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Abstract

A set of four microcoded subprocessors have been designed
for the Microdata 3200 to provide cempact efficient coapila-
tion and execution of LR(k} languages. The scanner subpro-
cessor extracts tokens from an input string; the parser sub-
processor executes a stack automaton program which parses
the source program; the semantics subprocessor provides
operators for datz handling in tables and stacks, symbol
table searching, and object code geneyation; the executien
subprocessor is a stqck machine designed for ALGOL-like

languages, The design and interaction of these subprocessors

is discussed.



Introduction

This paper presents a set of four microprogrammed sub-
processors which have been designzd for the Micredata 3200
to provide generalized (language independent) compilation
and execution of LR(k) languages. Several processors have
been reported for machines which will "execute" a higher
level programming language [2,5,7]. Howsver, mcst of these
have addressed the execution time prcoblem of finding oper-
ators which are "natural" to compile into and provide effi-
cient execution. Altheugh en early report of & microprogranm-
med compiler clearly demonstrates the advantages of such an
approach, the effort is tied closely to a particular langu-
age [16]. A more recent example of microcoded compiler
methods is given by Chu {[1].

The approach being reported here is not to microprogram
.a compiler, nor to design a machine for a particular langu-
Ege. but tc analyze the process of executing z higher level
language into four subprocesses: scanning, parsing, semantic
functions, and execution; and then to design subprocessors
which will provide suitable operators for compact, efficient

compilers znd efficient execution of 3 wide range of program-

ming languages.



Scanner Subprocessor

The scanner subprocessor extracts tokens from am input
string in main memory returning the following token codes

in a general inter-subprocessor register:

0 - literal string

1l - digit string

2 - identifier string

3 - end of line

4 ... n - delimiter or special character codes and

keyword codes
The scan is controiled by character type codes in s table in
main memory indexed by character codes. Character types are
encoded in 5 bits with one bit each for ignore (but use as
digit or identifier string delimiters), digit, identifier
character, end of line, and special character. Since tﬂe
bits are tested in that order, a character may be encoded as
wore than one type. For example, while a digit/identifier
character as a leading character of a token will indicate a
digit string, the same character following an identifier
character will be part of an identifier string.

Literal, digit and identifier strings are also packed
into a token string buffer in main memory where they are
available to a semantic routine invoked by a reduction of
the terminal string to some non-temninal by the parser sub-

processor. Identifier strings are tested as keywords by



searching a keyword table in main memory and obtaining key-
word codes from a parallel tabje. |

The current scanner subprocessor is encoded entirely X
in microcode providing fast execution but less fleiihility
than a design incorporating a macro language. However, some
flekihility is achieved by the use of character type tables
and keyword tables.

The scanner subprocessor has the following seven regi-
sters:

input string: main memory location of input string

current character: input character currently being scanned

current character type: type of current character

character type table: main memory location of character

type code table
keyword table: main memory location of keyword table

keyword code table: main memory location of keyword

-

code table

token string: main memory location of token string
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Parser Subprocessor

The parser subprocessor is'designed for parsing methods
developed for LR(k).languages [3,6]. (Since the lookahead
is currently one character, more accurately LR(1) ). These
methods employ a stack automaton parﬁar derived from the LK(k)
grammar of the language. Tha instructions implemented in the
parser subprocessor are desigred for a stack sutomaton which
is described by a sequence of parsing subprocessor instruc-
tions. In gerneral each of these instructions specifies some
combination of stack manipulation, determination of a reduc-
tion, transition to & next state, and inputting the next
token by a call to the scanner subprocessor. The stack of
the automaton holds only state names. The transition to a
Inext state can be specified unconditionally or dependently
upon the top of the stack. The steck automaton program is
generated in some other machine (currently a PDP-10) by an
LR(k) parser generator. An sxample of z stack automaton
parser for a very simple language is given in appendix A.

The specific instructioms of the parsor subprocessor are:

15 12 11 1]
[ 0 ] condition cnde J raturn tc the control section of

the semantics subprocessor indi-
cating some error condition.

(stack overflow, nc transition, etc.)

1 I no. entiies pop no. entries off of stack

{_l next state move uncepditionally to next state
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l 3 ] reduction code return with reduction code

(the next call to the parser

subprocessof will enter at

the next imstruction in sequence)
The remaining instructions specify condifianal mQVes deter-
mined by a test condition on the top of the stack or on the

next input token. The instruction format is:
13 12 11 0 -
opc test

where depending upén the opc, test is 2 single token code,

a single state, or the address of a set of token codes, or

the address of a set of state names.

opc = 4: if test = top of stack, then move to next state
and pop one entry from stack.

opc = 5: if test = top of stack, then move to mext state.

opc = 6: if top of stack matches entry in set of names at
test, then move to next state and pop stack.

opc = 7: if top of stack matches entry in set ¢f names at
test, then move to next state.

opc = 8: push current state name cnto stack and if test =
next token code, then move to next state and advance
input one token.

6pc = 9: same as opc = 8 except ipput is not advanced on

successful test (this provides look ahead).



opc = 10: push current state name onto stack and if next
token code matches entry in set at test, then
move to next state and advance input.

opc = li: same as opc = 10 except input is not advanced.

opc = 12 through opc = 15 are the same as opc = 8 through

opc = 11 respectively except that the current state name

is not pushed onto the stack.

In all of these cases, if the test is unsuccessful, control

passes to the next instruction in sequence.

The parser subprocessor has siX registers:

automaton base: main memory address of first automaton
instruction

current state: offset from automaton base of current
state: ‘

current instruction: offset from szutomaton base of
current instruction

stack base: main memory address of first location

' of automaton stack
stack pointer: offset from stack base of current top
' of stack

stack limit: main memory addrzss of last available

stack location

The parser subprocessor also makes use of a8 gemnevral
inter-subprocessor register tc return conditiom and
reduction codes.



Semantics Subprocessor

.
N

The semantics subprqcessor provides instructions to
facilitate the maintenance of information in tables and
stacks, the generation of object code, decimal to binary
conversion and input/output functions. The instructions in-
clude 16-bit integer arithmetic, partial word and character
manipulation, simp;e pushing and popping of stacks, input/
output, and symbol table searching. These irstructions have
been designed for the description of semantic routines associ-
ated with the productions of the grammar of the language.

In addition, the semantics subprocessor contains a con-
trol section for overall control of compilation and execu-
tion and s service section for providing input of source
iines and output of listing. Both of these sections could
have been designed as separate subprocessors. However, since
they both make extensive use of instructions availsgble in
‘the semantics subprocessor, it seems most efficient to design
them as sections of this subprocessor.

Since a major function of the semantic routines is the
movement of data, en attractive design incorporates a number
of general registers and two or three operand instructions
similar to a PDP-11. The semantics subprocessor has sixteen
registers all of which can be addressed, but eight of which
serve the following special functioms:

Program base register



current instruction location

current instruction

current reduction (returned by the parser subprocessor)
location of object program

status flags

two temporary microcode registers

The instruction cperand addresses are determined by a

four bit mods and a four bit register address; R. The modes

increnent contents of R by one, then contents of R

1) [1) n oy 1 twg, L L e n "

contents of R asdded to next 16 bits of instruction

contents of memory location addressed by contents of
contents of R multiplied by 4 added to next 16 bits

contents of R added to 4 times the next 16 bits of

are:
node effective address of operand
1 register R
2 contents of register R
3
4
5 contents nf R, then decrement R by one
L6 " moon LR " " two
7
8
R added to next 16 bits of instruction
9
of instruction
10
instruction
il contents of R multipiied by 4
12

contents of R multiplied by 4 incremented by 2
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Main memory is byte addressable; thus modes 3,4,5,6 all
manipulation of pointers for either byte or 16-bit word
stacks. Input/output operations are performed by addressing
the high end of an 18-bit addressing space. Modes 9,10,11,12
provide multiplication by 4 to produce the 2 high order bits.
In the following list of instructians; égég,is a field
specifying conditional exeéution of the instruction on the
setting of a status flag for =06, #0,»0,30,<0 <0 ;reviously

set by a TST instruction. The fields source, destination,

operand, string, table specify addresses as.described above.

MOV cond,source, destination : move 16-bit word

MOVB cond,source,destination i1 move byte

MOVS cond,source,destination : move string

ARTH opr,operand,destination t arithmetic or logical
operation on operand and destination with result
placed into destination. opr specifies one of
complement, add, subtract, multiply, divide, modulo,
not, and, or, exclusive or

ARTH opr,operandl,operandZ,destination: arithmetic or
logical operation on two operands with result
placed into destination.

SHFT 0pr,sourEe,destination: shift of source with result
placed into destinatiom. opr specifies single or
double word logical shift or rotate right or jeft

and number of bits.



TST operand: tests operand against zero for = ¢ >3 <<
and sets status flags accordingly
TST operandl,operand2: test operandl against operand2
" for = #>><< and sets status flags

CONV string,destination: converts ASCII decimal digit
string to binary and places result into destination

SRCH string,table,destination: uses a hash coding method
to search table for string and places index of
first matching or empty entry inte destination.
(entries of the table are pointers to strings)

XTR bits,source,destination: places partial word of

source indicated by bits

]

" The control section has instructions to initialize the
parser subprocesscr, the scanner subprocessor, and the execu-
tion subprocessor. An additional instruction provides a czll
'to the parser subprecessor for the next reduction. The service
section has an instruction for return to the scanner subpro-‘
cessor.

The semantics subprocessor has been designed to facilitate
describing the semantic routines in a simple higher level
language in parallel with the productions of the grammar
of the programming I;nguage being compiled. A compiler gen-
erator will produce the semantic routines for the semantics

subprocessor as well as producing the parsing automaton. Al-

though this semantic routine genervator has not yet been

implemented, it follows 'the approach taken by Feldman(ﬁ]and

others.
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Execution Subprocessor

The execution subprqcessor provides instructions which
will be 'matural' for a compiler to generate and will pro-
vide efficient execution for a given language. Of course
*natural" and "efficient" vary comnsiderably for different
languages; and several execution subprocessors might be
designed. For a typical ALQOL~1ike language currently being
implemented, the design should include typed arithmetic, a
stack mechanism with display register addressing, and s
procedure call mechanism.

Several designs for such stack machipnes have been re-
ported for the direct execution of higher level laﬁguages
[2,5,7]. Also the Microdata 32/S emulation on the 3200 is
an example of a fairly saphisficated stack machine on a
small computer [9]. Cne object of the project reported
here was to design a simple, compact execution subprocessor
" which could share the hardware with the parser and semantics
subprocessors.

A program in the execution subprocessor consists of a
program area and a data or stack area. All varisble storage
is allocated in the stack and most data maripulation takes
place on the stack. Two exceptions are constant values
which may be read from the program zrea and input/output
which is performed by absolute addressing at the high end

of the memory addressing space.
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Most operators implicitly address the top locations of
the stack. Variables are addressed relative to the procedure
in which they are declared., Each level of a nest of proce-
dures has a display register pointing to its local storage.
Variables are then addressed by two values: the number of
levels out from the currégfly active procedure and the reia-
tive address within that level. The variable addresses are
then evaluated #elative to the stack base. An eiample is-
given in Figure 1. ‘

Stack and store operations using these staci addressing
methods and absolute addressing for both byte and werd data
move values to and from the top location of the stack. The
following instructions obtain their operands from the top
locations of the stack (popping the stack) and place their
results back onto the stack:

integer add, subtract, multiply, divide, modulo

floating add, subtract, multiply, divide

convert integer to floating

convert floating to integer

complement

logical not, and, inclusive or, exclusive cr

exchange the top two stack entries

branck

branch conditionally

shift
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procedure

X5

begin a, b, c;

pracedure y;

begin d, e, f;

procedure z;

end

end

, Figure 1.

begin g, h, 1i;
f 4= h + a;

end

Nested procedures.

would address f as

The assignment £ <~ h + &
(1,3), h as (0,2), a as {2,1)
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extract partial word

deposit partial word

Procedure calls and returns are implemented by three instruc-
tions:
initialize procedure call: allocates heading block
for activation of procedure and establishes
links to outer procedure display.
call procedure: invokes the called procedure after the
call has been initialized and any argﬁmants
have been placed on the stack and 2stabiishes
a return address.
return: adjﬁsts the stack to remove the current pro-
| cedure heading biock and retnrns control to
the calling procedure.
Stack space for local storage is allocated with an allocate
instruction.
The registers of the execution subprocessor are:
program base
current instruction (relative to program base)
stack baée
stack pointer (relative to stack base)
stack 1limit
top five entries of stack

most recently allocated procedure heading block
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Interfacing

The organization of the subprocessors and their inter-
faces are illustrated in figuvre 2. The interface between
the control section of the semantics subprocessor and the
scanner subprocessor is an initialize instruction which in-
itializes the scanner subprocessor character code tzble and
keyword table registers and which causes the scanner sub-
processor to request a first input line from the service
section of the semantics subprocessor. The control section
also has an initialize instruction to the parser subprocessoy
which imitializes its registers snd invokes a £all to the
scanner to initialize the first token. After initialization
the control section call the parser subprocessor with a get

next reduction instruction causing the parser subprocessor

to execute the stack automaton program until z reduction in-
struction is reached. The code identifying the production

. associated with the reducticn is veturned to the control
section which then uses this code to invoke the correspond-
ing semantic routine through a branch vecter. As the stack
sutomaton requires input, the pavser subprocessor makes

get next teken calls to the scanner subprocessor for the

next token. As the scanner subprocessor exhausts input

lines, get next line calls ars made to the service section.

The semantic routines output code to the object program
area in main memory. The control section repeats this cycle

until a stop bit is set in its status register. It then
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invokes execution of the object program by a rumn instruction
to the execution subprocessor. This instruction initializes
the registers of the execution subprocessor;

As measured against some principles cutlined by
McKeeman [8], this interface is relatively clesn in the
sense that if the sections of the semantics subprocessor
were separated, then all of the ocutput of each subprocessor
could be produced in some relatively simple intermediate
language to be input to another subprocessor. 1In other
words all input lines could be established in a file to be
given one at a time to the scanner which could produce 2
file of all tokens to be given one at a time to the parser
which could produce a file of reductions to be given one at
a time to the control section which could call the semantic
routines which would produce the file of object code.

The only breakdown of this interface is that required
1by the ad hoc nature of some of the error recovery techni-
ques. In order to be useful to a programmer, a compiler rust
find as many errors as possible in a given program. This
requires that the compiler not termindte upon encountering
an error, but output'an error indication and then adjust
jts current state in some way that will allow cémpilation
of the remainder of the program to continue. Although wor
has been carried out in the area of error handling and
recovery, at present no satisfactory general formal methods

are available to realign the parser subprocessor after
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encountering an error. When the parser encounters a syn-
tactic error in the source language, it returns to the
control section with sn error condition code; The control
section uses this code to invoke a "sémantic" routine which-
outputs an error indication and then attempts to realign the
parser whenever the parser cannot realign itself. These
routines are usually designed.for the error at hand and may
involve advancihg the input to some token, inserting some
token into the input, adjusting the parser stack, and reset-
ting the state of the parser automaton. As better methods

for handling errors are developed, fewer of these violations

of the inter-subprocessor interface will be necessary.
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Hardware

The machine for which these subprocessors have been
written is the Microdata 3200. The particular machine has
2K of writeable control store with a 32-bit microinstruction;
it is relatively vertical in design. The data section con-
tains three 16-bit working registers bussed into the arith-
metic unit and thirty-two 16-bit general registers of local
memory. The addressing of local memory makes special pro-
vision for four of these registers together with one of.the
working registers to be used as the top of = stack, the
remainder of which extends into =main BeROTY. Main memory of
this particular machine consists of 16KB of MOS memory. The
particular machine used has at present no secondary file
storage. |

Although the machine has seemead quite varsatile and
easy to microprogram, a sexious restriction in its design
is that microcode subroutining is limited to only one level.
Switches can be used for returns, but it is not possible to
bring the current microimstruction address imto the data
section to be stacked as a teturn address. This restriction
has seemed to lim;t the extent to which subprocessors could
be modularized @ndﬂghe amount -of code ;haFing'EHat could be

achieved.
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Conclusions

The objectives of this work have centered around the
problems of quickly and easily develeping compact efficient
compilers for small machines for research in programming
language design. The need for ease in development of com-
pilers suggests the need for a compiler generator; However,
the limited'meﬁory of small machinéé noermally will not sup-
port a scophisticated compiler gererator. 'A compiler genar-
ator operating in a larger machine could produce.coupilers
for a small machine with & gensral purpose instruction set.
However, the microcoded subprocessors described here consid-
erably simplify the task of z compiler generator and allow
the resulting compiler to be considerably more compact and
efficient. The compiler generator could easily be altered
to generate compilers for a variety of small machines for
. which similax subprocessors have been implemented. |

Another approach is to have the compiler generating
system produce a completely micrecoded compiler to be loaded
into the control memory of the small machine. Although com-
parisons of this approach with the approsch reported here
have yet to be made, it appears that the completely micwo-
coded compiler, although faster, would consume comsiderably
nore control memory; also the coﬁpiler gererating system
would become more complex end machine dependent. For the
purposes at hand the subprocessors of this repork seem 9
offer the most attractive method of implementing 1énguage

processors,
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APPENNIX A

Fxamole Gramemar:

N s*> a4 3y g+ P
1) A+ Vv :=PR 4 T Vv
2) F+ E=+P 5y v i

GRAPHIC KEPRESEWTATION OF STACK AUTCHMATON PARSER

state nama pushed
on stack

tranaition determined
by name on ton of stack

n indicates reduction
fy nth production

Stack Autcoaton Progresa i

state loc onc / operand or haxt state statr loc onc / onarand or next atate

sh 0 12/ ¥ 58 124 3/2
101 103 sii 12% 4 /113
102 v / 100} 126 118 .

51 1n2 8/ 1 54 127 374
104 132 85 128 5 / 113
105 0 / oz 129 13

518 s 12/ 130 3 /7121

: mn?r 1 131 224
s o/ 1003 52 132 3/65

815 e 0 31/ 0 &3 133 7 /7 143

57 110 12 / = 138 127
11 113 135 5/1%
112 o / 104 136 11A

510 113 B/ i ’ Sk 137 3/3
14 132 59 138 5 / 113
115 0 / 1005 133 116

513 ns 13/ 4 514 14n /1
117 140 14 i/1
118 12/ + 142 2/ 106
119 12} 142 2
1an 0 / 1006 144 113

812 121 8/ i 148 121
122 132

143 0 /f 1007



