
Smaller, Faster, Cheaper:
Architectural Designs for Efficient Machine Learning

by

Steven Walton

A dissertation accepted and approved in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in Computer Science

Dissertation Committee:

Hank Childs, Chair

Humphrey Shi, Core Member

Daniel Lowd, Core Member

Thien Nguyen, Core Member

Edward Rubin, Institutional Representative

University of Oregon

Summer 2025

© 2025 Steven Walton
This work, including text and images of this document but not including

supplemental files (for example, not including software code and data), is licensed
under a Creative Commons

Attribution 4.0 International License.

2

http://creativecommons.org/licenses/by/4.0/

DISSERTATION ABSTRACT

Steven Walton

Doctor of Philosophy in Computer Science

Title: Smaller, Faster, Cheaper: Architectural Designs for Efficient Machine Learning

Major advancements in the capabilities of computer vision models have

been primarily fueled by rapid expansion of datasets, model parameters, and

computational budgets, leading to ever-increasing demands on computational

infrastructure. However, as these models are deployed in increasingly diverse and

resource-constrained environments, there is a pressing need for architectures that

can deliver high performance while requiring fewer computational resources.

This dissertation focuses on architectural principles through which models

can achieve increased performance while reducing their computational demands.

We discuss strides towards this goal through three directions. First, we focus on

data ingress and egress, investigating how information may be passed into and

retrieved from our core neural processing units. This ensures that our models

make the most of available data, allowing smaller architectures to become more

performant. Second, we investigate modifications to the core neural architecture,

applied to restricted attention in vision transformers. This section explores how

removing uniform context windows in restricted attention increases the expressivity

of the underlying neural architecture. Third, we explore the natural structures of

Normalizing Flows and how we can leverage these properties to better distill model

knowledge.

3

These contributions demonstrate that careful design of neural architectures

can increase the efficiency of machine learning algorithms, allowing them to become

smaller, faster, and cheaper.

This dissertation includes previously published and unpublished co-authored

material.

4

CURRICULUM VITAE

NAME OF AUTHOR: Steven Walton

GRADUATE AND UNDERGRADUATE SCHOOLS ATTENDED:

University of Oregon, Eugene, OR, USA
Embry-Riddle Aeronautical University, Prescott, AZ, USA

DEGREES AWARDED:

Doctor of Philosophy in Computer Science, 2025, University of Oregon
Master of Science in Computer Science, 2023, University of Oregon
Bachelor of Science in Space Physics, 2014, Embry-Riddle Aeronautical

University

AREAS OF SPECIAL INTEREST:

Computer Vision
Machine Learning
Artificial Intelligence
Generative Modeling

PROFESSIONAL EXPERIENCE:

Graduate Researcher, University of Oregon, Eugene, OR, Aug. 2018 - Jun.
2025

Metropolis Intern, Nvidia, Sep. 2023 - Mar. 2024
Ph.D. Research Intern, Picsart AI Research, Eugene, OR, Jun. 2021 - Nov.

2022
Computer Science Intern, Lawrence Livermore National Labratory,

Livermore, CA, Jun. - Sept. 2020
Computer Science Intern, Lawrence Livermore National Labratory,

Livermore, CA, Jun. - Sept. 2019
ASTRO Intern, Oak Ridge National Labratory, Oak Ridge, TN, Jun. - Aug.

2018

5

GRANTS, AWARDS AND HONORS:

Outstanding Reviewer, CVPR 2025

PUBLICATIONS:

Steven Walton, Ali Hassani, Xingqian Xu, Zhangyang Wang, and Humphrey
Shi. Efficient image generation with variadic attention heads. In
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, 2025

Steven Walton, Valeriy Klyukin, Maksim Artemev, Denis Derkach, Nikita
Orlov, and Humphrey Shi. Distilling normalizing flows. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, 2025.

Ali Hassani, Fengzhe Zhou, Aditya Kane, Jiannan Huang, Chieh-Yun
Chen, Min Shi, Steven Walton, Markus Hoehnerbach, Vijay Thakkar,
Michael Isaev, Qinsheng Zhang, Bing Xu, Haicheng Wu, Wen mei
Hwu, Ming-Yu Liu, and Humphrey Shi. Generalized neighborhood
attention: Multi-dimensional sparse attention at the speed of light, 2025.
arXiv:2504.16922

Jonathan Roberts, Mohammad Reza Taesiri, Ansh Sharma, Akash Gupta,
Samuel Roberts, Ioana Croitoru, Simion-Vlad Bogolin, Jialu Tang,
Florian Langer, Vyas Raina, Vatsal Raina, Hanyi Xiong, Vishaal
Udandarao, Jingyi Lu, Shiyang Chen, Sam Purkis, Tianshuo Yan, Wenye
Lin, Gyungin Shin, Qiaochu Yang, Anh Totti Nguyen, David I. Atkinson,
Aaditya Baranwal, Alexandru Coca, Mikah Dang, Sebastian Dziadzio,
Jakob D. Kunz, Kaiqu Liang, Alexander Lo, Brian Pulfer, Steven
Walton, Charig Yang, Kai Han, and Samuel Albanie. Zerobench: An
impossible visual benchmark for contemporary large multimodal models,
2025. arXiv:2502.09696

Noble Kennamer, Steven Walton, and Alexander Ihler. Design amortization
for bayesian optimal experimental design. Proceedings of the AAAI
Conference on Artificial Intelligence, 37(7):8220–8227, 2023.

Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi.
Neighborhood attention transformer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages
6185–6194, 2023.

6

Steven Walton. Isomorphism, normalizing flows, and density
estimation: Preserving relationships between data, 2022.
https://www.cs.uoregon.edu/Reports/AREA-202307-Walton.pdf

Jitesh Jain, Anukriti Singh, Nikita Orlov, Zilong Huang, Jiachen Li,
Steven Walton, and Humphrey Shi. Semask: Semantically masked
transformers for semantic segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision (ICCV)
Workshops, pages 752–761, 2023.

Jiachen Li, Ali Hassani, Steven Walton, and Humphrey Shi. Convmlp:
Hierarchical convolutional mlps for vision. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, pages 6307–6316, 2023.

David Pugmire, James Kress, Jieyang Chen, Hank Childs, Jong Choi,
Dmitry Ganyushin, Berk Geveci, Mark Kim, Scott Klasky, Xin Liang,
Jeremy Logan, Nicole Marsaglia, Kshitij Mehta, Norbert Podhorszki,
Caitlin Ross, Eric Suchyta, Nick Thompson, Steven Walton, Lipeng
Wan, Matthew Wolf, Jeffrey Nichols, Becky Verastegui, Arthur ‘Barney’
Maccabe, Oscar Hernandez, Suzanne Parete-Koon, and Theresa Ahearn.
“Visualization as a Service for Scientific Data”. In “Driving Scientific
and Engineering Discoveries Through the Convergence of HPC, Big Data
and AI”, pages “157–174”, “Cham”, “2020”. “Springer International
Publishing”.

Steven Walton, Ali Hassani, Abulikemu Abuduweili, and Humphrey Shi.
Training compact transformers from scratch in 30 minutes with pytorch.
medium.com/pytorch, 2021. arXiv:2104.05704

Ali Hassani, Steven Walton, Nikhil Shah, Abulikemu Abuduweili, Jiachen
Li, and Humphrey Shi. Escaping the big data paradigm with compact
transformers, 2022.

Steven Walton. Datum: Dotted attention temporal upscaling method. 2020.
https://www.cs.uoregon.edu/Reports/DRP-202006-Walton.pdf

7

ACKNOWLEDGEMENTS

I’d like to thank my mentors and professors from my Universities for helping

get me to where I am today. Thank you Jeff Spear, for being the first to show me

how to be creative with math. To Karla Westphal, for helping me find passion and

dedication to the subject. To my undergraduate professors: Timothy Callahan,

Andri Gretarsson, Edward Poon, Hisaya Tsutsui, and Darrel Smith who taught me

my passion for math, physics, and providing me the tools to understand the world

around me. To my graduate professors and advisors, who helped get me through

these difficult times. I especially want to thank Hank Childs for encouraging me to

pursue Machine Learning and to be my acting advisor after Humphrey moved to

Georgia Tech. I want to thank Humphrey Shi for being my advisor and helping me

make all the connections and pushing me to become a better researcher.

I’d like to thank my friends and family for helping get through this. It was a

journey that I could not have made alone. Noble, you’ve been a close friend for so

many years and your insights helped shape my research and encouraged me to go

to graduate school. You constantly challenge my ideas, often frustratingly so, but

they always end up better and more refined for it. Never change. Ali, I couldn’t

ask for a better co-author nor friend. Your intelligence and work ethic have always

pushed me to better myself, and I look forward to calling you “doctor”. I want

to thank my cat Hypatia, who has been my best friend for the last decade. She’s

had to listen to many explinations and I’m sorry you have not received formal

recognition for your contributions despite frequent appearances in my works

(including this one). Lastly, I want to thank my wonderful girlfriend: Jaichung Lee.

We have been through so much and I could not have crossed the finish line without

8

you. I know it was as much of a challenge for you as it was for me, and this PhD

would not have been possible without your many efforts. Thank you.

9

DEDICATED TO

My mom, and the many years of watching Star Trek together.

My dad, and the many years of reading Asimov together.

Jaichung, and the many years to build the future together.

10

TABLE OF CONTENTS

Chapter Page

I. INTRODUCTION . 18

1.1. Motivation . 18

1.2. Research Goals and Approaches 19

1.3. Dissertation Outline . 21

1.4. Co-Authored Material . 22

II. BACKGROUND . 24

2.1. Learned Data Mappings . 24

2.2. Scale Is Not All You Need 27

2.2.1. Scaling Data . 28

2.2.2. Model Size . 30

2.3. The Foundations That Shape Us 31

2.3.1. Transformers . 31

2.3.2. Adversarial Generation 33

2.3.3. Normalizing Flows 34

2.4. The Tyranny of Measurements 37

III. ESCAPING THE BIG DATA PARADIGM 39

3.1. Vision Transformers . 40

3.2. Data Efficient Vision Transformers 43

3.2.1. Convolutional Tokenizer 43

3.2.2. SeqPool . 45

3.3. Experiments . 46

3.3.1. Datasets . 47

11

Chapter Page

3.3.2. Computational Resources 47

3.3.3. Hyperparameters . 47

3.3.4. Transformers On Small Datasets 48

3.3.5. Ablations . 51

3.3.6. Scaling Study . 54

3.3.7. Natural Language Processing 61

3.4. Conclusion . 61

IV. VARIADIC NEIGHBORHOOD ATTENTION 64

4.1. Localized Attention . 67

4.2. Neighborhood Attention . 68

4.3. Variadic Attention Heads . 70

4.4. Generating The Right Experiment 72

4.4.1. Datasets . 77

4.4.2. Hyperparameters . 78

4.5. When Faced With Sparse Attention 80

4.6. A Bump While Headed To Church 83

4.7. Metrics Are Not Enough . 85

4.7.1. The Face Says It All 86

4.7.2. Quick Training on Deep Fake Detection 87

4.7.3. Fingerprints . 89

4.7.3.1. StyleGAN 89

4.7.3.2. StyleSwin 91

4.7.3.3. StyleNAT 93

4.7.4. Attention To Details 95

12

Chapter Page

V. DISTILLATION OF INVERTIBLE NETWORKS 98

5.1. Model Distillation . 99

5.2. Distilling Normalizing Flows 100

5.2.1. Categories of Flow Distillations 101

5.2.1.1. Latent Knowledge Distillation 101

5.2.1.2. Intermediate Latent Knowledge Distillation 102

5.2.1.3. Synthesized Knowledge Distillation 102

5.2.1.4. All Together 104

5.3. Distillation Experiments . 105

5.3.1. Density Estimation 106

5.3.2. Image Generation . 108

5.4. Conclusion . 111

VI. CONCLUSION AND FUTURE DIRECTIONS 113

6.1. Summary . 113

6.2. Future Directions . 114

6.2.1. Core Challenges . 115

6.2.2. Scaling . 116

6.2.3. Ingress and Egress of Data 117

6.2.3.1. Parameterization 117

6.2.3.2. Automated Preprocessing 118

6.2.3.3. Making The Most of it 118

6.2.4. Core Processing Architectures 119

6.2.4.1. Flexible Learning 120

6.2.4.2. Is Beauty in the Eye of the Beholder? 120

6.2.5. Structurally Aware Architectures 121

13

Chapter Page

6.3. Conclusion . 122

14

LIST OF FIGURES

Figure Page

1. Domain, Range, Image, Preimage diagram 26

2. Vision Transformer Architecture 32

3. Taxonomy of Generative Models 33

4. Diagram of Injection, Surjection, and Bijection 36

5. Architectural design of Compact Transformers 41

6. Variations of ViT Architectures 44

7. Vision Transformer Salient Maps 52

8. Accuracy of ViTs on Restricted Samples per Class 59

9. Vision Transformer Resolution Based Performance 60

10. StyleNAT Samples (FFHQ-256, FFHQ-1024, LSUN Church) 66

11. NAT vs Swin Vs ConvNext ImageNet Performance 68

12. Neighborhood Attention Transformer (NAT) 70

13. StyleNAT Architecture . 72

14. StyleNAT: FID vs. Throughput vs. Parameters 74

15. StyleNAT Samples: FFHQ & LSUN Church 81

16. StyleNAT FID vs Iteration . 82

17. StyleGAN3 Visual Artifacts . 90

18. StyleSwin Visual Artifacts . 92

19. StyleNAT Visual Artifacts . 93

20. StyleNAT and StyleSwin Attention Maps 96

21. StyleNAT and StyleSwin Attention Maps 97

22. Illustration of Knowledge Transfer for Normalizing Flows 103

15

Figure Page

23. Distilling Normalizing Flow CIFAR-10 Samples 110

24. Distilling Normalizing Flow CelebA Samples 111

16

LIST OF TABLES

Table Page

1. Terminology of Mathematical Sets 25

2. CCT Hyperparameters . 48

3. CCT Main Results . 49

4. Extended CCT Training . 50

5. CCT Ablation Study . 51

6. CCT Positional Embedding Comparison 55

7. CCT ImageNet Accuracy . 57

8. CCT Flowers-102 Accuracy . 58

9. CCT Text Classification . 62

10. StyleNAT Configurations . 78

11. Comparison of Generative Models 80

12. StyleNAT Ablations . 83

13. GLOW and MAF Model Configurations 106

14. Distilling Normalizing Flow Density Estimation Metrics 107

15. Distilling Normalizing Flow Performance Metrics 108

16. Distilling Normalizing Flow Model Configurations for Image Generation . 108

17. Distilling Normalizing Flow Image Generation Metrics 109

18. Distilling Normalizing Flow CelebA FID 111

17

CHAPTER I

INTRODUCTION

I don’t believe in empirical science.

I only believe in a priori truth.

Kurt Gödel

1.1 Motivation

This thesis focuses on the development of efficiently training machine

learning algorithms, primarily applied to Computer Vision. Our focus is to develop

methods which allow for a reduction in computational resources required to train

and deploy models.

Machine Learning is a subfield of Artificial Intelligence which aims to

process data and automate the discovery of structures within the data. This

process reduces the burden of needing to derive explicit formulations, instead

allowing automation through optimization. This process allows algorithms to

“learn” by “training” on the data.

Computer Vision applies to a wide range of problems related to perception.

Traditionally associated with image and video processing, the field extends

to processing of other data, such as LIDAR, radio, depth estimation, and

other forms of signal processing. The domain involves a broad range of tasks,

including: regression, which models quantitative relationships between variables;

discrimination, the processing distinguishing relevant objects or patterns; and

generation, or data synthesis. The primary focus of this thesis revolves around

discrimination and generation of images.

Image processing presents unique challenges, often due to the high

dimensionality of the embeddings. This high dimensionality causes difficulties in

18

formulating explicit descriptions of our data and the underlying structures within

it. The goal of computer vision is to create the machinery necessary to automate

this process for us, as efficiently as possible. While we may not be able to create

fully formulate descriptions, the descriptions we provide our algorithms can both

help and hinder them. For example, images usually have spatial relationships,

with pixels that are local spatially having high probabilities of being related to

one another. This has led to the use Convolutional Neural Networks, as their

architecture is able to exploit this natural bias. But such relationships may not

always hold. For example, a QR code contains sharp transitions, where neighboring

pixels do not aid the prediction of one another. More flexible architectures, such as

attention, can better process such imagery by reducing the importance of locality.

Therefore, to efficiently process data we must consider the biases implicit to the

neural architectures that we use.

The modern success of these algorithms has presented additional challenges.

It has been found that many of these methods can be improved through simple

means: making them larger and providing them with more training data [142].

While this has led to dramatic improvements, it has similarly led to dramatic

increases in the computational resources necessary to train and deploy these

models. Once trained, these models may still be quite difficult to deploy, with their

high computational demands, greatly limiting where they can be used. This has

led many researchers to consider how these models can be more efficiently trained,

requiring: less data, less time to train, and fewer computational resources. Similar

challenges exist with respect to the deployment of these models.

1.2 Research Goals and Approaches

The focus of this thesis revolves around two primary questions:

19

– How do we reduce the model’s data dependence?

– How do we reduce the model’s computational demands?

These questions are fundamentally intertwined, necessitating solutions which

address the problems simultaneously. Naturally, by reducing the amount of data

that a model must ingest reduces the amount of time that a model must be trained

for. Conversely, by making a model more efficiently extract information from its

data, the less data it will need to achieve a given performance level. This is because

model parameters do not just determine its information capacity, but also play an

integral role in the solution space during training [133]. Many works have found

that once trained models are often significantly over-parametrized, meaning only

a subset of their parameters are being used to model the data [33, 97]. These

findings are further evidenced by the continued increasing performance of smaller

models [66], and strongly suggest our models can be trained more efficiently.

Our motivation to reduce a model’s data depends exists beyond our desire

to be cost effective. Real world large datasets provides two primary challenges

which require our models to be data efficient. First, many important structures

within the data are subtle and difficult to recover. Second, data is often heavy-

tailed, meaning we do not have many samples. Fundamentally, these require our

models to generalize relationships with minimal examples. While we may focus on

explicitly constrained data to aid the interpretation of our work, it provides benefits

as our models and data expand in size.

These feats are primarily accomplished the development the development

of neural architectures and optimization methods. This thesis focuses on the

former, specifically, studying the design of Computer Vision architectures which

reduce: parameters, data dependence, and system resources. These goals must

20

be simultaneously optimized. Our objective is not to develop models with a small

number of parameters if they also require substantially greater costs during training

or deployment. Similarly, this would undermine our own goals if we reduce a

model’s data dependence with significant cost to its performance.

This thesis investigates three critical aspects of our neural architectures and

structure it to follow a natural progression in complexity. The first work focuses

on the understanding how our core neural architecture takes in data and how

to efficiently extract the relationships it uncovers. Without efficiently providing

and extracting data to/from a model, they become wasteful and this hinders the

ability to develop more efficient core architectures. The second work focus on the

core architecture, which perform the majority of the data processing. This section

studies these two aspects as applied to vision transformers, directly building off

one another. The third work revolves around knowledge distillation of Normalizing

Flows. These models are structurally aware, explicitly designed to preserve the

structures within the data. From these three lenses this thesis seeks to better

understand how to build neural architectures that are smaller, faster, and cheaper.

1.3 Dissertation Outline

This dissertation is organized as follows:

Chapter 2 provides the necessary background and foundational information

necessary to understand the research objectives. This background is necessary

for understanding how the works are connected and the ways we seek to resolve

underlying issues.

Chapter 3 presents the work Escaping the Big Data Paradigm with Compact

Transformers [51], and focuses on efficiently embedding and extracting data from

Vision Transformers.

21

Chapter 4 presents the work Efficient Image Generation with Variadic

Attention Heads [156], as well as the works it builds upon: Neighborhood Attention

Transformer [52].

Chapter 5 presents the work Distilling Normalizing Flows, which provides

a framework for knowledge distillation with Normalizing Flow architectures and

studies the categorical distillation methods.

Chapter 6 provides an overview of the findings and recommendations for

future work.

1.4 Co-Authored Material

The research presented herein involves previously published material. Below

is a listing of the prior works in relation to the chapter material. Details of division

of labor is provided in the preface to each chapter.

– Chapter 2: This chapter includes material that was part of Steven Walton’s

Area Exam [154].

– Chapter 3: This work was contains materials from Escaping the Big Data

Paradigm with Compact Transformers [51]. This work was a collaboration

with Ali Hassani, Nikhil Shah, Abulikemu Abuduweili, Jiachen Li, Humphrey

Shi, and myself.

– Chapter 4: This chapter contains materials from both Neighborhood Attention

Transformer [52] and Efficient Image Generation with Variadic Attention

Heads [156], with focus around the latter. The former is a collaboration

between Ali Hassani, Jaichen Li, Shen Li, Humphrey Shi, and myself. The

latter was a collaboration between Ali Hassani, Xingqian Xu, Zhangyang

Wang, Humphrey Shi, and myself.

22

– Chapter 5: This chapter contains material from a collaboration between

Valeriy Klyukin, Maksim Artemev, Denis Derkach, Nikita Orlov, Humphrey

Shi, and myself.

23

CHAPTER II

BACKGROUND

Mathematicians do not deal in

objects, but in the relationships

among objects.

Henri Poincaré

Nota Bene: Some of the text and figures from this section were part

of Steven Walton’s Area Exam [154], which has been publicly released by The

University of Oregon. Steven was the sole author of this work.

This section covers the background necessary for understanding the

motivation and purpose of the work performed. There is includes some necessary

discussion about how machine learning algorithms work, how data is processed, and

the inherent biases of different learning architectures. The latter of which is the

main focus of this thesis. While subsequent chapters will have lower mathematical

notation and formulation, those herein provide important context and intuition for

the work ahead. To reach our goal of making our machine learning models smaller,

faster, and cheaper, we need to have some core understandings as to how these

models work. It is not enough to treat them as black boxes; rather we have to look

inside. Much of machine learning terminology has not been standardized, thus this

section may be used to contextualize these terminologies and the usage within this

thesis.

2.1 Learned Data Mappings

The procedure can be understood through mapping between two sets, where

our neural network is a learned mapping, f(x). Deep neural networks are Universal

Approximators [18, 67, 112], where every multivariate continuous function can,

24

Name Relation Set
Domain D {∀ x ∈ D}
Codomain C {∀ y ∈ C}
Range C̃ ⊆ C {y ∈ C | ∃ x ∈ D : f(x) = y}
Image C̃ ⊆ C {y ∈ C | ∃ x ∈ D̃ : f(x) = y}
Preimage D̃ ⊆ D {x ∈ D | ∃ y ∈ R̃ : f(x) = y}

Table 1. Explanation of important set terms denoting their relationships and what
elements are in their set.

in principle, be approximated by the superposition of a sequence of continuous

functions.

With this in mind, it helps to revisit some of the basics of functions and

set theory. We can view the Domain, D, as all valid inputs to the neural network.

In the study of Computer Vision this is any valid image, regardless of whether

this image is meaningful to humans or not. We can then define our Range, R,

as all possible outputs that our neural net can produce. In the case of Image

Classification this would be all labels that we are trying to learn. Our Codomain,

C, is a super-set to our Range, R ⊆ C, and may include elements that our

map cannot reach. In our example of Image Classification our Codomain would

represent all possible labels.

In practice, we are likely only interested in studying some subset of our

domain, D̃ ⊆ D. This subset can be arbitrary and may be something like our

training set, the set of images interesting to humans, or even some subset of our

training data. Regardless of what this subset is, when they are passed through our

mapping function then we call the outputs an Image, R̃ ⊆ R. A “reverse” of this

function may then be defined, called the Preimage, f ∗[R̃]. The Preimage is defined

as the set of elements in the domain that map to some image in the codomain. It

25

Domain

Pr
eim

ag
e

{x ∈ D | f(x) ∈ R̃}︸ ︷︷ ︸

Subset

C
o
d
om

ai
n

Ra
ng
e

︷ ︸︸ ︷
{f(x) | x ∈ D}

Image

{f(x) | x ∈ D̃}︸ ︷︷ ︸

Figure 1. The diagram illustrating concepts from Set Theory, explaining the
Domain (D), Codomain, Range (R), Image (R̃), and Preimage.

is important to note that the Preimage is not the inverse of the image. Many texts

use the notation f−1, but we will use f ∗ to avoid confusion.1 Table 1 and Figure 1

are included to help explain these concepts.

We will define a Target, T , as the set of data we intend to model.

Unfortunately, this distribution may be unobtainable and is often intractable. That

is, we are unable to provide a formal description of the distribution. An example,

which we will use in Chapter 4 and Chapter 5, is “the set of all possible human

faces.” We do not have a proper mathematical description this set, making it

intractable, nor is it possible for us to completely sample from this set as it would

require infinite time2. We instead collect a set of sample data Ω ⊆ T , which may

be used to train the model (e.g. FFHQ [79] or CelebA [108]). It is important to

1This notation is used for a pullback, which is a nearly identical concept.

2This set would include all faces that were and all faces that will be.

26

note that we may not know how well Ω approximates T , especially when T

is intractable. Our model processes data from the Ω to generate output, O.

When performing Classification/Discrimination tasks, our output may be a (or a

list of) label(s) but in generative tasks we instead seek to approximate the target

distribution, T̃ . We should keep this model in mind when evaluating our work, so

we can best understand what our models can and cannot do. Our data are discrete

and sampled from the distributions we are trying to approximate, and great care

must be taken to determine what is in our distribution or not.

2.2 Scale Is Not All You Need

In March of 2019 Richard Sutton wrote a short article titled The Bitter

Lesson [142]. This article had a large impact on the machine learning community.

Sutton makes the argument that methods based predominantly on leveraging

human knowledge are ill-founded and that our historical progress has shown us

that focusing on search has resulted in success. Sutton acknowledges the benefits

of leveraging human knowledge as well as how in practice this can often be

constraining, preventing our machines from leveraging more general computation.

Either through misinterpretation by Sutton or through readers, a popular belief

rose through the community: “Scale Is All You Need”. This notion need be

addressed, for if the belief is true to face then the only work need be done is that

of scaling compute and data gathering. Some will interpret this in that scaling

is sufficient, and that there may be more efficient methods, but we will show

that scaling alone is insufficient. We do not disagree that scale is a necessary and

essential component, but that it alone is insufficient to both explain recent progress

as well as provide direction for further advancement. These claims let critical

conditions remain implicit, assuming shared assumptions among readers. These

27

subtle details are consequential to generating efficient machine learning models,

as understanding what data increases performance allows us to also better design

algorithms to maximally incorporate information.

Two aspects of scaling must be addressed: that of scaling data

(Chapter 2.2.1) and that of scaling compute (Chapter 2.2.2).

2.2.1 Scaling Data. Undeniably one of the reasons for major

advances has resulted with scaling of data. There is a simple argument that may

suggest scaling data will be sufficient. We need to look at this to understand where

it works and doesn’t.

Our goal in machine learning is to learn some distribution, which we will call

our Target Distribution, T . If we uniformly and randomly sample from our target

distribution, one can conclude that with scale we will also increase our covering

of the distribution. We may view this another way: if we select some arbitrary

point in our target distribution, as we continue to sample then the distance

between it and some data point, di, in our set of sampled points will decrease.

∃ ε ∈ R s.t. ||di − dj||pp < ε | ∀di, dj ∈ T . Where || · ||pp represents an arbitrary

Lp distance.

We can refine this more generally, which will better help us as we increase

complexity. We can partition our distribution T into disjoint continuous partitions

{P0, . . . , Pn}. That is: Pi ∩ Pj = {∅} | ∀i ̸= j and
⋃
Pi = T . We can reach a similar

natural conclusion: as the number of samples increases, the probability that there

does not exist a sample belonging to partition Pi goes to zero. limn→inf Pr(s ∈

Pi) = 0.

This generalization helps us in two ways. Our partitions can be of

arbitrary size and shape, allowing us to use them as abstractions, such as semantic

28

representations.3 Where a semantic representation may represent categories of our

data. For example, if our model is generating human faces we may consider hair

color as a semantic representation. This formulation can also be repeated for each

partition, which allows us to extend the notion to a more realistic setting where

data is discrete (i.e. discretization).

While this logic may be natural, it relies on assumptions that are not true

in practice. Notably, it assumes that both the data is independent and identically

distributed (i.i.d) and that our sampling process is unbiased. These assumptions

are not representative of the real world data, nor of the way in which we sample.

In practice, as we increase the number of samples we increase the diversity of

our data. This diversity, or variance, in data has a large impact on our models’

ability to generalize. We will see in Chapter 3 that introducing data augmentation

to our models results in a significant improvement in their performance. These

augmentations create additional variance in the data and help the model to not

overfit.

Scaling of data in the way we typically gather data can grow the variance

to a greater degree than our typical data augmentation methods can. But this

represents a fundamental limitation as well. We cannot scale infinitely, and as we

gather more data inevitably we turn from increasing variance to contracting the

variance. There are only so many unique things in the world. To understand this,

we may think about randomly throwing a dart at a dartboard. As we start, every

new dart likely lands with a high distance from one another. But as we continue

we increase our coverage over the dartboard and our new darts land close to an

3We still need to maintain care to ensure our semantic representations are disjoint. This does
not allow us to pick arbitrary semantic representations.

29

existing dart. This variance contraction means that we cannot rely on scaling data

indefinitely.

Additionally, an extra challenge comes from scaling data. Once the data is

so large, we are unable to properly investigate it. This means we will not be able

to properly verify that our model is not trained on the data it is being tested on.

In this manner, we want to use the minimum amount of data required to train our

models, to reduce our burden of verification.

In practice, our data is heavy tailed, with many samples being

underrepresented. Ultimately, despite high amounts of data, subsets exists in a low

data regime. Our models may benefit from shared similarities, via a superposition

of representations, but we are still motivated to develop models which work better

when data is sparse. By better understanding how to make our models efficiently

learn in limited data regimes we hope to build techniques that allow our larger

models to efficiently model data that is within the long tail.

2.2.2 Model Size. We face similar complexities when it comes

to the scaling of our models. Inherently our model parameters change our

loss landscape [100], with larger models providing more ways for data to be

disentangled [95, 45, 29]. It can be shown that different by using different loss

functions that we may even trick ourselves into believing our models have found

emergent capabilities [159] when they may have not [133].

With increased model parameters our models are more likely to overfit

our data, making it difficult to generalize. With such sizes in terms of data and

parameters it becomes difficult to distinguish between our models memorizing

the data vs modeling the data. In practice, we benefit from physical limitations,

30

which also puts pressure on making our models as small as possible. The larger our

models are, the more expensive they are to run.

2.3 The Foundations That Shape Us

To cost effectively train our models we want them to both be

parameter efficient and data efficient. With too much data, we are may spend

disproportionate times loading from disk and simply ingesting the data. With too

many parameters, we must split, or shard, our model across large supercomputing

infrastructures.

Key to Sutton’s Bitter Lesson was that models should be powerful and

flexible. With our trend in scaling, we have also seen tremendous improvements

in the algorithms that we use, such as the advent of the transformer [150]. Scale

cannot be enough to explain our progress, as we have found that as research

progresses, many smaller models end up significantly outperforming larger

models [66], and this thesis is further demonstration of that.

These algorithms may be referred to as our neural architectures, as we

build them to work together. In the following sections we introduce some of the

key architectures that will be used throughout this work. There exist far more

frameworks methods [46, 112] and we focus only on what are used herein.

2.3.1 Transformers. The transformer model has become the

backbone of modern machine learning models. This is due to its high flexibility,

being able to form a relationship between all elements it attends to. Unlike many

other architectures, the transformer is not limited by the locality of the data, with

it being able to discover relationships between data regardless of its position in a

sequence. This greater flexibility comes at an increased computational complexity,

31

but enables the model to form relationships that could not be efficiently formed

through other previous architectures.

These models are fairly simple in construction, having two main

components: attention [43, 114, 150], and a feed-forward layer.

Figure 2. The Transformer model architecture from Vaswani et. al. Diagram
depicts dot-product self attention.

In Figure 2 depicts part of the transformer model from Vaswani et al.’s

work, showing the dot-product self attention (DPSA) variant, which is used

throughout this work. The figure depicts a “post-norm” configuration, with the

normalization layers appearing after the attnetion and feed-forward units, but

modern configurations usually use “pre-norm” due to increased stability. The core

of the transformer model is attention, defined as:

Softmax

(
QKT

√
dk

)
V (2.1)

Where Q, K, and V represent queries, keys, and values, respectively. These

are learnable parameters, most usually parameterized by a single layer feed-forward

network. In the DPSA configuration, these networks share the same input. dk in

32

Generative Models Explicit Density Tractable Density Autoregressive

Normalizing Flows

Approximate Density Diffusion Models

VAEs

Implicit Density Markov Chain GSNs

Direct GANs

Figure 3. Taxonomy of Generative Models, based on Goodfellow’s Taxonomy [40]

this equation is a softmax temperature scale, which is the inverse square root of

the embedding dimension (a user defined hyperparameter). The queries and keys

are multiplied together, learning a similarity matrix. The softmax of this is then

referred to as the “score”, as its values are defined by a probability distribution.

The value tensor is then weighted by the score, defining our attention function.

Commonly, this configuration is done in a “multi-headed” manner. Instead

of performing a single attention we may instead project our Q,K, and V tensors

into an embedding so that we may process multiple attention calculations in

parallel. The conclusion of the attention mechanism concatenates these tensors.

This tends to make our models more efficient as each head is independent and can

learn unique representations, as we will see in Chapter 4.

The transformer model typically includes the usage of positional encoding,

which adds extra data to the model to indicate the position of tokens, or data, in a

sequence.

2.3.2 Adversarial Generation. Generative Adversarial Networks

are a form of generative models introduced by Goodfellow et al. [41] which first

enabled the generation of high quality synthetic imagery. Not necessarily restricted

33

to image synthesis, these models enable unsupervised learning by simultaneously

training two models at once. If our goal is to train an image generator, we both a

model to generate images and a model to discriminate real and fake images. The

discriminator model requires labeled data, but only the binary distinction of real

data or synthesized data. These models then competitively train, being able to play

a minimax game, which often leads to high quality generation.

min
G

max
D

Ex∼pdata

[
logD(x)

]
+ Ez∼pz

[
log
(
1−D

(
G(z)

))]
. (2.2)

G learns a differentiable map z 7→ x that pushes forward a simple prior

(usually spherical Gaussian) toward the data manifold, while D learns to spot

discrepancies. While these models have shown great success and pushed the

bounds of what is possible, they are not without problems. Training is notoriously

unstable—mode collapse, vanishing gradients, and catastrophic forgetting are

common.

In addition, many generative models have greatly increased in size. These

size increases have resulted in more impressive images but also become harder

to train, costlier to train, and become slower in throughput. There then must

be a trade-off of capabilities and performance, depending on the applications. In

Chapter 4 we will use a GAN to demonstrate an improved variant of an attention

mechanism, improving throughput and quality while decreasing the total number of

parameters.

2.3.3 Normalizing Flows. Normalising flows provide exact log-

likelihoods by composing a sequence of bijective, differentiable transforms f =

f1 · · · · · fk:

px(x) = pu(u) |det Jf (u)|−1 (2.3)

34

Here pu is a tractable base distribution and det Jf denotes the Jacobian

determinant. The Jacobian determinant allows for a change of variable, allowing

data from one distribution (u ∈ U) to be expressed in another coordinate system

(x ∈ X). A simplified example that many readers may be more familiar with is the

change of coordinates from a Cartesian space into Polar coordinates

J = det
∂(x, y)

∂(r, θ)

=




∂x
∂r

∂x
∂θ

∂y
∂r

∂y
∂θ




=



cos θ −r sin θ

sin θ r cos θ




= r cos2 θ + r sin2 θ

= r

(2.4)

Given the Jacobian determinant it becomes trivial to convert from a Cartesian

coordinate to Polar by the equation:
∫∫

f(x, y)dxdy =
∫∫

f(r, θ)rdrdθ

This idea extends greatly, with far more complex formulations of coordinate

transforms. The importance of these transforms is that they generate an isomorphic

mapping from one space to another, where every element in one coordinate

precisely maps to a unique element in the other. Through the composition of

these transformations we can then define a nice tractable distribution, such as a

Gaussian, and learn a coordinate transform that maps our data. This, in effect,

allows us to turn our intractable distribution into a tractable one. We should

remain careful, as there are still some pitfalls and our distribution is still only an

approximation.

35

What makes this different from Approximate Density models, such as VAEs

and Diffusion models, is that those models do not generate isomorphic functions.

Like flows, they are able to generate a probability density function, making them

“explicit” (Figure 3), but these models are by nature lossy. Where Flows are

bijective, diffusion and VAEs are not.

(a) Injection: one-to-one (b) Surjection: onto (c) Bijection: one-to-one
and onto

Figure 4. Visual representation of injections, surjections , and bijections. Source:
Wolfram Mathworld

The two most common forms of Normalizing Flows, which are also used

within this thesis, are:

Affine coupling flows. : Partition input x into two units, (x0, x1), such that

f(x0, x1) = (x0, x1 ⊙ es(x0)+t(x1)), which make computationally inexpensive

triangular Jacobians (e.g. RealNVP [26], Glow [86]).

Autoregressive flows. : Parameterise each dimension conditioned on previous ones,

yielding a composition of triangular Jacobians (MAF/IAF [121, 88]).

Unlike transformer models, the architecture to Normalizing flows are highly

restrictive. These restrictions come with the benefits of increased interpretability,

but at the cost of additional computation and less flexibility. Where to make these

trade-offs is difficult but it remains a challenge in determining the capability of

these models. Unfortunately these models tend to be greatly under studied, with

36

only a handful of models having been trained with > 100M parameters, which is

fairly small by modern standards.

2.4 The Tyranny of Measurements

As a final note, we must be ever vigilant of the metrics that we use.

Qualitative metrics are a critical part of the scientific method, evidencing our

hypotheses and theories. Yet, metrics are only guides, proxying the things we wish

to measure. We must stress the importance of this distinction as it is necessary

to properly evaluate our models and interpret what they are doing. Within this

thesis several of our works face the challenges of interpreting our metrics and the

absence of them. In Chapters 4 and 5 perform image synthesis tasks, where our

models create new data that is representative of what they trained on. There are

no metrics that properly convey what is a good image or not.

For example, a common metric is for measuring the capabilities of image

models is the Fréchet Inception Distance (FID) [60]. This metric was shown

to correlate with human judgement of image quality, but was developed when

image quality was much worse. For comparison, the paper that introduced FID

demonstrated models with an FID around 12.5 on the CelebA dataset, while the

current state of the art is 3.15 [146]. These correlations are helped improve the

state of art systems, but not being perfectly aligned with an actual measurement of

realism the discrepancies grow as our models improve.

The rapid success of machine learning is double edged sword. Our

approximations that helped us make our progress may no longer be sufficient.

With all metrics, we must constantly check their alignment, to ensure that we

are progressing in the directions we intend. This is quite similar to the gradient

decent process we use in machine learning, where early on we may make large

37

improvements with highly suboptimal steps towards the optima. Yet, as our model

becomes better, we tend to make smaller steps to ensure we are progressing in the

right direction.

38

CHAPTER III

ESCAPING THE BIG DATA PARADIGM

The first principle is that you must

not fool yourself and you are the

easiest person to fool.

Richard Feynman

Nota Bene: This chapter is based on the previously published co-authored

work Escaping the Big Data Paradigm with Compact Transformers [51] and the

associated blog post published through PyTorch’s Medium page [155].

– Ali Hassani and Steven Walton are joint primary authors of this work.

Together they wrote the majority of the code, performed the majority of

experiments and writing of the paper. The majority of code was written

during pair-programming sessions between the two.

– Steven Walton worked a bit more on designing the experiments and

developing the theory, ensuring claims were thoroughly evidenced and finding

relevant literature.

– Ali Hassani worked a bit more on code and launching experiments, increasing

code quality and ensuring experiments were launched effectively, maximizing

machine utilization.

– Nikhil Shah helped manage launching experiments and contributed to the

paper writing.

– Abulikemu Abuduweili provided code and feedback for the NLP experiments.

39

– Humphrey Shi was the advisor, contributing overall guidance on the research

as well as funding for the work. Humphrey also contributed to the writing of

the paper and ensuring research stayed on track.

Critical to any data analysis is the preparation of that data. The ways

in which we encode our data has significant impacts on the way that data is

processed. It is not sufficient to simply apply the right modeling tools to the

data, but one first needs to ensure that the data is properly processed. In machine

learning systems, this processing is typically done by both man and machine. The

ingress and egress of data is critical, and will influence what structures in the data

can ultimately be recovered.

In this chapter we introduce the work Escaping the Big Data Paradigm with

Compact Transformers [51]. This work demonstrates that Vision Transformers do

not need large amounts of data to be performant, instead being able to be trained

from scratch and be effective in limited data regimes. Our results run counter

to conventional wisdom around scaling, demonstrating that scale may decrease

performance, rather than increase. On small datasets, like CIFAR-10, our small

models are able to achieve comparable performance to much larger ViT models

that also have large pretraining. On medium datasets, like ImageNet, we are able

to outperform ViTs of comparable sizes, and achieve accuracies only slightly lower

than large models with large pretraining.

3.1 Vision Transformers

With Vaswani et al.’s[150] demonstration of a dot-product self-attention

based transformer architectures in language, there were several attempts to

integrate them into vision models [6, 129, 69, 68]. Cordonnier et al. [16] first

showed that by downsampling and adding a positional encoding layer, that a

40

Convolution · · · Patching

Reshape

210 3 4
(Optional)
Positional
Embedding

Transformer Encoder ×N

Sequence Pooling

MLPHead

Class
Duck

Transformer

Convolutional

Compact

Transformer

Vision

Compact

Figure 5. Architectural design of Compact Transformers

Bert [24] style Transformer architecture could learn convolutional filters, given a

sufficient number of attention heads. Unfortunately, these researchers were memory

bound and were using 2 × 2 invertible down-sampling. Dosovitskiy et al. [28]

improved upon this work, claiming “An Image is Worth 16×16 Words”, introducing

the Vision Transformer. Instead of using a 2 × 2 down-sampling, they used larger

16 × 16 patches, giving the paper it’s name. Additionally, Dosovitskiy et al.

significantly increased scaled both data and compute. While Cordonnier et al.’s

network was ≈12M parameters, Dosovitskiy et al. used 3 networks, 86M, 307M,

and 632M. While Cordonnier et al. exclusively trained on CIFAR-10 and CIFAR-

100 [147], Dosovitskiy et al. performed pretraining with the proprietary JFT-

300M dataset [141], ImageNet-21k, and ImageNet-1k [23]. Their work showed

that with large-data pretraining that one could outperform ResNet [55] trained

models, although later work showed that by training ResNets with modern training

procedures that classification accuracy becomes similar [161]. Dosovitskiy et al.

performed a wide variety of experiments, including using a CNN to generate their

41

patch embedding and fine-tuning at higher resolutions than pretraining [148, 89].

Their results suggested that only through large pretraining and large models could

ResNets be beat.

Dosovitskiy et al.’s work made an important claim: Transformers lack some

of the inductive biases inherent to CNNs, such as translational equivariance and

locality, and therefore do not generalize well when trained on insufficient amounts

of data. However, the picture changes if the models are trained on larger datasets

(14M-300M images). We find that large scale training trumps inductive biases.

If this problem could not be resolved then this would greatly limit research

contributions by labs without large compute infrastructures 1. The community was

quick to challenge Dosovitskiy et al.’s claim.

Touvron et al.’s Training Data-Efficient Image Transformers & Distillation

Through Attention [149], quickly followed in an attempt to address the claim,

introducing the DeIT model. In particular, they criticized the large pretraining and

sought to counter the claim that transformers do not generalize when trained on

insufficient amounts of data. Their work similarly uses 3 models for training, but

are a tiny (5M parameters), small (22M parameters), and base (86M parameters).

The ViT was modified to introduce a knowledge transfer2 token, and the training

scheme was modified to include distillation from a pretrained convolutional based

network. For their convolutional network they selected a RegNetY-16GF [127]

network (84M parameters) as the default teacher network.

1Often called “GPU Poor”

2We use the phrasing knowledge transfer instead of distillation for increased clarity; as the
“teacher” network having fewer parameters than the “student” network

42

3.2 Data Efficient Vision Transformers

While we recognize the importance of these works we believe alternative

conclusions are possible. The ViT results could be explained by several alternative

hypotheses, including the size of the network and through training techniques.

DeIT’s results showed that part of the claim must be false, as even smaller

models could achieve better performance, but this relied upon inheriting the local

inductive biases transferred by a CNN rather than learning them themselves, which

Cordonnier et al. had demonstrated is possible. The critical question remained:

Can transformer models, be trained to outperform ResNets when model size and

data were held equal? Both works suggested that the answer was no. On the other

hand, Transformers are universal approximators and Cordonnier et al.’s work

suggests there’s no reason one should believe this data threshold requirement.

Additionally, we believed ViT and DeIT were rejecting valuable information by

only passing a slice of the transformer’s outputs to the classification sub-network.

In an effort to resolve this, we proposed three hypothesis:

– Non-overlapping image patches bias the transformer networks due to

information loss at the boundaries.

– A learned transformation to map the transformer’s outputs to the

classification sub-network will improve performance.

– Transformer networks rely more on data variance than data quantity.

3.2.1 Convolutional Tokenizer. The first hypothesis was believed

due to the discussion in the background section (Chapter 2.2.1), where these

models were gaining more benefit from data variance than data quantity. While

diversity is a common side-effect of scaling, it is a distinct phenomena. The second

43

was inspired by subword tokenization that is commonly used by many language

models [35, 135, 24, 150] and experience with computational modeling. The belief

here is that by using non-overlapping patches we weaken the network’s ability

to incorporate information along the boundaries of the images. Such boundary

conditions often plague computational models, requiring ghost cells and other forms

of boundary communication techniques to de-bias calculations.

Inputs ConvLayer Pooling Reshape
Transformer

Encoder

Sequence
Pooling

Linear
Layer

Output

Optional
Positional
Embedding

Compact Convolutional Transformer (CCT)

Convolutional Tokenization Transformer with Sequence Pooling

Inputs Embed to
Patches

Linear
Projection

Reshape Transformer
Encoder

Sequence
Pooling

Linear
Layer

Positional
Embedding

Output

Compact Vision Transformer (CVT)

Patch-Based Tokenization Transformer with Sequence Pooling

Inputs Embed to
Patches

Linear
Projection

Reshape Transformer
Encoder

Slice
Linear
Layer

Class
Token

Positional
Embedding

Class
Token

Output

Vision Transformer (ViT)

Patch-Based Tokenization Transformer with Class Tokenization

Figure 6. A comparison of the Vision Transformer variants used throughout this
study. On the left is the batching and embedding process (tokenization). On
the right is the main neural architecture. The Transformer Encoder blocks and
Linear Layers (classification sub-network) are identical for all models. CVT follows
ViT, removing the class token and introducing SeqPool. In CCT we modify the
tokenization process, building from CVT.

ViT uses a simple patch and embedding procedure, where the image is

evenly divided into patches. This in illustrated on the right half of Figure 5, under

Compact Vision Transformer (CVT). The process is to do a Group Normalization,

ReLU, MaxPool, patch, and embed. Notably, Dosovitskiy et al. did the patching

44

and embedding simultaniously with a convolution, matching strides to the

kernel size 3. This same strategy is used for our ViT-Lite and Compact Vision

Transformer (CVT) models. This procedure can be seen in Figure 6.

We propose removing the restriction of making the convolutional kernels and

strides match, allowing these patches to overlap. This would have an additional

beneficial side-effect, allowing for better generalizability, by not requiring images to

be integer multiples of the kernel size. This extends the embedding process to allow

for arbitrary image sizes and aspect ratios. Additionally, we remove the Group

Normalization layer from the ViT model, finding it unnecessary. Given an image or

feature map x ∈ RH×W×C we can process our image as follows:

x0 = MaxPool (ReLU (Conv2d(x))) (3.1)

Our convolution has a number of filters equal to the embedding dimension of the

transformer backbone, and both our convolution and pooling operations allow for

overlapping, which can introduce local inductive biases.

3.2.2 SeqPool. In order to map the sequential output of a

transformer to the linear representation required by a feed-forward classification

network ViT uses a singular class index, or token, similar to language models like

BERT [24]. This class token is learnable and then allows for the output of the

transformer to be sliced along the learned index. Unfortunately, this underutilizes

the relationships learned by the transformer encoding layers. This method

makes the assumption that the transformer encoder can, and will, decouple the

relationships of the training data. This disentanglement is the main task of the

classification subnetwork, thus forcing our Transformer to also perform this likely

leads to underutilization and overly constrains the encoding layers.

3This can be seen at github.com/google-research/vit jax/models vit.py:264

45

https://github.com/google-research/vision_transformer/blob/main/vit_jax/models_vit.py#L263-L270

We propose SeqPool, an attention inspired pooling method. The method is

based on the assumption that the transformer encoder’s output sequence contains

information relevant to classification. While this method is more computationally

complex than slicing, it can reduce overall computation due to removal of an

additional token that must be processed by the entirety of the network. We use a

network to generate a contraction S : Rb×n×d 7→ Rb×d, which then is an appropriate

shape to be processed by the classification sub-network.

Softmax
(
g(xL)

T
)
xL (3.2)

Unlike dot-product attention we are not using keys, queries, and values, but instead

learning a weighting of our sequence. Our function g is a single feed-forward layer

mapping g : Rb×n×d 7→ Rb×d. We score this contraction and weight our original

input producing the flattened output. This process can be seen as a learnable

submersion, incorporating across sequential data better, seemingly allowing us to

take advantage of neuron polysemanticity [134, 62] and superpositionality [31].

3.3 Experiments

We perform a variety of experiments in order to test our research

hypotheses. We name our models similar to those of ViT, using the more explicit

format:

[model]− [N layers] / [patch size]× [N convolutions]. (3.3)

The original ViT-B/16 model has 12 transformer encoder layers and a patch

size of 16, where we make the number of layers explicit: ViT-12/16. We use this

convention for all ViT and CVT models, dropping the number of convolutions.

For CCT we specify the number of convolutions, even if only one. This section is

organized to first provide details of our experiments and resources. Chapter 3.3.4

46

contains our main results, demonstrating high performance Vision Transformer

models on small datasets. Chapter 3.3.5 includes details of our ablations, detailing

the effects of our changes to the architecture. Chapter 3.3.6 provides a scaling

study, investigating the scaling of both data and parameters. Finally, Chapter 3.3.7

includes our NLP experiments, to demonstrate that these results generalize to

language models.

3.3.1 Datasets. Our primary focus is on small datasets, where we

train on CIFAR-10, CIFAR-100 [147], MNIST [94], and Fashion-MNIST [164].

We also test our models on Oxford Flowers-102 [120] 4 for generalizability due

to its large similarity between classes and high variance for intra-class similarity.

We also use ImageNet [23] to test the scailability of our approach, allowing for

more direct comparisons to ViT and DeiT. We also test our approach in Natural

Language Processing, using AG-News [172], TREC [101], SST [138], IMDb [116],

and DBpedia [2].

3.3.2 Computational Resources. For most experiments we use a

machine with an Intel(R) Core(TM) i9-9960X CPU @ 3.10GHz and 4 NVIDIA

RTX 2080Tis (11GB). The exception was the CPU test which was performed with

an AMD Ryzen 9 5900X, where we found you could reach 90% accuracy in under

30 minutes. Our ImageNet experiments were performed on a single machine with

either 2 AMD EPYC) 7662s and 8 NVIDIA RTX A6000 (48GB) or 2 AMD EPYC

7713s and 8 NVIDIA A100s (80GB).

3.3.3 Hyperparameters. We used the Pytorch Image Models library

(timm) [160] to train our models for all image experiments. Our augmentations

include CutMix [167], Mixup [170], RandAugment [19], and Random Erasing [178].

4We used the dataset from Kaggle, which has a different data split than torchvision. Further
discussion is provided later.

47

Model # Layers # Heads Ratio Dim

ViT-Lite-6 6 4 2 256
ViT-Lite-7 7 4 2 256

CVT-6 6 4 2 256
CVT-7 7 4 2 256

CCT-2 2 2 1 128
CCT-4 4 2 1 128
CCT-6 6 4 2 256
CCT-7 7 4 2 256
CCT-14 14 6 3 384

(a) Transformer Hyperparameters

Model # Layers # Convs Kernel Stride

ViT-Lite-7/8 7 1 8×8 8×8
ViT-Lite-7/4 7 1 4×4 4×4

CVT-7/8 7 1 8×8 8×8
CVT-7/4 7 1 4×4 4×4

CCT-2/3x2 2 2 3×3 1×1
CCT-7/3x1 7 1 3×3 1×1
CCT-7/7x2 7 2 7×7 2×2

(b) Tokenizer Hyperparameters

Table 2. Hyperparmeters used in different model configurations. Table 2a (left)
shows transformer hyperparameters while Table 2b (right) shows those for
tokenizers.

We performed hyperparameter sweeps for our differing methods and report the best

results we achieved. All hyperparameter experiments were trained for 300 epochs,

use a learning rate of 5 × 10−4, a cosine learning rate scheduler, and weighted

Adam optimizer (β = [0.9, 0.999])[85, 177]. For CNN models we found that some

performed best with AdamW while others were more performant with SGD with

momentum 0.9. For reproducibility we release our checkpoints corresponding to

the reported numbers and YAML files corresponding to our experimental settings.

These can be found on our public GitHub repository 5.

3.3.4 Transformers On Small Datasets. The main results of this

work are the success of training Vision Transformers on small datasets. We follow

the aforementioned training procedure, except our best model we further train as it

did not appear to be saturated. Our full results can be read in Table 3, where we

show a comparison of various ResNet based models, ViTs, CVT, and CCT, testing

our small vision datasets with comparisons of model size and required compute.

Notably, on CIFAR-10, we are able to achieve a 10% improvement over similarly

5https://github.com/SHI-Labs/Compact-Transformers

48

https://github.com/SHI-Labs/Compact-Transformers

Model CIFAR-10 CIFAR-100 FashionMNIST MNIST # Params FLOPs

Convolutional Networks (Designed for ImageNet)

ResNet18 90.27% 66.46% 94.78% 99.80% 11.18 M 0.04 G
ResNet34 90.51% 66.84% 94.78% 99.77% 21.29 M 0.08 G
ResNet50 91.63% 68.27% 94.99% 99.79% 23.53 M 0.08 G

MobileNetV2/0.5 84.78% 56.32% 93.93% 99.70% 0.70 M < 0.01 G
MobileNetV2/1.0 89.07% 63.69% 94.85% 99.75% 2.24 M 0.01 G
MobileNetV2/1.25 90.60% 65.24% 95.05% 99.77% 3.47 M 0.01 G
MobileNetV2/2.0 91.02% 67.44% 95.26% 99.75% 8.72 M 0.02 G

Convolutional Networks (Designed for CIFAR)

ResNet56[56] 94.63% 74.81% 95.25% 99.27% 0.85 M 0.13 G
ResNet110[56] 95.08% 76.63% 95.32% 99.28% 1.73 M 0.26 G
ResNet164-v1[57] 94.07% 74.84% − − 1.70 M 0.26 G
ResNet164-v2[57] 94.54% 75.67% − − 1.70 M 0.26 G
ResNet1k-v1[57] 92.39% 72.18% − − 10.33 M 1.55 G
ResNet1k-v2[57] 95.08% 77.29% − − 10.33 M 1.55 G
ResNet1k-v2⋆[57] 95.38% − − − 10.33 M 1.55 G
Proxyless-G[12] 97.92% − − − 5.7 M −

Vision Transformers

ViT-12/16 83.04% 57.97% 93.61% 99.63% 85.63 M 0.43 G

ViT-Lite-7/16 78.45% 52.87% 93.24% 99.68% 3.89 M 0.02 G
ViT-Lite-6/16 78.12% 52.68% 93.09% 99.66% 3.36 M 0.02 G

ViT-Lite-7/8 89.10% 67.27% 94.49% 99.69% 3.74 M 0.06 G
ViT-Lite-6/8 88.29% 66.40% 94.36% 99.73% 3.22 M 0.06 G

ViT-Lite-7/4 93.57% 73.94% 95.16% 99.77% 3.72 M 0.26 G
ViT-Lite-6/4 93.08% 73.33% 95.14% 99.74% 3.19 M 0.22 G

Compact Vision Transformers

CVT-7/8 89.79% 70.11% 94.50% 99.70% 3.74 M 0.06 G
CVT-6/8 89.50% 68.80% 94.53% 99.74% 3.21 M 0.05 G

CVT-7/4 94.01% 76.49% 95.32% 99.76% 3.72 M 0.25 G
CVT-6/4 93.60% 74.23% 95.00% 99.75% 3.19 M 0.22 G

Compact Convolutional Transformers

CCT-2/3×2 89.75% 66.93% 94.08% 99.70% 0.28 M 0.04 G
CCT-4/3×2 91.97% 71.51% 94.74% 99.73% 0.48 M 0.05 G
CCT-6/3×2 94.43% 77.14% 95.34% 99.75% 3.33 M 0.25 G
CCT-7/3×2 95.04% 77.72% 95.16% 99.76% 3.85 M 0.29 G

CCT-6/3×1 95.70% 79.40% 95.41% 99.79% 3.23 M 1.02 G
CCT-7/3×1 96.53% 80.92% 95.56% 99.82% 3.76 M 1.19 G
CCT-7/3×1⋆ 98.00% 82.72% − − 3.76 M 1.19 G

Table 3. Comparisons of various models when trained on small datasets. ⋆ was
trained for longer, see Table 4 for additional details. Our 3.76M parameter CCT
model is about to outperform both ResNets and ViTs across all datasets, with
longer training only being necessary to outperform the 5.7M Proxyless-G model on
CIFAR-10.

49

sized ViT-Lite models (ViT-Lite-7/8) and an 18% improvement over the ViT-

12/16 (ViT-B/16) model while our model has a 95.6% reduction in the number

of parameters. Our best model only contains a single convolutional layer within

the embedding process, meaning that the transformer architecture is performing

the main computation, achieving an accuracy of 98% while using only 3.76M

parameters. This result is only slightly less than Vaswani et al.’s much larger

models that include JFT-300M or ImageNet-21k pretraining and outperforms VIT-

12/32, ViT-24/16, and ViT-24/32 when using ImageNet-1k pretraining and fine-

tuning at 384 resolution (Table 5 of Vaswani et al.). We found that an increase in

convolutions tended to harm model performance.

Epochs Pos. Emb. CIFAR-10 CIFAR-100

300 Learnable 96.53% 80.92%
1500 Sinusoidal 97.48% 82.72%
5000 Sinusoidal 98.00% 82.87%

Table 4. Training of CCT-7/3×1 with an increased number of epochs.

These results show that our CCT based model is able to outperform both

standard Vision Transformers as well as ResNet models. We demonstrate that

neither large scale pretraining nor knowledge distillation are needed to overcome

the biases found in smaller scale data. Furthermore, we strongly suspect that

the underlying issue is due to the tokenization process of overlapping patches.

We include a comparison of Salient Maps [32, 137] in Figure 7, comparing

visualizations on ImageNet. Saliency maps operate by looking visualizing the

gradient accumulations across the network. We should take care as to fully

interpret the semantic meaning of these maps, but the visualizations do clearly

indicate how the original patching may be recovered in the standard ViT model

50

while we have a much smoother representation in CCT, evidencing the first

research hypothesis.

Model CLS # Conv Conv Size Aug Tuning C-10 C-100 # Params FLOPS

“Large” Models (≈ 85M Parameters)

ViT-12/16 CT ✗ ✗ ✗ ✗ 69.82% 40.57% 85.63 M 0.43 G

ViT-12/16 CT ✗ ✗ ✓ ✓ 80.72% 56.73% 85.63 M 0.43 G
CVT-12/16 SP ✗ ✗ ✓ ✓ 80.84% 58.05% 85.63 M 0.34 G

ViT-12/8 CT ✗ ✗ ✓ ✓ 90.24% 69.81% 85.20 M 1.45 G
ViT-12/4 CT ✗ ✗ ✓ ✓ 94.07% 76.08% 85.12 M 5.61 G

CCT-12/7×1 SP 1 7× 7 ✓ ✓ 93.72% 76.21% 85.20 M 5.55 G
CCT-12/3×2 SP 2 3× 3 ✓ ✓ 94.50% 77.05% 85.53 M 5.63 G

Small Models (≈ 4M Parameters)

ViT-Lite-7/16 CT ✗ ✗ ✗ ✗ 71.78% 41.59% 3.89 M 0.02 G
ViT-Lite-7/8 CT ✗ ✗ ✗ ✗ 83.38% 55.69% 3.74 M 0.06 G
ViT-Lite-7/4 CT ✗ ✗ ✗ ✗ 83.59% 58.43% 3.72 M 0.26 G

CVT-7/16 SP ✗ ✗ ✗ ✗ 72.26% 42.37% 3.89 M 0.02 G
CVT-7/8 SP ✗ ✗ ✗ ✗ 84.24% 55.49% 3.74 M 0.06 G
CVT-7/8 SP ✗ ✗ ✓ ✗ 87.15% 63.14% 3.74 M 0.06 G
CVT-7/4 SP ✗ ✗ ✗ ✗ 88.06% 62.06% 3.72 M 0.25 G
CVT-7/4 SP ✗ ✗ ✓ ✗ 91.72% 69.59% 3.72 M 0.25 G
CVT-7/4 SP ✗ ✗ ✓ ✓ 92.43% 73.01% 3.72 M 0.25 G
CVT-7/2 SP ✗ ✗ ✗ ✗ 84.80% 57.98% 3.76 M 1.18 G

CCT-7/7×1 SP 1 7× 7 ✗ ✗ 87.81% 62.83% 3.74 M 0.26 G
CCT-7/7×1 SP 1 7× 7 ✓ ✗ 91.85% 69.43% 3.74 M 0.26 G

CCT-7/7×1 CT 1 7× 7 ✓ ✓ 91.67% 72.07% 3.74 M 0.26 G
CCT-7/7×1 SP 1 7× 7 ✓ ✓ 92.29% 72.46% 3.74 M 0.26 G

CCT-7/3×2 CT 2 3× 3 ✓ ✓ 93.36% 74.77% 3.85 M 0.29 G
CCT-7/3×2 SP 2 3× 3 ✓ ✓ 93.65% 74.77% 3.85 M 0.29 G

CCT-7/3×1 SP 1 3× 3 ✓ ✓ 94.47% 75.59% 3.76 M 1.19 G

Table 5. Ablation study, transforming ViT into CCT. We measure CIFAR
validation accuracy across each modification as well as the number of model
parameters and computation (MACs). All ViT models use a class token (CT),
while CVT and CCT use SeqPool (SP). We report the number of convolutions
used during embedding (# Conv), its kernel size, if we utilized image augmentation
(Aug), and tuning.

3.3.5 Ablations. We include ablations of our parameters to better

understand the impact of our changes to the ViT model. In Table 5 we step

through the process of converting our ViT model into CCT.In our table we

denote if we used a class token (CT) or SeqPool (SP), the number of convolutions

51

ImageNet ViT CCT NAT

Figure 7. Salient maps of ViT, CCT, and NAT based on ImageNet-1k. It can be
seen that CCT removes the blocking artifacts from ViT. CCT sometimes creates
displacement, but this is resolved by NAT (presented in Chapter 4).

52

user (overlapping patches), the kernel size, if image augmentations were used,

and additional tuning. Our tuning includes dropout, attention dropout, and

stochastic depth. We separate our models into two sections, with “Large” models,

with approximately 85M parameters and small models, with approximately 4M

parameters.

By directly comparing similar ViT-Lite models to our CVT models we can

see the effect of our SeqPool method. In all cases we see that there is a minor

performance improvement due to this, with a much lower effect with the large

85M parameter models. When comparing on CIFAR-10, models with 7 transformer

encoders, a patch size of 16 we observe a 0.7% increase, 1.0% for a patch size of 8,

a 5.3% increase with a patch size of 4. For the larger 12 transformer layer models

with a patch size of 16 we only notice a 0.1% increase, but these models included

tuning and augmentation, likely reducing the impact.

In the smaller models we see that the larger contribution to performance

increase is due to decreased patch size. For ViT models, decreasing from a patch

size of 16 to 8 increased model performance by 16.2%, but reducing to a patch

size of 4 only accounted for an additional 0.3% increase. For CVT the decrease

to a patch size of 8 showed a similar 16.6% improvement, but further reduction to

a patch of 4 gave another 4.5% increase. Larger impacts can be observed when

looking at CIFAR-100, except in the case of a patch size of 8 where SeqPool

appears to have a slight negative (< 0.5%) impact. We see a +1.8%, −0.4%,

and +6.2% difference for SeqPool, for our 3 patches. On ViT the patch reduction

accounts for a 33.9% and 4.9% improvements while CVT shows 31.0% and 11.8%

improvements. With decreased patch sizing the transformer appears to be able

to overcome the primary issues presented by smaller training sets. Our SeqPool

53

method still demonstrates greater performance, especially as patch size decreases,

showing greater network utilization.

The largest gains come from moving to CCT, which can also better take

advantage of data augmentations, showing better capacity for generalization. For

example, ViT-Lite-7/8, CVT-7/8, and CCT-7/3×1 all have 3.74M parameters,

but their CIFAR-10 scores are 83.38%, 84.24%, and 87.81% respectively. Where

CVT shows a 1% improvement, CCT shows 5.3%. We can see that CVT-7/8

improves to 87.15% (2.91%), while CCT-7/3×1 improves to 91.85% (4.04%)

when introducing augmentation. We can also see in our CCT experiments that

by removing SeqPool and reintroducing the class tokens that we drop performance

by 0.62%, demonstrating that SeqPool does not account for these differences. A

similar pattern can be found with larger models, though our comparisons are not as

thorough. These results show that the overlapping patches and better extraction

of data from the transformer architecture result in significant improvements,

evidencing our first two hypotheses.

We also include a short study on Positional Embedding, in Table 6.

Because our overlapping tokenization allowed us to debias some of the positional

relationships within the data we test to find the importance of positional

embedding. While ViT and CVT benefit strongly from positional embedding,

CCT only gets minor benefits. This further demonstrates the bias introduced by

patching in ViT. Some additional positional embedding comparisons can be found

in Figure 9.

3.3.6 Scaling Study. While the previous results demonstrate that

pretraining is unnecessary for Vision Transformers to be effective on small datasets,

54

Model PE CIFAR-10 CIFAR-100

Conventional Vision Transformers are more dependent on Positional Embedding

ViT-12/16
Learnable 69.82% (+3.11%) 40.57% (+1.01%)

Sinusoidal 69.03% (+2.32%) 39.48% (−0.08%)

None 66.71% (baseline) 39.56% (baseline)

ViT-Lite-7/8
Learnable 83.38% (+7.25%) 55.69% (+7.15%)

Sinusoidal 80.86% (+4.73%) 53.50% (+4.96%)

None 76.13% (baseline) 48.54% (baseline)

CVT-7/8
Learnable 84.24% (+6.52%) 55.49% (+7.23%)

Sinusoidal 80.84% (+3.12%) 50.82% (+2.56%)

None 77.72% (baseline) 48.26% (baseline)

Compact Convolutional Transformers are less dependent on Positional Embedding

CCT-7/7
Learnable 82.03% (+0.21%) 63.01% (+3.24%)

Sinusoidal 81.15% (−0.67%) 60.40% (+0.63%)

None 81.82% (baseline) 59.77% (baseline)

CCT-7/3×2
Learnable 90.69% (+1.67%) 65.88% (+2.82%)

Sinusoidal 89.93% (+0.91%) 64.12% (+1.06%)

None 89.02% (baseline) 63.06% (baseline)

CCT-7/3×2†
Learnable 95.04% (+0.64%) 77.72% (+0.20%)

Sinusoidal 94.80% (+0.40%) 77.82% (+0.30%)

None 94.40% (baseline) 77.52% (baseline)

CCT-7/3×1†
Learnable 96.53% (+0.29%) 80.92% (+0.65%)

Sinusoidal 96.27% (+0.03%) 80.12% (−0.15%)

None 96.24% (baseline) 80.27% (baseline)

CCT-7/7×1-noSeqPool
Learnable 82.41% (+0.12%) 62.61% (+3.31%)

Sinusoidal 81.94% (−0.35%) 61.04% (+1.74%)

None 82.29% (baseline) 59.30% (baseline)

CCT-7/3×2-noSeqPool
Learnable 90.41% (+1.49%) 66.57% (+1.40%)

Sinusoidal 89.84% (+0.92%) 64.71% (−0.46%)

None 88.92% (baseline) 65.17% (baseline)

Table 6. Validation accuracy comparison comparing Positional Embedding method.
Augmentations and training techniques such as Mixup and CutMix were turned
off for these experiments to better highlight differences. The numbers reported are
best out of 4 runs with random initializations. † denotes model trained with extra
augmentation and hyperparameter tuning.

55

we need to understand the relationship of model size, data quantity, and data

quality.

In order to address the Scale is All You Need arguments, we begin with the

study of model size. Our main study of model size can be seen in our ablations

(Table 5), where we observe that our larger 85.53M parameter model outperforms

out 3.76M parameter model on both CIFAR-10 and CIFAR-100, showing very

minor improvement on CIFAR-10 and a 2% increase on CIFAR-100.

This result runs counter to ViT, where the larger model has a performance

decrease of up to 16.5% and 30.5%, respectively. When given additional

augmentation, the larger ViT model is only able to outperform our largest ViT-

Lite-7/16 model, which did not use tuning or augmented training. The two slightly

smaller ViT-Lite models are still able to outperform this large model without the

inclusion of additional augmentation or training, demonstrating that the smaller

patch sizes play a more significant role, as discussed in Chapter 3.3.5. We believe

that the smaller window sizes allow the transformer architecture to better integrate

data across patches, learning convolutions similar to what Cordonnier et al. had

shown, but further study is required to confirm or deny. The increase relationship

between patch size and performance applies to both large and small ViTs, with

the large ViT approaching the performance of CCT (surpassing ViT-Lite models)

once the patch size is reduced to 4, yet still do not surpass the performance of small

CCT models on CIFAR-10.

Under most configurations, CVT also shows a decrease in performance,

again with improved performance primarily being attributed to the path

size. Performance decreases at a patch size of 2, similar to Cordonnier et al.’s

configuration, showing that the patches can be too small. In a way, this

56

demonstrates that scale plays an important role, but these trends run counter

to the conventional wisdom. These results demonstrate the importance of the

embedding process and that näıvely scaling architectures may instead hinder

performance. Careful design of the neural architecture trumps scaling.

Model Top-1 # Params FLOPS Epochs

ResNet50 77.15% 25.55 M 4.15 G 120
ResNet50 (2021) 79.80% 25.55 M 4.15 G 300
ViT-S 79.85% 22.05 M 4.61 G 300
CCT-14/7×2 80.67% 22.36 M 5.53 G 300

DeiT-S ⚗ 81.16% 22.44M 4.63 G 300
CCT-14/7×2 ⚗ 81.34% 22.36 M 5.53 G 300

Table 7. ImageNet Top-1 validation accuracy comparison (no extra data or
pretraining). Models with ⚗ denotes distillation and follow the knowledge
distillation process as described in Touvron et al [149]. ResNet50 (2021) is reported
from [161] which has the same training recipe as ours.

To study relation of data to model performance we perform multiple scaling

studies. In order to complete our parameter scaling study, we test our model’s

performance on larger amounts of data, with ImageNet, but leave further large

model and large data scaling studies to labs with resources similar to Vaswani et al.

In Table 7 we train a 14 layer (22M param) model, and compare it to ViT-S and

DeiT-S models from Touvron et al. [149]. It is difficult to get these models to be

exactly the same parameter size, but our model is able to still outperform ViT

on ImageNet-1k without any pretraining. We also compare to DeiT-S ⚗, where
our model is slightly smaller, following the same knowledge distillation process.

Our model again shows improvements, demonstrating that our procedure does not

produce negative effects with increased data scale.

57

Model Resolution Pretraining Top-1 # Params FLOPs

CCT-14/7×2 224 - 97.19% 22.17 M 18.63 G

DeiT-B 384 ImageNet-1k 98.80% 86.25 M 55.68 G
ViT-L/16 384 JFT-300M 99.74% 304.71 M 191.30 G
ViT-H/14 384 JFT-300M 99.68% 661.00 M 504.00 G
CCT-14/7×2 384 ImageNet-1k 99.76% 22.17 M 18.63 G

Table 8. Flowers-102 Top-1 validation accuracy comparison. CCT outperforms
other competitive models, having significantly fewer parameters and GFLOPs. This
demonstrates the compactness on small datasets even with large images.

We also test our 22M parameter model on the Flowers-102 dataset, which

is designed for high data variance and to test model generalizability. For this we

are able to achieve an accuracy of over 97% without the use of any pretraining

data or higher resolution tuning. These results can be found in Table 8. When

using ImageNet-1k pretraining and including higher resolution tuning, following the

procedure of DeiT, we are able to achieve state of the art results, outperforming

models that included more than a magnitude more parameters and a more than

a magnitude amount of pretraining data. It should be noted that we used the

Flowers-102 dataset provided from Kaggle and that this uses a different data

split than that which is included in the torchvision version6. This was brought

to our attention through a GitHub issue,7 where a user was unable to replicate

our results. We retrained our CCT-7/7×2 (4M params) and CCT-14/7×2 models

at 224 resolution and obtained 68.26% and 68.85% accuracy, respectively. When

applying the same procedure to ViT-S/16 we obtained a result of 48.63%, only

showing our model having better performance applied to this dataset.

6The torchvision dataset collection did not include Flowers-102 when initially trained.

7A wandb report showing training results can be found alongside the issue here: https:
//github.com/SHI-Labs/Compact-Transformers/issues/65

58

https://github.com/SHI-Labs/Compact-Transformers/issues/65
https://github.com/SHI-Labs/Compact-Transformers/issues/65

10 20 30 40 50 60 70 80 90 100
65

70

75

80

85

90

95

Percent Per Class (%)

A
cc

u
ra

cy
(%

)

CCT-7/3x2

ViT-Lite-7/4
ResNet18
MobileNet

Figure 8. Comparison of models with restricted number of samples per class.
At 10% models are trained on only 5000 images. Transformer based models
demonstrate better scalability than ResNet based models.

Moving on to further test the scalability of our model with respect to data,

we study the performance with respect the number of samples as well as the size

of our images. In Figure 8 we restrict the number of samples in each class within

the CIFAR-10 dataset. We compare the performance of CCT, ViT, ResNet18,

and MobileNet when using only 10% of CIFAR-10 up to the full dataset. With

only 10% of CIFAR-10, CCT is still able to achieve 77.7% accuracy, compared to

ViT’s 67.9%. CCT is able to outperform the other models regardless of the data

reduction. ViT shows worse performance with data scaling, only beating ResNet18

when including 70% or more of the data.

Additionally, we include a short study where we modify the image sizes

of CIFAR-10 to understand the dependence on resolution, found in Figure 9.

With smaller resolution images models will likely be less able to rely upon local

structures within the data, as they will be merged. When upscaling, we use a

standard bicubic interpolation. In the first row of the graphs we train our models

59

16 24 32 48 64
75

80

85

90

95

ViT-Lite-7/4

CCT-7/3x2

Image Height & Width

A
cc

u
ra

cy
(%

)

16 24 32 48 64
80

85

90

95

ViT-Lite-7/4

CCT-7/3x2

Image Height & Width

16 24 32 48 64
80

85

90

95

ViT-Lite-7/4

CCT-7/3x2

Image Height & Width

16 24 32 48 64

50

60

70

80

90

ViT-Lite-7/4

CCT-7/3x2

Image Height & Width

A
cc

u
ra

cy
(%

)

(a) No P.E.

16 24 32 48 64

20

40

60

80

100

ViT-Lite-7/4

CCT-7/3x2

Image Height & Width

(b) Sinusoidal P.E.

16 24 32 48 64

40

60

80

100

ViT-Lite-7/4

CCT-7/3x2

Image Height & Width

(c) Learnable P.E.

Figure 9. Comparison of ViT-Lite and CCT accuracy on CIFAR-10 with differing
image resolutions. In first row, models are trained from scratch. In second row,
models are inference and trained on 32 × 32 images. Fig. 9a is without positional
embedding, Fig. 9c with sinusoidal positional embedding, and Fig. 9b with a
learnable positional embedding. Inference with learnable positional embedding
cannot be extended to larger images without modifying model parameters.

60

from scratch, allowing them to discover these associations. In the second row, we

only run inference, testing our models’ capacity to generalize to novel resolutions.

We also show comparisons without positional embedding, with Sinusoidal Positional

Embedding, and with Learnable Positional Embedding. In our inference results

Learnable Positional Embedding models are unable to process larger resolution

images than they were trained on, creating a significant limitation to this method.

In all cases, except inference with Sinusoidal Positional Embedding, CCT is able to

out perform ViT, further demonstrating data generalizability.

3.3.7 Natural Language Processing. Finally, we test our

method on small natural language processing datasets. This network needs slight

modification, incorporating GloVe [125] to provide word embeddings for our model.

We do not train these embedding parameters and we do not include GloVe in

our model parameter sizes, which is about 20M. To process the data we treat the

text as single channel data, use an embedding dimension of 300, and a convolution

kernel of size 1. We also perform masking in the typical manner.

By using CCT on these datasets we are able to achieve up to a 3%

improvement when comparing to vanilla transformers. Additionally, our CCT

model is able to do this while using fewer parameters. Our CCT models that are

able to perform best have less than 1M parameters, making GloVe a significantly

larger part of the network. We report a comparison of vanilla transformers, ViT,

CVT, and CCT in Table 9

3.4 Conclusion

In this work we saw the importance of properly embedding information into

our machine learning models. We need to ensure that this is done properly or we

may severely limit our model’s capabilities. Even small seemingly trivial differences

61

Model AGNews TREC SST IMDb DBpedia # Params

Vanilla Transformer Encoders

Transformer-2 93.28% 90.40% 67.15% 86.01% 98.63% 1.086 M
Transformer-4 93.25% 92.54% 65.20% 85.98% 96.91% 2.171 M
Transformer-6 93.55% 92.78% 65.03% 85.87% 98.24% 4.337 M

Vision Transformers (ViT)

ViT-Lite-2/1 93.02% 90.32% 67.66% 87.69% 98.99% 0.238 M
ViT-Lite-2/2 92.20% 90.12% 64.44% 87.39% 98.88% 0.276 M
ViT-Lite-2/4 90.53% 90.00% 62.37% 86.17% 98.72% 0.353 M
ViT-Lite-4/1 93.48% 91.50% 66.81% 87.38% 99.04% 0.436 M
ViT-Lite-4/2 92.06% 90.42% 63.75% 87.00% 98.92% 0.474 M
ViT-Lite-4/4 90.93% 89.30% 60.83% 86.71% 98.81% 0.551 M
ViT-Lite-6/1 93.07% 91.92% 64.95% 87.58% 99.02% 3.237 M
ViT-Lite-6/2 92.56% 89.38% 62.78% 86.96% 98.89% 3.313 M
ViT-Lite-6/4 91.12% 90.36% 60.97% 86.42% 98.72% 3.467 M

Compact Vision Transformers (CVT)

CVT-2/1 93.24% 90.44% 67.88% 87.68% 98.98% 0.238 M
CVT-2/2 92.29% 89.96% 64.26% 86.99% 98.93% 0.276 M
CVT-2/4 91.10% 89.84% 62.22% 86.39% 98.75% 0.353 M
CVT-4/1 93.53% 92.58% 66.64% 87.27% 99.04% 0.436 M
CVT-4/2 92.35% 90.36% 63.90% 86.96% 98.93% 0.474 M
CVT-4/4 90.71% 90.14% 61.98% 86.77% 98.80% 0.551 M
CVT-6/1 93.38% 92.06% 65.94% 86.78% 99.02% 3.237 M
CVT-6/2 92.57% 91.14% 64.57% 86.61% 98.86% 3.313 M
CVT-6/4 91.35% 91.66% 61.63% 86.13% 98.76% 3.467 M

Compact Convolutional Transformers (CCT)

CCT-2/1x1 93.40% 90.86% 68.76% 88.95% 99.01% 0.238 M
CCT-2/2x1 93.38% 91.86% 67.19% 89.13% 99.04% 0.276 M
CCT-2/4x1 93.80% 91.42% 64.47% 88.92% 99.04% 0.353 M
CCT-4/1x1 93.49% 91.84% 68.21% 88.71% 99.03% 0.436 M
CCT-4/2x1 93.30% 93.54% 66.42% 88.94% 99.05% 0.474 M
CCT-4/4x1 93.09% 93.20% 66.57% 88.86% 99.02% 0.551 M
CCT-6/1x1 93.73% 91.22% 66.59% 88.81% 98.99% 3.237 M
CCT-6/2x1 93.29% 92.10% 65.02% 88.74% 99.02% 3.313 M
CCT-6/4x1 92.86% 92.96% 65.84% 88.68% 99.02% 3.467 M

Table 9. Top-1 validation accuracy on text classification datasets. The number of
parameters does not include the word embedding layer, because we use pretrained
word-embeddings and freeze those layers while training.

62

can have tremendous effects on these models, making it important to care when

designing our neural architectures. If great care is not taken we will make the

wrong conclusions and hinder our own progress.

While pretraining can help with model performance, when working with

very large datasets it becomes difficult to deduplicate data, and works have shown

that despite attempts to deduplicate these datasets may still be reduced upwards of

50% [1]. These duplications reduce model performance and generalizability, as they

push the models to over attend to certain semantics. While reducing the requisite

dataset size doesn’t solve this problem, it certainly makes it a much more tractable

problem. Given such results it makes it difficult to distinguish if large pretrained

models are generalizing or simply memorizing data.

An important result of this work was the ability to achieve comparable

performance while using orders of magnitude fewer parameters. While there are

still a large number of parameters, having fewer decreases a model’s ability to

overfit. Smaller models also enable them to be used by more people, with fewer

computational resources, and in more domains. Despite the rapid advancement

of computational power, such small models are still critical tools for many areas

of science, which may not have access to multiple GPUs or the ability to obtain

large datasets. While datasets like CIFAR-10 are considered to be small by machine

learning standards, they are often orders of magnitude larger than datasets

available within other research domains. This work makes transformer models

available to these researchers.

63

CHAPTER IV

VARIADIC NEIGHBORHOOD ATTENTION

Random numbers should not be

generated with a method chosen at

random.

Donald Knuth

Nota Bene: This chapter is based on the previous published co-authored

work Efficient Image Generation with Variadic Attention Heads [156], formerly

released as StyleNAT: Giving Each Head a New Perspective. Additionally, this

chapter involves content from Neighborhood Attention Transformer [52] (NAT) in

order to facilitate the discussion of StyleNAT, but is not the focus of this chapter.

– Steven Walton programmed the majority of the source code for StyleNAT

and ran the majority of experiments. This includes creating all the research

questions and designing all the necessary experiments to evidence them. His

contributions also include all the visual analysis as well as the development

of the attention maps to visualize restricted attention mechanisms. He

was also the main writer of the paper. Steven also made significant

contributions to the work of NAT, helping develop the theory (primarily

around generalization), made contributions to the source code, provided

advice, and help write the paper.

– Ali Hassani developed the NATTEN CUDA kernel that was used in both

StyleNAT and NAT. He provided important insights, especially with the

rapidly changing NATTEN code, made contributions to the source code,

helped perform experiments, and provided key insights for the development of

64

the restricted attention visualization. Ali Hassani was also the primary author

of the NAT paper, writing the majority of code, performing the majority of

experiments, and was the largest contributor to the paper’s text.

– Xingqian Xu contributed advice and insights around the underlying

StyleGAN architecture.

– Zhangyang Wang provided guidance during the research and feedback for the

project.

– Jaichen Li provided feedback for the NAT design and contributed to the

writing of the paper.

– Shen Li provided general design feedback for the NATTEN CUDA kernel

and support for running the large scale experiments.

– Humphrey Shi was the advisor for both StyleNAT and NAT, contributing

overall guidance on the research as well as funding for both works. Humphrey

also contributed to the writing of the paper and ensuring research stayed on

track.

While Chapter 3’s success with CCT demonstrated that ViTs could be

significantly improved in terms of data and computational efficiency, it left the

core neural architecture untouched. These impacts come from preparing the

data for processing, but further improvements can be made by also improving

the processing. Our ViT models still struggle with their O(n2) complexities, in

both time and space, so making improvements to these layers can have significant

impacts. Still, the work showed that transformers did not need big data nor

65

big models to be successful. This motivates further work into improving these

architectures themselves.

Transformers were born with language in mind, but had been adapted for

vision. The computational challenges are particularly challenging in Computer

Vision due to the multi-dimensional data that must be processed, c × w × h

which frequently leads to out-of-memory (OOM) issues [174, 96, 171]. The de-

facto solution to this problem had been to use Convolutional Neural Networks

(CNNs)[94, 93, 41]. This is because CNNs provide memory efficiency by operating

only on a localized context window as well as naturally incorporating multi-

dimensional spatial relationships.

On the other hand, transformer networks attend over the entire data,

allowing for arbitrary connections to be made. As previously discussed

(Chapter 3.1), transformers are capable of learning convolution filters, so it should

be possible for them to be just as powerful. These benefits come at a cost of O(n2)

both in computational complexity as well as memory complexity, but our previous

work demonstrated that smaller ViTs could outperform CNNs. This then begs the

question if ViTs can be better adapted to vision tasks. Are we able to achieve O(n)

performance while also being able to incorporate both local and global structures

within our data?

Figure 10. Samples form FFHQ-256 (left) with FID: 2.05, FFHQ-1024 (center)
with FID: 4.17, and Church (right) with FID: 3.40 generated by our StyleNAT
network, using Hydra Neighborhood Attention.

66

This chapter studies the core architecture of the network, by introducing

Efficient Image Generation with Variadic Attention Heads [156], which allows

the vision transformer to do more with less. The primary modification for this

work is simple, yet powerful: allow attention heads to attend to independent

receptive fields. Our results demonstrate that some simple modifications to our

attention heads can allow our Vision Transformers to better integrate local and

global relationships during image generation. The result of this is the ability to

train a StyleGAN [79] based model, using a modified version of Neighborhood

Attention [52, 50], which pushes the Pareto Frontier for image generation on

FFHQ-256. Our model makes significant improvements in terms of visual fidelity

while being smaller and has a higher throughput than other comparative models.

4.1 Localized Attention

In an effort to address the computational challenges of transformers,

researchers looked to a number of different solutions. One such solution is to

only perform attention on some localized region instead of the whole input. This

formulation is natural as analysis of attention maps shows that there is strong

correlation between neighboring tokens [90, 3, 152], or having Attention Sinks [163].

Works like Image Transformer [123] and Stand Alone Self-Attention (SASA) [129]

use localized context windows for their transformer algorithms, similar to the

ideas proposed in Longformer [7]. These methods reduced the computational

burden of attention mechanisms, approximating O(n) complexity, but had issues

generalizing as the window size increased. Other works like HaloNet [151] and

the Window Self-Attention (WSA) from Swin Transformer [109, 110] partitioned

the query and context sets, independently performing self-attention. These blocks

become highly parallelizeable but does not account for cross-block interactions.

67

Swin tried to address this issue by introducing shifted windows (SWSA), where

subsequent attentions would shift their windows. With a hierarchical structure the

network can is able to attend to every pixel in an image to attend to one another,

but incorporates biases around boundaries, similar to the issues faced in the non-

overlapping blocks of ViT (Chapter 3).

4.2 Neighborhood Attention

2.5 5.0 7.5 10.0 12.5 15.0 17.5

81.0

81.5

82.0

82.5

83.0

83.5

84.0

84.5

0.0

80.5

ConvNeXt-T

ConvNeXt-S

ConvNeXt-B

Swin-T

Swin-S

Swin-B

NAT-M

NAT-T

NAT-S

NAT-B

Model parameters

Mini

Tiny

Small

Base

∼ 20M

∼ 30M

∼ 50M

∼ 90M

GFLOPs

Accuracy
Neighborhood Attention Transformer

ConvNeXt (CVPR 2022)

Swin Transformer (ICCV 2021)

Figure 11. Comparison of Neighborhood Attention, Swin, and ConvNeXt on
ImageNet classification.

To resolve these issues, Hassani et al. developed the Neighborhood Attention

Transformer (NAT) [52]. The architecture is similar to SASA but resolved the

generalization issue, ensuring that when the window size was equal to the image

size that Neighborhood Attention (NA) would be identical to the traditional dot-

product self-attention mechanism. Like a convolution, NA considers a context

window around each individual input queries, Q. The keys, K, then evaluate over

the surrounding neighborhood (a square). If a (relative) positional bias [68, 128], B,

is used then this must also be modified to account for the key location. Similarly,

68

the value, V , must be updated to correspond with the local neighborhood. We can

describe this attention variant as follows:

Ak
i =




QiK
T
ρ1(i)

+Bi,ρ1(i)

...

QiK
T
ρk(i)

+Bi,ρk(i)




Vk
i =




V T
ρ1(i)

...

V T
ρk(i)




(4.1)

For an input token, i, we consider a window of size k and its neighborhood, ρ.

Specifically, ρj(i) denotes the i’s jth nearest neighbor. We can then consider the

full attention about a token as:

NAk(i) = Softmax

(
Ak

i√
d

)
Vk

i (4.2)

Testing Neighborhood Attention in discriminative settings showed that

it was able to outperform other attention variants, such as Swin, as well as

modernized Convolutional variants such as ConvNext [111], show in Figure 11.

Importantly, for a fixed number of parameters, NA outperformed others on

accuracy, memory, and flops, but did not on throughput. Further development

of NA led to a Dilated variant (DiNA) [50] and improving the GPU kernel [49,

53] and generalizing the architecture [54], allowing for arbitrary attention

configurations, similar to tools like Flash Attention [22, 21, 136] and xFormers [98].

These improvements led to significant improvements in speed, with over a 100×

improvement in the forward pass and 80× for both forward and backwards passes,

at FP16 and on an NVIDIA A100 GPU. These improvements led to further

adoption of the model throughout other works [76, 75, 29].

While localized attention provides significant advantages in reducing the

computational load, they have limitations due to the restricted context window over

69

which they attend to. This creates a similar to CNNs, gaining advantages of the

localized structure of the data at the cost of global structures. Similar to CNNs,

this can often be resolved by using a hierarchical model, where downsampling and

pooling allow for full token mixing. For example, NAT takes in an input image

sized RH×W , then embeds this into RH
4
×W

4 through an overlapping tokenizer,

which uses the same embedding process as CCT [51]. There are 3 transformer

blocks before another overlapping downsampling is performed and another 4

transformer layers process the image at RH
8
×W

8 . This process repeats with 18

layers at RH
16

×W
16 and 5 layers at RH

32
×W

32 . Figure 12 depicts the architecture. This

formulation works especially well for discriminative tasks, due to the network map’s

endomorphic formulation. In the case of classification the network is learning the

map f : RC×H×W 7→ N0. Through this hierarchical mapping and overlapping

downsampling all tokens become sufficiently mixed and there is an assurance that

all inter-relations can be accounted for.

H ×W

Ov
er
lap

pi
ng

To
ke
ni
ze
r

NA
T

Bl
oc
k

Ov
er
lap

pi
ng

Do
wn

sa
m
pl
er

H
4 × W

4

×N1

NA
T

Bl
oc
k

Ov
er
lap

pi
ng

Do
wn

sa
m
pl
er

H
8 × W

8

×N2

NA
T

Bl
oc
k

Ov
er
lap

pi
ng

Do
wn

sa
m
pl
er

H
16 × W

16

×N3

NA
T

Bl
oc
k

H
32 × W

32

×N4

Fu
lly

Co
nn

ec
te
d

Ba
ld
Ea
gle

LN

NA

LN

MLP

⊕

⊕

NAT BlockNeighborhood Attention Transformer Architecture

Figure 12. Diagram depicting the Neighborhood Attention Transformer [52] as
applied to vision classification.

4.3 Variadic Attention Heads

A subtle feature of multi-headed attention [150] is that attention heads

are independent of one another. This property allows each head to attend to

different features within the data, analogous to feature maps in CNNs. This feature

70

plays a key role in the performance of attention models [119, 145], with a few

specialized attention heads being the primary drivers [153]. We thus propose the

following hypothesis: Decoupling attention heads will improve the performance of

Neighborhood Attention.

An important feature of Neighborhood Attention is that it generalizes

to standard attention and allows for dilated receptive fields [50]. With this in

mind, we are able to reduce the locality bias imparted by local receptive fields.

By allowing attention heads to attend to different receptive fields we allow for the

intermixing of global and local information, similar to the standard attention.

Thus, we modify the standard Neighborhood Attention mechanism to allow

attention heads to have independent kernel sizes and dilations. This modification

can be explicitly represented as follows:

Ak
i,h =




Qi,h(k,d)K
T
ρ1(i),h(k,d)

+Bi,ρ1(i),h(k,d)

...

Qi,h(k,d)K
T
ρk(i),h(k,d)

+Bi,ρk(i),h(k,d)




Vk
i,h =




V T
ρ1(i),h(k,d)

...

V T
ρk(i),h(k,d)




(4.3)

With this variation we specify that each query, Q, and key, K, are independent

calculations, split across each attention head, h. Where the head is a function of

the window size, k and dilation, d. The positional bias may also need be offset in a

head-wise fashion.

NAk(i) = Softmax

(
Ak

i,h√
d

)
Vk

i,h (4.4)

This formulation maintains the computational and memory advantages of

Neighborhood Attention, but mitigates the losses to architectural flexibility. Within

71

this formulation arbitrary combinations of window sizes and dilations may be used,

allowing for higher flexibility and integration of information. Consequently, these

hyper-parameters, k and d, need not be fixed.

4.4 Generating The Right Experiment

Const N (0, 1)512×4×4

AdaIN

MHSA

AdaIN

MLP

Generative Network

StyleNAT

4 × 4

×N

Up

AdaIN

Hydra-NA

AdaIN

MLP

...

tRGB

Up

tRGB

8 × 8

×N

⊕
...

A

A

A

A

Norm

FF

FF

FF

FF

FF

FF

FF

FF

z ∈ N (0, 1)512

w ∈ W

NA DiNA DiNA

concat

Hydra-NA Architecture

Figure 13. StyleNAT Architecture

To evidence our hypothesis presents a challenge, due to the nature of

most neural architectures accounting for these limitations and mixing data

as dept increases. With limited compute infrastructure there is significant

pressure to design the right experiment to properly test the research questions

and ensure we limit any observed effects to our procedure. Most architecture

changes are demonstrated through discriminative tasks; such as classification,

detection [103, 58, 13], and segmentation [179], as performed in our Neighborhood

Attention papers. Many of the small (e.g. CIFAR-10 [147, 91]) and medium-

sized (e.g. ImageNet-1k [23]) datasets, which would be within our computational

budget, are nearly saturated; with many results similar to the labeling error rates

72

in the data. Consequently, improvements tend to me minor, often with only a

percent or lower difference. This makes it difficult to evaluate the effect of the

modifications, even with exhaustive search, as the performance gains become

difficult to distinguish from many other factors. Their hierarchical nature also

makes it difficult to isolate our contribution as this already performs local-global

token mixing. To combat these issues while remaining mindful of computational

budgets, we must intentionally design an experiment to limit the variables of

interest and ensure proper variable isolation.

While discriminating tasks often learn a mapping from some Rm 7→ Rn

where n < m it is common for generative tasks to learn maps where n ≥ m, or

even a map onto itself (Chapter 2.1). By placing focus on these formulations we

can better isolate our variables of interest. Specifically, the StyleGAN [79, 81, 80,

82, 96] architecture uses a progressive [78] structure, generating an image starting

from a small noise sample, relying on the Latent Manifold Hypothesis, making

the assumption that the necessary information for the generation of samples is

smaller than the dimensionality of the images themselves. This progressive nature

is designed for the local receptive fields of CNNs, with low resolution images

capturing more global structures and as the resolution grows the neural net can

learn more appropriate upsampling methods that account for finer detail synthesis.

This is effectively in reverse to the structure of hierarchical classification models,

benefiting locality.

This structure also has the benefit that, in general, it synthesizes an image

at progressive image resolutions, allowing for greater computational efficiencies.

Unfortunately, due to these biases the architectures commonly struggle with long

range fine detail synthesis, commonly resulting in features like heterochromia

73

(eyes differing in color) when doing human face synthesis. Such fine grain detail

may not exist at low resolutions and only appear later when the image resolution

is significantly larger than the convolution window. Thus, locality is a double

edged sword for these architectures: providing high utility at low resolutions but

becoming detrimental as the image grows. The prolific nature of these architectures

also yields a large number of comparitors. The well studied nature of GANs allows

for better isolation and allows us to assume that these architectures are reasonably

optimized. This setting makes it a great platform for variable isolation and allowing

us to test our hypothesis.

Model Comparisons

HiT-L
StyleSwin

StyleGAN-XL

StyleNAT

Model Parameters

20 25 30 35 40 45 50 55 60 65

2.00

2.25

2.50

2.75

3.00

Throughput (imgs/sec)

FID
FFHQ-256 FID vs Throughput v Parameters

StyleNAT: 48.92M @ 59.90 imgs/s (eLVM@CVPR 2025)

StyleSwin: 48.93M @ 62.48 imgs/s (CVPR 2022)

StyleGAN-XL: 67.93M @ 52.70 imgs/s (SIGGRAPH 2022)

HiT-L: 97.46M @ 20.67 imgs/s (NeurIPS 2021)

100M

75M

50M

Figure 14. StyleNAT represents the Pareto Frontier for FID (y-axis), Parameters
(bubble size), and throughput (x-axis) on FFHQ-256. StyleNAT has the lowest FID
of 2.05, with fewer parameters (48.92M) than similarly performing models and is
capable of generating images in real-time (59.90 imgs/s). This makes StyleNAT
smaller, faster, and better than its competitors. (Note: StyleNAT’s NATTEN
kernel is not optimized and may still be improved for higher throughputs.)

74

Additionally, there were many attempts to integrate attention and

transformers [144, 171, 71, 72] to resolve the issues in long range detail generation.

These works also needed to ensure that methods were computationally efficient,

as performing full attention across the entire image is computationally intractable

at high resolutions. Specifically, the work Hit-GAN [174] and StyleSwin [169]had

created similar formulations, allowing for clearer experimental control. Both these

networks base their architectures off of the StyleGAN architecture. Additionally,

HiT-GAN and ViT-GAN [96] found that transformers struggled with the

generation of images above 64 × 64 resolution, allowing our work to demonstrate

its capabilities at the much more common, and computationally reasonable, scale of

256× 256.

HiT-GAN divided their generative architecture into two sub-networks, one

for low-resolution (≤ 32× 32) and the other for high-resolution. To generate spatial

mixing in the low-resolution network extended the method of Nested Hierarchical

Transformer [173], dividing the input into non-overlapping patches, applying

positional encoding, and bifurcating the attention heads such that each operates

on a different spatial axis (height and width). They note that they make an

assumption that proper spatial mixing in low-resolution stages will allow for high

resolution stages to focus on image synthesis, replacing their attention modules

with MLPs. Additionally, they replaced the common AdaIn [70] and modulated

layers [81] with cross-attention due to excessive memory issues and being unable to

produce images above 64× 64 resolution.

StyleSwin takes a different approach, much more closely following the

original StyleGAN architecture. The typical Swin Transformer [109, 110]

architecture performs spatial mixing by using non-overlapping patches, performing

75

a cyclic permutation on subsequent layers. Through multiple layers this ensures

there is spatial mixing, allowing for some long range attention across edges.

StyleSwin instead splits their attention heads such that half utilize the window

patches and the other half utilizes the shifted windows, removing the necessity of

communication across layers for spatial mixing. Otherwise the architecture closely

follows that of StyleGAN-2 [81, 80], using 2 synthesis layers per resolution level,

incorporating wavelets [36], TTUR [60], and bCR [175]. For their attention they

use an attention dimension equivalent to the number of channels in StyleGAN

convolutions. They divide this by 32 to get the number of attention heads, setting

a minimum number of heads to 4. This results in 16 heads for resolutions 4 - 64, 8

heads at 128 and 4 at 256. Additionally, a learnable parameter size 512 × 4 × 4 is

used to seed the synthesis network. StyleSwin faced “blocking artifacts” and similar

to HiT-GAN found that self-attention could be removed at higher resolutions but

that it failed to model high-frequency details.

With the progressively growing structure we have a good platform that can

clarify the impact of our architectural changes. The high rates of visual artifacts

also meets the goals that this architecture is designed to mitigate. Furthermore,

HiT-GAN and StyleSwin provide strong control baselines that can be used to

isolate our variables of interest. Given this setting, we utilize StyleSwin as our

experimental platform.

Due to computational budget limitations, we must minimize

experimentation and datasets to the most impactful. This model has a large

number of potential configurations, as our kernels can range from a size of 3 to the

nearest odd integer smaller than the resolution, R. Fixing the hyper-parameters

determining window size and dilation reduces the computational search space,

76

helping stability, which is a common problem with GANs. Fixed kernel sizes and

dilations can also help increase interpretability, allowing for more direct visual

analysis (Chapter 4.7). This will also help us better attribute effects of the context

mixing, making it a more direct comparison to StyleSwin. For simplicity we

assume an image is square, thus, for a given resolution, R, we will have R
2
− 1

potential kernels. Each dilation must also be positive and while the dilation can

make the effective kernel size larger than the image, this results in attending to no

information. Using this restriction results in R
4
kernels that can have dilations, and

the max dilation for a given kernel is
⌊R

k

⌋
. The total number of configuration of

attention heads, per resolution, is:

Nc =

R/2−1∑

i=1

⌊ R
2i+ 1

⌋
(4.5)

=
R
4
+

R/4−1∑

i=1

⌊ R
2i+ 1

⌋
(4.6)

Following the StyleSwin architecture, for an image size 3× 256× 256 (R = 256) this

results in 2 × ((16× (4 + 14 + 37 + 97)) + (8× 237) + (4× 565)) = 13176 possible

configurations and exceeds 47k configurations for high resolution generation

(R = 1024).1 Given our interpretation of the Bitter Lesson, this flexibility is

promising to the architecture, but is not feasible to exhaustively test within a

modest computational budget. We leave such work for bigger labs and instead

focus on evidencing the research hypothesis.

4.4.1 Datasets. For our main dataset we use the Flickr-Face-HQ

Dataset (FFHQ), introduced in the original StyleGAN work [79]. FFHQ is widely

used across generative modeling research, has a high resolution (1024 × 1024)

variant, and a wide diversity of faces and accessories (e.g. glasses, hats, jewelry).

1Neither kernels nor dilations need be square, further increasing the potential configurations

77

Level Kernel Dilation Dilated Size
4 - - -
8 7 1 7
16 7 2 14
32 7 4 28
64 7 8 56
128 7 16 112
256 7 32 224
512 7 64 448
1024 7 128 896

(a) Split Head configuration

Level Kernel Dilations
4 - -
8 7 1
16 7 1,2
32 7 1,2,4
64 7 1,2,4,8
128 7 1,2,4,8,16
256 7 1,2,4,8,16,32
512 7 1,2,4,8,16,32,64
1024 7 1,2,4,8,16,32,64,128

(b) Progressive configuration

Table 10. Configurations for different attention head configurations. Table 10a
shows our 2 headed configuration, used in FFHQ, where half the heads are dense
kernels and half are sparse dilated. We show the dilations and their effective size.
Table 10b shows the progressive head configuration that was used in some LSUN
Church experiments.

Importantly, by generating human faces we are better able to analyze the images

as human are naturally attuned for facial perception, being able to detect subtle

distinctions [77]. For our second dataset, we use the Church Outdoor class from

the Large Scale image database (LSUN) [166]. This dataset is relatively common

and presents a significant challenging, containing many features with straight lines,

often not found in biological objects.

4.4.2 Hyperparameters. To ensure that we only measure the effects

of the architecture we follow the same training procedure as StyleSwin: using

TTUR, a discriminator learning rate of 2 × 10−4, bCR with λreal = λfake = 10,

and r1 regularization [118] with γ = 10, as well as model hyper-parameters.

The only deviations we make is the iteration we begin our LR-decay, which is

experimentally driven, and we doubled the batch size in later experiments, to 64,

finding we were able to maintain stability at this level. This difference may be due

to our usage of 80GB A100 GPUs as opposed to the 32GB V100s that StyleSwin

78

used, as our batch size required 36GB of VRAM. We include all hyper-parameters

in our GitHub repository2 as well as save these values to our model checkpoints,

including our seed values, for reproducibility. We do not perform hyper-parameter

optimization, seeking to evaluate our model on architectural effect rather than

ultimate performance. A minor architectural change is made such that at the

lowest resolution, 4 × 4 we utilize a standard Multi-Headed Attention (MHA) layer

as opposed to a Neighborhood Attention layer. At this layer StyleSwin uses a 4 × 4

window size and NA is restricted to odd window sizes. Experimentally we found no

difference when using a 3× 3 window size, but the MHA layer slightly increases the

computational efficiency due to the unoptimized performance of NA at the time.3

Elsewhere StyleSwin uses a window size of 8 × 8 while StyleNAT uses 7 × 7, giving

a slight context range advantage to StyleSwin. Table 11 shows a full comparison of

our results, comparing different generative models by generative performance, the

number of model parameters, and the rate at which they can generate images. We

determine parameter size from officially released model checkpoints, removing any

non-generative parameters such as discriminators, hyper-parameters, or exponential

moving averages [126, 74, 59]. Similarly, we gather all throughput measures,

ensuring consistent GPU architecture and versions of Python and PyTorch [124].

To ensure throughput is properly calculated, we first warm-up the models to ensure

they are properly cached, generating 50 samples, and then generate an additional

100 samples, which we find the average of. For all GANs we use a batch size of 1

and for diffusion models we maximize the batch size for available memory 4. We

2https://github.com/SHI-Labs/StyleNAT

3NATTEN has undergone significant optimizations since the time of these experiments.

4Doing otherwise results in significantly decreased throughputs while GANs show little to no
deviation.

79

include our procedure in our public repository for additional transparency. For

evaluation we will primarially rely on the Fréchet Inception Distance (FID) [60],

but include more discussion and evaluation in Chapter 4.7.

Arch Model
FFHQ FID ↓ Church Usage Metrics (256)
256 1024 256 img/s Params (M)

Convolution

StyleGAN2 [81] 3.83 2.84 3.86 84.85 30.03
StyleGAN3-T [82] - 2.70 - 108.84⋆ 23.32⋆

Projected GAN [131] 3.39 - 1.59 143.64 105.84
INSGen [165] 3.31 - - 89.00 24.94
StyleGAN-XL [132] 2.19 2.02 - 14.29 67.93

Attention

GANFormer [71] 7.42 - - - 32.48
GANFormer2 [72] 7.77 - - - -
HiT-S [174] 3.06 - - 86.64† 38.01†

HiT-B [174] 2.95 - - 52.09† 46.22†

HiT-L [174] 2.58 6.37 - 20.67† 97.46†

StyleSwin [169] 2.81 5.07 2.95 62.48 48.93
StyleNAT (ours) 2.05 4.07 3.40 59.90 48.92

Diffusion

DDPM [63] - - 7.89 - 256.00
D.StyleGAN2 [158] - 2.83 3.17 - 23.94
D.Proj.Gan [158] - - 1.85 - 105.85
LDM [130] 4.98 - 4.02 1.28 329.32
LFM [20] 4.55 - 5.54 4.18 457.06
UDM [84] 5.54 - - - 65.58
Unleashing [9] 6.11 - 4.07 6.65 159.96

Table 11. FID50k results. Usage Metrics are evaluated at 256 × 256 resolution
for fair comparison and were collected ourselves. StyleNAT does not utilize any
FID enhancing processing, such as StyleGAN’s truncation trick. †HiT-L was
optimized for TPU and there is no existing PyTorch version to compare. There
is no public checkpoints for Hit-GAN [174] and we use their reported V100 values.
While most architectures are built off of the official StyleGAN models, they may
not all be able to utilize the custom CUDA kernels, which can significantly increase
throughput [81]. We use no truncation or tempering for StyleNAT.

4.5 When Faced With Sparse Attention

To gather a baseline value we first replace the Swin layers in StyleSwin

with an unmodified Neighborhood Attention Transformer, focusing on the FFHQ

dataset. This modification results in a minor improvement of 0.07 FID. Following

this, we incorporate Hydra-NA, using a kernel size of 7 × 7 for all attention heads,

80

(a) FFHQ-256 Samples (b) LSUN Church Samples

Figure 15. Samples generated by StyleNAT. We do not use truncation, softmax
tempering, nor any other such enhancement techniques.

but set half the heads to have a dilation increasing by a power of 2 (d = 2N),

maximally for the resolution at a given level, where N =
⌊
log2

(R
k

)⌋
.5 This method

allows for dense local receptive fields as well as highly sparse global receptive fields

to intermix through the attention mechanism.

This improved the performance by an additional 0.5, strongly suggesting

that this method is better able to learn the data generating function. Notably,

this result is only outperformed by StyleGAN-XL [132], which is ≈40% larger and

24% the throughput, and a variant StyleSAN-XL [144] that introduces a novel

training objective. At the time of our work, StyleGAN-XL was the state of the

art network on FFHQ-256 and this result caused StyleNAT to push the Pareto

Frontier in both FID vs model size as well as FID vs throughput. We noticed that

StyleSwin had utilized random horizontal flips when training on LSUN Church,

5At a 256×256 image resolution and a kernel of size 7 this gives us a dilation of size 32, making
a highly sparse receptive field across 224 pixels.

81

500 550 600 650 700 750 800 850 900 950 1,000
2

2.2

2.4

2.6

2.8

3

Iterations (K)

F
ID

FFHQ-256

(a) FFHQ-256

500 550 600 650 700 750 800 850 900 950 1,000

4.2

4.4

4.6

4.8

5

5.2

5.4

Iterations (K)

F
ID

FFHQ-1024

(b) FFHQ-1024

Figure 16. FFHQ training: FID vs Iteration (in thousands). We see that the FID
performance has not converged. This suggests the models are not optimally trained.

but was not used on FFHQ and decided to perform this training as NA had shown

to be quasi-equivariant to translations and rotations [52], and given transformers’

preference for augmentation, that this would improve the score while demonstrating

better generalization capabilities. This model trained for 106 iterations, beginning

the LR-Decay at 740k iterations, and achieved out best result at 940k iterations

(60.2M images). Notably the model was continuing along a decreasing trajectory,

as show in Figure 16. Since our result had surpassed the state of the art at the

time, StyleGAN-XL, we chose to move on, considering computational restraints.

Our goal is not to achieve state of the art performance, but rather to demonstrate

the integration of local and global structures within data.

Subsequently, we tried a few other dilation patterns but did not see

significant changes. Additionally, we attempted further partitioning of the attention

heads, including two intermediate dilations, but observed a decline in performance

and frequent model collapse. We believe this is due to only having 4 attention

heads at resolutions ≥ 256 × 256 and 8 attention heads at 128 × 128, requiring

undue burden for each head. We believe that increasing the number of heads and

head embedding dimension may lead to increased performance. The results of these

ablation studies can be found in Table 12a

82

FFHQ Ablation
Ablation FID ↓ ∆ ↓
StyleSwin 2.81 –
+ NA 2.74 -0.07
+ Hydra-NA 2.24 -0.50
+ Flips 2.05 -0.19
+ Prog Di (4) 2.55 +0.50

(a) Ablation study comparing models
on FFHQ-256 dataset. Starting with
StyleSwin [169] we first add unmodified
Neighborhood Attention (NA) [52], then
Hydra-NA, horrizontal flipping data
augmentation, and progressive dilations.

Church Ablation
Splits Heads FID ↓ ∆ ↓

2 4 23.33 –
4 4 6.08 -17.25
6 8 5.50 -0.58
8 8 3.40 -2.10

(b) Comparison for number of head
partitions (splits) when learning LSUN
Church. Min heads represents the minimum
number of heads in our transformer. Early
layers begin with 16 heads and halve until
minimum beginning at 128 × 128 resolution.

Table 12. Ablation studies of StyleNAT architecture, studying different
configurations. Results for FFHQ-256 and LSUN Church, respectively.

To test the scalability of this work we also perform a single training for

high resolution, at 1024 × 1024. Identical training procedures were utilized, but

this time we started our LR-Decay at 500k iterations and stopped training at 900k

iterations, achieving an FID of 4.17. We did not perform any parameter search at

this scale due to the costly computational budget but believe this demonstration

demonstrates scalability as the result significantly outperforms all other transformer

based architectures. While we did not surpass the FID of StyleGAN3 our model

is able to produce images of higher visual fidelity and does not contain many of

the visual artifacts that StyleGAN3 creates. Further discussion is provided in

Chapter 4.7.

4.6 A Bump While Headed To Church

We also train our model using the LSUN Church dataset, which includes

images of cathedrals, churches, temples, and towers. This dataset presents

significantly different challenges, images containing both biological and non-

biological features and with much more complex scenes. While FFHQ has images

83

center cropped around human faces and minimize backgrounds, this dataset

has diverse foregrounds and backgrounds (usually the sky). This creates strong

dependence on localized features and lower dependence on global ones, as many

long range features may be determined entirely through local ones (e.g. the sky).

The highly asymmetric nature of the images also reduces these global dependencies,

with features such as windows frequently appearing in different sizes and shapes.

This frequently results in generators having significant performance gaps between

FFHQ and LSUN Church. While StyleGAN-XL demonstrated that Style-based

generators could scale with data diversity, this requires significant architectural

changes and additional parameters. Despite these challenges, this dataset can help

to better understand the biases of our architectural changes and how well it can

adapt to more complex environments.

We initially follow identical training procedures and architecture, splitting

heads between dense local windows and sparse global windows. We observe that

this model quickly diverges, resulting in mode collapse. We then increase the

number of partitions, following the architecture that diverged in FFHQ. This

variant dramatically improves FID and stability, showing the dataset’s stronger

dependence on localization. We further increase the partitions to 6 and change our

minimum head count, which only affects the final layer, to 8. This necessitates a

decrease in the head dimension and results in a more modest increase in FID. A

final configuration is attempted increasing the number of partitions to 8, assigning

2 heads to each partition in layers operating on resolutions below 128 and 1

attention head for those larger. This results in a larger FID gain, and while the

result is not as impressive as those in FFHQ the result is highly competitive. The

results of this ablation can be found in Table 12.

84

4.7 Metrics Are Not Enough

While the FID results in Table 11 show substantial effects, it is important

to recognize the biases and limitations of the evaluation metrics (Chapter 2.4).

The main issue is that most of these metrics were developed when the quality of

generation was substantially lower. The authors of the metrics were not deceived

by the correlations they found, but the rapid success of generative research forces

us to face their limitations. They still provide utility but we must be careful to not

become overly reliant upon them as they are not perfectly aligned with the things

we wish to measure.

FID uses a Fréchet Divergence, which measures the difference between two

Gaussians, G0, G1

d(G0(µ0,Σ0), G1(µ1,Σ1)) =

√
||∆µ||22 + Tr

(
∆Σ− 2

√
(Σ0Σ1)

)
(4.7)

Where µ,Σ is the mean and covariance, respectively, and Tr is the

trace of the matrix. The Inception part of this is metric refers to the fact

that the Gaussians are drawn from the final pooling layer of a Inception-V3

Network [143] that has been trained on ImageNet [23]. While the performance

was sufficient at the time, the accuracy is sub-par by today’s standards. Other

work has demonstrated that FID can create distortions [92] or there can be flaws

in evaluation in subtle effects like through the image downsampling method

used [122]. These subtle effects can make evaluation difficult, vary dramatically

between libraries and even library versions. Simply updating the Inception Network

to a different model can provide improvements, as shown by Kynkäänniemi et al.

[92], this does not resolve the underlying problem.

85

After the pre-print of this paper was released Stein et al. [140] performed a

large study to determine which metrics strongly correlated with human preference.

The work involved the largest human preference study to date and used StyleNAT

in their analysis due to its state of the art performance on FFHQ-256 at the

time.6 Their work sought to better understand the biases of many different image

evaluation metrics. To determine this, they crafted a rather straight-forward

experiment, measuring participants ability to determine if a given image was

genuine or a deep fake. This metric serves as a proxy to determining if images

are photo-realistic or not. Participants were paid for their, being given bonuses

based on their accuracy, and at a minimum had a Bachelor’s level education. Their

results found that there was not a strong relationship between metrics such as FID

and participants ability to distinguish deep fakes from real imagery.

The result of this forces us to carefully analyze our images and investigate

our network to better determine if our architectural changes actually caused the

improvements we sought. To do this we perform two forms of visual analysis to

better understand our network is doing. The first, Chapter 4.7.1, compares visual

fidelity of images from StyleGAN3, StyleSwin, and StyleNAT on FFHQ-1024

images. The second, Chapter 4.7.4, dives deeper into the attention maps and what

our models are actually attending to. These visual analyses are limited, but can

give us much deeper clues as to what is happening within these networks.

4.7.1 The Face Says It All. Given our metric limitations we

visually inspect samples from images of our networks. On FFHQ-1024, we compare

StyleGAN3, StyleSwin, and StyleNAT which have FIDs of 2.79, 5.07, and 4.17,

respectively. We use our high resolution 1024 images because this allows us to

6We have no affiliation with Stein et al. nor have had any communication.

86

better inspect subtle features. Local features can be more easily seen without the

need to zoom and global features have more difficulties being generated. We use

FFHQ because of our biological aptitudes at recognizing faces. The human brain

was designed to recognize faces, making us apt at identifying subtleties.

4.7.2 Quick Training on Deep Fake Detection. Readers who

are untrained or inexperienced in detecting deep fakes may wish to pay special

attention to some key areas. Often visual artifacts can be quickly identified by

looking at ears, eyes, neck, and hair, often in that order. FFHQ has biases where

faces will look much more in the style of profile photos: that is, they are facing

towards the camera. In general, this results in a full face being visible, ears and all.

Ears make for quick detection due to their large distance within the image

and natural tendencies for faces to be highly symmetric (across the vertical axis)7.

The localization bias is thus used to our advantage. Ears are not typically focused

on by a typical viewer, so may be easily missed. Both ears also may not appear in

samples, as may not always be relied upon.

Eyes are said to be the window to the soul, and are surprisingly complex.

Issues can often be easy to detect but cultural biases may cause in how natural

this detection is.8 These are great features due to this complexity, their long range,

and high symmetry. In particular, pupils (the black center of the eye) may not

appear round in generated images. Difficulties in capturing long range symmetry

result in high rates of medical conditions such as anisocoria (unequal pupil size),

dyscoria (misshapen pupils), ectropion uveae (displacement). or other such effects.

7Faces are not perfectly symmetric, but in general, they are far more symmetric than
asymmetric

8e.g. some ethnic groups have high variance in iris colors while others don’t. This plays a role
in cultural attention to eye color.

87

Irises, the colored part of an eye, can also exhibit features like heterochromia

(differing eye colors or differing color in the same eye), aniridia (absence of iris),

or others. Additionally, eyes often contain reflections, which can quickly give away

the synthetic nature. Detailed reflections make this easy to spot, but the bright

spot of a light source will often be non-physical.

Necks can provide more subtle clues. There is higher variance in necks

within these images, where some photos taken with body facing the camera and

the neck will be straight while others will have their body slightly turned with their

head facing the camera. This can cause issues if we pay attention to the depth in

an image and especially around the chin. In addition to this, mouth and teeth

can exhibit these phasing artifacts, as shown in the StyleGAN2 work [81]. High

variances result in our detectors being worse at these features so they often slip

through. Hair also provides substantially high variance, but may require more

detailed attention. These may be simple issues like rapidly changing texture and

color or one may need to carefully follow some strands of hair.

Finally, accessories like jewelry, hats, glasses, and so on make for quick

identification. These have lower sampling rates within the data and high variance,

so are far less likely to be coherent. Ablations and subtle artifacts can appear,

which are more difficult for the detector to catch.

With this in mind we encourage the reader to carefully inspect our images.

We embed our images at high resolutions to make it possible to zoom in for careful

inspection.

It is also important to highlight the biases in the FFHQ dataset.

Many mistakes that these models make can be much better understood by

understanding the data they are trained on. Some works have found that there are

88

disproportionate representation of certain demographics [99]. In particular, there

are higher rates of women than men, in particular of Caucasian and Latin descent.

The images are also center cropped, primarily containing a single individual, and

usually facing the camera. Often people are smiling in these photos, eyes are open,

looking at the camera, in a portrait style. There are still high variances within

the dataset and subjects commonly may be wearing glasses, hats, have artistic

face painting or cultural face painting (e.g. Bindi or Ashes), hands on their face,

microphones, wearing costumes, and a wide variety of situations exist. In order

to perform a serious evaluation generative researchers are strongly encouraged to

manually inspect the dataset so that they can better understand what they are

modeling. Without manual inspection researchers will most certainly make false

assumptions about this data.9

4.7.3 Fingerprints. These results are highly subjective but still

can provide substantial value. To ensure that we are not completely unfair in our

comparisons we try to present the best samples from these generators. We wish to

error in the direction of a steelman rather than a strawman.

Our goal is not to determine which image generator is better, but find

patterns in the unique flaws. These flaws provide clues into how our networks

interpret the data and can provide hints at how to improve our generators.

Understanding these systematic flaws is critical to understanding what future

architectural changes need to be made.

4.7.3.1 StyleGAN. For StyleGAN3 we carefully searched through the

public set of curated images which is linked on their GitHub Repository under the

directory StyleGAN3-r-ffhq-1024x1024. Being curated this is already biased towards

9Samples may be available online, such as: https://huggingface.co/datasets/pravsels/
FFHQ_1024

89

https://github.com/NVlabs/stylegan3
https://nvlabs-fi-cdn.nvidia.com/stylegan3/images/stylegan3-r-ffhq-1024x1024/
https://huggingface.co/datasets/pravsels/FFHQ_1024
https://huggingface.co/datasets/pravsels/FFHQ_1024

higher quality samples. We then manually search through this for what we believed

was the best sample. For StyleSwin and StyleNAT we instead generate 50 samples,

discard any with obvious artifacts (colloquially referred to as “GAN Monsters”)

and select the best example. This potentially creates a bias towards StyleGAN3,

given the additional level of curation.

(a) 1024 FFHQ Sample from StyleGAN3

(b) Forehead bead
pattern. Two bands at
top and bottom third.

(c) Glasses with
hexagonal artifacts
around edges.

Figure 17. Visual artifacts from StyleGAN3
FFHQ-1024 samples (using image 0068).
Sample highlights banding effects, hexagonal
patterns, and other artifacts common to this
generator.

Within the StyleGAN images

we notice a string of beads like

artifacts. These structures may be

difficult to notice at first glance

but become difficult to ignore

after noticed. These appear most

prominently between the two

“wrinkles” in the middle of the

forehead of the sample image.

We noticed that such patterns

appear throughout the face and

were quite visible in all images we

looked at. We do not know the

cause of these patterns but found

that they were noticeable in other

datasets, including AFHQ, which

contains images of animals. This

suggests this is a fingerprint of the

architectural design rather than

of the dataset, potentially being a

90

more advanced droplet artifacts discussed in StyleGAN2 [81]. Those patterns were

often masked by an animal’s fur and more easily detected when looking at noses or

tongues. 10 11

In addition to this we noticed extremely high rates of geometric artifacts in

glasses. Most visible around the edges of the glasses, but careful inspection will

show that these appear throughout. These may be due to difficulties in capturing

reflections. The glasses also are non-physical, with the temples simply vanishing.

Another strong band can be found where the temples should be, and indicate that

these are statistical artifacts (like the droplets), fooling the detector into thinking

the temples exist. Additionally, there is some non-physicality to the nose pads.

More inspection can reveal many other artifacts, including around the mouth,

melding teeth, hair, fused neck, and tear duct. Specifically, the person in the photo

appears to be missing a jaw, which appears surprisingly frequently among the

curated samples.

Despite StyleGAN3’s high FID score these artifacts are trivially detectable

if one knows what to look for, but may easily be missed if only given a passing

glance. In particular, StyleGAN3’s errors typically highlight larger failures when

it comes to long range coherence. While still highly symmetric, there are more

symmetry errors than one would expect of an average human.

4.7.3.2 StyleSwin. StyleSwin holds the lowest FID, and unfortunately

produced a large number of low quality samples at this scale. The authors of the

paper noted some “block” like artifacts, which can be clearly seen in Figures 3 and

5 of their work [169]. We notice similar artifacts in all the samples we generated.

10stylegan3-t-afhqv2-512x512/0175.png

11stylegan3-t-afhqv2-512x512/0138.png

91

https://nvlabs-fi-cdn.nvidia.com/stylegan3/images/stylegan3-t-afhqv2-512x512/0175.png
https://nvlabs-fi-cdn.nvidia.com/stylegan3/images/stylegan3-t-afhqv2-512x512/0138.png

Detection can be a bit difficult depending on a reader’s screen, but by zooming

into the forehead concentric rectangles become quite visible. We believe that these

artifacts are due to the Swin Transformer, and provide further discussion alongside

our attention maps.

(a) 1024 FFHQ Sample from StyleSwin

(b) Forehead squares (c) Right ear texture

Figure 18. Visual artifacts from StyleSwin
FFHQ-1024 samples (we generated these).
Sample highlights rectangular geometric
patterns on face, and poor texture on ears.

We found that StyleSwin’s

integration of sliding windows

(SWA) and shifted windows

(SWSA) does not properly

integrate long range features.

This is most apparent by looking

at the eyes in our sample. All

parts of the eye differ in size:

both iris and pupil. The effect

is as if the right eye is closer to

the camera than the left eye,

yet this depth does not correctly

correspond to the direction that

the nose, eyes, and mouth point in.

The eyes exhibit heterochromia,

being different shades of blue

(right is almost green), anisocoria,

dyscoria, and ectropion uveae. The

reflections within the eyes are also

substantially different, as if looking at completely different scenes.

92

Additionally, we found common issues with facial textures, easily noticeable

in the ear. High rates of speckling can be seen by zooming in on the cheek, where

some non-physical banding may also be found. While this image does not have the

fused neck like StyleGAN, it has minor issues with generating realistic depth and

some artificial lines can be seen along the neck. Similar depth issues may be visible

by looking at the nose, which blends into the cheek.

(a) 1024 FFHQ Sample from StyleNAT

(b) Forehead lines (c) Eye spotting

Figure 19. Visual artifacts from StyleNAT
FFHQ-1024 samples (We generated these).
Sample highlights minor skin texture issues,
some chromatic aberrations, and unnatural
blue speckling around eyes.

While this sample has many

artifacts and may be more easily

identified than the StyleGAN3

sample, there are some aspects that

perform better. The concentric

rectangles are often less noticeable

compared to the beading in

StyleGAN, as well as the neck and

jawline appear more realistic.

4.7.3.3 StyleNAT.

StyleNAT has a FID 2
3
the distance

between StyleGAN3 and StyleSwin,

being much closer to StyleSwin

on the metric. Yet, we noticed

that images were consistently

much better than StyleSwin, and

the fidelity was much closer to

StyleGAN3. We believe StyleGAN3

still produces better images at a

93

higher frequency and our work could likely have greatly benefited from tuning and

continued training. Despite producing many high quality images, our images are

still not without error.

The eyes are a bit of interest and may demonstrate some aniridia (absence

of iris). Careful inspection makes this unclear, as there is some brown and even a

bit of blue-gray. Interestingly the eyes look quite similar, with both eyes following

the same pattern. We are unable to differentiate if this is sectoral heterochromia

(partitioned) or central heterochromia (radial). The colors being a brown and

dark blue, especially on a male, make this much more natural but it should not

be assumed the model learned that causal relationship.1213

Like the other images, our model still struggles with the neck. While the

image much better captures depth there are some non-physical features. Below

the jaw the neck bulges and might be mistaken for an Adam’s Apple or a weird

camera angle. There is also some slight banding around the lower part of the neck,

half way between the jawline and shirt collar. Additionally, the jaw bulges, as if

merging a forward facing face and a slightly turned face.

Interestingly, we do not observe systematic depth errors like StyleGAN and

StyleSwin. Yet we do notice our images also create unique skin textures, different

than StyleGAN3 or StyleSwin. These are most noticeable around the lips and the

subject’s nose. Larger lines may be found around the forehead and like StyleSwin,

we can trace these to the attention maps (Chapter 4.7.4). Additionally, we find

a systematic blue speckling, most easily noticed around the eye or the beard of

12Irises do not have blue or green pigments. Instead these colors are created through eye
structure. Both are brown eyes with lower amounts of melanin.

13Green and Blue eyes are sexually dimorphic. Blue is more common among men, green is more
common among women.

94

the subject’s chin. This may pattern can be difficult to detect depending on the

reader’s monitor.

4.7.4 Attention To Details. To better understand the cause of these

systematic issues we visualize the attention maps across our generator. We modify

the standard roll-out attention map to account for the localize windows and have to

undo the shifting for both methods. This method is open sourced with our project

and appears to be the first method for visualizing attention maps for either Swin or

NATTEN . For quick reference Figure 20 illustrates these intermediate layers for

both StyleNAT (Fig. 20a) and StyleSwin (Fig. 20b).

When looking at the final layer of StyleNAT (Figure 21) we observe many

of the same patterns that we found during visual inspection. The matching

patterns help validate our interpretation of these attention maps and our method

of extraction. In the first transformer we are able to observe the same banding

lines around the face. Using these as reference can aid in their detection if this

was previously unclear. We also notice that these appear in the dense heads in

the second transformer. Similarly, we are able to observe the speckling, especially

around the chin. In most of these maps we are able to observe a circular shape

in the forehead, which corresponds to a hair curl. Careful inspection of this

curl in Figure 19 shows that this is too perfectly circular and may actually me

more similar to a statistical droplet that is better masked. Given this, similar

explanations might apply to the blue speckling.

95

(a) We progressively see the face form and notice the first head captures local features
while the last head captures global features. Structural features appear early on while
details are generated at higher resolutions.

(b) Low resolutions show decoherence and artifacts are not removed in progressive
resolutions. We do not observe strong differentiation between local and global features.
These maps explain the blocking artifacts discussed in section 1 of StyleSwin [169].

Figure 20. Visualization of the first and last attention head progressing through
StyleNAT. We start at a resolution of 16×16 and grow to 1024×1024. We generate
50 samples from each network and choose the best image from the sample to make
comparisons as fair as possible. The top row shows the first attention head, with 2
transformers per resolution level. The bottom row shows the last attention head.
Fig. 20a visualizes for StyleNAT (ours) and Fig. 20b follows StyleSwin [169].

Critical to the verification of our hypothesis, we observe that the attention

maps form two distinct groups, directly corresponding to our partitioning. This

grouping occurs in different transformers and at different resolutions, directly

matching the head partitioning regardless of the total number of heads. Our dense

kernels have much smoother attention maps, suggesting they are attending locally.

Our sparse global kernels have more patterns and the highlighted regions (such

as ears and background) correspond to the long range patterns we expect. While

the dense maps also highlight some of the backgrounds their boundaries closely

correspond to similar coloring, which would be a local feature rather than global.

96

These maps strongly suggest we have achieved our goals, even if our method is not

fully optimized.

(a) Transformer 0 (b) Transformer 1

(c) Transformer 0 (d) Transformer 1

Figure 21. Visualization of Attention maps (Figs. 21a and 21b StyleNAT, Figs. 21c
and 21d StyleSwin) for transformers at the 1024 resolution. Top row corresponds
to localized dense kernels (k = 7, d = 1), second row corresponds to the sparse
dilated kernels (k = 7, d = 128). Banding and blue speckling on images directly
corresponds to those in the attention maps. We observe divergent attention maps
across heads, matching our exception.

97

CHAPTER V

DISTILLATION OF INVERTIBLE NETWORKS

I know numbers are beautiful. If

they aren’t beautiful, nothing is.

Paul Erdős

Nota Bene: This work is based on the previously published co-authored work

Distilling Normalizing Flows [157].

– Steven Walton was the primary author of the source code and performed the

majority of experiments. Steven was also the primary author of the paper.

– Valeriy Klyukin made significant contributions to the source code and to the

experiments. Valeriy also provided feedback and contributed to the writing of

the paper.

– Maksim Artemev provided software engineering expertise and feedback

influential to the design and experiments. Maksim also contributed to the

writing of the paper.

– Denis Derkach provided general support and feedback for the project.

– Nikita Orlov provided general support and feedback for the project. He also

helped provide access to the hardware used for our experiments.

– Humphrey Shi was the advisor, contributing overall guidance on the research

as well as funding for the work. Humphrey also contributed to the writing of

the paper and ensuring research stayed on track.

A frequent task of interest for generative models is the “reversibility

problem”(GAN inversion, etc) [5, 39]. That is, determining the map from the image

98

to pre-image (Figure 1), or can be seen by mapping the model’s representations

back to the data. This is sometimes referred to as the “inverse problem,” but an

inverse does not always uniquely exist, so we avoid such nomenclature unless one

does. Of particular concern are Tractable Density Models (Figure 3), which allow

for a formal, mathematical, description of the image’s probability density function.

These models are of special interest to many scientists as the formalization

allows for better interpretability [83, 15, 34, 48, 73]. Reversible models increase

utility by allowing manipulation of the data generating process, while invertible

models extend this further as manipulation on the image corresponds to a unique

modification in the pre-image (and vice versa).

5.1 Model Distillation

Unfortunately these models are not as easily trained due to their more

restrictive architectures. As discussed in Chapter 2.2.2, larger models allow for

more smoother solution spaces, and thus can reduce difficulties in optimization.

Fortunately, there usually exist multiple trajectories that provide a mapping from

the domain to range, and any such mappings are equivalent. This encourages

the training of large models, but their size makes their usage cumbersome.

Deployment may be limited, as they may require greater system resources than

available on many systems, as is common with LLMs [10, 24]. Methods like

quantization [38] and reduced precision can help reduce the computational burdens

but may themselves require specialty hardware or instruction sets. Early works by

Buciluă et al. [11] showed that an ensemble of models [25] could be compressed into

a single model. Further work by Hinton et al. [61] showed that smaller “student”

models could reduce test error by matching the logits of a larger “teacher” and

more accurate model, effectively distilling the large model’s knowledge. These ideas

99

expanded, demonstrating the effectiveness of to other architectures, studying what

kinds of information transfers, and how to optimize such knowledge transfer.

5.2 Distilling Normalizing Flows

While knowledge distillation has been widely studied, these efforts have not

extended to the architectures of Compositional Normalizing Flows. There only

exists limited studies of knowledge distillation for Normalizing Flows, such as

Baranchuk et al. [4], the work used a conditional normalizing flow for the teacher

but removed constraints of invertibility and thus the student network is no longer a

normalizing flow. Such works do not take advantage of the unique properties that

these architectures have, which similarly limits their capabilities. Flow models are

naturally invertible, learning compositional diffeomorphisms to produce their final

mappings. Given a network, f , they may be broken down into k sub-networks that

are each diffeomorphic themselves:

f = f1 ◦ · · · ◦ fk (5.1)

The common formulation of these architectures is to use the Change of Variables

formula, where each subnetwork contains the same information but in a different

coordinate system. For probability distributions, we can specify such a coordinate

change as follows:

px(x) = pu(u) |det Jf (u)|−1 (5.2)

where we are mapping from density pu(u) 7→ px(x). Here det Jf (u) denotes the

absolute value of the determinant of the Jacobian of u. Given the compositional

nature of these flows we may similarly calculate the final Jacobian determinant

through the product of those in each transform:

det Jf (x) =
n∏

i=1

det Jfi(xi) (5.3)

100

Unfortunately the Jacobian determinant is often computationally expensive, and

much research has been dedicated to finding expressive architectures with more

computationally efficient determinant [86, 26, 27, 30, 64, 8, 42] calculations.

Due to the unique construction of these models, there are unique opportunities

for transfer between a teacher and student model. We seek to formalize these

relationships and encourage further studying. We show that there are three main

categories in which we may transfer knowledge between teacher and student and

formalize these relationships.

5.2.1 Categories of Flow Distillations. We present these categories

of knowledge transfer in a general sense, noting that arbitrary loss functions, L,

may be used between them. We note that since each layer in a Compositional

Flow represents a probability distribution, that this presents unique conditions

that may not be present within other networks. Given the comparison between two

distributions it is often natural to use a Kullback-Leibler (KL) divergence.

L(θ) = DKL [px(x)||pu(x; θ)] (5.4)

=
∑

px (x) log

(
px(x)

pu(x)

)
(5.5)

Though it is not necessary to make such restrictions and any divergence or metric

may be used for minimization. One may have different interests in what actually is

desired to be minimized, potentially more interested in probabilistic constraints or

geometric.

5.2.1.1 Latent Knowledge Distillation. We define Latent Knowledge

Distillation, LLKD, to be the distillation between the final learned distributions

of the teacher and student. This may be thought of knowledge distillation in the

101

traditional sense, similar to that of Hinton et al. Specifically, we define this as

knowledge transfer when data processing in the normalizing direction.

LLKD(t, s, x) = Lr(t(x), s(x)) (5.6)

5.2.1.2 Intermediate Latent Knowledge Distillation. Due to the

compositional nature of these flows, there forms more natural relationships between

intermediate layers. For example, if we wish our student to be half the size of the

teacher network we may view every two flow layers in the teacher as equivalent to

a single flow layer in the student. In this manner we would compress two teacher

layers into a single layer in the student. This framing may not be work similarly

with other architectures, and may require significantly more complex maps to be

found which have no guarantees of invertibility.

LILKD(t, s, x) =
∑

i

Lr(ti(x), si(x)) (5.7)

Due to the bidirectional nature of these flows, such intermediate knowledge

may be transferred when data processing in either direction. We believe this form

of distillation is deceptively simple but may provide rich areas of study, especially

in the domain of Optimal Transport.

5.2.1.3 Synthesized Knowledge Distillation. The invertible nature

of flows allows for symmetry in our models. While LKD performs knowledge

transfer in the normalizing direction, SKD is performed in the generating direction.

We can view SKD as the inverse of LKD.

LSKD(t, s, z) = Lr(t
−1(z), s−1(z)) (5.8)

102

S
q
u

eeze

F
low

S
tep

S
p

lit

S
q
u

eeze

F
low

S
tep

k
×

k
×

zi

S
q
u

eeze

F
low

S
tep

S
p

lit

S
q
u

eeze

F
low

S
tep

×
j

×
j

zn

LSKD LILKD LILKD LLKD

(L − 1) Levels

(L − 1) Levels

Teacher

Student

Figure 22. Illustration of knowledge transfer between two Glow [86] based
models. LLKD represents the Latent Knowledge transfer between the learned
representations. LILKD is the knowledge transfer between intermediate
representations. LSKD is the knowledge transfer via synthesized data.

Importantly, this form of knowledge transfer need not be performed via

conditional generation. This means, unlike cycle loss [180] or similar styles, we do

not need a ground truth label. Instead, we can simply ensure that given the same

sample from the learned distribution, the generative outputs are aligned. In this

manner we should treat both the teacher and student as if having the same learned

distribution.

Currently, the generative capabilities of Normalizing Flows makes this form

of distillation more difficult to analyze. Specifically, image generation has not

matched the performance of other architectures, such as GANs and Diffusion. Only

a few flow models have been trained with large numbers of parameter which has

103

shown great promise in the capabilities. Prior to TarFlow [168] and StarFlow [47],

DenseFlow [44] and MaCow [115], were the largest trained Normalizing Flows,

having 130M and 177M parameters, respectively. Even TarFlow, having variants

at ≈475M parameters and ≈820M parameters, is much smaller than many

diffusion models which have well over a billion parameters [87, 17, 65, 176, 37]

while StarFlow is, to the best of our knowledge, the only multi-billion parameter

Normalizing Flow. Additionally, there has been recent success with Flow

Matching [20, 105, 107, 14, 104] has presented promising results in this area

but are restricted to continuous flows operating on conditional velocity fields.

The principles should similarly apply but in this work we focus on more general

approaches. With this in mind, we should expect some complications with

unconditional generation.

5.2.1.4 All Together. We can combine all these distillations together to

create a stronger and unifying distillation method. We may provide weights to each

distillation type, using hyperparamter λi. Combining with our standard flow loss,

we can write our final loss as:

L(t, s, x, z) = λ0 log(ps(x))

+ λ1LLKD(t, s, x)

+ λ2LILKD(t, s, x)

+ λ3LSKD(t, s, z)

(5.9)

We may compress this format by writing L(I)LKD recognizing that the LKD

loss may be viewed as another step. We write explicitly due to its importance as a

boundary condition.

104

5.3 Distillation Experiments

Given these classes of knowledge transfer we can see that we can use both

directions of data processing with these networks to better align their mapping

trajectories. Our goals are to determine the capabilities of these differing

distillation methods and better understand their strengths and weaknesses. Given

this framework there is a large search space. We do not intend to provide a

complete search, but focus on demonstration and forming the foundations. For

simplicity, we will use Lasso Regression for losses within this work, L = L1. For

hardware, all experiments were performed using a single NVIDIA Tesla V100 GPU.

To evidence our hypotheses and the utility of our framework we use two

classes of data. Our first will focus on density estimation (Chapter 5.3.1) and

then focus on synthetic image generation (Chapter 5.3.2). The latter of which

is a significantly more challenging task for these architectures. For our models,

we use the Masked Autoregressive Flow (MAF) [121] and Generative Flow with

Invertible 1 × 1 Convolutions (GLOW) [86]. For our GLOW models, we use the

affine coupling setting. Unfortunately, the autoregressive nature of MAF makes

sampling intractable, so we do not perform SKD distillation with this mode.

These two models are commonly used and have been much more thoroughly

studied. These models also significantly differ in architectures, which will help us

determine the capabilities of these distillation methods. For our GLOW models

we perform our ILKD distillation between flow levels, matching the diagram in

Figure 22. For MAF we match across depths, pushing every two depths from the

teacher into the student. These are not necessary choices but we believe present

natural points for communication between teacher and student.

105

In all studies we seek to make large reductions in model parameters, as this

will best demonstrate our ability to compress knowledge into our student networks.

Our MAF students are half the size of their teachers while we do not let our

GLOW student contain more than 30% as many parameters as their teachers.

GLOW Level (L) Hidden

Student 3 32

Teacher 3 64

MAF Depth (K) Hidden

Student 3 32

Teacher 6 32

Table 13. Model configurations for
generation of density estimation.
Provided for GLOW and MAF
architectures. Number of levels (L)
is equal to 1. Notation is taken from
the original paper [86].

5.3.1 Density Estimation. For

our tabular data experiments we perform

density estimation on five common datasets.

We use Metric, POWER, GAS, HEPMASS,

and MINIBOONE from the UCI Machine

Learning Repository [102] and BSDS300

from the Berkeley Segmentation Dataset

and Benchmark [117].

Our model configurations are presented in

Table 13. For our MAF model we focus on

expanding the teacher’s depth, letting the

teacher model have twice the depth. For

GLOW we let our models have the same number of levels and flow steps but double

the number of hidden neurons in the teacher. For MAF this results in the teacher

having approximately double the number of model parameters as the student. For

GLOW, this results in the teacher having approximately five times the number of

parameters as the student. GLOW is a much more powerful model than MAF and

thus we expect the ability to greatly reduce model parameters.

For each model we train the flow for a fixed 104 iterations with a batch size

of 65, 536 (216). We use a learning rate of 5 × 10−5, applied to the AdamW

optimizer [85, 113]. The results of these runs can be found in Table 14. Rows

106

Architecture Model POWER GAS HEPMASS MINIBOONE BSDS300

GLOW

Student −0.228 5.967 −22.668 −17.251 147.298
LKD Student −0.132 6.008 −22.332 −17.136 162.103
ILKD Student −0.133 6.191 −22.187 −17.008 163.148
SKD Student −0.078 6.515 −21.852 −16.130 163.953
Teacher 0.143 6.604 −19.938 −13.597 165.702

MAF

Student −0.152 4.385 −21.904 −15.314 155.463
LKD Student −0.149 4.473 −21.389 −15.217 155.629
ILKD Student −0.145 4.502 −21.223 −15.184 155.785
SKD Student Intractable
Teacher 0.133 5.887 −20.662 −13.488 159.442

Table 14. Averaged test log-likelihood (in nats) for unconditional density
estimation (higher is better) across multiple runs.

labeled “Student” and “Teacher” contain no distillation and are the baseline values

of or models. For LKD and ILKD we set λ0 = 0.9 and λ1 = λ2 = 0.1. For SKD

we again decrease λ0 = 0.85 and set the rest to 0.075. These weights were chosen to

set control the weights as percentages of the whole loss, and are likely non-optimal.

We find that most performance comes from the introduction of the LKD student,

with +10% for GLOW but only +1% for MAF on BSDS300. We get continued

improvements with ILKD, +6% for GLOW and +1% for MAF. With GLOW we

can cleanly sample from our distribution and find an additional +5% gain, for a

total improvement of +12.7% improvement above our student model.

On BSDS300, our final student GLOW model is has ≈25.5 as many

parameters as the teacher model while achieving 98.94% the accuracy. We also

compare the computational performances differences of our teacher and student

models in Table 15, directly comparing the number of model parameters and their

throughput. This result suggest strong distillation capabilities, with the teacher

passing nearly all its “knowledge” to its student. We do not believe our parameters

are near optimal, but this provides significant evidence to our theory that suggests

107

it may be possible to fully distill the teacher’s knowledge into the student, under

the assumption that the student’s latent representation is at least as large as the

latent data manifold.

Arch Model Metric POWER GAS HEPMASS MINIBOONE BSDS300

GLOW
Student

Time (ms) 2.32± 0.16 2.46± 0.10 2.55± 0.35 2.47± 0.07 2.45± 0.07
Params (K) 13.8 14.20 17.4 24.9 34.4

Teacher
Time (ms) 3.65± 0.26 3.88± 0.09 4.41± 0.28 3.95± 0.11 3.89± 0.14
Params (K) 86.7 87.8 96.3 114.2 134.7

MAF
Student

Time (ms) 2.00± 0.21 1.98± 0.19 1.82± 0.05 1.82± 0.05 1.91± 0.22
Params (K) 5.0 5.6 9.4 15.9 21.8

Teacher
Time (ms) 3.34± 0.22 3.22± 0.18 3.34± 0.23 3.36± 0.26 3.45± 0.20
Params (K) 10.1 11.2 18.9 31.8 43.6

Table 15. Time consumption for a single batch inference averaged across multiple
batches and the number of parameters (in thousands). Average time (ms) and
number of parameters (in thousands) are reported.

CIFAR-10

Levels (L) Hidden Params
Student 8 512 11.0M
Teacher 32 512 44.2M

CelebA

Levels (L) Hidden Params
16 256 7.9M
32 512 61.2M

Table 16. Model configurations image generation tasks (GLOW). Notation is taken
from the original paper [86]. All models have a depth (K) of 3.

5.3.2 Image Generation. To demonstrate capacity in image synthesis

we demonstrate our methods on using the CelebA [108] and CIFAR-10 [147]

datasets. Due to MAF’s low performance we only perform these experiments using

the GLOW model. We use the same settings as before, except reduce the batch

size to 32. Model configurations and sizes can be found in Table 16. All models

have a constant depth of 3, like before. In the CIFAR-10 student we only quarter

the number of levels but in the CelebA student we halve the levels and halve the

number of hidden parameters.

108

In our experiments, we found that SKD appeared to be helping with model

distillation but that the results were unstable, and we were unable to complete

training. We suspect that this was due to the poor image generation quality, as

can be seen in Figures 23 and 24. For CIFAR-10 our teacher model obtained a Bits

per Dimension (bpd) of 3.423, which is slightly worse than Kingma and Dhariwal’s

work, while our CelebA model reached 2.474 bpd.

The results of our experiments can be found in Table 17. In terms of bpd, the

ILKD student showed an improvement of 0.5%, but note that the teacher is only

2% better. On CelebA we see a similar 0.16% improvement, while the teacher is

only 0.2% better. When looking in terms of FID we instead see a 2.5% (of 3.8%) on

CIFAR-10 and 20% (of 45%). We note that our CIFAR-10 student is ≈25% the size

of its teacher and the CelebA is ≈13%.

CIFAR-10 CelebA
bpd FID bpd FID

Student 3.498 71.177 2.479 68.127
ILKD Student 3.481 69.371 2.475 54.480

Teacher 3.423 68.503 2.474 37.460

Table 17. Metrics for the image generation task for the GLOW architecture using
ILKD on the test set: bits per dimension and FID (lower is better).

To ensure the knowledge distillation does not corrupt the hidden space, we

need to ensure that random samples from the students still maintain similar quality

images. With high dimensional information, it is possible for Normalizing Flows,

and other models, to have a small KL-Divergence but also have poor sampling

quality. This appears to be the case in our results, where our teacher and student

have similar bpds but very different FIDs. Similar to Chapter 4.7, we need to be

careful in how we analyze our results given the biases of our metrics.

109

(a) Teacher (b) With KD (c) Without KD

Figure 23. CIFAR-10 samples from teacher model (Fig. 23a), student model
(Fig. 23b), and student model with no knowledge distillation (Fig. 23c). All images
are generated at 32× 32 resolution and with a temperature of 0.7.

Considering the biases of FID, high quality samples can only happen if there

is a sufficiently good enough cover, determined by the Inception Network, within

the learned latent space. Thus, we propose to measure the quality of the inferred

samples for randomly chosen images u,v and an α ∈ [0, 1], where α is the

interpolation fraction. The preserved norm of the latent vector can be defined as:

f(u, v,α) = ((1− α)f(u)+ αf(v)) · (1− α)||f(u)||+ α||f(v)||
||(1− α)f(u)+ αf(v)|| (5.10)

The results of this method are provided for CelebA dataset in Table 18. This

table shows that the ILKD Student performs significantly better than the student

without knowledge distillation, independent of temperature. Both the student

and ILKD student show substantially larger improvements in FID with reduced

temperatures showing their improperly configured latent representations. In both

cases, the ILKD student shows a 30% improvement over the student.

While the CIFAR-10 (Figure 23) samples are more difficult to differentiate,

it is clear that in the CelebA generation (Figure 24) that our distilled images are

significantly better than those in the original student.

110

T = 1.0 T = 0.7

Student 40.159 28.432
ILKD Student 28.413 19.688

Teacher 19.062 16.382

Table 18. CelebA FID values of images obtained by interpolation in the latent
space of trained models.

(a) Teacher (b) With KD (c) Without KD

Figure 24. CelebA samples from teacher model (Fig. 24a), student model
(Fig. 24b), and student model with no knowledge distillation (Fig. 24c). All images
are generated at 64×64 resolution and with temperature=0.7.

5.4 Conclusion

Our work we sought to build foundations for investigating the capabilities

of knowledge distillation in Normalizing Flows. Our work is not intended to be

comprehensive, but to demonstrate how effective these methods are and motivate

further study. These architectures are underrepresented, but the theory and

practice shows that these models may offer unique capabilities to the field of

machine learning. The success of large Normalizing Flows like TarFlow [168, 106]

and StarFlow [47] show promise in their capabilities, and that similar scaling

success may be found here too.

With a large variety of flow types [154], there are many avenues open to build

upon this work. With many flow architectures often presenting computational

challenges, this may provide an avenue to resolve some of them. We believe our

111

foundation will extend ensembles of models, letting students benefit from the

training advantages of differing flow types. We also believe that our process

will extend to distillation between differing architectures. This may offer unique

capabilities, such as replacing computationally difficult flow steps with simpler ones.

While these models are often overlooked due to their mathematical formulations,

we believe that continued study will show these models to be highly capable and

researchers will highly benefit through their greater interpretability.

112

CHAPTER VI

CONCLUSION AND FUTURE DIRECTIONS

People think of education as

something they can finish.

Isaac Asimov

6.1 Summary

This work explored the importance of neural architectures and how they

influence not only a machine learning model’s capacity to learn, but also how to

do so in computationally constrained environments. Even as compute infrastructure

grows, there exists strong pressures to use what we have more efficiently. If we are

able to do so, then our progress can outpace our growth in compute.

Chapter 2 gave an overview of the subject matter necessary understand

to influence neural designs. This serves not to only help the reader understand

the problems that need be addressed, as well as illustrates the many pitfalls

and subtleties that exist. The remains many challenges when scaling models

(Chapter 2.2) and data (Chapter 2.2.1), highlighting the importance of algorithmic

or architectural improvements (Chapter 2.3). Chapter 2.4 also discussed the

difficulties when defining objectives and developing adequate measures, known as

“The Alignment Problem,” and the critical relationship which influences neural

designs.

Chapter 3 focuses on the importance of data encoding and decoding.

Specifically in how to improve these designs for Vision Transformers, allowing them

to better automate discovery of underlying data structures. Our work demonstrates

that without efficient encoding and decoding, we may inadvertently hinder the

performance of these models. These inefficiencies, ideally, may be overcome through

113

brute force scaling, but through careful design we may reduce our costs, allowing us

to do more with less.

Chapter 4 shifts focus to modifying the core architectural designs. Through

understanding the ways in which architectures operate and how leveraging

structures within the data allows for more informative decisions in the design of

core processing units. Neighborhood Attention modifies the Vision Transformer

architecture to increase computational and memory performances, leveraging

the natural localization biases of the data while still being able to recover global

structures. Through our improved design, allowing attention heads to operate

over independent receptive fields we are able to reduce the sacrifices made and our

models can uncover structures they previously could not.

Chapter 5 focuses on architectures with structurally focused designs. This

studies the way in which information is processed through Normalizing Flows and

how this can be used to create efficient knowledge distillation. Understanding the

mathematical structures within architectures allows for better design and efficient

methods which reduce model size and required computation.

Putting this all together, this dissertation positively answers the question: Can

we design neural architectures to be smaller, faster, and cheaper without sacrificing

performance?

6.2 Future Directions

While this dissertation affirms that our models can be more efficient, we are

unable to provide a complete answer as to how. Despite the significant strides

the field has made in recent decades, we are only at the beginning. With the

rapid development of machine learning, it is easy to lose sight of the larger goals.

114

Therefore, we briefly discuss our core goals to ensure our future work remains

aligned.

6.2.1 Core Challenges. A core challenge still must be solved in order

to efficiently design our neural architectures. Largely, machine learning deals with

the problem of alignment. Without a strong mathematical foundation we are

unable to verify how well our models are aligned to our intended goals. To draw

an analogy, in Chapter 4 we discussed the limitations in our ability to determine

the realism of the generated imagery. This hinges on our inability to describe the

“realness” of our images in a rigorous way. Our Generative Adversarial Network

cleverly trains an adversarial detector as a means to bypass this formalism. While

this proxy has allowed us to dramatically improve the quality of the generated

imagery, it is not uncommon for the generator to become misaligned. Instead of

generating high quality imagery, it may instead produce incoherent images that

have the right statistics to deceive the generator. Without formalism we must

take great care to ensure that we do not fall for the same trap as the detector.

Our metrics play a critical role in driving our research and designs, but we must

not blindly follow a map that may drive us off a cliff instead of to our intended

destination. Until such rigorous formalism is developed we must remain skeptical

of ourselves. We cannot forget this fundamental problem while addressing more

specific challenges.

Some practical advice may be offered by Donald Knuth: If you find that you’re

spending almost all your time on theory, start turning some attention to practical

things; it will improve your theories. If you find that you’re spending almost all

your time on practice, start turning some attention to theoretical things; it will

improve your practice.

115

6.2.2 Scaling. The subject of this thesis would be incomplete without

revisiting the issue of scaling. The question remains: Do these methods work as

data increases and as model size increases? This is, after all, the fundamental

question addressed in Chapter 1. This research has been carefully designed to

ensure that the answer will be yes. While we cannot confirm this conclusion

without access to large compute infrastructures to verify these beliefs, we have

strong evidence for this belief.

In Chapter 3 we made only minor changes to the network, so this should

be surprising if it were to make the much larger networks substantially unstable.

These ViT networks have shown success at scale and we believe our modifications

should make difference, with respect to scalability. In this work, we showed that

CCT has strong performance across small to medium scales, strictly dominating

ViT at every step of the way. The saliency maps suggest we are removing a

fundamental flaw found in ViTs, which should only lead to greater stability.

In Chapter 4 we similarly suspect that these methods are highly scalable.

We trained our single 1024 × 1024 run in an effort to show this, and Figure 16

suggests that neither our small resolution nor our large resolution training achieved

peak performance. The design of the Hydra-Neighborhood attention specifically

allows more configurations, and thus adaptability. The work of StyleGAN-XL

mostly saw success to its own scaling, and we suspect the same here. While the

LSUN church results did not perform as well, all results suggest that this is likely

an embedding problem, with the attention dimension being too small. If this is

a correct assumption, then scale should yield substantial improvements to this

experiment.

116

In Chapter 5 we again see no blockers. The theory behind the methods suggest

that training is better performed with large scale models but that these can also

be reduced in size through distillation. Here, the question is not a matter of if

the procedure can continue to scale, but by how much can we compress these

large flows. With works like TarFlow and StarFlow resenting huge state of the art

models, this only makes our methods more valuable.

At this time we do not have the computational resources to prove that these

methods are scalable, but there is nothing that suggests that they won’t be just as

effective, if not more, at scale.

6.2.3 Ingress and Egress of Data. In Chapter 3 our work focused

on making the most of our data, allowing our core architecture to make better

utilize available data. It is key that we provide our models with data in the formats

that best suit them. Similarly, we must be careful in how we extract the data from

them, ensuring we do not lose useful relationships they have uncovered.

6.2.3.1 Parameterization. Our Compact Transformers improved

upon the patching and embedding method of the original Vision Transformer

by recognizing how non-overlapping patches removed structure from the data.

By using small kernels and overlapping patches our embedding is able to better

preserve the structure within our data. The size of these kernels, strides, and other

parameters were determined through directed search optimizing a validation set.

These specific relationships may not hold for data that has other inherent biases,

and this process may need be done again. Similarly, there is no reason to believe

that those we found are optimal. By revisiting former models and architectures

many researchers have demonstrated that their performances can be improved

in many ways [161, 111, 162]. The method itself does not prevent these hyper-

117

parameters from being learned. More optimal parameters may be found through

HyperNets [139], or other optimization methods.

6.2.3.2 Automated Preprocessing. The CNN based structure

itself causes some of the image structure to be lost and new methods should

be investigated which can better embed these. Most importantly, the CNN

places greater importance on pixels that are local spatially. While we expect this

relationship to be strong it may not always be true, nor should we assume that

in some cases we may wish to place greater importance on more global features.

This is, after all, the same reasoning that led to the development of the transformer

architecture. Given these problems attention needs to be given to develop ingestion

methods that flexibly adapt to the data. Modern machine learning methods are

becoming multi-modal, processing language, vision, and other manners of data.

This necessitates new forms of embedding that can recognize and adapt to the

data, performing the preprocessing for us.

Another benefit of the CNN architecture is that it is flexible to the data shape.

CNNs mainly rely on a single dimension of our data, channels, allowing us to more

easily accommodate images of varying dimensions. As we seek to make our models

multi-modal this demands that we develop architectures to ingest data of differing

types and dimensionality. We may inefficiently provide patchwork by padding or

replicating data, but these may provide more hindrances than utility. It becomes

important to investigate means of arbitrary data ingestion, that can embed our

data without the loss of structures within the data.

6.2.3.3 Making The Most of it. On the other side our SeqPool

method demonstrated that our network had learned useful relationships that could

help in image classification but were unavailable to our classifier sub-network. This

118

demonstrates the ease in which we may underutilize our networks. Certainly our

SeqPool method has not extracted all available information from our network. The

method allows for the importance of each of our tokens but asks that a lot be done

within this simple step. This constrains our core network which almost certainly

adapts to this bottleneck. Other extraction methods should be explored which

allow greater flexibility. While the classification network can, in some ways, act

similar to the linear layers of the transformer, they do not have the same expansion

layers that allow data untangling as the traditional transformer. Finally, while the

classification sub-network remains the de-facto solution for converting our multi-

dimensional relationships into linear ones, there likely exists better methods for

this. While being seemingly less exciting, finding such architecture may lead to

transformative impacts in the field.

Further improvement needs to be made to disentangle data. We use batching

and pooling within our network and while this can speed up and even benefit

training it can also entangle data, causing our networks to over aggregate. Our

work used a learnable class token to constrain our network to disentangle these

data, but further study to better understand and improve this disentanglement

remains.

6.2.4 Core Processing Architectures. Our work in Chapter 4

demonstrated that even seemingly simple changes to the core neural architectures

can have tremendous impacts on our performance. An idea that was seemingly

simple, yet non-obvious due to the full attention mechanism naturally having the

ability do this and other restricted attention methods, not necessarily sharing

the flexibility of Neighborhood Attention. Our work placed greater focus on

demonstrating our hypothesis around integrating local and global features than

119

on ensuring the method was computationally efficient. While significant advances

have been made to the NATTEN kernel [53, 54], these improvements have not

been made to optimize the independent head approach. The algorithm developed

for the paper was not intended to be optimized for speed or memory and instead

for better readability. Simple modifications can be made to better parallelize the

data processing and further improve performance.

6.2.4.1 Flexible Learning. The number of configurations available

made our method flexible, but it was not possible to exhaustively test these within

our limited computational budget. Further work should be performed to tune these

parameters. Initial testing has shown that we are able to modify these kernel and

dilation parameters during the training of our networks. This suggests that these

parameters may be optimized during training, allowing them to be adapted to

the data being modeled. This may resolve the need to manually craft these hyper-

parameters but research is still needed to determine the stability and effectiveness

of this process.

The method has also not been tested on other architectures, such as diffusion

model. Our focus was on demonstrating the utility of the method rather than

developing the best image generator. Works like Hourglass Diffusion [17] have

demonstrated substantial improvements due to integrating Neighborhood Attention

but remain outside our computational budgets to integrate Hydra-NA. We believe

that our results will apply much more broadly than just to GANs, but this has yet

to be demonstrated.

6.2.4.2 Is Beauty in the Eye of the Beholder?. The work also

highlighted the challenges of metrics and alignment. Our previous CCT model

focused on classification tasks, where there exists a much clearer objective and

120

measure. In classification, the labels are not always accurate as some noise exists

around identification, but there is at least a clear metric to define if the model

produced some expected output or not.1 In the case of generative imagery, no such

metric exists and even may not exist. For millennial scholars have attempted to

create formal definitions of beauty, but have yet to find success. Therefore, those

studying generative modeling must then take great care concerning the alignment

problem and we must be creative in determining how we may achieve better

measures and importantly, optimization methods. Näıvely, we may unintentionally

develop models which can only produce content that is appealing to limited groups.

This requires us to be suspicious of ourselves, recognizing our own cognitive biases.

Works like Stein et al. [140] help by using large human studies, but even these

studies have population biases.

While diffusion models optimize towards a probability distribution function

they often still make certain assumptions about the data, such as being i.i.d. This

method limits our generation to only match distributions similar to those we train

on but so far have been unable to demonstrate the ability to capture the depth and

nuance that art is known for. Without incorporating seemingly small details our

generators may be unable to escape an uncanny valley which is blatancy apparent

to some but invisible to others. Through studying other forms of measure and

optimization we most certainly will find better neural architectures and make steps

to reducing these discrepancies in human preference.

6.2.5 Structurally Aware Architectures. In Chapter 5 we moved

from transformer architectures to study Normalizing Flow architectures. These

have seen significant progress, especially with recent works in Flow Matching [105].

1We should still take care to recognize that even a classification metric is not foolproof.

121

While our work may not directly apply to these methods due to their continuous

nature, we show how our compositional flows layers can be compressed. This

presents the question to determine if these compositional flows can be efficiently

transformed into continuous ones. This may allow for more flexible relationships

to be found or by turning our continuous flows into compositional ones we may

gain more interpretability. Understanding how our models operates remains a core

challenge, relating to our issues of alignment.

For our specific work there is quite a lot of potential future work we see here.

None of our models were optimized and we were focusing on demonstration due

to computational limitations. The SKD distillation should promise in the density

estimation experiments but was unstable in the more difficult image generation

tasks. As flow architectures become more powerful, this too is likely to increase

in capacity. One may also wish to add schedulers to the weights of our distillation

methods, and particularly with SKD.

More broadly, with the larger discussion of this thesis, the work demonstrates

the importance of understanding the structures our neural architectures do and

do not preserve. Normalizing Flows provide nice mathematical structures that

are easier to study than other neural architectures, but this only highlights the

need to better study the limits and capabilities of other architectures, which are

significantly more difficult than Normalizing Flows.

6.3 Conclusion

This thesis presents work that demonstrates the potential for making machine

learning models more efficient through careful design of our neural architectures,

specifically applied to Computer Vision problems. We show that we can train

smaller models, from scratch, while greatly reducing compute, memory, and

122

the costs of gathering and labeling data. We also show that seemingly trivial

modifications may be made that have significant impacts on performance. While

many of these changes may seem obvious post-hoc our work only highlights how

hidden such simple modifications are. Like our education, the pursuit of more

efficient models is something that can never be finished, and many grand challenges

still lay waiting to be discovered.

123

Bibliography

[1] Amro Abbas, Kushal Tirumala, Dániel Simig, Surya Ganguli, and Ari S Morcos.

Semdedup: Data-efficient learning at web-scale through semantic deduplication.

arXiv preprint arXiv:2303.09540, 2023.

[2] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak,

and Zachary Ives. Dbpedia: A nucleus for a web of open data. In The semantic

web, pages 722–735. Springer, 2007.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine

translation by jointly learning to align and translate, 2016.

[4] Dmitry Baranchuk, Vladimir Aliev, and Artem Babenko. Distilling the knowledge

from conditional normalizing flows. In ICML Workshop on Invertible Neural

Networks, Normalizing Flows, and Explicit Likelihood Models, 2021.

[5] David Bau, Hendrik Strobelt, William Peebles, Jonas Wulff, Bolei Zhou, Jun-Yan

Zhu, and Antonio Torralba. Semantic photo manipulation with a generative image

prior. ACM Transactions on Graphics, 38(4):1–11, 2019.

[6] Irwan Bello, Barret Zoph, Ashish Vaswani, Jonathon Shlens, and Quoc V. Le.

Attention augmented convolutional networks. In Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV), 2019.

[7] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document

transformer. arXiv preprint arXiv:2004.05150, 2020.

[8] Rianne van den Berg, Leonard Hasenclever, Jakub M. Tomczak, and Max Welling.

Sylvester Normalizing Flows for Variational Inference, 2019. arXiv:1803.05649 [cs,

stat].

124

[9] Sam Bond-Taylor, Peter Hessey, Hiroshi Sasaki, Toby P Breckon, and Chris G

Willcocks. Unleashing transformers: Parallel token prediction with discrete

absorbing diffusion for fast high-resolution image generation from vector-quantized

codes. In European Conference on Computer Vision, pages 170–188. Springer, 2022.

[10] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,

Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,

Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,

Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin

Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya

Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

[11] Cristian Buciluă, Rich Caruana, and Alexandru Niculescu-Mizil. Model

compression. In Proceedings of the 12th ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 535–541, 2006.

[12] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct neural architecture

search on target task and hardware. In ICLR, 2018.

[13] Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: Delving into high quality

object detection. In CVPR, 2018.

[14] Ricky T. Q. Chen and Yaron Lipman. Flow matching on general geometries, 2024.

[15] Ricky T. Q. Chen, Jens Behrmann, David Duvenaud, and Jörn-Henrik Jacobsen.

Residual Flows for Invertible Generative Modeling, 2020. arXiv:1906.02735 [cs,

stat].

125

[16] Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. On the relationship

between self-attention and convolutional layers. In International Conference on

Learning Representations, 2020.

[17] Katherine Crowson, Stefan Andreas Baumann, Alex Birch, Tanishq Mathew

Abraham, Daniel Z Kaplan, and Enrico Shippole. Scalable high-resolution

pixel-space image synthesis with hourglass diffusion transformers. In Forty-first

International Conference on Machine Learning, 2024.

[18] Balázs Csanád Csáji et al. Approximation with artificial neural networks. Faculty of

Sciences, Etvs Lornd University, Hungary, 24(48):7, 2001.

[19] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment:

Practical automated data augmentation with a reduced search space. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

Workshops, pages 702–703, 2020.

[20] Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent

space. arXiv preprint arXiv:2307.08698, 2023.

[21] Tri Dao. Flashattention-2: Faster attention with better parallelism and work

partitioning. In ICLR, 2023.

[22] Tri Dao, Daniel Y Fu, Stefano Ermon, Atri Rudra, and Christopher Ré.

Flashattention: Fast and memory-efficient exact attention with io-awareness. In

NeurIPS, 2022.

[23] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A

large-scale hierarchical image database. In CVPR, 2009.

[24] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:

Pre-training of deep bidirectional transformers for language understanding. In

126

Proceedings of the 2019 conference of the North American chapter of the association

for computational linguistics: human language technologies, volume 1 (long and

short papers), pages 4171–4186, 2019.

[25] Thomas G Dietterich. Ensemble methods in machine learning. In International

workshop on multiple classifier systems, pages 1–15. Springer, 2000.

[26] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Bengio. Density estimation using

real nvp, 2017.

[27] Hadi M. Dolatabadi, Sarah Erfani, and Christopher Leckie. Invertible Generative

Modeling using Linear Rational Splines, 2020. arXiv:2001.05168 [cs, stat].

[28] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua

Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,

Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:

Transformers for image recognition at scale. In International Conference on

Learning Representations, 2021.

[29] Emilien Dupont, Arnaud Doucet, and Yee Whye Teh. Augmented Neural ODEs. In

Advances in Neural Information Processing Systems. Curran Associates, Inc., 2019.

[30] Conor Durkan, Artur Bekasov, Iain Murray, and George Papamakarios. Cubic-

Spline Flows, 2019. arXiv:1906.02145 [cs, stat].

[31] Nelson Elhage, Tristan Hume, Catherine Olsson, Neel Nanda, Tom Henighan, Scott

Johnston, Sheer ElShowk, Nicholas Joseph, Nova DasSarma, Ben Mann, Danny

Hernandez, Amanda Askell, Kamal Ndousse, Andy Jones, Dawn Drain, Anna Chen,

Yuntao Bai, Deep Ganguli, Liane Lovitt, Zac Hatfield-Dodds, Jackson Kernion,

Tom Conerly, Shauna Kravec, Stanislav Fort, Saurav Kadavath, Josh Jacobson,

Eli Tran-Johnson, Jared Kaplan, Jack Clark, Tom Brown, Sam McCandlish, Dario

127

Amodei, and Christopher Olah. Softmax linear units. Transformer Circuits Thread,

2022. https://transformer-circuits.pub/2022/solu/index.html.

[32] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing

higher-layer features of a deep network, 2009.

[33] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding

sparse, trainable neural networks. In International Conference on Learning

Representations, 2019.

[34] Richard D. Fuhr and Michael Kallay. Monotone linear rational spline interpolation.

Computer Aided Geometric Design, 9(4):313–319, 1992.

[35] Philip Gage. A new algorithm for data compression. C Users J., 12(2):23–38, 1994.

[36] Rinon Gal, Dana Cohen Hochberg, Amit Bermano, and Daniel Cohen-Or. Swagan:

A style-based wavelet-driven generative model. ACM Trans. Graph., 40(4), 2021.

[37] Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. Masked diffusion

transformer is a strong image synthesizer. In Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV), pages 23164–23173, 2023.

[38] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. Mahoney, and

Kurt Keutzer. A survey of quantization methods for efficient neural network

inference, 2021.

[39] Lore Goetschalckx, Alex Andonian, Aude Oliva, and Phillip Isola. Ganalyze:

Toward visual definitions of cognitive image properties. In Proceedings of the

IEEE/CVF International Conference on Computer Vision (ICCV), 2019.

[40] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,

2016.

128

[41] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-

Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial

nets. In Advances in Neural Information Processing Systems. Curran Associates,

Inc., 2014.

[42] Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud.

Scalable reversible generative models with free-form continuous dynamics. In

International Conference on Learning Representations, 2019.

[43] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines, 2014.

[44] Matej Grcić, Ivan Grubǐsić, and Sinǐsa Šegvić. Densely connected normalizing flows,

2021.

[45] Ulf Grenander and Michael I Miller. Pattern theory: from representation to

inference. OUP Oxford, 2006.

[46] Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective

state spaces, 2024.

[47] Jiatao Gu, Tianrong Chen, David Berthelot, Huangjie Zheng, Yuyang Wang,

Ruixiang Zhang, Laurent Dinh, Miguel Angel Bautista, Josh Susskind, and

Shuangfei Zhai. Starflow: Scaling latent normalizing flows for high-resolution image

synthesis, 2025.

[48] Leonard Hasenclever, Jakub M Tomczak, and Max Welling. Variational Inference

with Orthogonal Normalizing Flows. In Bayesian Deep Learning, 2017.

[49] Ali Hassani. Neighborhood attention: Dynamic restriction of self-attention, 2023.

[50] Ali Hassani and Humphrey Shi. Dilated neighborhood attention transformer, 2023.

129

[51] Ali Hassani, Steven Walton, Nikhil Shah, Abulikemu Abuduweili, Jiachen Li, and

Humphrey Shi. Escaping the big data paradigm with compact transformers, 2022.

[52] Ali Hassani, Steven Walton, Jiachen Li, Shen Li, and Humphrey Shi. Neighborhood

attention transformer. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 6185–6194, 2023.

[53] Ali Hassani, Wen-Mei Hwu, and Humphrey Shi. Faster neighborhood attention:

Reducing the O(n2) cost of self attention at the threadblock level, 2024.

[54] Ali Hassani, Fengzhe Zhou, Aditya Kane, Jiannan Huang, Chieh-Yun Chen, Min

Shi, Steven Walton, Markus Hoehnerbach, Vijay Thakkar, Michael Isaev, Qinsheng

Zhang, Bing Xu, Haicheng Wu, Wen mei Hwu, Ming-Yu Liu, and Humphrey Shi.

Generalized neighborhood attention: Multi-dimensional sparse attention at the

speed of light, 2025.

[55] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2016.

[56] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In CVPR, 2016.

[57] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in

deep residual networks. In ECCV, 2016.

[58] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In

ICCV, 2017.

[59] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross

Girshick. Masked autoencoders are scalable vision learners. In Proceedings of

130

the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),

pages 16000–16009, 2022.

[60] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and

Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a local

nash equilibrium. In Advances in Neural Information Processing Systems. Curran

Associates, Inc., 2017.

[61] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural

network. arXiv preprint arXiv:1503.02531, 2015.

[62] Geoffrey F. Hinton. Shape representation in parallel systems. In Proceedings of

the 7th International Joint Conference on Artificial Intelligence - Volume 2, page

1088–1096, San Francisco, CA, USA, 1981. Morgan Kaufmann Publishers Inc.

[63] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic

models. In Advances in Neural Information Processing Systems, pages 6840–6851.

Curran Associates, Inc., 2020.

[64] Emiel Hoogeboom, Victor Garcia Satorras, Jakub Tomczak, and Max Welling. The

convolution exponential and generalized sylvester flows. In Advances in Neural

Information Processing Systems, pages 18249–18260. Curran Associates, Inc., 2020.

[65] Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. Simple diffusion: End-to-

end diffusion for high resolution images, 2023.

[66] Sara Hooker. On the limitations of compute thresholds as a governance strategy,

2024.

[67] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward

networks are universal approximators. Neural networks, 2(5):359–366, 1989.

131

[68] Han Hu, Zheng Zhang, Zhenda Xie, and Stephen Lin. Local relation networks for

image recognition. In Proceedings of the IEEE/CVF International Conference on

Computer Vision (ICCV), 2019.

[69] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.

[70] Xun Huang and Serge Belongie. Arbitrary style transfer in real-time with adaptive

instance normalization. In Proceedings of the IEEE International Conference on

Computer Vision (ICCV), 2017.

[71] Drew A Hudson and C. Lawrence Zitnick. Generative adversarial transformers.

Proceedings of the 38th International Conference on Machine Learning, ICML 2021,

2021.

[72] Drew A Hudson and C. Lawrence Zitnick. Compositional transformers for scene

generation. Advances in Neural Information Processing Systems NeurIPS 2021,

2021.

[73] Aapo Hyvärinen. Estimation of Non-Normalized Statistical Models by Score

Matching. Journal of Machine Learning Research, 6(24):695–709, 2005.

[74] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and

Andrew Gordon Wilson. Averaging weights leads to wider optima and better

generalization. arXiv preprint arXiv:1803.05407, 2018.

[75] Jitesh Jain, Jiachen Li, Mang Tik Chiu, Ali Hassani, Nikita Orlov, and Humphrey

Shi. Oneformer: One transformer to rule universal image segmentation. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 2989–2998, 2023.

132

[76] Jitesh Jain, Anukriti Singh, Nikita Orlov, Zilong Huang, Jiachen Li, Steven Walton,

and Humphrey Shi. Semask: Semantically masked transformers for semantic

segmentation. In Proceedings of the IEEE/CVF International Conference on

Computer Vision (ICCV) Workshops, pages 752–761, 2023.

[77] Nancy Kanwisher and Galit Yovel. Face Perception, chapter 43. John Wiley &

Sons, Ltd, 2009.

[78] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of

GANs for improved quality, stability, and variation. In International Conference on

Learning Representations, 2018.

[79] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for

generative adversarial networks. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), 2019.

[80] Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and

Timo Aila. Training generative adversarial networks with limited data. In Advances

in Neural Information Processing Systems, pages 12104–12114. Curran Associates,

Inc., 2020.

[81] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and

Timo Aila. Analyzing and improving the image quality of stylegan. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pattern Recognition

(CVPR), 2020.

[82] Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko

Lehtinen, and Timo Aila. Alias-free generative adversarial networks. In Advances

in Neural Information Processing Systems, pages 852–863. Curran Associates, Inc.,

2021.

133

[83] Noble Kennamer, Steven Walton, and Alexander Ihler. Design amortization for

bayesian optimal experimental design. Proceedings of the AAAI Conference on

Artificial Intelligence, 37(7):8220–8227, 2023.

[84] Dongjun Kim, Seungjae Shin, Kyungwoo Song, Wanmo Kang, and Il-Chul Moon.

Soft truncation: A universal training technique of score-based diffusion model for

high precision score estimation. In Proceedings of the 39th International Conference

on Machine Learning, pages 11201–11228. PMLR, 2022.

[85] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization,

2017.

[86] Durk P Kingma and Prafulla Dhariwal. Glow: Generative Flow with Invertible

1x1 Convolutions. In Advances in Neural Information Processing Systems. Curran

Associates, Inc., 2018.

[87] Diederik P. Kingma and Ruiqi Gao. Understanding diffusion objectives as the elbo

with simple data augmentation, 2023.

[88] Diederik P. Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever, and

Max Welling. Improving variational inference with inverse autoregressive flow, 2017.

[89] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung,

Sylvain Gelly, and Neil Houlsby. Big transfer (bit): General visual representation

learning, 2020.

[90] Olga Kovaleva, Alexey Romanov, Anna Rogers, and Anna Rumshisky. Revealing

the dark secrets of BERT. In Proceedings of the 2019 Conference on Empirical

Methods in Natural Language Processing and the 9th International Joint Conference

on Natural Language Processing (EMNLP-IJCNLP), pages 4365–4374, Hong Kong,

China, 2019. Association for Computational Linguistics.

134

[91] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from

tiny images.(2009), 2009.

[92] Tuomas Kynkäänniemi, Tero Karras, Miika Aittala, Timo Aila, and Jaakko

Lehtinen. The role of imagenet classes in fréchet inception distance. In The

Eleventh International Conference on Learning Representations, 2023.

[93] Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, R. Howard, Wayne

Hubbard, and Lawrence Jackel. Handwritten digit recognition with a back-

propagation network. In Advances in Neural Information Processing Systems.

Morgan-Kaufmann, 1989.

[94] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324, 2002.

[95] John M Lee and John M Lee. Smooth manifolds. Springer, 2003.

[96] Kwonjoon Lee, Huiwen Chang, Lu Jiang, Han Zhang, Zhuowen Tu, and Ce Liu.

ViTGAN: Training GANs with vision transformers. In International Conference on

Learning Representations, 2022.

[97] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: SINGLE-

SHOT NETWORK PRUNING BASED ON CONNECTION SENSITIVITY. In

International Conference on Learning Representations, 2019.

[98] Benjamin Lefaudeux, Francisco Massa, Diana Liskovich, Wenhan Xiong, Vittorio

Caggiano, Sean Naren, Min Xu, Jieru Hu, Marta Tintore, Susan Zhang, Patrick

Labatut, Daniel Haziza, Luca Wehrstedt, Jeremy Reizenstein, and Grigory Sizov.

xformers: A modular and hackable transformer modelling library. https://github.

com/facebookresearch/xformers, 2022.

135

https://github.com/facebookresearch/xformers
https://github.com/facebookresearch/xformers

[99] Roberto Leyva, Victor Sanchez, Gregory Epiphaniou, and Carsten Maple.

Demographic bias effects on face image synthesis. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR) Workshops,

pages 3818–3826, 2024.

[100] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing

the loss landscape of neural nets. In Advances in Neural Information Processing

Systems. Curran Associates, Inc., 2018.

[101] Xin Li and Dan Roth. Learning question classifiers. In COLING 2002: The 19th

International Conference on Computational Linguistics, 2002.

[102] M. Lichman. Uci machine learning repository, 2013.

[103] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects

in context. In ECCV, 2014.

[104] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and

Matthew Le. Flow matching for generative modeling. In The Eleventh International

Conference on Learning Representations, 2023.

[105] Yaron Lipman, Marton Havasi, Peter Holderrieth, Neta Shaul, Matt Le, Brian

Karrer, Ricky T. Q. Chen, David Lopez-Paz, Heli Ben-Hamu, and Itai Gat. Flow

matching guide and code, 2024.

[106] Ben Liu and Zhen Qin. Accelerate tarflow sampling with gs-jacobi iteration, 2025.

[107] Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning

to generate and transfer data with rectified flow. In The Eleventh International

Conference on Learning Representations, 2023.

136

[108] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face

attributes in the wild. In Proceedings of International Conference on Computer

Vision (ICCV), 2015.

[109] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin,

and Baining Guo. Swin transformer: Hierarchical vision transformer using shifted

windows. In ICCV, pages 10012–10022, 2021.

[110] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie, Yixuan Wei, Jia Ning, Yue

Cao, Zheng Zhang, Li Dong, Furu Wei, and Baining Guo. Swin transformer v2:

Scaling up capacity and resolution. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pages 12009–12019, 2022.

[111] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell,

and Saining Xie. A convnet for the 2020s. Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), 2022.

[112] Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin

Soljačić, Thomas Y Hou, and Max Tegmark. Kan: Kolmogorov-arnold networks.

arXiv preprint arXiv:2404.19756, 2024.

[113] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

[114] Minh-Thang Luong, Hieu Pham, and Christopher D. Manning. Effective approaches

to attention-based neural machine translation, 2015.

[115] Xuezhe Ma, Xiang Kong, Shanghang Zhang, and Eduard Hovy. Macow: Masked

convolutional generative flow. In Advances in Neural Information Processing

Systems. Curran Associates, Inc., 2019.

[116] Andrew Maas, Raymond E Daly, Peter T Pham, Dan Huang, Andrew Y Ng, and

Christopher Potts. Learning word vectors for sentiment analysis. In Proceedings

137

of the 49th annual meeting of the association for computational linguistics: Human

language technologies, pages 142–150, 2011.

[117] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A database of human segmented

natural images and its application to evaluating segmentation algorithms and

measuring ecological statistics. In Proc. 8th Int’l Conf. Computer Vision, pages

416–423, 2001.

[118] Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods

for GANs do actually converge? In Proceedings of the 35th International Conference

on Machine Learning, pages 3481–3490. PMLR, 2018.

[119] Paul Michel, Omer Levy, and Graham Neubig. Are sixteen heads really better than

one? In Advances in Neural Information Processing Systems. Curran Associates,

Inc., 2019.

[120] Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over

a large number of classes. In 2008 Sixth Indian Conference on Computer Vision,

Graphics and Image Processing, pages 722–729, 2008.

[121] George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow

for density estimation, 2017.

[122] Gaurav Parmar, Richard Zhang, and Jun-Yan Zhu. On aliased resizing and

surprising subtleties in gan evaluation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages 11410–11420, 2022.

[123] Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Lukasz Kaiser, Noam Shazeer,

Alexander Ku, and Dustin Tran. Image transformer. In International Conference

on Machine Learning (ICML), 2018.

138

[124] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban

Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison, Alykhan

Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith

Chintala. Pytorch: An imperative style, high-performance deep learning library,

2019.

[125] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global

vectors for word representation. In Proceedings of the 2014 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar,

2014. Association for Computational Linguistics.

[126] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by

averaging. SIAM Journal on Control and Optimization, 30(4):838–855, 1992.

[127] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr

Dollar. Designing network design spaces. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), 2020.

[128] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,

Michael Matena, Yanqi Zhou, Wei Li, and Peter J. Liu. Exploring the limits

of transfer learning with a unified text-to-text transformer. Journal of Machine

Learning Research, 21(140):1–67, 2020.

[129] Prajit Ramachandran, Niki Parmar, Ashish Vaswani, Irwan Bello, Anselm

Levskaya, and Jon Shlens. Stand-alone self-attention in vision models. In Advances

in Neural Information Processing Systems. Curran Associates, Inc., 2019.

[130] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn

Ommer. High-resolution image synthesis with latent diffusion models. In

139

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 10684–10695, 2022.

[131] Axel Sauer, Kashyap Chitta, Jens Müller, and Andreas Geiger. Projected gans

converge faster. In Advances in Neural Information Processing Systems, pages

17480–17492. Curran Associates, Inc., 2021.

[132] Axel Sauer, Katja Schwarz, and Andreas Geiger. Stylegan-xl: Scaling stylegan to

large diverse datasets. In ACM SIGGRAPH 2022 conference proceedings, pages

1–10, 2022.

[133] Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of

large language models a mirage? In Advances in Neural Information Processing

Systems, pages 55565–55581. Curran Associates, Inc., 2023.

[134] Adam Scherlis, Kshitij Sachan, Adam S. Jermyn, Joe Benton, and Buck Shlegeris.

Polysemanticity and capacity in neural networks. CoRR, abs/2210.01892, 2022.

[135] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of

rare words with subword units. In Proceedings of the 54th Annual Meeting of the

Association for Computational Linguistics (Volume 1: Long Papers), pages 1715–

1725, Berlin, Germany, 2016. Association for Computational Linguistics.

[136] Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and

Tri Dao. Flashattention-3: Fast and accurate attention with asynchrony and low-

precision. arXiv preprint arXiv:2407.08608, 2024.

[137] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside

convolutional networks: Visualising image classification models and saliency maps,

2014.

140

[138] Richard Socher, Alex Perelygin, Jean Wu, Jason Chuang, Christopher D Manning,

Andrew Y Ng, and Christopher Potts. Recursive deep models for semantic

compositionality over a sentiment treebank. In Proceedings of the 2013 conference

on empirical methods in natural language processing, pages 1631–1642, 2013.

[139] Kenneth O. Stanley, David B. D’Ambrosio, and Jason Gauci. A hypercube-based

encoding for evolving large-scale neural networks. Artificial Life, 15(2):185–212,

2009.

[140] George Stein, Jesse C. Cresswell, Rasa Hosseinzadeh, Yi Sui, Brendan Leigh Ross,

Valentin Villecroze, Zhaoyan Liu, Anthony L. Caterini, Eric Taylor, and Gabriel

Loaiza-Ganem. Exposing flaws of generative model evaluation metrics and their

unfair treatment of diffusion models. In Thirty-seventh Conference on Neural

Information Processing Systems, 2023.

[141] Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting

unreasonable effectiveness of data in deep learning era. In Proceedings of the IEEE

International Conference on Computer Vision (ICCV), 2017.

[142] Richard Sutton. The bitter lesson, 2019.

[143] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew

Wojna. Rethinking the inception architecture for computer vision. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

[144] Yuhta Takida, Masaaki Imaizumi, Takashi Shibuya, Chieh-Hsin Lai, Toshimitsu

Uesaka, Naoki Murata, and Yuki Mitsufuji. SAN: Inducing metrizability of

GAN with discriminative normalized linear layer. In The Twelfth International

Conference on Learning Representations, 2024.

141

[145] Gongbo Tang, Rico Sennrich, and Joakim Nivre. An analysis of attention

mechanisms: The case of word sense disambiguation in neural machine translation.

In Proceedings of the Third Conference on Machine Translation: Research Papers,

pages 26–35, Brussels, Belgium, 2018. Association for Computational Linguistics.

[146] Jiayan Teng, Wendi Zheng, Ming Ding, Wenyi Hong, Jianqiao Wangni, Zhuoyi

Yang, and Jie Tang. Relay diffusion: Unifying diffusion process across resolutions

for image synthesis, 2023.

[147] Antonio Torralba, Rob Fergus, and William T. Freeman. 80 million tiny images: A

large data set for nonparametric object and scene recognition. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 30(11):1958–1970, 2008.

[148] Hugo Touvron, Andrea Vedaldi, Matthijs Douze, and Herve Jegou. Fixing the train-

test resolution discrepancy. In Advances in Neural Information Processing Systems.

Curran Associates, Inc., 2019.

[149] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre

Sablayrolles, and Herve Jegou. Training data-efficient image transformers &

distillation through attention. In Proceedings of the 38th International Conference

on Machine Learning, pages 10347–10357. PMLR, 2021.

[150] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, L ukasz Kaiser, and Illia Polosukhin. Attention is all you need.

In NeurIPS, 2017.

[151] Ashish Vaswani, Prajit Ramachandran, Aravind Srinivas, Niki Parmar, Blake

Hechtman, and Jonathon Shlens. Scaling local self-attention for parameter efficient

visual backbones, 2021.

142

[152] Mario Viti, Nadiya Shvai, Arcadi Llanza, and Amir Nakib. A 0-shot self-attention

mechanism for accelerated diagonal attention. In Proceedings of the Winter

Conference on Applications of Computer Vision (WACV), pages 7308–7315, 2025.

[153] Elena Voita, David Talbot, Fedor Moiseev, Rico Sennrich, and Ivan Titov.

Analyzing multi-head self-attention: Specialized heads do the heavy lifting, the

rest can be pruned. In Proceedings of the 57th Annual Meeting of the Association

for Computational Linguistics, pages 5797–5808, Florence, Italy, 2019. Association

for Computational Linguistics.

[154] Steven Walton. Isomorphism, normalizing flows, and density estimation: Preserving

relationships between data, 2022.

[155] Steven Walton, Ali Hassani, Abulikemu Abuduweili, and Humphrey Shi.

Training compact transformers from scratch in 30 minutes with pytorch.

medium.com/pytorch, 2021.

[156] Steven Walton, Ali Hassani, Xingqian Xu, Zhangyang Wang, and Humphrey Shi.

Efficient image generation with variadic attention heads. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

Workshops, 2025.

[157] Steven Walton, Valeriy Klyukin, Maksim Artemev, Denis Derkach, Nikita Orlov,

and Humphrey Shi. Distilling normalizing flows. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR) Workshops,

2025.

[158] Zhendong Wang, Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan

Zhou. Diffusion-GAN: Training GANs with diffusion. In The Eleventh International

Conference on Learning Representations, 2023.

143

[159] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian

Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H.

Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy Liang, Jeff Dean, and William

Fedus. Emergent abilities of large language models. Transactions on Machine

Learning Research, 2022. Survey Certification.

[160] Ross Wightman. Pytorch image models, 2019.

[161] Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An

improved training procedure in timm, 2021.

[162] Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So

Kweon, and Saining Xie. Convnext v2: Co-designing and scaling convnets with

masked autoencoders. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 16133–16142, 2023.

[163] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient

streaming language models with attention sinks, 2024.

[164] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset

for benchmarking machine learning algorithms, 2017.

[165] Ceyuan Yang, Yujun Shen, Yinghao Xu, and Bolei Zhou. Data-efficient instance

generation from instance discrimination. In Advances in Neural Information

Processing Systems, pages 9378–9390. Curran Associates, Inc., 2021.

[166] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianxiong Xiao. Lsun:

Construction of a large-scale image dataset using deep learning with humans in

the loop. arXiv preprint arXiv:1506.03365, 2015.

[167] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and

Youngjoon Yoo. Cutmix: Regularization strategy to train strong classifiers with

144

localizable features. In Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 6023–6032, 2019.

[168] Shuangfei Zhai, Ruixiang Zhang, Preetum Nakkiran, David Berthelot, Jiatao Gu,

Huangjie Zheng, Tianrong Chen, Miguel Angel Bautista, Navdeep Jaitly, and Josh

Susskind. Normalizing flows are capable generative models, 2024.

[169] Bowen Zhang, Shuyang Gu, Bo Zhang, Jianmin Bao, Dong Chen, Fang Wen, Yong

Wang, and Baining Guo. Styleswin: Transformer-based gan for high-resolution

image generation. In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pages 11304–11314, 2022.

[170] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup:

Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412, 2017.

[171] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention

generative adversarial networks. In Proceedings of the 36th International Conference

on Machine Learning, pages 7354–7363. PMLR, 2019.

[172] Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional

networks for text classification. arXiv preprint arXiv:1509.01626, 2015.

[173] Zizhao Zhang, Han Zhang, Long Zhao, Ting Chen, Sercan Ö Arik, and Tomas

Pfister. Nested hierarchical transformer: Towards accurate, data-efficient and

interpretable visual understanding. In Proceedings of the AAAI Conference on

Artificial Intelligence, pages 3417–3425, 2022.

[174] Long Zhao, Zizhao Zhang, Ting Chen, Dimitris Metaxas, and Han Zhang. Improved

transformer for high-resolution gans. In Advances in Neural Information Processing

Systems, pages 18367–18380. Curran Associates, Inc., 2021.

145

[175] Zhengli Zhao, Sameer Singh, Honglak Lee, Zizhao Zhang, Augustus Odena, and

Han Zhang. Improved consistency regularization for gans. In Proceedings of the

AAAI conference on artificial intelligence, pages 11033–11041, 2021.

[176] Hongkai Zheng, Weili Nie, Arash Vahdat, and Anima Anandkumar. Fast training of

diffusion models with masked transformers. In Transactions on Machine Learning

Research (TMLR), 2024.

[177] Hui Zhong, Zaiyi Chen, Chuan Qin, Zai Huang, Vincent W. Zheng, Tong Xu, and

Enhong Chen. Adam revisited: a weighted past gradients perspective. Frontiers of

Computer Science, 14(5), 2020.

[178] Zhun Zhong, Liang Zheng, Guoliang Kang, Shaozi Li, and Yi Yang. Random

erasing data augmentation. In Proceedings of the AAAI Conference on Artificial

Intelligence, pages 13001–13008, 2020.

[179] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio

Torralba. Scene parsing through ade20k dataset. In CVPR, 2017.

[180] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-

image translation using cycle-consistent adversarial networks. In Computer Vision

(ICCV), 2017 IEEE International Conference on, 2017.

146

	 Introduction
	Motivation
	Research Goals and Approaches
	Dissertation Outline
	Co-Authored Material

	 Background
	Learned Data Mappings
	Scale Is Not All You Need
	Scaling Data
	Model Size

	The Foundations That Shape Us
	Transformers
	Adversarial Generation
	Normalizing Flows

	The Tyranny of Measurements

	 Escaping the Big Data Paradigm
	Vision Transformers
	Data Efficient Vision Transformers
	Convolutional Tokenizer
	SeqPool

	Experiments
	Datasets
	Computational Resources
	Hyperparameters
	Transformers On Small Datasets
	Ablations
	Scaling Study
	Natural Language Processing

	Conclusion

	 Variadic Neighborhood Attention
	Localized Attention
	Neighborhood Attention
	Variadic Attention Heads
	Generating The Right Experiment
	Datasets
	Hyperparameters

	When Faced With Sparse Attention
	A Bump While Headed To Church
	Metrics Are Not Enough
	The Face Says It All
	Quick Training on Deep Fake Detection
	Fingerprints
	StyleGAN
	StyleSwin
	StyleNAT

	Attention To Details

	 Distillation of Invertible Networks
	Model Distillation
	Distilling Normalizing Flows
	Categories of Flow Distillations
	Latent Knowledge Distillation
	Intermediate Latent Knowledge Distillation
	Synthesized Knowledge Distillation
	All Together

	Distillation Experiments
	Density Estimation
	Image Generation

	Conclusion

	 Conclusion and Future Directions
	Summary
	Future Directions
	Core Challenges
	Scaling
	Ingress and Egress of Data
	Parameterization
	Automated Preprocessing
	Making The Most of it

	Core Processing Architectures
	Flexible Learning
	Is Beauty in the Eye of the Beholder?

	Structurally Aware Architectures

	Conclusion

