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Abstract

The relationship between parallel isometric array languages and sequential
isometric array languages is examined. Their hierarchical structures are inves~
tigated and a hierarchy is completed by introducing parallel context-free array
languages (PCFAL), derivation bounded array languages (DBAL), linear array lang-
wages (LAL) and extended regular array languages (ERAL). It 18 interesting to
find that some fundamental aspects that hold in 1-dimensional string languages

do not hold in theip g-dimensional counterparts.

Some parsing techniques ave also explored. It is shown that while parallel
parsing grammars may be much stmpler to write and parallel processing usually takes
less time than sequential ones, the nature of purallel parsing is very complicated.

'Finally, several future research topics concerning with parallel isometrie
array languages including theip complexities, hierarchical structures and applica-
tion to pattern recognition are discussed.

Index Terms - parallel iscmetric languages, parallel context-free array languages,

hierarchy, generation, parsing, automaton, pattern recognition, array grammars.



1, Introduction

Racently the study of 2-dimensional grammars and languages has become
more and rore important and Interesting since it has significant applications
in the data processing of 2-dimensional pateerns[l2, 17, 23]. That few studies
have been done in this field is surprising considering numerous and extensive
studies in the area of l-dimensional or string grammars and languages. This is
probably due to the Fact that a reasonable grammar for 2-dimensional language
is very difficult to obtain by natural extension of the grammars for l-dimen-
sional languages. For instaunce, in the string case when a l-dimensional rule,
say A = BCD, is appliced to a sentencial .furmn’,\p we pet oJf BCI)ﬂ « This can be
done by either pushing o to the lelt or pushing 4 to the right. When the app-

lication of a rule is extended to 2-dimensional case we are immediately in
y

trouble. TFor example, if we apply the rule A 5 gn to the sentential form
XXX
YAY we may obrain
272 X

ANE NEX XXX

Yuy or YCDY or YBY ov

LCDZ YN yARY

A Zz

The shearing effece {23] occurs and what we really want might be totally
disgoéted. Therefore, to promote research on 2-dimensional lunguages and pa-
tterns we need tolfind an appropriate general mathematical model of the grammar
for such languages and patterns.

In 1964 Kirsch [irst proposed a model called "array grammar”[10], which
falls into this catugory. A similar formal system is cstablished and grammars
for languages consicting of classes of polygons are c¢xhibited by Dacey [3,4].
There alse has been work on the relation of array prammiars to other topics., In
[14,16,17]Rosenfeld has eximined some relationships between array and string

grammars. Autemiata whose tapes arve 2-dimensional are studied in Blum and Hewite



(1], Fischer [5] and Wany [23) and the relacion of such automata ta array grammarg
is discussed in Smich [22], Cook and Wang [2] and Bosenfeld [17].

However, the fundamenrtal properties of array arammars such as hicrarehical
structures and parsing techniques remain Largely unknown, Thus, to promute re-
search on 2-dimensional languages and patterns using arrvay prammars we ncod rto
further dnvestigate and waderstand more thoroushly the fundamental propertics of
array grammars. This {s one of the molivat {ons o this rescarch paper,

The other iIs the parallelism. In Mercer and Rousenfeid (11} a parallel arcay
gramnar programming system is designed and it is found that parallel derivacion
tukes less time and that parallel arvay grammars are usually simpler to write
than scequential ones. Furthermore, parallel technigue iy especially natural for
array grammars since local picture operations are often applied to digital pic-
tures in parallel as pointed our in Roscenfeld and Plales [18]. However, very
little is known aboutl the basje aspects and phenomena of parvallel array gramears
except that in{l4] Rosenfeld has shown thut any parallel monotenic array lan-
Buage is a monotonic array language and vice versa. For instance, the relation-
ship between parallel context-{ree array languaves and context-free array tan-
Buages us introduced by Cook and Wang (2] remains unkoown.

The main purpose of this rescarch paper is therefore two-fuold:

(1) to provide some basic backprounds that wi)l lead to furthor Fnvest ipn-
tion of the fundamenual propevites of array prammars and Languages, and

(2} to study che parallel tecimiques employed for array language generat Lon
and parsing.

The auther alse Intends to solve some open questiong mentioned in this sec-
tion as the subpoal.

In section I some definitions and natations are revigited., In section 4,

some fundamental aspects of array languages are fovestignted. 1t is interescing
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.« to find that somc properties that hald in l1-Jdimensional string languapes do
not hold in their 2-dimensional counterpart:. Scection 4 explores some parsing
techniques for array languages and it is wbserved that parallel parsing, while

advantageous, is extremely complicated In naturc, Finally, some future research

topics are discussed in section 5,

2. Array Grammacs and Languapes

Definition 2.1 An array grammar is a quintuple ¢ = (VV,V“,P,S,ﬁ) where
A 1
Vq is a nonempty, finite set of noti-terminals,

VT is a nonempty, finite set of terminals, VTn VN =@,
5 € VN is the starc symbol, #£ VNUVT is the blank symbol, and
? is a sct of production(or rewriting, gencrating) rules.

Fach member of P iy of the form ol 2 A and can be explained as follows: Let
J be a {inite connectcds subset of IZ, vhere T is the set of integers. Let { EIZ.
Then o and A are mappings from J into VT U VN u {ﬁ]» V such that if o (1) = a
£ VT then A4 (i) = a, i.e. terminals dre oever rewritten,

An array A s a mapping 12 & V. A production rule o 2 is applicable
to A if Ja translationT of the domain J of o such that A ! TJ =, We say A dire-
ctly produces A' (or A' is directly derivable frem A), written as A DAY, If for
P ->.§ applicable to A, A’ [{J =4 and A'l (Iz-fJ) = A I(Iz- TJ3). Let & pe
the transitive and reflexive c¢losure of = . Then for A gbﬂ, E 1s said to be de-
rivable from A and is called a seatenti{al form.

2

An initial arvay As is a mapping I7= {#,5} surh ChnL{ i IAS(i) = fi} is a

singleton. A terminal array AT is a mapping from 12 into VT u {#} » The array lan-

¥

guage penerated by an arvay grammar G is L{t) ={ i |Aq =2 b, B a termival array }

$By connected wo nean “ronkwisc-cnnncctcd”,i.u., points (1,i) apd (i*,j') are con-
. 2 .

nected iffli - i'l +|j - j'lﬁ L. A subset K of 17 is connccted iff, for any two po-

ints p and q in K, there is a sequence of points pl,pz,...pn In K with Py=Ps P "4

£ & .
and Py connected to pi+]' 1 i HP



« Inoorder to aveid the shearing ef [eer [ 23}, in each rule i~ '-‘>ﬂ o .'mdp

are isometric, i.e. geometrically identical. An arrvay prammar is called monotonic

If it can never crase, i.e, il for each rule i @/ﬂ ,_ﬁ (i) = # then 4 (i) = 4.

Definition 2.2 letr ¢ = (VN, VT' POS, ) be an isometricarvay grammar. Then G is of

(1) Type 0 (isomezric, IAG) if there Is nu restriction on P, or

(2) Type 1 (monotonic, MAG) if G is nenotonie and both sideyg of each rule are con-
nected, ar

(3) Type 2 (context-free, CPAG) if it is monotonie and the left side contains cx-

actly one nonterminal symbol in a field of #'s, or

(4) Type 3 (repular, RAG) {f every rewriting rule is in one of the followinyg forms:

# . i A S |
5 A oaR . i
N > Ba , Af » up A > a2 g+ or A =a

where A,B £ \'N and a ¢ V'l‘

Let TAL, MAL, CFAL and RAL denote the isumutric,mnnutonic. context-freoe and
regular arrvay languages, Fespectively.,

A possible modification to the definitien of a derivation in an array grammar
is parallel rule application: .o, all instances of the rule's antecedent are gim-
vitaneously replaced by the conseguent (rather than Just one instance).Let the
language generated by an array grawmar G in parallel be denoted by Lp(C). Let PIAL,
PMAL, TCFAL and PRAL denote the parallel languapes penerated by IAG, MAG, CFAG and

RAC respectively,
J. Parallel Contexi-Free Avray Languages

We first observe that in string case, piven a context freoe grammar G, the lan-
guage generated by ¢ sequentially (denoced by L(G)) always covers the language gen-

erated by G in parallel (denoted by Lp(C)), i.e. ¥ CIG 6 (L(O) 2

L (G)). This is
p
true because if a sententinl farm, say,d contains more than one occurrence of the

Same nonterminal, say, A, then what we can obtain hy applying a rule, say, A 9}6 ,

te all instances ol A simul taneously (in parallel} can also be obtained by applying
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" the same rule A /5 to all A's onc by one (sequentinlly).Therefore, whatever a
. 4
parallel derivarion can obtajn cuan alsa be obtained sequentially. However, it
is not so0 in array languages.

Example 3.1 There exists a CFAC G such that both L(G) and LP(G) are not empty and

AG G 4.
L{G) n Lp() y

Let G = ({s,,\} ,{u] , P, S, ) where
Pois i A it i i a
Si# » an , f a . i a
D TREN
1 A # o W i
AffE aan AbEEE anaaa
al da a
B 1 ( nd ad
a1 (13 <l
It can be seen that L{G)= ,daaa and L](C}=-,1uaa§u 4334
afnad J i (daaza  ,  aha

Therefore L{(G) p Lp(ﬁ) = @ . Please notice thw difference between parallel

derivations [Definition 2.2, page 4] and sequential derivations [2,14,15,17] for

isometric array grammars. Furthermore, we can see the following:

5 a a
Lemina 3.1 (A Small Pumping Lemma) let LU=1 n 5: . }n m,n 2 2 } si.e. all
a...a

S

in
equal-armed U's. 1f a CFAC G can generate all the sentencoes of LU‘ then it shall

also pencrate a a
LUr - n {: . B p | p#an,.n,p >k for some k 2 2,m 2 2
a...a
L
m
Prnof; Let C = (VN,VT,P,S.#) be & CFAG that can generate all members of L .Consider

!
the [ipure helow: (Figure 3.1)

16 Q7 .
N | il
G & 6

3 g“--?-'“&‘s Figure 3.1 An equal-armed "y"

In order to gencerate this patturn‘Lhuru are 7 possible positions to start with
as shawn above. Notice that because of ils symmetvy we need only consider
points 1,2,3 and 4. .

Assume starting trom point 1, then there wist be rules which should enable

derivations downward, then horizental towards right, then upwards. Since there is

essentially no control over Low far it will derive dowvnward and upward, it must
i '
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-‘also-gcnerncc all members of LU,. Stmilar aveuments hold for situations starting

from points 2,3 und 4. 0.E.Dn,

Lemma 3.2 Theve is a PCFAL which 1s not CFAL.

Prool: We claim cthat !.U is such a language. Let € o= ( tS,ﬁ.B} ,{:1} PS5, #), where
: N S S 1 <o a1,
P = {S# 2AA, M s, A 20, 8 >a, B J . Clearly dqu) = LU and from
Lemma 3.1 LU is not a CFAL. Q.E.D.
Lemma 3.3 There is a CFAL which is not PCFAL.
# S
Proof: Let 6 = { {S,Ak ,{n},iﬁﬁ# »8a5, # 3 a4, 5 3 n} v S, dY., 1t can be seen
5 S
that L{G) is a maze~}ike lanpuage, denoted as In. F'or instance, the following
pattern is in the language : (Figure 3.2)
a a
a a.
A aan a an
il H
AT D00 aan g oa
o a aa a1 £ L
ioaadaa i a aad m

Hoa d o0 R
40 ana i aah ou
Ao a3
dilLARAaaaaa Figure 3.2 A maze-like pattern

We claim L iy a CFAL bul not a PCFAL. A detailed proof is rather tedious.
i
lfere we just outline the basie principles behind.
To generate this pattern, suppose we start from the lower leltmost corner.

Realizing its horizontal and vertical batteras, we sce that there must be rules of

oo

the forms (1) # 9 4 and (2)  5#! 5 Cabd. Since these patterns can essentially be
5 A

repeated to the vight and upward as far as one wants » these tules must bhe re-

cursive, f.e. B =8 and D = S,
Furthermove, all gencrated A's should have the capability to derive the same
pattern as by rule (2) and all gencrated C's shoutd have Lhe capabilicy to derive

the same pactern as by rule (1). Therefore, there must be rules of the forms

- 1}

(3) A » Ea¥ and (4) 4 > 4 . Similarly, because these patterns ean ssentially be
(& [N

repcated to as far as ene wants o these rules must be recursive, i.e. F = A and

H= C.
Continuing this argument we obrtain the following situations., In order to go-

nerate L odn parallel, (1) we aeed an iafinite nwnber of nuu-rerminals and rules,
1]

O



or (ii) if che number of non-terminals aet rules is linite, then we can not
avold derivations whose senteatial forms involve more than one occurrence of the
same non-—terminals.

Either of the above s{ituations leads us to conclude that there is no any

s

m

CFAGC G such thar L {6
P
Similar argument  is hold if We assume starting derivation from any other

locatlons of the pattern.

Q.E.D.

Let Z“(PUFAL) denote the family of PCFAL's, o (CFAL) denote the family
of CFAL's and so forth. Fron Lemmas 3.2 and 3.3 we immediately see that
Theorem 3.1 ¥ (PCFAL) %f(cr,u.).

It would he interesting to ask whar L PCFALY Y JACFAL) is. Evidently It
1s not empty.iec's define a CFAL L(G) tu be derivation hounded (DBAL) %f for
each sentence in L{Q), its derivation involves no more Lhan Ik occurrences of
the same non~terminal in any sentential form. Then following the similar argu-
ment by Sivomoney and Krithivasan [ 20 )] we see that
Theorem 3.2 & (PCRALIN Z(ckaL) = P(nnat).

Another interesting question would be : is there any MAL which is not a
PCFAL or CFAL? To answer this question we first nced a lamma.

o1 oo
Lemma 3.4 (Another small pumping lemma) Let I, ={.# a' b g l n 2 l} . h CFAG
‘G Ehat can derive all seatences in L should alsn gencrate all sentences in
{ #97am b“?n¥nﬂuz %, m # n for some conscant k&]}.
Proof: The arpument here is similar te that of Lemma 3.1, Tet G=(VN,UT,P,S,#) be

a CFAG such thay L[{G)=L. Considur the follewing pattern: (Ficure 3.3)
] —=hure 2.0

n n
i e Y
#oan...ac. . aabb. . b, L hhi

) ¥ & t 0

)i 3 4 5

va &0
5 Figure 3.3 # a" " ¢

[ ]

In order to pencrarve this pattern there are 5 possible places to starc wich

a5 shown above. Naotice that heecause of ics symmetry, we need only consider loca-



Eioné 1,2 and 3.

Suppase the derivation starts from location 1. There must be rules of the
form 51 » as, sf » nSl, Slﬁ 3 bSl and Sl 2 b. Since both strings of "a" and
strings of “b" can be excended arbitrarily loayw, there is essentially no control
over how far each string will be extended (unless using context-sensitive rules).
Notice here that the parnllelism does not give us any special privileges for a
one~dimensional array, and the effect of parallel dervivations makes no difference
to sequential ones. Therefore [t should also be able to derive all members of

¥ m on_ ™ .
£ a" b # jm,n2 k, m# n for some constant lk iy
L]

Similacly for derivations starting fvom locacions 2 and 3.
Q.F.D.

Lemma 3.5 There is an MAL which is not a FCIFAL or CFAL.

. ) PN ) .
Proaf: We claim that I = 1# a b # l I 1} is such a language. This can

be seen directly from Cook and Wang { 2 ] that L is an MAL. but not a CFAL aund

[

(j.E.D.

., < .,
Theavem 3.3 ¥(PCFAL) U JZ'(CraL) # JL(MAL).

of PMAL and CFAL is a special case of MAL aud from Rosenfeld {15 ] that jf(PHAL)

= AL,

0.0.D.
fow 1 am going to introduce two new array languages.

Definition 3.1 An avray grammar G is called linear (LAG) if avery rule is of

type 2 and the right hand side contains at most one nonterminal in a fited of

% i .
e}

Definition 3.2 An array grammar ¢ is called extended regular (ERAC) if cvery

rule is of the form of cith type 3 or #A 2 o, A > Ba, i 2" er 2 > U5

A B’ a

Let LAL and FRAL denote the linear array language and extended rogular
array language respectively.

Lemma 3.0 PMhere §s an ERAL which I8 not an RAL.



fad
Proof: The languape aa a is not gencrated by any RaG (Cook and Wang{2])
# af
but is pencrated by the following ERAG: 6 = ( {S,A,H,C,D }. {u }, P, S, #)
where P = S# > Aa, i 2> a’ i 2 ac, - > D, Doa u} 0.E.D.
A B #t a
Lemma 3.7 There is an LAL which is not an ERAL.
##ali
& a i
Proof: The languagpe aaaaau is not gencrated by any ERAG, bur is gen-
tdad \ .
[ g &80 # Al ﬂ

§oF o Fifoa f it

erated by the following LAG G=(l S},{a}, PS8 aaaa s S,
dod i fFF a8 .
PUAEE Hdatd Q.E.D.

Lemma 3.8 Therc is a DBAL which is not an LAL.

n in
F— ey i, .
Proof: We c¢laim that LT =-{ ad, ..aga...aa m,n,p 2 1%Yis such 2 language.
cLp
a
<l
Suppose L, is an LAL. In order to generate it, there are essentially 7

r

possible locations to start with as shown in Figure 3.4:

i 2 3 4 5
F 3 i o [
Qdee e ., d. .. ad
X 6
a e
Figure 3.4 a member of | 3 7
_——r s = L T

Because of its symmetry we need only consider locations 1,2,3,6 and 7. Su-

ppose the derivation starts from location 1. Then therc wust be a rule of the

[ . L. : .
form S¥ 3 a$S since n could be as farpe as one wants, Once this derivation reaches

location 3, it faces a decision as for whether to continue derivation rightward

or downward, If it continues tu derive downward, then it can only cxtend a finite

L

nember of "right' arms, i.e. m ¢ k for some constant k since there can be at most

one nonterminal during dervivatrion. Similarly, if ir eontinucs derivaticn righe-

ward, then it can onlv extend a finite number of “downward arns", i.a. p =k for
some: constant k. This shows that it can not fonerate LT.
Similar arguments hold if derivations start from other locations 23,0 or 7,

Theretfore LT is not an LAL. However, it is a DBAL generated by the following DBAG



)] ] ,
G, = ({s,n,a} . {:1} , P,5,#), vhere P ={ / j R [; YA s an v A 3 Aa

B a
"
From Rosenfuld{15,17]), Cook and Wang[2) and the fact that every RAG (ERAG,

A3a, B 9:1} : 5 Q.E.D.

LAG) involves no sentencial forms with more than one nonterminal, we conclude
the fellowing hierarchy [or array languages:

Theorem 3.4
2 2, 2 2 2 > 3 .
Q1LY # Loy £ JCcFAL) # LosaL) % o) { £leran) # JL(RAL)

- - 2 = = =
SAPIALY  F(PMAL) L(PCFAL) FACFALINSIPCFAL)  J(PLAL) JL(PERAL) Z(PRAL)

{

o~
-l
™
£

¥
—
-~ _(:I.V:i:))a::

“-ﬂ
AN
N >~
~

Figure 3.5 a hierarchy of isomotric array languages

4. Complexii'es of Cencration and Parsing

This section discusses the recognition and genervation of PCFAL's. In

10



{14}it has been shown that given an MAG G, L(G). LP(G)' the language parsed
sequentially (denoted as LP(C)) and the language parvsed in parallel (denoted
as Lg(c)) may not be the same; and in Mercer and Rusenfeld{ll) several exam-
ples of parsing grammdr; are given, But nothing has been mentioned concerning
with how a parsing grammar could he obtained from a given array grammar. This
open question will be further investigated in part for PUFAL's,

We first observe thact while LU introduced in lomma 3.1 is a PCFAL, anoth-

er very similar language Lu defined in Example 4.1 is not g PCFAL.

d c

.F;).CEHIE:ILE 4.1 Let LU = n {. :}n I m,n = 2 '
a Cc
b...b

m
From a similar reason as Lemma 3.1 we can see that i a PCFAG G cuan derive

all members of L., then it should ilso be able to derive all members of
u

a C
L, = 1t {I I}}m l m= 2 on# p, n,p2k for some k22 V.
4 a ¢

bh...b

i
Therefare Lu couldn't he g I'OFAL.

This shows that the nature of a PCTAL not only depends oo its patcern
(shape) but also depends on its vocabulary (content). This is different from

) . . I, n non . . L
l-dimensional string case,wherea b and a a, n2l hoth are in the same hierarchi-

cal category, i.e. context free.

To parse a PCFAL is even more complicated. The key poinr is cthat, given
a 2-dimensional input array, we usually don't know where tu start the parsing
process with. We will demonstrate this complexily by using two possible screcings
for array parsers, one is "parsing grammar™, the other is "automaton,

Let's dafinge o parsing grammir to be g quintuple ¢ = (VN.V;,P,S,#), where

each component has exactly the same meaning as an array prammar except thar all

the rules in P have the form d €« f . The lanpuage parsed (recognized, accepted)



*

by b is defined as LP(C) ={£K16K 3 Aq' L connected terminal array } Y Lg(c)

¢
if parsed in parallel. For convenience, let's use the notation LP(G) to denote
the languapge parsed by the parsing grammar obtained from reversing all the arrows
of the ruies of the generating grammar G. Simitarly for LS(G).

Evidently, given a CFAG G, che languagpe generated and the language parsed
in parallel may not be the same, i.e. LP(G} # Lﬁ(G) in gencral. This can be seen
from the following example.
Example 4.2 Let GU be the CFAC stated in Lemma 3.2 such that LP(GU)=LU' Evident-
ly Lg(GU) # LU. In fact LS(GU) = (A, For instance, Lo narse an "U" with height n
and width m, we immedintely obtain an "U" of #'s and then can not proceced any

further as shown in the follewing figufe:(ﬁigu;g 4,1)

)
R Bt
n . : j n ===:;=======.—.:=='_-;> n : : n
a...0 aoply rule B & a B...0
Mg hanie it
Figure 4.1 m "

The above difficulty can bLe overcome by properly taking care of the
"boundary cnnditi;n“, L.e. the boundary envivronment of sentential arrays during
derivation process. This usually will garantee the parsing process will start
from the appropriate locations and then the subsequent parsing will continue as
a reverse derivation process. Tuke LU for Instance. Realizing that the "boundary
condition" of LU is that wlien the terminal rule B 2 a is applied, all B's terminate
and are replaced by a's in such an environment that each ending "a" has "#" as its
west, north and cast neishhor, one can desiyn o pavsing gramnay by appropriately
modifying rule % % a of GU as in the following example.
Example 4.3 Lot G = ( {G,A,H } , {a} P,5,#) be a parsing prawmar, where

- Y - "
p ={ 8¢ ¢ aa, @it e an, ] e 2 @l OGP j

)] ;
It can bhe sean that L!(C)=Lt.Nuticu that rule (5) takes care of the Lhoundary
i

condition.



Since LU is not a CFAL, to find a grammar ¢ to gencrate LU sequentially, ¢

must be at least context-sensitive, i.e. monotonic.

i

Example 4.4 Let G { S,A.y,n } ,ia}, P, 8§, #3, where

i th D A
P =1 (1) 54 3 A5 , (2) 54 » AB, (3) B » D, (4) AD » DA, (3) A D,
i A A 8] # A
(6) #AD > A, (1) D A (BYD2A L (9) A Da, (10Y B 54
A A
1t can be seen that L(E) = LP(E) = LU. llowever, we observe that in avder to
parse an input array (U) with height noand wideh w, it takes mo+aa+ n(n+l)

steps if G is used while it rakes only m + n steps if ¢ is used (in parallel}. Fur-
thermore G uses mere non-terminals and rules, and its structure is more complicated
than that of G's. lLet GU denote the grammar in Lemma 3.2 that penerates LU. The

comparison between parallel and sequential parsing can be summarized below:Table 4.1

GU G(parsing)| ¢ G(parsing)
no. of nentevwinals| 3 3 4 4
no. of rules 5 5 10 10
structure of ru]es___CFAG simpler MAG more complicated
time complexity O (m4n) O{m+n) Gim.n) O{m.n)

Table 4.1 Comparisen of sequential and parallel parsing

This idea works for a rather larpge class of PCFAL's. The following illustrates

]
how 1t works for some electrical netwarks,

Example 4.5 Let ¢ = ¢ {S.S',+'S ,iR,C,+ }, P v S, #) be a CTAG, where

5 : 8!
P: (1) i -2 n 2y # -3 R
}. Sf SI
(3) s'4# 10! (4) +"id 0" {5) +' => +
y n i 77 r

If we interpret the primitives (terminals) as K= % , C='ﬂ-, and + = nade,

then LP(G) {5 the ser of all grid networks with capacitors on the horizontal llines

13



and resistors on the vertical lines. A derivation is shown as follows: (Figure 4,2)

s' 1-C+! +CHCHCHCHCH

R R R HERRRR

' +C+! FCHCHCHCHCH!

R R I RRRRRR

o +C+' +CHCHCHCHCH'

R R R ;, RRRRRR

£ (1) 5" (2)(2)(2) ' (3) +C+! (&) +C+CHCHCHC+!

i == R e=ssss==3 R == R K == RRRRRR
S + + + +

FCHCHCHCHC+

i RRRRR

+CHCHCHCHCH

RRRRRR

(5) +CHCHCHCHC+

=) ERRRRR

+CHCHCHCHCH €L (6)
RRERRRR
..I.

which can Le visualized as in Figpure 4.3,

' Innimml
saulasl

i AFE-H
?

H r{«

l Lo

Fipure 4.3 A netvork as a member of LP(G)

In order to recognize this network, we shall modify rvules (1), (2), (5) and

reverse rules (3) and (4) to obtain a parsing grammar G' as follows:

et
i~



;' o= ({S.S'.+'} ,{R,c,+} P s 8y, i i i it

# s' i s'
whete P is (Ly # &-n 2y 1 &= R
5 + g! 5!
s'pd +C+! o+ +C4! - .
' = 4 = ) +'i €~ it

Notice that while vule (5) of P' takes care aof the boundary condition con-
cerning with the termional rule, rules (1) and (2) take cave of the houndary con-

ditions invelving non-terminals also. It can be seen that LE(G')=LP(G).

However, while parallel parsing grammars usually are simpler to write and
take less time than sequential ones, the above idea to obtain them does not work

for some PCFAL's. This can be demonstrated in the following cxamples.

ey

Example 4.0 Let G1 = ({ S} . {a} s {S##a Sst é > i, S > n} v &, # ). It can be
e i . | ) N
seen that Lp(Cl) is the set of all rectanples. Clearly LS(Gl) 7 Lp(Cl). In fact

) i
LI(G } alsu contains all "L"-shaped patterns. For Lustance, i € LP(G ). 1t
p- 1 daaa pl

turns out that the "boundary condition” techinigue does not work for G . However,

it works for an equivalent srammar G, in the following example.
it
A
s, # ). Clearly Lp(CZ) = LP(Gl). Realizing the boundary condition, we can modify

Example 4.7 Let G, = ({8, {;1] ,{(I)Hi—'#:} s::‘((z)g > (3) >0 » a} .

rule (4) and construct a parsing grammar GB an [ollows:
|

a A A

- { o . ) ( ‘g o, A A SN f .
6y = ( {s.] . {1} st ssirg e Lone Ml B gy,

- i -1y . r]( = :
It can be seen thut Lp\Cj) Lp((l).
llowever, one is not alvays so lusky to find an equivalent grammar for which
the "boundary condition" technique applies. This can be illustrated through the
following example adapted from Mercer and Rosenield [11]).
. S tar ¢ o¢d e ! # 5 : :
Example 4.8 Let Gﬁ = ( {s'}, {nJ . 3 (1) g 4 > i g0 (2 s >a),.8, §). It can
be seen that Lp(Cﬁ) iy the sec of all isosceles vight trianpgles composcd of a's

]

i a i 1 "'-. Ny 4 l) B 3 : . - p . - ]
o a field of #'s. Clearly LP(FA) # Lp((h)' o Tact Lp(&b) aJ .



Notice that uven the boundary condition is taken care of by modilying

g _
rule (2} to f g € ! po AT B4 sCE1L not satislactory,
i i
Example 4.9 Let G =({s} ab o day d L (2y o S B
Example 4.9 Let G U st ae B g sy s 0.

It can be seen that Lg(GS) # Lp(ﬂﬁ)' In Lact, all squares with the north easr

corner cut also helony to the Linguage. For [nstance, see Figure 4,4:
ez o)

aaa aas a:1 as i S )

HERE 2 anas 1} . aas {2 a5, 1y. as 2y as

aaan =£=l€>3a43 =£=;% aaaa ===;$ 318 =£==%>Jn8 =£“=é5323 £;lﬁ> .¢LP(G ).
anaa aaan HERR HERA] Wadilil aaas S pSs

Figure 4.4

It is the author's conjecture thact there is no equivalent CFAG € such thar
LP(G)=LP(C4) and the "boundary condition" techanique can be applied to G to obtain
a parsing grammar which captures chcé)'

This drawback motivates us to try anuther model, namely “auvtomarcon',

Let's define a puarallel arcay automiaton to be a G6-tuple H=(Q,§:,f’,!,q0,F)
where Q is the ser of states.z:iﬁ the set of input symbols, i’ is thp set of tran-
sition symbols, qufnjis the starting state, ¥ & Q is the see of Final states, and
§ is the state transition funcelon in the form J(q,ﬁ?} = {(q',Jl),(q“,Jz),... } .
The interpretation ot § is in the usual seuse. Let (F and /3 be two connceted
arrays over2 U {", then (4, ) F-(q', ) if there exises (q'.ol){« d(q, £ ) and
/3 is applicable to a {(in parallel) and [3 is obtained by replacing all B in OF
(iniparallel). Let i Lo be the transitive and reflexive closure of L. Then the
language accepted by M can be defined as fol lows: LP(H)=FﬂI{HO'ﬁ)ﬁ (qE,AS),qfé I,
Ul is a connected terminal arvay and AS is an initial array defined in scction 2}.

Lssentially, a parallel array actomaton(PAA) can be considered as a parallel
autonaton which works as a parsing array grammar with internal state. This idea
works for a rather larse class of PCFAL's including those which are not applicable
for the “boundary condition" technique, such as the ene in Example 4.9. This can
be illustrated In the following cxanple,

Example 4.10 Ler “a = ( iqo,ql}. {:1}, {S} ,d-, q, iq]k) whore£.i5 defined as




n

§ (q J )=1(q g ) J (g S Y= {la,, L Y. It can be easily
o’ a f 1" s ¢# ! L' a s s ¢
verified that Lp(M/) = L (C[).
( p 4
While the model of PAA scoms appropriate for PCPAL recopnizers, it does
have two drawbacks: (1)Some PAA is Ltoo powerful; it can recognize a non=PCral,
¥ n.on W~ . .
such as[# a b @ n 217, and (2)There exists o PCFAL which can not be re-
cognized by any PAA. This can be described through the following examples.
Example 4.11 Let M = ( {q .ql} ) {u,b},{A,B.S},E, A9, - {“1P vhere § is defined
. . . L. = i = ) 4
as follows: & (qD, ffa) {(ql. IA)] § (q1 hit) i(q , B.)j .
{ a1}, 8 Gay, b < {ta,. 0}

('-: ] Sfl}

1§

¢ (g, Aa)
J (q y AB)

1
e,

no,n W . . .
It can be scen that Lp M) -{ a b # |n 2 l}, which is not a PCFAL.
Notice that even the range of § is restrictod to exactly one nonterwminal in a
field of #'s (which corresponds to the o of a4 I'CFAC rule CJ%‘ﬁ Y, M is srilt

teo powerful,

I

Expmple 4.12 Let G, ({S,A.B,C,D] : {a} + P LS, #) be a CFAG, where

H A i A B a (o a

P={:‘:'é>n5,;-3 Ca g M an B s an, Bl 050 e s is ae .,

a A a 4 C c*
I
D 2> Da, b, A , 8 » u} .
[ a

Tt can bee seen that LP(GG) is the set ol all "rugged saw-tooth"=shaped

patterns, some of thom have clused perimeters. For instance, the following twe

mambers are in LP(Gﬁ): (Figure 4,5)

NN HAA]
A Jd ddaaan
aaan aaa g 9 @ HE a
4 a aaa i : n aan i
aaaaan a  aaad a a d #
a= a3 aaaaa i) 4 fa ZBHE I d € L (G)
;_{ aaa 51 1 p b
b a
(a) aanaaaaaaaaaaanaaansinall ,» (b) 1anaanunw131uqnuelad

— e LT

Fivure 4.5 Some memboers of Lpfnﬁ)
To construct a PAA to recognize Lp(cﬁ) will fail because it will lways missg
those which have closoed perimiters. Take Iluuro 4.5 (b) for instance. To form a
closed perimeter, the rule § 2 a should end up aL location L, 2, er 3 as indi-~

LI |

cated in Figure 4,5 (b)), Considering thesec boundary conditions, a would be PAA



.

should include the following § transicions: (1 5 (q.nnu)zi{q',ﬁnu)}, {2)
S S8y t o4 J :_{ ' _:! .
(q.aa)= {{(q',8a)], and (3) (¢, a a)= I(Q ,» @ 8) (. However, applying any
of these transilions to a closed perimeter in parallel wilf vnavoidably di-
vide it into severul separate regions. For instance, if (3) is applied (in
parallel) and then J(q',nS): {(q’, S#)} s applied (in parallel) to Figure 4.5(b)
we will obtain the following: (Fjguru_i;g)

dITITIEA

i aan000
aaa i a.a a
a i ] as i
a A a
a aaaaal d
i n

Susanazanaanaanaaas”
Finuve 4.6

This means that the parsing will néver rueach AS and thurefore Lp(Gﬁ) can
nol bu recognized Ly any PAA. Notice that here we cven velax the restriction of
the range of of J to be exactly une nonterwinal in o ficld of 'y,

Interesting enough, a very very similar (alwost identical) pattern ol L (BG)
is veadily reccpuized by a PAA.
Example ﬁ;&l Let Cé be a CFAG identical to Gﬁ exvepl that the rule § 54 isg
replaced by S > b aud VT ={ u,b) Instead of (n} - It is easy to see that Lp(Cé)
is almost identicul o L](C ) except that the Ltevininattug symbol is "b" racher

1"w_mn

than “a". llowever, because of this unique, outstanding "b", one can easily con-

!
struct a PAA Hé to recognize L (Gé) as follows.

Example 4.14 Lot W = vy abt 4S8 AB, 0D ) E 9, 191 wvhere
4]
i
(q Wb {(q } s (qn.ﬁ) = {(Ilu';))}'
E (q , D) ={(q . L),(q ”D)} , g(qj. g) i l (qo.z) ’ (qo’g)}'
5 (q ~i (q (qo, ;)} . J(qn, apB) = i(qo Bi#Y (qG,A#)}.
J (ql,]\) { (q , (qo, Sﬂ)}.

It can be zeen rhas l.E M = LO(GlY.
() = 1 (Gp)
This demonstrates that in dealing wich Z-dimensional isometric patterns,

the nature of paraliel parsing s wueh more complicated and tess well behaved

1d



than that of parallel genmeration, which in turn is more complicated and less
well behaved than that of its l-dimensional counterparts. Also, both parallel
parsing and generatiuvn arc more complicated than sequential ones. In fact, it
can be seen that for cvery CFAG G, L(G) = LP(G). Furthermore, the hierarchical
structure of a parallel isometric array language not only depends on its pattern
{shape) but also depends on 1its vocabulary (content). So is the complexity of

.

parallel parsing.
5. Discussions and Conclusions

We have just established a hierarchy for isometric array languages by show-
ing that yf(FCFAL) and & (CFAL) are incomparable and that S(PCFALY N nZ(CFﬂL)
=°ZYDBAL). This result Is very similar vo that of 1-dimensional stving languages
as shown by Sitomoney and Krithivasan [20] and Skyum [21]. However, the behavior
of the CFAGC intrvoduced in Example 3.1 contrasts that of I-dimensional contezl-
free languases. In lact, for every context-{rec strving gramoar G, L(C) N LP(C)
= ¢ is true iF and only 1€ both L (6) and L{&) arc copty. Turthermore, Lemma 3.6

& a i
5 it a
(Z'(ERALY 2 #Z(RAL)) and Lemsa 3.7 ({a a a a a ¢ J(ERAL)) contradict the hasic
i oa
##adflf
aspect of l-dimensional languages, where grammars of che form of ERAG are cqui-
valent to the grammars of the furm of RAG and the class of regular languages
contains all finite languages. This is interesting since it coincides with the
claim made by Rosenfeld [16) that 2-dimensional languages are more complicated
and less well behaved than their 1-dimensional vounterparts.

Some parsiang cechniques are alse investigated, and it is shown that while

a sequential parsing prammar oy a CFAL L{GY can be casily obtained by reversing

all the arro s of G, & parallel parsing grammar usually is simpler te write and

takes less time than sequential ones. However, hie nature of pavallel parsing is

19



very complicated. Some examples of non=CF PCFAL il nan-pe) CFAL are demon-
strated, However, it is an open question as for whether the Lamguage of iso-
celes right triangles (EPEHQ.LE“EiENﬂﬁ;f;§) bs a CFAL. The author's conjec-
ture is that 1t iz aot, though.

Fer the future rescarch, tho Following problces and vesearch arens e
among those the author would like to explore or see explored:

(1} To find a more approapriale mode) for Fevopnizing the class of POPAL's.
Although the "parsing grammar” and "gutosmaton® discussed in section 4 Fail ro
serve as such a modael, they do reveal that pavadtel recomnizing algarithas have
better vime complexitios than sequential ones. Por practical considerations, a
"derterministic" modal of parallel recopuizers is move desivrablo.

(2) To find un alporithn for "grammatical inlerence V. 1p section 4, che
fdea of obraluing a parsing gramaar from an arvay araomar 5 5 based upan the
assumption that the wrammar 0 {s alveady known., Wo would vary mach Like o laypes
how 2 generating erammar € conld bLe ebtained alporithnieally Trom the niven

For tree grammars in[6,7].

array language 1.(C) ar |1, (GY, Similar work hau been done
[ -
{(3) Te find a wore peneral "pumping leama'. The two "small pumnine Jemmas”
!u E l: i 0

Intvroduced in Section 3, whije heipful for some puvpesce such as the proof of

the hicrarchy in Theorem 3.4, are somewhat too specilic, Tt would be interest ing

to know if there s a Upumping Femna™ which chavacterizes the necessary and su-
fiicient conditions fovr CFAls (or PCFAL's). Tf such a pumping lemma exists, and
once it is found, ir will help solve o lot of probiecas such g to prove ar dis-
prove the author's conjecture ment ioned in tie second parapraph of this sectien.
(4) To find wore fundasental propertics of arvay Yanguazes such as closure
properties. A decper and more chorouph understanding of chese fyndamental pro-
pereties for arrvay Languares, whkic still lavgely unknown, are quite desirable.
For instance, if a certain Eype of array languapes is elosed under hoiromorphisms,

the study of a seeningly racher complicated arvay patters can largely be sim-

21



plified 1f 1t i{s a homomorphic fmage of a comparatively ninple ones.

(5) To find the practical roles of POFAL's and CFAL';. Since ene-dimensional
context-free laagunges play a vory important rele in high-level programming lan-
guage design and compiler construction, we would very mueh like to know what role

PCTAL's and CFAL's play in practical world sueh as pleLuce processing

araphics. and twa-dimenzional patiern recognition.

(6) To explore further the niture of parallel complexitics. This may in-
clude an expansion of parallel detinition. For instance, the definition of par-
allel application introduced In sectien 2 ig thnk all instances of a rule's an-
tecedent are sinul taneously rcﬁlucod by Lhe consequent. What if there ave nore
than one rule applicable in a sentential form and all instances of these rules’
antecedents are replaced by the consequents? This way even speed up furthier and
parallel patterns under this definition may vesult in different hierarchical
structures,

(7Y To compare isometric array grammars with other models as surveyed in
{12}and [23]. Investigate their advantages and disadvantapes. Hopefully this
will help stimulate an even muve appropriate and ideal model for 2-dimensional
pattern processing.

| (8) To invesvigate solvabillty problems. [t is well known that the empti-
ness problem of finite stute array automata (FSAA) 1s unsolvable (13). Similar
work also has been done for T-dimensional Languages [3,9,19]. How about PCFAL's
and CFAL's? Ts it decidable whethor two PCFAG's(CFAG's) arce equivalent? Is it
decidable whether o CFAG(PCFAC) is empty? inlinite? or ambiguous? Notice thar
"ambipuity"” heve c¢an be defined similarly as in l-dimcnsional languages, i.c.
a CFAG G is ambiruous if for some ¢f € L(G) (or LP(C) vrespectively) there are two

distinct devivations,

v Compuler
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