph can be compromised via anomalous individual nodes.

However, until more recently, intentional attacks on graph learning problems was

an unexplored area of research.

2.3.1.1 Evasion Attacks. One early work in this area investigates

adversarial example generation for the link prediction task [76]. In their setting,

an adversary generates examples maximizing the inconsistency loss. This loss

is calculated by first identifying constraints on non-adversarial inputs, and then

measuring how much a given example violates those constraints. The learner (or

discriminator) then makes use of this inconsistency loss as a regularization term

when training on generated adversarial examples. Surprisingly, they are able to

find efficient closed-form solutions for the adversarial generation task against

several popular link prediction models. Their experimental results show that

incorporating adversarial examples in this manner improves the performance of

these link prediction models, particularly when limited training data exists.

Primarily motivated by network security problems, another work [23]

investigates attacks on community detection tasks by an adversary without perfect

knowledge. The authors introduce two different attacks: targeted noise injection
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and small community. As in the name, targeted noise injection adds some noise

to the graph structure, creating new edges in a way that imitates the structure of

the true graph. The small community attack, on the other hand, aims to create

smaller clusters in the graph by removing edges and/or nodes. For defences, the

authors recommend re-training on adversarial examples (altered by the noise

injection) and specifically tuning hyperparameters based on performance against

the small community attack. Experimentally, they found the attack to dramatically

reduce model performance when unaddressed, but that their suggested defences are

effective.

In the domain of social networks, researchers have studied attacks on

community detection problems. One work [142] considers an attack with the

primary goal of obscuring the importance of a single individual (denoted v†) in a

community (e.g. concealing the leader of a terrorist cell). The secondary goal of

this attacker is to hide the community entirely. They also present simple (such that

they could be used by attackers without mathematical or technical requirements)

heuristics for both of these goals. For hiding individuals, ROAM (remove one,

add many) removes the link between v† and some v0, then connects v0 to up to

budget − 1 other neighbors of v†. This reduces the closeness centrality of v† and

its degree, while increasing the closeness centrality and the degree of its chosen

neighbor, v0. For hiding communities, their DICE (disconnect internally, connect

externally) heuristic first disconnects d (where d ≤ budget) links within the

community, and then creates budget− d links from within the community to outside

nodes. Note that this method is concerned with a single community/individual.

For a more global attack on community detection, work [20] utilize a genetic

algorithm to generate adversarial examples. Their results show that their method
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outperforms simpler heuristics they propose, Community Detection Attack (CDA)

and Degree Based Attack (DBA). CDA randomly selects a node in each community

to remove random inter-community links, and add intra-community links. DBA is

identical, except instead of randomly selected nodes, it targets the highest degree

node in each community. Furthermore, their results show significant transferability

of their GA generated adversarial examples across different types of target models.

Many graph learning approaches use some kind of lower dimensional

representation of nodes, done via some machine learning node embedding

process such as DeepWalk [102], LINE [134], or node2vec [44]. Then, these node

embeddings can be used for a variety of downstream tasks. Researchers are thus

motivated to investigate attacks on the node embeddings as general purpose

adversarial examples. One work [129] targets node embeddings and uses link

prediction as the downstream task of interest. Their approach makes use of the

KKT conditions to differentiate through the node embedding process and then

optimizes adversarial graph modifications via projected gradient descent. The

authors consider two specific attacks: integrity attack which targets specific links

and availability attack which seeks to maximize overall prediction errors. Both are

accomplished by adding or moving edges. Their results show the effectiveness of

their technique, even with a budget of relatively few edges. Once again, attacks

generated by this method are shown to transfer effectively between different node

embedding techniques.

2.3.1.2 Poisoning Attacks. The first work to consider training time

attacks on deep learning for graphs [176] targeted the node classification task.

Their approach allows for both structural attacks (modifying edges) and feature

attacks (modifying node features), and seeks to create unnoticeable perturbations
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by preserving degree distribution and feature co-occurrence statistics (e.g. ensuring

that features never seen together in the original graph don’t appear together in

the modified graph). To make the computations tractable, the authors target a

surrogate model to produce their attack, and then transfer it to the final model.

Experimental results demonstrate the effectiveness of this attack, transferring

successfully to other semi-supervised graph learning methods, and, notably, to the

unsupervised method DeepWalk [102].

By way of contrast, another work [14] directly targets unsupervised methods

for node embedding. This setting presents additional challenges: no labels exist

to exploit, and many unsupervised node embedding methods (such as those

based on random walks) prevent direct gradient calculations. Instead, they utilize

matrix perturbation theory [125] to efficiently approximate the loss function of

DeepWalk [102] and compute their attack, which takes the form of added and

removed edges. They consider three general attack types: first, the general attack

seeking to maximize the node embedding loss; second, a targeted attack seeking

to change the classification of a specific node; third, a targeted attack seeking to

prevent link prediction between a set of node pairs. Experimentally, they show that

their attacks are effective even when the allowed number of edges flipped is low.

Furthermore, they once again demonstrate transferability of their attacks between a

variety of models.

Investigating poisoning attacks on the node classification task, another

work [177] leverages meta learning to directly solve the bilevel optimization

underlying the poisoning attack. Essentially, this requires unrolling the training

process of the classifier (each step of training itself being differentiable) and

computing the gradient of the resulting weights with respect to the training
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data. Rather than considering specific nodes, their goal is to decrease the overall

accuracy of the classifier. Additionally, they provide memory efficient heuristics

for the metagradient calculation. The experimental results provided demonstrate

the effectiveness of the main method, as well as the heuristics, decreasing overall

classification performance of the target models even with small perturbations in the

training data.

A more recent paper [167] investigates attacks and defences for graph

neural networks under the label flipping setting. Here, the attacker’s power is

limited to changing the labels of nodes (considered to be binary) in the training

set. To solve this attack, the authors come up with a closed-form approximation

for the classifier (a GCN here) as well as transforming the discrete components

of the attack objective into continuous surrogates. This allows them to avoid

directly computing the metagradient, as [177] did. For defence, they propose a self-

supervised community labelling task as a regularization method during the training

process. Their experiments on several real world datasets demonstrate the value of

the attack as well as the effectiveness of their proposed defence.

Targeting classical methods for graph learning (rather than the relatively

new methods considered in the previously mentioned works) researchers [68] seek

to create a unified framework for poisoning attacks on semi-supervised graph

learning problems, particularly focusing on the label propagation method. Their

framework considers both classification tasks and regression tasks, and presents

novel approaches for solving both. Experimental results demonstrate that, even

with very few perturbations, their methods can significantly decrease classification

accuracy or increase regression loss.
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Two simultaneous works [170, 150] first considered backdoor attacks on

graph neural networks. These are a special case of poisoning attack where the

attacker seeks to influence the model to classify test time examples with some

trigger present as a specific class. Furthermore, the attack is designed to not

impact performance on clean test examples (those without the trigger present).

The first of these works [170] seeks to directly produce a graph neural

network that is susceptible to these triggers, given a pre-trained clean GNN and the

data that will be used for downstream classification (using the node embeddings

produced by the GNN). Interestingly, they tailor the triggers (which take the

form of subgraphs) to each graph in question, rather than using a one-size-fits-all

approach. Their results show how effective such an attack can be, and they provide

analysis of the threat model and its limitations.

The other work [150] takes a different approach to this backdoor attack.

Rather than trying to produce an altered GNN, this method seeks to alter training

data by injecting a trigger (again taking the form of a subgraph) as well as

arbitrarily changing the label. For this trigger, they randomly (using various

methods to ensure similarities to the real data) generate a subgraph to insert.

Interestingly, their results show that fixing this subgraph (one randomized trigger

shared across every poisoned training and test instance) barely performs better

than each subgraph being individually randomized. In addition, the authors

provide a certified defence against this treat model. Their experimental results

show the effectiveness of the attack, however, their certified defence is ineffective in

some settings, necessitating further study.

In a more recent paper, researchers [172] propose a new approach to

backdoor attacks on GNNs, based on motifs which are recurrent and statistically
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significant subgraphs. To select the trigger, then, they analyze the motifs in

available graphs, and construct an appropriate trigger. Their experimental results

demonstrate more effective attacks than existing methods, as well as ensuring the

target model’s performance on clean test instances isn’t compromised.

2.3.2 Attacking Deep Learning. Attacks to deep learning systems

in general are much more well-researched, especially in computer vision, than those

targeted against graph learning models.

2.3.2.1 Evasion Attacks. Adversarial examples targeted against

deep learning models were initially introduced by researchers [131] who noticed

that imperceptible modifications could cause an image to be misclassified by image

classification models [164]. Furthermore, they found that adversarial examples

generated against one network transferred effectively to other models with different

architectures or even different training data sets.

While effective, the method introduced by the previous paper was inefficient,

and relied on a linear search to find the best imperceptible perturbation. To

address this flaw, the Fast Gradient Sign Method [42] was introduced. Intuitively,

this method computes the gradient of the classification loss exactly once. Then,

each pixel value is modified with the same magnitude, based on the sign of the

gradient with respect to that pixel. Similarly, the Fast Gradient Value method [115]

also computes the gradient exactly once. However, they modify each pixel with the

raw gradient value, rather than making modifications of the same magnitude to

each pixel. Note that this allows larger per-pixel modifications than the previous

method.

Seeking to improve on the weaknesses of single step adversarial example

generation (imprecision and relatively easy defense primarily) as well as the
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weaknesses of traditional iterative methods (getting stuck in local optima, unstable

optimization) researchers [27] applied momentum to the gradient descent method

of optimizing adversarial examples. Additionally, they formulated their attacks

against an ensemble of models (via averaging their logit outputs) to generate

broadly applicable attacks. Their experimental results demonstrate better attack

performance than the single step or iterative (without momentum) methods.

Working in a different direction, DeepFool [81] seeks to understand

adversarial examples and improve model robustness by efficiently and precisely

computing adversarial perturbations. Specifically, their method iteratively linearizes

the classification model, and then computes a minimal step to take, repeating

until the class of the target instance changes. Intuitively, this method seeks to

find the minimal possible perturbation that produces the desired misclassification.

Experimentally, they demonstrate that they are able to produce adversarial

examples more reliably than previous methods, and training models on their

examples significantly improves robustness.

Another creative work [126] explored the viability of attacking a single pixel.

Their method uses differential evolution (a genetic algorithm that does not require

computing gradients) to produce this extremely limited attack. Ultimately, they

are able to change the classification of 67% of images in the CIFAR-10 dataset, and

16% of the images in the ImageNet dataset, despite only modifying one pixel per

image.

2.3.2.2 Poisoning Attacks. One early work investigating poisoning

attacks on deep learning models [83] uses the metagradient method to optimize

its attack. The intuition here is that, when a model is being trained, each update

is itself a differentiable operation. By unrolling these updates, an attacker can
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compute the gradient of the final weights with respect to the training data,

enabling poison attack optimization via gradient descent. To make the gradient

calculation tractable, they consider only a few steps of updates to the model

while training. Additionally, they find that attacks generated can be transferred

effectively to different training algorithms.

Improving on the previous work, MetaPoison [53] employs the same

metagradient method except on an ensemble of target models, each at different

stages of their training process. By averaging the attack gradients over all of them,

the authors are able to create robust attacks transfer effectively across models.

Another improvement along these lines is Witches’ Brew [38] which introduces

a gradient alignment component to the attack. Overall, they seek to match the

direction of the attacker’s loss gradient on a target image with the classifier’s

loss gradient on that image. Intuitively, what this does is ensures that when the

classifier takes an optimization step based on that image, it is also reducing the

attacker’s loss on that image, furthering the poisoning attack’s goal.

Rather than directly or approximately trying to solve the bilevel problem

underlying the poisoning task, some methods train generative models to directly

produce poisoned images. One such work [158] uses auto-encoders to speed up the

poison generation process. Experimentally, the computation time is significantly

lower, though their generated attacks are on average less effective than the

iteratively produced baseline. Another [84] uses a GAN based model where the

generator is trained against a classifier and against a discriminator (which seeks

to detect the difference between a poisoned instance and a clean one). In contrast

with the previous work, this serves to create unnoticeable poisoned instances that

are also effective for the attack goal. Furthermore, this enables them to study
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differences between attackers with various levels of imperceptibility concerns simply

by tuning the ratio of the discriminator’s loss to the classifier’s loss when training

the generator.

Another work [119] pioneered what are called feature collision attacks.

Essentially, they seek to misclassify a target image, i, in the test set as some target

class, c. Their mechanism for doing this is by manipulating instances of c in the

training set such that their feature space representation moves closer to that of

i. Additionally, they find that overlaying a mostly transparent watermark of i to

the poisoned training set images boosts the power and the transferability of these

attacks.

2.3.3 Defense and Robustness. Naturally, much research [128]

has also been done into making models resistant to such attacks. Interestingly,

researchers [144] have found a tradeoff between adversarial robustness (against

evasion attacks) and backdoor robustness (against poisoning attacks). This suggests

that deployed models should be careful to consider both threats lest they increase

their vulnerability to one when addressing the other.

Designed to mitigate both poisoning and evasion attacks, researchers [143]

follow previous work in using randomized smoothing during training. Furthermore,

they’re able to theoretically analyze the robustness bound against poisoning

attacks, proving that their defense is effective. Prior work focused on empirical

robustness against poisons; research into certified defenses against poisoning

attacks is crucial and still sparse. Experimentally, they also show the value of their

technique on a variety of datasets.

To address backdoor attacks, work has investigated systematically detecting

and covering up the trigger [137]. This method is notable for requiring no insight to
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the model being used, and no modifications to the training process itself. Instead,

they simply test inputs to the trained model to identify any backdoor triggers.

Then, they cover the trigger image using the dominant color of the original image

to ensure similarity. While they provide no theoretical guarantees, empirically, their

method outperforms existing work, even when compared to white box methods.

Another approach [165] uses metagradients to ”unlearn” the backdoor

triggers after a model has been trained. The general approach of unlearning

triggers was well-established before this paper, but compared to the existing

techniques, this work is able to accomplish the task an order of magnitude more

efficiently. Furthermore, unlike other approaches, their process remains effective in

the case where access to clean samples is highly limited.

Yet another direction focuses on training directly on poisons to mitigate

their potential effect [39]. While this approach was well studied to defend against

evasion attacks, this work’s contribution was to consider it against training time

attacks. Furthermore, they find that it generalizes well against multiple threat

models (including highly targeted attacks) and is more resource efficient than

comparable methods.

In graph learning, one work [67] observes that existing attacks tend to prefer

similar nodes. Based on that observation, they seek to create a ”universal” defence

against attacks which could be applied to arbitrary nodes on the graph. Essentially,

this method removes or adds edges to key nodes that are believed to be potential

attack targets. Unlike prior research, their approach is designed (and shown) to

work against targeted attacks.

Another work [151] tries to identify poisoned edges using Jaccard similarity,

taking the ones with the lowest score and then removing them from the graph. To
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ensure that the graph structure isn’t too damaged by this defense, they utilize the

minimum connectivity principle as the termination condition for their algorithm.

Their experimental results are encouraging, showing effective defenses against

poisoning attacks with notably less performance impact than existing methods.

Using random smoothing, researchers [139] were able to provide robustness

guarantees for any arbitrary graph neural network against both node classification

and graph classification tasks. To compute the perturbation size, they formulate

finding the optimal random perturbation magnitude as an optimization problem.

Solving this problem exactly is unrealistic so they devise an innovative technique

based on analyzing regions within the graph. Experimentally, their certified

accuracy results on real-world datasets are encouraging.

2.4 Miscellaneous

Meta Learning. In machine learning, meta learning is an approach designed

to optimize the training process itself. Historically, meta learning was focused

on improving models, though more recently, meta learning based attacks have

proven effective. Muñoz-González et al. used a metagradient method to optimize

a poisoning attack by back-propagating through the learning process [83]. They

demonstrated that this approach was effective against a variety of decision makers,

for multiple different tasks. Interestingly, they found that these poisoning attacks

could be effectively transferred to models other than the one against which they

were optimized [83]. Zugner et al. utilized the metagradient method to attack

graph learning problems, creating an attack capable of dramatically reducing global

node classification accuracy [177]. MetaPoison uses shallow metagradients averaged

over multiple models at each poison optimization step to produce a robust yet

subtle attack on image classification that can be effectively transferred beyond the
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original target model [53]. Similar to these papers, our work in Chapter 3 focuses

on a metagradient poisoning attack. Our contribution is in extending metagradient

attacks to data based decision making models, and providing a detailed overview of

the challenges in creating poisoning attacks in this setting.

Reinforcement Learning in Healthcare. RL has been widely used in

tackling various problems in healthcare. In particular, RL was used in developing

effective personalized treatment plans which can be adaptive to the dynamic

changes of clinical states. There are several works in this line of research including

studies of chronic diseases such as cancers [171, 2, 46, 94], diabetes [15, 26, 92, 9],

anemia [36, 37, 73], and HIV [162, 98]. In addition, there is an increasing number of

studies that applied RL techniques to problems in critical care such as generating

optimal sepsis treatment policies [117], and anesthesia control [80, 123]. RL was

also used in automated medical diagnosis [116, 40, 24, 56]. We refer readers to [163]

for a complete literature review.

The research topic that is closest to our work in Chapter 5 is the problem

of health management. Specifically, there are works on using RL to optimize

messages sent to users to improve their physical activities [47, 161]. They

essentially developed a mobile phone app that runs in the background of patients’

smartphones and automatically collects data of physical activity performed by

patients. They then run RL that utilizes the collected data to determine which

SMS message is likely to increase the physical activity of the patient. This

approach requires consensuses from patients to record all of their physical activities.

Our work focuses on developing a personalized text message mechanism which

targets not only physical activities but also diabetes-related knowledge and food
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consumption. This is accomplished through an automatic message/question/answer

process in which participants can opt to respond or not.

Reinforcement Learning with Sparse Rewards. Sparse rewards are a well

known issue in RL. Over time, various approach have been proposed to solve the

problem including reward shaping [50, 133], curiosity-driven exploration [99, 111,

173], and return decomposition [7, 35, 114]. Return decomposition has received

particular interest since RUDDER [7] proved itself to perform well at model-

free learning in the presence of sparse rewards. It uses an LSTM to predict state

values based on state-action history, and assigns rewards based on the differences in

predictions for consecutive states in a trajectory. Later work [100] has investigated

improving RUDDER by making it more sample efficient.

Other return decomposition approaches have been devised, such as a least-

squares based approach for assigning rewards to all states in a trajectory [29]

and the uniform reward redistribution of IRCR [35] which divides the total

episodic reward equally among transitions, and then averages this value over

multiple trajectories. These approaches both have their merits, but the least-

squares based approach scales poorly to large problems with long trajectories,

while the uniform approach cannot identify the temporal structure of episodic

rewards [114], which makes it a poor fit for our setting. A recent state of the art

return decomposition approach called RRD [114] draws random sub-sequences of

state-action pairs from a trajectory buffer to learn their contribution to the total

episodic reward. This represents a balance between the effectiveness of least-squares

return decomposition [29] and the computational efficiency of uniform reward

distribution [35].
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Common among the return decomposition approaches discussed in this

subsection is the assumption of perfect state observations. Our work, on the other

hand, focuses on RL settings in which there presents not only the challenge of

sparse rewards but also the challenge of incomplete state observations.

Decision Transformer. Transformer models have drawn a great attention

from the RL community. Decision transformer, in particular, was in introduced

in [21], was able to generate future actions that achieve the desired return in

offline reinforcement learning. There are other variants of transformer model were

developed to tailor different offline RL settings [130, 55, 32, 136]. A recent work

by [174] introduces online decision transformer that can work for online RL by

blending offline pre-training with online fine-tuning. Note that these transformer-

based RL approaches rely heavily on a significant amount of training data to pre-

train the transformer part of their model.

Knowledge Tracing. In Chapter 5, our behavior modeling of participants is

related to knowledge tracing, an important research research areas for enhancing

personalized education [25]. The main task is to build machine models of the

knowledge of a student as they interact with coursework. Recently, given the rise

of deep learning, there have been several works that utilized deep neural nets to

model the student learning [105, 160, 152, 41, 95]. Our work, on the other hand,

focuses on building a ML model of behavior change of participants in our study

as they interact with our intervention system. We target not only diabetes-related

knowledge improvement of participants, but also their physical activity and food

consumption dynamics, as influenced by our messages sent to them on a weekly

basis.
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2.5 Conclusion

In this chapter, we provided an overview of concerns surrounding real-

world data. We investigated security games, which model interactions between

adversaries. Defenders often rely on attacker’s past behavior to build defenses

against them, meaning that savvy attackers could manipulate this data nefariously.

In the field of data-based decision making, we investigated various applications of

this paradigm, discussed the different approaches to find solutions, and mentioned

the lack of adversarial research here so far. Through the field of adversarial

learning, we explored various approaches for attacks (primarily poisoning attacks)

as well as defense techniques. Combining insights from all these fields could allow

us to build more robust data-based decision making systems and reduce the threat

of attacks to AI applications deployed in the real world.
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CHAPTER III

DIRECT ATTACKS ON DATA-BASED DECISION MAKING MODELS

Acknowledgment. This chapter is adapted from a paper published in
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As machine learning has been gaining applications and interest from both

research and industrial communities, the opportunities for and the potential cost

of failure grow. Some sources of failure are well explored, such as poorly chosen

models and biased datasets. More recently, research has also considered another

avenue for failure: intelligent adversaries that wish to manipulate the results of

machine learning models [70, 51]. For example, adversaries can perform evasion

attacks [11, 66, 97] to alter the classification of particular samples at test time; this

requires access to some data that will be taken as input by a pre-trained model.

Alternatively, with access to the training data, attackers can perform poisoning

attacks [54, 12, 119]. The goal of poisoning attack is to manipulate the training

data such that the resulting model offers advantage to the adversary. Adversarial

machine learning is the field that includes study of both evasion and poisoning

attacks, as well as design of models resistant to these attacks.

Another emerging area of study is that of data-based decision making.

Many machine learning applications involve a data to decision pipeline: first using

known data to construct a predictive model, then applying the predictive model to

unknown data, and lastly making decisions based on those predictions. Traditional

approaches here have been two-stage, with the predictive model being optimized
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solely for its prediction accuracy [140, 30, 82, 154, 141]. If the prediction model

is perfect over the prediction space, the two-stage approach would be optimal.

However, complicated prediction boundaries in high dimension spaces can never be

modeled perfectly even with large but finite data; in fact, for data driven decsion

making the end goal is to make the best decisions possible, but the prediction

model itself is not being optimized with that goal in mind. As a consequence of

this observation, a method often referred to as decision focused learning seeks

to directly integrate the decision optimizer into the prediction model during

training. Hence, decision focused learning uses the decision quality to train the

network. Updating the model via gradient descent, then, can be accomplished by

differentiating through the solution to the decision optimization. This approach has

proven more effective than corresponding two-stage models in some applications.

However, this approach is significantly more computationally expensive, as each

forward pass in the training process requires solving the optimization.

Our work lies at the intersection of data-based decision making and

adversarial learning. We investigate the vulnerabilities of data-based decision

making methods by developing poisoning attacks against these methods. To our

knowledge, our work is the first one exploring this topic. Specifically, we look into

using end-to-end attacks against both the aforementioned data-based decision

methods designed for convex optimization, as well as a third model which we call

the simple joint model. Here, the optimizer is itself approximated by a neural

network. Furthermore, as it is important to understand the transferability of

poisoning attacks between different models, we also investigate how effectively our

generated attacks can be transferred beyond the originally targeted method (e.g.
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computing an attack against a two stage model and then also testing the generated

poison on a decision focused model).

Our first contribution is to create a meta-gradient based poisoning attack.

Put simply, we unroll the target model’s training procedure (which consists entirely

of differentiable steps) to differentiate through the training and calculate gradients

of the attacker’s loss function with respect to the training data itself. Then, we use

these gradients to perform projected (into the feasible space defined by constraints

on the attack) gradient descent.

Our second contribution is to demonstrate that existing state of the art

methods in other domains (specifically Metapoison [53] in computer vision)

may not be directly applicable to the field of data-based decision making. We

accomplish this by attacking a simple data-based decision making learner (using

Metapoison to solve the attack) as well as testing the found attack on both two-

stage and decision focused learners. The ineffectiveness of this approach for our

problem suggests that new techniques may have to be developed for poisoning

attacks on data-based decision making models.

Our experiments yield several findings that should be of use to future

research. Most notably, attacking a decision-focused learner directly is a

particularly difficult ask due to the complexity of the learner’s training process.

Beyond the (significant) computational requirements of solving the attack,

any stability or precision issues within the learner’s gradient calculation are

compounded when computing the meta-gradient. Common machine learning

pitfalls such as exploding or vanishing gradients appear frequently and are harder

to counteract. Furthermore, the complexity of the solution space (which scales

with model size, optimization objective, and constraints) means that many
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optima of various quality exist, and finding a good one with gradient descent is

not guaranteed. These effects are less noticeable when attacking the two-stage

model or the simple joint model, as their training gradient updates do not involve

backpropagating through an optimization problem.

Furthermore, we investigate the transferability of our method’s attacks.

Previous work has shown the transferability of meta-gradient based poisoning

attacks [83]. Our experiments show that this property still applies, to varying

degrees, across data-based decision making methods. This finding aligns with the

general transferability phenomenon found in adversarial machine learning [96].

Primarily, we observe that poisons created against a two-stage learner effectively

transfer to a decision-focused learner.

3.1 Data-based Decision Making

Data-based decision making refers to a common paradigm in artificial

intelligence in which we are concerned with three related pieces of information:

directly observable data (denoted by u), data that will be unobservable at test time

(denoted by θ), and a decision that must be made (denoted by x). The decision, x,

depends directly on θ, which in turn can be predicted based on u. The ultimate

goal in a data-based decision making problem is to find an optimal decision to

maximize a utility function, abstractly represented as follows:

maxx∈X f(x, θ)

where x is the decision variable and X ⊆ RK is the set of all feasible decisions.

Note that the objective, f , depends directly on the unobservable parameter θ,

which must be inferred from the correlated observable data, u. In this chapter,

we focus on the problem setting in which the decision space X can be represented

as a set of linear constraints X = {x ∈ RK : Ax ≤ b} where (A, b) are constant.
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Figure 3. Depiction of a two-stage learner

In literature, there are two main approaches used to tackle the data-based

decision making problem. The first approach, named two-stage approach,

divides the problem into two separate phases. The first phase is the learning phase

in which the unobserved parameter θ is learnt based on some training dataset

D = {(u1, θ1), (u2, θ2), · · · , (un, θn)} in which each data point i is associated with

a feature vector ui ∈ Rd and a true label θi ∈ RK (θi ∈ NK if it is categorical).

Then in the second phase which is called the decision-making phase, the decision

x will be optimized based on the learning outcome θ. The second approach,

named decision-focused learning, on the other hand, considers a single end-

to-end pipeline (with an intermediate learning layer) that attempts to directly

optimize the decision based on the training data D. In addition to these two main

approaches, in this paper, we create a third simple approach, named simple joint

approach that formulates the data-based decision making as a simple learning

problem. We consider this approach as a baseline to study poisoning attacks in this

data-based decision making setting.

In the following, we first describe in details all these three approaches. We

then present our optimization formulations to compute poisoning attacks to these

three approaches, which are challenging to solve. Our proposed methodology to

solve these optimization problems will be presented in Section 3.5.
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3.2 Two-Stage Approach

3.2.1 Learner Description. The traditional approach to data-based

decision making is two-stage [140, 30, 141]. The first of these stages is predicting

the unknown parameter θ from the observed feature vector u. The second stage,

then, is to compute the optimal x given the predicted θ (Figure 3). Predicting

the unknown parameter θ can be done using a parametric model, denoted by

θ̂ = g(u,w). Here, w is the model parameter that needs to be determined. Given

a training dataset D = {(u1, θ1), (u2, θ2), · · · , (un, θn)} in which each data point i

is associated with a feature vector ui ∈ Rd and a true label θi ∈ RK (θi ∈ NK if it

is categorical), the decision maker first trains a predictive model g(u,w) to predict

the label of a data point u. The learner seeks an optimal model parameter w∗ that

minimizes the training loss, abstractly formulated as follows:

minw L(D, w)

For example, one can use mean squared error as the training loss:

L(D, w) = 1

n

∑
i
(θi − g(ui, w))

2

Once the model has been trained (yielding w∗), the decision maker can use

observed u values to predict θ value (i.e., g(u,w∗)), then use that prediction to find

an optimal decision by solving the following optimization problem:

maxx∈X f(x, g(u,w
∗))

3.2.2 Poisoning Attack Formulation. In designing poisoning

attacks, we assume an adversary can alter the training data by injecting a small

perturbation to every data point. More specifically, each feature vector ui can be

altered by adding a small quantity ϵi with the constraint that lbi ≤ ϵi ≤ ubi. Here,

lbi < 0 and ubi > 0 represent the maximum perturbation the adversary can apply
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to the data point i. Intuitively, (lbi, ubi) captures the adversary’s capability. The

adversary attempts to optimize some goal, for example, minimizing the decision

maker’s utility in the test set or forcing the decision maker to produce a particular

target decision output for some data points in the test set. We represent this

poisoning attack on a two-stage model with the following general formulation:

min Ladv(x∗, θtarget) (3.1)

s.t. x∗ ∈ argmax
x∈X

f(x, g(utarget, w∗)) (3.2)

w∗ ∈ argmin
w

L(Dpoison, w) (3.3)

Dpoison = {(u1 + ϵ1, θ1), · · · , (un + ϵn, θn)} (3.4)

ϵi ∈ [lbi, ubi],∀i = 1, 2, · · · , n (3.5)

where (utarget, θtarget) is the adversary’s target element. Line 3.1 simply represents

a general objective for the adversary. For example, if the adversary’s goal is to

minimize the decision maker’s utility on this target, then Ladv(x∗, θtarget) =

f(x∗, θtarget). Line 3.2 is the optimization problem solved by the learner given

the network output. Equation 3.3 then represents the optimal network weights

as a function of the learner’s training. Next, line 3.4 denotes the training dataset,

altered by the attacker with poison values ϵ. Lastly, line 3.5 denotes the restrictions

on the attacker’s power, specifically a magnitude constraint on each poison

element.1 Solving the above optimization problem optimally is challenging since

it has multiple connected levels of optimizations.

1Note that our formulation can be generalized to multiple targeted data points in the test
set by taking the sum of losses over these data points. In addition, this can be also extended to
incorporate perturbations on labels θi by introducing additional perturbation variables αi to add
to the labels.
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Figure 4. Depiction of a decision focused learner

3.3 Decision Focused Approach

3.3.1 Learner Description. While the two-stage approach is

straightforward and effective, its training process is disconnected from the end goal

of the system. More specifically, the model is being trained for prediction accuracy,

whereas the ultimate objective is to produce good decisions [147].

A recent approach called decision focused learning seeks to bridge the

disconnect between the training and the decisions produced, while still utilizing an

explicit optimization solver (Figure 4). In theory, this approach can improve final

decision quality by concentrating the (inevitable) prediction errors in areas that will

have the least detrimental effect. For each training data point, θ is predicted from

u and the optimization problem is solved to produce x. Then, the network weights

are updated via gradient descent to maximize the decision quality. Intuitively, we

can think of this as incorporating a convex optimization layer as the last layer

of a neural network. This method can give improved results over the two-stage

approach, at the cost of training time [147]. Essentially, in a decision-focused

approach, the loss function the learner minimizes is the negative mean decision

quality:

min
w

L(D, w)

where L(D, w) = − 1

n

∑
i
f
(
θi, x

∗(θ̂i)
)
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In this case, x∗ is a result of solving the following optimization problem:

x∗(θ̂i) ∈ argmax
x∈X

f(x, θ̂i)

where θ̂i = g(ui, w) is the network output.

Unlike the two-stage approach, here one must differentiate through the decision

optimization problem to optimize the model parameters w. This can be

accomplished by using the implicit function theorem on the KKT conditions of

the optimization problem [5].

3.3.2 Poisoning Attack Formulation. Given the decision-focused

formulation, we now can represent the problem of finding an optimal poisoning

attack as the following optimization problem:

min Ladv(x∗, θtarget) (3.6)

s.t. x∗ ∈ argmax
x∈X

f(x, g(utarget, w∗)) (3.7)

w∗ ∈ argmin
w

[
L(Dpoison, w) = − 1

n

∑
i
f
(
θi, x

∗(θ̂i)
)]

(3.8)

given x∗(θ̂i) ∈ argmax
x∈X

f(x, θ̂i) (3.9)

and θ̂i = g(ui + ϵi, w) is the network output. (3.10)

Dpoison = {(u1 + ϵ1, θ1), · · · , (un + ϵn, θn)} (3.11)

ϵi ∈ [lbi, ubi],∀i = 1, 2, · · · , n (3.12)

At a high level, the general attack formulation in this setting is similar to

the two-stage case. However, solving the above optimization problem is much

more challenging since the learner’s training Eq. (3.8 – 3.10) involves an inner

optimization layer which depends on the decision optimizer for every training data

point.
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Figure 5. Depiction of a learner using the simple joint approach

3.4 Simple Joint Approach

3.4.1 Learner Description. A naive approach to data based decision

making is to train a parametric model using the features (u) to directly predict the

optimal decision (x) (Figure 5). Similar to the decision focused approach, we use

negative mean decision quality as the loss function:

minw L(D, w)

L(D, w) = − 1

n

∑
i
f
(
θi, x̂(ui)

)
In this case, however, x̂ itself is the network output: x̂(ui) = g(ui, w). This bypasses

the need to directly predict the labels (θ̂). Intuitively, we can think of this as

implicitly learning the predictive task “inside” of the network.

Alternatively, we could solve the optimization problem for each training

set instance prior to training (producing x∗i where x
∗
i ∈ argmaxx∈X f(x, θi))

and then train the network to produce decisions as close as possible to these

x∗ values. In this method, we could use MSE as the loss function: L(D, w) =

1
n

∑n
i=1(x

∗
i − g(ui, w))

2. However, we found this approach less effective and more

prone to overfitting than directly maximizing decision quality.

One complication when training a network to solve optimization problems

is the constraints (if any exist) on the solution. Inspired by Shah et. al [120], we
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utilize a specially designed neural network layer to enforce constraints throughout

the training process, ensuring valid decisions are made [120].

In practice, this naive approach is often ineffective as training networks to

directly solve optimization problems is difficult. However, we investigate this simple

model as a target for generating poisoning attacks that can then be transferred to

the more sophisticated models.

3.4.2 Poisoning Attack Formulation. The attack formulation here

is similar to the previous cases. The difference is in the second line; rather than

producing predictions, this simple joint model simply treats the network output as

the decision itself, and is trained accordingly:

min Ladv(x∗, θtarget)

s.t. x∗ = g(utarget, w∗)

w∗ ∈ argmin
w

[
L(Dpoison, w) = − 1

n

∑
i

f
(
θi, x̂(ui + ϵi)

)]

Dpoison = {(u1 + ϵ1, θ1), · · · , (un + ϵn, θn)}

ϵi ∈ [lbi, ubi],∀i = 1, 2, · · · , n

3.5 Attack Generation Methodology

To solve the aforementioned optimization problems and determine poisoning

attacks against each of these decision making approaches, we follow projected

gradient descent. The core of gradient descent is to compute the gradient of the

adversary loss Ladv with respect to the data perturbation ϵ, denoted by dLadv
dϵ

.

This gradient computation is challenging given that all the optimization problems

involve multiple connected optimization levels.

Despite the differences among the aforementioned three data-based decision

approaches, we employed two main computation techniques: (i) computing
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gradients via meta gradient [10]— the main idea of this technique is to differentiate

through the gradient descent steps in solving inner optimization levels. The main

advantage of this technique is that it can be can be applied for any non-convex

optimization problems. One disadvantage of this technique is that it is generally

computationally expensive; and (ii) computing gradient via implicit function

theorem [28, 146] — the main idea of this technique is to leverage convexity

property, allowing us to differentiate through the KKT optimality condition. This

technique is significantly less computationally expensive compared to the first

technique. However, this technique is only applicable for convex optimization

problem. Therefore, depending on the convexity of the problems, we then decide

on one of these two techniques.

In the following, we first present in detail our proposed method to compute

attacks to two-stage learning. Later, we will mainly highlight the differences or

challenges regarding the decision-focused learning and the simple joint learning.

3.6 Attack to Two-Stage Approach

To solve the poisoning attack in this setting using gradient descent, the key

is the gradient calculation of dLadv
dϵ

, which can be decomposed into different gradient

components via the chain rule:

dLadv

dϵ
=
dLadv

dx∗
dx∗

dg

dg

dϵ

dg

dϵ
=

dg

dw∗
dw∗

dϵ

Computing dLadv
dx∗

is straightforward, and dg
dw∗ is a result of the standard

neural network back-propagation computation. On the other hand, computing

the gradient components, dx
∗

dg
, the gradient of the optimal decision with respect

to the label prediction g(utarget, w∗), and dw∗

dϵ
, the gradient of the optimal model

parameter w∗ w.r.t the perturbation ϵ, is not straightforward. This is because there

is no explicit close-formed representation of x∗ and w∗ as a function of g and ϵ
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respectively, despite the fact that x∗ depends on g and w∗ depends on ϵ. In the

following, we present our meta-gradient based method to approximate dw∗

dϵ
given

the learning part (neural network function) is non-convex. We will then present

the implicit function theorem based method to compute dx∗

dg
since the decision

optimization part is convex.

3.6.1 Computing decision gradient via implicit function

theorem. We focus on the problem setting in which the decision optimization

is convex (i.e., the utility function f(x, θ) is convex in the decision variable x).

This convexity setting has been widely considered in previous studies on data-

based decision making [147, 146, 28, 1]. Based on this convexity characteristic,

we leverage the implicit function theorem [65] to differentiate through the decision-

optimization layer (i.e., computing dx
dg
). Given the predicted value θ̂ = g(utarget, w∗),

the decision-optimization component is formulated as a convex optimization

problem:

max
x

f(x, θ̂) s.t. Ax ≤ b

Since this is a convex optimization problem, any solution that satisfies the following

KKT conditions is optimal:

−∇xf(x, θ̂) + λ · ∇x(Ax− b) = 0

λ · (Ax− b) = 0

Ax ≤ b, λ ≥ 0

where λ is the dual variable. Observe that the first equation indicates that x and

λ are functions of θ̂. Based on the implicit function theorem, we can differentiate
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through the first two equations to obtain the following gradient computation:dx

dθ̂

dλ

dθ̂

 =

∇2
xf(x, θ̂) AT

diag(λ)A diag(Ax− b)


−1 d∇xf(x,θ̂)

dθ̂

0

 (3.13)

3.6.2 Computing learning gradient via meta gradient. While

we can leverage the convexity of decision optimization to compute the gradient

of a decision with respect to the coefficients (as will be done when attacking the

more complex models), we cannot apply the same approach for computing the

learning gradient, dw
∗

dϵ
. This is because model learning is generally a non-convex

optimization problem (as neural network models are non-convex in general). On

the other hand, the implicit function theorem approach is most usefully applied to

convex optimization. In order to tackle this challenge, we adopt the meta-gradient

method [6].2 This method works by assuming the model learning problem is solved

via gradient descent. This is a reasonable assumption since neural network training

typically relies on gradient descent method and its variants.

Based on this assumption, we can differentiate through the gradient descent

steps. More specifically, we’re concerned with the model’s learning problem,

abstractedly represented as follows:

min
w

L(Dpoison, w)

where Dpoison = {(u1 + ϵ1, θ1), · · · , (un + ϵn, θn)}

At each gradient step t, given the previous value of the model parameters wt−1, the

gradient descent update is as follows: wt = wt−1 − δ dL
dwt−1

, where δ is the learning

rate. Note that L is a function of the perturbation variables ϵ = {ϵ1, · · · , ϵn}.

2We can also apply this method to compute the decision gradient. However, meta-gradient
is much more computationally expensive compared to the implicit function theorem method for
convex problems.
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Algorithm 1: Poisoning Attack Generation for Two-Stage Learning

1 Input: training data D = {(u1, θ1), (u2, θ2), · · · , (un, θn)};
2 Input: target (utarget, θtarget);
3 Randomly initialize perturbation values ϵ = {ϵ1, · · · , ϵn}.
4 for j = 1 → nIter do

// Model learning

5 Initialize optimal learning loss optL = ∞;
6 for r = 1 → nRound do
7 Randomly initialize model parameter values w0;
8 for t = 1 → T do
9 Update wt = wt−1 − δ dL

dwt−1
;

10 Differentiate dwt
dϵ

= dwt−1

dϵ
− δ

d
(

dL
dwt−1

)
dϵ

;

11 if L(Dpoison, wT ) < optL then
12 Update optimal learning w∗ = wT ;

13 Update learning gradient: dw∗

dϵ
= dwT

dϵ
;

// Decision optimizing

14 Compute optimal decision based on the learnt model w∗:
x∗ ∈ argmaxx∈X f(x, g(u

target, w∗))

15 Compute decision gradient w.r.t θ̂ = g(utarget, w∗) using Eq. (3.13)
// Projected gradient step

16 Update perturbation variable ϵ = ϵ− δ dL
adv

dϵ
where:

dLadv
dϵ

= dLadv
dx∗

dx∗

dg
dg
dw∗

dw∗

dϵ
;

17 Project ϵi to feasible perturbation space: [lbi, ubi] ∀i;
18 return ϵ;

Therefore, wt is also a function of ϵ (except for w0 which is the initial value, a

constant). As a result, we can differentiate through this gradient step as follows:

dwt
dϵ

=
dwt−1

dϵ
− δ

dG

dϵ

where G(wt−1, ϵ) =
dL

dwt−1
. By applying the chain rule, we obtain:

dG

dϵ
=
∂G

∂ϵ
+

∂G

∂wt−1

· dwt−1

dϵ

If we run gradient descent in T steps, we can approximate the gradient of

the optimal w∗ with respect to perturbations ϵ as follows: dw∗

dϵ
≈ dwT

dϵ
.
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3.6.3 Projected gradient descent algorithm. Given this gradient

computation, we illustrate our approach in Algorithm 1 where we run an iterative

projected gradient descent process to compute an optimal attack. At each iteration

j, given the current value of perturbation variables ϵ, Algorithm 1 first runs another

inner gradient descent process to optimize the parameters w of the predictive model

g(u,w) based on the poison data Dpoison (lines 5-13). At the end of this inner

process, we obtain a trained model w∗. During this process, we simultaneously

compute the learning gradient dw∗

dϵ
.

Given the trained model w∗, Algorithm 1 proceeds into the decision

optimization to compute the optimal decision x∗ w.r.t the target utarget (line 14).

Along with that computation, the gradient dx∗

dg
is computed (line 15). Finally, we

update the value of ϵ based on the previous gradient computation (lines 16-17).

This entire procedure (lines 5-17) is repeated until we reach a local optimal value of

ϵ or reach the predetermined maximum number of iterations nIter.

3.7 Attack to Decision Focused Approach

Similar to the two-stage approach, in this setting, we aim to compute the

gradient dLadv
dϵ

, which can be decomposed into multiple components using chain

rule:

dLadv

dϵ
=
dLadv

dx∗
dx∗

dg

dg

dϵ

dg

dϵ
=

dg

dw∗
dw∗

dϵ

However, as the two methods use different training processes, the details of the

learning gradient calculation (dw
∗

dϵ
) differ significantly. In fact, it becomes much

more complicated and computationally expensive due to the involvement of the

optimizer in the training process itself.

Indeed, recall that for the calculation of the learning gradient (dw
∗

dϵ
), in

general, we follow gradient descent at every to solve the model learning problem
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and then differentiate through the gradient steps as explained in the previous

section. That is, we have the following differentiation update:

dwt
dϵ

=
dwt−1

dϵ
− δ

d
(

dL
dwt−1

)
dϵ

where L is the training loss. In two-stage approach, this training loss has a

closed-formed representation as a function of ϵ. Therefore, the above gradient

computation is straightforward. On the other hand, in decision-focused approach,

the model training is represented in Eq. (3.8–3.10), in which multiple decision

optimizations for every data point is involved. The gradient dL(Dpoison,w)
dw

now

depends on the gradient of the optimal decision w.r.t the prediction outcomes

dx∗(θ̂i)

dθ̂i
for all i, since we have according to the chain rule:

dL
dw

=
∑
i

dL
dx∗(θ̂i)

dx∗(θ̂i)

dθ̂i

dθ̂i
dw

Computing the gradient dx∗(θ̂i)

dθ̂i
for all data points can be done via implicit

function theorem as discussed in Section 3.6, which already involves complex

computations including inverse matrix computation and the second derivative

computation, etc. As a result, it becomes very challenging to take a further

gradient step of
d( dLdw)
dϵ

. We discuss this challenge in the experiment section.

3.8 Attack to Joint Simple Approach

Finally, solving the attack on the joint sample approach is the simplest:

dLadv

dϵ
=
dLadv

dx∗
dx∗

dϵ

dx∗

dϵ
=
dx∗

dw∗
dw∗

dϵ

In this case, x∗ is simply the output of the neural network. Computing dLadv
dx∗

is straightforward, and dx∗

dw∗ is a result of the standard neural network back-

propagation computation. The only challenging component here is dw∗

dϵ
as w∗ is a
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function of ϵ yet cannot be expressed in closed form. As when attacking the other

models, we use the metagradient method to calculate this.

3.9 Experiment Setup

3.10 Attack Methods

For our experiments, we utilize three different methods to generate attacks

and compare their effectiveness. Starting with the simplest model, the first method

is based on MetaPoison [53] and is formulated against the naive end-to-end learner.

More specifically, this attack utilizes multiple target models (each at a different

stage of training) and averages their metagradients (limited to 2 training steps).

Then, the attack is optimized alongside the target models. This method was found

to produce effective, unnoticeable, and transferable attacks in the computer vision

domain [53]. Our idea is to use this method against a simple learner in the data-

based decision making domain to produce attacks that can then be leveraged

against the more sophisticated learners (two-stage and decision-focused).

The second attack generation technique we consider involves attacking the

two-stage learner directly. Here, rather than using the MetaPoison technique, we

consider an attack trained against a single learner which is trained from scratch

at each attack epoch, giving us a more complete metagradient (computed using

Higher [43]). Unlike the previous method, this one requires differentiating through

the solution to an optimization problem as the two-stage learner explicitly solves

that optimization problem at test time. For this component, we use Qpth [5]. Once

again, after an attack is generated, we further evaluate it by testing it against the

decision-focused learner.

The third and most computationally complex attack we consider is one

formulated directly against the decision focused learner. On the surface, this attack
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is nearly identical to the one against the two-stage learner. When considered

in more depth, however, it’s a significantly more difficult problem, for reasons

previously discussed. Thus, we are motivated to investigate the feasibility of

attacking this model directly.

3.11 Experiment Domains

Synthetic Data. For our synthetic data experiments, we consider the following

decision optimization problem:

min f(x, θ) =
1

2
xTQx− θTx s.t. ||x|| ≤ D,Ax ≤ b (3.14)

where Q is a diagonal positive-definite matrix, serving as a penalty parameter

to make the problem convex, and θ is the unknown parameter that needs to be

trained. ||x|| ≤ D is simply a magnitude constraint on the decision variable, while

Ax ≤ b represents some other constraints on the decision space. This decision

optimization formulation is typically used for representing shortest path, maximum

flow, bipartite matching, and a range of other domains [146].

In our experiments, in order to predict the unknown parameter θ, we

consider a simple neural network and randomly (according to the normal

distribution) generate synthetic data to train this predictive network. The labels

are computed as a function of the features, plus a small amount of random noise.

In addition, regarding the decision optimization, we randomly generate decision

constraints. The amount of constraints used are varied across experiments to

explore how this affects the attack generation. These constraints are added

incrementally: an experiment with 9 constraints would include the same constraints

as the corresponding experiment with 7 constraints, in addition to 2 new

constraints.
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Stock Market Portfolio Optimization. In addition to this simplified artificial

problem, we demonstrate our attack in the portfolio optimization domain. This is

naturally modeled via data-based decision making, where, prior to the optimization

itself, future stock returns and the covariances between stocks must be predicted.

This makes the domain a natural choice for our decision-focused attack. Similar to

other recent work [141], we utilize the Markowitz model [72] to maximize expected

return while encouraging a diverse portfolio. Overall, the objective function of the

optimization problem combines maximizing immediate return at each time step

with minimizing risk, formulated as follows:

f(x, θ, p,Q) = pTx− λxTQx

Where x is the investment decision made (a vector that sums to 1, representing

percentage of investment in each stock), p is the expected immediate return, λ is

a risk aversion parameter, and Q is a matrix capturing the covariance between the

expected returns of all stocks. Intuitively, Q represents how correlated individual

stocks are, and it is more risky to invest in correlated stocks. Thus, the penalty

term incentivizes diverse investment.

The learning problem, then, is to utilize historical information about the

stocks themselves to learn both the expected returns (p) as well as a 32 dimensional

embedding for each stock. This embedding is then used to calculate the covariance

between each pair of stocks, using cosine similarity. Specifically, we use the prices

at the previous time step as well as rolling statistics as the input of the neural

network to (separately) learn p and Q. As in [141] these statistics include a variety

of sliding window means, as well as variances, of the historical stock prices. Loss

functions for both the two-stage and the decision-focused models utilize ground-

truth p and Q values directly computed from the dataset. Note that both p and
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Q depend on the price data from future timesteps: p is the next timestep’s return,

while Q is the cosine similarity of the returns over the next 10 timesteps.

We utilize real-world historical stock data, downloaded from the Quandl

WIKI dataset, from 2004 to 2017 [109]. The stocks used belong to the SP500,

giving us 505 potential stocks to work with. Attacking the features exclusively is

not meaningful here, as the features are computed based on the raw price. Due to

this, we target our attack on the raw historical stock market data, which affects the

features, the labels (p), and the covariance matrix (Q). We restrict our experiments

to a setting with 50 stocks and 500 timesteps.

3.12 Results

Now we present the results of our experiments. For all the graphs, the

results are averaged over 5 random seeds which determine both the initial network

weights as well as the randomized attack starting points. In the synthetic data

domain, this also corresponds to 5 different data sets (generated using the same

normal distribution). For supplemental results, see the linked appendix3.

3.13 Synthetic Data

On the following graphs, a ‘small dataset’ refers to a setting with 250

instances in the training dataset, while a ‘large dataset’ refers to one with 750

elements. Simple Joint Model. In Figure 6, we display the effectiveness of

attacks generated against a simple joint learner. Both cases here demonstrate

similar trends. First, that the found attacks are only minimally effective against

the simple joint learner itself. Secondly, we observe that when transferring these

attacks to the decision focused and the two-stage learners the effect on their utility

is inconsistent and follows no clear trends. This finding stands in contrast to the

3https://www.dropbox.com/s/6lznj4c1imk5qcm/DataBasedSupplemental.pdf
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(a) Attack on Large Dataset (b) Attack on Small Dataset

Figure 6. Attacks generated against a simple joint model.

(a) Attack on Large Dataset (b) Attack on Small Dataset

Figure 7. Attacks generated against a two-stage learner

results obtained by MetaPoison in the field of computer vision [53]. While this

result may be surprising, the problems being solved in data-based decision making

are notably different from computer vision tasks, and the models we utilize are

significantly less complex.

Two-Stage Model. In Figure 7 we show our results when generating an attack

on the two-stage learner. Contrasted with the attacks in Figure 6, we observe

significantly higher effectiveness, both against the two-stage learner itself and

when transferring the attack to the decision-focused learner. This contrast further
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(a) Attack on Large Dataset (b) Attack on Small Dataset

Figure 8. Effect of adding constraints on attack results

(a) Attack on Large Dataset (b) Attack on Small Dataset

Figure 9. Attacking a decision-focused model directly

suggests that methods from other domains (such as computer vision) may not be

directly applicable when attacking data based-decision making models.

Figure 8 demonstrates the effect of introducing more constraints to the

optimization problem. What we observe here is that while the effectiveness of

our attacks is dependent on the constraints, there is no simple trend when varying

them. This makes it hard to predict how effective a metagradient based attack will

be when attacking a new problem in data-based decision making.

Decision Focused Model. In Figure 9 we examine the effectiveness of attacking
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(a) Attack on two-stage learner (b) Attack on decision focused learner

Figure 10. Attacking a portfolio optimization model

a decision-focused learner directly. While our method is able to find good attacks

in some scenarios, it is unreliable. Even in this simple setting, gradient descent

often struggles to find a good optima, and this issue becomes even more apparent

with a larger attack space. Combined with the prohibitive compute requirements of

this attack, this is unlikely to be a practical approach in many data based learning

settings.

3.14 Portfolio Optimization

Two-Stage Model. Figure 10a shows the results of attacking a two-stage model

for portfolio optimization, as well as transferring that attack to a decision focused

learner. Notably, we see that transferring the attack is often effective, though

is inconsistent. This is likely due to the increased complexity of this domain

compared to our synthetic setting, which includes both the transformation of raw

prices into features as well as the objective of the optimization problem.

Decision Focused Model. In Figure 10b, we display the results of attacking a

decision-focused model directly. In this case, this attack is on average more effective

than the attacks on the two-stage model. Most of this is likely due to the decision
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focused learner performing better when unattacked, getting an objective value of

-0.005 to -0.094, compared to the two-stage learner that obtains objective values

between -0.32 and -0.65. We also observe once again that higher ‘budget’ attacks

(meaning a larger attack space) often lead to worse attacks (higher utility for the

learner), further demonstrating the complexities of solving these attacks.

3.15 Conclusion

In this chapter, we formulated a generalized meta-gradient based poisoning

attacks against two-stage models, decision focused models, and a simple joint

model. We were able to provide insight into the difficulties of this attack by

conducting extensive experiments in a synthetic domain as well as a real-world

stock market portfolio optimization problem. These experiments show the following

results. First, we observe that existing meta-gradient based techniques [53] may

be ineffective here, despite being quite effective in the domain of computer vision.

Next, we provide analysis showing that direct attacks on a decision-focused model

are discouragingly difficult and problem dependent. Furthermore, despite the

inherent training differences between two-stage and decision-focused learners, our

results show that poisons crafted on a two-stage model can be effective against

decision-focused models as well.
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CHAPTER IV

COUNTERING POISONING ATTACKS ON GAME THEORETIC

DATA-BASED DECISION MAKING MODELS

Acknowledgment. This chapter is adapted from a paper published in

GameSec-21. I was the first author, and I performed all the programming and

experimental work. Writing, as well as the theoretical analysis, was a group effort

between myself and my co-authors: Professor Arunesh Sinha, and Professor Thanh

H. Nguyen.

Learning adversary behavior from historical attack data is a firmly

established methodology in adversarial settings, both in academic literature [87,

101], and in real world applications such as wildlife security [30, 132]. Herein

lies a vulnerability: a clever attacker may modify its own behavior in order

to conceal information or mislead the defender. This deceptive behavior can

influence the defender’s learning process, creating future gainful opportunities

for the attacker. Indeed, such deception has received considerable attention in

security games literature [34, 166, 90]. However, robustness of the defender to

the adversary’s deceit is much less explored. In this chapter, we investigate the

defender’s counteraction against attacker deception in a Stackelberg security game

setting.

Our work builds upon the partial behavior deception model [88] in which

the defender models the behavior of the entire attacker population using a single

Quantal Response (QR) [75] model of which the parameter λ ∈ R is learned

from past attack data. Among the attackers, however, there is a rational attacker

who can cause harm to the defender by manipulating part of attack data. Such

manipulation makes the defender learn an incorrect λ value, leading to an
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ineffective defender strategy. Addressing the attacker deception is still an open

problem, which is the focus of our paper.

As our first contribution, we develop a new technique to estimate the true

behavior of the non-deceptive attackers (represented by a parameter value λtrue

of QR), given the perturbed training data. Our technique leverages the Karush-

Kuhn-Tucker conditions of the rational attacker’s optimization to formally express

the relation between true behavior of non-deceptive attackers (λtrue) and learning

outcome (λlearnt) forced by the deceptive attacker. Based on this relation, we

find that there is an interval of possible values for λtrue which leads to the same

deception outcome λlearnt. Moreover, bounds of this interval are increasing in λlearnt.

We thus propose a binary-search based method which uses λlearnt to guide the

search for these bounds within an ϵ-error.

As our second contribution, we extend our first contribution, perhaps

surprisingly, to apply in scenarios with small number of attacks. The core issue is

that the empirical attack distribution induced by limited attack samples may be far

different from the true attack distribution induced by λtrue, making it challenging to

characterize the relation between the true behavior and the deceptive outcome.

We overcome this challenge by re-formulating the attack sampling process as

choosing random seeds u drawn from the uniform distribution on [0, 1] followed

by a deterministic computation on u.

We first prove that given any fixed u, all mathematical results (from our

first contribution) hold for small number of attacks. As the random seed chosen by

nature is unknown, we then leverage the above result to perform binary search for

multiple random seeds and construct a new interval spanning all found intervals as

our final estimate for the range of λtrue.
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As our third contribution, we propose a maximin approach to optimize

the defender strategy against the worst case within the uncertainty interval for

λtrue. We formulate this maximin problem as a multiple non-linear programs, each

corresponds to a particular optimal attack choice of the deceptive attacker. Finally,

via extensive experiments, we show that, even when optimizing against a wide

uncertainty interval of λtrue, our algorithm gives significantly higher utility for the

defender, and less benefit for the deceptive attacker.

4.1 Related Work

Adversarial Learning Adversarial learning is a field within machine learning

that has become increasingly popular [70, 124, 52, 71, 169]. The attacker deception

here is analogous to a causative attack (or poisoning attack) in adversarial

learning [52]. A significant difference between our work and adversarial learning

is that we seek to maximize defender utility through predicting the attacker’s

behavior, whereas in adversarial learning, the end goal is prediction accuracy.

Attacker Behavior Inference Learning the behavior of bounded rational

attackers is crucial, and a major area of interest in security games. Various models

including QR have been explored [159, 57, 166, 122, 103]. As this learning is used to

create a defender strategy, the training attack pool is vulnerable to manipulation

by a clever attacker. This paper focuses on addressing this challenge in security

games. Our work overlaps with settings in which one or more players has limited

information [4].

Deception in Security Games Historically, most work has focused on

deception from the defender side [175, 45]. In this scenario, the defender typically

exploits information asymmetry to fool the attacker (e.g. in network security,
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concealing some system characteristics). More recently, research has investigated

deception from the attacker side [34, 90, 166] in SSGs, and the follower side in

general Stackelberg games [33]. Much of this chapter concentrates on a single

attacker whose payoff values are unknown to the defender. The attacker-deception

model we utilize [88], on the other hand, describes a realistic scenario in which the

defender must contend with multiple attackers of unknown behavior.

4.2 Preliminaries

4.3 Stackelberg Security Games (SSGs)

In SSGs [132], the defender must protect a set of T targets from one or more

attackers. The defender has a limited number (K < T ) of resources that each can

be allocated to protect a single target. A pure strategy of the defender is defined

as a one-to-one allocation of resources to targets. A mixed defense strategy, x, is a

probability distribution over these pure strategies. For the purposes of this paper,

we consider no scheduling constraints to the defender’s strategy, meaning that a

mixed strategy can be compactly represented as a coverage probability vector,

given by x = {x1, x2, . . . , xT} where xi ∈ [0, 1] represents the probability that

target i is protected by the defender and
∑

i xi ≤ K. We denote by X the set of

all feasible defense strategies. In SSGs, the attacker is fully aware of the defender’s

mixed strategy and chooses a target to attack based on this knowledge.

An attack on target i gives each player a reward or a penalty, depending

on whether the defender is currently protecting target i. If i is unprotected, the

attacker gains reward Ra
i and the defender receives penalty P d

i . Conversely, if

target i is protected, the attacker takes penalty P a
i < Ra

i and the defender gains

reward Rd
i > P d

i . Given coverage probability xi, the expected utilities for the
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defender and the attacker for an attack on target i can be formulated as follows:

Ud
i (xi) = xiR

d
i + (1− xi)P

d
i

Ua
i (xi) = xiP

a
i + (1− xi)R

a
i

Quantal Response Behavior Model (QR). QR is an well-known model

describing attacker behavior in SSGs [75, 159]. Intuitively, QR provides a mechanism

by which higher expected utility targets are attacked more frequently. Essentially,

the probability of attacking target i is given as follows:

qi(x;λ) =
(
eλU

a
i (xi)

)/(∑
j
eλU

a
j (xj)

)
(4.1)

4.4 Partial Behavior Deception Model

Our work on developing an optimal counter-deception strategy for the

defender is built upon the partial behavior deception model introduced by [88]. In

this model, multiple attackers are present, who have the same payoffs but different

attack behavior due to different rationality levels. Among these attackers, there is

a rational attacker who intends to play deceptively to mislead the defender. The

defender, on the other hand, is aware of the attackers’ payoffs but is uncertain

about the behavior of the attackers. The defender thus attempts to to build a

behavior model, i.e., the QR model, to predict the attack distribution of the entire

attacker population. Real-world applications such as wildlife conservation also use

this single-behavior-modeling approach as park rangers usually cannot differentiate

data collected, such as poaching signs, among multiple sources [57].

Two-phase learning-planning of defender. This model describes a one-

shot two-phase learning-planning problem for the defender, consisting of a learning

phase and a planning phase. This is the typical security game model used in

literature [132, 159]. Essentially, in the learning phase, the defender uses training
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attack data to estimate the parameter λ of QR using the Maximum Likelihood

Estimation method (MLE), as formulated below:

λlearnt ∈ argmax
λ

∑
m

∑
i

zmi log qi(x
m;λ) (4.2)

where xmi is the defender’s coverage probability at target i and step m and zmi is

the corresponding number of attacks.

During the planning phase, the defender utilizes the learned λlearnt value to

optimize his defense against such an attacker. The optimal strategy, x∗, is given by:

x∗ ∈ argmax
x∈X

∑
i

qi(x;λ
learnt)Ud

i (xi) (4.3)

Behavior deception of attacker. [88] Since the (naive) defender uses the

entire learning dataset to construct a single attacker model, a clever attacker might

change its own behavior during the learning phase in order to benefit during the

planning phase1. It is naturally assumed that only perfectly rational attackers

display such deceptive behavior. Therefore, the partial behavior deception model

centers on a single perfectly rational deceptive attacker, amongst the bounded

rational attackers, that can alter some fraction of the training dataset. The

bounded rational attackers attack non-deceptively according to a fixed unknown

QR parameter λtrue. Essentially, the deceptive attacker wants to find the best

perturbation of the training data to maximize its utility in the planning phase,

1In this paper, we focus on the one-shot game which only consists of a learning phase and
planning phase—a commonly-used security game model in literature. Therefore, the deceptive
attacker can simply play perfectly rationally in the planning phase after deceiving the defender
in the learning phase. This model can also serve as the basis for repeated security games which
involve multiple learning-planning rounds where the attacker plays deceptively in all rounds
except the last round.
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denoted by Ua(x∗(z)), as follows:

(DecAlter) : max
z={zmi }

Ua(x∗(z)) (4.4)

s.t. zmi ≥nmi ,∀m, i (4.5)∑
i

zmi ≤(f + 1) ·
∑
i

nmi ,∀m. (4.6)

where x∗(z) is the defender’s strategy determined based on his learning-planning

method in (4.2–4.3). In addition, nmi is the number of attacks by the non-deceptive

attackers and f ∈ R is the ratio of deceptive attacks to non-deceptive attacks at

each step m. Constraints (4.5–4.6) guarantee that the deceptive attacker can only

control its own attacks. We denote by z = {zmi } the deception outcome of the

deceptive attacker, which includes the non-deceptive attacks (n = {nmi }). The

defender learns a (deceptive) parameter λlearnt using z.

4.5 Cognitive Hierarchy Approach

In order to determine a counter-deception strategy for the defender, a

possible approach is to compute a fixed point equilibrium of the deception game

in which each player reasons about its opponent’s strategy recursively till infinity.

However, finding a fixed point equilibrium in our game is extremely challenging.

This is because the defender has no information (or prior) about the behavior of

the non-deceptive attackers. As a result, the defender has to relate the equilibrium

outcome for every possible true behavior of these non-deceptive attackers to the

observed (manipulated) attacks. This task is challenging (as well as impractical)

given that the behavior space of attackers is infinite.

In real world settings, cognitive hierarchy models have been proven more

effective than equilibrium based approaches at realistically modeling player

behavior [19, 17, 49]. This is because human players do not exhibit infinite level
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strategic reasoning. Cognitive hierarchy theory states that players in games can be

divided into different levels of thinkers, each assuming that no players are on levels

above them [149]. In a mixed attacker deception setting, we can model the levels as

follows:

– Level 1: The rational attacker plays truthfully. The defender follows the two-

stage learning-planning approach to compute a defense strategy.

– Level 2: The rational attacker plays deceptively, assuming the defender is

at level 1. The level 2 defender, on the other hand, attempts to counter the

attacker deception, assuming the attackers are at levels 0, 1, or 2.

– Level l > 2: The strategic reasoning is similar to level 2. Specifically, the

attacker assumes the defender is at level l − 1 while the defender assumes the

attackers are at any one of the levels up to and including l.

Previous work has shown that distributions of human players in normal

form games mostly consist of lower level players [149]. The aforementioned partial

behavior deception model focuses on the deception by a level 2 attacker [88]. Our

paper studies the counter-deception by a level 2 defender.

4.6 Finding Non-Deceptive Attacker Behavior

In order to determine an effective defense strategy, we begin our analysis

by characterizing the space of possible attack behavior (described by QR) of the

non-deceptive attackers, given the perturbed data z. Recall that the non-deceptive

attackers respond according to a fixed λtrue, unknown to the defender. Instead, the

defender obtains a learning outcome λlearnt given perturbed training data. Our goal

is to estimate the possible values of λtrue given observed learning outcome λlearnt.
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4.7 Characterizing Deceptive Attacker’s Behavior

We first analyze the deception possibilities for the deceptive attacker given

any value λtrue of the non-deceptive attackers. The results we establish here help

us in our goal of estimating λtrue. For analysis sake, we assume that the number of

attacks is large enough such that the sampled attacks is close to the actual attack

probability distributions. We will relax this assumption later. Mathematically, we

assume: (
nmi

)/(∑
j

nmj
)
≈ qmi (x

m, λtrue),∀m (4.7)

where nmi refers to the number of attacks committed by the non-deceptive attacker

at target i. As shown in (DecAlter), the objective utility function of the deceptive

attacker depends on the strategy of the defender, which in turn is governed

by the training data {zmi }, and the training data contains attacks by the non-

deceptive attacker too ({nmi }). Thus, the outcome of λlearnt depends on the

behavior of the non-deceptive attacker λtrue (or {nmi }). We thus also use the notion

DecAlter(λtrue) = λlearnt to represent the dependence of the learning result (altered

by deception) on λtrue.

For this portion of our analysis, we relax the domain of z to be continuous.

This allows our proofs to be simpler and more concise. In practice, this value is

limited to discrete integers; fractional attacks are nonsensical. Later, we will extend

the methods to the discrete z case, and show why they still apply. We exploit

the KKT condition for the optimality of the deceptive λlearnt as the outcome of the

defender’s learning, formulated in optimization (4.2). Essentially, λlearnt has to
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satisfy the following KKT condition:∑
m

[∑
i

zmi

][∑
iz
m
i U

a
i (x

m
i )∑

i

zmi
−
∑
i

qi(x
m;λlearnt)Ua

i (x
m
i )︸ ︷︷ ︸

Attacker utility Ua(xm;λlearnt)

]
=0

where Ua(xm;λlearnt) is the attacker’s expected utility when the defender plays xm

and the attacker plays according to λlearnt. In our theoretical analysis, we leverage

the following important monotonicity property of this utility function:

Observation 1 ([89]). Ua(xm, λ) is an increasing function of λ for any given

strategy xm.

Let’s assume, WLOG, the attacker’s utilities at each target has the following

order: Ua
1 (x

m
1 ) ≤ Ua

2 (x
m
2 ) ≤ . . . ≤ Ua

T (x
m
T ) for all m. Observation 1 aids us

in showing that all feasible (not necessarily optimal) deceptive λ values form an

interval [λlearntmin , λlearntmax ] with λlearntmin , λlearntmax specified as follows:

Theorem 1 (Characterization of Deception Space). Given λtrue and the attack

ratio f , the space of deceptive parameters inducible by the deceptive attacker forms

an interval [λlearntmin , λlearntmax ], where λlearntmax is the unique solution of:∑
m,j

nmj
[
Ua(xm;λtrue)+fUa

T (x
m
T )−(f+1)Ua(xm, λlearntmax )

]
=0

and λlearntmin is the unique solution of:∑
m,j

nmj
[
Ua(xm;λtrue)+fUa

1 (x
m
1 )−(f+1)Ua(xm, λlearntmin )

]
=0

All formal proofs are in the appendix. Essentially, Theorem 1 states

that given some true behavior of the non-deceptive attacker λtrue, the deceptive

attacker can force the deceptive λ to be any value in [λlearntmin , λlearntmax ]. Further, the

deceptive attacker cannot make the defender learn any λ outside of this range.

Based on Theorem 1, we present the following corollaries which characterize the
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monotonicity of λlearntmin and λlearntmax , as well as the monotonicity of the optimal

deception λlearnt = DecAlter(λtrue) ∈ [λlearntmin , λlearntmax ] with respect to the non-

deceptive attacker behavior λtrue.

Corollary 1. Consider two different behavior parameters, λtrue1 ≤λtrue2 . Denote by

[λlearntmin,1 , λ
learnt
max,1] and [λlearntmin,2 , λ

learnt
max,2] the corresponding deceptive parameter ranges, we

have: λlearntmax,1≤λlearntmax,2 and λlearntmin,1 ≤λlearntmin,2 .

Based on Corollary 1, we obtain Corollary 2 showing the monotonicity

relation between λlearnt and λtrue.

Corollary 2. Consider two different behavior parameters, λtrue1 ̸= λtrue2 . Then, we

have:

λtrue1 ≤λtrue2 =⇒ DecAlter(λtrue1 )≤DecAlter(λtrue2 ) (4.8)

DecAlter(λtrue1 )<DecAlter(λtrue2 ) =⇒ λtrue1 <λtrue2 (4.9)

Corollary 3. Consider two different behavior parameters λtrue1 ≤ λtrue2 . If the

corresponding optimal deception solutions: DecAlter(λtrue1 ) = DecAlter(λtrue2 ),

then for any λtrue ∈ [λtrue1 , λtrue2 ], we also have its optimal deception solution:

DecAlter(λtrue)=DecAlter(λtrue1 ).

4.8 RaBiS: Characterizing Behavior of Non-Deceptive Attacker

In this section, we attempt to find the range of possible values for λtrue,

which is unknown to the defender, as only the deceptively altered QR parameter

λlearnt is observed. We leverage the results of Corollaries 2 and 3 for this analysis.

Lemma 1. Given some learned λlearnt, there exists an interval [λtruemin , λ
true
max] such that

all values λtrue ∈ [λtruemin , λ
true
max] leads to the same outcome λlearnt. In addition, both

bounds λtruemin and λtruemax are increasing in λlearnt.

95



Based on the above result, we propose a binary-search based approach,

RaBiS (Range-finding Binary Search), to find the interval [λtruemin , λ
true
max] within an

ϵ-error in a polynomial time for arbitrary small ϵ > 0. RaBiS consists of two binary

searches: the first binary search is to find the upper bound λtruemax and the second

binary search is to find the lower bound λtruemin . Both binary searches maintain a pair

of bounds for binary search (lb, ub). While in theory the range of λtrue is [0,∞), in

practice, a limited range of [0,M ], where M is a very large constant, ensures that

the attacker’s QR behavior with λtrue = M is close enough to λtrue = ∞. Therefore,

in our algorithm, we initialize lb = 0 and ub =M .

At each iteration, we examine the mid-value r = (lb+ub)/2 by comparing

the deception calculation λ′ = DecAlter(r) with the actual deception outcome

computed by the defender, λlearnt. In particular, in the binary search for finding

λtruemax, if λ
′ ≤ λlearnt, there must be a λtruemax∈ [r, ub] such that DecAlter(λtruemax)=λ

learnt

and any λ > λtrue implies DecAlter(λ) > λlearnt. Thus, in order to find λtruemax, we

update the lower bound lb= r. Conversely, if λ′ > λlearnt, it means all λtrue ∈ [r, ub]

will lead to a deceptive parameter value strictly greater than λlearnt. Therefore, we

update the upper bound ub = r. This process stops when ub− lb < ϵ. The binary

search process for finding λtruemin is similar.

4.9 Principled Approach for Low-Data Challenge

Thus far, our analysis of the range of the non-deceptive attacker λtrue

was performed under the approximation assumption of Equation 4.7. However,

in practice, this assumption may not hold true. This is because the attacker

may conduct a limited number of attacks, which leads to a substantial difference
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Figure 11. Attack generation by transforming uniform dist.

between the empirical attack distribution and the true attack distribution, that is:(
nmi

)/(∑
j

nmj
)
̸= qmi (x

m;λtrue),∀m

To address this challenge, we first investigate the generation of limited attack

samples from the true distribution under a static random seed. We show that

our previous theoretical results for the ideal scenario still hold in this “limited-

attack” scenario. We then leverage this result for a static random seed to address

the general case of unknown random seed.

Sampling by transformation. Sample generation from certain parameterized

distributions can be split into a two step process by using a transformation of

known distributions [108, 60]. We show that such split generation is possible for

our problem. Let u be a real valued random variable that is distributed uniformly

between 0 and 1. Given a defense strategy, xm, and QR parameter λ, we define the

function fλ such that P
(
fλ(u) = i

)
= qi(x

m;λ). Note that fλ is a deterministic

function dependent on λ, which we define explicitly next. For any given xm,

partition the interval [0, 1] according to the attack probabilities qi(x
m;λ) specified

by QR with parameter λ, with the following partition boundary points: S(0;λ) = 0,

S(i;λ) =
∑i

j=1 qj(x
m;λ), and S(T ;λ) = 1. Figure 11 is an example when the

number of targets is T = 3. Given this division, we define fλ(u) = i when

u ∈ [S(i− 1;λ), S(i;λ)]; it can be readily verified that P
(
fλ(u) = i

)
= qi(x

m;λ). In

the case of N > 1 attacks, we can view the attack generation process as N samples
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of u to get u = {u1, . . . , uN} and then applying fλ to each of those samples to

obtain the targets attacked.

Static random seed generation. For our problem with parameter λtrue,

after separating the randomness (u) and the effect of the parameter (fλtrue) in

attack generation, the main idea of a static random seed is to assume that the N

uniformly sampled values u are the same for any value of λtrue that we consider in

the binary search for λtruemin or λtruemax. By controlling the randomness, we establish

a deterministic baseline to compare the empirical distribution arising from the

different λtrue that we consider. A big advantage of controlling randomness is that

it allows us to carry over all the previous proofs to a low data setting, as described

next.

Let E(u, λtrue) be the empirical distribution when attacks are computed

using fλtrue and the generated N samples u. We can define the attacker expected

utility w.r.t. this distribution, denoted by Ua(xm;E(u, λtrue)), exactly analogously

to how Ua(xm;λtrue) is defined w.r.t. the true distribution. We obtain Lemma 2

which is analogous to Observation 1.

Lemma 2. For a fixed seed, u, the attacker expected utility computed based on the

corresponding empirical distribution, Ua(xm;E(u, λtrue)), is an increasing function

of λtrue.

In all results previously (including corollaries), we only used the

Observation 1 property of Ua(xm;λtrue). With the result above, we can replace

Ua(xm;λtrue) by Ua(xm;E(u, λtrue)) and all proofs still go through. Hence, our

Theorem 1 holds with respect to Ua(xm;E(u, λtrue)) (which replaces Ua(xm;λtrue)

98



in the equations presented in Theorem 1). This result shows that for a fixed

random seed u we can recover all previous results.

Extension to unknown random seed. The random seed used (by nature)

in the generation of the training data is not known to the defender. To overcome

this challenge, we extend our binary search to consider multiple random seeds. For

each random seed, we run RaBiS to obtain an interval of possible values for λtrue.

Taking a worst-case approach, we consider the smallest interval that spans all of

these ranges as the uncertainty set containing all possible values of λtrue.

4.10 Maximin to Optimize Defender Utility

After finding the range [λtruemin , λ
true
max], the defender must optimize its strategy

accordingly. Essentially, the defender is aware that there are attacks not only

from a rational (deceptive) attacker (who will act optimally in the defender’s

planning phase) but also from bounded rational attackers (whose λtrue can be

any value within [λtruemin , λ
true
max]). In order to overcome the uncertainty about the

behavior of these attackers, we take a maximin approach where the defender

seeks to maximize its utility against the worst possible (for the defender) λ value

within the calculated range. In practice, to deal with the computational challenge

due to an infinite number of possible values in [λtruemin , λ
true
max], we break down this

range into a set of possible discrete values {λtruemin , λ
1, λ2, . . . , λtruemax}. Furthermore,

since the rational attacker will choose an optimal target to attack in the planning

phase, we decompose our defense problem into multiple non-linear programs, each

corresponds to a particular optimal target to attacker for the rational attacker. In

particular, our non-linear program corresponding to an optimal target j can be
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formulated as follows:

maxx f · Ud
j (xj) + Ud

worst-case (4.10)

s.t. Ua
j (xj) ≥ Ua

i (xi),∀i (4.11)

Ud
worst-case ≤

∑
i
qi(x;λ)U

d
i (xi), (4.12)

∀λ ∈ {λtruemin , λ
1, λ2, . . . , λtruemax}∑

i
xi ≤ K, xi ∈ [0, 1],∀i (4.13)

The objective (line 4.10) balances optimization against the fully rational attacker,

Ud
j (xj), and the worst possible bounded rational attacker, Ud

worst-case, with multiplier

f corresponding to the ratio of deceptive to non-deceptive attacks. Constraint

(4.11) ensures that the target chosen by the fully rational attacker, j, is indeed the

highest-utility target. Constraint (4.12) effectively iterates through the λ range,

setting Ud
worst-case equal to the lowest defender utility value among all possible

lambdas. In a zero sum game, these lines could be replaced by simply setting

λ = λtruemax. Lastly, constraint (4.13) provides logical bounds to the defender’s

strategy: the total coverage percentage of all targets cannot exceed the number

of resources, and all targets have coverage probability between 0 and 1.

4.11 Experiments

In our experiments, we analyze: (i) the defender’s utility gain by addressing

deception, and (ii) the loss of utility for the devious attacker. The training data

includes attacks from both the fully rational deceptive attacker and a boundedly

rational attacker whose behavior is described by QR. We use 5 defender training

strategies (M = 5) each with 50 non-deceptive attacks (
∑

i n
m
i = 50) sampled from

the QR distribution with λtrue of the bounded rational attacker. Each data point is

averaged over 200+ games, generated using GAMUT (http://gamut.stanford.edu).
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(a) Vary % of dec. attacks (b) Vary λtrue

(c) Vary % of dec. attacks (d) Vary λtrue

Figure 12. Players Utility Evaluation

For our trials, we vary (i) the true non-deceptive lambda λtrue value and (ii) the

fraction f of attacks done by the devious adversary. Due to limited space, we will

only highlight important results. Additional results are included in our appendix.

All utility results are statistically significant under bootstrap-t (α=0.05) [145].

Figures 12a and 12b display the defender’s utility in two cases: (i)

Addressed — the defender addresses the attacker’s deception using our counter-

deception algorithm; and (ii) Unaddressed — the defender simply does not take

the attacker’s deception into account. In these two figures, the y-axis represents

the defender’s expected utility on average. Both figures show that the defender can

significantly increase his utility for playing our maximin counter-deception strategy.
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In Figure 12a we observe that, when deception is unaddressed, the defender’s utility

decreases exponentially as the deceptive attack ratio increases. On the other hand,

when the defender does address deception, the slope is far more gradual. Figure

12b shows how defender utility increases as the non-deceptive λtrue value does.

This effect tapers off on the upper end of the spectrum. This result is expected

because the non-deceptive attacker gets more rational as λtrue increases, leading to

less changes in the defender’s maximin strategy. Furthermore, in Figure 12b, the

lowest utility point for the defender is when λtrue gets to zero. This makes sense: as

the non-deceptive attackers become completely non-strategic (i.e., λtrue = 0), the

non-deceptive attackers will have less influence on the training data, or equivalently,

the deceptive attacker has more power to manipulate the data.

Naturally, we observe an opposite trend in the attacker-utility graphs shown

in Figures 12c and 12d. That is, the utility of the attacker reduces substantially

when the defender addresses the attacker deception. Figure 12c shows that when

the defender plays our maximin strategy, the attacker’s utility actually decreases

w.r.t. the percentage of attacks controlled by the deceptive attacker. This result

appears to be counter-intuitive at first glance. However, it’s logical: our maximin

algorithm knows the attack ratio so it tailors more of the defense strategy towards

a fully rational attacker (the actual rationality of the deceptive attacker).

Lastly, we analyze runtime performance of both portions of the algorithm in

Figure 13. For the binary search, runtime is high across the board due to the sheer

number of partial deception games (DecAlter) solved in each search. However,

this runtime scales linearly w.r.t. the number of targets (Figure 13a), implying

that the algorithm can be scaled to large games. Furthermore, when varying the

attack percentage (Figure 13c), we see that the runtime peaks with a percentage
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(a) Binary Search Runtime (b) Maximin Runtime

(c) Binary Search Runtime (d) Maximin Runtime

Figure 13. Runtime Evaluation

around 0.3. This peak is shifted compared to the runtime for solving (DecAlter)

only, which peaks around 0.5 [88]. This is because the range, [λtruemin , λ
true
max] increases

as the deceptive attack percentage does, meaning the total search time decreases as

RaBiS exits earlier.

Figure 13b shows how the maximin runtime increases w.r.t. the number

of targets. This is expected since the number of non-linear programs involved

is equal to the number of targets. The maximin optimization can scale to large

games: 500 target games are solved in less than 10 minutes. Observe that we

examine a larger spread of targets here than for the binary search portion of the

algorithm; the binary search runtime is orders of magnitude higher, reaching our
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100 minute cut-off with far fewer targets. Figure 13d shows that maximin runtime

initially increases as the percentage of attacks that are deceptive does, reflecting

the wider range of possible values for λtrue. At higher values this effect diminishes

and runtime ends up decreasing at the 0.9 marker, indicating that it is easier to

optimize a strategy against mostly rational attacks.

4.12 Conclusion

We successfully addressed attacker deception in security games, showing

both theoretically and experimentally the value of our approach. Through

mathematical analysis we explored the characteristics of deception and defense and

developed effective countermeasures: RaBiS allowed the defender to see through the

deceptively altered historical attack data, after which a maximin approach yielded a

robust strategy. Our experiments showed the wary defender receiving much higher

utility than its naive counterpart.
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CHAPTER V

USING REINFORCEMENT LEARNING FOR DATA-BASED DECISION

MAKING IN PUBLIC HEALTH MESSAGING

Acknowledgment. This chapter is adapted from a paper published in IJCAI-

23 (focusing on the initial deployment of our RL system), and a paper that is

currently under review at AAAI (focusing on improving the RL system).

For the first paper, I was a joint first author, along with Jack Wolf. Jack

was the primary researcher at the start of the project, and was responsible for

the real-world RL system design, implementation, and deployment. Following his

departure from the program, I took over the project. I was responsible for mid and

post-deployment analysis, including the behavior modeling work. The writing is a

result of collaboration between myself and the other academic co-authors: Professor

Arunesh Sinha, and Professor Thanh H. Nguyen. Lastly, the real-world deployment

of this system was done in collaboration with Arogya World, an NGO in India.

The credited co-authors from Arogya World are: Nalini Saligram, Varun Ramesan,

Meeta Walavalkar, and Nidhi Jaswal.

For the second paper, I was the first author, and I performed all the

programming and experimental work. Writing, as well as the theoretical analysis,

was a group effort between myself and my co-authors: Professor Arunesh Sinha,

and Professor Thanh H. Nguyen.

Non-communicable diseases (NCDs) such as cardiovascular disease, diabetes,

and cancer, are among the top health challenges of the century. According to

WHO, NCDs kill 41 million people each year, equivalent to 74% of all deaths

globally. Notably, 85% of premature deaths from NCDs occur in low- and middle-

income countries [93]. Fortunately, these serious diseases are largely preventable.
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According to WHO, NCDs are preventable with three lifestyle changes: eat healthy

food, increase physical activity, and avoid tobacco. Yet barriers in underprivileged

regions often prevent engagement in these activities, particularly poor education

about the disease, lack of social support, and limited healthcare access.

We propose to overcome some of these barriers by building a new AI-

based system which can help in improving diabetes risk behavior of people in such

underprivileged regions. We build an effective messaging intervention system, that

dynamically sends personalized messages to participants (through Whatsapp).

These messages contain information about diabetes causes and complications, and

the impact of nutrition and fitness on preventing diabetes. We chose Whatsapp to

transmit our messages since mobile phone uptake is high in India, and Whatsapp

is an essential communication channel that is accessible to almost everyone.

Existing non-profit healthcare programs often pre-design fixed non-personalized

messages [104, 112]. Our work seeks to improve this using AI, leveraging techniques

in RL to optimize our message selection policy and tailoring sent messages to align

with each individual participant’s needs and preferences.

We provide four main contributions. First, we build an online diabetes-

targeted intervention system that automatically sends out messages to participants

in our study on a weekly basis. Each week, messages sent to each participant are

determined based on behavior dynamics of the participant. In the same week, our

system collects information about changes in behavior of participants through a

question/answer mechanism, which is leveraged to improve our message generation

in later weeks. Second, we model the problem of optimizing message generation

as a RL problem and develop a RL algorithm for solving this problem, tackling

concrete real-world challenges exhibited in our problem domain. Our algorithm is
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Figure 14. Personalized message-based intervention system overview

an extension of DQN [78], a well-known RL method, with adaptations to handle

simultaneous interactions with multiple participants in an online learning fashion.

Third, we run an extensive field study that involves over 1000 participants

from local villages that received messages generated by our system for more

than six months. Our analysis shows that there are significant improvements

in the participants’ diabetes-related knowledge, physical activities, and high-fat

food avoidance at the end of our field study. Finally, we build a new neural net-

based behavior model to predict participants’ behavior changes, leveraging the

data collected during our study. We show that our model, which exploits inherit

differences in behavior changes across different types (knowledge, physical activity,

and food consumption) obtains the best prediction accuracy compared to baselines.

5.1 Personalized Message-Generation System

In this chapter, our goal is to optimize the impact of our message

intervention program on participants’ lifestyle behavior. The challenge is that

participants have varied lifestyle and also may have various kinds of reaction to

our messages. Therefore, it is important that we can personalize the message
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Figure 15. Weekly message/question flow

Message example on week k: (Fitness) You can help avoid diabetes by 
being physically active. Walk to the temple or shops, climb stairs. 
Walk briskly or exercise for 30 mins daily. 

Question example on week k+1: In last week, how often would you 
have done any form of exercise (Yoga/Running/Jogging/In 
Gym/Aerobics etc.)?
Answer format:  1. Daily days 3. Selective days/weekends

2. Alternate 4. Never

Figure 16. An example of weekly messages and questions

selection policy for each individual participant. We propose to apply techniques

in reinforcement learning to serve this purpose. Overall, given a message bank

as an input, our RL-based system runs for a number of rounds (i.e., weeks).

In each round, our system selects a pair of messages for each participant and

sends out these messages to the participants. In addition, the system sends out a

separate pair of questions to each participant and collect answers from them. These

questions collect information regarding the changes in the participants’ lifestyle on

a weekly basis. Our system then uses the participants’ responses to these questions

as feedback to update our message selection policy. The overview of our system is

illustrated in Figure 14.

Our messaging process has three distinct phases. In phase one of participant

sign-up, health workers visit villagers in person. The health workers (i) sign up

people for receiving our health-related messages; (ii) provide detailed instructions of

the program to the participant; and (iii) distribute initial questionnaire and collect

answers from participants. The initial questionnaire includes questions about
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the participants’ demographics, family health-related history, knowledge about

diabetes, physical activities, and food intake, etc. We use participants’ responses

to this questionnaire to build the initial state of participants.

In more detail, each participant’s state consists of “scores” for the five

categories: (a) healthy food intake, (b) unhealthy food/tobacco/alcohol intake,

(c) fitness/physical activity level, (d) diabetes cause knowledge, and (e) diabetes

complication knowledge. The scores take value in {1, 2, 3} where 1 means “Low”, 2

means “Medium”, and 3 represents “High”. For example, the state for a participant

can be (1, 3, 2, 2, 3) where the score for the health food intake of this participant is

1, it means that this participant rarely consumes healthy food such as vegetables

and fruits. Thus, this score implies that this participant should receive messages

that encourage the participant to eat more healthy foods.

In phase two, participants receive two messages and two questions each

week, each message or question targets one of the above five categories. The sets of

messages and questions are carefully designed in local language by domain experts.

In this phase, our message-based intervention system interacts with participants

via Whatsapp. The flow of the weekly interactions with each participant is

illustrated in Figure 15 and an example of weekly messages/questions is provided

in Figure 16. As we show in Figure 16, the purpose of the questions asked in each

week is to determine the impact of the messages sent out in the prior week on

the participants’ behavior change. We remark that our system sends out only two

messages and two questions on two days per week (i.e., Tuesdays and Fridays and

one message/question per day) for the sake of participants’ comfort. Overloading

the participants with messages/questions can potentially disrupt participants’

daily activities, causing unnecessary burden, decreasing their engagement in our
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program. Finally, responses of participants to our questions is used to update the

participants’ state. Our system then leverages the participants’ updated state to

generate new messages and questions in the following week.

Finally, in phase three we perform a post-study analysis, in which our health

workers meet participants in person again and conduct the same questionnaire as

in phase one. Our goal is to have a complete comparison of the behavior changes in

beneficiaries before and after participation in our program.

5.2 RL-based Message Generation Algorithm

The core of our message-based intervention system is the RL agent that

actively selects weekly messages and questions for individual participants in a

personalized manner based on their previous responses. We adopt ideas from Deep

Q-Learning (DQN) [78], a well-known RL method in literature, to build our RL

agent. However, we face the following challenges. First, RL methods are effective

typically when they are pre-trained before the actual real-world deployment.

However, in this setting, there is no historical participant data that can be used

for pre-training RL methods. Our RL agent has to be trained directly on the

job during limited weekly interactions across only 25 weeks. Second, ideally, we

can treat each participant as a separate Markov Decision Process and train a

separate RL agent for each participant. However, our system can only obtain a

single trajectory of state transition for each participant, which is extremely limited

information for building an RL agent for each individual. Conversely, a single

RL agent for the whole population may fail to capture the diverse behavior of

participants. Third, traditionally, RL models are iteratively trained by sequentially

acquiring different episodes of interactions with the environment. However, here our

system interacts with multiple participants in parallel across a single episode.
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Algorithm 2: Adaptive Message Generation.

1 Calculate participant initial states based on their responses to the base

questionnaire {s(i)0 };
2 Warm-up step: Pre-train action-value network Q with parameters θ based

on initial states of participants;
3 Initialize target action-value network Q̂ with θ̂ = θ;
4 for t = 1 → T do
5 for i = 1 → N do

6 With prob. ϵ, select a random action (i.e., a pair of messages) a
(i)
t

for participant i;
7 With prob. 1− ϵ, select a

(i)
t = argmaxaQ(s

(i)
t−1, a, θ);

8 if t > 1 then

9 Send questions q
(i)
t−1 and obtain answer

(i)
t−1;

10 Update participant state: s
(i)
t = Update

(
s
(i)
t−1, q

(i)
t−1, answer

(i)
t−1

)
;

11 Calculate reward r
(i)
t−1 based on state update and add transition(

s
(i)
t−1, a

(i)
t−1, s

(i)
t , r

(i)
t−1

)
to D;

12 for n = 1 → numUpdate do
13 Sample random minibatch of transitions (sj, aj, sj+1, rj) from D;
14 Perform a gradient descent step to update θ on[

rj + γmax
a′

Q̂
(
sj+1, a

′, θ̂
)
−Q (sj, aj, θ)

]2
;

15 if t mod step = 0 then Update θ̂ = θ ;

Given these real-world deployment challenges, we create a new variant of

DQN with the following revisions. First, we provide a warm-up stage in which

we “pre-train” our model; we leverage the participants’ responses to the initial

questionnaire to initialize values of learnable parameters of our model. Intuitively,

these values are determined such that our model generates messages for each

participant that target state categories in which the participant has low scores.

For example, if the participant has low physical activity level (i.e., score is 1),

the model will likely select a message that encourages the participant to do

more physical exercise. Second, based on initial state scores, we use a clustering
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method to divide participants into three groups such that participants in the

same group have similar initial states. We aim to train a single RL agent for

each group, anticipating similar in-group behavior. Note that this means the RL

agent is trained based on data collected from all participants within a group;

however, messages and questions selected by the RL agent for each participant

are determined by their individual state. By doing so, we use enough data to

train our model while still personalizing messages. Third, we modify the DQN

training process to allow multiple updates of model training in each step (a week)

and simultaneous state and message updates for all participants. The details are

presented in Algorithm 2, which runs separately for each participant group.

Essentially, in each week t, each participant i is associated with a state

s
(i)
t−1 which represents the latest status of the participant lifestyle behavior as we

discussed previously in Section 5.1. The goal of Algorithm 2 is to train a neural net

model with unknown parameters θ to predict the q-value Q(s
(i)
t−1, a, θ) of the state-

action pair (s
(i)
t−1, a). Here, an action a represents a pair of messages selected from

the weekly message bank. Intuitively, the q-value Q(s
(i)
t−1, a, θ) is the total expected

reward that we receive if the action a is chosen for participant i given the latest

state value s
(i)
t−1. This total expected reward captures the long-term impact of the

selected action on the behavior change of participant i in the future.

Warm-up. In the warm-up phase, we pre-train our neural net model by

minimizing the following MSE:

θinit ∈ argmin
θ

1

N

N∑
i=1

∑
a∈A

[
Q(s

(i)
0 , a, θ)− init.value(s

(i)
0 , a)

]2
where init.value(s

(i)
0 , a) is the estimated importance score of action a for participant

i given the participant initial state is s
(i)
0 . Note that this initial state is estimated
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based on the participant’s response to the questionnaire. The score init.value(s
(i)
0 , a)

is determined such that this value will be high if the action a includes messages

that target categories that the participant has low scores, and vice versa. For

example, if the participant has score 1 for the physical activity category in s
(i)
0 , the

value of init.value(s
(i)
0 , a) is 3 if the action a has physical activity-related messages.

Here, N is the total of participants in the considering group and A is the set of all

possible actions (i.e., pairs of messages).

Weekly message/question selection. In the weekly message/question phase,

at every week t, for every participant i, with a probability of ϵ > 0, we select an

action a
(i)
t for participant i uniformly at random. And with a probability of 1−ϵ, we

select the optimal action a
(i)
t = argmaxaQ(s

(i)
t−1, a, θ). This ϵ-greedy approach allows

us to balance between exploration and exploitation during the learning process. We

then send a pair of questions q
(i)
t−1. These questions are used to measure the impact

of messages the participants received in the last week t − 1. We remark that if we

receive responses from participants for these questions quickly, we can immediately

use these responses to update participants’ state and then generate new messages

for this week. However, this is not the case due to delayed updates, meaning that

we have to send out messages for this week prior to receiving responses. Therefore,

we have the following message/question procedure:

– Week t = 1: we send out messages a
(i)
1 based on s

(i)
0 .

– Week t = 2: we send out messages a
(i)
2 based on state s

(i)
1 = s

(i)
0 . We then send

out questions q
(i)
1 regarding impact of a

(i)
1 and receive responses answer

(i)
1 . We

update state s
(i)
2 = Update(s

(i)
1 , q

(i)
1 , answer

(i)
1 ).
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– Week t = 3: we send out messages a
(i)
3 based on state s

(i)
2 . We send out

questions q
(i)
2 regarding impact of a

(i)
2 and receive responses. We update state

s
(i)
3 = Update(s

(i)
2 , q

(i)
2 , answer

(i)
2 ), and so on.

Note that, in reality, participants may not respond every week. When we do

not receive any answer from a participant, there will be no state change for that

participant, i.e., s
(i)
t = s

(i)
t−1.

Model training update. Similar to DQN, we maintain a replay buffer

D of historical interactions with participants. At every step t, transitions(
s
(i)
t−1, a

(i)
t−1, s

(i)
t , r

(i)
t−1

)
of every participant i will be added to D. Here, the reward

r
(i)
t−1 is calculated based on the state change (s

(i)
t−1, s

(i)
t ). For example, if the physical

activity score part of the state is updated from a value of 1 in s
(i)
t−1 to a value of 2

in s
(i)
t , then the reward r

(i)
t−1 = 1. This reward value indicates that the action a

(i)
t−1

had positive impact on the participant i’s exercise behavior. If multiple categories

in the state have their scores changed, then the reward is computed as the sum

of rewards over all these categories. This buffer D is used to update the neural

net parameters θ. In addition to D, we also maintain a target network Q̂ with

target parameters θ̂. The values of the parameters θ̂ are updated periodically

based on the network Q. The replay buffer D and target network Q̂ are the

main ideas of DQN that help in stabilizing and improving the q-learning process.

Finally, at each week t, after updating D with new transitions, we run a number

of iterations numUpdate to perform gradient descent updates on θ based on the

loss
[
rj + γmax

a′
Q̂
(
sj+1, a

′, θ̂
)
−Q (sj, aj, θ)

]2
which is computed based on a mini-

batch of transitions (sj, aj, sj+1, rj) sampled from D.
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5.3 Real-world Deployment

For real world deployment, our primary goals were to lay the groundwork

for our message intervention program. These included completing all the

required preparations, obtaining IRB approval, working with domain experts to

design a bank of messages and questions, completing front-line worker training,

collecting baseline data, and testing the transmission system. In addition, our

critical objectives included recruiting beneficiaries and commencing the message

transmission.

In January and February of 2022, we successfully set up the automated

messaging pipeline by linking our Google Cloud VM to our partner’s cloud storage,

allowing for seamless and automatic transmission of messages and questions

selected by our RL system to participants. We also completed Facebook business

verification, obtained approval for WhatsApp message transmission, and developed

the AI tool. Crucially, we ensured that key people from multiple project partners

could seamlessly share de-identified data files and responses from the villagers

each week. Finally, we completed training for 20 front-line workers on the project

implementation.

In February and March of 2022, our front-line workers collected behavior

surveys (questionnaire) from 1698 participants who are local villagers in India.

We successfully completed a pilot test of the diabetes-related AI messaging bot

to verify functionality of the overall system. In the end, we successfully recruited

1049 participants to opt-in to receive the diabetes messages. To compare with

the existing static message program in which all participants received the same

sequence of messages, we randomly divided participants into two groups: 548
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participants joined our AI-based message program (we call this group the AI group)

and 501 joined the baseline static message program (the non-AI group).

In March of 2022, we began the message transmission for the first batch of

users with those in the AI cohort receiving two messages and two questions weekly

on Fridays and Tuesdays. Participants in the non-AI group received two messages

on Thursdays and Mondays each week. We remark that all participants did not

opt-in at the very start but gradually joined over a couple of weeks. The villagers

in the AI group responded to questions asked — engagement levels were around

35% past week 8 of the study.

The study ended in November 2022, at which time the post-study

questionnaire was sent to the participants. This is the same questionnaire used

at the beginning of our study. Based on responses of participants, we are able

to evaluate the effectiveness of the AI system by comparing the performance of

participants between the AI and non-AI groups.

5.4 Post-Study Intervention Result

We analyze behavior changes in both AI and non-AI participant groups

based on their responses to the same questionnaire before/after joining our study.

We divide questions into different types that focus on knowledge, physical activity,

and dietary. Responses to each question are converted into three scores: 1 (low),

2 (medium), and 3 (high). The final score of a participant in each category is

averaged over all questions in that category. We compute the score difference

between the pre- and post-studies for each participant. Positive score changes imply

participants improve their behavior at the end of our study. Our analysis results

are shown in Figures 17, 18, 19 where the x-axis represents the participants and the

y-axis represents the score change.

116



Figure 17. Knowledge category results
Knowledge Comparison. We plot results on cause knowledge and complication
knowledge (of diabetes). Overall, AI group shows a substantial improvement in

both cause and complication knowledge scores. In particular, AI group outperforms
the non-AI group significantly in cause knowledge. In complication knowledge,
non-AI group has a higher percentage of participants who have positive score
changes but also a higher percentage of participants who have negative score
changes — In the end, the AI-group obtains a higher mean score improvement

compared to the non-AI group.

To compare our AI versus the non-AI intervention, we consider three

statistics: (i) mean score change across each population; (ii) percentage of

participants who improve their scores; and (iii) percentage of participants who

decrease their scores. For example, in Figure 17 for the AI group, 58.3% of the

participants have a positive score changes while 19.4% have a negative score

changes in the diabetes-cause knowledge type. In addition, the mean score change

is 0.387. For the AI group, we only consider participants who have response rates of
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Figure 18. Physical activity category results
Physical Activity Comparison. We plot results on daily average exercise time,
incidental exercise (this refers to exercises incurred throughout daily activities, such
as choosing to walk for errands, walking around the house, and taking stairs instead
of elevators, and sport/workout/walking). Overall, AI group shows a substantial

improvement in both average exercise time and incidental exercise, which
outperforms the non-AI group. In the sports/workout/walking type, non-AI group

has a higher percentage of participants who have positive score changes;
nevertheless, the mean score change is not much different.

at least 50%. Our rationale is that low-response rate participants do not engage in

the study, and thus, their behavior will not be impacted by the AI messages.
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Figure 19. Dietary category results
Dietary Comparison. We plot results on unhealthy food, fruit, and vegetable
consumption. Overall, in the unhealthy food consumption category, the AI group
shows a substantially more improvement compared to non-AI group — (25%

improvement, 13.2% deterioration, 0.236 mean) versus (17.5% improvement, 13.8%
deterioration, 0.073 mean). In the fruit/vegetable category, we observe somewhat
negative changes in both non-AI and AI groups. That is, a higher percentage of
participants had negative score changes compared to positive score changes.
However, the mean score changes in both groups are very close to zero.
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5.5 Human Behavior Modeling

We aim to build a predictive model characterizing how participants behave

in response to our message intervention program. Such predictive model could be

used in the future to create simulated data to refine our message selection policy.

Feature Extraction. We use data collected from our field study for this

modeling task. We divide the questionnaire and the weekly messages/questions into

17 finer categories. The questionnaire responses are then used to compute scores

in each of these categories for all participants, which are then used as features.

Additionally, we include the message and question ID that the participant received,

along with the category that they belong to. To provide the model with more

context, we include the previous week’s information for all these categories, along

with the responses received from participants. Lastly, we also include a coarser

categorization feature, indicating whether the question asked is regarding one of

three types: knowledge, physical activity, or dietary.

Model Description. The prediction task, then, is to use the extracted

features to predict participants’ responses to the questions they receive. We cast

this problem as a multi-classification problem. In each week, for each participant,

we take each question and other features associated with that participant as an

input to produce a prediction of the corresponding response of that participant

(which is categorized into three levels 1 (low), 2 (medium), and 3 (high)).

We consider three different models as baselines for this task: (i) the classic

logistic regression; (ii) a simple neural network (NN) with two fully-connected

linear layers; and (iii) a Long Short Term Memory (LSTM) based model [48] (i.e., a
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LSTM block followed by a simple linear layer). We remark that LSTM is commonly

used in deep knowledge tracing [105].

Importantly, we observe participants’ behavior changes vary across different

types of diabetes-related activities. As a result, a single behavior model may

perform poorly in predicting responses to various types of questions. Therefore,

we aim to build predictive models that can differentiate behavior changes of

three different types: food consumption, physical activities, and diabetes-related

knowledge. More specifically, we propose the three models: (i) type-trifecta logistic

regression — this model consists of three separate logistic regression components,

each produces predictions for responses in one of the aforementioned types; (ii)

type-trifecta simple neural network — this model consists of three separate neural

net components, each is a simple 2-layer neural net; and (iii) type-trifecta LSTM

— this model has a shared LSTM block followed by three separate blocks of linear

layers.

Accuracy Evaluation. All of our behavior prediction models were trained

on dual Intel E5-2690v4 processors. All experiments were trained in PyTorch

using cross entropy loss and the Adam optimizer. For our experiments, we collect

all results over 30 random seeds (resulting in different model initializations and

test/train splits) and report the mean along with the standard deviation. We

remark that there are a lot of missing responses in our training data set (response

rates of participants is less than 40%). Therefore, in our experiments, we examine

two options: one is to simply encode missing responses as “−1” and the another is

to replace missing responses by our model predictions. In addition, we try adding

noise (i.e., zero mean Gaussian noise) to participants’ responses. The purpose is to

examine if this noise helps in improving the robustness of our models or not. Our
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Model Acc. Train Acc. Test

Simple NN 0.533± 0.016 0.525± 0.022
LSTM 0.541± 0.022 0.533± 0.030

Logistic Regression 0.524± 0.009 0.515± 0.018
Simple NN

Type Trifecta
0.59± 0.005 0.58± 0.019

LSTM
Type Trifecta

0.583± 0.006 0.575± 0.019

Logistic Regression
Type Trifecta

0.585± 0.005 0.578± 0.018

Table 1. Evaluation with no noise, no predicted feature insertion.

Model Acc. Train Acc. Test

Simple NN 0.536± 0.017 0.528± 0.022
LSTM 0.548± 0.023 0.542± 0.028

Logistic Regression 0.525± 0.009 0.516± 0.018
Simple NN

Type Trifecta
0.59± 0.005 0.58± 0.019

LSTM
Type Trifecta

0.584± 0.005 0.576± 0.019

Logistic Regression
Type Trifecta

0.584± 0.005 0.578± 0.019

Table 2. Evaluation with noise, but no predicted feature insertion.

prediction accuracy results for all models are shown in Tables 1–3, corresponding

to three settings: (i) no noise is added to participants’ responses and missing

responses are encoded as “−1” (Table 1); (ii) similar to (i) but Gaussian noise is

added (Table 2); and Gaussian noise is added and missing responses are replaced

with the model prediction (Table 3).

All three tables show that differentiating behavior changes according to

three different categories of food consumption, physical activities, and knowledge

significantly improves the prediction accuracy of our models compared to the

baselines. For example, in Table 1, the type-trifecta simple NN model obtains
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Model Acc. Train Acc. Test

Simple NN 0.531± 0.014 0.523± 0.019
LSTM 0.548± 0.023 0.535± 0.029

Logistic Regression 0.53± 0.010 0.522± 0.019
Simple NN

Type Trifecta
0.592± 0.005 0.578± 0.019

LSTM
Type Trifecta

0.579± 0.008 0.572± 0.022

Logistic Regression
Type Trifecta

0.587± 0.006 0.577± 0.019

Table 3. Evaluation with noise and predicted feature insertion.

an averaged prediction accuracy of 59% and 58% on the training and test sets,

respectively. This is significantly higher than the prediction accuracy of the single

simple NN model (i.e., 53.3% and 52.5%). We also observe the similar performance

enhancement trend for the logistic regression and the LSTM-based models. In

addition, interestingly, unlike in knowledge tracing [105] where LSTM-based models

are shown to be superior in predicting the knowledge of students, our results show

that the type-trifecta simple NN model performs the best. This phenomenon

perhaps comes from the limited data availability (with missing responses) in our

domain that potentially deteriorates the performance of complex models like

LSTM. Lastly, we do not observe a substantial changes in prediction accuracy of all

models when we introduce Gaussian noise to responses or insert model predictions

to replace missing responses.

5.6 Deployment Results and Learned Lessons

In summary, we developed an RL-based personalized messaging system

for diabetes intervention tailored to people living in rural areas where access

to healthcare, social support, and education are limited. We ran an extensive

field study that involves more than 1000 local villagers participating in our
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messaging program. Our post-study analysis results show the significant benefit

of our approach (compared to the existing system) in the participants’ diabetes-

related knowledge, physical activities, and high-fat food avoidance. Furthermore,

our behavior models which leverage characteristics of participants’ responses

outperform baselines including the single LSTM model that is commonly used in

knowledge tracing.

We would like to highlight some important lessons learned during this work.

First, collaborations among different partners with different areas of expertise

including NGOs, health domain experts, and academics are the key to the success

of social impact projects. Second, real-world domains exhibit various challenges

that we may not be able to anticipate when building our AI models. Continuing

to improve our models and solutions with the adaptation to rising challenges

is essential to the long-term impact of the project. For example, our current

RL model does not directly account for missing responses from participants.

Furthermore, answers about behavior are self-reported and could be misleading.

We plan to address these limitations in future work. Third, available real-world

data in this domain is extremely limited. Thus, simple models may work better

than complex deep learning models.

Non-communicable diseases are a growing problem in low and middle

income countries [77]. These include diseases such as hypertension and diabetes.

Lifestyle, especially diet and exercise, can contribute to such diseases, though in

some patients the cause is genetic. While effective awareness efforts and good

healthcare facilities have led to reduction and management of such lifestyle

diseases in developed countries, these diseases afflict many people in the developing

countries. According to WHO, such diseases kill 41 million people each year, with
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as much of 85% of premature deaths from lifestyle diseases occurring in developing

countries [93]. But, in developing countries with weak healthcare infrastructure and

limited access to health education, such lifestyle diseases are often under diagnosed

and proper management regimes are not followed, making management of such

diseases very challenging.

One effective approach to this problem is to prevent such diseases before

onset, by spreading awareness about them. In many cases these diseases can be

prevented by following a healthy lifestyle, such as regular physical activity, eating

healthy food, and avoiding consumption of harmful products such as alcohol and

tobacco. We posit that AI based approaches can be effective at spreading awareness

and education to underserved populations.

There exists prior work that specifically uses such an AI based

approach [61]. They designed a reinforcement learning (RL) based system to

send targeted messages spreading awareness about diabetes to participants in a

pilot study conducted in India. While the study was successful in nudging people

to follow a healthier lifestyle, a number of real world challenges were abstracted

away in the model design. Briefly, in this prior work, the RL action is to choose

and send out messages to participants in the pilot study on a weekly basis. The

messages are determined based on current behavior of the participant, which is

stored as part of the state of the RL system. Their system collected information

about changes in behavior of participants through a question/answer mechanism,

that was used to update the state of the RL system. Participant feedback allows for

more targeted messaging. However, this prior work did not tackle pertinent issues:

(1) participants may not respond to all or some questions about their behavior,

thus, the knowledge about the behavior of any participant may be incomplete at
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the current time step; technically, this is the issue of incomplete state observation

and (2) whether the messaging was successful or not was determined by a post-

study questionnaire, thus, the reward for this RL task was received at the very end;

technically, this is the issue of sparse rewards. Jointly, these two issues present a

significant challenge that needs to be overcome to make the messaging intervention

system more effective on ground.

Our work aims to address these challenges leading to more effective

awareness campaigns for lifestyle diseases. In particular, we propose two novel

ideas: (i) predict the unobserved state (or unobserved part of state) by building

a state predictor that takes as input the action from previous time step and

the observed part as well as the predicted part of the state from the previous

time step; and (ii) redistribute the reward received at the end of the episode to

intermediate states (formed by observed and predicted state) following a recent

scalable approach [114] — it is known that such redistribution helps better learning

in sparse reward problems. Note that this recent approach works only with fully

observed states, thus, our state prediction is a novel design that enables the

application of this approach to more general problems with incompletely observed

states. Using these two ideas, we learn an effective messaging policy by utilizing

a soft actor critic (SAC) architecture to learn from the predicted states and

redistributed rewards. Additionally, we provide a mathematical guarantee that

bounds the deviation of the learned long term reward in our case from the optimal

long term return in the fully observed state scenario, as a function of the state

prediction error.

Finally, we conduct extensive experiments on both a study using a

data-driven simulator of the diabetes messaging system and standard Mujoco
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benchmarks. In particular, we use available data from the prior pilot study to build

a simulator of human responses, which serves as an environment for the messaging

RL task. We utilize an LSTM as the state predictive model. Our results clearly

show the advantage of addressing the incomplete state observation and sparse

reward issues.

5.7 Next Steps: Improving the RL System

Motivated by the success of this real world deployment, we then resolved to

find ways to improve upon the reinforcement learning system for future use.

Real-world Challenges of Sparse Rewards and Incomplete State

Observations. To recap, we conducted a field study in two villages in India in

which more than 1000 local villagers received messages and responded to questions

sent out by our RL system over a period of six months. While our pilot study

shows some promising results, we identified key real-world challenges present in

the domain that our initial RL algorithm failed to address.

The first challenge is regarding incomplete state observations. In a real-

world setting, only certain components of participant states are observable in

every week. Recall that participant states are updated based on their responses

to the questions sent to them in that week. However, to prioritize participants’

convenience and comfort, questions are typically crafted to include simple

content and focus solely on one or a few components of their state. An example

of a question is “In the last week, how often would you have done any form of

exercise?”, then if the participant responds, their answer only provides information

to update the physical activity in his state. Furthermore, our field study shows that

the response rate of participants is only roughly 40%.
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The second challenge is regarding sparse rewards. For our initial

deployment, rewards of messages are measured based on how much these messages

influence participants’ behavior. However, a thorough assessment of these

behavioral changes can only take place upon completion of the study, when a post-

study questionnaire is conducted. In other words, we can only accurately compute

the episodic reward associated with the messages at the end of the study.

Our work, therefore, focuses on developing new practical RL algorithms that

addresses these two challenges.

5.8 Background

We consider an MDP which can be represented as a tuple (S,A, P,R, γ, ρ0)

in which S is a set of states and A is a set of actions, and γ is the discount factor.

For example, in diabetes prevention, these states represent participants’ health-

related states which comprise of knowledge levels, physical activities, and food

intakes, etc while actions correspond to the health-related messages. The initial

state distribution is denoted by ρ0. The dynamics of the environment is denoted

by p in which P (s′ | s, a) is the probability the agent will move to a new state

s′ given the agent takes an action a at state s. For every transition (s, a, s′), the

agent receives an immediate reward R(s, a). Given the reward function, the goal of

reinforcement learning is to find an optimal policy π∗ : S → A for the agent that

maximizes the expected sum of discounted rewards, formulated as follows:

π∗ ∈ argmax
π

J(R, π) = argmax
π

Eτ
∞∑
t=0

γtR(st, at)

where τ = (s0, a0, s1, a1, s2, a2 · · · ) is a trajectory with s0 ∼ ρ0(·), at ∼ π(· |

st), st+1 ∼ P (· | st, at), ∀t.

We now considers the episodic RL setting in which the agent can only

obtain one reward feedback at the end of each trajectory, assuming all trajectories
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terminate in finite steps. The episodic reward function Rep(τ) is defined on the

trajectory space. In practice, a common structural assumption is that there exists

an underlying Markovian reward function R̂(s, a) based on which the episodic

reward can be approximated as the following sum-form decomposition:

Rep(τ) =
T∑
t=0

R̂(st, at)

Existing works on episodic RL aim at recovering this reward function R(st, at)

based on episodic reward feedback, assuming full observations of states st at every

time step t. Our work, on the other hand, studies episodic RL in the context of

incomplete state observation. That is, only certain parts of states are observable.

In particular, at every step t, given the true state st, the observed parts of st is

denoted by o(st), which is sampled from a distribution o(st) ∼ q(· | st) where

the support sup(q(· | st)) = O(st) consists of all possible subsets of components

of st that can be observed. For example, in the diabetes domain, the observation

space consists of all possible subsets of elements (e.g., physical activity level,

cause knowledge, complication knowledge, healthy food, unhealthy food, etc) that

comprise the participants’ state.

5.9 State Prediction Embedded with Randomized Return

Decomposition

Our goal is to find an optimal policy that maximizes the expected

trajectory return. We propose a new learning model, named SPER2D (State

Prediction Embedded with Randomized Return Decomposition) that tackles the

aforementioned challenges of episodic returns (aka. sparse rewards) and incomplete

state observations. In the following, we first describe our new learning model. We

then present our theoretical analysis of the proposed model. Finally, we introduce

our practical SPER2D algorithm accordingly.
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5.9.1 SPER2D Model Description. Overall, our model is an

integration of three key components: (i) state prediction — providing a prediction

s̄t = fw([o(st−1),¬o(s̄t−1)], at−1)) at time step t given the observable parts o(st−1),

the prediction of remaining unobservable parts ¬o(s̄t−1) of the true state st−1,

and action at−1 at previous step t − 1; (ii) reward redistribution — redistributing

the episode reward Rep(τ) of a trajectory τ = (s0, a0, s1, a1, · · · , sT , aT ) over its

(predicted) state-action pairs R̂θ(s̄t, at); and (iii) actor-critic policy learning —

generating a policy πψ(· | s̄t). Here, (w, θ, ψ) are the parameters of the three

component’s neural networks. In the following, we explain these components in

details.

State Prediction. At every time step t, given the current underlying state st,

the agent only has an observation of some components of st, which we denoted by

o(st) while other components of the state are hidden. Our state-prediction model,

fw, produces a state prediction s̄t = fw([o(st−1),¬o(s̄t−1)], at−1)) at every time step

t. Recall that ¬o(s̄t−1) represents the prediction of the hidden parts of st−1. Given

the current fixed policy πψ, the model parameter w is trained based the following

loss function:

LSP = E
( T∑
t=0

[
o(s̄t)− o(st)

]2)
where so ∼ ρ0, st ∼ P (· | st−1, at−1), s̄t ∼ (fw ◦ q)(· | st−1, at−1), at ∼ πψ(· | s̄t).

Here, the loss is computed based on the difference between the observed parts o(st)

and the prediction of the observed parts o(st) of the true state st at every time step

t. For the sake of representation, we use the notion s̄t ∼ (fw ◦ q)(· | st−1, at−1) to

represent o(st−1) ∼ q(· | st−1), s̄t = fw([o(st−1),¬o(s̄t−1)], at−1)) The overview of this

state prediction is illustrated in Figure 20.
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Figure 20. State prediction component

Reward Redistribution. We extend the idea of randomized return

decomposition introduced in [114], to accommodate the incomplete state

observation using the outcomes of our state prediction component. In particular,

given a fixed state prediction fw and a policy πψ, we attempt to find a Markovian

reward function R̂θ(s, a) which minimizes the following loss function:

LwRRD(θ) = Eτ̄EI∼ρT (·)

[(
Rep(τ)−

T

|I|
∑
t∈I

R̂θ(s̄t, at)
)2]

where the trajectory τ = (s0, a0, s1, a1, · · · ) and the state-prediction trajectory

τ̄ = (s0, s̄0, a0, s1, s̄1, a1, · · · ) with st ∼ P (· | st−1, at−1), s̄t ∼ (fw ◦ q)(· | st−1, at−1),

at ∼ πψ(· | s̄t). Note that the reward function is defined w.r.t the predicted states

st for every step t since the agent has access to observations of states only. Here,

we use a Monte-Carlo estimator which only samples a subset of time steps t ∈ I in

approximating the episodic return where I is a subset of indices of a size K < T .

The distribution ρT (·) is defined as follows:

ρT (·) = Uniform({I ⊆ ZT : |I| = K})
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As shown in [114], this approach improves the scalability of least-squares-based

reward redistribution methods.

Policy Learning. Finally, we aim at optimizing the policy πψ based on

outcomes of both the state prediction fw and reward redistribution R̂θ. In

particular,

max
ψ

Jw(Rθ, πψ) = max
ψ

Eτ̄
∑
t

γtR̂θ(s̄t, at)

where the trajectory τ̄ = (s0, s̄0, a0, s1, s̄1, a1, · · · ) with s0 ∼ ρ0(·), s̄t ∼ (fw ◦ q)(· |

st−1, at−1), at ∼ πψ(· | s̄t), st+1 ∼ P (· | st, at) for all time steps t = 0, 1, · · ·

5.9.2 Theoretical Analysis. As described previously, our state

prediction component plays a central role in influencing outcomes of both the

reward redistribution and policy learning. Therefore, in this subsection, we study

theoretical results on the impact of the accuracy of our state prediction component

on the optimality of the learning outcomes of the later two components.

Let us first denote by ϵ > 0 the prediction error of our state-prediction

model. That is, for all state s, we have ||s̄ − s|| ≤ ϵ for all state prediction s̄ ∈

support((fw ◦ q)(· | s)). We make the following assumptions:

1. The reward function: |R̂θ(s, a) − R̂θ(s̄, a)| ≤ Cr · ϵ for all (s, s′) such that

||s− s̄|| ≤ ϵ and all actions a ∈ A. Here Cr is a positive constant.

2. The policy function: 1 − C l
p · ϵ ≤

πψ(a|s̄)
πψ(a|s)

≤ 1 + Cu
p · ϵ for all (s, s′) such that

||s− s̄|| ≤ ϵ and all actions a ∈ A. Here (C l
p, C

u
p ) are positive constants.

Optimality bound on reward function. We first examine how the state-

prediction error will impact the optimality of the learning outcome of the reward

function. To do so, we consider the perfect scenario when the agent has full
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observations of states at every time step. In this case, the loss function of the

reward redistribution can be represented as follows:

LRRD(θ) = EτEI∼ρT (·)

[(
Rep(τ)−

T

|I|
∑
t∈I

R̂θ(st, at)
)2]

where the trajectory τ = (s0, a0, s1, a1, · · · ). Obviously, this is an ideal situation

with no state prediction error.

Theorem 2. Let’s denote by: θ̄∗ ∈ argminθ LwRRD(θ) the reward learning outcome

with incomplete state-observations and θ∗ ∈ argminπ LRRD(θ) the learning

outcome of the perfect observation scenario. We bound LRRD(θ̄∗) in comparison

with LRRD(θ∗) as follows:1

LRRD(θ∗) ≤ LRRD(θ̄∗) ≤

A2(ϵ)
[
A1(ϵ)LRRD(θ∗) +B1(ϵ)

√
LRRD(θ∗) + C1(ϵ)

]
+B2(ϵ)

√
A1(ϵ)LRRD(θ∗) +B1(ϵ)

√
LRRD(θ∗) + C1(ϵ)

+ C2(ϵ)

where the coefficients A1(ϵ) = (1 + Cu
p · ϵ)T , B1(ϵ) = (2 · T · Cr · ϵ)

√
(1 + Cu

p · ϵ)T ,

and C1(ϵ) = T 2

K
(Cr · ϵ)2. In addition, we have the coefficients A2(ϵ) = 1

(1−Clp·ϵ)T
,

B2(ϵ) = (2 · T · Cr · ϵ)
√

1
(1−Clp·ϵ)T

, and C2(ϵ) =
T 2

K
(Cr · ϵ)2.

Intuitively, Theorem 2 presents an optimality bound on the learning

outcome of our reward function in the presence of the state-prediction error ϵ

in comparison with the actual optimal learning outcome when there is no state

prediction error.

Optimality bound on policy function. In general, the policy learning

outcome depends on the performance of both the state-prediction and reward

1All proofs are in the appendix.
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redistribution components. In the following, we analyze the optimality of our policy

learning result in comparison with the actual optimal policy learning outcome

when there is no error in the state prediction and reward redistribution. Based on

Theorem 2, we consider a general situation that |R̂θ∗(s, a) −M(ϵ)R̂θ̄∗(s, a)| ≤ ∆(ϵ)

where M(ϵ) → 1 and ∆(ϵ) → 0 given ϵ is the prediction error of our state-

prediction model.

Theorem 3. Let’s denote by π∗ ∈ argmaxπ J(R̂θ∗ , π) the optimal policy when states

are fully observed and π̄∗ ∈ argmaxπ J
w(R̂θ̄∗ , π) the result of our policy learning

when the state-prediction error is ϵ and the corresponding reward redistribution

outcome is R̂θ̄∗. We then obtain:

J(R̂θ∗ , π
∗) ≥ J(R̂θ∗ , π̄

∗) ≥

1

(1 + Cu
p · ϵ)T ·M(ϵ)

[
M(ϵ) · (1− C l

p · ϵ)T · J(R̂θ∗ , π
∗)

−M(ϵ) · (1− C l
p · ϵ)T

∆(ϵ) + Cr · ϵ
M(ϵ) · (1− γ)

− Cr · ϵ
1− γ

· ∆(ϵ)

1− γ

]
5.9.3 Practical SPER2D Algorithm. An overview of our practical

SPER2D algorithm is illustrated in Figure 21 and we give psuedocode for it in

Algorithm 3. In particular, optimizing the state-prediction loss LSP and reward

redistribution loss LwRRD can be carried out by using mini-batch gradient descent.

Note that trajectories Dr used to train the reward redistribution component

are collected with states partially generated by our state-prediction component.

Finally, in train our policy learning component, we implement the soft actor-critic

method, that utilizes trajectories Dπ constructed based on the outcomes of both

the state prediction and reward redistribution components.
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Figure 21. Overview of our SPER2D algorithm

5.10 Experiments

5.10.1 Algorithm Implementation and Baselines. We utilize a

state predictive model consisting of an LSTM, followed by an optional 2-headed

attention layer, with a final linear layer to produce the output. We model the

reward redistribution component as well as the actor and critic of the policy

learning component using neural nets with three fully connected linear layers.

Details of our experiment setup and hyperparameters of our models are given in

the appendix.

In addition to our SPER2D method, we consider the following baselines for

comparisons:

RRD. This algorithm is introduced in [114] which only focuses on the sparse

reward challenge. The incomplete state observations are used as if they are true

underlying states in both the reward redistribution and policy components. In
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Algorithm 3: State Prediction Embedded with Randomized Return
Decomposition (SPER2D)

1 Input: environment Env, initial state, reward, and policy parameters:
(w, θ, ψ) and empty buffer D;

2 for l = 1, 2, . . . do
3 Env.reset();
4 for t = 0, 1, · · · do
5 Observe partial state o(st) ∼ q(· | st);
6 Predict s̄t = fw([o(st−1),¬o(s̄t−1)], at−1));
7 Execute action at ∼ πψ(· | s̄);
8 Collect τ̄ s = (o(s0), s̄0, a0, o(s1), s̄1, a1, · · · );
9 Add trajectory to buffer: Ds = Ds ∪ τ̄ s;

10 for i = 1, 2, . . . do
11 Sample Ms trajectories {τj} from Ds;
12 Update state-prediction model using the loss:

LSP =
1

Ms

∑
j

(∑T

t=0

[
o(s̄j,t)− o(sj,t)

]2)
13 Collect trajectory τ̄ r = (s̄0, a0, s̄1, a1, · · · ) and episodic feedback Rep(τ̄

r);
14 Add to buffer: Dr = Dr ∪ {τ̄ r, Rep(τ̄

r)};
15 for i = 1, 2, . . . do
16 Sample Mr trajectories {τj} from Dr;
17 Sample subsequences {Ij} from these trajectories;

18 Update reward model R̂θ using the loss:

LwRRD(θ) =
1

Mr

∑
j

(
Rep(τ̄j)−

T

|I|
∑
t∈I

R̂θ(s̄t, at)
)2

19 Collect τ̄π = (s̄0, a0, R̂θ(s̄0, a0), s̄1, a1, · · · );
20 Add trajectory to buffer Dπ = Dπ ∪ {τ̄π};
21 Run soft-actor critic to update policy πψ using Dπ;

RRD, there is no state-prediction component to handle the challenge of incomplete

observations.

Online Decision Transformer (ODT). We utilize an online Decision

Transformer approach [22, 174] as the second baseline. Here, a transformer

model designed to directly output decisions is trained offline, and then fine-tuned

136



online. As in the RRD baseline, we maintain a state belief at each timestep based

on the most recent observation of each element. We pre-train the transformer

model on the Hopper, HalfCheetah, and Walker2d tasks, before freezing the

transformer block and using it in our online learning settings with sparse rewards

and incomplete state observations.

5.10.2 Experimental Domains. We consider two domains in our

evaluation: (i) the simulated diabetes messaging domain, built based on real-world

data collected in [61]; and (ii) the OpenAI’s Gym environments, powered by the

MuJoCo physics simulator. This domain was chosen as they are readily available,

widely used in RL research, and can be easily adapted to share the problems of our

diabetes setting (namely, sparse rewards and incomplete state observability).

Diabetes Intervention. We built a simulation of the diabetes messaging

domain based on real-world data provided in [61]. Determining the (partial) state

of each participant is performed by a predictive behavior model of participants

trained on the real-world data. This allows us to simulate the entire messaging

system. We keep the model conditioned upon the real world data through several

mechanisms. First, we ensure that said real world data is included in the trajectory

buffer. Next, we set the starting state for each trajectory to either a starting state

drawn from the real world participant pool, or to a randomized state where each

element is selected from a real participant in the pool. This should help ensure that

our trained SPER2D model will remain effective when applied to new real-world

participants, despite the training process relying on simulated process. Lastly, the

episodic reward is estimated based on responses of participants to the pre-study

and post-study questionnaires.
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Since this is a relatively small domain with a short horizon in which each

trajectory consists of only 25 time steps (aka. 25 weeks of the field study in [61]),

the decision transformer model is not appropriate due to its requirement of a large

amount of training data. Therefore, we restrict our experiments on this domain to

our SPER2D-LSTM algorithm and the RRD baseline. Both of these algorithms

require no pre-training (unlike the decision transformer based methods), and are

designed to be sample efficient during online learning.

OpenAI Gym - Mujoco. We make a couple of modifications to standard

Gym [16] Mujoco [135] environments so that they are more similar to our setting.

First, we delay all episode rewards to the end (as in [114]) to mimic the sparse

reward function of the diabetes messaging domain. As these tasks are long horizon

(1000 timesteps without early termination), setting the reward of all non terminal

states to 0 while giving the entire episodic reward at the final step significantly

increases the difficulty of the problem. Secondly, we introduce partial observability

by concealing some elements of the state at each time step. To further the

similarity between this and the diabetes domain, we identify the component parts

of each MuJoCo body (e.g. the torso and individual legs of the ant) and randomly

conceal 1 to 3 of these parts. This effectively gives us 3 new domains of varying

difficulty for each MuJoCo setting, allowing us a clear picture of both the benefits

and limitations of our method.

5.10.3 Results and Analysis.

Results on Diabetes Intervention. In Figure 22 and Table 4, we display

the results of our experiments in the diabetes messaging domain. As explained

previously, since this is a relatively small domain, the decision transformer model
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Category RRD SPER2D
Overall 70.83±3.86 77.68±3.73
Junk Food Avoidance 45.15±3.82 53.92±4.23
Alcohol Avoidance 46.77±3.32 53.20±3.71
Tobacco Avoidance 46.83±3.44 52.98±3.84
Healthy Food Intake 45.42±4.11 49.78±4.63

Table 4. Percentage of participants (with standard error) showing behavior
improvement at the end of intervention, selected categories. Reported over 40
random seeds.

Figure 22. Diabetes simulation results
Diabetes domain episodic returns (mean returns of 50 on-policy trajectories) and

state predictor training curve. Mean and standard deviation over 40 random seeds.

is not appropriate due to its large dataset pre-training requirements. Therefore, we

restrict our experiments on this domain to our SPER2D algorithm and the RRD

baseline, given that these algorithms require no pre-training and are designed to be

sample efficient during online learning.

Compared to the baseline (RRD), our method produces consistently better

policies characterized by higher episodic rewards (Figure 22), corresponding a

noticeably higher percentage of (simulated) participants who have their health-

related behavior improved at the end of the intervention process (Table 4). These

gains are largely concentrated in the selected categories, all of which are related

to food and drug consumption. Given the amount of unobservable data at each
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Task RRD ONLINE SPER2D
DT

Ant (1) 1435±399 944±30 2270±438

Ant (2) 890±32 725±86 1308±126

HalfCheetah (1) 4052±154 3348±59 7471±907

HalfCheetah (2) 2200±288 1730±240 4415±191

Table 5. Mean and standard error for final episodic returns of 20 on-policy
trajectories, over 10 random seeds. MuJoCo tasks.

timestep, these results show that building a predictive model for the environmental

state is essential for learning an effective messaging policy that can improve

substantially people’s lifestyle behavior. Furthermore, the environment itself is

simple enough that a relatively small recurrent model (an LSTM with attention)

with no offline pre-training proves effective. Utilizing our method, future real-

world deployment of health intervention messaging apps may achieve similar gains,

enabling participants to improve their healthy habits.

Results on Mujoco. Our evaluation results in the (modified) MuJoCo

environment are given in Table 5. In addition, Figure 23 shows the performance of

all evaluated algorithms during the training process. We evaluate the performance

of compared algorithms in two tasks: Ant, and HalfCheetah. These domains were

selected based on their complexity: HalfCheetah uses a two dimensional robot

body with a total of nine links connected by eight joints, while Ant is a much more

complicated three dimensional body with four limbs and a torso. We display results

separately for each task, where tasks have varying amounts of information that is

concealed: 1 to 2 component parts, such as a rotor, of the state are unobservable at

every timestep. For example, Ant (1) refers to the scenario in which one component

part is hidden. Each component part includes multiple entries in the observation
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Figure 23. MuJoCo Gym environment results
MuJoCo Gym environment episodic returns (mean returns of 20 on-policy
trajectories) and state predictor training curve. Mean and standard deviation
over 10 seeds.

vector (e.g. both the angle and angular velocity of a limb), meaning a significant

amount of information is hidden at each timestep.

Overall, our algorithm outperforms the baselines in all of these tasks,

reflecting the advantages of modeling missing information. This difference in

performance is most notable in the HalfCheetah domain when two components are

hidden, where our method receives double the average episodic rewards compared

to both the RRD and the online decision transformer baselines. Across the board,

even the powerful online decision transformer is unable to implicitly account

for the missing information, meaning that there is much advantage to be found
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Figure 24. MuJoCo Gym training curves
MuJoCo training curves for the state predictive component. Mean and standard

deviation over 10 seeds.

in explicitly modeling it, as our method does. Furthermore, the online decision

transformer requires pre-training on a fully observable version of the task, while our

method functions without such pre-training available.

To further investigate the performance of our fully online algorithm,

SPER2D, we plot the loss of our state-prediction component in Figure 24. As we

explain in previous subsections, the state-prediction component plays a central

role in influencing the performance of both the reward redistribution and policy

learning component. We observe that the state predictive model converges quickly

and consistently in both the selected settings. This indicates that a model simple

enough to be trained entirely online (LSTM with attention) is capable of handling

the challenges of our real-world diabetes messaging setting.

5.11 Summary

In this study, we introduce a novel RL algorithm called SPER2D,

designed to address the challenges posed by sparse rewards and incomplete state

observations. Our research is driven by the practical challenges of conducting

message-based diabetes interventions, where participant feedback is restricted,
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and the success of the messaging is only evident upon completion of the study.

Our SPER2D algorithm is a novel integration of three interdependent learning

components: state prediction, reward redistribution, and actor-critic policy

learning. We provide a mathematical guarantee that bounds the difference between

the learned long-term reward in our scenario and the optimal long-term return in

a fully observed state situation, based on the state prediction error. Finally, we

empirically evaluate the performance of our SPER2D algorithm on both the data-

driven simulator of the diabetes messaging system and the RL Mujoco benchmarks.

Experimental results demonstrate the effectiveness of our algorithm in comparison

with the state-of-the-art baselines.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

6.1 Conclusion

Artificial intelligence necessitates careful consideration of the data being

used. Said data can be simply incomplete, inaccurate, or altered by a malicious

actor, and disaster can strike if it is assumed to be trustworthy when it is not.

Data-based decision making models can be powerful tools, but it is important to

keep in mind the vulnerabilities that reliance on real-world data introduces. This

work investigated such data vulnerabilities from multiple perspectives and sought

to answer three main research questions.

Towards that goal, Chapter I covered background knowledge required to

understand the rest of the work. This included an overview of data-based decision

making approaches, a primer on adversarial learning and the type of attacks that

have been considered, and an exploration of game theoretic concepts relevant

to security games. Then, we moved on to answer those three primary research

questions.

Is it feasible to attack data-based decision making models directly?

In Chapter II, we investigated the possibility of formulating and solving a direct

poisoning attack against a data-based decision maker, using the metagradient

technique. We considered an approach of solving an attack against a simplified

model, then transferring this attack to the more complex, production quality,

models. Furthermore, we explored direct attacks against both a two-stage model, as

well as the more novel and sophisticated decision focused learner. We found some

utility in these attacks, and also showed that transferring attacks between two-stage

and decision focused models can be effective. However, we also found this direct

144



approach to poisoning attacks to require a prohibitive amount of computation, and

that the degree of numerical stability required for these second order gradients may

be lacking in traditional deep learning frameworks.

Given a poisoned data set, and some knowledge of the limitations

of the attacker’s poisoning capability, how can a wary defender

successfully address this deception? In Chapter III, we studied a game

theoretic threat model. Under this model, a defender forms a belief regarding

attacker population behavior using historical attack data, and one of the attackers

has poisoned this historical data for its own purposes. We find that a defender

having sufficient knowledge can successfully ”see through” the poisoned data and

define a range in which the underlying ”true” behavior falls. Then, said defender

can utilize a binary search algorithm we developed to formulate an effective defense.

How can an online reinforcement learning model successfully

utilize extremely sparse and incomplete real world data? In Chapter IV,

we deployed a reinforcement learning model into the real world for the purposes

of diabetes outreach and education. While this deployment did show promise,

we also identified key challenges inherent to this domain that went unaddressed

initially. Namely, the sparsity of responses from our participants, and the inability

of our system to obtain meaningful per-step rewards. To address those challenges,

we formulated a new reinforcement learning approach, building on the valuable

real world data collected during the deployment. Firstly, we used an existing

reward redistribution method (RRD) to effectively parcel out the episodic rewards

(given by differences between the end survey and the initial survey) to the weekly

decisions made by the RL model. Secondly, we used a predictive approach to fill in

the gaps, accounting for the sparse responses by participants. These improvements
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showed demonstrably better rewards, both in a simulated version of the diabetes

messaging domain, and in standard MuJoCo Gym environments.

6.2 Future Work

This work opens up avenues that hopefully will be explored by future

research projects, which can be broken down into 3 main directions. First, more

thorough investigation of direct, end to end, attacks against data-based decision

making models is warranted. Secondly, game theoretic formulations of data-

based decision makers and potential adversaries have seen promising real world

deployments, compelling research to address deception of different forms. Finally,

the real world data gathered during deployment of our diabetes education RL

model, and the improvements already made upon that system, should be put to

good use.

6.2.1 Direct Attacks on Data-based Decision Makers. While the

direct approach we explored in Chapter II is likely not feasible against real world

models, similar approaches could be. Adapting MetaPoison [53], which solves an

attack against an ensemble of depth-limited learners, or Witch’s Brew [38], which

improves poisons by aligning the attacker’s gradient with that of the defender,

would be a promising place to start. Additionally, generative approaches such as

the work in [84] could be effective, without requiring solving the bilevel problem of

optimizing attacks via gradient descent. Furthermore, given effective attacks, it’s

natural to consider defenses as well. For example, if the training data for a data-

based decision maker is known to contain a certain percentage of (imperceptibly)

poisoned data points, how might this poison be overcome during training? What

mathematical guarantees could be made about the resulting decisions?

146



6.2.2 Addressing Deception, Game Theoretically. In Chapter

III, we used a game theoretic approach to model both a data-based decision maker,

as well as an attacker. This kind of formulation has shown useful in real world

deployments such as PAWS [30] and PROTECT [121]. While we addressed one

specific form of deception, others still exist. For example, deception might involve

a setting in which multiple types of attackers, each with their own priorities,

exist, and a deceptive attacker pretends to be a different type than it actually is.

Addressing that kind of attack would require different methodology, and should be

studied. Furthermore, our approach assumed that the adversary’s power is known

in advance (e.g. a security force has intel about a clever group of adversaries and

their capabilities). If this assumption doesn’t hold, can we use the data itself,

in comparison with previous data, to estimate the power of the attack? What

guarantees, if any, of defense could be offered in such a scenario?

6.2.3 Reinforcement Learning for Diabetes Intervention.

Lastly, in Chapter IV, we deployed a real world reinforcement learning model,

collecting valuable data, created a generative model to simulate the gathering of

more data, and worked on a novel RL approach to address challenges introduced by

the domain. Future work here could start by considering potential improvements

to our behavior modeling, and examining the effect this would have in the

simulated RL domain. Following any improvements made there, another real-

world deployment of the revised RL system would be invaluable. Then, data

collected in that deployment should be evaluated, and the impact of the RL system

improvements could be accurately measured, inviting even more improvements to

tackle the hurdles of the domain.
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APPENDIX A

APPENDIX TO CHAPTER 1

A.1 Experiment Domain - Bipartite Matching

Bipartite matching is a well established problem in graph learning. In form,

it is essentially identical to the synthetic data setting previously discussed:

min f(x, θ) =
1

2
xTQx− θTx s.t. ||x|| ≤ D,Ax ≤ b (A.1)

In this case, however, the constraints enforced are that x must be doubly stochastic.

Intuitively, x is a square matrix with continuous values. Each value xij represents

the probability that node i on one side of the graph will be matched with node j

on the other side. For the learning component of the problem, the goal is to predict

the graph’s edges from the nodes’ features. This means that ϵ represents per-node

features, while θ is the graph’s adjacency matrix (relaxed to be continuous).

For these experiments, we utilize the Cora dataset [118] which consists of

scientific papers. The features here are binary values indicating the presence of

keywords in the paper, while the edges in the graph are citations. In total, there

are 1433 features and 2708 nodes. Inspired by a recent paper [146], we split the

dataset into 27 bipartite subgraphs, with 50 nodes on each side in each subgraph.

This is accomplished using Metis [58] to partition the graph.

A.2 Supplementary Experiment Results

In Figure A.1, we display the results of using Metapoison [53] to solve

attacks against a simple joint learner, and transferring the found attack to the

two-stage and decision focused learners. Both domains display the same trends

as observed in our synthetic domain - namely, that the attack is only nominally

effective against the simple joint model, and not at all effective when transferred to

the other two models. Once again, this suggests that techniques from domains such
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(a) Portfolio Optimization (b) Bipartite Matching

Figure A.1. Attacks generated on simple joint models

as computer vision may not be most appropriate for attacking data-based decision

making models.

Figure A.2 shows the results when attacking two-stage and decision focused

models for bipartite matching. The trends are once again similar to the other

domains: attacks trained against a two-stage learner can effectively transfer to a

decision focused learner. Furthermore, as in portfolio optimization, we observe that

the decision focused learner appears more susceptible to direct attack (Figure A.2b)

than is the two-stage learner (Figure A.2a). Once again, this is likely due to the

decision focused learner outperforming the two-stage counterpart in the absence

of attack. Unattacked, the two-stage learner achieves utility values between 2.37

and 2.90 while the decision focused learner obtains utilities between 2.65 and 4.59.

Particularly when attacking the decision focused learner (Figure A.2b) we can

observe the recurring trend of increased attack budgets often leading to worse

attacks and higher utility for the learner, demonstrating the difficulties of finding

good attack optima via (meta)gradient descent.
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(a) Attack on two-stage learner (b) Attack on decision focused learner

Figure A.2. Attacking a bipartite matching model
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APPENDIX B

APPENDIX TO CHAPTER 2

B.1 Proof of Theorem 1

In order to prove this theorem, we introduce a series of lemmas (3–6). For

the sake of analysis, we denote by:

ymi =
zmi∑
j z

m
j

cm =
1∑
j z

m
j

Intuitively, ymi is the empirical attack distribution estimated from the perturbed

training data D̂ = {xmi , zmi } and cm is the normalization term. Also, {ymi , cm} and

{zmi } are interchangeable. That is, given {ymi , cm}, we can determine zmi =
ymi
cm

.

We first present the Lemma 1 which determines the deception capability of the

deceptive attacker:

Lemma 3. Given the true behavior λtrue of the non-deceptive attackers and the

attack ratio f , the deceptive space for the deceptive attacker is specified as follows:∑
m

1

cm

[∑
i
ymi U

a
i (x

m
i )− Ua(xm, λ)

]
= 0 (B.1)

ymi
cm

≥ nmi ,∀m, i (B.2)

cm ≥ 1

(f + 1)
∑

i n
m
i

,∀m (B.3)

ymi ∈ [0, 1],
∑

i
ymi = 1, ∀m, i (B.4)

That is, any deceptive λ that the defender learns has to be a part of a feasible

solution (λ, ymi , c
m) of the system (B.1–B.4). Conversely, given any feasible

(λ, ymi , c
m) satisfying (B.1–B.4), the deceptive attacker can make the defender learn

λ by inducing the following perturbed data:

zmi =
ymi
cm
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Proof. Equation (B.1) is simply the KKT condition presented in the previous section

with ymi and cm substituted in. Similarly, the constraints (B.2–B.3) correspond

to the constraints for the deception capability of the deceptive attacker in (4.5–

4.6). Finally, the constraint (B.4) follows from the definition of ymi and ensures that∑
i

zmi∑
j z
m
j
= 1 and

zmi∑
j z
m
j
≤ 1.

According to Lemma 3, we now can prove Theorem 1 based on the

characterization of the feasible solution domain of λ for the system (B.1–B.4). We

denote by:

F(λ, {ymi , cm}) =
∑
m

1

cm

[∑
i

ymi U
a
i (x

m
i )− Ua(xm, λ)

]
the LHS of (B.1). In addition, we denote by S = {(ymi , cm) :

conditions (B.2–B.4) are satisfied} the feasible region of (ymi , c
m) which satisfy

the conditions (B.2-B.4). In the following, we provide Lemmas 4 and 5 which

specify the range of F as a function of λ. Essentially, if the value of F contains

the point zero, then λ is a feasible solution of the system (B.1–B.4). We will use

this property to characterize the feasible region of λ.

Lemma 4. Assume that, WLOG, Ua
1 (x

m
1 ) ≤ Ua

2 (x
m
2 ) ≤ · · · ≤ Ua

T (x
m
T ) for all m.

Given a λ, the optimal solution to

Fmax(λ) = max
{ymi ,cm}∈S

F(λ, {ymi , cm}) (B.5)

is determined as follows:

cm =
1

(f + 1)
∑

i n
m
i

(B.6)

ymi = nmi c
m, when i < T (B.7)

ymi = 1− cm
T−1∑
i=1

nmi when i = T (B.8)
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Proof. First, F(λ, {ymi , cm}) can be reformulated as:∑
m

1

cm

[
Ua
T (x

m
T )+

T−1∑
i=1

ymi [U
a
i (x

m
i )−Ua

T (x
m
T )]−Ua(xm, λ)

]
Under our assumption that Ua

1 (x
m
1 ) ≤ Ua

2 (x
m
2 ) ≤ · · · ≤ Ua

T (x
m
T ), we know that

[Ua
i (x

m
i ) − Ua

T (x
m
T )] is a strictly non-positive term for all i. Thus, maximizing F

involves minimizing ymi when i < T . From constraint (B.2), the minimum ymi for all

i is nmi c
m. This gives us ymi = nmi c

m when i < T . From constraint (B.4), we know

that this leaves us with ymi = 1− cm
∑T−1

i=1 n
m
i when i = T .

Finally, given this specification of {ymi }, the optimization problem (B.5) is

reduced to:

max
cm

∑
m

∑
i<T

nmi [U
a
i (x

m
i )−Ua

T (x
m
T )]+

Ua
T (x

m
T )−Ua(xm, λ)

cm

s.t. cm ≥ 1

(f + 1)
∑

i n
m
i

and cm ≤ 1∑
i n

m
i

,∀m

in which the objective function comprises of two terms: the first term does not

depend on {cm} and the second term is a decreasing function of cm (since Ua
T (x

m
T )−

Ua(xm, λ) > 0). Therefore, it is maximized when cm is minimized, which is cm =

1
(f+1)

∑
i n
m
i
, concluding the proof.

Lemma 5. Assume that, WLOG, Ua
1 (x

m
1 ) ≤ Ua

2 (x
m
2 ) ≤ · · · ≤ Ua

T (x
m
T ) for all m.

Given a λ, the optimal solution to

Fmin(λ) = min
{ymi ,cm}∈S

F(λ, {ymi , cm}) (B.9)

is determined as follows:

cm =
1

(f + 1)
∑

i n
m
i

(B.10)

ymi = nmi c
m, when i > 1 (B.11)

ymi = 1− cm
T∑
i=2

nmi when i = 1 (B.12)
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The proof of Lemma 5 is similar. Finally, using Lemmas (4–5) and the

approximation in Eq. 4.7, we obtain:

Fmax(λ) =
∑
m

[∑
j

nmj

][
Ua(xm, λtrue)

+ fUa
T (x

m
T )− (f + 1)Ua(xm, λ)

]
(B.13)

Fmin(λ) =
∑
m

[∑
j

nmj

][
Ua(xm, λtrue)

+ fUa
1 (x

m
1 )− (f + 1)Ua(xm, λ)

]
(B.14)

Observe that, given λ, F(λ, ·) is continuous in {ymi , cm}. Therefore, given a λ′, if

Fmax(λ′)≥ 0≥Fmin(λ′), there must exist {ymi , cm} ∈ S such that F(λ′, {ymi , cm})=

0. In other words, λ′ is a part of a feasible solution for (B.1–B.4). Conversely, if

Fmax(λ′) < 0 or Fmin(λ′) > 0, it means λ′ is not feasible for (B.1–B.4). Moreover,

using Observation 1, we can infer that both Fmax and Fmin are continuous and

decreasing in λ. We obtain Lemma 6 which states that feasible solutions of (B.1–

B.4) form an interval.

Lemma 6. Let us assume λ1 < λ2 are two feasible solutions of (B.1–B.4). Then

any λ ∈ [λ1, λ2] is also a feasible solution of the system.

Proof. Since λ1 and λ2 are feasible solutions of (B.1–B.4), we obtain the

inequalities:

Fmax(λ1)≥0≥Fmin(λ1)

Fmin(λ2)≥0≥Fmin(λ2)
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For any λ ∈ [λ1, λ2], since Fmax and Fmin are decreasing functions in λ, the

following inequality holds true:

Fmax(λ) ≥ Fmax(λ2)≥0≥Fmin(λ1) ≥ Fmin(λ)

which implies that λ is also a feasible solution for (B.1–B.4), concluding the proof.

Lemma 7 specifies the interval [λlearntmin , λlearntmax ] of feasible λ values for (B.1–

B.4).

Lemma 7. There exist λlearntmax ≥ λlearntmin such that:

Fmax(λlearntmax ) = Fmin(λlearntmin ) = 0,

which means λlearntmin and λlearntmax are feasible solutions for (B.1–B.4) and any λ /∈

[λlearntmin , λlearntmax ] is not a feasible solution for (B.1–B.4).

Proof. As noted before, Fmax(λ) is a continuous and decreasing function in λ. On

the other hand, we have:

Fmax(λ=+∞)=
∑
m

[∑
j

nmj

][
Ua(xm, λtrue)− Ua

T (x
m
T )

]
≤0

Fmax(λ=−∞)=
∑
m

[∑
j

nmj

][
Ua(xm, λtrue)

+fUa
T (x

m
T )−(f + 1)Ua

1 (x
m
1 ))

]
≥ 0

for all λtrue since Ua(xm, λtrue = +∞) = Ua
T (x

m
T ) and U

a(xm, λtrue = −∞) = Ua
1 (x

m
1 )

is the highest and lowest expected utilities for the attacker among all targets

, respectively, and by Observation 1, Ua(xm, λtrue) is increasing in λtrue. Since

Fmax(λ) is continuous, there must exist a value of λlearntmax ∈ (−∞,+∞) such that

Fmax(λlearntmax ) = 0. The proof for λlearntmin is similar.
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Finally, for any λ < λlearntmin , we have Fmin(λ) > Fmin(λlearntmin ) = 0 since Fmin is

decreasing in λ. Similarly, for any λ > λlearntmax , we have Fmax(λ) < Fmax(λlearntmax ) = 0.

Both imply that λ is not feasible, concluding our proof.

By combining Lemmas 3,6, and 7, we obtain Theorem 1.

Proof of Corollary 1.

Proof. Corollary 1 is deduced based on the monotonicity property of the attacker’s

utility (Observation 1). When λtrue1 ≤ λtrue2 , we have Ua(xm;λtrue1 ) ≤ Ua(xm;λtrue2 )

for all m. Based on the relationship between Ua(xm;λtrue) and Ua(xm;λlearntmax )

presented in Theorem 1, we readily obtain λlearntmax,1 ≤ λlearntmax,2. Similarly, we have:

λlearntmin,1 ≤ λlearntmin,2 .

Proof of Corollary 2.

Proof. We first prove (4.8). Let’s consider the true behavior parameters λtrue1 ≤

λtrue2 . Based on Corollary 1, the corresponding optimal deception solutions

have to belong to the deception ranges: DecAlter(λtrue1 ) ∈ [λlearntmin,1 , λ
learnt
max,1] and

DecAlter(λtrue2 ) ∈ [λlearntmin,2 , λ
learnt
max,2] where λ

learnt
min,1 ≤ λlearntmin,2 and λlearntmax,1 ≤ λlearntmax,2. We

have two cases:

The first case is when the deception ranges do not overlap, i.e., (λ1max <

λ2min). In this case, it is apparent that DecAlter(λtrue1 )<DecAlter(λtrue2 ).

The other case is when the ranges overlap (i.e., λmax1 ≥ λmin2 ). If the

optimal deceptive value for one or both does not belong to the overlap, i.e.,

DecAlter(λtrue1 ) < λlearntmin,2 and/or DecAlter(λtrue2 ) > λlearntmax,1), the result is

clearly the same as in our previous case (DecAlter(λtrue1 ) < DecAlter(λtrue2 )).

On the other hand, if both values fall within the overlap, that is λlearntmin,2 ≤

DecAlter(λtrue1 ), DecAlter(λtrue2 ) ≤ λlearntmax,1, both will take on the same value
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(DecAlter(λtrue1 ) = DecAlter(λtrue2 )). This is true because both deceptive values

DecAlter(λtrue1 ) and DecAlter(λtrue2 ) are being optimized to maximize the same

objective: the utility of the deceptive attacker (as shown in DecAlter).

Finally, (4.9) can be easily deduced based on (4.8). Let’s consider

DecAlter(λtrue1 ) < DecAlter(λtrue2 ). We can prove λtrue1 < λtrue2 by contradiction.

That is, we assume λtrue1 ≥ λtrue2 . According to (4.8), it means DecAlter(λtrue1 ) ≥

DecAlter(λtrue2 ), which is a contradiction.

Proof of Corollary 3.

Proof. Corollary 3 is a direct result of Corollary 2. Indeed, since λtrue1 ≤

λtrue ≤ λtrue2 , we obtain the inequality among optimal deception solutions

DecAlter(λtrue1 ) ≤ DecAlter(λtrue) ≤ DecAlter(λtrue2 ) as a result of Corollary 2.

Therefore if

DecAlter(λtrue1 )=DecAlter(λtrue2 ), we obtain the optimal deception solution:

DecAlter(λtrue)=DecAlter(λtrue1 ).

Proof of Lemma 1.

Proof. Corollary 2 says that the deception outcome λlearnt = DecAlter(λtrue) is

an increasing (not strict) function of λtrue, and additionally using Corollary 3,

we can say that given some deception outcome λlearnt, there exists (unknown)

λtruemin , λ
true
max such that any λtrue ∈ [λtruemin , λ

true
max] leads to the same outcome λlearnt =

DecAlter(λtrue). Any λ outside of the range [λtruemin , λ
true
max] cannot lead to the

deception outcome λlearnt. Corollary 2 further implies that λtruemin and λtruemax are

increasing functions of λlearnt.

Proof of Lemma 2.
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Proof. Assume WLOG, Ua
1 (x

m
1 ) ≤ Ua

2 (x
m
2 ) ≤ · · · ≤ Ua

T (x
m
T ). We claim that

S(i, λtrue) =
∑i

j=1 qj(x
m;λtrue) for T > i ≥ 1 is decreasing (not strictly) in λtrue,

or in other words, the upper bound of the ith segment is decreasing (not strictly)

for all i except i = T . This means that for any single fixed u value, increasing λtrue

implies that fλtrue(u) is also increasing (or stays same) because the upper bound of

the interval that u lies in shifts downwards as λtrue increases. fλtrue(u) increasing

means a higher value target is chosen for attack. Thus, for fixed u, a higher λtrue

implies that the empirical distribution places more (or equal) attacks on higher

utility targets and hence Ua(xm, E(u;λtrue)) increases (not strictly) with λtrue.

Finally, to prove our claim at the start of the proof, we show that the derivative of

S(i, λtrue) is non-positive everywhere. Indeed, its derivative is computed as follows:
i∑

j=1

qj(x
m;λtrue)Ua

j (x
m
j )− S(i, λtrue)Ua(xm;λtrue)

= S(i, λtrue)
[ i∑
j=1

qj(x
m;λtrue)

S(i, λtrue)
Ua
j (x

m
j )− Ua(xm;λtrue)

]
(B.15)

decomposing the attacker utility function Ua(xm;λtrue), as follows:

S(i, λtrue)
i∑

j=1

qj(x
m;λtrue)

S(i, λtrue)
Ua
j (x

m
j )+

( T∑
j=i+1

qj(x
m;λtrue)

) T∑
j=i+1

qj(x
m;λtrue)∑T

j=i+1 qj(x
m;λtrue)

Ua
j (x

m
j )

As we know that Ua
1 (x

m
1 ) ≤ Ua

2 (x
m
2 ) . . . ≤ Ua

T (x
m
T ), the following inequality holds:

T∑
j=i+1

qj(x
m;λtrue)∑T

j=i+1 qj(x
m;λtrue)

Ua
j (x

m
j ) ≥ Ua

i (x
m
i ) ≥

i∑
j=1

qj(x
m;λtrue)

S(i, λtrue)
Ua
j (x

m
j )

Using this we get:

Ua(xm;λtrue) ≥
(
S(i, λtrue)+

T∑
j=i+1

qj(x
m;λtrue)

) i∑
j=1

qj(x
m;λtrue)

S(i,λtrue)
Ua
j (x

m
j )

= 1 ·
i∑

j=1

qj(x
m;λtrue)

S(i, λtrue)
Ua
j (x

m
j )
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(a) Vary % of dec.
attacks (b) Vary λtrue

Figure B.1. Lambda Range Evaluation with 20 Targets

(a) Vary % of dec.
attacks (b) Vary λtrue

(c) Vary % of dec.
attacks (d) Vary λtrue

Figure B.2. Utility Evaluation with 30 Targets

Using the above in the derivative Eq. B.15, we get that the derivative of S(i, λtrue)

is non-positive, hence it is decreasing w.r.t. λ, concluding our proof.

Supplemental Experiments

First, in Figure B.1, we examine the range [λtruemin , λ
true
max] that the defender

learns. Figure B.1a shows that the range increases w.r.t. the percentage of attacks

controlled by the deceptive attacker. This is intuitive, as more manipulation gives

more power to the deceptive attacker. Figure B.1b displays how this range also

increases with the ground truth λtrue value of the non-deceptive attackers. As λtrue

increases, the deceptive attacker produces a larger uncertainty range.

Lastly, Figures B.3 through B.2 are for 30-target games, and each

corresponds to a previously discussed 20-target figure. We observe the same trends

in both cases.
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(a) Binary Search
Runtime

(b) Minimax
Runtime

(c) Vary % of dec.
attacks (d) Vary λtrue

Figure B.3. Runtime and λ Evaluation with 30 Targets

Experimental Details

All experiments were run on the same HPC cluster, on instances using dual

E5-2690v4 processors (28 cores). Each process was allocated 16000 megabytes of

RAM. Instances run Red Hat Enterprise Linux Server, version 7.8. The Matlab

version used was R2018b.

All experiments used the L-Infinity norm with a value of 2 as a rejection

threshold for non-deceptive attack samples. This is done to prevent outlying

samples from compromising the binary search. Values between .5 and 5 for this

metric were tested, along with the same value ranges for the L1 and L2 norms.

This norm and value were shown to produce the best results, without drastically

increasing the runtime of the algorithm.

Additionally, all experiments used a value of 0.05 as a tolerance multiplier

within the binary search itself. This prevents the inherent inaccuracy of discrete

attack samples from ruining binary search. For the sake of consistency, an initial

random number generation seed of 1 was used across all experiments. After

defender strategy generation and solving (DecAlter), the binary search is run 10

times, each with a different random seed. The superset of all resulting ranges forms

our final uncertainty set for λtrue.
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The trials shown in Figures B.1a, 12a, 12c, 13, B.3c, B.2a, B.2c, and B.3

were conducted using a true lambda value of 0.4 and a resource/target ratio of

0.2. Those in Figures B.1b, 12b, 12d, B.3d, B.2b, and B.2d utilized a deceptive

attack percentage of 0.3, and a resource/target ratio of 0.2. Experiments in Figures

13 and use deceptive attack percentage of 0.1, a true lambda value of 0.4, and a

resource/target ratio of 0.2.
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APPENDIX C

APPENDIX TO CHAPTER 3

Experiment Setup and Hyperparameters

All MuJoCo results represent the mean and standard deviation (shaded)

over 10 random seeds, while results for the diabetes domain represent 40 random

seeds. Within each run, episodic reward data points are collected by averaging a

number of on-policy trajectories (10 for all MuJoCo domains, 50 for the diabetes

messaging domain). All experiments were performed using Python 3.7.13, PyTorch

1.11.0, Gym 0.18.3, mujoco-py 2.1.2.14, and Mujoco 2.1.2.

Hyperparameters used for the transformer models match those used in the

original papers. Hyperparameters for our methods match those used in RRD [114]

unless otherwise specified in the following table:

Hyper-parameter Value (MuJoCo) Value (diabetes messaging)

discount factor γ 0.99 0.5

maximum episode length 1000 25

obs/action history length for state prediction 20 5

no. hidden layers (all non-recurrent networks) 2 2

size of hidden layers (all non-recurrent networks) 256 128

size of hidden layers (state predictive network) 128 128

transformer layer heads (state predictive network) 2 -

activation function ReLU ReLU

optimizer (for all components) Adam Adam

learning rate (actor/critic) 3e−4 3e−5

learning rate (α) 3e−4 3e−4

learning rate (state prediction) 1e−4 1e−4

max no. transitions in lessons buffer 1e7 1e5

min transitions stored to start training state predictor 1e4 1e4

min transitions stored to start training policy 1e6 1e4
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Proof of Theorem 2: Optimality Bounds on Reward Redistribution

For the sake of presentation, we will π as a short representation of πψ in

this proof. Given a reward model R̂θ, we can decompose the loss of the reward

redistribution in the presence of the state-prediction component as follows:

LwRRD = Eτ̄
[
EI∼ρT (·)

(
Rep(τ̄)−

T

K

∑
t∈I

R̂θ(s̄t, at)
)2]

= Eτ̄
[
EI∼ρT (·)

([
Rep(τ̄)−

T

K

∑
t∈I

R̂θ(st, at)
]

+
[ T
K

∑
t∈I

R̂θ(st, at)−
T

K

∑
t∈I

R̂θ(s̄t, at)
])2]

= Eτ̄
[
EI∼ρT (·)

(
Rep(τ̄)−

T

K

∑
t∈I

R̂θ(st, at)
)2]

+ 2Eτ̄
[
EI∼ρT (·)

(
Rep(τ̄)−

T

K

∑
t∈I

R̂θ(st, at)
)

·
( T
K

∑
t∈I

R̂θ(st, at)−
T

K

∑
t∈I

R̂θ(s̄t, at)
)]

+ Eτ̄
[
EI∼ρT (·)

( T
K

∑
t∈I

R̂θ(st, at)−
T

K

∑
t∈I

R̂θ(s̄t, at)
)2]

where the trajectory τ = (s0, a0, s1, a1, · · · ) and the state-prediction trajectory

τ̄ = (s0, s̄0, a0, s1, s̄1, a1, · · · ) with s0 ∼ ρ0(·), s̄t ∼ (fw ◦ q)(· | st−1, at−1), at ∼ πψ(· |

s̄t), st+1 ∼ P (· | st, at) for all time steps t = 0, 1, · · · We are going to bound the

above three terms in comparison with the original loss function LRRD.

First, in the presence of incomplete state observations and the state-

prediction component, the probability that a trajectory τ occurs is computed as

follows:

P̄ (τ) =
∏
t

P (st+1 | st, at)
∑
s̄t

π(at | s̄t) · (fw ◦ q)(s̄t | st−1, at−1)
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On the other hand, when the states are fully observable, the probability that

a trajectory τ occurs is computed as follows:

P (τ) =
∏
t

P (st+1 | st, at)π(at | st)

We obtain the trajectory-occurence ratio:

P̄ (τ)

P (τ)
=

∏
t

∑
s̄t

π(at | s̄t)
π(at | st)

· (fw ◦ q)(s̄t | st−1, at−1)

Since 1− C l
p · ϵ ≤

π(a|s̄)
π(a|s) ≤ 1 + Cu

p · ϵ, we obtain:

(1− C l
p · ϵ)T ≤ P̄ (τ)

P (τ)
≤ (1 + Cu

p · ϵ)T

As a result,

(1− C l
p · ϵ)TLRRD ≤ Eτ̄

[
EI∼ρT (·)

(
Rep(τ̄)−

T

K

∑
t∈I

R̂θ(st, at)
)2]

≤ (1 + Cu
p · ϵ)TLRRD

Second, since |R̂θ(s, a)− R̂θ(s̄, a)| ≤ Cr · ϵ for all (s, s′) such that ||s− s̄|| ≤ ϵ

and all actions a ∈ A, we obtain:

Eτ̄
[
EI∼ρT (·)

( T
K

∑
t∈I

R̂θ(st, at)−
T

K

∑
t∈I

R̂θ(s̄t, at)
)2]

≤
( T
K

)2
K(Cr · ϵ)2 =

T 2

K
(Cr · ϵ)2

Third, we have:

Eτ̄
[
EI∼ρT (·)

(
Rep(τ̄)−

T

K

∑
t∈I

R̂θ(st, at)
)( T

K

∑
t∈I

R̂θ(st, at)−
T

K

∑
t∈I

R̂θ(s̄t, at)
)]

≤ T

K
(K · Cr · ϵ) · Eτ̄

[
EI∼ρT (·)

∣∣∣Rep(τ̄)−
T

K

∑
t∈I

R̂θ(st, at)
∣∣∣]

≤ (T · Cr · ϵ)
√
(1 + Cu

p · ϵ)TLRRD (due to the Jensen’s inequality)

By combining the above inequalities, we obtain the final upper bound:

LwRRD ≤ (1 + Cu
p · ϵ)TLRRD + (2 · T · Cr · ϵ)

√
(1 + Cu

p · ϵ)TLRRD +
T 2

K
(Cr · ϵ)2

(C.1)
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On the other hand, we can decompose the loss function when states are fully

observed as follows:

LRRD = Eτ
[
EI∼ρT (·)

(
Rep(τ)−

T

K

∑
t∈I

R̂θ(st, at)
)2]

= EτEτ̄ |τ
[
EI∼ρT (·)

(
Rep(τ)−

T

K

∑
t∈I

R̂θ(s̄t, at) +
T

K

∑
t∈I

R̂θ(s̄t, at)

− T

K

∑
t∈I

R̂θ(st, at)
)2]

= EτEτ̄ |τ
[
EI∼ρT (·)

(
Rep(τ)−

T

K

∑
t∈I

R̂θ(s̄t, at)
)2]

+ EτEτ̄ |τ
[
EI∼ρT (·)

( T
K

∑
t∈I

R̂θ(s̄t, at)−
T

K

∑
t∈I

R̂θ(st, at)
)2]

+ 2EτEτ̄ |τ
[
EI∼ρT (·)

(
Rep(τ)−

T

K

∑
t∈I

R̂θ(s̄t, at)
)

·
( T
K

∑
t∈I

R̂θ(s̄t, at)−
T

K

∑
t∈I

R̂θ(st, at)
)]

Now we have:

P (τ̄)

P̄ (τ̄)
=

∏
t

π(at | st)
π(at | s̄t)

≤ 1

(1− C l
p · ϵ)T

Therefore,

EτEτ̄ |τ
[
EI∼ρT (·)

(
Rep(τ)−

T

K

∑
t∈I

R̂θ(s̄t, at)
)2]

≤ 1

(1− C l
p · ϵ)T

LwRRD

In addition,

EτEτ̄ |τ
[
EI∼ρT (·)

( T
K

∑
t∈I

R̂θ(s̄t, at)−
T

K

∑
t∈I

R̂θ(st, at)
)2]

≤
( T
K

2)
K(Cr · ϵ)2 =

T 2

K
(Cr · ϵ)2
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Third,

EτEτ̄ |τ
[
EI∼ρT (·)

(
Rep(τ)−

T

K

∑
t∈I

R̂θ(s̄t, at)
)( T

K

∑
t∈I

R̂θ(s̄t, at)−
T

K

∑
t∈I

R̂θ(st, at)
)]

≤ T

K
(K · Cr · ϵ)EτEτ̄ |τ

[
EI∼ρT (·)

∣∣∣Rep(τ)−
∑
t∈I

R̂θ(s̄t, at)
∣∣∣]

≤ (T · Cr · ϵ)
√

1

(1− C l
p · ϵ)T

LwRRD

Finally, by combining these three inequalities together, we obtain:

LRRD ≤ 1

(1− C l
p · ϵ)T

LwRRD + (2 · T · Cr · ϵ)
√

1

(1− C l
p · ϵ)T

LwRRD +
T 2

K
(Cr · ϵ)2

(C.2)

In short, by combining (C.1) and (C.2), we have: for a given reward function

θ,

LwRRD(θ) ≤ A1(ϵ)LRRD(θ) +B1(ϵ)
√
LRRD(θ) + C1(ϵ)

LRRD(θ) ≤ A2(ϵ)LwRRD(θ) +B2(ϵ)
√
LwRRD(θ) + C2(ϵ)

where the coefficients A1(ϵ) = (1+Cu
p ·ϵ)T , B1(ϵ) = (2·T ·Cr ·ϵ)

√
(1 + Cu

p · ϵ)T ,

and C1(ϵ) = T 2

K
(Cr · ϵ)2. In addition, the coefficients A2(ϵ) = 1

(1−Clp·ϵ)T
, B2(ϵ) =

(2 · T · Cr · ϵ)
√

1
(1−Clp·ϵ)T

, and C2(ϵ) =
T 2

K
(Cr · ϵ)2.

Let’s denote by: θ̄∗ ∈ argminθ LwRRD(θ) and θ∗ ∈ argminπ LRRD(θ). We are

going to bound LRRD(θ̄∗) in comparison with LRRD(θ∗) as follows:

LRRD(θ̄∗) ≤ A2(ϵ)LwRRD(θ̄∗) +B2(ϵ)
√
LwRRD(θ̄∗) + C2(ϵ)

≤ A2(ϵ)LwRRD(θ∗) +B2(ϵ)
√
LwRRD(θ∗) + C2(ϵ)

≤ A2(ϵ)
[
A1(ϵ)LRRD(θ∗) +B1(ϵ)

√
LRRD(θ∗) + C1(ϵ)

]
+B2(ϵ)

√
A1(ϵ)LRRD(θ∗) +B1(ϵ)

√
LRRD(θ∗) + C1(ϵ) + C2(ϵ)

which concludes our proof.
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Proof of Theorem 3: Optimality Bounds on Policy Learning

We first define the policy learning objective in three different scenarios:

– Without reward error and state error:

J(R̂θ∗ , π) = Eτ
∑
t

γtR̂θ∗(st, at)

where s0 ∼ P0, st+1 ∼ P (· | st, at), at ∼ π(· | st)

– Without state error:

J(R̂θ̄∗ , π) = Eτ
∑
t

γtR̂θ̄∗(st, at)

where s0 ∼ P0, st+1 ∼ P (· | st, at), at ∼ π(· | st)

– With both reward and state errors:

Jw(R̂θ̄∗ , π) = Eτ̄
∑
t

γtR̂θ̄∗(s̄t, at)

where s0 ∼ P0, st+1 ∼ P (· | st, at), at ∼ π(· | s̄t), s̄t ∼ (fw ◦ q)(· | st−1, at−1)

We are going to compare these three objective functions for a given policy π.

First, we have:

|J(R̂θ̄∗ , π)−M(ϵ)J(R̂θ∗ , π)| ≤ Eτ
∑
t

γt|R̂θ̄∗(s, a)−M(ϵ)R̂θ∗(s, a)| ≤
∆(ϵ)

1− γ

Second, we have:

Jw(R̂θ̄∗ , π) = Eτ̄
[∑

t

γt[R̂θ̄∗(s̄t, at)− R̂θ̄∗(st, at)] +
∑
t

γtR̂θ̄∗(st, at)
]

≤ Cr · ϵ
1− γ

+ Eτ̄
∑
t

γtR̂θ̄∗(st, at)

We use a similar idea as in reward redistribution:

(1− C l
p · ϵ)T ≤ P̄ (τ)

P (τ)
≤ (1 + Cu

p · ϵ)T
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Therefore,

Eτ̄
∑
t

γtR̂θ̄∗(st, at) =
∑
τ

P̄ (τ)
∑
t

γtR̂θ̄∗(st, at) ≤ (1 + Cu
p · ϵ)TJ(R̂θ̄∗ , π)

=⇒ Jw(R̂θ̄∗ , π) ≤
Cr · ϵ
1− γ

+ (1 + Cu
p · ϵ)TJ(R̂θ̄∗ , π)

On the other hand,

J(R̂θ̄∗ , π) = EτEτ̄ |τ
[∑

t

γt[R̂θ̄∗(st, at)− R̂θ̄∗(s̄t, at)] +
∑
t

γtR̂θ̄∗(s̄t, at)
]

≤ Cr · ϵ
1− γ

+ EτEτ̄ |τ
∑
t

γtR̂θ̄∗(s̄t, at)

Note that:

P (τ̄)

P̄ (τ̄)
=

∏
t

π(at | st)
π(at | s̄t)

≤ 1

(1− C l
p · ϵ)T

Therefore,

J(R̂θ̄∗ , π) ≤
Cr · ϵ
1− γ

+
1

(1− C l
p · ϵ)T

Jw(R̂θ̄∗ , π)

As a result, we obtain the final bound:

Jw(R̂θ̄∗ , π) ≤
Cr · ϵ
1− γ

+ (1 + Cu
p · ϵ)T

[
M(ϵ)J(R, π) +

∆(ϵ)

1− γ

]
J(R, π) ≤ 1

M(ϵ)

[ ∆(ϵ)

1− γ
+
Cr · ϵ
1− γ

+
1

(1− C l
p · ϵ)T

Jw(R̂θ̄∗ , π)
]

Now, let’s denote by π∗ ∈ argmaxπ J(R, π) and π̄
∗ ∈ argmaxπ J

w(R̂θ̄∗ , π), we

are going to bound:

J(R, π̄∗) ≥ 1

(1 + Cu
p · ϵ)T ·M(ϵ)

[
Jw(R̂θ̄∗ , π̄

∗)− Cr · ϵ
1− γ

· ∆(ϵ)

1− γ

]
≥ 1

(1 + Cu
p · ϵ)T ·M(ϵ)

[
Jw(R̂θ̄∗ , π

∗)− Cr · ϵ
1− γ

· ∆(ϵ)

1− γ

]
≥ 1

(1 + Cu
p · ϵ)T ·M(ϵ)

·
[[
M(ϵ) · (1− C l

p · ϵ)T
[
J(R, π∗)− ∆(ϵ) + Cr · ϵ

M(ϵ) · (1− γ)

]]
− Cr · ϵ

1− γ
· ∆(ϵ)

1− γ

]
which concludes our proof.
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[14] Bojchevski, A., and Günnemann, S. Adversarial attacks on node
embeddings via graph poisoning, 2019.

[15] Bothe, M. K., Dickens, L., Reichel, K., Tellmann, A., Ellger, B.,
Westphal, M., and Faisal, A. A. The use of reinforcement learning
algorithms to meet the challenges of an artificial pancreas. Expert review of
medical devices 10, 5 (2013), 661–673.

[16] Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,
Schulman, J., Tang, J., and Zaremba, W. Openai gym, 2016.

[17] Brown, A. L., Camerer, C. F., and Lovallo, D. To review or not to
review? limited strategic thinking at the movie box office. American
Economic Journal: Microeconomics 4, 2 (May 2012), 1–26.

[18] Butler, A. R., Nguyen, T. H., and Sinha, A. Countering attacker data
manipulation in security games. In Decision and Game Theory for Security
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