CIS-TR-80-4
DIRECTED MAXIMAI~ CUT PROBLEMS
by

Arthur Farley*

Andrze]j Proskurowski*

Abstract

A maximal-cut problem for a directed graph can be defined
analogically to the undirected case. The latter problem is known to be
NP-complete. Depending on the definition of the wvalue of a cut, the
resulting problem for general directed graphs is either efficiently solvable
or NP-complete. We consider the latter variant of the problem and show an
algorithm solving it in linear time for directed acyclic graphs. Breaking
the cycles of a general graph and applying the same algorithm to the resulting
forest gives an efficient solution algorithm for some classes of undirected
graphs.

* Department of Computer and Information Science, University of Oregon,

Eugene, OR 97403

l. Introduction

The maximal-cut problem for an undirected, weighted graph is that of find-
ing a partition of vertices of the graph into two sets which maximizes the sum
of the weights of edges connecting the two partitions. The problem is known to
be NP-complete in the general case {2]. One can state directed counterparts of
the maximal-cut problem, differentiated by the definition of the value of a dir-
ected cut. We state the general directed maximal-cut problem as the following
decision problem:

Directed Maximal-Cut: Given a directed graph G=<V,A>, a weight function

+ . . . s .
w: A+ 2Z and an integer k, is there a partition of V into sets L and R

such that the value of the cut exceeds k.

In one problem, DMCl, the value of a directed cut (L,R) is defined to equal
the sum of weights of arcs oriented from L to R minus the sum of weights oriented

from R to L. DMCl is efficiently solvable.

Theorem 1.1 [1] There is an algorithm solving DMCl for an arbitrary directed

graph in time proportional to the number of arcs in the graph.

Another definition of the wvalue of a directed cut yields an NP-complete
problem. For DMC2, we define the value of a directed cut (L,R} to egual the sum

of weights of arcs oriented from L to R. DMC2 is hard.

Theorem 1.2 (1]} DMC2 is NP-complete.

In this paper we present an efficient algorithm which determines a parti-
tion (L,R) vielding maximal cut value (according to our second definition of cut
value) for an arbitrary directed tree, thus solving DMC2. In what follows we

will refer to such a cut as "the solution to the cut problem."

2. Directed paths

We will introduce the concepts underlying our solution for trees by first

considering the problem for unidirectional paths. By unidirectional path we

will understand a directed graph G=(V,A} such that V={vo,v ,...,vn} and

1
A={<vi,vi+l>10$i<n}. Algorithm 2.1 which solves the cut problem for such graphs,
traverses the path from vo through vn placing vertices into sets L or R depending
upon the weights of the encountered, incident arcs. With each vertex v, we asso-

ciate two sets of vertices P{v) and @(v) and two corresponding arc weight sums

p(v) and g(v). As vertex v is visited by Algorithm 2.1, P(v) and Q(v) constitute

a partition of vertices which have been visited but have yet to be placed into L
or R. PFurthermore, no arc connects two members of P(v) or Q(v).and v is in P{(v).
The value of p(v) is equal to the sum of arc weights which would be added to the
value of the cut if every wvertex of P(v) is placed in L and every vertex of Q(v)
is placed in R. The value of g(v) is equal to the sum of arc weights which would

be added to the value of the cut if the above assignments were reversed.

Algorithm 2.1 Solves the cut problem for unidirectional path.

Input: A path Vgro ¥y with arcs <vi, Vil

OQutput: A partition {L,R) of vertices solving the cut problem with the value C.

> weighted W O<i<n.

Method: Instead of writing P(vi) we use P[i], ete.
(*Step 1. Initialize#*)

for i:=0 to n do begin P[i]=={vi}; Qfi]:=¢; p{il:=0; q{i]:=0 end;

L:=9; R:=9%; C:=0;
(*Step 2. Traverse the path¥)

for i:=0 to n-1 do

if plilzqiil
then begin L:=LuP(i]; R:=RuQ(i}; C:=C+p[il];

q[i+ll==wi end

else begin P[i+1]:=P[i+1]uQ[i];
Qi+1]:=Q[i+1]uP([i];
pli+l]:=pli+l]l+q(i];
qfi+l]:=qli+l]+p[i]
end;
(*Step 3. Process last vertex*)
if gnl>p(n] then begin L:=LuQ[n];
R:=RuP [n];
C:=C+gin] end
else begin L:=LuP[n];
R:=RuQ[n];
C:=C+p(n] end;

(*End of Algorithm 2,1%*)

By induction using an appropriate loop invariant, it can be shown that
Algorithm 2.1 guarantees that the value of P[i],Q[i],p(i], and q[i] have the
meaning defined above when v is about to be processed. Surely, if the value
of p[i] is greater than or egual to g{il, we can do no better than place P[i]
in L and Q[i] in R. This will allow the algorithm to maximize the value obtained
from arcs up to v while maintaining the possibility of acquiring w, as well.

The value of gfi+l] is modified to reflect the possible contribution from the
arc <vi, vi > if v, were placed in R. On the other hand, if the wvalue of

+1 i+l
qfi] is greater than p[i], we cannot yet make a decision as the arc <vi, vi+l>
may have a high value but will not be obtainable if v, is placed in R. Figure
1 shows the decision tree considered by Algorithm 2.1 for an initial segment of
a unidirectional path. If p[i] ever proves to be greater than (or egqual to)
the value of g[i], then the algorithm returns to the root of the decision tree,
with the next vertex appearing as vo.

there is correct, and the algorithm terminates.

When Vn is visited, the decision made

Y '/ W, n
Path \J; Wo o W 2 Wa b M g s s

Vel V,eR
‘s reskart with
Decision %, ..,v,)

{Wilﬁ

v,el, vy v, €R
restark with

Fiqure 1 A unidirectional path vo...vn and the corresponding decision tree.

When we assume that the path is no longer unidirectional, having arcs
<vi+l' vi>as well as <vj,vj+1>, for 0<i#j<n, a new situation ¢an occur. It
could become the case that q[il>pli], in which case Q[i] can be put in L and
P[i] in R. We maximize the contribution of edges up to vi and yet are able to
possibly acquire the weight of arc <vi+l' vi>. Both old and new situations must

be dealt with by our solution algorithm for directed trees, to be presented in

the next sectien.

3. Directed Trees

The ideas introduced in ocur discussion of Algorithm 2.1 can be applied to
design a linear-time, sclution algorithm for trees., One main difference lies
in the fact that we must consider contributions from several "explored" subtrees

when pruning a current leaf vertex. This calls for an appropriate merging of

sets of considered vertices when processing what is now the root of the explored
subtrees.

Another difference concerns the information that must be considered when
making local decisions which are globally optimal. 1In a path, the "current ver-
tex" separates the explored from the unexplored in the sense of complete infor-
mation necessary to make a correct placement of the vertices. In a rooted tree,
the separation is obtained by additionally considering the arc between the cur-
rent vertex and its father. This frees the decision for the subtree rooted at
the current vertex from undue influence of other subtrees of the father vertex.
There are no such subtrees in a path and therefore the decision about the current
vertex could be made when pruning the next vertex {(i.e., the father).

Let us assume that a weighted, directed tree T is given by its recursive
representation ((4], alsc "father array" in (3]). In this representation, each
vertex v (except for the root r) has a unique arc assigned; namely, the arc be-
tween v and its father. Each such arc is directed either toward, or away from
v; this together with the weight of the arc is the total information given about
T at v. PFor the sake of uniformity we add to T an arc of weight 0 directed from

the root to a dummy vertex.

Algorithm 3.1 Solves the directed maximal-cut problem for trees.

Input: Recursive representation of a weighted, directed tree T of n vertices.
For each vertex vy there is its father £[i] (where f[i]=vj,j<l},
weight wii], and direction d[i] of the arc between v, and £[i].

Qutput: Partition (L,R) of the set of vertices of T maximizing the value of

a directed cut (DMC2), and its value, C.
Method: With each vertex of T, vi, associate the sets P{i] and Qfi] and

the corresponding values pl[i] and gli]

(*Step 1. Initialize®)
for i:=1 to n do
begin P{il:={i}; Q{il;=%; pli]:=0,q[1]:=0 end;
L:=¢; R:=¢; C:=0;
(*Step 2. Prune the leaf vertices*)
for i:=n downto 1 do
begin case dii) of

(*¥*2.1*) from: if pli]>q[i)

(*¥2.1.1%) then (*take pi*) begin L:=LuP[i]; R:=RuQiil: C:=C+p[il:
(*¥2.1.1.2%)) gq{f{il]:=q(£({i]]+w({i] end
{*2.1.2) else (*cross the edge*)

begin p[i]:=p[il+w([i];
if q(i)2piil
(*2.1.2.1%) then (*take q(i]*) begin L:LuQ{i]; R:=RuP[i]; C:=C+qg[i]
else (*defer decision*) update-parent(i)
end; (*of the arc away from v, *)
(*2.2*) toward: if q[il>pl(il
{(*2.2.1%) then (*take qi*) begin L:=LuQ(i]; R:=RuP{i]; C:=C+q(i]:
plflil):=p[£[i]]+w{i] end
(*2.2.2%) else (*cross the edge¥*)
begin gfi):=qiil+w([i];
if plilzglil
then (*take pi*)
begin L:=LuP[i]; R:=RuQ{i]; C:=Cip [i] end
else (*defer decision*) update-parent(i)
end (*end of the arc toward vi*)

end; (*of processing the vertex vi*)

end

The procedure update-parent is defined as follows:
procedure update~parent(i);
(*modifies the values associated with the father fi of vertex vy
when no decision could have been made while considering vi*)
begin let j be such that vj=f[i];
P[j1:=P[3]uQii]; Q[3I1:=Q[j1vP[i]};

pljl:=p(jl+qlil; qlil:=qljl+p[i] end;

In a given directed tree T, placing the leaves (vertices of degree one)
into sets R or L is a simple matter. Every leaf that is a source should be in
L and every leaf that is a sink in R. Only this placement assures that no
pendant arc is excluded from being considered to contribute to the value of the
cut. Of course, further consideration may force the other end-vertex of a pen-
dant arc to be placed in the "wrong" set {L for a sink and R for a source). 2an
arc is called pendant if it connects a leaf vertex with its only neighbor, a pen-
dant vertex. We will show that Algorithm 3.1 places the leaves correctly and
alse that it passes the information about the pendant arcs onto the unprocessed

part of T.

Temma 3.2 For a given T, Algorithm 3.1 places leaves of T into the appro-
priate sets and passes the information about pendant arcs to pendant

vertices of T.

Proof 3.2 Whenever vi in Step 2.1 is a leaf-vertex of T, the condition
plil>gfi] is fulfilled because of the initialization step (p[i]=0
and g([i]=0). Therefore, if vy is a source (di=from), Step 2.1.1.1
will be executed placinQ v, in L and setting its father's g[j] to wi{il.
No other value will be changed as QIi]l=¢ and pl[i]}=0. Assignment of
wli] to g[j] assures that the weight of the arc will be considered

if vj is to be placed in R. If v, is a sink, similar assignments will

be made in Step 2.2.1.1. -

We now proceed to prune internal vertices of T (but leaves of the partial
tree of unexplored vertices). We will show that if no decision about placement
of vertices of a subtree 5 of T (except for its leaves) has been made, then
the highest value of the cut for this subtree is attained if its wvertices are
placed consistently with the natural bipartition of S.

Every tree T=(V,A) is a bipartite graph (P,Q;3A) such that Pug=V. We call

the partition (P,Q) of V the natural bipartition of T. By the procedure update-

parent of Algorithm 3.1, (P(x),Q{(x)) is the natural bipartition of the subtree
Tx of T rooted at x and containing only vertices not placed prior to pruning

of x in the execution of the algerithm, with xeP(x).

Lemma 3.3 Let a subtree $ of a weighted, rooted directed tree T=(V,Aa)
contain only vertices processed by Algorithm 3.1 and not placed prior
to pruning of its root. Then a solution to the undirected maximum-
cut problem for T preserves the natural bipartition (P,Q) of S, i.e.,

PEL & QSR or vice versa.

Proof 3.3 By mathematical induction. If S consists of only one vertex,
then the hypothesis is obviously true. Therefore, let us assume that
it is true for all subtrees with less than k>1 vertices and consider
a subtree S with k wertices. By contradiction, assume that (L,R) is
a solution to the cut problem for T in which Tx is a smallest subtree
of § (rooted in x) such that x and its father y in 5 are in the same
set (L or R). The value of the c¢cut (L,R}) for T is the sum of a cut
valueVfor Tx and weights of some arcs ocutside of Tx. By the inductive
hypothesis and minimality of Tx' V results from a placement decision

consistent with the natural bipartition of Tx' If <x,y>eA then,

according to Step 2.1.1 of the algorithm and our assumption that no
decision had been made when processing x, p{x)<g(x). The decision has
to be deferred also after considering the weight w<x,y> {(in Step 2.1.2
of the algorithm), and thus g(x})<p(x) + w<x,y>. If X,yelL then V=p(x)
but placing x and other vertices of P(x) intc R would result in V=g(x)
and thus a greater cut value for T. If x,yeR then V=g(x}). Placing
¥ (and other vertices of P(x)) into L would yield V=p(x) and add
w<x,y> to the value of the cut, again increasing its value. Similar
arguments (supported by Steps 2.2.1 and 2.2.2 of Algorithm 3.1) apply
when <y,x>cA. Thus, the proposed (L,R) cannot yield the maximum value

of the cut. This contradicts our assumption and proves the Lemma. U]

We have proved so far that as long as no decision has been made about

placing of the vertices of T into sets L and R, Algorithm 3.1 carries along

sufficient information about the natural bipartition of explored subtrees to

make the correct local decision. Now we will prove that this local decision

is also correct in the global sense.

Lemma 3.4 Let a subtree S of a weighted, rooted directed tree T=(V,A)

contain only vertices processed by Algorithm 3.1 and placed during
pruning of its root. Then a solution to the directed maximal-cut
problem for T preserves this placement. The modification of parameter

values of the father of the root of $§ allows determination of a global

solution.
Proof 3.4 By Lemma 3.2, this is true if the subtree T consists of only

one vertex, the leaf-vertex of the pruned tree. Assuming that the

hypothesis is true for subtrees of less than k>l vertices, consider

1o

S with k vertices. The placement of vertices of $ decided upon while
pruning its root x, is consistent with the natural bipartition of S
(as determined by the procedure update-parent). By Lemma 3.3, one of
the two consistent placements is globally correct. By arguments sim-
ilar to that used to prove Lemma 3.3, we show that the decision made
at x maximizes the contribution of S to the global cut wvalue. BAssume
that <x,y>cA, where y is the father of x in T. Then the decision is
made either in Step 2.1.1, or in Step 2.1.2.1. If p{x)2q(x) then
placing P{x) in L will give the largest value of the cut. 1In this
case, g(y) is incremented by w<x,y>, which would be added to the value
of the cut in the future if y were to be placed in R. If p(x)<g(x)
but g(x)zp(x)+w<x,y>, then placing Q(x)}) in L and P{(x) in R gives the
best contribution of S to the value of the cut. The future placement
of v is irrelevant, and, as such, there is no change in p(y) or q(y).
If <y,x>ed, then a similar argument shows that decision made at x must

be globally valid. |

The above lemmas and an efficient implementation of the algorithm imply

the following theorem.

Thecrem 3.5 Algorithm 3.1 computes a solution to the DMC2 problem in O{n)
time for an arbitrary directed tree.

An efficient implementation of Algorithm 3.1 could represent the sets
P(v) and Q(v) for veT as linear lists allowing constant time concatenation

and insertion operations.

4. General Directed Graphs

The above algorithm for directed trees is almost directly applicable to
other directed, acyclic graphs (DAG's). In such graphs, sink- and source-

vertices determine "tree components", for which solutions of the directed

11

maximal-cut problem (computed by Algorithm 3.1) contribute directly to the
global solution for the DAG in question.
To deal with directed graphs containing strong (directed) cycles we intro-

duce the notion of leaf constraints, which force leaf vertices of a tree into

sets L oxr R. The presence of constraints would not change the operation of
Algorithm 3.1. If a leaf is constrained, appropriate initialization of the
values p and g associated with the vertex can force the desired placement. For
example, a source leaf x will be forced into set R by presetting p(x) to -oco
and g(x) to 0.

Assume we are given a directed graph G and a set of vertices B whose removal
breaks all weak cycles of G. For each cycle-breaker veB, break G at v, making
copies (or "clones") of v on each arc incident to v. As such, each clone of v
is a leaf vertex in the resulting forest F. Figure 2 demonstrates this opera-

tion on a given directed graph.

A~ AV

Figure 2 Cloning the cycle-breakers

To compute the value of a maximal directed cut of the original digraph
G, we apply Algorithm 3.1 to F, while forcing all clones of a given cycle
breaker v into the same partition. By repeated application of that linear
time algorithm under all possible combinations of assignments for vertices of

3]

B, we obtain 2 maximal cut values. The maximum among these with the corres-

ponding assignments of vertices to sets L and R solves the directed maximal-cut

12

prcbhlem for graph G.

The complexity of our selution is obviously O(n2IBI

), where B is a mini-
mum cycle breaking set of vertices of G. When the size of B is at most loga-
rithmic in the pnumber of vertices of G, the directed maximal-cut problem is
solved in peolynomial actually, (quadratic) time. A constant bound on |B| yields
a linear time solution. Thus, for the class of unicyclic graphs, selecting one
vertex on the unique cycle and twice applying Algorithm 3.1 to the resultant

forest is sufficient to determine a directed maximal-cut. Figure 3 illustrates

the creation of a forest from a unicyeclie graph.

\

Figure 3 Breaking the cycle of a unicyclic graph.

Unfortunately, there exist classes of graphs having minimum cycle breaking
sets which are linear in size with the number of vertices. Figure 4 presents
an instance of the class of triangle-based cacti, each of which has a linear
number of cycle-braking vertices. Another example of a c¢lass with large size
of any cycle-breaking set is that of complete graphs, esach having :V!-Z
cycle breakers. The problem of determining a minimum cycle-breaking set for

an arbitrary graph is NP-complete, being a hereditary property [2].

13

Fiqure 4 A graph with large cycle-breaking set.

5. Coneclusion

In this paper we have considered a particular variant of the directed
maximal-cut problem. The problem is known to be NP-complete in general. We
first present an efficient algorithm, solving the problem for directed paths.
We then generalize the path algorithm, proving correct a solution for directed
trees. We discuss how the tree algorithm can be used to efficiently solve the

problem for certain, more general classes of directed graphs.

Acknowledgement

The authors are indebted to teachings of Professor Moshe Rubinstein that

persuaded them to draw the decision tree in Figure 1.

References

[1] A. Farley and A. Proskurowski: Two directed maximal-cut problems; to
appear in Proc. of HSU Conference on Graph Theory, Combinatorics
and Computing, Utilitas Mathematica.

[2] M.R. Garey and D.S. Johnson: Computers and Intractability, W.H. Freeman

and Co. , 1979.

[3] D.E. Knuth: Art of Computer Programming, vol. I, Addis on-Wesley, 1973.

