CIS-TR-80-7

The Use of Tree Derivatives and a Sample
Support Parameter for Inferring Tree Systems

by
Barry Levine
Computer and Information Science Department
University of Oregon

Eugene, Oregon 97403

THE USE OF TREE DERIVATIVES AND A SAMPLE SUPPORT PARAMETER FOR

INFERRING TREE SYSTEMS

by

Barry Levine

Abstract - Tree systems have been studied in the theoretical setting
as an extension of finite automata. They have been found useful in
the practical domain when applied to syntactic pattern recognition.
The practical applications of tree systems have motivated the
examination of inference techniques for tree grammars and tree automata.
In this paper we present a tree automaton inference algorithm which
incorporates three concepts - tree derivatives, grammatical expansion
and inferential strength. Tree derivatives are used for comparing
tree forms. Grammatical expansion is a feedback mechanism which
effectively enlarges the user sample. An inferential strength
parameter is input by the user to indicate the amount of support
required from the sample for inferences. The algorithm is also
applied for inferring finite-state machines. Finally, we address

an open problem posed by Joshi and Levy by demonstrating the use

of our algorithm for the design of programming languages.

1. Introduction

Tree systems have been studied in the theoretical setting as an
extension of finite automata, [7] and [t1]. They have been found use-
ful in the practical domain when applied to syntactic pattern recogni-
tion [2] and [18]. The practical applications of tree systems have
motivated the examination of inference techniques for tree grammars
and tree automata [8] and [12]. This pamer deals with extending the
results in Levine [17] by inferring tree automata using tree derivatives.
The ideas of grammatical expansion and inferential strength are intro-
duced. The inferential strength parameter specifies the support re-
quired from the sample to perform inferences. Grammatical expansion is
the feedback technique wherein inferences determined at an earlier
stage of the process are used to help form inferences at later stages.

These concepts are applied to yield an algorithm for inferring
" finite-state machines. We address the open grammatical inference pro-
blem for context-free languages, posed by Joshi and Levy {151, by ap-
Plying our inference technigue to the desien of prozramming languages.
It is shown that our method uses information more effectively (i.e. our
method requires smaller samples).than the programming language inference
algorithm by Crespi-Reghizzi, Lichten and Melkanoff [101.

In Section 2 we present preliminary definitions and results on
tree systems. We also review the tree inference algorithms by Brayer
and Fu [8], Edwards, Gonzalez and Thomason [12] and Levine [17]. The
inference algorithm using tree derivatives, grammatical expansion and
inferential strength is introduced in Section 3. Section 4 deals with
space and time efficiency improvements to the inference technique. The

algorithm is applied to finite-state inference in Section 5. Finallvy,

in Section 6 we address Joshi and Levy's open problem by demonstrating
the use of skeletal structure samples with our algorithm for the de-
sign of programming languages. Our method is compared with the method

by Crespi-Reghizzi, Lichten and Melkanoff in the same section.

2. Preliminaries

In this section we give the standard definitions for tree systems
[7)]. Then we present the theory upon which we based our inference
technique. Finally, we conclude this section with a brief review of

current results on the inference of tree systems.

Definition 2.1: Let N be the set of nonnegative integers and V the
free monoid generated by N with 0 the identity and "." the operation. We
define agb for a,beV iff there exists xeV such that a-x=b. a and b

are incomparable iff afb and bfa. ac<b iff a<b and a#b.

Definition 2.2: D is a tree domatin iff it satisfies
i) DeV and D is finite
ii) beD and a<b implies aeD

iii) a-meD implies a‘neD for l<n<m, neN.

A direct successor (direct predecessor) of a node x is a node y where
y=x-.a (y.-a=x) for aeN. A terminal node in D is one that has no direct
successors.

Intuitively, a tree domain, D, is a finite, rooted, ordered tree
such that a node in D implies all of its predecessors are in D and if
an mth descendant, %, is included in D then the m-1 siblings of x must
also be in D. The elements of a domain allow one to uniquely address

any node in the tree associated with the domain.

Definition 2.3: The depth of aeV is defined recursively as
depth(a)=0 if a=0
depth(a-x)=depth(al)+l for xeN

(i.e., if a#0 then depth(a) is 1 plus the number of .'s). If t is

a tree domain then depth(t)=max{depth(i): iet}.
The next definition describes labelled trees which associate in-

formation with the nodes of a tree domain.

Definition 2.4: A tree over the finite alphabet A (taAT) is a
mapping t:D+A which labels the nodes of the tree domain D.

t(x)=e if x£D. The set of all terminal nodes of the labelled tree, T,
concatenated left to right i1s the frontier of %, denoted fr(t). Given
a labelled tree it is frequently required to reference or replace sub-

trees.

Definition 2.5: If a,b,b'sV and b=a.b' then b/azb'. If teAl then
the subtree of t at a where a is in the domain of t (acDom(t)) is de-
fined as t/a={(x,b}: (a-x,b)et}. The replacement of the subtree at a
with the subtree u, denoted t(a«u), is defined as t(a+u)z{(b,x): t{(b)=x

and agbjU{a-y: yeDom(ul}}.

Fxample 2.1

D = {0,1,1.1,2,2.1,2.2} U ={0,1,21}
A = {a,b}
D 0 u 0
AN as
1 2 1 2
/ N\

==

Depth(t)=2, fr(t)=aab

Definition 2.8: A finite tree automaton, M, is an automaton which,
given the states of all direct successors of a node, n, and the label
of n, assigns a state to n. If the state of each node is uniquely
determined then M is deterministic; otherwise M is nondeterministice.
M is formally defined as a 4-tuple by M=(Q,A,f,F) where

Q i; a finite set of states,

A is the finite set of tree labels,

FeQ is the set of final or accepting states and

f: Q%xA~+Q is the state assignment function.

f=(fa: acA and fa: Q#*-+Q }.

Since M reduces (assigns states to) frontier nodes first and the root
node last it is also known as a frontier-to-root automaton . If the
state assigned to the root node of a tree t is in F then M accepts t
and teT(M), the set of trees accepted by M. Henceforth, we will only
consider deterministic tree automata since every nondeterministic tree
automaton can be converted to an eguivalent deterministic tree

automaton [7].

If M operates on t and z, is a tree showing the reductions of all

1t
the nodes of t then Zy is the state tree for t.
Example 2.2
M=(Q,A,£,F) where
Q=(B,C}, A={b,c}, fb=B’ fc=C

fb(B,C)=B, fc(B,C)=C, F={B}

= teT(M)

M accepts all rooted binary trees with left successor nodes labelled b,
right successor nodes labelled ¢ and root nodes labelled b.

We extend f, which operates on trees in AT of depth 0 or 1, to £*®
as follows:

f*(a) = f_ for acA

£%(a) = fa (f*(tl),...,f*(tn)).

N

tl...tn

T . .
Note that f#(t) = zt(D) for teA”. Hereafter we will use the extension
of f when referencing tree automata.
Whereas tree autcmata accept (parse) sets of trees, regular tree

grammars generate tree languages.

Definition 2.7: A regular tree grammar over AT is a 4-tuple
G=(V,A,P,S) where

V is a finite set of nonterminals,

P is a finite set of productions of the form t-+u For {t,uls(v u A)T and

S is a finite set of trees in (V U A)T.

o

Tree t derives u by G, denoted't%?14, iff there exists v-+weP and
aeDom{(t) such that t/a=v and t(a+w)=u. G is not given when it is
clear from context. tIF*u iff t=ty= ‘cf’...:?tn:u for n>0. The langu-

age generated by G, denoted T(G), is defined T(G)={u: usAT, t2*u and teS.

If P satisfies P={t+u: teV, usxelA or us x for xeA and x,,...,x_eV}
A ' »

then G is an erxpansive grammar. Xq - X

Theorem 2.1 (Brainerd [7]): For each regular system, one can

effectively construct an equivalent expansive system.
Henceforth, unless noted otherwise, we will only consider expan-

sive grammars.

Ezample 2.3
The following expansive grammar generates the set of trees accepted
by the tree automaton in Example 2.2.
G=(V,A,P,S)
v=(B,C} , A={b,cl, S={B}

B+b | b

Theorem 2.2 (Doner [11]): Let M be a tree automaton and G an

expansive tree grammar. One can effectively construct an expansive

grammar GM where T(M)=T(GM) and a tree automaton MG where T(G)zT(MG).
The concept of string derivatives {9] has been extended to trees

(1717,

Definition 2.8: The mth order tree derivative of the set of trees

S with respect to the tree t, denoted D?(S), is recursively defined by
]

D%(S) = {u(b+$): ueS and u/b=t} and

DE+1 T

() = DL(DL(S)) for ix1, seA” and $éa.

th

Hence, the m order tree derivative is the replacement of exactly

m occurrences of t in each tree in $ with a $.

L1 -Y

Example 2.

S= {a b b}
a /\b ? a'/\b » @ b’~'a
a’ﬂ'b
Di(8)= e b $, b} Di(8)=ﬂ
3 ’ Py ’
s b a b 78
Pa
8 b
D]];(S)z Ta b b b} Dg(S) ={ b
a/\ 8 a'A'b a A$ $'f\a a./\
aA $ a'ﬁ'b a'l\$
Di(8)={$,b }
~ AN
a b $ b

The following results - Lemma 2.3, Thecrem 2.4, Corollary 2.5, and
Lemma 2.6 - are used as a basis for the inference algorithm given in

Section 3. They are drawn from Levine [17].

. e dley _ o1 Fran - m3ran e
Lemma 2.3: If Dt(S) = Du(S) then Dt(S) = Du(S) for j>1.

Subtree-invariant equivalence relations, which are closely asso-

ciated with tree derivatives, are defined as follows.

Definition 2.9: R is a subtree-invariant zquivalence relation on
trees in AT iff tRu implies v({x+t)Rv(x+u) for each xeDom(v} and t,u,veAT
A state-minimizing subtree~invariant equivalence relation of finite in-
dex for the tree automaton M was determined in [17]: tRMu iff for each

VEAT and each xsDom(v), v(x+«t)eT(M) exactly when v(x+u)eT(M).
1 _ 1 . M
Theorem 2.4: Dt(T(M)) = DU(T(M)) iff tRu.

Corollary 2.5: D%(T(M)) = D&(T(M)) iff tRMu-where j>1.

Our method of inference is based on examining depth bounded tree

derivative sets.

Definition 2.10: The k depth bounded tree derivative of order n
with respect to t is defined as

Di’n(s) = {u: ung(S) and depth(u)<k}.
Lemma 2.6 follows directly from Corollary 2.5.

Lemma 2.6: tRMu iff Dt’l(T(M))

D (T(MN) for k>0 and i>1.

We conclude this section with a brief review of the current re-
sults on the inference of tree automata. The algorithms input finite
positive tree samples and then infer automata which accept supersets

of the samples.

Definttion 2.11: A finite positive tree sample S+ for a tree auto-

maton M is a finite subset of T(M).

Brayer and Fu's algorithm [8] inputs S+ and a depth parameter k.
The algorithm examines trees top down and forms tree sublanguages based
on the set of successor subtrees to various nodes and positioning infor-
mation. Sublanguages are considered to be equivalent (i.e., the same
nonterminal is assigned to generate them) if they agree on all trees of

depth less than or equal to k.

Example 2.5 (Brayer and Fu [8])
S+ = { e e e e i
b) Fa ’ ’ A 1)
5" b b b b b 5'b b b
» N
5"b s 5'b 5 b b b
Fal
b b
e e e e }
fal) A ¥ * A
b b 5 b b b b
M » o)
5'b ,ta/\b a’ b 2'b
b Db b b BAb ab aﬂb
~
b b
k=2
The left successor sublanguages of e are formed from
T ={ b, b b - b . b . b , b }
A A A A A
b b b b b b7 b a’b & b
y
v"b 7 b b AN a’p
A~
b b
Since k=2 we only consider B={b, b }. The right successor
Fal
b b

sublanguages of e are also formed from B. Therefore, we obtain

the rules S+.i , B+b , B+ b . We select the sublanguages A={a} an
A
B B B B

18

C={ b} and note that TZB to obtain:
~
a b
S+ e , B+b, B+Db , B+Db , C+ b , A+a
A A ~ ~
B B B B AC A B

The inference technique by Edwards, Gonzalez and Thomason [12] uses
the properties of self-embedding and regularity to produce a concise
grammatical description of S+. Their algorithm locates repetitive sub-

structures in S+ for determining recursive grammatical rules.

Example 2.6: (Edwards, Gonzalez and Thomason [12])
= e S+ = {t}
a T~ a
A ~
b ¢ b e
| }
a a
A A
b c b ¢
t is rewritten as: e t, =

The grammar produced for S+ is:

S+ e A+ a , A+ a B+b , C-+c , D-c
o~ Fa) Fa) |
A A B C B D A

The inference algorithm in Levine {17], denoted Il, examines
the derivative sets Dt’l(s+) with respect to the subtrees (t) of trees

in S+ and infers the relation tRMu whenever Di’l(8+) = Di’l(8+),

D};’lcs«w#ﬂ and D];”-<s+)¢s.

Exzample 2.7

(S+ is the same sample as the sample given in Example 2.5)

S"':{i: i’ i) e > i ?
b bbb bb 5 b b b
A ”~ N A ~
v'b b b b b b b b
A
v b
e s e ' e) = }
Fal ’~ Fas A
v b b b b b b B
S
b b 5 b a b a™b
~
b bbb b a"b i
A
5 b
M
R=§+U{b, b , b , b . b I S —
~ ™~
Bb bbb bb b~ p 2’ b
b b bbb bbb bb
b, b ; b }
A
éﬁb ab ab
Fal Pal N
&b v b ab
A
v b
I1 determines the following set of relations:
ploles+y=ptrl(st) = (e , e 3} : bRYD
b b ~ ~ b b
J1 o b7
B b
;
prel (s+y = prl sty = (e} : b RY 3
b b A A A
N A $ b ab b b
2 b b 2 2
M A ab bbb

Finally, R={(b, b) ,
™
b b

(b . b , R S ’E\ R b), (&),
N
oS b a b b b 5 b
™ Fa
& bbb a"b b b b b b
v"'b
(b , b)} U S+
A A
ab ab
Fa¥
b b

M= ({8,A,8,C} , {e,a,b} , £, {S})

fb = B, fa = A, fb(A,B)=C, fb,(A,C)=B,

fb(B,B)=B, fe(B,B)=S

M is the same machine inferred by Brayer and Fu's algorithm with a
depth parameter of 2. Note that Il infers relations when the sample
exhibits trees similar in form.

In Levine [17] we found Il to be less sensitive than Brayer and
Fu's technique to depth variations of sample trees. The limitation
(not present in I1) of the method by Edwards, et al was the regularity

requirement for samples presented to their systems.

3. A Second Tree Derivative Inference Algorithm

In this section we will modify Il to incorporate two new concepts -
grammatical expansion and inferential strength. Inference by gram-
matical expansion uses feedback to effectively enlarge the sample
originally input. The use of inferential strength allows inferences
to be made (two subtree-invariant equivalence classes merged) only
when the derivative sets involved in the inference overlap according

to a priori conditions set by the user.

'b_l
[#%]

The inference schemes reviewed in Section 2 required the user
to present a finite positive sample S+. Then the methods attempted
to generalize on S+ using the structural information contained there-
in. The grammatical expansion method is performed in stages. During
each stage an inference is made on the original sample -~ S+ - in addi-
tion to its extension obtained via inferences from previous stages.
The method uses feedback until the expanded S+ can no longer change
with any further inferences.

We will clarify this notion by considering the modifications to
I1 to incorporate grammatical expansion. In Il the target automaton

is determined from the subtree-invariant equivalence relation RM.

M k,n

2

Henceforth, we will abbreviate RM by R since RM is the only subtree-

R was inferred from the derivativesD (S5+) for subtrees tﬁ in S+.

invariant equivalence relation that is considered. Note that R is

initially the identity equivalence relation - all classes contain only
k,n

ti i

tj are merged. The interpretation of this merger is the following.

one element. When D (S+) = Dt’n(8+) the classes containing T and
If ti(tj) appears as a subtree at 'a' of some tree, t, accepted by
the target automaton M (i.e., t/a = tss teT(M)) then t(a+tj)sT(M).

The generalization on S+ by R (i.e., the inference of tRu) is denoted

R(S+).
Our original concern (Il) was in finding elements of Dt’m(8+)
that were alsc in Dﬁ’m(8+). In the modified algorithm we will attempt

to determine if elements of D:’m(8+) with $-nodes replaced by u
are in R(S+) or elements of Dﬁ’m(8+) with $-nodes replaced by t
are in R(S+). Thus, we will attempt to determine if the forms

yielded by the original derivatives are the same

when R is applied.

This problem may be couched in terms of tree generating systems
in the following manner.
Definitien 3.1: The regular itree grammar GR=KV,A,PR,SJ over AT
based on R is defined as
V: @
A: the labels in trees found in S+

PR: {{t,u): (t,u)eR}

S: S+

The algorithm must check whether given trees are generated by GR'
It is clear that an effective procedure exists for determining
"tsT(GR)?". It is critical to note that derivatives are not taken
over the complete expanded sample R(S+)}, but are taken over S+. Since
trees in S+ were originally presented by the user, we restrict our

interest in the derivative sets to tress of forms similar to D&’m(8+)
L

rather than Dz’m(R(S+)).

Definition 3.2: Let
SUB(D:’l(S),u,R) s {v: vsDt’l(S), v/a1 = ... = v/a, = § and v(al+u)...
(ai+u)eR(S)}. Then the u-substitution set for Dt’l(S) with respect

to R, denoted N(D:’l(S),u,R), is defined as

NS H(8),u,R) = (SUB(DE R8sy ,u,R) if suB(Nies),u,R) # 8
@ otherwise

The revised inference algorithm uses substitution sets as well as
derivative sets to make inferences-~(t,u) is added to B {(+Ru) iff

,i k,i k,i x,i
N (D (s+),u,R) = DT (S+) # 4, N(Du’l(8+),t,R) - DE (s+) # 0.

Example 3.1

s+ = (. & 2 2 'j__ 1
pPd * bTe ' 4 ~Tg e b
c”™c c™e e g”g e g”g
e c ¢ ¢
t, = b, t,=¢, t,= d , t, = e, t_= e, t. = d R
- 2 3 chc u . 5 é B ?A?
c ¢
to= b , t.= a , t,= a , t. = a oty
7 eab 8 h™d g b™e 10 d ~~~d 11
[] o~ o) o~ A
c e e c’e c"e e’
c e

pl*i(s+) = pl-l
T t

3 m b ty y

R=RU {(t3,tu)}

p2rl(se) = ¢

a }
L6 d”s
~u
e
a a
Substituting t, for $§ in d™ we obtain d“Sb eR(S+)
-~ o~ o,
e’e c’c e'e
cc
since t_ Rt, . Therefore, D2’1(8+) = N(Dz’l,t yR). Likewise,
377y tB tE 7
2,1 - _ 2,1 -
D (S+) = { a } = N (D (S+),t.,R) so R = R U {(t,.,t.)}.
t A t 6 B* "7
7 2 $ 7
ce

(5%) = (g } = MOS0 ,5,,R) = wltese), e, R

There are no further inferences possible using the revised algor-

ithm so the relations thtq and tBRt

determine only t3Rtu.

7 are output. Note that Il would

The reguirement that the substitution sets completely match the
derivative sets might be too restrictive. In many cases there may be
structural information present in the sample, but not very well repre-

sented therein. We will add a feature that performs inferences when

X, i
t

(S+),t,R) and Dﬁ’lcs+).

N(Dt’l(s+),u,R) and D

k,i
u

(S+) overlap by a given amount and similarly

for N(D

Definition 3.3: The strength of inductive information relating t and

u, when R and S+ are given, denoted Stren (t,u.R,S+), is defined as

Stren(t,u,R,S+) = max | [N 1(se),u,R) |+ N(DSo(5+),t,R) |
k,i

|D¥’lcs+) | +] Dﬁ’l(s+)|

Note that the inference algorithm using grammatical expansion required
Stren(t,u,R,S+) = 1 for all inferences. We will relax this requirement
by introducing a strength parameter into the algorithm which will allow
strengths less than 1. The new method will perform inferences when-

ever the calculated strengths (percentage of overlap between the sub-
stitution sets and derivative sets) are at least as large as the strength
parameter. The formal specification of the inference algorithm using

grammatical expansion and inferential strength follows.

ALGORITHM I2: Inference of Tree Automata using Tree Derivatives,

Grammatical Expansion and a2 Strength Parameter

l--l

w
+
[H]

finite positive trees sample for the target tree automaton
M, is input.
2. Strn, the strength parameter is input.
3. For all tree pairs (t,u) not in the same class of RM Do
If Stren(t,u,R,S+) > Strn

Then Merge the classes containing t and u.

Ml

4. R , the subtree-invariant equivalence relation obtained from

the application of S$Step 3 to RM, is output.

T
Algorithm I2 cutputs the inferred automaton, M', as RM since
]
M' is easily determined from R’
Example 3.2
S+ = { a s a s a s a }
b"d g c’e b’ g
ppolesy = a , a1, pl:l(s+) = ¢ a , a 3
$°d $°g $”g $%
DI°t(s+) = (a1} L, dllso=ra ,dhtsoy=(a L, e)
b*$ c™$ g c”$ b

Suppose Strn = 2/3 and R0 is the purely reflexive relation. The non-

zero strengths in order of computation are:
0

Stren(b,c,R7,8+) = 2/u4,

Stren(d,g,R%,5+) = 2/3 = R! = R U ((d,g)}

Stren(e,g,Rl,S+) = 2/3 =+ R2 = Rl U {(e,g)} = {(b),(c),(d,e,g)}
Stren(b,c,R%,5+) = 1 + R? = R2 U {(b,e)} = ((b,e), (d,e,g)}

R3 is output by I2 since no further inferences are possible. The
tree automaton determined by R3 is
M = ({A,B,D}, {a,b,ec,d,e,g} , £, {A}) where

£ = f_ = B, fd = fe = fg = D, Ia(B,D) = A

Note that Il would output RO. If Strn was set to any value less
than 2/3 then I2 would still output rR3, Brayer and Fu's algorithm

could not make any inferences.

18

4. Efficiency Improvements to Algorithm I2

In this section we will discuss modifications to the relation
set and the method for checking whether trees are in T(GR). These
changes will improve the space required (storage for R is decreased)
and the time necessary for completion of an inference (the times for

checking trees in T(GR) and derivative set comparisons are decreased).

The relation set is changed as follows: IfF £ = {tl,...,tn} is
an explicitly specified equivalence class then choose a member of that
class with minimum depth as its representative. Do the same for all
classes. If tis t and uj is a subtree of ti where ujaﬁ then substi-
tute u for all occurences of uj in ti. Repeat this process until no
further substitutions are possible. If this process results in a

merging of two classes then the new class representative is chosen as

before and substitutions are made again (e.g. if R={a, aj; e, ¢ ,
a’c a’b
a } then a is reduced to a which is in a so 2 and & are
a’c a’e a’c
a’b a’b
merged to yield R = { a, a = ¢ }). Repeat the class merging
a’e a”b

and substitution process until no more changes are possible. This
results in a relation set of minimum depth, an elimination of redun-
dant information and a potential decrease in the number of iterations
of STEP 3 in I2. MNote that all subtrees of trees in R are class

representatives. The inference algorithm I2 using M1 is denoted I2(M1).

19

The second change, denoted M2, involves the tree grammar

G, = (V,A,P

R S+). Recall P_ = {(t,u): (t,u)eR}. Instead of S+ use

R’ R
S' which is derived from S+ using the reductions t - u for (t,u)eR

and t an element of the class represented by u. Thus, if (a, a JeR

a”’b
and X € S+ then x € 8'. C(Clearly, T(G.) = T(G!) where
”~ Fa R R
aa a“a
a’™b
a’b
Gé = (V,A,PR,S'). It is alsc evident that the productions of GR can

be altered to P' = {(t,u): (t,u)eR and u is an element, other than t,
of the class represented by t} without affecting the result of the
inference process.

At present we have the basic inference algorithm I2 with modifi-
cations M1 and M2 applied to it. This algorithm will be denoted
I2(M1,M2). M2 speeds up the checking process for tET(GR) since the
productions in GR are non-depth decreasing. This property in P' enables
one to form an expansive tree grammar G" that generates the same set of

treses as GR and a tree automaton M. where T(GR) = T(G") = T(MR)' Thus,

R
the formation of MR is done in a straightforward fashion. Furthermore,
since P' is invertible (i.e. t*u€P' and v*u€P' implies t=v) then MR

is deterministic. Therefore, instead of checking "tET(GR)?" we can
deterministically parse t to answer "tET(MR)?".
The use of MR with M2 and Ml by I2, denoted I2(M1,M2,MR), speeds

up the checking process. An additional benefit of using MR is at the

20

conclusion of IZ(Ml,MZ,MR) both the set of inferred relations - B -

and the inferred automaton - MR - are already formed.

In summary, the changes to the representation of R are the use
of class representatives, the elimination of redundant information
and, possibly, the merging of classes at an earlier time than I2.
These changes in R save space and time (if classes are merged then
derivative sets need not be checked). We have also changed the check-
ing process from "tsT(GR)?" to “tsT(MR)?" where MR is deterministic.
This reduces the checking time and makes the currently inferred pre-

sults - MR - available at any time for examination or output.

5. Inference of Finite-State Machines

When S+ is restricted to linear trees -~ every node has exactly
one successor]or is a terminal - then the inferred tree automaton is
equivalent tﬁla finite-state machine. In this section we will compare
our inference method with the inference algorithm for finite-state
machines by Biermann and Feldman (3], denoted IBF. 1IBF inputs S+ and
a8 length parameter k. Then it computes first order derivative sets
with respect to the prefixes of strings in the sample. The derivative

sets for the strings s and t are k-equivalent (Di(8+) £

Dy (S+)) if
Dé(8+) and D%(S+) agree on all strings of length less than or equal
to k (disregarding the $ marker). SRMt is inferred whenever

D T(s+) ¥ plis+),
s C

21
Example 5.1

s+ = {01,100,111,0010}

k=2
2 2
DO(S+) s Dll(S+) 2 {1}
g] +) = (S+) e
Dl(S+) = {00,111} , Dlo(S) = DODl 3 = {0}
DOO(S+) = {10}
4 o L oy & _
DOl(S) = DIDO(S) o= Dlll(S) = D0010(8+) = {al
R = {(y), (0,11), (1), (10,001}, (00), (01, 100, 111, 0Q010)}
M:
1
)

A shortcoming of IBF is when the sample exhibits inadequate in-
Example 5.2

formation to perform inferences based on the k-parameter
example demonstrates the situation.

The next
S+ = {ab,cb,ae,cd,ad,ccb}
Da(S+) = {b,e,d} , DC(S+) = {b,d,cb}, D c(S+) z {b}
Dab(S+) = Dae(8+) = Dad(S+) = ch(S+) = Dcd(S+) = Dccb(8+) = Ex)
For any k setting we obtain:
ab R ae R ad R eb R ¢d R ccb

22

Note that I2 applied to S+ with Stren = 4/5 would determine aRc.
Thus, I2 could act on the overlap between the sets of derivatives with
respect to a and c¢.

The next example shows the capability of I2 to extract informa-
tion from the sample that is not readily apparent upon visual inspec-

tion (and therefore cannot be obtained by IBF),

Example 5.3
S+ = {acd,bed,axef ,bye,aefg,aeg,axcd}

1

Di(8+) = (cd,xef,efg,eg,xed}, D (S+) =(d}

1

1 - 1 _ -
D_ (S+) = {ef,ecd}, Daxe(S+) ={f}, Daxc(S+) ={d}

1 i 1 i
DL_(S+) =(fg,g}, DL_,(S+) =(g)
DI(S+) = {cd,ye}, D (S+) ={d}, D= (S+) ={e}
b Y * “he 2 Zhy

ac R axe R be, ae R aef (1)
Wnen Stren = 1/2 I2 determines

a R b, a R ax, ax R by

M:

23

Both the strength factor and grammatical expansion helped to combine
classes of R to simplify M. IBF could only determine the relations

(1) by using k.

6. The Design of Programming Languages

In this section we address the open question posed by Joshi and
Levy [15] by demonstrating the use of skeletal descriptions for in-
ferring context free grammars. In[10] Crespi-Reghizzi, Melkanoff and
Lichten specified an inference system for the design of operator pre-
cedence programming languages. We will briefly review their techni-
que and compare it to I2. We find that our method can use structural
infermation in the samples more effectively, thereby requiring smaller
samples for inferences.

Crespi-Reghizzi, et al svecified an inference system that used a
sample consisting of skeletal structural descriptions[15]. These
structural descriptions (produced by a parenthesis grammar for the
target language) are derivation trees for the sentences in the target
language with nonterminal nodes not labelled. Their method is essen-

tially a labelling procedure for these nodes.

Definition 6.1: The parenthesized version, [G], of G is formed from
the productions A+[X] where A+X is in G. [and] are symbols not

already in G.

Definition 6.2: The skeleton, s, of a tree, *, is the same as +
with all internal nodes labelled with ".".
Their algorithm inputs derivation tree skeletons from [G] and

uses terminal profiles to label internal nodes.

Definition 6§.3: The left and right terminal sets of order k of a

tree t are defined as:

Lk(t)

Rk(t)
If |z|<k then u = z,

The terminal profile ﬁkﬁ) of order k of a tree t is defined as
P (t) = L (6)5 R (O

Example 6.1

Ty [ﬁ] z = [(al + [a]]
fa] Lal

(t)

L) = ([}, R (11, P (o) = fely; (1Y)

1
Ls(t) ={[[al+}, Rs(t) = {.+[a]] }

P.(t) =(([[al+) ; (+[al]})

For clarity, we rewrite P (t) as r[[a]+; +[211)

The algorithm by Crespi-Reghizzi, et al inouts a sample set of
skeletons, S+ =(Sl,. .,Sn}, and a length parameter k. Then all +he

internal nodes of trees in S+ are labelled with Pk

Example 6.2

We apply their algorithm to infer a grammar for "if-then' and

{u:z is the frontier of t and u is the prefix of length k of z}

{urz is the frontier of t and u is the suffix of length k of z}

"if-then-else" statements. The following three sentasnces are supplied

(with the usual association of statement parts):
1. If a<a then a+a
2. If a<a then a+a else a+a

3. If a<a then if a<a then a<«a else a+a

Ly

>

L5

[TE 7 deem—

[— TN N

A
SRS (21 D

1]

[if . then . else
fal {al La] Lal (al (al
i th
[7o)
SNy

{ if then) else]
[ZEN~ .4«‘-\4\] r ﬁ]
T YIS fal [a)

= {815 5,5 S5l

k<5 then a<a and a+a reduce to the same variable. Let k = 5:

P PC) = (tal; [a]) Ava
[a]
: Pg AN) = (tlal<; <[all) B+A<A
[. <.]
~

(a]l [al

26

C: P .) = [[Lale;+~[al]) C+A=A
[TN]
AN N
fal [a]
D: Pg(5;) = Pg(5,) = ([if [[a; [all]] D+if B then C
D+if B then C else C
Er P.(Sy) = [[if [fa; al31]) E+if B then D

For 5<k<1l0 there are no changes.
Let k = 11:

A, B and C are the same.

D: Pyy(S,) = {(if [[al<[all; then [[al<[all]]

D+if B then C
E: P,,(5)) = [[if ([al<[al]; else [{al«[2]1])

E+if B then C else C
F: P (S = ([if [[al<lall; ([al+[al3]])

F+~if B then E
The complete grammar inferred for k=11 is 6=({S,A,B,C,D,E,F},
{a,if,then,else,<,+}, 5 , P)
P: S+D | E| F
A-ra
B+A<A
C+A+A

D+if B then C

27

E+if B then C else C

F+if B then E

The inferred grammar does not change from G for values of k larger
than 11.

The following example illustrates the application of I? to the
sample given in Example 6.2.

Example 6.3

S+ is the same as in Example 6.2. (The use of brackets is redundant

when I2 is applied. However, we include them for clarity).

Let t = .
[/Aﬂ\.l
(a] fal
u o=
{if 7. then . else .] , and Strength = 2/5.

Ef??‘T] Ejﬁ?T\QJ [?7T?§:]
A AN A A A
(al (2] [al

Then N(D§’1(s+),u,R> = {[if ."then %1} = w(ni=1(s+)¢,m>

7T

5 < .

A
[2] [a]

and Stren(t,u,R,S+) = 2/5. +tRu is the only generalization that can
be made based on the structural content of S+. The tree automaton

resulting from this inference is:

28

M= (Q,T,f,F) where
Q = ('[', 'at, ']',IF,THEN,ELSE,'<', '«!' A,B,C,D}
T = (., if, then, else, <, «, [, 1, a}
F = {C,D}
= [=t S e = =
fe1ge ® ELSE, £ = f<t, £ = '«

£.C' 0, tart, 1"y = A
f'(l[l’ A, |<|, A, t]l) = B
f.(l[l, A, |+1’ A, r]r)

C
f.('{', IF, B, THEM, C, ELSE, C, ']1') = C
£.('[', IF, B, THEN, C, '1') = D

The equivalent context-free grammar (non-parenthesized version} for M
is ¢ = ({A,B,C,D,S}, {a,<,+, if, then, elsel}, §, P)

s-C | D
P: A-a

B+A<A

C+A+A | if B then C else C

D+if B then C
Note that each "else'" is grouped with the most recent "then".

Example 6.2 demonstrated that the amount of structural informa-
tion used by their algorithm was dependent on the location of struec-
tures in strings. When k was set too low then structural information
contained in the sample was not used (it appeared in the center of

strings). As k was increased the algorithm split grammatical variables

29

(discriminated between strings that differed towards their centers
rather than their ends). Thus, the manner of splitting did not allow
the inference of recursive grammatical rules (higher values of k
proved too discriminatory). This shortcoming was due to the fact
that their algorithm viewed samples as structured strings ([101])
rather than skeletal structures for derivation trees.

In contrast to the properties of their algorithm mentioned above,
we find that I2 uses all of the structural information present in
trees involved in inferences. Thus, if tRu is inferred from D:’i(8+)

k’l(S+) then the vlacement of all subtrees in Dk’l

and Du "

(S+} and

Dﬁ’l(s+) is relevant. Furthermore, by varying the strength parameter
the user can observe all of the structural generalizations (variable

mergers) supported by the sample.

7. Conclusion

In this paper we have proposed a method for automating the de-
sign of tree languages. It uses tree derivatives, feedback and inter-
acts with the user via the strength parameter. The method was based
on comparing tree forms, which helved determine the roles of subtrees.
We have found that the method performs well when compared to the tree
inference algorithms by Braver and Fu and Edwards, Gonzalez and
Thomason.

We have used the notion of generalizing finite automata to +ree
automata for applying our algorithm to the inference of finite auto-
mata. Finally, we have shown that by using skeletal structure sam-
ples - context-free derivation trees without variable labels - our
algorithm can be used to aid in the design of programming languages.

An extension that is under study combines the method of locating

repetitive substructures, given in [12], with our inference algorithm.

(1]

{23

£3]

Cu]

53

6]

[71

(8]

Ce]

f10]

(11]

[12]

£13]

REFERENCES

M.A. Arbib and Y. Give'on, "Algebra automata I: Parallel
programming as a prolegomena to the categorical approach,”
Inform. Contr., vol. 12, pp. 331-3u45, April 1968.

B.K. Bhargava and K.S. Fu, "Tree systems for syntactic pattern
recognition," IEEE Trans. Comput,, vol. C-22, pp. 1087-1099,
Dec. 1973.

A.W. Biermann and J.A. Feldman, "On the synthesis of finite-
state machines from samples of their behavior," IEEE Trans.
Comput., vol. C-21, pp. 592-597, June 1972.

T.L. Booth and K.S. Fu, "Grammatical inference: Introduction
and survey - Part I," IEEE Trans. Syst., Man, Cybern., vol.
SMC-5, pp. 95-111, Jan. 1975.

T.L. Booth and K.S. Fu, "Grammatical inference: TIntroduction
and survey - Part II,"” IEEE Trans. Syst., Man, Cybern., vol.
SMC-5, pp. 409-u422, July 1975.

W.S. Brainerd, "The minimalization of tree automata," Inform.
Contr., vol. 13, op. 484-491, Nov. 1968.

W.S. Brainerd, "Tree generating regular systems," Inform.
Contr., vol. 14, pp. 217-231, Feb. 1969.

J.M. Brayer and K.S. Fu, "A note on the k-tail method of tree
grammar inference," IEEE Trans, Syst., Man, Cybera., vol. SMC-7,
pD. 293-300, April 1977.

J.A. Brzozowski, "Derivatives of regular expressions," Journal
Ass. Comput. Mach., vol. 1ll, pp. 481-49u4, QOct. 1964,

3. Crespi-Reghizzi, M.A. Melkanoff and L. Lichten, "The Use of
Grammatical Inference for Designing Programming Languages," CACM,
vol. 16, no. 2, Feb. 1973,

J. Doner, "Tree acceptors and some of their applications,"
J. Comput. Syst. Sci., vol. 4, pp. 406-451, Oct. 1970.

J.J. Edwards, R.C. Gonzalez and M.G. Thomason, "An algorithm for
the inference of tree grammars," Intern. Jour. Comput. Infor.
Sei., vol. 5, no. 2, June 1976,

T.G. Evans, "Grammatical inference techniques in pattern anaiysis,"
in Software Fngineering, vol. 2, J.T. Tou., Ed. New York: Academic,
1871,

J.E. Hopecroft and J.D. Ullman, Formal Languages and Their Relation
to Automata. Reading, Mass.: Addison-Weslev, 19649.

A.K. Joshi and L.S. Levy, "Skeletal structural descriptions, "
Inform. Contr., vol. 39, pp. 192-211, Nov. 1978.

{161

B.A. Levine, "The automated inference of tree systems," Ph.D.
dissertation, Dept. Comput. Sci., Oregon State Univ., Corvallis,
June 1979,

B.A. Levine, "Derivatives of Tree Sets with Applications to
Grammatical Inference," submitted for publication.

K.L. Williams, "A Multidimensional Approach to Syntactic
Pattern Recognition," Pattern Recognition, vol. 7, no. 3,
pp. 125-137, Sept. 1975.

[+]

Index Terms

tree derivatives, inference of tree automata, grammatical expansion,

inferential strength, inference of programming languages

