* %

Department
University

Department
University

of
of

of
of

CS-TR-77-6

Shortest paths in trees

by

T. Beyer*

S. Hedetniemi*

S.

Mitchell**

Computer Science

Oregon, Eugene,

Oregon 97403

Applied Mathematics and Computer Science

Louisville,

Louisville,

Kentucky 40208

Abstract

This paper contains four algorithms involving shortest
paths in trees; they determine:
A. the shortest path from one vertex to another (0{(logM))
B. the shortest distances from one vertex to all other
vertices (0(M)}))
C. the shortest distances from all vertices to all other
. 2
vertices (0(M"7))

D. the expected distance between two vertices (0(M})

The expected time complexities for a tree T with M vertices,
for each of these algorithms is indicated above. Algorithm A
first appeared in [8] but is included here for completeness;

the remaining three algorithms are new.

Key Words: trees, shortest paths, algorithms, analysis

1. Introduction

There is an extensive literature on the subject of shortest
paths in graphs, a comprehensive survey of which is found in.[10].
There is also a growing literature on the subject of recursive
representations of trees (also called father arrays for trees)
(ef. [2}-[51, 71-1 91,(11],[1i2]). 1In these papers it has been
shown that the use of recursive representations can considerably
improve the speed, efficiency and compactness of many algorithms
on trees. In this paper we show that the same economies can be
obtained for algorithms for computing shortest paths in trees.

In particular, we present an algorithm for finding the
shortest path from one vertex to another in a tree, whose worst
case behavior is O(M), but whose expected performance is O{(logM)
for a tree T with M vertices. This algorithm has the attractive
property of examining only those edges which appear on the short-
est path, unlike typical depth-first search algorithms, which
potentially examine every edge in a tree.

We also present an O(M) algorithm for computing the
shortest distance from one vertex to every othex vertex;
an O(Mz) algorithm for computing the shortest distances be-
tween every pair of vertices in a tree; and an O(M) algorithm
for computing the expected distance between two vertices in

a tree.

2. Recursive representations of trees
A tree T is a connected, acyclic graph. 2An endvertex
U in a tree is a vertex of degree one. A vertex V adjacent

to an endvertex U is called a remote vertex. A pendant edge

(U,Vv) is an edge between an endvertex U and a remote vertex V.
The following definition of a recursive tree was

presented by Meir and Moon in [6]. A tree T having M ver-

tices labeled 1,2,...,M is recursive if either M = 1 or M> 1

and T was iteratively constructed by joining the vertex with

label I to one of the I-1 previous vertices, for every I,

2 < I <M. A canonical linear representation of a recursively

labeled tree T with M vertices is an array c{l),Cc(2),...,C{(M)}),

where C(I}) is the label of the vertex teo which the I-th

vertex was joined in the iterative construction of T. This

is called the father array in [2] and { 5]. A recursive

tree is essentially a tree which is rooted at vertex "1".

Figure 1 illustrates a recursive tree T and its canonical

representation C. HNote that C{(l)} is undefined.

Figure 1

3. The shortest path from one vertex to another vertex

The following compact algorithm, due to Cockayne, was
originally presented in [8]. It finds the shortest path from
one vertex U to another vertex V in a rooted tree T by march-

ing toward the root of T from each vertex until a common

Recursively labeled tree T

1 23456782910
c 121324428

The canonical representation of T

FIG. 1

'ancestor' is reached.

Algorithm U~-T0O-V To find the shortest path from a vertex U

to a vertex V in a tree T with M vertices, which is given by
a recursive representation ¢(1),c{(2),...,C(M); the shortest
path is recorded in the array FROMU(l),FROMU(2),...,FROMU(UI};
the array FROMV(l),..., FROMV(VI) contains vertices on the
shortest path starting from vertex V; the last vertex on the
path from U (V) is UNEXT (VNEXT); NEXT, the larger of UNEXT
and VNEXT, is the vertex from which the shortest path is

next extended.

Step 0. [Initialize]

Set UNEXT + U

1]
14
(s

VNEXT + V

Set UI +« 1

Set VI « 1

Set FROMU(UI) + U

Set FROMV(VI) + V

Step 1. [Proceed toward root from larger vertex]
While UNEXT # VNEXT do

if UNEXT > VNEXT

then set UI <« UI + 1

set FROMU(UI) + C(UNEXT)

set UNEXT <« C(UNEXT)

else set VI <« VI + 1

et FROMV(VI) <« C(VNEXT)

w

t

set VNEXT +« C{VNEXT)

od

Step 2. [Record remainder of path in FROMU]
Set VI « VI - 1
While VI > 1 do

set UI « UI + 1

t FROMU(UI) <+ FROMV(VI)

w
1]

set VI = VI - 1
od

STOP

For a worst case and expected case complexity analysis of

Algorithm U-~TO-V the reader is referred to [6] and [8].

4. The shortest distance from one vertex to all others

We next present Algorithm U-TO-ALL which determines
the distances between a given vertex U and all other vertices
in a tree T. This algorithm extends the process used to deter-
mine the shortest path between two vertices, in Algorithm
U-T0-V, in the following way. In a first pass, the distance
from U to each vertex W on the path from U to the root vertex

"1" is determined and recorded in an array DIST(W). Essentially,

vertex V in the previous algorithm has become vertex "1".

The remainder of the vertices for which distances need to be
calculated fall inte one of two classes: either they lie in
the branch of vertex 1 containing vertex U, or they do not.
The latter distances can be calculated by adding the distance
from the given vertex to vertex 1 to the distance from vertex
U to vertex 1. The former distances can be calculated from
the distances to the vertices on the path from U to 1.
Because the tree is recursively labeled {(rooted), the dis-
tance from vertex I to U equals 1 plus the distance of vertex

Cc(I) to U.

Algorithm U-TO-ALL To find the shortest distance (DIST(VTX))

from one vertex (U) to every other vertex (VTX) in a tree with
M vertices, which is described by the recursive representation

c{1),c(2),...,C(M}.

Step 0. [Initializel

For I «+ 1 to M do set DIST(I) + -1 od

— —_— —

Set DIST(u) « O

Step 1. [Proceed to root from vertex U]
Set VTX +« U
While VTX > 2 do

set DIST(C(VTX))+ DIST(VTX) + 1

set VPX « C{VTX)

Step 2. [Compute remaining distances]
For VTX « 2 tc M do
if DIST(VTX) = -1

then set DIST{VTX) + DIST(C({VTX)) + 1

STOP

It is easy to demonstrate that the worst-case time com-
plexity of Algorithm U-TO-ALL is O(M) for a tree with M ver-
tices. Step 0 reguires O(M) time to initialize the array
DIST. The while-~loop in Step 1 regquires the execution of
two assignment statements M-1 times, and the for-loop in
Step 2 requires the execution of one test M-l times, plus

an assignment statement no more than M-1 times.

5. The shortest distances from every vertex to all others
In this section we present Algorithm ALL-TO-ALL which
computes the distances between every pair of vertices in a
tree T. These distances are determined by proceeding from
the root to the endvertices of T. The distance between a
vertex and itself is assumed to be 0. The distance between
vertices I and J is recorded in a distance matrix DISTAN
in both DISTAN(I,J) and DISTAN(J,I). Although only the

lower triangular entries are necessary, both entries are

stored in order to simplify the updating procedure. The
correctness of Algorithm ALL-TO-ALL is based on the obser-
vation that if a new endvertex V is added to a tree T by
adding an edge between V and an arbitrary vertex U in T,

then the distance from V to an arbitrary vertex W in T equals

one plus the (previously computed) distance from U to W.

Algorithm ALL-TO-ALL To find the shortest distances

(DISTAN(I,J)) between every pair of vertices I,J in a tree
with M vertices, which is described by the recursive repre-

sentation C(1),Cc(2),...,C(M).

Step 0. [Initialize]
Set DISTAN(l,l) « O
Step 1. [Compute DISTAN(I,J) for 1 < J < I]
For I + 2 to M do
for J « 1 to I-1 do

et DISTAN(I,J) + DISTAN(C{(TI),J) + 1

et DISTAN(J,I}) + DISTAN(I,J)

od
set DISTAN(I,I) + O
od

STOP

Since O(Mz) entries must be determined for the array
DISTAN for a tree having M vertices, any algorithm to deter-

mine the distances between all pairs of vertices must have a

10

lower bound time complexity of O(MZ). Algorithm ALL-TO-ALL
achieves this best bound. The initialization in Step 0
requires constant time. Step 1 involves an O(M) iteration,
during each of which O(K) operations are performed, for
K=1,2,...,M-1., Hence Step 1l regquires O0{M‘M-1}) = O(Mz)

operations.

6. The expected distance between two vertices in a tree

The last algorithm which we will present calculates the
expected, or mean, distance between two vertices in a tree.
We could use Algorithm ALL-TO~-ALL to determine this number
by simply summing all the entries in the array DISTAN and
dividing this sum by M(M-1). However this would require
O(Mz) time. Another algorithm for computing the expected
distance is given in [1], however, this algorithm also
requires O(Mz) time.

The following algorithm calculates the expected
distance in O(M) time. Algorithm EXPECT does not determine
the individual 1length of each path, but simply the sum of
the lengths of these paths. We illustrate this process with

the tree T on M = 5§ vertices in Figure 2.

Figure 2

We can see that the pendant edges (1,2) and (4,5)

occur in exactly M-1 = 4 shortest paths. That is, each of

10

lower bound time complexity of O(Mz). Algorithm ALL-TO-ALL
achieves this best bound. The initialization in Step 0
requires constant time. Step 1 involves an O(M) iteration,
during each of which O(K) operations are performed, for
K=11,2,...,M-1, Hence Step 1l requires O(M-M-1) = O(MZ)

operations.

6. The expected distance between two vertices in a tree

The last algorithm which we will present calculates the
expected, or mean, distance between two vertices in a tree.
We could use Algorithm ALL-TO-ALL to determine this number
by simply summing all the entries in the array DISTAN and
dividing this sum by M(M-1l). However this would reguire
O(MZ) time. Another algorithm for computing the expected
distance is given in [1}, however, this algorithm also
requires O(Mz) time.

The following algorithm calculates the expected
distance in 0O{(M) time. Algorithm EXPECT does not determine
the individual length of each path, but simply the sum of
the lengths of these paths. We illustrate this process with

the tree T on M = 5 vertices in Figure 2.

Figure 2

We can see that the pendant edges (1,2) and (4,5)

occur in exactly M-1 = 4 shortest paths. That is, each of

T:
From To
1 5
1 4
1 3
1 2
2 5
2 4
2 3
3 5
3 4
4 5

Shortest path Edge Occurences
1 2 3 435 {1,2) 4
1 2 34 {2,3) 6
123 {3,4) 6
1 2 {4,5) 4
2 345
2 3 4
2 3
3 5
3
5

FIG. 2

11

these edges contributes M-1 to the sum of shortest path
lengths. The edges (2,3) and (3,4) each occur 2(M-2) = 6
times in a shortest path. Hence the sum of the lengths of
all shortest paths in this tree is 2{M-1) + 2{(2(M-2)) = 20,
and the expected distance between two vertices in this tree
is 20 / (M(M-1)/2) = 2,

In general the number of shortest paths in which an
edge (U,V) occurs is given by S(M-S), where S is the number
of vertices in the connected component of T - (U,V) which
contains U. Algorithm EXPECT determines the number of times
each edge occurs in a shortest path by proceeding from the

endvertices to the root of a tree T,

Algorithm EXPECT To find the expected distance (EXPD) be-

tween two vertices in a tree T with M vertices, which is
represented by the recursive representation C{(1),C(2),...,
C(M); SUBT(I) records the number of vertices in the subtree
of T rooted at vertex I; TOTAL records the sum of the lengths

of all paths in T.

Step 0. [Initialize]
For I +« 1 to M do set SUBT(I) « 1 od
Set TOTAL + 0

Step 1. [Compute subtree sizes and TOTAL]

For VTX +« M downto 2 do

n

et SUBT(C(VTX)) + SUBT{(C(VTX)) + SUBT(VTX)

TOTAL + TOTAL + SUBT(VTX)} s+ (M-SUBT(VTX))

w
1]
o

IO
o

13

Step 2. [(Determine expected distance]
Set EXPD <« TOTAL/ (Mx(M-1)/2)

STOP

The worst-case time complexity of Algorithm EXPDH is
clearly O0(M) in the number of vertices M. Steps 0 and
1l require at most O(M) time, while Step 2 requires constant

time.

7. Summary

In this paper we have presented four algorithms
involving the computation of shortest paths in recursively
labeled trees. Each algorithm is expressed very compactly
and 'roughly speaking' achieves a factor of M improvement
in speed over corresponding algorithms for arbitrary graphs.
Although we have not done so, each algorithm can easily be
modified to compute the same results in edge-weighted trees.
In a subsequent paper we will attempt to design similar
algorithms for more general classes of graphs which can

also be recursively represented.

[9]

(101

(11]

(12]

REFERENCES

J.K. Doyle and J.E. Graver, Mean distances in a graph,
Discrete Math. 17(1977),147-154.

H.N. Gabow, Two algorithms for generating weighted
spanning trees in order, SIAM J. Comput. 6(1977),
139-150.

5. Goodman, S. Hedetniemi and R. Tarjan, B-matchings
in trees, SIAM J. Comput. 5(1976),104-108.

A. Kershenbaum and R.M. Van Slyke, Recursive analysis
of network reliability, Networks 3(1973),81-94.

D. Knuth, Fundamental Algorithms, Addison-Wesley,
Reading, Mass. (1968),334-338.

A. Meir and J. Moon, Cutting down recursive trees,
Mathematical Biosciences 2](1974,173-181.

S. Mitchell, Algorithms on trees and maximal outer-
planar graphs: design, complexity analysis and
data structures study, Ph.D. Thesis, Univ. of
Virginia, 1977.

S.L. Mitchell, E.J. Cockayne and S.T. Hedetniemi,
Linear algorithms on recursive representations
of trees, J. Comput. Systems Sci., to appear.

F. Neville, The codifying of tree structure, Proc.
Cambridge Phileos. Soc. 49(1953),381-385,

A.R. Pierce, Bibliography on algorithms for shortest
path, shortest spanning tree, and related circuit
routing, Networks 5(1975),129-149,

A. Priifer, Neur Beweiss Eines Satzes Uber Permutationen,
Archiv fir Mathematik Physik 27(1918),122-142.

R.C. Read, The coding of various kinds of unlabeled
trees, in Graph Theory and Computing, (R.C.Read, Ed.)
Academic Press, New York(1972),153-183.

14

