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Abstract

K-trees can be defined by an iterative construction process where
in every step a "new" vertex is added adjacent to some k mutually adja-
cent "old" vertices. Such a process may be represented by the recursive
labeling in which the consecutive integers are associated with the ver—
tices of a k-tree as they are added in the construction. Other, more
visually appealing structures representing a particular construction
process are the marked tree and the spatial tree. Nodes of these trees
correspond to (k+l)-cliques of the k-tree. Using the notion of a
cable of k vertex-disjoint paths between two vertices of a k-tree, we
define the k-cable distance. We discuss the values of the shortest-
path and the k-cable distances between vertices of a k-tree and present
algorithms to compute them in terms of the different representations of

k-trees.



1. Intreduction

K~trees form a relatively restricted class of graphs which has re-
ceived recently a substantial amount of interest generated in different
research areas: complexity {17, centrality (6], reliability of net-
works [3]. K-trees can be defined by an iterative construction process
where in every step a "new" vertex is added adjacent to some k mutual ly
adjacent "old" vertices. Such a process may be represented by the re-
cursive labeling in which the consecutive integers are associated with
the vertices of a k-tree as they are added in the construction. Other,
more visually appealing structures representing a particular construc-
tion process are the marked tree and the spatial tree. ©Nodes of these
trees correspond to (k+l)-cligues of the k-tree. We will discuss these
representations of k-trees and their suitability for combinatorial al-
gorithms. 1In particular, we will present algorithms to compute the
values of two distance functions: the shortest-path and k-cable dis-

tance, defined in [7].

2. Definitions

A graph with n 2 k vertices is a k-tree iff it either (i) is a k-
complete graph Kk’ or {ii} can be obtained from a k-tree Q with n-1 ver-
tices by adding a vertex adjacent to some k mutually adjacent vertices
of Q9. This recursive definition establishes a k-tree as a representa-

tive of all possible iterative constructions which can be expressed by

$0 called recursive labelings of the k-tree. TIn such a recursive la-

beling, the "base" K,  subgraph of the k-tree has vertices labeled
S
l,...,k and the label m, k<m £ n, is assigned to a vertex adjacent to

k vertices labeled il,...,ik <m.

A recursive representation of a k-tree Q associates with every

label m labels il""'ik' as above, according to a particular recur-
sive labeling of vertices of 2. This generalized "Father array" {4] is
a partial adjacency list of vertices of Q. The remainder of the adja-

cency information is contained in the labeling itself.

The "tree-like" structure of a k-tree is immediately apparent when
we represent the k-tree by a marked tree [2]. In this representation, we

drop irrelevant implications of the recursive labeling (the total
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ordering of vertices) but retain the essential dependencies. The nodes
of a marked tree represent (k+l)-cliques (Kk+l subgraphs) of a k-tree,
and the edges represent Kk subgraphs. The nodes are marked by k+l dif-
ferent "marks" (say, numbers 1,...,k+l)., Each node corresponds to a
nen-basic vertex of Q and thus we may talk about marking of vertices of
Q. The vertices of the base in the particular iterztive construction of
Q are marked 1,...,k. The corresponding esdge of T becomes the "root
edge". Each vertex added in the construction process is marked by the
element missing among the marks of the parental Kk and the correspond-
ingly marked node is made incident with the parental edge in T. The
parent node in T represents the "youngest” - in terms of the iterative
construction - parental vertex in Q. If we allow more than one edge to
represent a given (interior ([7]) Kk,'this defines the parent-child re-

lation between nodes of the tree.{*)

Another visualization of the recursive representation of k-trees

is the spatial tree. 1Its nodes lie on the points of the (k+1)-dimention-

al grid and represent cliques of the k~tree (. Addition of a vertex
marked i in a given iterative construction of Q, is reflected in the
spatial tree by a new node displaced in the direction of the i-th coor—
dinate from its parent node ("mark" and "parent" are used in the sensas
of the marked tree). Aall the vertices adjacent to the base Kk are re-
presented as separate nodes at the origin and are incident to edges
along the (k+l)st coordinate representing the base of Q. Different
nodes may be placed in the same grid point without any implication as
to the relation between them. It is the way they "got to" that point
(the sequence of edges from a common ancestor) that determines this re-

lation (e.g., the distance between the vertices).

{*} Phyllis Chin suggested that "syblings through the same Kk"
should be represented as incident to the same hyperedge. It follows
from the definition of k-trees, that the hypergraph defined above is

cycle-less.
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Figure 1. An iterative construction of a 2-tree indicated by its

labeling, and the corresponding marked and spatial trees.

The view of k-trees as basic acyclic graphs redundantly stocked
with edges for the reason of greater connectivity invites discussion of
distances in these graphs. The usual shortest-path distance may not
suit the needs of k-connectivity. 1In [7] we have introduced the notion
of a k-cable, which is a collection of k vertex~disjoint paths between
two vertices. The length of a cable is equal to the length of its

shortest path. The k-cable distance between two vertices of a k-tree

is the length of a shortest k-cable between them. We notice that the
cable distance can differ from the shortest-path distance between the

same vertices by an arbitrarily large amount.

2-cable

between u and v
shortest path

Figure 2. A 2-cable in a 2~tree and the cable- vs. path-distance.
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3. Computing the shortest path distance

For the purpose of this presentation, we define the distance from
a non-basic vertex to the base, i.e., to a closest vertex of the base.
To discuss the distance between two arbitrarv vertices of a k-trse, we
can use a solution to the problem above with the base strategically
placed. This requires a fast “"rerooting" algorithm changing the repre-

sentation according to the redefined base subgraph [S].

Given an iterative constructicn of a k~-tree Q and a non-basic ver-
tex v of 9, the shortest path from v to the base of Q is given by the
"shortest-path tree". 1In this tree, nodes represent non-basic vertices

of Q and their adjacency is determined by the adjacency of a "new" ver-

tex v and the "oldest” vertex in the'parental Kk of v. This oldest ver-

tex has the least label among the vertices corresponding to v in the
recursive representation of Q. Hence, the recursive representation of
the shortest-path tree is given by the array of the least entries in
the recursive representation of the k-tree. In this array, the labels

of the base vertices all denote the base and could thus be replaced by

-

the same symbol, say
A shortest path from v to the base can thus be recovered from re-
cursive representation of @ in time proportional to the length of the

path.

Algorithm 1.

Input: Recursive representation R of Q and the label of v,

Output: Labels of vertices of a shortest path from v to the
base of Q.

Method: {Let p be the label of the current vertex on the path.
Set p to the label of v;
While p>k do

output p; set p to the least entry in R(p].

For a marked tree (or its spatial embedding) representation of a
k~tree, the oldest parent of a vertex v represented by a node p is
represented by the "youngest" ancestor g of p such that the set of
marks of the nodes on the path gq,...,p completes the mark set

M={1,...,k+l}. If no such g exists, the oldest parent of v is

1
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obviously among the base vertices. Let us define a hyperplane xi=const
to cover a path in the grid iff it contains all edges of the path. The

following proposition Zollows immediately from the discussion above.

Proposition 1. Given a spatial tree § representing a k-tree ¢ and a
non-basic vertex v, the shortest-path distance from v to the
base of Q is equal to the minimum number of hyperplanes covering
the path from the node representing v to the origin, and the

edge representing the base.

(W7
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|

Figure 3. A set of hyperplanes representing a shortest path in

the 2-tree in Figure 1.

4. Computing the cable distance

A cable between two vertices u and v of a k-tree Q has been de-
fined as a collection of k vertex~disjoint paths between these vertices.
In the following we will discuss computation of the k-cable distance
between a non-basic vertex of Q and the base. This restriction, simi-
lar to the restriction of the preceding secticn, requires rerooting of
Q in the case of arbitrary u and v, so that one of the vertices is ad-
jacent to all vertices of the new base and is separated by these from

the other vertex,

We have shown in (7] that a shortest cabie between u and v is
spanned on vertices of the k-complete subgraphs of Q separating u and

V. Due to this obsexrvation, it is easy to recover the vertices of the
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cable between a given vertex and the base from a recursive representation
of Q. The set of parental vertices of a given vertex v is an entry in
this representation and induces a subgraph separating v from some ver-

tices of the base.

The following algorithm computes the k-cable distance to the base

of a2 kx-tree.

Algorithm 2.
Input: Recursive representation R of k-trees Q and the vertex
V.
Qutput: Labels of a shortest path of a k-cable from v to the
base of @
Method: ({Let p be the label-of the current vertex}
{Let C be an array of paths’ labels}
Set p te the label of v:
Assign labels of R[p] to the k paths in C;
While no base vertex has been reached do
set p to the next highest "assigned" label;
assign the only unassigned label in Rip}

to the path ending with p.

Using the same approach, an algorithm linear in the number of nodes
can determine both the (k-l)-tree of subgramhs separating a vertex from
the base and the cerresponding shortest cable. A computer program (in

Pascal) implementing this task is given in the Appendix.

The determination of a shortest cable using the marked or spatial
tree representation can be done in the similar manner. Since it is
necessary only to consider the nodes on the path to the root in these

representaticns, the corresponding algorithms may be faster.

Proposition 2. Given a marked tree T representing a k-tree Q and k
Partially determined vertex-disjoint paths from a vertex v
to the base of Q. Let E be the set of end-vertices of these
raths and let ueE be the youngest vertex represented by a node
D in T. Then the Ccorresponding path can be extended from u by

the edge (u,w}, where w ig represented by the youngest ancestor
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q of p whose mark completes M. If no such node exists then w is

a base vertex.

Proof. We will show that the marks of end-vertices of the k vertex-
disjoint paths are all different., The proof is conducted by
induction on the total length of the paths. (i) The parent ver-
tices of v have all different marks, by definition. {ii) Let u
be a vertex as postulated above, represented by p. Then the
youngest ancestor g of p completing the set of marks M repre-
sents the only parental vertex w of u which is available to ex-
tend the path from u toward the base. The node g replaces p

in E and its mark differs from marks of all other elements of E. O
This proposition implies correctness of the following algorithm,

Algorithm 3.
Input: Marked tree representation of a k-tree Q and a vertex v.
OQutput: ©Nodes of a shortest cable from v to the base of Q.
Method: {Let p be the current nodel}
{Let C be an array of paths}
{Let E be an array of end-nodes}
Set p to the label of v;
Enter nodes representing parental
vertices of v into C and E;
While no base vertex has been reached do
set p to its parent node:;
extend the path to p in C by p's youngest
ancestor g whose mark completes M;

substitute g for p in E.

For spatial tree, the completeness of the set of marks is egquiva-
lent to covering of the path to the base by translates of m-dimensional
subspaces {m < k) of the grid space. The following proposition follows

from the observation about marks of nodes representing end-vertices of

the cable paths.

Proposition 3. Given a spatial tree S representing a k-tree @ and k

partially determined vertex-disjoint paths from a vertex v
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to the base of Q, Let u be the oldest end-vertex of these paths
(other than v) and let p represent it in S. Define H as the
translate of the smallest dimension subspace containing p and
its ancestor node not yet assigned to any path. The youngest
unassigned ancestor of p in H represents a vertex w which ex-

tends the path from u in a shortest cable from v to the base of

0.

5 /

Figure 4. Spatial representation of a 2-tree and its cover defin-

ing a shortest cable.

5. Conclusions

We have introduced the spatial tree as a visualization of recur-
sive representation of k-trees. It gives a different gecmetric inter-
pretation of the shortest path and the shortest cable. It may be a
convenient way of viewing k-trees. However, for its usefulness, the
question of the effect of rerooting of the k-tree on its spatial tree
representation should be answered. Some other problems for k-trees may
have interesting interpretation in this representation. For instance,
(7], what is the representation of the (k-l)-tree induced by vertices
separating two given vertices of a k-tree? The spatial tree defines
euclidean distance from the base to the nodes if we "grow" the nodes in
positive directions of the coordinates. This induces distance-related

questions like centrality,
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7. Appendix

{A procedure to compute the cable distance between vertex n and the base}

var R: array (l..k,k+l..n] of integer; [recursive representation}

§: array [l..k-1,k..n] of integer; {separating (k-l)-tree}

A: array {[k+l..n] of integer; {path indicators for assigned

E: array ([l..k] of integer; {pointers to end nodes}

nodes )

C: array (1..1,1..n] of integer; {paths of the cable}

i,j,b,p: integer;

begin for i:=k+l te n do A[i):=0;

for j:=1 to k do

-begin A{R([j,nll:=j; A[j]:

for i:=n-1 downto k+1 do

if A{i]<>0 then
begin b:=0;
for §:=0 to k do
begin p:=R{§,i];
if A{pl<>0 then

else

end
end

end,

=0; E[j]:=1 end;

S{j-b,i):=p

begin b:=1l; Alp]:=A{i];
ClATL] ,E[A[L]]]) :=p;
EfR[i]]:=E[A[i}]+1

end



