CS-TR-77-4

MIN1MUM DOMINATING CYCLES
1IN MAX1MAL OUTERPLANAR GRAPHS

by
Andrzej Proskurowski

Department of Computer Science
University of Oregon, Eugene, OR

Abatract

We consider the class of maximal outerplanar graphs and
present a linear time algorithm for finding ainimum
dominating cycles of such graphs. We streas the use of a
particular representation of these graphs called a recursive

representation, and some linear operations on binary trees
derived from thesc graphs.

mop Page ¢

0. Jntroduction

The literature on the subject of domination is steadily growing.
A recent survey of it may be found in [{3]. Algorithmically, the
problem of finding & minimum dominating set in an arbitrary graph 1is
known to be NP-complete. However, a linear algorithm exists for
finding a minimum dominating set in a tree, L21]. This result is
extenged in [5] to find R-bases of trees. Our paper appears to be the
first to define and astudy dominating cycles in graphs. In addition to
this work, an algorithmic study of maximal outerplanar graphs was

initiated in L4].

An outerplanar graph is a graph which can be embedded in a plane in
such a way that every vertex lies on the exterior face. A paximal
outerplanar sraph (hereafter called a mop) is an outerplanar graph
such that the addition of an edge between any two nonadjacent vertices
results in a graph which is not outerplanar. There are several
characterizations of mops, two of which are of interest here. The
first is that a graph is a mop iff it is isomorphic to a triangulation
of a polygon. The second is that a graph is a mop iff it can be
constructed from a (base) triangle by a finite number of applications
of the following operation: to the graph alreaay constructed add a
new vertex in the exterior face and join it to two adjacent vertices
on the exterior face. Figure la illustrates a mop constructed by this
process starting from a base triangle labeled 1,2,3. The i-th vertex

for 1>3 18 Joined to two vertices with labels less than i.

mop Page 3

With any mop we can associate a dual tree, which is obtainea by
placing a node inside each triangle of the mop ana joining two nodes
if the corresponding triangles have an edge in common (cf. Figure 1).
ln this paper we investigate the idea that certain properties of a mop
can be determined by examining its dual tree. In particular we are
interested in algorithms for solving certain routing problems in mops.
For example, what is the length of a shortest closed walk ({route)
which comes within distance one of every vertex in a mop? Stated more
formally, a cycle C in a graph G is a dominating cycle if every vertex
not in C is adjacent to at least one vertex in C. A minimum
dominating cycle in G has minimum length among all deominating cycles
in G. In what follows we will use the dual tree of a mop G to
construct a linear algorithm for finding a minimum dominating cycle

in G.

). Hepresenting a mop

In L4) it was suggested that recursive representation of &a tree
lends itself to the development of very efficient algorithms on trees
and that the same efficiencies may be obtained for algorithms on mops

uaing the recursive representation techniques.

Def.1,1. The recursive representation of a mop
Any mop with n vertices and a distinguished base triangle can be
represented by two arrays, LOWL1..n] and HI1GH{1..nj, such that
(i)the vertices of the base trlangle are labeled 1,2,3;

{(ii)for all i (3<i<n), 1 ,LOW[{1l]}, and H1GH| 1) are the vertices

mop Page 4

ot a triangle where LUW{i}<HIGH[i)<i;

{(i1i) for vertices 1 and 2 the relation i>HIGH{ i) is violated in

@ N
N

the obvious way.

i 1 2 3 4 5 6 7T 8 9101112131415 16
HIGH[i] 3 3 2 3 3 4 6 2 8 5 91012 7 815

Lowli) 2 11 2 1 3 4111 v 5 5 4 2 2

Figure 1. A mop {a), 1its dual tree (b), and the recursive

representation (c¢).

Def.1.2. The dual tree of a mop
The dual tree of a mop G 18 a tree T(G) whose nodes correspond
one-to-one with the triangles (meshes) of G, and two nodes are
adjacent in T(G) iff the corresponding triangles in G have an edge

in common.

Def.1.3, The rooted dual tree of a mop
For any mop G with a base triangle there is a corresponding rooted
dual tree which is obtained by rooting T(G) at the node

corresponding to the base triangle of G. If we assume that each

mop Page 5

node of 1T(G) is labeled by the nighest numbered vertex in the
corresponding triangle ot G, with the root labeled 3, then the
recursive representation of Ti\G) is given by the array H1GHL3..n]

{where entries less than 3 in HIGH are relabeled 3}.

In order to distinguish betweun elements of a mop G and elements of

its dual tree T(G), we will use yertices for G and podes for T(G).

Def.1,4, bDase of a triangle
1n a mop G with a base triangle, which is represented by arrays LOW
and HIGH we will call the edge (LOWLi],HIGHL1i)) the base of
triangle 1 (3<i<n). We call vertices LOW[i] and HIGH[i] the basic
vertices of this triangle, and vertex i - the nonbasic vertex of

trianglie 1.

For any mop G, the dual tree T(G) is unique up to an isomorphism.
However, there may be more than one mop for which this tree is the
dual tree. To remove this ambiguity let us define the dual binary

t'orest.,

Def.1.5. 1lnclination of a node
With each node of a binary tree, except for the root, we can
assoclate &n inclination, which indicates whether the node 1is a

left or a right descendant.

mop Puge 6

Pet.1.6. Dual binary forest

The dual binary forest of a mop G with a base triangle 1is an

ordered forest of three rooted binary trees, constructed as

follows:
(1) each node of the forest corresponds to a triangle of G (the
base triangle is not represented explicitly);
(ii) the roots of these three trees correspond to the triangles
adjacent to the base triangle. In case one or more of Lhese
triangles does not exist, the corresponding tree is empty;
(1ii) in a triangle with verticea labeled 1,2,3, let us call the
edge (1,2) a ‘'right' edge, (2,3) a 'right' edge, and (1,3)
a 'left' edge. with thias designation, we can proceed to
uniquely assign ‘left' and ‘right' to every other edge of a
mop G, with a base triangle labeled 1,2,3. If vertex 1 is
adjacent to vertices LUW[(i] and HIGH[1), and (LOW[1],HIGH[i]) is
a 'left' edge, then assign 'left' to edge (LOW(i],i) and 'right’
to edge (H1GH[1],i). Otherwise, assign ‘'right' to edge
(LOWLi},1) and 'left® to (HIGH[i],1);
(iv) given this assigoment of 'left' and 'right' to the edges of
a mop G, with a base triangle 1,2,3, we can determine
inclination of the nodes in the rooted binary trees of the dual
forest of G. if a node j is adjacent to a node i in one of
these trees (with i<j), then j is a 'left' ('right') descendant’
of i if the edge in common between the two corresponding

triangles is a 'left' ('right') edge.

mop Page 7

(o3 n

Figure 2. Inclinations of edges in a mop (a) and its dual binary

forest (b)

The following algorithm computes the ineclination of each node of
the dual binary tree of a mop, which is given by a recursive

representation in arrays LOW and HIGH.

Algorithm 1.7, Finding inclinations

Procedure INCLINAT1ONS
/% input: recursive representation of the mop */
(low,high:array [1..n] of integer;
/® output:the representation of the dual binary forest%/
var incl :arrayl3..n) of inciination);
/*local variables describing inclipation of base verticesa®/
var lolog,hilog: array[2..n] of inclination;
L,h: inclination;
1,k,n:integer;
begin /* orient the edges of the base triangle %/
lolog{2):=right;hilogl2]:=1left;
lologl3):=left;hilogl3]:=right;
/% proceed down the binary trees propagating inclinations #*/
for i:=4 to n do
begin k:zhighli);
it low[k)zlowli] then begin l:=lologikj;h:zhilogik] end
else begin l:=hiloglki;h:=lologlk) end;
incliil:=1; 1lologii):=l; hiloglil:=h
end
end;/* inclinations #/

aocp Page &

2. JThe Hamilvonjap cycle of & mop

1t is obvious from the definition that every mop has a Hamiltonian
cycle, In [1) an algorithm is given for listing this cycle in a mop.
Here we give a different algorithm which computes the Hamiltonian
cycle of a mop G, given by a recursive representation H1GH and LOW.
The cycle is obtained from the dual binary forest of G_by noting that
for a nonbase triangle t
(1) if t ia represented in the forest by a node t which ia a leaf
then the edges (t,HIGH{t]) and (t,LOW|t]) are in the cycle;
(ii) if t is represented by a node t with only one descendant, s,
then the only edge of t in the cycle is non-basic in t and does
not belong tc triangle s;
(1i1)if t is represented by a node with two descendants then none

of '3 edges are in the Hamiltonian cycle.

The following algorithm links vertices of a mop given by its
recursive representation LOW, HIGH and the inclinations array, INCL,

into a doubly linked list of the Hamiltonian cycle.

Algorithm 2.1, The Hamiltonian cycle

procedure CYCLE
/* input : representation of the mop and the dual forest %/
(low, high : array [1..n] of integer;
incl : array [3..n] of inclination;
/% output : double linked list of vertices of the cycle ¥/
var links : array [1..2,1..n] of integer);
var marks : array [2..n] of integer;
i,hi,lo: integer; inc: inclination;
procedure link(u,v,ind: integer);
begin linka{ind,uj:=zv;
if linka[1,v)=0 then links|1,v]:=u

mop

else links[2,v}:=u
end;/* of linking vertices u and v %/
begin /* 0. initialize marks and links %/
for 1:=2 to n do
begin marks|i}:=0;1inkst1,1i]1:=0; 1links|2,1i]:=0 end;
linka[{1,1]):=0; 1links{2,1]1:=0;
/% dummy inclination of vertex 3 #*/ incli3]:sleft;
/% 1, scan down: 1link and mark %/
for i:=n downto 3 do
begin hi:=high(i); lo:=low[i]; inc:=zinci{i};
case marks[i] of
0: begin link(i,hi,1); 1link(i,lo,2) end;
1: 4if inesleft then link(i,hi,2)
else link(i,lo,2);
2: if incsright then link(i,hi,2)
else link(i,lo,2);
3: end; /% of cases %/
marks(hi]:=marks[hi)+ord(inc)
end; /% of down scan %/
/% 2. ocomplete linking for the base triangle %/
it marks[2]=0 then link(2,1,2)
end; /* of the Hamiltonian cycle #/

3, Dominating cycle of & mop

Page 9

We will now present an algorithm for computing a dominating cycle

{or, equivalently, a domipating mop) of a given mop. We recall that a

dominating set of a graph G is a set of vertices, S, such that every

vertex of G not in S is adjacent to a vertex in S.

pef.3.1. Dominating mop

For a given mop G, & dominating mop is a subgraph induced by

cycle of G the vertices of which dominate G.

in order to find a dominating mop of a mop G we will perform

"pruning" of the dual binary forest of G.

mop Page 10

Det.3.2. Pruning of & tree
Duleting (pruning) an end-node of a dual binary forest of @ mop G

corresponds to deleting the corresponding vertex of G.

Fact 3.3. Pruning a dual binary forest of a mop G produces a dual

binary Iorest of a corresponding subgraph of G.

Certain special subgraphs of mop's, entirely dominated by one of

their vertices, allow extensive pruning of the corresponding trees.

Def.3.4, Fan

1n a mop G, a maximal subgraph F of G such that all triangles of F
have one vertex in common and an edge incident to this vertex is
the only edge F has in common with other triangles of G is called a
fan. The triangle containing this common edge is called the basic

triangle of the fan F.

In Figure 3a bold lines indicate fans of the mop from Figure 2.

Def.3.5. Marks
With each node of the dual binary tree of a mop we will associate a
mark °'N1L', 'L', 'R', 'L+R', or 'F1XED' as funclion of inclination
and marks of its descendants:
(i)an end-node will be marked *'N1L'j;
(ii)a node having only a left descendant marked 'NIL' or 'L'
will be marked °'L‘';

(iii)a node having only a right deacendant marked °*NIL' or 'HK'

mop Page 11

Wwill be marked 'H';
{iv)a node with two descendants - lett marked 'NIL' or ‘L' and
right marked 'NIL' or 'H' - wiil be markea 'L+R’;

{v)in all other cases the node will be marked 'FI1XED'.

C | A s

NLESS
"}La

Figure 3. A mop with fans (a) and the marks of the nodes ot its

dual binary forest (b).

The following classification of the nodes of a dual binary forest
of a mop establishes a relation between pruning nodes of the forest

(deleting vertices of the mop) and finding a dominating mop.

Fagt 3:6. Pruning the dual binary tree
Depending on their out-degrees we can classify the nodes of a dual
binary tree as follows:
0., end-node, Clearly, 1if we delete from a mop G a vertex
corresponding to an end-node of the binary tree of G, then
resulting mop will dominate all of Gj
J.nodes with one descendant. We distinguish three categories of

nodes with only one descendant, depending on their marks and

inclination:

mop Page 1&

l.a)mark_and_inclipation asgree, The node corresponds to a nonbasic
triangle of a fan. We can also delete a veriex corresponding to a
nonbasic triangle of a fan and the resulting mop will still be
dominating G;

l.b)mark and_inclination_disagreec. The node corresponds to a basic
triangle of a fan. A basic vertex of this triangle must be
retained in order to dominate all the vertices of the fan;
1.c)parked 'F', The node is necessary to preserve the connectivity
of the dual tree of the dominating mop (the non-separability of the
dominating mop);

2.nodes with two descendants. Both basic vertices of the triangle
corresponding to a node of out-degree 2 have to be retained to
dominate the vertices of descendant triangles. thus the [father
triangle must not be removed. There are two types of nodes of
degree 2:

2.2)parked_'F', 1lhe node must be retained to preserve connectivity
ol the pruned binary tree;

2.b)marked_'L+B', Desacendants of the node form fans {of one or
more triangles) such that the corresponding vertices of the mop are
dominated by the basis of the current triangle. Thus the non-basic
vertex of this triangle (and the node) can be deleted, and the

resulting mop will still be dominating.

In view of Fact 3.6., the following algorithm calculates, for

a given mop G, a minimal dominating mop containing the base triangle

of G.

mop Page 13

Algorithm 3,7, Pruning the dual ftorcst

procedure PHUNE/®* deletes vertices of the mop %/
/* input: recursive representation of the mop */
{low,high: array [1..n] of integer;
/* representation of the dual binary forest */
inel: array L4..n) of inclination;
/% output: the base triangle is implicitely retained®/
var retain: array [4..n] of boolean);
/% local variables: out-degree of the nodes and marks: 0 -- nil, %/
var outval,marks: array [3..n] of integer; /* 1 == left, %/
i,k,n : integer; /8 - 2 -- right,
3-—=14+r,
more than 3 -- fixed %/
begin /% initislize out-degrees and marks %/
for 1:z4 downto n do begin marks{i]:=0; outvallil:=0 end;
/% main loop: scanning the recursive representation right-to-left,
deleting vertices and marking fathers accordingly %/
for 1:=n downto 4 do
begin if high[1]<=3 then k:=3 else k:szhighl[i];
case outval[i] of
0:/* end-node, delete and mark the father &/
begin retain{i]:=false;
marksi k] :=marks[k] + ord(incl[i])
end;
1:/% the only son %/
it ord(inclii])=marksli]
then /® fan */begin retainlij:=false;
marksl k] :=marks[k] + marks(i]
end
else begin retain(i]):=(marks{i]>3);
marks{k]:=z4 end;
2:/% fix unless base of outward fans #/
begin retain(i):=(marks{i)>3); marks(k]:=4 end
end /% of cases #/;
outvallk]:soutvallk] + 1
end /% of pruning %/;

4, A pipnimum domipeting cvcle of & mop

It is easy to construct examples in which minimum dominating mop of
a mop G does not contain the base triangle of G. Consequently,
algorithm PRUNE above does not always find a minimum dominating mop.
however we can modify it so that it does find a minimum dominating

mop, a2 follows:

mop Page 14

1. Find one triangie, t, in a minimal dominating mop of G;
2. He-label G with t as the base triangle;

3. Apply algorithm PHUNE to get a minimal dominating mop.

The following fact helps to solve the task of 1. above:

Fact 4.1, A triangle of a minimal dominating mop.
For a given mop G, the first triangle retained by algorithm PRUNE

belongs to a minimal domipating mop of G.

Proof 4.1, Algorithm PHUNE retains or deletes a triangle, t, only
atter all descendants of t {(relative to the chosen base triangle)
have been conaidered. I1f t has been the first triangle retained by
PRUNE it 183 necessary to dominate vertices of its descendant
triangles, unless there is a dominating mop consisting of one or
more of these triangles and not containing t. But then a minimal
dominating mop consists of exactly one triangle, and t may serve

as such.

The above observations lead to & statement of wuniqueness of a

minimal dominating mop:

Fact 4,2, It a mop G cannot be dominating by one triangle, then G has

a unique minimum dominating mop.

mop Page 15

ln order to change the base triangle of a recursively represented
mop G we must relate the vertices of G in such a way that the vertices
of the new base triangle have 1labels 1, 2, and 3. The following
algorithm performs such a "rerooting” of a mop (analogous to

"rerooting® a tree).

Algorithm 4.3. Rerooting a mop

procedure REROOT/®* "rercoting" the mop to new base ¥/
/% input: recursive representation of the mop %/
(low,high: array [1..n] of integer;
newbase : integer; /% the new base triangle %/
/% output: recursive representation of the rerooted mop */
var outlo,outhi: array [1..n] of integer;
var xref : array L1..n] of integer); /* cross-reference %/
var i,k,n,father,a,b,c,t,second,third: integer;
begin /% 0.initialize xref and out-rep #/
for i:z1 to n do xrefli]):=0;

outloi1]:=2; outhif1]:s3; xref| newbase}:=1;
outlo(2]:s1; outhi[2):=3; xref[highl newbase) j:=2;
outlo(3):=1; outhil3):=2; xref{low[newbase}]:=3;

/% 1.main loop: climb up to the root renaming the nodes

and creating the out-rep %/

father:=newbase; k:=l;

while father>3 do

begin father:=zhigh| father]; a:=xref[father);
second:=highf rfather]; b:=xref[second];
third:=low| father}; c:=xrefl| third];
if e>b then begin b:=zc; c:=second end

else ci=third;
if b>a then begin t:=za; a:zb; Dbi=t end;
xref{c]:=k; outlo(kj:=b; outhifk]:=a;
k:zk+1
end;
/% 2.clean-up: copy down not affected triangles %/

for i:=father to n do while xref(i]=0 do

begin xrefli):=k;
second:z=xrefihighli]];
third:sxrefllowlilJ;
if second>third

then begin outhilk):=second;joutlolk]:=third end
else begin outhi[k]:=third;outlolk]:=second end;

K:=k+1
end

end;/* of rerooting */

mop tage 1b

The complete algorithm for finding the minimal dominating mop of a
mop consists of several calls to the above procedures; procedure
PRUNE must accomodate request for interruption of computation when the

tirst triangle is 'fixed', and return information about this triangle.

The form of the main program is outlined below.

Algorithm 4.4, Minimal dominating mop

procedure MIN_DOM_MOP
/% input %/ (LOW, HIGH : array [1..n] of integer;
/% output %/ var RETAIN : array L3..n] of boolean;
var XREF : array [1..n] of integer);
var 1INCL : array [4..n] of inclination;
QUTLO,OUTHI : array L1..n] of integer;
newbase : integer;
begin

/% 1.Find the dual binary foresat 8/

INCLINATLIONS{LOW, HIGH, INCL);

/% 2.Find a triangle of a minimal dominating mop */
PRUNE(HIGH, INCL, RETAIN, newbase);

/* 3.Represent the mop with the new base triangle %/
REROOT{LOW, HIGH, newbase, XREF, OUTLO,OUTHl);
INCLINATIONS{OUTLO,QUTHI, 1NCL);

/% 4.Find a minimal dominating mop in the rerooted mop ¥/
PHUNE(OUTHI, INCL, RETAIN);

A PASCAL program implementing the above procedure may be found in

Appendix A.

5. Ektficiency of the algorithm

Algorithm 4.4, requires five scans over the recursive
representation of & mop. ln each scan a triangle of a mop is
processed at most once in a constant amount of time. Thus the

algorithm is linear although the number of passes may Suggest sSome

nop Page 1%

inefficiency. OUne can easily see that much of the computation in
steps 3 and 4 duplicates that of steps 1 and 2. To avoid this waste
we have designed an algorithm which, besides steps 1 and 4 (without
rerooting) of Algorithm 4.4., requires only a "correction pass" in

which the redundant triangles of a dominating mop are discarded.

The information needed by the correction pass is supplied in
a (modified) step 1, where the marks indicate “reasoné“ for tentative
retension of a triangle. When the first triangle is "fixed", the
pruning 18 continued after the triangles connecting this "new base"
with the old base are doubly linked. These triangles are tentatively
retained because of the original cholce of the base triangle and

therefore the correction pass is limited only to them.

The complete computer program (written in PASCAL) implementing the

more efficient algorithm outlined above is listed as Appendix B.

§. Acknowledrment

The author gratefully acknowledges the help of Dr. S. Hedetniemi's

constructive criticisme of the manuscript.

1, Beferepces

(1] Beyer,T, Jones,w, Mitchell,S; A linear algorithm for isomorphism

of maximal outer planar graphs (in preparation).

(2] Cockayne,E.J, Goodman,S,E, Hedetniemi,S.T.; A linear algorithm

Fat.

mop bage 16

for the domination number of a tree; 1lnformation Processing LelLlers
4(1975), pp. H1-h4.

[3) Cockayne,E.Jd., Hedetniemi,S.T.; Towards a theory of domination in

graphs; Networks, 7(1977),pp. 247-261.

(4] Mitchell,S; Algorithms on trees and maximal outer planar graphs:
design, complexity analysis, and data structures studies; PhD Thesis,

University of Virginia, 1976.

{5] Siater,P; R-domination in graphs, JACM 23(1976), pp. U46-450.

8. Appendices
A. Procedure MIN_DUM_MOP computing a minimal dominating mop of a mop
given by 1ts recursive representation using algorithm k.4,

B. Procedure MIN_DOM_MOP_EFF computing a minimal dominating mop in

two scans of the recursive representation of the given mop.

19

PRUCEDUHE M1N_DUM_MOP(N: 1NTEGER;
/% INPUT: RECUKS1VE KEPRESENTATIUN OF THE MOP #/
LOW ,HIGH:ARRAY |1..N) OF INTEGEH;
/% QUTPUT: VERTICES 1IN THE DOMINATING MOP /®
VAR RETAIN: ARRAY [4..N] OF INTEGER;
VAR XREF : ARRAY [1..N] OF INTEGER); /% CRUSS-REFERENCE %/

TYPE INCLINATION=z (NIL,LEFT,RIGHT);
INTARRAYzARRAY [1..N] OF INTEGER;

VAR 1,K,N,FATHER, NEWBASE : INTEGER;
INCL: ARRAY[Y4..N} OF INCLINATION;
OUTLO,OUTHI: INTARRAY; /%OUTPUT REP%/

PROCEDURE INCLINAT1ONS{LOW,HIGH : INTARRAY);
/% SETTING INCLINATLON OF NODES INTO 'INCL' %/
VAR /®LOCAL VARIABLES DESCRIBING INCLINATION OF BASE VERTICESS/
LOLOG,HILOG: ARRAYL2..N] OF 1NCLINATION;
L,H: INCLINATION;
BEGIN LOW[2]:=1;LOLOGL2]):=RIGHT;HILOG[2]:=LEFT;
LOLOG[3):=LEFT;HILOG[3]:=RIGHT;
FOR 1:z4 TO N DO
BEGIN K:=HIGH[I1);
IF LOWLK]=LOWL1] THEN BEGIN L:=LOLOG[K];H:=HILGG[X] END
ELSE BEGIN L:=HILOG[K);H:=LOLOG[K] END;
INCL[1}:eL; LOLOG[1}:=L; HILOG[1]:=
END;
END;/® 1INCLINATIONS %/

PROCEDURE PRUNE(HIGH:1NTARRAY ;FLAG:BOOLEAN);
/® PRUNING THE DUAL BINARY FOREST %/
VAR MARKS : 1INTARRAY; /®MARKS: 0 -- NIL, 1 -- LEFT,
2 ~—- RIGHT, 3 -- L+R, & —- FIXED %/
BEGIN /%Q.IN1TIALIZE: ZERO MARKS®/
FOR I:=4 TO N DO MARKS{1]:=0;
/%"MAIN LOOP: SCANNING THE RECURSIVE REPRESENTAT1ON RIGHT-
TO-LEFT DELETE END-NODES AND MARK FATHERS ACCORDINGLY®/
FOR 1:=N DOWNTO 4 DO
BEGIN IF HIGH[1]<=3 THEN K:z3 ELSE K:=HIGH[1];
CASE MARKS[1] OF
0: /%END-NODE : DELETE AND MARK THE FATHER®%/
BEGIN RETALN[1]}:=2FALSE;
MARKS[K] :=MARKS{K J+ORD(INCL([1])
END;
1,2,3: /% PART OF FAN(S) %/
~ BEGIN RETAIN[1]:sFALSE;
IF ORD{INCL{1])sMARKSI[1]
THEN MARKS[K]:=MARKS[K]+MARKS[1]
ELSE BEGIN MARKS[K]:=l;
1F FLAG THEN GO10 7
END
END;
4,5,6: /%TO BE F1XED %/
BEGIN RETAIN{1):=TRUE;
MARKS{K }:=zU;
END
END;/®0F CASES%/
END;
f: IF FLAG 1HEN NEWBASE:=K
END;/"UF PRUNE%/

PHOCEDURE REROOT;/*% "REROCOTING" THE MOP TO NEWBASE %/ 20
VAR A,B,C,T,SECOND,THIKD: INTEGER;
BEG1N /* 0.1N1TIAL1ZE XREF AND OUT-REP %/
FOR 1:=1 TO N DO XREF(1]:=0;
XREF[NEWBASE]:=1;
XREF[HIGH|NEWBASE] | :=2;
XREF[LOW[NEWBASE]]:=3;
OUTLO({1]):=2; OUTHI[1]):=3;
OUTLO[2]:=1; OUTHI(2]:=3;
OUTLO[3]:=1; OUTHI{3)}:=2;
/% 1.MAIN LOOP: CLIMB UP TO THE ROOT RENAMING THE NODES
AND CREATING THE OUT-REP %/
FATHER: =NEWBASE; K:=zU;
WHILE FATHER>3 DO
BEGIN FATHER::HIGH[FATHER];
SECOND:=HIGHLFATHER); TH1RD:=LOW|LFATHER];
A:=XREF(FATHER); B:=XREF(SECOND]; C:=XREF[THI1RD];
IF C>B THEN BEGIN B:=C; C:=SECOND END
ELSE C:aTHIRD;
1F B>A THEN BEGIN T:=A; A:=B; B:=T END;
XREF{C]:=aK; OUTLO[K]:=B; OUTHI[K]:=A;
K:=zK+1
END;
/% 2.CLEAN-UP: COPY DOWN NOT AFFECTED TR1ANGLES %/
FOR 1:=zFATHER TO N DO WHILE XREF[1}=0 DC
BEGIN AREF(1]:=K;
SECOND:=XREF(HIGH([1]];
THIRD:=XREF[LOW{1]];
1F SECOND>THIRD
THEN BEGIN OUTHI[K]:=SECOND;OUTLO[K]:=THIRD END
ELSE BEGIN OUTHI[K]:=THIRD;OUTLO{K]:=SECOND END;
K:=K+1
END
END;/® OF REROOT %/

BEGIN INCLINATIONS(LOW,HIGH);
PRUNE(HIGH,TRUE);
REROOT ;
INCLINATIONS{OUTLO,OUTH1);
PRUNE(QUTH1 ,FALSE);
END

21

PROCEDURE M1N_DUM_MOP_EFF (N: INTEGER;
/4 INPUT: RECURSIVE REPRESENTATION OF THE MOP */
LOW,HIGH: ARRAY [1..N] OF INTEGER;
/% OUTPUT:VERTICES UF THE DOMINATING MOP */
VAR RETALN: ARRAY[1..N] OF BOULEAN;
VAR XREF : ARRAY [1..N} OF 1NTEGER); /* CRUSS-REFERENCE #/

TYPE INCLINAT1ON=(NIL,LEFT,K1GH1);
INTARRAY=ARRAY [1..N] OF INTEGER;

VAR 1,J,K,M,N,FATHER , NEWBASE : INTEGER;
INCL :ARRAYLY..N] OF 1INCLINATION;
OUTLO,OUTH1: INTARRAY; /®OUTPUT REP®*/
FLAG,LASTCASE : BOOLEAN;

PROGCEDURE FINDINCLINATIONS;
VAR /%LOCAL VARIABLES DESCRIBING INCLINATION OF BASE VERTICES®/
LOLOG,HILOG: ARRAY[2..N] OF INCLINATION;
L,H: INCLINATION;
PEGIN LOW[2]:=1;LOLOG[2]:=RIGHT;HILOG[2]:=LEFT;
LOLOG{ 3] :=LEFT;HILOG{ 3] :=RIGHT;
FOR 1:=4 TO N DO
BEGIN K:=HIGHL1];
1F LOW[X]=LOW[I] THEN BEGIN L:=LOLOG[K];H:=HILOG{K] END
ELSE BEGIN L:zHILOG{K];H:=LOLOG[K] END;
INCL[1):=L; LOLOG[L]:=L; HILOGL1]:=H
END
END;/% INCLINATIONS &/

PROCEDURE DOWNANDOUT; /* PRUNING THE DUAL BINARY FOREST
AND THE REMAINLNG STUMP #/
VAR PNTR,MARKS : INTARRAY;
CHANGE : ARRAY {0..7] OF INTEGER;

PROCEDURE CASES{OLDMARKS,ORDINCL:INTEGER);
VAR NEW:INTEGER;
BEGIN M:z=MARKS[1}; NEW:=10®CLDMARKS + ORDINCL;
IF M=0 THEN M:=NEW
ELSE IF{Mz1)OR(Mz2) THEN IF ORDINCL=M THEN M:=zNEW+2
ELSE M:=NEW+l
ELSE 1F(M=3)OR{M=&) THEN 1F ORDINCL+2=M THEN M:aNEW+2
ELSE M:=NEW+i
ELSE IF(Ms12)OR{Mz14)OR
(Ms21)OR(Ms23)0R
(M232)O0R(M=34)0R
(Mal1)OR(MzU43) THEN M:=7
- ELSE LASTCASE:=TRUE;
MARKSLK]:=M
END; /% OF CASES %/

PROCEDURE DOWN;
BEGIN RETAIN[1]:=TRUE;
1F FLAG THEN MARKSLK]:=7 /% NOT THE F1RST TO BE FIXED %/
ELSE BEGIN NEWBASE:=1l; J:zI; FLAG:=TRUE;
RETAIN[LOW{1]}]:=TRUE;
RETAIN[HIGH,{ 1]]:=TRUE;
WHILE K>3 DO
BEGIN PNTR{K]:=J; J:=K; K:=H1GHLK] END;
PNIR[3]:2J; J:=K + LOWlJ] -2
END
END/® UF THE LAST CASE GUING LOWN */;

BEGIN FLAG:=FALSE; LASTCASE:=zFALSE} 22
CHANGE(0]:=0; CHANGEL1}:=2; CHANGE[3]:=6; CHANGE{5]):=}4;
CHANGE[7 }:=7; CHANGEL2):=1; CHANGE[6]:=3; CHANGE[N]:=5;
FOH 1l:=1 TO N DO
BEGIN MARKS[1]1:=0; PNTR[1):=0; RETAIN[1]:=FALSE END;

FOR 1:zN DOWNTO 4 DO IF PNTR[1)=0 /®#NOT ON THE TRUNK*/
THEN BEGIN K:=HIGH{1]; 1F K<=3 THEN /* ENCODE THE INCOMING
' S1DE OF THE BASE TRIANGLE ®/ K:=K+LOW[1]-2;
CASES(MARKSL{K],ORD(INCL{1]));
IF LASTCASE THEN BEGIN DOWN; LASICASE:=zFALSE END;

END/% OF SCANNING DOWN #/;
/® NOW ALL THE INFORMATION NEEDED 1S 1N F1ELDS 'MARKS' AND
"PNTR' OF TRUNK NODES. MARKS[3] HAS TO BE PHEPARED
AND THE PRUNING OF THE TRUNK MAY START */

IF FLAG THEN /® A NEWBASE HAD BEEN DISCOVERED */
BEGIN CASE J OF

1: IF MARKS[3)=0 THEN M:=MARKS{2]

ELSE M:=s10®"MARKS[3] + MARKS{2];
2: 1F MARKS[1JzOTHEN M:=CHANGE[MARKS[3]]

ELSE M:=10%MARKS[1) + CHANGE[MARKS[3]]);
3: 1F MARKS[2]=0 THEN M:=MARKS{1}

ELSE M:=10%CHANGE[MARKS[2]] + MARKS[1]
END; /% OF CASES "/
MARKS{3] :=M;
t23; K:=PNTR{3); J:=zlU=J /% THE *'DANGLING' VERTEX %/;
WHILE K<NEWBASE DO IF FLAG
THEN /% NO TRUNK TRIANGLE FIXED YET %/
BEG1) SASES(CHANGE[HARKS[K]]13-ORD(1NCL[PNTH1KJ]));
IF LASTCASE THEN
BEGIN LASTCASE:sFALSE;
FLAG:aFALSE;
RETAIN[J]:=TRUE
END;
1:=K; K:=PNTR{1];
IF (LOW[I]=LOW[K]) OR (LOW{ 1)=HIGHI[K])
THEN J:=HIGH[I} ELSE J:zLOWL1]
END
ELSE /®*FIiX THE REST OF TRIANGLES IN TRUNK ®/
BEGIN RETAIN[HIGH[1]]:=TRUE;
RETAIN[LOW([1]]:=TRUE;
K :=NEWBASE;
WHILE I<NEWBASE DO
BEGIN RETAIN[I]:=TRUE ;
I:2PNTR[1] END
; - END3/® QF FIXING THE TRUNK 8/
IF I<KNEWBASE THEN
BEGIN CASES(0,0);
1F LASTCASE THEN RETAIN[J]:=TRUE
END
END /% OF GOING UP THE TRUNK %/
ELSE FOR 1:=1 TO 3 DO RETAIN{1}:=TRUE /®#THE OLD BASE WILL DO #/
END; /% OF DOWN AND OUT %/

BEGIN FINDINCLINATIONS;
DOWNANDOUT
END

