CIS-TR-B0-6

A Hybrid Solution

for Concurrent Operations on B-trees

Carla Schlatter Ellis

March 1980

Department of Computer and Information Science
University of Oregon

Eugene, Oregon 97403

Abstract

B-trees are useful for supporting large ordered indexes in data base
systems. Several solutions have recently been proposed to deal with the
problem of allowing concurrent operations in data structures related to
B-trees. 1In this paper, the strengths and weaknesses of two of these
solutions are described. A combined approach is presented that can be
tuned to satisfy specific performance requirements. Informal arguments

for the correctness of this new solution are given.

. 1. Introduction

B-trees are useful data structures for supporting large ordered indexes
in data base systems. Providing concurrent access to these structures is
necessary in order to give multiple users acceptable response times to their
requests. However, allowing concurrent operations complicates the problem of

ensuring the integrity of the data and introduces the possibility of deadlock.

& number of solutions have been proposed to deal with this problem of con-
currency in variants of B-trees [Bayer & Schkolnick 77, Miller & Snyder 78,
Ellis 78, Lehman & Yao 79, Kwong & Wood 79]. These solutions share certain char-
acteristics: Pirst, they each use a locking mechanism to restrict parallel ac-
cess to critical portions of the tree, In order to achieve a high degree of
concurrency, recent approaches attempt to limit the number of nodes that must
be locked at the same time by one process and the amount of time each node re-
mains locked. Another similarity among solutions is that modifications of the
original B-tree structure are introduced to provide alternate paths by which a

process can reach information being moved by another process.

In this paper, we focus on two of these previous solutions, namely [Lehman
and Yao 79] and [Ellis 78]. We examine the strengths and weaknesses of each
approach and present a solution which combines techniques from both. The objec-
tive of the proposed system is to allow some degree of tuning to satisfy speci-
fic performance requirements. Informal arguments are given for the correctness

of this new solution.

2. Two Previous Approaches

The data structures used in the two solutions considered here are based on
the B*-tree. A B*-tree of degree k is defined to be a finite set of nodes {often
referred to as pages) which is either a single leaf node or consists of a root
with from 2 to k sons. Each non-leaf node except the root has from rk/2] to k
sons. All of the actual data is stored in the leaf nodes and every path from
root to leaf is the same length. A non-leaf node contains pointers to its sons
and label fields that serve to direct searching processes down the appropriate
pointer. Figure 1 gives an example of a B*-tree. Algorithms to insert or delete
information must restructure the tree whenever the operation would produce a node
with more than k or fewer than rk/z] sons. Thus, attempting to insert a new entry

into an already full node causes that node to split in two with the new entry

Ty 0% 6€ 8L L& 9¢ Gt ¥EEE € TE OF 67 8T LT

111

111

;

11

92SC 2 €2 ZC TZ 0Z6T 8T LT 91

TII1r 11 0

1

C=y @9189p jo @3aaJ- g T =2an31g
¥

ST %T €T 2T 1T O

1

L 9t veEE| |TIE O€f [8C LT CT %7 €T TT _ON 6T
8¢ 6t T 6¢ T¢ 8T
9¢ ST

9

I

11111

T €T 2T 11

6

01

inserted into the appropriate half and an entry for its newly created brother
inserted into the father node. A node is referred to as safe for insertion if

it has fewer than k sons and safe for deletion if it has more than rk/21 sSOns.

In [Ellis 78], we describe two solutions for concurrent search and insertion
in 2-3 trees. A 2-3 tree is the smallest special case of B*-trees and is usually
used for relatively small amounts of data (i.e. the entire tree can reside in
main memory). The second of the two solutions (the 2-3 Pipeline solution) is the
one of interest here. This solution uses the three types of locks proposed by
[Bayer & Schkolnick 77): a read lock or p-lock, an exclusive lock or E-lock, and
a writer exclusion lock or a-lock. Figure 2 shows the compatibility relation for
different processes that these locks satisfy. An edge between any two nodes in
this graph means that two different processes may simultaneously hold these locks
on the same node of the tree. An additional type of lock, a special case of
a-lock, is used to sequence leaf insertions and prevent deadlock. It is compatible

with the other form of a-lock.

The 2-3 Tree structure is modified by providing each non-leaf nede with an
overflow area that makes inserted information accessible to searching processes
while the restructuring operations necessitated by the insertion are still in pro-
gress. A single additional pair of pointer and label fields is sufficient above
the maximum non-leaf level (referred to as the father of leaf level). At the
father of leaf level, nodes head linked lists of leaves rather than having a
fixed number of sons. This change prevents deadlock between a restructuring pro-
cess and a process attempting to insert a new leaf by allowing the inserter to
first put the new leaf in place and then to release all locks it holds. The
final modification in the data structure deals with the possibility that the
path followed by a writer process during its search phase may not be the correct
path for restructuring because of intervening restructuring operations. Thus

each non-leaf node includes a peointer to its current father node.

The basic strategy of this sclution is to allow inserting processes to search
down the tree for the appropriate place of insertion using p-locks as in readers,
insert a new leaf, and then restructure bottom up using a-locks to enforce follow-
ing the leader. Thus multiple writers may be searching and restructuring along
the same path. In addition, a technique suggested in [Lamport 77) permits a node
to be shared by multiple readers and a writer concurrently adding a new pointer-

label pair. The basic idea is that when a reader process and a writer process

READ LOCK WRITER EXCLUSION

EXCLUSIVE LOCK

Figure 2 Compatibility graph for locks.

access the same node, they move in opposite directions. £-locks are needed
only when entries are deleted from a node (e.g. when splitting causes entries

to be transferred to a newly created brother).

The 2-3 Pipeline solution achieves a high degree of concurrency. The major
drawback for database applications is the underlying assumption that the entire
data structure is resident in main memory. Maintenance of the father pointers
and scanning of the linked list of leaves would inveolve a considerable number of

secondary storage accesses if this approach were applied to larger paged trees.

The second solution which serves as a basis for this work is presented in
[Lehman and Yao 79). The data structure is a modified B*-tree called a B+-tree.
Each non-leaf node is augmented by an additional label field which holds an upper
bound on the values that may be stored in the subtree rooted at that node and by
an additional pointer to the brother on its right. Thus all nodes at the same
level form a linked list. An example of a B+-tree is given in figure 3. When
a restructuring process splits a node, the newly created brother is inserted
directly to the right of the original node so that the entries which have been
moved are reachable through the brother pointer. With this convention, the nodes
belonging to a writer's restructuring path are accessible either immediately or
via brother links from nodes on its search path. Therefore a stack recording
the rightmost node scanned at each level during the search phase supplies the
leftmost candidate for restructuring at each level, Father pointers are not

necessary with this approach.

Only one type of lock is needed in this solution. The lock serves the same
purpose as the o-lock in the 2-3 Pipeline solution (i.e. excluding other updating
writers but not readers or searching writers). Readers do not use locks of any
kind. The simple locking scheme is possible because each process operates on its
own private copy of the disk page. Several copies of a disk page may reside in
main memory simultaneously with at most one process holding a lock on the page
and modifying its copy. Writing the modified copy back onto the disk page appears

other processes as an instantaneous change in the data structure.

The strong point of this solution lies in the choice of the B+-tree as the
data structure. The brother links provide a natural method of recovery from the
restructuring actions of other processes. The simnle locking scheme demands rela-
tively little overhead for requesting and releasing locks. The major weakness is

the requirement for private copies,

o

€ @an8t1y

B0 9] 0179

y
vy

Compared to a solution in which sharing of main memory paaes is allowed

this restriction should lead to a higher number of secondaryv storage transfers
and a poorer main storage utilization. Consider a B+-tree of level 4 accessed
concurrently by n reading processes. With this approach, we can expect n/4
copies of the root page to exist simultaneously in main memory. In addition to
the space consumed by versions of the same page, each copy involves a transfer
from disk. The advantages in terms of disk traffic of a policy in which the
root node and nodes at level 1 remain in main memory and are shared have been
discussed in [Knuth 73] for sequential access and in [Baer & Anstead 78] for
concurrent operations. 1In the next section, we propose a system that can imple-

ment this policy in a highly concurrent environment.

3. A Hybrid Solution

The basic idea is to combine the two previous approaches so that either
solution may be emphasized depending on the setting of a parameter. This para-
meter specifies the level of the tree at which a transition is made between
shared pages and private copies. The concent is illustrated in Figure 4. Pro-
cesses operate on the shared nodes usinag a locking scheme related to the one in
[Ellis 78]. The compatibility graph of figure 2 is pertinent to this desian.

The technique of reading and writing in opposite directions is applied to facil-
itate sharing. Below the designated level, brocesses use the technigue of [Lehman
& Yao 72]. The two previous solutions are similar with respect to the bottom-up
locking protocol for inserters and the a-lock is used throughout the tree. By
contrast, £-locks and p-locks are needed only for shared pages. This arrangement
is particularly convenient since most of the splitting operations (which require
£-locks on shared pages) occur in the bottom levels which typically will not be

shared. The B+-tree is adopted as the data structure.

The major problem to be solved is to develop the procedure for making the
transition between the two approaches. Without concurrent restructuring opera-
tions, a process can simply keep a counter of levels throuagh which it has passed
in order to detect when it reaches the transition point. The difficulty arises
with the vossibility that the root node may split and a new root be created.

The level of each node then increases by one and the set of nodes previously at
the transition level change from sharable to private access. Thus a process may
have obsolete information indicating that a node resides in shared memory and
must be able to recover. An important question is how to consistently handle

a-locks for both shared and private pages so that a change in the level of a page

SHARED

PRIVATE
FATHER OF LEAF LEVEL
é .

TRANSITION LEVEL

Leaves are the

T Actual Records

Figure 4 Tree Configuration for Hybrid

Solution

has no effect on its lock status. A method is also needed for determining when
it is possible to replace a formally sharable page that some active processes
gained access to before the root split. In the following section, we describe a
monitor system for memory management and concurrency control that deals with

these issues.

3.1 The System Model

The official version of the entire B+-tree is stored on some secondary mem-
orv device. Copies of selected pages (not necessarily of the up to date version)
reside in either shared or private areas of main storage. In order to operate
upon a node of the tree, a process must either find it occupying a block of
shared memory or read it from secondary storaqe into a private block. Thus we
need a set of memoxrv management functions to locate sharable pages, supervise the

replacement of pages, and initiate transfers between disk and main memory.

This model utilizes an associative table of sharable pages to determine
which memory block contains a specified node. In addition to fields for the
page and block addresses, each entry in the table contains a field recording the
present level of the node and a use bit that help decide when a page may be re-

moved.
The following functions are provided by the system:

FIND (node, index)} searches the associative table for the specified node. If

successful, the use bit is set and the index of the table entry is returned.

ADDR [index] locates the main memory block desired.

DEPART (index, node} writes the contents of the block starting at ADDR[index]

onto the disk page indicated by node and resets the use bit.

CREATE (node, block#, level) creates an entrv in the table for a new node and

makes the specified block sharable. If the level parameter indicates that this
is a new root, the header is reassigned to point to the new root and the level
of every other entry is incremented thereby generating a set of candidates for

page replacement.

block# + GET (node) reads the contents of the disk page pointed to by node into

the memory block.

10

PUT (block#, node) writes the contents of the given memory block onto the disk

page indicated by node.

The concurrency control functions of the system allow processes to request
and release locks. Since p-locks and £-locks are used only for shared pages,
the associative table appears to be the ampropriate place to store the status of
a node with regard to these locks. The field giving the number of p-locks held
also influences the page replacement decision, Finally, each sharable page is
associated with a waiting queue for processes attempting lock requests which are
incompatible with the current lock status. The situation with regard to a-locks
is more interesting, It is desirable that the data structures which represent
a-locking status be in main memory and not distinquish between sharable and pri-
vate nodes. Since the number of pages in the B+-tree should be very large com-
pared to the number of a-locks held by concurrently active writers, a list record-
ing only the a-~locked nodes is a suitable implementation. A waiting queue is
associated with each entrv in the list for processes blocked on attempting to

a-lock that node.
The followina indivisible locking operations are defined:

ALPHA-LOCK (node) searches the list of locked nodes. If the node is found, the

requesting orocess is blocked; otherwise an entry is inserted for the node.

RELEASE-ALPHA (node) finds the entrv in the list for the node. If no processes

are waiting in the associated queue, the entry is deleted; otherwise the first

process is awakened.

RHO-LOCK (node, index) serves the dual purpose of finding the page and locking

it. The associative table is searched and the index of the tahle entry is re-
turned. 1In addition the lock status is checked and updated {(p-lock count is in-

cremented) after a possible wait.

RELEASE-RHO (index) decrements the p-lock count. If the count goes to zero and

a process is waiting to £-lock, it is awakened.

X1-LOCK (index) and

RELEASE-RHO (index) similarly manipulate the lock status and wait queues of an

entry in the associative table in compliance with the compatibility graph of

figqure 2.

11

3.2 The Algorithms for Readers and Inserters

The procedures executed by searching and inserting processes are given in
Appendix 1 for trees containing at least one non-leaf node. In order to simplify
the presentation of the algorithms in this section, we further assume the tree
contains both sharable and private levels (i.e. for the specified transition

level, I, and the father of leaf level, h, 0<I<h).

Readers begin at the root and p-lock each sharable node on their path be-
fore scanning it for the desired value. Upon leaving a sharable node, the pro-
cess releases its p-lock. Scanning a node is accomplished by reading the pointer
and label fields sequentially from left to right and comparing the desired value,
v, with each label field, label[i), until v<label[i] or all of the labels in this
node have been read (i=# sons) and found to be less than v. In the first case,
the next node to be searched is the son pointed to by son[i]. In the second
case, this node must have recently split and the brother link should be followed.
Figure 5 shows the fields of a non-leaf node. For each node on the path below
the transition level, the node must be copied from disk before it is scanned.
Eventually the searching process reaches the father of leaf node that should point

to the record associated with v.

Inserting a new leaf into the tree first requires a search for the proper
place to insert. An inserter process performs essentially the same steps as a
reader during this phase except that it also records on a stack the rightmost node
scanned at each level. When it reaches the father of leaf level, the process
a-locks the node, reads it again from the disk in case a restructuring operation
occurred before the lock request was granted, and if necessary follows brother
pointers (a-locking as it moves right) to the appropriate father of leaf node. If
the resulting node is safe, the new entry is inserted, the disk page updated,
and the o-lock released; otherwise, a splitting operation is performed, the stack
popped, and the newly created non-leaf node inserted into the father of the node
that split. After the next node in the restructuring path is correctly identified
and a-locked, the a-lock on the split node is released. The restructuring opera-
tions proceed bottom up until a safe node is encountered. The details depend on
whether the node being modified is private or sharable. The inserting process
maintains a level counter to help it determine which actions are appropriate,
While the value of the level counter is greater than the transition level, the

process is guaranteed to be operating upon private nodes. After that, an attempt

JUTT 12y30aq

.mmuHr+m @Yl jo 9pou Tenprarpur ¢ 2andtg

SUOS jf [1-

uos [1aqet

[1-

comau =oma_

uos

rﬁm|
SDM*H
12qeT

A3y
usty

(1]
12qeT

(1)

uos

[o]
Teqe]

{o)

uos

suosy

jeat 30
a=syaeys

13

is made to FIND each desired node in shared storage.
To split a node, the following steps are taken:

1} Construct a new non-leaf page, B, with entries copied from the right half of
the original unsafe node, A. If A is sharable, it must be £-locked while the
brother pointer and #sons field are updated. Insert the new entry into the appro-
priate node of the pair. If A is sharable, an entry for B must be made in the

associative page table by calling CREATE.

2} Put B onto disk.

3) Write A onto disk by calling DEPART if A is sharable or PUT if it is private.

4) Pop the stack and a-lock that node. Using FIND for sharable nodes and GET
for private nodes, move right until the actual father of A is identified and

a~-locked for the insertion of A's new brother.

The steps necessary to insert an entry into a node depend on whether the
entry is for a leaf or a non-leaf node. However the essential property is that
pointers and labels are moved right to make room for the new entry by startina
with the brother pointer and proceeding right to left, moving label[i] before

son[i], until the proper place to insert is reached.

3.3 Correctness Arguments

In this section we sketch a correctness proof of these algorithms. There
are four parts to the discussion: proving freedom from deadlock, appealing to
the proof in [Lehman & Yao 79] for the correctness of operations on the private
portion of the tree, proving correctness for the shared nodes, and finally show-

ing that the transition is made properly.

a-locks are placed by the inserter according te the well-ordering on nodes
of a B+-tree. An inserter holds only one £-lock at a time and other inserters
are already excluded from that node by the processes's single w-lock. The pro-
cess releases the £-lock before making any further requests. Thus the deadlock
situation in which two processes each request an incompatible lock on a node

already locked by the other does not arise here.

14

If the designated transition level is set at 0, our solution reduces to
that of [Lehman & Yao 79) where private copies are made at all levels. The ar-
guments for the integrity of the tree structure on disk and for the non-interfer-

ence amcng processes given there hold for the private portion of ocur tree.

Modifications of the disk version of sharable nodes are performed in essen-~
tially the same way as for private nodes, Thus, if we can be assured that the
contents of the shared page are valid at the time of the DEPART operation, the
arguments for structural integrity still hold. Since inserters must be granted
an a~lock on a node before FINDing it during the restructuring phase and DEPART

is done prior to releasing the a-lock, only one process may be modifying the node.

The interaction of processes within the shared nodes is more interesting.
We must show that a reader or searching writer eventually reaches the proper father
of leaf node in spite of modifications concurrently being made to the fields of
the node being scanned. This demands that the pointer followed as a result of
scanning lead either to the correct node or to one of its left brothers. The
technique of reading and writing in opposite directions {Lamport 77] is used for
inserting an entry into a node. Lamport proved that when the fields of a data
item are written from right to left, a read performed left to right obtains values
such that for each field, the value immediately to the right is from the same or
later version of the data item. The i + lst version of a label field is less
than or equal to the ith version and the i + lst version of a pointer field leads
either to the node pointed to in the ith version or its (possibly new) left brother.
Suppose that the correct next node to be scanned is pointed to by the ith version
of son{j] and that the reader process meets the writer between reading scon([j]} and
label[j} (i.e. it sees the ith version of the pointer and the i + lst version of

the associated lakel). Then the following cases should be considered:

a. The i + lst version of label([j] equals the ith version of label[j-1]. The
reader has already encountered this value and passed it because the desired
key is greater. Therefore, the jth entry is rejected and the reader follows
the i + lst version of son[j+l] based on the value of label [j+1].

b. The i + lst version of label[j] is less than the ith version but greater
than label[j-1]. If the node being scanned is a father of leaf node, the
writer is attempting to insert a new leaf to the left of son{j]. With regard
to a search for the new leaf value, this pointer-label combination is incon-

sistent, but acceptable. The new label[j] causes our reader to reject the

15

the jth entry in item a. If the node being scanned is not a father of leaf
node, the old son{j] has recently split and the writer is inserting the newly

created brother as son[j+1],

A decision based on the ith version of label[j) is equivalent to scanning a pri-
vate copy read from disk prior to the write of the i + 1st version. Brother links
provide recovery if needed as shown by Lehman and Yao. Finally, E-locks are re-
quired when a writer is removing entries from a node so that no inconsistent infor-

mation is visible to readers.

The correctness of the transition from one approach to the other depends on
an important characteristic of B-tree variants; namely that once a node is created
at a particular level in the tree, its level can never decrease. Thus a node that
originally resides in shared storage can become a private node, but not vice versa.
A process counting levels during either the top-down search or the bottom-up re-
structuring might make the mistake of assuming that a certain node is sharable.

If the node is no longer sharable, memory management will fail to find the page
and we proceed with a private copy. On the downward path, detecting the first

private node signifies that the transition level has been passed.

4. Summarvy and Conclusions

In this paper we have combined two previous solutions in an attempt to over-
come some of their shortcomings. Our solution depends upon a parameter that spe-
cifies the level at which a transition is made from a locking approach on shared
bpages to operating upon private copies. The performance measures that should be
affected by the selection of this parameter value are the number of secondary
disk transfers, the main memory requirements with a fixed number of concurrent
processes, and the amount of locking overhead. Characteristics of the processing
environment that must be taken into account are the degree of the tree, k, and
the numbers of concurrent readers and inserters. Simulation experiments investi-
gating the tradeoffs will be reported in a subsequent paper. Probablistic analyses

will also be presented.

The subject of deletion has been omitted because in many applications it is
performed relatively infrequently and the strategy of allowing deletion from un-
safe father of leaf nodes without restructuring (i.e. allowing nodes with less
than rk/21 sons} is acceptable. It is possible to extend this solution to allow

concurrent restructuring.

[
g}

5. Bibliography

Baer, J-L. and S. Anstead, "Concurrent Accesses of B*-trees in a Paging
Environment", Proc. of International Conf. on Parallel Processing, 1978.

Bayer, R. and M. Schkolnick, "Concurrency of Operations on B-trees", ACTA
INFORMATICA 9, 1977, pp. 1-22,

Ellis, Carla, "Concurrent Search and Insertion in 2-3 Trees", TR-7B-05-01,
University of Washington, 1978, to appear in ACTA INFORMATICA.,

Knuth, D.E., The Art of Computer Programming, Vol. 3, Sorting and Searching
and Searching, Addison-Wesley, 1973, pp. 471-479,

Kwong, Y.5. and D. Wood, "Concurrency in B-trees, S-trees, and T-trees",
TR-79~CS-17, McMaster Universitv, 1979.

Lamport, L., "Concurrent Reading and Writing", CACM, Vol. 20, No. 11, Nov. 1977,
pp. 806-811.

Lehman, P. and S. B. Yao, "Efficient Locking for Concurrent Operations on B-trees",
preliminary report 1879.

Miller, R. and L., Snyder, "Multiple Access to B-trees", Proc. Conf. Information
Science and Systems, Mar 1978,

READER
RHO-LOCK (header,i)

current + ADDR[il]

RHO-LOCK (current,j}

while j # A /*current is sharable*/ do begin

end

RELEASE-RHO (i}
i+
previous + current
current <+ SCANNODE (value, ADDR[il, brotherlink}
if previous is father of leaf and not brotherlink
then begin /*current is leaf*/
Compare value with labels in ADDR{i]
to determine success
RELEASE RHO (i)
return
end

RHO-LOCK (current,j}

A <+ GET (current)

RELEASE~RHO (1)

while true do begin

end

previous + current
current <+ SCANNODE (value, A, brotherlink)
if previous is father of leaf and not brotherlink
then begin
Compare value with labels in A to
determine success
return
end

A + GET {current)

INSERTER

initialize stack /*as in reader process

RHO-LOCK (header,i) except

PUSH (header) stack rightmost node in each level
current <+ ADDR[il ‘ and at father of leaf level o lock*/

RHO-LOCK (current,j)
while j # A & current is not father of leaf do begin
RELEASE-RHO (i)
i+
previous < current
current + SCANNODE {value, ADDR[i], brotherlink)
if not brotherlink then
push (previous)
RHO-LOCK (current,j)
end
if current is father of leaf then begin
release RHO(5)
ALPHA-LOCK (current)
RELEASE~RHO (i)
FIND {(current,i)
if i =) then begin
A + GET {current)
MOVERIGHT
Compare
end
else begin
SHARABLE_MOVERIGHT
Compare
end

end

else begin /* NONSHARED */
‘ A + GET (current)
RELEASE-RHO{i)
while current is not father of leaf do
previous + current
current + SCANNODE (value,A,brotherlink}
A + GET (current)
if not brotherlink then
push (previous)
end
/*current is father of leaf*/
ALPHA-LOCK (current)
A + GET (current)
MOVERIGHT
Compare
end
/*restructuring phase*/
level + father of leaf level
newnode + ptr to disk page alloc to record assoc with value
while level > transition + 1 & current is not safe do
begin
SPLITPRIVATENODE
A + GET (current)
moveright
release ALPHA (previcus}
end
while current is not safe /*level believed to be =
transition + 1*/
do begin
SPLITPRIVATENCDE
FIND (current,i}
while i #)\ do /*within sharable portion*/
begin
t « SCANNODE (value, ADDR[i]), brotherlink}
if brotherlink then begin
ALPHA-LOCK (t)
RELEASE-ALPHA (current)
current «+ t

FIND (current,i)

end

else begin /*actual father*/

release-ALPHA (previous}

if ecurrent is safe then begin
INSERT (ADDRI[i], newnode, value)
DEPART (i,current)
RELEASE ALPHA (current)
return

end

if current is root then begin
SPLITSHAREDNODE
root + alloc new disk page
A + construct page with

{previous, value, newnode, B,label [#sons-11,A)

PUT (A,root)
CREATE (root,A,newroot)
RELEASE ALPHA (previous)
RELEASE ALPHA (current)
return
end
SPLITSHAREDNODE
end /*actual father*/
end /* i # A */
A + GET (current)
moveright
release ALPHA (previocus)
end /*while current not safe*/
/*current is safe*/
INSERT (A,newnode,value)
PUT (A,current)

release ALPHA (current)

A=B

procedure SHARABLE MOVERIGHT
t + SCANNODE (value, ADDR[i], brotherlink)
while brotherlink do begin
ALPHA-LOCK (t)
RELEASE~ALPHA (current)
current + t
FIND (current,i)
if i = X then begin
A + GET (current)
moveright
return
end
t + SCANNODE {value, ADDR[i]), brotheriink)

end

procedure SPLITSHAREDNODE
begin
brother + alloc new disk apge
B «+ copy righthand half of ADBDR[i]
X1-LOCK (i)

ADDR[i].#sons « Jk/2] or [k/2] -1
depending on where newnode is to be
inserted

ADDR[i].son[#sons] + brother

RELEASE-X1 (i)

if wvalue > ADDRI[il.label [#sons-11 then
INSERT (B,newnode,value)
else INSERT (ADDR[i],newnode,value)

CREATE (brother,B,i)

PUT (B,brother)

DEPART (i,current)

newnode < brother

previous + current

value + ADDR[i].label [#sons-1]

current + pop (stack)

ALPHA-LOCK {current)

FIND (current,i)

end SPLITSHAREDNODE

A-7

function SCANNODE {value: keytype,B: frame#, var brotherlink: boolean): ptr type
declare local variables: i,link,key
begin
i+0
brotherlink + false
repeat
link + B.sonf{i]
if 1 = B.#sons then begin
brotherlink + true
return (link}
end
key « B.labelli]
i+ i+ 1
until value < key
return (link}

end

procedure INSERT (B: frame#, ptr: ptrtype, value: keytype)
declare local variable i
function PLACETOINSERT: boolean
if i = 0 then return ({true) else
if value > label [i-1] then return (true)
else return (false}
begin
i + B.#sons
B.son[i+l] + B.son[i] /*move brotherlink*/
B.labelii] + B.label[i-1) /*move highkey*/
B.#sons +« B.#sons + 1
i+i-13
while not PLACETOINSERT do begin
B.son[i+l] + B.son[i]
B.label{i] + B.label[i-1]
i+i-1

end

end

if father of leaf then begin
B.son[i+l] + B.son(i]
B.label[i] + value
B.son{i] + ptr

end

else begin
B.son[i+l] + ptr
B.label[i] + wvalue

end

i

