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Broadcast refers to the process of messaye dissemination in a communicatiol
network whereby a message, originated by one member, is transmitted to all
members of the network. A minimal broadcast network is a comnunication network
in which a message can be broadcast in minimal time regardless of originator.
This paper describes several classes of minimal broadcast networks. An
algorithm is presented which constructs minimal broadcast networks which have

approximately the minimum number of lines possible.



Introduction

Broadcast refers to the process of message dissemination in a communication
network whereby a message, originated by one member, is transmitted to all
members of the network. We model a communication network with a graph G = (V,E)

consisting of a set V of vertices, or members, and a set E of edges, or communication

lines. We assume that all lines have equal cost (length). Such an assumption

is reasonable for a model of a local, microcomputer network or a computer with

parallel processors. A member can transmit a message to any adjacent vertex by
making a call. We assume that each call requires one unit of time, and that a

member can make only one call during any time unit.

Given a set of n members, three numbers are of interest with respect to

the process of broadcast and the construction of optimal communication networks
for broadcast. These are:

1) the minimum number of calls required to complete the broadcast process,

2) the minimum number of time units required to complete the broadcast
process,

3) the minimum number of communication lines such that the minumum time is
required to complete the broadcast process, regardless of which member is
message originator.

The first two numbers are easily determined. The minimum number of calls

required to broadcast a message from the originator to n-1 other members is clearly
n-1. All broadcast networks and calliny schemes to be discussed here require onlu

the minimum number of calls. It can be shown by a straightforward inductive
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dand (mo + 1) mod nocalls (mori+?) madd n. fionorally, durim: vime unit t,

each informed member i, calls uninformed member (i + 2t-1) mod n. This
process continues for riogzn-I tim: vnits. For n#Zk (k a nositive integer),
only n - 2 l}ogij of the 2 [}OQ2QJ members which are informed prior to the
last time unit need place calls during the last time unit. Let these be the
message originator and its n-2£=1092qj -1 nearest clockwise neighbors. Figure
2 shows the calls which would be made under this calling scheme during a messagr
broadcast originated by member 5 in a network with 12 members. Each directed
arc represents a call made by the tail member to the head member. Each arc

is labelled by an integer indicating the time unit during which the call would
be made.

The above calling scheme can be used to construct a class of minimal broadcast
networks. In a minimal broadcast network, each member must be able to serve
equally well as message originator. In other words, each member must be able to
place the necessary call during each potential time unit. Therefore, each member
must have communication lines to '35g2;1 other members in order that the above
calling scheme always realize the minimum time. A member, i1, must have communica-

tion lines defined by the following set of edges

(i,3) | j=i+2k mod n, Oik:_riogzﬁl -1 . These minimal broadcast networks
are a subclass of the class of graphs known as star polygons. This is not the
first time that a subclass of star polugons has satisfied a goal of communication
network design. Boesch and Felzer [1] have reported a subclass of star polugons
which satisfy a definition of invulnerability, an important concept in network
reliability.

Figure 3 illustrates the first 12 of these star polygon minimal broadcast

networks. Each network is labelled by the number of members and, In parenthese:s,
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original eight can complote broadeast in threo time units. A tourth time
unit is required for the new member to D culled., Regyardless of meSsdge
originator, broadcast can be completed in the minimal four time unjits.
Therefore, the network shown in Figure 4 is a minimal broadcast network.

This example demonstrates that the previous results as to the number of
lines required for a minimal broadcast network of n members is not the best
or minimum result. A better result can be obtained by a recursive construction
algorithm which generalizes upon the method that has been employed above to
produce the improved network of nine members. The algorithm constructs a minimal
broadcast network of n members by combining minimal broadcast networks of fewer
members. The process of combining the networks is subject to further specification,

as follows:

CONS TRPUCT_MINI MAL BROADCAS T_NETWORK (n)
CASE 0: (n<2) If n=1, the network is a single node; If n=2, the network is 2

vertices connected by a single communication line.

case 1: (2ol -1 < 3%2 fiog,nl -2 )

Step 1.1) Select integers i, j, and k such that i, j, k<2 {j°g257 -2,

i+ j+k=n, i>j>k, and i-k<1.

Step 1.2) CONS TRUCT_MINI MAL_BROADCAS T_NETWORK (i)
CONSTRUCT MINIMAL_BROADCAST NETWORK(3F)
CONSTRU CT_MINIMAL BROADCAS T_NETWORK (k)

Step 1.3) If n is even then connect each member of the three components to a
different member of a different component. (This requires n/2 lines).
If n is odd then do as above for n-1 of the members. Then connect the

remaining member to a member of a different component to which no

member of its component is already connected. (This requires fﬁ/ﬁ?lineFJ,
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Proof : The networks produced for on ur two menbers are minimal broadoast

networks by inspection (and by the prior, star polyuon scheme ) .

It must be shown that those produced by combining components

(Case 1 and 2 networks) are also minimal broadcast networks.

The proof is shown by defining calling schemes in such networks

which realize minimal broadcast time regardless of message originator,

The proof is inductive. Given n, we shall assume that the algorithm

does construct minimal broadcast networks for any i, i, or k less

than n.

Case 1 networks -~

Phase 1 -

Phase 2 -

Phase 3 -

Case 2 networks -

Subcase a}) -

Phase 1 -

The network of n members is realized by interconnecting
three component networks. Broadcast proceeds in three
phases:

The message originator calls a member external to its
component to which it is connected. This requires one unit
of time. There is élwaqs at least one such call possible
at this point,

The two components with an informed member complete broadcast
independently and in parallel. This requires at most
ﬁbgzéfz time units, by the inductive assertion.

Each member of the third component is called by an informed
member of another component. This reguires one time unit.
The network of n members is realized by interconnecting two
component networks of i and j members respectively, i< j.
There are two subcases to consider here. In each subcase
broadcast proceeds in two phases.

The originator is in the j member component.

Broadcast is completed in the component of the originator.
This requires at most]ﬁogzﬂj— 1 time units, by inductive

assertion.
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Proof  The proof is by induction. Inspuction of the networks shown in Figure
5 Indicate that the assertion is true for n 12, Suppose It is true for all
networks with less than n members.

Case 1 networks:

The n member network is constructed from three components (with i, j, and k
mcmbers, respectively). The number of lines required is less than or equal to

i/s2 rrlogzrﬂ -2) + 1/2 (Teg,nl -2) + x/2 ( [10a,n] -2) + [0/2]
=+ j+k) Mogpl-2) +{n/d
2

n/2 r3092;7 -2)+ fL/ET = n/2 [30q257 = LP/E} .

Case 2 networks: The n member network is constructed from two components

(with i ar.d j members, respectively). The number of lines required is less than

or egqual to

. o . r -1 C o
i/2 {1109257 -1} + j/2 (;log2n! -1) + n/2=£§l. ([;ogz;] -1)+ Lf/%j

=n/2 Eogzn-’ -n/2+ |ns2]
:p/?l;ogzéi . ll

Corollary In a Case 1 network of n members produced by the recursive constructio
algorithm, the number of lines is less than or equal to n/2 ,;og2£7 - Lp/E;l.

Additional Considerations

It is interesting to observe that the number of lines in the constructed network
does not monotonically increase with increasing n., (For example, see the networks
with 8 and 9 members shown in Fiqure 5. ) For an n Jjust above a power of 2, the
increase in minimal broadcast time introduces freedom or slack into the calling
scheme. An informed member may not make a call during a given time unit and vet

minimum time can be realized. This freedom in turn allows a decrease in the number
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the minimum broadcast time of four time units regardless of originator. If g
uniform broadcast time of Ffive time units is acceptable, a network with only 19
lines can be found, as shown in Figure 7.

There is a lower bound on the number of lines which are required for successful
broadcast in a network of n members. The network must be connected. Therefore,
at least n-l1 lines are required. Such networks are trees. What trees produce
the best resuits for broadcast time? What is broadcast time in such trees? In
a tree, broadcast time may differ depending upon which member is message originator.
Therefore, broadcast time for a tree is best characterized by three values: the
minimum, the average, and the maximum number of time units required to complete
the process.

A tree which has the minimum possible value for the minimum number of time

units belongs to the class of minimum broadcast trees. A minimum broadcast tree

is defined to be a tree with p vertices which contains a member from which broadcast
can be completed in rlog2 5] time units. That such trees exist has been an implicit
result of the earlier discussion of minimal broadcast networks. The graph induced by
@ completed broadcast in a minimal broadcast network is a minimum broadcast tree.

A linear algorithm has been found for determining whether an arbitrary tree is a
minimum broadcast tree {4]. A subclass of such trees can be constructed by a

method based upon the calling scheme which led to the star polygon class of minimal
broadcast networks. Let the members be numbered from 1 to n. Let member 1 be in
the tree. Then, for each member i (2€i<n), connect i to member i_szbng7-1. This
constructs the tree in layers, each successive layer being twice the size of the
previous layer. buring broadcast, an informed member calls the uninformed members
to which it is linked in the order of increasing member number. Figure 8 presents

a sample of such trees for n<l2. Message broadcast originated by member 1 or member

2 in such trees requires the minimum, riog2ﬁ7 time units. The maximum number of
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Conclusion

Several problems relating to broadiast have yet to be solved. The problem
of introducing reliability into broadcast networks is one. For n>4, the
recursively constructed networks are all minimally two-connected, which is at
least a start. Questions concerning broadcast within an arbitrary network have
not been answered. For example, an algorithm which determines a best calling
scheme for any member of an arbitrary network has yet to be found. The potential
importance of message broadeast in communication and computer networks and in
parallel processors has motivated this research. This paper has reported some

initial results and has suggested further questions for study.



TABLE 1 Number of Lines in Minimal Broadoast Noetwor k

n complete minimal broadcast recursively~construct
graphs star polygons networks
4 6 é 4
6 15 12 6
8 28 20 12
12 66 36 18
16 120 56 32
24 276 926 48
32 496 144 20
48 1128 240 120
64 2016 352 192
TABLE 2 Number of Time Units to Complete Broadcast
recursively constructed networks minimum broadcast trees
n lines time lines time
min, avg, max
4 4 2 3 2, 2.5 ,3
6 6 3 5 3, 3.87, 4
8 12 3 7 3, 4 . 5
12 18 4 11 4, 5.17, 6
16 32 4 15 4, 5.5, 7
24 48 5 23 5, 6.67_ 8
32 90 5 31 5, &7 . 9
48 120 6 47 6, 8.17, 10
64 192 6 63 6, 8.5 , 11
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