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1. Introduction

Let a graph G=(V,E) represent a computer network. The vertices V represent
computer centers or sites and the edges E represent communication links or leased
lines between various sites. Condsider the following problem: the regquirements
for using the computing facilities at a given vertex u change and it is necessary
to inform every vertex in the graph of this change. This is to be accomplished
as quickly as possible by a series of phone calls over the leased lines in the
network. We adopt the constraints that (i) each call requires one unit of time,
(il) a vertex can participate in only one call per unit of time, and (iii) a
vertex can only call an adjacent vertex. How much time is required to inform

every vertex in the graph? We refer to this process as brpadcasting from vertex

u to all other vertices, and we define the broadcast time for u, b(u), to equal

the minimum time required to broadcast from vertex u.
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For example, for the graph in Figure l{a), b(u)=4, but b(v)=3. The rooted
trees in Figures 1(b) and 1(c) indicate how the broadcasts from u and v can take
blace in times 4 and 3; we refer to these rooted trees as (minimum) broadcast
trees for u and v, respectively.

We define the broadcast time of a graph G, b(G), to equal the maximum

broadcast time of any vertex in G, i.e. b(G)=nax{b(u)IusV(G)}.



For the tree T in Figure 2, b(ul)=b(u2)=b{u3)=b(u4)=3, while b(v)=4.
Hence b(T)}=4. s
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It is easy to see that for any vertex v in a connected graph G with n
vertices, b(v) > rlog r;l . At time 1 vertex v can call one other vertex; at
time 2 these two vertices can call two others; at time 3 these four vertices
can call 4 others; etc.

It is also easy to see that for the complete graph K with n vertices,
b(K )= rlog n-l , yet K may not be minimal with respect to this property. That
is, we may be able to remove some edges from K and still have a graph whose

broadcast time is rlog 1;' A graph G with n vert:.ces is a minimal broadcast

graph if b(G)-—-ITIog r;l , but for every proper, spanning subgraph G'C G, b(G') >

rlog n-'. For example it can be seen that the graph C consisting of a cycle

4
with 4 vertices satisfies b(C 4) =2, yet b(G')=3 for every proper spanning sub-
graph G' of c4.

Define the broadcast function B(n) to equal the minimum number of edges

in any minimal broadcast graph on n vertices.

4 minimum broadcast graph is a minimal broadcast graph on n vertices having

B(n) edges. From the point of view of applications, minimum broadcast graphs
Tepresent the cheapest possible communication networks (in terms of number of
leased lines) in which bfoadcasting can be accomplished from any vertex as fast
as theoretically possible. ’

In this paper we initiate a study of minimum broadcast graphs by determining
the value of B(n) for n<lé and n=2k, and constructing an example of a minimum
broadcast graph for each value of n<lé. Several papers have recently been
written on broadcasting. In [8], the broadcast center (the set of vertices
having minimum broadcast times) of a tree is determined. In [3], broadcasting
in complete networks and technigques for constructing minimal broadcast graphs
are discussed. And in [6], minimum broadcast trees are studied. A subsequent
paper will determine the number of distinct minimum broadcast graphs on n
vertices, for all values of n<i2.

We should also point out that a number of other papers have appeared

which study the process of gossiping. (e.g. [1], [2], [4], [5] and [7]).



In gossiping every vertex has a unigue piece of information and it is necessary

to inform every vertex of every piece of information. Broadcasting is therefore

@ one-to-all process, while gossiping is an all-to-all process.

2. The values of B(n) for n<é6

In the next three sections we will determine the values of B(n) for nfls

and n=2k. In this section we consider the first six values of B(n), as indicated

in Figure 3.
Vertices Edges Broadcast time Minimum broadcast
n B(n) rlog n.' graph with n vertices
1 0 o Ki
2 1 1 Ki,l
3 2 2 Ki,Z
4 4 2 C4
5 5 3 CS
6 6 3 C6
Figure 3 :
B(1)=0

Certainly it requires no time and no edges for a vertex to call itself.

B(2)=1

It is obvious that a minimum broadcast graph must be a connected graph.

The only connected graph with two vertices has one edge.

B{3)=2

There are only two connected graphs with three vertices: the triangle K

and K Both of these graphs are minimal broadcast graphs, but only

1,27
Ki P with 2 edges is a minimum broadcast graph.
r
B(4)=4

Since the four-cycle C4 is a minimal broadcast graph, we know

that B(4)<4. There are only two connected graphs with 4 -

vertices and 3 edges. Since both of these graphs have a broadcast time

of 3 > riog JT, neither of them in a minimal broadcast graph. Hence,
B(4)=4.



B(5)=5
Since the five-cycle CS is a minimal broadcast graph,-we know
that B(5)35. There are only three connected graphs with 5 vertices and
4 edges, each of which has a broadcast time of 4 > riog §]=3. Hence
there are no minimal broadcast graphs with 5 vertices and 4 edges, and
B(5)=5.

B(6)=6
Since the six-cycle Cs Is a minimal broadcast graph, we know
that B(6)<6. Of the six connected graphs (trees) with 6 vertices and
5 edges, four have broadcast times of 5 and two have broadcast times of
4 > [Eog é] =3. Hence there are no minimal broadcast graphs with 6

vertices and 5 edges, and B(6)=6.

3. The values of B(n) for 7§n§12

As one might expect, the next six values of B(n) are more difficult to
establish, Since a simple, exhaustive argument will no longer be effective,
we must use a different method of proof. This method will consider what a
broadcast tree for an arbitrary vertex might look like.

Each proof will proceed by first presenting a minimal broadcast graph
with n vertices and 1 edges. This establishes that B(n)<l. Then it is
shown that no minimal broadcast graph with n vertices exists with I-1 edges. -
Therefore, B(n)>l, completing the proof that B(n)=L.

B(7)=8
The graph in Figure 4a is a minimal broadcast graph with 7 vertices and

8 edges; hence, B(7)<8.
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Figure 4

It is instructive to show that the graph G in Figure 4a has a broadcast
time of 3= Iiog 5]. In Figure 4a we indicate with directed edges a minimum

broadcast tree for vertex u. Notice that if we relabel u and v as 1 and 0,



respectively, we will obtain a minimum broadcast tree for vertex v, i.e. if
the broadcast time for a vertex u is r}og 51, then the broadcast time for the
vertex labeled 1 in a minimum broadcast tree for u is also rﬁog ﬁ].
Notice also that vertices u, t, x and y are all similar to each other,
and that vertices v and z are similar. Therefore, having demonstrated that
bf{u)=3, we have simultaneously demonstrated that b(u)=b(t)=b({x)=b(y)=3 and
that bfu)=b{(v)=b(z)=3. It only remains to show that b(w)=3; this is done
In Figqure 4b.
We will now show that there are no minimal broadcast graphs with 7 vertices

and 7 edges, and hence that B(7)=8.

Let G be a graph with 7 vertices, and let u be a vertex of degree 1 in
G. Then in any minimum broadcast tree for u only 4 other vertices can be

called by time riog 5]=3 (cf. Figure 5). Thus G cannot be a minimal broadcast graph.

0, w

Figure 5

Consequently, in a minimal breadcast graph G with seven vertices, the
minimum degree of any vertex is > 2. Since the sum of the degrees of all
vertices in G must equal twice the number of edges, we can conclude that
G must have at least 7 edges, i.e. B(7}>7. The only connected graph with
7 vertices, 7 edges and no vertex of degree 1 is the seven-cycle. Since the
broadcast time for the seven-cycle is 4 > raog f1= 3, it is not a minimal
broadcast graph (cf. Figure 4c). Therefore, there are no minimal broadcast
graphs with 7 vertices and 7 edges.

B(8)=12

In a minimal broadcast graph with 8 vertices, every vertex must have

degree > 3. Thus, G must have > 3x8/2=12 edges, i.e. B(8)>12. Since

the 3-cube G in Figure 6 is a minimal broadcast graph with 8 vertices
and 12 edges, B(8)<12.



Figure 6

B(9)=10
This result may come as something of a surprise since B(9)<B(8)!
However it is less surprising when one considers that there is an
additional time unit available during which calls can be made.
{ rlog 91 =4, while rlog 81 =3).
The graph in Figure 7 is a minimal broadcast graph with 9 vertices and
10 edges. Figures 7a, 7b and 7c demonstrate the (directed) broadcast trees

from three of the vertices.
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Figure 7

We will now show that there are no minimal broadcast graphs with 9 vertices
and 9 edges. Such a graph G must be connected and have exactly one cycle. The
only such graph with minimum degree=2 is the nine-cycle, which is not a minimal
broadcast graph. Thus G must have a vertex u of degree 1, and the broadcast
tree for u must be isomorphic to the tree Tu in Figure 8. Conseguently u must

T . w be adjacent to a vertex v of degree > 4. Therefore
% every vertex of degree 1 must be adjacent to a vertex
of degree > 4. Furthermore G must be obtained by
adding one edge to the tree Tu in Figure 8. Consider
therefore the vertices w, x, y in Figure 8. No matter

how one edge is added to Tu' in the resulting graph

either w or x or y will be an endvertex which is not
adjacent to a vertex of degree > 4. Thus, G cannot

be a minimal broadcast graph.



B(10)=12
The graph in Figure 9 in a minimal broadcast graph having 10 vertices
and 12 edges; it consists of a 10-cycle with 2 symmetrically placed
chords. Hence, B(10) <12.

3 Figure 9

We will now show that there are no minimal broadcast graphs with 10
vertices and 11 edges. Suppose that G were such a graph. The broadcast
tree in Tu in Figure 8 shows that no vertex in G can have deqree 1, since
then only 9 of the 10 vertices could be called by time rlog 151=4. Thus
the minimum degree of any vertex in G is > 2, and the only possible degree
sequences for the vertices in G are:

fa) 2222222224

(b) 22222222233

The only connected graphs having degree sequence (a} look like those in

Figure 10. They consist of two cycles I and II, of lengths mtl and n+l1,

respectively.
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Figure 10
where m+n=9, m,n>2, and the two cycles are joined at a cutvertex u of degree 4.
It can easily be shown that none of the possible values for (m.,n) (i.e.
(7.2}, (6,3), (5,4)) produces a minimal broadcast graph {cf . (5,4) in Figure 10b}.
Therefore, let G have degree sequence
2222222233,

and let u and v be the two vertices of degree three. There are two kinds of
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connected graphs having this degree sequence, as indicated in Figure 11, where
k+l+m=8. The possiblg values of k, 1 and m for each kind of graph indicated
in Figure 11 reveal that we must consider eighteen possible graphs. A simple
examination of these graphs shows that none of them are minimal broadcast
graphs. Thus there are no minimal broadcast graphs with 10 vertices and 11
edges, i.e. B{10) > 12,
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Figure 11
B(1l1)=13
In Figure 12 we present a minimal broadcast graph with 11 vertices and

13 edges. The interested

Figure 12

reader can verify that the broadcast time for each vertex is liog li1 =4.
Hence, B(11)<13.



We now show that there are no minimal broadcast graphs with 11 vertices

and 12 edges. Using the same argument as in the case for 10 vertices, above,

one can show that no minimal broadcast graph on 1l vertices can have a vertex

of degree 1. Thus the only possible degree sequences, as before, are

(a) 22222222224
{b) 222222222133

Again, as in the case for 10 vertices, the only types of graphs with these

degree sequences are those in Figure 13.

. k.
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kL kim klm kim klm
2 8 207 225 018 135
3 7 306 324 027 144
4 & 405 2 3 4 0 36 225
5 5 216 333 045 2 34
315 24 3 117 333
414 252 126

Figure 13

A simple check of each of these 27 graphs shows that none of them are

minimal broadcast graphs. Thus there are no minimal broadcast graphs with 11

vertices and 12 edges, and B(11)>13.

B(12)=15

The minimal broadcast graph in Figure 14 has 12 vertices and 13 edges.
Hence, B(12)<15. We will show that B(12)>15 by showing that there are
no minimal broadcast graphs with 12 vertices and 14 edges.

From previous arguments we know that any minimal broadcast graph with 12

vertices must be connected and have no vertex of degree 1. Assume that G has

a vertex u of degree 2 and consider the possible broadcast trees for u. They

are the six trees obtained by deleting one endvertex from the tree T in Figure 15.
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Figure 14 Figure 15

Assume further that G has two adjacent vertices u, w of degree 2. Then
the broadrast tree for u must be isomorphic to the tree in Figure 16, and the

graph G can be obtained by adding several edges to Ih.

Figure 16

Since vertex w has degree 2, its broadcast tree must alsoc be isomerphic
to Ty Consequently, vertex p must have degree > 4 (like vertex v). Furthermore,
since no vertex in G can have degree 1, we must add at least one edge tom, r, s,
z and t. The two additional edges needed for p can be joined to, say, mand r.
A third edge can be added between s and z, leaving us in need of a fourth edge
to be added to t. Thus if G has two adjacent vertices of degree 2, then it must
have > 11+4=15 edges.

Consider therefore the six possible broadcast trees for a vertex u of degree
2. We will show 1in each case that if G does not have 2 adjacent vertices of

degree 2, then it must have > 15 edges.
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Case 1.

Figure 17

We must add at least one edge to w (else it has degree 2), and to
endvertices m, r, s,z and t. Furthermore, we must add at least one edge to
either p or t (else we have two adjacent vertices of degree 2). Hence, we must

add at least 4 edges to Tu' i.e. G has > 11+4 edges.

Case 2.

FPigure 18

We must add at least one edge to each of the six endvertices m, s, t, z, p
and g, and at least one additional edge to either y or t (else we have two adjacent
vertices of degree 2). Thug, we must add at least 4 edges to Tu and G has >
11+4 edges.

Cases 3, 4, 5 and 6 are all similar to cases 1 and 2 are are omitted in
the Iinterests of brevity.

Thus we have shown that if G is a minimal broadcast graph with 12 vertices,
then it has either

a) two adjacent vertices of degree 2, or

b) at least one vertex of degree 2, but no two of them are adjacent, or

c) no vertices of degree 2, i.e. the minimum degree of any vertex is > 3.

In either case above G must have > 15 edges. Thus, B(12)=15.
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4. The values of B{n) for lanflG.

The effort required to establish each of the next five values of B(n) is
very similar to that required for the previous four values. Therefore we will
only sketch the corresponding proofs.

B(l13)=18
The graph G in Figure 19 is a minimal broadcast graph with 13 vertices

and 18 edges. Hence, B(13)<18. We next outline the proof that B(13)>18.

Figure 19
Using previous arguments one can show that no minimal broadcast graph G
on 13 vertices can have a vertex of degree 1. Hence every vertex in G has
degree > 2. If G has a vertex u of degree 2, then its broadcast tree must

be isomorphic to the broadcast tree Ty in Figure 20.

Figure 20
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From the tree Tu it follows that if vertex u has degree 2, then it must
be adjacent to a vertex v of degree > 4, and a vertex w#v of degree > 3.
Furthermore, vertex v must be adjacent to a vertex x, x#¥w, of degree > 3.

It only remains to consider how many vertices of degree 2 are in G.
The conditions above indicate that for every 3 vertices of degree 2 there

must be one vertex of degree 4 and two vertices of degree > 3. {cf. Figure 21).

It follows

p
Z
4 3
2 b
3 4 3
2
Y
Figure 21

therefore that G can have at most 7 vertices of degree 2, and furthermore, if
G has 7 vertices of degree 2 then G must have > 18 edges.

Using similar arguments one can show that if G has k vertices of degree 2,
for 1<k<§ then G must have at least 18 edges. Thus, B(13)>18.
B(l4)=21

The graph G in Figure 22 is a minimal broadcast graph with 14 vertices

and 21 edges. Hence, B(14)<21.

Figure 22
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In order to show that B(14) 2> 21 one only needs to observe that in a
minimal broadcast graph G with 14 vertices, no vertex can have degree 2
(cf.Figure 20}. Thus if the minimum degree of any vertex in G is > 3 then
G must have > l4x3/2 = 21 edges.

B(15)=24
The minimal broadcast graph with 15 vertices and 24 edges in Figure

23 shows that B(15) < 24.

Figure 23
In order to show that B(15) > 24, consider a broadcast tree for any
vertex in a minimal broadcast graph G with 15 vertices. Previous arguments
suffice to show that G cannot have a vertex of degree < 2. Conéider
therefore a broadcast tree for a vertex u of degree 3 in G; it must be
isomorphic to the broadcast tree in Figure 24. It follows therefore that

vertex u must be adjacent to a vertex v of degree > 4. Thus every vertex

Figure 24
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in G of degree 3 must be adjacent to a vertex of degree > 4. Stated in

other words, for every 4 vertices of degree 3 in G there must be at least
one vertex of degree > 4. Therefore, G can have no more than 12 vertices
of degree 3 and must have at least 3 vertices of degree > 4. It follows

then that G must have > (12x3+3x4)/2=24 edges.

1

pj

. . k ,
In a minimal broadcast graph G with 2° vertices, every vertex must have

B(16)=32 (and B(Z)= k.2~

degree at least k in order to call all 2k vertices in time k. Thus, G must
have k.25 / 2=k.2k-'édges and B(2%) > P e

In order to show that B(zk) < k:Zk—l it will suffice to construct a minimal
broadcast graph with 2k vertices and k-Zk-l edges for every k > 3. But this is
easily done by taking any two minimum broadcast graphs G,H with Zk-l vertices
and adding 2k_1 additional edges in a 1-1 fashion between the vertices in G and
the vertices in H. Figure 25 illustrates this construction with a minimum

broadcast graph with 16 vertices.

G H

Figure 25
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5. Summary

In this paper we have initiated a study of minimum broadcast graphs
by determining the number of edges reguired in such graphs for all values of
n<lé6 and n=2k, and for each of these values we have constructed an example
of a minimum broadcast graph with n vertices. We have not yet determined the
value of B(n) for any other value of n. In a later paper, however, it will
be shown (among other things) that the minimum broadcast graphs shown earlier
with 7, 11 and 12 vertices, are unigue, i.e. there are no other minimum broadcast

graphs with 7, 11 or 12 edges.
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