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The ability of humans to adapt thelr behavior so as to survive and suc—
ceed in their environment is a most fundamental and valuable characteristic
of the species. The development of computers and the associated concept of
programming has led to the natural wmetaphor of describing adaptive behavior
a8 program modification and development (Lilly, 1969; Ksele, 1973). This
papex describes a model of the human cognitive system consisting of produc~
tion systems and a distributed memory. Production systems are the mental
programs which act upon the states of availeble memories. Within this frame~
work, & means for the adaptation of production systems by production systems
is defined.

Production Systems

Production systems have been defined and developed as a mpans of simu-
lating human cognitive information processing (Newall and Simon, 1972;
Rewell, 1973). A production system is an ordered iist of condition-action
pairs called rules. A production system is defined relative to a set of
available memories which hold the gymbolic contents to which rules apply.
The condition-part of each rule consists of a finite, ordered list of condi-
tions which are applicable to the contents of the available memories and

which are satisfied or not satisfied by those contents. The action-part of
& rule is a finite, ordered 1ist of actions which are applicable to the con-
tants of the avajlabie mewmories and which alter those contents. Memories
are distinguished by the classes of content each may hold, by their differing
content management (remembering and forgetting) strategies, and by the pro-
duction systems to which each is available.

The execution of a preduction system is cyclic in nature. To begin
each cycle, the condition-parts of the rules are applied to the contents of
the available memories in the order specified by the production system list.
This process continues until a condition-part is found whose conditions are
all satisfied by the current contents of the available memoriesg. When this
occurs, the asscciated rule is said to "fire" and its action-part is then
executed. Following this, the cycle begins again. These execution cycles
continue until no condition-part can be completely satisfied by the current

contents of the available memories or until the production system is



explicitly deactivated by the action part of a firing rule. When a rule
fires, the contents of the available memories are transformed by the rule's
action-part. The output created by production system execution is a trace

of the sequence of rule firings and resultant memory contents.

PSMON

PSMON is a production system monitor written in SHOBOL4,/S51TBOL to be
executed on the bigital Egquipment Corporation PDP-10 (Parley, 1978). a
production system monitor has thrse functions to fulfill: 1) production
system creation, 2) memory initializations, 3) production system execution.
Since all production systems to be discussed in this paper have been written
for and executed by PSMON, a discussion of its important features is clearly
warranted.

PSMON creates production systems by the 1npu£ processing of production
system files. A production system file consists of a set of rule definitions
followed by one or more production aystem specifications. Figure 1 presents
an example of a rule definition. Each rule definition consista of several
lines. The first line contains the rule name and tho rule title, which is
a brief statement of rule meaning. The condition-part, followed by the action-
part, then follows. Only one conditicn or action can occur per line. The
condition-part is separated ffrom the action-part by the arrow line. Each
rule definition is completed by an ENDRULE line. Following the set of rule
definitions, production system specifications occur. Each specification
serves to organize the indicated rulee into a production system rule liset.
Each production system which is created is given. the name indicated in the
specification. Figure 2 presents 2 formal definition of the necessary aspects
of production system file syntax in Backus-Nauv Porm. Blank lines are ignored,
as are comment lines which begin with an asterisk. Condition, action, and
arrow lines allow initial tabs or blanks to increage raadabllity. Pigure 5
prasents an example of & production system file which is discuased later in
the report.

Prior to production system execution, the mamories to which the produc-
tion systems are to be applied must be initialized. PSMON distinguishes

fi e memories as being basic aspects of the human cognitive processor. These



PIGURE 1

R.E1: GAVE RIGHT ANSWER SO GET NEW STIMULUS
- (CO: MARKED(HEAR))
(Cl: MARKED(SAY) .AND, IS(CONTENT(CO0)))

(MARK(CO,USED))
(MARK(C1,USED))
C(CREATENV())
S (ACTIVE( 'ANSWER'))
¢ RNDRULE .
- PIGURE 2

¢ps-filed ::= {rule-defs) ¢ps-defsd
Lrule-defs) ::= ¢rule)y ] eruley grule-defsy

{rulep ::= ¢name-1ine) {Lcond-linesy darrow-liney
taction-lines) ¢end-lined

{¢name-line) ::= grule-name® : &titley
€rule-name) ::= R. galphnums$

4alphnums d ::= &letterdledigit? Yealphnums® &letter?
¢alphnunsy {digit?®

Bar .

1 P
-

- qtitled ::= any string
¢cond-linesd ::= ¢ c-lined § ¢c-liney &cond-lines? .
. 4c~1iney» ::= ( gcond-named : ¢specs-listd ) _
+ " ¢cond-name) ::= C ¢digitr | E cdigity § I ¢aigity

. §specs=11sty ::= any condition runction.! any condition
' : "+ function .AND. &speca-listy

garrow-1ine) ::= =nudp
{4action-lines) ::= cactbldactrtaction—lines)

" qactd ::=» ( any action function )
dend-lined ::= ENDRULE .
¢ps-defs) ::= ¢ps-1ined»} ¢ps-1inev4ps delsy
¢ps-1linep ::= PS(' gps-name¥y ',' <&rule-listy ')
¢ps-naned ::= €letter? J¢ps-namey flettersleps—nameyqdigit?
grule-1ist) ::= ¢rule-name?¢rule-name% , 4rule-listy
Clettery ::= A|BIC]DIEIFjGIH)IITIRILININGO)P)QIR]S)T)UjVIUW]X}Y
Qaigity ::=  1}2i3]4)5i6\718l9}0



memories are the ENVIRONMENT, STM (Short Term Memory), ITM (Intermadiate
Term Memory), LTM (Long Term Memory), and IM (Immediate Memory). Such a
"distributed memory"” theory of the human cognitive processor has been pro~
posed with supporting argument elsewhere (Hunt, 1973; Parley, 1974).

Three of these memories (ENVIRONMENT, STM, and IT™) form the heart of
the active processor. Fiqure 3 presents a graphic representation of the
available channels for information transfer between these memories. PSMON
provides a straightforward means for specifying to which of these three
memories a condition is to apply. The memory to whose contents a condition
is to be applied is determined by the initial letter of the condition name
(<cond-namg) of Figure 2}. C indicates that the condition is to be applied
to the chunks of STM; I indicates to elements of ITM; E indicates to elements
of the ENVIRONMENT.

ENVIRONMENT is an operational representation of current perceptual
memory. It consists of an ordered list of elements. Bach element is a
proposed perceptual representation of some aspect of the current external
environment. Once created, it remains constant until explicitly altered.’
When altered, the old ENVIRONMENT is overwritten.

STM is a simplified, operational representation of the limited active
memory of the human cognitive processor. S5TM is implemented as a short,
ordered, list of informational units called chunks. Every chunk has two
aspects, a mark and a content. The mark aspect is a symbol used by the pro-
duction system to facilitate anticipated future access to the chunk's con-
tent. The content aspect may be any symbolic structure which is a funda-
mental unit of representation for a given context. Tha true unit of repre-
sentation employed by the human cognitive system can rarely, if ever, be
determined by experimentation. The exact pumber of chunks in STM is accordingly
indeterminate, and is a variable to be set during initialization. Once set,
it remains constant throughout a processing context.

When a new chunk is created, it is placed at the head of the ST list.
When an existing chunk satisfies a condition of the firing rule {is attended),
it is moved to the head of the STM list. Whonever a condition is satisfied
by an element of ITM or ENVIRONMENT, that information is automatically
embodied in a new chunk in STM. Any new information created by rule action
is likewise embodied in a new STM chunk. Thus, STM is the "active memory"



FIGURE 3 Production System and Available Memories
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Condition Punctions

IS(STR)

MATCH (PATTERN)

MARKED (MARK)

NO('condition function®)

ACTION FUNCTIONS

MARK (CHUNK, MRK)

NEW (NAME , CONTENT)

SAVE (CHUNK)

DEACT( )

ACTIVE (PSNAME)

LISTEN( )

s¢,y (STRING)

-~ig satisfied if the chunk has as content the
string STR.

~~is satisfied if the contents of the chunk ia a .
atring which is completely matched by the SNOBOL
pattern PATTERN.

-~ig patisfied if the mark of the chunk is MARK.

--is satisfied if no chunk currently exists which
satigfies the condition function in quotes.

~-marks CHUNX with the mark MEK.

--creates a new chunk with the content of CONTENT
evaluated, and sets NAME to the CHUNK, aa a part
of rule, or immediate, memory.

~-places CHUNK into ITM, as ths last elemsnt in the
IT™ list.

~-deactivates the currently active production system,
activating the next element on the production system
name gtack, 1f one axists.

—-activates the named production systet by pushing it
on the production system name stack.

--accepts input from the teletype and evaluates it,
creating a new chunk at the head of 8TM with the
resultant value ag content and HEAR as mark.

~~types the string at the teletype. It 2lso creates
a new chunk at the hand of STM with STRING as
content and SAY as mark.



of the cognitive processor. Chunks are lost or forgotten by displacemsnt
from the end of the short, fixed-length list as new chunks are created and
placed in STM.

ITM plays the role of contextual memory within the cognitive processor.
A copy of thosa chunks of STM which are of special intureat or significance
to a given production system (i.e. a chosen move duririg problen solving) can
be transferred to ITHM by explicit rule action., This protacts the informa-
tion of those chunks from being lost when the chunks are displaced from STM
by furthax p:oc?ssing. IT4 is thus an ordered list of chunk elemsnta which
have been copie from STM. New ITM elemsnts are placed at the tail of the
IT™ list. When integrated into ITM, the new element; may be linked to other
chunk elements by appropriate semantic relations. BRNVIRONMENT, STM, and
ITM form a structure of memories which are meant to reflect a depth of pro-
cessing (Craik and Lockhart, 1972) philosophy. As information is transferred
from the ENVIRONMENT, through STM, to ITM the responsible production systems
are also tranaforming the structure and content of that information.

One memory not shown in Figqure 3 is Immediate Memory. IM is not shown
there due to its transitory nature. During the application of a rule's
condition-part, elements of an available memory may satisfy conditions. ' As
each condition is satisfied by a memory element, its condition name is set to
reference that elemant as a new part of IM. These memory roferences exist
only during application of a rule's condition-part, or if the rule firas,
also during the execution of its action-part. IM allows conditicns to be
specified in terms of those aspects of memory satisfying earlier condltions.
It also allows actions to be specified in terms of those aspects of mamory
oontent which led to their execution. Any new chunks croated by rule actions
also becoma part of IM for the remainder of the rule firing. Each rule
has its own associated, potential IM.

L™ ip also not shown in FPigure 2 bacause it cannot be readily separated
from the other memories. ITM is the underlying basis of all the production
systems and other memories. LTM contains the universe of symbols, sywbol
classes, interrelationships between symbols, and basic cognitive processes.
The current contents of another memory are instances of LTH contents (imple-
mented ag pointers to those contents). The rules of any production system are
. written in terms of LTHM contents., Except for a small set of symbols and



_%* ocondition and action functions, a user must defina LT anew for. each pro-

duction system application. Figure 4 presents a description of the basic
condition and action functions which are provided.

The condition-part-satisfying process and the transfer of control be-
tween production systems are two characteristics of production system exe-
cution by PSMbN which bear discussion. During the condition-part-satisfying

process, an element of an available memory can satisfy at most one condition

:; of the rule. Besides being a natural convention, this allows the condition

part of a rule to ask such questions as whether there are two identical
elements in an available memory.
Ancther aspect of the condition-part-satisfying process ig that PSMON

will not back up and attempt to resatisfy a condition with a different

- memory element when a later condition falls to be satisfied. This has an
interasting consequence when the failing conditlion is depandent upon ths
oontent of a memory alemant currently satisfying a prior condition. This
is best explained by illustration. Consider rule R.El, shown in Figure 1,

. '{\ A8 it is applied to the following STM of thres clements:
v
i

(HEAR: :CON) {SAY: 1CON) (HRAR: 1 PAT)

Here and in all presentation of STM to follow, the mark aspect of a chunk
is shown before the two colons; the content aspact follows. Applying rule
R.Rl, the first chunk of STM satisfies condition Cf. Condition Cl is then
satisfied by the second chunk and rule R.El fires. %This rule illustrates
i:-.!u use of an Immediate Memory olement (C#) in a condition. Consider now
rule R.El as it is applied to the following STM:

[

(HEAR: : PAT) {HEAR: ; CON) {SAY :CON)

Again, the first chunk satisfies condition C#. However, condition Cl
@apnot be satisfied now and rule R.Bl fails to fire. FPSKON will not attempt

. td satisfy condition CP with the seacond chunk, which would result in R.El
firing.

- This condition-part-satisfying convention both facilitates and simpli-
#ies the rule firing process. An operational interpretation is that if

. thexe are two or more elements of an available memory vhich eould satisfy

. a given condition, ‘the firat one encountered affectively masks the others

L]



from consideration. In the case of STM, this element is the most re-
cently created or attended chunk. In the case of ITM, it is the Eirst
(not most recent) chunk saved during a given processing context. Later
examples will show that the convention can lead to extra production system
rules in some contexts, however.

The ACTIVE and DEACT functions described in Pigure 3 allow the action
paxrt of a rule to effect a transfer of control between production systems.
PSMON maintains a production system name stack. The production system which
is named by the top element of the stack is the currently active production
systen. The ACTIVE function pushes its name argument onto the top of the
stack. 'The DEACT function pops the production system name stack. The
stack is also popped when no condition-part of the currently active production
systenm can be satisfied. Transfer of control becomes affective only at the
beginning of a system cycle. At that time, condition-parts of the rules of
the production system named by the top of the stack are those applied to the
memory contents for satisfaction. 1If the production system name stack is
empty at the beginning of any cycle, production system execution ends.

Production System Adaptation

Four action classes present themselves as the natural means for produc-
tion system adaptation. These are: (1) the deletion, or removal, of a
xule; (2) the insertion of a rule; (3) the reordering of existing rules;
{4) the alteration of the condition and/or action part of an existing rule.
This section describes a production system able to delete and insert rules
[action classes (1) and {2)). Action classes (3) and (4) can be realized by
appropriate combinations (compositions) of action classes (1) and (2).

Figure 5 presents the production system ADAPT, together with & descrip-
tion of its associated LTM contentﬁ. ADMPT is a general vehicle for produc-
tion sysiem adaptation. Depending upon STM contents, ADAPT may create and
imsert a new rule or delete an existing rule from a production system. The
production system which undergoes the specified adaptation is the one namad
by the element below it on the production system name stack.

ADAPT can only delete the most recently fired rule of a given production
system. With each production system, PSMON associates a rule pointer, which
ie set to reference a rule as it fires. These pointers are available to the
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INSERTR and REMOVER action functions of ADAPT. Tv dalete the rule from the
production system named CONCEPT, for example, a rule must fire containing

the seguence of actions: NEWLOC (REMOVE); ACTIVE ('CONCEPT'); ACTIVE
{(*ADAPT'). ADAPT will be the newly activated production system at the start
of the next execution cycle. CONCEPT will be below it on the production sys-
tem name stack, and thus becomes the adapting production system. Rule R.§

of ADAPT will fire, removing the rule from CGNCEPT. Note that the action part
of rule R.@ contains two DEACT action functions. 7This removes both ADAPT and
CONCEPT from the production system name stack.

To create and insert a mew rule into an adapting production system, a
production system must first create the new rule's conditions and actions,
placing them in 5TM. Rules R.1, R.2, R.3, and R.4 of ADAPT collact thess con-
ditions and actions into lists which are suitable for integration into a rule
. structure. There is an inherent flexibility in how ADA®T may be employed to
realize this goal. ADAPT may be activated as each condition or action is
ereated; it may be activated only when all have been created; or it may be
used with any strategy between these extremes, some ©of which may include the
use of ITM. Several options will ba illustrated in the application examples
to follow. i

Once the condition and action lists have been completed and & location
for rule insertion is determined, rule R.S5 creates a rule and inserts it where
specified. Four insertion locations ares available for ADAPT: TOP or BOTTOM
of the adapting production system list; and BEFORE or AFTER the last rule to
have fired of the adapting producticnl systet. Note that rule R.5 again con-
tains two DEACT actions, removing ADAPT and the names of the adapting produc-
tion system from the production system name stack after rule insertion.

Several recent reports discuss adaptive production systems, presenting
example applications. Waterman {1970) discusses an adaptive production sys-
tem which improves its performance at draw poker by acquiring bidding heuristics
with play experience. Waterman (1974) also reports sevaeral adaptive produc-
tion systems capable of emulating EPAM, acquiring elementary arithmetic
capability, and solving a restricted class of sequence extrapolation problems.
The adaptive system being discussed here differs primarily in the attempt
to modularize the adaptive facility in one production system (ADAPT), to



specify some limitations and capabilities, and to describe and illustrate an
associated theory of memory use during adaptation. Waterman also employs a
production system monitor, PAS-IX, with several basic praperties that differ
from PSMON (Waterman, 1973).

Hedrick (1976) discusses a system for learning production systems from
axamples. This system compares an existent production system's output with a
speclification of correct ocutput. If differences exist, the atructure of rules
which fire is inspected and modified to create the appropriate output. Inter-
esting points are mady by Hedrick regarding rule generaligations and strategies
for modification selection. Two applications he discusses are sequence extra-
polation and the development of an elementary lanquage processing production
system. Hedrick's work constrasts with that discussed here in several ways.
That adaptation system is not itself a production system. It does not operate
in 2 memory environment which analogous to that of the human cognitive processor.
It has the ability to generate alternmative rule structures and to inspect, com-
pare, and evaluate these directly. The adaptation system described here can
only understand a production system rule indirectly, through an analysis of
the STM contents which result from itas firing.

Verbal Learning

EPAM (Feigenbaum, 1963; Peigenbaum and Simon, 1964} and SAL (Hintzman,
1968) are similar computer programs which simulate verbal learning hehavior,
more specifically, the acquisition of lists of associative pairs of three-letter,
nonsense syllables. SAL develops discrimination trees which consist of test
nodes and answer nodes. A test node checks for a letter in 'a specified position
of the stimnlus; an answer node holds a response. Given a stimulus, the dis-
¢rimination tree is traversed according to the results of encountered test nodes,
until an answer node is reached, the content of which is then reported as the
remambered associate. By introducing two paramesters to control discrimination
tree development, Hintzman reports that many aspects of human verbal learning
behavior can be reproduced by the simulation model.

Consider that the stimulus is available to the system through the ENVIRONMENT
and that the stimulus is represented as three elements of the form: POSITION *
LETTER, where POSITION can be 1, 2, or 3 and LETTER can be ény letter of the



alphabet. It is assumed that letter positions are noticed in the fixed order
1, 3, 2. Plgure 6 presents a list of four paired associates and a discrimina-
tion tree which is sufficient to provide consistently correct responses to the
stimuli.

The decision structure embodied by any given diserimination tree can be
represented by production system in a stralghtforward manner. Figure 7 presents
n production system which is equivalent to the discrimination tree of Pigure &
{rule names and titles have been ocmitted). ‘The test assoclated with every posi-
tive branch on the path through the diascrimination tras from the top test node
{root node} to a given answer node corresponds to the conditions tested in the
production system rule yielding the same response.

Flgure 8 presents three production systems which, in conjunction with
ADAPT, are capable of developing a production system representation of a dis-
crimination tree when presented with a list of paired assoclates. The adapting
production system is ANSWER, which initially will respond '?' to any stimulus
{(rule R.Al00). EPAM interacts with the axperimenter, asking for new stimuli and
corract responses in turn. After ANSWER regponds to a stimulus, EPAM asks for
the correct response (rule R.E3). If a correct response has been given by
ANSWER, no modification is made, a request is made for a new stimulus and
. ANSWER is reactivated (rule R.El). Otherwise, RPRM activates LEARN (rule R.E2).
LEARN first develops a set of condition chunks based on the current ENVIRONMENT
{rules R.Ll, R.L1A, R.L2). ADAPT is activatesd to integrate these ccnditions into
a condition list suitable for rule creation (rule R.I4]. When all of the condi-
tions have been integrated into a condition list, no rule of ADAPT can fire.

' ADAPT deactivates, returning control to LEARN.

When control returns to LEARMN, rule R.L3 creates the action chunks which
will allow ANSWER to give the correct response, wvhich is the content of the
chunk marked HEAR, and to deactivate. The new rule will be placed before the
rule of ANSWER which gave the wrong answer leading to modification. Note the
trensfer of control actions in rule R.L3. LEARN is first popped from the produc-
tion system name stack, EPAM replacing it as the top element. Then ANSWER and
finally ADAPT are pushed onto the stack. Thus ADAPT will be the next active
production system and ANSWER will be the production system to be modified
When ADAPT completes its activity with rule R.S5 firing, control will reiturn to
EFAM as both ANSWER and ADAPT are popped from the production syaztem name stack.
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Appendix I presents an edited version of the trace produced by the pro-
duction gystems when learning the list of paired associates given in Figure
6. The initial part of the appendix shows all of the rxrule firing and ST™M
states leading to insertion of the first new rule. This is followed by
a sequence of cycles which present the new stimulus, as presented in
ENVIRONMENT, the regponse provided by ANSWER, and the resultant, adapted
AMSWER. One can see several instances of stimilus generalization (marked
by asterisks). The production system shown in Figure 7 is realized after
the £ifth stimulus (a repeat of the first) is presented. Bote rule R.Al is
.I redundant rule with respact to the given list (it will never firej, but
remains as a remnant of the early stages of learning.

Concept Formation
The ability to develop decision structures which correctly classify ob-

jects as instances or not instances of a concept is a related form of human
adaptive behavior. The methods by which humans develop these conceptual
d;cision structures have received congldervable exparimental and theoretical
attention (Bruner, Goodnow, & Austin, 1956; Hunt, Marin & Stone, 1966; Bourne,
Eckstrand & Dominowski, 1971; Levine, 1975). Figure 9 presemts the get of
conceptual rules which have been most studied. The name of the concéptual
xule, an inastance of the concept, and the condition-part(s) of the one or

two production system rules necessary to embody the concepts decision struc-
ture are given. '

Appendix II presents the production system CL which, in conjunction with
ADAPT, is capable of developing production system representations of these
conceptual decision structures. The adapting production system is named
CONCEPT, which initially answers NO to all objects (rule R.Cf). Production
system rules are created, modified, or removed based upon the objects pre-
sented to the system in ENVIRONMENT and upon their assocciated feedbacks.

Several aspects of the developmental strategy employed by CL reflect
or predict important experimental results concerning human concept forination.
The rules in CONCEPT at any time can be considered to be the current working
hypothesis. When CONCEPT correctly classifies the current stimulus, no



Level I

Level IIX

Level III

Figure 9

Affirmation
RED
(E@ : i5{'RED'"))
= W
Conjunction

RED and SQUARE
(E@ : is ('RED"))
(E1 : is (*SQUARE'))

= =

Inclusive Disjunction
RED or SQUARE or both
(B¢ : is('RED'))

= =D
(E9 : is('SQUARE'))

e =

Implication
if RED then SQUARE
(Eg : NO{"is('RED")}"))

0 =D

Bicondition
RED if and only if SQUARE
{(Ed : is('RED')})
(E1 : is("SQUARE'))
= s>
(Eg : NO('RED')"))
(E1 : NO("is{'SQUARE')"))

= =>

Negation
not RED

(B@ : NO(" is('RED")"))

= aO>

Altesrnative Denial

either not RED or not S)UARE

(Eg s+ NO("is ('RED')"))
: = =2
(B : NO("is('SpuarE '1"})

= =

Joint Penial

neither RED nor SQUARE
(F¢ : NO("is('RED')"))
(E1 : NO("ia('SQUARE')"))

= =2

Exclusion

RED and not SQUARE

(E¢g : is ('RED"))

(EL : NO("is('SQUARE')")}

- =>

Exclusive Disjunction

RED or SQUARE but not both

(E® : is ('RED"))

(E1 : NO("is('SQUARE'}"))
= By

{Ef : is('SQUARE’)})

(E1 : NO("is("RED")"))

w my



adaptation is made (rules R.L1l, R.L2A, R.L2B, R.L2C). CL uses ITM to

remember those object features which have previously been chosen as bases

for the conditien of a conceptual rule. Only an object feature not currently
in IT™ may be chosen as basis for the condition of a rule which has one condi-
tion. CL thus does not repeat prior hypotheses {(Levine, 1975). Rules with
two conditions (conjunctive rules) are formed only when all features of a
current cbject have been previously used in rules with one condition. Since
only one rule is formed at a time, those decision structures based upon two
rules (disjunctive concepts) require, in general, more development activity
than a simple affirmative concept. These last two aspects of the stiategy
predict » ise in concept attainment difficulty with increasing concept level.
this is consistent with experimental results (Bourne et al, 1971}.

CL develops CONCEPT by placing rules which say YES (indicating an object
is a concept instance) ahead of the default rule R.C#, which provides all of
the NO responses. When CONCEPT says NO, but the ensuing feecback indicates=
that the object is concept instance, a rule is added at the top of CONCEPT.
This rule has as its sole condition a feature of the current cbject not yet
in ITM, if such a feature exists (rules R.L3A, R.L3B, R.L3C). These rules
illustrate the need for multiple rules which is caused by the condition satis-
fying convention. Otherwise, a conjunctive rule is formed, with two conditions,
each based upon a feature of the current cbject (rule R.L3D).

If, on the other hand, CONCEPT classifies the object as a concept instance
but the feedback indicates otherwise, the rule producing the wrong response
may be altered or removed. Rule alteration is affected by ADAPT through in--
gertion of a new rule after the coffending rule and then removal of the offend-
ing rule. Rule alteration is realized by rule replacement. Rules R.L4B
and R.L4C prepareto replace the offending rule with one having a sole nega-
tive condition based upon a feature of the current object. 7This feature must
not yet be in ITM. When a negative condition is satisfied by an available
pemory, no element of the memory becomes part of IM. Thus, a rule based
upon a sole negative condition must supply a record of what nissing feature
led to its firing through explizit rule action to facilitate future rule
alteration.

If all features of the current object are already in ITH, the offending

rule is replaced by a conjunctive rule of its positive condition and a2 new



negative condition based upon a feature of the current: object (R.L-D) or
of two negative conditions (R.L4E). If the offending rule is a conjunctive
rule, it is removed from CONCEPT, without replacement (R.L4A).

The system's performance is greatly affected by the sequence of objects
presented and the chosen noticing order of an object's features, =n listed in
ENVIRONMENT. Though the model is capable of representing and developing c¢ll
of the conceptual rule structures of Pigure 9, it is surely incompleta in ita
representation of human behavior on the task. The system requires a means
to eliminate rules based upon CONCEPT complexdty. One lLikely heuristic
method would be to ailow only several rules to evar exist in CORICEPT, since
all conceptual structures require at most two production system rules.

Another missing aspect is how to allow the system to decide when 1l#: has be~
come lost and to appropriately regroup its efforts. Behavior protocols are
needed to allow further specification of CL which could account for aspects
of human performance beyond the general characteristiuvs it pregentily prodicts.
Yet, the current model illustrates the principles of yroduction syutem adapta-

tion for this processing context.

Problem Solving and Einstelling

Hewell and Simon (1972) discuss the means-ends analysis apprcmcﬁ to
problem solving. Their work and other recent studies (Greeno, 1973; :3inon
and Reed, 1976; Atwood and Polson, 1976) confirm the role of this strategy
in human problem solving behavior. Simply stated, the strategy selex<s the
move which eliminates as much as possible of an existing difference >etween
& current problem state &nd the desired goal state. The strategy will always
select a move which leads directly to a goal state. If nc such move exists,
o8 subsat of possible moves which are relevant to reducing the difference are
evaluated and compared. The move which results in the least remaining differ-
enca is the move chosan. The state resulting from this move becomes the new
current state and the move selection prucess begins again. 71tis oyelic pro-
cess continues until eitner the goal state is reached and success is signalled
or no applicable move is relevant, in which case the strategy recimside:s
unchogen moves from prior states.

Appendix II presents two production systems, SOLVE! and SOLVEZ, vh.ch

together can solve a class of simple water jug problems by the mesns-cnds



analysis approach. These water jug problems consist of four jugs: Aa, B, (&3
and GOAL. The capacities of jugs A, B, and C differ with each problem, as
specified in a problem statement. The capacity of the GOAL jug is constant,
say at 100. Each problem statement specifies an emount of water to be placed
in the GOAL jug, which starts empty. 1Two classes of move operators are
available to realize this goal state: (1) pour into GOAL a full A, B, or C
jug: (2) bail out of GOAL a full A,B, or C jug. A solution to a given problem
consists of a sequence of move operators which produces the goal state in the
GOAL jug. One further restriction is that no jug may be used more than

three times in any solution. For exasple, consider the following problem:

A B C
31 5 27
GOAL
48

This problem has the solution: pour in A, pour in C, bail cut B, bail out B.

To solve these problems, SOLVEl is first activated. SOLVEl initially per-
ceives the goal state and creates a new internal state, which is minus the
desired goal state (rule R.W9). SOLVEl and SOLVEZ maintain a current state,
in the chunk marked STATE OR STATE, which actually is the difference between
the current amount of water in GOAL and the desired goal state. The system
then begins to consider moves to solve tha problem. If jug A, B or C eugals STATE
the in or out move is generated to complete the solution (rules R.W1A, R.W1B).
ANSWER is activated to report the solution sequence.

If no move is available which can complete the solution, the three rele—
vant (in or out) moves are generated for considaration (rules R.W2A, R.W2B).

If any move leads to a state which is equal to the capacity of jug A, B, or c,
that move is selected (rule R.W3). Otherwise, moveas to prior states and moves
which lead away from the goal state are rejected by the "acceptability heuristic®
(rules (R.W4A, R.W4B, R.¥W4C, R.W5). A move which leads away from the goal state
is one which produces a state with a greater difference value than the current
state. 1If, after move elimination, any moves remain under consideration, the

one leading to the state with the least remaining difference is selected (zules
R.W6A, R.W6B, R.W/). When a move is selected, it is placed in ITM, and a new



current state is estiblished in STM. The move salection process than begins.
If, after elimination of roves to prior and lesser states, no moves ra-
mlan under consideration, then SOLVEL returns to the initial state to begin
ke search with a different move. Such behavior hes baun shown to occer fre-
quently in human problem solwing protocolz (Atwood & Polson, 1976). 1If all
moves have bheen trisd fron the initial state, then SOWEZ is activated (rule
R.¥8). SCLVE2 relaxes sone cf the mova selesction crifteria employed ly
| BOIVEL. It will choose any move leading to a better stete, if that state is
a raw state, one not vet iu ITM (fule R.W1Z}. If no such move exiets, it will
s:lect & move that leads away from the coal state, if that move leads tc a rew
s-ete as ye: not in ITM (rules R.W22 and R.W32). 'Thus, 30LVEZ aliminates the
actept:ability heuristic, accepting moves which lead to legser states. 1f all
movas from a1 current state lead to states already in I, the best is closan
asyway (rules R.WAZA, R.N42E, R.WS2). Kove gensration and gelaction is cyclie,
as In SOLVEL.
Censidar the following prmblem:

_A_ B c
35 D 31
o OOAL
48

Tis problen regquires the successiul problen solver to move to a new state
widch 1a “unacceptab’.e® in order to find the follewding solutions pour in A;
poue in C; our out N; pour out B. _

Bven i1 experimontaticon upheld this divisien into easy and hard problems
besed upon the applicability of the dcceptebility hewristie, the model would
not refiect subject'n behuvior whan given a series of such proplems, some of
which had a common solution. Luchins and ILuching (1959) have ghown tnat
subjects devrelop a tendency to produce the coemen solution when pessible, aeven
when wore direct solutions exine,

The tesdancy to develop suck a mental sot or EBinotelling is sdds” 1o tne
pronlem solvring model threugn the use of the production system CONTEXT, which
* 42 alsc presented in Appendix III. This producticr systom can be zctivated
batween the presente~ion uf probleas. Between prchlems, XTH iy autowrtically

cleared of all problem golving search ruasidue, leaving only the cet of



previous solutions as memary context between problems. CORTEXT looks irn ITM
to determine if two recent solutions are the same, If so. conditicons are created
and ADAPT is activated to form a condition liust (rule R.Wrd4;. This condition
list is saved in ITM, while construction of the action list proceeds by crealting
actions corresponding to steps in the common solution {rules R.WL3, R.WL1).
Finally the new rule is inserted at the top of SOLVEL {rule R.WLZ).

This new rule will fire first when SOLVEL is activated and will ceaaxy
out the common molution sequence. If this produces th2 goal state, IRSKER
is activated, which will report the repeated solution rule (R.Waf). If tha
comnon solution does not apply, SOLVEl will revert to the mpans-ends seanrch:

strategy.

Conclusion

Three forms of adaptive behavior have been diszsusnsed. h production sywetoen
implementation of each has been presented. Each impiemantuaticn llustratey
the role of the general adaptation producticn system ARRAPT. ADRPT i: 2
general utility process for production system adaptation. Cenaral guiding

principles for the control of such adapticn is a current research topic,
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