CIS-TR-80-2

PARTITIONING TREES:
MATCHING, DOMINATION AND MAXIMUM DIAMETER

by

Arthur Farley*
Stephen Hedetniemi**

Andrzej Proskurowski*

Research supported in part by the National Science Foundation under
Grant STI 7902960

Research supported in part by the National Science Foundation under
Grant MCS 79-03913

Department of Computer and Information Science, University of Oregon,

Eugene, OR 97403

1. Introduction

A matching in a graph G=(V,E)} is a collection M of edges of G such that no

two edges have a vertex in common, A maximum matching in G is a largest matching

in G. A dominating set in a graph G is a set D of vertices such that every vertex

not in D is adjacent to at least one vertex in D, A minimum dominating set in G

is a smallest dominating set in G.

A subtree partition of a graph G=(V,E) is a set of vertex disjoint, acyclic

subgraphs (trees) of G: Tl=(Vl,El),...,Tp=(VP,Ep), such thatl_]vk=v, vir\Vj=¢
and Ekg E for all iﬁj,k; 1<i,j,ksp. The diameter of a graph is the maximuﬁ dis-
tance between a pair of vertices, where the distance between a pair of vertices
is the fewest number of edges on a path connecting them. One basis for a subtree
partition of a graph would be to require all subtrees to have diameter less than

some prespecified bound. An application of diameter-bounded partitions would be
the determination of communication (or transportation) subnetworks with limited
maximum separation of members.

A matching M and a dominating set D in a graph G are related in that they
determine diameter-bounded subtree partitions of G. The subgraph G1=(V,M) con-
stitutes a partition of G into subtrees of diameter at most 1. The subgraph
G2=<V,E'>, where E'C E is such that every vertex not in D is connected to exactly
one vertex in D, constitutes a partition of G into subtrees of diameter at most 2.
Conversely, any subtree partition of G having maximum diameter less than or equal
to 1 or 2 determines a matching or a dominating set, respectively.

For a maximum matching Mmax and a minimum dominating set Dmin' the associated
partitions have the fewest numbers of trees. Figure 1 presents an example of a
graph G, & maximal matching and a minimum dominating set with an associated

subtree partition of G.

Figure 1 {a) Graph G, (b) a maximum matching, and (¢) subtree partition defined

by a minimum dominating set (bold vertices).

The computational complexities of determining Mmax and Dmin in an arbitrary
graph G appear to be different. Polynomial algorithms are known to exist for
finding an Mmax in an arbitrary graph (c.f. [2), [61]). However, the problem of
determining a Dmin in an arbitrarg graph has been shown to be NP-complete [3].

Many graph theoretic problems currently unsolvable in an efficient manner for gen-
eral graphs have efficient solutions for restricted classes of graphs. TFor trees,
both Mmax and Dmin can be determined in linear time (c.f. [1], {4]1). 1In this paper,
we present a linear algorithm for partitioning an arbitrary tree into a minimum num-
ber of subtrees each having diameter at most k for anv given k. By the corrpspondence
between Mmax and Dmin and minimum~order, diameter-bounded, subtree partitions, our
algorithm répresents a2 generalization of the previously published algorithms for

M and Dmin in trees, The correctness of our algorithm is a direct consequence

max

of the lemmas established in the next section.

2. Key lemmas

Let d{T) denote the diameter of a tree T and pk(T) denote the minimum order of
a partition of T into subtrees of diameter at most k.

In what follows, we will consider a tree T rooted at a given, arbitrary vertex
r, Let u be a vertex of T other than r and let w be the vertex adjacent tc u which
lies on the unique path in T from u to r (nossibly, w=r). Let Tu denote the (con-
nected) subtree of T rooted at u and not containing w. The situation is illustrated
in Pigure 2{(a). We define the height of Tu in T, denotead h(Tu}, as the length of a
longest path in Tu from u to a leaf vertex of Tu.

By the definition, if a vertex u is a leaf of T, then h(Tu)=O and d(Tu}=nik.
For a non-leaf vertex u of T, there exists a vertex v in Tu adjacent to u, as shown

in Figure 2(a),

()

Tu
Ty

Figqure 2 (a) A tree T rooted at r and (b) its subtrec T .
e el ——— e u
Lemma 1 Let vertex u, u+r, have degree 2 in T,

Let v be as defined above, (see Figure 2(a)), such that h(TV), d(TV)sk.

Iif h(Tv)=k then pk(T)=1+pk(T-Tv), otherwise h(Tu)fk and d(Tu)fk‘

Proof If h(TV)=k, then Tu cannot be an element of a subtres partition of G
of diameterfk, {i.e., pk(Tu)=2). On the other hand, nk(TV)=l. In T—TV,
vertex u is a leaf and as such has the minimum possible height. Therefore
=]4n — . L = A . =Mmad n
pk(T) 1 pk(T TV) If h(Tv)<k then h(Tu} l+h(Tv)5k and d(ru) mat(1+h(Tv)

0
d(T))<k.

In the case of vertex u of degree greater than 2, let Tu-v denote the tree
Tu-Tv rooted at u, Let t be a vertex adjacent to u in Tu-v maximizing h(TtJ over
all subtrees Tt of Tu—v' As such, h(Tu_v)=h(Tt)+l. Figure 2(k) illustrates this

case's sgituation.

Lemma 2 Iet vertexu have, u+r, degree greater than 2 in T. Let v and t be as defined
above, and such that h{(T Y, nh(T), d(T }, di{r), d(T)<k. Then:
u~-v v u-v v t -
{i) if h(Tv)+l+h(Tu—y)fk
then h(Tu)fk, and d(Tu)fk;
{ii) if h(TV)+l+h(Tu_v)>k and h(TV)>h(Tt)
then pk(T)=l+pk(T—Tv) and, in T—Tv, h(Tu}ik and d(Tu)fk;
iii) i + > ™
{iii) if h{Tv) l+h(Tu_v) k and h{ v):h(Tt)

then pk(T)=l+pk(T—Tt) and, in T—Tt, h(Tu)fk and d(Tu)fk'

Proof When h(T)}+1+h (T)<k, we have h{(T)=max(h(T)+1, h(T)<k and
—_— v u-v' - u v u-v' -
d(T)=max(a(T), a(r Y, h(T)+1+h(T }y<k. If h{(T }+1+h(T)2k,

u v u-v v u-v' - v u-v
then vertices v and t have to belong to different partitions of T, unless
an edge of Tv or Tt is "cut", reducing the height of 'I‘t or Tv'
As such an action would introduce another component in the partition of
G, the cut edge can best be either (u,v) or (u,t). If h(TV)>h(Tt), as in case
{ii), then cutting the edge (u,v) results in two components: Tv and T—Tv.
The subtree '1‘-'1‘v has a subtree partitioning of potentially smaller ordexr
than T-Tt which would result from cutting the edge (u,t). 1In T-Tv' Tu is

reduced to T , and thus h(?)=h(T)<k and 4({T)=d(T Y<k. Because
u u u-v - u u-v -

“1+) i _ ; —
d(Tv)fk, pk(T) 1 pk(Tu_v) Similar argument proves the lemma in case (iii). 3

3. Algorithm SUBTREES

The Algorithm SUBTREES below uses a recursive represemtation of a tree T.
A recursive representation is based on a labeling of vertices I,..., n, where for
every non-root vertex 1 there is a unique vertex 9§ adjacent to it, called its father,
such that j<i. The pruning of the leaves is done by a linear scan of an array
FATHER representing T. In FATHER, array entries correspond to the father vertices:
FATHER [i]=j. During execution of the Algorithm SUBTREES, the edqes incident to
vertices of T which have been pruned are called processed, and the tree of not
vet pruned vertices is called current. Processed edges may be cut {and placed in
set C) or uncut, as determined by the algorithm. With each vertex v of T we asso-
ciate two values, HEIGHT[v], and TALL[v]. They indicate the height of v and of
the tallest pruned, still connected neighbor of v, in their respective, processed

subtrees {i.e., h(T) and h{T,,).

Algorithm SUBTREES

A tree T=(V,E) with |V|=n, given by the array FATHER; and an intecer k.

Input:
Output: Miniﬁum size set of cut edges C, such that remaining subtrees have dia-
meter<k,
Method: [6. initialize] for v:=1 to n do HEIGHT[v]:=0;
(L. prune T} for v:=n downto 2 do
begin u:=FATHER([v]; h:=HEIGHT[v]+1;
if h+HEIGHT [ul>k
(1.1 introduce cut] then if h>HEIGHT [u]
then C:=C+{u,v)
else begin C:=C+(u,TALL{ul);
HEIGHT [u] :=h; TALL{u]:=v end
[1.2 no cut } else if h>HEIGHT [u]
then begin HEIGHT[u] :=h;
TALL[u]:=v end
end.,
Theorem The algorithm SUBTREES computes the minimum order partitioning of the
given tree T into subtrees of diameter at most k. The algorithm requircs
time agd space directly proportional to the size of T,
Proof By Lemmasll and 2, the graph P=(T,E-C) represents a partitioning of 7T

into subtrees of diameter at most k. The order of this partition is]C|+l
In the algorithm, the invariant of the lecop [1.] is pk(s)+[C|= constant,
where S is the current tree extended by the connected (uncut) processed
edges, Yo prove the invariant relation docs hold throughout the execution
of the algorithm, we notice that C changes only in Step 1.1, which is also

the only place where S changes. The chances are such that §':=$-§ with

pk(S)=1+pk(s') (Lemma 2, cases (ii) or (iii)) and |C'|=|C|+l, where
ze{v,TALL[ul}. Thus pk(s')+|c'|=pk(s)-1+lc|+1=pk(s)+]c|= const.
Originally S=T and C=0 so that the constant is pk(T}. The correct height
and tall values are maintained in 1.1 and 1.2. Upon exit from the loop,
d(s) <k, pk(5)=l and then pk(T)=l+|C|. Both steps [0.] and {1.] require
only a constant total time to process each vertex. The space used by

the algorithm consists of three vectors, each of length n, a set C of

size at most n-1l, and several secalar variables,

Algorithm SUBTREES can be straightforwardly generalized to the same problem
with weighted edges and vertices. No change in the basic logic of the algorithm
would be required,

Knowledge of the cut set of edges partitioning a tree T into subtrees of
diameter zk allows linear time determination of minimum absolute dominating set
of radius k/2 in tree T by finding centers of the subtrees. The center of a given
subtree can be found in time linear in the number of edges in the subtree [5].

A linear time algorithm has recently been published for determining a dominating
set of arbitrary radius in a tree T [7]. From an absolute dominating set of
radius k/2 one can determine a partition of T into subtrees of diameter sk in
time linear in the number of edges in T by a parallel, breadth first search

from each element of the dominating set. To find the subtree corresponding to

a single element of the dominating set would still require time linearly related

to the number of edges in the original tree,

4, Conclusion

In this paper we have characterized Mmax and Dmin in a graph G as determining

partitions of G into the fewest subtrees of diameter less than or equal to 1 and

2, respectively. We then present a general algorithm which determines a minimum
order partition of an arbitrary tree into subtrees of diameter<k. The algorithm
requires only linear time and space.

A linear algorithm which partitions trees into the fewest subtrees having
less than or equal to k vertices has been previously published [#]. This
vertex-based partitioning strategy also shares a direct correspondence with
matching for number of vertices equal io two. It represents a different gener-
alization of matching than the one we present, as trees with diameter less than
or equal to two are not equivalent to trees having three or fewer verticest We
are investigating yet another generalization of matching, that of partitioning
a tree into subtrees having maximum vertex degree less than or equal to k. These
partitions correspond to matching for a maximum degree of one and path decompo-
sition for maximum degree of two. A linear algorithm selving this problem for

an arbitrary tree and integer k has been determined and will appear elsewhere.

5. Bibliography

[l] E.J. Cockayne, S.E. Goodman and S.T. Hedetniemi, A linear algorithm for

the domination number of a tree, Information Processing Lett. 4 (1975),

41-44,
. 2.5
[2] S. Even and O. Kariv, An O(n) algorithm for maximum matching in graphs,

Proc. 16th Symp. on Foundation of Computing (1975), 382-399.

[3] M.R. Garey and D.S. Johnson, Computers and Interactibility: A Guide to the

Theory of NP-completeness, W.H. Freeman, San Francisco, 1979.

[4] S.E. Goodman, S.T. Hedetniemi and R.E. Tarjan, B-matchings in trees, SIAM

J. Comput. 5, {1976), 104-107.

[5] S. Halfin, On finding the absolute & vertex centers of a tree with dig-

tances, Transportation Sci., 8 (1974), 75-77.

{61 A. Itai, M. Rodeh and S. Tanimoto, Some matching problems for bipartite

graphs, J. Assoc., Comput. Mach. 25 (1978), 517-525,

[7] O. Kariv and S.L. Hakimi, An algorithmic approach to network location

problems I: the p-centers, SIAM J. on Ap. Math., 37 (1979), 513-538,

[B] 5. Kundru and J. Misra, A linear tree partitioning algorithm, SIAM J.

Computing, 6 (1977), 151-154.

