€8 - 76 - 1

PSHON: A Production System Monitor
by

Arthur Farley

TAELE OF CONTENTS

I. Irtroduction 1
II. Profuction System Creation 4
Irr. Ava'labl s Memory initialization 7
Iv. Froduction System ixecution -
V. Exaimple Protocel anu Output Trace 11
vI. Basic Functions 16
VIr Auxiliary List Functions 19
v.II. Conclusion 2a
X, References 20
APPENDICES
A. EPAM.RLS 21
B. IOGIC.SNC 22
C. ILOGIC.RLS 24
ICKNOWLEDGENENT

I oratefully sckmwledge the . ssistance of Mg,

Tor Jang Barnett during
the initial phane of PSMON irpleme;tation,

Introduction

Production systems are a means of simuiating human cognitive procassing.

A preciction system {Newell and Simcn, 1972; Newell, 1973} is an ordersd 1list
(idealliy, a collection) of condition-action pairs (called rules) together with

a set of available memories which hold symbolic contents. The condition pare

of eact rule consists of an ordered list of conditions which are applicable Lo
the ccntents of the available memories and which are satisfied or not satisfied
by those contents. The action part of a rule is an ordered list of acticons which
are ap;licable to the contents of th2 active memories and which alter those
contents,

Ths exzcution of a production system Is cyclic in nature. During each
cycle, thre condition parts of the rules are applied, according to the specified
list ordering, to the contents of the available memories until a conditicn part
Is founc whose conditions are comﬁletely.satisfied ky the current contents,

When a cindition part is completely satisfied, its associated rule is said to
'fire', with its action half being executed. The cycle then starts again,
until no zondition part is satisfied or until the preduction system is directly
deactivalad by the action of & firing rule.

Available memories are distinguished by the classes of content they may
hold and by their assoclatad content management strategies. The production
system biing defined here (fron now on called PSMON) has five different available
memories currently Iimplemented. Figure 1 shows three of the memories with arrows
indicatirg allowable information flow. The first memory is the SNVIRONMENT. The
ENVIRONN'NT is a simplified, operational representation of external memory. It
is repro.ented in PSMON as an ordered list of elements. Once created, it remzins
constan! during producticon system execution unless directly altered by rule acticn.

Th: second memory is STM {Shart Term Memory). It is 2 simplified, opers-
tional epresentation of the limited active memory, characteristic of the human
cognit: @ processor. STM is an cordered list of a relativeiy small, constant
pembsr F informational units cxlled chunks. Bvery chunk has two aspects, a
mark a-i a content. The mark simplifiecs accessing; the content may be any

symhs [l structuore which is considered te be a fundamental unit of representation

for a given application. When a new chunk is created, it ie placed at the
heac of the STM list. When a chunk in STH is used during a rule firing, it

is moved to the head of the list. Chunks sre lost, or fbrgotteq, by displace-
meat from the end of the constant length list as new chunks are created. ST&
is the active memory. Whenever a cordition of a rule which fires depends .
apon information in ENVIRONMENT or ITM, that information is automatically
emhodied in a new chunk in S7M.

The third memory is ITM (Intermediate Term Memory). It serves the role
of contextual memory for the system. Those chunks of ST which are of specia’
inverest or significance to a given production system (ie. a chosen move dur.ng
problem salving) are transferred to ITM. This protects these chunks from com-
plete loss when they are later displaced from STM. ITH is thus a list of chunkis,
transferred to ITY from STM by rule actions. A chunk may be recalled into ST
Iy a rule condition during later processing.

One available memory which is not shown iIn Figure 1 is LF¥M {Long Term
Memory). LTM contains the universe of sumbols, symbel classes, interrelationships
Letween symbols, and basic cognitive functions which are known to the system. The
rules of the production system are written in terms of these known suymbols, classes,
relations, and functions. LITH underlies the whole system and thus it is not shown
in Figure 1. LTM is defined anew for each given productiocn system application.
LTM is normally not affected by production system activity in PSMON. The other
available memory noi shown is that of rule, or immediate, memory. The conditicns
of a rule are satisfied by certain aspects of éhe available memories. Pointers
are created to these aspects as conditions ave satisfied. These pointers exist
enly during consideraticn of the rule's conditions, end, i1f it fires, during .'ts
action half. This allows acticns to be naturally specified in terms of those
aspaects of available memory which led to their executicn.

The following tlhree sections will discuss three aspects of the PSMON sysiecm:

1} producticn system creartion
2} availadlie memory initialization

3) production zystem execution

Section V preserts an annotated Lteletype protocol and eutput trarve created
bu PSMON execution. The output generated by production system execution consinis
of a seguence of rule firings and availzble memory states. Section VI present:s

a brief description of a met of basic Ffunctions which are availabie ta the useci

as part of PSMON for the creation of production systems. Section VII preseats
a brief description of another set of functions, available to the user in an
auxiliary file (LISTS.SNO), for dealing with list and attribute-value pair
representations. Appendices present example production system and auxiliary
LTY files.

PSMON is written in SNOBOL4 to run in the SITBOL system cn the PDP-10.
The user of PSMON is expected tec have some familiarity with both SNOBOL4 and tha
SITBOL sustem. The user is expected to create SNOBOLA program files defining

peaded condition and action functions for his given simvlation application.

FIGURE 1 Production System and Available Memories
~ 1T Solild arrows indicate
PS s normal information
C == A 4
o & " flOH.
. -,
. o =~ Broken arrows indicate
) ..$;--------§STM conditions can apply to
i N a contents of all thres
C,== Ay "\\ . memories.
LY
e >

8
ENVIRONMENT

IX.

Production System Creation

PSHON creates producticn systems by the processing of user-creavs=d
preduction system files. In this section the syntax of production system
files and the internal representation of producticn systems will be discussed.

Flgure 2 shows a modified BNF definiticn of production system file syntox.

Appendix A presents an example production system file.

F GURE 2 .
—————— Modified BNF specification of PS file syntax

eps--flley ::= rule-defsy {¢ps-defsd
gdrule-defssy ::= ¢ruley § ¢ruley 4drule-defsy

¢ruled ::= ¢name-lined 4cond~linesy d<arrow-liney
gaction-linesy eend-1ined

gdriame~lined ::= erule~namey : &titleyp
£rule~named := R, galphnumnss

¢alponumsd ::= ¢letterdledigit® lealphnumsy &letter¥ !
talphnumsy £digit®

dtitle® ::= any string

gcond-linesy 1:= ¢ e~1lined t 2c-iiney 4&cond-lines?
dc~-1line® ::= (fcond-namey : ¢specs-listy)
fcond-namey ::= C ¢digity | E edigite 8 I sdigity

{specs~1isty ::= any condition functlion ﬁ any condition
Tunction .AND. ¢specs-listh

garrow--liney ::= ==
. 4action-linesy ::= £&ct?ﬁ5&ct§«action-lines?

gactd ::= { any action function)

dend~1ine? ::= ENDRULE

4ps-defsp ::= ¢ps~linePi gps-linevgps defsY

4ps-1ine} :i= PS{' gps-named *,' @&rule-liisty ')

eps-niamed ::= ¢letterd f¢ps-namep €letteryisps~nameyediglty
grule-1istd ::= érule~name? §§ rule--namey , &rule-listy

Qettery ::= AlBICIDIEIRPfGIHiTfTIK{LIMiNio} PiQIR] ST Ul Viwlxhy]2
gaigity ::= 1f2i3lsisisizisiofe

A conditlon or actlon functilon consists of a call to a user,
SHOBOLY, or PSMON defined function.

Some general characteristics of the syntax are woxth noting. Blank
lines are ignored by the system. Lines beginning with an asterisk are con-~
gidered to be comments and are also ignored. A rule definition consists of
several Iines. Only one conditicn and one action can occur onr a lipe. bbn*
dition, action, and arrow lines can have any number of initial tahs or blanks
to allow formatting for readability, as illustrated in Appendix A.

The result of procsssing a rule definition is the creation of a rule
data-~structure, to which the ruls name Iz then set. Flgure 3 shows a graphic
representation of the rule structure which would be generated for rule R.E 1
of Appendix A. The rule structure has four aspects: nams, title, cond,
and acts. The name and title are assigned on the basis of the first line of
2 rule definition. The title is an arbitrary string, used to describe brieflu
the semantics of the rule. The cond aspect is a lilst of conditionz, one defined
by each condition line. Eazch condition list elewment has three aspects: nams,
specs, and nextc. %he pame will be used during executilon to determine to which
available memory the condition is to be applied and will serve as a variable
of immediate memory with 1ts value being that aspect of the avaflable memory
gatisfying the condition, The specs aspect iIs & list of condition functions
associated with this condition. The nextc aspect pointe to the next conditiorn
element in the list for the given rule. The acts aspsct of the role structure
is a list of actilons to be executed in list order when the rule is fired dvring
production system aryecution.

After all rvle definitions have been preocessed, the rule structures are
next organized inteo producticn systems. This is accomplished by Interpretaticon
of the PS function specification(s), which cccur at the end of the productisa
system file. Note thst more than one production system may be created from the
set of rule structures. Esch production system is named by the Ffirst argume:st
of the function specification. Each groduction system will consist of an ordered
list of rules, the order and rules being specified by the order of rule names
oecurering in the second arqument of the funciélon specification. Three production
systems {named BPAM, LEARM, and ANSHER) are created by PSHON when processing
the producticn system fije of Appendix A.

Production system crestion is the firat stage of processing performed by

PSHON. PSHMON asks the user at the tslstype to provide names of production

svstem files whick the user has created prior to runfing PSHMON. See the

canotated teletype protocol of Section V, which demonstrates this procesdure.

*IGURE 3

I'RULE R.El #

R.E1L: GAVE RIGHT ANSWER SO GET NEW STIMULUS
(CO0: MARKED(HEAR))
(Cl: MARKED(SAY) .AND, IS{CONTENT(CO}))
(MARK(CO,USED))
(MARK(Cl USED))
(CPEATva())
(ACTIVE{'ANSWER?))
ENDRULE

¥ RULE STRUCTURE FOR R.E1l #

PN GAVE RIGHT ANSWER 30 GET MEW STIMULUS
/J’ \ . ?
R.E1 (name , title , cornd , acts)
~ e’ Y

e

{name , specs , nextc)@* \\““hnufb(it%g s next)
CO & (1 08m " next) (co,usnnﬁ\h
MARKE%}HEAH) (name , specs , nexte) (item , nexﬁ{?}
3 (it&h , nexi) nARK (c1,USED)
MQRKED(SAY) {1fem , next) (item , next)s

IS{CONTENT{CO)) CREATENV())
{(1tem , next)¢
¥

ACTIVE('ANSWER')

III.

Available Memory Initialization

Before the production systems, created by the First phase of PSMON
activity, can be axecuted, the available memories must be initialized and
sevaeral output decisions must be made.

The user is asked whether he wants to produce teletype ocutput in DEBUG
mole or net. In DEDUG mode the current contents of 5T are presenited at the
te.stype after each system cycle. This mode is elected by responding with
a ' and carriage return. IF DERUG mode is not elected, (by respondimg with
a tole.carriage return} only the name end title of ths fireé rule are pre-
seted at the teletype after =ach cycle.

LTM is the first available memory toc be initizlized. LI fsg Initialized
by the execution of one or mwore auxiliary files. These much have been incluc=d
be fore PSMON in the coimand string provided to the SITBCL system. {(See be-

g nning of the annotated teletype profocol of Seckion V.} Each auxiliary fils
rust have the format specified by Figure 4. Aprendix B presents an example

LTM for 8 propositional reasoning applicatian. The user is asked to input

the name of the file label for each auxiliary file. Control 1s transferred
vhere; the auxiliary file is exccuted, defining the symbole, classes, relaticns
and Ffunctions specified by the SNOBCL program in the file. A suymbol is a string
which has itself as 1ts value. A class is a string which has as its value a
list of symbols as elements. Relations hold between symbols; for example, if
QOPPOSITE is & relation,., UP could rnaturally ba defined as the OPPUSITE of DCOWM,

H
FIGURE 3 Auziliary file format
: { TMAIN)
§file-label}
L

a SNOBOL progrém

wlth no ERD statement

: {BMAIN)

Section VI lists several utilitvy Ffunctions available to Che user {(as part
of PSMCN)for this purpose. User names must not coaflict with names in
PSHON. This can be guarantead by starting all npames with the letters U
through Z. If this is not satisfactory, one should check the PSMON.SHO
listing to avoid naming conflicts.

The vser is then asked to input a file name to serve as output file
for the trace produced by execution of the production system, A sole returr
at this point results in complete exit from the PSHON system.

The user is next asked to initialize ST¥. This must be done by pro-
viding a functicn call which is then evaluated by the system. Currently the
only available utility function for this purcose is ST, which initializes
ST: ta N null chunks when its second argument iz missing, as 1llustrated in
Section V. STH is considered to be an cvrdered list, but is represented in
PSMON as a finite array (in case one wants to create new Initialization

functions). ITM is presently ipitialized to null sutomatically.

Finally the user ig given the option of specifying an inidtial
ENVIRONMENT. IXFf the user elects to initialige the memcry, he spscifies
a file pame; otherwise the user responds with & sale return. ©FY: indicatsdg
the information is to bes input from the teletype. ENVIROKMENT is currently
represented as a list of elements, Each line of input from the file or frca

the telatype is evalwvated and becomz=s an element of the 1list.

Iv.

Production System Execution

After memory initializations and output decisions have been made,

PSMON is prepared to execute a production system. The user is asked to
rrovide the name of a production system to be activated. This is the

rame of one of the production systems created during processing of the
production system filas earlier. The general principles governing pro-
Huction system execution have been discussed in the introduction. Output
from this execution consists of a trace of rule firings and resultant

STM contents. Whenever ITH or the ENVIRONMENT iz altered this change is
also output. The output trace of Soction V illustratese the form of the
sutput trace. The mark aspect of an STM chunk 1s shown bafore th‘e colongy
the content aspect is presented after.

Several important aspects of production system execution by PSMON
concern the way that conditions are satisfied by eiemsnts of the active
memories. The initial letter of the names of each condition indicates
viich active memory is to serve as the source of satisfying contents.

&4 conditicn named with a C Indicates that a chunk of STH must satisfy the
condition; an I indicates an element chunk of ITH; an E indicates an element
of the ENVIRONMENT. When an element of the appropriate msmory JIs found, th:=
condition name is gst to that element ag an aspect of rule, or immediate,
memory. An element of an available memory can satiefy only one condition of
& rule.

Since the conditions of a rule are applied sequentially during zl:roduc—
tion system sxecuting the value of a previously established immediate memory
element can be used in later conditions of the rule. This is illustrated by
the conditions of rule R.El shown in Figure 3.

An important aspect of the condition satiasfying émcess is that cnce
a condition has been satisfied, tha gsystem will not back up and attempt to
satisfy that condition with a different memory element whan a later conditisn
fails. This has several implications with regards to rule firing, one which
can be illustrated with rule R.El. Consider rule R.El applied to the
folilowing STH:

(KEAR :: CON) (SAY :: CON) (HEAR :: PAT)

The first chunk satisfies condition Cf. The second chunk satisfies the
second condition, so rule R.El fires. Consider now rule R.El epplied to
this STM:

10.

(HEAR :: PAT} (HEAR :: CON) (SAY :: CON)

Again, the first chunk satisfies condition C#. The second condition ecannot
be satisfied now, so rule R.El fails to fire. The system will not attempt
to resatisfy condition C# with the second chunk, which could cause rule R.E1
to fire. This convention simplifies the rule matching process, while argu-
ments can be made for and against it being appropriate.

. The last aspect of producticn system execution to be discussed is that
of transfer of control between productlon systems. ‘As can be seen in Appendix
A, the action of a rule can activate another production system {by the ACTIVE

function). PSMON maintains a production system nams stack, the one named by

thz top of the stack being currently active. When the ACTIVE function is executed

"tihe name is pushed onto the stack. When the DEACT function is executed, or

when no rule of the active production.sgstem is fired by current memory con-
tents, the stack is papped. Note that more than one DEACT or ACTIVE function
can occur in the action half of 2 single rule. ?Transfer of control becomes
effective only at the beginning of a system cycle, tha rule list of the newly
activated production system being the one searched for condition satisfaction.
If the production system name stack is empty at the beginning of any cycla,
the end of production system execution is signelled. The output trace file
is closed and control retﬁrns to the point where the user is asked to specify
a trace file name. This allows the user to execute the production systems
several times during one session without recreation of the systems. The
teletype protocol of section V illustrates this option. If no file name is

provided, PSMON execution ends and control is returned to SITBOL.

1L

SECTION V
Lxample Protocel and Output Trace

This section presents teletype and file output created during
a2 typilcal PSMON session. The exampie is a nroduction system for
propositional reasoning. Appendir B presents the auxiliary LTH file
for this application. Appendix C presents the production sysiem fiie.

ANNOTATED TELETYPE PROTOLOL

«RU TEN:SITBOL .
¥ -) . B i
*L0GIC, PSKON !

To use PSMO! the user must run the SITBOL system, which responds
with an asterisk prcmpt for the command string. The user responds with
a list of needed auxiliary LTM files, followed by PSMON. Rote that no
extension 1s necossary for .SNO files.

. PRODUCTION SYSTEM FILE: LOGIC.RLS
PROLUCTION SYSTEM FILE: :

-

LBUG MODPL

+ LTHM LABIL
LT L&4BLIL

TLOGIC

L2 1]

The firs. phase of FPSMON execution, creetion of user production
systems, reguvires the user to input the name(s) of existing, relevant
production system file(s). All responses to questions from FSMON
require a return. Here the user elects to input only one production
syster file :ame. Next, the user elects to not be in DEBUG mode by
responding t: the questlon wltii a sole return. The user is then askzd
to Initvialis- LTY for thils application. The iresponse required is the
progrem label at the top of the auxiliiary flle(s) , not the file name(a).

INPUT A FILE NAME FOR TRAGE OF F5 EXECUTIOM.
UR BYNET FROP SYSTEM WITH A SDL@ RETLRN»
TRAC: FILE : LI1.QUT

INIT ALIZE STit WITH ST FUMGTIONS STHM(S

I TiabLlZr ENVIRONMENT ¢ TIV: .

WAUT NEW ENVIRONMENTS FINISH WITH SOLY
NOT D

£ .
A € KT) : 1'

AF 1 AND © THEN B
CONCLUDE B
3k

g H
l
INPUT THE NAME OF THE PRODUCTION SYSTEH l
TC F ACTIVATED FIRST: LOGLO : i j

12

The user 1s then asked Lo perform 2 nhecessary segquence of lnitial-
izing specifications prior to activating the first production syste:n.
The user must specify an output tracz file name and initlalize STH. e
user is given the optlon of initialicing ENVIRCNMENT. A sole return
wouid indlcate the optlon is not takei; otherwise, & file name Is
provided. TTY:, as in this example, lndlicates that the ENVIRONMENT is
to be initialized from the teletype, Yinally, the production system s
activated.

ACTIVATE LOGIC ' _ : —_— '

R. 188 FIRES . GET GOAL

Re3 FIRES GENERATE NEYW IFTPUL FROM CURRENT IFTRUE
R- 3al TFIRLS. GENERATE NEW IFTRUL FROM CURRENT IFTRUE
R~ 281 FIRLES GENERATE NEW IFTRUE FROM CURRENT IFTRUE;
R« 2 FIRES ELIMINATE IFTRUE:; THUS PRGVE GOAL |

SAY: CONCLUSION IS PBOUEN

DEACTIVATE LOGIC

INPUT A FILE NAME fOE TRACE OF PS RXECUTION.
QR EYIT FEOM SYSTEM WITH A SOLE FLTURH. T '
TRACE FiLk & L2-007 ' o e =¥

. f . E ' '

Sinece DEBUZ mode was not selected, a briefl trace of production
system activity is provided at the teleype, conelsting only of the
names and titles of the rnles firing. .fter production system execuw
tion is completed, econtrcl returns to TSMON at the point where trace
file specification must bte made. Herc the user elects te rerun the
production system with a new ENVIRONME T, as shown below.

WITIALIZE STM WITH STM FUNGTIMi: $TH(2)

INITIALIZE /ENVIRONMENT 1 TTY: _
INPUT NEW ENVIROMMENT? FINISH ¥ TH SOLE =
_IF A OR B THEW C

NOT A -

IF ¢ THEN D°

NT B

CONCLUDE D

) % =

INPUT THL NAME OF THE PRODUGTI:U SYSTEHM
4. BE ACTIVATEL FIRST: LOGIC

Hote that STH is reinitializes. [hough it is again %o contaln
nuell chunks, enly thrse chunks ars <o & availeble, as opposed to Iive
during tne prior execuiion.

13

ACTIVATE LOGIC

R. 188 FIRES GET GOAL

R+ 3 FIRES GENMERATE NEW IFTRUE FROH CURRENT IFTRUE !
+ Re3 FIRES CENERATE NEW IFTRUE FROM CURRENT IFTRUE !
B~ 3C1 FIRES GEMERATE MEW IFTRUE FROM CURRENT IFTRUE .
f+ 1 FIRES DETERMINE GOAL IS INCONSISTENT 2 !

SaY: COMCUSION 15 INCONSISTENT

DEACTIVATE LOGLC

[yPUT 4 FILE NAMC FOR TRAGE OF PS5 . EXECUTION,
OR EXI{T FROM SYSTEM WITH A SOLE RETURN.
TRAGE FILE ¢ '

ek

A brief trace is again presented at the teletype. The user is
1ikewise again given the optlon cf rerunning the production system
with new initial specifications. The user electe to exit from PSMOW
by responding with a sole return. An asterisk appears, which is
a promp% fron the SITBOL systemn for a new eomrand string. At this
point the user may reenter PSMUN for a now appliication with an
appronriate command string. lere the us#y eleets to return to the
POP-10 monitor witi: a control C. The session 'ls completed by listing
the trace files produced by production system ezecution. These fil=
1istings are presented on the following two pages.

«PRINT L.1.0UT,L2.0UT
TOTAL OF & BLOCKS IN 2 FILES IN LPT REQUEST

’ !

14

FILE: L1.0UT

INITLAL ST™

t Tr
STM: () $) € ()) Output Trace Produced by

Logice Production

System
CURRENT ENY[RONHENT
NOT O
A
Cc Ok ¢
IF A AND C THEN B
CONCLUDE 8

ACTIVATE LOGIC
R,198 FIRES GET GOAL
STH: (IFTRUE gt B) (NEW 31 CONCLLDE B3 () (} {3

R.3 FIRES ‘GENERATE NEW [FTRUE FRCHM CURRENT (FTRUE

STM! (IFTRUE 11 A AND €} {TRUE 31 IF A AND C THEN B)
(OLD i1 BY (NEW §1 CONCLUEE B) ¢)

&,3A1 FIRES GENERATE NEW iFTRUr FRCH CURRENT IFTRUE
STM: (IFTRUE $: €3 {YRUE 37 &) (CLD 2t & AND C3 (THUE 11 IF A AND C THER 8)
(OLD ti M
R,381 FIRES GENERAYE NEW IFTRUE FRCH CURRENT IFTRUE ’

STH: (CIFTRUE i1 NOT 0) (TRUE i3 & CR 0} (OLD i O) (TRUE &1 A)
¢OLD i3 A AND C}

R,2 FIRES ELIMINATE IFTHUZ, ‘THUS PROVE GeAl

STMI (SAY 33 COMCLUSION IS PRUVER) (YRUE 1 KCT D) CIFTYRUE 21 NOT @)
(TAUE 15 C OR 0) (OLD 1%)

QEACTIVATE toficC

= gt b (A s o

- ma g mmr b

15

INITIAL &TH
5Tns {3) ()

CURRENY ENVIRONMENT
IF A GR B THEN C
RGT A

16 € THEMN O

NOT B

CONCLUDE D

ACTIVATE LOGIC
R 488 FIRES GET GOAL

FILE: L2.0UT

Qutput Trace Produced by
Execution of Logice

STH! (IFTRUE 3t D) (KE¥ 11 CONCLUDE B) €)

*

R,3 FIRE3 GEWERATE MEW IFTRUE FRCH CURRERY iFTRUE

STM: {IFTRUE 3: €} (TRUE i} iF © TSEM D} ¢OLD 3§ ©)

R.3 FIRES GENERATE NEW IFYRUE FROM CURRERT IFTRUE

§TH: G(IFTRUE 13 A OR B) ¢(TRUE 23 IF & OR B THEM €) (OLD 3¢ G)

Re3GS FIRES GENERATE NEW I1FYRUE FRGM CURRERT IFTRUE

STMI CIFTHUE §3 23 (TRUE 3¢ KoY A) £0LD £} A OR 6)

R.1 FIRES OETERRINE GoaL IS INCONSISTENT

STM: {45AY t1 CONCLUSION 1S INCONSISTENT: C(YRUE 3§ NOT B)

(IFTRUE 31 B)

DEACTIYATL LAGIC

16

VI Basic Punctions

In this section a brief description is given Ffor each of the set of
basic functions provided for the ussr as part of the PSHON system. Three
clagses of functions are providsed: utility, condition, and acticn. The
utility functionc allow the user to initialize available memnries. The
condition and action functions are for use in the producticn systems .
written by the user.

Cne important aspect of function exscution by SKNOBOL mist ke discussad
before the individual function descripticns are presented. This Is that
all arguments of a function are evaluated prior to function exescution.
This has important implicatisne for the use of functions with string or
name arguments. If the user wants to pass a literal string to funstion,
that string must be quoted to prevent its evaluation. An erample of this
is seen in the PS functions of Appendix A. 7To p&ss an argument as a hame,
it must also be quoted. An examplie of this is also in Aopendix A, in the
arquments of the ACPIVE functionz. To pszs the name of the production
system, and not the producticn system itself, one sust quote the argument.
An Important ncte here, one must not make the name of 2 production system
into a symbol of LTH or the production system Is lost.

Utility Functions

STH (N,CNSTR) —=creates an STH of N chonks ard initializes
then according to CRTSTR. CNTSTR is a string
of the form: ‘mark,content;.... ;mark,content’.
Content is ovaluated so a functien can occur
there. IXf CNISTR is not specified, S5TM consists
of N null chunbs.
An example: STH (5,.'HEAR,NOxSAY,YES') produces
an ST, &s follows:

(HEAR :: NQ) (SAY :: YBS) () ()} ¢}

SYMBOLS (SYMSTR} =~allows the user to define a set of symbols in
LTM. SYNSTE is a string of the form:
‘symhcl,,symbnl’. Fach symbol is
initialized with iteelf as its value, allowing
each symbel to be vused In an wnguoted mrnaer
throughout a produsticn rostem.

17

CLASSES (CLASS .SYMSTR)

RELATONS (REL,PAIRSTS)

ACTION FUNCTION;

MAF ((CHUNK ,MRK)

NEVI'NAME CONTENT)

SAVE{CHUNY)

DEACT{)

ACTIVATE 'PSNAME)

LYSYEN()

SAY {STRING)

-~allows the user to create symbol classes In LYM
CLASS i set to a list of symbols in SYMSTR.
SYMSTR ha@ the zams form as in aymbols. An
example:

CLASSES ('BIRD', 'BAGLE, ROBIN, DODG'}
where FAGLE, ROBIN and DO} are previously
defined symbols.

~—allows the user to create relations between
symbols In $TH. PAIRSYR has the form 'sumbol,
symbal ;. ... ;synbal ,symbsl’
An example:
RELATIONS ("OPPQSITE', 'UP,DOWN;DONN,UP*')
Relatipns are represented ss tables in PSMON.
Thus , later access Is of the form
OPPOSITE{IPD, which would produce the wvalue DOWH.

—~-parks CHURK with the mark MRK.

-=craates a new chunk with ths content of CONTENT
evalpated, and sets PAME te the CHUNK, 28 & part
of ruie, or immsdlate, »om0OZY.

An example:
BEW ('c1°, OPPOSITE {DOWND)

Note €1 is quoted ag it iz to he pesged as a nap:s .
NANE should be of the form ¢€2igity

~~places CHUNK into XITM, as the last aleasent in the
' list.

~doactivates the currently' active production system,
activating the next slement on the production system
neme stack, 1f ane exists.

~activates the namsd producticn system, rushing or the
veoductlon system nams stack.

- wepts input from the teletyps and evaluates it
saetdng & now chunk at the hesd of §TY with the
.esnltent value as content and HEAR as mzrk. IF
{te user wants to halt predustior syetem executicn,
iy can type GOEND.

~=t og the string at the telotype. It aloo ercedis
o rew chunk at the head of STH wizh STRIHG am
coitent and SAY as mark.

18

CREATENV (ENVYI'ILE) —-—-creztes a new ENVIRONMENT. If ENVFILE is null
it assumes PTTY: and asiks the user at the
teletvpe to inrut a new gopne, I it ig "#¢
it aske the user to specify a file nams,
which conld be TTY: .

Condit’on Punctions

IS{STR) ~-is satisfied 1f the chunk has as contant the
string STK.

MATSL 1PATTERN) -~i8 satisfied if the contents of the chunk is a
Ltring which is completely matched by the SNOBOL
buttern PATTERY.

EATCIT (PATTERN) --ii' satisfied 1f the contentes of the chunk is a
stsing whose Initial part is matched by the
SHOLOL pattern PATTERN.

MAF 7D (MARK) -~3g sccinfied 1f the mark of the chunk is MARK.

Ncl'condition function') in satisfied if no chunk cnrrently exists which
sitisfixs the condition function in quotes.

Yoty that NO, MATCH, MATCH?, and I. can be applied teo elements of IT¥ and
TNVIRONMENT also.

Page 19

VII Aauxiliary List Punctions

In this secstion a brief description is glven for each of a set of
functions available to the user in an auwiliary LTM file LISTS.SNO.
Phe functions provide utilities for an application reguiring list or
attribute-value pair lists. To use the functions discussed here the
user would include LISTS before PSMON in the command string and type
TLISTS when prompted for an LTM label.

Condition Functions

BEGINL(ARRGL}

HASL{ARGL)

SAMEL{Ll,L2)

MATAVP (AVLST)

Action Functions

NEWLST{ARGL)

ATHEAD(LST,EL)
ATTAIL(LST,EL)

GETRLN(LST,H)

GRTBLA (LST,BE)

NEWAV (AVL)

~-=~12 satisfied if the current chunk has a
1ist as content, and that list begins
with the elements in ARGL. ARGL can
be a list itself or & string representing
a list of the form

'element, element,.... ,2lement’,

—~i5 zatisfied If the curvent chunk has a
lis+ as content, and that 1lst coatains
the elements in ARGL. ARGYL can be a 1list
or list string, as above.

~~15 satisfied if both 1.1 and L2 are lisis
and are the same listy.

--ig satisfied 1f the current chunk has an
attribute-~value pair list as content, and
it has everv attribute-value pair in AVLST.
AVLST may be an a-v pair list er a string
representing an a-v pair list of the form
. attribute,value;jattribute,value’.

~-creatas a list from ARGL, a string representing
a list, as abowve.

——adds tke element FL to the head of the list LST.
——add the element EL to the tail of the list LST.

~=ratarn as value the Nth alement of the list LST.
Returns nall LF list shorter than N elements,

——returns as value the clement after BL from the
1ist LSF. Returns null if BL Is not in the list
or is the last slement.

——creates a new a-v pair list from AVL, a string
represest an a-v pair list, as above.

Page 20

VIIT

X

Conclusion

The intent of this paper has been to introduce PSMON, & preduction
system monitor written in SNOBOL4/SITBOL, both to potential users and
to those merely interested in production gsystems as a theoretical model
in psychology or as a computational system. Current research in pro-
duction systems with PSHON centers about: the creation of adaptive
systoms. An adaptive production system is one which Inserts new rules
or alters existen: ones during iits execution. Anpone Interested in
using the BSMON system should contezct the author.

REFERERCES

[Rewell, 19723] Newza.1, Allen, "Production Systems: Hodels of
Control Structires’; in Chase (ed.} Visual Tnformation
Processing; Acidemic: Hew York; 1873.

[Newell & Simon, 19)7] Newell, A. and Simon, H., Hugpan Probilem Sclving;
Prentice tzll: Englewsod Cliffs, N.J.: 1572,

1]

i

ENORULE
L]
[
-

F.l14A%

ENDRULE
D

-]
L]
4

ol f

t NOAULE
o

&

o
Tl

'-'”:.:!'-.LE
o
@ .

GET -

(G
(@2
$v B
(gl
(EE?
(g2:

APPENDIX A. EPAM.RLS

THRET 22270L0T AN SYSYEXS
SIVULATI 2 VERSIN. §F tRim,

SAEDENEYY)
(CONTENTECB)
MITITTNER))
(CC TeNT(C13)
T"'n'(.ﬁt.‘brﬁ'()}
LTel{vEsral)
)

£
v
:

]
I
o
o

S
3
AR

WitCa N CONJUUCTION WITH ADAFY

FEATURF ¢ CLRARENT 37feLs US

RMA34LEZ. TRUED Y
(MISL(F1.TRUE))
{HRZL (22, THUED) -
(mi3<¢22,USED)?
(MaZ2(21,USED))

GET “E= FEATURF of CLRAEST STIVLLUS

‘0B
(Ea¢e
tE1:

{ci;

FREATE C20lTien CRUAK

(G2

CREAYE &4if10n

(G7:

HARFZIDINEY)Y)
IS{CONTENT(CE))
MATCHNULASPECTY Y
MAUKEACHEAR))

-
]

HRQ%CﬂfTRUE}i_
nad

AR (HEAS) Y
22D

NPULAKS AND

(MARK(EZ, TRUED)
CMARK{E L2 YRUED S
(MARK({C2.USED})

(NSMLCL Y, [SCORDCCONTENTCCOY, tEP)
CHARK (L1, CND Y 3
EHERKICD USED) Y

LICIVATE ADARY

(esw 21 DEACTACTE)

£33 Ht'PZ'DaAYACntcnwisﬁchﬁii!?
lﬁaﬂftfz.USEn)!

(M22E(21,ACT3)

H2SRUCZ,AGTY

(02278

RaCTIVE (TANSWERT S)

a2l iuT(4DAPT)

e

e v B

13
-
™
ery

e

SAVE RIGHT A'SLET €7 5TV &L SYINULUS

{071 MLAREDINEAR); 5

{C1: WMARKEN(SaAvy 247, TSLC2NTPLTICE)Y)

Tz

{¥AGC(CE,USED)?
(MASHIP] ,USED))
{CREATEAVEY)
CALTIVE E'A“&Hiﬁ'li

Bt SAVE »FQul ANSWEY 85 LFASN AFfW RULE FOGR ANSWER PS
(CT8 MARKENIMEAR))
(C13 HMAAKEO(SAY)Y
2= L
{FARR{CL.USED))
(ACTEIVE(TLEARN'))
ENDRULE

o
HER? ¢rT CORRECT ANSHER

(CEr HARKEB{SAV)Y

: > 3 .
ELESTERC))

EHDJRULE
&
[

&5
ReL 4 GEY pEw ENV&JJA ’J.,;‘T'
€F"p QHGCE D}

T=¥

(CAEAYZAY())
CACTIVEY " ANSHERT))

FYTIRULE

&

B

»

]

&

2,45201 DONTT *NOW AWSWEGR, §% SAV 7

fER: MATCHIASPECT))
-3-5
{Savtipeyy
(YARL(E2 . TRUE))
EoE2eTi Y)Y
MR

- OEF INL PRODLCY TN SVSTEHS

L= B - B]

LSl sargrgt, v 01[
TITMEPRPY 5,00
95@'1_{.18,‘3' "R.L

23

APPENDIX B, LOGIC.ENC

r 8 B b & ©

Do v e gt
[o
<
(A]
|9]

paT

Ee
-~
]

O G G« ¥

e 7 a

GO 10 MAIN PSHEATTrR |
BETVALN)

VARIABLES AnT PRoIPSSES FoR 1GRICAK, ATaSgning

CEFINE FUNZTIONS FCR LEGTL.KLS

BEFINECTAGTISTIY) - LEINLY)

NqOT = 8Y

na T PES{TY fEpT f @ PS{RETUAND
NOT = YRET ' wAT PAREYURN)

VALUES RELEVALY Ty HOQULLING ©f LOGESAL
REASOHING)

SYMBOLS (' VAUE . IFTHLE¢lLDT)
IF = tiy ¢

THEN = ¢ THEw @ _
CONCLUDE = 'COaNCLUrE

NOY = *HOY !

OR = ' R ¢

AND 7 AND ¢

BEFIVE PATTEAINS F35 LOGIS SEPLICATION
LET = GPANCSARODICOH] I LR EPOISTUVNRKYZY) ‘
P LET 3 LET il LET ! LET OGR LET 1 nOT

*{BrAYIY

FETURN TO MATY PSankiToR

LET

24

Y e @ v Ow

v e n '}

el

ISULE

p2ALS

NIRULE

¥

LI - T]

Ly 3]

j

T

AFPENDIX G, LOGIC.RLS

PHEOUCTION SYSTEM FOR MOTELLINE LOGICAL QEASORNING

YETEGRMINE G3AL 18 INCOCSISTELTY
(Ce: MARKED(IFTRLE; LAND. Ma¥ori'e . Pif))
LEZ: METCH{'SNOV{FLY'))

(VASK{EE, TRUE))) .
¢SAYLECONCLUSTON 1S IRGONSISTENT Yy
{CEACYCY)

ELIMILATE TFTQUE, THLS S5gVE Gnat . \

(CBs HARKED(IFTRLEY 48D, aVCM{'P , P1°%))

(ER: MATCAIYPLt)}
{NARK(ED, TRUT))
(SAYE'CONCLUSTION 13 PROVEN?))
{DEACTY))

FLIMINATE [FTRUE. FROVE GDAL g
€023 HARKEO{IFTRUEY JAND, MAYCWE'P , PL1 GR P P27)) i
[EZ3 “aTCHI'PLT) |
CYERWIFS. TRYUE)? |
(Save eanNcLUSION IS PROVEN';) !
(DEACTE)

ELIMINATE IFTRULE, SROVE GoeL -

10G: MARKES{IFTAUE) LAWD. MATCHI'P FL OR P , P2Y))

(L0 MAVCHITPZ))
(MARHLPE» TRUED)
{SAVEtEONCLUSIOK IS PROVENT))
(CEACTEN?

TLIPINAYF §7730C, PREVE GCAL .
{07 MARLEZ{IFTRLEY LASND. MaTCH{IP ., AL'))
(€73 WA CH(Y21 ang Fy)
=)
(VARK(ER, TRUED !
(SAT{TEGNTLUSION 25 PROVERT))
(DEATYE))

ELIVINATE <FTRUE, PRCVE S0AL .

(Gl MARKESLIFTALES (A%D, MAYCN{'P o Pi'))

(E/§ VATUH{!I® &0 £4°51
=y i

(vERW{FY , TRUF 3D

(58 ICONDLUSTON IS 53VENT))
(CEAETL))

ENORULE
L]
. :
el GEMERATE NF¥ IFISUF FRCY CURRFAY (FTRLE
(821 “ARKER{IFTRLIY LAND, “ATCW('P . 2L1°%33)
tEZ: “ATCHIYIF P , P2 TREN P19y}
{e A (ES . TRUL)
INERLYCLT.F23)
(PARALCL . IFTRLED)
{vauslCe.cLDY)
ENTIRALE
&
o

.13 GENERATE MEw 1FTRUF FRCy CURRENT IFTRLE
(OO MARKED(IFTRLES AMD. MATCH('P . EY BA\Z P, P2'))
(EZ: MATCHE'P39))

L
(MARKIES . TRUES)
{nEx{rCit,p2))
(MARKCL, IFTRLE)
(MARKLLZ GLDI 2

ENDRULE

8

a -

R.dAZEF GENERATE WEW IETAUF Fac™ CURRERY {FTALE B
{CFs MAUKEGIIFYRUE) .AKD, HATCWU'P , FL 2\D 2 | P2y,
fEA: MATCH{'P2YY) '

e T
(PABKLEE, TRUEY?
{NER(PELT Py
{MARK (D1, IFYRUE D)
tH#ARM(ELLOLDY)

ENURULE

&

L
Ne3B1} GEMERATE RNUW IFTRUF FRE® CURRENT IFTRUE
(CPy MARKEG{IFTRUE: LAND. MAYCK('P . PL'))
(CE: MATOHI'PY O% F . P2EY)
med
{MARK(ER, TRUE)
(REW{ ' C1v . M0T1P2Y))
(MARK(CT, IFTRUL)
- (MARK(EF. L0}
EMDRULE
E- 4

5
R.382: GENERATE NEW IFTRUF FucVy DURKEAT IFTRUE
1007 HARKEDCLIFTRLIY o AND, VYATORNI'F , P13
(Ees wATCHI®™® , P2 D% Pt}
; a=3?
(ARK(F7 . TRUE DD
(SExbtCit NOTIREI)
{VARALCL IFTRLED)
(VBEX{CkCLDDY
ENCRULE .
e

y ;"'_“3?,'»_ '
o Ll e i

26

4, 3017 GENERATE AIW [FTSUF Fprs GURREAT IETRUL
(C?% MARMEILIFTRLEY JANT, MATCW('P . P1 nR P , P21))
(ET: MATOVLYLATERLI "))
{MARK(F2.TRUE)
fhEn{'Ql’.PEl) |
(FaRM(EL, IV TRUED? -
{FARK(LE,OLD)) ;
TIRULE !

s 3027 GEVEIATE 4¥w IFYRUF 7ROV CURRENT IFTRUE
(Chi MARAICUISYRUE) (ANZ, MaTCH(YP , PL OR P , P21y}
(05 METCHUINGT{FL)'))
230 :
{MARK(FZ.TRYE))
(NEWL201t,P1Y)
(MARK(E3,1FTRUE})

(RARK{CZ .0LOY)
.':.O:‘RULE
>
[
5,91 N7 RULES APPLY FROY CURREANT MEMORY STATE. FAajL
{.F3 MARKED(IFTRUE!)
o'y
tSAYC{*EAN NOYT PFROVE OR DISPROVE'))
(DEACTL)) :
2 IRULE
<
&
s,ifl GET 604AL

(EVs MATCHU'COMNILUDE @, PLt))

(WERtICEY ,PL))
PAAK(CLLIFTRUEY)
TWIRULE
L]
&

usacﬂﬂuugmqa§309%$ﬁenﬂ)DoibﬂQaﬁﬁvﬂudﬂbﬂﬁbﬁﬂwabnuu#cnnnuoﬂﬁabp
SI'LCAG]C'.*:’!.1,5’9'_-'!:57.211.5-EAZ:%.EEE,R.282.'—'&.3:%.3:\1;!}.3&2;9,&8?. .-’?.39.2'

